
1

DRAFT (7/10/93): Distribution Restricted

Chapter 36 Introduction 323

36.1 What’s in a widget? 324

36.2 Widgets are event-driven 325

36.3 Tk vs. Xlib 325

36.4 Square: an example widget 326

36.5 Design for re-usability 328

Chapter 37 Creating Windows 329

37.1 Tk_Window structures 329

37.2 Creating Tk_Windows 329

37.3 Setting a window’s class 331

37.4 Deleting windows 332

37.5 Basic operations on Tk_Windows 332

37.6 Create procedures 333

37.7 Delayed window creation 336

Chapter 38 Configuring Widgets 337

38.1 Tk_ConfigureWidget 337

38.1.1 Tk_ConfigSpec tables 339

38.1.2 Invoking Tk_ConfigureWidget 341

38.1.3 Errors 342

38.1.4 Reconfiguring 342

38.1.5 Tk_ConfigureInfo 342

38.1.6 Tk_FreeOptions 343

38.1.7 Other uses for configuration tables 343

38.2 Resource caches 343

38.2.1 Graphics contexts 344

38.2.2 Other resources 345

38.3 Tk_Uids 346

38.4 Other translators 346

38.5 Changing window attributes 347

38.6 The square configure procedure 348

38.7 The square widget command procedure 349



2

DRAFT (7/10/93): Distribution Restricted

Chapter 39 Events 353

39.1 X events 353

39.2 File events 357

39.3 Timer events 359

39.4 Idle callbacks 360

39.5 Generic event handlers 361

39.6 Invoking the event dispatcher 362

Chapter 40 Displaying Widgets 365

40.1 Delayed redisplay 365

40.2 Double-buffering with pixmaps 367

40.3 Drawing procedures 367

Chapter 41 Destroying Widgets 371

41.1 Basics 371

41.2 Delayed cleanup 372

Chapter 42 Managing the Selection 377

42.1 Selection handlers 377

42.2 Claiming the selection 380

42.3 Retrieving the selection 381

Chapter 43 Geometry Management 383

43.1 Requesting a size for a widget 383

43.2 Internal borders 385

43.3 Grids 386

43.4 Geometry managers 387

43.5 Claiming ownership 388

43.6 Retrieving geometry information 388

43.7 Mapping and setting geometry 389



Part IV:

Tk’s C Interfaces



322

DRAFT (7/10/93): Distribution Restricted



323

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the author or pub-

lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher

does not offer warranties in regard to this draft.

Chapter 36

Introduction

Like Tcl, Tk is a C library package that is linked with applications, and it provides a col-

lection of library procedures that you can invoke from C code in the enclosing application.

Although you can do many interesting things with Tk without writing any C code, just by

writing Tcl scripts for wish, you’ll probably find that most large GUI applications require

some C code too. The most common reason for using Tk’s C interfaces is to build new

kinds of widgets. For example, if you write a Tk-based spreadsheet you’ll probably need

to implement a new widget to display the contents of the spreadsheet; if you write a chart-

ing package you’ll probably build one or two new widgets to display charts and graphs in

various forms; and so on. Some of these widgets could probably be implemented with

existing Tk widgets such as canvases or texts, but for big jobs a new widget tailored to the

needs of your application can probably do the job more simply and efficiently than any of

Tk’s general-purpose widgets. Typically you’ll build one or two new widget classes to dis-

play your application’s new objects, then combine your custom widgets with Tk’s built-in

widgets to create the full user interface of the application.

The main focus of this part of the book is on building new widgets. Most of Tk’s

library procedures exist for this purpose, and most of the text in this part of the book is ori-

ented towards widget builders. However, you can also use Tk’s library procedures to build

new geometry managers; this is described in Chapter 43. Or, you may simply need to pro-

vide access to some window system feature that isn’t supported by the existing Tcl com-

mands, such as the ability to set the border width of a top-level window. In any event, the

new features you implement should appear as Tcl commands so that you can use them in

scripts. Both the philosophical issues and the library procedures discussed in Part III apply

to this part of the book also.

FIGURE  36

TABLE  36



324 Introduction

DRAFT (7/10/93): Distribution Restricted

36.1 What’s in a widget?

All widget classes have the same basic structure, consisting of a widget record and six C

procedures that implement the widget’s look and feel. More complex widgets may have

additional data structures and procedures besides theses, but all widgets have at least these

basic components.

 A widget record is the C data structure that represents the state of a widget. It

includes all of the widget’s configuration options plus anything else the widget needs for

its own internal use. For example, the widget record for a label widget contains the label’s

text or bitmap, its background and foreground colors, its relief, and so on. Each instance of

a widget has its own widget record, but all widgets of the same class have widget records

with the same structure. One of the first things you will do when designing a new widget

class is to design the widget record for that class.

Of the widget’s six core procedures, two are Tcl command procedures. The first of

these is called the create procedure; it implements the Tcl command that creates widgets

of this class. The command’s name is the same as the class name, and the command

should have the standard syntax described in Section XXX for creating widgets. The com-

mand procedure initializes a new widget record, creates the window for the widget, and

creates the widget command for the widget. It is described in more detail in Chapters 37

and 38.

The second command procedure is the widget command procedure; it implements the

widget commands for all widgets of this class. When the widget command is invoked its

clientData argument points to the widget record for a particular widget; this allows

the same C procedure to implement the widget commands for many different widgets (the

counter objects described in Section XXX used a similar approach).

The third core procedure for a widget class is its configure procedure. Given one or

more options in string form, such as “-background red”, it parses the options and

fills in the widget record with corresponding internal representations such as an XColor
structure. The configure procedure is invoked by the create procedure and the widget com-

mand procedure to handle configuration options specified on their command lines. Chap-

ter 38 describes the facilities provided by Tk to make configure procedures easy to write.

The fourth core procedure is the event procedure. It is invoked by Tk’s event dis-

patcher and typically handles exposures (part of the window needs to be redrawn), win-

dow size changes, focus changes, and the destruction of the window. The event procedure

does not normally deal with user interactions such as mouse motions and key presses;

these are usually handled with class bindings created with the bind command as

described in Chapter XXX. Chapter 39 describes the Tk event dispatcher, including its

facilities for managing X events plus additional features for timers, event-driven file I/O,

and idle callbacks

The fifth core procedure is the display procedure. It is invoked to redraw part or all of

the widget on the screen. Redisplays can be triggered by many things, including window

exposures, changes in configuration options, and changes in the input focus. Chapter 40



36.2 Widgets are event-driven 325

DRAFT (7/10/93): Distribution Restricted

discusses several issues related to redisplay, such as deferred redisplay, double-buffering

with pixmaps, and Tk’s support for drawing 3-D effects.

The last of a widget’s core procedures is its destroy procedure. This procedure is

called when the widget is destroyed and is responsible for freeing up all of the resources

allocated for the widget such as the memory for the widget record and X resources such as

colors and pixmaps. Widget destruction is tricky because the widget could be in use at the

time it is destroyed; Chapter 41 describes how deferred destruction is used to avoid poten-

tial problems.

36.2 Widgets are event-driven

Part II described how the Tcl scripts for Tk applications are event-driven, in that they con-

sist mostly of short responses to user interactions and other events. The C code that imple-

ments widgets is also event-driven. Each of the core procedures described in the previous

section responds to events of some sort. The create, widget command, and configure pro-

cedures all respond to Tcl commands. The event procedure responds to X events, and the

display and destroy procedures respond to things that occur either in X or in Tcl scripts.

36.3 Tk vs. Xlib

Xlib is the C library package that provides the lowest level of access to the X Window

System. Tk is implemented using Xlib but it hides most of the Xlib procedures from the C

code in widgets, as shown in Figure 36.1. For example, Xlib provides a procedure XCre-
ateWindow to create a new windows, but you should not use it; instead, call Tk_Cre-
ateWindowFromPath or one of the other procedures provided by Tk for this purpose.

Tk’s procedures call the Xlib procedures but also do additional things such as associating

a textual name with the window. Similarly, you shouldn’t normally call Xlib procedures

like XAllocColor to allocate colors and other resources; call the corresponding Tk pro-

Xlib

Tk

Widget

Figure  36.1. Tk hides many of the Xlib interfaces from widgets, but widgets still invoke Xlib
directly for a few purposes such as drawing on the screen.



326 Introduction

DRAFT (7/10/93): Distribution Restricted

cedures like Tk_GetColor instead. In the case of colors, Tk calls Xlib to allocate the

color, but it also remembers the colors that are allocated; if you use the same color in

many different places, Tk will only communicate with the X server once.

However, Tk does not totally hide Xlib from you. When widgets redisplay themselves

they make direct calls to Xlib procedures such as XDrawLine and XDrawString. Fur-

thermore, many of the structures manipulated by Tk are the same as the structures pro-

vided by Xlib, such as graphics contexts and window attributes. Thus you’ll need to know

quite a bit about Xlib in order to write new widgets with Tk. This book assumes that you

are familiar with the following concepts from Xlib:

• Window attributes such as background_pixel, which are stored in XSetWindo-
wAttributes structures.

• Resources related to graphics, such as pixmaps, colors, graphics contexts, and fonts.

• Procedures for redisplaying, such as XDrawLine and XDrawString.

• Event types and the XEvent structure.

You’ll probably find it useful to keep a book on Xlib nearby when reading this book and to

refer to the Xlib documentation for specifics about the Xlib structures and procedures. If

you haven’t used Xlib before I’d suggest waiting to read about Xlib until you need the

information. That way you can focus on just the information you need and avoid learning

about the parts of Xlib that are hidden by Tk.

Besides Xlib, you shouldn’t need to know anything about any other X toolkit or

library. For example, Tk is completely independent from the Xt toolkit so you don’t need

to know anything about Xt. For that matter, if you’re using Tk you can’t use Xt: their wid-

gets are incompatible and can’t be mixed together.

36.4 Square: an example widget

I’ll use a simple widget called “square” for examples throughout Part IV. The square wid-

get displays a colored square on a background as shown in Figure 36.2. The widget sup-

ports several configuration options, such as colors for the background and for the square, a

relief for the widget, and a border width used for both the widget and the square. It also

provides three widget commands: configure, which is used in the standard way to

query and change options; position, which sets the position of the square’s upper-left

corner relative to the upper-left corner of the window, and size, which sets the square’s

size. Figure 36.2 illustrates the position and size commands.

Given these simple commands many other features can be written as Tcl scripts. For

example, the following script arranges for the square to center itself over the mouse cursor

on Button-1 presses and to track the mouse as long as Button-1 is held down. It assumes

that the square widget is named “.s”.



36.4 Square: an example widget 327

DRAFT (7/10/93): Distribution Restricted

proc center {x y} {
set a [.s size]
.s position [expr $x-($a/2)] [expr $y-($a/2)]

}
bind .s <1> {center %x %y}
bind .s <B1-Motion> {center %x %y}

Note: For this particular widget it would probably make more sense to use configuration options
instead of the position and size commands; I made them widget commands just to
illustrate how to write widget commands.

Figure  36.2. A sequence of scripts and the displays that they produce. Figure (a) creates a square
widget, Figure (b) invokes the position widget command to move the square within its widget,
and Figure (c) changes the size of the square.

square .s
pack .s
wm title .s "Square widget example"

.s position 100 75

.s size 40

(a) (b)

(c)



328 Introduction

DRAFT (7/10/93): Distribution Restricted

The implementation of the square widget requires about 320 lines of C code exclud-

ing comments, or about 750 lines in a copiously-commented version. The square widget

doesn’t use all of the features of Tk but it illustrates the basic things you must do to create

a new widget. For examples of more complex widgets you can look at the source code for

some of Tk’s widgets; they have the same basic structure as the square widget and they

use the same library procedures that you’ll read about in the chapters that follow.

36.5 Design for re-usability

When building a new widget, try to make it as flexible and general-purpose as possible. If

you do this then it may be possible for you or someone else to use your widget in new

ways that you didn’t foresee when you created it. Here are a few specific things to think

about:

1. Store all the information about the widget in its widget record. If you use static or glo-

bal variables to hold widget state then it may not be possible to have more than one

instance of the widget in any given application. Even if you don’t envision using more

than one instance per application, don’t do anything to rule this out.

2. Make sure that all of the primitive operations on your widget are available through its

widget command. Don’t hard-wire the widget’s behavior in C. Instead, define the

behavior as a set of class bindings using the bind command. This will make it easy to

change the widget’s behavior.

3. Provide escapes to Tcl. Think about interesting ways that you can embed Tcl commands

in your widget and invoke them in response to various events. For example, the actions

for button widgets and menu items are stored as a Tcl commands that are evaluated

when the widgets are invoked, and canvases and texts allow you to associate Tcl com-

mands with their internal objects in order to give them behaviors.

4. Organize the code for your widget in one or a few files that can easily be linked into

other applications besides the one you’re writing.



329

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the author or pub-

lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher

does not offer warranties in regard to this draft.

Chapter 37

Creating Windows

This chapter presents Tk’s basic library procedures for creating windows. It describes the

Tk_Window type, which is used as a token for windows, then introduces the Tk proce-

dures for creating and deleting windows. Tk provides several macros for retrieving infor-

mation about windows, which are introduced next. Then the chapter discusses what

should be in the create procedure for a widget, using the square widget as an example. The

chapter closes with a discussion of delayed window creation. See Table 37.1 for a sum-

mary of the procedures discussed in the chapter.

37.1 Tk_Window structures

Tk uses a token of type Tk_Window to represent each window. When you create a new

window Tk returns a Tk_Window token, and you must pass this token back to Tk when

invoking procedures to manipulate the window. A Tk_Window is actually a pointer to a

record containing information about the window, such as its name and current size, but Tk

hides the contents of this structure and you may not read or write its fields directly. The

only way you can manipulate a Tk_Window is to invoke procedures and macros provided

by Tk.

37.2 Creating Tk_Windows

Tk applications typically use two procedures for creating windows: Tk_CreateMain-
Window and Tk_CreateWindowFromPath. Tk_CreateMainWindow creates a

FIGURE  37

TABLE  37



330 Creating Windows

DRAFT (7/10/93): Distribution Restricted

new application; it’s usually invoked in the main program of an application. Before invok-

ing Tk_CreateMainWindow you should create a Tcl interpreter to use for the applica-

tion. Tk_CreateMainWindow takes three arguments, consisting of the interpreter plus

two strings:

Tk_Window Tk_CreateMainWindow(Tcl_Interp *interp,
char *screenName, char *appName)

The screenName argument gives the name of the screen on which to create the main

window. It can have any form acceptable to your X server. For example, on most UNIX-

like systems “unix:0” selects the default screen of display 0 on the local machine, or

“ginger.cs.berkeley.edu:0.0” selects screen 0 of display 0 on the machine

whose network address is “ginger.cs.berkeley.edu”. ScreenName may be

specified as NULL, in which case Tk picks a default server. On UNIX-like systems the

default server is normally determined by the DISPLAY environment variable.

Table  37.1. A summary of basic procedures for window creation and deletion.

Tk_Window Tk_CreateMainWindow(Tcl_Interp *interp,
char *screenName, char *appName)

Creates a new application and returns a token for the application’s main win-
dow. ScreenName gives the screen on which to create the main window (if
NULL then Tk picks default), and appName gives a base name for the appli-
cation. If an error occurs, returns NULL and stores an error message in
interp->result.

Tk_Window Tk_CreateWindowFromPath(Tcl_Interp *interp,
Tk_Window tkwin, char *pathName, char *screenName)

Creates a new window in tkwin’s application whose path name is path-
Name. If screenName is NULL the new window will be an internal win-
dow; otherwise it will be a top-level window on screenName. Returns a
token for the new window. If an error occurs, returns NULL and stores an
error message in interp->result.

Tk_SetClass(Tk_Window tkwin, char *class)
Sets tkwin’s class to class.

Tk_DestroyWindow(TkWindow tkwin)
Destroy tkwin and all of its descendants in the window hierarchy.

Tk_Window Tk_NameToWindow(Tcl_Interp *interp, char *pathName,
Tk_Window tkwin)

Returns the token for the window whose path name is pathName in the
same application as tkwin. If no such name exists then returns NULL and
stores an error message in interp->result.

Tk_MakeWindowExist(TkWindow tkwin)
Force the creation of the X window for tkwin, if it didn’t already exist.



37.3 Setting a window’s class 331

DRAFT (7/10/93): Distribution Restricted

The last argument to Tk_CreateMainWindow is a name to use for the application,

such as “clock” for a clock program or “mx foo.c” for an editor named mx editing a

file named foo.c. This is the name that other applications will use to send commands to

the new application. Each application must have a unique name; if appName is already in

use by some other application then Tk adds a suffix like “ #2” to make the name unique.

