
1

SECTION 1

WHITE PAPER ON OSI PACKET FILTERING

Walt Lazear (lazear@gateway.mitre.org)

INTRODUCTION

The capabilities for a TCP/IP router to restrict or filter traffic based on network address or appli-

cation type is used in electronic network perimeter defense strategies
(so-called firewalls).

Many router vendors have access control commands to define
which protocols or applications

can be exchanged between which networks or hosts. The router
implementing these commands

forms a security boundary that allows only certain hosts on the
inside to converse (in perhaps

restrictive ways) with hosts on the outside.

No such capabilities for OSI protocols will be available in COTS
products until late 1992 or

early 1993. Even then, the capability is expected to be limited
to OSI NSAP address filtering,

without further restrictions based on OSI application type, because of
the complexities of the

OSI protocols.

This document discusses some of the issues in filtering OSI packets
by application type. It

assumes that restriction by NSAP address is possible and in
place. It seeks to explore the upper

layer conversations, characterize their components, and
highlight the open issues with filtering

them. The appendix contains results of on-line monitoring of OSI
conversations for various

applications.



2



3

SECTION 2

FILTERING REQUIREMENTS

2.1 General

The initial step is to characterize the flow of traffic to be filtered and to identify the source of

the required information for filtering. TCP traffic contains enough information in each packet

to filter the packets individually. The small number of protocol layers makes this task straight-

forward. Each packet contains not only the source and destination IP
addresses, but also the

TCP port numbers that identify the probable application
(ignoring subversion and collusion for

the time being). SInce the application runs directly on top of TCP, no further info is required

before making a filtering decision.

The OSI protocol stack has twice the number of layers and may
have sub-conversations occur-

ring at each layer before the next higher layer is allowed to
converse. Thus, each lower layer

may require that packets be allowed through the filter until
the topmost (application) layer con-

versation is begun. OSI (CLNP) packets may have the
information spread across several pack-

ets and may require that a conversation of packets be monitored
before a particular application

can be identified. The conversation needs to be described fully
before filter implementation is

attempted.

2.2 Protocol Analogy

An analogy to the OSI filtering problem would be trying to
make a router keep certain TELNET

users off the network. TELNET merely carries characters for a
conversation between a user and

a host, usually a character at a time. Even if we postulate a word at
a time transmission (for

simplicity) and a standard way of specifying the login prompt
(again, for simplicity), the prob-

lem is not simple. We have to allow a TCP connection to begin (several handshake
packets)

and then spot the login prompt going towards the user before we
can intercept the login answer

(the user’s ID). This answer would then be compared against the list of
“bad guys”. If the user

were to be denied, the router would have to throw away all packets
with the source and desti-

nation addresses and ports found in the login answer packet. The
TCP connection would even-

tually time out and be dropped by the end hosts.

Further complicating the issue is the ability in OSI protocols to use
locally-chosen selector

numbers at each protocol level for contacting an application.
The conventions are designed to

be advertised in the X.500 Directory, and offer a more flexible and autonomous environment

than the globally-registered “well-known” port numbers
used in TCP. Some way to specify the

selectors at each layer must be designed. In the TELNET example, you
might have to imple-



4

ment a way of saying what the login prompt actually looked like, so
the router could look for

it (e.g., “Login” versus “Enter User ID”).

2.3 Inbound Connections

Connections initiated outside the security boundary and directed
towards a host inside need to

be checked for several items. The destination NSAP address must
match an “approved” list of

hosts inside the boundary. The protocol Selectors or application contexts requested must be

checked against an approved list, since these determine the
application or service being

accessed. These Selectors are under local control, so the inside host
can define the Selectors

and they can be configured manually into the filtering router.

2.4 Outbound Connections

The above discussion has only addressed connections initiated
from outside the perimeter. That

filtering depends on an organization locally selecting the access points (protocol
Selectors) and

configuring these into the filtering scans. The situation
for connections initiated from within the

security perimeter is entirely different. In this case, the destination Selectors are chosen by
the

remote site. The initiating user may learn of the Selectors through
use of the X.500 directory

or through private correspondence with the destination system
administrator. It is unreasonable

and overly-constrictive to expect each destination host to have its
Selectors “registered” with

the filtering router. This process would be administratively burdensome and error-prone. Thus,

outbound connections can easily be limited by source NSAP, but not by Selectors.



5

SECTION 3

OPEN ISSUES

There are a number of issues associated with the filtering
process that have not been explored

in detail. They are presented here for completeness and to spur
discussion.

3.1 Selector Values

The local organization needs to define Selector values for the services
being offered across the

security boundary. This allows unambiguous determination of the legal
conversations. At issue

is which Selectors at which protocol layers are sufficient. Are presentation, session, transport,

and network all required?

3.2 Protocol Daemon Control

How can a boundary host control which user can start an OSI
daemon on which Selector? OSI

has no notion of “reserved” port numbers. Should there be
a mechanism such as the UNIX (not

TCP) “privileged port”, which requires super-user privileges to run a network daemon for a cer-

tain range of selectors. Such a mechanism is operating system
specific and non-COTS at this

time.

