
A Compiler for the Tcl Language

Adam Sah and Jon Blow

May 24, 1993

Abstract

Tcl is a highly dynamic language that is especially challenging to exe-

cute e�ciently. The dual-language nature of the system enforced by the C

callback mechanism makes traditional compilation and optimization un-

realistic. In addition, the lack of formal data types (and therefore type

checking) places severe limits on the ability to provide for e�cient data

storage at compile time. In this paper, we discuss the many issues involved

with compiling Tcl, and present a design for such a system, including the

mechanism for embedding a Tcl script into the compiler itself in order

to provide user extensibility. The current implementation is presented

along with results showing approximately ten times the performance of

the existing Tcl interpreter.

1 Introduction

1.1 Overview of the Tcl Language

Tcl[Ous93] is designed to address the need for a \scripting" language, providing

high-level control over a program. The interface between Tcl and the running

program consists of the Tcl runtime library, which is embedded into the C

application code.

Tcl appears to the programmer as a syntactically simple combination of Lisp

[Wil86], Perl [WS90] and the Unix Shell language [Bou78]. Like the Unix Shell,

it supports nested commands, automatic concatenation, and newline-command-

termination. From Lisp, it borrows `defun'-like syntax, default procedure argu-

ments, and eval(). Like Perl, Tcl's only data type is the string.

In Tcl, every statement can be thought of as a function call, in the form

of \cmd arg arg arg", where the `cmd' pseudo-function is the �rst whitespace-

separated argument and the args are the various whitespace-separated items

that follow it. Square-brackets denote nested commands; dollar-signs indicate

variable substitution; curly-braces serve to group text into a single argument,

without performing substitution.

An example follows:

1

comments start with a '#' character.

sets variable a to value "5" (the string, not the number!)

set a 5

sets b to the string "10".

The 'expr' command converts string ``5'' to the number 5,

(it is not performed by the interpeter)

set b [expr $a+5]

sets c to "5.510"

set c $a.$a$b

outputs the string "5".

puts stdout $a

define a new function; note default argument of '1'.

'proc' is a command taking "factorial", "{n 1}" and "if ... "

as arguments (curlies are stripped by the interpreter).

proc factorial { {n 1} } {

if {$n <= 1} {

return 1;

} else {

return [expr $n*[factorial [expr $n-1]]];

}

}

function "foo" gets called with the arguments "bar" and "7"

foo bar 7

One of the most interesting features of Tcl is its ability to be embedded

and extended through its C language library. From the C programmer's per-

spective, the Tcl interpreter is treated as an instantiable object (embedded),

which is passed the contents of the script to be run. This object exists as a

data structure in C working in tandem with a C function library. The Tcl run-

time library exposes all of the core commands to the C programmer directly,

so Tcl statements may be executed as C function calls to routines provided by

the library. This library is identical to the one that Tcl uses to evaluate state-

ments in a script. Thus, programs like wish are nothing more than main loops

which collect user input and pass it one statement at a time to a routine called

Tcl Eval().

Tcl can also be extended from the C program by registering commands with

the Tcl interpreter. The interpreter will call back to your C code when and

if that Tcl command is executed. In fact, this is how all of the core language

commands are implemented. In the above example, the set command is nothing

2

more than a registered callback whose function pointer is the library function

which handles set - the very same one which is available to the C language

programmer directly! The last statement in the example, \foo" doesn't exist in

the default Tcl language - it is either a call to a procedure de�ned in Tcl itself

using the proc mechanism, or a callback to a C function de�ned by the user,

where the arguments \bar" and \7" are passed to it, in their string forms.

1.2 Why Do We Need to Compile It?

Most Tcl scripts and commands are designed to operate over high level, expen-

sive constructs, where speed is not the primary consideration. In these cases,

the cost of the interpretation is negligible compared to the overhead within in-

dividual callback functions. For example, on a Sun Sparc2, the set command

takes under 75 microseconds. By comparison, creating a new window in X Win-

dows can take a human-noticeable amount of time, even on faster workstations.

Using Tcl as a heavyweight integration tool generally does not impact applica-

tion performance. Even in cases where it does, performance bottlenecks in Tcl

can easily be isolated and rewritten in C, in the form of callbacks.

