Building User Interfaces
With Tcl and Tk

John Ousterhout

Computer Science Division
Department of EECS

University of California at Berkeley

_Outline
* Basic structures. windows, widgets, processes.
» Widget creation commands.
» Geometry management: the placer and the packer.
» Widget commands.

 Connection commands: bindings, send, focus,
selection, window manager, grabs.

2 examples: dialog box, browser.

Scripting TK, slide 2.

_Structure of a Tk Application

1.

2.

3.

Widget hierarchy.

OneTcl interpreter.

One process.

(Can have > 1 application in a process)

Widget = window with particular look and feel.

Widget classes implemented by Tk:

Frames
Labels
Buttons
Checkbuttons
Radiobuttons

Menubuttons
Menus

M essages
Entries
Texts

Canvases
Scrollbars
Scales

Listboxes
Toplevels

Scripting TK, slide 3.

_TheWidget Hierarchy

Hie

" Help|

Hawrali
Idaho
lllinois
Indiana
lowa
Kansas
Kentucky
Louisiana
Maine
Maryland

|

|

Hawraii
Idaho
inois
Indiana
lowa
Kansas
Kentucky
Louisiana
Maine
Maryland

.listbox .nmenu .scroll

N

.menu. file

I

. menu. hel p

-

— g

4

Scripting TK, slide 4.

Types of Windows

Hie = ﬂelpl Are you sure that you
Hawsaii A really want to delete
Idaho "Kansas” from the
llinois database?

Indiana J

lowa
Yes Mo |
Kansas

kKentucky
Louisiana
Maine

Maryland A

Mainvi/indow

Top-level window

.listbox .nmenu .scroll .dlg
.menu.file .nmenu.help .dlg.nsg .dlg.no

.dl g.yes

S S

Internal windows

Scripting TK, slide 5.

Creating Widgets

 Each widget has a class: button, listbox, scrollbar, etc.

» One Tcl command named after each class, used to
create instances:

button .a.b -text Quit -command exit
scroll bar .x -orient horizontal

class name configuration

options

window name

Scripting TK, slide 6.

Configuration Options

* Defined by class. For buttons:

activeBackground cursor relief
acti veForeground disabl edForeground state
anchor font t ext
background f or egr ound t ext Vari
bi t map hei ght wi dt h
border Wdt h padx

comrand pady

* If not specified on command line, then taken from
option database:

- Loaded from RESOURCE _MANAGER property or
. Xdef aul t s file.

- May be set, queried with Tcl commands:
option add *Button.relief sunken

« If not in option database, use default provided by class
implementation (defaults are reasonable!).

Scripting TK, slide 7.

Geometry M anagement

 Widgets don’t control their own positions and sizes;
geometry managers do.

» Widgets don’t even appear on screen until managed
by a geometry manager.

» Geometry manager = algorithm for arranging slave

windows relative to master window.

Requested size Parameters from Geometry of
from slave application designer master

Geometry
M anager

Sizeand location Requested size
of slave for master

Scripting TK, slide 8.

The Placer

« Simple but not very powerful.

 Each dave placed individually relative to its master.

place .x -x 0 -y O place .x -relx 0.5\
-y 1.0c -anchor n

place .x -relx 0.5\ pl ace .x -relheight 0.5\
-rely 0.5 -height 3c \ -relwidth 0.5\
-anchor center -relx 0 -rely 0.5

Scripting TK, slide 9.

The Packer

* Much more powerful than placer.
 Arranges groups of slaves together.

* Packs slaves around edges of master’s cavity.

For each dlave, in order: [

1. Pick aside of the master. “

2. Slice off aframefor dave.

3. Possibly grow slaveto fill frame. I

4. Position slavein frame.

Scripting Tk, slide 10.

Packer Examples

pack .a -side
pack .b -side
pack .c -side

| ef t
| ef t
| ef t

la] [b

.C |:>

pack .a -side
pack .b -side

- pady . 5c
pack .c -side

top -anchor w

top -anchor w\

top -anchor w

la] [b

.C |:>

a -side
pack .b -side
c - padx
Il both

top -fill x
right -fill vy

0.5c -pady 1c \

.C |:>

Scripting Tk, slide 11.

Packer Advantages

Consider srelationships between slaves
(constraint-like):

* Row and column arrangements easy to achieve.

* Adjusts arrangement if a slave requests a different
size.

Requests size on behalf of master:
* Just large enough for all saves.
* Adjustsif slaves request different sizes.

