
1

DRAFT (3/11/93): Distribution Restricted

Chapter 14 An Introduction to Tk 133

14.1 Widgets and windows 134

14.2 Screens, decorations, and toplevel windows 136

14.3 Applications and processes 137

14.4 Scripts and events 138

14.5 Wish: a windowing shell 138

14.6 Widget creation commands 139

14.7 Geometry managers 140

14.8 Widget commands 141

14.9 Commands for interconnection 142

Chapter 15 Tour Of The Tk Widgets 145

15.1 Frames and toplevels 145

15.2 Labels, buttons, checkbuttons, and radiobuttons 146

15.3 Menus and menubuttons 148

15.3.1 Pull-down menus 150

15.3.2 Pop-up menus 150

15.3.3 Cascaded menus 150

15.3.4 Keyboard traversal and accelerators 151

15.4 Listboxes 151

15.5 Entries 152

15.6 Scrollbars 153

15.7 Text 154

15.8 Canvases 155

15.9 Scales 157

15.10 Messages 157

Chapter 16 Configuration Options 159

16.1 How options are set 159

16.2 Colors 161

16.3 Screen distances 163

16.4 Reliefs 164

2

DRAFT (3/11/93): Distribution Restricted

16.5 Fonts 164

16.6 Bitmaps 166

16.7 Cursors 166

16.8 Anchors 167

16.9 Script options and scrolling 169

16.10 Variables 171

16.11 Time intervals 171

16.12 The configure widget command 171

16.13 The option database 173

16.13.1Patterns 173

16.13.2RESOURCE_MANAGER property and .Xdefaults file 175

16.13.3Priorities 175

16.13.4The option command 176

Chapter 17 Geometry Managers: The Placer 179

17.1 An overview of geometry management 179

17.2 Controlling positions with the placer 182

17.3 Controlling the size of a slave 185

17.4 Selecting the master window 185

17.5 Border modes 186

17.6 More on the place command 186

17.7 Controlling the size of the master 187

Chapter 18 The Packer 189

18.1 Packer basics 189

18.2 Packer configuration options 193

18.3 Hierarchical packing 196

18.4 Other options to the pack command 197

Chapter 19 Bindings 199

19.1 An overview of the bind command 199

19.2 Event patterns 201

3

DRAFT (3/11/93): Distribution Restricted

19.3 Sequences of events 203

19.4 Conflict resolution 203

19.5 Substitutions in scripts 204

19.6 When are events processed? 205

19.7 Background errors: tkerror 205

19.8 Other uses of bindings 206

Chapter 20 The Selection 207

20.1 Selections, retrievals, and targets 207

20.2 Locating and clearing the selection 209

20.3 Supplying the selection with Tcl scripts 210

Chapter 21 The Input Focus 213

21.1 Focus model: explicit vs. implicit 213

21.2 Setting the input focus 214

21.3 Clearing the focus 215

21.4 The default focus 215

21.5 Keyboard accelerators 216

Chapter 22 Window Managers 217

22.1 Window sizes 219

22.2 Gridded windows 220

22.3 Window positions 222

22.4 Window states 222

22.5 Decorations 223

22.6 Window manager protocols 223

22.7 Special handling: transients, groups, and override-redirect 224

22.8 Session management 225

22.9 A warning about window managers 225

4

DRAFT (3/11/93): Distribution Restricted

Chapter 23 The Send Command 227

23.1 Basics 227

23.2 Hypertools 228

23.3 Application names 229

23.4 Security issues 229

Chapter 24 Modal Interactions 231

24.1 Grabs 231

24.2 Keyboard handling during grabs 233

24.3 Waiting: the tkwait command 233

Chapter 25 Odds and Ends 237

25.1 Destroying windows 237

25.2 Time delays 238

25.3 The update command 239

25.4 Information about windows 240

25.5 The tk command: color models 240

25.6 Variables managed by Tk 241

Chapter 26 Examples 243

26.1 A procedure that generates dialog boxes 243

26.2 A remote-control application 247

Part II:

Writing Scripts for Tk

132

DRAFT (3/11/93): Distribution Restricted

133

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the author or pub-

lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher

does not offer warranties in regard to this draft.

Chapter 14

An Introduction to Tk

Tk is a toolkit that allows you to create graphical user interfaces for the X11 window sys-

tem by writing Tcl scripts. Like Tcl, Tk is a C library package that can be included in C

applications. Tk extends the built-in Tcl command set described in Part I with several

dozen additional commands that you can use to create user interface elements called wid-

gets, arrange them into interesting layouts on the screen using geometry managers, and

connect them with each other, with the enclosing application, and with other applications.

This part of the book describes Tk’s Tcl commands.

In addition to its Tcl commands, Tk also provides a collection of C library functions

that can be invoked from C code in a Tk-based application. The library functions allow

you to implement new widgets and geometry managers in C. They are discussed in Part IV

of the book.

This chapter introduces the basic structures used for creating user interfaces with Tk,

including the hierarchical arrangements of widgets that make up interfaces and the main

groups of Tcl commands provided by Tk. Later chapters will go over the individual facili-

ties in more detail.

Note: I’ve taken the liberty of describing things in the way I expect them to be when the book is
finally published, so the descriptions in this draft do not always correspond to the current
version of Tk (3.2). The following discrepancies exist between this draft and Tk 3.2: (a) the
pack command syntax as described here is different than what exists in 3.2, although it
provides almost exactly the same set of features; (b) Tk 3.2 doesn’t contain all of the built-
in bitmaps listed here (c) groove and ridge reliefs are not supported in Tk 3.2, and (d)
embedded widgets are not yet supported in text widgets. As new versions of Tk are
released the discrepancies should gradually disappear.

FIGURE 14

TABLE 14

134 An Introduction to Tk

DRAFT (3/11/93): Distribution Restricted

14.1 Widgets and windows

The basic user interface elements in Tk are called widgets. Examples of widgets are labels,

buttons, pull-down menus, scrollbars, and text entries (see Figure 14.1). Widgets are

grouped into classes, where all of the widgets in a class have a similar appearance on the

screen and similar behavior when manipulated with the mouse and keyboard. For exam-

ple, widgets in the button class display a text string or bitmap as shown in Figure 14.1(a).

Different buttons may display their strings or bitmaps in different ways (e.g. in different

fonts and colors), but each one displays a single string or bitmap. Each button also has a

Tcl script associated with it, which is invoked whenever mouse button 1 is pressed with

the mouse cursor over the widget. Different button widgets may have different commands

associated with them but each one has an associated command. When you create a widget

you select its class and provide additional class-specific options, such as a string or bitmap

to display or a command to invoke.

Tk’s built-in widget classes implement the MotifTM look-and-feel standard specified

by the Open Software Foundation. The Motif standard determines the three-dimensional

look that you’ll see in the Tk widgets and many aspects of their behavior.

Each widget is implemented using one window in the X window system, and the

terms “window” and “widget” are used interchangeably in this book. Widgets may be

nested in hierarchical arrangements with widgets containing other widgets that contain

still other widgets. The result is a tree-like structure such as the one shown in Figure 14.2.

Each widget can contain any number of children and the widget tree can have any depth.

The widgets with behavior that is meaningful to the user are usually at the leaves of the

widget tree; the higher-level widgets are usually just containers for organizing and arrang-

ing the leaf widgets.

Figure 14.1. Examples of widgets in Tk: (a) a button widget displays a text string and invokes a
given Tcl command when a mouse button is clicked over it; (b) an entry widget displays a one-line
text string and allows the text to be edited with the mouse and keyboard; (c) a scrollbar widget
displays a slider and two arrows, which can be manipulated with the mouse to adjust the view in
some other widget.

(a)

(b)

(c)

14.1 Widgets and windows 135

DRAFT (3/11/93): Distribution Restricted

Figure 14.2. Widgets are arranged hierarchically. A collection of widgets is shown in (a) as it
appears on the screen, and the hierarchical structure of the collection is shown in (b). An exploded
view of the screen is shown in (c) to clarify the widget structure. The topmost widget in the
hierarchy (“.”) contains three children: a menu bar across the top, a scrollbar along the right side,
and a listbox filling the remainder. The menu bar contains two children of its own, a File menu
button on the left and a Help menu button on the right. Each widget has a name that reflects its
position in the hierarchy, such as .menu.help for the Help menu button.

(a)

.

.menu .scroll.listbox

.menu.file.menu.help

(b)

(c)

136 An Introduction to Tk

DRAFT (3/11/93): Distribution Restricted

Each widget/window has a textual name that is used to refer to it in Tcl commands.

Window names are similar to the hierarchical path names used to name files in Unix,

except that “.” is used as the separator character instead of “/”. The name “.” refers to the

topmost window in the hierarchy, which is called the main window. The name .a.b.c

refers to a window c that is a child of window .a.b, which in turn is a child of .a, which

is a child of the main window.

14.2 Screens, decorations, and toplevel windows

Tk creates the main window of an application as a child of the root window of a particular

screen. This causes the main window to appear on that screen. Your window manager will

then create a decorative frame around the main window, which usually displays a title and

provides controls that you can use to move and resize the window. A given window man-

ager will decorate all applications in the same way, but different window managers may

use different styles of decoration. Figure 14.2 showed a main window without any win-

dow manager decoration; other figures will show decorations as provided by the mwm win-

dow manager (e.g. see Figure 14.3).

X clips each window to the area of its parent: it will not display any part of a window

that lies outside the area of its parent. The descendants of the main window are called

internal windows to reflect the fact that they appear inside the area of the main window.

However, applications often need to create widgets that are don’t lie inside the main win-

dow. For example, it might be useful to position a dialog box in the center of the screen

regardless of the position of the main window, or an application might wish to post several

panels that the user can move around on the screen independently. For situations like this

Tk provides a third kind of window called a top-level window. A top-level window

appears like an internal window in the application’s widget hierarchy (e.g. it might have a

name like .a.b) but its X window is created as a child of the screen’s root rather than its

parent in the Tk widget hierarchy. The window manager will treat top-level windows just

like main windows, so the user will be able to move and resize and iconify each top-level

window separately from the main window and other top-level windows. Top-level win-

dows are typically used for panels and dialog boxes. See Figure 14.3 for an example.

It is not necessary for all of the widgets of an application to appear on the same screen

or even the same display. When you create a top-level widget you can specify a screen for

it. The screen defaults to the screen of the widget’s parent in the Tk hierarchy, but you can

specify any screen whose X server will accept a connection from the application. For

example, it’s possible to create a Tk application that broadcasts an announcement to a

number of wokstations by opening a top-level window on each of their screens.

Once a widget is created on a particular screen, it cannot be moved to another screen.

This is a limitation imposed by the X window system. However, you can achieve the same

effect as moving the widget by deleting it and recreating it on a different screen.

14.3 Applications and processes 137

DRAFT (3/11/93): Distribution Restricted

14.3 Applications and processes

In Tk the term application refers to a single widget hierarchy (one main window and any

number of internal and top-level windows descended from it), a single Tcl interpreter

associated with the widget hierarchy, plus all the commands provided by that interpreter.

Each application is usually a separate process, but Tk also allows a single process to man-

age several applications, each with its own widget hierarchy and Tcl interpreter. Tk does

Figure 14.3. Top-level widgets appear in the Tk widget hierarchy just like internal widgets, but
they are positioned on the screen independently from their parents in the hierarchy. In this example
the dialog box .dlg is a top-level window. Figure (a) shows how the windows appear on the screen
(with decorations provided by the mwm window manager) and Figure (b) shows Tk’s widget
hierarchy for the application.

.menu .scroll.listbox

.menu.file.menu.help

.dlg

.

.dlg.msg .dlg.yes .dlg.no

(b)

(a)

138 An Introduction to Tk

DRAFT (3/11/93): Distribution Restricted

not provide any particular support for multi-threading (using a collection of processes to

manage a single application); it is conceivable that Tk could be used in a multi-threaded

environment but it would not be trivial and I know of no working examples.

14.4 Scripts and events

Tk applications are controlled by two kinds of Tcl scripts: an initialization script and event

handlers. The initialization script is executed when the application starts up. It creates the

application’s user interface, loads the application’s data structures, and performs any other

initialization needed by the application. Once initialization is complete the application

enters an event loop to wait for user interactions. Whenever an interesting event occurs,

such as the user invoking a menu entry or moving the mouse, a Tcl script is invoked to

process that event. These scripts are called event handlers; they can invoke application-

specific Tcl commands (e.g. enter an item into a database), modify the user interface (e.g.

post a dialog box), or do many other things. Some event handlers are created by the initial-

ization script, but event handlers can also be created and modified by other event handlers.

Most of the Tcl code for a Tk application is in the event handlers and the procedures

that they invoke. Complex applications may contain hundreds of event handlers, and the

handlers may create other panels and dialogs that have additional event handlers. Tk appli-

cations are thus event-driven. There is no well-defined flow of control within the applica-

tion’s scripts, since there is no clear task for the application to carry out. The application

presents a user interface with many features and the user decides what to do next. All the

application does is to respond to the events corresponding to the user’s actions. The event

handlers implement the responses; they tend to be short scripts, and they are mostly inde-

pendent of each other.

14.5 Wish: a windowing shell

While you’re reading this book you may find it useful to experiment with a program called

wish (for “windowing shell”). Wish is the simplest possible Tk application. The only Tcl

commands it contains are the Tcl built-ins and the additional commands provided by Tk. If

you invoke wish with no arguments then it creates a main window and acts like a shell,

reading Tcl commands from its standard input and executing them. For example, try typ-

ing the following commands to wish:

button .b -text "Hello, world!" -command "destroy ."

pack .b

This creates the application shown in Figure 14.4, consisting of a single button that dis-

plays the text “Hello, world”. It also creates one event handler: if the user clicks

mouse button 1 over the widget then Tk will invoke the command “destroy .”, which

14.6 Widget creation commands 139

DRAFT (3/11/93): Distribution Restricted

destroys the application’s main window and all its descendants and thereby causes wish

to exit. Wish responds to events for the application’s windows as well as to commands

typed on its standard input.

You can also use wish to invoke scripts that have been saved in files. For example,

you could create a file named hello that contains the above two commands. Then you

could start up wish and type

source hello

to process the file. Or, you could invoke wish with the following shell command:

wish -f hello

In this case wish will not read commands from standard input. Instead, it will execute the

script contained in the file hello and then enter an event loop where it responds only to

events from the application’s windows.

Wish scripts can also be invoked using the same mechanism that’s used for shell

scripts in UNIX. To do this, enter the following comment as the first line of hello:

#!/usr/local/bin/wish -f

Then mark the script file as executable. You can now invoke hello directly from the

shell like any other executable program:

hello

This will run wish and cause it to process the script file just as if you’d typed “wish -f

hello”.

See the wish reference documentation for details on other features provided by

wish, such as command-line arguments for wish scripts. If wish isn’t installed in /

usr/local/bin on your system then you’ll need to use a different comment in your

script files that reflects the location of wish.

14.6 Widget creation commands

Tk provides four main groups of Tcl commands; they create widgets, arrange widgets on

the screen, communicate with existing widgets, and interconnect widgets within and

Figure 14.4. A simple Tk application created by typing commands to wish.

140 An Introduction to Tk

DRAFT (3/11/93): Distribution Restricted

between applications. This section and the three following sections introduce the groups

of commands to give you a general feel for Tk’s features. All of the commands are dis-

cussed in more detail in later chapters.

To create a widget, you invoke a command named after the widget’s class: button

for button widgets, scrollbar for scrollbar widgets, and so on.. For example, the fol-

lowing command creates a button that displays the text “Press me” in red:

button .b -text "Press me" -foreground red

All of the widget creation commands have a form similar to this. The command’s name is

the same as the name of the class of the new widget. The first argument is a name for the

new widget in the widget hierarchy, .b in this case. This widget must not already exist but

its parent must exist. The command will create the widget and its corresponding X win-

dow.

The widget name is followed by any number of pairs of arguments, where the first

argument of each pair specifies the name of a configuration option for the widget (e.g.

-text or -foreground) and the second argument specifies a value for that option (e.g.

“Press me” or red). Each widget class supports a different set of configuration options

but many options, such as -foreground, are used in the same way by different classes.

You need not specify a value for every option supported by a widget; defaults will be cho-

sen for the options you don’t specify. For example, buttons support about twenty different

options but only two were specified in the example above. Chapter 16 discusses configura-

tion options in more detail.

14.7 Geometry managers

Widgets don’t determine their own sizes and locations on the screen. This function is car-

ried out by geometry managers. Each geometry manager implements a particular style of

layout. Given a collection of widgets to manage and some controlling information about

how to arrange them, a geometry manager assigns a size and location to each widget. For

example, you might tell a geometry manager to arrange a set of widgets in a vertical col-

umn. It would then position the widgets so that they are adjacent but don’t overlap. If one

widget should suddenly need more space (e.g. its font is changed to a larger one) it will

notify the geometry manager and the geometry manager will move other widgets down to

preserve the proper column structure.

The second main group of Tk commands consists of those for communicating with

geometry managers. Tk currently contains four geometry managers. The placer is a sim-

ple fixed-placement geometry manager. You give it instructions like “place window .x at

location (10,100) in its parent and make it 2 cm wide and 1 cm high.” The placer is simple

to understand but limited in applicability because it doesn’t consider interactions between

widgets. Chapter 17 describes the placer in detail.

14.8 Widget commands 141

DRAFT (3/11/93): Distribution Restricted

The second geometry manager is called the packer. It is constraint-based and allows

you to implement arrangements like the column example from above. It is more complex

than the placer but much more powerful and hence more widely used. The packer is the

subject of Chapter 18.

Two other geometry managers are implemented as part of the canvas and text wid-

gets. The canvas geometry manager allows you to mix widgets with structured graphics,

and the text geometry manager mixes widgets with text. See the reference documentation

for canvas and text widgets for descriptions of these geometry managers.

When you invoke a widget creation command like button the new widget will not

immediately appear on the screen. It will only be displayed after you have asked a geome-

try manager to manage it. If you want to experiment with widgets before reading the full

discussion of geometry managers, you can make a widget appear by invoking the pack

command with the widget’s name as argument. For example, the following script creates a

button widget and displays it on the screen:

button .b -text "Hello, world!"

pack .b

This will size the main window so that it is just large enough to hold the button and it will

arrange the button so that it fills the space of the main window. If you create other widgets

and pack them in a similar fashion, the packer will arrange them in a column inside the

main window, making the main window just large enough to accommodate them all. See

Figure 14.5 for an example.

14.8 Widget commands

Whenever a new widget is created Tk also creates a new Tcl command whose name is the

same as the widget’s name. This command is called a widget command, and the set of all

widget commands (one for each widget in the application) constitutes the third major

button .top -text "Top button"

pack .top

button .bottom -text "Bottom button"

pack .bottom

(a) (b)

Figure 14.5. The script in (a) creates two button widgets and arranges them in a vertical column
with the first widget above the second. The application’s appearance on the screen is shown in (b).

142 An Introduction to Tk

DRAFT (3/11/93): Distribution Restricted

group of Tk’s commands. Thus after the above button command was executed above, a

widget command whose name is .b appeared in the application’s interpreter. This com-

mand will exist as long as the widget exists; if the widget is deleted then the command will

be deleted too.

Widget commands are used to communicate with existing widgets. Here are some

commands that could be invoked after the button command from Section 14.6:

.b configure -foreground blue

.b flash

.b invoke

The first command changes the color of the button’s text to blue, the second command

causes the button to flash briefly, and the third command invokes the button just as if the

user had clicked mouse button 1 on it. In widget commands the command name is the

name of the widget and the first argument specifies an operation to invoke on the widget,

such as configure. Some widget commands, like configure, take additional argu-

ments; the nature of these arguments depends on the specific command.

The set of widget commands supported by a given widget is determined by its class.

All widgets in the same class support the same set of commands, but different classes have

different command sets. Some common commands are supported by multiple classes. For

example, every widget class supports a configure widget command, which can be used

to query and change any of the configuration options associated with the widget.

14.9 Commands for interconnection

The fourth group of Tk commands is used for interconnection. These commands are used

to make widgets work together, to make them work cooperatively with the objects defined

in the application, and to allow different applications sharing the same display to work

together in interesting ways.

Some of the interconnection commands are implemented as event handlers. For

example, each button has a -command option that specifies a Tcl script to invoke when-

ever mouse button 1 is clicked over the widget. This option was used in Section 14.5 to

terminate the application. Scrollbars provide another example of interconnection via event

handlers. Each scrollbar is used to control the view in some other widget: when you click

in the scrollbar or drag its slider, the view in the associated widget should change. This

connection between widgets is implemented by specifying a Tcl command for the scroll-

bar to invoke whenever the slider is dragged. The command invokes a widget command

for the asscociated widget to change its view. In addition to event handlers that are defined

by widgets, you can create custom event handlers using the bind command described in

Chapter 19.

Tk supports five other forms of interconnection in addition to event handlers: the

selection, the input focus, the window manager, the send command, and grabs. The

14.9 Commands for interconnection 143

DRAFT (3/11/93): Distribution Restricted

selection is a distinguished piece of information on the screen, such as a range of text or a

graphic. The X window system provides a protocol for applications to claim ownership of

the selection and retrieve the contents of the selection from whichever application owns it.

Chapter 20 discusses the selection in more detail and describes Tk’s select command,

which is used to manipulate it.

At any given time, keystrokes typed for an application are directed to a particular

widget, regardless of the mouse cursor’s location. This widget is referred to as the focus

widget or input focus. Chapter 21 describes the focus command, which is used to move

the focus among the widgets of an application.

Chapter 22 describes Tk’s wm command, which is used for communicating with the

window manager. The window manager acts as a geometry manager for main windows

and top-level windows, and the wm command can be used to make specific geometry

requests from the window manager, such as “don’t let the user make this window smaller

than 20 pixels across.” In addition, wm can be used to specify a title to appear in the win-

dow’s decorative border, a title and/or icon to display when the window is iconified, and

many other things.

Chapter 23 describes the send command, which provides a general-purpose means

of communication between applications. With send, you can issue an arbitrary Tcl com-

mand to any Tk application on the display; the command will be transmitted to the target

application, executed there, and the result will be returned to the original application.

Send allows one application to control another application in intimate and powerful

ways. For example, a debugger can send commands to an editor to highlight the current

line of execution, or a spreadsheet can send commands to a database application to

retrieve new values for cells in the spreadsheet, or a mail reader can send commands to a

video application to play a video clip identifying the sender of a message.

The last form of interconnection is grabs, which are described in Chapter 24. A grab

restricts keyboard and mouse events so that they are only processed in a subtree of the

widget hierarchy; windows outside the grab subtree become lifeless until the grab is

released. Grabs are used to disable parts of an application and force the user to deal imme-

diately with a high-priority window such as a dialog box.

144 An Introduction to Tk

DRAFT (3/11/93): Distribution Restricted

145

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the author or pub-

lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher

does not offer warranties in regard to this draft.

Chapter 15

Tour Of The Tk Widgets

This chapter introduces the fifteen widget classes that are currently implemented by Tk.

The descriptions are not intended to explain every feature of every class; for that you

should refer to the reference documentation for the individual widget classes. In fact, no

specific Tk commands will be mentioned in this chapter. This chapter gives an overview

of the behavior of the widgets as seen by users and the features provided by the widgets to

interface designers. The purpose of this chapter is to provide you with general information

about the capabilities of Tk’s widgets so that it will be easier to understand the specific

commands described in later chapters.

The widget behavior described in this chapter is not hard-coded into the widgets.

Instead, Tk contains a startup script that generates default behaviors for the widgets using

the binding mechanism described in Chapter 19. The descriptions in this chapter corre-

spond to the default behaviors, and most widgets in most applications will use the default

behaviors. However, it is possible to extend or override the defaults, so some Tk applica-

tions may contain widgets that behave differently than described here.

If you have access to the wish program and the Tk demonstration scripts (both of

which are included in the Tk distributions) then you can experiment with real widgets as

you read through the chapter. To do this, execute the widget demonstration script and

use the menus to bring up various examples.