Thus the actual name of the application may be something like “clock #3” or “mx
foo.c #4”. You can find out the actual name for the application using the Tk_Name
macro or by invoking the Tcl command “winfo name .”.

Tk_CreateMainWindow creates the application’s main window, registers its name

so that other applications can send commands to it, and adds all of Tk’s commands to the

interpreter. It returns the Tk_Window token for the main window. If an error occurs (e.g.

screenName doesn’t exist or the X server refused to accept a connection) then

Tk_CreateMainWindow returns NULL and leaves an error message in

interp->result.

Tk_CreateWindowFromPath adds a new window to an existing application. It’s

the procedure that’s usually called when creating new widgets and it has the following

prototype:

Tk_Window Tk_CreateWindowFromPath(Tcl_Interp *interp,
Tk_Window tkwin, char *pathName, char *screenName);

The tkwin argument is a token for an existing window; its only purpose is to identify the

application in which to create the new window. PathName gives the full name for the

new window, such as “.a.b.c”. There must not already exist a window by this name,

but its parent (for example, “.a.b”) must exist. If screenName is NULL then the new

window is an internal window; otherwise the new window will be a top-level window on

the indicated screen. Tk_CreateWindowFromPath returns a token for the new win-

dow unless an error occurs, in which case it returns NULL and leaves an error message in

interp->result.

Tk also provides a third window-creation procedure called Tk_CreateWindow.

This procedure is similar to Tk_CreateWindowFromPath except that the new win-

dow’s name is specified a bit differently. See the reference documentation for details.

37.3 Setting a window’s class

The procedure Tk_SetClass assigns a particular class name to a window. For example,

Tk_SetClass(tkwin, "Foo");

sets the class of window tkwin to “Foo”. Class names are used by Tk for several pur-

poses such as finding options in the option database and event bindings. You can use any

string whatsoever as a class name when you invoke Tk_SetClass, but you should make

sure the first letter is capitalized: Tk assumes in several places that uncapitalized names

are window names and capitalized names are classes.



332 Creating Windows

DRAFT (7/10/93): Distribution Restricted

37.4 Deleting windows

The procedure Tk_DestroyWindow takes a Tk_Window as argument and deletes the

window. It also deletes all of the window’s children recursively. Deleting the main win-

dow of an application will delete all of the windows in the application and usually causes

the application to exit.

37.5 Basic operations on Tk_Windows

Given a textual path name for a window, Tk_NameToWindow may be used to find the

Tk_Window token for the window:

Tk_Window Tk_NameToWindow(Tcl_Interp *interp, char *pathName,
Tk_Window tkwin);

PathName is the name of the desired window, such as “.a.b.c”, and tkwin is a token

for any window in the application of interest (it isn’t used except to select a specific appli-

cation). Normally Tk_NameToWindow returns a token for the given window, but if no

such window exists it returns NULL and leaves an error message in interp->result.

Tk maintains several pieces of information about each Tk_Window and it provides a

set of macros that you can use to access the information. See Table 37.2 for a summary of

all the macros. Each macro takes a Tk_Window as an argument and returns the corre-

sponding piece of information for the window. For example if tkwin is a Tk_Window
then

Tk_Width(tkwin)

returns an integer value giving the current width of tkwin in pixels. Here are a few of the

more commonly used macros:

• Tk_Width and Tk_Height return the window’s dimensions; this information is used

during redisplay for purposes such as centering text.

• Tk_WindowId returns the X identifier for the window; it is needed when invoking

Xlib procedures during redisplay.

• Tk_Display returns a pointer to Xlib’s Display structure corresponding to the

window; it is also needed when invoking Xlib procedures.

Some of the macros, like Tk_InternalBorderWidth and Tk_ReqWidth, are only

used by geometry managers (see Chapter 43) and others such as Tk_Visual are rarely

used by anyone.



37.6 Create procedures 333

DRAFT (7/10/93): Distribution Restricted

37.6 Create procedures

The create procedure for a widget must do five things: create a new Tk_Window; create

and initialize a widget record; set up event handlers; create a widget command for the wid-

get; and process configuration options for the widget. The create procedure should be the

command procedure for a Tcl command named after the widget’s class, and its client-

Table  37.2. Macros defined by Tk for retrieving window state. Each macro takes a Tk_Window as
argument and returns a result whose type is given in the second column. All of these macros are fast
(they simply return fields from Tk’s internal structures and don’t require any interactions with the X
server).

Macro Name Result Type Meaning

Tk_Attributes XSetWindowAttributes
 *

Window attributes such as border pixel
and cursor.

Tk_Changes XWindowChanges * Window position, size, stacking order.

Tk_Class Tk_Uid Name of window’s class.

Tk_Colormap Colormap Colormap for window.

Tk_Depth int Bits per pixel.

Tk_Display Display X display for window.

Tk_Height int Current height of window in pixels.

Tk_InternalBorderWidth int Width of internal border in pixels.

Tk_IsMapped int 1 if window mapped, 0 otherwise.

Tk_IsTopLevel int 1 if top-level, 0 if internal.

Tk_Name Tk_Uid Name within parent. For main window,
returns application name.

Tk_Parent Tk_Window Parent, or NULL for main window.

Tk_PathName char * Full path name of window.

Tk_ReqWidth int Requested width in pixels.

Tk_ReqHeight int Requested height in pixels.

Tk_Screen Screen * X Screen for window.

Tk_ScreenNumber int Index of window’s screen.

Tk_Visual Visual * Information about window’s visual char-
acteristics.

Tk_Width int Current width of window in pixels.

Tk_WindowId Window X identifier for window.

Tk_X int X-coordinate within parent window.

Tk_Y int Y-coordinate within parent window.



334 Creating Windows

DRAFT (7/10/93): Distribution Restricted

Data argument should be the Tk_Window token for the main window of the application

(this is needed in order to create a new Tk_Window in the application).

Figure 37.1 shows the code for SquareCmd, which is the create procedure for square

widgets. After checking its argument count, SquareCmd creates a new window for the

widget and invokes Tk_SetClass to assign it a class of “Square”. The middle part of

SquareCmd allocates a widget record for the new widget and initializes it. The widget

record for squares has the following definition:

typedef struct {
Tk_Window tkwin;
Display *display;
Tcl_Interp *interp;
int x, y;
int size;
int borderWidth;
Tk_3DBorder bgBorder;
Tk_3DBorder fgBorder;
int relief;
GC gc;
int updatePending;

} Square;

The first field of the record is the Tk_Window for the widget. The next field, display,

identifies the X display for the widget (it’s needed during cleanup after the widget is

deleted). Interp holds a pointer to the interpreter for the application. The x and y fields

give the position of the upper-left corner of the square relative to the upper-left corner of

the window, and the size field specifies the square’s size in pixels. The last six fields are

used for displaying the widget; they’ll be discussed in Chapters 38 and 40.

After initializing the new widget record SquareCmd calls Tk_Cre-
ateEventHandler; this arranges for SquareEventProc to be called whenever the

widget needs to be redrawn or when various other events occur, such as deleting its win-

dow or changing its size; events will be discussed in more detail in Chapter 39. Next

SquareCmd calls Tcl_CreateCommand to create the widget command for the wid-

get. The widget’s name is the name of the command, SquareWidgetCmd is the com-

mand procedure, and a pointer to the widget record is the clientData for the command

(using a pointer to the widget record as clientData allows a single C procedure to

implement the widget commands for all square widgets; SquareWidgetCommand will

receive a different clientData argument depending on which widget command was

invoked). Then SquareCmd calls ConfigureSquare to process any configuration

options specified as arguments to the command; Chapter 38 describes how the configura-

tion options are handled. If an error occurs in processing the configuration options then

SquareCmd destroys the window and returns an error. Otherwise it returns success with

the widget’s path name as result.



37.6 Create procedures 335

DRAFT (7/10/93): Distribution Restricted

int SquareCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

Tk_Window main = (Tk_Window) clientData;
Square *squarePtr;
Tk_Window tkwin;

if (argc < 2) {
Tcl_AppendResult(interp, "wrong # args: should be \"",

argv[0], " pathName ?options?\"", (char *) NULL);
return TCL_ERROR;

}

tkwin = Tk_CreateWindowFromPath(interp, main, argv[1],
(char *) NULL);

if (tkwin == NULL) {
return TCL_ERROR;

}
Tk_SetClass(tkwin, "Square");

squarePtr = (Square *) malloc(sizeof(Square));
squarePtr->tkwin = tkwin;
squarePtr->display = Tk_Display(tkwin);
squarePtr->interp = interp;
squarePtr->x = 0;
squarePtr->y = 0;
squarePtr->size = 20;
squarePtr->bgBorder = NULL;
squarePtr->fgBorder = NULL;
squarePtr->gc = None;
squarePtr->updatePending = 0;

Tk_CreateEventHandler(tkwin,
ExposureMask|StructureNotifyMask, SquareEventProc,
(ClientData) squarePtr);

Tcl_CreateCommand(interp, Tk_PathName(tkwin),
SquareWidgetCmd, (ClientData squarePtr),
(Tcl_CmdDeleteProc *) NULL);

if (ConfigureSquare(interp, squarePtr, argc-2, argv+2, 0)
!= TCL_OK) {

Tk_DestroyWindow(squarePtr->tkwin);
return TCL_ERROR;

}
interp->result = Tk_PathName(tkwin);
return TCL_OK;

}

Figure  37.1. The create procedure for square widgets. This procedure is the command procedure
for the square command.



336 Creating Windows

DRAFT (7/10/93): Distribution Restricted

37.7 Delayed window creation

Tk_CreateMainWindow and Tk_CreateWindowFromPath create the Tk data

structures for a window, but they do not communicate with the X server to create an actual

X window. If you create a Tk_Window and immediately fetch its X window identifier

using Tk_WindowId, the result will be None. Tk doesn’t normally create the X window

for a Tk_Window until the window is mapped, which is normally done by a geometry

manager (see Chapter 43). The reason for delaying window creation is performance.

When a Tk_Window is initially created, all of its attributes are set to default values.

Many of these attributes will be modified almost immediately when the widget configures

itself. It’s more efficient to delay the window’s creation until all of its attributes have been

set, rather than first creating the window and then asking the X server to modify the

attributes later.

Delayed window creation is normally invisible to widgets, since the only time a wid-

get needs to know the X identifier for a window is when it invokes Xlib procedures to dis-

play it. This doesn’t happen until after the window has been mapped, so the X window

will have been created by then. If for some reason you should need the X window identi-

fier before a Tk_Window has been mapped, you can invoke Tk_MakeWindowExist:

void Tk_MakeWindowExist(tkwin);

This forces the X window for tkwin to be created immediately if it hasn’t been created

yet. Once Tk_MakeWindowExist returns, Tk_WindowId can be used to retrieve the

Window token for it.



337

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the author or pub-

lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher

does not offer warranties in regard to this draft.

Chapter 38

Configuring Widgets

The phrase “configuring a widget” refers to all of the setup that must be done prior to actu-

ally drawing the widget’s contents on the screen. A widget is configured initially as part of

creating it, and it may be reconfigured by invoking its widget command. One of the largest

components of configuring a widget is processing configuration options such as

“-borderwidth 1m”. For each option the textual value must be translated to an inter-

nal form suitable for use in the widget. For example, distances specified in floating-point

millimeters must be translated to integer pixel values and font names must be mapped to

corresponding XFontStruct structures. Configuring a widget also includes other tasks

such as preparing X graphics contexts to use when drawing the widget and setting

attributes of the widget’s window, such as its background color.

This chapter describes the Tk library procedures for configuring widgets, and it pre-

sents the square widget’s configure procedure and widget command procedure. Chapter 40

will show how to draw a widget once configuration is complete.

38.1 Tk_ConfigureWidget

Tk provides three library procedures, Tk_ConfigureWidget, Tk_Configure-
Info, and Tk_FreeOptions, that do most of the work of processing configuration

options (see Table 38.1). To use these procedures you first create a configuration table that

describes all of the configuration options supported by your new widget class. When creat-

ing a new widget, you pass this table to Tk_ConfigureWidget along with argc/

argv information describing the configuration options (i.e. all the arguments in the cre-

ation command after the widget name). You also pass in a pointer to the widget record for

FIGURE  38

TABLE  38



338 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

the widget. Tk_ConfigureWidget processes each option specified in argv according

to the information in the configuration table, converting string values to appropriate inter-

nal forms, allocating resources such as fonts and colors if necessary, and storing the results

into the widget record. For options that aren’t explicitly specified in argv, Tk_Config-
ureWidget checks the option database to see if a value is specified there. For options

that still haven’t been set, Tk_ConfigureWidget uses default values specified in the

table.

When the configure widget command is invoked to change options, you call

Tk_ConfigureWidget again with the argc/argv information describing the new

option values. Tk_ConfigureWidget will process the arguments according to the

table and modify the information in the widget record accordingly. When the config-
ure widget command is invoked to read out the current settings of options, you call

Tk_ConfigureInfo. It generates a Tcl result describing one or all of the widget’s

Table  38.1. A summary of Tk_ConfigureWidget and related procedures and macros.

int Tk_ConfigureWidget(Tcl_Interp *interp, Tk_Window tkwin,
Tk_ConfigSpec *specs, int argc, char *argv[], char *widgRec,
int flags)

Processes a set of arguments from a Tcl command (argc and argv) using a
table of allowable configuration options (specs) and sets the appropriate
fiels of a widget record (widgRec). Tkwin is the widget’s window. Nor-
mally returns TCL_OK; if an error occurs, returns TCL_ERROR and leaves
an error message in interp->result. Flags is normally 0 or TK_CON-
FIG_ARGV_ONLY (see reference documentation for other possibilities).

int Tk_ConfigureInfo(Tcl_Interp *interp, Tk_Window tkwin,
Tk_ConfigSpec *specs, char *widgRec, char * argvName, flags)

Finds the configuration option in specs whose command-line name is
argvName, locates the value of that option in widgRec, and generates in
interp->result a list describing that configuration option. If
argvName is NULL, generates a list of lists describing all of the options in
specs. Normally returns TCL_OK; if an error occurs, returns TCL_ERROR
and leaves an error message in interp->result. Flags is normally 0
(see the reference documentation for other possibilities).

Tk_FreeOptions(Tk_ConfigSpec *specs, char *widgRec,
Display *display, int flags)

Frees up any resources in widgRec that are used by specs. Display
must be the widget’s display. Flags is normally 0 but can be used to select
particular entries in specs (see reference documentation for details).

int Tk_Offset(type, field)
This is a macro that returns the offset of a field named field within a struc-
ture whose type is type. Used when creating configuration tables.



38.1 Tk_ConfigureWidget 339

DRAFT (7/10/93): Distribution Restricted

options in exactly the right form, so all you have to do is return this result from the widget

command procedure.

Finally, when a widget is deleted you invoke Tcl_FreeOptions. Tcl_FreeOp-
tions scans through the table to find options for which resources have been allocated,

such as fonts and colors. For each such option it uses the information in the widget record

to free up the resource.

38.1.1 Tk_ConfigSpec tables

Most of the work in processing options is in creating the configuration table. The table is

an array of records, each with the following structure:

typedef struct {
int type;
char *argvName;
char *dbName;
char *dbClass;
char *defValue;
int offset;
int specFlags;
Tk_CustomOption *customPtr;

} Tk_ConfigSpec;

The type field specifies the internal form into which the option’s string value should be

converted. For example, TK_CONFIG_INT means the option’s value should be converted

to an integer and TK_CONFIG_COLOR means that the option’s value should be converted

to a pointer to an XColor structure. For TK_CONFIG_INT the option’s value must have

the syntax of a decimal, hexadecimal, or octal integer and for TK_CONFIG_COLOR the

option’s value must have one of the forms for colors described in Section XXX. For

TK_CONFIG_COLOR Tk will allocate an XColor structure, which must later be freed

(e.g. by calling Tk_FreeOptions). More than 20 different option types are defined by

Tk; see the reference documentation for details on each of the supported types.

ArgvName is the option’s name as specified on command lines, e.g.

“-background” or “-font”. The dbName and dbClass fields give the option’s

name and class in the option database. The defValue field gives a default value to use

for the option if it isn’t specified on the command line and there isn’t a value for it in the

option database; NULL means there is no default for the option.

The offset field tells where in the widget record to store the converted value of the

option. It is specified as a byte displacement from the beginning of the record. You should

use the Tk_Offset macro to generate values for this field. For example,

Tk_Offset(Square, relief)

produces an appropriate offset for the relief field of a record whose type is Square.