3.3 Connection Establishment

Preliminary monitoring shows that there is an exchange of PDUs
before the application is iden-

tified. This exchange is to establish a transport layer
connection. There is concern that allowing

PDU exchanges gratis between systems involves a security risk. NSAP
level filtering can

reduce the risk to a path between an outside system and an
approved inside system. But the con-

cern is that the specification might allow user data in the
preliminary PDUs.

One approach is to insert a proxy at the filtering router that would
intercept and respond posi-

tively to the transport connection request, but not notify the
destination system until the next

exchange of PDUs reveals a “legal” application. This appears
infeasible because part of the

transport information exchange is definition of connection
identifiers for each end. Thus, the

identifier would have to be supplied by the proxy and, if the
proxy is to step out of the way for

the rest of the conversation, it would have to be replaced by the real
identifier from the desti-

nation system. Changing identifiers in mid-conversation will
probably break most implemen-

tations.



6

3.4 Connection Re-Use

One of the concepts of OSI layering is that a lower-layer connection may be re-used by an

upper-layer protocol. That is, a transport connection might be left open
between two systems

as a type of permanent circuit that is used again and again by the
session layer (for different

applications). The efficiency gained is that connection establishment handshaking is
avoided

for each new session. The security concern is that a filtering
router would have to monitor every

packet for a session-closing command (or a new
session-opening command). Such a command

would indicate that another application is being started and needs to
be checked for legality.

That is the theory. In practice, we do not know if implementations simply close the
transport

connection every time an application terminates (although we
suspect so because of the sim-

plicity of such an approach).

3.5 Asymmetric Routing

If there is more than one path from a source to a destination,
dynamic routing can send inbound

packets along one path and outbound along another. Thus, instead of a two-way street, you have

two one-way streets. Filtering that depends on seeing both sides
of a conversation cannot exist

in this asymmetric environment. Unfortunately, it is the source that gets to choose how to reach

the destination and a variety of inputs may go into that
decision (only some of which are under

the destination’s control). Indeed, the source may launch in one direction
(towards a northern

entrance to an organization, for example), but intermediate routing may change the
direction

(to the southern entrance), based on information unknown
to either source or destination. One

way to defeat asymmetric routing is to limit to one the number
of inbound routes, but this can

have undesirable performance effects.

One way to combat the half-conversation view is to have the various
routers participating in

protecting an organization’s boundary exchange information about the state of conversations.

This introduces overhead and its own synchronization problems,
but allows the rest of the rout-

ing domain to function normally. Another approach is to restrict entrance to a boundary to a

single point, thus forcing all conversation through that point. This
restricts redundancy and

flexibility of routing paths, but does not require another
infrastructure protocol to synchronize

a group of boundary routers.

3.6 Dynamic Routing

A variation on the asymmetric routing problem occurs when an
established conversation

changes routers. That is, if we postulate a conversation that has been
going through a single

(filtering) router, we could envision that the router could go down. The
conversation could then

be routed to another (filtering) router through the use of
dynamic routing protocols. Unfortu-



7

nately, the new router has not seen the establishment phase of the
conversation and must make

a decision about the middle-of-the-conversation PDUs that have just
appeared. One choice is

to block the conversation and make it go through the establishment
phase again. This defeats

the transparency of dynamic routing, but is limited making
routing static only at the boundary

routers (a conversation must be routed continuously through a
single router). The rest of the

Internet (or organization) can be as dynamic as desirable. Another choice is to
leave it alone

and assume that someone else has blessed the establishment phase. This
does not sit well as

part of a formal security posture.

3.7 PDU Fragmentation

Each protocol layer may have the concept of splitting a chunk of
user data into suitably-sized

pieces. This can greatly complicate the task of filtering software.
It may force the recognition

and concatenation of PDU fragments at each layer before meaningful
comparisons can be

made. For example, the information conveyed in an association
can be too large to fit in a single

PDU. This can mean that the application conversation being started
cannot be identified for

another sequence of packets and that state information about the
conversation must be kept

even longer. Likewise, if one keys off the Transport connection and records the reference num-

bers for source and destination, one can match on these when
checking packets. Unfortunately,

when Network PDUs are segmented (fragmented) the Transport reference numbers only occur

in the first Network segment. It’s unclear what implementations do in the similar position with

IP fragmentation (TCP port numbers being only in the first
fragment).

3.8 Performance

Filtering adds some overhead to the normal PDU forwarding process. By
preliminary inspec-

tion, there would seem to be approximately ten to twenty times the
amount of detail work to

unwrap OSI packets as there is with TCP packets. Part of the work is
decoding ASN.1 encod-

ing, part is the number of fields to be decoded, and part is
keeping track of multiple PDUs until

a conversation has revealed what application is really using the
connection. In addition, there

needs to be a recovery or time-out mechanism for partial
conversations (that don’t complete or

where only one side is seen).



8