15.1 Frames and toplevels

Frames and toplevels are the simplest widgets. They have almost no interesting properties.

A frame appears as a rectangular region with a color and possibly a border that gives the

FIGURE 15

TABLE 15

146 Tour Of The Tk Widgets

DRAFT (3/11/93): Distribution Restricted

frame a raised or sunken appearance as shown in Figure 15.1. Frames serve two purposes.

First, they can be used to generate decorations such as a block of color or a raised or

sunken border around a group of widgets. Second, they serve as containers for grouping

other widgets; most of the non-leaf widgets in the widget hierarchy are frames, and you’ll

see in Chapter 18 that frames are particularly important for building up nested layouts

with geometry managers. When used in this way, frames are often invisible to the user.

Frames do not normally respond to mouse or keyboard actions.

Toplevel widgets are identical to frames except that, as the name implies, they are

top-level widgets whereas frames (and almost all other widgets) are internal widgets. This

means that a toplevel widget can be positioned anywhere on its screen, independent of its

parent in the widget hierarchy, and it need not even appear on the same screen as its par-

ent. Toplevels are typically used as the outermost containers for panels and dialog boxes.

When you create a toplevel you can specify a screen for it to be displayed on.

15.2 Labels, buttons, checkbuttons, and radiobuttons

Labels, buttons, checkbuttons, and radiobuttons make up a family of widget classes with

similar characteristics. Each member of the family builds on the behavior of earlier mem-

bers. Labels are the simplest member of the family. They are similar to frames except that

each one can display a text string or a bitmap (see Figure 15.2). Like frames, labels do not

normally respond to the mouse or keyboard; they simply provide decoration in the form of

a text string or bitmap.

Buttons are similar to labels except that they also respond to the mouse. When the

mouse cursor moves over a button, the button lights up. This indicates that pressing a

mouse button will cause something to happen. It is a general property of Tk widgets that

they light up if the mouse cursor passes over them when they are prepared to respond to

Figure 15.1. Frame and toplevel widgets have no visual characteristics except for a color and an
optional three-dimensional border that can give the widget one of several appearances, such as
raised as in (a), flat as in (b), or sunken as in (c).

(a) (b) (c)

15.2 Labels, buttons, checkbuttons, and radiobuttons 147

DRAFT (3/11/93): Distribution Restricted

button presses. A button or other widget lit up in this way it is said to be active. Buttons

become inactive again when the mouse cursor leaves them.

If mouse button 1 is pressed when a button is active then the button’s appearance

changes to make it look sunken, as if a real button had been pressed. When the mouse but-

ton is released, the widget’s original appearance is restored. Furthermore, when the mouse

button is released a Tcl script associated with the button is automatically executed. The

script is a configuration option for the button.

Checkbuttons allow users to make binary choices such as enabling or disabling under-

lining or grid-alignment. They are similar to regular buttons except for two things. First,

whenever mouse button 1 is clicked over a checkbutton a Tcl variable toggles between two

values, one representing an “on” state and the other representing an “off” state. The name

of the variable and the values corresponding to the “on” and “off” states are configuration

options for the widget. Second, the checkbutton displays a small rectangular selector to

the left of its text or bitmap. If the variable has the “on” value then the selector is displayed

in a bright color and the button is said to be selected. If the variable has the “off” value

then the selector box appears empty. Each checkbutton monitors the value of its associated

variable and if the variable’s value changes (e.g. because of a set command) the check-

button updates the selector display.

The last member of the label/button family is the radiobutton class. Radiobuttons are

typically arranged in groups and used to select one from among several mutually-exclu-

sive choices, such as one of several colors or one of several styles of dashed lines.

Radiobuttons are named after the radio selector buttons on older cars, where pressing the

button for one station caused all the other buttons to be released. When mouse button 1 is

Figure 15.2. Members of the label/button family of widgets. Two labels are shown in (a); the top
one displays a bitmap and the bottom one displays a text string. Figure (b) shows a button widget.
Three checkbuttons appear in (c); any combination of the checkbuttons may be selected at once. A
group of three radiobuttons appears in (d); only one of the radiobuttons may be selected at anygiven
time. Although a bitmap only appears in (a), any of the classes can display a bitmap as well as a
string.

(a) (b) (c) (d)

148 Tour Of The Tk Widgets

DRAFT (3/11/93): Distribution Restricted

clicked over a radiobutton, the widget sets the variable to the “on” value associated with

that radiobutton. All of the radiobuttons in a group will share the same variable but each

will have a different “on” value. A radiobutton displays a diamond-shaped selector to the

left of its text or bitmap and lights up the selector when the widget is selected. Each

radiobutton monitors its variable so if some other radiobutton resets the variable to select

itself the previously-selected widget can turn off its selector diamond. If you change the

value of the variable using the Tcl set command then all of the associated radiobuttons

will redisplay their selectors to match the new value of the variable.

The members of the label/button family also have two additional features. First, you

can specify that the string to be displayed in the widget should be taken from a Tcl vari-

able. The widget will monitor the variable and update its display to reflect the current con-

tents of the variable. Second, you can disable the widget. While a widget is disabled it is

displayed in dimmer colors, it doesn’t activate when the mouse cursor passes over it, and it

doesn’t respond to button presses.

15.3 Menus and menubuttons

Tk’s menu widget provides a general-purpose facility for implementing pull-down menus,

pop-up menus, cascading menus, and many other things. A menu is a top-level widget that

contains a collection of entries arranged in a column (see Figure 15.3(a)). Menu entries

are not distinct widgets but they behave much like the members of the label/button family

described in Section 15.2 above. The following types of entries may be used in menus:

Command: similar to a button widget. Displays a textual string or bitmap and invokes

a Tcl script when mouse button 1 is released over it.

Checkbutton: similar to a checkbutton widget. Displays a string or bitmap and toggles

a variable between “on” and “off” values when button 1 is released over the entry. Also

displays a square selector indicating whether the variable is currently in its “on” or

“off” state.

Radiobutton: similar to a radiobutton widget. Displays a string or bitmap and sets a

variable to an “on” value associated with the enry when button 1 is released over it.

Also displays a diamond-shaped selector indicating whether or not the variable has the

value for this entry.

Cascade: similar to a menubutton widget. Posts a cascaded sub-menu when the mouse

passes over it. See below for more details.

Separator: Displays a horizontal line for decoration. Does not respond to the mouse.

Unlike most other widgets, menus do not normally appear on the screen. They spend

most of their time in an invisible state called unposted. When a user wants to invoke a

menu entry, he or she posts the menu, which makes it appear on the screen. Then the user

moves the mouse over the desired entry and releases button 1 to invoke that entry. Once

15.3 Menus and menubuttons 149

DRAFT (3/11/93): Distribution Restricted

the menu has been invoked it is usually unposted until it is needed again. Menus are

posted or unposted by invoking their widget commands, which gives the interface

Figure 15.3. Examples of menus. Figure (a) shows a single menu with three checkbutton entries,
three radiobutton entries, and two command entries. The groups of entries are separated by separator
entries. Figure (b) shows the menu being used in pull-down fashion with a menu bar and several
menubutton widgets. Figure (c) shows a cascaded series of menus; cascade entries in the parent
(leftmost) menu display => at their right edges, and the Line Width entry is currently active.
Figure (d) contains a menu that supports keyboard traversal and shortcuts. The underlined characters
in the menubuttons and menu entries can be used to invoke them from the keyboard, and the key
sequences at the right sides of some of the menu entries (such as Ctrl+X) can be used to invoke the
same functions as menu entries without even posting the menu.

(a) (b)

(d)(c)

150 Tour Of The Tk Widgets

DRAFT (3/11/93): Distribution Restricted

designer a lot of flexibility in deciding when to post and unpost them. The subsections

below describe four of the most common approaches.

15.3.1 Pull-down menus

Menus are most commonly used in a pull-down style. In this style the application displays

a menu bar near the top of its main window. A menu bar is a frame widget that contains

several menubutton widgets as shown in Figure 15.3(b). Menubuttons are similar to but-

ton widgets except that instead of executing Tcl scripts when they are invoked they post

menu widgets. When a user presses mouse button 1 over a menubutton it posts its associ-

ated menu underneath the menubutton widget. Then the user can slide the mouse down

over the menu with the button still down and release the mouse button over the desired

entry. When the button is released the menu entry is invoked and the menu is unposted.

The user can release the mouse button outside the menu to unpost it without invoking any

entry.

If the user releases the mouse button over the menubutton then the menu stays posted

and the user will not be able to do anything else with the application until the menu is

unposted either by clicking on one of its entries (which invokes that entry and unposts the

menu) or clicking outside of the menu (which unposts the menu without invoking any

entry). Situations like this where a user must respond to a particular part of an application

and cannot do anything with the rest of the application until responding are called modal

user interface elements. Menus and dialog boxes are examples of modal interface ele-

ments. Modal interface elements are implemented using the grab mechanism described in

Chapter 24.

15.3.2 Pop-up menus

The second common style of menu usage is called pop-up menus. In this approach, press-

ing one of the mouse buttons in a particular widget causes a menu to post next to the

mouse cursor and the user can slide the mouse over the desired entry and release it there to

invoke the entry and unpost the menu. As with pull-down menus, releasing the mouse but-

ton outside the menu causes it to unpost without invoking any of its entries.

15.3.3 Cascaded menus

The third commonly used approach to posting menus is called cascaded menus. Cascaded

menus are implemented using cascade menu entries in other menus, such as pull-down

and pop-up menus. Each cascade menu entry is similar to a menubutton in that it is associ-

ated with a menu widget. When the mouse cursor passes over the cascade entry, its associ-

ated menu is posted just to the right of the cascade entry, as shown in Figure 15.3(c). The

user can then slide the mouse to the right onto the cascaded menu and select an entry in the

cascaded menu. Menus can be cascaded to any depth.

15.4 Listboxes 151

DRAFT (3/11/93): Distribution Restricted

15.3.4 Keyboard traversal and accelerators

Pull-down menus can also be posted from the keyboard using a technique called keyboard

traversal. One of the letters in each menubutton is underlined to indicate that it is the tra-

versal character for that menubutton. If that letter is typed while holding the Alt key

down then the menubutton’s menu will be posted. Once a menu has been posted the arrow

keys can be used to move among the menus and their entries. The left and right arrow keys

move left or right among the menubuttons, unposting the menu for the previous menubut-

ton and posting the menu for the new one. The up and down keys move among the entries

in a menu, activating the next higher or lower entry. The Return key can be used to

invoke the active menu entry. In addition, the labels in menu entries are typically drawn

with one character underlined; if this character is typed when the menu is posted then the

entry is invoked immediately.

Lastly, in many cases it is possible to invoke the function of a menu entry without

even posting the menu by typing keyboard shortcuts. If there is a shortcut for a menu entry

then the keystroke for the shortcut will be displayed at the right side of the menu entry

(e.g. Ctrl+X is displayed in the Delete menu entry in Figure 15.3(d)). This key combi-

nation may be typed in the application to invoke the same function as the menu entry (e.g.

type x while holding the Control key down to invoke the Delete operation without

going through the menu).

15.4 Listboxes

A listbox is a widget that allows the user to select one or more possibilities from a range of

alternatives, such as a file name from those in the current directory or a color from a data-

base of defined colors. A listbox contains one or more entries, each of which displays a

one-line string as shown in Figure 15.4. The widget commands for listboxes allow entries

to be created, destroyed, and queried.

If there are more entries than there are lines in the listbox’s window then only a few of

them are displayed at a time; the user can control which portion is displayed by using a

separate scrollbar widget associated with the listbox (see Section 15.6). The view in a list-

box can also be controlled by pressing mouse button 2 in the widget and dragging up or

down. This is called scanning: it has the effect of dragging the listbox contents past the

window at high speed. Most Tk widgets that support scrollbars also support scanning. If

the strings in the listbox are too long to fit in the window then the listbox can also be

scrolled and scanned in the horizontal direction.

Typically listboxes are configured so that the user can select an entry by clicking on it

with mouse button 1. In some cases the user can also select a range of entries by pressing

and dragging with button 1. Selected entries appear in a different color and usually have a

raised 3-D effect. Once the desired entries have been selected, the user will typically use

those entries by invoking another widget, such as a button widget or menu entry. For

152 Tour Of The Tk Widgets

DRAFT (3/11/93): Distribution Restricted

example, the user might select one or more file names from a listbox and then click on a

button widget to delete the selected files; the Tcl command associated with the button wid-

get can read out the strings from the selected listbox entries. It’s also common for listboxes

to support double-clicking, which both selects an entry and invokes some operation on it.

For example, in a file-open dialog box, double-clicking on a file name might cause that

file to be opened by the application.

15.5 Entries

An entry is a widget that allows the user to type in and edit a one-line text string. For

example, if a document is being saved to disk for the first time then the user will have to

provide a file name to use. The user might type the file name in an entry widget, then click

on a button widget whose Tcl command retrieves the file name from the entry and saves

the document in that file. Figure 15.5 shows an example of an entry widget.

To enter text into an entry the user clicks mouse button 1 in the entry. This makes a

blinking vertical bar appear, called the insertion cursor. The user can then type characters

Figure 15.4. An example of a listbox widget displaying the names of all the states in the U.S.A.
Only a few of the entries are visible in the window at one time. The Ohio entry is selected.

Figure 15.5. An example of an entry widget. The vertical bar is the insertion cursor ,which
identifies the point at which new text will be inserted.

15.6 Scrollbars 153

DRAFT (3/11/93): Distribution Restricted

and they will be inserted into the entry at the point of the insertion cursor. The insertion

cursor can be moved by clicking anywhere in the entry’s text. Text in an entry can be

selected by pressing and dragging with mouse button 1, and it can be edited with a variety

of keyboard actions; see the reference documentation for details.

If the text for an entry is too long to fit in its window then only a portion of it is dis-

played and the view can be adjusted using an associated scrollbar widget or by scanning

with mouse button 2. Entries can be disabled so that no insertion cursor will appear and

the text in the entry cannot be modified. The text in an entry can be associated with a Tcl

variable so that changes to the variable are reflected in the entry and changes made in the

entry are reflected in the variable.

15.6 Scrollbars

Scrollbar widgets are used to control what is displayed in other widgets. Each scrollbar is

associated with some other widget such as a listbox or entry. The scrollbar is typically dis-

played next to the other widget and when the user clicks and drags on the scrollbar the

view in the associated widget will change. A scrollbar appears as shown in Figure 15.6

with an arrow at each end and a slider in the middle. The size and position of the slider

correspond to the portion of the associated widget’s document that is currently visible in

its window. For example, if the slider covers the rightmost 20% of the region between the

two arrows as in Figure 15.6 it means that the rightmost 20% of the document is visible in

the window. Scrollbars can be oriented either vertically or horizontally.

Users can adjust the view by clicking mouse button 1 on the arrows, which moves the

view a small amount in the direction of the arrow, or by clicking in the empty space on

either side of the slider, which moves the view by one screenful in that direction. The view

can also be changed by pressing on the slider and dragging it.

A scrollbar interacts with its associated widget using Tcl scripts. One of a scrollbar’s

configuration options is a Tcl script to invoke to change the view; typically this script

invokes the widget command for the associated widget. When the user manipulates the

Figure 15.6. A horizontal scrollbar widget. The rectangular slider indicates how much of the
document in an associated widget is visible in its window (in this case the rightmost 20% is visible).
The user can adjust the view in the associated widget by dragging the slider with mouse button 1 or
by clicking on the arrows or the slider region.

154 Tour Of The Tk Widgets

DRAFT (3/11/93): Distribution Restricted

scrollbar, the scrollbar invokes the script, including additional information about the new

view that the user requested. The associated widget changes its view and then invokes

another Tcl script (one of its configuration options) that tells the scrollbar exactly what

information is now displayed in the window, so the scrollbar can display the slider cor-

rectly. The scrollbar doesn’t update its slider until told to do so by the associated widget;

this makes it possible for the associated widget to reject or modify the user’s request (e.g.

to prevent the user from scrolling past the ends of the information in the widget).

15.7 Text

A text widget is similar to an entry except that it allows the text to span more than one line

(see Figure 15.7 for an example). Text widgets are optimized to handle large amounts of

text, such as files containing thousands of lines. As with entries, the user can click mouse

button 1 to set the insertion cursor and then type new information into a text. Information

in a text widget can be selected with the mouse just as for entries, and a number of mouse

and keyboard actions are defined to assist in editing (see the reference documentation for

details). Text widgets support scrolling and scanning, and they can be disabled to tempo-

rarily prevent edits.

In addition to the basic features described above, text widgets support three kinds of

annotations on the text: marks, tags and embedded widgets. A mark associates a name

Figure 15.7. An example of a text widget. This widget displays the contents of a structure as part of
a symbolic debugger. Tags are used to display field names in bold and to underline the name of the
structure.

15.8 Canvases 155

DRAFT (3/11/93): Distribution Restricted

with a particular position in the text (the gap between two adjacent characters). Marks are

used to keep track of interesting locations in the text as characters are added and deleted.

A tag is a string that is associated with ranges of characters in a text widget. Each tag

may be associated with any number of ranges of characters in the text, and the ranges of

different tags may overlap. Tags are different from marks in that they are associated with

particular characters, so they disappear when the characters are deleted. Tags are used for

two purposes in texts: formatting and binding.

Each tag may contain formatting information such as background and foreground col-

ors, font, and stippling and underlining information. If a character has been tagged then

the formatting information in the tag overrides the default formatting information for the

widget as a whole. This makes it possible to display text with multiple fonts and colors. In

addition, the formatting information for a tag can be changed at any time. For example,

you can apply a tag to all instances of a particular word in the text, then modify the tag’s

formatting information to make the words blink on and off.

The second use of tags is for bindings. A binding specifies a Tcl script to be invoked

when certain events occur; each tag may have one or more bindings associated with it. For

example, you can arrange for a script to be invoked whenever the mouse cursor passes

over text with a particular tag, or whenever a mouse button is clicked over a particular

item (see Chapter 19 for more information on bindings). This can be used to produce

hypertext effects such as displaying a figure whenever the user clicks on the name of the

figure in a text widget.

The third form of annotation in texts consists of embedded widgets. It is possible to

embed other widgets in a text so that the other widgets are displayed at particular positions

in the text. For example, you can arrange for a button widget to appear in a text widget as

another way of getting hypertext-like capabilities, or you can embed canvas widgets to

include figures inside texts, and so on.

Note: Embedded widgets are not supported in Tk version 3.2.

Text annotations allow you to configure a given text widget in a variety of interesting

ways, so different text widgets may have very different behavior. For example, a file editor

might use a text widget to display an entire file in a single font with no special formatting

or bindings. In contrast, a debugger might use a text widget to display a structure as shown

in Figure 15.7, where the names of the structure’s fields are formatted differently than their

values and bindings are set up so that the user can click on fields to open new windows on

the structures pointed to by the fields.

15.8 Canvases

A canvas is a widget that displays a drawing surface and any number of graphical and tex-

tual items. The items can include rectangles, ellipses, arcs, lines, curves, polygons, cur-

vagons, editable text, bitmaps, and embedded widgets. See Figure 15.8 for examples.

156 Tour Of The Tk Widgets

DRAFT (3/11/93): Distribution Restricted

Items can be created and deleted at any time, and their display attributes (such as line

width and color) can also be modified dynamically. Items can be moved and scaled but

rotations are not currently supported.

Canvases also provide a tagging mechanism similar to the tags in text widgets. Each

item may have any number of textual tags associated with it. Tags serve two purposes in

canvases. First, they make it easy to operate on groups of items all at once; for example, in

a single command you can move or delete or recolor all items with a given tag. Second,

tags can have bindings associated with them just as in texts. This allows you to achieve

Figure 15.8. Canvas widget examples. Figure (a) shows a ruler with a tab well to the right. The
user can create new tab stops by pressing mouse button 1 in the tab well and dragging out a new tab
stop. Four existing tab stops appear underneath the ruler; they can be repositioned by dragging them
with the mouse. Figure (b) shows an editor for arrowhead shapes. The user can edit the arrowhead
shape and line width by dragging the three small squares attached to the oversized arrow. Changes to
this shape are reflected in the normal-size arrows on the right side of the canvas, in the dimensions
displayed next to the oversize arrow, and in the configuration option strings in the bottom left corner.

(a)

(b)

15.9 Scales 157

DRAFT (3/11/93): Distribution Restricted

hypergraphic effects such as invoking some operation whenever a mouse button is clicked

over an item, or allowing some items to be dragged with the mouse.

As with texts, the features provided by canvases are flexible enough to achieve many

different effects, so different canvases may appear and behave very differently. Canvases

can be used to provide non-interactive graphical displays, such as pie-charts or figures, or

they can be used to create new kinds of editors and interactive widgets.

15.9 Scales

A scale is a widget that displays a numerical value and allows the user to edit the value

(see Figure 15.9). A scale widget appears as a linear scale with optional numerical labels

and a slider that shows the current value. The user can adjust the value by clicking mouse

button 1 in the scale or by dragging the slider with mouse button 1. Each scale can be con-

figured with a Tcl script to invoke whenever its value changes; the script can propagate the

new value to other parts of the application. For example, three scales might be used to edit

the hue, saturation, and intensity values for a color; as the user modifies the scale values,

the new values can be used to update the color for an item in a canvas so that the item is

always displayed in the color selected by the scales.

15.10 Messages

A message widget displays a multi-line string of text like the one shown in Figure 15.10.

Messages are less powerful than texts (e.g. they don’t allow their text to be selected or

edited, they don’t provide annotations, they don’t support scrolling, and they don’t handle

large amounts of text efficiently), but they are simpler to create and configure. Messages

are typically used for simple things like multi-line messages in dialog boxes.

Figure 15.9. A scale widget. The scale’s value can be adjusted by dragging the slider with the
mouse.

158 Tour Of The Tk Widgets

DRAFT (3/11/93): Distribution Restricted

Figure 15.10. A message widget displays a string, breaking it into multiple lines if necessary.
Messages provide little other functionality (e.g. no edit capability).

159

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the author or pub-

lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher

does not offer warranties in regard to this draft.

Chapter 16

Configuration Options

Most of the state of a widget exists as a set of configuration options for the widget. For

example, the colors and font and text for a button widget are configuration options, as is

the Tcl script to invoke when the user clicks on the button. Each configuration option has a

name (e.g., -relief) and a value (e.g. raised). Widgets typically have 15-30 configu-

ration options. For widgets such as texts and canvases that have complex internal struc-

tures, the configuration options don’t provide complete access to the internal structures;

special widget commands exist for this purpose. However, state that is shared among all

the objects in the internal structures (such as a default font for text widgets) is still repre-

sented as configuration options.

This chapter describes Tk’s mechanisms for dealing with configuration options. Sec-

tion 16.1 gives an overview of how the values of options are set. Sections 16.2-16.11

describe some of the common configuration options that are used in the Tk widget set.

Finally, Sections 16.12 and 16.13 explain the configure widget command and the

option database in more detail. Table 16.1 summarizes the commands for manipulating

configuration options. For a complete list of the options available for a given class, see the

reference documentation for the command that creates widgets of that class (e.g. the but-

ton command)

16.1 How options are set

Configuration options may be specified in four ways. First, you can specify configura-

tion options in the command that creates a widget. For example, the command

FIGURE 16

TABLE 16

160 Configuration Options

DRAFT (3/11/93): Distribution Restricted

button .help -text Help -foreground red

creates a new button widget and specifies the -text and -foreground options for it.

Every widget creation command has this form, where the command name is the name of

the widget class, the first argument is the name of the new widget in the Tk widget hierar-

chy, and additional arguments (if any) are name-value pairs specifying options.