However, this recoding is annoying and inbihits the con�gurability that Tcl

o�ers; it can also remove some of the modularity of a well-written Tcl-based

program. For example, if you discover that a loop written in Tcl is a performance

bottleneck, it would be rewritten in C, and a new command registered with the

Tcl interpreter. Once this has been done, any commands in the loop are now

hard-coded relative to the high degree of con�gurability that Tcl o�ers.

1.3 Summary

In the remainder of the paper, we discuss the design and implementation of

the compiler in depth. Section 2 describes the compiler interface, an overview

of the user's view of the compilation system. Section 3 discusses the high-level

design decisions involved with the e�cient execution of Tcl. In Sections 4 and 5,

the given implementation is presented, �rst in terms of the compiler, and then

in terms of the runtime. Section 6 presents the results of this implementation

through a series of small benchmarks, and Section 7 summarizes our e�orts and

proposes future work.

2 The Compiler Interface

2.1 Previous Work

2.1.1 Emacs Lisp

Emacs is a programmable editor whose underlying language is a variant of Mock-

Lisp called Emacs Lisp[Sta86] (or elisp for short). Included in this system is a

3

\byte-compiler" which preparses the code to a binary format. All of the elisp

source �les are stored in a single directory, with names ending in \.el". Byte-

compilation of a source �le is output to the same �lename with the extension

\.elc". When this source �le would otherwise be loaded, the system automat-

ically looks for a compiled version of it and will load that in the place of an

original source �le.

The byte-compiler's output is portable among many platforms. This means

that compiled elisp �les can be placed on servers, side by side with the original

source code, instead of requiring a separate set for each architecture.

2.1.2 Perl

Perl[WS90] is a scripting language with many characteristics of Tcl: it is de-

signed for high-level control over arbitrary input, its syntax is designed around

the string data type, and its support for data types is nearly identical- asso-

ciative arrays, scalar variables, and arrays of scalars (which are similar to Tcl

lists).

Perl lacks embeddability, and so fails to a large degree to serve as a high-level

control language. Note, however, that Perl does support arbitrary inter-process

communication (IPC), so applications which can talk in this way can interface

with Perl using this facility.

Perl is compiled on demand each time the script is loaded.

2.2 The User Interface

The Tcl Compiler (TC) operates much like the elisp byte compiler: it produces

binary �les which the runtime system knows to look for, and if found, will

use in the place of the raw source when executing. This runtime is essentially

a replacement Tcl interpreter, which takes as input binary data from a �le,

instead of textual data. Like elisp, TC's output �les are portable, and so can

be placed on servers.

The reason we chose this model is that Tcl cannot be compiled into pure

machine code without the support of a large runtime library. This is due to the

user-extensibility system, where builtin commands can be overloaded, removed,

added, etc. Even simple statements may have completely di�erent behaviors

dependent on some portion of code that the compiler does not have access to.

This property is described in further detail below.

One alternative would have been to follow Perl's model, where the source

code is read at runtime and compiled on-the-
y before each execution. However,

Tcl has a high parsing cost, so it is desireable to preparse source code prior to

execution. Additionally, Tcl is used for large applications, some of which are

10,000 lines long. These programs must be compiled prior to execution.

4

3 Di�culties with Compiling Tcl

3.1 Some Terms

To simplify this paper, some terms are explicitly de�ned. A \statement" refers

to an individual line of Tcl code, including all arguments. The �rst argument

is called the \command"; all subsequent whitespace-separated arguments are

called \arguments" or \args". If a command was not de�ned by proc, but

exists in the interpreter (eg. it is a registered C callback function), it is called a

\builtin". Note that the entire Tcl core command set is implemented as builtins.

3.2 Overview

It is tempting to naively design a traditional compiler for Tcl, which outputs

pure executable code. However, there are numerous problems with this. First,

Tcl is highly dynamic in nature. Commands (functions in the C model) can

be called by their string names or rebound at any point through the rename

command. Similarly, variables can be unset, commands may not exist (and

hence trigger unknown to be called), traces can be placed on all data objects,

and so on. To implement all of these features would require both a large runtime

library and enormous overhead in each usage, not dissimilar from the same

overhead that the existing interpreter incurs.

