ILISP User Manual

A GNU Emacs Interface for Interacting with Lisp
Edition 0.11, June 1993
For ILISP Version 5.0

by Todd Kaufmann, Chris McConnell and Ivan Vazquez

Copyright (©) 1991, 1992, 1993 Todd Kaufmann

This is edition 0.11 of the ILISP User Manual for ILISP Version 5.0, June 1993.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided that the entire resulting derived work is distributed under the terms

of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that this permission notice may be stated
in a translation approved by this author.

How to get the latest ILISP distribution. 1

How to get the latest ILISP distribution.

ILISP is "free"; this means that everyone is free to use it and free to redistribute it on a free basis.
ILISP is not in the public domain; it is copyrighted and there are restrictions on its distribution,
but these restrictions are designed to permit everything that a good cooperating citizen would want
to do. What is not allowed is to try to prevent others from further sharing any version of ILISP
that they might get from you. The precise conditions appears following this section.

The easiest way to get a copy of ILISP is from someone else who has it. You need not ask for
permission to do so, or tell any one else; just copy it.

If you do start using the package, please send mail to ‘ilisp-request@darwin.bu.edu’ so that
I can keep a mailing list of users.

Please send bugs to ‘ilisp-bugs@darwin.bu.edu’

Please send questions or suggestions for discussion to ‘ilisp@darwin.bu.edu’

FTP directions
You can anonymously ftp the source files from HALDANE.BU.EDU:

e Ftp to haldane.bu.edu (128.197.54.25)

e login as anonymous, with user@host as password
e cd pub/ilisp

e binary

e get ilisp.tar.Z

Or get whatever single files you need.
Unpack and install:

uncompress ilisp.tar.Z; tar xf ilisp.tar

The ILISP Inferior LISP Interface

See Chapter 1 [Installation], page 7.
If you want to use Thinking Machines’ completion code, then Ftp it from THINK.COM

It no longer comes as part of the distribution.

Acknowledgements 3

Acknowledgements

ILISP replaces the standard inferior LISP mode. ILISP is based on comint mode and derived

from a number of different interfaces including Symbolics, cmulisp, and Thinking Machines.

There are many people that have taken the time to report bugs, make suggestions and even
better send code to fix bugs or implement new features.

Thanks to Neil Smithline, David Braunegg, Fred White, Jim Healy, Larry Stead, Hans Chalup-
sky, Michael Ernst, Frank Ritter, Tom Emerson, David Duff, Dan Pierson, Michael Kashket, Jamie
Zawinski, Bjorn Victor, Brian Dennis, Guido Bosch, Chuck Irvine, Thomas M. Breuel, Ben Hyde,
Paul Fuqua (for the CMU-CL GC display code) and Marco Antoniotti for bug reports, suggestions
and code. My apologies to those whom I may have forgotten.

Special thanks to Todd Kaufmann for the texinfo file, work on bridge, epoch-pop and for really
exercising everything.

Please send bug reports, fixes and extensions to ‘ilisp-bug@darwin.bu.edu’ so I can merge
them into the master source.

-—Chris McConnell 18-Mar-91
—-—Ivan Vazquez 27-Jun-93

The ILISP Inferior LISP Interface

Introduction 5

Introduction

ILISP is an interface from GNU Emacs to an inferior LISP. It has the following features:

e Runs under emacs-18, fsf emacs-19, and Lucid emacs-19.

e Support for multiple LISP dialects including Lucid, Allegro and CMU on multiple machines
even at the same time.

e Dynamically sized pop-up windows that can be buried and scrolled from any window.
e Packages are properly handled including the distinction between exported and internal symbols.

e Synchronous, asynchronous or batch eval and compile of files, regions, definitions and sexps

with optional switching and automatic calling.
e Arglist, documentation, describe, inspect and macroexpand.
e Completion of filename components and LISP symbols including partial matches.

e Find source both with and without help from the inferior LISP, including CLOS methods,
multiple definitions and multiple files.

e Edit the callers of a function with and without help from the inferior LISP.
e Trace/untrace a function.

e M-q (“Fill-paragraph”) works properly on paragraphs in comments, strings and code.
e Find unbalanced parentheses.

e Super brackets.

e Handles editing, entering and indenting full LISP expressions.

e Next, previous, and similar history mechanism compatible with comint.

e Handles LISP errors.

e Result histories are maintained in the inferior LISP.

e Does not create spurious symbols and handles case issues.

e Online manuals for ILISP and Common LISP.

