
An Introduction To Tcl and Tk

John K. Ousterhout
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley, CA 94720

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal

use only. Any other form of duplication or reproduction requires prior written permis-

sion of the publisher. This statement must be easily visible on the first page of any

reproduced copies. The publisher does not offer warranties in regard to this draft.

Note to readers:

This manuscript is a partial draft of a book to be published in 1993 by Addison-Wes-

ley. Addison-Wesley has given me permission to make drafts of the book available to

the Tcl community to help meet the need for introductory documentation on Tcl and

Tk until the book becomes available. Please observe the restrictions set forth in the

copyright notice above: you’re welcome to make a copy for yourself or a friend but

any sort of large-scale reproduction or reproduction for profit requires advance per-

mission from Addison-Wesley.

I would be happy to receive any comments you might have on this draft; send them to

me via electronic mail at ouster@cs.berkeley.edu. I’m particularly interested

in hearing about things that you found difficult to learn or that weren’t adequately

explained in this document, but I’m also interested in hearing about inaccuracies,

typos, or any other constructive criticism you might have.

2

DRAFT (10/9/92): Distribution Restricted

i

DRAFT (10/9/92): Distribution Restricted

Table of Contents

Chapter 1 Introduction 1

1.1 The philosophy behind Tcl 2

1.2 The Tk toolkit 5

1.3 Reading this book 6

Chapter 2 Tcl Basics 9

2.1 Simple commands 9

2.2 Command terminators 10

2.3 Normal and exceptional returns 11

2.4 Variable substitution 11

2.5 Command substitution 12

2.6 Backslash substitution 13

2.7 Quoting with double-quotes 14

2.8 Quoting with curly braces 15

2.9 Comments 17

Chapter 3 Variables 18

3.1 Simple variables and the set command 18

3.2 Arrays 20

3.3 Variable substitution 20

3.4 Removing variables: unset 22

3.5 Multi-dimensional arrays 23

3.6 The incr and append commands 24

3.7 Preview of other variable facilities 24

DRAFT (10/9/92): Distribution Restricted

ii

Chapter 4 Expressions 26

4.1 Introduction and the expr command 26

4.2 Operands and substitutions 27

4.3 Operators and precedence 29

4.3.1 Arithmetic operators 29

4.3.2 Relational operators 31

4.3.3 Logical operators 31

4.3.4 Bitwise operators 32

4.3.5 Choice operator 32

4.4 Types and conversions 33

Chapter 5 Lists 34

5.1 Basic list structure and the lindex command 34

5.2 Creating lists: concat, list, and llength 37

5.3 Modifying lists: linsert, lreplace, lrange, and lappend 38

5.4 Searching lists: lsearch 40

5.5 Sorting lists: lsort 41

5.6 Converting between strings and lists: split and join 41

Chapter 6 Control Structures 43

6.1 The if command 43

6.2 Looping commands: while, for, and foreach 46

6.3 Loop control: break and continue 47

6.4 The case command 48

6.5 Generating commands on the fly: eval 50

6.6 Executing from files: source 51

Chapter 7 Procedures 53

7.1 Procedure basics: proc and return 53

7.2 Local and global variables 55

7.3 More on arguments: defaults and variable numbers of arguments 56

7.4 Exotic scoping facilities: upvar and uplevel 58

iii

DRAFT (10/9/92): Distribution Restricted

7.5 Replacing, renaming, and deleting commands 60

Chapter 8 Errors and Exceptions 63

8.1 What happens after an error? 63

8.2 Generating errors from Tcl scripts 66

8.3 Trapping errors with catch 66

8.4 Exceptions in general 67

8.5 Reissuing errors 69

Chapter 9 String Manipulation 73

9.1 Generating strings with format 73

9.2 Extracting characters: string index and string range 78

9.3 Parsing strings with scan 79

9.4 Simple searching and comparison 81

9.5 Glob-style pattern matching 81

9.6 Pattern matching with regular expressions 82

9.7 Using regular expressions for substitutions 86

9.8 Length, case conversion, and trimming 87

Chapter 10 Accessing Files 89

10.1 File names 89

10.2 Basic file I/O 91

10.3 Random access to files 93

10.4 The current working directory 95

10.5 Manipulating file names 95

10.6 File information commands 98

10.7 Errors in system calls 100

Chapter 11 Processes 101

11.1 Invoking subprocesses with exec 101

DRAFT (10/9/92): Distribution Restricted

iv

11.2 I/O to and from a command pipeline 104

11.3 Environment variables 105

11.4 Terminating the Tcl process with exit 105

Chapter 12 History 107

12.1 The history list 107

12.2 Specifying events 110

12.3 Re-executing commands from the history list 110

12.4 Current event number: history nextid 112

12.5 Retrieving without re-executing 112

12.6 History revision 113

12.7 Modifying the history list 114

Chapter 13 Accessing Tcl Internals 117

13.1 Querying the elements of an array 117

13.2 The info command 120

13.2.1 Information about variables 120

13.2.2 Information about procedures 122

13.2.3 Information about commands 124

13.2.4 Tclversion and library 124

13.3 Timing command execution 125

13.4 Tracing operations on variables 125

13.5 Unknown commands 128

1

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the publisher. This

statement must be easily visible on the first page of any reproduced copies. The publisher does not

offer warranties in regard to this draft.

Chapter 1

Introduction

This book is about two systems called Tcl and Tk that provide a simple yet powerful pro-

gramming system for developing and using windowing applications. Tcl stands for “tool

command language” and is pronounced “tickle.” It is a simple interpretive programming

language. Tcl is implemented as a library of C procedures, so it can be included in many

different applications and can be used for many different purposes. Tk is a toolkit for the

X11 window system. Its name is pronounced “tee-kay.” Tk is also implemented as a

library of C procedures so it too can be used as part of many different windowing applica-

tions. More importantly, Tk is implemented using Tcl: its facilities can be invoked using

Tcl commands.

If an application is based on Tcl and Tk, then both its functionality and its user inter-

face can be modified at run-time by writing short Tcl scripts. This allows users to person-

alize and extend existing applications without having to recompile them. Many new

windowing applications can be created without writing any C code at all, just by writing

short scripts for a windowing shell called wish, which contains Tcl and Tk. In the same

way that a script for a shell program like csh can usually be written much more quickly

than a C program that does the same thing, many simple windowing applications can be

written more quickly as wish scripts than as C programs that do the same thing.

Even more important, Tcl and Tk make it easy for different applications to communi-

cate with each other. Tk provides a special command called send, which allows any Tk-

based application to send Tcl commands to any other Tk-based application. Send pro-

vides a much more powerful form of communication than the window system’s selection,

which is the only mechanism available in most of today’s X11 applications. With send,

hypertext and hypermedia applications become easy to build; spreadsheets can query data-

bases for values; user-interface editors can modify the interfaces of live applications as

FIGURE 1

TABLE 1

2 Introduction

DRAFT (10/9/92): Distribution Restricted

they run; and many other similar things become possible. Tcl and Tk are intended to stim-

ulate the development of hypertools: specialized applications that can be plugged together

in a variety of interesting ways.

This book provides a complete explanation of both Tcl and Tk. It contains five major

parts:

• Part I introduces the features of the Tcl language. After reading this section you will be

able to issue commands to Tcl-based applications and write scripts to extend those

applications.

• Part II describes the additional Tcl commands provided by Tk, which allow you to cre-

ate user-interface widgets such as menus and scrollbars and arrange them in windowing

applications. After reading this section you will be able to modify the interfaces of

existing applications, create new applications by writing Tcl scripts for existing applica-

tions, and use send to make Tk-based applications work together.

• Part III describes how to write applications that use Tcl. It discusses the C procedures

provided by the Tcl library and how to use them to build applications. After reading this

section you will be able to write C code for new Tcl-based applications.

• Part IV describes the C library procedures provided by Tk. After reading this section

you will be able to write new widgets and geometry managers in C.

• Part V contains reference documentation for Tcl and Tk. It describes both the Tcl com-

mands and the C library procedures. Whereas the rest of the book is intended to be

introductory in nature, this section is intended as a reference manual, so it is terse but

complete.

This book is intended for people who will be scripting existing applications or writing

new ones. It assumes that you already know the C programming language and that you

have some experience with UNIX and with X11. You need not know anything about either

Tcl or Tk before reading this book: both of them will be introduced from scratch.

The remainder of this chapter provides a more thorough overview of the philosophy

and structure of Tcl and Tk.

1.1 The philosophy behind Tcl

Every computer application has a command language of some sort. It may be as simple as

the options that can be specified on the shell command line, or it may be a graphical lan-

guage consisting of menus and buttons and mouse clicks, or it may be a full-fledged pro-

gramming language, but there must be some way for a user to tell the application what to

do.

Larger and more powerful applications generally need to have more powerful and

flexible command languages. This is because it is hard for an application designer to pre-

dict all of the ways the application will be used. If the command language is powerful

1.1 The philosophy behind Tcl 3

DRAFT (10/9/92): Distribution Restricted

enough, individual users can tailor the application to their needs. If a user needs a function

that wasn’t present in the original application, he or she may be able to create that function

by writing a short program in the command language. A good command language allows

an application to be used for many tasks never considered by the application’s designers.

This greatly increases the value of the application.

Command languages are particularly important for interactive windowing applica-

tions. Windowing applications tend to have rich user interfaces with many different ways

the user can tell the application what to do. A user might invoke an operation by pulling

down a menu entry, or by clicking on a button-like object, or by dragging an object on the

screen, or by typing keystrokes. It’s important for interactive applications to be config-

urable. “Power users” may wish to create new operations that save them time by executing

a sequence of actions in response to a single keystroke or mouse movement. Or , a user

may wish to re-arrange the application’s appearance to fit his or her particular needs (e.g. a

left-handed user might prefer to have scrollbars on the left side instead of the right). Users

may also wish to connect different applications together so that they can work coopera-

tively. For example, a debugger application might use an editor application to display the

current line of execution, or a spreadsheet application might wish to retrieve values from a

database application. All of these functions require a mechanism for telling an application

what to do: a command language.

Unfortunately, today’s applications don’t usually have good command languages.

Where good languages exist, they tend to be tied to specific programs. Each new applica-

tion requires a new command language to be developed. In most cases application pro-

grammers do not have the time or inclination to implement a general-purpose facility,

particularly if the application itself is simple. As a result, command languages tend to have

insufficient power and clumsy syntax. This makes applications hard to use and even

harder to reconfigure or extend; it is difficult to use most applications for anything that

wasn’t explicitly planned by the application’s designers.

The guiding philosophy for Tcl is that every application, no matter how simple,

should have a powerful and flexible command language that can be used to control and

extend the application. Figure 1.1 shows how Tcl achieves this goal. The Tcl language

exists as a library of C procedures that can be included easily in any application. The

library procedures implement an interpreter for a simple but fully programmable lan-

guage; this language is called the Tcl core. The Tcl core provides a collection of commonly

used features such as variables, conditional and looping commands, procedures, associa-

tive arrays, lists, expressions, and file manipulation.

Each application can extend the Tcl core by implementing new commands that are

specific to that application. These application-specific commands are indistinguishable

from the commands in the Tcl core, but they are implemented by C procedures that are

part of the application rather than the Tcl core. With this approach, an application need

only implement a few new commands that provide the primitives for that application.

Then the commands in the Tcl core can be used to assemble the application-specific prim-

itives into more complex and powerful operations. For example, an application for reading

4 Introduction

DRAFT (10/9/92): Distribution Restricted

electronic bulletin boards might provide a command to query a bulletin board for new

messages and another command to retrieve a given message. Once these commands exist,

Tcl scripts can be written to keep track of a collection of bulletin boards, or cycle through

the new messages from all the bulletin boards and display them one at a time, or keep a

record in disk files of which messages have been read and which haven’t, or search one or

more bulletin boards for messages on a particular topic. The bulletin board application

would not have to implement any of these additional functions in C; they could all be wrt-

ten as Tcl scripts, and users of the application could write additional Tcl scripts to add

more functions to the application.

The Tcl approach has two advantages. First, Tcl makes it easy to build applications

that have powerful command languages. Even the simplest application becomes fully pro-

grammable and extensible when it is built with Tcl. Second, Tcl makes it possible for the

same language to be used in many different places, either to control different aspects of a

single application or to control entirely different applications. This uniformity makes it

easier for users since they can learn a single language and then be able to write scripts for

many different applications. The uniformity also provides great power. If different parts of

an application are all built as Tcl commands, then the different parts can work together by

exchanging Tcl commands. If a mechanism is provided to exchange Tcl commands

between applications (and Tk provides such a mechanism), then it becomes possible for

groups of applications to work together in ways that wouldn’t be possible if each applica-

tion had a different command language.

Figure 1.1. To create a new application based on Tcl, an application developer need only create the
new data structures specific to that application, plus a few new Tcl commands to manipulate the data
structures. The Tcl library provides everything else that is needed to produce a fully programmable
command language.

Built-in Commands

Application
Data Structures

Application Commands

Tcl
Interpreter

Tcl Library

Tcl-Based Application

1.2 The Tk toolkit 5

DRAFT (10/9/92): Distribution Restricted

1.2 The Tk toolkit

Tk is a toolkit for the X11 window system. It allows you to create user interfaces as collec-

tions of widgets, where each widget is a user-interface element such as a menu or scrollbar

or text entry. Tk allows the widgets to be connected to the rest of the application so that

actions on the widgets (such as invoking a menu entry or dragging the slider in a scrollbar)

can cause things to happen in the application. Tk also provides mechanisms for arranging

widgets into interesting groups of controls. The overall features of Tk are roughly similar

to the features of other toolkits. What makes Tk unusual is that it is based on Tcl; Tk’s fea-

tures exist as a set of Tcl commands that supplement those in the Tcl core.

It might seem that a textual command language like Tcl is the wrong thing for a win-

dowing environment, where most actions are invoked with the mouse and few users want

to type textual commands. In fact, though, a textual language is extremely useful in this

sort of environment; it just works behind the scenes. For example, menu entries and accel-

erator keys are bound to commands in the language: when a menu entry is invoked or an

accelerator key is pressed, the corresponding command is invoked. The command lan-

guage isn’t visible in normal use but it provides flexibility and power nonetheless. A user

can customize an application’s interface by changing the commands associated with the

elements of the user interface. A complex set of operations can be described with a script

in the command language and then associated with a menu entry or accelerator key so that

it can be invoked easily. Users can write scripts that are read automatically when an appli-

cation starts up and reconfigure the application’s interface to suit the user. And one appli-

cation can control another by sending the target application a command in its command

language.

The guiding philosophy for Tk is that all aspects of all interactive applications,

including both their interfaces and their functions, should be controlled by a single inter-

pretive command language. Since the language is interpretive, it can be used to modify

any aspect of an application or its interface while the application is running. Entirely new

applications can be created simply by writing Tcl scripts for a windowing shell based on

Tcl and Tk; this allows application designers to work at a higher level of programming

where new applications can be created more easily than if they had to be coded in C. The

fact that a single language is used everywhere results in great power. It makes it easy to

connect interface actions to application functions, and it makes it easy for an application to

modify its interface while it runs. If many different application are all based on the same

language then the benefit is even greater: users need only learn a single language and will

then be able to personalize and extend all the applications; in addition, the applications can

communicate directly with each other by sending commands back and forth in Tcl.

6 Introduction

DRAFT (10/9/92): Distribution Restricted

1.3 Reading this book

Most of this book (all but Part V) is intended to be introductory in nature. Each of Parts I-

IV introduces one major aspect of Tcl and Tk, and the material is organized for smooth

reading from start to finish within each part. Parts I-IV do not cover every feature of Tcl

and Tk; instead, they focus on the major concepts and the philosophy of how to use Tcl

and Tk.

Part V contains reference documentation. It is intended to be absolutely complete, but

it is terse so it probably won’t make sense until after you’ve read the corresponding mate-

rial from Parts I-IV. Part V is organized for looking up individual pieces of information

when you’re building or modifying applications, rather than for reading from start to finish

to learn the system.

Thus I recommend reading Parts I-IV to get a general feel for how things work, but I

suggest that you refer to Part V whenever you have specific questions about any feature of

Tcl or Tk.

Part I:

The Tcl Language

8

DRAFT (10/9/92): Distribution Restricted

9

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the publisher. This

statement must be easily visible on the first page of any reproduced copies. The publisher does not

offer warranties in regard to this draft.

Chapter 2

Tcl Basics

Part I of this book is about the Tcl language. This chapter describes the basic language

syntax. The other chapters in Part I describe the commands provided by the Tcl core, i.e.

those commands that will be present in every Tcl-based application. Once you’ve read

Part I you should be able to write scripts for existing Tcl-based applications.

Tcl has a simple syntax consisting of about a half-dozen rules that determine how

commands are parsed. Control structures and other features that have special syntax in

other languages are implemented as commands in Tcl, so they use the same simple syntax

rules as all other commands. For example, if and while are implemented as commands

in Tcl, and Tcl procedures are defined with a command named proc.

2.1 Simple commands

A Tcl command consists of one or more words separated by spaces or tabs. The first

word is the name of the command and additional words (if present) are arguments to that

command. Each command returns a string of zero or more characters as its result. For

example, here are two simple commands:

set a 22

22

expr 4+6

10

In this example, as in all Tcl examples in this book, Tcl commands that you type are shown

in a computer-like typeface and the results of commands are shown in an underlined type-

FIGURE 2

TABLE 2

10 Tcl Basics

DRAFT (10/9/92): Distribution Restricted

face. Results may be omitted in examples if they are empty or unimportant to the example.

The first command in the above example has three words: set, a, and 22. It causes the

set command to be invoked with two arguments, a and 22. Set treats its first argument

as the name of a variable and its second argument as a new value for that variable. It

assigns the new value (22) to the variable (a) and returns the new value as result. The sec-

ond command has two words, expr and 4+6. It causes the expr command to be invoked

with a single argument. Expr treats its argument as an arithmetic expression, evaluates

that expression, and returns the value as a decimal string.

Each Tcl command is free to interpret its arguments in any way it pleases. For exam-

ple, the set command expects its first argument to be the name of a variable while the

expr command expects its first (and only) argument to be an arithmetic expression. It is

possible to specify any string value as an argument for any command, but some com-

mands expect their arguments to have particular forms. The set command allows either

of its arguments to be an arbitrary string, whereas the expr command will generate an

error if its argument isn’t a proper expression.

Spaces and tabs are usually significant in commands since they act as word separators

(later in this chapter you’ll see how to prevent this effect). If the expr example had been

typed as

expr 4 + 6
(with spaces on either side of the +) then the expr command would receive three argu-

ments: 4, +, and 6. In this case expr would generate an error, since it expects to receive

only a single argument. If there are multiple spaces or tabs in a row, they act together as a

single word separator.

2.2 Command terminators

A Tcl script consists of one or more commands. Commands are normally separated by

newline characters. For example,

set a abcd
set b efg

is a script with two commands separated by a newline. The first command sets the value of

variable a and the second sets the value of variable b. Commands may also be separated

by semi-colons; this allows multiple commands to be placed on a single line. For example,

the script

set a abcd; set b efg

has the same effect as the preceding example. The newline and semi-colon characters are

removed by the Tcl parser and are not included in the arguments passed to the commands.

There are times when you’ll want to include newline and semi-colon characters as

part of command words, and to do this you’ll need to prevent them from being interpreted

as command terminators. You’ll see how to do this later in the chapter.

2.3 Normal and exceptional returns 11

DRAFT (10/9/92): Distribution Restricted

2.3 Normal and exceptional returns

A Tcl command can terminate in several different ways. A normal return is the most com-

mon case; it means that the command completed successfully and the return includes a

string result. Tcl also supports exceptional returns from commands. The most frequent

form of exceptional return is an error, such as the case above where expr received more

than one argument. When an error return occurs, it means that the command could not

complete its intended function. The Tcl command is aborted and any commands that fol-

low it in the script are skipped. An error return includes a string identifying what went

wrong; this string is normally printed out for the user by the application.

The complete exceptional return mechanism for Tcl is discussed in Chapter 8. It

includes a number of exceptional returns other than errors, provides additional informa-

tion about errors other than the error message mentioned above, and allows errors to be

“caught” so that effects of the error can be contained within a piece of Tcl code. For now,

though, all you need to know is that commands normally return string results but they

sometimes return errors that cause Tcl command interpretation to be aborted.

2.4 Variable substitution

Tcl provides three forms of substitution, each of which causes the contents of a command

word to be modified in some way. Substitutions may occur in any word of a command,

including the command name. Tcl also provides mechanisms for preventing substitutions,

which are described in Sections 2.6-2.8 below.

The first form of substitution is variable substitution. It is triggered by a dollar-sign

character and it causes the value of a Tcl variable to be inserted into a command word. For

example, consider the following commands:

set a 8
set b $a

8

The first command sets the value of variable a to 8 (it returns the string 8, which isn’t

shown). In the second command, the string $a causes variable substitution to occur.

Instead of receiving $a as its second argument, the set command receives 8 (the value of

variable a).

In the above example the variable was the only thing in the word where substitution

occurred. However, it is also possible for variable substitution to affect only a part of a

word, leaving the rest of the word unaffected. Here is a simple example:

set a 6
set b2 4
expr ($b2+2)*$a

36

12 Tcl Basics

DRAFT (10/9/92): Distribution Restricted

In the expr command the string $b2 is replaced with the value of variable b2 and the

string $a is replaced with the value of variable a, so that expr receives (4+2)*6 as its

argument. When variable substitution occurs, the variable name consists of everything

after the dollar-sign up to the first character that isn’t a number, letter, or underscore. In the

example above, the first variable name ends just before the + character and the second

variable name ends just before the newline that terminates the command. Any number of

variable substitutions may occur within a single word.

The examples above show only the simplest form of variable substitution. There are

two other forms of variable substitution, which are used for associative array references

and to permit characters other than numbers, letters, or digits in variable names. These

other forms are discussed in Chapter 3.

2.5 Command substitution

The second form of substitution provided by Tcl is command substitution. Command sub-

stitution causes part or all of a command word to be replaced with the result returned by

another Tcl command. Command substitution is invoked with square brackets:

set a 14
set a [expr $a+2]

16

When an open square bracket appears in a command word, the information following the

open bracket must be a Tcl script followed by a close bracket. If the script contains more

than one command, the commands are separated by newlines or semi-colons in the usual

fashion. Thus in the example above the expr command is executed while parsing the

words for set; when the set command is eventually executed, its second argument will be

16.

As with variable substitution, command substitution can occur anywhere in a word

and there may be more than one command substitution within a single word. The square

brackets determine the range of characters replaced in each command substitution: the

command for a given substitution ends at the matching close square bracket. A single

word may contain both command and variable substitutions, and nested commands may

themselves contain additional substitutions of any form, as in the following example:

set frac 2
set int 4
set num [expr $int+2].[expr $frac+1]

6.3

Command and variable substitutions are always performed in order from left to right.

If an error or other exceptional return occurs within a nested command, then the entire

chain of partially evaluated commands is aborted. For example, if the last command above

had been

2.6 Backslash substitution 13

DRAFT (10/9/92): Distribution Restricted

set num [expr $int + 2].[expr $frac+1]

then the first expr command would return an error (the extra spaces around + result in

too many arguments to expr) and neither the second expr command nor the enclosing

set command would be executed.

2.6 Backslash substitution

The final form of substitution in Tcl is backslash substitution. It is used to prevent special

interpretation of characters like [and $ and space so that they can be inserted into words.

For example, consider the following command:

set a 1\ 2\$\ 3\[

1 2$ 3[

There are two sequences of backslash followed by space; each of these sequences is

replaced in the word by a single space, and the space characters are not treated as word

separators. The backslash followed by dollar-sign is replaced with a single dollar-sign (no

variable substitution is triggered) and the backslash followed by open square bracket is

replaced in the word with the open square bracket (no command substitution is per-

formed). Any character that has special interpretation in Tcl, including backslash, can be

backslashed to prevent that special interpretation. This includes both the special characters

discussed so far and those to be discussed in the remainder of this chapter.

Backslash substitution can also be used to insert non-printing characters into words.

For example, \n is replaced with a newline character and \b is replaced with a backspace

character. Tcl supports all of the backslash sequences supported by the C compiler for

strings. See Table 2.1 for a complete listing of the backslash sequences supported by Tcl.

The sequence backslash-newline has special significance. When the last character on

a line is a backslash then both the backslash and the following newline are ignored; the

result is to join the line containing the sequence to the line following it, preventing the

newline character from acting as a command terminator. For example, the script

set a A\ very\ \
long\ string

A very long string

is identical in effect to the command

set a A\ very\ long\ string

A very long string

Unlike other backslash sequences, backslash-newline is replaced by nothing. Backslash-

newline is also special in that it is handled even when it occurs between braces, which are

described in Section 2.8.

14 Tcl Basics

DRAFT (10/9/92): Distribution Restricted

If a backslash is followed by one of the characters not in Table 2.1, then the backslash

receives no special treatment: both the backslash and the following character will appear

in the word.

2.7 Quoting with double-quotes

In addition to the substitutions described in the previous sections, Tcl supports two

forms of quoting. When a word of a command is quoted then some or all of the special

characters lose their special meaning: they are passed through to the command just like

other characters. Tcl provides two forms of quoting: double-quotes and curly braces. Dou-

Table 2.1. Backslash substitutions supported by Tcl. When one of the given backslash sequences
appears in a word of a Tcl command, the sequence is replaced by the corresponding string in the
right column. The terms space and newline refer to the space and newline characters. ddd refers
to any 1, 2, or 3 octal digits.