The second way to specify configuration options is through the option database. If no

value is given for a configuration option on the command line that creates a widget, then

Tk checks the option database to see if a value has been specified for the option. The

option database is similar to the resource database in other X toolkits. It allows users to

specify values for options in the RESOURCE_MANAGER property on the root window or

Table 16.1. The commands for manipulating widget configuration options.

class window ?optionName value optionName value ...?
Create a new widget with class class and path name window, and set
options for the new widget as given by optionName-value pairs.
Unspecified options are filled in using the option database or widget defaults.
Returns window as result.

window config
Returns a list whose elements are sublists describing all of the options for
window. Each sublist describes one option in the form described below.

window config optionName
Returns a list describing option optionName for window. The list will
normally contain five values: optionName, the option’s name in the option
database, its class, its default value, and its current value. If the option is a
synonym for another option, then the list contains two values: the option
name and the database name for the synonym.

window config optionName value
Set the value for option optionName of window to value.

option add pattern value ?priority?
Add a new option to the option database as specified by pattern and
value. Priority must be either a number between 0 and 100 or a sym-
bolic name (see the reference documentation for details on symbolic names).

option clear
Remove all entries from the option database.

option get window name class
If the option database contains a pattern that matches window, name, and
class, return the value for the highest priority matching pattern. Otherwise
return an empty string.

option readfile fileName ?priority?
Read fileName, which must have the standard format for a .Xdefaults
file, and add all the options specified in that file to the option database at pri-
ority level priority.

16.2 Colors 161

DRAFT (3/11/93): Distribution Restricted

in a .Xdefaults file. Entries in the database can contain wildcard characters so that, for

example, a single entry in the option database can set the background color for all buttons

to blue. See Section 16.13 for more information on the option database.

The third way that configuration options are specified is through default values for

each widget class. Class defaults are used for options that aren’t specified in the widget

creation command and aren’t defined in the option database. The class defaults are

intended to produce a reasonable effect so that you don’t need to specify most options

either on the command line or in the option database. The class defaults are compiled into

the Tk library so you can’t change them without recompiling Tk, but you can always over-

ride them with values in the option database.

The final way to specify configuration options for a widget is with its configure

widget command. Every widget class supports a configure widget command. For

example, the following command changes the text in the button widget created above and

also specifies a Tcl script to invoke when the user clicks on the widget:

.help configure -text Quit -command exit

The configure widget command allows you to change the configuration options for a

widget at any time and it also allows you to query the current state of the configuration

options (see Section 16.12 for details on this).

16.2 Colors

Although each widget class defines its own set of configuration options, the options tend

to be used in a consistent fashion by different classes. This section and the ones that follow

provide an overview of the most common options. These options have the same names

and legal values in many different widget classes.

The most common options are those for specifying colors. Every widget class sup-

ports a -background option, which determines the background color of the widget and

is also used to compute the light and dark shadows if there is a 3D border drawn around

the widget. Nearly every widget class also supports a -foreground option, which is

used when displaying text and graphics in the widget. Table 16.2 lists all of the common

color options.

Color values may be specified either symbolically or numerically. A symbolic color

value is a name such as white or red or SeaGreen2. The valid color names are

defined in a file named rgb.txt in your X library directory. Common names such as

black and white and red should be defined in every X environment, but names like

SeaGreen2 might not be available everywhere. Color names are not case-sensitive:

black is the same as Black or bLaCk.

Colors can also be specified numerically in terms of their red, green, and blue compo-

nents. Four forms are available, in which the components are specified with 4-bit, 8-bit,

12-bit, or 16-bit vales:

162 Configuration Options

DRAFT (3/11/93): Distribution Restricted

#RGB

#RRGGBB

#RRRGGGBBB

#RRRRGGGGBBBB

Each R, G, or B in the above examples represents one hexadecimal digit of red, green, or

blue intensity, respectively. The first character of the specification must be #, and the same

number of digits must be provided for each component. If fewer than 16 bits are given for

the color components, they represent the most significant bits of the values. For example,

#3a7 is equivalent to #3000a0007000. A value of all ones represents “full on” for that

color, and a value of zero represents “off.” Thus #000 is black, #f00 is red, #ff0 is yel-

low, and #fff is white.

If you specify a color other than black or white for a monochrome display, then Tk

will use black or white instead, depending on the overall intensity of the color you

requested. Furthermore, if you are using a color display and all of the entries in its color

map are in use (e.g. because you’re displaying a complex image on the screen) then Tk

will treat the display as if it were monochrome.

Table 16.2. Commonly-used color options. The left column gives the name of the option as
specified in widget creation commands and configure widget commands. The right column
describes how the option is used.

Name on

Command Line
Usage

-background Background areas of widgets.

-foreground Text and graphics.

-activebackground Background color when widget is active (mouse
cursor is over widget and pressing a mouse button
will invoke some action).

-activeforeground Foreground color when widget is active.

-selectbackground Background color for areas occupied by selected
information within widget.

-selectforeground Foreground color for selected text and graphics.

-insertbackground Color for insertion cursor.

-disabledforeground Foreground color when widget has been disabled.

16.3 Screen distances 163

DRAFT (3/11/93): Distribution Restricted

16.3 Screen distances

Several options are used to specify distances on the screen. The most common of these

options is -borderwidth, which determines the width of the 3D border drawn around a

widget. Every widget class supports the -borderwidth option. Table 16.3 lists several

other common distance options.

Ultimately, each distance option must reduce to a distance in screen pixels. However,

Tk allows distances to be specified either in pixels or in absolute units that are independent

of the screen resolution. A distance is specified as an integer or floating-point value fol-

lowed optionally by a single character giving the units. If no unit specifier is given then the

units are pixels. Otherwise the unit specifier must be one of the following characters:

c centimeters

i inches

m millimeters

p printer’s points (1/72 inch)

Table 16.3. Common options for specifying distances. The left column gives the name of the
option as specified in widget creation commands and configure widget commands. The right
column describes how the option is used.

Name on

Command Line
Usage

-borderwidth Width of 3D border drawn around widget.

-activeborderwidth Width of 3D border drawn around active elements
within widget.

-selectborderwidth Width of 3D border drawn around selected text.

-insertwidth Total width of insertion cursor including its border,
if any.

-insertborderwidth Width of 3D border for insertion cursor.

-padx Additional space to leave on left and right sides of
information displayed in widget.

-pady Additional space to leave above and below infor-
mation displayed in widget.

164 Configuration Options

DRAFT (3/11/93): Distribution Restricted

For example, a distance specified as 2.2c will be rounded to the number of pixels that

most closely approximates 2.2 centimeters; this may be a different number of pixels on

different screens.

16.4 Reliefs

Every widget class supports an option named -relief, which determines the three-

dimensional appearance of the widget. The option must have one of the values raised,

flat, sunken, ridge, or groove. Figure 16.1 illustrates the effect produced by each

value. Tk draws widget borders with combinations of light and dark shadows to produce

the different effects. For example, if a widget’s relief is raised then Tk draws the top

and left borders in a lighter color than the widget’s background and it drawns the lower

and right borders in a darker color. This makes the widget appear to protrude from the

screen.

The width of a widget’s 3D border is determined by its -borderwidth option. If

the border width is 0 then the widget will appear flat regardless of its -relief option.

16.5 Fonts

The -font option is used to specify a font for widgets that display text, such as buttons,

listboxes, entries, and texts. Tk uses standard X font names, which are illustrated in Figure

16.2 The name of a font consists of twelve fields separated by hyphens. The fields have the

following meanings:

foundry The type foundry that supplied the font data.

family Identifies a group of fonts with a similar typeface design.

raised grooveridgesunkenflat

Figure 16.1. The three-dimensional effects produced by different values for the -relief option.

16.5 Fonts 165

DRAFT (3/11/93): Distribution Restricted

When -font values you can use * and ? wildcards: ? matches any single character in a

font name, and * matches any group of characters. For example, the font name

-times-medium-r-normal---100-*

requests a 10-point Times Roman font in a medium (normal) weight and normal width. It

specifies “don’t care” for the foundry, the pixel size, and all fields after the point size. If

multiple fonts match this pattern then the X server will pick one of them. I recommend

specifying the point size for fonts but not the pixel size, so that characters will be the same

size regardless of the display resolution.

weight Typographic weight of font, such as medium, normal, or
bold.

slant Posture of font, such as r for roman or upright, i for italic, or
o for oblique.

set width Proportionate width of font, such as normal or con-
densed or narrow.

pixels Size of font in pixels.

points Size of font in tenths of points, assuming screen has x-res and
y-res specified for font.

x-res Horizontal resolution of screen for which font was designed,
in dots per inch.

y-res Vertical resolution of screen for which font was designed, in
dots per inch.

spacing Escapement class of font, such as m for monospace (fixed-
width) or p for proportional (variable-width).

width Average width of characters in font, in tenths of pixels.

char. set Character set that identifies the encoding of characters in the
font.

foundry

family

weight

slant

set width

pixels

points

x-res

y-res

spacing

width

char. set

Figure 16.2. The fields of an X font name.

-adobe-times-bold-r-normal--18-180-75-75-p-99-iso8859-1

166 Configuration Options

DRAFT (3/11/93): Distribution Restricted

16.6 Bitmaps

Many widgets, such as labels and menubuttons, can display bitmaps. A bitmap is an image

with two colors, foreground and background. Bitmaps are specified using the -bitmap

option, whose values may have two forms. If the first character of the value is @ then the

remainder of the value is the name of a file containing a bitmap in the standard X11 bitmap

file format. Such files are generated by the bitmap program, among others. Thus

“-bitmap @face.bit” specifies a bitmap contained in the file face.bit.

If the first character of the value isn’t @ then the value must be the name of a bitmap

defined internally. Tk defines several internal bitmaps itself (see Figure 16.3) and individ-

ual applications may define additional ones.

The -bitmap option only determines the pattern of 1’s and 0’s that make up the bit-

map. The foreground and background colors used to display the bitmap are determined by

other options (typically -foreground and -background). This means that the same

bitmap can appear in different colors at different places in an application, or the colors of a

given bitmap may be changed by modifying the options that determine them.

16.7 Cursors

Every widget class in Tk supports a -cursor option, which determines the image to dis-

play in the mouse cursor when it is over that widget. If the -cursor option isn’t speci-

fied or if its value is an empty string then the widget will use its parent’s cursor. Otherwise

the value of the -cursor option must be a proper Tcl list with one of the following

forms:

name fgColor bgColor

name fgColor

Figure 16.3. Bitmaps defined internally by Tk.

error gray25 gray50 hourglass

info questhead question warning

16.8 Anchors 167

DRAFT (3/11/93): Distribution Restricted

name

@sourceFile maskFile fgColor bgColor

@sourceFile fgColor

In the first three forms name refers to one of the cursors in the standard X cursor font. You

can find a complete list of all the legal names in the X include file cursorfont.h. The

names in that file all start with XC_, such as XC_arrow or XC_hand2; when using one

of these names in a -cursor option, omit the XC_, e.g. arrow or hand2. Most of the

Xlib reference manuals also include a table showing the names and images of all the cur-

sors in the X cursor font; for example, see Appendix B of X Window System: The Com-

plete Reference to Xlib, X Protocol, ICCM, and XLFD, by Scheifler and Gettys, Second

Edition. If name is followed by two additional list elements as in the following widget

command:

.f config -cursor {arrow red white}

then the second and third elements give the foreground and background colors to use for

the cursor; as with all color values, they may have any of the forms described in Section

16.2. If only one color value is supplied then it gives the foreground color for the cursor;

the background will be transparent. If no color values are given then black will be used for

the foreground and white for the background.

If the first character in the -cursor value is @ then the image(s) for the cursor are

taken from files in bitmap format rather than the X cursor font. If two file names and two

colors are specified for the value, as in the following widget command:

.f config -cursor {@cursors/bits cursors/mask red white}

then the first file is a bitmap that contains the cursor’s pattern (1’s represent foreground

and 0’s background) and the second file is a mask bitmap. The cursor will be transparent

everywhere that the mask bitmap has a 0 value; it will display the foreground or back-

ground wherever the mask is 1. If only one file name and one color are specified then the

cursor will have a transparent background.

16.8 Anchors

An anchor position indicates how to attach one object to another. For example, if the win-

dow for a button widget is larger than needed for the widget’s text, a -anchor option

may be specified to indicate where the text should be positioned in the window. Anchor

positions are also used for other purposes, such as telling a canvas widget where to posi-

tion a bitmap relative to a point or telling the packer geometry manager where to position

a window in its frame.

Anchor positions are specified using one of the following points of the compass:

n Center of object’s top side.

ne Top right corner of object.

168 Configuration Options

DRAFT (3/11/93): Distribution Restricted

The anchor position specifies the point on the object by which it is to be attached, as if a

push-pin were stuck through the object at that point and then used to pin the object some-

place. For example, if a -anchor option of w is specified for a button, it means that the

button’s text or bitmap is to be attached by the center of its left side, and that point will be

positioned over the corresponding point in the window. Thus w means that the text or bit-

map will be centered vertically and aligned with the left edge of the window. For bitmap

items in canvas widgets, the -anchor option indicates where the bitmap should be posi-

tioned relative to a point associated with the item; in this case, w means that the center of

the bitmap’s left side should be positioned over the point, so that the bitmap actually lies to

the east of the point. Figure 16.4 illustrates these uses of anchor positions.

e Center of object’s right side.

se Lower right corner of object.

s Center of object’s bottom side.

sw Lower left corner of object.

w Center of object’s left side.

nw Top left corner of object.

center Center of object.

Figure 16.4. Examples of anchor positions used for button widgets and for bitmap items within
canvases. Figure (a) shows a button widget with text anchored w, and (b) shows the same widget
with an anchor position of ne. Figure(c) shows a canvas containing a bitmap with an anchor
position of w relative to its point (the point appears as a cross, even though it wouldn’t appear in
an actual canvas). Figure (d) shows the same bitmap item with an anchor point of ne.

(a) (b)

(c) (d)

16.9 Script options and scrolling 169

DRAFT (3/11/93): Distribution Restricted

16.9 Script options and scrolling

Script options are used in many places in Tk widgets. The most common usage is for wid-

gets like buttons and menus that are supposed to take action when invoked by the user.

This is handled by specifying a Tcl script as a configuration option for the widget. For

example, button widgets support a -command option, which should contain a Tcl script.

When the user invokes the widget by clicking over it with the mouse button, the widget

causes the script to be executed. Similarly, each entry in a menu widget has a script associ-

ated with it, which is executed when the user invokes the menu entry.

Script options are also used for communicating between widgets. Typically, one wid-

get will be configured with part of a Tcl command (e.g. the name of another widget’s wid-

get command and the first argument to that command). At appropriate times, the widget

will invoke the command. Before invoking the command the widget will augment it with

additional information that is relevant to the specific invocation. The best example of this

is the communication between scrollbars and other widgets, which is described in the rest

of this section.

When a scrollbar is associated with another widget and used to change its view, the

communication between the scrollbar and the associated widget is controlled by two

options, one for the associated widget and one for the scrollbar. In normal usage, each of

these options invokes a widget command for the other widget.

The associated widget must inform the scrollbar about what it is currently displaying,

so that the scrollbar can display the slider in the correct position. To do this, the scrollbar

provides a widget command of the following form:

window set totalUnits windowUnits first last

Window is the name of the scrollbar widget (i.e. the name of the widget command for the

scrollbar). TotalUnits indicates the total size of the information being displayed in the

associated widget in the dimension being scrolled, such as the number of lines in a listbox

or the number of characters in a text entry. WindowUnits indicates how much of the

information can be displayed in the widget at one time given the current size of its win-

dow, and first and last give the indices of the top and bottom elements currently vis-

ible in the widget’s window (for horizontal scrollbars first and last refer to the

leftmost and rightmost visible elements).

The associated widget invokes the scrollbar’s set command whenever information

of interest to the scrollbar changes in the widget. To do this, scrollable widgets provide a

-xScrollCommand option if they support horizontal scrolling and a

-yScrollCommand option if they support vertical scrolling. For example, a listbox

might be created with a vertical scrollbar using the following commands:

listbox .l -yscrollcommand {.vscroll set}

scrollbar .vscroll -orient vertical

pack .l -side left

pack .vscroll -side right

170 Configuration Options

DRAFT (3/11/93): Distribution Restricted

The value of the -yscrollcommand option is a Tcl command prefix. When the view in

the listbox changes (e.g. because elements were deleted), the listbox takes the value of the

-yscrollcommand option (“.vscroll set” in this case) and appends four integer

values corresponding the the totalUnits, windowUnits, first, and last argu-

ments described above. This will produce a Tcl command such as

.vscroll set 100 20 38 57

Then the listbox invokes the command, which causes the scrollbar to redraw its slider to

reflect the new view. If horizontal scrolling is desired for the listbox as well, an additional

scrollbar could be created and a -xscrollcommand option could be specified for the

listbox.

A similar form of communication is used by the scrollbar to notify the associated wid-

get when the user manipulates the scrollbar to request a new view. Each scrollbar provides

a -command option, which specifies a Tcl command prefix for communicating new views

to the associated widget. It can be set for the .vscroll widget above using the follow-

ing command:

.vscroll config -command {.l yview}

Then when the user clicks in the scrollbar to change the view the scrollbar takes the

-command option and appends the index of the element that should now appear at the top

of the window. The result is a command like the following:

.l yview 39

The scrollbar widget then invokes this command. Listboxes and other widgets that support

scrolling provide a yview widget command with exactly the above syntax that causes the

widget to adjust its view. After adjusting its view, the listbox uses its -yscrollcom-

mand option to notify the scrollbar of the new view so the scrollbar can redraw its slider.

This scheme has the advantage that neither widget needs any built-in information

about the other; both the name of the other widget and the widget command to invoke are

provided with options that can be configured by the application designer. In fact, the com-

mand options need not even correspond to widget commands. For example, a single

scrollbar could be made to control two widgets simultaneously by using a Tcl procedure

name as its -command option:

.vscroll config -command scrollProc

proc scrollProc index {

.l yview $index

.l2 yview $index

}

Then the commands invoked by the scrollbar will look like

scrollProc 39

and scrollProc will invoke yview widget commands in each of the two associated

widgets.

16.10 Variables 171

DRAFT (3/11/93): Distribution Restricted

16.10 Variables

Another common form for options is variable names. These options are used to associate

one or more Tcl global variables with a widget so that the widget can set the variable

under certain conditions or monitor its value and react to changes in the variable.

For example, many of the widgets that display text, such as labels and buttons and

messages and entries, support a -textvariable option. The value of the option is the

name of a global variable that contains the text to display in the widget. The widget moni-

tors the value of the variable and updates the display whenever the variable changes value.

In addition, for widgets like entries that can modify their text, the widget updates the vari-

able to track changes made by the user.

Checkbuttons and radiobuttons also support a -variable option, which contains

the name of a global variable. For checkbuttons there are two additional options

(-onvalue and -offvalue) that specify values to store in the variable when the

checkbutton is “on” and “off.” As the user clicks on the checkbutton with the mouse, it

updates the variable to reflect the checkbutton’s state. The checkbutton also monitors the

value of the variable and changes its on/off state if the variable’s value is changed exter-

nally. Each checkbutton typically has its own variable.

With radiobuttons a group of widgets shares the same variable but each radiobutton

has a distinct value that it stores into the variable (the -value option). When the user

clicks on a radiobutton it sets the variable to its value and selects itself. The radiobutton

monitors the variable so that it can deselect itself when some other radiobutton stores a

different value into the variable. If the variable’s value is changed externally then all of the

radiobuttons associated with the variable update their selected/deselected state to reflect

the variable’s new value.

16.11 Time intervals

Several widget classes provide options that specify time intervals, such as the blink rate

for the insertion cursor or the rate at which mouse buttons should auto-repeat. Table 16.4

summarizes the most commonly used options for specifying intervals. Time intervals are

always specified as integer numbers of milliseconds: an interval of 100 means 100ms,

1000 means one second, and so on.

16.12 The configure widget command

Every widget class supports a configure widget command. This command comes in

three forms, which can be used both to change the values of options and also to retrieve

information about the widget’s options. See Table 16.1 for a summary of these forms.

172 Configuration Options

DRAFT (3/11/93): Distribution Restricted

If configure is given two additional arguments then it changes the value of an

option as in the following example:

.button configure -text Quit

If the configure widget command is given just one extra argument then it returns

information about the named option. The return value is normally a list with five elements:

.button configure -text

-text text Text { } Quit

The first element of the list is the name of the option as you’d specify it on a Tcl command

line when creating or configuring a widget. The second and third elements are a name and

class to use for looking up the option in the option database (see Section 16.13 below).

The fourth element is the default value provided by the widget class (a single space char-

acter in the above example), and the fifth element is the current value of the option.

Some widget options are just synonyms for other options (e.g. the -bg option for but-

tons is the same as the -background option). Configuration information for a synonym

is returned as a list with two elements consisting of the option’s command-line name and

the option database name of its synonym:

.button configure -bg

-bg background

If the configure widget command is invoked with no additional arguments then it

returns information about all of the widget’s options as a list of lists with one sub-list for

each option:

Table 16.4. Commonly-used time interval options. The left column gives the name of the option as
specified in widget creation commands and configure widget commands. The right column
describes how the option is used.

Name on

Command Line
Usage

-insertoffTime How long to leave insertion cursor turned off in
each blink cycle. Zero means cursor doesn’t blink.

-insertOnTime How long to leave insertion cursor turned on in
each blink cycle.

-repeatDelay How long to wait before auto-repeating a button or
keystroke.

-repeatInterval Once auto-repeat starts, how long to wait from one
auto-repeat to the next.

16.13 The option database 173

DRAFT (3/11/93): Distribution Restricted

.button configure

{-activebackground activeBackground Foreground Black

Black} {-activeforeground activeForeground Background

White White} {-anchor anchor Anchor center center}

{-background background Background White White} {-bd

borderWidth} {-bg background} {-bitmap bitmap Bitmap {}

{}} {-borderwidth borderWidth BorderWidth 2 2} {-command

command Command {} {}} {-cursor cursor Cursor {} {}}

{-disabledforeground disabledForeground

DisabledForeground {} {}} {-fg foreground} {-font font

Font -Adobe-Helvetica-Bold-R-Normal-*-120-* -Adobe-

Helvetica-Bold-R-Normal-*-120-*} {-foreground

foreground Foreground Black Black} {-height height

Height 0 0} {-padx padX Pad 1 1} {-pady padY Pad 1 1}

{-relief relief Relief raised raised} {-state state

State normal normal} {-text text Text { } Quit}

{-textvariable textVariable Variable {} {}} {-width

width Width 0 0}

16.13 The option database

The option database supplies values for configuration options that aren’t specified explic-

itly by the application designer. The option database is consulted when widgets are cre-

ated: for each option not specified on the command line, the widget queries the option

database and uses the value found there, if any. If there is no value in the option database

then the widget supplies a default value. Values in the option database are usually pro-

vided by the user to personalize applications, e.g. by using consistently larger fonts. Tk

supports the RESOURCE_MANAGER property and .Xdefaults file in the same way as

other X toolkits like Xt.

16.13.1 Patterns

The option database contains any number of entries, where each entry consists of two

strings: a pattern and a value. The pattern determines whether the entry applies to a given

option for a given widget, and the value is a string to use for options that match the pat-

tern.

In its simplest form, a pattern consists of an application name, a window name, and an

option name, all separated by dots. For example, here are two options in this form:

wish.a.b.foreground

wish.background

174 Configuration Options

DRAFT (3/11/93): Distribution Restricted

The first pattern applies to the foreground option in the window .a.b in the applica-

tion wish, and the second pattern applies to the background option in the main win-

dow for wish. Each of these patterns applies to only a single option for a single widget.

