

Perl Reference Guide

for Perl version 4.036

Perl program designed and created by

Larry Wall <lwall@netlabs.com>

Reference guide designed and created by

Johan Vromans <jv@mh.nl>

Contents

1. Command line options

2. Literals

3. Variables

4. Statements

5. Flow control

6. Operators

7. File test operators

8. Arithmetic functions

9. Conversion functions

10. Structure conversion

11. String functions

12. Array and list functions

13. File operations

14. Directory reading routines

15. Input / Output

16. Search and replace functions

17. System interaction

18. Networking

19. SystemV IPC

20. Miscellaneous

21. Formats

22. Info from system files

23. Regular expressions

24. Special variables

25. Special arrays

26. The perl debugger

27. Environment variables

Rev. 4.036.1

Perl Reference Guide

Conventions

fixed denotes literal text.

THIS means variable text, i.e. things you must fill in.

THISy means that THIS will default to $_ if omitted.

word is a keyword, i.e. a word with a special meaning.

RET denotes pressing a keyboard key.

[. . .] denotes an optional part.

(. . .)* means that the parentheses may be omitted.

1. Command line options

-a turns on autosplit mode when used with -n or -p. Splits to @F.

-c checks syntax but does not execute.

-d runs the script under the debugger. Use -de 0 to start the debugger without

a script.

-D NUMBER

sets debugging flags.

-e COMMANDLINE

may be used to enter one line of script. Multiple -e commands may be

given to build up a multi-line script.

-i EXT

files processed by the <> construct are to be edited in-place.

-I DIR

with -P: tells the C preprocessor where to look for include files. The

directory is prepended to @INC.

-l [OCTNUM]

enables automatic line ending processing, e.g. -l013.

-n assumes an input loop around your script. Lines are not printed.

-p assumes an input loop around your script. Lines are printed.

-P runs the C preprocessor on the script before compilation by perl.

-s interprets “-xxx” on the command line as switches and sets the

corresponding variables $xxx in the script.

-S uses the PATH environment variable to search for the script.

-u dumps core after compiling the script. To be used with the undump program

(where available).

-U allows perl to do unsafe operations.

-v prints the version and patchlevel of your perl executable.

-w prints warnings about possible spelling errors and other error-prone

constructs in the script.

-x extracts perl program from input stream.

-0 VAL

(that’s the number zero) designates an initial value for the record terminator

$/. See also -l.

1

Perl Reference Guide

2. Literals

Numeric: 123 1_234 123.4 5E-10 0xff (hex) 0377 (octal).

String: ’abc’ literal string, no variable interpolation nor escape characters,

except \’ and \\. Also: q/abc/.

(Almost any pair of delimiters can be used instead of /.../.)

"abc" Variables are interpolated and escape sequences are processed.

Also: qq/abc/.

Escape sequences: \t (Tab), \n (Newline), \r (Return), \f
(Formfeed), \b (Backspace), \a (Alarm), \e (Escape), \033(octal),

\x1b(hex), \c[(control).

\l and \u lowcase/upcase the following character;

\L and \U lowcase/upcase until a \E is encountered.

‘COMMAND‘ evaluates to the output of the COMMAND.

Also: qx/COMMAND/.

Array: (1,2,3). () is an empty array.

Also: ($a,$b,@rest) = (1,2,...);
(1..4) is the same as (1,2,3,4). Likewise (’abc’..’ade’)

Associative array: (KEY1,VAL1,KEY2,VAL2,...)

Filehandles:

Pre-defined: <STDIN>, <STDOUT>, <STDERR>, <ARGV>, <DATA>;

User-specified: <HANDLE>, <$VAR>.

<> is the input stream formed by the files specified in @ARGV, or standard

input if no arguments are supplied.

Globs: <PATTERN> evaluates to all filenames according to the pattern.

Use <${VAR}> to glob from a variable.

Here-Is: <<IDENTIFIER

See the manual for details.

Special tokens:

__FILE_ _: filename; __LINE_ _: line number.

__END_ _: end of program; remaining lines can be read using <DATA>.

3. Variables

$var a simple scalar variable

$var[28] 29th element of array @var (the [] are part of it)

$var{’Feb’} one value from associative array %var

$#var last index of array @var

@var the entire array;

in scalar context: the number of elements in the array

@var[3,4,5] a slice of the array @var

@var{’a’,’b’} a slice of %var; same as ($var{’a’},$var{’b’})

%var the entire associative array;

in scalar context: TRUE if the array has elements

$var{’a’,1,...} emulates a multi-dimensional array

(’a’..’z’)[4,7,9]
a slice of an array literal

*NAME refers to all objects represented by NAME. “*name1 =
*name2” makes name1 a reference to name2.