The specFlags field contains an OR-ed combination of flag bits that provide addi-

tional control over the handling of the option. A few of the flags will be discussed below;

see the reference documentation for a complete listing. Finally, the customPtr field pro-



340 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

vides additional information for application-defined options. It’s only used when the type

is TK_CONFIG_CUSTOM and should be NULL in other cases. See the reference documen-

tation for details on defining custom option types.

Here is the option table for square widgets:

Tk_ConfigSpec configSpecs[] = {
{TK_CONFIG_BORDER, "-background", "background",

"Background",
"#cdb79e", Tk_Offset(Square, bgBorder),
TK_CONFIG_COLOR_ONLY, (Tk_CustomOption *) NULL},

{TK_CONFIG_BORDER, "-background", "background",
"Background", "white", Tk_Offset(Square, bgBorder),
TK_CONFIG_MONO_ONLY, (Tk_CustomOption *) NULL},

{TK_CONFIG_SYNONYM, "-bd", "borderWidth", (char *) NULL,
(char *) NULL, 0, 0, (Tk_CustomOption *) NULL},

{TK_CONFIG_SYNONYM, "-bg", "background", (char *) NULL,
(char *) NULL, 0, 0, (Tk_CustomOption *) NULL},

{TK_CONFIG_PIXELS, "-borderwidth", "borderWidth",
"BorderWidth", "1m", Tk_Offset(Square, borderWidth),
0, (Tk_CustomOption *) NULL},

TK_CONFIG_SYNONYM, "-fg", "foreground", (char *) NULL,
(char *) NULL, 0, 0, (Tk_CustomOption *) NULL},

{TK_CONFIG_BORDER, "-foreground", "foreground",
"Foreground", "#b03060", Tk_Offset(Square, fgBorder),
TK_CONFIG_COLOR_ONLY, (Tk_CustomOption *) NULL},

{TK_CONFIG_BORDER, "-foreground", "foreground",
"Foreground", "black", Tk_Offset(Square, fgBorder),
TK_CONFIG_MONO_ONLY, (Tk_CustomOption *) NULL},

{TK_CONFIG_RELIEF, "-relief", "relief", "Relief",
"raised", Tk_Offset(Square, relief), 0,
(Tk_CustomOption *) NULL},

{TK_CONFIG_END, (char *) NULL, (char *) NULL, ,
(char *) NULL, (char *) NULL, 0, 0,
(Tk_CustomOption *) NULL}

};

This table illustrates three additional features of Tk_ConfigSpecs structures. First,

there are two entries each for the -background and -foreground options. The first

entry for each option has the TK_CONFIG_COLOR_ONLY flag set, which causes Tk to

use that option if the display is a color display and to ignore it if the display is mono-

chrome. The second entry specifies the TK_CONFIG_MONO_ONLY flag so it is only used

for monochrome displays. This feature allows different default values to be specified for

color and mono displays (the current color model for the window determines whether the

it considered to be color or monochrome; see Section XXX). Second, the options -bd, -
bg, and -fg have type TK_CONFIG_SYNONYM. This means that each of these options is

a synonym for some other option; the dbName field identifies the other option and the

other fields are ignored. For example, if the -bd option is specified with the above table,

Tk will actually use the table entry for the -borderwidth option. Third, the last entry



38.1 Tk_ConfigureWidget 341

DRAFT (7/10/93): Distribution Restricted

in the table must have type TK_CONFIG_END; Tk depends on this to locate the end of the

table.

38.1.2 Invoking Tk_ConfigureWidget

Suppose that Tk_ConfigureWidget is invoked as follows:

Tcl_Interp *interp;
Tk_Window tkwin;
char *argv[] = {"-relief", "sunken", "-bg", "blue"};
Square *squarePtr;
int code;
...
code = Tk_ConfigureWidget(interp, tkwin, configSpecs,

4, argv, (char *) squarePtr, 0);

A call much like this will occur if a square widget is created with the Tcl command

square .s -relief sunken -bg blue

The -relief option will be processed according to type TK_CONFIG_RELIEF, which

dictates that the option’s value must be a valid relief, such as “raised” or “sunken”. In

this case the value specified is sunken; Tk_ConfigureWidget converts this string

value to the integer value TK_RELIEF_SUNKEN and stores that value in

squarePtr->relief. The -bg option will be processed according to the config-
Specs entry for -background, which has type TK_CONFIG_BORDER. This type

requires that the option’s value be a valid color name; Tk creates a data structure suitable

for drawing graphics in that color in tkwin, and it computes additional colors for draw-

ing light and dark shadows to produce 3-dimensional effects. All of this information is

stored in the new structure and a token for that structure is stored in the bgBorder field

of squarePtr. In Chapter 40 you’ll see how this token is used to draw the widget.

Since the -borderwidth and -foreground options weren’t specified in argv,

Tk_ConfigureWidget looks them up in the option database using the information for

those options in configSpecs. If it finds values in the option database then it will use

them in the same way as if they had been supplied in argv.

If an option isn’t specified in the option database then Tk_ConfigureWidget uses

the default value specified in its table entry. For example, for -borderwidth it will use

the default value “1m”. Since the option has type TK_CONFIG_PIXELS, this string must

specify a screen distance in one of the forms described in Section XXX. “1m” specifies a

distance of one millimeter; Tk converts this to the corresponding number of pixels and

stores the result as an integer in squarePtr->borderWidth. If the default value for

an option is NULL then Tk_ConfigureWidget does nothing at all if there is no value

in either argv or the option database; the value in the widget record will retain whatever

value it had when Tk_ConfigureWidget is invoked.

Note: If an entry in the configuration table has no default value then you must initialize the
corresponding field of the widget record before invoking Tk_ConfigureWidget. If



342 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

there is a default value then you need not initialize the field in the widget record since
Tk_ConfigureWidget will always store a proper value there.

38.1.3 Errors

Tk_ConfigureWidget normally returns TCL_OK. If an error occurs then it returns

TCL_ERROR and leaves an error message in interp->result. The most common

form of error is a value that doesn’t make sense for the option type, such as “abc” for the

-bd option. Tk_ConfigureWidget returns as soon as it encounters an error, which

means that some of the fields of the widget record  may not have been set yet; these fields

will be left in an initialized state (such as NULL for pointers, 0 for integers, None for X

resources, etc.).

38.1.4 Reconfiguring

Tk_ConfigureWidget gets invoked not only when a widget is created but also during

the configure widget command. When reconfiguring you probably won’t want to con-

sider the option database or default values. You’ll want to process only the options that are

specified explicitly in argv, leaving all the unspecified options with their previous values.

To accomplish this, specify TK_CONFIG_ARGV_ONLY as the last argument to Tk_Con-
figureWidget:

code = Tk_ConfigureWidget(interp, tkwin, configSpecs,
argc, argv, (char *) squarePtr,
TK_CONFIG_ARGV_ONLY);

38.1.5 Tk_ConfigureInfo

If a configure widget command is invoked with a single argument, or with no argu-

ments, then it returns configuration information. For example, if .s is a square widget

then

.s configure -background

should return a list of information about the -background option and

.s configure

should return a list of lists describing all the options, as described in Section XXX.

Tk_ConfigureInfo does all the work of generating this information in the proper for-

mat. For the square widget it might be invoked as follows:

code = Tk_ConfigureInfo(interp, tkwin, configSpecs,
(char *) squarePtr, argv[2], 0);

Argv[2] specifies the name of a particular option (e.g. -background in the first

example above). If information is to be returned about all options, as in the second exam-

ple above, then NULL should be specified as the option name. Tk_ConfigureInfo sets

interp->result to hold the proper value and returns TCL_OK. If an error occurs



38.2 Resource caches 343

DRAFT (7/10/93): Distribution Restricted

(because a bad option name was specified, for example) then Tk_ConfigureInfo
stores an error message in interp->result and returns TCL_ERROR. In either case,

the widget command procedure can leave interp->result as it is and return code as

its completion code.

38.1.6 Tk_FreeOptions

The library procedure Tk_FreeOptions is usually invoked after a widget is deleted in

order to clean up its widget record. For some option types, such as TK_CONFIG_BOR-
DER, Tk_ConfigureWidget allocates resources which must eventually be freed.

Tk_FreeOptions takes care of this:

void Tk_FreeOptions(Tk_ConfigSpec *specs, char *widgRec,
Display *display, int flags);

Specs and widgRec should be the same as in calls to Tk_ConfigureWidget. Display
identifies the X display containing the widget (it’s needed for freeing certain options) and

flags should normally be 0 (see the reference documentation for other possibilities).

Tk_FreeOptions will scan specs looking for entries such as TK_CONFIG_BORDER
whose resources must be freed. For each such entry it checks the widget record to be sure

a resource is actually allocated (for example, if the value of a string resource is NULL it

means that no memory is allocated). If there is a resource allocated then Tk_FreeOp-
tions passes the value from the widget record to an appropriate procedure to free up the

resource and resets the value in the widget record to a state such as NULL to indicate that it

has been freed.

38.1.7 Other uses for configuration tables

Configuration tables can be used for other things besides widgets. They are suitable for

any situation where textual information must be converted to an internal form and stored

in fields of a structure, particularly if the information is specified in the same form as for

widget options, e.g.

-background blue -width 1m

Tk uses configuration tables internally for configuring menu entries, for configuring can-

vas items, and for configuring display attributes of tags in text widgets.

38.2 Resource caches

The X window system provides a number of different resources for applications to use.

Windows are one example of a resource; other examples are graphics contexts, fonts, pix-

maps, colors, and cursors. An application must allocate resources before using them and

free them when they’re no longer needed. X was designed to make resource allocation and



344 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

deallocation as cheap as possible, but it is still expensive in many situations because it

requires communication with the X server (for example, font allocation requires commu-

nication with the server to make sure the font exists). If an application uses the same

resource in several different places (e.g. the same font in many different windows) it is

wasteful to allocate separate resources for each use: this wastes time communicating with

the server and it wastes space in the X server to keep track of the copies of the resource.

Tk provides a collection of resource caches in order to reduce the costs of resource

management. When your application needs a particular resource you shouldn’t call Xlib to

allocate it; call the corresponding Tk procedure instead. Tk keeps track of all the resources

used by the application and allows them to be shared. If you use the same font in many dif-

ferent widgets, Tk will call X to allocate a font for the first widget, but it will re-use this

font for all the other widgets. When the resource is no longer needed anywhere in the

application (e.g. all the widgets using the font have been destroyed) then Tk will invoke

the Xlib procedure to free up the resource. This approach saves time as well as memory in

the X server.

If you allocate a resource through Tk you must treat it as read-only since it may be

shared. For example, if you allocate a graphics context with Tk_GetGC you must not

change the background color of the graphics context, since this would affect the other uses

of the graphics context. If you need to modify a resource after creating it then you should

not use Tk’s resource caches; call Xlib directly to allocate the resource so that you can

have a private copy.

Most of the resources for a widget are allocated automatically by Tk_Configure-
Widget, and Tk_ConfigureWidget uses the Tk resource caches. The following sub-

sections describe how to use the Tk resource caches directly, without going through

Tk_ConfigureWidget.

38.2.1 Graphics contexts

Graphics contexts are the resource that you are most likely to allocate directly. They are

needed whenever you draw information on the screen and Tk_ConfigureWidget
does not provide facilities for allocating them. Thus most widgets will need to allocate a

few graphics contexts in their configure procedures. The procedure Tk_GetGC allocates a

graphics context and is similar to the Xlib procedure XCreateGC:

GC Tk_GetGC(Tk_Window tkwin, unsigned long valueMask,
XGCValues *valuePtr)

The tkwin argument specifies the window in which the graphics context will be used.

ValueMask and ValuePtr specify the fields of the graphics context. ValueMask is

an OR-ed combination of bits such as GCForeground or GCFont that indicate which

fields of valuePtr are significant. ValuePtr specifies values of the selected fields.

Tk_GetGC returns the X resource identifier for a graphics context that matches value-
Mask and valuePtr. The graphics context will have default values for all of the unspec-

ified fields.



38.2 Resource caches 345

DRAFT (7/10/93): Distribution Restricted

When you’re finished with a graphics context you must free it by calling

Tk_FreeGC:

Tk_FreeGC(Display *display, GC gc)

The display argument indicates the display for which the graphics context was allo-

cated and the gc argument identifies the graphics context (gc must have been the return

value from some previous call to Tk_GetGC). There must be exactly one call to

Tk_FreeGC for each call to Tk_GetGC.

38.2.2 Other resources

Although resources other than graphics contexts are normally allocated and deallocated

automatically by Tk_ConfigureWidget and Tk_FreeOptions, you can also allo-

cate them explicitly using Tk library procedures. For each resource there are three proce-

dures. The first procedure (such as Tk_GetColor) takes a textual description of the

resource in the same way it might be specified as a configuration option and returns a suit-

able resource or an error. The second procedure (such as Tk_FreeColor) takes a

resource allocated by the first procedure and frees it. The third procedure takes a resource

and returns the textual description that was used to allocate it. The following resources are

supported in this way:

Bitmaps: the procedures Tk_GetBitmap, Tk_FreeBitmap, and Tk_NameOf-
Bitmap manage Pixmap resources with depth one. You can also invoke Tk_De-
fineBitmap to create new internally-defined bitmaps, and Tk_SizeOfBitmap
returns the dimensions of a bitmap.

Colors : the procedures Tk_GetColor, Tk_FreeColor, and Tk_NameOfColor
manage XColor structures. You can also invoke Tk_GetColorByValue to specify

a color with integer intensities rather than a string.

Cursors: the procedures Tk_GetCursor, Tk_FreeCursor, and

Tk_NameOfCursor manage Cursor resources. You can also invoke Tk_GetCur-
sorFromData to define a cursor based on binary data in the application.

Fonts: the procedures Tk_GetFontStruct, Tk_NameOfFontStruct, and

Tk_FreeFontStruct manage XFontStruct structures.

3-D borders: the procedures Tk_Get3DBorder, Tk_Free3DBorder, and

Tk_NameOf3DBorder manage Tk_3DBorder resources, which are used to draw

objects with beveled edges that produce 3-D effects. Associated with these procedures

are other procedures such as Tk_Draw3DRectangle that draw objects on the screen

(see Section 40.3). In addition you can invoke Tk_3DBorderColor to retrieve the

XColor structure for the border’s base color.



346 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

38.3 Tk_Uids

When invoking procedures like Tk_GetColor you pass in a textual description of the

resource to allocate, such as “red” for a color. However, this textual description is not a

normal C string but rather a unique identifier, which is represented with the type Tk_Uid:

typedef char *Tk_Uid;

A Tk_Uid is like an atom in Lisp. It is actually a pointer to a character array, just like a

normal C string, and a Tk_Uid can be used anywhere that a string can be used. However,

Tk_Uid’s have the property that any two Tk_Uid’s with the same string value also have

the same pointer value: if a and b are Tk_Uid’s and

(strcmp(a,b) == 0)

then

(a == b)

Tk uses Tk_Uid’s to specify resources because they permit fast comparisons for equality.

If you use Tk_ConfigureWidget to allocate resources then you won’t have to

worry about Tk_Uid’s (Tk automatically translates strings from the configuration table

into Tk_Uid’s). But if you call procedures like Tk_GetColor directly then you’ll need

to use Tk_GetUid to turn strings into unique identifiers:

Tk_Uid Tk_GetUid(char *string)

Given a string argument, Tk_GetUid returns the corresponding Tk_Uid. It just keeps a

hash table of all unique identifiers that have been used so far and returns a pointer to the

key stored in the hash table.

Note: If you pass strings directly to procedures like Tk_GetColor without converting them to
unique identifiers then you will get unpredictable results. One common symptom is that the
application uses the same resource over and over even though you think you’ve specified
different values for each use. Typically what happens is that the same string buffer was
used to store all of the different values. Tk just compares the string address rather than its
contents, so the values appear to Tk to be the same.

38.4 Other translators

Tk provides several other library procedures that translate from strings in various forms to

internal representations. These procedures are similar to the resource managers in Section

38.2 except that the internal forms are not resources that require freeing, so typically there

is just a “get” procedure and a “name of” procedure with no “free” procedure. Below is a

quick summary of the availabile translators (see the reference documentation for details):

Anchors: Tk_GetAnchor and Tk_NameOfAnchor translate between strings con-

taining an anchor positions such as “center” or “ne” and integers with values

defined by symbols such as TK_ANCHOR_CENTER or TK_ANCHOR_NE.



38.5 Changing window attributes 347

DRAFT (7/10/93): Distribution Restricted

Cap styles: Tk_GetCapStyle and Tk_NameOfCapStyle translate betwen

strings containing X cap styles (“butt”, “projecting”, or “round”) and integers

with values defined by the X symbols CapButt, CapProjecting, and CapRound.