Backslash Sequence Replaced By

\b Backspace (0x8)

\t Tab (0x9)

\e Escape (0x1b)

\n Newline (0xa)

\r Carriage-return (0xd)

\{ Left brace (“{“)

\} Right brace (“}”)

\[Open bracket (“[“)

\] Close bracket (“]”)

\$ Dollar sign (“$”)

\space Space (“ ”)

\; Semi-colon

\" Double-quote (0x22)

\\ Backslash (“\”)

\newline Nothing

\ddd Octal value given by ddd

2.8 Quoting with curly braces 15

DRAFT (10/9/92): Distribution Restricted

ble-quotes only disable a few of the special characters, while curly braces disable almost

all special characters.

If the first character of a word is a double-quote character then the word consists of

everything after the double-quote up to the next double-quote character. Within the word,

neither spaces, tabs, newlines, or semi-colons have special interpretation; they are treated

just like other characters. Double-quotes provide a convenient way to specify words that

contain white space without having to type lots of unsightly backslashes. For example, the

following command sets variable a to a value containing several spaces:

set a "A long string with spaces"

A long string with spaces

Notice that the quotes themselves are not passed through to the command in the argument

word.

Variable substitutions, command substitutions, and backslash substitutions are still

performed within double-quotes, as in the following example:

set a 24
set b "if a is $a then a+4 is [expr $a+4]"

if a is 24 then a+4 is 28

To include a double-quote within a double-quoted word, use backslash substitution:

set a "word contains \" char."

word contains " char.

A double-quote character only has special interpretation when it is the first character

of a word. If the first character of a word isn’t a double-quote then double-quotes are

treated like ordinary characters within that word. Thus the following example generates an

error because it results in three arguments for the set command:

set a two" words"

In this case the three arguments are a and two" and words".

2.8 Quoting with curly braces

Curly braces provide a more radical form of quoting. If the first character of a word is an

open curly brace, then the word consists of everything up to the matching close curly

brace (not including the braces themselves). There may be nested curly braces within the

word. Within the word no substitutions or special interpretations occur whatsoever except

that (a) backslashed curly braces are not considered in the search for the closing brace and

(b) backslash-newline substitutions are made as described in Section 2.6. Curly braces

provide a convenient way to specify arguments that contain characters like $ and [with-

out having to type backslashes.

16 Tcl Basics

DRAFT (10/9/92): Distribution Restricted

Braces are most commonly used for lists and nested commands. For example, the fol-

lowing command sets variable a to a list containing three elements of which the middle

element is itself a list with two elements:

set a {a {b c} d}

a {b c} d

Lists are discussed in detail in Chapter 5. The second common use for curly braces is

specifying a Tcl program as an argument to a command. This is used for control structures

like if and while, as in the following example:

set result 1
set i 5
while {$i > 0} {

set result [expr $result*$i]
set i [expr $i-1]

}

This program computes the factorial of 5, leaving the value in variable result. The

while command receives two arguments: $i>0 and everything between the curly braces

(an initial newline, two commands separated by newlines, and a final newline). The

while command evaluates its first argument as an expression and if the result is non-zero

then it executes its second argument as a nested Tcl script and repeats this process over

and over until the first argument evaluates to zero. For this script to operate correctly it is

essential that the variables and commands in the arguments not be evaluated before the

while command is executed, but rather be evaluated repeatedly during the execution of

the command. Curly braces achieve just this effect by passing the $ and [characters

through to the while command so they can be evaluated during the execution of the

command.

 For comparison, consider the following example where double-quotes are used

instead of braces:

set result 1
set i 5
while "$i > 0" "

set result [expr $result*$i]
set i [expr $i-1]

"

In this case, the first argument to while is

5 > 0

and the second argument is

set result 5
set i 4

In this case the substitutions have all been made before the while command is invoked.

The loop will never terminate, since while’s first argument is a constant expression that

2.9 Comments 17

DRAFT (10/9/92): Distribution Restricted

always evaluates to non-zero. The body of the loop behaves exactly the same from itera-

tion to iteration, since all the arguments to all the commands are now constants.

See Chapter 6 for more details on control structures.

2.9 Comments

The comment character in Tcl is the hash-mark (#). If the first non-blank character of a

command is # then the # and all the characters following it up through the next newline

are treated as comments and discarded. Note that the hash-mark must occur in a position

where Tcl is expecting the first character of a command. If a hash-mark occurs anywhere

else then it is treated as an ordinary character that forms part of a command word.

Because of the way curly braces and hash-marks are processed, confusion can some-

times occur when comments appear within curly braces. For example, the following

example cannot be parsed correctly by Tcl:

while {$i > 0} {
Comment with {
set result [expr $result*$i]
set i [expr $i-1]

}

The problem with this example is that the hash-mark isn’t treated as a comment character

when the second argument to while is being processed; at the time the argument is pro-

cessed Tcl doesn’t even know that it contains a nested command. Because of this, the open

curly brace in the comment is considered to be significant, and Tcl can’t find enough close

curly braces to complete the word; an error results. The solution in this case is to add a

backslash before the brace in the comment so that it isn’t counted when parsing the argu-

ment to while.

18

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the publisher. This

statement must be easily visible on the first page of any reproduced copies. The publisher does not

offer warranties in regard to this draft.

Chapter 3

Variables

Like virtually all programming languages, Tcl allows you to use variables for storing

information. Tcl supports two kinds of variables: simple variables and arrays. Variable

names and variable values are both strings. This chapter describes the basic Tcl commands

for manipulating variables and arrays, and the substitution mechanism that allows variable

values to be passed to commands. See Table 3.1 for a summary of the commands dis-

cussed in this chapter.

3.1 Simple variables and the set command

A simple Tcl variable consists of two things: a name and a value. Both the name and the

value may be arbitrary strings of characters. For example, it is possible to have a variable

named “xyz !# 22” or “March earnings: $100,472”. In practice variable

names usually start with a letter and consist of a combination of letters, digits, and under-

scores. It will be easier to use the variable substitution mechanism if you restrict yourself

to these characters.

Variables may be created, read, and modified with the set command. Set takes

either one or two arguments. The first argument is the name of a variable and the second, if

present, is a new value for the variable:

set a "three word value"

three word value

set a

three word value

FIGURE 3

TABLE 3

3.1 Simple variables and the set command 19

DRAFT (10/9/92): Distribution Restricted

set a 44

44

The first command above creates a new variable a if it doesn’t already exist and sets its

value to the character sequence “three word value”. The result of the command is

the new value of the variable. Tcl variables are created automatically when they are

assigned values; there is no mechanism for declaring variables in Tcl except to access glo-

bal variables inside procedures (see Chapter 7).

The second set command has only one argument: a. In this form it simply returns

the value of the named variable without changing its value.

The third set command changes the value of a to 44 and returns that new value.

Although the value looks like a decimal integer, it is stored as an ASCII string. Tcl vari-

ables can be used to represent many things, such as integers, floating-point numbers,

names, lists, and Tcl programs, but they are always stored as strings. This use of a single

representation for all values is one of the sources of Tcl’s power, since it allows all of these

different values to be manipulated in the same way and interchanged.

An error will occur if you attempt to read the value of a non-existent variable. For

example, if there is no variable badName then the following command produces an error:

set badName

can’t read "badName": no such variable

append varName value ?value ...?
Append each of the value arguments to variable varName, in order. If
varName doesn’t exist then it is created with an empty value before
appending. The appending is done in an efficient way that avoids copying the
variable’s old value. The return value is the new value of varName.

incr varName ?increment?
Add increment to the value of variable varName. Increment and the
old value of varName must both be integer strings (decimal, hexadecimal,
or octal). If increment is omitted then it defaults to 1. The new value is
stored in varName as a decimal string and returned as the result of the com-
mand.

set varName ?value?
If value is specified, set the value of variable varName to value. In any
case, return the current value of the variable.

unset varName ?varName varName ...?
Remove the variables given by the varName arguments. Returns an empty
string.

20 Variables

DRAFT (10/9/92): Distribution Restricted

3.2 Arrays

In addition to simple variables Tcl also provides arrays. An array is a collection of related

variables. Each element of an array is a variable with its own name and value. The name

of an array element has two parts: the name of the array and the name of the element

within that array. Both array names and element names may be arbitrary strings; for this

reason Tcl arrays are sometimes called associative arrays to distinguish them from arrays

in other languages where the element names must be integers.

Array elements are referenced using notation like earnings(January) where the

array name (earnings in this case) is followed by the element name in parentheses

(January in this case). Arrays may be used anywhere that simple variables may be used,

such as in the set command:

set earnings(January) 87966

87966

set earnings(February) 95400

95400

set earnings(January)

87966

The first command creates an array named earnings, if it doesn’t already exist. Then it

creates an element January within the array, if it doesn’t already exist, and assigns it the

value 87966. The second command assigns a value to the February element of the

array, and the third command returns the value of the January element.

Arrays are similar to simple variables in that you can’t use an array value until it has

been set. Furthermore, each variable is either a simple variable or an array: an error will

occur if you attempt to use a simple variable as an array or vice versa.

3.3 Variable substitution

Chapter 2 has already introduced the use of $-notation for substituting variable values

into Tcl commands. This section describes the mechanism in more detail. Strictly speak-

ing, variable substitution isn’t necessary since you can achieve the same effect using com-

mand substitution with the set command. However, variable substitution is useful

because it saves typing and makes Tcl programs more concise and readable.

Variable substitution is triggered by the presence of an unquoted $ character in a Tcl

command. The characters following the $ are treated as a variable name, and the $ and

name are replaced in the command’s word by the value of the variable. The program

below shows a simple example of variable substitution:

set a 44
set b $a

3.3 Variable substitution 21

DRAFT (10/9/92): Distribution Restricted

44

Variable substitution can also occur in more complex situations where it is less obvi-

ous how it should behave. For example, consider the following command:

expr $a+2

Is the name of the variable a, which makes the most sense in this case, or a+2? There are

actually three forms of variable substitution, each with slightly different behavior.

The commands above are all examples of the first form, which is the simplest and

most common of the forms. In this form the $ is followed by a sequence of letters and dig-

its and underscores; the variable name consists of all the characters up to the first one that

isn’t a letter or digit or underscore. This means that the variable name a is used in the expr

example above, and the argument to the expr command is 44+2 (assuming that a has the

value 44).

The second form allows array values to be substituted. This form is like the first one

except that the character just after the variable name is an open parenthesis. In this case all

of the characters up to the next close parenthesis are taken as the name of an element

within the array, and the value of that element is substituted:

set earnings(January) 87966
set x "--- $earnings(January) ---"

--- 87966 ---

The element name (everything between the parentheses) is parsed in the same way as

a command word in double-quotes: variable substitution, command substitution, and

backslash substitution are performed, and there may be spaces in the element name. This

means, for example, that you can compute the name of an array element and insert that

computed value in the element name during substitution:

set earnings(January) 87966
set month January
set x $earnings($month)

87966

The above rules for parsing elements lead to an unfortunate inconsistency. A space in

an element name is not treated as a word separator during variable substitution, so the fol-

lowing command is perfectly legitimate, assuming that there exists an array currency
with an element named Great Britain:

set x $currency(Great Britain)

However, if the same element name is used as the target in a set command then the space

is significant and an error occurs:

set currency(Great Britain) pound

wrong # args: should be "set varName ?newValue?"

The error occurs because the Tcl parser uses its normal rules for parsing the first agument

to set. It has no idea that this argument is the name of an array element, and the argument

22 Variables

DRAFT (10/9/92): Distribution Restricted

isn’t enclosed in quotes or braces, so it treats the space character as a word separator. As a

result, the set command receives three arguments and generates an error. The solution in

this case is to surround the first argument with braces or quotes.

The last form of variable substitution is intended for situations where you wish to sub-

stitute a variable value in the middle of a string of letters or digits, or just before an open

parenthesis. For example, suppose that you wish to substitute the value of variable z just

after the x in xxxyyy. The following command won’t work because it includes too many

characters in the variable name:

set y xxx$zyyy

can’t read "zyyy": no such variable

To get around this problem Tcl allows you to enclose the variable name in curly

braces in variable substitution. When this happens the variable name is exactly what is

between the braces. No substitutions of any sort are made on the characters between the

braces and no special interpretation is given to the characters between the braces. Braces

provide a simple solution to the problems above:

set z 123
set y xxx${z}yyy

xxx123yyy

Curly brace notation can only be used for simple variables, but it shouldn’t be needed for

arrays anyway, since the parentheses already indicate where the variable name ends.

Tcl’s variable substitution mechanism is only intended to handle the most common

situations; it’s possible to imagine scenarios where none of the above forms of substitution

achieves the desired effect. Fortunately, these situations can be handled by using com-

mand substitution in conjunction with the set command. Tcl also provides many other

ways to deal with these situations, such as the eval and format commands; these tech-

niques will be described in later chapters.

3.4 Removing variables: unset

It is possible to remove variables using the unset command. This command takes

any number of arguments, each of which is a variable name. Each of the named variables

is destroyed: future attempts to read the variables will result in errors just as if the vari-

ables had never been set in the first place. The arguments to unset may be either simple

variables, elements of arrays, or whole arrays, as in the following example:

unset a earnings(January) b

In this case the variables a and b are removed entirely and the January element of the

earnings array is removed. The earnings array continues to exist after the unset
command. If a or b is an array then all of the elements of that array are removed along

3.5 Multi-dimensional arrays 23

DRAFT (10/9/92): Distribution Restricted

with the array itself. Each of the variables named in an unset command must exist at the

time the command is invoked or else an error occurs.

One convenient use of unset is to convert a simple variable into an array or vice

versa. For example, consider the following program:

set a 44
set a(12) 100

can’t set "a(12)": variable isn’t array

unset a
set a(12) 100

100

The first attempt to set a(12) fails because a is a simple variable rather than an array.

After the variable has been unset, the second set succeeds, re-creating a as an array

variable. Of course, at this point it is no longer possible to reference a as a simple variable.

3.5 Multi-dimensional arrays

The implementation of arrays in Tcl uses only a single element name in each reference,

but it is easy to make Tcl arrays behave as if they are multi-dimensional. To do this, just

use element names that consist of two or more independent parts concatenated together.

The program below simulates a two-dimensional array indexed with integers:

set matrix(1,1) 140
set matrix(1,2) 218
set matrix(1,3) 84
set i 1
set j 2
expr $matrix($i,$j)+12

230

In this example matrix is an array with three elements whose names are 1,1 and

1,2 and 1,3. However, the array behaves just as if it were a two-dimensional array; in

particular, variable substitution occurs while scanning the element name in the expr
command, so that the values of i and j get combined into an appropriate element name.

This example illustrates the power that derives from using textual strings everywhere

in Tcl. Even though the basic language facilities are very simple, it is possible to achieve

powerful effects by composing strings in interesting ways. In this case, element names are

composed in a way that simulates multi-dimensional arrays. You’ll see other interesting

ways of composing strings later in conjunction with commands such as eval.

24 Variables

DRAFT (10/9/92): Distribution Restricted

3.6 The incr and append commands

Incr and append provide simple ways to change the value of a variable. Incr takes

two arguments, which are the name of a variable and a number; it adds the number to the

variable, stores the result back into the variable as a decimal string, and returns the vari-

able’s new value as result:

set x 43
incr x 12

55

The number can have either a positive or negative value. It can also be omitted, in which

case it defaults to 1:

set x 43
incr x

44

Both the variable’s original value and the increment must be integer strings, either in deci-

mal, octal (indicated by a leading 0), or hexadecimal (indicated by a leading 0x).

The append command adds text to the end of a variable. It takes two arguments,

which are the name of the variable and the new text to add. It appends the new text to the

variable and returns the variable’s new value:

set x cat
append x dog

catdog

The append command doesn’t add any new functionality to Tcl, since the same effect

can be achieved with a set command:

set x "${x}dog"

catdog

The main reason for append is efficiency. Append is implemented in a particularly effi-

cient way that avoids copying the value of the variable. In contrast, the set approach

requires the current contents of the variable to be copied twice: once when creating the

argument to set and again to store it into the variable. For normal small variables the

copying costs are insignificant, but when manipulating variables with thousands or tens of

thousands of characters append will be substantially faster than other approaches.

3.7 Preview of other variable facilities

Tcl provides a number of other commands for manipulating variables. These commands

will be introduced in full after you’ve learned more about the Tcl language, but this sec-

tion contains a short preview of some of the facilities.

3.7 Preview of other variable facilities 25

DRAFT (10/9/92): Distribution Restricted

The array command can be used to find out the names of all the elements in an

array and to step through them one at a time (see Section 13.1). It’s possible to find out

what variables exist using the info command (see Section 13.2).

The trace command can be used to monitor a variable so that a Tcl program gets

invoked whenever the variable is set or read or unset. Variable tracing is convenient during

debugging, and it allows you to create read-only variables. You can also use traces for

propagation so that, for example, a database or screen display gets updated whenever a

variable changes value. Variable tracing is discussed in Section 13.4.

The discussion of variables so far has assumed a single global space of variables with

every variable visible in all the Tcl code of an application. After procedures are introduced

in Chapter 7 you’ll see that Tcl actually provides two kinds of variables: global ones and

local variables for procedures. Chapter 7 will show how a procedure can access variables

other than its own local variables.

26

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the publisher. This

statement must be easily visible on the first page of any reproduced copies. The publisher does not

offer warranties in regard to this draft.

Chapter 4

Expressions

Tcl is a typeless string-oriented language, which means that in general you can pass any

sequence of characters as an argument to any command. Many of the commands, such as

set, are perfectly happy with any argument value whatsoever. However, there are many

other commands that expect some of their arguments to have particular forms. Three

forms are particularly common in Tcl: expressions, lists, and Tcl scripts. This chapter

shows how to write expressions, Chapter 5 discusses lists, and Chapter 6 describes how

Tcl scripts are embedded in commands like if.

4.1 Introduction and the expr command

Expressions combine values (or operands) with operators to produce new values. For

example, the expression 4+2 evaluates to 6 and the expression (8+4)*6.2 evaluates to

74.4. Many Tcl commands expect one or more of their arguments to be expressions. The

simplest such command is expr, which does nothing but evaluate an expression and

return the result as a string:

expr (8+4)*6.2

74.4

Many other Tcl commands also take expressions as arguments. For example, the if
command evaluates an expression and uses the result to determine whether or not to exe-

cute a nested Tcl script:

if $x<2 then {set x 2}

FIGURE 4

TABLE 4

4.2 Operands and substitutions 27

DRAFT (10/9/92): Distribution Restricted

In this example the command set x 2 will be executed if the expression $x<2 evalu-

ates to a non-zero result.

In most cases the operands for expressions are numbers (either integers like 24 or

floating-point numbers like 16.5). A few of the operators allow their operands to be arbi-

trary strings; this allows string comparisons to be performed easily inside expressions (see

Section 4.3.2).

4.2 Operands and substitutions

Operands for Tcl expressions may be specified in several ways. The simplest form consists

of integers. Integers are normally specified in decimal, but if the first character of the num-

ber is 0 then the number is read in octal (base 8) and if the first two characters are 0x then

the number is is read in hexadecimal (base 16). For example, 335 is a decimal number,

0517 is an octal number with the same value, and 0x14f is a hexadecimal number with

the same value.

Operands may also be specified as floating-point numbers. Tcl accepts any of the

forms defined for the ANSI C standard except that the f, F, l, and L suffixes are not sup-

ported. All of the following are valid floating-point numbers:

2.1
7.91e+16
6E4
3.

Tcl treats numbers as integers whenever possible. To force an integer value to be repre-

sented in floating-point form, add a decimal point as in the last example above. Floating-

point numbers are manipulated using double-precision format.

It is possible to perform variable substitutions and command substitutions on expres-

sions using the standard Tcl facilities for command-line substitution:

set x 2.0
expr $x-0.8

1.2

expr [set x]-0.8

1.2

The actual argument received by the expr command is 1.2-0.8 in both cases.

The Tcl expression evaluator also performs variable substitution and command sub-

stitution on its own, as in the following examples:

set x 2.0
expr {$x-0.8}

1.2

expr {[set x] - 0.8}

28 Expressions

DRAFT (10/9/92): Distribution Restricted

1.2

In these examples the curly braces prevent any substitutions before the expr command is

invoked; the substitutions are carried out by the expression evaluator.

It’s important for the expression evaluator to perform substitutions because in many

cases expressions are not evaluated immediately, but rather saved for later evaluation or

evaluated repeatedly. When this happens it is usually important to evaluate variables or

execute embedded commands at the time the expression is evaluated rather than the time

the command containing the expression is invoked. For example, consider the following

program, which computes a power of a particular base:

set result 1
while {$power>0} {

set result [expr $result*$base]
incr power -1

}

The while statement repeatedly evaluates its first argument as an expression then exe-

cutes the second argument as a Tcl command, as long as the first argument evaluates to

non-zero (see Chapter 6 for details). It is essential that the first argument to while be

enclosed in braces so that the argument received by the while command is $power>0.

Without the braces the value of $power would be substituted before the while com-

mand is invoked and the value of the expression would not change from iteration to itera-

tion; an infinite loop would occur if the initial value of $power were greater than 0. On

the other hand, braces are not needed in the expr command inside the loop: the braces

around the loop body prevent substitutions before while is invoked and it doesn’t matter

whether the variable substitutions occur before the expr command is invoked or while it

computes its result.

One of the most important things in learning Tcl is to understand when and how sub-

stitutions occur. Substitutions occur before each command is invoked, as described in

Chapter 2, but some commands perform additional substitutions after they are invoked. In

the case of the expr command there are two different times when substitutions can occur.

One round occurs when the command is broken up into words before invocation, and the

second round occurs for the second word of the command when it is evaluated as an

expression. In most cases the second round of substitutions is sufficient for an expression

and the first round is likely to cause more harm than good, so it is common to see expres-

sions enclosed in braces when they appear in Tcl commands.

Expression operands may also be specified as character strings enclosed in double-

quotes or curly braces. If an operand is enclosed in quotes then variable substitutions,

command substitutions, and backslash substitutions are performed on the information

between the quotes just as for commands. If the operand is enclosed in braces then no sub-

stitutions are performed on the characters between the braces, again just as for commands.

Double-quotes and braces are most useful when performing string comparisons as

4.3 Operators and precedence 29

DRAFT (10/9/92): Distribution Restricted

described in Section 4.3.2 but they can also be used to achieve exotic arithmetic effects, as

in the following example:

set tens 2
set ones 1
set fraction 6
expr {"$tens$ones.$fraction" + 3.0}

24.6

Again, these substitutions are performed by the expression evaluator in addition to any

substitutions that occurred when the command was parsed.

When the expression evaluator performs variable substitutions, or when it processes

double-quotes or curly braces, each such operation yields a single operand. The results of

the substitution or quoting are not rescanned for additional substitutions or embedded

operators. Because of this behavior, both of the following programs produce errors:

set x 4+2
expr {$x+4}

can’t use non-numeric string as operand of "+"

expr {"2".4 + 3}

syntax error in expression ""2".4 + 3"

In the first case the substitution for $x yields 4+2, which isn’t a valid numeric operand. In

the second case, the quoted string yields 2, which is a valid numeric operand, but it is

treated as a complete operand by itself and is not combined with the characters following

it to produce 2.4. Instead the expression parser sees two numbers in a row (2 and .4)

with no intervening operator, which is an error.

4.3 Operators and precedence

Table 4.1 lists all of the operators supported in Tcl expressions; they are similar to the

operators in C expressions. Horizontal lines separate groups of operators with the same

precedence, and operators with higher precedence appear in the table above operators with

lower precedence. For example, 4*2<7 evaluates to 0 because the * operator has higher

precedence than <. Except in the simplest and most obvious cases, I recommend that you

use parentheses to indicate the way operators should be grouped; this will prevent errors

by you or by others who modify your programs.

Operators with the same precedence group left to right. For example, 4*5%2 evalu-

ates to 0.

4.3.1 Arithmetic operators

Tcl expressions support the standard arithmetic operators including +, -, *, /, and %. The

- operator may be used either as a binary operator for subtraction, as in 4-2, or as a unary

30 Expressions

DRAFT (10/9/92): Distribution Restricted

Table 4.1. Summary of the operators allowed in Tcl expressions. These operators have the same
behavior as in C except that some of the operators allow string operands. Groups of operands
between horizontal lines have the same precedence; higher groups have higher precedence.

