
IDRP Design Document 2.4 7/19/93 Page 137

13. IDRP Socket Notes

The IDRP gated module has two types of interaction with the kernel:

- gated routines to add NLRI to the forwarding tab

- socket support over which to pass PDUs to a neighbor.

Only the socket support over which to pass a BISPDU is specific to IDRP. All routines concerning
the initialization of the socket are in idrp_init_sock.c All routines concerning the use of the socket
are in idrp_sock.c

To put gated on another stack, both the gated routines to handle the NLRI and these IDRP routines
must be changed.

1Note that the term “local peer” refers to the running instance of gated; that is, it gated’s way of saying “me.”

Page 136 7/19/93 IDRP Design Document 2.4

IDRP Outbound Route
Array

Each entry: 8 bytes
Number of entries: one per peer.

One per NLRI or idrpRoute
structure.

IDRP Refresh status
structure

24 octets One per peer.

IDRP Refresh UPDATE
PDU structure

Each entry: 28 bytes + withdraw
structure bytes (depends on max
PDU size received configured).
Number of entries: one per UPDATE
PDU in refresh sequence.

One per BISPDU sent in
REFRESH sequence (lots).

idrp_rt_chain_walk
structure

Entry: 8 bytes
List: 8 bytes

Temporary — used to search
gated routes for route additions
or best external route search.
up to 4 used at a time per NLRI.
High water usage per size of
routing table will be tested.

snpa_list Entry: 16 per SNPA.
List: 12 per list per peer
Total size: 16 * number of SNPAs +
12.

One per peer.

IDRP Design Document 2.4 7/19/93 Page 135

12. Memory organization and sizing information

The definition and size of IDRP structures is subject to change. Please consult the appropriate
include files for the most up to date information.

Type of Structure Memory Need/structure Number of Structures used

Peer structure Basic structure: 1K
Growth: Hash table size configured
larger may increase table,with 16 per
entry and hash table of size 50

One per IDRP peer, plus one for
local node.

IDRP Route Structure Basic structure: 88 octets + route_out
structure (8/peer)
Growth: route_out structure grows by
8 bytes per peer, denotes number of
peer

One per AdjRib entry per
received IDRP route, one per
EXT_INFO entry (IS-IS route),
one per local route.

Attribute Record 212 octets for basic structure.
Associated structures may add 30
bytes per associated route ID (which
may have many NLRI/idrpRoute
structures associated).

One per use of attribute
structure (can be shared across
many peers). Note that local
routes use idrp_attribute records,
one per configured attribute

RouteList in Attribute
record

One per route ID: 32 octets One per route ID associated with
attribute record.

Canonical RD Path list Entry: 28 octets
List: 1 entry per RDI in RD path.

One list per attribute record.

AS Path Entry: 1 per AS (20 bytes)
List: 1 per AS in pathway (overhead
12 bytes).

Part of IDRP attribute record.
Note: Only used in interaction
with BGP-4 or EGP, ignore for
ISO-only implementation.

IDRP attribute array Array element: 16 per element
Array: 1 per IDRP defined attribute

Part of IDRP attribute record.

User attribute array Array element: 16 per element
Array: 1 per user-defined attribute
supported by IDRP implementation

Part of IDRP attribute record.

IDRP Error info structure 20 bytes Part of idrpPeer structure.
IDRP send list Each entry: 44 bytes plus withdraw

structure (size depends on maximum
size of PDU received: maxsize - 30/4)
List overhead: 8 bytes (head and tail
pointers).

Temporary during parsing and
PDU transmittal.

IDRP announce list Each entry: 32
List overhead:8 bytes (head and tail
pointers).

Temporary during parsing and
PDU transmittal.

gated rt_head per IDRP
destination

Each entry: 64 octets
_head =52 octets

Use one per NLRI destination
per family (CLNP or IP).

gated rt_entry per IDRP
route

Each entry: 64 octets
List overhead: 12 octets (head, tail,
active)

Use one per AdjRib entry.

IDRP route_in hash table Hash table = hash table entry (16
octets) * hash table size (configured at
compile time).

One per peer.

Page 134 7/19/93 IDRP Design Document 2.4

CHANGE 128.3 255.255 gw 35.42.1.68 Kernel pref 254 metric 0 en1
<NoAdvise Ext Gateway>
RELEASE 128.3 255.255 gw 35.42.1.68 Kernel pref 254 metric 0 en1
<NoAdvise Ext Release Gateway>
Jul 21 02:32:49 rt_close: 1 route proto KRT
Jul 21 02:32:49
Jul 21 02:32:49
Jul 21 02:32:49 rt_flash_update: flash update started with 1 entries
Jul 21 02:32:49 idrp_do_flash: Doing flash update for IDRP
Jul 21 02:32:49 idrp flash processing called
Jul 21 02:32:49 idrp status change routine called
Jul 21 02:32:49 case1: IDRP peer 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 route
80.03 flashed
Jul 21 02:32:49 idrp status change routine finished with announcements
Jul 21 02:32:49 idrp sending routes to peers
Jul 21 02:32:49 idrp_send_phase3_routes called
Jul 21 02:32:49 DIST_ATTR called - no code
Jul 21 02:32:49 idrp sent routes to peers
Jul 21 02:32:49 idrp deleting routes requested DELETE after SENT
Jul 21 02:32:49 0 Withdrawn routes idrp routes deleted
Jul 21 02:32:49 idrp set min_route advertisement timer
Jul 21 02:32:49 rt_flash_update: flash update ended with 1 entries
Jul 21 02:32:49
Jul 21 02:32:49 IDRP (Established) RCV Keepalive seq 26 ack 2 offer 5 avail 2 len 30 from
47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00

(More log file here)

IDRP Design Document 2.4 7/19/93 Page 133

Jul 21 02:32:49 idrp flash processing called
Jul 21 02:32:49 idrp status change routine called
Jul 21 02:32:49 case1: IDRP peer 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 route
49.EEEF flashed
Jul 21 02:32:49 idrp status change routine finished with announcements
Jul 21 02:32:49 idrp sending routes to peers
Jul 21 02:32:49 idrp_send_phase3_routes called
Jul 21 02:32:49 DIST_ATTR called - no code
Jul 21 02:32:49 idrp sent routes to peers
Jul 21 02:32:49 idrp deleting routes requested DELETE after SENT
Jul 21 02:32:49 0 Withdrawn routes idrp routes deleted
Jul 21 02:32:49 idrp set min_route advertisement timer
Jul 21 02:32:49 rt_flash_update: flash update ended with 1 entries
Jul 21 02:32:49
Jul 21 02:32:49 IDRP (Established) RCV Update seq 25 ack 1 offer 5 avail 2 len 82 from
47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 In sequence
Jul 21 02:32:49 IDRP (Established) XMIT Keepalive (unseq) seq 7 ack 25 offer 5 avail 0 len 30
to 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 Sending:
Jul 21 02:32:49 85 00 1e 04 00 00 00 07 00 00 00 19 05 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00
Jul 21 02:32:49 IDRP update from 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 attr
length 39
Jul 21 02:32:49 Attr 1, length 5, flags 0
Jul 21 02:32:49 Attr 3, length 7, flags 0
Jul 21 02:32:49 Attr 13, length 1, flags 0
Jul 21 02:32:49 Attr 4, length 10, flags 80
Jul 21 02:32:49 Attr 1, length 5, flags 0
Jul 21 02:32:49 ROUTE_ID 0xe
Jul 21 02:32:49 ROUTE_ID 0xe
Jul 21 02:32:49 Attr 3, length 7, flags 0
Jul 21 02:32:49 RD_PATH type 2, length 4
Jul 21 02:32:49 49.0129
Jul 21 02:32:49 Attr 4, length 10, flags 80
Jul 21 02:32:49 Attr 13, length 1, flags 0
Jul 21 02:32:49 HOP_COUNT 1
Jul 21 02:32:49 RouteId 14 (14) pref 0 peer47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 NLRI (PROTO_ID 1, family 2 length 3):
Jul 21 02:32:49 nlri =
Jul 21 02:32:49 nlri = 80.03
Jul 21 02:32:49 valid pdu pdu from peer 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
last nlri 80.03
Jul 21 02:32:49 IDRP entered idrp_sm in state Established with event idrp update w/no errors
recieved
Jul 21 02:32:49 peer 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 phase1 external pdu
processing
Jul 21 02:32:49 Called ph1_with_add_ext_route peer
47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 route_id 14
ADD 0.0.0.0 0.0.0.0 gw 35.42.1.68 IDRP pref 182 metric 1 en1
<NoAge Refresh Ext Gateway>
Jul 21 02:32:49 Called ph1_with_add_ext_route peer
47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 route_id 14
CHANGE 128.3 255.255 gw 35.42.1.68 Kernel pref 254 metric 0 en1
<NoAdvise Ext HoldDown Gateway>
ADD 128.3 255.255 gw 35.42.1.68 IDRP pref 182 metric 1 en1
<NoAge Refresh Ext Active Gateway>
Jul 21 02:32:49 send_best_ext called
Jul 21 02:32:49 del_routes_best_ext called
Jul 21 02:32:49 rt_close: 2/2 routes proto IDRP.35.42.1.85 from 35.42.1.68
Jul 21 02:32:49
Jul 21 02:32:49
Jul 21 02:32:49 rt_flash_update: flash updating kernel with 1 entries

Page 132 7/19/93 IDRP Design Document 2.4

Jul 21 02:32:49 case1: IDRP peer 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 route
49.0133 flashed
Jul 21 02:32:49 idrp status change routine finished with announcements
Jul 21 02:32:49 idrp sending routes to peers
Jul 21 02:32:49 idrp_send_phase3_routes called
Jul 21 02:32:49 DIST_ATTR called - no code
Jul 21 02:32:49 idrp sent routes to peers
Jul 21 02:32:49 idrp deleting routes requested DELETE after SENT
Jul 21 02:32:49 0 Withdrawn routes idrp routes deleted
Jul 21 02:32:49 idrp set min_route advertisement timer
Jul 21 02:32:49 rt_flash_update: flash update ended with 1 entries
Jul 21 02:32:49
Jul 21 02:32:49 IDRP (Established) RCV Update seq 24 ack 1 offer 5 avail 3 len 98 from
47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 In sequence
Jul 21 02:32:49 IDRP (Established) XMIT Keepalive (unseq) seq 7 ack 24 offer 5 avail 0 len 30
to 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 Sending:
Jul 21 02:32:49 85 00 1e 04 00 00 00 07 00 00 00 18 05 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00
Jul 21 02:32:49 IDRP update from 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 attr
length 55
Jul 21 02:32:49 Attr 1, length 5, flags 0
Jul 21 02:32:49 Attr 3, length 7, flags 0
Jul 21 02:32:49 Attr 13, length 1, flags 0
Jul 21 02:32:49 Attr 4, length 26, flags 80
Jul 21 02:32:49 Attr 1, length 5, flags 0
Jul 21 02:32:49 ROUTE_ID 0xd
Jul 21 02:32:49 ROUTE_ID 0xd
Jul 21 02:32:49 Attr 3, length 7, flags 0
Jul 21 02:32:49 RD_PATH type 2, length 4
Jul 21 02:32:49 49.0129
Jul 21 02:32:49 Attr 4, length 26, flags 80
Jul 21 02:32:49 Attr 13, length 1, flags 0
Jul 21 02:32:49 HOP_COUNT 1
Jul 21 02:32:49 NLRI (PROTO_ID 1, family 7 length 3):
Jul 21 02:32:49 nlri = 49.EEEF
Jul 21 02:32:49 valid pdu pdu from peer 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
last nlri 49.EEEF
Jul 21 02:32:49 IDRP entered idrp_sm in state Established with event idrp update w/no errors
recieved
Jul 21 02:32:49 peer 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 phase1 external pdu
processing
Jul 21 02:32:49 Called ph1_with_add_ext_route peer
47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 route_id 13
CHANGE 49.eeef ff.ffff gw 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144
Kernel pref 254 metric 0 et1 <NoAdvise Ext HoldDown Gateway>
ADD 49.eeef ff.ffff gw 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144
IDRP pref 182 metric 1 et1 <NoAge Refresh Ext Active Gateway>
Jul 21 02:32:49 send_best_ext called
Jul 21 02:32:49 del_routes_best_ext called
Jul 21 02:32:49 rt_close: 1/1 route proto IDRP.35.42.1.85 from 35.42.1.68
Jul 21 02:32:49
Jul 21 02:32:49
Jul 21 02:32:49 rt_flash_update: flash updating kernel with 1 entries
CHANGE 49.eeef ff.ffff gw 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144
Kernel pref 254 metric 0 et1 <NoAdvise Ext Gateway>
RELEASE 49.eeef ff.ffff gw 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144
Kernel pref 254 metric 0 et1 <NoAdvise Ext Release Gateway>
Jul 21 02:32:49 rt_close: 1 route proto KRT
Jul 21 02:32:49
Jul 21 02:32:49
Jul 21 02:32:49 rt_flash_update: flash update started with 1 entries
Jul 21 02:32:49 idrp_do_flash: Doing flash update for IDRP

IDRP Design Document 2.4 7/19/93 Page 131

Jul 21 02:32:49 IDRP 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 state Open_sent ->
Established
Jul 21 02:32:49 IDRP (Established) RCV Keepalive seq 23 ack 1 offer 5 avail 5 len 30 from
47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 In sequence
Jul 21 02:32:49 IDRP entered idrp_sm in state Established with event idrp keepalive received
Jul 21 02:32:49 peer 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 received keepalive in
Established state
Jul 21 02:32:49 IDRP (Established) RCV Update seq 23 ack 1 offer 5 avail 4 len 98 from
47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 In sequence
Jul 21 02:32:49 IDRP (Established) XMIT Keepalive (unseq) seq 7 ack 23 offer 5 avail 0 len 30
to 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 Sending:
Jul 21 02:32:49 85 00 1e 04 00 00 00 07 00 00 00 17 05 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00
Jul 21 02:32:49 IDRP update from 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 attr
length 55
Jul 21 02:32:49 Attr 1, length 5, flags 0
Jul 21 02:32:49 Attr 3, length 7, flags 0
Jul 21 02:32:49 Attr 13, length 1, flags 0
Jul 21 02:32:49 Attr 4, length 26, flags 80
Jul 21 02:32:49 Attr 1, length 5, flags 0
Jul 21 02:32:49 ROUTE_ID 0xc
Jul 21 02:32:49 ROUTE_ID 0xc
Jul 21 02:32:49 Attr 3, length 7, flags 0
Jul 21 02:32:49 RD_PATH type 2, length 4
Jul 21 02:32:49 49.0129
Jul 21 02:32:49 Attr 4, length 26, flags 80
Jul 21 02:32:49 Attr 13, length 1, flags 0
Jul 21 02:32:49 HOP_COUNT 1
Jul 21 02:32:49 RouteId 12 (12) pref 0 peer47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 NLRI (PROTO_ID 1, family 7 length 3):
Jul 21 02:32:49 nlri = 49.0133
Jul 21 02:32:49 valid pdu pdu from peer 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
last nlri 49.0133
Jul 21 02:32:49 IDRP entered idrp_sm in state Established with event idrp update w/no errors
recieved
Jul 21 02:32:49 peer 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 phase1 external pdu
processing
Jul 21 02:32:49 Called ph1_with_add_ext_route peer
47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 route_id 12
CHANGE 49.0133 ff.ffff gw 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144
Kernel pref 254 metric 0 et1 <NoAdvise Ext HoldDown Gateway>
ADD 49.0133 ff.ffff gw 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144
IDRP pref 182 metric 1 et1 <NoAge Refresh Ext Active Gateway>
Jul 21 02:32:49 send_best_ext called
Jul 21 02:32:49 del_routes_best_ext called
Jul 21 02:32:49 rt_close: 1/1 route proto IDRP.35.42.1.85 from 35.42.1.68
Jul 21 02:32:49
Jul 21 02:32:49
Jul 21 02:32:49 rt_flash_update: flash updating kernel with 1 entries
CHANGE 49.0133 ff.ffff gw 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144
Kernel pref 254 metric 0 et1 <NoAdvise Ext Gateway>
RELEASE 49.0133 ff.ffff gw 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144
Kernel pref 254 metric 0 et1 <NoAdvise Ext Release Gateway>
Jul 21 02:32:49 rt_close: 1 route proto KRT
Jul 21 02:32:49
Jul 21 02:32:49
Jul 21 02:32:49 rt_flash_update: flash update started with 1 entries
Jul 21 02:32:49 idrp_do_flash: Doing flash update for IDRP
Jul 21 02:32:49 idrp flash processing called
Jul 21 02:32:49 idrp status change routine called

Page 130 7/19/93 IDRP Design Document 2.4

Jul 21 02:32:49 85 00 1e 04 00 00 00 02 00 00 00 16 05 05 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00
Jul 21 02:32:49 AGGR called to aggregated for peer
47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 peer 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 got UPDATE with
attribute mask 100d
Jul 21 02:32:49 IDRP XMIT Update to 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 IDRP (Established) XMIT Update (seq) seq 2 ack 22 offer 5 avail 4 len 102 to
47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 Sending:
Jul 21 02:32:49 85 00 66 02 00 00 00 02 00 00 00 16 05 04 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 37 00 01 00 05 00 00 00 00
00 00 03 00 07 02 00 04 03 49 01 30 00 0d 00 01 01 80 04 00 1a 00 01
01 81 14 47 00 05 80 ff ff 00 00 00 04 00 00 00 00 00 23 01 01 72 00
00 01 01 81 00 08 38 47 00 05 80 aa aa aa
Jul 21 02:32:49 flush attribute send list routine entered
Jul 21 02:32:49 peer 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 got UPDATE with
attribute mask 100d
Jul 21 02:32:49 IDRP XMIT Update to 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 IDRP (Established) XMIT Update (seq) seq 3 ack 22 offer 5 avail 3 len 105 to
47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 Sending:
Jul 21 02:32:49 85 00 69 02 00 00 00 03 00 00 00 16 05 03 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 37 00 01 00 05 00 00 00 01
00 00 03 00 07 02 00 04 03 49 01 30 00 0d 00 01 01 80 04 00 1a 00 01
01 81 14 47 00 05 80 ff ff 00 00 00 04 00 00 00 00 00 23 01 01 72 00
00 01 01 81 00 0b 50 47 00 05 80 ff ff ff 00 00 05
Jul 21 02:32:49 flush attribute send list routine entered
Jul 21 02:32:49 peer 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 got UPDATE with
attribute mask 100d
Jul 21 02:32:49 IDRP XMIT Update to 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 IDRP (Established) XMIT Update (seq) seq 4 ack 22 offer 5 avail 2 len 98 to
47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 Sending:
Jul 21 02:32:49 85 00 62 02 00 00 00 04 00 00 00 16 05 02 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 37 00 01 00 05 00 00 00 02
00 00 03 00 07 02 00 04 03 49 01 30 00 0d 00 01 01 80 04 00 1a 00 01
01 81 14 47 00 05 80 ff ff 00 00 00 04 00 00 00 00 00 23 2a 01 61 00
00 01 01 81 00 04 18 49 01 28
Jul 21 02:32:49 flush attribute send list routine entered
Jul 21 02:32:49 peer 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 got UPDATE with
attribute mask 100d
Jul 21 02:32:49 IDRP XMIT Update to 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 IDRP (Established) XMIT Update (seq) seq 5 ack 22 offer 5 avail 1 len 79 to
47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 Sending:
Jul 21 02:32:49 85 00 4f 02 00 00 00 05 00 00 00 16 05 01 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 27 00 01 00 05 00 00 00 03
00 00 03 00 07 02 00 04 03 49 01 30 00 0d 00 01 01 80 04 00 0a 00 01
01 cc 04 23 2a 01 0e 00 01 01 cc 00 01 00
Jul 21 02:32:49 flush attribute send list routine entered
Jul 21 02:32:49 peer 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 got UPDATE with
attribute mask 100d
Jul 21 02:32:49 IDRP XMIT Update to 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 IDRP (Established) XMIT Update (seq) seq 6 ack 22 offer 5 avail 0 len 81 to
47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 Sending:
Jul 21 02:32:49 85 00 51 02 00 00 00 06 00 00 00 16 05 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 27 00 01 00 05 00 00 00 04
00 00 03 00 07 02 00 04 03 49 01 30 00 0d 00 01 01 80 04 00 0a 00 01
01 cc 04 23 2a 01 7d 00 01 01 cc 00 03 10 80 02
Jul 21 02:32:49 phase 3 - first time dump for neighbor
47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00

IDRP Design Document 2.4 7/19/93 Page 129

CHANGE 0.0.0.0 0.0.0.0 gw 35.42.1.14 Kernel pref 254 metric 0 en1
<Refresh NoAdvise Ext Gateway>
RELEASE 0.0.0.0 0.0.0.0 gw 35.42.1.14 Kernel pref 254 metric 0 en1
<Refresh NoAdvise Ext Release Gateway>
CHANGE 128.2 255.255 gw 35.42.1.125 Kernel pref 254 metric 0 en1
<Refresh NoAdvise Ext Gateway>
RELEASE 128.2 255.255 gw 35.42.1.125 Kernel pref 254 metric 0 en1
<Refresh NoAdvise Ext Release Gateway>
Jul 21 02:32:39 rt_close: 5 routes proto KRT
Jul 21 02:32:39
Jul 21 02:32:39

*** IDRP phase 3 processing of existing kernal routes ***

Jul 21 02:32:39 rt_flash_update: new policy started with 13 entries
Jul 21 02:32:39 ph3_status_case2 entered
ADD 0.0.0.0 0.0.0.0 gw 35.42.1.14 IDRP pref 180 metric 0 en1
<NoAge Refresh NotInstall Ext Gateway>
Jul 21 02:32:39 ph3_status_case2 called peer local_node route
Jul 21 02:32:39 ph3_status_case2 entered
Jul 21 02:32:39 ph3_status_case2 entered
Jul 21 02:32:39 ph3_status_case2 entered
Jul 21 02:32:39 ph3_status_case2 entered
Jul 21 02:32:39 ph3_status_case2 entered
ADD 128.2 255.255 gw 35.42.1.125 IDRP pref 180 metric 0 en1
<NoAge Refresh NotInstall Ext Gateway>
Jul 21 02:32:39 ph3_status_case2 called peer local_node route 80.02
Jul 21 02:32:39 ph3_status_case2 entered
Jul 21 02:32:39 ph3_status_case2 entered
Jul 21 02:32:39 case1: IDRP peer local_node route 47.0005.80AA.AAAA flashed
Jul 21 02:32:39 case1: IDRP peer local_node route 47.0005.80FF.FFFF.0000.05 flashed
Jul 21 02:32:39 case1: IDRP peer local_node route 49.0128 flashed
Jul 21 02:32:39 ph3_status_case2 entered
Jul 21 02:32:39 ph3_status_case2 entered
Jul 21 02:32:39 rt_close: 2/2 routes proto IDRP.35.42.1.85 from 35.42.1.85
Jul 21 02:32:39
Jul 21 02:32:39 rt_flash_update: new policy ended with 13 entries
Jul 21 02:32:39
Jul 21 02:32:49 IDRP 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 start timer expired

**** Enter state machine and start sending open PDUs ****

Jul 21 02:32:49 IDRP entered idrp_sm in state Closed with event idrp start event
Jul 21 02:32:49 IDRP (Open_sent) XMIT Open (seq) seq 1 ack 0 offer 5 avail 0 len 43 to
47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 Sending:
Jul 21 02:32:49 85 00 2b 01 00 00 00 01 00 00 00 00 05 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 01 00 1e 00 c8 05 03 49 01 30 00 00
00
Jul 21 02:32:49 IDRP 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 state Closed ->
Open_sent

**** Received open from peer, exchange routes ****

Jul 21 02:32:49 IDRP (Open_sent) RCV Open seq 22 ack 1 offer 5 avail 255 len 43 from
47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 In sequence
Jul 21 02:32:49 Open hold time 30, max pdu size 200
Jul 21 02:32:49 IDRP entered idrp_sm in state Open_sent with event idrp open with no errors
received
Jul 21 02:32:49 IDRP path to 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 is up
Jul 21 02:32:49 IDRP (Established) XMIT Keepalive (unseq) seq 2 ack 22 offer 5 avail 5 len 30
to 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
Jul 21 02:32:49 Sending:

Page 128 7/19/93 IDRP Design Document 2.4

CHANGE 49.0128 ff.ffff gw
47.0005.80ff.ff00.0000.0400.0000.0000.232a.0161.00 Kernel pref 254 metric 0 et1 <Refresh
NoAdvise Ext HoldDown Gateway>
ADD 49.0128 ff.ffff gw
47.0005.80ff.ff00.0000.0400.0000.0000.232a.0161.00 IDRP pref 180 metric 0 et1 <NoAge
Refresh Ext Active Gateway>
CHANGE 47.0005.80ff.ffff.0000.05 ff.ffff.ffff.ffff.ffff.ff gw
47.0005.80ff.ff00.0000.0400.0000.0000.2301.0172.00 Kernel pref 254 metric 0 et1 <Refresh
NoAdvise Ext HoldDown Gateway>
ADD 47.0005.80ff.ffff.0000.05 ff.ffff.ffff.ffff.ffff.ff gw
47.0005.80ff.ff00.0000.0400.0000.0000.2301.0172.00 IDRP pref 180 metric 0 et1 <NoAge
Refresh Ext Active Gateway>
CHANGE 47.0005.80aa.aaaa ff.ffff.ffff.ffff gw
47.0005.80ff.ff00.0000.0400.0000.0000.2301.0172.00 Kernel pref 254 metric 0 et1 <Refresh
NoAdvise Ext HoldDown Gateway>
ADD 47.0005.80aa.aaaa ff.ffff.ffff.ffff gw
47.0005.80ff.ff00.0000.0400.0000.0000.2301.0172.00 IDRP pref 180 metric 0 et1 <NoAge
Refresh Ext Active Gateway>
Jul 21 02:32:39 rt_close: 3/3 routes proto IDRP.35.42.1.85 from 35.42.1.85
Jul 21 02:32:39
Jul 21 02:32:39
Jul 21 02:32:39 ***Routes are being installed in kernel
Jul 21 02:32:39
Jul 21 02:32:39
Jul 21 02:32:39 Commence routing updates
Jul 21 02:32:39
Jul 21 02:32:39 inet_routerid_notify: Router ID: 200.1.1.1
Jul 21 02:32:39
CHANGE 0.0.0.0 0.0.0.0 gw 35.42.1.14 Kernel pref 254 metric 0 en1
<Refresh NoAdvise Ext HoldDown Gateway>
ADD 0.0.0.0 0.0.0.0 gw 35.42.1.14 Static pref 60 metric 0 en1
<NoAge Refresh Int Active Gateway>
CHANGE 128.2 255.255 gw 35.42.1.125 Kernel pref 254 metric 0 en1
<Refresh NoAdvise Ext HoldDown Gateway>
ADD 128.2 255.255 gw 35.42.1.125 Static pref 60 metric 0 en1
<NoAge Refresh Int Active Gateway>
Jul 21 02:32:39 rt_close: 2 routes proto RT
Jul 21 02:32:39

**** Initialize our peer ****

Jul 21 02:32:39 idrp_peer_reinit: peer 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
reinit last flags 2
Jul 21 02:32:39 idrp_reinit called, but null processing
Jul 21 02:32:39
Jul 21 02:32:39 rt_flash_update: flash updating kernel with 5 entries
CHANGE 49.0128 ff.ffff gw
47.0005.80ff.ff00.0000.0400.0000.0000.232a.0161.00 Kernel pref 254 metric 0 et1 <Refresh
NoAdvise Ext Gateway>
RELEASE 49.0128 ff.ffff gw
47.0005.80ff.ff00.0000.0400.0000.0000.232a.0161.00 Kernel pref 254 metric 0 et1 <Refresh
NoAdvise Ext Release Gateway>
CHANGE 47.0005.80ff.ffff.0000.05 ff.ffff.ffff.ffff.ffff.ff gw
47.0005.80ff.ff00.0000.0400.0000.0000.2301.0172.00 Kernel pref 254 metric 0 et1 <Refresh
NoAdvise Ext Gateway>
RELEASE 47.0005.80ff.ffff.0000.05 ff.ffff.ffff.ffff.ffff.ff gw
47.0005.80ff.ff00.0000.0400.0000.0000.2301.0172.00 Kernel pref 254 metric 0 et1 <Refresh
NoAdvise Ext Release Gateway>
CHANGE 47.0005.80aa.aaaa ff.ffff.ffff.ffff gw
47.0005.80ff.ff00.0000.0400.0000.0000.2301.0172.00 Kernel pref 254 metric 0 et1 <Refresh
NoAdvise Ext Gateway>
RELEASE 47.0005.80aa.aaaa ff.ffff.ffff.ffff gw
47.0005.80ff.ff00.0000.0400.0000.0000.2301.0172.00 Kernel pref 254 metric 0 et1 <Refresh
NoAdvise Ext Release Gateway>