2

Perl Reference Guide

4. Statements

Every statement is an expression, optionally followed by a modifier, and

terminated by a semicolon. The semicolon may be omitted if the statement is the

final one in a BLOCK.

Execution of expressions can depend on other expressions using one of the

modifiers if, unless, while or until, e.g.:

EXPR1 if EXPR2 ;
EXPR1 until EXPR2 ;

Also, by using one of the logical operators ||, && or ? :, e.g.:

EXPR1 || EXPR2 ;
EXPR1 ? EXPR2 : EXPR3 ;

Statements can be combined to form a BLOCK when enclosed in {}.

Compound statements may be used to control flow:

if (EXPR) BLOCK [[elsif (EXPR) BLOCK ...] else BLOCK]

unless (EXPR) BLOCK [else BLOCK]

[LABEL:] while (EXPR) BLOCK [continue BLOCK]

[LABEL:] until (EXPR) BLOCK [continue BLOCK]

[LABEL:] for (EXPR; EXPR; EXPR) BLOCK

[LABEL:] foreach VARy(ARRAY) BLOCK

[LABEL:] BLOCK [continue BLOCK]

Special forms are:

do BLOCK while EXPR ;
do BLOCK until EXPR ;

which are guaranteed to perform BLOCK once before testing EXPR.

5. Flow control

do BLOCK

Returns the value of the last command in the sequence of commands

indicated by BLOCK. next, last and redo cannot be used here.

do SUBROUTINE(LIST)

Executes a SUBROUTINE declared by a sub declaration, and returns the

value of the last expression evaluated in SUBROUTINE .

Preferred form is: &SUBROUTINE .

do FILENAME

Executes the contents of FILENAME as a perl script. Errors are returned in

$@.

Preferred form is: require FILENAME .

goto LABEL

Continue execution at the specified label.

last [LABEL]

Immediately exits the loop in question. Skips continue block.

next [LABEL]

Starts the next iteration of the loop.

redo [LABEL]

Restarts the loop block without evaluating the conditional again.

return EXPR

Returns from a subroutine with the value specified.

3

Perl Reference Guide

6. Operators

+ - * / Addition, subtraction, multiplication, division.

% Modulo division.

| & ˆ Bitwise or, bitwise and, bitwise exclusive or.

>> << Bitwise shift right, bitwise shift left.

** Exponentiation.

! Negation (unary).

˜ Bitwise complement (unary).

. Concatenation of two strings.

x Returns a string or array consisting of the left operand (an array or

a string) repeated the number of times specified by the right operand.

All of the above operators also have an assignment operator, e.g. “.=”.

++ -- Auto-increment (magical on strings), auto-decrement.

? : Alternation (if-then-else) operator.

|| && Logical or, logical and.

== != Numeric equality, inequality.

eq ne String equality, inequality.

< > Numeric less than, greater than.

lt gt String less than, greater than.

<= >= Numeric less (greater) than or equal to.

le ge String less (greater) than or equal.

<=> Numeric compare. Returns -1, 0 or 1.

cmp String compare. Returns -1, 0 or 1.

=˜ !˜ Search pattern, substitution, or translation (negated).

.. Enumeration, also input line range operator.

, Comma operator.

7. File test operators

These unary operators takes one argument, either a filename or a filehandle, and

tests the associated file to see if something is true about it. If the argument is

omitted, tests $_ (except for -t, which tests STDIN). If the special argument _
(underscore) is passed, uses the info of the preceding test.

-r -w -x File is readable/writable/executable by effective uid/gid.

-R -W -X File is readable/writable/executable by real uid/gid.

-o -O File is owned by effective/real uid.

-e -z File exists / has zero size.

-s File exists and has non-zero size. Returns the size.

-f -d File is a plain file, a directory.

-l -S -p File is a symbolic link, a socket, a named pipe (FIFO).

-b -c File is a block/character special file.

-u -g -k File has setuid/setgid/sticky bit set.

-t Tests if filehandle (STDIN by default) is opened to a tty.

-T -B File is a text/non-text (binary) file. -T and -B return TRUE on a

null file, or a file at EOF when testing a filehandle.

-M -A -C File modification / access / inode change time. Measured in days

since this program started. See also $ˆT in section

“Special Variables”.

4

Perl Reference Guide

A LIST is a (possibly parenthesised) list of expressions, variables or LISTs. An

array variable or an array slice may always be used instead of a LIST.