Syntax Result Operand Types

-a Negative of a int, float

a Logical NOT: 1 if a is zero, 0 otherwise int, float

-a Bit-wise complement int

a*b Multiply a and b int, float

a/b Divide a by b int, float

a%b Remainder after dividing a by b int

a+b Add a and b int, float

a-b Subtract b from a int, float

a<<b Left-shift a by b bits int

a>>b Arithmetic right-shift a by b bits int

a<b 1 if a is less than b, 0 otherwise int, float, string

a>b 1 if a is greater than b, 0 otherwise int, float, string

a<=b 1 if a is less than or equal to b, 0 other-
wise

int, float, string

a>=b 1 if a is greater than or equal to b, 0 oth-
erwise

int, float, string

a==b 1 if a is equal to b, 0 otherwise int, float, string

a!=b 1 if a is not equal to b, 0 otherwise int, float, string

a&b Bit-wise AND of a and b int

a^b Bit-wise exclusive OR of a and b int

a/b Bit-wise OR of a and b int

a&&b Logical AND: 1 if both a and b are non-
zero, 0 otherwise

int, float

a||b Logical OR: 1 if either a is non-zero or b
is non-zero, 0 otherwise

int, float

a?b:c Choice: if a is non-zero then b, else c a: int, float

4.3 Operators and precedence 31

DRAFT (10/9/92): Distribution Restricted

operator for negation, as in -(6*$i). The / operator truncates its result to an integer

value if both operands are integers. % is the modulus operator: its result is the remainder

when its first operand is divided by the second. Both of the operands for % must be inte-

gers. The behavior of / and % for negative operands is the same in Tcl as in C. This means

that the sign of the remainder and the direction of truncation are machine-dependent if

either operand is negative. However, / and % are always consistent: if a/b is c and a%b
is d, then (b*c)+d will be equal to a.

4.3.2 Relational operators

The operators < (less than), <= (less than or equal), >=(greater than or equal), > (greater

than), == (equal), and != (not equal) are used for comparing two values. Each operator

produces a result of 1 (true) if its operands meet the condition and 0 (false) if they don’t.

The relational operators may be applied not only to numbers but also to arbitrary

strings. If both of the operands are numbers then the comparison is done numerically. If

either or both of the operands doesn’t make sense as a number then the operands are com-

pared as strings using lexicographic ordering, as in the following examples:

expr {"abc" < "abcd"}

1

expr {2.4 >= "abcd"}

0

4.3.3 Logical operators

The logical operators &&, ||, and ! are typically used for combining the results of

relational operators, as in the expression

($x > 4) && ($x < 10)

Each operator produces a 0 or 1 result. && (logical “and”) produces a 1 result if both its

operands are non-zero, || (logical “or”) produces a 1 result if either of its operands is

non-zero, and ! (“not”) produces a 1 result if its single operand is zero.

In Tcl, as in C, a zero value is treated as false and anything other than zero is treated

as true. Whenever Tcl generates a true/false value it uses 1 for true and 0 for false.

The operators && and || are special in that they always evaluate their left operand

first and only evaluate the right operand if needed to determine the result (e.g. if the left

operand is non-zero for && or zero for ||). This behavior is useful in situations where the

right operand sometimes generates errors during evaluation. For example, consider the

following command:

expr {[info exists x] && ($x<2)}

This command returns 1 if the variable x is defined and has a value less than 2, and it

returns 0 otherwise. Command substitution causes the left operand of && to be 1 if x
exists and 0 if it doesn’t. In the case where x doesn’t exist, an error would occur if

32 Expressions

DRAFT (10/9/92): Distribution Restricted

($x<2) were evaluated, but this is guaranteed never to happen. This example shows once

again the importance of performing substitutions during expression evaluation instead of

during command parsing: if the braces were replaced with double-quotes then both the

command substitution and the variable substitution would be performed by the Tcl com-

mand parser before invoking the expr command and an error would be generated if x
doesn’t exist.

4.3.4 Bitwise operators

Tcl provides six operators that manipulate the individual bits of integers: &, |, ^, <<, >>,

and ~. These operators require both of their operands to be integers. The &, |, and ^ oper-

ators perform bitwise and, or, and exclusive or: each bit of the result is generated by apply-

ing the given operation to the corresponding bits of the left and right operands. Note that &
and | do not always produce the same result as && and ||:

expr 8&&2

1

expr 8&2

0

The operators << and >> use the right operand as a shift count and produce a result

consisting of the left operand shifted left or right by that number of bits. During left shifts

zeroes are shifted into the low-order bits. Right shifting is always “arithmetic right shift”,

meaning that it shifts in zeroes for positive numbers and ones for negative numbers. This

behavior is different from right-shifting in C, which is machine-dependent.

The ~ operand (“ones complement”) takes only a single operand and produces a

result whose bits are the opposite of those in the operand: zeroes replace ones and vice

versa.

4.3.5 Choice operator

The operator pair ?: may be used with three operands to select one of two results:

expr {($a < $b) ? $a : $b}

This expression returns the smaller of $a and $b. The choice operator checks the value of

its first operand for truth or falsehood. If it is true (non-zero) then the argument following

the ? is evaluated and becomes the result; if the first operand is false (zero) then the third

operand is evaluated and becomes the result. Only one of the second and third arguments

is evaluated.

4.4 Types and conversions 33

DRAFT (10/9/92): Distribution Restricted

4.4 Types and conversions

All of the expression operators accept integers as operands. The arithmetic operators

+, -, *, and / accept floating-point operands as well. If one operand is an integer and the

other is a floating-point number, then the integer is converted to floating-point and the

result will be in floating-point. Floating-point numbers are manipulated using double-pre-

cision representation.

The logical operators !, &&, and || also accept floating-point arguments as well as

integers. They test their arguments to see if they are equal to zero and set their results

accordingly.

The relational operators <, <=, >=, >, ==, and != accept operands of any form. If both

operands are integers then the comparison is done using integer arithmetic. If both oper-

ands are numeric but at least one of them is floating-point then the comparison is done

using floating-point arithmetic. When one or both of the operands cannot be read as either

an integer or a floating-point number, then the comparison is done using lexicographic

string comparison. In this case numeric operands are converted back to strings using %d
format for integers and %g format for floating-point numbers (see the format command

in Section 9.1 for a description of these formats).

All operators other than the ones mentioned above require their arguments to be inte-

gers. An error will occur if an argument does not have the proper form for an integer.

When including non-numeric strings in an expression you must use variable substitu-

tion, double-quotes, or braces. If you attempt to enter a non-numeric string directly then an

error will occur, as in the following example:

expr {$x != red}

syntax error in expression "$x != red"

Tcl treats this as an error because in most cases when it happens the user has forgotten to

type the $ in front of a variable name; if the name were accepted as a literal string then it

would result in confusing errors in many cases.

34

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the publisher. This

statement must be easily visible on the first page of any reproduced copies. The publisher does not

offer warranties in regard to this draft.

Chapter 5

Lists

Lists in Tcl provide a simple mechanism for dealing with collections of things, such as all

the users in a group or all the files in a directory or all the options for a widget. With lists

you can easily collect together any number of values in one place, pass around the collec-

tion as a single entity, and later get the component values back again. A list is an ordered

collection of elements where each element can have any string value, such as a number, a

person’s name, the name of a window, or a word of a Tcl command. Lists are represented

as strings with particular structure; this means that you can store lists in variables, type

them to commands, and even nest them as elements of other lists.

This chapter describes the structure of lists and presents a dozen basic commands for

manipulating lists. The commands perform operations like creating lists, inserting and

extracting elements, and searching for particular elements (see Table 5.1 for a summary).

There are other Tcl commands besides those described in this chapter that take lists as

arguments or return them as results; these other commands will be described in later chap-

ters.

5.1 Basic list structure and the lindex command

In its simplest form a list is a string containing any number of elements separated by

spaces or tabs. For example, the string

John Anne Mary Bob

FIGURE 5

TABLE 5

5.1 Basic list structure and the lindex command 35

DRAFT (10/9/92): Distribution Restricted

Table 5.1. A summary of the list-related commands in Tcl.

concat list list ...
Concatenate multiple lists into a single list (each element of each list
becomes an element of the result list) and return the new list.

join list ?joinString?
Concatenate list elements together with joinString as separator and
return the result.

lappend varName value value ...
Append each value to variable varName as a list element, and return the
new value of the variable.

lindex list index
Return index’th element from list.

linsert list index value value ...
Insert values as list elements before index’th element of list.

list value value ...
Create and return a new list whose elements are the value arguments.

llength list
Return the number of elements in list.

lrange list first last
Return a list consisting of elements first through last of list.

lreplace list first last ?value value ...?
Return a new list formed by replacing elements first through last of
list with zero or more new elements, each formed from one value argu-
ment.

lsearch list pattern
Return the index of the first element in list that matches pattern (using
the rules for string match), or -1 if none.

lsort list
Return a new list formed by sorting the elements of list in alphabetical
order.

split string ?splitChars?
Return a list formed by splitting string at instances of splitChars and
turning the characters between these instances into list elements.

36 Lists

DRAFT (10/9/92): Distribution Restricted

is a list with four elements. There can be any number of elements in a list, and each ele-

ment can be an arbitrary string. In the simple form above, elements cannot contain spaces,

but there is additional list syntax that allows spaces within elements (see below).

The lindex command may be used to index into a list and extract a single element:

lindex {John Anne Mary Bob} 1

Anne

Lindex takes two arguments: a list and an index. It returns the element of the list selected

by the index. An index of 0 corresponds to the first element of the list, 1 corresponds to

the second element, and so on. If the index is outside the range of the list, then an empty

string is returned.

 When a list is entered in a Tcl command the list is usually enclosed in braces, as in

the above example. The braces are not part of the list; they are needed on the command

line so that the entire list is passed to the command as a single word even though it con-

tains spaces. When lists are stored in variables or printed out, there are no braces around

the list:

set x {John Anne Mary Bob}

John Anne Mary Bob

When the list commands are processing lists, they treat curly braces and backslashes

specially in the same way that the Tcl command parser treats these characters specially. If

the first character of a list element is an open curly brace then the element is not termi-

nated by spaces or tabs. Instead, it consists of all the characters up to the matching close

curly brace (but not including the braces themselves). For example:

lindex {a b {c d e} f} 2

c d e

One of the most common uses for braces is to create lists that contain other lists as ele-

ments, as in the above example. There is no limit on how deeply lists may be nested:

lindex [lindex {top {middle {bottom 1 2 3} next}} 1] 2

next

Backslashes may also be used within list elements to prevent special interpretation of

characters such as spaces and braces, or to insert special characters such as newline:

lindex {a \{x\ y c d} 1

{x y

The same backslash substitutions are available in lists as in commands (see Table 2.1). As

with commands, backslashes receive no special treatment when they occur in elements

enclosed in braces, except that backslashed braces are ignored in the search for the ele-

ment’s matching close brace:

lindex {a {b c \} d} e} 1

b c \} d

5.2 Creating lists: concat, list, and llength 37

DRAFT (10/9/92): Distribution Restricted

It’s important to remember that the special treatment of backslashes and braces in list

elements is carried out by the list commands themselves as they process lists. This special

treatment is independent of the substitutions made by the Tcl command parser when it is

preparing the command for execution. If a list is passed to a command without enclosing it

in braces, then the list will be processed twice: once by the Tcl command parser and again

by the list command. This potential for double-substitution in lists is similar to that in

expressions. As with expressions, it is usually a good idea to enclose lists in braces to pre-

vent substitutions by the Tcl command parser.

5.2 Creating lists: concat, list, and llength

Tcl provides two commands that combine strings together to produce lists: concat and

list. Each of these commands accepts an arbitrary number of arguments, and each pro-

duces a list as a result. However, they differ in the way they combine their arguments. The

concat command takes one or more lists as arguments and joins all of the elements of

the argument lists together into a single large list:

concat {a b c} {d e} f {g h i}

a b c d e f g h i

Concat expects its arguments to have proper list structure; if the arguments are not well-

formed lists then the result may not be a well-formed list either. In fact, all that concat
does is to concatenate its argument strings into one large string with space characters

between the arguments. The same effect as concat can be achieved using double-quotes

and command-line substitution:

set x {a b c}
set y {d e}
set z [concat $x $y]

a b c d e

set z "$x $y"

a b c d e

The list command works a little differently than concat: its arguments need not

be lists themselves, and it joins them together so that each argument becomes a distinct

element of the resulting list:

list {a b c} {d e} f {g h i}

{a b c} {d e} f {g h i}

In this case, the result list contains only four elements, three of which are themselves lists

with more than one element. The list command will always produce a list with proper

structure, regardless of the structure of its arguments, and the lindex command can

always be used to extract the original elements of a list created with list. The arguments

to list need not themselves be well-formed lists:

38 Lists

DRAFT (10/9/92): Distribution Restricted

set x [list "{a" "Unmatched brace: {" "Short phrase."]

\{a Unmatched\ brace:\ \{ {A short phrase.}

lindex $x 0

{a

lindex $x 1

Unmatched brace: {

lindex $x 2

A short phrase.

Notice that the result of the list command doesn’t always look exactly like the input

arguments. In the example above list added backslashes and braces in order to generate

a well-formed list from which the original elements could be extracted with lindex.

Properly-formed lists such as those produced by list have another important prop-

erty. If such a list is executed as a Tcl command then the words of the command, after all

substitutions, will be exactly the arguments passed to list. The first argument to list
will be the command’s name, the next argument to list will be the first argument for the

command, and so on. This property is very important because it allows you to generate

commands that are guaranteed to parse in a particular fashion, even if some of the com-

mand’s arguments contain characters like $ and [that normally cause substitutions to be

performed (the list command quotes $ and [in list elements so that they won’t cause

substitutions if the list is executed as a Tcl command). You’ll hear more about this feature

of list in later chapters.

The llength command may be used to query the number of elements in a list:

llength {{a b c} {d e} f {g h i}}

4

llength a

1

llength {}

0

Llength takes a single argument, which must be a well-formed list, and returns a decimal

string. As you can see from the last example above, an empty string is considered to be a

proper list with zero elements.

5.3 Modifying lists: linsert, lreplace, lrange, and lappend

The linsert command forms a new list by adding one or more elements to an existing

list:

set x {a b {c d} e}

a b {c d} e

5.3 Modifying lists: linsert, lreplace, lrange, and lappend 39

DRAFT (10/9/92): Distribution Restricted

linsert $x 2 X Y Z

a b X Y Z {c d} e

linsert $x 0 {X Y} Z

{X Y} Z a b {c d} e

Linsert takes three or more arguments. The first is a list, the second is the index of an

element within that list, and the third and additional arguments are new elements to insert

into the list. The return value from linsert is a list formed by inserting the new ele-

ments just before the element indicated by the index. If the index is zero then the new ele-

ments go at the beginning of the list; if it is one then the new elements go after the first

element in the old list; and so on. If the index is greater than or equal to the number of ele-

ments in the original list then the new elements are inserted at the end of the list.

The lreplace command deletes one or more elements from a list and replaces

them with zero or more new elements:

set x {a b {c d} e}

a b {c d} e

lreplace $x 3 3

a b {c d}

lreplace $x 1 2 {W X} Y Z

a {W X} Y Z e

Lreplace takes three or more arguments. The first argument is a list and the second and

third arguments give the indices of the first and last elements to be deleted. If only three

arguments are specified, as in the first lreplace command above, then the result is a

new list produced by deleting the given range of elements from the original list. If addi-

tional arguments are specified to lreplace as in the second example, then they are

inserted into the list in place of the elements that were deleted.

The lrange command is used to extract a range of elements from a list. It takes as

arguments a list and two indices and it returns a new list consisting of the range of ele-

ments that lie between the two indices:

set x {a b {c d} e}

a b {c d} e

lrange $x 1 3

b {c d} e

lrange $x 0 1

a b

The lappend command provides a particularly efficient way to append new ele-

ments to an existing list. Instead of taking a list as argument, it takes the name of a vari-

able whose value is a list. The variable’s value is modified by appending additional

arguments to it as new list elements. The return value from the command is the new value

of the variable:

40 Lists

DRAFT (10/9/92): Distribution Restricted

set x {a b {c d} e}

a b {c d} e

lappend x XX {YY ZZ}

a b {c d} e XX {YY ZZ}

set x

a b {c d} e XX {YY ZZ}

Lappend isn’t strictly necessary; for example, the same effect as the lappend
command above could be produced with the following command:

set x [linsert $x 100000 XX {YY ZZ}]

a b {c d} e XX {YY ZZ}

However, the set+linsert combination copies the entire list four times: from the vari-

able into the linsert command, from linsert’s argument to its result, from lin-
sert’s result to set’s argument, and from set’s argument to the variable’s value. In

contrast, lappend does at most one copy (from the old variable value to a new larger

one) and in repeated lappend operations it avoids even this copy by allocating extra

space for the variable when it grows it. For small lists the difference in peformance proba-

bly won’t be noticeable, but if you’re building a very large list a piece at a time then lap-
pend is much more efficient than set+linsert.

5.4 Searching lists: lsearch

The lsearch command may be used to search for a particular element within a list. It

takes two arguments, the first of which is a list and second of which is a pattern:

lsearch {ab ac bc} bc

2

lsearch {ab ac bc} ?c

1

lsearch {ab ac bc} cb

-1

Lsearch returns the index of the first element in the list that matches the pattern, or -1 if

there was no matching element. Matching is determined with the rules used by the

string match command described in Section 9.5. The first lsearch command

above checks for an element that is exactly bc. The second command searches for an ele-

ment containing two characters with c as the second character, and the third command

searches for an element that is exactly cb.

5.5 Sorting lists: lsort 41

DRAFT (10/9/92): Distribution Restricted

5.5 Sorting lists: lsort

The lsort command takes a list as argument and returns a new list with the same ele-

ments, but sorted in increasing lexicographic order:

lsort {John Anne Mary Bob}

Anne Bob John Mary

5.6 Converting between strings and lists: split and join

The split and join commands are useful for converting between lists and strings that

contain elements separated by characters other than spaces. For example, suppose a vari-

able contains a UNIX file name with elements separated by slashes, and you want to con-

vert it to a list with one element for each component of the file name. This would then

permit you to process the elements using commands described in this chapter, or other

commands like foreach, which is described in Section 6.2. The conversion to a list can

be done with the split command:

set x a/b/c
set y /usr/include/sys/types.h
split $x /

a b c

split $y /

{} usr include sys types.h

The split command takes two arguments. The first is the string to be split up and the

second is a string containing one or more split characters. The result is a list generated by

finding all the split characters in the string and creating one list element from the informa-

tion between each pair of split characters. The ends of the string are also treated as split

characters. If there are consecutive split characters or if the string starts or ends with a split

character (e.g. the second example above) then empty elements are generated in the result

list. The split characters themselves are discarded.

If an empty string is specified for the split characters in split, then each character of

the string is made into a separate list element:

split {a b c} {}

a { } b { } c

The join command is approximately the inverse of list, concatenating list elements

together with a given separator string between them:

join {a b c} /

a/b/c

join {{} usr include sys types.h} /

42 Lists

DRAFT (10/9/92): Distribution Restricted

/usr/include/sys/types.h

Join takes two arguments: a list and a separator string. It generates its result by extract-

ing all of the elements from the list and concatenating them together with the separator

string between each pair of elements. The separator string can contain any number of char-

acters, including zero:

join {a b c} .tmp/

a.tmp/b.tmp/c

join {a b c} {}

abc

In this respect join’s behavior is not exactly the inverse of split’s, since split treats

multiple split characters as independent separators.

One of the most common uses for split and join is for dealing with file names as

shown above. Another common use is for splitting up text into lines by using newline as

the split character:

set x [split {Now is the time
for all good men
to come to the aid
of their country} \n]

{Now is the time} {for all good men} {to come to the
aid} {of their country}

join $x \n

Now is the time
for all good men
to come to the aid
of their country

43

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the publisher. This

statement must be easily visible on the first page of any reproduced copies. The publisher does not

offer warranties in regard to this draft.

Chapter 6

Control Structures

The Tcl language provides a number of facilities that you can use to generate, sequence,

and conditionally execute commands. These control structures mimic most of the control

structures found in the C programming language and the csh shell, including if, while,

for, case, foreach, and eval. Table 6.1 summarizes the Tcl control structures.

Control structures in Tcl are just commands, and they have the same form as all other

Tcl commands. However, the commands that implement control structures, like if and

while, are unusual in that one or more of their arguments are themselves Tcl scripts. The

control structure commands examine some of their arguments to determine what to do,

then execute other arguments one or more times by passing them to the Tcl interpreter.

The arguments executed in this way may themselves include additional control structures

or any other Tcl commands.

6.1 The if command

The if command in Tcl behaves like if in C: it evaluates an expression, tests its result,

and conditionally executes a script based on the result. For example, consider the follow-

ing command:

if {$x < 0} {
set x 0

}

In this case if receives two arguments. The first is an expression and the second is a Tcl

script, which spans three lines here. The expression can have any of the forms for expres-

FIGURE 6

TABLE 6

44 Control Structures

DRAFT (10/9/92): Distribution Restricted

Table 6.1. A summary of the Tcl commands that implement control structures.

break
Terminate innermost nested looping command (for, foreach, or while).

case string ?in? patList body ?patList body ...?
case string ?in? {patList body ?patList body ...?}

Match string against each patList in order until a match is found, then
execute the body corresponding to the matching patList. A patList of
default matches any string. Returns the result of the body executed,
or an empty string if no pattern matches.

continue
Terminate the current iteration of the innermost looping command and go on
to the next iteration of that command.

eval arg ?arg arg ...?
Concatenate all of the arg’s with spaces as separators, then execute the
result as a Tcl script and return its result.

for init test reinit body
Execute init as a Tcl script. Then evaluate test as an expression. If it
evaluates to non-zero then execute body as a Tcl script, execute reinit as
a Tcl script, and re-evaluate test as an expression. Repeat until test eval-
uates to zero. Returns an empty string.

foreach varName list body
List must be a valid Tcl list. For each element of list, in order, set vari-
able varName to that value and execute body as a Tcl script. Returns an
empty string.

if test ?then? trueBody ?else? ?falseBody?
Evaluate test as an expression. If its value is non-zero then execute true-
Body as a Tcl script. If its value is zero then execute falseBody as a Tcl
script (if falseBody is specified). Returns the result of trueBody or
falseBody, or an empty string if test evaluates to zero and there is no
falseBody.

source fileName
Read the file whose name is fileName and execute its contents as a Tcl
script. Returns the result of the script.

while test body
Evaluate test as an expression. If its value is non-zero then execute body
as a Tcl script and re-evaluate test. Repeat until test evaluates to zero.
Returns an empty string.

6.1 The if command 45

DRAFT (10/9/92): Distribution Restricted

sions described in Chapter 4. The if command tests the value of the expression; if the

value is non-zero, then if executes the Tcl script. If the value is zero then if returns

without taking any further action. The example above sets the variable x to zero if it was

previously negative.

If commands can also receive an additional argument containing a Tcl script to exe-

cute if the expression evaluates to zero (an “else clause”). In addition, if allows the noise

words then and else to precede the corresponding script arguments. The following

commands are all identical in effect:

if {$x < 0} then {set x 0} else {set x [expr $x+2]}

if {$x < 0} {
set x 0

} else {
set x [expr $x+2]

}

if {$x < 0} {set x 0} {set x [expr $x+2]}

The result of an if command is the result of the “then” or “else” clause, whichever is

executed. If neither a “then” clause nor an “else” clause is executed (because the com-

mand contained no “else” clause and the expression evaluated to 0), then the command

returns an empty string:

set x -2

-2

if {$x < 0} {set x 0}

0

In the examples in this book the expression and script arguments to if are almost always

enclosed in braces. This is usually a good idea in commands that implement control struc-

tures, and in some cases it is absolutely necessary. The reason for this is the same as the

reason given in Chapter 4 for expressions: double substitution will occur if the arguments

aren’t enclosed in braces. For the expression argument, substitutions will be performed

when the argument is evaluated as an expression, so there is generally no need to have an

earlier round of substutions while parsing the if command. For the script arguments, sub-

stitutions will be performed when the arguments are executed as Tcl commands, so there

is generally no need to have an earlier round of substitutions while parsing the if com-

mand. If the braces are omitted, then the double substitution an undesirable effect. For

example, consider the following script:

set b "A test string"

A test string

if {$a == ""} "set a $b"

wrong # args: should be "set varName ?newValue?"

46 Control Structures

DRAFT (10/9/92): Distribution Restricted

The second argument to if wasn’t enclosed in braces, so the value of variable b was sub-

stituted as part of invoking the if command. Thus the second argument to if was

set a A test string

When this string was subsequently executed as a Tcl script set returned an error because

it received four arguments when it was expecting only one or two. If the set command

had been enclosed in braces instead of quotes, then b’s value wouldn’t have been substi-

tuted until the set command was executed and the entire value of $b would have formed

a single argument to set.

6.2 Looping commands: while, for, and foreach

Tcl provides three commands for looping: while, for, and foreach. While and for
are similar to the corresponding C constructs, and foreach is similar to the correspond-

ing feature in the csh shell. Each of these commands executes a nested script over and

over again; they differ in the kinds of setup they do before each iteration and in the ways

they decide to terminate the loop.

The while command takes two arguments: an expression and a Tcl script. It evalu-

ates the expression and if the result is non-zero then it executes the Tcl script. This process

repeats over and over until the expression evaluates to zero, at which point the while
command terminates and returns an empty string. For example, the script below copies the

elements from the list stored in variable a to variable b in reverse order:

set b ""
set i [llength $a]
while {$i > 0} {

incr i -1
lappend b [lindex $a $i]

}

The for command is similar to while except that it also takes two additional script

arguments, which perform once-only initialization before the first iteration of the loop and

reinitialization after each execution of the loop body. The above program to reverse the

elements of a list can be rewritten using for as follows:

set b "";
for {set i [expr {[llength $a]-1}]} {$i >= 0} \

{incr i -1} {
lappend b [lindex $a $i]

}

The first argument to for is the initialization script, the second is an expression that deter-

mines when to terminate the loop, the third (which is on the second line of the command)

is the reinitialization script, and the fourth argument is a script that forms the body of the

loop. For executes its first argument (the initialization script) as a Tcl command, then

6.3 Loop control: break and continue 47

DRAFT (10/9/92): Distribution Restricted

evaluates the expression. If the expression evaluates to non-zero, then for executes the

body followed by the reinitialization script and reevaluates the expression. It repeats this

sequence over and over again until the expression evaluates to zero. If the expression eval-

uates to zero on the first test then neither the body script or the reinitialization script is ever

executed. Like while, for returns an empty string as result.