Join styles: Tk_JoinStyle and Tk_NameOfJoinStyle translate between strings

containing X join styles (“bevel”, “miter”, or “round”) and integers with values

defined by the X symbols JoinBevel, JoinMiter, and JoinRound.

Justify styles: Tk_GetJustify and Tk_NameOfJustify translate between

strings containing styles of justification (“left”, “right”, “center”, or “fill”)

and integers with values defined by the symbols TK_JUSTIFY_LEFT, TK_JUSTI-
FY_RIGHT, TK_JUSTIFY_CENTER, and TK_JUSTIFY_FILL.

Reliefs: Tk_GetRelief and Tk_NameOfRelief translate between strings con-

taining relief names (“raised”, “sunken”, “flat”, “groove”, or “ridge”) and

integers with values defined by the symbols TK_RELIEF_RAISED, TK_RELIEF_-
SUNKEN, etc.

Screen distances: Tk_GetPixels and Tk_GetScreenMM process strings that con-

tain screen distances in any of the forms described in Section XXX, such as “1.5m” or

“2”. Tk_GetPixels returns an integer result in pixel units, and Tk_GetScreenMM
returns a real result whose units are millimeters.

Window names: Tk_NameToWindow translates from a string containing a window

path name such as “.dlg.quit” to the Tk_Window token for the corresponding

window.

X atoms: Tk_InternAtom and Tk_GetAtomName translate between strings con-

taining the names of X atoms (e.g. “RESOURCE_MANAGER”) and X Atom tokens.

Tk keeps a cache of atom names to avoid communication with the X server.

38.5 Changing window attributes

Tk provides a collection of procedures for modifying a window’s attributes (e.g. back-

ground color or cursor) and configuration (e.g. position or size). These procedures are

summarized in Table 38.2. The procedures have the same arguments as the Xlib proce-

dures with corresponding names. They perform the same functions as the Xlib procedures

except that they also retain a local copy of the new information so that it can be returned

by the macros described in Section 37.5. For example, Tk_ResizeWindow is similar to

the Xlib procedure XResizeWindow in that it modifies the dimensions of a window.

However, it also remembers the new dimensions so they can be accessed with the

Tk_Width and Tk_Height macros.

Only a few of the procedures in Table 38.2, such as Tk_SetWindowBackground,

are normally invoked by widgets. Widgets should definitely not invoke procedures like



348 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

Tk_MoveWindow or Tk_ResizeWindow: only geometry managers should change the

size or location of a window.

38.6 The square configure procedure

Figure 38.1 contains the code for the square widget’s configure procedure. Its argv argu-

ment contains pairs of strings that specify configuration options.Most of the work is done

by Tk_ConfigureWidget. Once Tk_ConfigureWidget returns, Configur-

Table  38.2. Tk procedures for modifying attributes and window configuration information.
Tk_ChangeWindowAttributes and Tk_ConfigureWindow allow any or all of the
attributes or configuration to be set at once (valueMask selects which values should be set); the
other procedures set selected fields individually.

Tk_ChangeWindowAttributes(Tk_Window tkwin, unsigned int value-
Mask,

XSetWindowAttributes *attsPtr)

Tk_ConfigureWindow(Tk_Window tkwin, unsigned int valueMask,
XWindowChanges *valuePtr)

Tk_DefineCursor(Tk_Window tkwin, Cursor cursor)

Tk_MoveWindow(Tk_Window tkwin, int x, int y)

Tk_MoveResizeWindow(Tk_Window tkwin, int x, int y,
unsigned int width, unsigned int height)

Tk_ResizeWindow(Tk_Window tkwin, unsgined int width,
unsigned int height)

Tk_SetWindowBackground(Tk_Window tkwin, unsigned long pixel)

Tk_SetWindowBackgroundPixmap(Tk_Window tkwin, Pixmap pixmap)

Tk_SetWindowBorder(Tk_Window tkwin, unsigned long pixel)

Tk_SetWindowBorderPixmap(Tk_Window tkwin, Pixmap pixmap)

Tk_SetWindowBorderWidth(Tk_Window tkwin, int width)

Tk_SetWindowColormap(Tk_Window tkwin, Colormap colormap)

Tk_UndefineCursor(Tk_Window tkwin)



38.7 The square widget command procedure 349

DRAFT (7/10/93): Distribution Restricted

eSquare extracts the color associated with the -background option and calls

Tk_SetWindowBackground to use it as the background color for the widget’s win-

dow. Then it allocates a graphics context that will be used during redisplay to copy bits

from an off-screen pixmap into the window (unless some previous call to the procedure

has already allocated the graphics context). Next ConfigureSquare calls Tk_Geom-
etryRequest and Tk_SetInternalBorderWidth to provide information to its

geometry manager (this will be discussed in Chapter 43). Finally, it arranges for the wid-

get to be redisplayed; this will be discussed in Chapter 40.

38.7 The square widget command procedure

Figures 38.2 and 38.3 contain the C code for SquareWidgetCommand, which

implements widget commands for square widgets. The main portion of the procedure con-

sists of a series of if statements that compare argv[1] successively to “configure”,

“position”, and “size”, which are the three widget commands defined for squares. If

int ConfigureSquare(Tcl_Interp *interp, Square *squarePtr,
int argc, char *argv[], int flags) {

if (Tk_ConfigureWidget(interp, squarePtr->tkwin, configSpecs,
argc, argv, (char *) squarePtr, flags) != TCL_OK) {

return TCL_ERROR;
}
Tk_SetWindowBackground(squarePtr->tkwin,

Tk_3DBorderColor(squarePtr->bgBorder));
if (squarePtr->gc == None) {

XGCValues gcValues;
gcValues.function = GXcopy;
gcValues.graphics_exposures = False;
squarePtr->gc = Tk_GetGC(squarePtr->tkwin,

GCFunction|GCGraphicsExposures, &gcValues);
}
Tk_GeometryRequest(squarePtr->tkwin, 200, 150);
Tk_SetInternalBorder(squarePtr->tkwin,

squarePtr->borderWidth);
if (!squarePtr->updatePending) {

Tk_DoWhenIdle(DisplaySquare, (ClientData) squarePtr);
squarePtr->updatePending = 1;

}
return TCL_OK;

}

Figure  38.1. The configure procedure for square widgets. It is invoked by the creation procedure
and by the widget command procedure to set and modify configuration options.



350 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

int SquareWidgetCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

Square *squarePtr = (Square *) clientData;
int result = TCL_OK;

if (argc < 2) {
Tcl_AppendResult(interp, "wrong # args: should be \"",

argv[0], " option ?arg arg ...?\"",
(char *) NULL);

return TCL_ERROR;
}

Tk_Preserve((ClientData) squarePtr);
if (strcmp(argv[1], "configure") == 0) {

if (argc == 2) {
result = Tk_ConfigureInfo(interp, squarePtr->tkwin,

(char *) squarePtr, (char *) NULL, 0);
} else if (argc == 3) {

result = Tk_ConfigureInfo(interp, squarePtr->tkwin,
(char *) squarePtr, argv[2], 0);

} else {
result = ConfigureSquare(interp, squarePtr,

argc-2, argv+2, TK_CONFIG_ARGV_ONLY);
}

} else if (strcmp(argv[1], "position") == 0) {
if ((argc != 2) && (argc != 4)) {

Tcl_AppendResult(interp,"wrong # args: should be \"",
argv[0], " position ?x y?\"", (char *) NULL);

goto error;
}
if (argc == 4) {

if ((Tk_GetPixels(interp, squarePtr->tkwin,
argv[2], &squarePtr->x) != TCL_OK) ||
(Tk_GetPixels(interp, squarePtr->tkwin,
argv[3], &squarePtr->y) != TCL_OK)) {

goto error;
}
KeepInWindow(squarePtr);

}
sprintf(interp->result, "%d %d", squarePtr->x,

squarePtr->y);
} else if (strcmp(argv[1], "size") == 0) {

Figure  38.2. The widget command procedure for square widgets. Continued in Figure 38.3.



38.7 The square widget command procedure 351

DRAFT (7/10/93): Distribution Restricted

argv[1] matches one of these strings then the corresponding code is executed; other-

wise an error is generated.

The configure widget command is handled in one three ways, depending on how

many additional arguments it receives. If at most one additional argument is provided then

SquareWidgetCmd calls Tk_ConfigureInfo to create descriptive information for

one or all of the widget’s configuration options. If two or more additional arguments are

if ((argc != 2) && (argc != 3)) {
Tcl_AppendResult(interp, "wrong # args: should be \"",

argv[0], " size ?amount?\"", (char *) NULL);
goto error;

}
if (argc == 3) {

int i;
if (Tk_GetPixels(interp, squarePtr->tkwin, argv[2],

&i) != TCL_OK) {
goto error;

}
if ((i <= 0) || (i > 100)) {

Tcl_AppendResult(interp, "bad size \"", argv[2],
"\"", (char *) NULL);

goto error;
}
squarePtr->size = i;
KeepInWindow(squarePtr);

}
sprintf(interp->result, "%d", squarePtr->size);

} else {
Tcl_AppendResult(interp, "bad option \"", argv[1],

"\": must be configure, position, or size",
(char *) NULL);

goto error;
}
if (!squarePtr->updatePending) {

Tk_DoWhenIdle(DisplaySquare, (ClientData) squarePtr);
squarePtr->updatePending = 1;

}
Tk_Release((ClientData) squarePtr);
return result;

error:
Tk_Release((ClientData) squarePtr);
return TCL_ERROR;

}

Figure  38.3. The widget command procedure for square widgets, continued from Figure 38.2.



352 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

provided then SquareWidgetCmd passes the additional arguments to Configur-
eSquare for processing; SquareWidgetCmd specifies the

TK_CONFIG_ARGV_ONLY flag, which ConfigureSquare passes on to Tk_Con-
figureWidget so that options not specified explicitly by argv are left as-is.

The position and size widget commands change the geometry of the square dis-

played in the widget, and they have similar implementations. If new values for the geome-

try are specified then each command calls Tk_GetPixels to convert the argument(s) to

pixel distances. The size widget command also checks to make sure that the new size is

within a particular range of values. Then both commands invoke KeepInWindow, which

adjusts the position of the square if necessary to ensure that it is fully visible in the wid-

get’s window (see Figure 38.4). Finally, the commands print the current values into

interp->result to return them as result.

SquareWidgetCmd invokes the procedures Tk_Preserve and Tk_Release as

a way of preventing the widget record from being destroyed while the widget command is

executing. Chapter 41 will discuss these procedures in more detail. The square widget is

so simple that the calls aren’t actually needed, but virtually all real widgets do need them

so I put them in SquareWidgetCmd too.

void KeepInWindow(Square *squarePtr) {
int i, bd;
bd = 0;
if (squarePtr->relief != TK_RELIEF_FLAT) {

bd = squarePtr->borderWidth;
}
i = (Tk_Width(squarePtr->tkwin) - bd)

- (squarePtr->x + squarePtr->size);
if (i < 0) {

squarePtr->x += i;
}
i = (Tk_Height(squarePtr->tkwin) - bd)

- (squarePtr->y + squarePtr->size);
if (i < 0) {

squarePtr->y += i;
}
if (squarePtr->x < bd) {

squarePtr->x = bd;
}
if (squarePtr->y < bd) {

squarePtr->y = bd;
}

}

Figure  38.4. The KeepInWindow procedure adjusts the location of the square to make sure that it
is visible in the widget’s window.



353

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the author or pub-

lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher

does not offer warranties in regard to this draft.

Chapter 39

Events

This chapter describes Tk’s library procedures for event handling. The code you’ll write

for event handling divides into three parts. The first part consists of code that creates event

handlers: it informs Tk that certain callback procedures should be invoked when particular

events occur. The second part consists of the callbacks themselves. The third part consists

of top-level code that invokes the Tk event dispatcher to process events.

Tk supports three kinds of events: X events, file events (e.g. a particular file has just

become readable), and timer events. Tk also allows you to create idle callbacks, which

cause procedures to be invoked when Tk runs out of other things to do; idle callbacks are

used to defer redisplays and other computations until all pending events have been pro-

cessed. Tk’s procedures for event handling are summarized in Table 39.1.

If you are not already familiar with X events, I recommend reading about them in

your favorite Xlib documentation before reading this chapter.

39.1 X events

The X window server generates a number of different events to report interesting things

that occur in the window system, such as mouse presses or changes in a window’s size.

Chapter XXX showed how you can use Tk’s bind command to write event handlers as

Tcl scripts. This section describes how to write event handlers in C. Typically you’ll only

use C handlers for four kinds of X events:

Expose: these events notify the widget that part or all of its window needs to be redis-

played.

FIGURE  39

TABLE  39



354 Events

DRAFT (7/10/93): Distribution Restricted

Table  39.1. A summary of the Tk library procedures for event handling.

void Tk_CreateEventHandler(Tk_Window tkwin, unsigned long mask,
Tk_EventProc *proc, ClientData clientData)

Arranges for proc to be invoked whenever any of the events selected by
mask occurs for tkwin.

void Tk_DeleteEventHandler(Tk_Window tkwin, unsigned long mask,
Tk_EventProc *proc, ClientData clientData)

Deletes the event handler that matches mask, proc, and clientData, if
such a handler exists.

void Tk_CreateFileHandler(int fd, int mask, Tk_FileProc *proc,
ClientData clientData)

Arranges for proc to be invoked whenver one of the conditions indicated by
mask occurs for the file whose descriptor number is fd.

void Tk_DeleteFileHandler(int fd)
Deletes the file handler for fd, if one exists.

Tk_TimerToken Tk_CreateTimerHandler(int milliseconds,
Tk_TimerProc *proc, ClientData clientData)

Arranges for proc to be invoked after milliseconds have elapsed.
Returns a token that can be used to cancel the callback.

void Tk_DeleteTimerHandler(Tk_TimerToken token)
Cancels the timer callback indicated by token, if it hasn’t yet triggered.

void Tk_DoWhenIdle(Tk_IdleProc *proc, ClientData clientData)
Arranges for proc to be invoked when Tk has nothing else to do.

void Tk_CancelIdleCall(Tk_IdleProc *proc, ClientData clientData)
Deletes any existing idle callbacks for idleProc and clientData.

void Tk_CreateGenericHandler(Tk_GenericProc *proc,
ClientData clientData)

Arranges for proc to be invoked whenever any X event is received by this
process.

void Tk_DeleteGenericHandler(Tk_GenericProc *proc,
ClientData clientData)

Deletes the generic handler given by proc and clientData, if such a
handler exists.

void Tk_MainLoop(void)
Processes events until there are no more windows left in this process.

int Tk_DoOneEvent(int flags)
Processes a single event of any sort and then returns. Flags is normally 0
but may be used to restrict the events that will be processed or to return
immediately if there are no pending events.



39.1 X events 355

DRAFT (7/10/93): Distribution Restricted

ConfigureNotify: these events occur when the window’s size or position changes

so that it can adjust its layout accordingly (e.g. centered text may have to be reposi-

tioned).

FocusIn and FocusOut: these events notify the widget that it has gotten or lost the

input focus, so it can turn on or off its insertion cursor.

DestroyNotify: these events notify the widget that its window has been destroyed,

so it should free up the widget record and any associated resources.

The responses to these events are all relatively obvious and it is unlikely that a user or

application developer would want to deal with the events so it makes sense to hard-code

the responses in C. For most other events, such as key presses and mouse actions, it’s bet-

ter to define the handlers in Tcl with the bind command. As a widget writer you can cre-

ate class bindings to give the widget its default behavior, then users can modify the class

bindings or augment them with additional widget-specific bindings. By using Tcl as much

as possible you’ll make your widgets more flexible.

The procedure Tk_CreateEventHandler is used by widgets to register interest

in X events:

void Tk_CreateEventHandler(Tk_Window tkwin, unsigned long
mask,

Tk_EventProc *proc, ClientData clientData);

The tkwin argument identifies a particular window and mask is an OR’ed combination

of bits like KeyPressMask and StructureNotifyMask that select the events of

interest (refer to Xlib documentation for details on the mask values that are available).

When one of the requested events occurs for tkwin Tk will invoke proc to handle the

event. Proc must match the following prototype:

typedef void Tk_EventProc(ClientData clientData, XEvent
*eventPtr);

Its first argument will be the same as the clientData value that was passed to

Tk_CreateEventHandler and the second argument will be a pointer to a structure

containing information about the event (see your Xlib documentation for details on the

contents of an XEvent structure). There can exist any number of event handlers for a

given window and mask but there can be only one event handler with a particular tkwin,

mask, proc, and clientData. If a particular event matches the tkwin and mask for

more than one handler then all of the matching handlers are invoked, in the order in which

they were created.