IDRP Design Document 2.4 7/19/93 Page 127

11. gated log file format

Sample log file:

****** Gated Initialization ******

Jul 21 02:32:39 inet_routerid_notify: Router ID: 200.1.1.1
Jul 21 02:32:39
Jul 21 02:32:39 iso_ifachange: Interface 47.0005.80ff.ff00.0000.0400.0000.0000.0000.0000.00
(et1) SystemID 0000.0000.0000
Jul 21 02:32:39 if_rtadd: ADD route for interface lo0 127.0.0.1/255
CHANGE 127.0.0.1 255.255.255.255 gw 127.0.0.1 Kernel pref 254 metric 0 lo0
<Refresh NoAdvise Int HoldDown>
ADD 127.0.0.1 255.255.255.255 gw 127.0.0.1 Direct pref 0 metric 0 lo0
<NoAge Refresh NoAdvise Active Retain>
ADD 127 255 gw 127.0.0.1 Direct pref 0 metric 0 lo0
<NoAge Refresh NoAdvise Int Active Retain Reject>
Jul 21 02:32:39 rt_close: 2 routes proto IF
Jul 21 02:32:39
Jul 21 02:32:39 if_rtadd: ADD route for interface en0 200.1.1.1/255.255.255
CHANGE 200.1.1 255.255.255 gw 200.1.1.1 Kernel pref 254 metric 0 en0
<Refresh NoAdvise Int HoldDown>
ADD 200.1.1 255.255.255 gw 200.1.1.1 Direct pref 0 metric 0 en0
<NoAge Refresh Int Active Retain>
Jul 21 02:32:39 rt_close: 1 route proto IF
Jul 21 02:32:39
Jul 21 02:32:39 if_rtadd: ADD route for interface en1 35.42.1.85/255.255.255
CHANGE 35.42.1 255.255.255 gw 35.42.1.85 Kernel pref 254 metric 0 en1
<Refresh NoAdvise Int HoldDown>
ADD 35.42.1 255.255.255 gw 35.42.1.85 Direct pref 0 metric 0 en1
<NoAge Refresh Int Active Retain>
ADD 35 255 gw 35.42.1.85 Direct pref 0 metric 0 en1
<NoAge Refresh NotInstall Int Active>
Jul 21 02:32:39 rt_close: 2 routes proto IF
Jul 21 02:32:39
Jul 21 02:32:39
Jul 21 02:32:39 rt_flash_update: flash updating kernel with 13 entries
CHANGE 35.42.1 255.255.255 gw 35.42.1.85 Kernel pref 254 metric 0 en1
<Refresh NoAdvise Int>
RELEASE 35.42.1 255.255.255 gw 35.42.1.85 Kernel pref 254 metric 0 en1
<Refresh NoAdvise Int Release>
CHANGE 127.0.0.1 255.255.255.255 gw 127.0.0.1 Kernel pref 254 metric 0 lo0
<Refresh NoAdvise Int>
RELEASE 127.0.0.1 255.255.255.255 gw 127.0.0.1 Kernel pref 254 metric 0 lo0
<Refresh NoAdvise Int Release>
CHANGE 200.1.1 255.255.255 gw 200.1.1.1 Kernel pref 254 metric 0 en0
<Refresh NoAdvise Int>
RELEASE 200.1.1 255.255.255 gw 200.1.1.1 Kernel pref 254 metric 0 en0
<Refresh NoAdvise Int Release>
Jul 21 02:32:39 rt_close: 3 routes proto KRT
Jul 21 02:32:39
Jul 21 02:32:39
Jul 21 02:32:39 rt_flash_update: flash update started with 13 entries
Jul 21 02:32:39 rt_flash_update: flash update ended with 13 entries
Jul 21 02:32:39
Jul 21 02:32:39 idrp master task now supports idrp pid on the ip raw socket

***** Initialize master task *****

*** Add local routes from config file ***

Page 126 7/19/93 IDRP Design Document 2.4

{

install_fib(best routes (LOC_RIB))
DIST_LIST(best routes (LOC_RIB)

}

IDRP Design Document 2.4 7/19/93 Page 125

mark global flag that best external route
changed
}

}

/* here comes distribution */

if best external route changed {
find all best external route changes and
send to internal peers
}

end of phase1 processing
}

/* Phase 2 processing
 *
 */

Scan all AdjRibs associated with internal peers

for each new route in AdjRib_in
{
Is new route better than best internal route
for this destination?

yes - update best internal route mark
 set best internal route changed

no - go on
}

for each deleted route in AdjRib in
{
if this route is best internal route

{
select new best internal route
mark best internal route as changed
}

}

if (best internal route is better than best external route)
set best route = best internal route

else
set best route = best external route

end if

Aggregate routes based on best route;

end of phase 2 processing
}

/* phase 3 processing
 */

Page 124 7/19/93 IDRP Design Document 2.4

implicit withdraw for NLRI
overlapping and more specific with different

path attributes

more specific route
new route
overlapping and less specific with different

path attributes

switch (result of NLRI look-up)
{
case of withdrawal:
case of overlapping more specific:

{
set unfeasible flag to run decision process
}

case of more specific:
case of new route:
case of overlapping and less specific:

{
clear unfeasible flag
}

}
}

/* It is assumed that a BIS maintains for each destination:
 * a best external route
 * a best internal route
 * a best route (LOC_RIB)_
 */

idrp_decision()
{

/* here is phase 1 */

Scan all the AdjRib In associated with external peers
{
for each new route in AdjRib_in

{
if new route is external and better than
best external route, mark this one as
the best external route. Set global flag
that best external route changed
}

for each deleted route in AdjRib_in
{
if route was best external route

{
find new best external route

IDRP Design Document 2.4 7/19/93 Page 123

if (process_withdraws (UPDATE) == unfeasible_route
or process_nlri(UPDATE) == unfeasible_route)
{
run idrp_decision process
}

else
{
new_route = 1;
}

}

/* after finish getting all available update PDUs
 * run decision process.
 */

disable timers;
if (new_route == 1)

{
new_route = 0;
run idrp_decision process
}

}

process_withdraws (BISPDU
{

for all route IDs in BISPDU
{
find route_id in Hash table
mark withdraw on all route ID’s NLRIs
place route ID in withdraw array for this peer
re-link AdjRib radix structures around the withdrawn

NRLI entries

if (LOC_RIB list entry was withdrawn)
{
flag unfeasible route so decision process will run
}

if (best external route was withdrawn)
{
flag unfeasible route so decision process will run
}

if (aggregated affected by withdrawn)
{
flag unfeasible route so decision process will run
}

}
}

process_nlri(UPDATE)
{

Look up NLRI in AdjRIB.
Find out if the NLRI is:

Page 122 7/19/93 IDRP Design Document 2.4

10. Alternative designs

In researching our design choices, we investigated different data structures, and UPDATE PDU
processing logic that would be effective under a multi-threaded environment. Section 10.1
describes some of the alternate structures we considered. Section 10.2 provides logic for the
UPDATE PDU processing which minimizes the times the decision process needs to be run.
AdjRib updates are considered to be done in a second process. The second process locks the
AdjRibs it is updating. (Such an approach may be useful in a multiprocessing/multithreaded
environment)

10.1. Alternative data structures for AdjRib and Loc_RIB

One approach to the AdjRibs and LOC_RIB is to build a linked list of NLRI destinations per peer.
The search of the routes is done by sequential search. The original Merit prototype code used this
(rather slow) approach. However, it was not considered for the FAA prototype because of the
costly nature of the look ups.

Each AdjRib structure can be built as a radix trie with additional information pointers. The best
external routes would be generated as another radix trie with pointers into different AdjRibs. The
LOC_RIB would be yet another radix trie with pointers into different AdjRibs.

Benefits of keeping each AdjRib in a separate radix trie:

• Quick updates to AdjRib which can be done by independent processes
• Overlaps easily recognized per peer, so best fit returned easily.
• Removal of routes per peer involves simply releasing this radix trie structure
• Refresh cycle can build whole AdjRib prior to swapping it in as the current routing

Concerns:

• Links between Adjacent RIBs must be maintained
• How do IS-IS routes interact with this radix trie by destination structure?

10.2. Alternative UPDATE logic

One approach to damping out transient routing flaps [the oscillations the minimum route selection
timer tries to fight] is to run the decision process at least as frequently as the Maximum Decision
Internal, and at most as frequently as the Minimum Decision Interval. By only running the decision
process at intervals, oscillations are damped. This global timer is not in the specification, but can
provide the same functionality with considerably less cost than the IDRP specification.

If an UPDATE process used this approach, the following logic could be used in the main loop
processing UPDATE BISPDUs.

Logic:

main()
{

while (1) {
while there are more update BISPDU received

{
get next UPDATE BISPDU:

IDRP Design Document 2.4 7/19/93 Page 121

9. Gated interrupt signals

Gated is driven in two ways - signals and polling. Signals are used for reconfiguring gated routing
policy or interface configurations, or to change what logging is done. The PDUs received by gated
are received by a select in task_main that blocks until a socket is ready for reading or writing.

The gated code catches UNIX system kills, alarms (for timers), USR1 and USR2, INT, HUP and
CHLD. Incoming PDUs do not interrupt gated. The gated code (in task.c) simply does a “select”
on the socket and waits for one or more them to be ready to read or write. The following task
signals are handled by gated. Below is a chart of the gated signals and the IDRP routines called to
handle the gated function.

Task Signal task.c gated routine IDRP routine called

SIGTERM task_terminate: called to let
each protocol shut down
gracefully

idrp_terminate (gracefully terminate master task for
PDU reception)
idrp_peer_terminate (terminates task per IDRP Peer)

SIGALARM timer_dispatch: called to find
out what timers are pending
and start up the respective
tasks

master task timers: none
peer task timers: Keepalive timer, closeWait timer,
holdtime timer, retransmit timer, IDRP start up
timer, open sent timer, min_adv timer, IDRP echo
timer (associated with debug feature to echo
BISPDU packets).

SIGHUP calls task_reconfigure (unless
no-reconfigure bit is set for
the task) to call protocol to
reconfigure

master task: idrp_cleanup
peer tasks: idrp_peer_cleanup. Handles gated re-
reading configuration file. Policy lists are freed and
the following initialization sequence is followed:
• idrp_cleanup
• idrp_var_init
• parsing the gated file
• idrp_init routine
• idrp_flash - first update
• idrp_newpolicy (won’t be implemented until

policy filters implemented in 2nd phase of
project).

SIGUSR1 toggle tracing flag none
SIGUSR2 call if_check to see if any

new interfaces have been
added or changed.

none

SIGCHLD calls task_child none
all other
UNIX signals

ignored by gated none

Page 120 7/19/93 IDRP Design Document 2.4

8. Gated timer functions usage by IDRP

IDRP creates the following timers for each peer task: Keepalive, closewait, hold, retransmit, start,
open sent, minimum route advertisement, and optional debug echo timer. The open sent timer
allows for multiple opens to be sent in rapid sequence prior to holding down the connection until
the next open sequence. The optional debugging echo function allows echoing at the BISPDU
level.

IDRP Timer Function Gated routines used to handle it

IDRPTIMER_KEEPALIVE Keepalive timer task_create (idrp_init)
timer_set (start_keepalive_timer)
timer_reset (close_peer, begin_close)

IDRPTIMER_CLOSEWAIT CloseWait timer task_create (idrp_init)
timer_set (begin_close)
timer_reset (close_peer)

IDRPTIMER_HOLDTIME Hold Timer task_create (idrp_init)
timer_set (idrp_recv_pdu, idrp_start_event)
timer_reset (close_peer, begin_close)

IDRPTIMER_REXMIT Retransmit Timer timer_create (idrp_init)
timer_set (start_rexmit_timer)
timer_reset (kill_rexmit_timer)

IDRPTIMER_START IDRP start timer timer_create (idrp_init)
(note created with timer value to expire)
timer_reset (idrp_event_starttimer)

IDRPTIMER_OPENSENT IDRP OPEN sent code timer_create (idrp_init)
timer_set
timer_reset (close_peer)

IDRPTIMER_MIN_ADV IDRP Minimum
Advertisement Timer

timer_create (idrp_init)
timer_set (phase3_ext_send)
timer_reset (begin_close)

IDRPTIMER_ECHO IDRP Echo timer for
Echo debug function

timer_create (idrp_init)

Timer for only the local Node
IDRP_MASTER_TIMER
_MIN_ADVRD

Timer for the
minimum route
advertisement timers
for routes local to this
RD

timer_create
timer_reset
timer_set

growth factor: Withdraw structure directly impacts send list

IDRP Design Document 2.4 7/19/93 Page 119

idrpRoute structure (p_p_best_ext->p_best_ext) we can discover the best external route to the
NLRI referenced by that structure.

The idrp_best_ext structures themselves are kept in an unsorted linked list. In effect, these form
what we call a “best external routes RIB,” or BER_RIB. Having the BER_RIB accessible
facilitates sending best external routes to newly activated internal peers.

Inbound Route ID table

Inbound routes can be referenced by the inbound route ID table. The table is a simple hash table
indexed by route ID value. See idrp_macros.h for the definition of the hash function,
IDRP_ROUTE_ID_HASH. The function is currently defined as the route ID divided by the hash
table size.

Outbound Route ID table

A Outbound Route list table exists for every NLRI (idrpRoute structure). Since a different
Route_id could be used for each exterior peer, a route id table is indexed by peer. For each
BISPDU sent with a route_id to a peer, the list of NLRIs in that BISPDU are linked on a circular
link lists tagged by the route ID. Each idrpRoute structure contains a table where these lists are
linked by peer.

Auxiliary lists used for IDRP

The attribute list is a linked list with forward and backward pointers. The route ID lists associated
with the attribute record are simple linked lists.

For overlapping routes, the basic implementation of the IDRP protocol will import all routes. As
policy is implemented in the second phase of development, gated routines will be added to give
best match as well as exact match in the radix tree look-up code.

7.6. MD4 algorithm

The Message Digest 4 (MD4) algorithm is described in RFC 1320. The code in our implementation
is taken from the reference implementation included with that RFC. MD4 has been included in the
IDRP code, but no testing has been done with it at this time. By Delivery 1, some testing will be
done on MD4. A tool will be developed that will allow PDUs to be decoded on the wire. The tool
will be tcpdump with added support.

Page 118 7/19/93 IDRP Design Document 2.4

7.5. Route lookup algorithms

AdjRib and LOC_RIB

The Adjacency RIBs are “virtual.” That is, they are not stored in unique structures. Instead, the
RIBs are represented by a set of links through the normal gated routing table. The Adj-RIB for a
peer may be retrieved by specifying the peer and the IDRP protocol as a lookup parameters into the
gated table.

Gated’s LOC_RIB contains not only IDRP routes, but external routes as well. Gated refers to the
Loc_RIB as “the list of active routes.” These active routes are installed in the host operating
system’s forwarding table.

Gated structures its routing table as a radix trie keyed on destination NLRI. Its routing structures
are primarily based on destination address or NLRI.

BER_RIB

In order to support the tracking and advertisement of best routes learned from external peers, we
introduce several data structures. We note that such routes (which we call best external routes, or
just BERs) are not necessarily the best routes. That is, some route learned from an internal peer
may have a better preference. The structures used for tracking BER information are pictured below:

Best external routes

p_next_best
p_better

p_p_best_ext

p_best_ext

p_prev

p_next

pointer to best externally-learned

route for this NLRI
pointer to previous BER structure

pointer to next BER structure

idrp_best_extidrpRoute

p_next_best

p_better
p_p_best_ext

p_next_best
p_better

p_p_best_ext
nil

nil

idrp_best_ext
for some other

NLRI

idrp_best_ext
for some other

NLRI

Figure 32 — Best external routes data structures

We use the p_better and p_next_best pointers in the idrpRoute structure to maintain a linked list of
NLRI to the same destination, sorted by IDRP preference. By doing a double indirection from any

IDRP Design Document 2.4 7/19/93 Page 117

RouteSepInfo :: = SET of {
route_id INTEGER(1...4294967295); # 4 byte integer
loc_pref INTEGER(1..255(); # 1 byte integer
}

Page 116 7/19/93 IDRP Design Document 2.4

ASN.1:

countLocRibs:: = INTEGER(1...255);
countRIBatts ::= INTEGER(1..255);

AdjRibIdset ::= SET OF ribid;
LocRIBIdset ::= SET OF ribid;

AdjRibs ::= SEQUENCE OF Rib;
LocRibs ::= SEQUENCE OF Rib;

Rib :: = SEQUENCE OF
{
Ribid ribid;
ribroutes RibRecords;
}

ribid ::= INTEGER (0..255); - where 0 is the default rib
RibRecords :: = SET of RibRecord;

RibRecord :: = SEQUENCE OF
{nlri NLRI,
 pathattmask PathRibAttributeMask,
 pathatt PathRibAttributes;
}

PathRibAttributes ::= SEQUENCE OF PathRibAttribute;
PathRibAttribute ::= SEQUENCE OF {

nonDistAtt NonDistAtt;
nonDistval NonDistvalue;
}

NonDistAtt ::= ENUMERATED {
ROUTE_SEPARATOR (1),
EXT_INFO (2),
RD_PATH (3),
NEXT_HOP(4),
DIST_LIST_INCL(5),
DIST_LIST_EXCL(6),
MULTI_EXIT_DISC(7),

 HIERARCHIALRECORDING(12),
RD_HOP_COUNT(13)};

NoDistAttValue ::= CHOICE OF {
routeSepInfo[0] RouteSepInfo;
OnPathVal[1] BOOLEAN;
rdPath[2] Set of Rdi;
IntPathValue[3] INTEGER(1..255); # 1 byte integer
nextHop[4] NextHop;
}

IDRP Design Document 2.4 7/19/93 Page 115

BEHAVIOR DEFINED AS The set of local RibSetId that represent AdjRibs
that this adjacent BIS has sent to this neighbor.”;;

 REGISTERED AS {IDRP.ato AdjRibIdSet(38));

AdjRibs ATTRIBUTE
With ATTRIBUTE SYNTAX adjRibs;
BEHAVIOR AdjRib-b

BEHAVIOR DEFIED AS the set of AdjRib associated with this BIS. It may be
ordered by AdjRib internal id or nlri. “;;

 REGISTERED AS {IDRP.ato AdjRibs(39));

idrpLocRib MANAGED OBJECT CLASS
DERIEVED from “Rec. X.72 | ISO/IED 1065-2: 1992”: top;
CHARACTERIZED BY idrpLocRibPkg PACKAGE
BEHAVIOR idrpLocRib-B

BEHAVIOR DEFINED AS The information the LocRib associated with the local
BIS. One Loc_RIB exists for each Rib Attribute plus the Default associated with
a BIS”.

Attributes:
countLocRibs GET,
LocRibIdset GET,
LocRibs GET;

countLocRibs ATTRIBUTE;
WITH ATTRIBUTE SYNTAX IDRP.countLocRib;
BEHAVIOR countRibAtt-B

BEHAVIOR DEFINED AS The count of LocRibs in use by this BIS. A Loc Rib
is distinquished by the Distinquishing Rib Atttributes.”;;

REGISTERED AS {IDRP.atoi countLocRib(37));

locRibidSet ATTRIBUTE;
WITH ATTRIBUTE SYNTAX IDRP.LocRibIdSet;
BEHAVIOR LocRibIdSet-B

BEHAVIOR DEFINED AS The count of mapping of AdjRib Distinquishing
attributes to the local node’s AdjRib structure. “;;

locRibs ATTRIBUTE
With ATTRIBUTE SYNTAX IDRP.LocRibs;
BEHAVIOR AdjRib-b

BEHAVIOR DEFIED AS the set of LocRibs associated with this BIS.
Each LocRib is ordered by NLRI.”;;

Page 114 7/19/93 IDRP Design Document 2.4

preflgth NSAPPrefixLength;
prefix NSAPPrefix,
QoSlgth QoSlength,
QoSval QoSValue };

14) QoSValue ::= OCTET STRING(SIZE(1..255));

15) Ribattribute ::= ENUMERATED {
tRANSITDELAY(9),
rESIDUALERROR(10),
eXPENSE(11),
locallyDefinedQoS (12),
security(14)
capcity(15),
priority(16)}

7.4.4.3. Replacement GDMO for ATN project’s LOC_RIB and Adj-RIB

The GDMO for ATN asks for the AdjRibs, LocRIBs and the LocFIB. Since gated uses the host
operating system’s forwarding table as its FIB, the Loc-FIB itself is external to gated. However,
for reasons of debugging and use of IDRP with source routing, the ability to externalize the
AdjRibs and LocRibs via CMIP or SNMP may be useful.

Externalization of AdjRibs, LocRibs and LocFIBs via CMIP or SNMP should not be required of
every router. For simplicity of implementation, the simple “dump to a file” mechanism for
reporting this information may be more cost effective.

GDMO for AdjRib and LocRib:

idrpAdjRib MANAGED OBJECT CLASS
DERIEVED from “Rec. X.72 | ISO/IED 1065-2: 1992”: top;
CHARACTERIZED BY idrpAdjRibPkg PACKAGE
BEHAVIOR idrpAdjRib-B

BEHAVIOR DEFINED AS The information AdjRibs associated with the BIS.
One managed object exists for each Adjacent BIS. Index by bisNet.”.

Attributes:
bisNet GET,
countRIBatt GET,
AdjRibIdset GET,
AdjRibs GET;

countRibAtt ATTRIBUTE;
WITH ATTRIBUTE SYNTAX IDRP.countRibAtt;
BEHAVIOR countRibAtt-B

BEHAVIOR DEFINED AS The count of AdjRib associated with this BIS. An
AdjRib is distinquished by the Distinquishing Rib Atttributes.”;;

REGISTERED AS {IDRP.atoi countRibAtt(37));

AdjRibIdSet ATTRIBUTE;
WITH ATTRIBUTE SYNTAX IDRP.AdjRibIdSet;
BEHAVIOR AdjRibIdSet-B

IDRP Design Document 2.4 7/19/93 Page 113

}

4) ESPrefix ::= NSAPPrefix

Definitions for Attribute Ribs and AdjRibs and FIBs

1) RibAttSet :: = SEQUENCE {
confed RibSetId
count RibSetcount,
attribs SET OF Ribattributes}

2) Ribatt ::= SEQUENCE {
attrib SET OF RibAttribute,
value SET OF RibValue OPTIONAL,
}

3) RibSetId :: = INTEGER(1...255)

4) RibSetCount ::= INTEGER(0..255)

5) Ribattributes ::= SEQUENCE {
priority [0] EXPLICIT Priority OPTIONAL,
security [1] EXPLICIT SEC OPTIONAL,
QoSmaint [2] EXPLICIT QoS OPTIONAL }

6) Priority ::= INTEGER(0..14)

7) SEC ::= CHOICE [ssDEC[0] EXPLICIT Ribattsec,
 dsSEC[1] EXPLICIT Ribattsec }

8) RibAttSec :: = SEQUENCE {
preflgth NSAPPrefixLength;
prefix NSAPPrefix,
secigth SecurityLength,
secval SecurityLevel}

9) SecurityLength :: = INTEGER(0..255)

10) SecurityLevel ::= OCTETSTROING (SIZE(1..255))

11) QoS ::= CHOICE { global[0] EXPLICIT GLOBAL,
ssQoS[1] EXPLICIT QoSTV,
dsQoS[2] EXPLICIT QoSTV}

12) GLOBAL ::= ENUMERATED {
delay(0),
expense(1),
capacity(3),
error(4)};

12) QoSLength ::= INTEGER(1..255)

13) QoSTV ::= SEQUENCE {

Page 112 7/19/93 IDRP Design Document 2.4

 IDRP_ATTR_NEXT_HOP (null)
 IDRP_ATTR_HOP_COUNT 1
 #5 ATTR RefCnt 1, RIB_id 0, Mask 100d
 IDRP_ATTR_ROUTE_SEPARATOR RouteID 1 Local Pref 0
 IDRP_ATTR_RD_PATH

 49.0129
 49.0130

 IDRP_ATTR_NEXT_HOP (null)
 IDRP_ATTR_HOP_COUNT 1
 #6 ATTR RefCnt 2, RIB_id 0, Mask 100d
 IDRP_ATTR_ROUTE_SEPARATOR RouteID 2 Local Pref 0
 IDRP_ATTR_RD_PATH

 49.0129
 49.0130

 IDRP_ATTR_NEXT_HOP (null)
 IDRP_ATTR_HOP_COUNT 1

RIB contents are in the routing table:

ISO routes for idrp are :

IDRP Local Rib:
 RibID Path id Destination Next Hop NET
 0 6 80.03 (null)
 0 1 47.0005.80AA.AAAA 47.0005.80ff.ff00.0000.0400.0000.0000.2301.0172.00
 0 1 47.0005.80FF.FFFF.0000.05 47.0005.80ff.ff00.0000.0400.0000.0000.2301.0172.00
 0 0 49.0128 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0161.00
 0 4 49.0129 (null)
 0 5 49.0133 (null)

IDRP ADJ Rib:
 Net: 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 Rib Id: 0 (default)
 RibID Path id Destination Next Hop NET
 0 4 49.0129 (null)
 0 5 49.0133 (null)
 0 6 Default (null)
 0 6 80.03 (null)

7.4.4. GDMO for this MIB

7.4.4.1. GDMO in the IDRP specification

For the most part, the idrpConfig and adjacentBIS managed objects were printed out from the peer
structures.

One note about the Intra-IS variable. Each internal configured route will be configured with the
next_hop address within the domain. Each route imported from another protocol will also have a
next hop gateway. Therefore the IntraIS list exists within gated as either the configured set of local
peers for each local route or the IS learned via IS-IS or some other Intra-Domain protocol.

This variable has been left out of the MIB dump for now.