For and while are equivalent in that anything you can write using one command

you can also write using the other command. However, for has the advantage of placing

all of the loop control information in one place where it is easy to see. Typically the initial-

ization, test, and re-initialization arguments are used to select a set of elements to be oper-

ated upon (integer indices in the above example) and the body of the loop carries out the

operations on the chosen elements. This clean separation between element selection and

action makes loops easier to understand and debug. Of course, there are some situations

where a clean separation between selection and action is not possible, and in these cases a

while loop may make more sense.

The foreach iterates over all of the elements of a list. For example, the following

script provides yet another implemenation of list reversal:

set b "";
foreach i $a {

set b [linsert $b 0 $i]
}

Foreach takes three arguments. The first is the name of a variable, the second is a list,

and the third is a Tcl script that forms the body of the loop. Foreach will execute the

body script once for each element of the list, in order. Before executing the body in each

iteration, foreach sets the named variable to hold the corresponding element of the list.

Thus if variable a has the value “first second third” in the above example, the

body will be executed three times. In the first iteration i will have the value first, in the

second iteration it will have the value second, and in the third iteration it will have the

value third. At the end of the loop, b will have the value “third second first”.

As with the other looping commands, foreach always returns an empty string.

6.3 Loop control: break and continue

Tcl provides two commands that can be used to abort part or all of a looping command:

break and continue. These commands have the same behavior as the corresponding

constructs in C. Neither takes any arguments. The break command causes the innermost

enclosing looping command to terminate immediately. For example, suppose that in the

list reversal example above it is desired to stop as soon as an element equal to ZZZ is

found in the source list. In other words, the result list should consist of a reversal of only

those source elements up to (but not including) a ZZZ element. This can be accomplished

with break as follows:

48 Control Structures

DRAFT (10/9/92): Distribution Restricted

set b "";
foreach i $a {

if {$i == "ZZZ"} break
set b [linsert $b 0 $i]

}

The continue command causes only the current iteration of the innermost loop to

be terminated; the loop continues with its next iteration. In the case of while, this means

skipping out of the body and re-evaluating the expression that determines when the loop

terminates; in for loops, the re-initialization script is executed before re-evaluating the

termination condition. For example, the following program is another variant of the list

reversal example, where ZZZ elements are simply skipped without copying them to the

result list:

set b "";
foreach i $a {

if {$i == "ZZZ"} continue
set b [linsert $b 0 $i]

}

In this example the continue isn’t absolutely necessary since the same effect could be

achieved by enclosing the “set b ...” command in an if command. Continue
commands are most often used to eliminate a deeply nested set of if commands that

would result if continue weren’t used. Typically this occurs when the main loop iter-

ates over a superset of the desired elements and a complex set of tests must be performed

on the individual elements to determine whether they should be acted upon. Each of these

tests can be coded as an if command that invokes continue if the test determines that

the element is inappropriate.

6.4 The case command

The case command tests a value against a number of patterns and executes one of several

Tcl scripts depending on which pattern matched. The same effect as case can be

achieved with a nested set of if commands, but case provides a more compact encod-

ing. Tcl’s case command has two forms; here is an example of the first form:

case $x in a {incr t1} b {incr t2} c {incr t3}

The first argument to case is the value to be tested (the contents of variable x in the com-

mand above). The second argument is the “noise word” in; this argument can be omitted.

After that come one or more pairs of arguments; the first argument in each pair is a pattern

to compare against the value, and the second is a script to execute if the pattern matches.

The case command steps through these pairs in order, comparing the pattern against the

value. As soon as it finds a match it executes the corresponding script and returns the value

of that script as its value. If no pattern matches then no script is executed and case

6.4 The case command 49

DRAFT (10/9/92): Distribution Restricted

returns an empty string. This particular command increments variable t1 if x has the

value a, t2 if x has the value b, t3 if x has the value c, and does nothing otherwise.

The second form for case is similar to the first except that all of the pattern-script

pairs are combined into a single list argument instead of being separate arguments. In the

second form the above command looks like this:

case $x in {a {incr t1} b {incr t2} c {incr t3}}

This form is convenient because it allows the patterns and scripts to be spread across mul-

tiple lines: the braces around the list prevent the newlines from being treated as command

separators. If the first form spills over onto multiple lines then backslashes have to be

placed at the ends of lines to quote the newlines. In addition, variable and command sub-

stitutions never occur in the patterns of the second form because of the braces around the

list of patterns and scripts. In the first form, variable and command substitutions will be

performed unless the individual patterns are enclosed in braces. Most people seem to find

the second form easier to use in most cases.

The case command has three other features that aren’t used in the above examples.

First, each pattern is actually a list of patterns (in the above examples the pattern lists only

had a single element each). It is sufficient for any element of the list to match the value.

For example, the command below increments t1 if x is a or b, t2 if x is c or d or e, and

does nothing otherwise:

case $x in {{a b} {incr t1} {c d e} {incr t2}}

The second additional feature is that patterns may contain a variety of wild-card

matching characters. For example, a ? in a pattern matches any single character of the

value and a * matches any substring (zero or more characters). The special characters fol-

low the style of the csh shell and include ?, *, [], and \. See the description of the

string match command in Section 9.5 for full details. As an example of the use of

wild-cards, the following command increments t1 if x contains the letter a and it incre-

ments t2 if x contains a b or a c but no a:

case $x in {*a* {incr t1} {*b* *c*} {incr t2}}

The final feature of case is that a pattern of default matches any value. It is

equivalent to a pattern of * and is typically the last pattern in the case command. Its

script will thus be executed if no other patterns match. For example, the script below will

examine a list and produce three counters. The first, t1, counts the number of elements in

the list that contain an a. The second, t2, counts the number of elements that have a b or

c but no a. The third, t3, counts the number of elements that have neither an a, a b, nor a

c:

set t1 0
set t2 0
set t3 0
foreach i $x {

case $x in {
a {incr t1}

50 Control Structures

DRAFT (10/9/92): Distribution Restricted

{*b* *c*} {incr t2}
default {incr t3}

}
}

6.5 Generating commands on the fly: eval

Eval is a command that makes it easy to synthesize scripts on-the-fly, save them around

in variables, and eventually execute them. It takes one or more arguments. If it receives

only one argument then it simply executes that argument as a Tcl script. If eval is given

two or more arguments then it concatenates them together with spaces between them and

executes the result as a Tcl script. The command

eval a b c d

is exactly equivalent to the command

if 1 [concat a b c d]

for any values of a, b, c, and d.

One possible use for eval is in a macro facility where a user’s actions are recorded

for later replay. This can be implemented by appending the Tcl command for each user

action to a variable before executing it. Then the sequence of commands can be replayed

by eval-ing the variable.

It’s important to realize that two rounds of parsing occur in the arguments to eval.

They are parsed (and substituted) once when the eval command is parsed, and again

when they are executed as a script. It’s easy to run into troubles with eval if you aren’t

aware of the two levels of parsing. For example, suppose that the variables a, b, and c
contain the name of a command and two arguments for it, and you want to execute the

command defined by the variables. An obvious but incorrect way to do it is like this:

eval $a $b $c

The problem with this is that the variables are concatenated to form the script and the

script is re-parsed when it is executed. There is no guarantee that the script will be parsed

so that each of the variables ends up as a single word of the resulting command. For exam-

ple, suppose a has the value set, b has the value x and c has the value “A test
string”. The eval command will concatenate these variables to produce the string

“set x A test string”, then it will execute this string. Unfortunately, this string

will be parsed into a command with five words, not three. The set command will receive

four arguments and it will generate an error because of this.

There are two ways to solve this problem. One approach that works in this particular

instance (but not in more complex situations) is to enclose all of the variables in braces:

eval {$a $b $c}

6.6 Executing from files: source 51

DRAFT (10/9/92): Distribution Restricted

The braces prevent variable substitution from occuring when the eval command is parsed,

so the command that eval executes is “$a $b $c”. The variables get substituted when

this command is executed, and each variable becomes one word of the command as

desired.

A more general approach to this problem is to take advantage of the fact that Tcl com-

mands have list structure. If a proper Tcl list is executed as a command then each element

of the list will become one word of the resulting command. You can use the list commands

to generate a list with a particular structure and be absolutely certain that the list will parse

in a particular way when executed as a command. For example, the above problem can be

eliminated with the following command:

eval [list $a $b $c]

In this case eval will receive a single argument, “set x {A test string}”, which

it will then execute. This command will be parsed into three words and achieve the desired

effect. It is guaranteed to work regardless of the values of the three variables. Using lists is

more general than the braces approach because you can generate lists with arbitrary struc-

ture. For example, suppose that you have the same three variables but c is now a list itself

and you want each of c’s elements to form a distinct argument to the generated command.

A and b are each to form one word as before. You can handle this situation with the fol-

lowing command:

eval [concat [list $a $b] $c]

or, equivalently,

eval [list $a $b] $c

In each of these cases the generated command will be a list whose first two elements are a
and b and whose remaining elements are the elements of c.

6.6 Executing from files: source

The source command is similar to the command by the same name in the csh shell: it

reads a file and executes the contents of the file as a Tcl script. It takes a single argument

that contains the name of the file. For example, the command

source test.tcl

will execute the contents of the file test.tcl. The return value from source will be

the value returned when the file contents are executed, which will normally be the return

value from the last command in the file. In addition, source allows the return com-

mand to be used in the file’s script to terminate the processing of the file. See Section 7.1

for more information on return.

52 Control Structures

DRAFT (10/9/92): Distribution Restricted

53

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the publisher. This

statement must be easily visible on the first page of any reproduced copies. The publisher does not

offer warranties in regard to this draft.

Chapter 7

Procedures

A procedure in Tcl is a command that looks and behaves like the built-in commands, but is

implemented with a Tcl script rather than C code. You can define new procedures at any

time with the proc command described in this chapter. Procedures make it easy for you

to extend the functions of a Tcl-based application and to package up the extensions in a

clean and easy-to-use fashion. Procedures also provide a simple way for you to prototype

new features in an application: once you’ve tested the procedures, you can reimplement

them as built-in commands written in C for higher performance; the C implementations

will appear just like the original procedures so none of the scripts that invoke them will

have to change.

The procedure mechanism also provides some unusual and sophisticated commands

for dealing with variable scopes. Among other things, these commands allow you to

implement new Tcl control structures as procedures. Table 7.1 summarizes the Tcl com-

mands related to procedures.

7.1 Procedure basics: proc and return

Procedures are created with the proc command, as in the following example:

proc plus {a b} {expr $a+$b}

The first argument to proc is the name of the procedure to be created, plus in this case.

The second argument is a list of names of arguments to the procedure (two arguments, a
and b, here). The third argument to proc is a Tcl script that forms the body of the new

procedure. Proc creates a new command for the procedure’s name. It also arranges that

FIGURE 7

TABLE 7

54 Procedures

DRAFT (10/9/92): Distribution Restricted

whenever the command is invoked the procedure’s body will be executed. In this case the

new command will have the name plus; whenever plus is invoked it must receive two

arguments. While the body of plus is executing the variables a and b will contain the

values of the arguments. The return value from the plus command is the value returned

by the last command in plus’s body. Here are some correct and incorrect invocations of

plus:

plus 3 4

7

Table 7.1. A summary of the Tcl commands related to procedures and variable scoping.

global name1 ?name2 ...?
Bind variable names name1, name2, etc. to global variables. References to
variables with these names will refer to global variables instead of local vari-
ables for the duration of the current procedure. Returns an empty string.

proc name argList body
Define a procedure whose name is name, replacing any existing command
by that name. ArgList is a list with one element for each of the procedure’s
arguments, and body contains a Tcl script that is the procedure’s body.
Returns an empty string.

rename oldName newName
Rename the command that used to be called oldName so that it is now
called newName. There must not currently be a command namednewName.
If newName is an empty string then oldName is deleted. Returns an empty
string.

return ?value?
Return from the innermost nested procedure with value as the result of the
procedure. Value defaults to an empty string.

uplevel ?level? arg ?arg arg ...?
Concatenate all of the arg’s with spaces as separators, then execute the
resulting Tcl script in the variable context of stack level level . Level
consists of a number optionally preceded by #, and defaults to #0. Returns
the result of the script.

upvar ?level? otherVar1 myVar1 ?otherVar2 myVar2 ...?
Bind the local variable name myVar1 to the variable at stack level level
whose name is otherVar1. For the duration of the current procedure, vari-
able references to myVar1 will be directed to otherVar1 at level
instead. Additional bindings may be specified with otherVar2 and
myVar2, etc. Level has the same syntax and meaning as for uplevel.
Returns an empty string.

7.2 Local and global variables 55

DRAFT (10/9/92): Distribution Restricted

plus 3 -1

2

plus 1

no value given for parameter "b" to "plus"

The return command may be used to force an immediate return from a procedure.

When it is invoked inside a procedure, the procedure returns immediately and the argu-

ment to return becomes the return value from the procedure. The following script

defines a procedure less that returns 1 if its first argument is less than its second and 0
otherwise:

proc less {a b} {
if {$a < $b} {

return 1
}
return 0

}

If return is invoked with no arguments then the enclosing procedure returns with a

result that is an empty string. The return command may also be used in a script file to

terminate a source command. Any other use of return (e.g. when there is no active

procedure and no active source command) generates an error.

7.2 Local and global variables

When the body of a Tcl procedure is executed, it behaves exactly the same as if it were

invoked outside of the procedure (with eval, for example) except for one thing: it has a

different variable context. Each procedure invocation has its own private set of variables,

called local variables, and these variables are different from the global variables that are

accessible outside any procedure. When a variable name is used inside a procedure, it

refers by default to a local variable. Local variables are created the first time they are set,

and they are all deleted when the procedure returns. If one procedure calls another, the

callee’s local variables are disjoint from the caller’s local variables.

The arguments to a procedure are just local variables whose values are set from the

command-line arguments at the time the procedure is invoked. When execution begins in

a procedure, the only local variables with values are those corresponding to arguments.

A procedure can reference global variables by invoking the global command. For

example, the following command makes the global variables x and y accessible inside a

procedure:

global x y

The global command treats each of its arguments as the name of a global variable, and

sets up bindings so that references to those names within the procedure will be directed to

global variables instead of local ones. Global can be invoked at any time during a proce-

56 Procedures

DRAFT (10/9/92): Distribution Restricted

dure; once it has been invoked, the bindings will remain in effect until the procedure

returns.

If you’re used to programming in a language with declarations like C, it’s important

to realize that global is not a declaration; it’s a command. This means that the global

binding doesn’t take effect until the command is actually executed. Also, the precedence

of local and global variables is different in Tcl from what it is in most other programming

languages. If a procedure first accesses a variable as a local variable and then invokes

global, the global variable takes precedence over the local one and the local variable

will not be accessible for the rest of the procedure. The script below is probably not very

useful but it demonstrates this behavior:

proc add1 a {
global a
expr $a+1

}
set a 44
add1 33

45

add1 21

45

If unset is invoked within a procedure on a global variable, it unsets the global vari-

able but does not remove the binding for that name within the procedure. The global vari-

able continues to be accessible for the rest of the procedure, and it can be re-set by the

procedure if desired.

7.3 More on arguments: defaults and variable numbers of
arguments

In the examples so far, the second argument to proc (which describes the arguments to

the procedure) has taken a simple form consisting of the names of the arguments. Three

additional features are available for specifying arguments. First, the argument list may be

specified as an empty string. In this case the procedure takes no arguments. For example,

the following command defines a procedure that prints out two global variables:

proc printVars {} {
global a b
puts stdout "a is $a, b is $b"

}

The second additional feature for argument lists is that defaults may be specified for

some or all of the arguments. The argument list is actually a list of lists, with each sublist

corresponding to a single argument. If a sublist has only a single element (which has been

the case up until now) that element is the name of the argument. If a sublist has two argu-

7.3 More on arguments: defaults and variable numbers of arguments 57

DRAFT (10/9/92): Distribution Restricted

ments, the first is the argument’s name and the second is a default value for it. For exam-

ple, here is a procedure that increments a given value by a given amount, with the amount

defaulting to 1:

proc inc {value {increment 1}} {
expr $value+$increment

}

The first element in the argument list, value, specifies a name with no default value. The

second element specifies an argument with name increment and a default value of 1.

This means that inc can be invoked with either one or two arguments:

inc 42 3

45

inc 42

43

If a default wasn’t specified for an argument in the proc command, then that argument

must be supplied whenever the procedure is invoked. The defaulted arguments, if any,

must be the last arguments for the procedure: if a particular argument is defaulted then all

the arguments after that one must also be defaulted.

The third special feature in argument lists is support for variable numbers of argu-

ments. If the last argument in the argument list is args, then the procedure may be called

with varying numbers of arguments. Arguments before args in the argument list are han-

dled as before, but any number of additional arguments may be specified. The procedure’s

local variable args will be set to a list whose elements are all of the extra arguments. If

there are no extra arguments then args will be set to an empty string. For example, the

following procedure may be invoked with any number of arguments and it returns their

sum:

proc sum args {
set s 0
foreach i $args {

incr s $i
}
return $s

}
sum 1 2 3 4 5

15

sum

0

If a procedure’s argument list contains additional arguments before args then they may

be defaulted as described above. Of course, if this happens there will be no extra argu-

ments so args will be set to an empty string. No default value may be specified for

args: the empty string is always its default.

58 Procedures

DRAFT (10/9/92): Distribution Restricted

7.4 Exotic scoping facilities: upvar and uplevel

By default, all of the variables used by a procedure are local to that procedure. With the

global command a procedure can access global variables. This section describes two

additional commands, upvar and uplevel, that allow a procedure to access the vari-

able context of any procedure that is currently active as well as global variables. These

commands are useful for implementing call-by-reference argument semantics, and they

can also be used to define new control structures as Tcl procedures.

The upvar command binds one or more names in the local variable context to other

variables at global level or in the context of some other active procedure. Upvar has the

form

upvar ?level? otherVar1 myVar1 ?otherVar2 myVar2 ...?

The level argument selects a variable context. If it is 1, it selects the context of the pro-

cedure that invoked the current one (or global context if the command that invoked this

procedure was at global level). If level is 2 it selects the context of the caller’s caller,

and so on. Alternatively, level may be specified as #0 to specify global level, #1 to spec-

ify the context of the first-level procedure invoked from global level, and so on. Level

may be omitted (unless the first character of otherVar1 is # or a digit), in which case it

defaults to 1.

The otherVar1 argument to upvar specifies the name of a variable in the context

selected by level. The upvar command will make this variable accessible by the name

myVar1 in the current procedure. If additional arguments are specified, they give the

names of other variables in the context selected by level, along with the names by

which those variables will be accessible in the current procedure. The effect of an upvar
command lasts until the procedure returns, and the general behavior of upvar is the same

as global except that a wider range of variables may be acessed through upvar.

One of the most common uses of upvar is to implement call-by-reference argument

semantics, where a procedure receives as one its arguments the name of a variable in the

caller’s context. It can then use upvar to read or modify the variable. For example, con-

sider the following procedure:

proc squares {varName n} {
upvar 1 $varName v
set v {}
for {set i 1} {$i <= $n} {incr i} {

lappend v [expr $i*$i]
}

}

The squares procedure takes two arguments: the name of a variable in the caller’s con-

text and a number n. It sets the variable to a list whose elements are the squares of the first

n integers:

7.4 Exotic scoping facilities: upvar and uplevel 59

DRAFT (10/9/92): Distribution Restricted

squares x 5
set x

1 4 9 16 25

The squares procedure will work equally well whether its caller is a command at global

level or another procedure; whatever variable was accessible to the caller by the given

name will be modified. The otherVar variable in an upvar command may itself be the

myVar name of an upvar command; in this case a chain of variable names can arise with

all of them referring to the same original variable.

The uplevel command may be used to execute a script in another variable context.

It is a cross between upvar and eval, and it has the following form:

uplevel ?level? arg ?arg arg ...?

Level has the same forms as for upvar. Uplevel concatenates all of its arg argu-

ments (with spaces separating them) and executes the resulting string as a Tcl script just as

eval does. However, the execution is carried out in the variable context given by level

rather than the current context as for eval. The result of the nested script will be returned

by uplevel as its result.

Uplevel and upvar can be used to create new control structures as Tcl procedures.

For example, if there were no for command in Tcl, it could be defined with the following

procedure:

proc for {init test reinit body} {
uplevel 1 $init
while {[uplevel 1 [list expr $test]]} {

uplevel 1 $body
uplevel 1 $reinit

}
}

Actually, this code isn’t a perfect emulation of the built-in for command because it

doesn’t handle break, continue, and errors in the same way as the built-in command,

but it could easily be extended to do so using the facilities described in Chapter 8. The

uplevel command is essential to this script; without it test, init, reinit, and

body would not be able to access variables in the calling procedure’s variable context.

The use of the list command in this example is also essential for the procedure to work

with arbitrary test arguments; the reasons for this are the same as those discussed in

Section 6.5 for the eval command.

The do procedure below is another example that uses upvar and uplevel to create

a new control structure:

proc do {varName first last body} {
upvar 1 $varName v
for {set v $first} {$v <= $last} {incr v} {

uplevel 1 $body

60 Procedures

DRAFT (10/9/92): Distribution Restricted

}
}

The first argument to do is the name of a variable. Do sets that variable to each number in

the range between its second and third arguments, inclusive, and executes the fourth argu-

ment as a Tcl command once for each setting. Given this definition of do, the following

script creates a list of squares of the first five integers:

set a {}
do i 1 5 {

lappend a [expr $i*$i]
}
set a

1 4 9 16 25

7.5 Replacing, renaming, and deleting commands

If you invoke proc at a time when there is already a command with the name specified in

the command, then the existing command is replaced with the new procedure. This is true

regardless of whether the existing command is a built-in command or a procedure. This

means, for example, that you can redefine procedures at any time in the life of a Tcl-based

application. It also means that you can redefine built-in commands like if (or even

proc!) if you wish (this can occasionally be useful, but it may also cause your scripts to

misbehave in confusing ways).

If you wish to redefine or re-arrange the command structure of an application, you

may find the rename command useful. It takes two arguments:

rename oldName newName

Rename does just what its name implies: it renames the command that used to have the

name oldName so that it now has the name newName. NewName must not already exist

as a command when rename is invoked.

Rename can also be used to delete a command by invoking it with an empty string as

the newName argument. For example, the following script disables all file I/O from an

application by deleting the relevant commands:

rename open {}
rename read {}
rename gets {}
rename puts {}

Any Tcl command may be renamed or deleted, including the built-in commands as

well as procedures and commands defined by an application. Renaming or deleting a built-

in command is probably a bad idea in general, since it will break scripts that depend on the

command, but in some situations it can be very useful. For example, the exit command

as defined by Tcl just exits the process immediately (see Section 11.4). If an application

7.5 Replacing, renaming, and deleting commands 61

DRAFT (10/9/92): Distribution Restricted

wants to have a chance to clean up its internal state before exiting, then it can create a

“wrapper” around exit by redefining it:

rename exit exit.old
proc exit status {

application-specific cleanup

...

exit.old $status
}

In this example the exit command is renamed to exit.old and a new exit proce-

dure is defined, which performs the cleanup required by the application and then calls the

renamed command to exit the process. This allows existing scripts that call exit to be

used without change while still giving the application an opportunity to clean up its state.

62 Procedures

DRAFT (10/9/92): Distribution Restricted

63

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the publisher. This

statement must be easily visible on the first page of any reproduced copies. The publisher does not

offer warranties in regard to this draft.

Chapter 8

Errors and Exceptions

As you have seen in previous chapters, there are many things that can result in errors in

Tcl commands. Errors can occur because a command doesn’t receive the right number of

arguments, or because the arguments have the wrong form (e.g. a string with improper list

structure passed to a list command), or because some other problem occurs in executing

the command, such as an error in a system call for file I/O. In most cases errors represent

severe problems that make it impossible for the application to complete the script it is pro-

cessing. Tcl’s error facilities are intended to make it easy for the application to “unwind”

the work in progress and display an error message to the user that indicates what went

wrong. Presumably the user will fix the problem and retry the operation.

Tcl also allows errors to be “caught” by scripts so that only part of the work in

progress in unwound. After catching an error, the script can either ignore the error or take

steps to recover from it. If it can’t recover then the script can then reissue the error. The

error-handling facilities in Tcl also apply to a collection of exceptions including the

break, continue, and return commands.The facilities for catching and reissuing

errors are not needed very often in Tcl scripts, but when they are needed they can be used

to achieve powerful effects. This chapter is organized with the most basic error facilities

first and the more esoteric features at the end. Table 8.1 summarizes the Tcl commands

related to errors.