Patterns may also contain classes or wildcards, which allow them to match many dif-

ferent options or widgets. Any of the window names in the pattern may be replaced by a

class, in which case the pattern matches any widget that is an instance of that class. For

example, the pattern below applies to all children of .a that are buttons:

wish.a.Button.foreground

Application and option names may also be replaced with classes. The class for an applica-

tion is the class of its main window; names and classes for applications are discussed in

more detail in Chapter 22. Individual options also have classes. For example, the class for

the foreground option is Foreground. Several other options, such as active-

Background and insertBackground, also have the class Foregound, so the fol-

lowing pattern applies to any of these options for any button widget that is a child of .a in

wish:

wish.a.Button.Foreground

Lastly, patterns may contain * wildcard characters. A * matches any number of win-

dow names or classes, as in the following examples:

*Foreground

wish*Button.foreground

The first pattern applies to any option in any widget of any application as long as the

option’s class is Foreground. The second pattern applies to the foreground option

of any button widget in the wish application. The * wildcard may only be used for win-

dow or application names; it cannot be used for the option name (it wouldn’t make much

sense to specify the same value for all options of a widget).

This syntax for patterns is the same as that supported by the standard X resource data-

base mechanisms in the X11R3 and X11R4 releases. The ? wildcard, which was added in

the X11R5 release, is not yet supported by Tk’s option database.

In order to support the above matching rules, each option has three names:

1. the name that can be typed on a command line, which always starts with a - and has no

upper-case letters, as in -activeborderwidth;

2. the name of the option in the database, which is typically the same as the command-line

name except that it contains no - and uses capital letters to mark internal word bound-

aries, as in activeBorderWidth;

3. the class of the option, which always starts with a capital letter and may contain addi-

tional capital letters to mark internal boundaries, as in BorderWidth.

When you query an option with the configure widget command all three of these

names are returned. It’s important to remember that in Tk classes always start with an ini-

tial capital letter, and any name starting with an initial capital letter is assumed to be a

class.

16.13 The option database 175

DRAFT (3/11/93): Distribution Restricted

16.13.2 RESOURCE_MANAGER property and .Xdefaults file

When a Tk application starts up, Tk automatically initializes the option database. If there

is a RESOURCE_MANAGER property on the root window, then the database is initialized

from it. Otherwise Tk checks the user’s home directory for a .Xdefaults file and uses

it if it exists. The initialization information has the same form whether it comes from the

RESOURCE_MANAGER property or the .Xdefaults file. The syntax described below is

the same as that supported by other toolkits such as Xt.

Each line of the initialization data specifies one entry in the resource database in a

form like the following:

*Foreground: blue

The line consists of a pattern (*Foreground in the example) followed by a colon fol-

lowed by whitespace and then a value to associate with that pattern (blue in the exam-

ple). If the value is too long to fit on one line then it can be placed on multiple lines with

each line but the last ending in a backslash-newline sequence:

*Gizmo.text: This is a very long initial \

value to use for the text option in all \

"Gizmo" widgets.

The backslashes and newlines will not be part of the value.

Blank lines are ignored, as are lines whose first non-blank character is # or !.

16.13.3 Priorities

It is possible for several patterns in the option database to match a particular option. When

this happens Tk uses a two-part priority scheme to determine which pattern applies. Tk’s

mechanism for resolving conflicts is different than the standard mechanism supported by

the Tk toolkit, but I think it’s simpler and easier to work with.

For the most part the priority of an option in the database is determined by the order in

which it was entered into the database: newer options take priority over older ones. When

specifying options (e.g. by typing them into your .Xdefaults file) you should specify

the more general options first, with more specific overrides following later. For example, if

you want button widgets to have a background color of Bisque1 and all other widgets to

have white backgrounds, then put the following lines in your .Xdefaults file:

*background: white

*Button.background: Bisque1

The *background pattern will match any option that the *Button.background

pattern matches, but the *Button.background pattern has higher priority since it was

specified last. If the order of the patterns had been reversed then all widgets (including

buttons) would have white backgrounds and the *Button.background pattern would

have no effect.

In some cases it may not be possible to specify general patterns before specific ones

(e.g. you might add a more general pattern to the option database after it has already been

176 Configuration Options

DRAFT (3/11/93): Distribution Restricted

initialized with a number of specific patterns from the RESOURCE_MANAGER property).

To accommodate these situations, each entry also has an integer priority level between 0

and 100, inclusive. An entry with a higher priority level takes precedence over entries with

lower priority levels, regardless of the order in which they were inserted into the option

database. Priority levels are not used very often in Tk; for complete details on how they

work, please refer to the reference documentation.

Tk’s priority scheme is different that the scheme used by other X toolkits such as Xt.

Xt gives higher priority to the most specific pattern, e.g. .a.b.foreground is more

specific than *foreground so it receives higher priority regardless of the order in which

the patterns appear. In most cases this won’t be a problem: specify options for Xt applica-

tions using the Xt rules, and for Tk applications using the Tk rules. In cases where you

want to specify options that apply both to Tk applications and Xt applications, use the Xt

rules but also make sure that the patterns considered higher-priority by Xt also appear later

in your .Xdefaults file. In general, you shouldn’t need to specify very many options to

Tk applications (if you do, it suggests that the applications haven’t been designed well), so

the issue of pattern priority shouldn’t come up often.

It’s important to remember that the option database is only queried for options not

specified explicitly in the widget creation command. This means that the user will not be

able to override any option that was specified on the command line. If you want to specify

a value for an option but allow the user to override that value through the

RESOURCE_MANAGER property, you should specify the value for the option using the

option command described below.

16.13.4 The option command

The option command allows you to manipulate the option database while an application

is running. The command option add will create a new entry in the database. It takes

two or three arguments. The first two arguments are the pattern and value for the new

entry and the third argument, if specified, is a priority level for the new entry. For example,

option add *Button.background Bisque1

adds an entry that sets the background color for all button widgets to Bisque1.

The command

option clear

will remove all entries from the option database. The option readfile command

will read a file in the format described above for the RESOURCE_MANAGER property and

make entries in the option database for each line. For example, the following script dis-

cards any existing options (including those loaded automatically from the

RESOURCE_MANAGER property) and reloads the database from file newOptions:

option clear

option readfile newOptions

16.13 The option database 177

DRAFT (3/11/93): Distribution Restricted

The option readfile command can also be given a priority level as an extra argu-

ment after the file name.

To query whether there is an entry in the option database that applies to a particular

option, use the option get command:

option get .a.b background Background

This command takes three arguments, which are the path name of a widget (.a.b), the

database name for an option (background) and the class for that option

(Background). The command will search the option database to see if any entries match

the given window, option, and class. If so, the value of the highest-priority matching

option is returned. If no entry matches then an empty string is returned.

178 Configuration Options

DRAFT (3/11/93): Distribution Restricted

179

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the author or pub-

lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher

does not offer warranties in regard to this draft.

Chapter 17

Geometry Managers: The Placer

Geometry managers are the entities that determine the dimensions and locations of wid-

gets. Tk is similar to other X11 toolkits in that it doesn’t allow individual widgets to deter-

mine their own geometry. A widget will not even appear on the screen unless it is

managed by a geometry manager. This separation of geometry management from internal

widget behavior allows multiple geometry managers to exist simultaneously and it allows

any widget to be used with any geometry manager. If widgets selected their own geometry

then this flexibility would be lost: every existing widget would have to be modified to

introduce a new style of layout.

This chapter describes the overall structure for geometry management and then pre-

sents the placer, which is Tk’s simplest geometry manager . The placer manages windows

independently without considering other related windows, so it isn’t very flexible in the

layouts it produces. Because of this, the placer tends to be used only in special situations.

Chapter 18 describes a more powerful geometry manager called the packer. The packer

lays out groups of windows together, considering the needs of each of the windows when

laying out the group. This produces more flexible layouts but also makes the packer harder

to understand.

17.1 An overview of geometry management

A geometry manager’s job is to arrange one or more slave windows relative to a master

window. For example, it might arrange three slaves in a row from left to right across the

area of the master, or it might arrange two slaves so that they split the space of the master

with one slave occupying the top half and the other occupying the bottom half. Different

FIGURE 17

TABLE 17

180 Geometry Managers: The Placer

DRAFT (3/11/93): Distribution Restricted

geometry managers embody different styles of layout. The master is often the parent of the

slave but there are times when it’s convenient to use other windows as masters (you’ll see

examples of this later).

A geometry manager receives three sorts of information for its use in computing a

layout (see Figure 17.1). First, each slave widget requests a particular width and height.

These are usually the minimum dimensions needed by the widget to display its informa-

tion. For example, a button widget requests a size just large enough to display its text or

bitmap along with the border specified for the widget. Although geometry managers aren’t

obliged to satisfy the requests made by their slave widgets, they usually do.

The second kind of input for a geometry manager comes from the application

designer and is used to control the layout algorithm. The nature of this information varies

from geometry manager to geometry manager. In some cases the information is very spe-

cific. For example, with the placer an application designer can specify the precise location

and dimensions for a given slave; all the placer does is to apply the given geomety to the

slave window. In other cases the information is more abstract. For example, with the

packer an application designer can name three slaves and request that they be arranged in

a row from left to right within the master; the packer will then check the requested sizes of

the slaves and position them so that they abut in a row, with each slave given just as much

space as it needs.

The third kind of information used by geometry managers is the geometry of the mas-

ter window. For example, the geometry manager might position a slave at the lower left

Geometry
Manager

Geometry ofParameters from
application designer

Requested size
from slave master

Size and location
of slave

Requested size
for master

Figure 17.1. A geometry manager receives three kinds of inputs: a requested size for each slave
(which usually reflects the information to be displayed in the slave), commands from the application
designer (such as “arrange these three windows in a row”), and the actual geometry of the master
window. The geometry manager then assigns a size and location to each slave. It may also set the
requested size for the master window, which can be used by a higher-level geometry manager to
manager the master.

17.1 An overview of geometry management 181

DRAFT (3/11/93): Distribution Restricted

corner of its master, or it might divide the space of the master among one or more slaves,

or it might refuse to display a slave altogether if it doesn’t fit within the area of its master.

Once it has received all of the above information, the geometry manager executes a

layout algorithm to determine the dimensions and position of each of its slaves. If the size

of a widget isn’t what it requested then the widget must make do in the best way it can.

Geometry managers usually try to give widgets the space they requested, but they may

produce better layouts by giving widgets extra space in some situations. If there isn’t

enough space in a master for all of its slaves, then some of the slaves may get less space

than they asked for. In extreme cases the geometry manager may choose not to display

some slaves at all.

The controlling information for geometry management may change while an applica-

tion runs. For example, a button might be reconfigured with a different font or bitmap, in

which case it will change its requested dimensions. Or, the geometry manager might be

told to use a different approach (e.g., arrange a collection of windows from top to bottom

instead of left to right) or some of the slave windows might be deleted, or the user might

interactively resize the master window. When any of these things happens the geometry

manager recomputes the layout.

Some geometry managers (e.g. the packer) will set the requested size for the master

window. For example, the packer computes how much space is needed in the master to

accommodate all of its slaves in the fashion requested by the application designer. It then

sets the requested size for the master to these dimensions, overriding any request made by

the master widget itself. This approach allows for hierarchical geometry management,

where each master is itself the slave of another higher-level master. Size requests pass up

through the hierarchy from each slave to its master, resulting ultimately in a size request

for a top-level window, which is passed to the window manager. Then actual geometry

information passes down through the hierarchy, with the geometry manager at each level

accepting the geometry of a master and using it to compute the geometry of one or more

slaves. As a result, the entire hierarchy sizes itself to just meet the needs of the lowest-

level slaves (the master windows “shrink-wrap” around their slaves).

Each widget can be managed by at most one geometry manager at a time, although it

is possible to switch geometry managers during the life of a slave. A widget can act as

master to any number of slaves, and it is even possible for different geometry managers to

control different groups of slaves associated with the same master. A single geometry

manager can simultaneously manage different groups of slaves associated with different

masters.

Only internal windows may be slaves for geometry management. The techniques

described here do not apply to top-level or main windows. These windows are managed

by the window manager for the display; see Chapter 22 for information on how to control

their geometry.

182 Geometry Managers: The Placer

DRAFT (3/11/93): Distribution Restricted

17.2 Controlling positions with the placer

The placer is a simple geometry manager that implements fixed placements. The applica-

tion designer specifies the position and size of each slave relative to its master, and the

placer simply implements the requested placement. The placer treats each slave indepen-

dently, so changes in the placement of one slave have no effect on any other slave.

The place command is used to communicate with the placer; see Table 17.1 for a

summary of its features. In its simplest form its arguments consist of a window name and

one or more configuration options specified as name-value pairs:

place .x -x 0 -y 0

This command positions window .x so that its upper-left corner appears at the upper-left

corner of its master, which defaults to its parent. The placer supports about a dozen config-

uration options in all; Table 17.2 summarizes the options and Figure 17.2 shows some

examples of using the placer.

The placer determines the position of a slave window in two steps. First, it uses the

-x, -y, -relx, and -rely options to choose an anchor point, then it positions the slave

relative to that anchor point using the -anchor option. The anchor point is specified rel-

ative to the upper left corner of the master window. If the -x and -y options are used then

the position is given with absolute distances in any of the forms described in Section 16.3.

If the -relx and -rely options are used then the position is specified as a fraction of the

size of the master; for example, “-relx .75” specifies that the anchor point should lie

Table 17.1. A summary of the place command.

place window option value ?option value ...?
Same as place configure command described below.

place configure window option value ?option value ...?
Arranges for the placer to manage the geometry of window. The option
and value arguments determine the dimensions and position of window.

place dependents window
Returns a list whose elements are the slave windows managed by the placer
for which window is the master.

place forget window
Causes the placer to stop managing window and unmap it from the screen.
Has no effect if window isn’t currently managed by the placer.

place info window
Returns a list giving the current configuration of window. The list consists
of option-value pairs in exactly the same form as might be specified to
the place configure command. Returns an empty string if window
isn’t currently managed by the placer.

17.2 Controlling positions with the placer 183

DRAFT (3/11/93): Distribution Restricted

Table 17.2. A summary of the configuration options supported by the placer.

-x distance
Specifies the horizontal distance of the slave’s anchor point from the left
edge of its master.

-y distance
Specifies the vertical distance of the slave’s anchor point from the top edge
of its master.

-relx fraction
Specifies the horizontal position of the slave’s anchor point in a relative fash-
ion as a floating-point number. If fraction is 0.0 it refers to the master’s
left edge, and 1.0 refers to the right edge. Fraction need not lie between
0.0 and 1.0.

-rely fraction
Specifies the vertical position of the slave’s anchor point in a relative fashion
as a floating-point number. If fraction is 0.0 it refers to the master’s top
edge, and 1.0 refers to the bottom edge. Fraction need not lie between
0.0 and 1.0.

-anchor anchor
Specifies which point on the slave window is to be positioned over the
anchor point.

-width distance
Specifies the width of the slave.

-height distance
Specifies the height of the slave.

-relwidth fraction
Specifies the slave’s width as a fraction of the width of its master.

-relheight fraction
Specifies the slave’s height as a fraction of the height of its master.

-in window
Specifies the master window for the slave. Must be the slave’s parent or a
descendant of the parent.

-bordermode mode
Specifies how the master’s borders are to be used in placing the slave. Mode
must be inside, outside, or ignore.

184 Geometry Managers: The Placer

DRAFT (3/11/93): Distribution Restricted

three-fourths of the way from the left edge of the master to its right edge. These forms can

be mixed for a given slave, as in Figure 17.2(b).

The -anchor option indicates which point on the slave window should be posi-

tioned over the anchor point. It can have any of the anchor names described in Section

16.8. For example, an anchor position of s positions the slave so that the center of its bot-

tom edge lies over the anchor point.

It is possible to position a slave outside the area of its master, for example by giving a

negative -x option or a -rely option greater than 1.0. However, X clips each window to

the dimensions of its parent, so the portions of the slave that lie outside its parent will not

place .x -x 0 -y 0 place .x -relx 0.5 -y 1c \

place .x -relx 0.5 -rely 0.5 \ place .x -relx 0 -rely 0.5 \

-anchor center -height 3c relwidth 0.5 -relheight 0.5

-anchor n

(a) (b)

(d)(c)

Figure 17.2. Examples of using the placer to manage a window. Each figure shows a place
command and the layout that results. The larger window is the master and the smaller shaded
window is .x, the slave being managed. In (a) and (b) the slave is given the size it requested. In (c)
the height of the slave is specified in the place command, and in (d) both the width and height of
the slave are specified in the place command.

17.3 Controlling the size of a slave 185

DRAFT (3/11/93): Distribution Restricted

appear on the screen. In the normal case where the parent is the master it probably isn’t

very useful to position the slave outside its master. However, if the master is a sibling or

nephew of the slave then the slave can be positioned outside its master and still be visible

on the screen. See Section 17.4 for information on changing the master window.

17.3 Controlling the size of a slave

By default, a slave window managed by the placer is given the size it requests. However,

the -width, -height, -relwidth, and -relheight options may be used to over-

ride either or both of the slave’s requested dimensions. The -width and -height

options specify the dimensions in absolute terms, and -relwidth and -relheight

specify the dimensions as a fraction of the size of the master. For example, the following

command sets the width of .x to 50 pixels and the height to half the height of its master:

place .x -width 50 -relheight 0.5

17.4 Selecting the master window

In most cases the master window for a given slave will be its parent in the window hierar-

chy. If no master is specified, the placer uses the parent by default. However, it is some-

times useful to use a different window as the master for a slave. For example, it might be

useful to attach one window to a sibling so that whenever the sibling is moved the window

will follow. This can be accomplished using the -in configuration option. For example,

the following command arranges for .x always to be displayed with its upper-left corner

“glued” to the upper right corner of .y:

place .x -in .y -relx 1.0 -rely 0

In this example, .x won’t actually be “in” .y; .y will be .x’s master and .x will be dis-

played outside .y but adjacent to it.

Note: The master for a slave must be either the parent of the slave or a descendant of the parent.
The reason for this restriction has to do with X’s clipping rules. Each window is clipped to
the boundaries of its parent; no portion of a child that lies outside of its parent will be
displayed. Tk’s restriction on master windows gurantees that the slave will be visible and
unclipped if its master is visible and unclipped. Suppose that the restriction were not
enforced, so that window .x.y could have .a as its master. Suppose also that .a and .x
do not overlap at all. If you asked the placer to position .x.y at the center of .a, the
placer would set .x.y’s position as requested, but this would cause .x.y to be outside
the area of .x so X would not display it, even though .a is fully visible. This behavior
would be confusing to application designers so Tk restricts mastership to keep it from
occurring. The restriction applies to all of Tk’s geometry managers.

186 Geometry Managers: The Placer

DRAFT (3/11/93): Distribution Restricted

17.5 Border modes

The last configuration option for the placer is -bordermode; it determines how the mas-

ters borders are used in placing the slave, and it must have one of the values inside,

outside, or ignore. A border mode of inside is typically used when placing the

slave inside the master, and it is the default. In this case, the placer considers the area of

the master to be its innermost area, inside any borders. The anchor point is specified rela-

tive to the upper-left corner of this area, and the -relx, -rely, -relwidth, and

-relheight options use the dimensions of this inner area.

A border mode of outside is typically used when positioning the slave outside the

area of its master. In this case the placer considers the area of the master to be its outer-

most area including all borders.

The final border mode, ignore, causes the placer to completely ignore any borders

and use the master’s official X area. This area includes the 3D borders drawn by widgets,

which are drawn inside a window’s X area, but excludes any external borders. The

ignore option is provided for completeness but probably isn’t very useful.

17.6 More on the place command

So far the place command has been discussed in its simplest form, where its first argu-

ment is the name of a slave window to manage. Place also has several other forms,

where the first argument selects a particular command option. Place configure has

the same effect as the short form that’s been used so far. For example, the following two

commands have the same effect:

place .x -x 0 -y 0

place configure .x -x 0 -y 0

Place configure (or place without a specific option) can be invoked at any time to

change the configuration of a slave window. When invoked on a window already managed

by the placer, unspecified options retain their previous values.

The command place dependents returns a list of all the slave windows man-

aged by the placer for a given master window:

place dependents .

.x .y .z

Place info returns information about the current configuration of a slave window

managed by the placer:

place info .x

-x 0 -y 0 -anchor nw

17.7 Controlling the size of the master 187

DRAFT (3/11/93): Distribution Restricted

The return value is a list containing name-value pairs in exactly the same form that you

would specify them to place configure. It can be used to record the placement of a

window so that it can be restored later.

Lastly, place forget causes the placer to stop managing a given slave window:

place forget .x

As a side effect, it unmaps the window so that it no longer appears on the screen. Place

forget is useful if you decide that a window should be managed by a different geometry

manager: you can tell the placer to forget it, then ask a different geometry manager to take

over. You don’t need to invoke place forget before deleting a widget: the placer (like

all geometry managers) automatically forgets about widgets when they are deleted.

17.7 Controlling the size of the master

Although it is possible for a geometry manager to set the requested size for the master

windows it manages, the placer does not do this. It simply uses whatever size is provided

for a given master, without attempting to influence that size at all. Thus you’ll need to use

some other mechanism to specify the master’s size (e.g. if the master is a frame widget

you can request particular dimensions with the -width and -height configuration

options).

188 Geometry Managers: The Placer

DRAFT (3/11/93): Distribution Restricted

189

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the author or pub-

lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher

does not offer warranties in regard to this draft.

Chapter 18

The Packer

The packer is the second geometry manager provided by Tk. Although it is slightly more

complicated than the placer described in Chapter 17, it is more powerful because it

arranges groups of slaves together, taking into account the needs of one slave when choos-

ing the geometry for the others. With the packer it is easy to achieve effects such as

“arrange the following three windows in a row” or “put the menu bar across the top of the

window, then the scrollbar across the right side, then fill the remaining space with a text

widget.” Because of this, the packer is much more commonly used than the placer, and the

placer tends to be used only for special purposes. The pack command, summarized in

Table 18.1, is used to communicate with the packer.

Note: The pack command syntax described in this chapter is what will eventually exist in a
future release of Tk. No existing release supports this syntax. The current Tk release
provides essentially all of the features described in this chapter but with a clumsier syntax.
The only difference in features has to do with padding. Please refer to the manual entry for
the pack command before writing any scripts that use it.

18.1 Packer basics

The packer maintains a list of all the slaves for a given master window, called the packing

list. The packer arranges the slaves by processing the packing list in order, packing one

slave in each step. At the time a particular slave is processed, part of the area of the master

window has already been allocated to earlier slaves on the list, leaving a rectangular unal-

located area left for this and all remaining slaves, as shown in Figure 18.1(a). The slave is

positioned in three steps: allocate a frame, stretch the slave, and position it in the frame.

FIGURE 18

TABLE 18

190 The Packer

DRAFT (3/11/93): Distribution Restricted

In the first step a rectangular region called a frame is allocated from the available

space. This is done by “slicing” off a piece along one side of the available space. For

example, in Figure 18.1(b) the frame has been sliced from the right side of the available

space. The packer allows you to control the width of the frame (if it is on the left or right)

or the height of the frame (if it is on the top or bottom) and which side to slice it from. By

default, the controllable dimension of the frame is taken from the window’s requested size

in that dimension.

In the second step the packer chooses the dimensions of the slave. By default the

slave will get the size it requested, but you can specify instead that it should be stretched in

one or both dimensions to fill the space of the frame. If the slave’s requested size is larger

than the frame then it is reduced to fit the size of the frame. In Figure 18.1(c) the slave has

been stretched horizontally but not vertically.

The third step is to position the slave inside its frame. If the slave is smaller than the

frame then you can specify an anchor position for the slave such as n, s, or center. In

Figure 18.1(c) the slave has been positioned in the center of the frame, which is the

default.

Once the slave has been positioned, a smaller rectangular region is left for the next

slave to use, as shown in Figure 18.1(d). If a slave doesn’t use all of the space in its frame,

as in Figure 18.1, the leftover space is unused; it won’t be used for later slaves. Thus each

step in the packing starts with a rectangular region of available space and ends up with a

smaller rectangular region.