The ILISP Inferior LISP Interface

Chapter 1: How to install ILISP 7

1 How toinstall ILISP

Installation of ILISP and some initialization of your computing environment are described in
this chapter. Please read the following sections carefully before getting started with ILISP.

If ILISP has already been installed at your location, you can probably skip ahead to “Autoload-

ing.”

1.1 Files of ILISP

The files you need to use ilisp are:

‘ilisp.emacs’

File with sample ¢.emacs’ code for ILISP.
‘symlink-fix.el’

Expand pathnames resolving links.
‘completer.el’

Partial completion code.
‘popper.el’

Shrink-wrapped temporary windows.
‘epoch-pop.el’

Popper for epoch.
‘bridge.el’

Process to process communication.
‘comint.el’

The basic comint abstraction. You only need this if running emacs-18.
‘comint-ipc.el’

Extensions for sending commands and getting results.
‘ilisp-ext.el’

Standalone lisp-mode extensions.
‘ilisp-bug.el’

ILISP bug submittal code.
‘compat.el’

Compatibility code between fsf-18, fsf-19 and lemacs-19.

‘ilisp-inp.el’

Buffer input module.
‘ilisp-def.el’

Variable definitions.
‘ilisp-ind.el’

Indentation code.

‘ilisp-mov.el’

Buffer-point movement code.

‘ilisp-key.el’
Keymap setups.

‘ilisp-doc.el’

ILISP mode documenation.

‘ilisp-mod.el’

ILISP mode definition.
‘ilisp-prn.el’

Parenthesis handling.
‘ilisp-el.el’

Emacs-lisp additions.
‘ilisp-sym.el’

ILISP symbol handling.
‘ilisp-low.el’

Low level interface code.

‘ilisp-hi.el’

High level interface code.

‘ilisp-out.el’

Output handling.
‘ilisp-prc.el’

Process handling code.
‘ilisp-val.el’

Buffer value interface.
‘ilisp-rng.el’

Match ring code.
‘ilisp-utl.el’

Misc. utilities.

The ILISP Inferior LISP Interface

Chapter 1: How to install ILISP 9

‘i1isp-hnd.el’

Error handling.
‘ilisp-kil.el’

Interface to reset/kill/abort inferior lisp.
‘ilisp-snd.el’

ilisp-send definitions and associated code.
‘ilisp-cmt.el’

Comint related code/setup.
‘ilisp-cmp.el’

ILISP completer related code.
‘ilisp-xfr.el’

Transfer between lisp <-> emacs code.
‘ilisp-cl.el’

Commo-Lisp dialect definition.
‘ilisp-src.el’

ILISP source code module.
‘ilisp-bat.el’

ILISP batch code module.
‘ilisp.el’

File to be loaded, loads in all necessary parts of ILISP.
‘*.1isp’ ILISP support code. Each dialect will have one of these files.
‘*.1cd’ Package descriptors for the Lisp Code Directory.
‘ilisp.texi’

Texinfo file for ILISP.

If you are using emacs-18 and don’t have comint . el then move (or link) comint-old/comint.el
to comint.el in the same directory as the rest of the ILISP source and byte-compile it by typing
M-x byte-compile-file.

You should read and configure Makefile-ilisp.

You can then compile everything with the shell command

make -f Makefile-ilisp <your target here>’

10 The ILISP Inferior LISP Interface

Ignore any compilation warnings unless they result in ILISP not compiling completely.

You should then copy relevant sections of ilisp.emacs to your .emacs or to the system-wide
default.el file, depending on who will be using ILISP.