8.1 What happens after an error?

When a Tcl error occurs, the command being processed is aborted. If that command is part

of a larger script then the script is also aborted. If the error occurs while executing a Tcl

FIGURE 8

TABLE 8

64 Errors and Exceptions

DRAFT (10/9/92): Distribution Restricted

procedure, then the procedure is aborted, along with the procedure that called it, and so on

until all the active procedures have aborted. After all Tcl activity has been unwound in this

way, control eventually returns to C code in the application, along with an indication that

an error occurred and a human-readable error message. It is up to the application to decide

how to handle this situation, but a typical response for an interactive application is to dis-

play the error message for the user and continue processing user input. In a batch-oriented

application where the user can’t see the error message and adjust future commands

accordingly, the application might print the error message into a log and abort.

As an example, consider the following script, which is intended to sum the elements

of a list:

set list {44 16 123 98 57}
set sum 0
foreach el $list {

set sum [expr {$sum+$element}]
}

This script is incorrect because there is no variable element: the variable name ele-
ment in the expr command should have been el to match the loop variable specified for

the foreach command. If the script is executed in its current form an error will occur in

the expr command: as it is processing its expression argument, it will attempt to substi-

tute the value of variable element; it will not be able to find a variable by that name, so

it will signal an error. This error indication will be returned to the foreach command,

which had invoked the Tcl interpreter to execute the loop body. When foreach sees that

an error has occurred, it will abort its loop and return the same error indication as its own

result. This in turn will cause the overall script to be aborted. The error message “can’t
read "element": no such variable” will be passed along with the error, and

will probably be displayed for the user.

Table 8.1. A summary of the Tcl commands related to errors.

catch command ?varName?
Execute command as a Tcl script and return an integer code that identifies
the completion status of the command. If varName is specified, it gives the
name of a variable; the variable will be modified to hold the return value or
error message generated by command.

error message ?info? ?code?
Generate an error with message as the error message. If info is specified
and is not an empty string then it is used to initialize the errorInfo vari-
able. If code is specified then it is stored in the errorCode variable.

8.1 What happens after an error? 65

DRAFT (10/9/92): Distribution Restricted

When an error occurs, three pieces of information about the error are available after-

wards. The first piece of information is the error message. In simple cases this will provide

enough information for you to pinpoint where and why the error occurred so you can

avoid the problem in the future.

The second piece of information about errors is the global variable errorInfo,

which is set by Tcl after each error. If a complex script was being executed when the error

occurred, the message alone may not provide enough information for you to figure out

where the error occurred. This is particularly true if nested procedure calls were active at

the time of the error. To help you pinpoint the context of the error, Tcl stores information

in the errorInfo variable as it unwinds the commands that were in progress. This infor-

mation describes each of the nested calls to the Tcl interpreter. For example, after the

above error errorInfo will have the following value:

can’t read "element": no such variable
while executing

"expr {$sum+$element}"
invoked from within

"set sum [expr {$sum+$element}]..."
("foreach" body line 2)
invoked from within

"foreach el $list {
set sum [expr {$sum+$element}]

}"

The third piece of information that is available after errors is the global variable

errorCode. ErrorCode provides information in a form that is easy to process with

Tcl scripts; it is most commonly used after catching errors as described below. The

errorCode variable consists of a list with one or more elements. The first element iden-

tifies a general class of errors and the remaining elements provide more information in a

class-dependent fashion. For example, if the first element of errorCode is UNIX then it

means that an error occurred in a UNIX system call. ErrorCode will contain two addi-

tional elements giving the UNIX name for the error, such as ENOENT, and a human-read-

able message describing the error. See the reference documentation for a complete

description of all the forms errorCode can take, or refer to the descriptions of individ-

ual commands that set errorCode, such as those in Chapter 10 and Chapter 11.

The errorCode variable is a relative late-comer to Tcl and is only filled in with use-

ful information by a few commands, mostly dealing with file access and child processes.

When an error occurs without any useful information available for errorCode, Tcl fills

it in with the value NONE.

66 Errors and Exceptions

DRAFT (10/9/92): Distribution Restricted

8.2 Generating errors from Tcl scripts

Most Tcl errors are generated by the C code that implements the Tcl interpreter and the

built-in commands. However, it is also possible to generate an error by executing the

error Tcl command as in the following example:

if {($x < 0} || ($x > 100)} {
error "x is out of range ($x)"

}

In this case error takes a single argument, which is the error message. The error com-

mand simply generates an error and uses its argument as the error message. Error can

also have one or two additional arguments, which are used when reissuing errors (see Sec-

tion 8.5 below).

As a matter of programming style, you should only use the error command in situ-

ations where the correct action is usually to abort the script being executed. If you think

that an error is likely to be recovered from by the script in which it occurred without abort-

ing the entire script, then it is probably better to use the normal return value mechanism to

indicate success or failure (e.g. return one value from a command if it succeeded and

another if it failed, or set variables to indicate success or failure). Although it is possible to

recover from errors (you’ll see how in Section 8.3 below) the recovery mechanism is more

complicated than the normal return value mechanism. Thus it’s best to generate errors

only in situations where you won’t usually want to recover.

8.3 Trapping errors with catch

Errors generally cause all active Tcl commands to be aborted, but there are some situations

where it is useful to continue processing Tcl commands after an error has occurred. For

example, suppose that you want to unset variable x if it exists, but it may not exist at the

time of the unset command. If you invoke unset on a variable that doesn’t exist then it

generates an error:

unset x

can’t unset "x": no such variable

You can use the catch command to ignore the error in this situation:

catch {unset x}

1

The argument to catch is a Tcl script, which catch executes. If the script completes

normally then catch returns 0. If an error occurs in the script, the catch command traps

the error (so that the catch command itself is not aborted by the error) and it returns 1 to

indicate that an error occurred. In the above example the catch command ignores any

8.4 Exceptions in general 67

DRAFT (10/9/92): Distribution Restricted

errors in unset; thus x is unset if it existed and the script has no effect if x didn’t previ-

ously exist.

The catch command can also take a second argument. If the argument is provided

then it is the name of a variable and catch modifies the variable to hold either the script’s

return value (if it returns normally) or the error message (if the script generates an error):

catch {unset x} msg

1

set msg

can’t unset "x": no such variable

In this case the unset command generates an error so msg is set to contain the error mes-

sage. If variable x had existed then unset would have returned succesfully, so the return

value from catch would have been 0 and msg would have contained the return value

from the unset command, which is an empty string. This longer form of catch is use-

ful if you need access to the return value when the script completes succesfully. It’s also

useful if you need to do something with the error message after an error, such as logging it

to a file.

8.4 Exceptions in general

Errors are not the only things in Tcl that cause work in progress to be aborted. Errors are

just one example of a set of events called exceptions. In addition to errors there are

three other kinds of exceptions in Tcl, which are generated by the break, continue,

and return commands. These exceptions cause active scripts to be aborted just like

errors, except for two differences. First, the errorInfo and errorCode variables are

only set during error exceptions. Second, the exceptions other than errors are almost

always caught by an enclosing command, whereas errors usually unwind all the work in

progress. For example, break and continue commands are normally invoked inside a

looping command such as foreach; foreach will catch break and continue
exceptions and implement the expected behavior by terminating the loop or going on to

the next iteration. Similarly, return is normally only invoked inside a procedure or a file

being source’d. Both the procedure implementation and the source command catch

return exceptions.

If break or continue is invoked at a time when none of the enclosing commands

is prepared to catch the exception then unwinding occurs just as for errors. After all of the

active commands have been aborted the Tcl interpreter turns the exception into an error:

set x 22
if {$x < 30} {

break
}

invoked "break" outside of a loop

68 Errors and Exceptions

DRAFT (10/9/92): Distribution Restricted

Break and continue exceptions are also caught and turned into errors if they

occur inside a procedure and are not caught within that procedure. If return is invoked

at a point outside a procedure or source’d file then all the active commands are aborted

and the Tcl interpreter turns the exception into a normal return:

set x 22
if {$x < 30} {

return "all done"
}

all done

All exceptions are accompanied by a string value. In the case of an error, the string is

the error message. In the case of return, the string is the return value for the procedure

or script. In the case of break and continue the string is always empty.

The catch command actually catches all exceptions, not just errors. The return

value from catch indicates which kind of exception occurred and the variable specified

in catch’s second argument is set to hold the string associated with the exception (see

Table 8.2). For example:

catch {return "all done"} string

2

set string

all done

As an example of how catch might be used to deal with exceptions other than

errors, consider the for command. In Section 7.4 you saw how for can be emulated with

a Tcl procedure using uplevel. However, the example in Section 7.4 did not properly

handle break or continue commands within the loop body. Here is a new implemen-

tation of the for procedure that uses catch to deal with them:

proc for {init test reinit body} {
uplevel 1 $init
while {[uplevel 1 [list expr $test]]} {

set code [catch {uplevel 1 $body} string]
case $code {

0 {uplevel 1 $reinit; continue}
2 return
3 return
4 {uplevel 1 $reinit; continue}

}
error $string

}
}

This new implemenation of for executes the loop body inside a catch command so that

exceptions in the body don’t unwind past the for procedure. If no exception occurs, or if

the exception is a continue, then for just goes on to the next iteration. If a break or return

8.5 Reissuing errors 69

DRAFT (10/9/92): Distribution Restricted

exception occurs then for terminates the loop and returns. Lastly, if an error occurs then

for reflects that error upwards using the error command. For’s handling of return isn’t

quite correct, since it should cause a return from the procedure in which for was invoked,

not just from for. Unfortunately there is currently no way to achieve the desired behavior

with the current Tcl implementation (this will be fixed soon).

8.5 Reissuing errors

The implementation of for as a procedure in the previous section has one remaining

problem, which occurs when an error is generated by the loop body. The for procedure

catches the exception, sees that it is an error, and reissues the error by invoking the error
command. Unfortunately, neither errorInfo or errorCode will be set properly in

this case. The variables will reflect the state of execution when error is invoked,

whereas they should really reflect the state of execution at the time the original error

Table 8.2. A summary of Tcl exceptions. The first column indicates the value returned by catch in
each instance. The third column describes when the exception occurs and what is the value of the
string associated with the exception. The last column lists the commands that catch exceptions of
that type (“procedures” means that the exception is caught by a Tcl procedure when its entire body

Return value
from
catch

Description Caught by

0 Normal return. String gives
return value.

Not applicable

1 Error. String gives message
describing the problem.

Catch

2 The return command was
invoked. String gives return
value from procedure or file
source.

Catch, source, procedures

3 The break command was
invoked. String is empty.

Catch, for, foreach,
while, procedures

4 The continue command was
invoked. String is empty.

Catch, for, foreach,
while, procedures

70 Errors and Exceptions

DRAFT (10/9/92): Distribution Restricted

occurred in the loop body. For example, suppose that the following command is typed

after the for procedure has been defined as above:

set sum 0
for {set i 1} {$i <= 10} {incr i} {

incr sum [expr i*i]
}

When this script is executed an error will be generated by the expr command because the

dollar signs were accidentally omitted from the references to variable i. After the error is

reissued and unwinding completes, errorInfo will have the following value:

syntax error in expression i*i
while executing

"error $string"
("while" body line 9)
invoked from within

"while {[uplevel 1 [list expr $test]]} {
set code [catch {uplevel 1 $body} string]
case $code {

0 {uplevel 1 $reinit; continue}
2 return
..."

"case [catch {uplevel 1 $body} string] {
1 {error $string}
2 return
3 return

}"
("while" body line 2)
invoked from within

"for {set i 1} {$i <= 10} {incr i} {
incr sum [expr $i * $i]

}"

Note that the error is attributed to the error command in the for procedure, not to the

expr command that originally generated it. A similar problem occurs with errorCode:

the error command will set it to NONE, thereby losing any information left there by the

original error (in this particular case, there was no useful information anyway).

To solve both these problems, the error command may be given two additional

arguments. The first of these is an initial value for errorInfo, which is used instead of

the information that would have been recorded for the error command. This initial value

is extended with additional entries as unwinding continues up through higher levels of

active commands. The second additional argument is a value to place in the errorCode
variable instead of the default NONE. In the for example both of these arguments can

simply be supplied from the current values in the variables, which are the values left there

by the original error:

8.5 Reissuing errors 71

DRAFT (10/9/92): Distribution Restricted

proc for {init test reinit body} {
global errorInfo errorCode
uplevel 1 $init
while {[uplevel 1 [list expr $test]]} {

set code [catch {uplevel 1 $body} string]
case $code {

0 {uplevel 1 $reinit; continue}
2 return
3 return
4 {uplevel 1 $reinit; continue}

}
error $string $errorInfo $errorCode

}
}

When this new version of for is used with the erroneous expr command, errorInfo
has the following value at the time the error command is executed in for:

syntax error in expression "i*i"
while executing

"expr i*i"
invoked from within

"incr sum [expr $i*$i]"
("uplevel" body line 2)
invoked from within

"uplevel 1 $body"

This value describes all the active commands nested inside (but not including) the catch
command. As the reissued error unwinds, more information gets added to errorInfo so

that it has the following result when the error has been completely unwound:

syntax error in expression "i*i"
while executing

"expr i*i"
invoked from within

"incr sum [expr i*i]"
("uplevel" body line 2)
invoked from within

"uplevel 1 $body"
("while" body line 1)
invoked from within

"while {[uplevel 1 [list expr $test]]} {
set code [catch {uplevel 1 $body} string]
case $code {

0 {uplevel 1 $reinit; continue}
2 return
..."

(procedure "for" line 4)

72 Errors and Exceptions

DRAFT (10/9/92): Distribution Restricted

invoked from within
"for {set i 1} {$i <= 10} {incr i} {

incr sum [expr $i * $i]
}"

This information is still not completely perfect, since there is no mention in errorInfo
of the set or catch commands that were active when the error occurred. However,

information about these commands could be appended to errorInfo before passing its

value to the error command.

73

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the publisher. This

statement must be easily visible on the first page of any reproduced copies. The publisher does not

offer warranties in regard to this draft.

Chapter 9

String Manipulation

This chapter describes Tcl’s facilities for manipulating strings. The string commands

mimic the behavior of C library procedures such as scanf, printf, and strcmp, plus

they provide a few additional features not present in the C library. They allow you to gen-

erate formatted strings, parse strings to extract values, compare strings using any of sev-

eral pattern-matching techniques, and modify strings (e.g. by removing trailing blanks or

converting upper case characters to lower case). Table 9.1 summarizes the Tcl commands

for string processing.

9.1 Generating strings with format

Tcl’s format command provides almost exactly the same facilities as the sprintf pro-

cedure from the ANSI C library. It takes any number of arguments, of which the first is a

format string and the others are values to convert and substitute into the format string. The

format command combines the format string with the values to generate a new string,

which it returns as result. A simple example follows below:

format "There are %d days in a week" 7

There are 7 days in a week

In this example the characters “%d” in the format string are replaced with the decimal

value of the next argument to produce the result.

The format command operates by scanning the format string from left to right.

Each character from the format string is appended to the result string unless it is a percent

sign. If it is, then it is not copied to the result string. Instead, the characters following the %

FIGURE 9

TABLE 9

74 SString Manipulation

DRAFT (10/9/92): Distribution Restricted

format formatString ?value value ...?
Returns a result that is equal to formatString except that the value
arguments have been substituted in place of % sequences in format-
String.

regexp ?-indices? ?-nocase? exp string ?matchVar? ?subVar subVar ...?
Determines whether the regular expression exp matches part or all of
string and returns 1 if it does, 0 if it doesn’t. If there is a match, informa-
tion about matching range(s) is placed in the variables named bymatchVar
and the subVar’s, if they are specified.

regsub ?-all? ?-nocase? exp string subSpec varName
Matches exp against string as for regexp and returns 0 if there is no
match. If there is a match, then the command returns 1 and copies string
to the variable named by varName, making substitutions for the matching
portion(s) as specified by subSpec.

scan string format varName ?varName varName ...?
Parses fields from string as specified by format and places the values
that match the % sequences in format into the variables named by the
varName arguments.

string compare string1 string2
Returns -1, 0, or 1 if string1 is lexicographically less than, equal to, or
greater than string2.

string first string1 string2
Returns the index in string2 of the first character in the leftmost substring
that exactly matches the characters in string1, or -1 if there is no such
match.

string index string charIndex
Returns the charIndex’th character of string, or an empty string if
there is no such character. The first character in string has index 0.

string last string1 string2
Returns the index in string2 of the first character in the rightmost sub-
string of string2 that exactly matches string1. If there is no matching
substring then -1 is returned.

string length string
Returns the number of characters in string.

string match pattern string
Returns 1 if pattern matches string using glob-style matching rules (*,
?, [], and \) and 0 if it doesn’t.

string range string first last
Returns the substring of string that lies between the indices given by
first and last, inclusive. An index of 0 refers to the first character in the
string, and last may be end to refer to the last character of the string.

9.1 Generating strings with format 75

DRAFT (10/9/92): Distribution Restricted

character are treated as a conversion specifier. The conversion specifier controls the con-

version of the next successive argument to a particular format and the result is appended to

the result string. If there are multiple conversion specifiers in the format string, then each

one controls the conversion of one additional argument. The format command must be

given enough arguments to meet the needs of all of the conversion specifiers in the format

string.

Each conversion specifier may contain up to five different parts: a set of flags, a mini-

mum field width, a precision, a length modifier, and a conversion character. Any of these

fields may be omitted except for the conversion character. The fields that are present must

appear in the order given above. The paragraphs below discuss each of these fields in turn.

The flags portion of a conversion specifier may contain any of the following charac-

ters, in any order:

- Specifies that the converted argument should be left-justified
in its field (numbers are normally right-justified with leading
spaces if needed).

+ Specifies that a number should always be printed with a sign,
even if positive.

space Specifies that a space should be added to the beginning of the
number if the first character isn’t a sign.

0 Specifies that the number should be padded on the left with
zeroes instead of spaces.

Table 9.1, cont'd. A summary of the Tcl commands for string manipulation.

string tolower string
Returns a value identical to string except that all upper case characters
have been converted to lower case.

string toupper string
Returns a value identical to string except that all lower case characters
have been converted to upper case.

string trim string ?chars?
Returns a value identical to string except that any leading or trailing char-
acters that appear in chars are removed. Chars defaults to the white space
characters (space, tab, newline, and carriage return).

string trimleft string ?chars?
Same as string trim except that only leading characters are removed.

string trimright string ?chars?
Same as string trim except that only trailing characters are removed.

76 SString Manipulation

DRAFT (10/9/92): Distribution Restricted

The second portion of a conversion specifier is a number giving a minimum field

width for this conversion. It is typically used to make columns line up in tabular print-

outs. If the converted argument contains fewer characters than the mnimum field width,

then it will be padded so that it is as wide as the minimum field width. Padding normally

occurs by adding extra spaces on the left of the converted argument, but the 0 and - flags

may be used to specify padding with zeroes on the left or with spaces on the right, respec-

tively. If the minimum field width is specified as * rather than a number, then the next

argument to the format command determines the minimum field width; it must be a

numeric string.

The third portion of a conversion specifier is a precision, which consists of a period

followed by a number. The number is used in different ways for different conversions. For

e, E, f, and F conversions it specifies the number of digits to appear to the right of the

decimal point. For g and G conversions it specifies the total number of digits to appear,

including those on both sides of the decimal point (however, trailing zeroes after the deci-

mal point will still be omitted unless the # flag has been specified). For integer conver-

sions, it specifies a mimimum number of digits to print (leading zeroes will be added if

necessary). For s conversions it specifies the maximum number of characters to be

printed; if the string is longer than this then the trailing characters will be dropped. If the

precision is specified as .* then the next argument to the format command determines

the precision; it must be a numeric string.

The fourth part of a conversion specifier is a length modifier, which must be h or l. If

it is h it specifies that the numeric value should be truncated to a 16-bit value before con-

verting. If it is l it specifies that the numeric value should be extended to 32-bits before

converting. Almost all machines that Tcl runs on use 32 bits by default, so the l modifier

is seldom useful. For that matter, the h modifier is rarely useful either.

The last thing in a conversion specifier is an alphabetic character that determines what

kind of conversion to perform. Table 9.2 lists the conversion characters that are available

in the format command and the kind of conversion performed by each. For the numeri-

cal conversions the argument being converted must be an integer or floating-point string;

format converts the argument to binary and then converts it back to a string according to

the conversion specifier.

Here are a few examples of complete conversion specifiers and the results that they

produce:

format %10d -243

Requests an alternate output form. For o and O conversions it
guarantees that the first digit is always 0. For x or X conver-
sions, 0x or 0X (respectively) will be added to the beginning
of the result unless it is zero. For all floating-point conver-
sions (e, E, f, F, g, and G) it guarantees that the result always
has a decimal point. For g and G conversions it specifies that
trailing zeroes should not be removed.

9.1 Generating strings with format 77

DRAFT (10/9/92): Distribution Restricted

 -243

format %010d -243

-000000243

format %-10d -243

-243

format %10s "Two words"

 Two words

format %10.5s "Two words"

Table 9.2. Conversion characters for the format command. The value being converted must have
a proper integer or floating-point syntax as specified in the table.

Character Type of Conversion

d Convert integer to signed decimal string.

u Convert integer to unsigned decimal string.

o Convert integer to unsigned octal string.

x, X Convert integer to unsigned hexadecimal string (use abc-
def for x and ABCDEF for X).

c Convert integer to single ASCII character.

s No conversion; just insert string.

f Convert floating-point number to signed decimal string of
the form xx.yyy, where the number of y’s is determined by
the precision (default: 6). If the precision is 0 then no deci-
mal point is output.

e, E Convert floating-point number to scientific notation in the
form x.yyye±zz, where the number of y’s is determined
by the precision (default: 6). If the precision is 0 then no
decimal point is output. If the E form is used then E is
printed instead of e.

g, G If the exponent is less than -4 or greater than or equal to the
precision, then convert floating-point number as for %e or
%E. Otherwise convert as for %f. Trailing zeroes and a trail-
ing decimal point are omitted.

% No conversion: just insert %.

78 SString Manipulation

DRAFT (10/9/92): Distribution Restricted

 Two w

format %.2f -243

-243.00

format %.2e -243

-2.43e+02

The format command is really only needed if you’re using relatively fancy conver-

sion specifiers. If you want to do a simple substitution, you can already do it easily in Tcl

without using format. For example, if the variable days has the value 30, the following

commands all produce the same result:

set x [format "There are %d days in April" $days]

There are 30 days in April

set x [format "There are %s days in April" $days]

There are 30 days in April

set x "There are $days days in April"

There are 30 days in April

Note that in this case %d behaves exactly the same as %s (except that it does more work

and hence is probably slower); this would not be true if days had the hexadecimal value

0x30.

9.2 Extracting characters: string index and string range

The string command provides a number of features for general-purpose string manipu-

lation. It is actually about a dozen commands rolled into one; the first argument to

string selects one of many options. For example, consider the command

string index "Sample string" 3

p

When the first argument to string is index, as in this case, then there must be two

additional arguments. The first of these may be any string value, and the last argument

must be a number; string index uses the last argument as an index into the string and

returns the indexed character as result. An index of 0 selects the first character.

The string range command is similar to string index except that it takes

two indices and returns all the characters from the first index to the second, inclusive:

string range "Sample string" 3 7

ple s

The second index may have the value end to select all the characters up to the end of the

string:

string range "Sample string" 3 end

9.3 Parsing strings with scan 79

DRAFT (10/9/92): Distribution Restricted

ple string

In both string range and string index an empty string will be returned if the

index or indices are completely outside the range of the string.

There are a number of places in Tcl where related commands are grouped together

into a single Tcl command like string with a first argument that chooses among the var-

ious options. I did this to avoid polluting the Tcl command space with lots of tiny com-

mands. If you build collections of related commands yourself, I recommend using this

same approach for the commands you write.

9.3 Parsing strings with scan

The scan command provides almost exactly the same facilities as the sscanf procedure

from the ANSI C library. Scan is roughly the inverse of format. It starts with a format-

ted string, parses the string under the control of a format string, extracts fields correspond-

ing to % conversion specifiers in the format string, and places the extracted values in Tcl

variables. For example, after the following command is executed variable a will have the

value 16 and variable b will have the value 24.2:

scan "16 units, 24.2% margin" "%d units, %f" a b

2

The first argument to scanf is the string to parse, the second is a format string that con-

trols the parsing, and any additional arguments are names of variables to fill in with con-

verted values. The return value of 2 indicates that two conversions were completed

successfully.

Scan operates by scanning the string and the format together. If the next character in

the format is a blank or tab then it is ignored. Otherwise, if it isn’t a % character then it

must match the next non-white-space character of the string. When a % is encountered in

the format, it indicates the start of a conversion specifier. A conversion specifier contains

three fields after the %: a *, which indicates that the converted value is to be discarded

instead of assigned to a variable; a number indicating a maximum field width; and a con-

version character. All of these fields are optional except for the conversion character.

When scan finds a conversion specifier in the format, it first skips any white-space

characters in the input string. Then it converts the next input characters according to the

conversion specifier and stores the result in the variable given by the next argument to

scan. See Table 9.3 for a list of the conversion characters and their meanings. The num-

ber of characters read from the input for a conversion is the largest number that makes

sense for that particular conversion (e.g. as many decimal digits as possible for %d, as

many octal digits as possible for %o, and so on). The input field for a given conversion ter-

minates either when a white-space character is encountered or when the maximum field

width has been reached, whichever comes first. If a * is present in the conversion specifier

then no variable is assigned and the next scan argument is not consumed.