For example, the C code for the square widget deals with Expose, ConfigureNo-
tify, and DestroyNotify events. To process these events, the following code is

present in the create procedure for squares (see Figure 37.1 on page 335):

Tk_CreateEventHandler(squarePtr->tkwin,
ExposureMask|StructureNotifyMask,
SquareEventProc, (ClientData) squarePtr);



356 Events

DRAFT (7/10/93): Distribution Restricted

The ExposureMask bit selects Expose events and StructureNotifyMask selects

both ConfigureNotify and DestroyNotify events, plus several other types of

events. The address of the widget’s record is used as the ClientData for the callback,

so it will be passed to SquareEventProc as its first argument.

Figure 39.1 contains the code for SquareEventProc, the event procedure for

square widgets. Whenever an event occurs that matches ExposureMask or Struc-
tureNotifyMask Tk will invoke SquareEventProc. SquareEventProc casts

its clientData argument back into a Square * pointer, then checks to see what kind

of event occurred. For Expose events SquareEventProc arranges for the widget to

be redisplayed. For ConfigureNotify events, SquareEventProc calls KeepIn-
Window to make sure that the square is still visible in the window (see Figure 38.4 on

page 352), then SquareEventProc arranges for the widget to be redrawn. For

DestroyNotify events SquareEventProc starts the process of destroying the wid-

get and freeing its widget record; this process will be discussed in more detail in Chapter

41.

void SquareEventProc(ClientData clientData, XEvent *eventPtr) {
Square *squarePtr = (Square *) clientData;
if (eventPtr->type == Expose) {

if ((eventPtr->xexpose.count == 0)
&& !squarePtr->updatePending) {

Tk_DoWhenIdle(DisplaySquare, (ClientData) squarePtr);
squarePtr->updatePending = 1;

}
} else if (eventPtr->type == ConfigureNotify) {

KeepInWindow(squarePtr);
if (!squarePtr->updatePending) {

Tk_DoWhenIdle(DisplaySquare, (ClientData) squarePtr);
squarePtr->updatePending = 1;

}
} else if (eventPtr->type == DestroyNotify) {

Tcl_DeleteCommand(squarePtr->interp,
Tk_PathName(squarePtr->tkwin));

squarePtr->tkwin = NULL;
if (squarePtr->flags & REDRAW_PENDING) {

Tk_CancelIdleCall(DisplaySquare,
(ClientData) squarePtr);

}
Tk_EventuallyFree((ClientData) squarePtr, DestroySquare);

}
}

Figure  39.1. The event procedure for square widgets.



39.2 File events 357

DRAFT (7/10/93): Distribution Restricted

If you should need to cancel an existing X event handler you can invoke Tk_Dele-
teEventHandler with the same arguments that you passed to Tk_Cre-
ateEventHandler when you created the handler:

void Tk_DeleteEventHandler(Tk_Window tkwin, unsigned long
mask,

Tk_EventProc *proc, ClientData clientData);

This deletes the handler corresponding to tkwin, mask, proc, and clientData so

that its callback will not be invoked anymore. If no such handler exists then the procedure

does nothing. Tk automatically deletes all of the event handlers for a window when the

window is destroyed, so most widgets never need to call Tk_DeleteEventHandler.

39.2 File events

Event-driven programs like Tk applications should not block for long periods of time

while executing any one operation, since this prevents other events from being serviced.

For example, suppose that a Tk application attempts to read from its standard input at a

time when no input is available. The application will block until input appears. During this

time the process will be suspended by the operating system so it cannot service X events.

This means, for example, that the application will not be able to respond to mouse actions

nor will it be able to redraw itself. Such behavior is likely to be annoying to the user, since

he or she expects to be able to interact with the application at any time.

File handlers provide an event-driven mechanism for reading and writing files that

may have long I/O delays. The procedure Tk_CreateFileHandler creates a new file

handler:

void Tk_CreateFileHandler(int fd, int mask, Tk_FileProc *proc,
ClientData clientData);

The fd argument gives the number of a POSIX file descriptor (e.g. 0 for standard input, 1

for standard output, and so on). Mask indicates when proc should be invoked. It is an

OR’ed combination of the following bits:

TK_READABLE means that Tk should invoke proc whenever there is data waiting to

be read on fd;

TK_WRITABLE means that Tk should invoke proc whenever fd is capable of accept-

ing more output data;

TK_EXCEPTION means that Tk should invoke proc whenever an exceptional condi-

tion is present for fd.

The callback procedure for file handlers must match the following prototype:

typedef void Tk_FileProc(ClientData clientData,
int mask);



358 Events

DRAFT (7/10/93): Distribution Restricted

The clientData argument will be the same as the clientData argument to

Tk_CreateFileHandler and mask will contain a combination of the bits

TK_READABLE, TK_WRITABLE, and TK_EXCEPTION to indicate the state of the file at

the time of the callback. There can exist only one file handler for a given file at a time; if

you call Tk_CreateFileHandler at a time when there exists a handler for fd then

the new handler replaces the old one.

Note: You can temporarily disable a file handler by setting its mask to 0. You can reset the mask
later when you want to re-enable the handler.

To delete a file handler, call Tk_DeleteFileHandler with the same fd argu-

ment that was used to create the handler:

void Tk_DeleteFileHandler(int fd);

This removes the handler for fd so that its callback will not be invoked again.

With file handlers you can do event-driven file I/O. Rather than opening a file, reading

it from start to finish, and then closing the file, you open the file, create a file handler for it,

and then return. When the file is readable the callback will be invoked. It issues exactly

one read request for the file, processes the data returned by the read, and then returns.

When the file becomes readable again (perhaps immediately) then the callback will be

invoked again. Eventually, when the entire file has been read, the file will become readable

and the read call will return an end-of-file condition. At this point the file can be closed

and the file handler deleted. With this approach, your application will still be able to

respond to X events even if there are long delays in reading the file.

For example, wish uses a file handler to read commands from its standard input. The

main program for wish creates a file handler for standard input (file descriptor 0) with the

following statement:

...
Tk_CreateFileHandler(0, TK_READABLE, StdinProc, (ClientData)
NULL);
Tcl_DStringInit(&command);
...

In addition to creating the callback, this code initializes a dynamic string that will be used

to buffer lines of input until a complete Tcl command is ready for evaluation. Then the

main program enters the event loop as will be described in Section 39.6. When data

becomes available on standard input StdinProc will be invoked. Its code is as follows:

void StdinProc(ClientData clientData, int mask) {
int count, code;
char input[1000];
count = read(0, input, 1000);
if (count <= 0) {

... handle errors and end of file ...
}
Tcl_DStringAppend(&command, input, count);
if (Tcl_CmdComplete(Tcl_DStringValue(&command)) {

code = Tcl_Eval(interp,



39.3 Timer events 359

DRAFT (7/10/93): Distribution Restricted

Tcl_DStringValue(&command));
Tcl_DStringFree(&command);
...

}
...

}

After reading from standard input and checking for errors and end-of file, StdinProc
adds the new data to the dynamic string’s current contents. Then it checks to see if the

dynamic string contains a complete Tcl command (it won’t, for example, if a line such as

“foreach i $x {“ has been entered but the body of the foreach loop hasn’t yet

been typed). If the command is complete then StdinProc evaluates the command and

clears the dynamic string for the next command.

Note: It is usually best to use non-blocking I/O with file handlers, just to be absolutely sure that
I/O operations don’t block. To request non-blocking I/O, specify the flag O_NONBLOCK to
the fcntl POSIX system call. If you use file handlers for writing to files with long output
delays, such as pipes and network sockets, it’s essential that you use use non-blocking I/O;
otherwise if you supply too much data in a write system call the output buffers will fill
and the process will be put to sleep.

Note: For ordinary disk files it isn’t necessary to use the event-driven approach described in this
section, since reading and writing these files rarely incurs noticeable delays. File handlers
are useful primarily for files like terminals, pipes, and network connections, which can
block for indefinite periods of time.

39.3 Timer events

Timer events trigger callbacks after particular time intervals. For example, widgets use

timer events to display blinking insertion cursors. When the cursor is first displayed in a

widget (e.g. because it just got the input focus) the widget creates a timer callback that will

trigger in a few tenths of a second. When the timer callback is invoked it turns the cursor

off if it was on, or on if it was off, and then reschedules itself by creating a new timer call-

back that will trigger after a few tenths of a second more. This process repeats indefinitely

so that the cursor blinks on and off. When the widget wishes to stop displaying the cursor

altogether (e.g. because it has lost the input focus) it cancels the callback and turns the cur-

sor off.

The procedure Tk_CreateTimerHandler creates a timer callback:

Tk_TimerToken Tk_CreateTimerHandler(int milliseconds,
Tk_TimerProc *proc, ClientData clientData);

The milliseconds argument specifies how many milliseconds should elapse before

the callback is invoked. Tk_CreateTimerHandler returns immediately, and its

return value is a token that can be used to cancel the callback. After the given interval has

elapsed Tk will invoke proc. Proc must match the following prototype:

void Tk_TimerProc(ClientData clientData);



360 Events

DRAFT (7/10/93): Distribution Restricted

Its argument will be the same as the clientData argument passed to Tk_Cre-
ateTimerHandler. Proc is only called once, then Tk deletes the callback automati-

cally. If you want proc to be called over and over at regular intervals then proc should

reschedule itself by calling Tk_CreateTimerHandler each time it is invoked.

Note: There is no guarantee that proc will be invoked at exactly the specified time. If the
application is busy processing other events when the specified time occurs then proc
won’t be invoked until the next time the application invokes the event dispatcher, as
described in Section 39.6.

Tk_DeleteTimerHandler cancels a timer callback:

void Tk_DeleteTimerHandler(Tk_TimerToken token);

It takes a single argument, which is a token returned by a previous call to Tk_Cre-
ateTimerHandler, and deletes the callback so that it will never be invoked. It is safe

to invoke Tk_DeleteTimerHandler even if the callback has already been invoked;

in this case the procedure has no effect.

39.4 Idle callbacks

The procedure Tk_DoWhenIdle creates an idle callback:

void Tk_DoWhenIdle(Tk_IdleProc *proc, ClientData clientData);

This arranges for proc to be invoked the next time the application becomes idle. The

application is idle when Tk’s main event-processing procedure, Tk_DoOneEvent, is

called and no X events, file events, or timer events are ready. Normally when this occurs

Tk_DoOneEvent will suspend the process until an event occurs. However, if there exist

idle callbacks then all of them are invoked. Idle callbacks are also invoked when the

update Tcl command is invoked. The proc for an idle callback must match the follow-

ing prototype:

typedef void Tk_IdleProc(ClientData clientData);

It returns no result and takes a single argument, which will be the same as the client-
Data argument passed to Tk_DoWhenIdle.

Tk_CancelIdleCall deletes an idle callback so that it won’t be invoked after all:

void Tk_CancelIdleCall(Tk_IdleProc *proc, ClientData
clientData);

Tk_CancelIdleCall deletes all of the idle callbacks that match idleProc and

clientData (there can be more than one). If there are no matching idle callbacks then

the procedure has no effect.

Idle callbacks are used to implement the delayed operations described in Section

XXX. The most common use of idle callbacks in widgets is for redisplay. It is generally a

bad idea to redisplay a widget immediately when its state is modified, since this can result

in multiple redisplays. For example, suppose the following set of Tcl commands is

invoked to change the color, size, and location of a square widget .s:



39.5 Generic event handlers 361

DRAFT (7/10/93): Distribution Restricted

.s configure -foreground purple

.s size 2c

.s position 1.2c 3.1c

Each of these commands modifies the widget in a way that requires it to be redisplayed,

but it would be a bad idea for each command to redraw the widget. This would result in

three redisplays, which are unnecessary and can cause the widget to flash as it steps

through a series of changes. It is much better to wait until all of the commands have been

executed and then redisplay the widget once. Idle callbacks provide a way of knowing

when all of the changes have been made: they won’t be invoked until all available events

have been fully processed.

For example, the square widget uses idle callbacks for redisplaying itself. Whenever

it notices that it needs to be redrawn it invokes the following code:

if (!squarePtr->updatePending) {
Tk_DoWhenIdle(DisplaySquare, (ClientData) squarePtr);
squarePtr->updatePending = 1;

}

This arranges for DisplaySquare to be invoked as an idle handler to redraw the wid-

get. The updatePending field of the widget record keeps track of whether Display-
Square has already been scheduled, so that it will only be scheduled once. When

DisplaySquare is finally invoked it resets updatePending to zero.

39.5 Generic event handlers

The X event handlers described in Section 39.1 only trigger when particular events occur

for a particular window managed by Tk. Generic event handlers provide access to events

that aren’t associated with a particular window, such as MappingNotify events, and to

events for windows not managed by Tk (such as those in other applications). Generic

event handlers are rarely needed and should be used sparingly.

To create a generic event handler, call Tk_CreateGenericHandler:

void Tk_CreateGenericHandler(Tk_GenericProc *proc,
ClientData clientData);

This will arrange for proc to be invoked whenever any X event is received by the appli-

cation. Proc must match the following prototype:

typedef int Tk_GenericProc(ClientData clientData,
XEvent *eventPtr);

Its clientData argument will be the same as the clientData passed to Tk_Cre-
ateGenericHandler and eventPtr will be a pointer to the X event. Generic han-

dlers are invoked before normal event handlers, and if there are multiple generic handlers

then they are called in the order in which they were created. Each generic handler returns

an integer result. If the result is non-zero it indicates that the handler has completely pro-



362 Events

DRAFT (7/10/93): Distribution Restricted

cessed the event and no further handlers, either generic or normal, should be invoked for

the event.

The procedure Tk_DeleteGenericHandler deletes generic handlers:

Tk_DeleteGenericHandler(Tk_GenericProc *proc,
ClientData clientData);

Any generic handlers that match proc and clientData are removed, so that proc
will not be invoked anymore.

Note: Tk_CreateGenericHandler does nothing to ensure that the desired events are
actually sent to the application. For example, if an application wishes to respond to events
for a window in some other application then it must invoke XSelectInput to notify the
X server that it wants to receive the events. Once the events arrive, Tk will dispatch them
to the generic handler. However, an application should never invoke XSelectInput for
a window managed by Tk, since this will interfere with Tk’s event management.

39.6 Invoking the event dispatcher

The preceding sections described the first two parts of event management: creating event

handlers and writing callback procedures. The final part of event management is to invoke

the Tk event dispatcher, which waits for events to occur and invokes the appropriate call-

backs. If you don’t invoke the dispatcher then no events will be processed and no call-

backs will be invoked.

Tk provides two procedures for event dispatching: Tk_MainLoop and

Tk_DoOneEvent. Most applications only use Tk_MainLoop. It takes no arguments

and returns no result and it is typically invoked once, in the main program after initializa-

tion. Tk_MainLoop calls the Tk event dispatcher repeatedly to process events. When all

available events have been processed it suspends the process until more events occur, and

it repeats this over and over. It returns only when every Tk_Window created by the pro-

cess has been deleted (e.g. after the “destroy .” command has been executed). A typi-

cal main program for a Tk application will create a Tcl interpreter, call

Tk_CreateMainWindow to create a Tk application plus its main window, perform

other application-specific initialization (such as evaluating a Tcl script to create the appli-

cation’s interface), and then call Tk_MainLoop. When Tk_MainLoop returns the main

program exits. Thus Tk provides top-level control over the application’s execution and all

of the application’s useful work is carried out by event handlers invoked via Tk_Main-
Loop.

The second procedure for event dispatching is Tk_DoOneEvent, which provides a

lower level interface to the event dispatcher:

int Tk_DoOneEvent(int flags)

The flags argument is normally 0 (or, equivalently, TK_ALL_EVENTS). In this case

Tk_DoOneEvent processes a single event and then returns 1. If no events are pending



39.6 Invoking the event dispatcher 363

DRAFT (7/10/93): Distribution Restricted

then Tk_DoOneEvent suspends the process until an event arrives, processes that event,

and then returns 1.

For example, Tk_MainLoop is implemented using Tk_DoOneEvent:

void Tk_MainLoop(void) {
while (tk_NumMainWindows > 0) {

Tk_DoOneEvent(0);
}

}

The variable tk_NumMainWindows is maintained by Tk to count the total number of

main windows (i.e. applications) managed by this process. Tk_MainLoop just calls

Tk_DoOneEvent over and over until all the main windows have been deleted.