Second, it is unclear how to e�ciently store data for Tcl. Since there are

no types in the language, there is no obvious data layout method one can use

besides strings. Again, this is what the current interpreter does.

Lastly, Tcl uses C callbacks (\builtins") as �rst-class functions, where the

callbacks have direct access to the interpreter state. Callback functions are free

to make changes to, or depend on, the state of the virtual machine; these are

called \side e�ects" in compiler parlance. The di�culty with these side e�ects in

the Tcl/C model is that they are impossible to predict. Without this knowledge,

the compiler cannot be sure that any given statement won't cause a rename,

unset or some other state change in the virtual machine.

3.3 Preparsing

A more humble approach is needed. In this vein, one can start by noting that

Tcl's \cmd arg arg arg" style statements lend themselves to preparsing. This is

because it is always possible to determine the arguments to a given command.

At the very least, the compiler can break up the statement into string arguments,

which will save some amount of parsing e�ort normally expended at runtime.

Preparsing is very valuable in Tcl; a typical Tcl script spends most of its non-

work-related execution time scanning and parsing statements.

However, preparsing statements into arg lists is not a panacea. Many impor-

tant commands take arguments containing large amounts of data. For example,

5

if, while, proc, for, and other commands all take \command lists" in one or

more arguments. These cmdlists are often hundreds of bytes long; they e�ec-

tively can contain entire scripts within them. Clearly, one would like to parse

these internally as well. By the same token, we would like to also preparse the

boolean expressions associated with for, if, and while, and the list structures

used by lindex and the other list commands, and so on. In the following exam-

ple, if arguments weren't individually parsed, the body of this for loop would

remain in string form, and would require runtime parsing, and thus the compiler

would provide little performance improvement.

for {set i 0} {$i<1000} {incr i} {

<many lines of code>

}

To accomplish this, a typing system for Tcl is needed, where one doesn't

exist. Normally, the types are coerced from string data at runtime, on a per-

command basis. It is happenstance that the list format is universal among list

commands, for example. Thus, some way is needed to inform the compiler as to

the argument types each command expects. Then, if a static string is found at

compile-time, we can preparse this to be of that type. For example, since almost

all cmdlists are surrounded by curly braces in Tcl source code, the contents are

static (no substitution will occur prior to the argument being passed to the

command). These can then be parsed at compile-time, and treated as a list of

commands. In the case where variable substitution is allowed, such preparsing

cannot happen, since the argument value depends on a variable's value, which

is unknown at compile-time.

3.4 Solving the Side E�ects Problem

While it seems that user-de�ned C callbacks present an intractable optimization

problem, it actually is possible to guess the state of the virtual machine from

the Tcl source code. In Tcl, user-de�ned callbacks are required to use a set of

C library routines to access the Tcl internals (ie. variable values). Our system

adds hooks to this core Tcl library, which will call out to TC routines when

triggered. This allows the TC runtime to maintain more e�cient structures,

and keep them updated if they change unexpectedly. For example, the TC

runtime maintains a table of commands, which is directly indexed, in order to

save on the hashing costs normally associated with Tcl variable access. When

a C callback function attempts to rename a command, this is trapped and the

table entry is updated.

However, this mechanism is still insu�cient to allow for more aggressive

optimizations, since you cannot determine what the dependencies are until they

are triggered. Thus, it is impossible to implement optimizations that involve

code motion, elimination of unused variable assignments, and so on.

6

4 The TC Implementation

4.1 Preparsing and the Expression Forest

The Tcl compiler uses a preparsing method, as described above, to output a tree-

like structuring of expressions and commands. At the roots are the individual

top level script statements, which include only those commands not nested in

cmdlists within control structures. For example, all commands found within the

arglists for commands like proc, if, etc. cannot be roots of the tree, although

the proc, etc. commands can be, if they themselves are not nested.

The node types for this tree include notations for nested commands ([...

