
Tcl and Tk:

A Programming System

for X11 User Interfaces

John Ousterhout

Computer Science Division
Department of EECS

University of California at Berkeley

Tcl/Tk overview, slide 2.

What I’ve built:

• Tcl: embeddable command language.

• Tk: X11 toolkit and widgets based on Tcl.

The principle: single interpretive language controls all
aspects of all interactive applications.

• Function of application.

• Interface of application.

• Composing pieces of application.

• Communication between applications.

Results:

• Raise the level of X programming (simpler, 5-10x
faster application development).

• Greater power (more things programmable,
program applications to work together).

Overview

Tcl/Tk overview, slide 3.

Outline

1. The Tcl language.

2. The Tk toolkit.

3. Tk applications.

4. Composing applications: hypertools.

5. Status and conclusions.

Tcl/Tk overview, slide 4.

Tcl: Tool Command Language

Problem:

• Interactive programs need command languages.

• Traditionally redone for each application.

• Result: weak, quirky.

• Emacs and csh nice, but can’t reuse.

Solution: Tcl

• Command language = embeddable C library.

• Powerful features: procedures, variables, lists,
expressions, loops, etc.

• Extensible by applications.

Tcl/Tk overview, slide 5.

Language Philosophy

Classes of language:

• Large application implementation
(structure, performance important).

• Scripting, extensions.

• Interactive commands (structure bad,
performance not critical).

One language can’t meet all three needs?

Tcl goals:

• Simple syntax (for humans).

• Programmable.

• Easy to interpret.

• Simple interface to C procedures.

C

Tcl

Tcl/Tk overview, slide 6.

Tcl Syntax

Basic syntax like shells:

• Words separated by spaces:

cmd arg arg arg ...

• Commands separated by newlines, semi-colons.

• Commands return string results.

Simple substitution rules:

• Variables:

set a $b

• Command results:

set a [expr $b+2]

• Complex arguments:

if $a<0 {

puts stdout "a is negative"

}

Tcl/Tk overview, slide 7.

More on the Tcl Language

Rich set of built-in commands:

• Variables, associative arrays, lists.

• Arithmetic expressions.

• Conditionals, looping.

• Procedures.

• Access to UNIX files, commands.

Only datatype is strings:

• Easy access from C.

• Programs and data interchangeable.

Tcl/Tk overview, slide 8.

Factorial Procedure

proc fac x {

if $x==1 {return 1}

expr $x*[fac [expr $x-1]]

}

fac 4 returns 24

Tcl/Tk overview, slide 9.

Embedding Tcl in Applications

Built-in
Commands

Application-
Specific
Commands

Init

Parser Command
Loop

Tcl Application

• Application generates Tcl scripts.

• Tcl parses, substitutes, passes argc/argv to command
procedures.

• Application extends built-in command set.

Tcl/Tk overview, slide 10.

The Tk Toolkit

The problem:

• Too hard to build applications with nice user
interfaces.

The wrong solution:

• C++, object-oriented toolkits.

• Only small improvement (10-20%?): must still
program at a low level.

The right solution:

• Raise the level of programming.

• Create interfaces by writing Tcl scripts.

Tcl/Tk overview, slide 11.

Creating Interfaces with Tk

Widgets/windows have path names:

.dlg.quit

Create widget with command named after class:

button .dlg.quit -text Quit \
-foreground red -command exit

Tell geometry manager where to display widget:

place .dlg.quit -x 0 -y 0

pack .dlg.quit -side bottom

Tcl/Tk overview, slide 12.

Other Tk Features

Manipulate widgets with widget commands:

.dlg.quit flash

.dlg.quit configure -relief sunken

Use Tcl for interconnection:

• Buttons, menu entries invoke Tcl commands.

• Scrollbars and listboxes communicate with Tcl.

• Can define new event bindings in Tcl.

• Selection, focus accessible via Tcl.

Tk also provides C interfaces:

• Create new widget classes.