8. Arithmetic functions

atan2(Y,X)

Returns the arctangent of Y/X in the range -� to �.

cos(EXPRy)*

Returns the cosine of EXPR (expressed in radians).

exp(EXPRy)*

Returns e to the power of EXPR.

int(EXPRy)*

Returns the integer portion of EXPR.

log(EXPRy)*

Returns natural logarithm (base e) of EXPR.

rand[(EXPR)*]

Returns a random fractional number between 0 and the value of EXPR. If

EXPR is omitted, returns a value between 0 and 1.

sin(EXPRy)*

Returns the sine of EXPR (expressed in radians).

sqrt(EXPRy)*

Return the square root of EXPR.

srand[(EXPR)*]

Sets the random number seed for the rand operator.

time Returns the number of seconds since January 1, 1970. Suitable for feeding

to gmtime and localtime.

9. Conversion functions

gmtime(EXPR)*

Converts a time as returned by the time function to a 9-element array ($sec,

$min, $hour, $mday, $mon, $year, $wday, $yday, $isdst) with the time

analyzed for the Greenwich timezone. $mon has the range 0..11 and $wday

has the range 0..6.

hex(EXPRy)*

Returns the decimal value of EXPR interpreted as an hex string.

localtime(EXPR)*

Converts a time as returned by the time function to a 9-element array with

the time analyzed for the local timezone.

oct(EXPRy)*

Returns the decimal value of EXPR interpreted as an octal string. If EXPR

starts off with 0x, interprets it as a hex string instead.

ord(EXPRy)*

Returns the ascii value of the first character of EXPR.

vec(EXPR,OFFSET,BITS)

Treats EXPR as a string of unsigned ints, and yields the bit at OFFSET.

BITS must be between 1 and 32. May be used as an lvalue.

5

Perl Reference Guide

10. Structure conversion

pack(TEMPLATE,LIST)

Packs the values into a binary structure using TEMPLATE.

unpack(TEMPLATE,EXPR)

Unpacks the structure EXPR into an array, using TEMPLATE.

TEMPLATE is a sequence of characters as follows:

a / A Ascii string, null / space padded

b / B Bit string in ascending / descending order

c / C Native / unsigned char value

f / d Single / double float in native format

h / H Hex string, low / high nybble first.

i / I Signed / unsigned integer value

l / L Signed / unsigned long value

n / N Short / long in network (big endian) byte order

s / S Signed / unsigned short value

u / p Uuencoded string / Pointer to a string

v / V Short / long in VAX (little endian) byte order

x / @ Null byte / null fill until position

X Backup a byte

Each character may be followed by a decimal number which will be used as

a repeat count, an * specifies all remaining arguments.

If the format is preceded with %N, unpack returns an N-bit checksum

instead.

Spaces may be included in the template for readability purposes.

11. String functions

chop(LISTy)

Chops off the last character on all elements of the list; returns the last

chopped character. The parentheses may be omitted if LIST is a single

variable.

crypt(PLAINTEXT,SALT)

Encrypts a string.

eval(EXPRy)*

EXPR is parsed and executed as if it were a perl program. The value

returned is the value of the last expression evaluated. If there is a syntax

error or runtime error, an undefined string is returned by eval, and $@ is set

to the error message.

eval{EXPR;...}

Executes the code between { and }. Traps runtime errors as described above.

index(STR,SUBSTR[,OFFSET])

Returns the position of SUBSTR in STR at or after OFFSET. If the substring

is not found, returns $[-1.

length(EXPRy)*

Returns the length in characters of the value of EXPR.

rindex(STR,SUBSTR[,OFFSET])

Returns the position of the last SUBSTR in STR at or before OFFSET.

substr(EXPR,OFFSET[,LEN])

Extracts a substring out of EXPR and returns it. If OFFSET is negative,

counts from the end of the string. May be used as an lvalue.

6

Perl Reference Guide

12. Array and list functions

delete $ARRAY{KEY}
Deletes the specified value from the specified associative array. Returns the

deleted value.

each(%ARRAY)*

Returns a 2-element array consisting of the key and value for the next value

of an associative array. Entries are returned in an apparently random order.

When the array is entirely read, a null array is returned. The next call to

each after that will start iterating again.

grep(EXPR,LIST)

Evaluates EXPR for each element of the LIST, locally setting $_ to refer to

the element. Modifying $_ will modify the corresponding element from

LIST. Returns array of elements from LIST for which EXPR returned true.

join(EXPR,LIST)

Joins the separate strings of LIST into a single string with fields separated by

the value of EXPR, and returns the string.

keys(%ARRAY)*

Returns an array with of all the keys of the named associative array.

pop(@ARRAY)*

Pops and returns the last value of the array, shortens the array by 1.

push(@ARRAY,LIST)

Pushes the values of LIST onto the end of ARRAY. The length of the array

increases by the length of LIST.

reverse(LIST)*

In array context: returns the LIST in reverse order.