]), concatenated expressions (ie. ab), etc. An example follows:

Source Code

this is a comment

set a 5

concat the string returns of the two nested commands,

and pass this as the arg to 'foo'.

foo [bar set][foo {5}]

Expression Dictionary (Parse Tree)

1. cmd \set"

2. constant \a"

3. constant \5"

4. cmd \foo"

5. cmd \bar"

6. constant \set"

7. nested statement [2 args][#5][#6]

8. nested statement [2 args][#4][#3]

9. concat [2 args][#7][#8]

Top Level Command List (Roots of the Tree)

[3 args][#1][#2][#3][2 args][#4][#9]

Notes: \#n" refers to a reference to item number n. The compiler detects

multiple uses of the same constants and other primitive objects, and reuses

these entries. For example, the entry for the foo command (#4) is reused. This

system is also able to recognize the di�erence between commands and static

strings, where the command name is the �rst argument. It also strips the curly

braces from the static string in the third line of code. The concatenation and

nested commands were discovered at compile time. Lastly, comments have been

stripped.

7

4.2 Argument Parsing

As described previously, it is necessary to preparse arguments in order to achieve

real performance gains. To support this, we introduce a type system into Tcl

for parsing compile-time constants, and a system for determining which builtin

commands expect which types for each argument.

Consider the `incr' command. In its �rst argument, it expects to be passed

the name of a variable. In its second argument it (optionally) expects an integer

value (a string which can be parsed as an integer). Thus, if the input contains

the statement

incr a 5

we can know to treat \a" as the variable whose name is \a", not the string

\a". Likewise, \5" here is the integer value 5. Note that if the \5" were replaced

by \$b" for example, then we couldn't assume anything, except that the value

of b might be a string which has an integer representation. Even this is not

necessarily true, since Tcl supports exception handling, so this blunder may be

intentional! The handling of these more di�cult cases is discussed below in

the runtime system, since these are dynamic e�ects that are orthognal to the

problems encountered by the compiler.

It would be entirely possible to hardcode the compiler to recognize these

types and the commands which use them. However, Tcl is extendable. This

means that a user could potentially author his or her own builtin which takes as

an argument a list or some other large structure, which we would like preparse.

Thus, it makes more sense to allow the compiler itself to be extensible, so such

power users can compile their own commands and arguments.

For this job, Tcl itself is ideal, and hence we embed an interpreter into the

compiler. This interpreter reads in a con�g script at startup which declares data

type support and associates them to builtin commands. The Tcl script contains

the following two commands, in addition to the Tcl core:

type <name> <parseproc> <codegenproc> <loadproc> <printproc>

This declares a new argument type, which will use parseproc to convert

string data into parsed data of this type, codegenproc to output into binary

form, loadproc to load at runtime, and printproc to converted back into string

form for output. These procs are just names, which are associated statically by

the C callbacks to real C function pointers taking speci�c arguments, using the

Tcl hashing mechanism provided by the Tcl core library (Tcl HashXxxx).

builtin <name> <parseproc> <codegenproc> <loadproc> <execproc> {

{ <type1> <argname1> }

{ <type2> <argname2> <default2> }

...

} <return_type>

8

This declares a new command to be compiled specially, named <name>, with

procs de�ned for its compilation and evaluation. Note that all but the execproc

may be left empty (passed fg , which evaluates to the null string) because

virtually all commandsfollow a standard style employing known types for each

argument. When left empty, TC substitutes a default routine to process the

builtin.

For each list element in the body of the builtin declaration, we specify what

argument type should be passed to this command. A name is required for identi-

�cation, debugging, and bookkeeping purposes. The optional third element is a

default string for that argument. For example, the `incr' command is described

as follows:

builtin incr {} {} {} exec_incr {

{ variable var }

{ integer i 1 }

} integer

The \1" is preparsed as type integer and entered into the dictionary. If incr

is called with only one argument, the runtime will substitute this default value

for the second argument.

5 Runtime Issues

As described previously, the TC runtime consists of an interpreter capable of

reading in byte encoded Tcl scripts, preparsed as above. In order to support

possible state changes such as command renaming, the Tcl core library is mod-

i�ed to update the state of the byte-code interpreter when these changes occur.

It is now appropriate to discuss the actual execution of commands in this

new environment. In order to take advantage of the preparsing the compiler has

done, we need a new callback interface. This is because the standard argc/argv

interface defeats the purpose of preparsing by taking string as arguments.

This implies the need to modify the C callback routines for any commands

which are to be compiled. This requirement is entirely reasonable. First, the

new interface is very easy to construct from the argc/argv one for a given com-

mand. Second, the argc/argv interface is extremely slow due to its use of run-

time parsing, and would require modi�cation in any higher-performance system.