You should add the directory where all of the ILISP emacs-lisp files reside to your load-path.
There is an example of this in ilisp.emacs

The first time a dialect is started, the interface files will complain about not being compiled,
just hit i to ignore the message. Once a lisp dialect is started up, you should execute the command
ilisp-compile-inits which will compile the ‘*.1lisp’ files and write them to the same directory

as the ilisp files.

The binary files should have a unique extension for each different combination of architecture
and LISP dialect. You will need to change ilisp-init-binary-extension and ilisp-init-
binary-command to get additional extensions. The binary for each different architecture should
be different. If you want to build the interface files into a LISP world, you will also need to set
ilisp-load-inits to nil in the same place that you change ilisp-program to load the LISP
world.

There is an ilisp-site-hook for initializing site specific stuff like program locations when
ILISP is first loaded. You may want to define appropriate autoloads in your system Emacs start

up file.

Example site init:

;33 CMU site
(setq ilisp-site-hook
> (lambda ()
(setq ilisp-motd "CMU ILISP V¥s")
(setq expand-symlinks-rfs-exists t)
(setq allegro-program "/usr/misc/.allegro/bin/cl")
(setq lucid-program "/usr/misc/.lucid/bin/lisp")))

1.2 How to define autoload entries

A complete example of things you may want to add to your .emacs can be found in the in the
file ‘ilisp.emacs’ in the ilisp-directory what follows is that file.

Chapter 1: How to install ILISP 11

;55 This file shows examples of some of the things you might want to
;35 do to install or customize ILISP. You may not want to include all
;55 of them in your .emacs. For example, the default key binding

;55 prefix for ILISP is C-z and this file changes the default prefix to
;55 C-c. For more information on things that can be changed, see the
;55 file ilisp.el.

39

;55 If ilisp lives in some non-standard directory, you must tell emacs
;53 where to get it. This may or may not be necessary.
(setq load-path (cons (expand-file-name "~ jones/emacs/ilisp/") load-path))

;55 If you always want partial minibuffer completion
(require ’completer)

;55 If want TMC completion then you will have to Ftp it yourself from think.comj
;55 It’s become to flaky for me to deal with. -- Ivan

;33 (load "completion")

;33 (initialize-completions)

;535 If you want to redefine popper keys
(setq popper-load-hook

> (lambda ()
(define-key global-map "\C-cl" ’popper-bury-output)
(define-key global-map "\C-cv" ’popper-scroll-output)
(define-key global-map "\C-cg" ’popper-grow-output)
(define-key global-map "\C-cb" ’popper-switch)))

;35 If you always want popper windows
(if (boundp ’epoch::version)

(require ’epoch-pop)

(require ’popper))

(autoload ’run-ilisp "ilisp" "Select a new inferior LISP." t)

;55 Autoload based on your LISP. You only really need the one you use.
;55 If called with a prefix, you will be prompted for a buffer and

;33 program.

;55 [Back to the old way now -- Ivan Mon Jun 28 23:30:51 1993]

39

(autoload ’clisp "ilisp" "Inferior generic Common LISP." t)
(autoload ’allegro "ilisp" "Inferior Allegro Common LISP." t)
(autoload ’lucid "ilisp" "Inferior Lucid Common LISP." t)
(autoload ’cmulisp "ilisp" "Inferior CMU Common LISP." t)
(autoload ’kcl "ilisp" "Inferior Kyoto Common LISP." t)
(autoload ’akcl "ilisp" "Inferior Austin Kyoto Common LISP." t)
(autoload ’ibcl "ilisp" "Ibuki Common LISP." t)

(autoload ’scheme "ilisp" "Inferior generic Scheme." t)

(autoload ’oaklisp "ilisp" "Inferior Oaklisp Scheme." t)

12

The ILISP Inferior LISP Interface

;33 Define where LISP programs are found. (This may already be done
;35 at your site.)