Tk_DoOneEvent is also used by commands such as tkwait that want to process

events while waiting for something to happen. For example, the “tkwait window”

command processes events until a given window has been deleted, then it returns. Here is

the C code that implements this command:

int done;
...
Tk_CreateEventHandler(tkwin, StructureNotifyMask,
WaitWindowProc,

(ClientData) &done);
done = 0;
while (!done) {

Tk_DoOneEvent(0);
}
...

The variable tkwin identifies the window whose deletion is awaited. The code creates an

event handler that will be invoked when the window is deleted, then invokes

Tk_DoOneEvent over and over until the done flag is set to indicate that tkwin has

been deleted. The callback for the event handler is as follows:

void WaitWindowProc(ClientData clientData, XEvent *eventPtr) {
int *donePtr = (int *) clientData;
if (eventPtr->type == DestroyNotify) {

*donePtr = 1;
}

}

The clientData argument is a pointer to the flag variable. WaitWindowProc checks

to make sure the event is a DestroyNotify event (StructureNotifyMask also

selects several other kinds of events, such as ConfigureNotify) and if so it sets the

flag variable to one.

The flags argument to Tk_DoOneEvent can be used to restrict the kinds of

events it will consider. If it contains any of the bits TK_X_EVENTS, TK_FILE_EVENTS,

TK_TIMER_EVENTS, or TK_IDLE_EVENTS, then only the events indicated by the

specified bits will be considered. Furthermore, if flags includes the bit TK_DONT_-
WAIT, or if no X, file, or timer events are requested, then Tk_DoOneEvent won’t sus-



364 Events

DRAFT (7/10/93): Distribution Restricted

pend the process; if no event is ready to be processed then it will return immediately with

a 0 result to indicate that it had nothing to do. For example, the “update idletasks”

command is implemented with the following code, which uses the TK_IDLE_EVENTS
flag:

while (Tk_DoOneEvent(TK_IDLE_EVENTS) != 0) {
/* empty loop body */

}



365

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the author or pub-

lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher

does not offer warranties in regard to this draft.

Chapter 40

Displaying Widgets

Tk provides relatively little support for actually drawing things on the screen. For the most

part you just use Xlib functions like XDrawLine and XDrawString. The only proce-

dures provided by Tk are those summarized in Table 40.1, which create three-dimensional

effects by drawing light and dark shadows around objects (they will be discussed more in

Section 40.3). This chapter consists mostly of a discussion of techniques for delaying

redisplays and for using pixmaps to double-buffer redisplays. These techniques reduce

redisplay overheads and help produce smooth visual effects with mimimum flashing.

40.1 Delayed redisplay

The idea of delayed redisplay was already introduced in Section 39.4. Rather than redraw-

ing the widget every time its state is modified, you should use Tk_DoWhenIdle to

schedule the widget’s display procedure for execution later, when the application has fin-

ished processing all available events. This allows any other pending changes to the widget

to be completed before it’s redrawn.

Delayed redisplay requires you to keep track of what to redraw. For simple widgets

such as the square widget or buttons or labels or entries, I recommend the simple approach

of redrawing the entire widget whenever you redraw any part of it. This eliminates the

need to remember which parts to redraw and it will have fine performance for widgets like

the ones mentioned above.

For larger and more complex widgets like texts or canvases it isn’t practical to redraw

the whole widget after each change. This can take a substantial amount of time and cause

annoying delays, particularly for operations like dragging where redisplays happen many

FIGURE  40

TABLE  40



366 Displaying Widgets

DRAFT (7/10/93): Distribution Restricted

times per second. For these widgets you should keep information in the widget record

about which parts of the widget need to be redrawn. The display procedure can then use

this information to redraw only the affected parts.

I recommend recording what to redraw in the simplest (coarsest) way that gives ade-

quate performance. Keeping redisplay information on a very fine grain is likely to add

complexity to your widgets and probably won’t improve performance noticeably over a

coarser mechanism. For example, the Tk text widget does not record what to redraw on a

character-by-character basis; instead, it keeps track of which lines on the screen need to be

redrawn. The minimum amount that is ever redrawn is one whole line. Most redisplays

only involve one or two lines, and today’s workstations are fast enough to redraw hun-

dreds of lines per second, so the widget can keep up with the user even if redraws are

occurring dozens of times a second (such as when the user is dragging one end of the

selection). Tk’s canvases optimize redisplay by keeping a rectangular bounding box that

includes all of the modified objects. If two small objects at opposite corners of the window

are modified simultaneously then the redisplay area will include the entire window, but

Table  40.1. A summary of Tk’s procedures for drawing 3-D effects.

void Tk_Fill3DRectangle(Display *display, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height,
int borderWidth, int relief)

Fills the area of drawable given by x, y, width, and height with the
background color from border, then draws a 3-D border borderWidth
pixels wide around (but just inside) the rectangle. Relief specifies the 3-D
appearance of the border.

void Tk_Draw3DRectangle(Display *display, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height,
int borderWidth, int relief)

Same as Tk_Fill3DRectangle except only draws the border.

void Tk_Fill3DPolygon(Display *display, Drawable drawable,
Tk_3DBorder border, XPoint *pointPtr, int numPoints,
int borderWidth, int leftRelief)

Fills the area of a polygon in drawable with the background color from
border. The polygon is specified by pointPtr and numPoints and
need not be closed. Also draws a 3-D border around the polygon. Border-
Width specifies the width of the border, measured in pixels to the left of the
polygon’s trajectory (if negative then the border is drawn on the right).
LeftRelief specifies the 3-D appearance of the border (e.g. TK_RELIE-
F_RAISED means the left side of the trajectory appears higher than the
right).

void Tk_Fill3DPolygon(Display *display, Drawable drawable,
Tk_3DBorder border, XPoint *pointPtr, int numPoints,
int borderWidth, int leftRelief)

Same as Tk_Fill3DPolygon, except only draws the border without fill-
ing the interior of the polygon.



40.2 Double-buffering with pixmaps 367

DRAFT (7/10/93): Distribution Restricted

this doesn’t happen very often. In more common cases, such as dragging a single small

object, the bounding box approach requires only a small fraction of the window’s area to

be redrawn.

40.2 Double-buffering with pixmaps

If you want to achieve smooth dragging and other visual effects then you should not draw

graphics directly onto the screen, because this tends to cause annoying flashes. The reason

for the flashes is that widgets usually redisplay themselves by first clearing an area to its

background color and then drawing the foreground objects. While you’re redrawing the

widget the monitor is continuously refreshing itself from display memory. Sometimes the

widget will be refreshed on the screen after it has been cleared but before the objects have

been redrawn. For this one screen refresh the widget will appear to be empty; by the time

of the next refresh you’ll have redrawn all the objects so they’ll appear again. The result is

that the objects in the widget will appear to flash off, then on. This flashing is particularly

noticeable during dynamic actions such as dragging or animation where redisplays happen

frequently.

To avoid flashing it’s best to use a technique called double-buffering, where you redis-

play in two phases using an off-screen pixmap. The display procedure for the square wid-

get, shown in Figure 40.1, uses this approach. It calls XCreatePixmap to allocate a

pixmap the size of the window, then it calls Tk_Fill3DRectangle twice to redraw the

widget in the pixmap. Once the widget has been drawn in the pixmap, the contents are

copied to the screen by calling XCopyArea. With this approach the screen makes a

smooth transition from the widget’s previous state to its new state. It’s still possible for the

screen to refresh itself during the copy from pixmap to screen but each pixel will be drawn

in either its correct old value or its correct new value.

Note: If you compile the square widget into wish you can use the dragging script from Section
36.4 to compare double-buffering with drawing directly on the screen. To make a version
of the square widget that draws directly on the screen, just delete the calls to
XCreatePixmap, XCopyArea, and XFreePixmap in DisplaySquare and
replace the pm arguments to Tk_Fill3DRectangle with TkWindowId(tkwin).
Or, you can use the version of the square widget that comes with the Tk distribution; it has
a -dbl option that you can use to turn double-buffering on and off dynamically.

40.3 Drawing procedures

Tk provides only four procedures for actually drawing graphics on the screen, which are

summarized in Table 40.1. These procedures make it easy to produce the three-dimen-

sional effects required for Motif widgets, where light and dark shadows are drawn around

objects to make them look raised or sunken.



368 Displaying Widgets

DRAFT (7/10/93): Distribution Restricted

Before using any of the procedures in Table 40.1 you must allocate a Tk_3DBorder
object. A Tk_3DBorder records three colors (a base color for “flat” background sur-

faces and lighter and darker colors for shadows) plus X graphics contexts for displaying

objects using those colors. Chapter 38 described how to allocate Tk_3DBorders, for

example by using a configuration table entry of type TK_CONFIG_BORDER or by calling

Tk_Get3DBorder.

Once you’ve created a Tk_3DBorder you can call Tk_Fill3DRectangle to

draw rectangular shapes with any of the standard reliefs:

void Tk_Fill3DRectangle(Display *display, Drawable drawable,
Tk_3DBorder border, int x, int y,int width, int

height,
int borderWidth, int relief);

The display and drawable arguments specify the pixmap or window where the rect-

angle will be drawn. Display is usually specified as Tk_Display(tkwin) where

tkwin is the window being redrawn. Drawable is usually the off-screen pixmap being

used for display, but it can also be Tk_WindowId(tkwin). Border specifies the col-

void DisplaySquare(ClientData clientData) {
Square *squarePtr = (Square *) clientData;
Tk_Window tkwin = squarePtr->tkwin;
Pixmap pm;
squarePtr->updatePending = 0;
if (!Tk_IsMapped(tkwin)) {

return;
}
pm = XCreatePixmap(Tk_Display(tkwin), Tk_WindowId(tkwin),

Tk_Width(tkwin), Tk_Height(tkwin), Tk_Depth(tkwin));
Tk_Fill3DRectangle(Tk_Display(tkwin), pm, squarePtr->bgBorder

 0, 0, Tk_Width(tkwin), Tk_Height(tkwin),
squarePtr->borderWidth, squarePtr->relief);

Tk_Fill3DRectangle(Tk_Display(tkwin), pm, squarePtr->fgBorder,
squarePtr->x, squarePtr->y, squarePtr->size, squarePtr-

>size,
squarePtr->borderWidth, squarePtr->relief);

XCopyArea(Tk_Display(tkwin), pm, Tk_WindowId(tkwin),
squarePtr->copyGC, 0, 0, Tk_Width(tkwin), Tk_Height(tkwin),
0, 0);

XFreePixmap(Tk_Display(tkwin), pm);
}

Figure  40.1. The display procedure for square widgets. It first clears
squarePtr->updatePending to indicate that there is no longer an idle callback for
DisplaySquare scheduled, then it makes sure that the window is mapped (if not then there’s no
need to redisplay). It then redraws the widget in an off-screen pixmap and copies the pixmap onto
the screen when done.



40.3 Drawing procedures 369

DRAFT (7/10/93): Distribution Restricted

ors to be used for drawing the rectangle. X, y, width, height, and borderWidth
specify the geometry of the rectangle and its border, all in pixel units (see Figure 40.2).

Lastly, relief specifies the desired 3D effect, such as TK_RELIEF_RAISED or

TK_RELIEF_RIDGE. Tk_Fill3DRectangle first fills the entire area of the rectangle

with the “flat” color from border then it draws light and dark shadows borderWidth
pixels wide around the edge of the rectangle to produce the effect specified by relief.

Tk_Fill3DPolygon is similar to Tk_Fill3DRectangle except that it draws a

polygon instead of a rectangle:

void Tk_Fill3DPolygon(Display *display, Drawable drawable,
Tk_3DBorder border, XPoint *pointPtr, int numPoints,
int borderWidth, int leftRelief);

Display, drawable, and border all have the same meaning as for Tk_Fill3-
DRectangle. PointPtr and numPoints define the polygon’s shape (see your Xlib

documentation for information about XPoint structures) and borderWidth gives the

width of the border, all in pixel units. LeftRelief defines the relief of the left side of

the polygon’s trajectory relative to its right side. For example, if leftRelief is speci-

fied as TK_RELIEF_RAISED then the left side of the trajectory will appear higher than

Figure  40.2.  Figure (a) shows a call to Tk_Fill3DRectangle and the graphic that is
produced; the border is drawn entirely inside the rectangular area. Figure (b) shows a call to
Tk_Fill3DPolygon and the resulting graphic. The relief TK_RELIEF_RAISED specifies that
the left side of the path should appear higher than the right, and that the border should be drawn
entirely on the left side of the path if borderWidth is positive.

(120,80)

100

70

borderWidth

(100,150)

(150,70)

(200,150)
borderWidth

Tk_Fill3DRectangle(display,
drawable,

border, 120, 80, 100, 70,
borderWidth,

TK_RELIEF_RAISED);

static XPoint points[] =
{{200,150},

{150,70}, {100,150}};
Tk_Fill3DPolygon(display,
drawable,

(a) (b)



370 Displaying Widgets

DRAFT (7/10/93): Distribution Restricted

the right side. If leftRelief is TK_RELIEF_RIDGE or TK_RELIEF_GROOVE then

the border  will be centered on the polygon’s trajectory; otherwise it will be drawn on the

left side of the polygon’s trajectory if borderWidth is positive and on the right side if

borderWidth is negative. See Figure 40.2 for an example.

The procedures Tk_Draw3DRectangle and Tk_Draw3DPolygon are similar to

Tk_Fill3DRectangle and Tk_Fill3DPolygon except that they only draw the

border without filling the interior of the rectangle or polygon.



371

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the author or pub-

lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher

does not offer warranties in regard to this draft.

Chapter 41

Destroying Widgets

This chapter describes how widgets should clean themselves up when they are destroyed.

For the most part widget destruction is fairly straightforward: it’s just a matter of freeing

all of the resources associated with the widget. However, there is one complicating factor,

which is that a widget might be in use at the time it is destroyed. This leads to a two-phase

approach to destruction where some of the cleanup may have to be delayed until the wid-

get is no longer in use. Tk’s procedures for window destruction, most of which have to do

with delayed cleanup, are summarized in Table 41.1.

41.1 Basics

Widgets can be destroyed in three different ways. First, the destroy Tcl command can

be invoked; it destroys one or more widgets and all of their descendants in the window

hierarchy. Second, C code in the application can invoke Tk_DestroyWindow, which

has the same effect as the destroy command:

void Tk_DestroyWindow(Tk_Window tkwin);

Tk_DestroyWindow is not invoked very often but it is used, for example, to destroy a

new widget immediately if an error is encountered while configuring it (see Figure 37.1 on

page 373). The last way for a widget to be destroyed is for someone to delete its X window

directly. This does not occur very often, and is not generally a good idea, but in some cases

it may make sense for a top-level window to be deleted externally (by the window man-

ager, for example).

FIGURE  41

TABLE  41



372 Destroying Widgets

DRAFT (7/10/93): Distribution Restricted

A widget should handle all of these forms of window destruction in the same way

using a handler for DestroyNotify events. Tk makes sure that a DestroyNotify
event is generated for each window that is destroyed and doesn’t free up its Tk_Window
structure until after the handlers for the event have been invoked. When a widget receives

a DestroyNotify event it typically does four things to clean itself up:

1. It deletes the widget command for the widget by calling Tcl_DeleteCommand.

2. It cancels any idle callbacks and timer handlers for the widget, such as the idle callback

to redisplay the widget.

3. It frees any resources allocated for the widget. Most of this can be done by calling

Tk_FreeOptions, but widgets usually have a few resources such as graphics con-

texts that are not directly associated with configuration options.

4. It frees the widget record.

For square widgets the first two of these actions are carried out in the event procedure, and

the third and fourth actions are carried out in a separate procedure called

DestroySquare. DestroySquare is the destroy procedure for square widgets; it is

invoked indirectly from the event procedure using the mechanism discussed in Section

41.2 below. Its code is shown in Figure 41.1.

41.2 Delayed cleanup

The most delicate aspect of widget destruction is that the widget could be in use at the

time it is destroyed; special precautions must be taken to delay most of the widget cleanup

Table  41.1. A summary of the Tk library procedures for destroying widgets and delaying object
cleanup.

void Tk_DestroyWindow(Tk_Window tkwin)
Destroys tkwin and all of its descendants in the widget hierarchy.

void Tk_Preserve(ClientData clientData)
Makes sure that clientData will not be freed until a matching call to
Tk_Release has been made.

void Tk_Release(ClientData clientData)
Cancels a previous Tk_Preserve call for clientData. May cause
clientData to be freed.

void Tk_EventuallyFree(ClientData clientData Tk_FreeProc
*freeProc)
Invokes freeProc to free up clientData unless Tk_Preserve has
been called for it; in this case freeProc won’t be invoked until each
Tk_Preserve call has been cancelled with a call to Tk_Release.