7.4.4.2. GDMO imported and clean-up from IDRP specification

1) NLRI ::= NSAPPrefix
2) NSAPPrefix ::= BIT STRING(1...160)
3) SystemIdGroup ::= Sequence {

nETs Set of NETPrefix
nSAPS set of ESPrefix

IDRP Design Document 2.4 7/19/93 Page 111

 IntaIS:
 Not Implemented
 KeepAliveTime 0, localRDI 49.0130
 Local SNPA: 55.d7.b0.12.0
 LocExpense 0, MaxCPUOverloadTime 0
 MaxPDULocal (pdu_maxrecvsize) 200
 MaxRibIntegrityCheck 0, MaxRibIntegrityCheckTimer 0
 MinRouteAdvTimer 00:00:30, MultiExit FALSE, Priority 0
 rdcConfig: No rdc support
 rdLRE: Not supported
 RetransmissionTime 0
 ribAttsSet: Only default routes supported
 RouteServer OFF, Version 0

IDRP Peer MIB structures :
 bisNegotiatedVersion 1
 bisNet 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00
 bis{eerSNPAs: 7d.e1.ce.3a.0
 bisRDC: No RDC support
 bisRDI 49.0129
 KeepAliveSinceLastUpdate 40
 lastAckRecv (send_unack) 7
 lastAckSent (rcv_seq_expected - 1) 5
 lastSeqNoRecv (rcv_seq_expected - 1) 5
 lastSeqNoSent (send_next -1) 6
 listForOpen TRUE
 MaxPDUPeer 200, OutstandingPDUs (recv_cerdit) 5
 State IDRP_ESTABLISHED
 totalBISPDUsin 0, totalBISPDUsout 0, updatesIn 0, UpdatesOut 0
 /* SND.NXT = 7, SEND.UWE = 12, SND.UNA = 7
 * RCV.EXP = 6, RCV.CRED = 5, RCV.CREDAV = 5
 * HOLDTIME = 30, KEEPALIVETIME = 10
 */ MAXSENDSIZE = 200, MAXRCVSIZE = 200

IDRP Attributes:
 #0 ATTR RefCnt 1, RIB_id 0, Mask 100d
 IDRP_ATTR_ROUTE_SEPARATOR RouteID 0 Local Pref 0
 IDRP_ATTR_RD_PATH

 49.0130
 IDRP_ATTR_NEXT_HOP 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0161.00
 IDRP_ATTR_HOP_COUNT 0 0
 #1 ATTR RefCnt 2, RIB_id 0, Mask 100d
 IDRP_ATTR_ROUTE_SEPARATOR RouteID 0 Local Pref 0
 IDRP_ATTR_RD_PATH

 49.0130
 IDRP_ATTR_NEXT_HOP 47.0005.80ff.ff00.0000.0400.0000.0000.2301.0172.00
 IDRP_ATTR_HOP_COUNT 0 0
 #2 ATTR RefCnt 1, RIB_id 0, Mask 100d
 IDRP_ATTR_ROUTE_SEPARATOR RouteID 0 Local Pref 0
 IDRP_ATTR_RD_PATH

 49.0130
 IDRP_ATTR_NEXT_HOP 35.42.1.125
 IDRP_ATTR_HOP_COUNT 0 0
 #3 ATTR RefCnt 1, RIB_id 0, Mask 100d
 IDRP_ATTR_ROUTE_SEPARATOR RouteID 0 Local Pref 0
 IDRP_ATTR_RD_PATH

 49.0130
 IDRP_ATTR_NEXT_HOP 35.42.1.33
 IDRP_ATTR_HOP_COUNT 0 0
 #4 ATTR RefCnt 1, RIB_id 0, Mask 100d
 IDRP_ATTR_ROUTE_SEPARATOR RouteID 0 Local Pref 0
 IDRP_ATTR_RD_PATH

 49.0129
 49.0130

Page 110 7/19/93 IDRP Design Document 2.4

prefix external metric 10 <47.0005.8000.5500.0000>;
};

static {
default gw 35.42.1.33;

};

7.4. Network management information base

7.4.1. Overview

Network management information is written to a file as a result of sending a SIGINT to the gated
process. This signal triggers IDRP to dump certain objects depending on the parameter. Currently
the dump is written in IDRP GDMO format. In Delivery 2, one of parameters will specify that
information be written in IDRP GDMO format, another will specify the IDRP for IP MIB.

The input to the MIB is done via the configuration file. Please see the configuration format above
for the MIB definition. Network Management variables are set via the configuration line and
changed via the SIGHUP signal to gated (or by starting gated if it has not yet been instantiated).
The tracing or dump parameters for the MIB may also be changed via SIGUSR1.

In the future, a proxy-SNMP/CMIP agent could be added to gated that would talk to a real
SNMP/CMIP agent, or a CMIP agent could be embedded in the code.

7.4.2. MIB input structures

Pre-Delivery 1 and Delivery 1:

idrpConfig variables will be either pre-configured or added via the local_node configuration
parameters. The adjacent BIS parameters will be added mostly in the configuration parameters, and
some in the IDRP configuration.

Delivery 2:

idrpConfig structures will be included in the local_node configuration format. Adjacent BIS
parameters will be available via the configuration file. All policy will be available via the
configuration file.

7.4.3. MIB output structures

Below is a sample output of a the MIB information.

IDRP Master Task MIB structures :
 AuthenticationTypeCode 0, Capacity 0, CloseWaitDelayTime 0
 ExternalBisNeighbor:
 NET 47.0005.80ff.ff00.0000.0400.0000.0000.232a.0144.00 (35.42.1.68)
 HoldTime 0
 InternalBis:
 InternalSystems:
 49.0128
 47.0005.80FF.FFFF.0000.05
 47.0005.80AA.AAAA
 Default
 80.02

IDRP Design Document 2.4 7/19/93 Page 109

#
QoS stuff goes here for local node
#

 }
group
internal
{
must have either neigh-ip or neigh-NET or both plus RDI
neighbor <neigh-NET> <neigh-IP> rdi <neigh-RDI>
#
interface - should be specified for now
but later can be discovered
interface by IP address or SNPA from ES-IS cache

intf <our-IP>}
snpa <octetstring>

Authentication stuff
authType <integer>
authCode <hex string - 16 digits>

Which protocol nlri will this support
proto {ip | clnp}

Which protocol socket does it run over
proto_sock {UDP | IP | CLNP | IDRP }

neighbor 0x490128
 0x47000580ffff000000040000000000232a014400 35.42.1.68
 intf 35.42.1.85;
neighbor 0x49003501
 0x47000580ffff000000040000000000232a01b400 35.42.1.180
 intf 35.42.1.85;

};
external
{

neighbor <neigh-RDI> <neigh-NET> <neighb-IP> intf <our-IP> snpa
<octetstring> authcode <integer>

}
key words to same thing: idrp_local osi_local idrp_internal_systems
#

idrplocal{
all of thse are third-party announcements
<prefix> <NET-of-next-hop>
{ snpa <snpa1> <snpa2> <snpa3> }
{ DIST_LIST_INCL <rdi1> <rdi2> <rdi3> ...}
{ DIST_LIST_EXCL <rdia> <rdib> <rdic> ...}
{ MULTI_EXIT_DISC <value> }
0x490128 0x47000580ffff000000040000000000232a014400;
0x47000580ffffff000004 0x47000580ffff000000040000000000232a014400;

};

};

isis ISO
{

level 2;
traceoptions all lspcontent;
systemid is not necessary I believe, IS-IS will discover it
systemid <0000232a0155>;
area is not necessary I believe, IS-IS will discover it
area <47.0005.80ff.ff00.0000.0400.0004>;
circuit <et0>

metric 10 priority 20
metric level 2 20 priority level 2 20;

prefix internal metric 45 <47.0005.80ff.ff00.0000.0400.0004>;
prefix internal metric 45 <47.0005.80ff.ff00.0000.0400.0032>;

Page 108 7/19/93 IDRP Design Document 2.4

7.3.5. Notes on current policy

7.3.5.1. Indirectly listed:

IntraIS: These are neighbors to which IDRP can deliver NPDUs for routes local to this domain.
These are gateways statically configured on static routes or listed as a protocol gateway.

7.3.5.2. Configuration file format

Sample interim configuration file -Pre-Delivery 1:
#
jgs -- isis config
#
#yydebug yes;
tracefile “/tmp/gatedlog.idrp” replace size 100k files 3;
#traceoptions update internal external update route idrp kernel isis;
traceoptions internal external route update idrp;
as 281;
our RDI
rdi 0x490128;
our NET (what if we have two NETs?)
net 0x47000580ffff000000040000000000232a015500;
bgp no;
redirect no;
egp no;
rip no;
how do we config IDRP to run over CLNP vs. UDP?
idrp on {

traceoptions idrp;
more trace options will be defined here in Delivery 2
#

localnode {
Delivery 1 - will support only
the non-commented variables
#
RIB_ATT_SUPPORTED = “Default” - from STeve’s paper
BISNET {hex or dot format}
intra-is net;
rdc 0x47000580ffff00000008;
as_rdi 0x47000580010203040507;
#

 snpa 0x804030201043;
 protocols_supported {ip | clnp | sip | pip};
 proto-sock { ip | iso };
 route_server_allowed {yes | no};
 multi_exit_disc_used {yes | no};
 authType integer;
 AuthType integer AuthCode 0x12345678

#
 hold_time integer;
 outstanding_pdu integer;
 max_pdu_size 2000;
 listenopen {yes | no}

#
 maxRibCheck integer for seconds;
 MinAdv integer for seconds;
 MinAdvRD integer for seconds;

#
 holdtime integer for seconds;
 keepalive integer for seconds;
 rexmit integer for seconds;
 closewait integer for seconds;

IDRP Design Document 2.4 7/19/93 Page 107

7.3. Policy information base structures

7.3.1. Overview

The basic IDRP protocol router support (pre-Delivery 1) has minimal policy and a lot of hard-
coded configuration information. The major function to be added to gated is the addition of a
language to configure advertisement of local routes based on:

• SNPA
• NEXT_HOP
• DIST_LIST_INCL
• DIST_LIST_EXCL

In Delivery 2, the IDRP code will follow the general formats of the IDRP gated syntax document
version 3.0).

7.3.2. Pre-delivery 1 policy

Current policy allows only the setting of next hop on the static gated or IDRP routes. Code exists
to add other options, but needs further debugging. ISO support in the AIX or BSD/386 systems
for IDRP over CLNP PDUs is still being worked on. Therefore setting the ISO protocol in the
present implementation is likely to cause problems.

7.3.3. Delivery 1 policy

7.3.3.1. Policy structure on routes

the idrpRoute_option structure is a temporary parsing structure within the IDRP parsing code. It
contains optional policy for a locally configured route. Options which it may contain are:

• rib_id
• SNPA list
• multi_exit value for route
• list of RDIs for DIST_LIST_INCL
• list of RDIs for DIST_LIST_EXCL

In addition, each locally configured (INTERNAL_SYSTEMS) IDRP route must always have the
route and the NET of the NEXT_HOP.

These locally configured routes allow the first version to set:

• Next hop SNPAs for a route
• MULTI_EXIT_DISC
• DIST_LIST_INCL
• DIST_LIST_EXCL

Additionally the following information is configured via the gated configuration syntax. Note that
the IDRP configuration syntax is not documented in the gated syntax man page.

7.3.4. Delivery 2 policy

The second Delivery will implement version 3.0 and up of the gated syntax description language.
Please refer to the gated syntax document for further details.

Page 106 7/19/93 IDRP Design Document 2.4

7.2.4. idrp_peer list

All idrpPeer structures are linked on a single list of idrpPeers.

7.2.5. idrpAdvRt structure

The idrpAdvRt structure is pictured below. This structure allows the minimum advertisement code
to link routes together at the termination of phase 3 processing. These routes are linked to the list of
idrpRoutes through the idrpRoute structure link for the minimum route timer that is running (either
p_min_adv for remote RDs or p_min_advRD for local RD routes).

The routes are linked to their protocol family’s list, and therefore the structure is an array of linked
list structures.

Advertisement timer structures

idrpPeer

(lots of other idrpPeer stuff)
next Pointer to next idrpPeer structure

min_adv_time interval for min_advertisement timer

min_advRD_time interval for min_advertisement within
this RD

min_adv_started time min adv timer started running

start_min_adv do we need to start min adv? (y/n)
p_minadv_head pointer to head of min advertisment list

p_minadv_tail pointer to tail of min advertisement list
min_advRD_started time min_advRD started running

start_min_advRD do we need to start min adv RD? (y/n)

p_minadvRD_head head of min advertisement RD list
p_minadvRD_tail pointer to tail of min adv RD list

idrpAdvRt
p_next next idrpAdvRt struct on list

interval how long to hold this list of routes
routes array (indexed by route family, i.e.

ISO/IP) of idrpRoute pointers

idrpRoute

p_min_adv

p_min_advRD

idrpAdvRt

structure
p_next

idrpAdvRt
structure

p_next

nil

idrpRoute

p_min_adv

p_min_advRD

idrpRoute

p_min_adv

p_min_advRD

nil

In this example, we illustrate the links for the min adv timer. The links for the min adv
RD timer are not shown but might exist (linking a potentially different set of structures).

Note that there are in fact a set of idrpRoute lists, one per route family (so in the present
case there would be an IP and an ISO list).

Figure 31 — Advertisement Timer Structure

IDRP Design Document 2.4 7/19/93 Page 105

• Multi-protocol support.

Depending on feedback provided by tests for IDRP code Delivery 2, the issue of shrinking the
idrpPeer structure may be revisited.

Most of the idrpPeer structures are either gated structures, timers, flags or defined in the IDRP
GDMO. Of the gated structures, the ‘gw’ or gateway structure may be the most confusing. This
structure is described in the Policy portion of the data structures.

Four idrpPeer structures deserve special mention:

• Peer status flags (see table below)
• Type of Peer
• idrp_peer_lists
• idrpAdvRt structure used for minimum route advertisement lists. (see figure 31)

7.2.2. idrpPeer status flags

The peer status flags allow the IDRP code to handle gated initialization, reconfiguration and
deletion of idrpPeers. The initialization, reconfiguration and termination code makes use of these
flags. The table below summarizes the status flags and their use in the IDRP code.

Status Flags relating to IDRP Peer

Status of Peer Definition

IDRPF_UNCONFIGURED Zero value means configuration gave incomplete values since
something needs to be set in the peer structure.

IDRPF_DELETE Delete this peer since it has been deleted from the configuration.
The reparsing routines set this flag on each peer structure prior
to parsing the new configuration file. If this flag is not cleared
(i.e. by a line in the configuration file specifying this peer’s
configuration) then the peer (with all associated structures and
timers) is deleted.

IDRP_TRY_CONNECT Trying to connect to this IDRP peer but the connection is down.
IDRP_CONNECT IDRP peer session is up.
IDRP_WRITEFAILED IDRP code tried to write to task socket and failed due to a gated

or socket error.
IDRPF_IDLED This IDRP peer has been put into idle state (via a “peer off”

configuration clause).

7.2.3. IDRP peer types

There are four IDRP peer types: external, internal, test, and local. The external and internal BIS
peers are defined in the IDRP protocol specification. In additional, the local node requires a “local”
node (or peer) configuration. Only one of these structures exists per gated daemon.

The unique type of peer is a “test” peer. This peer will be a peer which receives all routing
information, but is not expected to send routing information. The purpose of the “test” peer is to
provide a peer that serves as a recorder of routing information sent in BISPDUs. This type of peer
is fully implemented in the BGP gated code, and will be borrowed after Delivery 2.

Page 104 7/19/93 IDRP Design Document 2.4

Output Buffer for IDRP PDUs

next
seq		

pdu_proto	
proto_len	

pdu		
length	
sequenced	

ref		

next output buffer
sequence number of this buffer

pointer to variable-length protocol-specific header
length of protocol-specific header

pointer to BISPDU
length of BISPDU
is this BISPDU sequenced? (y/n)

refcount

idrpBuffer

next idrpBuffer

protocol-specific
header

BISPDU

Figure 30 — Output Buffer for IDRP

7.2. IDRP peer structure

7.2.1. Overview

The idrpPeer structure is used for two different types of peers: the local peer1 and the adjacent BIS
peer. While some space can be saved by making these two structures, in Delivery 1 and Delivery 2
the idrpPeer structure will used for both.

This decision will be re-examined prior to the delivery of IDRP with aggregation.

The idrpPeer structure has the following types of information:

• Links to other peer structures
• IDRP configuration parameters as found in the idrpConfig or adjacentBIS Managed Object

structure
• State and timer information as found in idrpConfig or adjacent BIS Managed Objects
• Additional configuration information for multi-protocol support such as IP address, gateway

information and types of protocols supported
• Gated gateway information. A gateway structure for the protocols supported must exist to add

routes to gated and execute the policy routines
• Pointer to gated task structure (task structure tracks tracing information as well as other peer-

related information)
• Route_id information (received and transmitted route IDs)
• Hash table for inbound route_ids
• PDU processing information (Error PDU processing and RIB Refresh processing)
• Minimum route advertisement timer
• Adj-RIB checksum information

Of these structures, the inbound route ID hash table may take up the most space depending on the
configured size. To limit memory consumed per connection, the hash table may be shrunk. The
rest of the configuration and state information is required to support:

• IDRP specification
• Gated interaction
• Tracing information

IDRP Design Document 2.4 7/19/93 Page 103

Outbound route ID list

Peer ID

Peer 1
Peer 2
…
Peer n

pointer to next NLRI (idrpRoute
structure) referenced by outbound
route ID (circular linked list)
next idrpRoute
next idrpRoute
…
next idrpRoute

idrpRoute

route_out

Peer 1
Peer 2
…
Peer n

next idrpRoute
next idrpRoute
…
next idrpRoute

idrpRoute

route_out

Peer 1
Peer 2
…
Peer n

next idrpRoute
next idrpRoute
…
next idrpRoute

idrpRoute

route_out

Here we picture the manner in which we would link NLRI associated with the
same outbound route ID for an update sent to Peers 1 and 2. In the case of
Peer 2, there are three NLRI (three idrpRoutes) which have been associated
with a single Route ID. In Peer 1’s case, the last NLRI will not be announced
due to policy. Route IDs associated with other peers might result in different
chains.

Figure 29 — Outbound route ID list

Page 102 7/19/93 IDRP Design Document 2.4

Send List

idrp_send_list
p_next next structure on send list
p_attr attribute record associated with

entry
rib_id RIB ID for routes in this list
pdu_bytes number of bytes used for NLRI and

withdraw ID
pdu_bytes_attr number of bytes used for attributes
loc_pref local preference
ann_nlr
i

array (by route family, i.e. ISO/IP) of
pointers to idrpRoute structures,
holding NLRI to be announced

withdraw withdrawal structure, contains count
ofroutes to be withdrawn and IDs of
routes to be withdrawn

next idrp_send_list

idrpRoute

ann_list

idrpRoute

ann_list

idrpRoute

ann_list

Figure 28 — Send list

IDRP Design Document 2.4 7/19/93 Page 101

Inbound route hash table entry

route ID pointer to next entry on
chain (that is, next entry
whose route ID hashed
to this value

array of pointers to
idrpRoute, keyed on
address family

Figure 25 — Inbound Hash Table Structure

Withdraw route linked list

idrpRoute structure

p_with

idrpRoute structure

p_with

idrpRoute structure

p_with

nil

Head of withdraw list

Figure 26 — Withdraw Route linked list

Parsing structures — announce list

RIB ID

pointer to next announce list structure

pointer to attribute record

Announcements
Array of link structures, one entry per protocol family
(ISO or IP). Link structures include head and tail, and
point to idrpRoute structures.

Withdrawals
Array of link structures as above.

Figure 27 — Announce list

Page 100 7/19/93 IDRP Design Document 2.4

Array (route_out array of structure type idrpRoute_out). The send_update_pdu routine places the
resulting BISPDU into a IDRP output buffer.

Update parsing and processing
structures

route ID from PDU
Withdraw structure
containing count of
withdrawn route IDs and
array of route ID values
linked list of idrpRoute
structures, containg the
NLRI info from the PDU
free PDU flag

Parsing results

error code
error subcode
error data 1 pointer
error data 1 length
error data 2 pointer
error data 2 length

Error structure
(if PDU was Error PDU)

Figure 23 — Parsing Structures for Updates

Refresh PDU structures

idrpRefresh structure

pointer to next refresh structure
on list (refresh list pointers are
kept in the idrpPeer structure in
the ‘refresh’ pointer)
pointer to update PDU that is
awaiting refresh completion
parse results array for
processing for this update PDU

refresh_info structure

sequence number of RIB refresh
start PDU
head of idrpRefresh PDU
structure
tail of idrpRefresh PDU structure
sequence number of last PDU in
RIB refresh
count of PDUs to process
RIB ID

Figure 24 — Refresh PDU structures

The size of the inbound route hash table is configurable at compile time. The trade-off is (as
always) between table size and search time (larger table = faster search).

Below is a diagram of an inbound route hash table entry, keyed on route ID. The NLRI linked list
is linked via the p_next_nlri field of the idrpRoute structure.

IDRP Design Document 2.4 7/19/93 Page 99

IDRP attribute array

Array entry 0 — Local RD path attribute
special attribute to encode local RD path,
which we add to the received RD path

Array entries 1-n by type (as defined in 10747)

Flag: Attribute present?
Attribute-specific flags
Length of attribute
Pointer to location of attribute in PDU

Figure 21 — IDRP attribute array

IDRP attribute linked list

pointer to next
attribute structure
remainder of attribute
structure

idrp_attribute_record

pointer to next
attribute structure
remainder of attribute
structure

idrp_attribute_record

pointer to next
attribute structure
remainder of attribute
structure

idrp_attribute_record

Only one attribute structure is created per unique set of attributes. PDUs bearing
attributes identical to an existing attribute record have their route IDs added to the
route_id_list chain for that attribute record.

Figure 22 — IDRP attribute linked list

7.1.2.3. IDRP lists for IDRP route processing

The two building blocks, the idrpRoute structure and idrp_attribute_record, are combined on lists
to process withdrawn route_ids and attributes from inbound BISPDUs. The BISDPU is processed
into a update structure. In turn this update structure may be included in a refresh PDU processing
structure.

If the BISDPU is valid, the route_id is added to the inbound route_id hash table. This table links
the route_id to the list of idrpRoutes for this inbound route_id from this peer.

The phase1 processing takes these structures and generates either a linked list of withdrawn routes
or a linked list of idrpRoutes each representing an NLRI. These lists are sorted by protocol family
and linked onto an announce list for further processing.

If the phase1 processing of routes requires the propagation of routes to internal peers, the
announce list has policy run on it. A send list is generated and handed to the output BISPDU
generation routines. Each idrpRoute in a send list is tagged with a route_id and linked to a
outbound route_id list. These circular lists may be different for each peer — for example, for
policy reasons we might not want to propagate certain routes to certain peers. Therefore the
pointers are stored in each idrpRoute in an array of pointers, called the Outbound Announcement

Page 98 7/19/93 IDRP Design Document 2.4

The reduction of the rib_id to a simple integer value simplifies handling and comparison of IDRP
routes.

For our first implementation of QoS in IDRP, if all other attributes are the same and the rib_ids are
different the IDRP code will create a second idrp_attribute record. IDRP attribute records will be
linked for each rib_id. Zero will always be the default RIB identifier.

List of Attributes

The idrp_attribute_records are linked on a list. This list may be scanned to locate an attribute record
which may be re-used upon receipt of a new BISDPDU, or for policy calculations.

The first implementations of QoS will have an attribute list per RIB ID. Each RIB ID will represent
a unique set of distinguishing attributes supported by the local node’s gated tables. The RIB ID of
zero will represent the default route. A table will map between distinguishing attribute sets and RIB
IDs. Therefore, the current idrp_attribute_list will become an array of lists.

IDRP attribute record structure

next link to next attribute record in list
prev link to previous attribute record in

list

ref_cnt reference count for this attribute
record

mem_type memory type — task or local
peer_alloc which IDRP peer allocated this

structure?
route_id_list route id's attached to this

attribute record (by address
family)

rib_id internal ID of AdjRib
idrp_mask bit mask of attribute record
local_mask mask of local route bits
multi_exit multi exit discriminator value

idrp_local_proto mask of local protocols
next_hop next hop for route
hopcount hop count = RD path length
rd_path canonical representation of RD

path
as_path AS path (only used if running

IDRP for
attrib array of well-known attributes

usr_attrib array of user-defined attributes
p_attr_pdu pointer to copy of attributes from

pdu
attr_len length of attributes from pdu

idrp_attribute_record

route_id
next route entry
head of idrpRoute
structures for
NLRIs associated

with this route ID
via inbound NLRI
link

idrpRoute structures

route_id
next route entry
head of idrpRoute
structures for
NLRIs associated

with this route ID
via inbound NLRI
link

Ordered RDI list

Ordered RDI list

Ordered RDI list

Attribute portion of

update PDU

next idrp_attribute_record

Figure 20 — IDRP attribute Record Structure

IDRP Design Document 2.4 7/19/93 Page 97

IDRP_STATUS_RECONFIGURE This local route is subject to reconfiguration. If flag
not cleared after configuration file parsing done, delete
the route as no longer valid.

IDRP_STATUS_LOCAL_NEW_ROUTE This route is a new local route and needs to be added
to gated’s routing table.

IDRP_STATUS_WITH_EARLY_PROC This route’s withdrawal was processed early because
it is on an outbound list that had several ID’s removed.

IDRP_STATUS_LOCAL_ROUTE This flag is defined as the absence of all other flags
after configuration and initialization finishes.

7.1.2.2. Attribute records

Multiple BISPDUs received from the same peer may have identical attributes (save fore the route
ID). The attribute record structure contains a route_id_list that stores information per route ID
about the NRLIs sent in the BISPDU. The attribute record contains processed information about a
group of routes which share:

• next hop
• RDI path
• attributes
• multi_exit_disc value
• route server flag

For received IDRP attribute information, the idrp_attribute_record also stores the attribute
information as it was received. This storage facilitates the re-transmission of the byte stream for
outbound routing information (we can simply re-send the attribute information as taken from the
incoming BISPDU instead of having to re-construct it from its internal representation). The
information received in the PDU is indexed by the idrp_attribute_array of pointers and byte counts
for each IDRP attribute. The zero element of the this attribute array needs special mention. It is
used to store the local RD to be added to the RD_PATH attributes. Since IDRP has no zero
attribute, element zero of the array may be used for this function.

The idrp_attribute_record also keeps the RD path as a set of RDIs listed in “canonical” format,
which is defined to be the ordering of RDIs described in the IDRP protocol specification. This
ordered format is a by-product of the way the Merit IDRP code searches for duplicate RDIs in the
RD_PATH attribute. It has been stored in order for efficiency of policy calculation done on the
exclusion or inclusion of an RDI or a set of RDIs. An example of such policy might be the
exclusion of sending non-critical traffic through an aircraft RD.

The Merit implementation of the IDRP protocol serves multiple network layer protocols. The
route_id_list is an array containing information per protocol family, such as but not limited to
CLNP or IP. Each entry on the route_id_list contains a set of routes tagged by a route ID. These
routes are idrpRoute structures linked together by the p_next_nlri pointer.

In an IDRP that supports only the default RIB, the rib_id in the attribute will only be zero. IDRP
for Delivery 1 (Basic IDRP, simple Policy), and Delivery 2 (Basic IDRP with full Policy
information) will support only the default RIB.

Attributes and QoS

In an environment where non-default QoS is used, the “rib_id” will be a (possibly non-zero)
integer value. Each group of distinguishing attributes will be mapped to a distinct integer value.

Page 96 7/19/93 IDRP Design Document 2.4

• Timer links: These link to minimum route advertisement timers, either the local RD timer or the
remote RD minimum route advertisement timer.

• AdjRib out links: An Array of pointers allows the route to be linked to the route groups (via
route_id) sent to Adjacent BISs.

• Best external routes links: Links to list of all externally-learned routes to this NLRI, sorted in
order of IDRP preference so that the best external route can easily be referenced.

IDRP route links to gated tables

idrpRoute structure

p_rt_ext_info (link to ext_info
gated entry)

p_rt (link to gated rt_entry)

head of gated destination chain

rt_entry structure in gated for IS-IS protocol

rt_entry structure in gated for IDRP protocol

Figure 19 — IDRP route links to gated route structure

IDRP Route Status Flag Use of Status Flag

IDRP_STATUS_ADJ_RIB set during phase 1 or phase 3 processing if route is
added to AdjRib.

IDRP_STATUS_BEXT_EXT best external route for NLRI
• set during phase 1 processing upon addition or

modification of route
• set during phase 3 upon loss of external neighbor

and full route deletion
(real routes calculated by Best External route structure)

IDRP_STATUS_LOC_RIB Phase 3 processing recognizes this as a gated active
route.

IDRP_STATUS_MIN_ADV Minimum route advertisement timer running.
IDRP_STATUS_MIN_ADV_CHG Route change occurred while route had minimum route

advertisement timer running.
IDRP_STATUS_WITH Withdraw set on this route.
IDRP_STATUS_DEL_SEND Delete this route after it has been sent to the remote

peer.
IDRP_STATUS_REPLACE Explicit withdraw with replacement route.
IDRP_STATUS_DELETE Delete this route.

IDRP Design Document 2.4 7/19/93 Page 95

IDRP route structure

Gated and other general use links

rt_header space for gated routing table stuff
p_rt link to gated routed table
p_rt_ext_info link to external info in gated routing table
peer link to idrpPeer structure for peer from which we received

this
p_loc_rt_peer pointer to peer description for local route
p_attr link to IDRP attribute record structure
Route processing links
p_next_nlri Next NLRI associated with inbound route ID
p_with Next NLRI on withdrawal list
p_ann_nlri announcing NLRI
p_min_adv link for min advertisement timer list
p_min_advRD link for min advertisement within RD timer list
route_out Array of outbound route IDs for this route, indexed by peer.