(setq allegro-program "/usr/misc/.allegro/bin/cl")

(setq lucid-program "/usr/misc/.lucid/bin/lisp")

(setq cmulisp-program "/usr/misc/.cmucl/bin/lisp")

;55 If you run cmu-cl then set this to where your source files are.
(setq cmulisp-local-source-directory
"/usr/local/utils/CMU-CL/")

;55 This makes reading a lisp file load in ilisp.
(set-default ’auto-mode-alist

(append ° (("\\.lisp$" . lisp-mode)) auto-mode-alist))
(setq lisp-mode-hook ’(lambda () (require ’ilisp)))

;33 Sample load hook
(setq ilisp-load-hook
> (lambda ()
;3 Change default key prefix to C-c
(setq ilisp-prefix "\C-c")
;; Sample initialization hook. Set the inferior LISP directory to
;; the directory of the buffer that spawned it on the first prompt.
(setq ilisp-init-hook
> (lambda ()
(default-directory-lisp ilisp-last-buffer)))))

;53 To be honest, I’d suggest everyone disable the popper, bug or no bug.
;55 If you like it great. If you want to disembowel the thing, here’s how:
(setq lisp-no-popper t)
(setq popper-load-hook

> (lambda ()
(setq popper-pop-buffers nil)
(setq popper-buffers-to-skip nil)))

Chapter 2: How to run a Lisp process using ILISP 13

2 How torun a Lisp process using ILISP

To start a Lisp use M-x run-ilisp, or a specific dialect like M-x allegro. If called with a prefix
you will be prompted for a buffer name and a program to run. The default buffer name is the name
of the dialect. The default program for a dialect will be the value of DIALECT-program or the
value of ilisp-program inherited from a less specific dialect. If there are multiple LISP’s, use the
dialect name or M-x select-ilisp (C-Z S) to select the current ILISP buffer.

These are the currently supported dialects. The dialects are listed so that the indentation

correponds to the hierarchical relationship between dialects.

clisp
allegro
lucid
kcl
akcl
ibcl
cmulisp
scheme
oaklisp

If anyone figures out support for other dialects I would be happy to include it in future releases.
See Chapter 6 [Dialects], page 33.

Entry into ILISP mode runs the hooks on comint-mode-hook and ilisp-mode-hook and then
DIALECT-hooks specific to LISP dialects in the nesting order above.

14

The ILISP Inferior LISP Interface

Chapter 3: Buffers used by ILISP, and their commands 15

3 Buffers used by ILISP, and their commands

xdialect* The Lisp listener buffer. Forms can be entered in this buffer in, and they will be sent
to lisp when you hit return if the form is complete. This buffer is in ilisp-mode, which
is built on top of comint-mode, and all comint commands such as history mechanism
and job control are available.

lisp-mode-buffers

A buffer is assumed to contain Lisp source code if its major mode is in the list 1isp-
source-modes. If it’s loaded into a buffer that is in one of these major modes, it’s
considered a lisp source file by find-file-1lisp, load-file-1lisp and compile-file-
lisp. Used by these commands to determine defaults.

Completionsx

Used for listing completions of symbols or files by the completion commands. See
Section 4.12 [Completion|, page 28.

Aborted Commands
See Section 4.10 [Interrupts]|, page 26.

Errorsx
0Qutput
Error Output

used to pop-up results and errors from the inferior LISP.
ilisp-send
Buffer containing the last form sent to the inferior LISP.

Edit-Definitionsx
*Al11-Callersx

See Section 4.6 [Source code commands], page 23.

Last-Changes
Changed-Definitionsx

See Section 4.7 [Batch commands|, page 24.

3.1 Popper buffers

ILISP uses a dynamically sized pop-up window that can be buried and scrolled from any window
for displaying output. By default the smallest window will have just one line. If you like bigger
windows, set window-min-height to the number of lines desired plus one.

16 The ILISP Inferior LISP Interface

The variable popper-pop-buffers has a list of temporary buffer names that will be displayed
in the pop-up window. By default only *Typeout-window* and *Completions* will be displayed
in the pop-up window (remember to include the leading space in a buffer name if it has it). If you
want all temporary windows to use the pop-up window, set popper-pop-buffers to t.

The variable popper-buffers-to-skip has a list of the buffer names C-x o (popper-other-
window) skips or t to skip all popper buffers. If popper-other-window is called with a C-u prefix,
the popper window will be selected.