In scalar context: returns the first element of LIST with bytes reversed.

scalar(@ARRAY)

Returns the number of elements in the array.

scalar(%ARRAY)

Returns TRUE if the associative array has elements defined.

shift[(@ARRAY)*]

Shifts the first value of the array off and returns it, shortening the array by 1

and moving everything down. If @ARRAY is omitted, shifts @ARGV in main

and @_ in subroutines.

sort([SUBROUTINE] LIST)*

Sorts the LIST and returns the sorted array value. If SUBROUTINE is

specified, gives the name of a subroutine that returns less than zero, zero, or

greater than zero, depending on how the elements of the array, available to

the routine as $a and $b, are to be ordered.

SUBROUTINE may be the name of a user-defined routine, or a BLOCK (see

“Statements” and “Miscellaneous”).

splice(@ARRAY,OFFSET[,LENGTH[,LIST]])

Removes the elements of @ARRAY designated by OFFSET and LENGTH,

and replaces them with LIST (if specified).

Returns the elements removed.

split[(PATTERN[,EXPRy[,LIMIT]])]

Splits a string into an array of strings, and returns it. If LIMIT is specified,

splits in no more than that many fields. If PATTERN is also omitted, splits

on whitespace. If not in array context: returns number of fields and splits to

@_. See also: “Search and Replace Functions”.

7

Perl Reference Guide

unshift(@ARRAY,LIST)

Prepends list to the front of the array, and returns the number of elements in

the new array.

values(%ARRAY)*

Returns a normal array consisting of all the values of the named associative

array.

13. File operations

Functions operating on a list of files return the number of files successfully

operated upon.

chmod(LIST)*

Changes the permissions of a list of files. The first element of the list must

be the numerical mode.

chown(LIST)*

Changes the owner and group of a list of files. The first two elements of the

list must be the numerical uid and gid.

truncate(FILE,SIZE)

truncates FILE to SIZE. FILE may be a filename or a filehandle.

link(OLDFILE,NEWFILE)

Creates a new filename linked to the old filename.

lstat(FILE)

Like stat, but does not traverse a final symbolic link.

mkdir(DIR,MODE)

Creates a directory with given permissions. Sets $! on failure.

readlink(EXPRy)*

Returns the value of a symbolic link.

rename(OLDNAME,NEWNAME)

Changes the name of a file.

rmdir(FILENAMEy)*

Deletes the directory if it is empty. Sets $! on failure.

stat(FILE)

Returns a 13-element array ($dev, $ino, $mode, $nlink, $uid, $gid, $rdev,

$size, $atime, $mtime, $ctime, $blksize, $blocks). FILE can be a

filehandle, an expression evaluating to a filename, or _ to refer to the last file

test operation.

Returns a null list if the stat fails.

symlink(OLDFILE,NEWFILE)

Creates a new filename symbolically linked to the old filename.

unlink(LIST)*

Deletes a list of files.

utime(LIST)*

Changes the access and modification times. The first two elements of the list

must be the numerical access and modification times.

8

Perl Reference Guide

14. Directory reading routines

closedir(DIRHANDLE)*

Closes a directory opened by opendir.

opendir(DIRHANDLE,DIRNAME)

Opens a directory on the handle specified.

readdir(DIRHANDLE)*

Returns the next entry (or an array of entries) in the directory.

rewinddir(DIRHANDLE)*

Positions the directory to the beginning.

seekdir(DIRHANDLE,POS)

Sets position for readdir on the directory.

telldir(DIRHANDLE)*

Returns the postion in the directory.

15. Input / Output

In input/output operations, FILEHANDLE may be a filehandle as opened by the

open operator, or a scalar variable which evaluates to the name of a filehandle to

be used.

binmode(FILEHANDLE)*

Arranges for the file opened on FILEHANDLE to be read in “binary” mode

as opposed to “text” mode (MS-DOS only).

close(FILEHANDLE)*

Closes the file or pipe associated with the file handle.

dbmclose(%ARRAY)*

Breaks the binding between the array and the dbm file.

dbmopen(%ARRAY,DBMNAME, MODE)

Binds a dbm or ndbm file to the associative array. If the database does not

exist, it is created with the indicated mode.

eof(FILEHANDLE)

Returns 1 if the next read will return end of file, or if the file is not open.

eof Returns the eof status for the last file read.

eof()

Indicates eof on the pseudo file formed of the files listed on the command

line.

fcntl(FILEHANDLE,FUNCTION,$VAR)

Implements the fcntl(2) function. This function has non-standard return

values. See the manual for details.

fileno(FILEHANDLE)*

Returns the file descriptor for a given (open) file.

flock(FILEHANDLE,OPERATION)

Calls flock(2) on the file. OPERATION adds from 1 (shared), 2 (exclusive), 4

(non-blocking) or 8 (unlock).

getc[(FILEHANDLE)*]

Yields the next character from the file, or "" on EOF. If FILEHANDLE is

omitted, reads from STDIN.

ioctl(FILEHANDLE,FUNCTION,$VAR)

performs ioctl(2) on the file. This function has non-standard return values.