Also contains list of other NLRI associated with this route ID.
Best external routes links (null for internal routes)
p_next_best link to next-best external route
p_better link to next-better external route
p_p_best_ext pointer to idrp_best_ext structure. Reference off of

idrp_best_ext to find the best external route.
IDRP route information
mem_type type of gated memory this structure was allocated from (can

be local or task)
route_id_in Route ID received from peer
pref_cal calculated IDRP preference
pref_rcvd preference received from internal peer
nlri NLRI stored in prefix
family Protocol family route belongs to (ISO or IP)
nlri_id nlri
status route’s status, including flags for:

• Route in
• Route in
• Route is best external route
• Min advertisement timer running for this route
• Route entry reflects external info
• This route is being withdrawn
• Delete this route after sending it to all peers
• This route changed while waiting on min advertisement
timer
• This route reflects a withdraw with replacement
• Min RD advertisement timer running for this route
• Route is being deleted
• (Local) route is being reconfigured
• This (local) route is new
• This route should be processed early, to go with others of
same route
• Local route (should have no other status bits set)

Figure 18 — IDRP route Structure

The idrpRoute contains many links to aid in processing of routes into AdjRibs and into
AdjRibOuts. These links include:

• Links to the inbound list of NLRI’s associated with a route ID: A locally configured route
associates the NLRIs with a local group of routes which do not have a route_id.

• Processing links: Withdraw route processing link and announce route processing link

Page 94 7/19/93 IDRP Design Document 2.4

7.1.2.1. idrpRoute structure

Links to Gated Routes

The IDRP route contains data structures that allows the idrpRoute to be linked as the rt_data
portion of the rt_entry of a gated route. One rt_entry exists for each protocol’s route for an NLRI
in the gated radix tree for a protocol family.

For an IDRP learned route, a single link in the idrpRoute structure links it to the gated structure.
Routes imported from external information (EXT_INFO routes) have two links to the gated routing
table. The first link is from the idrpRoute Structure to the gated rt_entry structure from which the
gated route was imported. The second link is the gated route which was created to hold the IDRP
specific information. This double entry is a “short-term” structure. In the future, the gated structure
will be expanded to allow a pointer to the idrpRoute (or a new structure with a subsection of the
idrpRoute structure). The “double entry” created from the external information is flagged to never
be installed in the FIB since the real route is the exterior information route. Only this route should
be installed in the local FIB.

Link to Attribute Record

Each idrpRoute links to an attribute record. The reference count on an attribute record indicates
how many idrpRoutes are linked to it. idrpRoutes are linked by route_id and family to the attribute
record (see the idrp_attribute_record section for details).

Links to IDRP attribute record structure have a special code in the route_id for local routes:

local_route = -1
ext_info = -2
initial setup of route = -3

While these values are valid values for route_ids, the flags in the idrp_local_mask of the
idrp_attribute record will have a flag that indicates local_route or ext_info.

The idrpRoute structure also contains the following information:

• the received route ID
• the received preference
• family of the NLRI
• hop count

This information replicates information present in the attribute record. This duplication was initially
added to aid debugging. However, it has provided easy reference for many routines.

The idrpRoute stores the following unique information:

• calculated preference for the route (policy calculation result for PREF)
• status of the Route (AdjRib, LOC_RIB, best external Route, minimum route advertisement

timers running, and other status)
• nlri_id that corresponds to family.

The NRLI stored in the IDRP route is also available in the gated rt_entry structure, but is repeated
here to keep the idrpRoute independent of the gated route structure.

IDRP Design Document 2.4 7/19/93 Page 93

7. Description of algorithms

Section 7 describes the data structures used by the Merit IDRP implementation and the major
algorithms used by the IDRP code to interact with gated.

Section 7.1 describes the data structures related to the Routing table. Section 7.2 describes the data
structures related the IDRP neighbor (or peer). Section 7.3 describes the structures related to the
Policy Information Base. Section 7.4 describes the structures related to the Network Management
Information Base. Section 7.5 contains information about the algorithms used in route lookup.
Section 7.6 contains references for the authentication algorithms.

Section 7.3 on Policy structures contains information on the rough policy structures used in
Delivery 1, as well as initial notes on the Delivery 2 policy structures. Also, to aid in configuring
the current policy, a few examples for Delivery 1 policy will be included.

7.1. Routing table structures

7.1.1. Gated routing structures

Two types of routing table structures are used in the Merit IDRP implementation in gated: gated
routing structures and IDRP specific routing structures. These routing structures are lightly linked
to allow the IDRP code to be detached from the gated routing structure.

The gated routing table supports the creation of a LOC_RIB from routing information from many
different protocols. The gated routes are stored in a radix tree for the protocol family (CLNP or
IP). The rt_head entry links all the routes for a particular destination or in IDRP parlance NLRI.
Routes received on any protocol are linked to the gated rt_entry.

Like a LOC_RIB, gated only has one active route per NLRI. In fact, the LOC_RIB for the IDRP
route is the list of active routes for the gated protocol.

The routing table is also threaded by a gateway.

Gated will notify tasks of changes to the active route, but it does not maintain an ability to notify
tasks of changes to non-active routes. Therefore the IDRP phase1 processing, must be done within
the IDRP code.

Gated has a task which installs the LOC_RIB into the forwarding table of the UNIX machine it is
running on. If like AIX and BSD/386, the routing table supports both the IP and CLNP FIB with
the BSD 4.4 routing table calls, then the “gated” code can install these routes into the routing table.
However, if a UNIX system such as the Sun 4.x operating system does not support the CLNP
protocol for insertion in the routing table the gated code cannot support the installation of OSI
routes into the “FIB” of the UNIX system.

The basic building blocks of the gated routing table are not covered in detail in this section.

7.1.2. IDRP routing structures

The IDRP has two basic routing information structures: the idrpRoute and the
idrp_attribute_record. An idrpRoute exists for every unique NLRI-attribute pair. An idrp_attribute
records stores the attribute information either received in an BISPDU, or configured as a local
route, or exported from another protocol on the gated router.

Page 92 7/19/93 IDRP Design Document 2.4

• on a small (4-6) node test network
• on a larger test network.

Prior to deployment in the NSFNET backbone, the interaction between these minimum route
advertisement timers and the various routing scenarios must tested.

This section will be updated with design comments on how to use the minimum route
advertisement timer.

IDRP Design Document 2.4 7/19/93 Page 91

These routines link the minimum route advertisement an idrpAdvRt structure. This structure has:

• link to next structure on list
• interval for timer
• routes[protocol families]

When the first minimum route advertisement structure is created, a flag is set to start the IDRP peer
structure. After this initial set-up, the routes associated with a particular announce list are linked to
the this idrpAdvRt structure by either the p_min_adv or p_minadv_RD pointers in the idrpRoute
structure.

In the IDRP peer structure there are two blocks of the following format:

1) timer structure for gated
2) flag to indicate that IDRP route needs to have timer started
3) head of list of idrpAdvRt structures
4) tail of list of idrpAdvRt structures

The first announce list processing will set the timer structure for gated, the flag that indicates a
route must be set, and set up the list pointers for the idrpAdvRt structures which in turn contain the
routes.

After the announce list has been fully processed, the IDRP code starts the timers and exits the
phase3 process.

6.3. Processing the timers

When a given timer expires, gated calls the route to process the timer for that peer. The routine to
process remote minimum route advertisement is idrp_process_minadv. The routine to process the
local RD route advertisement timer, idrp_process_minAdvRD, is only called by the local node
task.

The routine processing the minimum route advertisement timer takes off idrpAdvRt structures
which have an interval of zero. In the current implementation this should only be one. However,
the code is written in case we decide additional bunching of processing needs to be done. Each
route in the idrpAdvRt structure is processed by walking down the chain of routes. The routes may
need to be announced or deleted. The routines to handle this are:

• idrp_min_adv_rt — process one minimum route advertisement timer expiring for route from
another RD

• idrp_min_advRD_rt — process one minimum route advertisement timer expiring for route from
this RD.

Please note that the timer routine for the local RD is only defined for the local node.

6.4. Use of the minimum route advertisement timers

Delivery 1 IDRP minimum route advertisement code has undergone very minimal testing in a 4-6
node network.

We anticipate 2-3 months of continuous testing and refinement of the IDRP routing code. Both the
logic that handles routing table updates and that dealing with the minimum route advertisement
timers require a great deal of testing:

Page 90 7/19/93 IDRP Design Document 2.4

6. Minimum route advertisement timers

6.1. Overview of minimum route advertisement timers

The routing fluctuations in the current Internet have been studied to see if routing traffic can be
reduced. Several studies have found that 10%-15% of the total routes in the Internet are in
fluctuation at during any 15 minute interval. Some studies show that some portion of these
fluctuating routes are simply oscillating rapidly between reachable and unreachable through a
particular pathway. Damping out these oscillations might dramatically reduce the routing churn.

The IDRP specification includes two mechanisms intended to help damp out such oscillations.
These mechanisms are the two types of Minimum Route Advertisement time. The local RD
Minimum Route Advertisement timer damps fluctuation for routes coming from the local RD and
the normal Minimum Route Advertisement timer damps fluctuation routes received from other
domains.

Only one of these timers is valid for any route at a time. That is, comes from either the local RD or
a remote RD.

The remote RD minimum route advertisement time tries to damp out oscillations created by other
routing domains prior to passing these routes on. Each time a route is received by an External peer
and transmitted to another external peer the minimum advertisement timer is set. If the route is
withdrawn, the routing change must be passed on according to the “bad new travels fast” principle
to avoid blackholing of traffic. If the route is then re-advertised, the damping function will prevent
re-advertisement until the timer expires.

The local RD minimum route advertisement timer functions analogously to prevent manual
configurations or export of routes from the Intra-Domain protocol from causing the same type of
routing fluctuations.

Other mechanisms may also inhibit route flap, for example the use of hierarchical prefix
aggregation. Further experience with the IDRP minimum route advertisement mechanism is
expected to lead to further refinements in the future, such as weighting the timer values according
to “chattiness” of a given route.

6.2. Starting minimum route advertisement timers:

After all routes are added to send_list, the PDUs are sent out to the external peers only. The phase3
route hands the announce list to the idrp_minadv_annlist.

If a route is announced to any peer, it has a minimum route advertisement timer set. This single
timer serves to damp oscillation for all peers, and relieves us of the necessity to maintain a timer
per peer per route.

Routine called:

idrp_min_adv_list - adds all of announce list NLRI to appropriate minimum advertisement lists.

This routine in turn calls either:

idrp_add_min_route_adv (external RDs) or
idrp_add_min_advRD (local RD)

IDRP Design Document 2.4 7/19/93 Page 89

many things can be grouped into these fixed blocks, and the overhead on the gated memory is
lessened.

Page 88 7/19/93 IDRP Design Document 2.4

5.7.11. idrp_find_peer

routine: idrp_find_peer
calling parameters:
Search the IDRP peer list to find a peer. This allows the parsing of configuration files when
reconfiguring a peer structure to look for an existing Peer structure and simply reset the peer
structure.

5.7.12. idrp_peer_update

routine: idrp_peer_update
calling parameters:

peer_old - pointer to old peer structure
peer - pointer to new peer structure

Logic:

Update the old peer structure with the neighbor address, the RDI, and the protocol socket this
connection is to run over.

5.7.13. idrp_config_peer_init

routine: idrp_config_peer_init
calling parameters:

peer - pointer to peer structure

Logic:

Initialize the Peer structure with the configuration parameters specified in the AdjBis. Parsing
configuration information may supersede this information, but the defaults are configured in.

Currently, it is noted in the code which functions preset do not cannot be set by the configuration
files

5.7.14. local storage allocation routines

For information for idrp_local routes, the information parsed from the configuration file must be
stored in memory that is not related to any task. For this purpose, the IDRP code uses three sizes
of fixed blocks:

- small
- medium
- large (idrpPeer structure)

There are three routines such as idrp_small_blk_alloc that allocate the blocks of memory. And
three routines to free this memory. The memory could have been gotten on a per byte basis, but

IDRP Design Document 2.4 7/19/93 Page 87

if peer has not already been initialized, then set up tasks and start timer. Start timer
will allow gated to finish and stabilize before we start getting routes. A “sanity”
check on gated.

5.7.9. idrp_local_peer_init

routine: idrp_local_peer_init
calling parameters: none

logic:

1) set-up defaults for NLRI supported

2) set-up the local node peer structure by:

2.a) making sure link to next peer structure is cleared
2.b) setting the type to IDRP_PEER_LOCAL
2.c) set-up the name field

3) set-up the gated interface parameters

3.a) IP gw_entry structure
3.b) ISO gw_entry structure

4) set-up the defaults for the idrpConfig parameters
specified in IDRP:

5) set-up the protocol socket this node will run
over

5.1) default - IP
5.2) Otherwise as configured

Note: The modules only provide support for IP or CLNP sockets not both at this time. Only one
socket can be open for the local node.

6) update the ISO interface information

7) set-up the local RD path

8) set-up a default for the local SNPA.

5.7.10. idrp_peer_alloc

routine: idrp_peer_alloc
calling parameter: pointer to idrpPeer structure

logic:
Allocate a peer structure from non-task memory. This memory stays around across a re-
configuration.

Page 86 7/19/93 IDRP Design Document 2.4

If IDRP is re-initializing and IDRP connection up,

send full routing dump via Rib Refresh on the other side with all LOC_RIB routes. This
means than internal neighbors will be in sync with the LOC_RIB routes and not the best
external. (We believe that this is per the specification; comments are welcome.)

Logic:

1) call phase3_newpolicy to create IDRP routes out of EXT_INFO in table, and to build an
announce list of IDRP routes

2) call idrp_refresh_all_peers(p_ann_list)

to external and internal neighbors that are connected:

• send IDRP Rib_refresh_start
• send all update PDUs packet into send list
• send idrpRibRefresh end

Note:

phase3_newpolicy calls in turn the ph3 status routines:

ph3_status_case1 - new IDRP route
 ph3_status_case2 - new EXT_INFO

I believe this is adequate for the gated sequences, but I will watch to see if any other cases
can occur.

Kernel routes are not imported or released, so that “route adds” will remain across
reinitialization of routing routines.

5.7.8. idrp_init

Basic functions:

re-init local master task

initialize a new peer task (no bits set in the type) with timer and task allocation

Specific logic:

a) if not doing IDRP, need to delete all IDRP tasks, the master task and the peer structures.
Local peer structure is a global rather than being allocated as the rest of the peer structures,
so it won’t be deleted.

b) if doing IDRP,

a) re-initialize local peer (always!!)
b) Walk through peer list:

if peer has already been initialized, just wait for the peer_reinit code to do the
reinitialization.

IDRP Design Document 2.4 7/19/93 Page 85

policy configurations

5.7.5. idrp_reinit

This function is supposed to re-initialize the IDRP local peer structure. However, outside of
configuration and initialization no other initialization is needed.

5.7.6. idrp_peer_reinit

Basic function:

a) re-initialize each non-connected peer with end-to-end parameters and start to restart all
non-idled peers

b) For each connected peer, send a rib refresh sequence to refresh all routing tables

Specific functions by IDRP flag type:

DELETE: - get rid of peer structure

TRY_CONNECT - re-initialize the end-to-end structure

IDRP_CONNECTED - rib refresh the peer’s routes

WRITE_FAILED- write failed on socket, try reinitializing the structure.

IDRP_IDLE - set in configuration, leave peer unstarted

5.7.7. idrp_newpolicy

when called: upon reconfiguration or initial stirrup

parameter(s): rtl - list of active routes

Background:

Gated has finished either a first initialization sequence or just re-initialized it’s routing table and
policy. The new policy is called with the current list of active routes. For the first initialization
sequence, IDRP will need to create routes for any external info (EXT_INFO) it has not created
routes for.

After re-initialization, a new set of active routes is handed to IDRP. IDRP can keep a connect up
through a reinitialization by sending a Rib Refresh and dumping the full set of routes. Otherwise, it
can drop the connection. Parameter “RibRefresh on restart” allows the RibRefresh - otherwise the
connection is terminated and restarted. (This parameter - RibRefresh on restart will be implemented
in Delivery 2.)

IDRP checks for the initialization case, by checking the idrp_reparsing flag. For initialization case,
a simple phase3_init_status routine is called to dispatch to handle each route. The ph3_status_case2
routine which checks the flag to see if the route already has an IDRP route associated with it. If so,
it calls find_idrp_route function.

Short form of logic:

Page 84 7/19/93 IDRP Design Document 2.4

5) clear local route count
6) clear the local rd path information
7) Reset peer list pointers in local node peer

structure

5.7.3. idrp_var_inits

called by: idrp_proto_var_inits in task.c

calling parameters: none

Logic: (to be filled in later)

5.7.4. parser.y routines

in idrp_rt_local, idrp_init_parse.c (initial and re-config)

1) if IDRP off, then idrp_init will clear out the tasks. Peers will just disappear and not give a
CEASE to go down.

2) if re-parsing/initializing, local peer needs to be re-configured - routines should be the same
a) Re-read local variables listed below
b) reinit

3) if reparsing, then we need to locate peer structure on idrp_peer list.

Identifiers for uniqueness:

 a) NET (always must be there)
 b) RDI (always must be there)
 c) IP address (optional with ISO)
 d) IP Interface (optional with ISO)
 e) ISO Interface - SNPA
 f) socket we are running over.

(Can we run over multiple sockets? or have two peer structures? My guess
is two peer structures)

 g) external or internal

3.1) Other things which need to be added to the parse are the local configuration and the
remote configuration parameters:

3.2) if a peer structure is re-used, we need to re-fill the peer structure, and clear the deleted
flag.

3.3) If peer configured disabled - or current disabled function then set the flag
UNCONFIGURED flag

3.4) Policy configuration for this node.

look for export and import
local node configuration
peer configurations

IDRP Design Document 2.4 7/19/93 Page 83

This is for the osilocal clause and does the same thing as the gated static routes.

4) clear the policy lists

Delivery 2 (with policy support) will free the import and export, import and
aggregation lists.

Currently we have defined:

a) idrp_import_list -
A place holder. Planned to point to the list of policies threaded by
NLRI for PREF function.

b) idrp_export_list
A place holder. Planned to pointer for the DIST policy structures
threaded by NRLI.

c) idrp_import_paths
A place holder. Planned to point to the PREF structures threaded by
attribute record.

d) idrp_export_paths
A place holder. Planned to point to the DIST policy structures thread
by attribute record.

e) Aggregation functions by NLRI and
AS path will be defined for delivery 3.
gated definitions for IP aggregations will be done end of July 1993.

5) call idrp_var_init to clear global variables

Note: further information on this for Delivery 2

5.7.2. idrp_peer_cleanup

called by: task_reconfigure routine in task.c

called parameters: set flag on peer structure to delete the peer structure unless the peer configuration
found in the new version of the configuration file.

Logic:
1) flag "doing_idrp" as false.

The parser.y routines will set it to TRUE if the configuration has the IDRP protocol set on.

2) set-up defaults values for IDRP protocol based parameters for
1) tracing
2) metrics for policy
3) default preference.
4) if IDRP is not re-parsing - that is this truly

the first time this routine is called,
clear the idrp_last_local_att pointer

Page 82 7/19/93 IDRP Design Document 2.4

3) find_attr_rec

(Search for an attribute record with the specified attributes. If found, delete the new
attribute record and use the existing attribute record. If you not found, link the new
attribute record to the attribute record list.

a) idrp_free_local_att (Call this routine to free new attribute record)

b) link_local_attr_list

4) set up the idrpRoute structure and link to attribute record

5.7. Description of routines

The following routines are described in this section:

1) idrp_cleanup
2) idrp_peer_cleanup
2) idrp_var_init
3) parser.y
4) idrp_reinit
5) idrp_peer_reinit
5) idrp_newpolicy
6) idrp_init
7) idrp_local_peer_init
8) idrp_peer_alloc
9) idrp_find_peer
10) idrp_peer_update
11) idrp_big_blk_free
12) idrp_link_peer
13) idrp_config_peer_init

5.7.1. idrp_cleanup

1) idrp_cleanup

called by: task_reconfigure routine in task.c

(gated dispatch for cleanup routines learned as tasks initialized)

parameters: none

Logic Description:

1) set the re-parsing flag
2) set delete flag in each peer
3) flags all local route structures and associated attribute record

idrp_local_route_clean routine called later to delete any routes that are not re-
configured

IDRP Design Document 2.4 7/19/93 Page 81

1) adjacentBis Managed objects
2) extra MIB stuff from idrpPeer structure

3) the Attribute lists and associated routes

4) the local Rib

5) the AdjRibs for each peer

5.6. Local route initialization
Static IDRP local routes are configured by either:

- gated “static” configuration parameter.
- gated “osilocal” configuration parameter.

These routines are processed by idrp_local_rt routine.

Configured External Information routes are configured via the gated “static” command, the IS-IS
configuration commands or other protocol configuration commands. These routes are imported as
external routes during the idrp_newpolicy routine. At this time, the static routes or protocol routes
are tested to see if the IDRP code will initialize these routes.

5.6.1. IDRP configured local routes

Overview:

The idrp_local_rt is called with the NLRI, family of the NRLI, the next hop gateway for
forwarding packets, and a structure of IDRP options. For Delivery 1, the route is described with
the following idrp_options include:

1) rib_id
2) next_hop SNPAs
3) route server flag
4) DIST_LIST_INCL rd path
5) DIST_LIST_EXCL rd path

The idrp_local_rt tries to find this local route with NLRI, family, next hop gateway, and options.
If the route already existing by calling idrp_find_local_dest routine.

If found, it clears the “IDRP_RECONFIGURE” flag. The only reason the idrp_local_rt should
exists if it is a re-parsing.

If no route exists, the following routines are called to create the necessary structures for the local
route:

1) idrp_create_local_gw

(creates a gated sockaddr structure to hold the next_hop information.)

2) create_local_attr_record

(Creates an attribute record to store the attribute information in. This structure is
used in generic find_attr_rec routine to see if there is an attribute existing for these
attributes.)

Page 80 7/19/93 IDRP Design Document 2.4

The IDRP peer terminate routine:

a) releases all routes associated with peer idrp_peer_down

b) calls idrp_sm with stop_event which will shut down connection with CEASE message

5.5. Tracing change (SIGINT)

The most frequently used interrupt or initialization, SIGINT, requests a dump and the re-reading of
the IDRP tracing flags. The IDRP tracing are still under development. The following tracing
functions will be available, but still have to be defined:

1) Tracing of BISPDUs sent
2) Tracing of BISPDUs received
3) Tracing of IDRP state changes
4) Tracing of IDRP error messages
5) Tracing of IDRP information by neighbor.
6) Tracing of Alarm Indications for the node or by a neighbor

The IDRP alarm indications for IDRP defined by the specification are:

1) errorBISPDUsent
2) errorBISPDUconnectionclosed
3) CorruptAdjRibIn
4) PacketBomb received
5) connectRequestBisUnknown
6) EnterFSMStateMachine

Delivery 1 makes no attempt to turn off any tracing the debuggers feel is useful.

The IDRP code supports dumping the following information:

1) IDRP GDMO for the idrpConfig for the local Node
2) adjacentBis Managed Objects for each BIS neighbor
3) Loc_RIB

(See the redefinition of the ATN LOC_RIB in Section 7.4.2 MIB output structures)
4) AdjRibs
5) plus a wealth of Merit implementation variables kept.

One important addition is the printing of the attribute record lists with all associated routes.

During Delivery 1, the dump code will simply dump all known variables into the gated dump file.
During Delivery 2, this dump code will be refined to allow selective dumping. If you have
comments on usable tracing or dump formats, please forward these comments to the authors.

Each IDRP gated task has a reference to a dump routine. For the local peer task, the dump routine
is the idrp_master_dump. For each peer task, the dump routine is the idrp_peer_dump.

The idrp_master_dump routine dumps

1) for the local peer the idrpConfig Managed Objects

2) for the Adjacent BISs

IDRP Design Document 2.4 7/19/93 Page 79

4) parsing routines for IDRP

called by: gated parser

purpose: parse IDRP portion of gated syntax

5) idrp_init

called by: task_proto_init in task.c

purpose: reinitialize/initialize peer and IDRP Route structures. Code looks at reparsing flag
and the task assignment to peer structure to determine if a structure is new or old.

6) idrp_reinit

called by: task_reinit routine in gated

purpose: reinitialized gated master task

7) idrp_peer_reinit

called by: task_reinit for the IDRP peer tasks

purpose: handle peer status change:

DELETE peer if not configured

Reset the End to End variables so a Rib Refresh can be set if connected and
reconfigured.

Disconnect peer if the peer is configured but idled.

Take a peer out of idle mode if the configuration has activated this peer.

8) idrp_newpolicy

If a peer is connected at this point, a rib refresh sequence will be sent to send new routes.

5.4. Terminate (SIGTERM)

Graceful termination of gated is signaled by a kill of the process which generates a SIGTERM
signal. Gated goes about gracefully closing all the tasks. The IDRP tasks include the local peer (the
master task), and one task per IDRP BIS neighbor.

1) idrp_terminate

The idrp_terminate routine terminates the master task, and tries to terminate any existing peers
using the idrp_peer_terminate routine.

2) idrp_peer_terminate

Page 78 7/19/93 IDRP Design Document 2.4

In our implementation we have chosen to allow the user make use of the power of the Rib Refresh
to allow a connection to re-initialize it’s routes after reconfiguration of policy without losing
connections. By sending a Rib Refresh, the user can reset all the routes in the routing table. In this
implementation, his reconfiguration does not generally affect the availability of a route, the
connections will stay up. The RIB REFRESH sequences during reconfiguration has the power to
totally reset all the Adjacent RIBs.

The IDRP specification intends that routes will remain in the forwarding base during the reception
of a RIB REFRESH. Some implementations may not keep the routes up, or a user may not want to
totally re-calculate the routes during a policy re-configuration. Delivery 2 of the IDRP code which
implements the Policy configurations will allow the user to select whether the node will use a RIB
REFRESH sequence upon re-configuration or simply send a sequence of UPDATE PDUs to
transmit the changed routes.

The benefit of sending the UPDATE PDUs for small policy changes is that the routes transmitted
are minimal. IDRP is an incremental protocol and does not periodically refresh all routes. The
benefit of the RIB REFRESH is that it is a refresh of all routes. It will be up to the network
operators to determine which function is needed at what time.

Reinitialization sequence is

1) idrp_cleanup

called by: task_reconfigure routine in task.c

 (gated dispatch for cleanup routines learned as tasks initialized)

purpose:

1) clean up peers by setting delete flag in existing peers so that if the peer is
not found in current configuration file it will be deleted

2) free local route list by walking through all routes associated with local
attribute records and set the “IDRP_LOCAL_ROUTE_RECONFIG” flag
(1st attributes in list are local attributes)

3) clean up all policy lists Note: these attributes

2) idrp_peer_cleanup

called by: task_reconfigure routine in task.c

purpose: set flag on peer structure to delete the peer structure unless the peer configuration
found in the new version of the configuration file.

3) idrp_var_inits

called by: idrp_peer_cleanup

purpose: initialize global variables for IDRP

IDRP Design Document 2.4 7/19/93 Page 77

notes:

1) connected peers will stay connected through policy re-init.
2) connect peers may be configured down
3) new peers may be initialized

6) idrp_newpolicy

called by: gated idrp_newpolicy routine for policy re-configuration

purpose:

1) translate any external info statically configured to IDRP routes (idrp_newpolicy)

2) run policy on existing kernel routes

3) send Rib Refresh to all connected peers

5.2.3. Route changes

As the IDRP peers are brought up, the phase 1 routes are passed via the idrp_phase1 processing.
This IDRP phase1 processing sends the routes out without exiting the task.

Phase 3 route changes from IDRP or from other protocols that must be imported into IDRP are
handed to IDRP for phase 3 processing by gated during its “flash” processing of routes. Each task
processing the flash provide a route to process the routes. IDRP’s processing routine is the
idrp_flash. “idrp_flash” in turns calls the phase3_process.

5.3. Reconfiguration (SIGHUP)

Computer networks live in a 24 hours per day, 7 day a week world. The group of routers attached
to a peer may need to have a router added or deleted or the configuration variables changes. Policy
for routes on a router may need to change. Gated allows this to happen while the router is active. A
SIGHUP signal will signal gated to re-read it’s configuration file and re-initialize it’s routing tasks
with the new peer configurations and routing policy.

The IDRP tasks reconfigure the peer structures associated with the local peer and the adjacent BIS.
The new parameters for the local peer and the adjacent BIS are read from the gated configuration
file.

The local routes or the Internal Systems per the IDRP specification associated with this domain are
changed in the following ways:

• gated static route configuration change,
• IDRP specific route configuration change, and
• new routes configured for other local routes which IDRP imports as external routes.

The IDRP peer may either keep a connection up through the reconfiguration or terminate the
connection with the local peer.