Lastly, not builtins need to be compiled. Only those which are frequently called

or which are passes large amounts of data impact the performance of the �nal

application.

This model needs to be extended in order to minimize the parsing done at

runtime, which still happens for non-static strings. First, we modify the data

return system from dealing strictly with strings (Tcl AppendResult()) to using

this parsed form of a type and a data pointer. Again, this is strictly for the new

style of compiled callbacks. This is needed so that the results of one command

9

might be passed directly to another without reparsing the data return. An

example follows:

incr a [expr 4+5]

Assuming that both incr and expr are being compiled, we would like the

return from expr to be the value 9, not the string \9". This could then be

directly sent into incr without reparsing. The only way to avoid such reparsing

is if expr doesn't convert its result into string format. Hence the need for this

new style of return.

We also need to change the way that variables are stored in the Tcl inter-

preter. If we take the above example and modify it to read

set b [expr 4+5]

incr a $b

it becomes clear that if we disallow the value of \b" to be stored in parsed

form, we cannot avoid reparsing it before its usage in incr. Thus, TC \dual-

ports" its variables, storing both a string pointer as well as a compiled data

value (the \typed data �eld"). Now, if expr returns an integer, then \b" will

store it in the typed data �eld, and invalidate the string �eld. incr can then be

called directly with this parsed value. If \b" were of some other type, it would

need to be converted to a string �rst, then back to an integer, as Tcl currently

does implicitly.

If this seems overly complex, recall that Tcl is truly a typeless language.

Lists, boolean expressions, integers and so on are not distinguished by Tcl until

individual commands throw exceptions based on bad data. The following code

with execute without error:

proc cdr {list} { return [lrange $list 1 end] }

set i 2; set j 3; set k "3 4"

linsert "$j $k" [cdr {1 2}] ij

The output of this command is \3 3 23 4". During the course of execution

we have implicitly converted from string to integers, strings to lists, lists to

integers, and integers to strings. While this is clearly not an example of good

coding practice, it is legal Tcl input, and in many cases similar usages may

appear in real source code. It is imperative that the TC runtime be able to

perform these operations smoothly.

The \dual-port" implementation provides su�cient machinery to coerce data

into parsed form, and keep it there as long as possible. The rule for statements

is now simple: for each argument, convert the given data to the proper type,

then call the compiled callback interface once the arguments are assembled.

The rules for conversion amount to treating the two data �elds as caches to the

value. If the data is required in a speci�c type, and does not currently exist in

10

that form, it is converted. If the destination type is a string, its value is stored

in the string �eld; otherwise, the value is stored in the typed data �eld. The

writing of a �eld is treated as follows:

Currently Valid Writer Action

string only string string form updated.

typed only string string form updated, typed form invalidated.

both string string form updated, typed form invalidated.

typed only typed typed form updated.

string only typed typed form updated, string form invalidated.

both typed typed form updated, string form invalidated.

An example is provided:

set a 2

set b [expr 4*$a]

incr b

puts stdout ba

When a is initially set to \2", its value becomes the string \2", rather than

the integer value 2. This is because we cannot assume its usage as an integer

later (and data lossage might result if we guessed wrong). Its usage in the expr

call is without curly-braces, so again we cannot make assumptions about the

compile-time parsing of \4*$a" (consider what happens if a is reset to the string

\4+5"). As grim as this seems, b still receives the integer value \8", because the

call to expr returned the numeric value 8. Hence the call to incr requires no

parsing. In the puts call of the last statement, b requires conversion to string

form, but a does not.

To see the real bene�ts of this system, a more realistic example is presented,

where we sum the �rst thousand integers (the hard way):

set sum 0

for {set counter 0} {$counter<1000} {incr counter} {

incr sum $counter

}

In the standard Tcl interpreter, this requires 6000 calls to hash the strings

\counter", \sum" and \incr"; the value of \counter" is parsed 3000 times and the

value of \sum" 1000 times; and the comparison string is parsed 1000 times. In

TC, no hashing occurs (it happens at load time), the values are parsed precisely

once (during the �rst iteration, when it converted the values to integers), and

the comparison string was preparsed, so no e�ort was required at runtime.