C-Z 1 (popper-bury-output)
buries the output window.
C-Z v (popper-scroll-output)

scrolls the output window if it is already showing, otherwise it pops it up. If it is called

with a negative prefix, it will scroll backwards.
C-Z G (popper-grow-output)

will grow the output window if showing by the prefix number of lines. Otherwise, it
will pop the window up.

If you are running ‘epoch’, the popper window will be in a separate X window that is not
automatically grown or shrunk. The variable popper-screen-properties can be used to set

window properties for that window.

An alternative to popper windows is to always have the inferior LISP buffer visible and have
all output go there. Setting lisp-no-popper to t will cause all output to go to the inferior LISP
buffer. Setting lisp-no-popper to ’message will make output of one line go to the message
window. Setting comint-always-scroll to t will cause process output to always be visible. If a

command gets an error, you will be left in the break loop.

To ensure that the popper is soundly beaten into submission, do the following:

(setq popper-load-hook
> (lambda ()
(setq popper-pop-buffers nil)
(setq popper-buffers-to-skip nil)))

Chapter 3: Buffers used by ILISP, and their commands 17

3.2 Switching buffers

Commands to make switching between buffers easier.

C-Z b (switch-to-1lisp)
will pop to the current ILISP buffer or if already in an ILISP buffer, it will return to
the buffer that last switched to an ILISP buffer. With a prefix, it will also go to the
end of the buffer. If you do not want it to pop, set pop—up-windows to nil.

M-C-1 (previous-buffer-lisp)
will switch to the last visited buffer in the current window or the Nth previous buffer

with a prefix.

18

The ILISP Inferior LISP Interface

Chapter 4: ILISP Commands 19

4 TLISP Commands

Most of these key bindings work in both Lisp Mode and ILISP mode. There are a few additional
and-go bindings found in Lisp Mode.

4.1 Eval and compile functions

In LISP, the major unit of interest is a form, which is anything between two matching parenthe-
ses. Some of the commands here also refer to “defun,” which is a list that starts at the left margin
in a LISP buffer, or after a prompt in the ILISP buffer. These commands refer to the “defun” that

contains the point.

“A call” refers to a reference to a function call for a function or macro, or a reference to a
variable. Commands which “insert a call” in the ILISP buffer will bring up the last command
which matches it or else will insert a template for a call.

When an eval is done of a single form matching ilisp-defvar-regexp the corresponding symbol
will be unbound and the value assigned again.

When you send a form to LISP, the status light will reflect the progress of the command. In
a lisp mode buffer the light will reflect the status of the currently selected inferior LISP unless
lisp-show-status is nil. If you want to find out what command is currently running, use the
command C-Z s (status-lisp). If you call it with a prefix, the pending commands will be displayed
as well.

Note that in this table as elsewhere, the key C-Z (ilisp-prefix) is used as a prefix character for
ILISP commands, though this may be changed. For a full list of key-bindings, use M-x describe-
mode or M-x describe-bindings while in an ILISP-mode buffer.

The eval/compile commands verify that their expressions are balanced and then send the form
to the inferior LISP. If called with a positive prefix, the result of the operation will be inserted into
the buffer after the form that was just sent.

For commands which operate on a region, the result of the compile or eval is the last form in
the region.

20 The ILISP Inferior LISP Interface

The ‘and-go’ versions will perform the operation and then immediately switch to the ILISP
buffer where you will see the results of executing your form. If eval-defun-and-go-lisp or
compile-defun-and-go-1lisp is called with a prefix, a call for the form will be inserted as well.

C-Z The prefix-key for most ILISP commands. This can be changed by setting the variable
ilisp-prefix.

RET (return-ilisp)
In ILISP-mode buffer, sends the current form to lisp if complete, otherwise creates a

new line and indents. If you edit old input, the input will be copied to the end of the
buffer first and then sent.