Table 18.1. A summary of the pack command.

pack window ?window ...? option value ?option value ...?
Same as pack configure command described below.

pack configure window ?window ...? option value ?option value ...?
Arrange for the packer to manage the geometry of the windows. The
option and value arguments provide information that determines the
dimensions and position of the windows.

pack forget window
Causes the packer to stop managing window and unmap it from the screen.
Has no effect if window isn’t currently managed by the packer. Returns an
empty string.

pack info window
Returns a list giving the current configuration of window. The list consists
of option-value pairs in exactly the same form as might be specified to
the pack configure command. Returns an empty string if window isn’t
currently managed by the packer.

pack slaves window
Returns a list of the slaves on window’s packing list, in order.

18.1 Packer basics 191

DRAFT (3/11/93): Distribution Restricted

The pack command is used to communicate with the packer. In its simplest form, a

pack command takes one or more window names as arguments, followed by one or more

pairs of additional arguments that indicate how to manage the windows. For example, con-

sider the following command:

pack .ok .cancel .help -side left

This command asks the packer to manage .ok, .cancel, and .help as slaves and to

pack them in that order. The master for the slaves defaults to their parent. The “-side

left” option indicates that the frame for each slave should be allocated on the left side of

the available space. By default, the frame for each slave is allocated just wide enough for

the slave’s requested width, and the slave is centered in its frame without any stretching.

The result is that the slaves will be arranged in a row from left to right across the master,

as shown in Figure 18.2 (b).

Master Slave

Available
Space

(a) (b)

(c) (d)

Frame for
Slave

Figure 18.1. The steps taken to pack a single slave. Figure (a) shows the situation before packing a
slave. Part of the master’s area has already been allocated for previous slaves, and a rectangular
region is left for the remaining slaves. The current slave is shown in its requested size. The packer
allocates a frame for the slave along one side of the available space, as shown in (b). The packer may
stretch the slave to partially or completely fill the frame, then it positions the slave over the frame as
in (c). This leaves a smaller rectangular region for the next slave to use, as shown in (d).

Available
Space for

Next Slave

192 The Packer

DRAFT (3/11/93): Distribution Restricted

The result in Figure 18.2(b) assumes that the master window is fixed in size. How-

ever, this isn’t usually the case. As part of its layout computation the packer computes the

minimum dimensions the master would need so that all of its slaves just barely fit, and it

sets the requested size of the master to those dimensions. In most cases the geometry man-

ager for the master will set the master’s size from those dimensions, so that the master

“shrink wraps” around the slaves. For example, top-level windows resize themsleves to

their requested dimensions unless other directions have been given with the wm command

described in Chapter 22. Thus the result from the pack command above is more likely to

be as shown in Figure 18.2(c). You can choose between the scenarios in Figure 18.2(b)

and Figure 18.2(c) with the way you manage the master’s geometry.

Figure 18.3 shows another simple packer example, which uses the following script to

arrange three windows:

pack .label -side top -fill x

pack .scrollbar -side right -fill y

pack .listbox

The three windows are configured differently so a separate pack command is used for

each one. The order of the pack commands determines the order of the windows in the

packing list. The .menubar widget is packed first, and it occupies the top part of the

master window. The “-fill x” option specifies that the window should be stretched

horizontally so that it fills its frame. The scrollbar widget is packed next, in a similar fash-

ion except that it is arranged against the right side of the window and stretched vertically.

The widget .listbox is packed last. No options need to be specified for .listbox: it

gets all the remaining space regardless of which side it is packed against.

Figure 18.2. A simple example of packing. Figure (a) shows a master window and the requested
sizes for three slaves. Figure (b) shows the arrangement that is produced by the command “pack
.ok .cancel .help -side left” if the master’s size is fixed. In most cases, however, the
master will resize so that it just meets the needs of its slaves, producing the result in (c).

(a) (b) (c)

.ok .cancel.help

.

18.2 Packer configuration options 193

DRAFT (3/11/93): Distribution Restricted

18.2 Packer configuration options

The examples in the previous section illustrated a few of the configuration options pro-

vided by the packer; Table 18.2 contains a complete listing. The options fall into three

groups: those that determine the location and size of a slave’s frame; those that determine

the size and position of the slave within its frame; and those that select a master for the

slave and determine the slave’s position in the master’s packing list.

The location of a slave’s frame is determined by the -side option as already dis-

cussed. For slaves packed on the top or bottom, the width of the frame is always the width

of the available space left in the master. The height of the frame is usually the requested

height of the slave; however, the options -padx, -ipadx, -pady, and -ipady cause

the packer to pretend that the slave’s requested size is larger than what the slave specified.

Slaves packed on the left and right sides are handled in an analogous fashion.

Figure 18.3. Another packer example. Figure (a) shows a master window (.) and the requested
sizes for three slaves. Figure (b) shows the result of packing the slaves with the script

pack .label -side top -fill x
pack .scrollbar -side right -fill y
pack .listbox

under the assumption that the master window resizes to just meet the needs of its slaves.

.scrollbar.label.

.listbox

(a) (b)

194 The Packer

DRAFT (3/11/93): Distribution Restricted

Table 18.2. A summary of the configuration options supported by the packer.

-after window
Use window’s master as the master for the slave and insert the slave into the
packing list just after window.

-anchor position
If the frame is larger than the slave’s final size, this option determines where
in the frame the slave will be positioned.

-before window
Use window’s master as the master for the slave and insert the slave into the
packing list just before window.

-expand boolean
If boolean is a true value then the slave’s frame will be grown to absorb
any extra space left over in the master.

-fill style
Specifies whether (and how) to grow the slave if its frame is larger than the
slave’s requested size. Style must be either none, x, y, or both.

-in window
Use window as the master for slave. Window must be the slave’s parent or a
descendant of the slave’s parent. If no master is specified then it defaults to
the slave’s parent.

-ipadx distance
Distance specifies internal padding for the slave, which is extra horizontal
space to allow inside the slave on each side, in addition to what the slave
requests.

-ipady distance
Distance specifies internal padding for the slave, which is extra vertical
space to allow inside the slave on each side, in addition to what the slave
requests.

-padx distance
Distance specifies external padding for the slave, which is extra horizon-
tal space to allow outside the slave but inside its frame on each side.

-pady distance
Distance specifies external padding for the slave, which is extra vertical
space to allow outside the slave but inside its frame on each side.

-side side
Side specifies which side of the master the slave should be packed against.
Must be top, bottom, left, or right.

18.2 Packer configuration options 195

DRAFT (3/11/93): Distribution Restricted

The -expand option allows a frame to absorb leftover space in the master. If the

master ends up with more space than its slaves need (e.g. because the user has interac-

tively stretched a top-level window), and if the -expand option has been set to true for

one of the slaves, then that slave’s frame will be expanded to use up all the extra horizontal

or vertical space (for left/right and top/bottom slaves, respectively). If multiple slaves

have the -expand option set, then the extra space is divided evenly among them. See

Figure 18.4 for an example that uses -expand and the padding options.

The size and location of a slave within its frame are determined by the -fill and

-anchor options in conjunction with the padding options. The -fill option can select

no filling, filling in a single direction, or filling in both directions. If internal padding has

been specified for a slave (-ipadx or -ipady) then the slave will be stretched by the

amount of the internal padding even if no filling has been requested in that dimension. If

external padding has been specified for a slave (-padx or -pady), then the packer will

leave the specified amount of space between the window and the edge of the frame even if

filling is requested.

If the final size of the slave is smaller than the frame, then the -anchor option con-

trols where to place the slave in the frame. This option may have any of the values

described in Section 16.8, such as nw to indicate that the northwest (upper-left) corner of

the slave should be positioned at the northwest corner of the frame. If external padding has

been specified with -padx or -pady, then nw really refers to a point inset from the cor-

ner of the frame by the pad amounts.

The third group of options, -in, -before, and -after, controls the master for a

slave and the position of the slave in the packing list. By default the master for a slave is

its parent and the order of slaves in the packing list is determined by the order of their

pack commands. However, the -in option may be used to specify a different master. As

Figure 18.4. An example of the padding and -expand options. When the pack command in the
figure is applied to the windows shown in Figure 18.2(a), the resulting layout is as shown in the
figure, assuming that the master’s size is fixed. Internal padding causes each window’s size to be
increased beyond what it requested, and the -expand option causes the extra space in the master to
be distributed among the slaves’ frames.

pack .ok .cancel .help -side left -ipadx 3m -ipady 2m -expand 1

196 The Packer

DRAFT (3/11/93): Distribution Restricted

with the placer, the master must be either the slave’s parent or a descendant of the slave’s

parent (see page 185 for an explanation of this restriction). The -before and -after

options allow you to control the order in which slaves are packed. When one of these

options is used, the master for the slave is automatically set to the master for the window

named in the option.

18.3 Hierarchical packing

The packer is often used in hierarchical arrangements where slave windows are also mas-

ters for other slaves. Figure 18.5 shows an example of hierarchical packing. The resulting

layout has a column of radio buttons on the left and a column of check buttons on the

right, with each group of buttons centered vertically in its column. To achieve this effect

two extra frame widgets, .left and .right, are packed side by side in the main win-

dow, then the buttons are packed inside them. The packer sets the requested sizes for

.left and .right to provide enough space for the buttons, then uses this information

to set the requested size for the main window. The main window’s geometry will be set to

the requested size, then the packer will arrange .left and .right inside the it, and

finally it will arrange the buttons inside .left and .right.

Figure 18.5 also illustrates why it is sometimes useful for a window’s master to be

different from its parent. It would have been possible to create the button windows as chil-

dren of .left and .right (e.g. .left.pts8 instead of .pts8) but it is better to cre-

ate them as children of . and then pack them inside .left and .right.The windows

.left and .right serve no purpose in the application except to help in geometry man-

agement. They are not even visible on the screen. If the buttons were children of their

geometry masters then changes to the geometry management (such as adding more levels

in the packing hierarchy) might require the button windows to be renamed and would

Figure 18.5. Hierarchical packing. The pack commands in (a) produce the layout shown in (b).
Two invisible frame widgets, .left and .right, are used to achieve the column effect.

pack .left -side left -padx 3m -pady 3m

pack .right -side right -padx 3m -pady 3m

pack .pts8 .pts10 .pts12 .pts18 .pts24 \

 -in .left -side top -anchor w

pack .bold .italic .underline \

 -in .right -side top -anchor w

(a) (b)

18.4 Other options to the pack command 197

DRAFT (3/11/93): Distribution Restricted

break any code that used the old names (such as entries in users’ .Xdefaults files). It is

better to give windows names that reflect their logical purpose in the application, build

separate frame hierarchies where needed for geometry management, and then pack the

functional windows into the frames.

18.4 Other options to the pack command

So far the pack command has been discussed in its most common form, where the first

argument is the name of a slave window and the other arguments specify configuration

options. Table 18.1 shows several other forms for the pack command, where the first

argument selects a particular command option. Pack configure has the same effect as

the short form that’s been used up until now: the remaining arguments specify windows

and configuration options. If pack configure (or the short form with no command

option) is applied to a window that is already managed by the packer, then the slave’s con-

figuration is modified; configuration options not specified in the pack command retain

their old values.

The command pack slaves returns a list of all of the slaves managed by the

packer for a given master window. The order of the slaves in the list reflects their order in

the packing list:

pack slaves .left

.pts8 .pts10 .pts12 .pts18 .pts24

Pack info returns all of the configuration options for a given slave:

pack info .pts8

-in .left -side top -anchor w

The return value is a list consisting of names and values for configuration options in

exactly the form you would specify them to pack configure. This command can be

used to save the state of a slave so that it can be restored later.

Lastly, pack forget causes the packer to stop managing one or more slaves and

forget all of its configuration state for them. It also unmaps the windows so that they no

longer appear on the screen. This command can be used to transfer control of a window

from one geometry manager to another, or simply to remove a window from the screen for

a while. If a forgotten window is itself a master for other slaves, the information about

those slaves is retained but the slaves won’t be displayed on the screen until the master

window becomes managed again.

198 The Packer

DRAFT (3/11/93): Distribution Restricted

199

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the author or pub-

lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher

does not offer warranties in regard to this draft.

Chapter 19

Bindings

You have already seen that Tcl scripts can be associated with certain widgets such as but-

tons or menus so that the scripts are invoked whenever certain events occur, such as click-

ing a mouse button over a button widget. These mechanisms are provided as specific

features of specific widget classes. Tk also contains a general-purpose binding mechanism

that can be used to create additional event handlers for widgets. A binding “binds” a Tcl

script to an X event or sequence of X events in one or more windows; the script will be

invoked automatically by Tk whenever the given event sequence occurs in any of the win-

dows. You can create new bindings to extend the basic functions of a widget (e.g. with

keyboard accelerators for common actions), or you can override or modify the default

behaviors of widgets, since they are implemented with bindings.

This chapter assumes that you already know at least the basics about X event types,

keysyms, modifiers, and the fields in event structures. More information on these topics

can be found in any of several books that describe the Xlib programming interface.

19.1 An overview of the bind command

The bind command is used to create, modify, query, and remove bindings; Table

19.1 summarizes its syntax. This section illustrates the basic features of bind, and later

sections go over the features in more detail.

Bindings are created with commands like the one below:

bind .entry <Control-d> {.entry delete insert}

FIGURE 19

TABLE 19

200 Bindings

DRAFT (3/11/93): Distribution Restricted

The first argument to the command specifies the path name of the window that the binding

applies to. It can also be a widget class name, in which case the binding applies to all wid-

gets of that class (such bindings are called class bindings), or it can be all, in which case

the binding applies to all widgets. The second argument specifies a sequence of one or

more X events. In this example the sequence specifies a single event, which is a key-press

of the d character while the Control key is down. The third argument may be any Tcl

script. The script in the example invokes .entry’s widget command to delete the charac-

ter just after the insertion cursor.

After the command completes, the script will be invoked whenever Control-d is typed

in .entry. The binding can trigger any number of times. It remains in effect until

.entry is deleted or the binding is explicitly removed by invoking bind with an empty

script:

bind .entry <Control-d> {}

Note: A binding for a keystroke will only trigger if the input focus is set to the window for the
binding. See Chapter 21 for more information on the input focus.

The bind command can also be used to retrieve information about bindings. If bind

is invoked with an event sequence but no script then it returns the script for the given

event sequence:

bind .entry <Control-d>

Table 19.1. A summary of the bind and tkerror commands.

bind windowSpec sequence script
Arranges for script to be executed each time the event sequence given by
sequence occurs in the window(s) given by windowSpec. If a binding
already exists for windowSpec and sequence then it is replaced. If
script is an empty string then the binding for windowSpec and
sequence is removed, if there is one.

bind windowSpec sequence +script
If there is already a binding for windowSpec and sequence then appends
script to the script for the current binding; otherwise creates a new bind-
ing.

bind windowSpec sequence
If there is a binding for windowSpec and sequence then returns its
script. Otherwise returns an empty string.

bind windowSpec
Returns a list whose entries are all of the sequences for whichwindowSpec
has bindings.

tkerror message
Invoked by Tk when it encounters a Tcl error in an event handler such as a
binding. Message is the error message returned by Tcl. Any result returned
by tkerror is ignored.

19.2 Event patterns 201

DRAFT (3/11/93): Distribution Restricted

.entry delete insert

If bind is invoked with a single argument then it returns a list of all the bound event

sequences for that window or class:

bind .entry

<Control-Key-d>

bind Button

<ButtonRelease-1> <Button-1> <Any-Leave> <Any-Enter>

The first example returned the bound sequences for .entry, and the second example

returned information about all of the class bindings for button widgets.

19.2 Event patterns

Event sequences are constructed out of basic units called event patterns, which Tk

matches against the stream of X events received by the application. An event sequence can

contain any number of patterns, but in practice most sequences only contain a single pat-

tern.

The simplest form for an event pattern consists of a printing character such as a or @.

This form of pattern matches a key-press event for that character as long as there are no

modifier keys pressed. For example,

bind .entry a {.entry insert insert a}

arranges for the character a to be inserted into .entry at the point of the insertion cursor

whenever it is typed.

The second form for an event pattern is longer but more flexible. It consists of one or

more fields between angle brackets, with the following syntax:

<modifier-modifier-...-modifier-type-detail>

White space may be used instead of dashes to separate the various fields, and most of the

fields are optional. The type field identifies the particular X event type, such as

KeyPress or Enter (see Table 19.2 for a list of all the available types). For example,

the command

bind .x <Enter> {puts Hello!}

causes “Hello!” to be printed on standard output whenever the mouse cursor moves into

widget .x.

For key and button events, the event type may be followed by a detail field that speci-

fies a particular button or key. For buttons, the detail is the number of the button (1-5). For

keys, the detail is an X keysym. A keysym is a textual name that describes a particular key

on the keyboard, such as BackSpace or Escape or comma. The keysym for alphanu-

meric ASCII characters such as “a” or “A” or “2” is just the character itself. Refer to your

X documentation for a complete list of keysyms.

202 Bindings

DRAFT (3/11/93): Distribution Restricted

If no detail field is provided, as in <KeyPress>, then the pattern matches any event

of the given type. If a detail field is provided, as in <KeyPress-Escape>, then the pat-

tern only matches events for the specific key or button. If a detail is specified then you can

omit the event type: <Escape> is equivalent to <KeyPress-Escape>.

Note: The pattern <1> is equivalent to <Button-1>, not <KeyPress-1>.

The event type may be preceded by any number of modifiers, each of which must be

one of the values in Table 19.3. Most of the modifiers are X modifier names, such as Con-

trol or Shift. If one or more of these modifiers are specified then the pattern only

matches events that occur when the specified modifiers are present. For example, the pat-

tern <Meta-Control-d> requires that both the Meta and Control keys be held down

when d is typed, and <B1-Button-2> requires that button 1 already be down when but-

ton 2 is pressed. If no modifiers are specified then none must be present: <KeyPress-a>

will not match an event if the Control key is down.

If the Any modifier is specified, it means that the state of unspecified modifiers should

be ignored. For example, <Any-a> will match a press of the “a” key even if button 1 is

down or the Meta key is pressed. <Any-B1-Motion> will match any mouse motion

event as long as button 1 is pressed; other modifiers are ignored.

The last two modifiers, Double and Triple, are used primarily for specifying dou-

ble and triple mouse clicks. They match a sequence of two or three events, each of which

matches the remainder of the pattern. For example, <Double-1> matches a double-click

of mouse button 1 with no modifiers down, and <Any-Triple-2> matches any triple

click of button 2 regardless of modifiers. For a Double or Triple pattern to match, all

of the events must occur close together in time and without substantial mouse motion

between them.

Table 19.2. Names for event types. Some event types have multiple names, e.g. Key and
KeyPress.

Button, ButtonPress Expose Leave

ButtonRelease FocusIn Map

Circulate FocusOut Property

CirculateRequest Gravity Reparent

Colormap Keymap ResizeRequest

Configure Key, KeyPress Unmap

ConfigureRequest KeyRelease Visibility

Destroy MapRequest

Enter Motion

19.3 Sequences of events 203

DRAFT (3/11/93): Distribution Restricted

19.3 Sequences of events

An event sequence consists of one or more event patterns optionally separated by white

space. For example, the sequence <Escape>a contains two patterns. It triggers when the

a key is pressed immediately after the Escape key.

A sequence need not necessarily match consecutive events. For example, the

sequence <Escape>a will match an event sequence consisting of a key-press on

Escape, a release of Escape, and then a press of a; the release of Escape will be

ignored in determining the match. Tk ignores conflicting events in the input event stream

unless they are of type KeyPress or ButtonPress. Thus if some other key is pressed

between the Escape and the a then the sequence won’t match. These same rules apply to

double events such as <Double-1>.

19.4 Conflict resolution

At most one binding will trigger for any given X event. If several bindings match the event

then the most specific binding is chosen and only its script is invoked. For example, sup-

pose there are bindings for <Button-1> and <Double-Button-1> and button 1 is

clicked three times. The first button-press event will match only the <Button-1> bind-

ing, but the second and third presses will match both bindings. Since

<Double-Button-1> is more specific than <Button-1>, its script is executed on

the second and third presses. Similarly, <Escape>a is more specific than <a>, <Con-

trol-d> is more specific than <Any-d> or <d>, and <d> is more specific than <Key-

Press>.

There may also be a conflict among bindings with different window specifications.

For example, there might be a binding for a specific window, plus another binding for its

class, plus another for all. When this occurs, any window-specific binding receives pref-

erence over any class binding and any class binding receives preference over any all

Table 19.3. Modifier names for event patterns. Multiple names are available for some modifiers;
for example, Mod1, M1, Meta, and M are all synonyms for the same modifier.

Control Button4, B4 Mod1, M2, Alt

Shift Button5, B5 Mod3, M3

Lock Any Mod4, M4

Button1, B1 Double Mod5, M5

Button2, B2 Triple

Button3, B3 Mod1, M1, Meta, M

204 Bindings

DRAFT (3/11/93): Distribution Restricted

binding. For example, if there is an <Any-KeyPress> binding for a window and a

<Return> binding for its class, pressing the return key will trigger the window-specific

binding, not the class binding.

Note: The default behaviors for widgets are established with class bindings created by Tk during
initialization. You can modify the behavior of an individual widget by creating window-
specific bindings that override the class bindings. However, you have to be careful in
doing this that you don’t accidentally override more behavior than you intended. For
example, if you specify an <Any-KeyPress> binding for a widget, it will override a
<Return> binding for the class, even though the <Return> binding appears to be
more specific. The solution is to duplicate the <Return> class binding for the widget.

19.5 Substitutions in scripts

If the script for a binding contains % characters then it is not executed directly. Instead, a

new script is generated by replacing each % character and the one that follows it with

information about the X event. The character following the % selects a specific substitution

to make. About 30 different substitutions are defined; see the reference documentation for

complete details. The following substitutions are the most commonly used ones:

For example, the following bindings implement a simple mouse tracker:

bind all <Enter> {puts "Entering %W"}

bind all <Leave> {puts "Leaving %W"}

bind all <Motion> {puts "Mouse at (%x,%y)"}

Note: When Tk makes % substitutions it treats the script as an ordinary string without any
special properties. The normal quoting rules for Tcl commands are not considered, so %
sequences will be substituted even if embedded in braces or preceded by backslashes. The
only way to prevent a % substitution is to double the % character. The easiest way to avoid
problems with complex scripts and % substitutions is to keep the binding simple, for
example by putting the script in a procedure and having the binding invoke the procedure
with arguments created via % substitution.

%x Substitute the x-coordinate from the event.

%y Substitute the y-coordinate from the event.

%W Substitute the path name of the event window.

%A Substitute the 8-bit ISO character value that corresponds to a
KeyPress or KeyRelease event, or an empty string if the
event is for a key like Shift that doesn’t have an ISO equiva-
lent.

%% Substitute the character %.

19.6 When are events processed? 205

DRAFT (3/11/93): Distribution Restricted

19.6 When are events processed?

Tk only processes events at a few well-defined times. After a Tk application completes its

initialization it enters an event loop to wait for X events and other events such as timer and

file events. When an event occurs the event loop executes C or Tcl code to respond to that

event. Once the response has completed, control returns to the event loop to wait for the

next interesting event. Almost all events are processed from the top-level event loop. New

events will not be considered while responding to the current event, so there is no danger

of one binding triggering in the middle of the script for another binding. This approach

applies to all event handlers, including those for bindings, those for the script options

associated with widgets, and others yet to be discussed, such as window manager protocol

handlers.

A few special commands such as tkwait and update reinvoke the event loop

recursively, so bindings may trigger during the execution of these commands. You should

only invoke these commands at times when it is safe for bindings to trigger. Commands

that invoke the event loop are specially noted in their reference documentation; all other

commands complete immediately without re-entering the event loop.

Note: Event handlers are always invoked at global level (as if the command “uplevel #0”
were used), even if the event loop was invoked from a tkwait or update command
inside a procedure. This means that global variables are always accessible in event
handlers without invoking the global command.