If the IDRP peer retains the connection through the re-configuration sequence, the changes to the
local routes are sent to IDRP peers via either the RIB Refresh sequence or a sequence of
UPDATES.

Page 76 7/19/93 IDRP Design Document 2.4

(allocate an IDRP adjacent BIS peer structure)

3) idrp_find_peer

(see if idrpPeer structure already exists for the this peer)

4) idrp_peer_update

(if reparsing, and found old peer structure update parameters with the new
peer information.)

5) idrp_big_blk_free

(free idrpPeer structure allocated out of memory that is non-task memory)

6) idrp_link_peer

(link the peer to the idrpPeer list)

7) idrp_local_rt

(generate an idrp_local_rt. idrp_local_rt in turn calls a number of routines.
See Section 5.6 on local routes.)

routines called by: gated configuration parsing routines

purpose: parsing of the IDRP configuration line options (see Section 7.2.3 as highlighted
in the IDRP config syntax)

3) idrp_init

called by: task_proto_inits in task.c in gated modules table in proto_inits

purpose:

initialize the IDRP local peer structure and associated timer
initialize the IDRP neighbor BISs peer structures, and associated timers
initialize the IDRP local routes
initialize the IDRP master task
initialize the IDRP peer tasks

4) idrp_reinit - master task re-init

called by: gated re-init code for tasks

purpose: reinitialize the IDRP master task

5) idrp_peer_reinit - peer task re-init

called by: gated re-init code for tasks

purpose: reinitialize each idrpPeer structure

IDRP Design Document 2.4 7/19/93 Page 75

5. Initialization and re-start code

5.1. Overview

Gated initialization or restart code may be run either upon starting up the gated daemon or upon
reception of the SIGTERM or SIGHUP signals. IDRP handles this reinitialization of gated to do
the following things:

• Start-up initialization.
• Re-configure the routes or peers after a reconfiguration call from gated (SIGHUP).
• Gracefully close all IDRP sessions with peers (as gated terminates its execution after

SIGTERM).
• Change tracing or logging for a task.

5.2. Initialization

5.2.1. What Init does

The initial program set-up does the following for the user:

• reads the configuration file
• sets up all the protocols, including IDRP
• reads in locally configured routes and routing policy from the configuration file
• reads from the kernel the routes already configured on the router by hand
• computes routes to add to forwarding tables (kernel) and to send to neighbors
• starts up routing protocols for all peers.

Initial program set-up also sets up gated internals such as global variables, tasks and timers.

5.2.2. Sequence of routines called

Gated initialization logic initializes timers and tasks. At various points throughout the gated
initialization sequence it calls IDRP-specific initialization routines to set up the IDRP protocol.

Gated calls the following IDRP modules:

1) idrp_var_inits

called by: task_proto_var_inits() — routine table in proto_inits

purpose: initialize global variables for IDRP configuration parsing

2) parsing routines for IDRP

routines called:

1) idrp_local_peer_init

(initialize local peer variables to the default parameters)

2) idrp_peer_alloc

Page 74 7/19/93 IDRP Design Document 2.4

parameters: p_rtl_ip, p_rt_iso

1) p_rt_ip - pointer to gated’s list of active IP routes

2) p_rt_iso - pointer to gated’s list of active ISO routes

3) peer - pointer to peer structure to send routes to

Logic:

1) Loop creating announce list

LOOP for full list of active routes for ISO

1) if route not announced out by IDRP, skip rest of steps

2) run distribution policy to see if announce for peer (internal aggregation is possible here,
but not encouraged in IDRP specification)

[DIST(p_idrp_route) DIST - not only allows route out, but returns a modified
idrp_attribute record pointer]

3) if can send route, link route on appropriate attribute record

End loop

LOOP for full list of active routes for IP

1) if route not announced out by IDRP, skip rest of steps

2) run distribution policy to see if announce for peer (internal aggregation is possible here,
but not encouraged in IDRP specification) [DIST(p_idrp_route) DIST - not only allows
route out, but returns a modified idrp_attribute record pointer]

3) Run aggregation specific to peer (AGGR(p_idrp_route))

4) if can send route, link route on appropriate attribute record

End loop

2) Send routes out — call Phase3_send_routes(announce_list)

IDRP Design Document 2.4 7/19/93 Page 73

parameter: p_with_list - pointer to linked list of idrpRoute structures for NLRIs withdrawing.

Logic:

Loop for all of NLRIs on withdraw list:

Check for the Delete after send flag. If set in idrpRoute alone:

a) delete the idrpRoute structure (free_idrpRoute)
b) clear the tsi bits in gated route
c) let rt_delete take care of route (idrp_del_rt_gated)

if set in idrpRoute which has pointer to gated entry for ext_info:

a) delete idrpRoute entry
b) clear tsi bits on gated route
c) delete the rt_entry for idrpProtocol (idrp_del_rt_gated)
d) decrement reference count on the EXT_INFO information.

4.5.3. IDRP peer up routine - idrp_rt_send_init

routine: idrp_rt_send_init

parameter: peer - pointer to idrpPeer structure for peer that needs to receive full dump

Logic:

if (newPeer supports ISO routes)
{
get active ISO routes
}

if (newPeer supports IP routes)
{
get active IP routes
}

if (new peer == internal)
{
set external flag to FALSE
phase3_dump(active_ip_routes, active_iso_routes, external)
}

if (new peer == external)
{
set external flag to TRUE

 phase3_dump(active_ip_routes, active_iso_routes, external)
}

4.5.4. IDRP phase 3 full routing table dump

routine: phase3_dump

Page 72 7/19/93 IDRP Design Document 2.4

Withdraw logic:

1) look up the IDRP Route with ext_info that matches this one (find_ext_info_rt_gated)

2) withdraw flag on IDRP route,

3) put withdraw on withdrawal list

4) if min advertisement timer running (min_adv_run set in status field of idrpRoute) then
set min_adv_chg flag (min_adv_run will keep it from being deleted)

5) if the min advertisement timer is not running, (the min_adv_run flag is not set in the
status field of the idrpRoute), then set the delete after send flag in the status field of
idrpRoute.

4.5.2.2. Phase3 send routes to external neighbors

routine: idrp_send_phase3_routes

parameter: p_ann_list - pointer to announce list

Announce list has linked list of announce structures. Each announce list structure has:

1) withdraw NLRI list
2) announce NLRI list
3) pointer to IDRP attribute record
4) RIB ID (zero for now)
5) null pointer to peer

Logic:

LOOP for each external peer:

LOOP for each attribute record:

Walk withdraw NLRI list
call send_with_attr

end withdraw list

walk announce list
call send_nlri_attr
(note: IDRP DIST function run on all routes

 and policy on internal routes will
 will let all routes pass)

end announce list

end of look for each attribute record

END of loop for external peers

4.5.2.3. Delete routes after sending the route

routine: idrp_del_phase3_routes

IDRP Design Document 2.4 7/19/93 Page 71

3) If old route has IDRP bit, find the IDRP route (find_ext_info_rt_gated(rth))

4) if old route’s idrpRoute = this new route, then there is an error. All IDRP generated routes have
no advise set on them and should not be the main route.

5) Check for the minimum advertisement timer running on IDRP route linked to ext_info route

6) If min advertisement timer running (check IDRP route status flag
IDRP_STATUS_MIN_ADV_RUN), set change flag (IDRP_STATUS_MIN_ADV_CHG) and
exit routine

7) if min advertisement not running, link list to the announce list.

Case 6: change of active route IDRP -> new ext_info

test: old route = IDRP, new route = ext_info (only accept IS-IS)

1) do preference on new route to see if it will be announced via IDRP. If so, then create IDRP
route for this external info.

subcase 1: old IDRP route going away, no new route minimum advertisement timer running

1) set min_adv_chg flag (min route advertisement will pick up change)
2) link withdrawal to announce list

subcase 2: Old route IDRP route, no new route, and no minimum advertisement timer running

subcase 3: old IDRP route, new route, minimum advertisement timer is running

1) set flag for advertisement change (MIN_ADV_CHG)
2) exit

subcase 4: old idrpRoute, new IDRP route, no minimum advertisement timer running

1) link new idrpRoute to announce list

Case 7 - deletion of active route IDRP

test: old_active route = IDRP, but no new active route. Status on IDRP route - withdrawal (?? and
delete)

process the withdrawal of the route:

1) link idrpRoute to announce list as withdraw
2) if min advertisement timer is not running, set “delete after send” flag in old IDRP route
3) if min advertisement timer is running, it will handle delete of IDRP route

Case 8 - old active route = EXT_INFO route, no new active route

1) does route have idrpRoute announce bit set in gated route?

Yes, continue on with Withdraw logic
No, exit

Page 70 7/19/93 IDRP Design Document 2.4

Case 4: old ext_info -> new ext_info

test:

old route = protocol other than IDRP
new route = protocol other than IDRP

logic:

1) Do PREF on new route

if valid, flag announcement of new route
if invalid, flag no-announce new route

2) Check to see if old route has idrpRoute

3) if valid for new route create new IDRP Route

subcase 1: old route did not have IDRP route, and new route will not have IDRP route. Simply
exit.

subcase 2: old route had no IDRP route (due to no announcement.) New route added.

a) link to announce list.

subcase 3: old route had IDRP route, MinRouteAdv timer is not running, new route does not
generate an IDRP route

a) link old idrpRoute to announce list in withdrawal list
b) if old route has delete flagged, mark “delete after send in IDRP Route”

subcase 4: old route had IDRP route, new route does not generate an IDRP route, MinRouteAdv
timer is running, Mark MIN_ADV_CHG status flag on route, Mark DELETE status flag.

subcase 5: if old route had IDRP route, and new is going to be announced and
min_route_advertisement set on old route’s IDRP structure

1) set MIN_ADV_CHG in idrp_status in old route, then exit

subcase 6: if old route had IDRP route, new route is going to be announced, and no minimum
advertisement timer

a) link new route to announce list

case 5: old ext_info -> new IDRP

test: old route = non-IDRP, new route = IDRP

Logic:

1) check to see if the ext_info route has an IDRP bit set

2) if no IDRP announce bit set, simply link IDRP route to announce list and exit

IDRP Design Document 2.4 7/19/93 Page 69

1) test for minimum route advertisement timer running.

set MIN_ROUTE_ADV_CHG_FLAG.

If old route is being deleted, but second route is being held up by minimum route
advertisement timer, link withdrawal to list.

2) No minimum route advertisement timer running and original IDRP route is being deleted either
by:

• withdrawal from peer, or
• withdraw of ext_info generating route

3) No minimum route advertisement timer running

One route overwrites another; no deletion of old routes. we can send an implicit
withdraw/change. Link changed route to announce list.

sub-case 1) Minimum route advertisement timer running

test: MIN_ADV_RUN flag set in idrp_status, MIN_ADVRD_RUN flag set in idrp_status

Logic:

1) Set flag CHG_MIN_ADV and LOC_RIB on new route. Further processing will be done when
the minimum route advertisement timer expires and the route is processed

2) If withdraw and delete IDRP status flags are set in the old route, link route to withdraw portion
of announce list.

sub-case 2) Minimum route advertisement timer not running, no withdraw/delete flags on the last
active route.

test: IDRP status flags:

MIN_ADV_RUN and MIN_ADVRD_RUN clear
no Withdraw or Delete flags clear

logic:

1) set LOC_RIB in new route
2) clear LOC_RIB in old route
3) link new route to announce list

sub-case 3) No Minimum route advertisement timer running on the last active gated route has
delete in route.

logic:

1) set LOC_RIB in new route
2) link new route to announce list
3) delete the idrpRoute linked to last active gated route
4) do an idrp_del_rt_gated on gated route.

Page 68 7/19/93 IDRP Design Document 2.4

Exterior peers will:

• receive all routes listed as active routes in phase 3

Test peers will receive an internal system peer dump.

Case 2: new active - non-IDRP protocol (such as IS-IS)

test: no old active route and new non-IDRP route

logic for routine:

1) Create external route

1) run policy on this route to determine PREF(p_idrp_rt). If pref is zero, route will not be
announced.

2) if announced, create rt_entry for IDRP so we can link in the announcements. Add link to
original rt_entry into IDRP route structure.

3) rt bits set in the ext_info protocol route

4) search for existing attribute record for this ext_info route

4a) if no existing attribute record, create new attribute record
4b) if existing attribute record, link idrpRoute entry with route attributes to the
ext_info route_id in the route_id_list.

5) set LOC_RIB

2) add to announce list with link via P_ANN_NLRI

Case 3) change of active route - IDRP (old_idrp_rt -> new_idrp_route)

test: old_active IDRP exists and new active IDRP for NLRI

general note:

If an IDRP route changes for a destination, the following things can have occurred:

• better route received from a peer
• withdrawal of route from a peer and selection of route from another
• withdrawal with replace (explicit or implicit) of a route from a peer which is still the best
• withdrawal with replace (explicit or implicit) of a route from a peer which changes the best route

Note:

External information such as IS-IS will come here represented as an IDRP route.

Logic:

The logic can be broken down into 3 sub-cases tested in order.

IDRP Design Document 2.4 7/19/93 Page 67

rtl_entry - list of rt_entry routes received from gated in the flash update

returns: a pointer to an announce list that this code builds

Logic:

The following are possible gated status changes:

(new route group)

case 1: new IDRP
case 2: new active - ext_info route

(change of route group)

case 3: old active IDRP -> active IDRP
case 4: old ext_info -> new ext_info
case 5: old ext_info -> new IDRP
case 6: old active IDRP -> active ext_info

(delete group)

case 7: old active IDRP -> no new active
case 8: old active external info -> no new active

An IDRP route is a route that comes from an IDRP peer. An ext_info route is a route from another
protocol such as IS-IS. For each ext_info route announced out by IDRP an IDRP route is created
and a flag set in the non-IDRP route’s gated rt_entry flags.

(Note: in addition to these changes the logic for this routine must handle the minimum route
advertisement processing for each route. The MIN_ADV_RUN flag is set in the idrpRoute in
status field if the run has the minimum route advertisement timer running on it.)

Logic for Each case:

Case 1: new active IDRP route

test: No old active route, new active route, IDRP protocol; peer = local, internal peer, or external
peer.

Logic for routine:

1) set Loc_RIB flag in IDRP route
2) link to announce list on NLRI

Note that the filtering of the route announcements in phase3 takes place as part of the
announcement to each peer.

Internal peers will:

• not receive routes from other internal peers
• receive exterior routes as phase1 processing
• Local and EXT_INFO route information will be sent as part of phase3 processing.

Page 66 7/19/93 IDRP Design Document 2.4

The IDRP code in the idrp_to_gated_pref routine translates the IDRP calculated (IDRP external
neighbors) or the IDRP received route (IDRP internal neighbors) to a gated route with the
following algorithm:

gated preference = IDRP preference offset + IDRP calculated/received preference *2 +
IDRP tie break flag

If a gated preference matches for a destination the tie_break routine is called. This routine in turn
calls the tie_break_iso routine which will follow the IDRP rules (7.16.2.1) for tie breaking.

The idrp_rt code then handles the phase 1 processing of the routes, and then adds/deletes or
modifies the route in the gated routing table and goes away. The gated processing then compares
the gated preference against all other IDRP preferences and all other preferences. The lowest
preference is installed in the gated table. Gated interior protocols are given lower protocol
preference offsets so that interior RD routes are generally preferred to exterior routes.

4.5. Phase 3 processing

Once gated has calculated the best route to any destination, it will hand the list of active routes
which have changed. If a route is active and goes inactive, gated will flash the IDRP code with the
idrp_flash routine. The next section describe the logic upon the IDRP code receiving this flash
update.

4.5.1. IDRP flash routine

The IDRP flash routine simply calls the phase 3 processing routines.

4.5.2. Phase 3

The following is the general logic needed for the Phase 3 processing of a route. This logic is run
per address family (CLNP or IP) if gated hands a change list per family.

1) walk through the gated flash list building a set of announce lists for each family.
(phase3_status_change)

if (no peers)
exit

if peers
continue

2) send announce and withdraws to the peers (idrp_send_phase3_routes)

3) add announced routes to the minimum route advertisement lists

4) delete withdrawn NLRI idrpRoute structures which are flagged “delete after send”
(DELETE_AFTER_SEND in idrpRoute status field)

4.5.2.1. Phase3 flash processing

routine: phase3_status_change

parameter: rtl_entry

IDRP Design Document 2.4 7/19/93 Page 65

4.3.3.9. Add NLRIs to send list for peer

routine: send_nlri_attr:

calling parameter: p_idrp_rt - idrpRoute structure for withdrawal NLRI

Logic:

1) put NLRI on send list

2) see if more space in PDU

3) if more space, exit

4) if no more space, send PDU to peer (idrp_send_update_pdu)

4.3.4. Delete external routes in Phase 1

Routes which are not in the LOC_RIB, but are the best external route must be deleted from the
gated table in the phase 1 processing. Since the route is not the LOC_RIB (or gated active) route,
the gated flash processing will not inform the IDRP code about the change. Routes that need to be
deleted on the withdraw list are flagged with a “delete after send flag (DELETE_AFTER_SEND in
idrpRoute structure status entry).

These routes are deleted only after all the withdraws have been sent to internal neighbors.

Routine: idrp_delete_phase1(list)

parameter: p_with - linked list of Withdraw NLRI/IDRP Route structures

Logic:

Walk withdraw route NLRI list doing:

if “DELETE_AFTER_SEND” is set,

1) free NLRI/idrpRoute structure from attribute record (idrp_free_nlri_att_rec)

2) re-link the IDRP output lists (idrp_free_outlist)

3) delete the idrpRoute (free_idrpRoute)

4.4. Phase 2 processing

The IDRP protocol specification calls on the Phase 2 processing to look at all the feasible routes in
the Adj-Rib-Ins and determine which route:

a) has highest degree of preference of any route to the same set of destinations

b) is the only route to that destination, or

c) is selected as a results of the Phase 2 tie break rules specified in 7.16.2.1

Page 64 7/19/93 IDRP Design Document 2.4

LOOP doing each INTERNAL IDRP peer

LOOP for each attribute record on announce list:

Loop for all withdrawals on this entry in announce list

for each withdraw NRLI/idrpRoute structure - process withdraw into send list for a single
UPDATE BISPDU. If UPDATE BISPDU is full, it will be sent to neighbor. (send_with_attr)

end loop for withdrawals

Loop for all announce NLRIs for this attribute record in announce list

process each NLRI/idrpRoute structure on announce list and add to a send list for a single
UPDATE BISPDU. If the UPDATE BISPDU is full, it will be sent to neighbor. (send_nlri_attr)

end loop for announce NLRIs

END LOOP for attribute record on announce list

4.3.3.8. Add withdrawals to send list for peer

routine: send_with_attr:

calling parameter: p_idrp_rt - idrpRoute structure for withdrawal NLRI

Logic:

for each withdrawal id:

1) turn withdrawals NLRIs into route IDs for this peer plus an announce list

Note: The logic here differs from phase 3. The minimum route advertisement flag is ignored
(min_adv_run flag).

2) can withdrawals and announces fit in same PDU?

- yes - fit within maximum size
- no - warn and go on

3) put in withdrawals and announcements

- fit in as many NLRIs as possible
- link the NLRIs on the route_id outbound list
- if PDU full already, send the PDU (idrp_send_pdu(peer, p_send_list))
- if PDU not full but we are only allow one withdraw sequence:

4) send the PDU: (idrp_send_pdu(peer, p_send_list))

5) if PDU not full and we are allowing multiple withdrawals per PDU, add to send list.

IDRP Design Document 2.4 7/19/93 Page 63

Call the common logic here:
idrp_replace_ext(p_idrp_rt, p_rt, p_ann_list, p_external, p_best_ext);
where:
p_idrp_rt idrpRoute structure for NLRI
p_rt rt_entry for changed route
p_ext_ann_list announce list for phase1 external routes
p_ext idrp_rt_chain_walk structure for external routes
p_best_ext current best external route

return to calling routine
}

if (no gateway exists)
{
New external route has been received from this neighbor.

1) Is this route better than current best external?
(best_ext_route(p_idrp_rt, p_best_ext))

YES:
1) clear best external flag on current best external route
2) add best external flag on this route
3) add this route to the phase1 announce list

NO: do nothing

2) add this route to gated
(idrp_add_rt_to_gated)
(sets the RTS_NOAGE bit so that no gated timer deletes route, only IDRP
processing)

}

4.3.3.6. Phase 1 - Sending best external routes to internal neighbors

At the end of processing withdrawals and announcements for external peers the following routines
are called:

idrp_set_minadv_annlist(announcelist)

set min route advertisement timer on all routes that are being set to neighbors (local routes
get local min Advertisement timer remote routes get global min Advertisement timer)

idrp_send_phase1_ann(announce_list) -

announce to internal peers best external route

idrp_delete_phase1(list) -

delete any routes which are deleted best external routes.

4.3.3.7. Send Phase 1 to internal neighbors

Routine Logic for: idrp_send_phase1_ann(announce_list)

Page 62 7/19/93 IDRP Design Document 2.4

4) Look for other IDRP routes with this gateway or the same gated preference for this NLRI in
gated table

Note: steps 2-4 are contained in idrp_add_route_locate

5) process based on the results of above search

if (preference matches)
{

Two types of preference matches can occur: IDRP protocol gated preference
matches and other protocol and preferences matches.

IDRP protocol routes will exist for all EXT_INFO (external information)
routes that have been translated into IDRP routes in the phase3 processing
(called during the gated flash process). So if the routes are both IDRP
based, we can compare so we can generate the best external route here.

However, if the route is not being translated into IDRP AND has a matching
preference -then this code must deal with the matching preference so gated
does not do tie breaking for us.

routine called: (mediate_pref_match)

The mediate preference match mediates both IDRP protocol routes and gated
routes. Its return will tell whether this route should be incremented by 1 or
decremented by 1.

All IDRP based routes have the following formula for gated preference:

gated IDRP offset + idrp_pref*2.

This allows the adding of one to mediate any IDRP routes easily.
Hopefully, by modifying the gated route by one - the IDRP route will no
longer be in contention.(This is an area for further testing)
}

if (gateway matches)
{

Gateway match means this is an implicit replace
on an external route.
1) Do error checks:
1) Check for single match on the gateway.

Should have only one match for this NLRI. If there are two, denote an error.

2) Check for null change. If attributes are the same, log but don’t change.

3) Real Change denoted by any attributes changing

If a real change occurred, this route must be checked for the best_external
processing. The logic is the same as the withdraw with replace route logic.

IDRP Design Document 2.4 7/19/93 Page 61

no route for any external
peer exists in any AdjRib

illegal state - new route is only
external

1) set best external flag in status
in idrpRoute

2) add route to gated table
(AdjRib) (idrp_add_rt_gated)

3) add route to internal
announce list (link_ann_list)

Best external route exists in
table, but not from this peer

1) set AdjRib flag in new route
2) add route to gated table

1) clear best external route flag
in old best external route

2) set best external route flag in
new route

3) add route to gated table
(idrp_add_rt_gated)
4) add route to internal
announce list (link_ann_list)

Best external route exists
and is from this peer

1) set AdjRib flag in new idrpRoute

2) modify gated route to point to
new idrpRoute structure, and new
idrpRoute structure to point to gated
route

3) unlink old route structure from
route_id in attribute record, and
outbound lists

4) free old idrpRoute structure

5) add new best_external route to
internal neighbor announce list

1) set AdjRib and best_external
route in new idrpRoute

2) modify gated route to point
to new idrpRoute and new
idrpRoute to point to gated
route

3) unlink old route structure
from route_id in attribute record
and outbound lists
(idrp_free_outlist)

4) free old idrpRoute structure
(free_idrpRoute)

5) link new idrpRoute to
internal neighbor announce list
(link_ann_list)

routine name: ph1_add_ext_route

calling parameters: p_idrp_rt, p_ext_ann_list

p_idrp_route - idrpRoute (NLRI) to be added from external peer

p_ext_ann_list - best external announce list built from external routes processed in Phase 1

Actions:

1) set AdjRib flag in new idrpRoute

2) calculate IDRP preference for this route

3) calculate gated preference (Phase 2 pre-processing) (idrp_to_gated_pref(pref))

Page 60 7/19/93 IDRP Design Document 2.4

preference than old IDRP route
 so it remains the best_external

a) turn on best_external in new idrp_rt
and reset p_p_best_ext pointer
to best external structure

b) turn off best_external in old IDRP route
c) link to ph1 external announce list)
(link_ann_list(p_idrp_rt, p_ext_ann_list,

linked via announce list))

}
else

{
p_best = find_best_ext(p_idrp_rt, p_ext)
turn on best_external in new best external
turn off best_external in old route
link new best_external to announce list
(link_ann_list(p_idrp_rt, p_ext_ann_list,

linked via announce list))

}
break;

} (end switch)
/* replace the IDRP route in gated route */
idrp_repl_rt_gated(p_idrp_rt, p_rt);
/* change gated route so we flash if gated route changes */
idrp_mod_rt_gated(p_idrp_rt);
}

4.3.3.5. Phase 1 - Add external route

Best External Route logic for Additions:

For each new route, the status of the route is determined by calling idrp_add_route_locate to find
out the status of the new idrpRoute with this NLRI. The status of the NLRI currently in the table
can be:

• No route for any external peer exists in any AdjRib (gated has no other route for this NLRI from
any IDRP external peer)

• Best external Route exists in the gated table, but not from this peer.(p_best_ext return from
idrp_add_route_locate points to the current best external route. A check on the peer value in the
idrpRoute will indicate if it is from this peer.)

• Best external route exists and is from this peer.(if the p_best_ext returned from the
idrp_add_route_locate points to this peer, then this is an implicit replace.)

The status of the new route can then be determine by using the find_best_ext routine. The table
below summarizes the logic based on the status of NLRI before the route is added, and after the
route is added.

NLRI status in gated table New route is not best external route New route is best external route

IDRP Design Document 2.4 7/19/93 Page 59

AdjRib, Best_external and Loc_RIB do above

Phase 3 will return either an old active IDRP ->
new active IDRP or old active IDRP -> active
ext_info

4.3.3.4. idrp_replace_ext

Routine name: idrp_replace_ext

called by: implicit and explicit replace of routines for external neighbors.

parameters:

p_idrp_rt - idrpRoute replacing old route

p_rt - gated rt_entry for old idrpRoute being replaced

p_ext_ann_list - IDRP announce list for phase 1 external routes to internal peers

p_ext - idrp_rt_chain_walk structure with routes of all external IDRP routes for this destination

p_best_ext - current best external route

Logic:

All External route logic except lookup for:

a) AdjRib only
b) AdjRib and Best external
c) AdjRib, BestExternal and Loc_RIB

Routine looks like:

status = old route’s IDRP status
old_idrp_route = gated routes pointer to IDRP route
switch (status)

{
AdjRib only:

if (best_ext_route(p_idrp_rt, p_best_ext))
{
a) turn off best external flag on p_best_ext

and reset p_p_best_ext pointer to best external structure
b) turn on best external flag on p_idrp_rt
c) link to ph1 external announce list
(link_ann_list(p_idrp_rt, p_ext_ann_list, linked

via announce list)
}

AdjRib & Best_ext:
AdjRib & best_ext & LOC_RIB:

if (best_ext_route(p_idrp_rt, p_best_ext)
{
new idrpRoute has better or equal

Page 58 7/19/93 IDRP Design Document 2.4

logic for this case;
break;

}

Withdraw Routes status Action

AdjRib only 1) look up gated routes with this NLRI and
IDRP protocol look for routes from same
gateway, external IDRP routes, and the
best_external route.
(idrp_with_route_locate)

2) If new route’s preference better than old best
external, then:
a) set old_best_external status to have
best_external flag off
b) set best_ext flag in new route
c) modify preference so gated preference unique
d) rt_change to gated tables (idrp_mod_rt_gated)
e) link new route to announce list for internal
peers, NLRI additions list (link_ann_list)
f) link new route at head of best_external chain
for NLRI; reset idrp_best_external pointer for
NLRI to point to new route.