C-] (close-and-send-lisp)
Closes the current sexp, indents it, and then sends it to the current inferior LISP.
LFD (newline-and-indent-1lisp)

Insert a new line and then indent to the appropriate level. If called at the end of the
inferior LISP buffer and an sexp, the sexp will be sent to the inferior LISP without a
trailing newline.

C-Z e (eval-defun-1lisp)
M-C-x (eval-defun-1lisp)
C-Z C-e (eval-defun-and-go-lisp)
Send the defun to lisp.
C-Z r (eval-region-lisp)
C-Z C-r (eval-region-and-go-lisp)
C-Z n (eval-next-sexp-lisp)
C-Z C-n (eval-next-sexp-and-go-lisp)
C-Z ¢ (compile-defun-lisp)
C-Z C-c (compile-defun-lisp-and-go)
When compile-defun-1isp is called in an inferior LISP buffer with no current form,
the last form typed to the top-level will be compiled.
C-Z w (compile-region-1isp)
C-Z C-w (compile-region-and-go-lisp)

If any of the forms contain an interactive command, then the command will never return. To
get out of this state, you need to use abort-commands-lisp (C-Z g). If lisp-wait-p is t, then
EMACS will display the result of the command in the minibuffer or a pop-up window. If lisp-
wait-p is nil, (the default) the send is done asynchronously and the results will be brought up
only if there is more than one line or there is an error. In this case, you will be given the option

Chapter 4: ILISP Commands 21

of ignoring the error, keeping it in another buffer or keeping it and aborting all pending sends. If
there is not a command already running in the inferior LISP, you can preserve the break loop. If
called with a negative prefix, the sense of lisp-wait-p will be inverted for the next command.

4.2 Documentation functions

describe-lisp, inspect-lisp, arglist-1lisp, and documentation-1lisp switch whether they
prompt for a response or use a default when called with a negative prefix. If they are prompting,
there is completion through the inferior LISP by using TAB or M-TAB. When entering an expression
in the minibuffer, all of the normal ilisp commands like arglist-1isp also work.

Commands that work on a function will use the nearest previous function symbol. This is either

a symbol after a ‘#’’ or the symbol at the start of the current list.

C-Z a (arglist-lisp)
Return the arglist of the current function. With a numeric prefix, the leading paren
will be removed and the arglist will be inserted into the buffer.

C-Z d (documentation-1lisp)
Infers whether function or variable documentation is desired. With a negative pre-
fix, you can specify the type of documentation as well. With a positive prefix the
documentation of the current function call is inserted into the buffer.

C-Z i (describe-lisp)
Describe the previous sexp (it is evaluated). If there is no previous sexp and if called
from inside an ILISP buffer, the previous result will be described.

C-Z i (describe-1lisp)
Describe the previous sexp (it is evaluated). If there is no previous sexp and if called
from inside an ILISP buffer, the previous result will be described.

C-Z I (inspect-lisp)
Switch to the current inferor LISP and inspect the previous sexp (it is evaluated). If
there is no previous sexp and if called from inside an ILISP buffer, the previous result
will be inspected.

C-ZD (fi:clman)

C-Z A (fi:clman-apropos)
If the Franz online Common LISP manual is available, get information on a specific

symbol. fi:clman-apropos will get information apropos a specific string. Some of the
documentation is specific to the allegro dialect, but most of it is for standard Common

LISP.

22 The ILISP Inferior LISP Interface

4.3 Macroexpansion

C-Z M (macroexpand-lisp)
C-Z m (macroexpand-1-1lisp)

These commands apply to the next sexp. If called with a positive numeric prefix, the
result of the macroexpansion will be inserted into the buffer. With a negative prefix,
prompts for expression to expand.

4.4 Tracing functions

C-Z t (trace-defun-lisp)

traces the current defun. When called with a numeric prefix the function will be
untraced. When called with negative prefix, prompts for function to be traced.

4.5 Package Commands

The first time an inferior LISP mode command is executed in a Lisp Mode buffer, the package
will be determined by using the regular expression ilisp-package-regexp to find a package sexp
and then passing that sexp to the inferior LISP through ilisp-package-command. For the ‘clisp’
dialect, this will find the first (in-package PACKAGE) form in the file. A buffer’s package will be
displayed in the mode line. If a buffer has no specification, forms will be evaluated in the current
inferior LISP package.