41.2 Delayed cleanup 373

DRAFT (7/10/93): Distribution Restricted

until the widget is no longer in use. For example, suppose that a dialog box .dlg contains

a button that is created with the following command:

button .dlg.quit -text Quit -command "destroy .dlg"

The purpose of this button is to destroy the dialog box. Now suppose that the user clicks

on the button with the mouse. The binding for <ButtonRelease-1> invokes the but-

ton’s invoke widget command:

.dlg.quit invoke

The invoke widget command evaluates the button’s -command option as a Tcl script,

which destroys the dialog and all its descendants, including the button itself. When the

button is destroyed a DestroyNotify event is generated, which causes the button’s

event procedure to be invoked to clean up the destroyed widget. Unfortunately it is not

safe for the event procedure to free the button’s widget record because the invoke wid-

get command is still pending on the call stack: when the event procedure returns, control

will eventually return back to the widget command procedure, which may need to refer-

ence the widget record. If the event procedure frees the widget record then the widget

command procedure will make wild references into memory. Thus in this situation it is

important to wait until the widget command procedure completes before freeing the wid-

get record.

However, a button widget might also be deleted at a time when there is no invoke
widget command pending (e.g. the user might click on some other button, which destroys

the entire application). In this case the cleanup must be done by the event procedure since

there won’t be any other opportunity for the widget to clean itself up. In other cases there

could be several nested procedures each of which is using the widget record, so it won’t be

safe to clean up the widget record until the last of these procedures finishes.

In order to handle all of these cases cleanly Tk provides a mechanism for keeping

track of whether an object is in use and delaying its cleanup until it is no longer being

used. Tk_Preserve is invoked to indicate that an object is in use and should not be

freed:

void Tk_Preserve(ClientData clientData);

void DestroySquare(ClientData clientData) {
Square *squarePtr = (Square *) clientData;
Tk_FreeOptions(configSpecs, (char *) squarePtr,

squarePtr->display, 0);
if (squarePtr->gc != None) {

Tk_FreeGC(squarePtr->display, squarePtr->gc);
}
free((char *) squarePtr);

}

Figure  41.1. The destroy procedure for square widgets.



374 Destroying Widgets

DRAFT (7/10/93): Distribution Restricted

The clientData argument is a token for an object that might potentially be freed; typi-

cally it is the address of a widget record. For each call to Tk_Preserve there must even-

tually be a call to Tk_Release:

void Tk_Release(ClientData clientData);

The clientData argument should be the same as the corresponding argument to

Tk_Preserve. Each call to Tk_Release cancels a call to Tk_Preserve for the

object; once all calls to Tk_Preserve have been cancelled it is safe to free the object.

When Tk_Preserve and Tk_Release are being used to manage an object you

should call Tk_EventuallyFree to free the object:

void Tk_EventuallyFree(ClientData clientData,
Tk_FreeProc *freeProc);

ClientData must be the same as the clientData argument used in calls to

Tk_Preserve and Tk_Release, and freeProc is a procedure that actually frees the

object. FreeProc must match the following prototype:

typedef void Tk_FreeProc(ClientData clientData);

Its clientData argument will be the same as the clientData argument to

Tk_EventuallyFree. If the object hasn’t been protected with calls to Tk_Pre-
serve then Tk_EventuallyFree will invoke freeProc immediately. If Tk_Pre-
serve has been called for the object then freeProc won’t be invoked immediately;

instead it will be invoked later when Tk_Release is called. If Tk_Preserve has been

called multiple times then freeProc won’t be invoked until each of the calls to

Tk_Preserve has been cancelled by a separate call to Tk_Release.

I recommend that you use these procedures in the same way as in the square widget.

Place a call to Tk_Preserve at the beginning of the widget command procedure and a

call to Tk_Release at the end of the widget command procedure, and be sure that you

don’t accidentally return from the widget command procedure without calling Tk_Re-
lease, since this would prevent the widget from ever being freed. Then divide the wid-

get cleanup code into two parts. Put the code to delete the widget command, idle

callbacks, and timer handlers directly into the event procedure; this code can be executed

immediately without danger, and it prevents any new invocations of widget code. Put all

the code to cleanup the widget record into a separate delete procedure like

DestroySquare, and call Tk_EventuallyFree from the event procedure with the

delete procedure as its freeProc argument.

This approach is a bit conservative but it’s simple and safe. For example, most wid-

gets have only one or two widget commands that could cause the widget to be destroyed,

such as the invoke widget command for buttons. You could move the calls to Tk_Pre-
serve and Tk_Release so that they only occur around code that might destroy the

widget, such as a Tcl_GlobalEval call. This will save a bit of overhead by eliminating

calls to Tk_Preserve and Tk_Release where they’re not needed. However,

Tk_Preserve and Tk_Release are fast enough that this optimization won’t save

much time and it means you’ll constantly have to be on the lookout to add more calls to



41.2 Delayed cleanup 375

DRAFT (7/10/93): Distribution Restricted

Tk_Preserve and Tk_Release if you modify the widget command procedure. If you

place the calls the beginning and end of the procedure you can make any modifications

you wish to the procedure without having to worry about issues of widget cleanup. In fact,

the square widget doesn’t need calls to Tk_Preserve and Tk_Release at all, but I

put them in anyway so that I won’t have to remember to add them later if I modify the

widget command procedure.

For most widgets the only place you’ll need calls to Tk_Preserve and Tk_Re-
lease is in the widget command procedure. However, if you invoke procedures like

Tcl_Eval anywhere else in the widget’s code then you’ll need additional Tk_Pre-
serve and Tk_Release calls there too. For example, widgets like canvases and texts

implement their own event binding mechanisms in C code; these widgets must invoke

Tk_Preserve and Tk_Release around the calls to event handlers.

The problem of freeing objects while they’re in use occurs in many contexts in Tk

applications. For example, it’s possible for the -command option for a button to change

the button’s -command option. This could cause the memory for the old value of the

option to be freed while it’s still being evaluated by the Tcl interpreter. To eliminate this

problem the button widget evaluates a copy of the script rather than the original. In general

whenever you make a call whose behavior isn’t completely predictable, such as a call to

Tcl_Eval and its cousins, you should think about all the objects that are in use at the

time of the call and take steps to protect them. In some simple cases making local copies

may be the simplest solution, as with the -command option; in more complex cases I’d

suggest using Tk_Preserve and Tk_Release; they can be used for objects of any

sort, not just widget records.

Note: Tk_Preserve and Tk_Release implement a form of short-term reference counts.
They are implemented under the assumption that objects are only in use for short periods
of time such as the duration of a particular procedure call, so that there are only a few
protected objects at any given time. You should not use them for long-term reference
counts where there might be hundreds or thousands of objects that are protected at a given
time, since they will be very slow in these cases.



376 Destroying Widgets

DRAFT (7/10/93): Distribution Restricted



377

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the author or pub-

lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher

does not offer warranties in regard to this draft.

Chapter 42

Managing the Selection

This chapter describes how to manipulate the X selection from C code. The low-level pro-

tocols for claiming the selection and transmitting it between applications are defined by

X’s Inter-Client Communications Convention Manual (ICCCM) and are very compli-

cated. Fortunately Tk takes care of all the low-level details for you and provides three sim-

pler operations that you can perform on the selection:

• Create a selection handler, which is a callback procedure that can supply the selection

when it is owned in a particular window and retrieved with a particular target.

• Claim ownership of the selection for a particular window.

• Retrieve the selection from its current owner in a particular target form.

Each of these three operations can be performed either using Tcl scripts or by writing C

code. Chapter XXX described how to manipulate the selection with Tcl scripts and much

of that information applies here as well, such as the use of targets to specify different ways

to retrieve the selection. Tcl scripts usually just retrieve the selection; claiming ownership

and supplying the selection are rarely done from Tcl. In contrast, it’s common to create

selection handlers and claim ownership of the selection from C code but rare to retrieve

the selection. See Table 42.1 for a summary of the Tk library procedures related to the

selection.

42.1 Selection handlers

Each widget that supports the selection, such as an entry or text, must provide one or more

selection handlers to supply the selection on demand when the widget owns it. Each han-

FIGURE  42

TABLE  42



378 Managing the Selection

DRAFT (7/10/93): Distribution Restricted

dler returns the selection in a particular target form. The procedure Tk_Create-
SelHandler creates a new selection handler:

void Tk_CreateSelHandler(Tk_Window tkwin, Atom target,
Tk_SelectionProc *proc, ClientData clientData,
Atom format);

Tkwin is the window from which the selection will be provided; the handler will only be

asked to supply the selection when the selection is owned by tkwin. Target specifies

the target form in which the handler can supply the selection; the handler will only be

invoked when the selection is retrieved with that target. Proc is the address of the handler

callback, and clientData is a one-word value to pass to proc. Format tells Tk how

to transmit the selection to the requestor and is usually XA_STRING (see the reference

documentation for other possibilities).

The callback procedure for a selection handler must match the following prototype:

typedef int Tk_SelectionProc(ClientData clientData,
int offset, char *buffer, int maxBytes);

The clientData argument will be the same as the clientData argument passed to

Tk_CreateSelHandler; it is usually the address of a widget record. Proc should

place a null-terminated string at buffer containing up to maxBytes of the selection

Table  42.1. A summary of Tk’s procedures for managing the selection.

Tk_CreateSelHandler(Tk_Window tkwin, Atom target,
Tk_SelectionProc *proc, ClientData clientData, Atom format)

Arranges for proc to be invoked whenever the selection is owned by
tkwin and is retrieved in the form given by target. Format specifies the
form in which Tk should transmit the selection to the requestor, and is usu-
ally XA_STRING.

Tk_DeleteSelHandler(Tk_Window tkwin, Atom target)
Removes the handler for tkwin and target, if one exists.

Tk_OwnSelection(Tk_Window tkwin, Tk_LostSelProc *proc,
ClientData clientData)

Claims ownership of the selection for tkwin and notifies the previous
owner, if any, that it has lost the selection. Proc will be invoked later when
tkwin loses the selection.

Tk_ClearSelection(Tk_Window tkwin)
Cancels any existing selection for the display containing tkwin.

int Tk_GetSelection(Tcl_Interp *interp, Tk_Window tkwin,
Atom target, Tk_GetSelProc *proc, ClientData clientData)

Retrieves the selection for tkwin’s display in the format specified by tar-
get and passes it to proc in one or more pieces. Returns TCL_OK or
TCL_ERROR and leaves an error message in interp->result if an error
occurs.



42.1 Selection handlers 379

DRAFT (7/10/93): Distribution Restricted

starting at byte offset within the selection. The procedure should return a count of the

number of non-null bytes copied, which must be maxBytes unless there are fewer than

maxBytes left in the selection. If the widget no longer has a selection (because, for

example, the user deleted the selected range of characters) the selection handler should

return -1.

Usually the entire selection will be retrieved in a single request: offset will be 0 and

maxBytes will be large enough to accommodate the entire selection. However, very

large selections will be retrieved in transfers of a few thousand bytes each. Tk will invoke

the callback several times using successively higher values of offset to retrieve succes-

sive portions of the selection. If the callback returns a value less than maxBytes it means

that the entire remainder of the selection has been returned. If its return value is max-
Bytes it means that there may be additional information in the selection so Tk will call it

again to retrieve the next portion. You can assume that maxBytes will always be at least

a few thousand.

For example, Tk’s entry widgets have a widget record of type Entry with three

fields that are used to manage the selection:

string points to a null-terminated string containing the text in the entry;

selectFirst is the index in string of the first selected byte (or -1 if nothing is

selected);

selectLast is the index of the last selected byte.

An entry will supply the selection in only one target form (STRING) so it only has a single

selection handler. The create procedure for entries contains a statement like the following

to create the selection handler, where entryPtr is a pointer to the widget record for the

new widget:

Tk_CreateSelHandler(entryPtr->tkwin, XA_STRING,
EntryFetchSelection, (ClientData) entryPtr,
XA_STRING);

The callback for the selection handler is defined as follows:

int EntryFetchSelection(ClientData clientData, int offset,
char *buffer, int maxBytes) {

Entry *entryPtr = (Entry *) clientData;
int count;
if (entryPtr->selectFirst < 0) {

return -1;
}
count = entryPtr->selectLast + 1 - entryPtr->selectFirst

- offset;
if (count > maxBytes) {

count = maxBytes;
}
if (count <= 0) {

count = 0;
} else {



380 Managing the Selection

DRAFT (7/10/93): Distribution Restricted

strncpy(buffer, entryPtr->string
+ entryPtr->selectFirst + offset, count);

}
buffer[count] = 0;
return count;

}

If a widget wishes to supply the selection in several different target forms it should

create a selection handler for each target. When the selection is retrieved, Tk will invoke

the handler for the target specified by the retriever.

Tk automatically provides handlers for the following targets:

APPLICATION: returns the name of the application, which can be used to send com-

mands to the application containing the selection.

MULTIPLE: used to retrieve the selection in multiple target forms simultaneously.

Refer to ICCCM documenation for details.

TARGETS: returns a list of all the targets supported by the current selection owner

(including all the targets supported by Tk).

TIMESTAMP: returns the time at which the selection was claimed by its current owner.

WINDOW_NAME: returns the path name of the window that owns the selection.

A widget can override any of these default handlers by creating a handler of its own.

42.2 Claiming the selection

The previous section showed how a widget can supply the selection to a retriever. How-

ever, before a widget will be asked to supply the selection it must first claim ownership of

the selection. This usually happens during widget commands that select something in the

widget, such as the select widget command for entries and listboxes. To claim owner-

ship of the selection a widget should call Tk_OwnSelection:

void Tk_OwnSelection(Tk_Window tkwin, Tk_LostSelProc *proc,
(ClientData) clientData);

Tk_OwnSelection will communicate with the X server to claim the selection for

tkwin; as part of this process the previous owner of the selection will be notified so that

it can deselect itself. Tkwin will remain the selection owner until either some other win-

dow claims ownership, tkwin is destroyed, or Tk_ClearSelection is called. When

tkwin loses the selection Tk will invoke proc so that the widget can deselect itself and

display itself accordingly. Proc must match the following prototype:

typedef void Tk_LostSelProc(ClientData clientData);

The clientData argument will be the same as the clientData argument to

Tk_OwnSelection; it is usually a pointer to the widget’s record.



42.3 Retrieving the selection 381

DRAFT (7/10/93): Distribution Restricted

Note: Proc will only be called if some other window claims the selection or if
Tk_ClearSelection is invoked. It will not be called if the owning widget is
destroyed.

If a widget claims the selection and then eliminates its selection (for example, the

selected text is deleted) the widget has three options. First, it can continue to service the

selection and return 0 from its selection handlers; anyone who retrieves the selection will

receive an empty string. Second, the widget can continue to service the selection and

return -1 from its selection handlers; this will return an error (“no selection”) to anyone

who attempts to retrieve it. Third, the widget can call Tk_ClearSelection:

void Tk_ClearSelection(Tk_Window tkwin);

The tkwin argument identifies a display. Tk will claim the selection away from whatever

window owned it (either in this application or any other application on tkwin’s display)

and leave the selection unclaimed, so that all attempts to retrieve it will result in errors.

This approach will have the same effect returning -1 from the selection handlers except

that the selection handlers will never be invoked at all.

42.3 Retrieving the selection

If an application wishes to retrieve the selection, for example to insert the selected text

into an entry, it usually does so with the “selection get” Tcl command. This section

describes how to retrieve the selection at C level, but this facility is rarely needed. The

only situation where I recommend writing C code to retrieve the selection is in cases

where the selection may be very large and a Tcl script may be noticeably slow. This might

occur in a text widget, for example, where a user might select a whole file in one window

and then copy it into another window. If the selection has hundreds of thousands of bytes

then a C implementation of the retrieval will be noticeably faster than a Tcl implementa-

tion.

To retrieve the selection from C code, invoke the procedure Tk_GetSelection:

typedef int Tk_GetSelection(Tcl_Interp *interp,
Tk_Window tkwin, Atom target, Tk_GetSelProc *proc,
ClientData clientData);

The interp argument is used for error reporting. Tkwin specifies the window on whose

behalf the selection is being retrieved (it selects a display to use for retrieval), and tar-
get specifies the target form for the retrieval. Tk_GetSelection doesn’t return the

selection directly to its caller. Instead, it invokes proc and passes it the selection. This

makes retrieval a bit more complicated but it allows Tk to buffer data more efficiently.

Large selections will be retrieved in several pieces, with one call to proc for each piece.

Tk_GetSelection normally returns TCL_OK to indicate that the selection was suc-

cessfully retrieved. If an error occurs then it returns TCL_ERROR and leaves an error mes-

sage in interp->result.