19.7 Background errors: tkerror

It is possible for a Tcl error to occur while executing the script for a binding. These errors

are called background errors; when one occurs, the default action is for Tk to print the

associated error message on standard output. However, this probably isn’t very useful in

most cases. It is usually better to display the error message in a message window or dialog

box on the screen where the user can see it. The tkerror command permits each appli-

cation to handle background errors in the best way for that application. When a back-

ground error occurs, Tk invokes tkerror with a single argument consisting of the error

message. The tkerror command is not defined by Tk; presumably each application will

define its own tkerror procedure to report errors in a way that makes sense for that

application. If tkerror returns normally then Tk will assume it has dealt with the error

and it won’t do anything else itself. If tkerror returns an error (e.g. because there is no

tkerror command defined) then Tk falls back on the default approach of printing the

message on standard output.

The tkerror procedure is invoked not just for errors in bindings, but for all other

errors that are returned to Tk at times when it has no-one else to return the errors to. For

example, menus and buttons call tkerror if an error is returned by the script for a menu

entry or button; scrollbars call tkerror if a Tcl error occurs while communicating with

206 Bindings

DRAFT (3/11/93): Distribution Restricted

the associated widget; and the window-manager interface calls tkerror if an error is

returned by the script associated with a window manager protocol.

19.8 Other uses of bindings

The binding mechanism described in this chapter applies to widgets. However, similar

mechanisms are available internally within some widgets. For example, canvas widgets

allow bindings to be associated with graphical items such as rectangles or polygons, and

text widgets allow bindings to be associated with ranges of characters. These bindings are

created using the same syntax for event sequences and %-substitutions, but they are cre-

ated with the widget command for the widget and refer to the widget’s internal objects

instead of windows. For example, the following command arranges for a message to be

printed whenever mouse button 1 is clicked over item 2 in a canvas .c:

.c bind 2 <ButtonPress-1> {puts Hello!}

207

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the author or pub-

lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher

does not offer warranties in regard to this draft.

Chapter 20

The Selection

The selection is a mechanism for passing information between widgets and applications.

The user first selects one or more objects in a widget, for example by dragging the mouse

across a range of text or clicking on a graphical object. Once a selection has been made,

the user can invoke commands in other widgets that cause them to retrieve information

about the selection, such as the characters in the selected range or the name of the file con-

taining the selection. The widget containing the selection and the widget requesting it can

be in the same or different applications. The selection is most commonly used to copy

information from one place to another, but it can be used for other purposes as well, such

as setting a breakpoint at a selected line or opening a new window on a selected file.

X defines a standard mechanism for supplying and retrieving the selection and Tk

provides access to this mechanism with the selection command. Table 20.1 summa-

rizes the selection command. The rest of this chapter describes its features in more

detail. For complete information on the X selection protocol, refer to the Inter-Client

Communications Convention Manual (ICCCM).

20.1 Selections, retrievals, and targets

X’s selection mechanism allows for multiple selections to exist at once, with names like

“primary selection”, “secondary selection”, and so on. However, Tk supports only the pri-

mary selection; Tk applications cannot retrieve or supply selections other than the primary

one and the term “selection” always refers to the primary selection in this book. At most

one widget has a primary selection at any given time on a given display. When a user

selects information in one widget, any selected information in any other widget is auto-

FIGURE 20

TABLE 20

208 The Selection

DRAFT (3/11/93): Distribution Restricted

matically deselected. It is possible for multiple disjoint objects to be selected simulta-

neously within a widget (e.g. three different items in a listbox or several different

polygons in a drawing window), but usually the selection consists of a single object or a

range of adjacent objects.

When you retrieve information about the selection, you can ask for any of several dif-

ferent kinds of information. The different kinds of information are referred to as retrieval

targets. The most common target is STRING. In this case the contents of the selection are

returned as a string. For example, if text is selected then a retrieval with target STRING

will return the contents of the selected text; if graphics are selected then a retrieval with

target STRING will return some string representation for the selected graphics. If the

selection is retrieved with target FILE_NAME then the return value will be the name of

the file associated with the selection. If target LINE is used then the return value will be

the number of the selected line within its file. There are many targets with well-defined

meanings; refer to the X ICCCM for more information.

The command selection get retrieves the selection. The target may be specified

explicitly or it may be left unspecified, in which case it defaults to STRING. For example,

the following commands might be invoked when the selection consists of a few words on

one line of a file containing the text of Shakespeare’s Romeo and Juliet:

Table 20.1. A summary of the selection command.

selection clear window
If there is a selection anywhere on window’s display, deselect it so that no
window owns the selection anymore.

selection get ?target?
Retrieve the value of the primary selection using target as the form in
which to retrieve it, and return the selection’s value as result. Target
defaults to STRING.

selection handle window script ?target? ?format?
Creates a handler for selection requests such that script will be executed
whenever the primary selection is owned by window and someone attempts
to retrieve it in the form given by target. Target defaults to STRING.
Format specifies a representation for transmitting the selection to the
requester; it defaults to STRING. When script is invoked, two additional
numbers are appended to it, consisting of the starting offset and maximum
number of bytes to retrieve. Script should return the requested range of
the selection; if it returns an error then the selection retrieval will be rejected.

selection own ?window? ?script?
Claims ownership of the selection for window; if some other window previ-
ously owned the selection, deselects the old selection. If script is speci-
fied then it will be executed when window is deselected. If neither window
nor script is specified, then the command returns the path name of the
window that currently owns the selection, or an empty string if no window in
this application owns the selection.

20.2 Locating and clearing the selection 209

DRAFT (3/11/93): Distribution Restricted

selection get

star-crossed lovers

selection get FILE_NAME

romeoJuliet

selection get LINE

6

These commands could be issued in any Tk application on the display containing the

selection; they need not be issued in the application containing the selection.

Not every widget supports every possible selection target. For example, if the infor-

mation in a widget isn’t associated with a file then the FILE_NAME target will not be

supported. If you try to retrieve the selection with an unsupported target then an error will

be returned. Fortunately, every widget is supposed to support retrievals with target TAR-

GETS; such retrievals return a list of all the target forms supported by the current selection

owner. You can use the result of a TARGETS retrieval to pick the most convenient avail-

able target. For example, the following procedure retrieves the selection as Postscript as

possible, otherwise as an unformatted string:

proc getSelection {} {

set targets [selection get TARGETS]

if {[lsearch $targets POSTSCRIPT] >= 0} {

return [selection get POSTSCRIPT]

}

selection get STRING

}

20.2 Locating and clearing the selection

Tk provides two mechanisms for retrieving information about who owns the selection.

The command selection own (with no additional arguments) will check to see if the

selection is owned by a widget in the invoking application. If so it will return the path

name of that widget; if there is no selection or it is owned by some other application then

selection own will return an empty string.

The second way to locate the selection is with the retrieval targets APPLICATION

and WINDOW_NAME. These targets are both implemented by Tk and are automatically

available whenever the selection is in a Tk application. The command

selection get APPLICATION

returns the name of the Tk application that owns the selection (in a form suitable for use

with the send command, for example) and

selection get WINDOW_NAME

210 The Selection

DRAFT (3/11/93): Distribution Restricted

returns the path name of the window that owns the selection. These commands will work

only if the owning application is based on Tk. If the application that owns the selection

isn’t based on Tk then it probably does not support the APPLICATION and WIN-

DOW_NAME targets and the selection get command will return an error. These com-

mands will also return errors if there is no selection.

The command

selection clear

will clear out any selection on the display of the invoking application. It works regardless

of whether the selection is in the invoking application or some other application on the

same display. The following script will clear out the selection only if it is in the invoking

application:

if {[selection own] != ""} {

selection clear

}

20.3 Supplying the selection with Tcl scripts

The sections above described Tk’s facilities for retrieving the selection; this section

describes how to supply the selection. The standard widgets like entries and texts already

contain C code that supplies the selection, so you don’t usually have to worry about it

when writing Tcl scripts. However, it is possible to write Tcl scripts that implement new

targets or that provide the complete supply-side protocol, and this section describes how to

do it. This feature of Tk is seldom used so you may wish to skip over this material until

you need it.

The protocol for supplying the selection has three parts:

1. A widget must claim ownership of the selection. This deselects any previous selection

and typically redisplays the selected material in a highlighted fashion.

2. The selection owner must respond to retrieval requests by other widgets and applica-

tions.

3. The owner may request that it be notified when it is deselected. Widgets typically

respond to deselection by eliminating the highlights on the display.

The paragraphs below describe two scenarios. The first scenario just adds a new target to a

widget that already has selection support, so it only deals with the second part of the pro-

tocol. The second scenario implements complete selection support for a group of widgets

that didn’t previously have any; it deals with all three parts of the protocol.

Suppose that you wish to add a new target to those supported for a particular widget.

For example, text widgets contain built-in support for the STRING target but they don’t

automatically support the FILE_NAME target. You could add support for FILE_NAME

retrievals with the following script:

20.3 Supplying the selection with Tcl scripts 211

DRAFT (3/11/93): Distribution Restricted

selection handle .t getFile FILE_NAME

proc getFile {offset maxBytes} {

global fileName

set last [expr $offset+$maxBytes-1]

string range $fileName $offset $last

}

This code assumes that the text widget is named .t and that the name of its associated file

is stored in a global variable named fileName. The selection handle command

tells Tk to invoke getFile whenever .t owns the selection and someone attempts to

retrieve it with target FILE_NAME. When such a retrieval occurs, Tk takes the specified

command (getFile in this case) appends two additional numerical arguments, and

invokes the resulting string as a Tcl command. In this example a command like

getFile 0 4000

will result. The additional arguments identify a sub-range of the selection by its first byte

and maximum length, and the command must return this portion of the selection. If the

requested range extends beyond the end of the selection, then the command should return

everything from the given starting point up to the end of the selection. Tk takes care of

returning the information to the application that requested it. In most cases the entire

selection will be retrieved in one invocation of the command, but for very large selections

Tk will make several separate invocations so that it can transmit the selection back to the

requester in manageable pieces.

The above example simply added a new target to a widget that already provided some

built-in selection support. If selection support is being added to a widget that has no built-

in support at all, then additional Tcl code is needed to claim ownership of the selection and

to respond to deselections. For example, suppose that there is a group of three radio but-

tons named .a, .b, and .c and that the buttons have already been configured with their

-variable and -value options to store information about the selected button in a glo-

bal variable named state. Now suppose that you want to tie the radio buttons to the

selection, so that (a) whenever a button becomes selected it claims the X selection, (b)

selection retrievals return the contents of state, and (c) when some other widget claims

the selection away from the buttons then state is cleared and all the buttons become

deselected. The following code implements these features:

selection handle .a getValue STRING

proc getValue {offset maxBytes} {

global state

set last [expr $offset+$maxBytes-1]

string range $state $offset $last

}

foreach w {.a .b .c} {

$w config -command {selection own .a selGone}

}

proc selGone {} {

212 The Selection

DRAFT (3/11/93): Distribution Restricted

global state

set state {}

}

The selection handle command and the getValue procedure are similar to the

previous example: they respond to STRING selection requests for .a by returning the

contents of the state variable. The foreach loop specifies a -command option for

each of the widgets. This causes the selection own command to be invoked when-

ever the user clicks on any of the radio buttons, and the selection own command

claims ownership of the selection for widget .a (.a will own the selection regardless of

which radio button gets selected and it will return state in response to selection

requests). The selection own command also specifies that procedure selGone

should be invoked whenever the selection is claimed away by some other widget. Sel-

Gone sets state to an empty string. All of the radio buttons monitor state for

changes, so when it gets cleared the radio buttons will all deselect themselves.

213

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the author or pub-

lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher

does not offer warranties in regard to this draft.

Chapter 21

The Input Focus

At any given time one window of an application is designated as the input focus window,

or focus window for short. All keystrokes received by the application are directed to the

focus window and they are processed according to its event bindings. This chapter

describes Tk’s focus command, which is used to control the input focus. Table 21.1

summarizes the syntax of the focus command. The focus window only determines what

happens once a keystroke event arrives at a particular application; it does not determine

which of the applications on the display receives keystrokes. The selection of a focus

application is made by the window manager.

21.1 Focus model: explicit vs. implicit

There are two possible ways of handling the input focus, which are known as the implicit

and explicit models. In the implicit model the focus follows the mouse: keystrokes are

directed to the window under the mouse pointer and the focus window changes implicitly

when the mouse moves from one window to another. In the explicit model the focus win-

dow is set explicitly and doesn’t change until it is explicitly reset; mouse motions do not

change the focus.

Tk implements the explicit focus model, for several reasons. First, the explicit model

allows you to move the mouse cursor out of the way when you’re typing in a window;

with the implicit model you’d have to keep the mouse in the window you’re typing to.

Second, and more important, the explicit model allows an application to change the focus

window without the user moving the mouse. For example, when an application pops up a

dialog box that requires type-in (e.g. one that prompts for a file name) it can set the input

FIGURE 21

TABLE 21

214 The Input Focus

DRAFT (3/11/93): Distribution Restricted

focus to the appropriate window in the dialog without you having to move the mouse, and

it can move the focus back to its original window when you’re finished with the dialog

box. This allows you to keep your hands on the keyboard. Similarly, when you’re typing

in a form the application can move the input focus to the next entry in the form each time

you type a tab, so that you can keep your hands on the keyboard and work more efficiently.

Lastly, if you want an implicit focus model then you can always achieve it with event

bindings that change the focus each time the mouse cursor enters a new window.

Tk applications don’t need to worry about the input focus very often because the

default bindings for text-oriented widgets already take care of the most common situa-

tions. For example, when you click button 1 over an entry or text widget, the widget will

automatically make itself the focus window. As application designer, you only need to set

the focus in cases like those in the previous paragraph where you want to move the focus

among the windows of your application to reflect the flow of work.

21.2 Setting the input focus

To set the input focus, invoke the focus command with a widget name as argument:

focus .dialog.entry

From this point on, all keystrokes received by the application will be directed to

.dialog.entry and the previous focus window will no longer receive keystrokes. The

new focus window will display some sort of highlight, such as a blinking insertion cursor,

to indicate that it has the focus and the previous focus window will stop displaying its

highlight.

Table 21.1. A summary of the focus command.

focus
Returns the path name of the application’s focus window, or an empty string
if there is no focus window.

focus window
Sets the application’s focus window to window .

focus default ?window?
If window is specified then it becomes the default focus window, which will
receive the input focus whenever the focus window is deleted. In this case
the command returns an empty string. If window is specified as none, then
there will be no default focus window. If window is omitted then the com-
mand returns the current default focus window, or none if there is no
default.

focus none
Clears the focus window.

21.3 Clearing the focus 215

DRAFT (3/11/93): Distribution Restricted

Here is a script that implements tabbing among four entries in a form:

set tabList {.form.e1 .form.e2 .form.e3 .form.e4}

foreach w $tabList {

bind $w <Tab> {tab $tabList}

}

proc tab list {

set i [lsearch $list [focus]]

incr i

if {$i >= [llength $list]} {

set i 0

}

focus [lindex $list $i]

}

This script assumes that the four entry windows have already been created. It uses the

variable tabList to describe the order of traversal among the entries and arranges for

the procedure tab to be invoked whenever a tab is typed in any of the entries. Tab

invokes focus with no arguments to determine which window has the focus, finds where

this window is in the list that gives the order of tabbing, and then sets the input focus to the

next window in the list. The procedure tab could be used for many different forms just by

passing it a different list argument for each form. The order of focussing can also be

changed at any time by changing the value of the tabList variable.

21.3 Clearing the focus

The command focus none clears the input focus for the application. Once this com-

mand has been executed, keystrokes for the application will be discarded.

21.4 The default focus

When the focus window is deleted, Tk automatically sets the input focus for the applica-

tion to a window called the default focus window. The default focus window is initially

none, which means that there will be no focus window after the focus window is deleted

and keystrokes will be discarded until the focus window is set again.

The focus default command can be used to specify a default focus window and

to query the current default:

focus default

none

focus default .entry

focus default

216 The Input Focus

DRAFT (3/11/93): Distribution Restricted

.entry

Once this script has been completed, .entry will receive the input focus whenever the

input focus window is deleted.

21.5 Keyboard accelerators

Applications with keyboard accelerators (e.g. they allow you to type Control+s to save

the file or Control+q to quit the application) require special attention to bindings and

the input focus. First, the accelerator bindings must be present in every window where you

want them to apply. For example, suppose that an editor has a main text window plus sev-

eral entry windows for searching and replacement. You will create bindings for accelera-

tors like Control+q in the main text window, but you will probably want most or all of

the bindings to apply in the auxiliary windows also, so you’ll have to define the accelera-

tor bindings in each of these windows too.

In addition, an application with keyboard accelerators should never let the focus

become none, since that will prevent any of the accelerators from being processed. If no

other focus window is available, I suggest setting the focus to the main window of the

application; of course, you’ll have to define accelerator bindings for . so that they are

available in this mode. In addition, I recommend setting the default focus window to . or

some other suitable window so that the focus isn’t lost when dialog boxes and other win-

dows are deleted.

217

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the author or pub-

lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher

does not offer warranties in regard to this draft.

Chapter 22

Window Managers

For each display running the X Window System there is a special process called the win-

dow manager. The window manager is separate from the X display server and from the

application processes using the display. The main function of the window manager is to

control the arrangement of all the top-level windows on each screen. In this respect it is

similar to the geometry managers described in Chapters 17 and 18 except that instead of

managing the internal windows within an application it manages the top-level windows of

all applications. The window manager allows each application to request particular loca-

tions and sizes for its top-level windows, which can be overridden interactively by users.

Window managers also serve several other purposes besides geometry management: they

add decorative frames around top-level windows; they allow windows to be iconified and

deiconified; and they notify applications of certain events, such as user requests to destroy

the window.

X allows for the existence of many different window managers that implement differ-

ent styles of layout, provide different kinds of decoration and icon management, and so

on. Only a single window manager runs for a display at any given time, and the user gets

to choose which one. In order to allow any application to work smoothly with any window

manager, X defines a protocol for the interactions between applications and window man-

agers. The protocol is defined as part of the Inter-Client Communication Conventions

Manual (ICCCM). With Tk you use the wm command to communicate with the window

manager; Tk implements the wm command using the ICCCM protocols so that any Tk-

based application should work with any window manger. Tables 22.1 and 22.2 summarize

the wm command.

FIGURE 22

TABLE 22

218 Window Managers

DRAFT (3/11/93): Distribution Restricted

Table 22.1. A summary of the wm command. In all of these commands window must be the name
of a top-level window. Many of the commands, such as wm aspect or wm group, are used to
set and query various parameters related to window management. For these commands, if the
parameters are specified as null strings then the parameters are removed completely, and if the
parameters are omitted then the command returns the current settings for the parameters.

wm aspect window ?xThin yThin xFat yFat?
Set or query window’s aspect ratio. If an aspect ratio is specified, it con-
strains interactive resizes so that window’s width/height will be at least as
great as xThin/yThin and no greater than xFat/yFat.

wm client window ?name?
Set or query the WM_CLIENT_MACHINE property for window, which
gives the name of the machine on which window’s application is running.

wm command window ?value?
Set or query the WM_COMMAND property for window, which should contain
the command line used to initiate window’s application.

wm deiconify window
Arrange for window to be displayed in normal fashion.

wm focusmodel window ?model?
Set or query the focus model for window . Model must be active or
passive.

wm geometry window ?value?
Set or query the requested geometry for window. Value must have the form
=widthxheight±x±y (any of =, widthxheight, or ±x±y can be
omitted).

wm group window ?leader?
Set or query the window group that window belongs to. Leader must be
the name of a top-level window, or an empty string to remove window from
its current group.

wm iconbitmap window ?bitmap?
Set or query the bitmap for window’s icon.

wm iconify window
Arrange for window to be displayed in iconic form.

wm iconmask window ?bitmap?
Set or query the mask bitmap for window’s icon.

wm iconname window ?string?
Set or query the string to be displayed in window’s icon.

wm iconposition window ?x y?
Set or query the hints about where on the screen to display window’s icon.

wm iconwindow window ?icon?
Set or query the window to use as icon for window. Icon must be the path
name of a top-level window.

wm maxsize window ?width height?
Set or query the maximum permissible dimensions for window during inter-
active resize operations.

wm minsize window ?width height?
Set or query the minimum permissible dimensions for window during inter-
active resize operations.

22.1 Window sizes 219

DRAFT (3/11/93): Distribution Restricted

22.1 Window sizes

If a Tk application doesn’t use the wm command, Tk will communicate with the window

manager automatically on the application’s behalf so that its top-level windows appear on

the screen. By default each top-level window will appear in its “natural” size, which is the

size it requested using the normal Tk mechanisms for geometry management. Tk will for-

ward the requested size on to the window manager and most window managers will honor

the request. If the requested size of a top-level window should change then Tk will for-

ward the new size on to the window manager and the window manager will resize the win-

dow to correspond to the latest request. By default the user will not be able to resize

windows interactively: window sizes will be determined solely by their requested sizes as

computed internally.

If you want to allow interactive resizing then you must invoke at least one of the wm

minsize and wm maxsize commands, which specify a range of acceptable sizes. For

example the commands

wm overrideredirect window ?boolean?
Set or query the override-redirect flag for window.

wm positionfrom window ?whom?
Set or query the source of the position specification for window. Whom must
be program or user.

wm protocol window ?protocol? ?script?
Arrange for script to be executed whenever the window manager sends a
message to window with the given protocol. Protocol must be the
name of an atom for a window manager protocol, such as
WM_DELETE_WINDOW, WM_SAVE_YOURSELF, or WM_TAKE_FOCUS. If
script is an empty string then the current handler for protocol is deleted. If
script is omitted then the current script for protocol is returned (or an
empty string if there is no handler for protocol). If both protocol and
script are omitted then the command returns a list of all protocols with
handlers defined for window.

wm sizefrom window ?whom?
Set or query the source of the size specification for window. Whom must be
program or user.

wm state window
Returns the current state of window: normal, iconic, or withdrawn.

wm title window ?string?
Set or query the title string to display in the decorative border for window.

wm transient window ?master?
Set or query the transient status of window. Master must be the name of a
top-level window on whose behalf window is working as a transient.

wm withdraw window
Arrange for window not to appear on the screen at all, either in normal or
iconic form.

220 Window Managers

DRAFT (3/11/93): Distribution Restricted

wm minsize .x 100 50

wm maxsize .x 400 150

will allow.x to be resized but constrain it to be 100 to 400 pixels wide and 50 to 150 pix-

els high. If the command

wm minsize .x 1 1

is invoked then there will effectively be no lower limit on the size of .x. If you set a min-

imum size without a maximum size (or vice versa) then the other limit will be uncon-

strained. You can disable interactive resizing again by clearing all of the size bounds:

wm minsize .x {} {}

wm maxsize .x {} {}

In addition to constraining the dimensions of a window you can also constrain its

aspect ratio (width divided by height) using the wm aspect command. For example,

wm aspect .x 1 3 4 1

will tell the window manager not to let the user resize the window to an aspect ratio less

than 1/3 (window three times as tall as it is wide) or greater than 4 (four times as wide as it

is tall).

If the user interactively resizes a top-level window then the window’s internally

requested size will be ignored from that point on. Regardless of how the internal needs of

the window change, its size will remain as set by the user. A similar effect occurs if you

invoke the wm geometry command, as in the following example:

wm geometry .x 300x200

This command forces .x to be 300 pixels wide and 200 pixels high just as if the user had

resized the window interactively. The internally requested size for .x will be ignored once

the command has completed, and the size specified in the wm geometry command over-

rides any size that the user might have specified interactively (but the user can resize the

window again to override the size in the wm geometry command). The only difference

between the wm geometry command and an interactive resize is that wm geometry is

not subject to the constraints specified by wm minsize, wm maxsize, and wm

aspect.

If you would like to restore a window to its natural size you can invoke wm geome-

try with an empty geometry string:

wm geometry .x {}

This causes Tk to forget any size specified by the user or by wm geometry, so the win-

dow will return to the size it requested internally.

