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Language Overview

Two parts to learning Tcl:

1. Syntax and substitution rules:

Substitutions simple but may be confusing at first.

2. Built-in commands:

Can learn individually as needed.

Control structures are commands, not syntax.
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Basics

Tcl script =

• Sequence of commands.

• Commands separated by newlines, semi-colons.

Tcl command =

• One or more words separated by spaces.

• First word is command name, others are
arguments.

Examples:

set a 22; set b 33

set a 22
set b 33
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Division of Responsibility

Tcl Parser

Command
Procedure

Chops command into words,
makes substitutions. Does
not interpret values of words.

Interprets words, produces
string result.

Command

Words

Result
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Arguments

Parser assigns no meaning to arguments
(quoting by default, evaluation is special):

C: x = 4; y = x+10;
y is 14

Tcl: set x 4; set y x+10

y is ‘‘x+10’’

Different commands assign different meanings to
their arguments:

set a 122

expr 24/3.2

eval "set a 122"

button .b -text Hello -fg red

string length Abracadabra
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Variable Substitution

• Syntax: $varName

• Variable name is letters, digits, underscores.

• May occur anywhere within a word.

Sample command Result

set b 66 66

set a b b

set a $b 66

set a $b+$b+$b 66+66+66

set a $b.3 66.3

set a $b4 no such variable



Writing Tcl scripts, slide 7.

Command Substitution

• Syntax: [script]

• Execute script, substitute result.

• May occur anywhere within a word.

Sample Command Result

set b 8 8

set a [expr $b+2] 10

set a "b-3 is [expr $b-3]" b-3 is 5
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Controlling Word Structure

Words break at white space and semi-colons,
except:

• Double-quotes prevent breaks:

set a "Funny word; has spaces"

• Curly braces prevent breaks and substitutions:

set a {nested {} braces}

• Backslashes quote special characters:

set a word\ with\ \$\ and\ space

Substitutions don’t change word structure:

set a "two words"

set b $a
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Expressions

• C-like (int and double), extra support for string
operations.

• Support for command and variable substitution within
expressions.

• Used in expr, other commands.

Sample command Result

set b 5 5

expr ($b*4)-3 17

expr $b<=2 0

expr {$b * [fac 4]} 120

set a Bill Bill

expr {$a < "Anne"} 0
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Lists

• Zero or more elements separated by white space:

red green blue

• Braces and backslashes for grouping:

a b {c d e} f

one\ word two three

• List-related commands:

concat linsert lreplace

foreach list lsearch

lappend llength lsort

lindex lrange

• Example:

lindex {a b {c d e} f} 2

c d e
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Control Structures

• C-like appearance.

• No new syntax: just commands that take Tcl scripts
as arguments.

• Example:

if {$x < 3} {
puts stdout "x is too small!"
set x 3

}

• Commands:

if case
for break
foreach continue
while eval
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Procedures

• proc command defines procedure:

proc sub1 x {expr $x-1}

name body
list of argument names

• Procedures behave just like built-in commands:

sub1 3 returns 2

• Arguments can have defaults:

proc decr {x {y 1}} {expr $x-$y}

• Can have variable number of arguments:

proc foo {a b args} { ... }

gets list of extra args

• Scoping: local and global variables.
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Errors

• Errors normally abort commands in progress,
application displays message:

set n 0
foreach i {1 2 3 4 5} {

set n [expr {$n + i*i}]
}
syntax error in expression "$n + i*i"

• Global variable errorInfo provides stack trace:

set errorInfo
syntax error in expression "$n + i*i"

while executing
"expr {$n + i*i}"

invoked from within
"set n [expr {$n + i*i}]..."

("foreach" body line 2)
invoked from within

"foreach i {1 2 3 4 5} {
set n [expr {$n + i*i}]

}"
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Advanced Error Handling

• Can catch errors:

catch {expr {2 +}} msg

1

set msg

syntax error in expression "2 +"

• Can generate errors:

error "bad argument"

• Global variable errorCode holds machine-readable
information about errors (e.g. UNIX errno value).
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Additional Tcl Features

1. String manipulation commands:

string format split

regexp scan join

2. File I/O commands:

open seek file

close tell glob

gets flush cd

read eof pwd

puts source

3. Subprocesses with exec command:

exec grep foo << $input | wc

4. History (history command).
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Additional Tcl Features, cont’d

5. Associative arrays:

set x(fred)44

set x(2) [expr $x(fred)+6]

array names x

fred 2

6. Variable scoping:

global uplevel upvar

7. Autoloading:

• Tcl procedures loaded on demand.

• Search path of directories.

8. Access to Tcl internals:

info rename trace
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Tcl Syntax Summary

1. Script = commands separated by newlines,
semi-colons.

2. Command = words separated by white space.

3. $ causes variable substitution.

4. [] causes command substitution.

5. "" quotes white space and semi-colons.

6. {} quotes all special characters.

7. \ quotes next character, provides C-like
substitutions.

8. # for comments (must be at beginning of
command).