See the manual for details.

9

Perl Reference Guide

open(FILEHANDLE[,FILENAME])

Opens a file and associates it with FILEHANDLE. If FILENAME is omitted,

the scalar variable of the same name as the FILEHANDLE must contain the

filename.

The following filename conventions apply when opening a file.

"FILE" open FILE for input. Also "<FILE".

">FILE" open FILE for output, creating it if necessary.

">>FILE" open FILE in append mode.

"+>FILE" open FILE with read/write access.

"|CMD" opens a pipe to command CMD.

"CMD|" opens a pipe from command CMD.

FILE may be &FILEHND in which case the new file handle is connected to

the (previously opened) filehandle FILEHND.

open returns 1 upon success, undef otherwise, except for pipes. The

parentheses may be omitted, if only a FILEHANDLE is specified.

pipe(READHANDLE,WRITEHANDLE)

Returns a pair of connected pipes.

print[([FILEHANDLE]LISTy)*]

Prints a string or a comma-separated list of strings. If FILEHANDLE is

omitted, prints by default to standard output (or to the last selected output

channel - see select).

printf[([FILEHANDLE] LIST)*]

Equivalent to print FILEHANDLE sprintf(LIST).

read(FILEHANDLE,$VAR,LENGTH[,OFFSET])

Read LENGTH binary bytes from the file into the variable at OFFSET.

Returns number of bytes actually read.

seek(FILEHANDLE,POSITION,WHENCE)

Arbitrarily positions the file. Returns 1 upon success, 0 otherwise.

select[(FILEHANDLE)]

Returns the currently selected filehandle. Sets the current default filehandle

for output operations if FILEHANDLE is supplied.

select(RBITS,WBITS,NBITS,TIMEOUT)

Performs a select(2) system call with the same parameters.

sprintf(FORMAT,LIST)

Returns a string formatted by (almost all of) the usual printf conventions.

sysread(FILEHANDLE,$VAR,LENGTH[,OFFSET])

Reads LENGTH bytes into $VAR at OFFSET.

syswrite(FILEHANDLE,SCALAR,LENGTH[,OFFSET])

Writes LENGTH bytes from SCALAR at OFFSET.

tell[(FILEHANDLE)]*

Returns the current file position for the file. If FILEHANDLE is omitted,

assumes the file last read.

write[(FILEHANDLE)]*

Writes a formatted record to the specified file, using the format associated

with that file. See “Formats”.

10

Perl Reference Guide

16. Search and replace functions

[EXPR =˜] [m]/PATTERN/[g][i][o]

Searches EXPR (default: $_) for a pattern. If you prepend an m you can use

almost any pair of characters as delimiters. If used in array context, an array

is returned consisting of the subexpressions matched by the parentheses in

pattern, i.e. ($1,$2,$3,...).

Optional modifiers: g matches as many times as possible; i searches in a

case-insensitive manner; o interpolates variables only once.

If PATTERN is empty, the most recent pattern from a previous match or

replacement is used.

With g the match can be used as an iterator in scalar context.

?PATTERN?
This is just like the /PATTERN/ search, except that it matches only once

between calls to the reset operator. If PATTERN is empty, the most recent

pattern from a previous match or replacement is used.

[$VAR =˜] s/PATTERN/REPLACEMENT/[g][i][e][o]

Searches a string for a pattern, and if found, replaces that pattern with the

replacement text and returns the number of substitutions made. Otherwise it

returns false.

Optional modifiers: g replaces all occurrences of the pattern; e interprets the

replacement string as an expression; i and o as with /PATTERN/ matching.

Almost any delimiter may replace the slashes; if single quotes are used, no

interpretation is done on the replacement string.

If bracketing quotes are used, PATTERN and REPLACEMENT may have

their own delimiters, e.g. s(foo)[bar].

If PATTERN is empty, the most recent pattern from a previous match or

replacement is used.

study[($VARy)*]

Study the contents of $VAR in anticipation of doing many pattern matches

on the contents before it is next modified.

[$VAR =˜] tr/SEARCHLIST/REPLACEMENTLIST/[c][d][s]

Translates all occurrences of the characters found in the search list with the

corresponding character in the replacement list. It returns the number of

characters replaced. y may be used instead of tr.

Optional modifiers: c complements the SEARCHLIST; d deletes all

characters not found in SEARCHLIST; s squeezes all sequences of

characters that are translated into the same target character into one

occurrence of this character.