• Create new geometry managers.

Tcl/Tk overview, slide 13.

What’s a Tk-based application?

1. The Tcl interpreter.

2. The Tk toolkit.

3. Application-specific C code:

• New object types.

• New widgets.

4. Tcl scripts:

• Build user interface.

• Compose application primitives into useful
functions.

Tcl commands

Tcl/Tk overview, slide 14.

The Simplest Tk Application: Wish

No C code except command-line reader.

Can build many applications as wish scripts:

• Hello, world:

label .hello -text "Hello, world"
pack .hello

• Simple directory browser:
30 lines.

Tcl/Tk overview, slide 15.

Browser Wish Script
listbox .list -yscroll ".scroll set" \

-relief raised -geometry 20x20
pack .list -side left
scrollbar .scroll -command ".list yview"
pack .scroll -side right -fill y
if {$argc > 0} {

set dir [lindex $argv 0]
} else {

set dir "."
}
foreach i [exec ls -a $dir] {

.list insert end $i
}
bind .list <Double-Button-1> {

browse $dir [selection get]
}
bind .list <Control-c> {destroy .}
focus .list
proc browse {dir file} {

global env
if {$dir != "."} {set file $dir/$file}
if [file isdirectory $file] {

exec browse $file &
} else {

if [file isfile $file] {
exec xedit $file &

} else {
puts stdout "can’t browse $file"

}
}

}

Tcl/Tk overview, slide 16.

Commercial presentation package:

• Presentation = sequence of slides.

• Text, graphics, images.

• Backgrounds, slides, notes.

• Postscript output, on-line slide shows.

Implemented using Tcl and Tk:

• 29000 lines of new C code.

• 1 new widget for displaying slides.

• ~30 other Tcl commands for manipulating
presentations.

• 11000 lines of Tcl scripts.

Perspecta Presents!

Tcl/Tk overview, slide 17.

1. Powertext: text created by Tcl script, not typed
by user.

• Slide numbers.

• Bullet numbers.

• Update values from database?

2. File format = Tcl script. To load, just execute
file.

3. Selection exchanged as Tcl script (selectively
copy backgrounds, looks, etc.)

4. Undo/redo:

• Undo/redo script pairs saved in log file.

• Infinite-level undo/redo.

• Recovery after crashes.

5. Slide shows, etc. etc.

Uses of Tcl in Perspecta Presents!

Tcl/Tk overview, slide 18.

Composing Applications

The problem:

• Only communication between applications is via
selection.

• Result: monolithic applications.

The solution: send command

• send appName command

• Implemented using X11 properties.

• Any Tk application can invoke anything in any
other Tk application: interface or actions.

• Result: powerful communication.

Tcl/Tk overview, slide 19.

Composing Applications, cont’d

Examples:

• Debugger sends command to editor: highlight line
of execution.

• User-interface editor sends commands to modify
interface of live application.

• Multi-media: send record, play commands to
audio and video applications.

• Spreadsheets: cell sends commands to database to
fetch current value.

Revolutionary results:

• Build complex systems as collections of
specialized but reusable hypertools.

• Easy to create active objects: embedded Tcl
commands. Hypertext, hypermedia easy.

Tcl/Tk overview, slide 20.

Status

Tcl:

• 20000 lines C code.

• First released January 1990.

Tk:

• Intrinsics: 21500 lines C code.

• Motif-like widgets: 34000 lines C code.
Buttons
Canvases
Entries
Frames

Labels
Listboxes
Menus
Messages

Scales
Scrollbars
Texts

• First released March 1991.

User community:

• 5000-10000 (as of January 1993).

Tcl/Tk overview, slide 21.

Conclusions

Power from programming:

• High-level programming for power, flexibility.

• Extensibility.

• One language for many things.

Power from composition:

• Widgets within an application.

• Send between applications.

Tcl + Tk = shell of 1990’s?

Wanted: application developers.