3) if new route’s preference less than old best
external route,
a) modify preference so gated preference is
unique
b) rt_change to gated tables (idrp_mod_rt_gated)
c) insert new route into best_external chain in
order of preference

Adj_RIB and best_external 1) locate all routes this NLRI and IDRP protocol
keeping those that match gateway, or preference,
or external. (idrp_with_route_locate)

2) if the IDRP preference of the new route less
than the IDRP preference of the existing route:
a) find the best external route (find_best_ext)
b) if new Route still best external route, set
best_external flag in new route; link into
best_external chain and update
idrp_best_external pointers accordingly.
c) if new Route is not the best external route, set
best_external flag in new best external route;
relink best_external chain and update
idrp_best_external pointers accordingly

3) rt_change the route in the gated table
(idrp_mod_gated)

4) link best external route to send list
(link_ann_list)

IDRP Design Document 2.4 7/19/93 Page 57

AdjRib & best external & Loc_RIB 1) go a rt_locate on this NLRI and idrpProtocol
(idrp_with_route_locate)
a) if gateway match - 2nd route this destination
and this gateway - it’s illegal

2) try to find new best_external route from other
external routes (find_best_ext)

3) if new best external found,
a) set best_external flag in new route; reset
route’s idrp_best_external structure to point to it;
relink best_external list to remove route being
deleted.
b) Withdraw should be set in old route
c) link new route to internal announce list as
announce (link_ann_list)
d) set delete on IDRP route
e) rt_delete on old route and let gated recalculate
new Loc_RIB (idrp_del_rt_gated)

4) if no new best external found, (this was only
external route)
a) Withdraw should be set in withdraw route
b) link withdraw route to internal announce list
as withdraw (link_ann_list)
c) do rt_delete on this route
d) free route’s idrp_best_external structure

4.3.3.3. Phase 1 - Withdraw external route with replacement

routine: ph1_with_repl_route

parameters:

p_idrp_route - pointer to idrpRoute structure

p_ext_ann_list - pointer to external Announce list

External Route logic for Explicit Withdraw with Replace:

The action upon receiving a external route which is a withdraw with an explicit replace depends on
the status of the route being withdrawn and replaced. The tables below describe the logic based on
the status of the route. The actual routine logic looks like the following:

switch(status of idrpRoute being withdraw)
{
case AdjRib only:

logic for AdjRib only route;
break;

case AdjRib & best-external:
logic for AdjRib and Best External;
break;

case AdjRib, Best-external & Loc_RIB:

Page 56 7/19/93 IDRP Design Document 2.4

Logic for Withdraw External Route (NLRI):

status of route being withdrawn Action

AdjRib only 1) remove NLRI from attribute record by:
a) pulling from route_id_list for this route_id
and this peer,
b) decrementing the attribute record reference
count (idrp_free_nlri_att_rec)
c) no outbound routes should be linked
d) clear gated route of idrpRoute structure
e) delete idrpRoute Structure (free_idrpRoute)
f) delete gated route entry with rt_delete
(idrp_del_rt_gated)

AdjRib and best_external 1) search the gated table for a gateway match,
idrpPreference match, and a list of external
routes (rt_with_route_locate)
a) if gateway match - illegal unless
min_route_advertisement set on route

2) find new best external route (find_best_ext)

3) if new best external exists:
a) set best_external flag in new route; reset
route’s idrp_best_external structure to point to it;
relink best_external list to remove route being
deleted.
b) link new route to announce list for internal
peers (link_ann_list)
c) unlink NLRI from
route_id list
d) unlink route from outbound route lists
(idrp_free_outlist)
e) unlink from attribute
record
f) delete old idrpRoute structure
(free_idrpRoute)

4) if new best external route does not exist:
a) link withdraw NLRI to announce list for peers
(link_ann_list)
b) set delete after send flag in idrpRoute
c) free route’s idrp_best_external structure

IDRP Design Document 2.4 7/19/93 Page 55

One linked list exists per family of addresses. For example, there will be one linked list for all ISO
addresses. Each linked list consists of idrpRoute structures. An idrpRoute is created for each NLRI
received from a peer. These idrpRoute structures are linked via the p_with pointer in the idrpRoute
structure.

2) inbound linked list of routes to be added linked with the p_next_nlri in idrpRoute Structure

3) a pointer to Attribute record based on the inbound Route_id of the route. The route_id_list
structure points to the first NLRI on the chain of NLRI for this route_id.

4) peer that these routes came from

As noted earlier, the additions list may contain:

• NLRIs with withdraw with replace found in PDU
• NLRIs which are implicit withdrawals
• NLRIs which represent new routes.

These route additions are added to the gated tables much as the internal routes are. However, the
phase 1 process to determine best external route must be done on external peers.

Logic for phase1_external routine:

Loop for each NLRI family {
loop handling withdraw NLRI list of idrpRoute Structures
linked by p_with

ph1_with_ext_route called to process each route
loop end
loop handling announce NLRI list of idrpRoute structures
linked by p_ann_nlri

 if (withdraw/replace)

call ph1_with_repl_route - to process
each route with withdraw/replace

else
call ph1_add_ext_route

end if
loop end

NLRI family loop end
send best external routes to internal neighbors

(send_best_ext)
delete routes that are only best external

(del_routes_best_ext)

4.3.3.2. Phase 1 - Withdraw external route

routine: ph1_with_ext_route

parameters:

1) p_idrp_route - idrpRoute withdrawing

2) p_ann_list - announce list

Page 54 7/19/93 IDRP Design Document 2.4

Walk the announce list looking for a nlri that matches the IDRP route's nlri passed to routine.

4.3.3. Phase 1 - Routes from external neighbors

Phase 1 external processing

withdraw nlri list
(no overlap)

announce or
replace nlris

phase1_external

phase 1 withdrawn nlri (external)
(ph1_with_route_ext)

phase 1 withdraw with replace
(external) (ph1_with_repl_ext)

phase 1 new nlri (external)
(ph1_add_route_ext)

send best ext routes to internal
peers (idrp_send_phase1_ann)

delete defunct best external
routes

Figure 17 — Phase 1 External Route Processing

4.3.3.1. phase1 external routes

Routine: phase1_ext

parameters passed:

p_ann - announce list which contains:

1) Inbound linked list of withdrawn routes

IDRP Design Document 2.4 7/19/93 Page 53

p_best_ext - pointer to best external route

logic:

This logic is from IDRP specification notes on Best External route.

1) compare preferences on the best external route and IDRP route.
If the new route is better than best external, return TRUE
value to calling routine

2) if preferences on the new route is less, return FALSE

3) if preferences are equal, perform tie breaking on the
two routes (tie_break routine). If the tie break
results are - the new route is better; then
return TRUE to the calling routine

If the tie break results are the new route is not
better return False to the calling routine.

4.3.2.29. insert_in_pref_order

routine: insert_in_pref_order
calling parameters:

p_rt - pointer to IDRP route
p_best - best routine in chain of IDRP routes to NLRI

logic:

Walk the lists of routes lined on the BER lists.
By comparing preferences, see where to insert this route in the best external route. If equal
preferences exists, use tie breaking to determine the place to insert the route in the list.

4.3.2.30. idrp_ann_list_empty

routine: idrp_ann_list_empty
parameters: p_ann_list
logic:

Check the announce nlri list head, the withdraw nlri list end to see if the list is empty or full.

4.3.2.31. find_nlri_in_ann_nlri

routine: find_nlri_in_ann_nlri
calling parameters:

p_idrp_rt - IDRP route that you are looking for nlri of
p_ann_list - announce list to check for this nlri

logic:

Page 52 7/19/93 IDRP Design Document 2.4

p_rt - pointer to gated route
p_idrp_rt - pointer to IDRP route

logic:
1) access the idrpRoute pointed to by the gated route
2) compare the two IDRP routes for:

a) same peer
b) same attribute record
c) same route id tagged to route

4.3.2.25. free_rt_chain_walk
routine: idrp_free_rt_chain_walk

parameters:
p_ch - pointer to idrp_rt_chain_walk structure

 used to store information about a route

peer - peer associated with this chain's memory

logic:
Unlink each piece of the chain, and free task memory.

4.3.2.26. find_next_best

routine: find_next_best
calling parameters: p_idrp_rt - pointer to IDRP route

logic:
test to see if this routine is the best external route.
If so, there report an error. If not, pass the pointer to the next_best route back to the calling
routine.

4.3.2.27. find_best_ext

routine: find_best_ext
calling parameters: p_idrp_rt - pointer to idrpRoute structure

logic:
From the idrpRoute get a pointer to the best_ext route structure. From this structure, return the
Best external route.
 (BER see section 7.5 for structure description, and figure 32 for the structure)

4.3.2.28. idrp_pref_compare
routine: idrp_pref_compare

calling parameters:
p_idrp_rt - pointer to IDRP route

IDRP Design Document 2.4 7/19/93 Page 51

4.3.2.22. idrp_send_list_room

routine: idrp_send_list_room

calling parameters:

p_list - current send list
p_new - new send list

logic:

This routine checks to see if there is enough room left in the PDU. This routine will be tuned to
allow the density of packing of NLRIs in an UPDATE PDU.

1) check to see that count of withdraw IDs will not extend PDUs
past the maximum IDRP BISDPU size

2) check to see if any bytes have been added to the PDU

if so, no more room.
if not, room enough for this PDU

(Note: item 2 will change to set a maximum number of NLRIs per
UPDATE PDU).

4.3.2.23. idrp_del_sent_routes

routine: idrp_del_sent_routes

calling parameter: p_ann_list - announce list of routes sent

logic:

1) open the gated routing table.
2) walk the announce list deleting any route that has

an IDRP_STATUS_DEL SEND flag

delete the route by
a) deleting gated route (idrp_del_rt_gated)
b) unlinking idrpRoute from attribute record

idrp_free_nlri_att_rec
c) freeing the idrpRoute structure
d) incrementing the change count of routes

3) close the gated routing table

4.3.2.24. idrp_rt_change

routine: idrp_rt_change
calling parameters:

Page 50 7/19/93 IDRP Design Document 2.4

routine: create_send_list
calling parameters:

p_att_dist - attribute record used for distribution
peer - peer structure to associate memory allocated for

 structure with

logic:

1) allocate send list structure from task memory associated
with the peer structure

2) set-up send list

3) allocate memory for the withdraw structure

4) initialize withdraw list and announce list

4.3.2.20. free_send_list

routine: free_send_list
calling parameters:

p_send_list - send list entry to be freed
peer - peer structure associated with list

logic:
1) free withdraw structure in send list
2) free send list structure

4.3.2.21. flush_att_send_list

routine: flush_send_list
calling parameters:

p_att_dist - pointer to attribute record that is
 the focus of this send lists attribute records

p_send_list - pointer to send list

logic:

This routine flushes the remaining items on a send list during a switch to a new attribute record to
send new updates. This limits the code to the one attribute type per UPDATE and does not allow
the association of more than one attribute with a group of NLRIs.

1) check for valid send list - if not return
2) flag if this is only unreachable
3) send update with remaining nlri as a group

(call send_update_pdu)

4) reset send list

IDRP Design Document 2.4 7/19/93 Page 49

 first announce list

logic:

1) find or create an attribute list entry for the attribute

2) add on the routes linked to this add on announce list

4.3.2.16. free_ann_list

routine: free_ann_list
calling parameters:

p_ann_list - pointer to announce list to free

logic:
loop through he announce list freeing the entries

4.3.2.17. link_send_list

routine: link_send_list
calling parameters:

p_send - send list to link new send list to
p_send_new - new send list

logic:

Find the end of the current send list and add new entry

4.3.2.18. send_update_reset_send_list

routine: send_update_reset_send_list
calling parameters:

peer - per this send list sent to
p_send_list - current sent list
p_tmp_send - temporary send list of withdraws

 and nlris that will form the basis
 of the new send list

logic:

1) flag if the only change is unreachables
2) send the update PDUs for the current send list
3) move the send list information from the temporary send list
to the new send list.

4.3.2.19. create_send_list

Page 48 7/19/93 IDRP Design Document 2.4

be linked to announce list

4.3.2.13. create_ann_list_entry

routine: create_ann_list_entry

calling parameters:
peer - pointer to peer structure that will be allocating

 this entry out of memory

p_att - pointer to attribute record for this entry
logic:

1) allocate task memory for the structure

2) initialize it with rib_id, peer pointer,
and attribute pointer

4.3.2.14. find_ann_list_entry

routine: find_ann_list_entry

calling parameters:

peer - pointer to idrpPeer structure
p_att - pointer to attribute record
p_ann_list - pointer to announce list

logic:

1) check to see if we have an existing empty announce list entry, if we do, fill it in with this
entry's information.

2) If not, look for an entry with he attribute record pointer on the announce list. If found, return
that entry to the caller.

3) If no entry exists, create a new entry

4.3.2.15. link_ann_list_ann_list

routine: link_ann_list_ann_list
calling parameters:

p_ann_list - announce list linking send announce list to
peer - pointer to peer structure

 (need to allocate memory for announce list structure)

p_add_ann_list - announce list that is being added to

IDRP Design Document 2.4 7/19/93 Page 47

1) do an rt_delete on the rt_entry structure (gated route)

4.3.2.10. idrp_add_rt_to_gated

routine: idrp_add_rt_to_gated

calling parameters: p_dest, p_mask, p_idrp_rt

Logic:

1) create a rt_params block

2) fill in rt_params block from p_dest, p_mask, and p_idrp_rt structure information

3) call gated routine rt_add

Note: Recent gated changes to grab the destination address structure and mask structure out of fast
allocated memory will required a change to this routine.

4.3.2.11. idrp_mod_rt_gated

routine: idrp_mod_rt_gated

calling parameters: p_dest, p_mask, p_idrp_rt

Logic:

1) generate parameters for rt_change call such as gated preference

2) call gated routine rt_change

Note: Recent gated changes to grab the destination address structure and mask structure out of fast
allocated memory will require a change to this routine.

4.3.2.12. link_ann_list

routine: link_ann_list

calling parameters:
p_idrp_rt - IDRP route
p_ann_list - pointer for announce list
type - type of link for announce list such as:

linked by P_NEXT.

logic:

1) check for valid announce list, if not there error

2) either find an entry in this announce list or create one
(find_ann_list_entry)

3) dispatch on type of link, so that IDRP route can

Page 46 7/19/93 IDRP Design Document 2.4

p_idrp_rt - pointers to the idrpRoute structure to free from attribute record

with - Withdrawal flag indicates that route is linked through the p_with indicator instead of the
p_next_nlri pointer.

Logic:

1) get the family of the route

2) find the idrpRoute in the route_id chain in IDRP attribute record (idrp_find_routeid_chain)

3) look for NLRI inside the route_id chain

If you find a match to the pointer to the route, re-link it. If with flag is set, use the p_with to re-link
it. If the with flag is not set, use the p_next_nlri flag.

4) if Route_id list is empty, free it

5) if idrp_attribute record reference count goes to zero, free it.

4.3.2.7. idrp_free_outlist

routine: idrp_free_outlist

parameters: p_idrp_rt

p_idrp_rt - points to the idrpRoute structure for route

Logic:

Loop for n peers configured
for route_out entry, relink circular list

End of loop

4.3.2.8. free_idrpRoute

routine: free_idrpRoute

calling parameter: p_idrp_rt

Logic:

1) Check that all p_idrp_rt references have been released (idrp_attribute_record, route_out id lists)

2) use task_mem_free to free the idrpRoute structure

4.3.2.9. idrp_del_rt_gated

routine: idrp_del_rt_gated

calling parameter: p_rt - pointer to gated route

Logic:

IDRP Design Document 2.4 7/19/93 Page 45

2) locate any route from same gateway or preference
a) same gateway - should be illegal
b) same preference - tie break in IDRP code
c) any external routes from IDRP
d) best external route from IDRP

3) Walk the gated route list down from the gated entry pointed to by this destination and the IDRP
protocol. Link any gateway that are the same as this route to the idrp_rt_chain_walk structure for
gateway. Link any IDRP routes with the same preference as this route to the preference
idrp_rt_chain_walk structure for this gateway.

Link any external peer route to the external idrp_rt_chain_walk structure for external peers. Save
the best external IDRP route in p_best_ext_rt pointer.

Algorithm for search:

p_rt = rt_locate(state, dest, mask, protocol);
 (get list of routes for this NLRI and IDRP protocol)
if (no gated route entries)

{
no gateway match
no preference match
}

else
{
for all routes for this NLRI and IDRP protocol
do the following:

look for equal pref or gateway match
if (gateway match)

-> save as matched gateway)
else if (pref_match && not_gateway)

-> save list of preference matches
 on idrpRoute_list

}

4.3.2.5. find_best_ext

routine: find_best_ext

parameter: p_idrp_rt - pointer to route we want to add.

Logic:

Just return p_idrp_rt->p_p_best_ext->p_best_ext. This returns the (pre-computed) best external
route. See figure 32 for further clarification.

4.3.2.6. idrp_free_nlri_att_rec

routine: idrp_free_nlri_att_rec

calling parameters: p_idrp_rt, with

Page 44 7/19/93 IDRP Design Document 2.4

3) p_pref - pointer to idrp_rt_chain_walk structure for keeping same preference in IDRP
information

4) p_ext - pointer to idrp_rt_chain_walk structure for keeping all other external routes for this
destination

5) p_best_ext - pointer to idrpRoute structure for best external route

Logic:

1) get the beginnings of the gated route list for this destination

p_idrp_rt->p_rt points to rt_entry for this destination for IDRP protocol for this gateway. Use
rt_entry’s pointer to head to get linked list for this destination.

2) walk down the chain of routes looking for routes with IDRP protocol set.

1) if find same gateway, link to that list
2) if find same preference, link to that list
3) if find external, link to that list
4) if find best external, save pointer

return these pointers to the calling routine.

4.3.2.3. PREF

routine: PREF(p_idrp_rt)

calling parameter: pointer to idrpRoute structure of NLRI

Actions:

1) calculate preference given policy

2) log it to Network Management (gated log file) if the calculated preference does not match
received preference.

3) calculate gated preference on the new route

4.3.2.4. idrp_to_gated_pref

routine: idrp_to_gated_pref(p_idrp_rt)

calling parameter: pointer to idrpRoute structure of NLRI

Actions:

1) Use received preference to calculate gated Preference. Formula is:

gated preference = idrp_preference_offset + idrp_received_preference * 2

IDRP Design Document 2.4 7/19/93 Page 43

a.) same gateway - should be illegal
b.) same preference - tie break in IDRP code
c.) any external routes from IDRP
d.) best external route from IDRP

Walk the gated route list down from the gated entry pointed to by this destination
and the IDRP protocol. Link any gateway that are the same as this route to the
idrp_rt_chain_walk structure for gateway. Link any IDRP routes with the same preference
as this route to the preference idrp_rt_walk_chain structure for this gateway.
Link any external peer route to the external idrp_rt_walk_chain structure for external peers.
Save the best external IDRP route in p_best_ext_rt pointer.

Algorithm for search:

p_rt = rt_locate(state, dest, mask, protocol);
 (get list of routes for this NLRI and IDRP protocol)

if (no gated route entries)
{
no gateway match
no preference match
}

else
{
for all routes for this NLRI and IDRP protocol
do the following:

look for equal pref or gateway match

if (gateway match)
-> save as matched gateway)

else if (pref_match && not_gateway)
-> save list of preference matches
 on idrpRoute_list

}

4.3.2.2. idrp_with_route_locate

routine: idrp_with_route_locate

calling parameters: p_idrp_route, p_gated, p_pref, p_ext, p_best_ext

1) p_idrp_route - Pointer to IDRP Route

2) p_gate - pointer to idrp_rt_chain_walk structure for keeping same gateway information

Page 42 7/19/93 IDRP Design Document 2.4

The routine descriptions for all routines except send_with_attr and send_nlri_attr are in the section
below. The send_with_attr routine is described in section 4.3.3.2. The send_ann_attr is described
in section 4.3.3.3.

4.3.2.1. idrp_add_route_locate

routine called: idrp_add_route_locate

parameters: p_dest, p_mask, p_idrp_rt, p_gate, p_pref, p_ext, p_best_ext

1) p_dest - pointer to sockaddr_un structure for gated style destination

2) p_mask - pointer to sockaddr_un structure for gated-style destination mask

3) p_idrp_route - Pointer to IDRP Route

4) p_gate - pointer to idrp_rt_chain_walk structure for keeping same gateway information

5) p_pref - pointer to idrp_rt_chain_walk structure for keeping same preference in IDRP
information

6) p_ext - pointer to idrp_rt_chain_walk structure for keeping all other external routes for this
destination

7) p_best_ext - pointer to idrpRoute structure for best external route

Action:

1) calculate idrpPreference on the new route

routine called: PREF(p_idrp_rt)
calling parameter: pointer to idrpRoute structure of NLRI
Actions:

a.) calculated preference given policy

b.) log it to Network Management (gated log file) if the calculated preference does not
match received preference.

2) calculate gated preference on the new route

routine: idrp_to_gated_pref(p_idrp_rt)
calling parameter: pointer to idrpRoute structure of NLRI
Actions:

a.) use received preference to calculate gated Preference
formula is:

gated preference = idrp_preference_offset + idrp_received_preference * 2

3) locate any route from same gateway or preference

IDRP Design Document 2.4 7/19/93 Page 41

6) issue a rt_change to gated
(idrp_mod_rt_gated)

}
else

{
/* new route */
 add the new route to gated

(idrp_add_rt_to_gated)
}

Optimization note: In future optimization of code path, we may want to additionally reduce the
rt_change calls made to gated if the route is not going to change its gated preference.

4.3.2. Utility routines for Phase 1 and Phase 3

The following routines are shared by gated phase one and phase three processing:

1) idrp_add_route_locate
2) idrp_with_route_locate
3) PREF
4) idrp_to_gated_pref
5) find_best_ext
6) idrp_free_nlri_att_rec
7) idrp_free_outlist
8) free_idrpRoute
9) idrp_del_rt_gated
10) idrp_add_rt_to_gated
11) idrp_mod_rt_gated
12) link_ann_list
13) create_ann_list_entry
14) find_ann_list_entry
15) link_send_list
16) link_ann_list_ann_list
17) free_ann_list
18) send_update_reset_send_list
19) create_send_list
20) free_send_list
21) flush_att_send_list
22) idrp_send_list_room
23) idrp_del_sent_routes
24) idrp_rt_change
25) free_rt_chain_walk
26) find_next_best
27) find_best_ext
28) idrp_pref_compare
29) insert_in_pref_order
30) idrp_ann_list_empty
31) find_nlri_in_ann_nlri
32) send_with_attr
33) send_nlri_attr

Page 40 7/19/93 IDRP Design Document 2.4

The gated preference comes from the IDRP preference. We need to insure that gated will not
receive two routes with an equal preference. Gated will do it’s own selection if we send two routes
in with the same preference. Therefore, the IDRP code needs to do it’s own tie breaking between
any idrpRoute structures. IDRP route structures can be generated either from external routes
(routes from IS-IS or other protocol routes including statically generated) or from IDRP received
routes.

4) do an rt_change to modify the gated preference

(idrp_mod_rt_gated)

5) clear REPL flag

4.3.1.3. Phase 1 processing for route additions:

Routine: ph1_add_route_int

calling parameter:

p_idrp_rt - idrpRoute

Actions:

(steps 2-4 are contained in idrp_add_route_locate)

1) set AdjRib status flag in new idrpRoute

2) calculate IDRP preference for this route.

3) calculate gated preference (Phase 2 pre-processing) (idrp_to_gated_pref(pref))

4) Look for other IDRP routes with this gateway or the same gated preference for this NLRI in
gated table

5) process based on the results of above search:

if (preference_matches)
{
tie_break between all the routes whose preference matches
the new one (all same NLRI)
}

if (gateway matches)
{
/* implicit withdraw/replace */
(idrp_with_repl_int)
1) change rt_entry gated pointer to new idrpRoute
2) change idrpRoute pointers to new rt_entry
3) relink around it in route_id chain
4) free from any output list
5) get rid of the this idrpRoute by unlinking

from attribute list
(idrp_free_nlri_att_rec)

IDRP Design Document 2.4 7/19/93 Page 39

Status of Route being
withdrawn

Action

 AdjRib only 1) free this NLRI from the attribute structure
(idrp_free_nlri_att_rec)

2) remove this NLRI from any outbound lists
(idrp_free_outlist)

3) free the idrpRoute structure and set the gated route pointer to
null
(rt_entry.rt_data = NULL)
(free_idrpRoute)

4) Set DELETE flag in IDRP status flags, call rt_delete so gated
will delete route
(idrp_delete_rt_from_gated)

Loc_RIB and AdjRib 1) set delete in status flags

2) do gated delete on route (rt_delete)
and let gated flash update tell us about the change in phase 3
(idrp_delete_rt_from_gated)

best external route illegal for internal updates
min_adv_run illegal for internal updates
idrp_chg_min_adv illegal for internal updates
delete after send illegal for internal updates
status where route deleted
AdjRib only in ph1_with_int routine
AdjRib and Loc_RIB in phase3_status_change routine
all other flags illegal status

4.3.1.2. Phase 1 explicit withdraw with replace

Routine: ph1_with_repl_int

calling parameter:

p_idrp_rt - idrpRoute structure of NLRI withdraw with replace

Actions:

(steps 1-3 contained in idrp_add_route_locate)

1) calculate idrpPreference on the new route

2) calculate gated preference on the new route

3) locate any route from same gateway or preference

a) same gateway - should be illegal
b) same preference - tie break in IDRP code

Note:

Page 38 7/19/93 IDRP Design Document 2.4

Phase 1 internal processing

withdraw nlri list
(no overlap)

announce or
replace nlris

phase1_internal

phase 1 withdrawn nlri (internal)
(ph1_with_route_int)

phase 1 withdraw with replace
(internal) (ph1_with_repl_int)

phase 1 new nlri (internal)
(ph1_add_route_int)

Figure 16 — Phase1 internal processing

4.3.1.1. Phase 1 withdrawal logic for internal peer

routine name: ph1_with_int_route

calling parameter:

p_idrp_rt - idrpRoute structure for NLRI removed

The ph1_with_int action depends on the status of the idrpRoute being withdrawn:

IDRP Design Document 2.4 7/19/93 Page 37

1) Withdrawal of NLRI
2) withdraw/replace
3) implicit withdraw
4) new route

The announce list passed to the phase one processing has:

1) Withdrawal list

A linked list of NLRI’s to be withdrawn. These NLRIs are linked via the p_with pointer in the
idrpRoute structure.

2) Announce list

This linked list of NLRI’s are linked via the p_next_nlri parameter in the idrpRoute structure. In
the announce list the idrpRoutes may be a withdraw with replace. In that case, the route will be
marked with Replace. For a implicit withdraw with replace route, no bits will be set in the status
field.

When phase1 code looks up the route in the gated table, the route may exist, or not exist from this
peer. If the route exists from this peer, the route is an “implicit withdraw”. If the route does not
exist from this peer, it is a new route.

3) pointer to the attribute record First version processing:

In the first release of the Merit IDRP code, when routes overlap, both routes are installed into the
routing tables. Since there are no policy filters in phase 1, all routes are accepted.

Policy and Overlapping routes

When Policy is enacted into the phase 1 and phase 2 processing, the overlapping routes installed.

The attribute record structure created from the UPDATE BISPDU is passed to the phase1_internal
routine. A part of this structure is the list of idrpRoute structures announced by this peer.

4) pointer to peer structure these routes came from.

The phase 1 internal processing loops processing the withdraw NLRI list. It then processes the
additions into: explicit withdraw replace, implicit withdraw replace, and new route.

Overlapping of Routes:

will be dictated by policy. Gated’s basic route look ups into the radix will need to be modified to
return best match.

Page 36 7/19/93 IDRP Design Document 2.4

Phase 1 processing

withdraw nlri list
(no overlap)

announce or
replace nlris

phase1_internal

ph 1 w/drawn nlri
(internal)

ph 1 w/draw w/
replace (internal)

ph 1 new nlri
(internal)

Type of peer?

internal external

phase1_external

ph 1 w/drawn nlri
(external)

ph 1 w/draw w/
replace (external)

ph 1 new nlri
(external)

ph 1 send best
external routes

ph 1 delete
defunct best ext

Figure 15 — Phase 1 processing of routes

4.3.1. Phase 1 processing for internal peer

Routine name: phase1_internal

Logic:

Three type of functions are used in phase 1 processing for the IDRP internal peer: withdrawal of an
NLRI, withdraw/replace of an NLRI, and addition of a new NLRI. Each addition may either be an
entirely new route or an implicit addition. Therefore the four cases of actions are:

IDRP Design Document 2.4 7/19/93 Page 35

The phase 1 processing branches immediately depending on whether the route came from an
internal peer or an external peer. Both the internal and external phase 1 processing modify the gated
tables which provide the structure for the Adjacency Ribs. In addition, the external peer processing
of routes must include:

• re-calculation of the best_external route if needed,
• transmission of the best_external routes to internal peers as the IDRP phase 1 processing

specifies, and
• removal of withdraw best_external route structures which are not also best route, that is in the

Loc_RIB structure.