11

6 Results

The above example involving summing the �rst 1000 integers required 630 mil-

liseconds on a DecStation 3100 using wish. Using TC, it required only 57

milliseconds for speedup of 11 times. Some more examples follow which illus-

trate the relative strengths and weaknesses of TC. Note that in no case is TC

slower than the original Tcl interpreter.

Test 1: Simple variable access and the incr command. This is espe-

ically fast under TC, because only the �rst iteration needs to parse the value of

counter. The time command is used to perform iteration because a for loop

would interact with the timing data. Note that the times are per iteration in

this case.

Input Script Performance- �sec per iter.

set counter 0 Uncompiled Tcl: 219 �sec

puts stdout [Compiled Tcl: 18 �sec

time fincr counterg 50000 Speedup: 12.17x

]

Test 2: Empty loop. The limiting factor of loops are the boolean ex-

pressions, which are less e�cient to evaluate than simple variable accesses, as

compared to uncompiled Tcl.

Input Script Performance- msec total

for fset counter 0g f Uncompiled Tcl: 3,670 msec

$counter<10000g fincr counterg f Compiled Tcl: 425 msec

g Speedup: 8.64x

Test 3: Nested loops. This shows a more realistic example of the relative

speedups of loops.

Input Script Performance- msec total

for fset count1 0g f Uncompiled Tcl: 14,090 msec

$count1<1000g fincr count1g f Compiled Tcl: 1,649 msec

for fset count2 0g f Speedup: 8.54x

$count2<1000g fincr count2g f

g

g

12

Test 4: Pessimistic case- we can do nothing but break the inner com-

mand into arguments and pass to the normal evaluation mechanism, because

the command is not known at compile time.

Input Script Performance- �sec per iter.

set oper incr Uncompiled Tcl: 244 �sec

set count 0 Compiled Tcl: 188 �sec

puts stdout [time f Speedup: 1.30x

$oper count 2 g 10000

]

7 Conclusions and Future Work

When this project was started, it was unclear that compiling Tcl was even

feasible, much less useful. The performance metrics taken clearly show that it

is feasible. The latter will be determined as this project nears release and users

begin compiling real Tcl scripts. However, the results are auspicious: ten-fold

performance improvements are almost always useful.

The existing system is far from complete. There are many types and many

commands which have not been implemented, and are currently being left in

string form by the compiler and runtime system. Internally, the software has

been kludged in several places in order to provide fast proof-of-concept, at the

expense of long-time viability, which will have to be replaced in the near future.

Lastly, there are the usual array of bugs, which must be eradicated before any

attempt is made at production usage.

On the wish list, we include the ability to support direct-conversion func-

tions. This is needed in the case of a arg-type mismatch of two similar types,

where one would want implicit conversion (ie. int to
oat). This has the po-

tential to provide great performance gains in these cases, as compared to the

current system which converts to a string and then into the detsination type.

Second, few of the data types are implemented. Of these, the most impor-

tant are lists. Some preliminary tests indicate possible gains of 1-2 orders of

magnitude over the existing system of storing lists as strings.

Lastly, we propose make the replacement callback style (structure pointers

instead of string pointers) become the standard for Tcl for some future version.

In this system, callbacks which want strings would need to ask for them as a

real data type. This has the potential to channel the performance improvements

back to users employing the command line, since such a system would not need

to rely on the compiler.

We would like to thank the following people for their advice, contributions

and other assistance: John Ousterhout, Sue Graham, Raph Levien, Brian Den-

13

nis, and the members of the Tcl/Tk Users Group. Ashok Singhal, Colas Naha-

boo, and Wayne Throop provided a multi-language test suite.

8 Bibliography

References

[Bou78] S.R. Bourne. The Unix shell. The Bell System Technical Journal,

July-August 1978.

[Ous93] John Ousterhout. An Introduction to Tcl and Tk. Addison-Wesley

Publishing, 1993.

[Sta86] Richard Stallman. The Emacs Lisp Reference Manual. The Free Soft-

ware Foundation, 1986.

[Wil86] Robert Wilensky. LispCraft. W.W.Norton, 1986.

[WS90] Larry Wall and Randal L. Schwartz. Programming Perl. O'Reilly and

Associates, 1990.

14

