
Writing A New Widget Class

Using C and Tk

John Ousterhout

Computer Science Division
Department of EECS

University of California at Berkeley

Tk C Interfaces, slide 2.

Outline

• What does Tk do for widget writers?

• Widget basics: data structures, etc.

• Six procedures to write:

- Create

- Configure

- Display

- Widget command

- Event handler

- Destroy

• Example: trivial ‘‘square’’ widget.



Tk C Interfaces, slide 3.

What Does Tk Do For You?

1. Window names: .a.b.c

2. Caching (efficiency, convenience):

• Window information (size, parent, etc.).

• X resources (colors, fonts, GCs, etc.).

3. Protocol intermediary:

• Event dispatching.

• Geometry management.

• Selection protocols.

• Keyboard focus.

• Window manager.

• Error handling.

Tk C Interfaces, slide 4.

The Structure of a Widget

Data structures for each widget:

• Tk_Window managed by Tk.

• Widget record managed by widget code.

C code for widget class:

• Tcl class command to create widgets.

• Tcl widget command to manipulate widgets.

• Supporting C procedures (e.g. redisplay).

Tk_Window

X Window

Widget
Record

C
Procedures

Tcl Commands



Tk C Interfaces, slide 5.

Philosophy: Widgets Are Reactive

• User is in control, not Tk or widget or application.

• Widget code is event-driven: responds to events
around it.

• Procedures in widget are invoked when events occur,
e.g.:

- Tcl command invoked.

- Window needs to be redrawn.

- Window destroyed.

Tk C Interfaces, slide 6.

Tk and Xlib

When should widget call Tk, when Xlib?

Call Xlib only to draw on screen.

Call Tk for everything else:

• Creating windows.

• Manipulating windows (map, resize, etc.).

• Managing events.

• Allocating resources (colors, GCs, etc.).

Tk

Xlib

Widget Code



Tk C Interfaces, slide 7.

Example: Square Widget

• Displays colored square on background.

• Widget command allows square to be moved, resized:

.s position 20 30

.s size 10

• Can write fancier behaviors in Tcl:

- Drag square with mouse.

- Animate.

Tk C Interfaces, slide 8.

Creating a Widget

• Procedure Tk_SquareCmd.

• Invoked with Tcl command named after class:

square .s -fg RoyalBlue1

• Class command registered in main program:

Tcl_CreateCommand(interp, "square",
Tk_SquareCmd, ...);

• Create Tk_Window object (variable tkwin holds
handle).

• Initialize widget record (squarePtr), set up
callbacks.

• Register widget command.

• Configure widget using command-line arguments.

• Don’t map window: geometry manager will do it.



Tk C Interfaces, slide 9.

Delayed Window Creation

• X window isn’t created immediately by
Tk_CreateWindowFromPath.

• Tk_WindowId(tkwin) returns None.

• Window creation occurs when window mapped by
Tk_MapWindow.

• Delay saves overhead (can reconfigure without
involving X server).

• Can force creation of X window with
Tk_MakeWindowExist.

Tk C Interfaces, slide 10.

Configure Procedure

• Procedure ConfigureSquare.

• Processes argc/argv, modifies widget record,
schedules widget redisplay.

• Called from both class command and widget
command.

• Almost all of work done by Tk library procedure
Tk_ConfigureWidget.

• Class provides table of configuration options:
configSpecs.

• ConfigureSquare must also call
Tk_GeometryRequest to set desired size.



Tk C Interfaces, slide 11.

Display Procedure

• Procedure DisplaySquare.

• Redisplay is delayed:

- Don’t redisplay immediately (could result in
multiple redisplays).

- Instead, record what must be redrawn (for simple
widgets, all or nothing).

- Do actual redisplay when all pending work is
finished: use Tk_DoWhenIdle().

• Tk provides support for 3-D effects:

- Tk_3DBorder data type.

- Tk_Fill3DRectangle(), etc.

• Double-buffering with pixmap to avoid flashing.

Tk C Interfaces, slide 12.

Widget Command Procedure

• Procedure SquareWidgetCmd.

• Decodes argv[1], executes one of several
commands.

• Potentially modifies widget record.

• Arranges for redisplay if necessary.

Only provides primitive operations; complex
features are implemented with Tcl scripts.



Tk C Interfaces, slide 13.

Event-Handling Procedure

• Procedure SquareEventProc.

• Most events (e.g. ButtonPress) handled with Tcl
bindings (more flexible).

• Most widgets need C code only for Expose,
DestroyNotify, maybe ConfigureNotify.

• Handler set up during widget creation by calling
Tk_CreateEventHandler.

Tk C Interfaces, slide 14.

Destroy Procedure

• Procedure DestroySquare.

• WARNING! Can’t always clean up immediately:
widget record may be in use by nested procedure.

<ButtonRelease-1>

.button invoke

ButtonWidgetCmd(...)

destroy .

ButtonEventProc(...)

? DestroyButton(...) ?

Button Widget
Record

• Solution: must delay destruction.



Tk C Interfaces, slide 15.

Delayed Window Destruction

• Tk implements short-term reference counts.
E.g. in ButtonWidgetCmd:
Tk_Preserve((ClientData) butPtr);
...
Tcl_Eval(interp, butPtr->cmd, ...);
...
Tk_Release((ClientData) butPtr);
return result;

• Don’t call destruction procedure directly:
E.g. in ButtonEventProc:
if (eventPtr->type == DestroyNotify) {

...
Tk_EventuallyFree((ClientData)

butPtr, DestroyButton);
}

• DestroyButton(butPtr) is invoked:

- Immediately if (no Tk_Preserve’s pending).

- During last Tk_Release call.
Tk C Interfaces, slide 16.

Things To Remember

• Event-driven style of programming.

• Delayed operations:

- Creation of X window.

- Redisplay.

- Destruction of widget record.

• Work within Tcl framework: focus on primitives.

• Use Tk caches, configuration support.

Don’t build from scratch: modify an existing widget.