The best external route is tracked by a best external route structure created each time a new NLRI
(destination) is seen by IDRP. As additional routes for the same NLRI (destination) are seen, the
additional routes are linked into the NLRI structure. See figure 32 for a depiction of this scheme.

In removing a route, this code deletes the idrpRoute structure associated with the gated route, and
then calls the gated rt_delete function to delete the gated structure. The deletion of this type of best
route occurs here because gated will not indicate these changes in the idrp_flash since these
changes do not effect the active route (the Loc_RIB route).

Page 34 7/19/93 IDRP Design Document 2.4

Logic:

for (each withdraw NLRI in linked list)
The NLRI list is linked via the p_next_nlri in.
walk list of announce NLRIs looking for match
(announce list is linked via the p_next_nlri)

if (match)
{
do Withdraw replace processing
}

else
{
no match - link to chain of withdraw NLRIs
via the p_with in idrpRoute
}

Withdraw replace processing:

1) set Replace flag in status variable of announced idrpRoute for NLRI

2) gated rt_entry from old idrpRoute set in new idrpRoute

3) gated rt_entry points to new route structure

4) unlink old route from attribute record

a) pull NLRI from route_id_list for route ID and peer
b) decrement reference count of attribute record
c) if reference count for attribute record is zero, free it (idrp_free_nlri_att_rec)

5) outbound chains for old idrpRoute relinked to exclude the route structure (idrp_free_outlist)

6) free the withdrawn idrpRoute structure created in the parse update processing. (free_idrpRoute)

4.3. Phase 1 processing

Phase 1 processing dispatches on whether the routes came from an internal or an external Peer.
The phase one processing is passed a list of NLRI to be withdrawn and a list of announced
NLRIs. However, in this list there are four types of routes:

1) explicit withdraw routes (on withdraw NLRI list)
2) withdraw with replace (on announce NLRI list)
3) implicit withdraw (on announce NLRI list)
4) new route (on announce NLRI list)

The BISPDU processing up to this point has determined whether the route is an explicit withdraw
or a withdraw with replace (replace set in the route added). However the other additions can either
be a implicit withdraw from a peer that over writes a previous route sent by peer or a new route.
Only the look-up in the current AdjRibs in the gated routing structure determines which of the last
two a route is.

IDRP Design Document 2.4 7/19/93 Page 33

PDU. If NLRI is a withdraw/replace case, the Replace flag is set in the announcement list, and the
withdraw NLRI is deleted from the withdraw list.

3) A list of announcements is passed to the phase 1 processing. The announcement list has:

• a withdrawn NLRI list,
• an announced route NLRI list,
• a pointer to the attribute record for these NRLIs.

The specifics of creating a withdraw list in idrp_process_pdu_routes are:

1) look up Withdraw Route ID in inbound route hash table for the peer received from.

2) if no withdraw ID exists, trace but ignore

3) if withdrawal ID exists, do steps 1-4 for each route ID

1) pull hash list entry. Hash entry will have route ID and a linked NLRI lists per protocol
supported. Delete hash table entry for route ID

do steps 2-4 per NLRI chain (chain of idrpRoute structures) in hash list entry

2) walk the NLRI chain, unlinking the idrpRoutes from the inbound route_id and linking
them to the withdraw NLRI list.

a) clear the p_next_nlri list
b) link to withdraw list using p_with pointer in idrpRoute
c) set flag on route to Withdraw
d) set status in route_id list entry in attribute record to delete

3) Remove any announced IDs from withdraw route id

This double checking removes any withdraw replace routes which might be found in the case
where the withdraw id points to 10 routes to withdraw, but 9 routes are then included in the NLRI
announcement.

4) If NLRI is not found in announce list, the withdraw NLRI structure is linked on the
announce list withdraw NLRI list.

note: each withdrawal NLRI has route_id, p_with set, and p_attr still set.

4.2.5. remove_ann_dup

routine called: remove_ann_dup(p_withdraw, p_announce)

calling parameters:

p_withdraw - pointer to list of idrpRoutes that you are withdrawing

p_announce - announce list

note: remove_ann_dup called for each type of NLRI - ISO or IP

Page 32 7/19/93 IDRP Design Document 2.4

4.2.4. idrp_process_pdu_routes

Update PDU route processing

idrp_process_
pdu_routes

build announce list using
withdraw list and nlri array

generate withdrawn nlri list
using route_id

remove nlri from the withdraw
list which are listed for
announcement in the nlri array

repeat for each route_id

Phase 1 processing
Phase 2 pre-processing

Figure 14 — Update PDU route processing

Routine: idrp_process_pdu_routes

The idrp_process_pdu_routes is called when a valid update PDU is to be processed by the IDRP
code. This processing can occur as part of the normal update procedure or as part of the Rib
Refresh code.

The idrp_process_pdu_routes code is handed a parsing results structure from the
idrp_process_update code. This parsing results structure has a pointer to the attribute record, array
of NLRI lists by family, withdraw id array and free PDU flag.

Logic:

The idrp_process_pdu routes processes the Withdraw Route IDs and NLRI announcements into a
list of withdraw NLRIs, a list of NLRIs to add or withdraw/replace.

It does this by:

1) Creating withdraw NLRI list by walking through Withdraw Route IDs and looking up in the
hash table idrpRoute lists for that route_id. A Withdraw flag is set in the status field of the
idrpRoute associated with that destination and peer.

2) As each withdraw NLRI is gotten from Withdraw Route IDs, check it make sure it was not a
withdraw/replace case where the Route Id was withdrawn but the NLRI was announced in the

IDRP Design Document 2.4 7/19/93 Page 31

If attributes exist in the update PDU, an attribute record structure is created. Attributes are parsed
into this structure, and validated. If an identical attribute record is found, that attribute record is
used instead of this one.

The network layer reachability information (NRLIs) are parsed out of the update PDU, and put into
idrpRoute structures. These idrpRoute structures are then linked onto an inbound route_id list
using the p_next_nlri pointer in the idrpRoute structure.

Each NLRI is linked on a list per family. The attribute record keeps the list of routes attached to it
by idrpRoute_entry list. This structure attached to the attribute record stores the route ID of the
IDRP route, and any NRLI associated with that route_id for that peer.

The reference count of the attribute record is incremented once per NLRI. Each NLRI is
represented by an idrpRoute tied to a gated route structure. The parse results also contain a flag on
whether the inbound PDU memory can be released to gated or not.

4.2.3. parse_update_cleanup

Routine: parse_update_cleanup(results)

calling parameter: results

results - pointer to parse_results structure

The parse results structure contains:

1) route ID - from UPDATE BISPDU
2) pointer to attribute record - created from UPDATE
3) linked list of NLRIs by family
4) withdraw structure holds withdraw IDs and count

Actions:

1) release withdraw array space
2) free the attribute record (idrp_free_att_rec)

if IDRP_INIT_ROUTE_ID is set then no NLRI are attached: just free the attribute record
if NLRI released, then decrement the reference count once per NLRI.

3) Decrement the Best External Route Structure reference count
4) free the Best external route structure if reference count is zero

Page 30 7/19/93 IDRP Design Document 2.4

4.2.2. parse update_pdu

Update PDU passage through processing

process update
pdu

read in withdrawals to array and
total count to array structure

parse update

parse attributes:
• walk pdu
• create attribute record
• validate attribute record; create
canonical rd path and local rd to
ensure that there is no loop
• look for existing attribute record. If
one exists that fits, use that one
instead of this one. If there is an
existing attribute, we can dispose
of the pdu.
• validate user attributes

parse nlri:
• create idrpRoute structure for
each nlri
• link idrpRoute structures together
through the p_next_nlri link.
• link different families to different
chains. idrp_mod_route does this to
array link structures where each
family of addresses (ip/iso) has
entry in array.

Figure 13 — Update PDU parsing

routine: parse_update_pdu

Actions:

1) Withdraw IDs are parsed

The Withdraw route IDs are parsed out of the UPDATE BISPDU into an withdraw array structure
for further processing.

2) Attributes are parsed

IDRP Design Document 2.4 7/19/93 Page 29

5) parse_update_cleanup(results): if valid, then idrp_process_pdu results

Update PDU Processing

process update

parse update idrp state
machine

idrp process
update pdu

idrp process
rib refresh pdu

process results array
using phase 1 logic

Figure 12 — Update PDU processing

Page 28 7/19/93 IDRP Design Document 2.4

4. Program flow description for update PDUs

The UPDATE BISPDU contains the routing information sent from BIS to BIS. The BISPDU is
parsed and the routes it carries entered into the gated routing table. The routes are then propagated
to BIS neighbors that need to know about the routing changes. The IDRP specification (ISO
10747) describes the processing of routing information in three phases. Below we describe how
the UPDATE PDU is parsed and the three IDRP processing phases are done.

4.1. Overview of IDRP UPDATE parsing code

The process update function in the IDRP code (process_update) calls the update parsing function
(parse_update). The parsing routine walks through the UPDATE BISPDU finding the withdrawal
route IDs, attributes and network layer reachability information (NRLI) in the PDU. The parsing
routine returns to the process_update function an indication whether the BISPDU was successfully
parsed or encountered a problem while being parsed, plus a structure containing results of the
parse.

The process_update function calls the IDRP state machine with either the IDRP_UPDATE or
IDRP_UPDATE_ERROR event. If the update is received in a valid state and should be processed,
the process update code checks to see if it is in the middle of a RIB-Refresh sequence. If this PDU
is one of a set of update PDUs for a RIB-Refresh, a refresh information structure is created to hold
the parsing results from the UPDATE PDU and a pointer to the UPDATE PDU. This refresh
information structure is linked to a refresh processing list. When the refresh is completed, each
UPDATE PDU is processed via the idrp_process_pdu_routes.

If the update is received outside of a RIB Refresh sequence, idrp_process_pdu_routes is called
immediately. Figure 12 shows the logic of the update.

4.2. Process update routine descriptions

4.2.1. process_update_pdu

routine: process_update_pdu

calling parameters: peer, PDU, length

peer - idrpPeer structure of peer sending this PDU

PDU - pointer to PDU

length - length of PDU

Actions:

1) call parse PDU

2) if PDU valid, then calls state machine.

3) if refresh cycle, links results of parse to refresh list for later processing

4) if invalid state, releases results from parse

IDRP Design Document 2.4 7/19/93 Page 27

buffer - pointer to output buffer that contains the BISPDU to be transmitted

Actions:

1) fill in flow control fields
2) Generate the authentication checksum
3) copy buffer to task_send_buffer
4) use gated task_send_packet to send PDU
5) put buffer on retransmission queue if sequenced

3.3.3. post_enqueued_pdus

routine: post_enqueued_pdus

calling parameter: peer

peer - idrpPeer Structure to see if we can send queued BISPDUs.

Action:

Loop trying to send all PDUs on the transmit list. Each PDU is sent by calling the idrp_post
routine. If the peer becomes flow blocked, stop.

Page 26 7/19/93 IDRP Design Document 2.4

BISPDU transmission

idrp_send_pdu

idrp_post_
enqueued

idrp_post

task_send_buffer

(fill in sequence number, credit
available, authentication)

(if sequenced save on
retransmit list)

Figure 11 — BISPDU transmission

3.3.1. idrp_send_pdu routine

routine: idrp_send_pdu

calling parameters: peer, PDU, type, length

peer - idrpPeer structure of BIS neighbor to which we are sending the PDU

PDU - pointer to the idrpPdu structure containing the BISPDU

type - type of BISPDU (e.g. OPEN)

length - length of the PDU

Actions:

1) fill in the BISPDU header with PDU, length type, source address and destination address
2) allocate Output buffer structure and fill it in
3) Determine if buffer is sequenced. If sequenced, link PDU to transmit list and call

post_enqueued_pdus. If not sequenced, call idrp_post routine

3.3.2. idrp_post routine

routine: idrp_post

calling parameters: peer, buffer

peer - pointer to idrpPeer structure of BIS neighbor to which we are sending the BISPDU.

IDRP Design Document 2.4 7/19/93 Page 25

unreachable - Flag to indicate whether the only thing to be sent is a list of route IDs that are now
unfeasible.

Action:

1) get memory block to put UPDATE PDU in
2) fill in BISPDU with unreachable Route IDs
3) if unreachable flag is set, just call idrp_send_pdu
4) if unreachable flag is not set,

4.1) fill in attributes from attribute record
4.2) fill in NLRI section one protocol at a time.

5) call idrp_send_pdu to send the UPDATE PDU

3.2.7. Sending echo PDU

routine: send_echo_pdu

calling parameter: peer

peer - The idrpPeer structure of the BIS neighbor to which we are sending the optional echo
BISPDU.

Action:

Allocate task memory to send ECHO PDU. Call idrp_send_pdu to send the PDU.

3.3. Transmitting BISPDUs

The transmission of any BISPDU from IDRP code goes through the idrp_send_pdu routine. The
idrp_send_pdu routine adds most of the fixed header. If the PDU requires IDRP transport
sequencing, the BISPDU is queued for sequence transmission via the post_enqueued_pdu routine.
This routine checks the transmission queue for pending PDUs and sends them if the connection is
not flow blocked. When a BISPDU is to be sent from the queue the idrp_post routine is called.
The idrp_post routine fills in the sequence number, credit authorization, and does the authentication
checksum. The idrp_post routine then calls the gated functions to send a buffer on a socket. The
task_send_packet routine is used to send the buffer. The figure below illustrates this flow:

Page 24 7/19/93 IDRP Design Document 2.4

peer - The idrpPeer structure of the BIS neighbor to which we are sending the keepalive.

Action:

Create KEEPALIVE PDU. If the remote side is not flow blocked, send the PDU via the
idrp_send_pdu routine.

3.2.4. Sending ERROR PDU

routine: send_error_pdu

calling parameters: peer, code

peer - The idrpPeer structure of the BIS neighbor to which we are sending the ERROR PDU.

code - The error code for the ERROR PDU to be sent to the BIS neighbor. This error code is used
for double-checking that the error information found in the idrpPeer structure in the last_error_pdu
is correct.

Action:

Fill in the ERROR PDU using the last_error_pdu information found in the idrpPeer structure. After
body of the ERROR PDU is built, call idrp_send_pdu to send it.

3.2.5. Send CEASE BISPDU

routine: send_cease

calling parameter: peer

Action: Allocate memory for CEASE and call idrp_send_pdu.

3.2.6. Send UPDATE PDU

routine: send_update

calling parameters: peer, p_send_list, unreachable

peer - pointer to idrpPeer structure

p_send_list - IDRP send list which contains:

rib_id - identifier for the RIB (always zero for now)

p_next - IDRP send list link (not used by routine)

ann_nlri - array of pointers to linked list of idrpRoute structures. Each idrpRoute structure has one
NLRI for a particular family. The ann_nlri array has a list per family type such as ISO or IP.

p_attr - pointer to attribute record

withdrawal structure - an array of route IDs to be withdrawn plus a count of the number of route
IDs.

IDRP Design Document 2.4 7/19/93 Page 23

3.2.1. Memory allocated for outbound PDUs

The outbound PDUs are allocated out of gated task memory. The outbound PDUs are linked
together on the transmit and retransmission queue by an IDRP output buffer structure. This output
buffer structure has:

1) a link for the transmit or re-transmit queue
2) a pointer to the PDU structure
3) an indication of the PDU’s length
3) an indication of whether the PDU is sequenced or not
4) a reference count

Figure 30 illustrates this structure.

3.2.2. Sending OPEN PDU

routine: send_open_pdu

calling parameter: peer

peer - pointer to idrpPeer structure of the BIS neighbor to which we are sending an open.

Actions:

The peer parameter points to a structure containing the information we need to build the OPEN
PDU. The IDRP specification indicates what these parameters are. Once the PDU is built, the
send_idrp_pdu routine is called.

An optional open sequence, not defined by the IDRP protocol specification, is available for the
user. In this optional open sequence, the router will send multiple OPEN PDUs prior to timing out
with the HOLDTIMER and returning to close state. This rapid transmission of opens may help a
connection come up more quickly if one side is executing the normal open sequence and the second
side is using this fast open sequence.

The open sequence is controlled by the max_open_sent value in the idrpPeer structure. If this value
is non-zero, the implementation will set the open_sent timer after sending the OPEN PDU. If this
timer expires, the OPEN PDU will be retransmitted max_open_sent times prior to executing the
transition to the CLOSE state from the OPEN_SENT state. Both the max_open_sent and the time
between OPENs are set in the configuration file. These timers may be set either per neighbor or for
a group of neighbors.

The only RIB attribute supported at this time is the default RIB. Also, no Routing Domain
Confederation (RDC) support is available.

These functions will not change during the first two releases of IDRP. However, this portion of
the document will change when RDCs or multiple RIBs are supported.

3.2.3. Sending KEEPALIVE PDU

routine: send_keepalive_pdu

calling parameter: peer

Page 22 7/19/93 IDRP Design Document 2.4

RIB Refresh Structures

idrpRefresh structure
pointer to next Refresh structure on
list (Refresh list pointers are kept in
the idrpPeer structure in “refresh”
pointer.)
pointer to update pdu is included in
refresh
parse results array for the pdu
processing of this update pdu

Refresh_info structure
sequence number of RIB refresh start
PDU
head of idrpRefresh PDU structure
tail of idrpRefresh pdu structure
sequence number of RIB refresh end
PDU
count of PDUs to process
RIB ID

Figure 9 — Rib Refresh structures awaiting processing

3.2. Outbound BISPDU processing

Outbound BISPDUs are sent as a result of a transition in the IDRP state machine, or a timer
expiring, or phase 1 processing of the UPDATE PDUs or phase 3 processing of the routing table
changes. Figure 10 shows the links between the IDRP state machine, timers, phase 1 processing
and phase 3 processing and the routines used to send the PDUs.

Outbound BISPDU processing

IDRP state
machine

send_open_
pdu

send_error_pdu send_echo_pdu

send_keepalive
_pdu

send_cease_pdu

idrp_send_pdu

open send
timer

Phase 1 and
Phase 3
processing

Figure 10 — Outbound BISPDU processing

IDRP Design Document 2.4 7/19/93 Page 21

RIB Refresh parsing

Parse RIB
refresh

Valid RIB
refresh

Invalid RIB
refresh

Check RIB
refresh types

Call IDRP state
machine with
RIB refresh

Call IDRP state
machine with
RIB refresh error

Check RIB Att
setting

Process RIB
refresh types

Process RIB refresh

Figure 7 — Rib Refresh parsing

RIB Refresh processing

RIB refresh
request

RIB refresh start RIB refresh end

RIB refresh processing

idrp_send_refresh
_all_routes

set RIB refresh
start sequence to
start capture of
update PDUs in
RIB refresh
structures

set RIB refresh
end value and
process all update
pdus one at a time
(rib_refresh_
update_process)

Figure 8 — Rib Refresh processing

Page 20 7/19/93 IDRP Design Document 2.4

Error BISPDU parsing and processing

Validate Error
PDU

Code = Error in
Open BISPDU

Code = Error in
Update BISPDU

Code = Hold
time expired

Code = FSM
error

Code = Error in
RIB Refresh BISPDU

Subcode
check

Figure 4 — ERROR BISPDU parsing and processing

Cease BISPDU parsing and processing

Cease BISPDU
processing

Call IDRP state
machine

Figure 5 — CEASE BISPDU parsing and processing

Keepalive BISPDU parsing and processing

Keepalive BISPDU
processing

Call IDRP state
machine

Figure 6 — Keepalive BISPDU parsing and processing

IDRP Design Document 2.4 7/19/93 Page 19

OPEN BISPDU processing

Parse open

Process open

header version maximum PDU
size check

RDI check

rib att sets RDC match Authentication
match

invalid open
v
a
lid

 o
p
e
n

get maximum
receive pdu size

set up keepalive
time value

call IDRP state
machine

Call IDRP state machine
with OPEN error

Figure 3 — OPEN BISPDU parsing and processing

Page 18 7/19/93 IDRP Design Document 2.4

idrp_recv_pdu processing

idrp_recv_pdu process

Checksum PDU Header checks Sequence info
extracted

Invalid BISPDU —
ignore

Invalid header —
call IDRP state
machine with
header error event

Reset hold timer

process acks process
sequence nos.

Parse on type

idrp_parse_open

idrp_process_
error

idrp_process_
cease

invalid open —
call IDRP state
machine with
IDRP open error

process
BISPDUs

process_open process_update process_
keepalive

process_rib_
refresh

process_echo_
type

process_echo_
reply

process_header_
error

Figure 2 — idrp_recv_pdu processing

IDRP Design Document 2.4 7/19/93 Page 17

IDRP packets’ passage through IDRP code

gated determines that
receive buffer has been
received on an ip socket

idrp master task
called with pdu

master task
determines family
and length of pdu

idrp_recv_pdu
processes idrp header,
and starts processing
of all IDRP PDUs

gated determines that the
buffer has been received
on a socket opened on the
clnp socket

Figure 1 — IDRP packets’ passage through IDRP code

Page 16 7/19/93 IDRP Design Document 2.4

3. Program control flow description for all non-update BISPDUs

3.1. Inbound BISPDU processing

Below is a generic description of how the PDUs are passed from gated to the IDRP master task
that receives the PDU and on to individual BISPDU processing. The descriptions of the processes
are done in diagrams.

IDRP Design Document 2.4 7/19/93 Page 15

7) IDRP refresh structures

The IDRP refresh structures store the results of an UPDATE PDU parsing for later processing at
the end of a RIB-Refresh update. They are allocated out of task memory.

8) Announce list structures

The announce list structures provide a mechanism to group network layer reachability information
NLRIs with common attributes. This grouping also allows policy to be run for any NLRI with a
particular set of attributes. The announce list structures are allocated out of task memory associated
with a peer task.

9) Send list structures

The send list provides a structure that groups a set of information to send in one BISPDU. The
send list structure is allocated out of task memory.

2.5. Reconfiguration of policy

The gated code provides task_cleanup, task_reinit and task_newpolicy links to the IDRP task for
both the master task and the peer task. In the second phase of the Merit implementation,
reconfiguration of policy will be supported.

(Section 2.5 - will be further developed during the 2nd phase of the Merit implementation.)

Page 14 7/19/93 IDRP Design Document 2.4

configuration file before the IDRP tasks are created. Memory must be allocated to store this
information.

IDRP allocates memory to store this configuration information by calling one of the following
routines depending on the size of the block needed:

• idrp_peer_alloc - IDRP Peer information (idrpPeer structures)
• idrp_med_blk_alloc - Local Route structures (idrpRoute structures for local routes, and

idrp_attribute_record structures for local routes’ IDRP attributes)
• idrp_small_blk_alloc - Other Local route structures (IDRP Routing Domain pathway structure

(idrp_canon_rdpath), and IDRP route list structure (idrpRoute_entry))

In turn these routines call two gated routines for allocation of memory outside of a task:
task_block_alloc and task_block_init. The task_block_init routine specifies a size of structure the
gated routines will allocate. The task_block_alloc allocates memory of a size specified by a
previous task_block_init call.

In addition, in the case of re-configuration some IDRP peer or IDRP local routes may disappear.
The following idrp_routines free the configuration memory: idrp_big_blk_free, idrp_med_blk_free
and idrp_small_blk_free. In turn these routines call the gated routine task_block_free.

2.4.2. IDRP task block memory allocation

The IDRP code uses the task memory allocation routines both to allocate memory for structures
needed in parsing BISPDUs into IDRP route structures and to allocate memory for structures
needed in sending BISPDUs. The structures allocated from task memory include:

1) The IDRP route structure

The IDRP Route structure (struct idrpRoute) holds one destination found in the network layer
reachability information (NRLI) received from one peer.

2) IDRP attribute record

The IDRP attribute record structure contains a unique instance of a set of IDRP attributes. An
attribute record may have many idrpRoute structures linked to it from one or more BISPDUs.

3) Ordered list of RDIs

IDRP RD path information is a sequence or set of Routing Domain Identifiers. These Routing
Domain Identifiers are kept in an ordered list of RDIs to help in checking for duplicate RDs and to
allow easy handling for policy routines.

4) IDRP output buffers

IDRP buffers are allocated to store BISPDU information prior to transmitting a BISPDU to a
neighbor.

5) IDRP hash table for inbound routes

6) IDRP parsing structures

The IDRP withdraw and announce list structures are allocated out of task memory.

IDRP Design Document 2.4 7/19/93 Page 13

• INT signal
• CHLD signal

Incoming PDUs do not interrupt gated. The gated code (in task.c) simply does a “select” on the
socket and waits for one or more sockets to be ready to read or write.

Gated handles the kill signal by calling routines in each task to terminate the protocol functions.
The routines are called the task_terminate functions. In IDRP, there is a master task for receiving
packets from the operating system and a task for each peer to handle the timers required for each
connection. The terminate routine for the master task is idrp_terminate. The terminate routine for an
IDRP peer is idrp_peer_terminate.

The alarm interrupts provide gated with its timer service. A discussion of the timers used by IDRP
is found in the next section.

The gated routines that handle the USR1 interrupt allow the user to change the information that is
logged by gated. For example, if additional tracing for a peer is required, the USR1 interrupt could
be sent to gated, requesting it to change the trace flags on the IDRP protocol for that peer.

The gated routines that handle the USR2 interrupt routines check for new interfaces. If a new
interface has been added, allowing the IDRP protocol to send BISPDUs to a new neighbor BIS,
the USR2 will request gated to enable the interface, in turn allowing the IDRP protocol to open a
BIS-BIS connection through that interface.

2.3. Gated timer functions usage by IDRP

IDRP creates the following timers for each peer task: keepalive, closewait, hold, retransmit, start,
open sent, minimum route advertisement, and an optional debug echo timer. The keepalive,
closewait, hold, retransmit, and minimum route advertisement timers are specified in the IDRP
protocol specification.

The start timer provides a mechanism to queue the start event after a peer connection has been
configured and initialized. After the start timer expires, the start event is executed in the IDRP state
machine.

The open sent timer allows for multiple opens to be sent in rapid sequence prior to holding down
the connection until the next open sequence.

An optional echo function requires a timer. This echo function allows two BISes to exchange an
ECHO PDU to test the connection at a BISPDU level. It is useful for debugging.

IDRP uses the gated functions timer_create, timer_set and timer_reset to create, set, and reset
timers.

2.4. Gated memory allocation used by IDRP

The IDRP code uses two types of memory allocation from the gated structures: task memory
allocation and allocation of memory during the configuration cycle of gated.

2.4.1. Configuration memory allocation

The IDRP code requires configuration information about IDRP BIS neighbors (also called peers),
the local BIS configuration, and local IDRP routes. This information is read out of the gated

Page 12 7/19/93 IDRP Design Document 2.4

2. Data flow description

Gated provides a single-threaded event driven environment for implementing routing protocols.
Events are generated by sockets being ready for read, write or exceptions, interval timer expiration
and signals requesting re-configuration and shutdown. Threads are non-interruptable. The gated
code provides support for socket handling, interrupt signals from the UNIX system, timers,
memory management and re-configuration of routing policy.

Gated interacts with the IDRP code (and all protocol code) by means of a number of entry points
the protocol must register with gated. Of particular interest is the “flash” routine, in this case
idrp_flash. Gated tracks the routes a protocol has expressed interest in (in IDRP’s case, the routes
IDRP has installed and/or propagated) and calls the protocol’s flash routine to alert the protocol
when any such route changes; that is, is added or deleted. Likewise, when a protocol has made a
change to the routing table it wishes to inform gated of, it must flash gated.

At a very high level, the path an IDRP PDU takes through gated looks like the following:

• PDU arrives
• IDRP processes PDU
• IDRP flashes gated
• Gated modifies its routing table (i.e. the IDRP Loc_RIB)
• If the new route is the preferred route, gated flashes IDRP
• IDRP propagates the reachability information to its peers

2.1. Gated socket handling for IDRP

The IDRP idrp_init routine opens a master task to receive BISPDUs from the appropriate socket.
The IDRP code using CLNP will use a specially defined IDRP socket which checks the first byte
of the transport payload to see if the IDRP protocol is needed. For a more complete description of
the IDRP socket, please see Appendix A. A separate task is created for each IDRP peer to handle
timers specific to each BIS-to-BIS connection.