* Permits hierarchical geometry management.

Scripting Tk, slide 12

 Tcl command for each widget, named after widget’s
path name.

 Used to reconfigure, manipulate widget:

» Widget command is deleted automatically when
widget is destroyed.

* Principle: al state should be readable, modifiable,
anytime.

Scripting Tk, slide 13

Question: How to make widgets wor k together with
application, other widgets?

Answer: Tcl commands.

» Widget actions are Tcl commands:

button
release

 Widgets use Tcl commands to communicate with
each other:

)

 Application uses widget commands to communicate
with widgets.

Scripting Tk, slide 14

Connections, cont’d

o Va ues substituted
» Event bindings: / from event

bind .t a "insert a" l
bi nd Button <3> "help %W

bind .t <Any-KeyPress> "insert %A"
bind all <Control-g> "quit"

¢ Issuing commands to other Tk applications:

send tgdb "break tkEval.c: 200"
wi nfo interps
wi sh tgdb ppres

* Window information:

winfo width .x
wi nfo children .
wi nfo contai ni ng $x $y

Scripting Tk, slide 15

Access To Other X Facilities

» Keyboard focus:

focus .x.y

* The selection:
sel ecti on get
sel ection get FlILE NAME

« Communication with window manager:
wntitle . "Editing main.c"
wm geonetry . 300x200
wmiconify .

* Deleting windows:

destroy .Xx

* Grabs:

grab .x
grab rel ease .x

Scripting Tk, slide 16

Example #1: Dialog Box

File main.c hasn't
been saved to disk
since it was last
modified. What
should | do?

topl evel .d

nmessage .d.top -wdth 3i -bd 2\
-relief raised -justify center \
-font \

-hel veti ca- medi umr-nornal - --240* \
-text "File main.c hasn’t been \
saved to disk since it was | ast \
nodi fied. Wat should | do?"

pack .d.top -side top -fill both

Scripting Tk, slide 17

Dialog Box, cont’d

File main.c hasn't
been saved to disk
since it was last
modified. What
should | do?

Jave ﬁlel Quit. Hnywayl

frame . d. bot

pack .d.bot -side bottom-fill both

button .d.bot.left -text "Save File" \
-command "quit save"

pack .d.bot.left -side left \
-expand yes -padx 20 -pady 20

button .d.bot.md -text "Quit Anyway" \
-command "quit quit"”

pack .d.bot.md -side left \
-expand yes -padx 20 -pady 20

Scripting Tk, slide 18

Dialog Box, cont’d

File main.c hasn'’t
been saved to disk
since it was last
modified. What
should | do?

Save File| Quit Anyway| Retumn To Editor

button .d. bot.right \
-text "Return To Editor"™ \
-command "quit return”
pack .d.bot.right -side left \
-expand yes -padx 20 -pady 20
proc quit button {
puts stdout "You pressed the \
$button button; bye-bye"
destroy .d

Scripting Tk, slide 19

Example #2. Browser

[«

listbox .list -yscroll ".scroll set" \
-relief raised -geonetry 20x15

pack .list -side left

scrol | bar .scroll \
-command ".list yview'

pack .scroll -side right -fill vy

Scripting Tk, slide 20

Browser, cont’d

L L

Makefile
Makefile.unix
Mzx.tkint.1
RC3
README
ToDo
hitmaps
bugs

bytes
changes
chevis

color
contrib F|

if {$argc > 0} {

set dir [lindex $argv 0]
} else {

set dir

}

foreach i [exec Is -a $dir] {
.list insert end $i

Scripting Tk, slide 21

Browser, cont’d

bind .list <Double-Button-1> {
browse $dir [sel ection get]

}

bind .list <Control-c> {destroy

focus .list

proc browse {dir file} {
if {$dir '="."} {
set file $dir/$file
}

if [file isdirectory $file] {
exec browse $file &
} else {
if [file isfile $file] {
exec xedit $file &
} else {
puts stdout "\"$fil e\
a regular file or
directory"

-}

isnt \
\

Scripting Tk, slide 22

Creating interfaceswith Tcl scriptsiseasy:
* Create widgets
» Arrange with geometry managers.

 Connect to application, each other.

Power from single scripting language:
* For specifying user interface.
* For widgets to invoke application.
* For widgets to communicate with each other.
 For communicating with outside world.

* For changing anything dynamically.

Scripting Tk, slide 23