Buffer package caching can be turned off by setting the variable 1isp-dont-cache-package to
T. This will force ILISP to search for the closest previous ilisp-package-regexp in the buffer
each time an inferior LISP mode command is executed.

C-Z p (package-lisp)
Show the current package of the inferior LISP.

C-Z P (set-package-lisp)
Set the inferior LISP package to the current buffer’s package or with a prefix to a
manually entered package.

M-x set-buffer-package-lisp
Set the buffer’s package from the buffer. If it is called with a prefix, the package can
be set manually.

Chapter 4: ILISP Commands 23

4.6 Source Code Commands

The following commands all deal with finding things in source code. The first time that one
of these commands is used, there may be some delay while the source module is loaded. When
searching files, the first applicable rule is used:

e try the inferior LISP,
e try a tags file if defined,

e try all buffers in one of 1isp-source-modes or all files defined using lisp-directory.

M-x lisp-directory defines a set of files to be searched by the source code commands. It
prompts for a directory and sets the source files to be those in the directory that match entries in
auto-mode-alist for modes in 1isp-source-modes. With a positive prefix, the files are appended.
With a negative prefix, all current buffers that are in one of 1isp-source-modes will be searched.
This is also what happens by default. Using this command stops using a tags file.

edit-definitions-1lisp, who-calls-1lisp, and edit-callers-1isp will switch whether they
prompt for a response or use a default when called with a negative prefix. If they are prompting,
there is completion through the inferior LISP by using TAB or M-TAB. When entering an expression
in the minibuffer, all of the normal ILISP commands like arglist-1isp also work.

edit-definitions-1lisp (M-.) will find a particular type of definition for a symbol. It tries to
use the rules described above. The files to be searched are listed in the buffer *Edit-Definitionsx*.
Iflisp-edit-filesis nil, no search will be done if not found through the inferior LISP. The variable
ilisp-locator contains a function that when given the name and type should be able to find the
appropriate definition in the file. There is often a flag to cause your LISP to record source files that
you will need to set in the initialization file for your LISP. The variable is *record-source-files*
in both allegro and lucid. Once a definition has been found, next-definition-1lisp (M-,) will

find the next definition (or the previous definition with a prefix).

edit-callers-1lisp (C-Z ") will generate a list of all of the callers of a function in the current
inferior LISP and edit the first caller using edit-definitions-1lisp. Each successive call to next-
caller-lisp (M-¢) will edit the next caller (or the previous caller with a prefix). The list is stored
in the buffer *A11-Callers*. You can also look at the callers by doing M-x who-calls-1isp.

search-lisp (M-7) will search the current tags files, lisp-directory files or buffers in one

of lisp-source-modes for a string or a regular expression when called with a prefix. next-

24 The ILISP Inferior LISP Interface

definition-lisp (M-,) will find the next definition (or the previous definition with a prefix).

replace-lisp (M-") will replace a string (or a regexp with a prefix) in the current tags files,
lisp-directory files or buffers in one of 1isp-source-modes.

Here is a summary of the above commands (behavior when given prefix argument is given in
parentheses):

M-x lisp-directory
Define a set of files to be used by the source code commands.
M-. (edit-definitions-1isp)
Find definition of a symbol.
M-, (next-definition-lisp)
Find next (previous) definition.
C-Z ~ (edit-callers-lisp)
Find all callers of a function, and edit the first.
M-¢ (next-caller-lisp)
Edit next (previous) caller of function set by edit-callers-1lisp.
M-x who-calls-1lisp
List all the callers of a function.
M-?7 (search-lisp)
Search for string (regular expression) in current tags, lisp-directory files or buffers.
Use next-definition-1lisp to find next occurence.
M-" (replace-1lisp)

Replace a string (regular expression) in files.