22.2 Gridded windows

In some cases it doesn’t make sense to resize a window to arbitrary pixel sizes. For exam-

ple, consider the application in Figure 22.1. When the user resizes the top-level window

22.2 Gridded windows 221

DRAFT (3/11/93): Distribution Restricted

the text widget changes size in response. Ideally the text widget should always contain an

even number of characters in each dimension, and sizes that result in partial characters

should be rounded off.

Gridded geometry management accomplishes this effect. When gridding is enabled

for a top-level window its dimensions will be constrained to lie on an imaginary grid. The

geometry of the grid is determined by one of the widgets contained in the top-level win-

dow (e.g. the text widget in Figure 22.1) so that the widget always holds an integral num-

ber of its internal objects. Usually the widget that controls the gridding is a text-oriented

widget such as an entry or listbox or text.

To enable gridding, set the -setgrid option to 1 in the controlling widget. The fol-

lowing code was used in the example in Figure 22.1, where the text widget is .t:

.t configure -setgrid 1

This command has several effects. First, it automatically makes the main window resiz-

able, even if no wm minsize or wm maxsize command has been invoked. Second, it

constrains the size of the main window so that .t will always hold an even number of

characters in its font. Third, it changes the meaning of dimensions used in Tk. These

dimensions now represent grid units rather than pixels. For example, the command

(a)

Figure 22.1. An example of gridded geometry management. If the user interactively resizes the
window from the dimensions in (a) to those in (b), the window manager will round off the
dimensions so that the text widget holds an even number of characters in each dimension. This
figure shows decorative borders as provided by the mwm window manager.

(b)

222 Window Managers

DRAFT (3/11/93): Distribution Restricted

wm geometry . 50x30

will set the size of the main window so that .t is 50 characters wide and 30 lines high,

and dimensions in the wm minsize and wm maxsize commands will also be grid

units. Many window managers display the dimensions of a window on the screen while it

is being resized; these dimensions will given in grid units too.

Note: In order for gridding to work correctly you must have configured the internal geometry
management of the application so that the controlling window stretches and shrinks in
response to changes in the size of the top-level window , e.g. by packing it with the
-expand option set to 1 and -fill to both.

22.3 Window positions

Controlling the position of a top-level window is simpler than controlling its size. Users

can always move windows interactively, and an application can also move its own win-

dows using the wm geometry command. For example, the command

wm geometry .x +100+200

will position .x so that its upper-left corner is at pixel (100,200) on the display. If either of

the + characters is replaced with a - then the coordinates are measured from the right and

bottom sides of the display. For example,

wm geometry .x -0-0

positions .x at the lower-right corner of the display.

22.4 Window states

At any given time each top-level window is in one of three states. In the normal or de-ico-

nified state the window appears on the screen. In the iconified state the window does not

appear on the screen, but a small icon is displayed instead. In the withdrawn state neither

the window nor its icon appears on the screen and the window is ignored completely by

the window manager.

New top-level windows start off in the normal state. You can use the facilities of your

window manager to iconify a window interactively, or you can invoke the wm iconify

command within the window’s application, for example

wm iconify .x

If you invoke wm iconify immediately, before the window first appears on the screen,

then it will start off in the iconic state. The command wm deiconify causes a window

to revert to normal state again.

The command wm withdraw places a window in the withdrawn state. If invoked

immediately, before a window has appeared on the screen, then the window will start off

withdrawn. The most common use for this command is to prevent the main window of an

22.5 Decorations 223

DRAFT (3/11/93): Distribution Restricted

application from ever appearing on the screen (in some applications the main window

serves no purpose: the application presents a collection of windows any of which can be

deleted independently from the others; if one of these windows were the main window,

deleting it would delete all the other windows too). Once a window has been withdrawn, it

can be returned to the screen with either wm deiconify or wm iconify.

 The wm state command returns the current state for a window:

wm iconify .x

wm state .x

iconic

22.5 Decorations

When a window appears on the screen in the normal state, the window manager will usu-

ally add a decorative frame around the window. The frame typically displays a title for the

window and contains interactive controls for resizing the window, moving it, and so on.

For example, the window in Figure 22.1 was decorated by the mwm window manager.

The wm title command allows you to set the title that’s displayed a window’s dec-

orative frame. For example, the command

wm title . "Berkeley Introduction"

was used to set the title for the window in Figure 22.1.

The wm command provides several options for controlling what is displayed when a

window is iconified. First, you can use the wm iconname command to specify a title to

display in the icon. Second, some window managers allow you to specify a bitmap to be

displayed in the icon. The wm iconbitmap command allows you to set this bitmap, and

wm iconmask allows you to create non-rectangular icons by specifying that certain bits

of the icon are transparent. Third, some window managers allow you to use one window

as the icon for another; wm iconwindow will set up such an arrangement if your win-

dow manager supports it. Finally, you can specify a position on the screen for the icon

with the wm iconposition command.

Note: Almost all window managers support wm iconname and wm iconposition but
fewer support wm iconbitmap and almost no window managers support wm
iconwindow very well. Don’t assume that these features work until you’ve tried them
with your own window manager.

22.6 Window manager protocols

There are times when the window manager needs to inform an application that an impor-

tant event has occurred or is about to occur so that the application can do something to

deal with the event. In X terminology, these events are called window manager protocols.

224 Window Managers

DRAFT (3/11/93): Distribution Restricted

The window manager passes an identifier for the event to the application and the applica-

tion can do what it likes in response (including nothing). The two most useful protocols

are WM_DELETE_WINDOW and WM_SAVE_YOURSELF. The window manager invokes

the WM_DELETE_WINDOW protocol when it wants the application to destroy the window

(e.g. because the user asked the window manager to kill the window). The

WM_SAVE_YOURSELF protocol is invoked when the X server is about to be shut down or

the window is about to be lost for some other reason. It gives the application a chance to

save its state on disk before its X connection disappears. For information about other pro-

tocols, refer to ICCCM documentation.

The wm protocol command arranges for a script to be invoked whenever a partic-

ular protocol is triggered. For example, the command

wm protocol . WM_DELETE_WINDOW {

puts stdout "I don’t wish to die"

}

will arrange for a message to be printed on standard output whenever the window manager

asks the application to kill its main window. In this case, the window will not actually be

destroyed. If you don’t specify a handler for WM_DELETE_WINDOW then Tk will destroy

the window automatically. WM_DELETE_WINDOW is the only protocol where Tk takes

default action on your behalf; for other protocols, like WM_SAVE_YOURSELF, nothing

will happen unless you specify an explicit handler.

22.7 Special handling: transients, groups, and override-redirect

The window manager protocols allow you to request three kinds of special treatment for

windows. First, you can mark a top-level window as transient with a command like the

following:

wm transient .x .

This indicates to the window manager that .x is a short-lived window, such as a dialog

box, working on behalf of the application’s main window. The last argument to wm

transient (“.” in the example) is referred to as the master for the transient window.

The window manager may treat transient windows differently e.g. by providing less deco-

ration or by iconifying and deiconifying them whenever their master is iconified or deico-

nified.

In situations where a group of long-lived windows works together you can use the wm

group command to tell the window manager about the group. The following script tells

the window manager that the windows .top1, .top2, .top3, and .top4 are working

together as a group, and .top1 is the group leader:

foreach i {.top2 .top3 .top4} {

wm group $i .top1

}

22.8 Session management 225

DRAFT (3/11/93): Distribution Restricted

The window manager can then treat the group as a unit, and it may give special treatment

to the leader. For example, when the group leader is iconified, all the other windows in the

group might be removed from the display without displaying icons for them: the leader’s

icon would represent the whole group. When the leader’s icon is deiconfied again, all the

windows in the group might return to the display also. The exact treatment of groups is up

to the window manager, and different window managers may handle them differently. The

leader for a group need not actually appear on the screen (e.g. it could be withdrawn).

In some extreme cases it is important for a top-level window to be completely ignored

by the window manager: no decorations, no interactive manipulation of the window via

the window manager, no iconifying, and so on. The best example of such a window is a

pop-up menu. In these cases, the windows should be marked as override-redirect using a

command like the following:

wm overrideredirect .popup

This command must be invoked before the window has actually appeared on the screen.

22.8 Session management

The wm command provides two options for communicating with session managers: wm

client and wm command. These commands pass information to the session manager

about the application running in the window; they are typically used by the session man-

ager to display information to the user and to save the state of the session so that it can be

recreated in the future. Wm client identifies the machine on which the application is

running, and wm command identifies the shell command used to invoke the application.

For example,

wm client . sprite.berkeley.edu

wm application . {browse /usr/local/bin}

indicates that the application is running on the machine sprite.berkeley.edu and

was invoked with the shell command “browse /usr/local/bin”.

22.9 A warning about window managers

Although the desired behavior of window managers is supposedly described in the X

ICCCM document, the ICCCM is not always clear and no window manager that I am

aware of implements everything exactly as described in the ICCCM. For example, the

mwm window manager doesn’t always deal properly with changes in the minimum and

maximum sizes for windows after they’ve appeared on the screen, and the twm window

manager treats the aspect ratio backwards; neither window manager positions windows on

the screen in exactly the places they request. Tk tries to compensate for some of the defi-

ciencies of window managers (e.g. it checks to see where the window manager puts a win-

226 Window Managers

DRAFT (3/11/93): Distribution Restricted

dow and if it’s the wrong place then Tk repositions it again to compensate for the window

manager’s error), but it can’t compensate for all the problems.

One of the main sources of trouble is Tk’s dynamic nature, which allows you to

change anything anytime. Almost all applications (except those based on Tk) set all the

information about a window before it appears on the screen and they never change it after

that. Because of this, window manager code to handle dynamic changes hasn’t been

debugged very well. You can avoid problems by setting as much of the information as

possible before the window first appears on the screen and avoiding changes.

227

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the author or pub-

lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher

does not offer warranties in regard to this draft.

Chapter 23

The Send Command

The selection mechanism described in Chapter 20 provides a simple way for one applica-

tion to retrieve data from another application. This chapter describes the send command,

which provides a more powerful form of communication between applications. With

send, any Tk application can invoke arbitrary Tcl scripts in any other Tk application on

the display; these commands can not only retrieve information but also take actions that

modify the state of the target application. Table 23.1 summarizes send and a few other

commands that are useful in conjunction with it.

23.1 Basics

To use send, all you have to do is give the name of an application and a Tcl script to exe-

cute in the application. For example, consider the following command:

send tgdb {break tkButton.c 200}

The first argument to send is the name of the target application (see Section 23.3 below

for more on application names) and the second argument is a Tcl script to execute in that

application. Tk locates the named application (an imaginary Tcl-based version of the gdb

debugger in this case), forwards the script to that application, and arranges for the script to

be executed in the application’s interpreter. In this example the script sets a breakpoint at a

particular line in a particular file. The result or error generated by the script is passed back

to the originating application and returned by the send command.

Send is synchronous: it doesn’t complete until the script has been executed in the

remote application and the result has been returned. While waiting for the remote applica-

FIGURE 23

TABLE 23

228 The Send Command

DRAFT (3/11/93): Distribution Restricted

tion to respond, send will defer the processing of X events, so the application will not

respond to its user interface during this time. Once the send command completes and the

application returns to normal event processing, any deferred events will be processed. A

sending application will respond to send requests from other applications while waiting

for its own send to complete. This means, for example, that the target of the send can

send a command back to the initiator while processing the script, if that is useful.

23.2 Hypertools

I hope that send will enable a new kind of small re-usable application that I call hyper-

tools. Many of today’s windowing applications are monoliths that bundle several different

packages into a single program. For example, debuggers often contain editors to display

the source files being debugged, and spreadsheets often contain charting packages or com-

munication packages or even databases. Unfortunately, each of these packages can only be

used from within the monolithic program that contains it.

With send each of these packages can be built as a separate stand-alone program.

Related programs can communicate by sending commands to each other. For example, a

debugger can send a command to an editor to highlight the current line of execution, or a

spreadsheet can send a script to a charting package to chart a dataset derived from the

spreadsheet, or a mail reader can send a command to a multi-media application to play a

video clip associated with the mail. With this approach it should be possible to re-use

existing programs in many unforeseen ways. For example, once a Tk-based audio-video

application becomes available, any existing Tk application can become a multi-media

application just by extending with scripts that send commands to the audio-video applica-

tion. The term “hypertools” reflects this ability to connect applications together in interest-

ing ways and to re-use them in ways not foreseen by their original designers.

Table 23.1. A summary of send and related commands.

send appName arg ?arg ...?
Concatenates all the arg’s with spaces as separators, then executes the
resulting script in the interpreter of the application given by appName. The
result of that execution is returned as the result of the send command.

winfo interps
Returns a list whose elements are the names of all the applications available
on the display containing the application’s main window.

winfo name .
Returns the name of the current application, suitable for use in send com-
mands issued by other applications.

23.3 Application names 229

DRAFT (3/11/93): Distribution Restricted

When designing Tk applications, I encourage you to focus on doing one or a few

things well; don’t try to bundle everything in one program. Instead, provide different func-

tions in different hypertools that can be controlled via send and re-used independently.

23.3 Application names

In order to send to an application you have to know its name. Each application on the dis-

play has a unique name, which it can choose in any way it pleases as long as it is unique.

In many cases the application name is just the name of the program that created the appli-

cation. For example, wish will use the application name wish by default; or, if it is run-

ning under the control of a script file then it will use the name of the script file as its

application name. In programs like editors that are typically associated with a disk file, the

application name typically has two parts: the name of the application and the name of the

file or object on which it is operating. For example, if an editor named mx is displaying a

file named tk.h, then the application’s name is likely to be “mx tk.h”.

If an application requests a name that is already in use then Tk adds an extra number

to the end of the new name to keep it from conflicting with the existing name. For exam-

ple, if you start up wish twice on the same display the first instance will have the name

wish and the second instance will have the name “wish #2”. Similarly, if you open a

second editor window on the same file it will end up with a name like “mx tk.h #2”.

Tk provides two commands that return information about the names of applications.

First, the command

winfo name .

wish #2

will return the name of the invoking application (this command is admittedly obscure;

implement “tk appname” before the book is published!!). Second, the command

winfo interps

wish {wish #2} {mx tk.h}

will return a list whose elements are the names of all the applications defined on the dis-

play.

23.4 Security issues

The send command is potentially a major security loophole. Any application that uses

your display can send scripts to any Tk application on that display, and the scripts can

use the full power of Tcl to read and write your files or invoke subprocesses with the

authority of your account. Ultimately this security problem must be solved in the X dis-

play server, since even applications that don’t use Tk can be tricked into abusing your

230 The Send Command

DRAFT (3/11/93): Distribution Restricted

account by sufficiently sophisticated applications on the same display. However without

Tk it is relatively difficult to create invasive applications; with Tk and send it is trivial.

You can protect yourself fairly well if you employ a key-based protection scheme for

your display like xauth instead of a host-based scheme like xhost. Unfortunately,

many people use the xhost program for protection: it specifies a set of machine names to

the server and any process running on any of those machines can establish connections

with the server. Anyone with an account on any of the listed machines can connect to your

server, send to your Tk applications, and misuse your account.

If you currently use xhost for protection, you should learn about xauth and switch

to it as soon as possible. Xauth generates an obscure authorization string and tells the

server not to allow an application to use the display unless it can produce the string. Typi-

cally the string is stored in a file that can only be read by a particular user, so this restricts

use of the display to the one user. If you want to allow other users to access your display

then you can give them a copy of your authorization file, or you can change the protection

on your authorization file so that it is group-readable. Of course, you should be aware that

in doing so you are effectively giving these other users full use of your account.

231

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the author or pub-

lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher

does not offer warranties in regard to this draft.

Chapter 24

Modal Interactions

Usually the user of a Tk application has complete flexibility to determine what to do next.

The application offers a variety of panels and controls and the user selects between them.

However, there are times when it’s useful to restrict the user’s range of choices or force the

user to do things in a certain order; these are called modal interactions. The best example

of a modal interaction is a dialog box: the application is carrying out some function

requested by the user (e.g. writing information to a file) when it discovers that it needs

additional input from the user (e.g. the name of the file to write). It displays a dialog box

and forces the user to respond to the dialog box (e.g. type in a file name). Once the user

responds, the application completes the operation and returns to its normal mode of opera-

tion where the user can do anything he or she pleases.

Tk provides two mechanisms for use in modal interactions. First, the grab command

allows you to temporarily restrict the user so that he or she can only interact with certain

of the application’s windows (e.g. only the dialog box). Second, the tkwait command

allows you to suspend the evaluation of a script (e.g. saving a file) until a particular event

has occurred (e.g. the user responded to the dialog box), and then continue the script once

this has happened. These commands are summarized in Table 24.1.

24.1 Grabs

Mouse events such as button presses and mouse motion are normally delivered to the win-

dow under the mouse cursor. However, it is possible for a window to claim ownership of

the mouse so that mouse events are only delivered to that window and its descendants in

the Tk window hierarchy. This is called a grab. When the mouse is over one of the win-

FIGURE 24

TABLE 24

232 Modal Interactions

DRAFT (3/11/93): Distribution Restricted

dows in the grab sub-tree, mouse events are delivered and processed just as if no grab

were in effect. When the mouse is outside the grab sub-tree, button presses and releases

and mouse motion events are delivered to the grab window instead of the window under

the mouse, and window entry and exit events are discarded. Thus a grab prevents the user

from interacting with windows outside the grab sub-tree.

The grab command sets and releases grabs. For example, if you’ve created a dialog

box named .dlg and you want to restrict interactions to .dlg and its subwindows, you

can invoke the command

grab set .dlg

Once the user has responded to the dialog box you can release the grab with the command

grab release .dlg

If the dialog box is destroyed after the user has responded to it then there’s no need to

invoke grab release: Tk releases the grab automatically when the grab window is

destroyed.

Tk provides two forms of grab, local and global. A local grab affects only the grab-

bing application: if the user moves the mouse into some other application on the display

then he or she can interact with the other application as usual. You should normally use

local grabs, and they are the default in the grab set command. A global grab takes over

Table 24.1. A summary of the grab and tkwait commands.

grab ?-global? window
Same as grab set command described below.

grab current ?window?
Returns the name of the current grab window for window’s display, or an
empty string if there is no grab for that display. If window is omitted,
returns a list of all windows grabbed by this application for all displays.

grab release window
Releases the grab on window, if there is one.

grab set ?-global? window
Sets a grab on window, releasing any previous grab on window’s display. If
-global is specified then the grab is global; otherwise it is local.

grab status window
Returns none if no grab is currently set on window, local if a local grab
is set, and global if a global grab is set.

tkwait variable varName
Waits until variable varName changes value, then returns.

tkwait visibility window
Waits until the visibility state of window changes, then returns.

tkwait window window
Waits until window is destroyed, then returns.

24.2 Keyboard handling during grabs 233

DRAFT (3/11/93): Distribution Restricted

the entire display so that you cannot interact with any application except the one that set

the grab. To request a global grab, specify the -global switch to grab set as in the

following command:

grab set -global .dlg

Global grabs are rarely needed and they are tricky to use (if you forget to release the grab

your display will become unusable). One place where they are used is for pull-down

menus.

Note: X will not let you set a global grab on a window unless it is visible. Section 24.3 describes
how to use the tkwait visibility command to wait for a window to become visible.
Local grabs are not subject to the visibility restriction.

The most common way to use grabs is to set a grab on a top-level window so that only

a single panel or dialog box is active during the grab. However, it is possible for the grab

sub-tree to contain additional top-level windows; when this happens then all of the panels

or dialogs corresponding to those top-level windows will be active during the grab.

24.2 Keyboard handling during grabs

Local grabs have no effect on the way the keyboard is handled: keystrokes received any-

where in the application will be forwarded to the focus window as usual. Most likely you

will set the focus to a window in the grab sub-tree when you set the grab. Windows out-

side the grab sub-tree can’t receive any mouse events so they are unlikely to claim the

focus away from the grab sub-tree. Thus the grab is likely to have the effect of restricting

the keyboard focus to the grab sub-tree; however, you are free to move the focus anywhere

you wish. If you move the mouse to another application then the focus will move to that

other application just as if there had been no grab.

During global grabs Tk also sets a grab on the keyboard so that keyboard events go to

the grabbing application even if the mouse is over some other application. This means that

you cannot use the keyboard to interact with any other application. Once keyboard events

arrive at the grabbing application they are forwarded to the focus window in the usual

fashion.

24.3 Waiting: the tkwait command

The second aspect of a modal interaction is waiting. Typically you will want to suspend a

script during a modal interaction, then resume it when the interaction is complete. For

example, if you display a file selection dialog during a file write operation, you will prob-

ably want to wait for the user to respond to the dialog, then complete the file write using

the name supplied in the dialog interaction. Or, when you start up an application you

might wish to display an introductory panel that describes the application and keep this

234 Modal Interactions

DRAFT (3/11/93): Distribution Restricted

panel visible while the application initializes itself; before going off to do the main initial-

ization you’ll want to be sure that the panel is on the screen. The tkwait command can

be used to wait in situations like these.

Tkwait has three forms, each of which waits for a different event to occur. The first

form is used to wait for a window to be destroyed, as in the following command:

tkwait window .dlg

This command will not return until .dlg has been destroyed. You might invoke this com-

mand after creating a dialog box and setting a grab on it; the command won’t return until

after the user has interacted with the dialog in a way that causes it to be destroyed. While

tkwait is waiting the application responds to events so the user can interact with the

application’s windows. In the dialog box example you should have set up bindings that

destroy the dialog once the user’s response is complete (e.g. the user clicks on the OK but-

ton). The bindings for the dialog box might also save additional information in variables

(such as the name of a file, or an identifier for the button that was pressed). This informa-

tion can be used once tkwait returns.

The script below creates a panel with two buttons labelled OK and Cancel, waits for

the user to click on one of the buttons, and then deletes the panel:

toplevel .panel

button .panel.ok -text OK -command {

set label OK

destroy .panel

}

button .panel.cancel -text Cancel -command {

set label Cancel

destroy .panel

}

pack .panel.ok -side left

pack .panel.cancel -side right

grab set .panel

tkwait window panel

When the tkwait command returns the variable label will contain the label of the but-

ton that was clicked upon.

The second form for tkwait waits for the visibility state of a window to change. For

example, the command

tkwait visibility .intro

will not return until the visibility state of .intro has changed. Typically this command is

invoked just after a new window has been created, in which case it won’t return until the

window has become visible on the screen. Tkwait visibility can be used to wait

for a window to become visible before setting a global grab on it, or to make sure that an

introductory panel is on the screen before invoking a lengthy initialization script. Like all

forms of tkwait, tkwait visibility will respond to events while waiting.

24.3 Waiting: the tkwait command 235

DRAFT (3/11/93): Distribution Restricted

The third form of tkwait provides a general mechanism for implementing other

forms of waiting. In this form, the command doesn’t return until a given variable has been

modified. For example, the command

tkwait variable x

will not return until variable x has been modified. This form of tkwait is typically used

in conjunction with event bindings that modify the variable. For example, the following

procedure uses tkwait variable to implement something analogous to tkwait

window except that you can specify more than one window and it will return as soon as

any of the named windows has been deleted (it returns the name of the window that was

deleted):

proc waitWindows args {

global dead

foreach w $args {

bind $w <Destroy> "set dead $w"

}

tkwait variable dead

return $dead

}

236 Modal Interactions

DRAFT (3/11/93): Distribution Restricted

237

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the author or pub-

lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher

does not offer warranties in regard to this draft.

Chapter 25

Odds and Ends

This chapter describes five additional Tk commands: destroy, which deletes widgets;

after, which delays execution or schedules a script for execution later; update, which

forces operations that are normally delayed, such as screen updates, to be done immedi-

ately; winfo, which provides a variety of information about windows, such as their

dimensions and children; and tk, which provides access to various internals of the Tk

toolkit. Table 25.1 summarizes these commands. This chapter also describes several glo-

bal variables that are read or written by Tk and may be useful to Tk applications.