17. System interaction

alarm(EXPR)*

Schedules a SIGALRM to be delivered after EXPR seconds.

chdir [(EXPR)*]

Changes the working directory, $ENV{"HOME"} if EXPR is omitted.

chroot(FILENAMEy)*

Changes the root directory for the process and its children.

11

Perl Reference Guide

die[(LIST)*]

Prints the value of LIST to STDERR and exits with the current value of $!
(errno). If $! is 0, exits with the value of ($? >> 8). If ($? >> 8) is

0, exits with 255. LIST defaults to "Died.".

exec(LIST)*

Executes the system command in LIST; does not return.

exit(EXPR)*

Exits immediately with the value of EXPR.

fork Does a fork(2) system call. Returns the child pid to the parent process and

zero to the child process.

getlogin

Returns the current login name as known by the system.

getpgrp[(PID)*]

Returns the process group for process PID (0, or omitted, means the current

process).

getppid

Returns the process id of the parent process.

getpriority(WHICH,WHO)

Returns the current priority for a process, process group, or user.

kill(LIST)*

Sends a signal to a list of processes. The first element of the list must be the

signal to send (numeric, or its name as a string).

setpgrp(PID,PGRP)

Sets the process group for the PID (0 = current process).

setpriority(WHICH,WHO,PRIO)

Sets the current priority for a process, process group, or a user.

sleep[(EXPR)*]

Causes the script to sleep for EXPR seconds, or forever if no EXPR. Returns

the number of seconds actually slept.

syscall(LIST)*

Calls the system call specified in the first element of the list, passing the rest

of the list as arguments to the call.

system(LIST)*

Does exactly the same thing as exec LIST except that a fork is done first,

and the parent process waits for the child process to complete.

times

Returns a 4-element array ($user, $system, $cuser, $csystem) giving the

user and system times, in seconds, for this process and the children of this

process.

umask[(EXPR)*]

Sets the umask for the process and returns the old one. If EXPR is omitted,

returns current umask value.

wait Waits for a child process to terminate and returns the pid of the deceased

process (-1 if none). The status is returned in $?.

waitpid(PID,FLAGS)

Performs the same function as the corresponding system call.

warn(LIST)*

Prints the message on STDERR like die, but doesn’t exit.

12

Perl Reference Guide

18. Networking

accept(NEWSOCKET,GENERICSOCKET)

Accepts a new socket.

bind(SOCKET,NAME)

Binds the NAME to the SOCKET.

connect(SOCKET,NAME)

Connects the NAME to the SOCKET.

getpeername(SOCKET)

Returns the socket address of the other end of the SOCKET.

getsockname(SOCKET)

Returns the name of the socket.

getsockopt(SOCKET,LEVEL,OPTNAME)

Returns the socket options.

listen(SOCKET,QUEUESIZE)

Starts listening on the specified SOCKET.

recv(SOCKET,SCALAR,LENGTH,FLAGS)

Receives a message on SOCKET.

send(SOCKET,MSG,FLAGS[,TO])

Sends a message on the SOCKET.

setsockopt(SOCKET,LEVEL,OPTNAME,OPTVAL)

Sets the requested socket option.

shutdown(SOCKET,HOW)

Shuts down a SOCKET.

socket(SOCKET,DOMAIN,TYPE,PROTOCOL)

Creates a SOCKET in DOMAIN with TYPE and PROTOCOL.

socketpair(SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL)

As socket, but creates a pair of bi-directional sockets.

19. SystemV IPC

The following functions all perform the same action as the corresponding system

calls.

msgctl(ID,CMD,ARGS)

msgget(KEY,FLAGS)

msgsnd(ID,MSG,FLAGS)

msgrcv(ID,$VAR,SIZE,TYPE,FLAGS)

semctl(ID,SEMNUM,CMD,ARG)

semget(KEY,NSEMS,SIZE,FLAGS)

semop(KEY,...)

shmctl(ID,CMD,ARG)

shmget(KEY,SIZE,FLAGS)

shmread(ID,$VAR,POS,SIZE)

shmwrite(ID,STRING,POS,SIZE)

13

Perl Reference Guide

20. Miscellaneous

caller[(EXPR)]

Returns an array ($package,$file,$line,...) for a specific subroutine call.

“caller” returns this info for the current subroutine, “caller(1)” for

the caller of this subroutine etc..

defined(EXPR)*

Tests whether the lvalue EXPR has a real value.

dump [LABEL]

Immediate core dump. When reincarnated, starts at LABEL.

local(LIST)

Creates a scope for the listed variables local to the enclosing block,

subroutine or eval.

package NAME

Designates the remainder of the current block as a package.

require(EXPRy)*

Includes the specified file from the perl library. Does not include more than

once, and yields a fatal error if the file does not include OK.

reset [(EXPR)*]

Resets ?? searches so that they work again. EXPR is a list of single letters.