Proc must match the following prototype:



382 Managing the Selection

DRAFT (7/10/93): Distribution Restricted

typedef int Tk_GetSelProc(ClientData clientData,
Tcl_Interp *interp, char *portion);

The clientData and interp arguments will be the same as the corresponding argu-

ments to Tk_GetSelection. Portion points to a null-terminated ASCII string con-

taining part or all of the selection. For small selections a single call will be made to proc
with the entire contents of the selection. For large selections two or more calls will be

made with successive portions of the selection. Proc should return TCL_OK if it success-

fully processes the current portion of the selection. If it encounters an error then it should

return TCL_ERROR and leave an error message in interp->result; the selection

retrieval will be aborted and this same error will be returned to Tk_GetSelection’s

caller.

For example, here is code that retrieves the selection in target form STRING and

prints it on standard output:

...
if (Tk_GetSelection(interp, tkwin,

Tk_InternAtom(tkwin, "STRING"), PrintSel,
(ClientData) stdout) != TCL_OK) {

...
}
...

int PrintSel(ClientData clientData, Tcl_Interp *interp,
char *portion) {

FILE *f = (FILE *) clientData;
fputs(portion, f);
return TCL_OK;

}

The call to Tk_GetSelection could be made, for example, in the widget command

procedure for a widget, where tkwin is the Tk_Window for the widget and interp is

the interpreter in which the widget command is being processed. The clientData argu-

ment is used to pass a FILE pointer to PrintSel. The output could be written to a dif-

ferent file by specifying a different clientData value.



383

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the author or pub-

lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher

does not offer warranties in regard to this draft.

Chapter 43

Geometry Management

Tk provides two groups of library procedures for geometry management. The first group

of procedures implements a communication protocol between slave windows and their

geometry managers. Each widget calls Tk to provide geometry information such as the

widget’s preferred size and whether or not it has an internal grid. Tk then notifies the rele-

vant geometry manager, so that the widget does not have to know which geometry man-

ager is responsible for it. Each geometry manager calls Tk to identify the slave windows it

will manage, so that Tk will know who to notify when geometry information changes for

the slaves. The second group of procedures is used by geometry managers to place slave

windows. It includes facilities for mapping and unmapping windows and for setting their

sizes and locations. All of these procedures are summarized in Table 43.1.

43.1 Requesting a size for a widget

Each widget is responsible for informing Tk of its geometry needs; Tk will make sure that

this information is forwarded to any relevant geometry managers. There are three pieces

of information that the slave can provide: requested size, internal border, and grid. The

first piece of information is provided by calling Tk_GeometryRequest:

void Tk_GeometryRequest(Tk_Window tkwin, int width, height);

This indicates that the ideal dimensions for tkwin are width and height, both speci-

fied in pixels. Each widget should call Tk_GeometryRequest once when it is created

and again whenever its preferred size changes (such as when its font changes); normally

the calls to Tk_GeometryRequest are made by the widget’s configure procedure. In

FIGURE  43

TABLE  43



384 Geometry Management

DRAFT (7/10/93): Distribution Restricted

Table  43.1. A summary of Tk’s procedures for geometry management.

Tk_GeometryRequest(Tk_Window tkwin, int width, int height)
Informs the geometry manager for tkwin that the preferred dimensions for
tkwin are width and height.

Tk_SetInternalBorder(Tk_Window tkwin, int width)
Informs any relevant geometry managers that tkwin has an internal border
width pixels wide and that slave windows should not be placed in this bor-
der region.

Tk_SetGrid(Tk_Window tkwin, int reqWidth, int reqHeight,
int widthInc, int heightInc)

Turns on gridded geometry management for tkwin’s top-level window and
specifies the grid geometry. The dimensions requested by Tk_Geome-
tryRequest correspond to grid dimensions of reqWidth and
reqHeight, and widthInc and heightInc specify the dimensions of a
single grid cell.

Tk_ManageGeometry(Tk_Window tkwin, Tk_GeometryProc *proc,
ClientData clientData)

Arranges for proc to be invoked whenever Tk_GeometryRequest is
invoked for tkwin. Used by geometry managers to claim ownership of a
slave window.

int Tk_ReqHeight(Tk_Window tkwin)
Returns the height specified in the most recent call to Tk_GeometryRe-
quest for tkwin (this is a macro, not a procedure).

int Tk_ReqWidth(Tk_Window tkwin)
Returns the width specified in the most recent call to Tk_GeometryRe-
quest for tkwin (this is a macro, not a procedure).

int Tk_InternalBorderWidth(Tk_Window tkwin)
Returns the border width specified in the most recent call to Tk_Inter-
nalBorderWidth for tkwin (this is a macro, not a procedure).

Tk_MapWindow(Tk_Window tkwin)
Arranges for tkwin to be displayed on the screen whenever its ancestors are
mapped.

Tk_UnmapWindow(Tk_Window tkwin)
Prevents tkwin and its descendants from appearing on the screen.

Tk_MoveWindow(Tk_Window tkwin, int x, int y)
Positions tkwin so that its upper-left pixel (including any borders) appears
at coordinates x and y in its parent.

Tk_MoveResizeWindow(Tk_Window tkwin, int x, int y,
unsigned int width, unsigned int height)

Changes tkwin’s position within its parent and also its size.
Tk_ResizeWindow(Tk_Window tkwin, unsigned int width,

unsigned int height)
Sets the inside dimensions of tkwin (not including its external border, if
any) to width and height.



43.2 Internal borders 385

DRAFT (7/10/93): Distribution Restricted

addition, geometry managers will sometimes call Tk_GeometryRequest on a win-

dow’s behalf. For example, the packer resets the requested size for each master window

that it manages to match the needs of all of its slaves. This overrides the requested size set

by the widget and results in the shrink-wrap effects shown in Chapter XXX.

43.2 Internal borders

The X window system allows each window to have a border that appears just outside the

window. The official height and width of a window are the inside dimensions, which

describe the usable area of the window and don’t include the border. Unfortunately,

though, X requires the entire border of a window to be drawn with a single solid color or

stipple. To achieve the Motif three-dimensional effects, the upper and left parts of the bor-

der have to be drawn differently than the lower and right parts. This means that X borders

can’t be used for Motif widgets. Instead, Motif widgets draw their own borders, typically

using Tk procedures such as Tk_Draw3DRectangle. The border for a Motif widget is

drawn around the perimeter of the widget but inside the official X area of the widget. This

kind of border is called an internal border. Figure 43.1 shows the difference between

external and internal borders.

If a widget has an internal border then its usable area (the part that’s inside the border)

is smaller than its official X area. This complicates geometry management in two ways.

First, each widget has to include the border width (actually, twice the border width) in the

width and height that it requests via Tk_GeometryRequest. Second, if a master win-

width

height

X border

width

height

Internal border

(a) (b)

Figure  43.1. X borders and internal borders. (a) shows an official X border, which is drawn by X
outside the area of the window. (b) shows an internal border drawn by a widget, where the area
occupied by the border is part of the window’s official area. In both figures width and height
are the official X dimensions of the window.



386 Geometry Management

DRAFT (7/10/93): Distribution Restricted

dow has an internal border then geometry managers should not place slave windows on

top of the border; the usable area for arranging slaves should be the area inside the border.

In order for this to happen the geometry managers must know about the presence of the

internal border. The procedure Tk_SetInternalBorder is provided for this purpose:

void Tk_SetInternalBorder(Tk_Window tkwin, int width);

This tells geometry managers that tkwin has an internal border that is width pixels

wide and that slave widgets should not overlap the internal border. Widgets with internal

borders normally call Tk_SetInternalBorder in their configure procedures at the

same time that they call Tk_GeometryRequest. If a widget uses a normal X border, or

if it has an internal border but doesn’t mind slaves being placed on top of the border, then

it need not call Tk_SetInternalBorder, or it can call it with a width of 0.

43.3 Grids

Gridded geometry management was introduced in Section XXX. The goal is to allow the

user to resize a top-level window interactively, but to constrain the resizing so that the

window’s dimensions always lie on a grid. Typically this means that a particular subwin-

dow displaying fixed-width text always has a width and height that are an integral number

of characters. The window manager implements constrained resizes, but the application

must supply it with the geometry of the grid. In order for this to happen, the widget that

determines the grid geometry must call Tk_SetGrid:

void Tk_SetGrid(Tk_Window tkwin, int gridWidth, int
gridHeight,

int widthInc, int heightInc);

The gridWidth and gridHeight arguments specify the number of grid units corre-

sponding to the pixel dimensions requested in the most recent call to Tk_GeometryRe-
quest. They allow the window manager to display the window’s current size in grid

units rather than pixels. The widthInc and heightInc arguments specify the number

of pixels in a grid unit. Tk passes all of this information on to the window manager, and it

will then constrain interactive resizes so that tkwin’s top-level window always has

dimensions that lie on a grid defined by its requested geometry, gridWidth, and grid-
Height.

Widgets that support gridding, such as texts, normally have a -setgrid option . If

-setgrid is 0 then the widget doesn’t call Tk_SetGrid; this is done if gridded resiz-

ing isn’t wanted (e.g. the widget uses a variable-width font) or if some other widget in the

top-level window is to be the one that determines the grid. If -setgrid is 1 then the

widget calls Tk_SetGrid; typically this happens in the configure procedure at the same

time that other geometry-related calls are made. If the widget’s grid geometry changes (for

example, its font might change) then the widget calls Tk_SetGrid again.



43.4 Geometry managers 387

DRAFT (7/10/93): Distribution Restricted

43.4 Geometry managers

The remainder of this chapter describes the Tk library procedures that are used by geome-

try managers. It is intended to provide the basic information that you need to write a new

geometry manager. This section provides an overview of the structure of a geometry man-

ager and the following sections describe the Tk library procedures.

A typical geometry manager contains four main procedures. The first procedure is a

command procedure that implements the geometry manager’s Tcl command. Typically

each geometry manager provides a single command that is used by the application

designer to provide information to the geometry manager: pack for the packer, place
for the placer, and so on. The command procedure collects information about each slave

and master window managed by the geometry manager and allocates a C structure for

each window to hold the information. For example, the packer uses a structure with two

parts. The first part is used if the window is a master; it includes information such as a list

of slaves for that master. The second part is used if the window is a slave; it includes infor-

mation such as the side against which the slave is to be packed and padding and filling

information. If a window is both a master and a slave then both parts are used. Each geom-

etry manager maintains a hash table (using Tcl’s hash table facilities) that maps from wid-

get names to the C structure for geometry management.

The second procedure for a geometry manager is its layout procedure. This procedure

contains all of the actual geometry calculations. It uses the information in the structures

created by the command procedure, plus geometry information provided by all of the

slaves, plus information about the current dimensions of the master. The layout procedure

typically has two phases. In the first phase it scans all of the slaves for a master, computes

the ideal size for the master based on the needs of its slaves, and calls Tk_Geome-
tryRequest to set the requested size of the master to the ideal size. This phase only

exists for geometry managers like the packer that reflect geometry information upwards

through the widget hierarchy. For geometry managers like the placer, the first phase is

skipped. In the second phase the layout procedure recomputes the geometries for all of the

slaves of the master.

The third procedure is a request callback that Tk invokes whenever a slave managed

by the geometry manager calls Tk_GeometryRequest. The callback arranges for the

layout procedure to be executed, as will be described below.

The final procedure is an event procedure that is invoked when a master window is

resized or when a master or slave window is destroyed. If a master window is resized then

the event procedure arranges for the layout procedure to be executed to recompute the

geometries of all of its slaves. If a master or slave window is destroyed then the event pro-

cedure deletes all the information maintained by the geometry manager for that window.

The command procedure creates event handlers that cause the event procedure to be

invoked.

The layout procedure must be invoked after each call to the command procedure, the

request callback, or the event procedure. Usually this is done with an idle callback, so that



388 Geometry Management

DRAFT (7/10/93): Distribution Restricted

the layout procedure doesn’t actually execute until all pending work is completed. Using

an idle callback can save a lot of time in situations such as the initial creation of a complex

panel. In this case the command procedure will be invoked once for each of many slave

windows, but there won’t be enough information to compute the final layout until all of

the invocations have been made for all of the slaves. If the layout procedure were invoked

immediately it would just waste time computing layouts that will be discarded almost

immediately. With the idle callback, layout is deferred until complete information is avail-

able for all of the slaves.

43.5 Claiming ownership

A geometry manager uses the procedure Tk_ManageGeometry to indicate that it

wishes to manage the geometry for a given slave window:

void Tk_ManageGeometry(Tk_Window tkwin, Tk_GeometryProc *proc,
ClientData clientData);

From this point on, whenever Tk_GeometryRequest is invoked for tkwin, Tk will

invoke proc. There can be only one geometry manager for a slave at a given time, so any

previous geometry manager is cancelled. A geometry manager can also disown a slave by

calling Tk_ManageGeometry with a null value for proc. Proc must match the fol-

lowing prototype:

typedef void Tk_GeometryProc(ClientData clientData,
Tk_Window tkwin);

The clientData and tkwin arguments will be the same as those passed to Tk_Man-
ageGeometry. Usually Tk_ManageGeometry is invoked by the command procedure

for a geometry manager, and usually clientData is a pointer to the structure holding

the geometry manager’s information about tkwin.

43.6 Retrieving geometry information

When a widget calls Tk_GeometryRequest or Tk_SetInternalBorder Tk

saves the geometry information in its data structure for the widget. The geometry manag-

er’s layout procedure can retrieve the requested dimensions of a slave with the macros

Tk_ReqWidth and Tk_ReqHeight, and it can retrieve the width of a master’s internal

border with the macro Tk_InternalBorderWidth. It can also retrieve the master’s

actual dimensions with the Tk_Width and Tk_Height macros, which were originally

described in Section 37.5.

Note: Geometry managers need not worry about the gridding information provided with the
Tk_SetGrid procedure. This information doesn’t affect geometry managers at all. It is
simply passed on to the window manager for use in controlling interactive resizes.



43.7 Mapping and setting geometry 389

DRAFT (7/10/93): Distribution Restricted

43.7 Mapping and setting geometry

A geometry manager does two things to control the placement of a slave window. First, it

determines whether the slave window is mapped or unmapped, and second, it sets the size

and location of the window.

X allows a window to exist without appearing on the screen. Such a window is called

unmapped: neither it nor any of its descendants will appear on the screen. In order for a

window to appear, it and all of its ancestors (up through the nearest top-level window)

must be mapped. All windows are initially unmapped. When a geometry manager takes

responsibility for a window it must map it by calling Tk_MapWindow:

void Tk_MapWindow(Tk_Window tkwin);

Usually the geometry manager will call Tk_MapWindow in its layout procedure once it

has decided where the window will appear. If a geometry manager decides not to manage

a window anymore (e.g. in the “pack forget” command) then it must unmap the win-

dow to remove it from the screen:

void Tk_UnmapWindow(Tk_Window tkwin);

Some geometry managers may temporarily unmap windows during normal operation. For

example, the packer unmaps a slave if there isn’t enough space in its master to display it; if

the master is enlarged later then the slave will be mapped again.

Tk provides three procedures that a geometry manager’s layout procedure can use to

position slave windows:

void Tk_MoveWindow(Tk_Window tkwin, int x, int y);
void Tk_ResizeWindow(Tk_Window tkwin, unsigned int width,

unsigned int height);
void Tk_MoveResizeWindow(Tk_Window tkwin, int x, int y,

unsigned int width, unsigned int height);

Tk_MoveWindow moves a window so that its upper left corner appears at the given loca-

tion in its parent; Tk_ResizeWindow sets the dimensions of a window without moving

it; and Tk_MoveResize both moves a window and changes its dimensions.

The position specified to Tk_MoveWindow or Tk_MoveResizeWindow is a

position in the slave’s parent. However, most geometry managers allow the master for a

slave to be not only its parent but any descendant of the parent. Typically the layout proce-

dure will compute the slave’s location relative to its master; before calling

Tk_MoveWindow or Tk_MoveResizeWindow it must translate these coordinates to

the coordinate system of the slave’s parent. The following code shows how to transform

coordinates x and y from the master to the parent, assuming that slave is the slave win-

dow and master is its master:

int x, y;
Tk_Window slave, master, parent, ancestor;
...
for (ancestor = master; ancestor != Tk_Parent(slave);

ancestor = Tk_Parent(ancestor)) {



390 Geometry Management

DRAFT (7/10/93): Distribution Restricted

x += Tk_X(ancestor) + Tk_Changes(ancestor)->border_width;
y += Tk_Y(ancestor) + Tk_Changes(ancestor)->border_width;

}