25.1 Destroying windows

The destroy command is used to delete windows. It takes any number of window

names as arguments, for example:

destroy .dlg1 .dlg2

This command will destroy .dlg1 and .dlg2, including all of their widget state and the

widget commands named after the windows. It also recursively destroys all of their chil-

dren. The command “destroy .” will destroy all of the windows in the application;

when this happens most Tk applications (e.g. wish) will exit.

FIGURE 25

TABLE 25

238 Odds and Ends

DRAFT (3/11/93): Distribution Restricted

25.2 Time delays

The after command allows you to incorporate timing into your Tk applications. It has

two forms. If you invoke after with a single argument, then the argument specifies a

delay in milliseconds, and the command delays for that number of milliseconds before

returning. For example,

after 500

will delay for 500 milliseconds before returning. If you specify additional arguments, as in

the command

after 5000 {puts "Time’s up!"}

then the after command returns immediately without any delay. However, it concatenates

all of the additional arguments (with spaces between them) and arranges for the resulting

script to be evaluated after the specified delay. The script will be evaluated at global level

as an event handler, just like the scripts for bindings. In the example above, a message will

be printed on standard output after five seconds. The script below uses after to build a

general-purpose blinking utility:

Table 25.1. A summary of the commands discussed in this chapter.

after ms
Delays for ms milliseconds.

after ms arg ?arg arg ...?
Concatenates all the arg values (with spaces as separators) and arranges for
the resulting script to be executed after ms milliseconds have elapsed.
Returns without waiting for the script to be executed.

destroy window ?window window ...?
Deletes each of the windows, plus all of the windows descended from them.
The corresponding widget commands (and all widget state) are also deleted.

tk colormodel window ?value?
Sets the color model for window’s screen to value, which must be either
color or monochrome. If value isn’t specified, returns the current color
model for window’s screen.

update ?idletasks?
 Brings display up to date and processes all pending events. If idletasks
is specified then no events are processed except those in the idle task queue
(delayed updates).

winfo option ?arg arg ...?
Returns various pieces of information about windows, depending on
option argument. See reference documentation for details.

25.3 The update command 239

DRAFT (3/11/93): Distribution Restricted

proc blink {w option value1 value2 interval} {

$w config $option $value1

after $interval [list blink $w $option \

$value2 $value1 $interval]

}

blink .b -bg red black 500

The blink procedure takes five arguments, which are the name of a widget, the name of

an option for that widget, two values for that option, and a blink interval in milliseconds.

The procedure arranges for the option to switch back and forth between the two values at

the given blink interval. It does this by immediately setting the option to the first value and

then arranging for itself to be invoked again at the end of the next interval with the two

option values reversed, so that option is set to the other value. The procedure reschedules

itself each time it is called, so it executes periodically forever. Blink runs “in back-

ground”: it always returns immediately, then gets reinvoked by Tk’s timer code after the

next interval expires.

25.3 The update command

Tk normally delays operations such as screen updates until the application is idle. For

example, if you invoke a widget command to change the text in a button, the button will

not redisplay itself immediately. Instead, it will schedule the redisplay to be done later and

return immediately. When the application becomes idle (i.e. the current event handler has

completed, plus all events have been processed, so that the application has nothing to do

but wait for the next event) then it carries out all the delayed operations. Tk delays redis-

plays because it saves work in situations where a script changes the same window several

different times: with delayed redisplay the window only gets redrawn once at the end. Tk

also delays many other operations, such as geometry recalculations and window creation.

For the most part the delays are invisible. Tk rarely does very much work at a time, so

it becomes idle again very quickly and updates the screen before the user can perceive any

delay. However, there are times when the delays are inconvenient. For example, if a script

is going to execute for a long time then you may wish to bring the screen up to date at cer-

tain times during the execution of the script. The update command allows you to do this.

If you invoke the command

update idletasks

then all of the delayed operations like redisplays will be carried out immediately; the com-

mand will not return until they have finished.

The following procedure uses update to flash a widget synchronously:

proc flash {w option value1 value2 interval count} {

for {set i 0} {$i < $count} {incr i} {

$w config $option $value1

240 Odds and Ends

DRAFT (3/11/93): Distribution Restricted

update idletasks

after $interval

$w config $option $value2

update idletasks

after $interval

}

}

This procedure is similar to blink except that it runs in foreground instead of back-

ground: it flashes the option a given number of times and doesn’t return until the flashing

is complete. Tk never becomes idle during the execution of this procedure so the update

commands are needed to force the widget to be redisplayed. Without the update com-

mands no changes would appear on the screen until the script completed, at which point

the widget’s option would change to value2.

If you invoke update without the idletasks argument, then all pending events

will be processed too. You might do this in the middle of a long calculation to allow the

application to respond to user interactions (e.g. the user might invoke a “cancel” button to

abort the calculation).

25.4 Information about windows

The winfo command provides information about windows. It has more than 40 different

forms for retrieving different kinds of information. For example,

winfo exists .x

returns a 0 or 1 value to indicate whether there exists a window .x,

winfo children .menu

returns a list whose elements are all of the children of .menu,

winfo screenmmheight .dialog

returns the height of .dialog’s screen in millimeters, and

winfo class .x

returns the class of widget .x (e.g. button, text, etc.). Refer to the Tk reference docu-

mentation for details on all of the options provided by winfo.

25.5 The tk command: color models

The tk command provides access to various aspects of Tk’s internal state. At present only

one aspect is accessible: the color model. At any given time, Tk treats each screen as being

either a color or monochrome screen; this is the screen’s color model. When creating wid-

gets, Tk will use different defaults for configuration options depending on the color model

25.6 Variables managed by Tk 241

DRAFT (3/11/93): Distribution Restricted

of the screen. If you specify a color other than black or white for a screen whose color

model is monochrome, then Tk will round the color to either black or white.

By default Tk picks a color model for a screen based on the number of bits per pixel

for that screen: if the screen has only a few bits per pixel (currently four or fewer) then Tk

uses a monochrome color model; if the screen has many bits per pixel then Tk treats the

screen as color. You can invoke the tk command to change Tk’s color model from the

default. For example, the following command sets the color model for the main window’s

screen to monochrome:

tk colormodel . monochrome

If the color model for a screen is color and Tk finds itself unable to allocate a color for

a window on that screen (e.g. because the colormap is full) then Tk generates an error that

is processed using the standard tkerror mechanism described in Section 19.7. Tk then

changes the color model to monochrome and retries the allocation so the application can

continue in monochrome mode. If the application finds a way to free up more colors, it can

reset the color model back to color again.

25.6 Variables managed by Tk

Several global variables are significant to Tk, either because it sets them or because it

reads them and adjusts its behavior accordingly. You may find the following variables use-

ful:

In addition to these variables, which may be useful to the application, Tk also uses the

associative array tk_priv to store information for its private use. Applications should

not use or modify any of the values in tk_priv.

tk_version Set by Tk to its current version number. Has a form like
3.2, where 3 is the major version number and 2 is a minor
version number. Changes in the major version number
imply incompatible changes in Tk.

tk_library Set by Tk to hold the path name of the directory containing
a library of standard Tk scripts and demonstrations. This
variable is set from the TK_LIBRARY environment vari-
able, if it exists, or from a compiled-in default otherwise.

tk_strictMotif If set to 1 by the application, then Tk goes out of its way to
observe strict Motif compliance. Otherwise Tk deviates
slightly from Motif (e.g. by highlighting active elements
when the mouse cursor passes over them).

242 Odds and Ends

DRAFT (3/11/93): Distribution Restricted

243

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any

other form of duplication or reproduction requires prior written permission of the author or pub-

lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher

does not offer warranties in regard to this draft.

Chapter 26

Examples

This chapter presents two relatively complete examples that illustrate many of the features

of Tk. The first example is a procedure that generates dialog boxes, waits for the user to

respond, and returns the user’s response. The second example is an application that allows

you to “remote-control” any other Tk application on the display: it connects itself to that

application so that you can type commands to the other application and see the results.

26.1 A procedure that generates dialog boxes

The first example is a Tcl procedure named dialog that creates dialog boxes like those

shown in Figure 26.1. Each dialog contains a text message at the top plus an optional bit-

map to the left of the text. At the bottom of the dialog box is a row of any number of but-

tons. One of the buttons may be specified as the default button, in which case it is

displayed in a sunken frame. Dialog creates a dialog box of this form, then waits for the

user to respond by clicking on a button. Once the user has responded, dialog destroys

the dialog box and returns the index of the button that was invoked. If the user types a

return and a default button was specified, then the index of the default button is returned.

Dialog sets a grab so that the user must respond to the dialog box before interacting with

the application in any other way.

Figures 26.2 and 26.3 show the Tcl code for dialog. It takes six or more arguments.

The first argument, w, gives the name to use for the dialog’s top-level window. The second

argument, title, gives a title for the window manager to display in the dialog’s decora-

tive frame. The third argument, text, gives a message to display on the right side of the

dialog. The fourth argument, bitmap, gives the name of a bitmap to display on the left

FIGURE 26

TABLE 26

244 Examples

DRAFT (3/11/93): Distribution Restricted

side of the dialog; if it is specified as an empty string then no bitmap is displayed.The fifth

argument, default, gives the index of a default button, or -1 if there is to be no default

button. The sixth and additional arguments contain the strings to display in the buttons.

The code for dialog divides into five major parts, each headed by a comment. The

first part of the procedure creates the dialog’s top-level window. It sets up information for

the window manager, such as the title for the window’s frame and the text to display in the

dialog’s icon. Then it creates two frames, one for the bitmap and message at the top of the

dialog, and the other for the row of buttons at the bottom.

The second part of dialog creates a message widget to hold the dialog’s text string

and a label widget to hold its bitmap, if any. The widgets are arranged on the right and left

sides of the top frame, respectively, using the packer.

Figure 26.1. Two examples of dialog boxes created by the dialog procedure. Underneath each
dialog box is the command that created it.

dialog .d {File Modified} {File "tkInt.h" has been modified since the last \
time it was saved. Do you want to save it before exiting the application?} \
warning 0 {Save File} {Discard Changes} {Return To Editor}

dialog .d {Not Responding} {The file server isn’t responding right
now; I’ll keep trying.} {} -1 OK

26.1 A procedure that generates dialog boxes 245

DRAFT (3/11/93): Distribution Restricted

proc dialog {w title text bitmap default args} {

global button

1. Create the top-level window and divide it into top

and bottom parts.

toplevel $w -class Dialog

wm title $w $title

wm iconname $w Dialog

frame $w.top -relief raised -bd 1

pack $w.top -side top -fill both

frame $w.bot -relief raised -bd 1

pack $w.bot -side bottom -fill both

2. Fill the top part with the bitmap and message.

message $w.top.msg -width 3i -text $text \

-font -Adobe-Times-Medium-R-Normal-*-180-*

pack $w.top.msg -side right -expand 1 -fill both \

-padx 5m -pady 5m

if {$bitmap != ""} {

label $w.top.bitmap -bitmap $bitmap

pack $w.top.bitmap -side left -padx 5m -pady 5m

}

3. Create a row of buttons at the bottom of the dialog.

set i 0

foreach but $args {

button $w.bot.button$i -text $but -command \

"set button $i"

if {$i == $default} {

frame $w.bot.default -relief sunken -bd 1

pack $w.bot.default -side left -expand 1\

-padx 5m -pady 2m

pack $w.bot.button$i -in $w.bot.default -side left

\

-padx 3m -pady 3m -ipadx 2m -ipady 1m

} else {

pack $w.bot.button$i -side left -expand 1 \

-padx 5m -pady 5m -ipadx 2m -ipady 1m

}

incr i

}

Figure 26.2. A Tcl procedure that generates dialog boxes with a text message, optional bitmap, and
any number of buttons. Continued in Figure 26.3.

246 Examples

DRAFT (3/11/93): Distribution Restricted

The third part of the procedure creates the row of buttons. Since args was used as

the name of the last argument to dialog, the procedure can take any number of argu-

ments greater than or equal to five; args will be a list whose elements are all the addi-

tional arguments after default. For each of these arguments, dialog creates a button

that displays the argument value as its text. The default button, if any, is packed in a spe-

cial sunken ring ($w.bot.default). The buttons are packed with the -expand option

so that they spread themselves evenly across the width of the dialog box; if there is only a

single button then it will be centered. Each button is configured so that when the user

clicks on it the global variable button will be set to the index of that button.

Note: It’s important that the value of the -command option is specified in quotes, not curly
braces, so that $i (the button’s index) is substituted into the command immediately. If the
value were surrounded by braces, then the value of $i wouldn’t be substituted until the
command is actually executed; this would use the value of global variable i, not the
variable i from the dialog procedure.

The fourth part of dialog sets up a binding so that typing a return to the dialog box

will flash the default button and set the button variable just as if the button had been

invoked. It also sets the input focus to the dialog box and sets a local grab on the dialog

box to give it control over both the keyboard and the mouse.

The last part of the procedure waits for the user to interact with the dialog. It does this

by waiting for the button variable to change value, which will happen when the user

4. Set up a binding for <Return>, if there’s a default,

set a grab, and claim the focus too.

if {$default > 0} {

bind $w <Return> "$w.bot.button$default flash; \

set button $default"

}

set oldFocus [focus]

grab $w

focus $w

5. Wait for the user to respond, then restore the focus

and return the index of the selected button.

tkwait variable button

destroy $w

focus $oldFocus

return $button

}

Figure 26.3. Procedure to generate dialog boxes, cont’d.

26.2 A remote-control application 247

DRAFT (3/11/93): Distribution Restricted

clicks on a button in the dialog box or types a return. When the tkwait command

returns, the button variable contains the index of the selected button. Dialog then

destroys the dialog box (which also releases its grab), restores the input focus to its old

window, and returns.

26.2 A remote-control application

The second example is an application called rmt, which allows you to type Tcl commands

interactively to any Tk application on the display. Figure 26.4 shows what rmt looks like

on the screen. It contains a menu that can be used to select an application plus a text wid-

get and scrollbar. At any given time rmt is “connected” to one application; lines that you

type in the text widget are forwarded to the current application using send and the results

are displayed in the text widget. Rmt displays the name of the current application in the

prompt at the beginning of each command line. You can change the current application by

selecting an entry in the menu, in which case the prompt will change to display the new

application’s name. You can also type commands to the rmt application itself by selecting

rmt as the current application. When rmt starts up it connects to itself.

The script that creates rmt is shown in Figures 26.5-26.9. The script is designed to be

placed into a file and executed directly. The first line of the script,

Figure 26.4. The rmt application allows users to type interactively to any Tk application on the
display. It contains a menu for selecting an application plus a text widget for typing commands and
displaying results. In this example the user has issued commands to three different applications:
first the rmt application itself, then an application named widget, and finally one named
rolodex (the prompt on each command line indicates the name of the application that executed
the command).

248 Examples

DRAFT (3/11/93): Distribution Restricted

#!/usr/local/bin/wish -f

is similar to the first line of a shell script: if you invoke the script file directly from a shell

then the operating system will invoke wish instead, passing it two arguments: -f and the

name of the script file. Wish will then execute the contents of the file as a Tcl script.

#!/usr/local/bin/wish -f

1. Create basic application structure: menu bar on top of

text widget, scrollbar on right.

frame .menu -relief raised -bd 2

pack .menu -side top -fill x

scrollbar .s -relief flat -command ".t yview"

pack .s -side right -fill y

text .t -relief raised -bd 2 -yscrollcommand ".s set" \

-setgrid true

.t tag configure bold -font *-Courier-Bold-R-Normal-*-120-*

pack .t -side left -fill both -expand 1

wm title . "Tk Remote Controller"

wm iconname . "Tk Remote"

wm minsize . 1 1

2. Create menu button and menus.

menubutton .menu.file -text "File" -underline 0 -menu

.menu.file.m

menu .menu.file.m

.menu.file.m add cascade -label "Select Application" \

-underline 0 -accelerator => -menu .menu.file.m.apps

.menu.file.m add command -label "Quit" -underline 0 \

-command "destroy ."

menu .menu.file.m.apps -postcommand fillAppsMenu

pack .menu.file -side left

tk_menuBar .menu .menu.file

proc fillAppsMenu {} {

catch {.menu.file.m.apps delete 0 last}

foreach i [lsort [winfo interps]] {

.menu.file.m.apps add command -label $i \

-command [list newApp $i]

}

}

Figure 26.5. A script that generates rmt, an application for remotely controlloing other Tk
applications. This figure contains basic window set-up code. The script continues in Figures 26.6-
26.9

26.2 A remote-control application 249

DRAFT (3/11/93): Distribution Restricted

The rmt script contains about 100 lines of Tcl code in all, which divide into seven

major parts. It makes extensive use of the facilities of text widgets, including marks and

tags; you may wish to review the reference documentation for texts as you read through

the code for rmt.

The first part of the rmt script sets up the overall window structure, consisting of a

menu bar, a text widget, and a scrollbar. It also passes information to the window manager,

such as titles to appear in the window’s decorative frame and icon. The command “wm

minsize . 1 1” enables interactive resizing by the user as described in Section 22.1.

Since the text widget has been packed with the -expand option set to 1, it will receive

any extra space; since it is last in the packing order, it will also shrink if the user resizes

3. Create bindings for text widget to allow commands to

be entered and information to be selected. New characters

can only be added at the end of the text (can't ever move

insertion point).

bind .t <1> {

set tk_priv(selectMode) char

.t mark set anchor @%x,%y

if {[lindex [%W config -state] 4] == "normal"} {focus %W}

}

bind .t <Double-1> {

set tk_priv(selectMode) word

tk_textSelectTo .t @%x,%y

}

bind .t <Triple-1> {

set tk_priv(selectMode) line

tk_textSelectTo .t @%x,%y

}

bind .t <Return> {.t insert insert \n; invoke}

bind .t <BackSpace> backspace

bind .t <Control-h> backspace

bind .t <Delete> backspace

bind .t <Control-v> {

.t insert insert [selection get]

.t yview -pickplace insert

if [string match *.0 [.t index insert]] {

invoke

}

}

Figure 26.6. Bindings for the rmt application. These are modified versions of the default Tk
bindings, so they use existing Tk facilities such as the variable tk_priv and the procedure
tk_textSelectTo

250 Examples

DRAFT (3/11/93): Distribution Restricted

the application to a smaller size than it initially requested. The -setgrid option for the

text widget enables gridding as described in Section 22.2: interactive resizing will always

leave the text widget with dimensions that are an integral number of characters.

The command

.t tag configure bold -font \

-Courier-Bold-R-Normal--120-*

creates a tag named bold for the text widget and associates a bold font with that tag. The

script will apply this tag to the characters in the prompts so that they appear in boldface,

whereas the commands and results appear in a normal font.

The second part of the script fills in the menu with two entries. The top entry displays

a cascaded submenu with the names of all applications, and the bottom entry is a com-

mand entry that causes rmt to exit (it executes the script “destroy .”, which destroys

all of the application’s windows; when wish discovers that it no longer has any windows

left then it exits). The cascaded submenu is named .menu.file.m.apps; its

-postcommand option causes the script “fillAppsMenu” to be executed each time

the submenu is posted on the screen. FillAppsMenu is a Tcl procedure defined at the

bottom of Figure 26.5; it deletes any existing entries in the submenu, extracts the names of

all applications on the display with “winfo interps”, and creates one entry in the

menu for each application name. When one of these entries is invoked by the user, the pro-

cedure newApp will be invoked with the application’s name as argument.

Note: The command “[list newApp $i]” creates a Tcl list with two elements. As
described in Section XXX, when a list is executed as a command each element of the list
becomes one word for the command. Thus this form guarantees that newApp will be
invoked with a single argument consisting of the value of $i at the time the menu entry is
created, even if $i contains spaces or other special characters.

The third part of the rmt script, shown in Figure 26.6, creates event bindings for the

text widget. Tk defines several default bindings for texts, which handle mouse clicks,

4. Procedure to backspace over one character, as long as

the character isn't part of the prompt.

proc backspace {} {

if {[.t index promptEnd] != [.t index {insert - 1 char}]}

{

.t delete {insert - 1 char} insert

.t yview -pickplace insert

}

}

Figure 26.7. Procedure that implements backspacing for rmt.

26.2 A remote-control application 251

DRAFT (3/11/93): Distribution Restricted

character insertion, and common editing keystrokes such as backspace. However, rmt’s

text widget has special behavior that is inconsistent with the default bindings, so the code

in Figure 26.6 overrides many of the defaults. You don’t need to understand the details of

the bindings; they have been copied from the defaults in Tk’s startup script and modified

so that (a) the user can’t move the insertion cursor (it always has to be at the end of the

text), (b) the procedure backspace is invoked instead of Tk’s normal text backspace

procedure, and (c) the procedure invoke is called whenever the user types a return or

copies in text that ends with a newline.

The fourth part of the rmt script is a procedure called backspace. It implements

backspacing in a way that disallows backspacing over the prompt (see Figure 26.7).

Backspace checks to see if the character just before the insertion cursor is the last char-

acter of the most recent prompt. If not, then it deletes the character; if so, then it does noth-

5. Procedure that's invoked when return is typed: if

there’s not yet a complete command (e.g. braces are open)

then do nothing. Otherwise, execute command (locally or

remotely), output the result or error message, and issue

a new prompt.

proc invoke {} {

global app

set cmd [.t get {promptEnd + 1 char} insert]

if [info complete $cmd] {

if {$app == [winfo name .]} {

catch [list uplevel #0 $cmd] msg

} else {

catch [list send $app $cmd] msg

}

if {$msg != ""} {

.t insert insert $msg\n

}

prompt

}

.t yview -pickplace insert

}

proc prompt {} {

global app

.t insert insert "$app: "

.t mark set promptEnd {insert - 1 char}

.t tag add bold {insert linestart} promptEnd

}

Figure 26.8. Procedures that execute commands and output prompts for rmt.

252 Examples

DRAFT (3/11/93): Distribution Restricted

ing, so that the prompt never gets erased. To keep track of the most recent prompt, rmt

sets a mark named promptEnd at the position of the last character in the most recent

prompt (see the prompt procedure below for the code that sets promptEnd).

The fifth part of the rmt script handles command invocation; it consists of two proce-

dures, invoke and prompt (see Figure 26.8). The invoke procedure is called when-

ever a newline character has been added to the text widget, either because the user typed a

return or because the selection was copied into the widget and it ended with a newline.

Invoke extracts the command from the text widget (everything from the end of the prompt

to the current insertion point) and then invokes info complete to make sure that the

command is complete. If the command contains unmatched braces or unmatched quotes

then invoke returns without executing the command so the user can enter the rest of the

command; after each return is typed invoke will check again, and once the command is

complete it will be invoked. The command is invoked by executing it locally or sending it

to the appropriate application. If the command returns a non-empty string (either as a nor-

mal reult or as an error message) then the string is added to the end of the text widget.

Finally, invoke outputs a new prompt and scrolls the view in the text to keep the inser-

tion cursor visible.

The prompt procedure is responsible for outputting prompts. It just adds characters

to the text widget, sets the promptEnd mark to the last character in the prompt, and then

applies the bold tag to all the characters in the prompt so that they’ll appear in a bold

font.

6. Procedure to select a new application. Also changes

the prompt on the current command line to reflect the new

name.

proc newApp appName {

global app

set app $appName

.t delete {promptEnd linestart} promptEnd

.t insert promptEnd "$appName:"

.t tag add bold {promptEnd linestart} promptEnd

}

7. Miscellaneous initialization.

set app [winfo name .]

prompt

focus .t

Figure 26.9. Code to select a new application for rmt, plus miscellaneous initialization code.

26.2 A remote-control application 253

DRAFT (3/11/93): Distribution Restricted

The sixth part of the rmt script consists of the newApp procedure in Figure 26.9.

NewApp is invoked to change the current application. It sets the global variable app,

which identifies the current application, then overwrites the most recent prompt to display

the new application’s name.

The last part of rmt consists of miscellaneous initialization (see Figure 26.9). It con-

nects the application to itself initially, outputs the initial prompt, and sets the input focus to

the text window.

254 Examples

DRAFT (3/11/93): Distribution Restricted