80 SString Manipulation

DRAFT (10/9/92): Distribution Restricted

For example, consider the following command:

scan 12345678 %*2d%3o%d a b

2

Table 9.3. Conversion characters for the scanf command.

Character Type of Conversion

d The input field must be a decimal integer. It is read in and
the value is stored in the variable as a decimal string.

o The input field must be an octal integer. It is read in and the
value is stored in the variable as a decimal string.

x The input field must be a hexadecimal integer. It is read in
and the value is stored in the variable as a decimal string.

c A single character is read in and its ASCII value is stored in
the variable as a decimal string. Initial white space is not
skipped in this case, so the input field may be a white-space
character. This conversion is different from the ANSI stan-
dard in that the input field always consists of a single char-
acter and no field width may be specified.

s The input field consists of all the characters up to the next
white-space character; the characters are copied to the vari-
able.

e, f, g The input field must be a floating-point number consisting
of an optional sign, a string of decimal digits possibly con-
taining a decimal point, and an optional exponent consisting
of an e or E followed by an optional sign and a string of
decimal digits. It is read in and stored in the variable as a
floating-point string.

[chars] The input field consists of any number of characters in
chars. The matching string is stored in the variable. If the
first character between the brackets is a] then it is treated
as part of chars rather than the closing bracket for the set.

[^chars] The input field consists of any number of characters not in
chars. The matching string is stored in the variable. If the
character immediately following the ^ is a] then it is
treated as part of the set rather than the closing bracket for
the set.

9.4 Simple searching and comparison 81

DRAFT (10/9/92): Distribution Restricted

The return value of 2 indicates that two values were successfully converted and assigned

to variables (three conversions were performed but the first converted value was discarded

because of the * in its conversion specifier). After the command completes variable a has

the value 229 (the decimal equivalent of the octal value 345) and b has the value 678.

9.4 Simple searching and comparison

This section and the next two that follow describe several ways to search strings for partic-

ular substrings or compare strings using various pattern-matching techniques. This section

presents three simple mechanisms that are available as options of the string command.

The command string first takes two additional string arguments as in the fol-

lowing example:

string first th "In the tub where I bathed today"

3

It searches the second string to see if there is a substring that is identical to the first string.

If so then it returns the index of the first character in the leftmost matching substring; if not

then it returns -1. The command string last is similar except it returns the starting

index of the rightmost matching substring:

string last th "In the tub where I bathed today"

21

The command string compare takes two additional arguments and compares

them in their entirety. It returns -1 if the first string is lexicographically less than the sec-

ond, 0 if they are identical, and 1 if the first is lexicographically greater than the second:

string compare Michigan Minnesota

-1

string compare Michigan Michigan

0

9.5 Glob-style pattern matching

Tcl offers two different kinds of pattern matching: “glob” style, which is named after the

file name matching used in shells, and regular expressions. This section describes the glob

style and the next section describes regular expressions.

The command string match implements glob-style pattern matching. It takes

two additional arguments, a pattern and a string, and returns 1 if the pattern matches the

string, 0 if it doesn’t. For the pattern to match the string, each character of the pattern must

82 SString Manipulation

DRAFT (10/9/92): Distribution Restricted

be the same as the corresponding character of the string (differences in case are signifi-

cant), except that the following pattern characters are interpreted specially:

Glob-style matching is similar to that used by the shells for file names. The following

commands illustrate some of the features of glob-style matching:

string match a*b*a abracadabra

1

string match a?[1234567890A-Z] abX

1

string match a?[1234567890A-Z] abbX

0

9.6 Pattern matching with regular expressions

The glob style of matching described in the previous section is simple and easy to work

with, but it is limited in the kinds of patterns that can be expressed. Tcl’s second form of

pattern matching uses regular expressions like those available in the egrep program.

Regular expressions are more complex than glob-style patterns but much more powerful.

Tcl’s regular expressions are based on Henry Spencer’s publically available implementa-

tion, and parts of the description below are copied from Spencer’s documentation.

A regular expression pattern can have several layers of structure. The basic building

blocks are called atoms, and the simplest form of regular expression consists of one or

more atoms. For a regular expression to match an input string, there must be a substring of

the input where each of the regular expression’s atoms (or other components, as you’ll see

below) matches the corresponding part of the substring. In most cases atoms are single

characters, each of which matches itself. Thus the regular expression abc matches any

string containing abc, such as abcdef or xabcy.

A number of characters have special meanings in regular expressions; they are sum-

marized in Table 9.4. The characters ^ and $ are atoms that match the beginning and end

of the input string respectively; thus ^abc matches any string that starts with abc, abc$
matches any string that ends in abc, and ^abc$ matches abc and nothing else. The atom

? Matches any single character.

* Matches any sequence of zero or more characters.

[chars] Matches any single character in chars. If chars contains a
sequence of the form a-b then any character between a and
b, inclusive, will match.

\x Matches the single character x. This provides a way to avoid
special interpretation for any of the characters *?[]\ in the
pattern.

9.6 Pattern matching with regular expressions 83

DRAFT (10/9/92): Distribution Restricted

. matches any single character, and the atom \x, where x is any single character, matches

x. For example, the regular expression .\$ matches any string that contains a dollar-sign,

as long as the dollar-sign isn’t the first character.

Besides the atoms already described, there are two other forms for atoms in regular

expressions. The first form consists of any regular expression enclosed in parentheses,

such as (a.b). Parentheses are used for grouping. They allow operators such as * to be

applied to entire regular expressions as well as atoms. They are also used in the regexp

Table 9.4. The special characters permitted in regular expression patterns.

Character(s) Meaning

. Matches any single character.

^ Matches the null string at the start of the input string.

$ Matches the null string at the end of the input string.

\x Matches the character x.

[chars] Matches any single character from chars. If the first char-
acter of chars is ^ then it matches any single character not
in the remainder of chars. A sequence of the form a-b in
chars is treated as shorthand for all of the ASCII charac-
ters between a and b, inclusive. If the first character in
chars (possibly following a ^) is] then it is treated liter-
ally (as part of chars instead of a terminator). If a -
appears first or last in chars then it is treated literally.

(regexp) Matches anything that matches the regular expression
regexp. Used for grouping and for identifying pieces of
the matching substring.

* Matches a sequence of 0 or more matches of the preceding
atom.

+ Matches a sequence of 1 or more matches of the preceding
atom.

? Matches either a null string or a match of the preceding
atom.

regexp1|regexp2 Matches anything that matches either regexp1 or
regexp2.

84 SString Manipulation

DRAFT (10/9/92): Distribution Restricted

and regsub commands to identify pieces of the matching substring for special process-

ing. Both of these uses are described in more detail below.

The final form for an atom is a range, which is a collection of characters between

square brackets. A range matches any single character that is one of the ones between the

brackets. Furthermore, if there is a sequence of the form a-b among the characters, then

all of the ASCII characters between a and b are treated as acceptable. Thus the regular

expression [0-9a-fA-F] matches any string that contains a hexadecimal digit. If the

character after the [is a ^ then the sense of the range is reversed: it only matches charac-

ters not among those specified between the ^ and the]. It is possible to specify a -, ^, or

] as one of the acceptable or unacceptable characters of the range, but only with special

care about where the character appears in the range; see Table 9.4 for details.

The three operators *, +, and ? may follow an atom to specify repetition. If an atom is

followed by * then it matches a sequence of zero or more matches of that atom. If an atom

is followed by + then it matches a sequence of one or more matches of the atom. If an

atom is followed by ? then it matches either an empty string or a match of the atom. For

example, ^(0x)?[0-9a-fA-F]+$ matches strings that are proper hexadecimal num-

bers, i.e. those consisting of an optional 0x followed by one or more hexadecimal digits.

Finally, regular expressions may be joined together with the | operator. The resulting

regular expression matches anything that matches either of the regular expresssions that

surround the |. Thus ^((0x)?[0-9a-fA-F]+|[0-9]+)$ matches any string that is

either a hexadecimal number or a decimal number. Note that the information between

parentheses may be any regular expression, including additional regular expressions in

parentheses, so it is possible to build up quite complex structures.

The regexp command is used to invoke regular expression matching in Tcl. In its

simplest form it takes two arguments: the regular expression pattern and an input string. It

returns 0 or 1 to indicate whether or not the pattern matched the input string:

regexp {^[0-9]+$} 510

1

Note that the pattern had to be enclosed in braces so that the characters $, [, and] are

passed through to the regexp command instead of triggering variable and command sub-

stitution.

If regexp is invoked with additional arguments after the input string, then each

additional argument is treated as the name of a variable. The first variable is filled in with

the substring that matched the entire regular expression. The second variable is filled in

with the portion of the substring that matched the leftmost parenthesized subexpression

within the pattern; the third variable is filled in with the match for the next parenthesized

subexpression, and so on. If there are more variable names than parenthesized subexpres-

sions then the extra variables are set to empty strings. For example, after executing the

command

regexp {([0-9]+) *([a-z]+)} "Walk 10 km" a b c

9.6 Pattern matching with regular expressions 85

DRAFT (10/9/92): Distribution Restricted

variable a will have the value “10 km”, b will have the value 10, and c will have the

value km. This ability to extract portions of the matching substring allows regexp to be

used for parsing.

It is also possible to specify two extra switches to regexp before the regular expres-

sion argument. A -nocase switch specifies that alphabetic atoms should match either

upper- or lower-case letters. For example:

regexp {[a-z]} A

0

regexp -nocase {[a-z]} A

1

The -indices switch specifies that the additional variables should not be filled in with

the values of matching substrings. Instead, each should be filled in with a list giving the

first and last indices of the substring’s range within the input string. After the command

regexp -indices {([0-9]+) *([a-z]+)} "Walk 10 km" \
a b c

variable a will have the value “5 9”, b will have the value “5 6”, and c will have the

value “8 9”. If there are extra variables specified with the -indices option, they are set

to “-1 -1”.

In general there may be more than one way to match a regular expression to an input

string. For example, consider the following command:

regexp (a*)b* aabaaabb x y

1

Considering only the rules given so far, x and y could have the values aabb and aa,

aaab and aaa, ab and a, or any of several other combinations. To resolve this potential

ambiguity the regular expression parser chooses among alternatives using the rule “first

then longest.” In other words, it considers the possible matches in order working from left

to right across the input string and the pattern, and it attempts match longer pieces of the

input string before shorter ones. More specifically, the following rules apply in decreasing

order of priority:

1. If a regular expression could match two different parts of an input string then it will

match the one that begins earliest.

2. If a regular expression contains | operators then the leftmost matching sub-expression

is chosen.

3. In *, +, and ? constructs, longer matches are considered before shorter ones.

4. In sequences of expression components the components are considered from left to

right.

In the example from above, (a*)b* matches aab (the (a*) portion of the pattern is

matched first, and it consumes the leading aa; then the b* portion of the pattern consumes

the next b). After the command

86 SString Manipulation

DRAFT (10/9/92): Distribution Restricted

regexp (ab|a)(b*)c abc x y z

x will be abc, y will ab, and z will be an empty string. Rule 4 specifies that (ab|a)
gets first shot at the input string and Rule 2 specifies that the ab sub-expression is checked

before the a sub-expression. Thus the b has already been claimed before the (b*) com-

ponent is checked and (b*) must match an empty string.

9.7 Using regular expressions for substitutions

Regular expressions can also be used to perform substitutions using the regsub com-

mand. Consider the following example:

regsub there "They live there lives" their x

1

The first argument to regsub is a regular expression pattern and the second argument is

an input string, just as for regexp. And, like regexp, regsub returns 1 if the pattern

matches the string, 0 if it doesn’t. However, regsub does more than just check for a

match: it creates a new string by substituting a replacement value for the matching sub-

string. The replacement value is contained in the third argument to regsub, and the new

string is stored in the variable named by the final argument to regsub. Thus, after the

above command completes x will have the value “They live their lives”. If the

pattern had not matched the string then 0 would have been returned and x would not have

been modified.

Two special switches may appear as arguments to regsub before the regular expres-

sion. The first is -nocase, which causes case differences between the pattern and the

string to be ignored just as for regexp. The second possible switch is -all. Normally

regsub makes only a single substitution, for the first match found in the input string.

However, if -all is specified then regsub continues searching for additional matches

and makes substitutions for all of the matches found. For example, after the command

regsub -all a ababa zz x

x will have the value zzbzzbzz. If -all had been omitted then x would have been set

to zzbaba.

In the examples above the replacement string is a simple literal value. However, if the

replacement string contains a & or \0 then then the & or \0 is replaced in the substitution

with the substring that matched the regular expression. If a sequence of the form \n
appears in the replacement string, where n is a decimal number, then the substring that

matched the n-th parenthesized subexpression is substituted instead of the \n. Back-

slashes may be used in the replacement string to allow &, \0, \n, or backslash characters

to be substituted verbatim without any special interpretation. For example, the command

regsub -all a|b axaab && x

9.8 Length, case conversion, and trimming 87

DRAFT (10/9/92): Distribution Restricted

doubles all of the a’s and b’s in the input string. In this case it sets x to aaxaaaabb. Or,

the command

regsub -all (a+)(ba*) aabaabxab {z\2} x

replaces sequences of a’s with a single z if they precede a b but don’t also follow a b. In

this case x is set to zbaabxzb. In general it’s a good idea to enclose complex replace-

ment strings in braces as in the example above; otherwise the Tcl parser will process back-

slash sequences and the replacement string received by regsub may not contain

backslashes that are needed.

9.8 Length, case conversion, and trimming

The string command provides three additional features that haven’t yet been discussed:

length counting, case conversion, and trimming. The string length command counts

the number of characters in a string and returns that number:

string length "sample string"

13

The string toupper command converts all lower-case characters in a string to

upper case, and the string tolower command converts all upper-case characters in

its argument to lower-case:

string toupper "Watch out!"

WATCH OUT!

string tolower "15 Charing Cross Road"

15 charing cross road

The string command provides three options for trimming: trim, trimleft, and

trimright. Each option takes two additional arguments: a string to trim and an optional

set of trim characters. The string trim command removes all instances of the trim

characters from both the beginning and end of its argument string, returning the trimmed

string as result:

string trim aaxxxbab abc

xxx

The trimleft and trimright options work in the same way except that they only

remove the trim characters from the beginning or end of the string, respectively. The trim

commands are most commonly used to remove excess white space; if no trim characters

are specified then they default to the white space characters (space, tab, newline, and car-

riage return).

88 SString Manipulation

DRAFT (10/9/92): Distribution Restricted

89

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the publisher. This

statement must be easily visible on the first page of any reproduced copies. The publisher does not

offer warranties in regard to this draft.

Chapter 10

Accessing Files

This chapter describes the built-in Tcl commands for dealing with files. The commands

allow you to read and write files sequentially or in a random-access fashion. They also

allow you to retrieve information kept by the system about files, such as the time of last

access. Lastly, they can be used to manipulate file names; for example, you can remove the

extension from a file name or find the names of all files that match a particular pattern. See

Table 10.1 for a summary of the file-related commands.

The commands described in this chapter are only available on UNIX-like systems and

systems that support the kernel calls defined in the POSIX standard. If you are using Tcl

on another system, such as a Macintosh or a PC, then the file commands may not be

present and there may be other commands that provide similar functionality for your sys-

tem; talk to your local Tcl wizards to see what is available.

10.1 File names

File names are specified to Tcl using the normal UNIX syntax. For example, the file name

x/y/z refers to a file named z that is located in a directory named y, which in turn is

located in a directory named x, which must be in the current working directory. The file

name /top refers to a file named top in the root directory. You can also use tilde nota-

tion to specify a file name relative to a particular user’s home directory. For example, the

name ~ouster/mbox refers to a file named mbox in the home directory of user

ouster, and ~/mbox refers to a file named mbox in the home directory of the user run-

ning the Tcl script. These conventions (and the availability of tilde notation in particular)

apply to all Tcl commands that take file names as arguments.

FIGURE 10

TABLE 10

90 Accessing Files

DRAFT (10/9/92): Distribution Restricted

Table 10.1. A summary of the Tcl commands for manipulating files (continued on next page).

cd ?dirname?
Change the current working directory to dirname, or to the home directory
(as given by the HOME environment variable) if dirName isn’t given.
Returns an empty string.

close ?fileId?
Close the file given by fileId. Returns an empty string.

eof ?fileId?
Returns 1 if an end-of-file condition has occurred on fileId, 0 otherwise.

file option name ?arg arg ...?
Perform one of several operations on the filename given by name or on the
file that it refers to, depending on option. See Table 10.2 for details.

flush fileId
Write out any buffered output that has been generated for fileId. Returns
an empty string.

gets fileId ?varName?
Read the next line from fileId and discard its terminating newline. If
varName is specified, place the line in that variable and return a count of
characters in the line (or -1 for end of file). If varName isn’t specified,
return line as result (or an empty string for end of file).

glob ?-nocomplain? ?pattern pattern...?
Return a list of all file names that match any of the pattern arguments,
using csh rules for pattern matching (special characters ?, *, [], {}, and \).
If -nocomplain isn’t specified then an error occurs if the return list
would be empty.

open name ?access?
Open file name in the mode given by access. Access must be r, r+, w,
w+, a, or a+ and defaults to r. Returns a file identifier for use in other com-
mands like gets and close. If the first character of name is “|” then a
command pipeline is invoked instead of opening a file (see Section 11.2 for
more information).

puts fileId string ?nonewline?
Write string to fileId, appending a newline character unless nonew-
line is specified. Returns an empty string.

pwd
Returns the full path name of the current working directory.

10.2 Basic file I/O 91

DRAFT (10/9/92): Distribution Restricted

10.2 Basic file I/O

The Tcl commands for file I/O are similar to the procedures in the C standard I/O library,

both in their names and in their behavior. To access a file you must first open it with the

open command:

open main.c r

file3

The open command takes as arguments the name of a file and an access mode. The access

mode provides information such as whether you’ll be reading the file or writing it, and

whether you want to append to the file to access it from the beginning. The access mode

must have one of the following values:

r Open for reading only. The file must already exist.

r+ Open for reading and writing; the file must already exist.

w Open for writing only. Truncate the file if it already exists,
otherwise create a new empty file.

w+ Open for reading and writing. Truncate the file if it already
exists, otherwise create a new empty file.

a Open for writing only and set the initial access position to the
end of the file. If the file doesn’t exist then create a new
empty file.

Table 10.1, cont'd. A summary of the Tcl commands for manipulating files.

read fileId ?nonewline?
Read and return all of the bytes remaining in fileId. If nonewline is
specified then the final newline, if any, is dropped.

read fileId numBytes
Read and return the next numBytes bytes from fileId (or up to the end
of the file, if fewer than numBytes bytes are left).

seek fileId offset ?origin?
Position fileId so that the next access starts at offset bytes from ori-
gin. Origin may be start, current, or end, and defaults to start.
Returns an empty string.

tell fileId
Returns the current access position for fileId.

92 Accessing Files

DRAFT (10/9/92): Distribution Restricted

If you don’t specify an access mode then it defaults to r.

The open command returns a string that identifies the open file, such as file3 in

the above example. This file identifier is used when invoking other commands to manipu-

late the open file, such as gets, puts, and close. Normally you will save the file iden-

tifier in a variable when you open a file and then use that variable to refer to the open file.

You should not expect the identifiers returned by open to have any particular format.

Right now they have the format filex where x is the UNIX descriptor number for the

file, but this format might change in the future.

Three file identifiers have well-defined names and are always available to you, even if

you haven’t explicitly opened any files. These are stdin, stdout, and stderr; they

refer to the standard input, output, and error channels for the process in which the Tcl

script is executing.

Once you’ve opened a file you can read and write it using the gets, read, and

puts commands. Gets is used for reading files a line at a time, and it has two forms. In

the most common form, you invoke gets with two arguments, which are a file identifier

and the name of a variable:

gets file3 line

18

set line

#include <stdio.h>

In this case gets reads the next line from the open file, discards the terminating newline

character, stores the line in the named variable, and returns a count of the number of char-

acters stored into the variable. If the end of the file is reached before reading any charac-

ters then an empty string is stored into the variable and -1 is returned.

You can also omit the variable name when invoking gets. In this case the contents of

the line (minus the newline, of course) are returned as the command’s result. If the end of

the file is reached before reading any characters then an empty string is returned. An

empty string is also returned for a line with no characters except the newline, but you can

use the eof command described in Section 10.3 below to tell the difference between these

two cases.

The read command may be used for non-line-oriented input. It takes either two or

three arguments, of which the first is always a file identifier. If read is invoked with only

a single argument then it reads all of the remaining bytes from the file and returns them as

result. If nonewline is specified as the second argument, then the last character of the

file is discarded if it is a newline. Otherwise the second argument must be a number telling

how many bytes to read: read will read this many bytes from the file and return them as

a+ Open the file for reading and writing and set the initial access
position to the end of the file. If the file doesn’t exist then cre-
ate a new empty file.

10.3 Random access to files 93

DRAFT (10/9/92): Distribution Restricted

its result. If there are fewer bytes left in the file than the number requested, then all of the

remaining bytes will be returned. For example, the command

set buffer [read file3 1000]

will read the next 1000 bytes from file3 and place them in the variable buffer.

The puts command writes data to an open file. It takes two or three arguments, of

which the first is a file identifier and the second is a string to output. If only two arguments

are provided, as in

puts stdout "Hello, world"

then puts appends a newline character to the string and outputs it to the file. In the above

example, “Hello, world” is printed to standard output followed by a newline charac-

ter. If a third argument is specified to puts then it must be the keyword nonewline or

an abbreviation of it. This causes puts not to append a newline character to the string.

Puts uses the buffering scheme of the C standard I/O library. This means that infor-

mation passed to puts may not appear immediately in the target file. In most cases it will

be saved in the application’s memory until a large amount of data has accumulated for the

file, at which point all of the data will be written out in a single operation. If you need for

data to appear in a file immediately then you should invoke the flush command:

flush file3

The flush command takes a file identifier as its argument and forces any buffered output

data for that file to be written to the file. Flush doesn’t return until the data has been writ-

ten.

When you are finished reading or writing a file you should invoke the close com-

mand, giving it the identifier for the file as its argument:

close file3

Close will flush any buffered data for the open file and release the resources associated

with it. In most systems there is a limit on how many files may be open at one time, so it is

important to close files as soon as you are finished reading or writing them.

10.3 Random access to files

File I/O is sequential by default: each read or gets command returns the next bytes

after the previous gets or read command, and each puts command writes the bytes

immediately following those written by the previous puts command. However, you can

use the seek, tell, and eof commands to access files non-sequentially.

Each open file has an access position, which determines the location in the file where

the next read or write will occur. When a file is opened the access position is set to the

beginning or end of the file, depending on the access mode you specified to open. After

each read or write operation the access position is incremented by the number of bytes

transferred. The seek command may be used to change the current access position. In its

94 Accessing Files

DRAFT (10/9/92): Distribution Restricted

simplest form seek takes two arguments, which are a file identifier and an integer offset

within the file. For example, the command

seek file3 2000

changes the access position for file3 so that the next read or write will start at byte num-

ber 2000 in the file. The command

seek file3 0

resets the file’s access position to the beginning of the file.

Seek can also take a third argument that specifies an origin for the offset. The third

argument must be either start, current, or end. Start produces the same effect as

if the argument is omitted: the offset is measured relative to the start of the file. Current
means that the offset is measured relative to the file’s current access position. For example,

the following command moves the access position forward 10 bytes, skipping over the

intervening data:

seek file3 10 current

If the origin is end then the offset is measured relative to the end of the file. For example,

the following command sets the access position to 100 bytes before the end of the file:

seek file3 -100 end

If the origin is current or end then the offset may be either positive or negative; for

start the offset must be positive. It is possible to seek past the current end of the file, in

which case the file will contain a hole (check the documentation for your operating system

for more information on what this means).

The tell command returns the current access position for a particular file identifier:

tell file3

186

This allows you to record a position and return to that position later on.

Seek and tell may only be used on files that support random-access I/O, such as

ordinary disk files. If you attempt to use seek with a file identifier that doesn’t support

random access I/O, such as a terminal or other sequential device, then seek will generate

an error. If you invoke tell on such a file then it will return –1.

The eof command indicates whether an open file is currently positioned at the end of

the file. It takes a file identifier as argument and returns 1 if the current access position is

at the end of the file, 0 otherwise:

eof file3

0

10.4 The current working directory 95

DRAFT (10/9/92): Distribution Restricted

10.4 The current working directory

Tcl provides two commands that help to manage the current working directory: pwd and

cd. Pwd takes no arguments and returns the full path name of the current working direc-

tory. Cd takes a single argument and changes the current working directory to the value of

that argument. If cd is invoked with no arguments then it changes the current working

directory to the home directory of the user running the Tcl script (cd uses the value of the

HOME environment variable as the path name of the home directory).

10.5 Manipulating file names

Tcl contains two built-in commands that you can use to manipulate file names as opposed

to file contents. These commands don’t provide any new functionality, since you could

produce the same effects using other Tcl commands, but they make it easy to perform sev-

eral common operations on file names.

The first of these commands is file. File is a general-purpose command with

many options that can be used both to manipulate file names and also to retrieve informa-

tion about files. See Table 10.2 for a summary of all the options to file. This section dis-

cusses the name-related options and Section 10.6 describes the other options.

