
An Introduction

To Writing Tcl Scripts

John Ousterhout

Computer Science Division
Department of EECS

University of California at Berkeley

Writing Tcl scripts, slide 2.

Language Overview

Two parts to learning Tcl:

1. Syntax and substitution rules:

Substitutions simple but may be confusing at first.

2. Built-in commands:

Can learn individually as needed.

Control structures are commands, not syntax.

Writing Tcl scripts, slide 3.

Basics

Tcl script =

• Sequence of commands.

• Commands separated by newlines, semi-colons.

Tcl command =

• One or more words separated by spaces.

• First word is command name, others are
arguments.

Examples:

set a 22; set b 33

set a 22
set b 33

Writing Tcl scripts, slide 4.

Division of Responsibility

Tcl Parser

Command
Procedure

Chops command into words,
makes substitutions. Does
not interpret values of words.

Interprets words, produces
string result.

Command

Words

Result

Writing Tcl scripts, slide 5.

Arguments

Parser assigns no meaning to arguments
(quoting by default, evaluation is special):

C: x = 4; y = x+10;
y is 14

Tcl: set x 4; set y x+10

y is ‘‘x+10’’

Different commands assign different meanings to
their arguments:

set a 122

expr 24/3.2

eval "set a 122"

button .b -text Hello -fg red

string length Abracadabra

Writing Tcl scripts, slide 6.

Variable Substitution

• Syntax: $varName

• Variable name is letters, digits, underscores.

• May occur anywhere within a word.

Sample command Result

set b 66 66

set a b b

set a $b 66

set a $b+$b+$b 66+66+66

set a $b.3 66.3

set a $b4 no such variable

Writing Tcl scripts, slide 7.

Command Substitution

• Syntax: [script]

• Execute script, substitute result.

• May occur anywhere within a word.

Sample Command Result

set b 8 8

set a [expr $b+2] 10

set a "b-3 is [expr $b-3]" b-3 is 5

Writing Tcl scripts, slide 8.

Controlling Word Structure

Words break at white space and semi-colons,
except:

• Double-quotes prevent breaks:

set a "Funny word; has spaces"

• Curly braces prevent breaks and substitutions:

set a {nested {} braces}

• Backslashes quote special characters:

set a word\ with\ \$\ and\ space

Substitutions don’t change word structure:

set a "two words"

set b $a

Writing Tcl scripts, slide 9.

Expressions

• C-like (int and double), extra support for string
operations.

• Support for command and variable substitution within
expressions.

• Used in expr, other commands.

Sample command Result

set b 5 5

expr ($b*4)-3 17

expr $b<=2 0

expr {$b * [fac 4]} 120

set a Bill Bill

expr {$a < "Anne"} 0

Writing Tcl scripts, slide 10.

Lists

• Zero or more elements separated by white space:

red green blue

• Braces and backslashes for grouping:

a b {c d e} f

one\ word two three

• List-related commands:

concat linsert lreplace

foreach list lsearch

lappend llength lsort

lindex lrange

• Example:

lindex {a b {c d e} f} 2

c d e

Writing Tcl scripts, slide 11.

Control Structures

• C-like appearance.

• No new syntax: just commands that take Tcl scripts
as arguments.

• Example:

if {$x < 3} {
puts stdout "x is too small!"
set x 3

}

• Commands:

if case
for break
foreach continue
while eval

Writing Tcl scripts, slide 12.

Procedures

• proc command defines procedure:

proc sub1 x {expr $x-1}

name body
list of argument names

• Procedures behave just like built-in commands:

sub1 3 returns 2

• Arguments can have defaults:

proc decr {x {y 1}} {expr $x-$y}

• Can have variable number of arguments:

proc foo {a b args} { ... }

gets list of extra args

• Scoping: local and global variables.

Writing Tcl scripts, slide 13.

Errors

• Errors normally abort commands in progress,
application displays message:

set n 0
foreach i {1 2 3 4 5} {

set n [expr {$n + i*i}]
}
syntax error in expression "$n + i*i"

• Global variable errorInfo provides stack trace:

set errorInfo
syntax error in expression "$n + i*i"

while executing
"expr {$n + i*i}"

invoked from within
"set n [expr {$n + i*i}]..."

("foreach" body line 2)
invoked from within

"foreach i {1 2 3 4 5} {
set n [expr {$n + i*i}]

}"

Writing Tcl scripts, slide 14.

Advanced Error Handling

• Can catch errors:

catch {expr {2 +}} msg

1

set msg

syntax error in expression "2 +"

• Can generate errors:

error "bad argument"

• Global variable errorCode holds machine-readable
information about errors (e.g. UNIX errno value).

Writing Tcl scripts, slide 15.

Additional Tcl Features

1. String manipulation commands:

string format split

regexp scan join

2. File I/O commands:

open seek file

close tell glob

gets flush cd

read eof pwd

puts source

3. Subprocesses with exec command:

exec grep foo << $input | wc

4. History (history command).

Writing Tcl scripts, slide 16.

Additional Tcl Features, cont’d

5. Associative arrays:

set x(fred)44

set x(2) [expr $x(fred)+6]

array names x

fred 2

6. Variable scoping:

global uplevel upvar

7. Autoloading:

• Tcl procedures loaded on demand.

• Search path of directories.

8. Access to Tcl internals:

info rename trace

Writing Tcl scripts, slide 17.

Tcl Syntax Summary

1. Script = commands separated by newlines,
semi-colons.

2. Command = words separated by white space.

3. $ causes variable substitution.

4. [] causes command substitution.

5. "" quotes white space and semi-colons.

6. {} quotes all special characters.

7. \ quotes next character, provides C-like
substitutions.

8. # for comments (must be at beginning of
command).