All variables and arrays beginning with one of those letters are reset to their

pristine state. Only affects the current package.

scalar(EXPR)

Forces evaluation of EXPR in scalar context.

sub NAME { EXPR ; ... }
Designates NAME as a subroutine. Parameters are passed by reference as

array @_. Returns the value of the last expression evaluated.

undef[(LVALUE)*]

Undefines the LVALUE. Always returns the undefined value.

wantarray

Returns true if the current context expects an array value.

21. Formats

format [NAME] =
FORMLIST

.

FORMLIST pictures the lines, and contains the arguments which will give values

to the fields in the lines. Picture fields are:

@<<<... left adjusted field, repeat the < to denote the desired width;

@>>>... right adjusted field;

@|||... centered field;

@#.##... numeric format with implied decimal point;

@* a multi-line field.

Use ˆ instead of @ for multi-line block filling.

Use ˜ at the beginning of a line to suppress unwanted empty lines.

Use ˜˜ at the beginning of a line to have this format line repeated until all fields

are exhausted.

Use $- to zero to force a page break.

See also $ˆ, $˜, $- and $= in section “Special Variables”.

14

Perl Reference Guide

22. Info from system files

See the manual about return values in scalar context.

passwd
Returns ($name, $passwd, $uid, $gid, $quota, $comment, $gcos, $dir, $shell).

endpwent Ends lookup processing.

getpwent Gets next info.

getpwnam(NAME) Gets info by name.

getpwuid(UID) Gets info by uid.

setpwent Resets lookup processing.

group
Returns ($name, $passwd, $gid, $members).

endgrent Ends lookup processing.

getgrgid(GID) Gets info by group id.

getgrnam(NAME) Gets info by name.

getgrent Gets next info.

setgrent Resets lookup processing.

hosts
Returns ($name, $aliases, $addrtype, $length, @addrs).

endhostent Ends lookup processing.

gethostbyaddr(ADDR,ADDRTYPE) Gets info by address.

gethostbyname(NAME) Gets info by name.

gethostent Gets next info.

sethostent(STAYOPEN) Resets lookup processing.

networks
Returns ($name, $aliases, $addrtype, $net).

endnetent Ends lookup processing.

getnetbyaddr(ADDR,TYPE) Gets info by address and type.

getnetbyname(NAME) Gets info by name.

getnetent Gets next info.

setnetent(STAYOPEN) Resets lookup processing.

services
Returns ($name, $aliases, $port, $proto).

endservent Ends lookup processing.

getservbyname(NAME, PROTO) Gets info by name.

getservbyport(PORT, PROTO) Gets info by port.

getservent Gets next info.

setservent(STAYOPEN) Resets lookup processing.

protocols
Returns ($name, $aliases, $proto).

endprotoent Ends lookup processing.

getprotobyname(NAME) Gets info by name.

getprotobynumber(NUMBER) Gets info by number.

getprotoent Gets next info.

setprotoent(STAYOPEN) Resets lookup processing.

15

Perl Reference Guide

23. Regular expressions

Each character matches itself, unless it is one of the special characters

+?.*()[]{}|\.

. matches an arbitrary character, but not a newline.

(. . .) groups a series of pattern elements to a single element.

+ matches the preceding pattern element one or more times.

? matches zero or one times.

* matches zero or more times.

{N,M} denotes the minimum N and maximum M match count. {N} means

exactly N times; {N,} means at least N times.

[. . .] denotes a class of characters to match. [ˆ. . .] negates the class.

(. . . |. . .|. . .) matches one of the alternatives.

Non-alphanumerics can be escaped from their special meaning using a \.

\w matches alphanumeric, including “_”, \W matches non-alphanumeric.

\b matches word boundaries, \B matches non-boundaries.

\s matches whitespace, \S matches non-whitespace.

\d matches numeric, \D matches non-numeric.

\n, \r, \f, \t etc. have their usual meaning.

\w, \s and \d may be used within character classes, \b denotes backspace in

this context.

\1. . . \9 refer to matched sub-expressions, grouped with (), inside the match.

\10 and up can also be used if the pattern matches that many sub-expressions.

See also $1. . .$9, $+, $&, $‘ and $’ in section “Special Variables”.

24. Special variables

The following variables are global and should be localized in subroutines:

$_ The default input and pattern-searching space.

$. The current input line number of the last filehandle that was read.

$/ The input record separator, newline by default. May be multi-character.

$, The output field separator for the print operator.

$" The separator which joins elements of arrays interpolated in strings.

$\ The output record separator for the print operator.

$# The output format for printed numbers. Initial value is “%.20g”.

$* Set to 1 to do multiline matching within a string, 0 to assume strings contain

a single line. Default is 0.