File dirname returns the name of the directory containing a particular file:

file dirname /a/b/c

/a/b

file dirname main.c

.

File extension returns the extension for a file name (all the characters starting

with the last . in the name), or an empty string if the name contains no extension:

file extension src/main.c

.c

File rootname returns everything in a file name except the extension:

file rootname src/main.c

src/main

file rootname foo

foo

Lastly, file tail returns the last element in a file’s path name (i.e. the name of the

file within its directory):

file tail /a/b/c

c

file tail foo

96 Accessing Files

DRAFT (10/9/92): Distribution Restricted

Table 10.2. A summary of the options for the file command (continued on next page).

file atime name
Returns a decimal string giving the time at which file name was last
accessed, measured in seconds from 12:00 A.M. on January 1, 1970.

file dirname name
Returns all of the characters in name up to but not including the last / char-
acter. Returns . if name contains no slashes, / if the last slash in name is its
first character.

file executable name
Returns 1 if name is executable by the current user, 0 otherwise.

file exists name
Returns 1 if name exists and the current user has search privilege for the
directories leading to it, 0 otherwise.

file extension name
Returns all of the characters in name after and including the last dot. Returns
an empty string if there is no dot in name.

file isdirectory name
Returns 1 if name is a directory, 0 otherwise.

file isfile name
Returns 1 if name is an ordinary file, 0 otherwise.

file lstat name varName
Invokes the lstat kernel call on name and sets elements of arrayName
to hold information returned by lstat. This option is identical to the stat
option unless name refers to a symbolic link, in which case this command
returns information about the link instead of the file it points to.

file mtime name
Returns a decimal string giving the time at which file name was last modi-
fied, measured in seconds from 12:00 A.M. on January 1, 1970.

file owned name
Returns 1 if name is owned by the current user, 0 otherwise.

file readable name
Returns 1 if name is readable by the current user, 0 otherwise.

file readlink name
Returns the value of the symbolic link given by name (the name of the file it
points to).

10.5 Manipulating file names 97

DRAFT (10/9/92): Distribution Restricted

foo

These file commands all operate purely on file names. They make no system calls and

don’t check to see if the names actually correspond to files.

The glob command also operates on file names. It mimics the behavior of file name

globbing in csh, taking one or more patterns as arguments and returning a list of all the

file names that match the pattern(s):

glob *.c *.h

main.c hash.c hash.h

It uses the same matching rules as the string match command (see Section 9.5) and

returns the names of all of the matching files. In the above example glob returned all of

the file names in the current directory that end in .c or .h.

If a pattern contains an open-brace, then the brace should be followed by one or more

strings separated by commas and terminated with a close-brace, such as

{src,backup}/*.c. Glob treats such a pattern as if it were actually multiple patterns,

one containing each of the strings between the braces (src/*.c and backup/*.c in

Table 10.2, cont'd. A summary of the options for the file command.

file rootname name
Returns all of the characters in name up to but not including the last . char-
acter. Returns name if it doesn’t contain any dots.

file size name
Returns a decimal string giving the size of file name in bytes.

file stat name varName
Invokes stat kernel call on name and sets elements of arrayName to
hold information returned by stat. The following elements are set, each as
a decimal string: atime, ctime, dev, gid, ino, mode, mtime, nlink,
size, and uid.

file tail name
Returns all of the characters in name after the last / character. Returns
name if it contains no slashes.

file type name
Returns a string giving the type of file name. The return value will be one of
file, directory, characterSpecial, blockSpecial, fifo,
link, or socket.

file writable name
Returns 1 if name is writable by the current user, 0 otherwise.

98 Accessing Files

DRAFT (10/9/92): Distribution Restricted

this example). For example, the following command returns a list of all of the .c or .h
files in two subdirectories:

glob {{src,backup}/*.[ch]}

src/main.c src/hash.c src/hash.h backup/hash.c

The extra set of braces around the glob pattern is needed to keep the Tcl parser from

applying its usual interpretation to the {} and [] characters within the pattern.

Glob patterns may contain multiple sets of {} elements, or any combination of the

various special characters. If a pattern contains any of the string matching characters

[]?*\ then glob only returns the names of actual files that match the pattern. If a pat-

tern doesn’t contain any of the string matching characters then glob returns names with-

out checking to be sure that the corresponding files actually exist. This behavior may seem

strange but is similar to what occurs in csh.

If the list of file names to be returned by glob is empty then it normally generates an

error, as in the following command:

glob *.x *.y

no file matched glob patterns "*.x *.y"

However, if the first argument to glob, before any patterns, is -nocomplain then glob
will not generate an error if its result is an empty list.

10.6 File information commands

In addition to the options already discussed in Section 10.5 above, the file command

provides many other options that can be used to retrieve information about files. Each of

these options except stat has the form

file option name

where option specifies the information desired, such as exists or readable or

size, and name is the name of the file. Table 10.2 summarizes all of the options for the

file command.

The exists, isfile, isdirectory, and type options return information about

the nature of a file. File exists returns 1 if there exists a file by the given name and 0
if there is no such file. File exists also returns 0 if the file exists but the current user

doesn’t have search permission for the directories leading to it. File isfile returns 1
if the file is an ordinary disk file and 0 if it is something else, such as a directory or device

file. File isdirectory returns 1 if the file is a directory and 0 otherwise. File
type returns a string such as file, directory, or socket that identifies the file

type.

The readable, writable, and executable options return 0 or 1 results to

indicate whether the current user is permitted to carry out the indicated action on the file.

The owned option returns 1 if the current user is the file’s owner and 0 otherwise.

10.6 File information commands 99

DRAFT (10/9/92): Distribution Restricted

The size option returns a decimal string giving the size of the file in bytes. File
mtime returns the time when the file was last modified. The time value is returned in the

standard UNIX form for times, namely an integer that counts the number of seconds since

12:00 A.M. on January 1, 1970. The atime option is similar to mtime except that it

returns the time when the file was last accessed.

The stat option provides a simple way to get many pieces of information about a

file at one time. This can be significantly faster than invoking file many times to get the

pieces of information individually. File stat also provides additional information that

isn’t accessible with any other file options. It takes two additional arguments, which are

the name of a file and the name of a variable, as in the following example:

file stat main.c info

In this case the name of the file is main.c and the variable name is info. The variable

will be treated as an array and the following elements will be set, each as a decimal string:

The atime, mtime, and size elements have the same values as produced by the corre-

sponding file options discussed above. For more information on the other elements,

refer to your system documentation for the stat system call; each of the elements is

taken directly from the corresponding field of the structure returned by stat.

The lstat and readlink options are useful when dealing with symbolic links,

and they can only be used on systems that support symbolic links. File lstat is iden-

tical to file stat for ordinary files, but when it is applied to a symbolic link it returns

information about the symbolic link itself, whereas file stat will return information

about the file the link points to. File readlink returns the contents of a symbolic link,

i.e. the name of the file that it refers to; it may only be used on symbolic links.

atime Time of last access.

ctime Time of last status change.

dev Identifier for device containing file.

gid Identifier for the file’s group.

ino Serial number for the file within its device.

mode Mode bits for file.

mtime Time of last modification.

nlink Number of links to file.

size Size of file, in bytes.

uid Identifier for the user that owns the file.

100 Accessing Files

DRAFT (10/9/92): Distribution Restricted

10.7 Errors in system calls

Most of the commands described in this chapter invoke calls on the operating system, and

in many cases the system calls can return errors. This can happen, for example, if you

invoke open or file stat on a file that doesn’t exist, or if an I/O error occurs in read-

ing a file. The Tcl commands detect these system call errors and in most cases the Tcl

commands will return errors themselves. The error message will identify the error that

occurred:

open bogus

couldn’t open "bogus": no such file or directory

When an error occurs in a system call Tcl also sets the errorCode variable to pro-

vide more precise information. You may find this information useful as part of error recov-

ery so that, for example, you can determine exactly why the the file wasn’t accessible

(Was there no such file? Was it protected to prevent access? ...). If a system call error has

occurred then errorCode will consist of a list with three elements:

set errorCode

UNIX ENOENT {no such file or directory}

The first element is always UNIX to indicate that the error occurred in a UNIX system call.

The second element is the official name for the error (ENOENT in the above example).

Refer to your system documentation or to the include file errno.h for a complete list of

the error names for your system. These names adhere to the POSIX standard as much as

possible. The third element is the error message that corresponds to the error. This string

usually appears in the error message returned by the Tcl command. Tcl uses the standard

list of error messages provided by your system, if there is one, and adheres to the POSIX

standard as much as possible.

101

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the publisher. This

statement must be easily visible on the first page of any reproduced copies. The publisher does not

offer warranties in regard to this draft.

Chapter 11

Processes

Tcl provides simple facilities for dealing with processes. You can create new processes

with the exec command, or you can create new processes with open and then use the file

I/O commands to communicate with the process(es). In addition, you can read and write

environment variables using the env variable and you can terminate the current process

with the exit command. Like the file commands in Chapter 10, these commands are only

available on UNIX systems and systems that support the kernel calls defined in the POSIX

standard. Table 11.1 summarizes the commands related to process management.

11.1 Invoking subprocesses with exec

The exec command creates one or more subprocesses and, in the normal case, waits until

they complete before returning. For example,

exec rm main.o

executes rm as a subprocess, passes it the argument main.o, and returns after rm com-

pletes.

The arguments to exec are similar to what you would type as a command line to a

shell program such as sh or csh. The first argument to exec is the name of a subprocess

to execute and each additional argument forms one argument to that subprocess. It’s

important to realize that each argument to exec forms a single argument to the subpro-

cess. For example, consider the following command:

exec "rm main.o"

couldn’t find "rm main.o" to execute

FIGURE 1

TABLE 1

102 Processes

DRAFT (10/9/92): Distribution Restricted

An error occurred because exec tried to use “rm main.o” as the name of the subpro-

cess and couldn’t find an executable file by that name.

To execute a subprocess, exec looks for an executable file with a name equal to

exec’s first argument. If the name starts with / or ~ then exec checks the single file

indicated by the name. If the name doesn’t start with / or ~ then exec checks each of the

directories in the PATH environment variable to see if the command name refers to an exe-

cutable reachable from that directory. Exec uses the first executable that it finds.

Under normal conditions exec collects all of the information written to standard out-

put by the subprocess and returns that information as its result. If the last character of out-

put is a newline then exec removes the newline from what it returns as result (this

behavior may seem strange but it makes exec consistent with other Tcl commands,which

don’t normally terminate the last lines of their results). For example:

exec echo foo bar

foo bar

The arguments to exec may specify input and output redirection in a fashion similar

to the UNIX shells. If one of the arguments to exec is > then the following argument is

taken as the name of a file. The subprocess’s standard output will be redirected to that file

and exec will return an empty string as result.

Standard input may be redirected using either < or <<. If one of exec’s arguments is

< then the following argument is taken as a file name and the subprocess’s standard input

Table 11.1. A summary of Tcl commands for manipulating processes.

exec arg ?arg ...?
Execute command pipeline specified by arg’s as a subprocess. I/O redirec-
tion may be specified with <, <<, and >, pipes may be specified with |, and
background execution may be specified with a final arg of &. Returns stan-
dard output produced by command (without trailing newline, if any) or an
empty string if output is redirected.

exit ?code?
Terminate process, returning code to parent as exit status. Code must be an
integer. If code isn’ t specified, return 0 as exit status.

open |command ?access?
Treat command as a list with the same structure as arguments to exec and
create subprocess(es) to execute command(s). Depending on access, cre-
ate pipes for writing input to pipeline and reading output from it.

11.1 Invoking subprocesses with exec 103

DRAFT (10/9/92): Distribution Restricted

is taken from that file. If one of exec’s arguments is << then the following argument is

taken as an immediate value to be passed to the subprocess as its standard input:

exec cat << "test input"

test input

If no input redirection is specified then the subprocess inherits the standard input channel

from the process executing the exec command.

The arguments to exec may also specify a pipeline of proceses to execute instead of

a single process. This is done in the standard fashion with the | character. If one or more

of the arguments to exec are | then the | arguments separate the specifications for the

different subprocesses. The first agument in each subprocess specification is the name of

the file to execute for that subprocess and the remaining arguments are arguments to that

subprocess. The standard output of each subprocess is piped to the standard input of the

next subprocess. I/O redirection may be specified using <, <<, or > anywhere among

exec’s arguments; it will apply to the first subprocess for input redirection and to the last

process for output redirection.

If any of the subprocesses exits abnormally (i.e. it was killed or suspended or returned

a non-zero exit status), or if any of them generates output on its standard error channel,

then exec returns an error. The error message will consist of the output generated by the

last subprocess (unless it was redirected with >), followed by an error message for each

process that exited abnormally (if any), followed by the information generated on standard

error by the processes, if any. If the last character of standard error output is a newline,

then it is deleted. In addition, exec will set the errorCode variable to hold information

about the last process that terminated abnormally, if any (see Table 11.2 for details).

If the last argument to exec is & then the subprocess(es) will be executed in back-

ground. Exec will return an empty result immediately, without waiting for the subpro-

cesses to complete. Standard output from the subprocesses will go to the standard output

of the process in which exec was executed, unless redirected. No errors will be reported

for abnormal exits or standard error output, and standard error for the subprocesses will be

directed to the standard error channel of the process in which exec was executed.

Although exec’s mechanisms for I/O redirection, pipelines, and background execu-

tion are similar to those of the UNIX shells, there are a few differences. Special characters

like <, |, and & must appear as distinct arguments to exec if they are to receive special

treatment (i.e. they must be surrounded by white space). The shells are generally less par-

ticular about requiring white space. In addition, exec doesn’t perform all of the substitu-

tions performed by shells. In particular, exec doesn’t perform file name “globbing” in

response to characters like * and ?. If you want globbing to occur you must request it

explicitly using the glob command described in Section 10.5. For example, to remove all

of the .o files in the current directory you can’t use the command

exec rm *.o

Instead, use the (admittedly more complicated) command

104 Processes

DRAFT (10/9/92): Distribution Restricted

eval "exec rm [glob *.o]"

11.2 I/O to and from a command pipeline

You can also create subprocesses using the open command; once you’ve done this you

can then use commands like gets and puts to read the subprocesses’ standard output

and write their standard input. To create subprocesses with open, invoke it with the pipe

symbol | as the first character of the file name. In this case the file name isn’t really a file

name at all. Instead, it specifies a command pipeline. The remainder of the argument after

the | is treated as a list whose elements have exactly the same meaning as the arguments

to the exec command. Open will create a pipeline of subprocesses just as for exec and

it will return an identifier that you can use to transfer data to and from the pipeline. If writ-

ing was requested in the access mode to open then a pipe will be used for standard input

to the first process in the pipeline and you can invoke puts to write data on that pipe

(remember that the data may not become visible to the process until you invoke flush).

If reading was requested in the access mode then a pipe will be used for the standard out-

Table 11.2. Values placed in the errorCode variable by the exec command. The top line of each
entry in the table gives the value of the first element of the list that comprises errorCode and
provides symbolic names for the remaining elements of errorCode. The text describes the
conditions under which that format for errorCode is used and explains the meaning of the

CHILDKILLED pid sigName msg
Used when a child process has been killed because of a signal. The second
element of errorCode is the process’s identifier (in decimal). The third
element is the symbolic name of the signal that caused the process to termi-
nate; it will be one of the names from the include file signal.h, such as
SIGPIPE. The fourth element is a short human-readable message describ-
ing the signal, such as “write on pipe with no readers” for
SIGPIPE.

CHILDSTATUS pid code
Used when a child process exits with a non-zero exit status. The second ele-
ment of errorCode is the process’s identifier in decimal and the third ele-
ment is the exit status returned by the process, in decimal.

CHILDSUSP pid sigName msg
Used when a child process has been suspended because of a signal. The sec-
ond, third, and fourth elements of errorCode have the same meaning as
for CHILDKILLED above.

11.3 Environment variables 105

DRAFT (10/9/92): Distribution Restricted

put of the last process in the pipeline and you can use gets and read to retrieve the out-

put generated by that process.

Here is an example of opening a command pipeline:

open {|tbl | ditroff -ms} w

file4

This command creates a pipeline containing two processes running the document format-

ting programs tbl and ditroff. Any data written to file4 with puts will be passed

to the tbl process; tbl’s output will be passed to ditroff as input; and ditroff’s

output, if any, will go to the standard output file of the process executing the Tcl script.

If a command pipeline is opened for writing then it is an error to redirect the pipe-

line’s standard input. If the pipeline isn’t opened for writing then its input will be taken by

default from the standard input of the process that executed the open command, but it

may be redirected as part of the open command. If a command pipeline is opened for

reading then it is an error to redirect the pipeline’s standard output. If the pipeline isn’t

opened for reading (as in the above example) then the pipeline’s standard output goes by

default to the standard output of the process that executed the open command, but it may

be redirected.

When you close a file identifier that corresponds to a command pipeline, the close
command flushes any buffered output to the pipeline, closes the pipes leading to and from

the pipeline, if any, and waits for all of the processes in the pipeline to exit. If any of the

processes exit abnormally then close returns an error in the same way as exec. If there

is unread output from the pipeline at the time of the close command then it is lost when

the output pipe is closed.

11.3 Environment variables

Environment variables can be read and written using the standard Tcl variable mechanism.

The array variable env contains all of the environment variables as elements, with the

name of the element in env corresponding to the name of the envionrment variable. If you

modify the env array, the changes will be reflected in the process’s environment variables

and the new values will also be passed to child process created with exec or open.

11.4 Terminating the Tcl process with exit

If you invoke the exit command then it will terminate the process in which the com-

mand was executed. Exit takes a single integer argument. If this argument is provided

then it is used as the exit status to return to the parent process. 0 indicates a normal exit

and non-zero values correspond to abnormal exits; values other than 0 and 1 are rare. If no

106 Processes

DRAFT (10/9/92): Distribution Restricted

argument is given to exit then it exits with a status of 0. Since exit terminates the pro-

cess, it doesn’t have any return value.

107

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the publisher. This

statement must be easily visible on the first page of any reproduced copies. The publisher does not

offer warranties in regard to this draft.

Chapter 12

History

This chapter describes Tcl’s history mechanism. The history mechanism keeps track of

commands that you have typed recently and makes it easy for you to re-execute them

without having to completely re-type them. You can also create new commands that are

slight variations on old commands without having to completely retype the old com-

mands.

Tcl’s facilities provide the same general features as the history mechanism in csh.

However, in order to keep the Tcl language syntax simple I didn’t add all of csh’s history

syntax into the Tcl language syntax. Instead, history is implemented with a history
command that has several options summarized in Table 12.1 . The history command

requires you to type more characters than the super-concise csh syntax, but you can

always use the history command to build your own short-hands (or re-implement the

csh syntax) if you wish. In fact, the unknown command described in Section 13.5

already implements some of the csh short-hands such as !!, !event, and ^old^new.

History is an optional feature in Tcl and is only present in applications that request it.

It’s really only useful in applications where you type Tcl commands interactively, such as

Tcl-based shells, and it tends to be available only in these applications.

12.1 The history list

In applications that use the history mechanism, each command that you type interactively

is entered into a history list. The application arranges for this to happen before it executes

the command. Only the commands that you actually type are saved in the history list.

Commands that are executed by Tcl procedures or read from script files are not recorded.

FIGURE 12

TABLE 12

108 History

DRAFT (10/9/92): Distribution Restricted

Table 12.1. A summary of the options for the history command.

history
Same as history info.

history add command ?exec?
Add command to the history list as a new event. If exec is specified (or
abbreviated) then also execute command and return its result. Otherwise an
empty string is returned.

history change newValue ?event?
Replace the value recorded for event with newValue. Event defaults to
the current event, not -1. Returns an empty string.

history event ?event?
Returns the value of event. History revision occurs.

history info ?count?
Returns a human-readable string giving the event number and command for
each event in the history list. If count is specified then only the count
most recent events are returned.

history keep count
Changes the size of the history list so that the count most recent events will
be retained. The initial size of the list is 20 events.

history nextid
Returns the number of the next event that will be recorded in the history list.

history redo ?event?
Re-execute the command recorded for event and return its result. History
revision occurs.

history substitute old new ?event?
Retrieve the command recorded for event, replace any occurrences of old
by new in it, execute the resulting command, and return its result. History
revision occurs. Both old and new are simple strings. The substitution uses
simple equality checks: no wild cards or regular expression features are sup-
ported.

history words selector ?event?
Retrieve from the command recorded for event the words given by
selector, and return those words in a string separated by spaces. Selec-
tor can consist of a single number (0 for the first word, 1 for the next, and
so on), $ to select the last word, two numbers separated by a dash to select a
range of words ($ may be used as the second “number”), or a pattern to
select all words that match that pattern (the rules for string match are
used in pattern matching).

12.1 The history list 109

DRAFT (10/9/92): Distribution Restricted

The idea behind history is to save typing; commands in procedures and script files are

already recorded so they can be re-executed without re-typing them. The examples in this

chapter assume that you’ve typed each of the commands, so that they are entered into the

history list.

Each entry in the history list is referred to as an event; it contains the text of a com-

mand plus a serial number identifying the command. The command text consists of

exactly the characters you typed, before the Tcl parser peforms substitutions for $, [], etc.

The serial number starts out at 1 for the first command you type and is incremented for

each successive command.

Suppose you type the following sequence of commands to an interactive Tcl program:

set x 24
set y [expr $x*2.6]
incr x

At this point the history list will contain three events. You can examine the contents of the

history list by invoking history with no arguments:

history

 1 set x 24
 2 set y [expr $x*2.6]
 3 incr x
 4 history

The value returned by history is a human-readable string describing what’s on the his-

tory list. Notice that the history command itself generates a fourth event on the list. The

result of history is intended for printing out, not for processing in Tcl scripts; if you

want to write scripts that process the history list, you’ll probably find it more convenient to

use other history options described later in this chapter, such as history event.

The command history info provides a more selective way to print out events.

For example, suppose you typed the following command instead of the history com-

mand above:

history info 3

 2 set y [expr $x*2.6]
 3 incr x
 4 history

The argument to history info determines how many events wll be returned from

the history list; only information for that number of the most recent commands will be

returned. If the last argument is omitted then history info behaves the same as his-
tory with no arguments.

The history list has a fixed size, which is initially 20. If more commands than that

have been typed then only the most recent commands will be retained. The size of the his-

tory list can be changed with the history keep command:

history keep 100

110 History

DRAFT (10/9/92): Distribution Restricted

This command changes the size of the history list so that in the future the 100 most recent

commands will be retained.

12.2 Specifying events

Several of the options of the history command require you to select an entry from the

history list; the symbol event is used for such arguments in Table 12.1. Events are spec-

ified as strings with one of the following forms:

Suppose that you had just typed the three commands from page 109 above. If the next

command refers to a history event as -1 or 3 or inc then it selects the command

incr x. If a history event is referred to as -2 or 2 or *2* then it selects the command

set y [expr $x*2.6]. If an event specifier is omitted then it defaults to -1 for all

options except history change.

12.3 Re-executing commands from the history list

Two of the options to history may be used to replay commands from the history list.

History redo retrieves a command and re-executes it just as if you had typed the

entire command in place of the history redo command. For example, after typing the

three commands from page 109, the command

history redo

replays the most recent command, which is incr x; it will increment the value of vari-

able x and return its new value (26). If an additional argument is provided for history
redo, it selects an event as described in Section 12.2; for example,

history redo 1

24

replays the first command, set x 24.

Positive number: Selects the event with that serial number.

Negative number: Selects an event relative to the current event. -1
refers to the event just prior to the current event, -2
refers to the one before that, and so on.

Anything else: Selects the most recent event that matches the string.
The string matches an event either if it is the same as
the first characters of the event’s command, or if it
matches the event’s command using the matching
rules for string match.

12.3 Re-executing commands from the history list 111

DRAFT (10/9/92): Distribution Restricted

In the examples above it takes more keystrokes to type the history commands than

it would take to simply retype the command from the history list. Given that the whole

purpose of the history mechanism is to save typing, the commands above probably don’t

seem very useful. However, there are a number of shortcuts you can use to reduce your

typing. First, history, like all Tcl commands, accepts unique abbreviations for its

options, so you can just type r instead of redo as the option. Second, any application that

uses the history mechanism should also allow abbreviations for commands typed interac-

tively (this is implemented using the unknown procedure described in Section 13.5).

Thus you should be able to replay the most recent command simply by typing

h r

which requires only four keystrokes including the return.

In addition, the same unknown mechanism that implements command abbreviations

also simulates the !! and !event history mechanisms from csh using the history
redo command. Thus you can type “!!” instead of “history redo” and “!13”

instead of “history redo 13.”

The history substitute command is similar to history redo except that

it modifies the old command before replaying it. It is most commonly used to correct typo-

graphical errors:

set x "200 illimeters"

200 illimeters

history substitute ill mill -1

200 millimeters

History substitute takes three arguments: an old string, a new string, and an

event specifier (the event specifier can be defaulted, in which case it defaults to -1). It

retrieves the command indicated by the event specifier and replaces all instances of the old

string in that command with the new string. The replacement is done using simple textual

comparison with no wild-cards or pattern matching. Then the resulting command is exe-

cuted and its result is returned.