The IDRP master task, idrp_recv, handles reading data from the socket by calling the
task_receive_packet gated routine. The idrp_recv code verifies that the PDU is an IDRP BISPDU
from a configured neighbor. If the packet is valid it is passed to the idrp_recv_pdu routine for
processing.

The IDRP idrp.c code sends a PDU packet by calling the “task_send_buffer” gated routine with the
BISPDU contained in the buffer.

2.2. Gated interrupt functions used by IDRP

Gated is driven in two ways - signals and polling. Signals are used for reconfiguring gated routing
policy or interface configurations or to change what logging is used. The PDUs received by gated
are received by a select in task_main that blocks until a socket is ready for reading or writing.

The gated code catches the following interrupts from UNIX systems:

• UNIX kill signals,
• alarms (used for gated timers),
• USR1 signal
• USR2 signal

IDRP Design Document 2.4 7/19/93 Page 11

idrp_transport.c IDRP End to End Transport
code

flush_xmit
path_down
free_acked_pdu
flush_rexmit_queue
close_peer
begin_close
ack_pdu

idrp_validate.c Validation routines for IDRP
attributes

checksum_ok
idrp_rib_id

md4.c IDRP validation code (MD4
message digest code)

Encode, decode routines
for MD4, MD4 initialization,
MD4 update

md4global.h Global Type definitions used by
MD4 routine

 Global type definitions

md4.h MD4 data structure definitions Data structures used in MD4
generation.

osi.h ISO Address structure
definitions not yet in iso.h

ISO prefix (bit count plus ISO
address),
ISO address (byte count plus
ISO address)

The generic ISO routines will be moved into common files with other routines which support the
ISO functions in gated. Currently, the routines in IS-IS and IDRP are separate due to these
protocols having been newly added to gated. Future versions of the IDRP Design Specification
will reflect changes as they are made to the code.

Page 10 7/19/93 IDRP Design Document 2.4

idrp_rt_phase_util.c Utility routines for Phase 1 and
Phase 3 processing

link_ann_list
link_send_list
send_with_attr
send_update_reset_send
send_nlri_attr
create_send_list
flush_att_send_list
idrp_send_list_room
idrp_del_sent_routes
best_ext_routes
idrp_add_route_locate
idrp_with_route_locate
idrp_rt_change
free_rt_chain_walk

idrp_rt_policy.c Policy routines PREF
DIST
DIST_LIST_INCL
DIST_LIST_EXCL
DIST_ATTR
idrp_gated_import
idrp_gated_export
(most of these routines will be
shells until 2nd stages of IDRP
code)

idrp_rt_route_out.c handle the processing of the
outbound route_id lists used to
group NLRIs together in
UPDATE PDUs sent to
neighbors

relink_outlist

idrp_rt_util.c General utilities in
code for hash table,
idrpRoute allocation
and de-allocation,
idrpRoute_entry structure
allocation and
deallocation

idrp_rid_hash
idrp_add_hash_entry
idrp_free_hash_entry
idrp_release_hash_tbl
idrp_init_hash_tbl
idrp_alloc_idrpRoute
idrp_free_idrpRoute
idrp_free_idrpRoute_entry
idrp_add_idrpRoute_entry

idrp_sm.c IDRP state machine code idrp_sm
idrp_sock.c all routines to send and receive

over IP/ISO
idrp_ip_raw_sock_recv
idrp_clnp_sock_recv
idrp_idrp_sock_recv
idrp_clnp_send_pdu
idrp_send_idrp_pdu

idrp_timers.c timer routines:
keepalive, holdtime, start timer
(implementation specific), re-
transmit timer

start_rexmit_timer
kill_rexmit_timer
start_keepalive_timer
start_opensent_timer

IDRP Design Document 2.4 7/19/93 Page 9

idrp_rt_phase1.c Phase 1 processing of IDRP
routes

Preferences:
idrp_pref
idrp_ext_info_pref

PDU processing:
idrp_route_mod
idrp_process_pdu_routes

IDRP phase1 processing:
idrp_phase1_processing
phase1_internal
phase1_external
ph1_with_int_route
ph1_with_rep_int_route
ph1_add_int_route
ph1_with_ext_route
ph1_with_rep_ext_route
ph1_add_ext_route
send_best_ext
del_route_best_ext
remove_ann_dup

idrp_rt_phase2.c Phase 2 processing of IDRP
routes, Phase 2 tie breaking
code, IDRP to gated preferences

tie_break
tie_break_iso
iso_next_hop_compare
iso_multi_exit_compare

idrp_rt_phase3.c Phase 3 processing of IDRP
routes

idrp_flash
phase3
idrp_phase3_dump
phase3_status_change

ph3_status_case1
ph3_status_case2
ph3_status_case3
ph3_status_case4
ph3_status_case5
ph3_status_case6
ph3_status_case7
ph3_status_case8

idrp_send_phase3_routes

phase3_newpolicy

Page 8 7/19/93 IDRP Design Document 2.4

idrp_rt_local.c Processing of local IDRP routes
configured into gated

idrp_add_local_rt

gated
idrp_local_rt
find_local_route

dest
create_local_attr_record
create_local_ext_info_att_rec
idrp_options_to_mask
link_local_attr
idrp_fill_local_man_opt_attrib
fill_next_hop
fill_DIST_LIST
link_local_attr_list
create_local_rd_path
idrp_create_local_route_reset
idrp_flag_local_att
idrp_local_route_clean
idrp_clean_local_att
idrp_free_local_route_chain
idrp_free_local_rt
idrp_local_mem_fit

idrp_rt_minadv.c Processing with Minimum
Route Advertisement Timers:
• for other domains
• for this RD

Other RD routes:
idrp_add_min_route_adv
advmin_interval_calc
idrp_set_min_route_timer
idrp_process_minadv
idrp_min_adv_rt

Within this RD routes:
idrp_add_rt_min_advRd
idrp_set_min_advRD_time
idrp_process_minAdvRD
idrp_min_advRD_rt

idrp_rt_peer.c Processing by IDRP peer:
peer up, peer down,
consistency check on AdjRib,
validation of AdjRib, peer
reinitialization after
configuration change, send
refresh of AdjRib to peer

consistency_check
validate_AdjRib
validate_allRibs
idrp_rt_send_init
idrp_send_refresh_all_routes
idrp_refresh_allpeers
peer_down
peer_up
idrp_peer_route_pull
idrp_refresh_all_peers

IDRP Design Document 2.4 7/19/93 Page 7

idrp_rt.c IDRP routing table routines IDRP hash table routines
IDRP Route structure handling
routines
 IDRP Route list handling
routines
 Validation of AdjRib
 Consistency check of gated
routing table

 IDRP decision routines for
Phase 1 processing
Phase 2 processing
Phase 3 processing

 Routines to add routes to gated
tables

 Routines to send initial blast of
routes

 Routines to handle local routes
idrp_rt_ext_info.c routines to handle transfer of

external information to IDRP

Includes:
IS-IS <-> IDRP
static <-> IDRP
interface <-> IDRP
BGP <-> IDRP

idrp_find_ext_info_rt
find_ext_info_attr_rec
create_ext_info_attr_rec
idrp_aspath_to_canon_rdpath
generic_ext_info
idrp_as_rdi_map
idrp_bgp_within_RD
idrp_ext_info_peer

idrp_rt_iso.c generic ISO processing routines
(hopefully most of these will be
subsumed into gated routines.)

idrp_iso_sockaddr_mask
idrp_set_iso_sockun
sockun_to_prefix
sockun_toa

Page 6 7/19/93 IDRP Design Document 2.4

idrp_init_parse.c parsing of configuration file
routes

idrp_find_peer
idrp_link_peer
idrp_peer_alloc
idrp_small_blk_alloc
idrp_small_blk_free
idrp_med_blk_alloc
idrp_med_blk_free
idrp_local_peer_init
idrp_delete
idrp_peer_config_init
idrp_peer_update

idrp_init_sock.c initialize socket idrp_ip_pid_sock_init
idrp_udp_sock_init
idrp_clnp_raw_sock_init
idrp_idrp_sock_init
idrp_clnp_packet_send
idrp_idrp_packet_send

idrp_macros.h Macros for IDRP code Macros try to improve
readability of code

idrp_parse_pdu.c routines that parse BISPDU for
IDRP code

idrp_parse_open
process_open
parse_update
parse_update_cleanup
process_keepalive
process_error
process_cease
parse_rib_refresh
process_rib_refresh
process_echo

idrp_pdus.c routines that send PDUs idrp_post
post_enqueued_pdus
idrp_send_pdu
send_open
send_update_pdu
idrp_send_error
send_cease
send_keepalive

idrp_proto.h IDRP protocol definitions IDRP structures to decode
BISPDUs and values used in
parsing the BISPDUs

idrp_prototypes.h prototypes for all routes prototypes are good place to
look at routines

idrp_rib_refresh.c routines to handle IDRP RIB
REFRESH PDUS and
processing

rib_refresh_pdu_release
refresh_pdu_link
rib_refresh_update_process

IDRP Design Document 2.4 7/19/93 Page 5

idrp_attrib.c routines parsing and validating
IDRP attributes

valid_attr
valid_usr_attr
add_local_rd_to_path
valid_seg_type
valid_rd_path
link_rd_path
link_rd_canon
find_attr_rec
compare_atts
idrp_dif_path
ATTS_REC_ZERO
idrp_free_routeid_chain
idrp_find_routeid_chain
idrp_free_nlri_att_rec
idrp_free_attr_rec
link_att_list
relink_free_att
idrp_free_nlri_chain

idrp_dump.c Routines that dump IDRP
structures under gated trace or
logging signals

idrp_master_dump
idrp_peer_dump
idrp_dump_peer_mib
idrp_dump_peer_local_mib
idrp_dump_peer_extra
idrp_dump_attr_list
in_rt_list
idrp_dump_attr_entry
idrp_peer_rtbit_dump
idrp_dump_local_rib
idrp_dump_adj_rib
idrp_dump_pref_list
idrp_dump_aggr_list
idrp_dump_dist_list
idrp_dump_internal_systems
idrp_dump_snpa_list
idrp_dump_snpa_entry
idrp_get_byte_value

idrp_events.c IDRP timer expiration events
and start and stop events

idrp_start_event
idrp_stop_event
idrp_event_closetimer
idrp_event_holdtimer
idrp_event_keepalivetimer
idrp_event_rexmittimer
idrp_event_opensenttimer
idrp_event_echotimer

idrp_globals.h
idrp_globals.c

IDRP global variable definitions define and set global variables

idrp_init.c initialization code for IDRP
module: gated tasks,
reinitialization of connections,
idrp_newpolicy

idrp_init,
idrp_reinit_peer
idrp_cleanup
idrp_newpolicy

Page 4 7/19/93 IDRP Design Document 2.4

idrp_init.c IDRP initialization routines IDRP global variables
Gated based initialization
routines:
idrp_cleanup
idrp_var_init
idrp_init
idrp_newpolicy
IDRP peer structure handling
routines:
idrp_peer_alloc,
idrp_med_blk_alloc,
idrp_small_blk_alloc,
idrp_delete,
idrp_terminate,
idrp_peer_cleanup,
idrp_peer_reinit,
 Generic ISO routines:

pretty print routines for dumps
or log file:
iso_ptoa,
iso_ntoa,

Comparison routines:

compare_iso_addr,
isopfxcompare,

idrp.c general trace routines and
debugging routines

drop_packet
idrp_trace
log_nm_event
free_buffer
proto_to_family
family_to_nrli_id
idrp_send_dest_set

idrp_att_rec.c routines dealing with the IDRP
attribute record

valid_attr
valid_usr_attr
add_local_rd_to_path
valid_seg_type
valid_rd_path
link_rd_canon
find_attr_rec
compare_atts
idrp_dif_path
ATTS_REC_ZERO
idrp_find_routeid_chain
idrp_free_nlri_att_rec
idrp_free_attr_rec

IDRP Design Document 2.4 7/19/93 Page 3

1. Program structure

Merit’s IDRP implementation uses a modular structure similar to that used by other protocols in
gated: an initialization module, a PDU processing module, and a routing table module. The IDRP
code is found in the following modules:

Module Name Function Routines included in module
idrp.h IDRP data structure definitions Structure for each IDRP route

Structure for each IDRP peer
Structure to store attributes
found in UPDATE PDUs
Structures used to pass
information found in BISPDUs
to routing table processing
(route announce list or
Withdraw route structure)
Prototypes of all IDRP
functions

idrp.c IDRP protocol and timer PDUs Timer routines
BISPDU sending routines
IDRP transport handling
Peer up and peer down routines
 Parsing of incoming BISPDUs
 IDRP events
 IDRP state machine
 PDU checksum and header
validation routines
 Attribute handling routines

Page 2 7/19/93 IDRP Design Document 2.4

a per BISPDU basis. However, the rest of phase 2 and phase 3 may run over many BISPDUs.
Because many people using this IDRP protocol may be porting the Merit code to other
environments, alternative design choices are provided to allow others to select what portions of the
IDRP code they would like to use.

This design document contains descriptions of the:

• Internal structure of the IDRP code (Section 1)
• Data flow of BISPDUs between gated and the IDRP code (Section 2)
• Program control flow description for all BISPDUs, except for the processing of the UPDATE

BISPDU (Section 3)
• Program control flow description for processing the UPDATE BISPDU and adding routes to the

routing table (Section 4)
• Descriptions of data structures and algorithms (Section 7)
• Alternative designs (Section 10)

IDRP Design Document 2.4 7/19/93 Page 1

Introduction

The Merit IDRP implementation in gated has been influenced heavily by the internal structure of
gated. An implementation of the IDRP protocol could be broken into three parts:

• IDRP BISPDU processing
• Routing table updates and processing
• 8473 forwarding

In the Merit implementation of IDRP, the IDRP BISPDU processing has been made as
independent as possible. However, the routing table code is closely tied to the gated routing
structure. The 8473 forwarding engine depends on the insertion of routes by gated into the
underlying operating system.

The gated routing structure is designed to allow multiple protocols to share routing information.
Gated’s routing tables retain all information for a given destination (such as a CLNP network)
received from any protocols the gated program supports. A gated routing table may contain IS-IS
routes for a destination, IDRP routes for a destination, or both. Gated provides the mechanism to
decide which protocols’ routes will be installed in the forwarding engine for this router.

The IDRP Adjacency RIBs are contained in the gated tables and not in separate structures. The
gated routing tables are linked both by destination and by the gateway that sent the route. The
Adjacency RIBs are found by searching the gated tables for any routes linked to a particular peer
for the IDRP protocol. In gated the “LOC_RIB” (active routes in gated terms) contains routes from
not only the IDRP protocol, but any other protocols.

The gated routing code also provides a mechanism for passing the routing information between the
two protocols via the gated routing table. The gated routing table is structured to allow many
protocols to share routing information.

Gated’s routing table is not the only structure that could allow for sharing of routing information
between IS-IS and IDRP. Alternate structures were examined for this project, but the gated
structure was chosen for consistency within the gated framework. It is hoped that this consistency
will provide a good prototype platform and allow for exchange of routing traffic in the Internet
environment, where multiple types of network reachability information, such as IP and CLNP,
must be supported. The current technical experts working on gated in the Internet encouraged this
structure because of the dual stack nature of the Internet. However, in an OSI only environment
other structures for the routing table may be more efficient.

Because of our understanding that the BISPDU handling portion of this code may need to migrate
to a non-gated environment, the data structures chosen for the IDRP routes contain some
duplication of information found in the Gated tables. This duplication may allow the code to be
removed from the gated structure and integrated into a different routing table framework.

Gated runs in a single threaded event driven environment which processes a task until it is done.
Events are generated by sockets being ready for read, write or exceptions, interval timer
expirations and signals requesting re-configuration or shutdown. Threads are non-interruptable and
therefore care must be taken to avoid excessive processing time in a thread (task) when possible.

Exceptions to this mode are rare, and tightly controlled. For example, the single threaded
environment encourages processing of a BISPDU from start to finish instead of bunching changes
to the gated table. IDRP phase 1 processing and portions of the Phase 2 processing are done on the

Design Document for
Merit IDRP Implementation

version 2.4
7/17/93

Susan Hares
John Scudder

Page vi 7 /19/93 IDRP Design Document 2.4

Figures

Figure 1 — IDRP packets’ passage through IDRP code.. 17
Figure 2 — idrp_recv_pdu processing .. 18
Figure 3 — OPEN BISPDU parsing and processing....................................... 19
Figure 4 — ERROR BISPDU parsing and processing..................................... 20
Figure 5 — CEASE BISPDU parsing and processing .. 20
Figure 6 — Keepalive BISPDU parsing and processing................................... 20
Figure 7 — Rib Refresh parsing .. 21
Figure 8 — Rib Refresh processing .. 21
Figure 9 — Rib Refresh structures awaiting processing .. 22
Figure 10 — Outbound BISPDU processing .. 22
Figure 11 — BISPDU transmission .. 26
Figure 12 — Update PDU processing .. 29
Figure 13 — Update PDU parsing .. 30
Figure 14 — Update PDU route processing .. 32
Figure 15 — Phase 1 processing of routes.. 36
Figure 16 — Phase1 internal processing .. 38
Figure 17 — Phase 1 External Route Processing... 54
Figure 18 — IDRP route Structure.. 95
Figure 19 — IDRP route links to gated route structure .. 96
Figure 20 — IDRP attribute Record Structure .. 98
Figure 21 — IDRP attribute array .. 99
Figure 22 — IDRP attribute linked list... 99
Figure 23 — Parsing Structures for Updates .. 100
Figure 24 — Refresh PDU structures.. 100
Figure 25 — Inbound Hash Table Structure .. 101
Figure 26 — Withdraw Route linked list . 101
Figure 27 — Announce list.. 101
Figure 28 — Send list.. 102
Figure 29 — Outbound route ID list . 103
Figure 30 — Output Buffer for IDRP.. 104
Figure 31 — Advertisement Timer Structure.. 106
Figure 32 — Best external routes data structures.. 118

IDRP Design Document 2.4 7/19/93 Page v

10.1. Alternative data structures for AdjRib and Loc_RIB... 122
10.2. Alternative UPDATE logic .. 122

11. gated log file format .. 127
12. Memory organization and sizing information... 135
13. IDRP Socket Notes.. 137

Page iv 7/19/93 IDRP Design Document 2.4

5.7.2. idrp_peer_cleanup.. 83
5.7.3. idrp_var_inits . 84
5.7.4. parser.y routines.. 84
5.7.5. idrp_reinit . 85
5.7.6. idrp_peer_reinit. 85
5.7.7. idrp_newpolicy .. 85
5.7.8. idrp_init.. 86
5.7.9. idrp_local_peer_init . 87
5.7.10. idrp_peer_alloc.. 87
5.7.11. idrp_find_peer... 88
5.7.12. idrp_peer_update.. 88
5.7.13. idrp_config_peer_init... 88
5.7.14. local storage allocation routines .. 88

6. Minimum route advertisement timers .. 90
6.1. Overview of minimum route advertisement timers... 90
6.2. Starting minimum route advertisement timers: . 90
6.3. Processing the timers.. 91
6.4. Use of the minimum route advertisement timers .. 91

7. Description of algorithms... 93
7.1. Routing table structures .. 93

7.1.1. Gated routing structures .. 93
7.1.2. IDRP routing structures .. 93

7.1.2.1. idrpRoute structure .. 94
7.1.2.2. Attribute records .. 97
7.1.2.3. IDRP lists for IDRP route processing.. 99

7.2. IDRP peer structure.. 104
7.2.1. Overview ... 104
7.2.2. idrpPeer status flags.. 105
7.2.3. IDRP peer types .. 105
7.2.4. idrp_peer list . 106
7.2.5. idrpAdvRt structure .. 106

7.3. Policy information base structures.. 107
7.3.1. Overview ... 107
7.3.2. Pre-delivery 1 policy.. 107
7.3.3. Delivery 1 policy .. 107

7.3.3.1. Policy structure on routes.. 107
7.3.4. Delivery 2 policy .. 107
7.3.5. Notes on current policy.. 108

7.3.5.1. Indirectly listed: . 108
7.3.5.2. Configuration file format... 108

7.4. Network management information base... 110
7.4.1. Overview ... 110
7.4.2. MIB input structures .. 110
7.4.3. MIB output structures.. 110
7.4.4. GDMO for this MIB ... 112

7.4.4.1. GDMO in the IDRP specification .. 112
7.4.4.2. GDMO imported and clean-up from IDRP specification. 112
7.4.4.3. Replacement GDMO for ATN project’s LOC_RIB and Adj-RIB... 114

7.5. Route lookup algorithms.. 118
7.6. MD4 algorithm ... 119

8. Gated timer functions usage by IDRP ... 120
9. Gated interrupt signals.. 121
10. Alternative designs... 122

IDRP Design Document 2.4 7/19/93 Page iii

4.3.2.12. link_ann_list . 47
4.3.2.13. create_ann_list_entry.. 48
4.3.2.14. find_ann_list_entry.. 48
4.3.2.15. link_ann_list_ann_list . 48
4.3.2.16. free_ann_list . 49
4.3.2.17. link_send_list . 49
4.3.2.18. send_update_reset_send_list.. 49
4.3.2.19. create_send_list. 49
4.3.2.20. free_send_list . 50
4.3.2.21. flush_att_send_list . 50
4.3.2.22. idrp_send_list_room ... 51
4.3.2.23. idrp_del_sent_routes.. 51
4.3.2.24. idrp_rt_change.. 51
4.3.2.25. free_rt_chain_walk.. 52
4.3.2.26. find_next_best . 52
4.3.2.27. find_best_ext... 52
4.3.2.28. idrp_pref_compare .. 52
4.3.2.29. insert_in_pref_order .. 53
4.3.2.30. idrp_ann_list_empty .. 53
4.3.2.31. find_nlri_in_ann_nlri . 53

4.3.3. Phase 1 - Routes from external neighbors... 54
4.3.3.1. phase1 external routes.. 54
4.3.3.2. Phase 1 - Withdraw external route.. 55
4.3.3.3. Phase 1 - Withdraw external route with replacement 57
4.3.3.4. idrp_replace_ext... 59
4.3.3.5. Phase 1 - Add external route... 60
4.3.3.6. Phase 1 - Sending best external routes to internal neighbors 63
4.3.3.7. Send Phase 1 to internal neighbors .. 63
4.3.3.8. Add withdrawals to send list for peer . 64
4.3.3.9. Add NLRIs to send list for peer... 65

4.3.4. Delete external routes in Phase 1 .. 65
4.4. Phase 2 processing .. 65
4.5. Phase 3 processing .. 66

4.5.1. IDRP flash routine .. 66
4.5.2. Phase 3 .. 66

4.5.2.1. Phase3 flash processing.. 66
4.5.2.2. Phase3 send routes to external neighbors.. 72
4.5.2.3. Delete routes after sending the route.. 72

4.5.3. IDRP peer up routine - idrp_rt_send_init.. 73
4.5.4. IDRP phase 3 full routing table dump ... 73

5. Initialization and re-start code.. 75
5.1. Overview.. 75
5.2. Initialization... 75

5.2.1. What Init does .. 75
5.2.2. Sequence of routines called .. 75
5.2.3. Route changes .. 77

5.3. Reconfiguration (SIGHUP) .. 77
5.4. Terminate (SIGTERM).. 79
5.5. Tracing change (SIGINT) .. 80
5.6. Local route initialization.. 81

5.6.1. IDRP configured local routes .. 81
5.7. Description of routines .. 82

5.7.1. idrp_cleanup .. 82

Page ii 7 /19/93 IDRP Design Document 2.4

Table of Contents

Introduction ... 1
1. Program structure .. 3
2. Data flow description .. 12

2.1. Gated socket handling for IDRP ... 12
2.2. Gated interrupt functions used by IDRP ... 12
2.3. Gated timer functions usage by IDRP... 13
2.4. Gated memory allocation used by IDRP ... 13

2.4.1. Configuration memory allocation... 13
2.4.2. IDRP task block memory allocation.. 14

2.5. Reconfiguration of policy.. 15
3. Program control flow description for all non-update BISPDUs.. 16

3.1. Inbound BISPDU processing .. 16
3.2. Outbound BISPDU processing .. 22

3.2.1. Memory allocated for outbound PDUs .. 23
3.2.2. Sending OPEN PDU ... 23
3.2.3. Sending KEEPALIVE PDU ... 23
3.2.4. Sending ERROR PDU ... 24
3.2.5. Send CEASE BISPDU... 24
3.2.6. Send UPDATE PDU ... 24
3.2.7. Sending echo PDU.. 25

3.3. Transmitting BISPDUs ... 25
3.3.1. idrp_send_pdu routine.. 26
3.3.2. idrp_post routine .. 26
3.3.3. post_enqueued_pdus... 27

4. Program flow description for update PDUs.. 28
4.1. Overview of IDRP UPDATE parsing code.. 28
4.2. Process update routine descriptions .. 28

4.2.1. process_update_pdu .. 28
4.2.2. parse update_pdu.. 30
4.2.3. parse_update_cleanup.. 31
4.2.4. idrp_process_pdu_routes.. 32
4.2.5. remove_ann_dup .. 33

4.3. Phase 1 processing .. 34
4.3.1. Phase 1 processing for internal peer . 36

4.3.1.1. Phase 1 withdrawal logic for internal peer. 38
4.3.1.2. Phase 1 explicit withdraw with replace................................. 39
4.3.1.3. Phase 1 processing for route additions: . 40

4.3.2. Utility routines for Phase 1 and Phase 3... 41
4.3.2.1. idrp_add_route_locate.. 42
4.3.2.2. idrp_with_route_locate.. 43
4.3.2.3. PREF... 44
4.3.2.4. idrp_to_gated_pref.. 44
4.3.2.5. find_best_ext . 45
4.3.2.6. idrp_free_nlri_att_rec... 45
4.3.2.7. idrp_free_outlist... 46
4.3.2.8. free_idrpRoute .. 46
4.3.2.9. idrp_del_rt_gated .. 46
4.3.2.10. idrp_add_rt_to_gated .. 47
4.3.2.11. idrp_mod_rt_gated .. 47

IDRP Design Document 2.4 7/19/93 Page i

Brief Table of Contents

Introduction .. 1
1. Program structure .. 3
2. Data flow description .. 12

2.1. Gated socket handling for IDRP ... 12
2.2. Gated interrupt functions used by IDRP ... 12
2.3. Gated timer functions usage by IDRP... 13
2.4. Gated memory allocation used by IDRP ... 13
2.5. Reconfiguration of policy.. 15

3. Program control flow description for all non-update BISPDUs.. 16
3.1. Inbound BISPDU processing .. 16
3.2. Outbound BISPDU processing .. 22
3.3. Transmitting BISPDUs ... 25

4. Program flow description for update PDUs.. 28
4.1. Overview of IDRP UPDATE parsing code.. 28
4.2. Process update routine descriptions .. 28
4.3. Phase 1 processing .. 34
4.4. Phase 2 processing .. 65
4.5. Phase 3 processing .. 66

5. Initialization and re-start code.. 75
5.1. Overview.. 75
5.2. Initialization... 75
5.3. Reconfiguration (SIGHUP) .. 77
5.4. Terminate (SIGTERM).. 79
5.5. Tracing change (SIGINT) .. 80
5.6. Local route initialization.. 81
5.7. Description of routines .. 82

6. Minimum route advertisement timers .. 90
6.1. Overview of minimum route advertisement timers............................. 90
6.2. Starting minimum route advertisement timers: . 90
6.3. Processing the timers.. 91
6.4. Use of the minimum route advertisement timers .. 91

7. Description of algorithms... 93
7.1. Routing table structures .. 93
7.2. IDRP peer structure.. 104
7.3. Policy information base structures.. 107
7.4. Network management information base... 110
7.5. Route lookup algorithms.. 118
7.6. MD4 algorithm ... 119

8. Gated timer functions usage by IDRP ... 120
9. Gated interrupt signals. 121
10. Alternative designs... 122

10.1. Alternative data structures for AdjRib and Loc_RIB.. 122
10.2. Alternative UPDATE logic .. 122

11. gated log file format .. 127
12. Memory organization and sizing information... 135
13. IDRP Socket Notes.. 137