$? The status returned by the last ‘COMMAND‘, pipe close or system

operator.

$] The perl version string (as displayed with perl -v), or version number.

$[The index of the first element in an array, and of the first character in a

substring. Default is 0.

$; The subscript separator for multi-dimensional array emulation. Default is

"\034".

$! If used in a numeric context, yields the current value of errno. If used in a

string context, yields the corresponding error string.

$@ The perl error message from the last eval or do EXPR command.

16

Perl Reference Guide

$: The set of characters after which a string may be broken to fill continuation

fields (starting with “ˆ”) in a format.

$0 The name of the file containing the perl script being executed. May be

assigned to.

$$ The process number of the perl running this script. Altered (in the child

process) by fork.

$< The real uid of this process.

$> The effective uid of this process.

$(The real gid of this process.

$) The effective gid of this process.

$ˆD The debug flags as passed to perl using -D .

$ˆF The highest system file descriptor, ordinarily 2.

$ˆI In-place edit extension as passed to perl using -i .

$ˆL Formfeed character used in formats.

$ˆP Internal debugging flag.

$ˆT The time (as delivered by time) when the program started. This value is

used by the file test operators “-M”, “-A” and “-C”.

$ˆW The value if the -w option as passed to perl.

$ˆX The name by which this perl was invoked.

The following variables are context dependent and need not be localized:

$% The current page number of the currently selected output channel.

$= The page length of the current output channel. Default is 60 lines.

$- The number of lines left on the page.

$˜ The name of the current report format.

$ˆ The name of the current top-of-page format.

$| If set to nonzero, forces a flush after every write or print on the currently

selected output channel. Default is 0.

$ARGV The name of the current file when reading from <> .

The following variables are always local to the current block:

$& The string matched by the last successful pattern match.

$‘ The string preceding what was matched by the last successful match.

$’ The string following what was matched by the last successful match.

$+ The last bracket matched by the last search pattern.

$1. . .$9. . .

Contains the subpattern from the corresponding set of parentheses in the last

pattern successfully matched. $10. . . and up are only available if the match

contained that many sub-expressions.

25. Special arrays

@ARGV Contains the command line arguments for the script (not including the

command name).

@INC Contains the list of places to look for perl scripts to be evaluated by the

do FILENAME and require commands.

@_ Parameter array for subroutines. Also used by split if not in array context.

%ENV Contains the current environment.

%INC List of files that have been required or done.

%SIG Used to set signal handlers for various signals.

17

Perl Reference Guide

26. The perl debugger

The perl symbolic debugger is invoked with perl -d.

h Prints out a help message.

T Stack trace.

s Single steps.

n Single steps around subroutine call.

r Returns from the current subroutine.

c [LINE] Continues (until LINE, or another breakpoint or exit).

RET Repeats last s or n.

l [RANGE] Lists a range of lines. RANGE may be a number, start-end,

start+amount, or a subroutine name. If omitted, lists next window.

f FILE Switches to FILE and start listing it.

- Lists previous window.

w Lists window around current line.

l SUB Lists the named SUBroutine.

/PATTERN/ Forward search for PATTERN.

?PATTERN? Backward search for PATTERN.

L Lists lines that have breakpoints or actions.

S List the names of all subroutines.

t Toggles trace mode.

b [LINE [CONDITION]]

Sets breakpoint at LINE, default: current line.

b SUBNAME [CONDITION]

Sets breakpoint at the subroutine.

S Lists names of all subroutines.

d [LINE] Deletes breakpoint at the given line.

D Deletes all breakpoints.

a LINE COMMAND

Sets an action for line.

A Deletes all line actions.

< COMMAND Sets an action to be executed before every debugger prompt.

> COMMAND Sets an action to be executed before every s, c or n command.

V [PACKAGE [VARS]]

Lists all variables in a package. Default package is main.

X [VARS] Like V, but assumes current package.

! [[-]NUMBER]

Redo a debugging command. Default is previous command.

H [-NUMBER] Displays the last -NUMBER commands of more than one letter.

q Quits. You may also use your EOF character.

COMMAND Executes COMMAND as a perl statement.

p EXPRy Prints EXPR.

= [ALIAS VALUE]

Sets alias, or lists current aliases.

18

Perl Reference Guide

27. Environment variables

Perl uses the following environment variables.

HOME Used if chdir has no argument.

LOGDIR
Used if chdir has no argument and HOME is not set.

PATH Used in executing subprocesses, and in finding the perl script if -S is

used.

PERLLIB
A colon-separated list of directories to look for perl library files before

looking in the standard library and the current directory.

PERLDB
The command to get the debugger code. Defaults to

require ’perldb.pl’.

Notes

Perl Reference Guide Revision 4.036.1 c

1989,1993 Johan Vromans

19