The history substitute command above also takes more keystrokes than

retyping the original command, but again there are shortcuts. One possibility is to abbrevi-

ate the words history and substitute and omit the event specifier:

h s ill mill

200 millimeters

Another possibility is take advantage of the fact that the unknown mechanism also simu-

lates the ^old^new syntax of the csh history mechanism using history substi-
tute, so you can just type the following:

^ill^mill

200 millimeters

112 History

DRAFT (10/9/92): Distribution Restricted

12.4 Current event number: history nextid

The command history nextid returns the number of the next event to be entered into

the history list:

history nextid

3

history

 1 set x 24
 2 history nextid
 3 history

By the time history nextid was executed the command had already been inserted

into the history list as event 2, so the command returned 3, the number of the next event.

History nextid is most commonly used for generating prompts that contain the

event number. Many interactive applications allow you to specify a Tcl script to generate

the prompt; in these applications you can include a history nextid command in the

script so that your prompt includes the event number of the command you are about to

type.

12.5 Retrieving without re-executing

The commands history event and history words allow you to retrieve informa-

tion from the history list without necessarily re-executing it. History event returns

the command from an indicated event:

set x 24
set y [expr 2*$x]
history event -2

set x 24

As with other history options, the event can be omitted, in which case it defaults to -1.

The history words command returns one or more words from a command on the

history list. It takes two additional arguments. The first indicates which words are wanted

and the second is an optional event specifier:

set x 24
history words 0

set

In this case the first word of the preceding command was returned. The word specifier may

have any of the following forms:

number Selects the word given by number, with 0 correspond-
ing to the first word, 1 to the next, and so on.

12.6 History revision 113

DRAFT (10/9/92): Distribution Restricted

When history words returns multiple words, it does not return them as a proper

Tcl list. It simply concatenates the values with spaces between them. This approach is used

because history words will most commonly be used as part of generating a new Tcl

command that will be executed immediately. If the result of history words were

made into a proper list, it would quote all of the special characters like [] and $ inside the

words, which would probably cause the command to do the wrong thing when executed.

12.6 History revision

The history options event, redo, susbstitute, and words all perform history

revision. What this means is that these options modify the history list as part of their exe-

cution. To see the reason for history revision, consider the following command sequence:

incr x
history redo
history redo

Suppose there were no history revision. Then when the second history redo com-

mand is executed, the history list will be as follows:

1 incr x
2 history redo
3 history redo

The second history redo command will replay event 2, which is another history
redo command, and an infinite loop will occur. The problem is that history redo is

context sensitive: it only makes sense at a particular point in time and won’t produce the

same effect if it is replayed later.

History revision avoids this problem and several others by replacing history com-

mands on the history list with the information that they return or replay. In the above

example, the first history redo command replaces its entry in the history list with

incr x, so that the history list looks like this when the second history redo com-

mand is executed:

1 incr x
2 incr x
3 history redo

$ Selects the last word of the event.

first-last Selects all of the words from first through last,
inclusive. First must be a number; last may be a
number or $.

pattern Selects all the words that match pattern using the
rules for string match.

114 History

DRAFT (10/9/92): Distribution Restricted

The second history redo then replaces event 3 on the history list with incr x as

part of its execution.

Similar history revision occurs for the event, substitute, and word options.

For example, suppose the following command has just been executed:

set a [expr $b+2]

The table below shows a number of commands that might be typed after the above com-

mand and what will be recorded on the history list after the command carries out its his-

tory revision:

One final (obscure) note about history revision: it occurs even when history isn’t

the top-level command typed by the user. For example, if a user types foo and foo is a

procedure that invokes history redo, then foo is replaced on the history list with the

command that is replayed. This behavior turns out to do the right thing in most cases. In

cases where this isn’t the right behavior you can use history event to save the old

contents of the event and history change, described below, to restore its value later.

12.7 Modifying the history list

The last two history options allow you to change the contents of the history list. The

history change command modifies an event on the history list. It takes as arguments

a new value to record for an event and an optional event specifier. In this command the

event specifier defaults to the current event rather than to the previous event. For example,

the history change command in the following sequence replaces its own entry in the

history list:

set x 24
history change "strange value"
history

 1 set x 24
 2 strange value
 3 history

The history add command adds a new event to the history list and optionally executes

it. For example, the following command adds set x 24 to the history list as a new

event:

Command typed Command recorded

history redo set a [expr $b+2]

history s a b set b [expr $b+2]

set c [history w 2] set c [expr $b+2]

set d [history event -1] set d {set a [expr $b+2]}

12.7 Modifying the history list 115

DRAFT (10/9/92): Distribution Restricted

history add "set x 24"

If an additional exec argument (or any abbreviation of it) is specified then the command

will be executed as well as being added to the list.

116 History

DRAFT (10/9/92): Distribution Restricted

117

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the publisher. This

statement must be easily visible on the first page of any reproduced copies. The publisher does not

offer warranties in regard to this draft.

Chapter 13

Accessing Tcl Internals

This chapter describes a collection of commands that allow you to query and manipulate

the internal state of the Tcl interpreter. For example, you can use these commands to see if

a variable exists, to find out what entries are defined in an array, to monitor all accesses to

a variable, or to handle references to undefined commands. Table 13.1 summarizes the

commands.

13.1 Querying the elements of an array

The array command provides information about the elements currently defined for an

array variable. It provides this information several different ways, depending on the first

argument passed to it. The command array size returns a decimal string indicating

how many elements are defined for a given array variable and the command array
names returns a list whose entries are the names of the elements of a given array variable:

set currency(France) franc
set "currency(Great Britain)" pound
set currency(Germany) mark
array size currency

3

array names currency

{Great Britain} France Germany

For each of these commands the final argument must be the name of an array variable. The

list returned by array names does not have any particular order.

FIGURE 13

TABLE 13

118 Accessing Tcl Internals

DRAFT (10/9/92): Distribution Restricted

Table 13.1. A summary of commands for manipulating Tcl’s internal state

array anymore name searchId
Returns 1 if there are any more elements to process in search searchId of
array name, 0 if all elements have already been returned.

array donesearch name searchId
Terminate search searchId of array name and discard any state associated
with the search. Returns an empty string.

array names name
Returns a list whose entries are the names of all the elements of array name.

array nextelement name searchId
Returns the name of the next element in search searchId of array name,
or an empty string if all elements have already been returned in this search.

array size name
Returns a decimal string giving the number of elements in array name.

array startsearch name
Initializes a search through all of the elements of array name. Returns a
search identifier that may be passed to array nextelement, array
anymore, or array donesearch.

info option ?arg arg ...?
Provides information about the internal state of the Tcl interpreter, depending
on option and arg’s. See Table 13.2 for details.

time command ?count?
Executes command count times and returns a string indicating the average
elapsed time per execution. Count defaults to 1.

trace variable name ops command
Establish a trace on variable name such that command is invoked whenever
one of the operations given by ops is performd on name. Ops must consist
of one or more of the characters r, w, or u. Returns an empty string.

trace vdelete name ops command
If there exists a trace for variable name that has the operations and command
given by ops and command, remove that trace so that its command will not
be executed anymore. Returns an empty string.

trace vinfo name
Returns a list with one element for each trace currently set on variablename.
Each element is a sub-list with two elements, which are the ops and com-
mand associated with that trace.

unknown cmd ?arg arg ...?
This command isn’t implemented by Tcl, but if it is defined then it is invoked
by the Tcl interpreter whenever an unknown command name is encountered.
Cmd will be the unknown command name and the arg’s will be the fully-
substituted arguments to the command. The result returned by unknown
will be returned as the result of the unknown command.

13.1 Querying the elements of an array 119

DRAFT (10/9/92): Distribution Restricted

The array names command can be used in conjunction with foreach to iterate

through the elements of an array. For example, the code below deletes all elements of an

array with values that are 0 or empty:

foreach i [array names a] {
if {($a($i) == "") || ($a($i) == 0))} {

unset a($i)
}

}

The array command also provides a second way to search through the elements of

an array, using the startsearch, anymore, nextelement, and donesearch
options. This approach is more general than the foreach approach given above, and in

some cases it is more efficient, but it is more verbose than the foreach approach and

isn’t needed very often. Using this approach, the example above looks like this:

set id [array startsearch a]
while [array anymore a $id] {

set i [array nextelement a $id]
if {($a($i) == "") || ($a($i) == 0))} {

unset a($i)
}

}
array donesearch a $id

The array startsearch command initiates a search through all of the elements of an

array. It returns an identifier for that search, which the above code saves in variable id.

This identifier must be passed to the anymore, nextelement, and donesearch
options to identify the search. It’s legal to call array startsearch several times with

the same variable so that several searches are underway simultaneously; each will have a

different identifier. The exact format of the search identifier isn’t important; all you need

to know is that it is returned by array startsearch and must be passed into the

other searching commands.

The array anymore command indicates whether there are any more elements left

in a search. It returns 1 if there are and 0 if all of the element names have already been

returned in this search. If there are elements left, array nextelement will return the

name of the next element. The element names are not returned in any particular order. If

there are no elements left in a search then array nextelement returns an empty

string. However, it may be dangerous to use the return value from array nextele-
ment to detect the end of the search, since it is possible for an array element to have an

empty string for its name.

When you are finished with a search you must invoke array donesearch to tell

Tcl that you’re done; this allows Tcl to free up all of its state associated with the search. If

you forget to call array donesearch then Tcl’s state will remain allocated; if you do

this often then it will result in wasted memory and inefficient operation of future array

searches.

120 Accessing Tcl Internals

DRAFT (10/9/92): Distribution Restricted

13.2 The info command

The info command provides information about the state of the interpreter. It has more

than a dozen options, which are summarized in Table 13.2.

13.2.1 Information about variables

Several of the info options provide information about variables. Info exists returns

a 0 or 1 value indicating whether or not there exists a variable with a given name:

set x 24
info exists x

1

unset x
info exists x

0

The options vars, globals, and locals return lists of variable names that meet

certain criteria. Info vars returns the names of all variables accessible at the current

level of procedure call; info globals returns the names of all global variables, regard-

less of whether or not they are accessible; and info locals returns the names of local

variables, including arguments to the current procedure, if any, but not global variables. In

each of these commands, an additional pattern argument may be supplied. If the pattern is

supplied then only variable names matching that pattern (using the rules of string
match) will be returned.

For example, suppose that global variables global1 and global2 have been

defined. Suppose also that a procedure is being executed with arguments named arg1 and

arg2, and that the procedure has executed a global command to make global2
accessible, and that the procedure has also created local variables named local1 and

local2. Then the following commands might be executed in the procedure:

info vars

global2 arg1 arg2 local2 local1

info globals

global2 global1

info locals

arg1 arg2 local2 local1

info vars *al*

global2 local2 local1

13.2 The info command 121

DRAFT (10/9/92): Distribution Restricted

Table 13.2. A summary of the options for the info command (continued on next page).

info args procName
Returns a list whose elements are the names of the arguments to procedure
procName, in order.

info body procName
Returns the body of procedure procName.

info cmdcount
Returns a count of the total number of Tcl commands that have been exe-
cuted in this interpreter.

info commands ?pattern?
Returns a list of all the commands defined for this interpreter, including
built-in commands, application-defined commands, and procedures. If pat-
tern is specified, then only the command names matching pattern are
returned (string match’s rules are used for matching).

info default procName argName varName
Checks to see if argument argName to procedure procName has a default
value. If so, stores the default value in variable varName and returns 1.
Otherwise, returns 0 without modifying varName.

info exists varName
Returns 1 if there exists a variable named varName in the current context, 0
if no such variable is currently accessible.

info globals ?pattern?
Returns a list of all the global variables currently defined. If pattern is
specified, then only the global variable names matching pattern are
returned (string match’s rules are used for matching).

info level ?number?
If number isn’t specified, returns a number giving the current stack level (0
corresponds to top-level, 1 to the first level of procedure call, and so on). If
number is specified, returns a list whose elements are the name and argu-
ments for the procedure call at level number. Number may have any of the
formats accepted by uplevel.

info library
Returns the full path name of the library directory in which standard Tcl
scripts are stored.

122 Accessing Tcl Internals

DRAFT (10/9/92): Distribution Restricted

13.2.2 Information about procedures

Another group of info options provides information about procedures. The command

info procs returns a list of all the Tcl procedures that are currently defined. Like info
vars, it takes an optional pattern argument that restricts the names returned to those that

match a given pattern. Info body, info args, and info default return informa-

tion about the definition of a procedure:

proc maybePrint {a b {c 24}} {
if {$a < $b}{

puts stdout "c is $c"
}

}
info body maybePrint

 if {$a < $b} {
 puts stdout "c is $c"
 }

Table 13.2, cont'd. A summary of the options for the info command.

info locals ?pattern?
Returns a list of all the local variables defined for the current procedure, or
an empty string if no procedure is active. If pattern is specified, then only
the local variable names matching pattern are returned (string
match’s rules are used for matching).

info procs ?pattern?
Returns a list of the names of all procedures currently defined. If pattern
is specified, then only the procedure names matching pattern are returned
(string match’s rules are used for matching).

info script
If a script file is currently being evaluated then this command returns the
name of that file. Otherwise it returns an empty string.

info tclversion
Returns the version number for the Tcl interpreter in the form major.mi-
nor, where major and minor are each decimal integers. Increases in
minor correspond to bug fixes, new features, and backwards-compatible
changes. Major increases only when incompatible changes occur.

info vars ?pattern?
Returns a list of all the names of all variables that are currently accessible. If
pattern is specified, then only the variable names matching pattern are
returned (string match’s rules are used for matching).

13.2 The info command 123

DRAFT (10/9/92): Distribution Restricted

info args maybePrint

a b c

info default maybePrint a x

0

info default maybePrint c x

1

set x

24

Info body returns the procedure’s body exactly as it was specified to the proc com-

mand. Info args returns a list of the procedure’s argument names, in the same order

they were specified to proc. Info default returns information about an argument’s

default value. It takes three arguments: the name of a procedure, the name of an argument

to that procedure, and the name of a variable. If the given argument has no default value

(e.g. a in the above example), info default returns 0. If the argument has a default

value (c in the above example) then info default returns 1 and sets the variable to

hold the default value for the argument.

As an example of how you might use the commands from the previous paragraph,

here is a Tcl procedure that writes a Tcl script file. The script will contain Tcl code in the

form of proc commands that recreate all of the procedures in the interpreter. The file

could then be source’d in some other interpreter to duplicate the procedure state of the

original interpreter. The procedure takes a single argument, which is the name of the file to

write:

proc printProcs file {
set f [open $file w]
foreach proc [info procs]

set argList {}
foreach arg [info args $proc]

if [info default $proc $arg default] {
lappend argList [list $arg $default]

} else {
lappend argList $arg

}
}
puts $f [list proc $proc $argList \

[info body $proc]
}
close $f

}

Info provides one other option related to procedures: info level. If info
level is invoked with no additional arguments then it returns the current procedure invo-

cation level: 0 if no procedure is currently active, 1 if the current procedure was called

124 Accessing Tcl Internals

DRAFT (10/9/92): Distribution Restricted

from top-level, and so on. If info level is given an additional argument, the argument

indicates a procedure level and info level returns a list whose elements are the name

and actual arguments for the procedure at that level. The level argument may be specified

in any of the forms described in Section 7.4 for the uplevel command. For example, the

following procedure prints out the current call stack, showing the name and value for each

argument of each active procedure:

proc printStack {} {
set level [info level]
for {set i 1} {$i < $level} {incr i} {

puts stdout "Level $i: [info level $i]"
}

}

13.2.3 Information about commands

Info commands is similar to info procs except that it returns information about all

existing commands, not just procedures. If invoked with no arguments, it returns a list of

the names of all commands; if an argument is provided, then it is a pattern in the sense of

string match and only command names matching that pattern will be returned.

The command info cmdcount returns a decimal string indicating how many com-

mands have been executed in this Tcl interpreter. It may be useful during peformance tun-

ing to see how many Tcl commands are being executed to carry out various functions.

The command info script indicates whether or not a script file is currently being

processed. If so, then the command returns the name of the innermost nested script file

that is active. If there is no active script file then info script returns an empty string.

This command is used for relatively obscure purposes, such as disallowing command

abbreviations in script files.

13.2.4 Tclversion and library

Info tclversion returns the version number for the Tcl interpreter in the form

major.minor. Each of major and minor is a decimal string. If a new release of Tcl

contains only backwards-compatible changes, such as bug fixes and new features, then its

minor version number increments and the major version number stays the same. If a new

release contains changes that are not backwards-compatible, so that existing Tcl scripts or

C code that invokes Tcl’s library procedures will have to be modified, then the major ver-

sion number increments and the minor version number resets to 0.

In principle, of course, there is no such thing as a perfectly compatible change. Add-

ing a new command to Tcl might break scripts that define a procedure with the same name,

and fixing a bug might break a script that only works because of the bug. But in practice

you should be able to upgrade to new versions with little or no effort as long as the major

version number hasn’t changed.

13.3 Timing command execution 125

DRAFT (10/9/92): Distribution Restricted

The command info library returns the full path name of the Tcl library direc-

tory. This directory is used to hold standard scripts used by Tcl, such as a default definition

for the unknown procedure described in Section 13.5 below.

13.3 Timing command execution

The time command is used to measure the performance of Tcl scripts. It takes two argu-

ments, a script and a repetition count:

time {set a xyz} 10000

92 microseconds per iteration

Time will execute the given script the number of times given by the repetition count,

divide the total elapsed time by the repetition count, and print out a message like the above

one giving the average number of microseconds per iteration. The reason for the repetition

count is that the clock resolution on most workstations is many milliseconds. Thus any-

thing that takes less than tens or hundreds of milliseconds cannot be timed accurately. To

make accurate timing measurements, I suggest experimenting with the repetition count

until the total time for the time command is a few seconds.

13.4 Tracing operations on variables

The trace command allows you to monitor the usage of one or more Tcl variables. Such

monitoring is called tracing. If a trace has been established on a variable then a Tcl com-

mand will be invoked whenever the variable is read or written or unset. Traces can be used

for a variety of purposes:

• monitoring the variable’s usage (e.g. by printing a message for each read or write oper-

ation)

• propagating changes in the variable to other parts of the system (e.g. to ensure that a

particular widget always displays the picture of a person named in a given variable)

• restricting usage of the variable by rejecting certain operations (e.g. generate an error

on any attempt to change the variable’s value to anything other than a decimal string) or

by overriding certain operations (e.g. recreate the variable whenever it is unset).

To create a trace, invoke the trace command with the variable option:

trace variable x rwu xtrace

The first argument to trace variable is the name of the variable to trace (x in the

example). The next argument is a string whose characters indicate the operations to be

traced, r for reads, w for writes, and u for unsets. In the example above all operations will

be traced, but that need not be the case in general. The last argument to trace vari-

126 Accessing Tcl Internals

DRAFT (10/9/92): Distribution Restricted

able is a Tcl command to invoke whenever one of the selected operations occurs; typi-

cally this is the name of a procedure.

The variable name specified in trace variable may take any of three forms.

First, it may be the name of a scalar variable, in which case a trace will be established on

that variable. Second, it may be the name of an array element, in the usual form, such as

a(b). This results in a trace on the given element; other elements of the same array will

not be affected by the trace. Third, the variable may be specified as the name of an array

without any element specification. In this case the trace applies to all of the elements of the

array, including new elements created after the trace is established.

When a traced operation occurs, Tcl invokes the trace command by appending three

additional arguments to the command specified for the trace:

command name1 name2 op

The first part of the command will be exactly the same as the command specified in the

trace variable command. Name1 and name2 give the name of the variable being

accessed and op gives the operation being performed (r for read, w for write, or u for

unset). If the variable is a scalar then name1 is the variable’s name and name2 is an

empty string. If the variable is an element of an array then name1 is the name of the array

and name2 is the name of the element within the array. If an unset trace exists for an

entire array and the array is deleted, then the trace will be invoked with name1 equal to

the array’s name and name2 an empty string.

For example, after a trace is set on variable x in the example above, the following

command will be invoked in response to each read of variable x (assuming that x is a sca-

lar variable):

xtrace x {} r

The command specified for a trace need not be a single word as in the above example. For

example, if the trace had been set with the following command:

trace variable x rwu {xtrace 24 $x}

then reads of x would cause the following trace comand to be invoked:

xtrace 24 $x x {} r

The trace command is invoked in the execution context where the variable access

occurred. Thus if the variable is accessed in a Tcl procedure then the trace command will

have access to the same local variables as the code of the procedure. This context may be

different than the context where the trace was created. In the normal case where the trace

command invokes a Tcl procedure, the commands in the trace procedure will have to use

upvar or uplevel to access the traced variable. Note also that name1 and name2 as

passed to the trace command are the names used to access the variable. They may not be

the same as the names under which the trace was created; differences occur if the access is

made through a variable defined with upvar.

Read traces are invoked just before the variable’s result is read. The trace command

can modify the variable to affect the result returned by the read operation. If the trace com-

13.4 Tracing operations on variables 127

DRAFT (10/9/92): Distribution Restricted

mand returns an error of any sort then the traced operation is aborted with an error mes-

sage saying that the trace command denied access; otherwise the result returned by the

trace command is ignored.

Write traces are invoked after the variable’s value has been modified but before read-

ing the new value to return as the result of the write. The trace command can write a new

value into the variable to override the value specified in the original write, and this value

will be returned as the result of the traced write operation. The trace command can return

an error in the same way as for read traces to deny access; this can be used to implement

read-only variables, for example (however, the trace command will have to restore the old

value of the variable, since the value will already have been modified before the trace

command is invoked). As with read traces, the result of the trace command is ignored

unless it is an error.

Tracing is temporarily disabled for a variable during the execution of read and write

trace commands. This means that the trace commands can access the variable without

causing traces to be invoked recursively. If there are multiple traces for a variable, all of

them are disabled when any of them is executing.

Unset traces are invoked after the variable has already been deleted. From the stand-

point of the trace command, the variable will appear to be undefined with no traces. If an

unset occurs because of a procedure return then the trace will be invoked in the variable

context of the procedure being returned to; the variable context of the returning procedure

will no longer exist. If a variable is unset because its interpreter is deleted then no trace

commands will be invoked, since there is no context in which to execute them. Traces are

not disabled during unset traces, so if an unset trace command creates a new trace and

accesses the varable then the trace will be invoked.

If multiple traces are set for the same variable, then each trace is invoked on each

variable access. The most recently created trace is invoked first. If an array element has a

trace set and there is also a trace set for the whole array, then array traces are invoked

before element traces. If one trace returns an error then no additional traces are invoked

for that access.

It is legal to set a trace on a non-existent variable; the variable will continue to appear

to be unset even though the trace exists. For example, you can set a read trace on an array

and then use it to create new array elements automatically the first time they are read.

Unsetting a variable will remove any traces on that variable. It is legal, and not unusual,

for an unset trace to immediately re-establish itself on the same variable so that it can

monitor the variable if it should be re-created in the future.

To delete a trace, invoke trace vdelete with the same arguments passed to

trace variable. For example, the original trace created on x above can be deleted

with the following command:

trace vdelete x rwu xtrace

If the arguments to trace vdelete don’t match the information for any existing trace

then the command has no effect.

128 Accessing Tcl Internals

DRAFT (10/9/92): Distribution Restricted

The command trace vinfo returns information about the traces curently set for a

variable. It is invoked with an argument consisting of a variable name, as in the following

example:

trace vinfo x

{rwu xtrace}

The return value from trace vinfo is a list, each of whose elements describes one

trace on the variable. Each element is itself a list with two elements, which give the opera-

tions traced and the command for the trace. The traces appear in the result list in the order

they will be invoked. If the variable specified to trace vinfo is an element of an array,

then only traces on that element will be returned; traces on the array as a whole will not be

returned.

13.5 Unknown commands

The Tcl interpreter provides a special mechanism for dealing with unknown commands. If

the interpreter discovers that the command name specified in a Tcl command doesn’t exist,

then it checks for the existence of a command named unknown. If there is such a com-

mand then the interpreter invokes unknown instead of the original command, passing the

name and arguments for the non-existent command to unknown as its arguments. For

example, suppose that you type the following commands:

set x 24
createDatabase library $x

If there is no command named createDatabase but there is a command named

unknown, then the following command is invoked:

unknown createDatabase library 24

Notice that substitutions are performed on the arguments to the original command before

unknown is invoked. Each argument to unknown will consist of one fully-substituted

word from the original command.

The unknown procedure can do anything it likes to carry out the actions of the com-

mand, and whatever it returns will be returned as the result of the original command. For

example, the procedure below checks to see if the command name is an unambiguous

abbreviation for an existing command; if so, it invokes the corresponding command:

proc unknown {name args} {
set cmd [info commands $name*]
if {[llength $cmds] != 1} {

error "unknown command \"$name\""
}
uplevel [list $cmd] $args

}

13.5 Unknown commands 129

DRAFT (10/9/92): Distribution Restricted

Note that when the command is re-invoked with an expanded name, it must be invoked

using uplevel so that the command executes in the same variable context as the original

command.

The Tcl script library includes a default version of unknown that expands abbrevia-

tions and performs many other functions, such as auto-loading script files when proce-

dures defined in them are first invoked, automatically executing subprocesses, and

performing simple history substitutions (see Chapter 12 for details). You’re free to write

your own unknown procedure or modify the library version to provide additional func-

tions.