4.7 Batch commands

The following commands all deal with making a number of changes all at once. The first time
one of these commands is used, there may be some delay as the module is loaded. The eval/compile
versions of these commands are always executed asynchronously.

mark-change-1isp (C-Z SPC) marks the current defun as being changed. A prefix causes it to
be unmarked. clear-changes-1lisp (C-Z * 0) will clear all of the changes. list-changes-lisp
(C-Z * 1) will show the forms currently marked.

Chapter 4: ILISP Commands 25

eval-changes-1isp (C-Z * e), or compile-changes-1lisp (C-Z * c) will evaluate or compile
these changes as appropriate. If called with a positive prefix, the changes will be kept. If there is
an error, the process will stop and show the error and all remaining changes will remain in the list.
All of the results will be kept in the buffer *Last-Changesx*.

Summary:

C-Z SPC (mark-change-1isp)

Mark (unmark) current defun as changed.
C-Z * e (eval-changes-1isp)
C-Z * ¢ (compile-changes-1lisp)

Call with a positive prefix to keep changes.
C-Z * 0 (clear-changes-1lisp)
C-Z * 1 (list-changes-1lisp)

4.8 Files and directories

File commands in lisp-source-mode buffers keep track of the last used directory and file. If the
point is on a string, that will be the default if the file exists. If the buffer is one of 1isp-source-
modes, the buffer file will be the default. Otherwise, the last file used in a lisp-source-mode will be
used.

C-x C-f (find-file-1lisp)
will find a file. If it is in a string, that will be used as the default if it matches an

existing file. Symbolic links are expanded so that different references to the same file
will end up with the same buffer.

C-Z1 (load-file-lisp)
will load a file into the inferior LISP. You will be given the opportunity to save the

buffer if it has changed and to compile the file if the compiled version is older than the
current version.

C-Zk (compile-file-lisp)
will compile a file in the current inferior LISP.
C-Z ! (default-directory-1lisp)

sets the default inferior LISP directory to the directory of the current buffer. If called
in an inferior LISP buffer, it sets the Emacs default-directory to the LISP default
directory.

26 The ILISP Inferior LISP Interface

4.9 Switching between interactive and raw keyboard modes

There are two keyboard modes for interacting with the inferior LISP, \"interactive\" and
\"raw\". Normally you are in interactive mode where keys are interpreted as commands to EMACS
and nothing is sent to the inferior LISP unless a specific command does so. In raw mode, all char-
acters are passed directly to the inferior LISP without any interpretation as EMACS commands.
Keys will not be echoed unless ilisp-raw-echo is T.

Raw mode can be turned on interactively by the command raw-keys-ilisp (C-Z #) and will
continue until you type C-G. Raw mode can also be turned on/off by inferior LISP functions if
the command io-bridge-ilisp (M-x io-bridge-ilisp) has been executed in the inferior LISP either
interactively or on a hook. To turn on raw mode, a function should print ~[1°] and to turn it off
should print ~[0~]. An example in Common LISP would be:

(progn (format t "elE") (print (read-char)) (format t "®OE"))

4.10 Interrupts, aborts, and errors
If you want to abort the last command you can use C-g.

If you want to abort all commands, you should use the command abort-commands-1lisp (C-Z
g). Commands that are aborted will be put in the buffer *Aborted Commands* so that you can see
what was aborted. If you want to abort the currently running top-level command, use interrupt-
subjob-ilisp (C-c C-c). As a last resort, M-x panic-lisp will reset the ILISP state without
affecting the inferior LISP so that you can see what is happening.

delete-char-or-pop-ilisp (C-d) will delete prefix characters unless you are at the end of an
ILISP buffer in which case it will pop one level in the break loop.

reset-ilisp, (C-Z z) will reset the current inferior LISP’s top-level so that it will no longer be
in a break loop.

Summary:

C-c C-c (interrupt-subjob-ilisp)

Send a keyboard interrupt signal to lisp.

Chapter 4: ILISP Commands 27

C-Z g (abort-commands-1isp)
Abort all running or unsent commands.
M-x panic-lisp (panic-lisp)
Reset the ILISP process state.
C-Z z (reset-ilisp)
Reset lisp to top-level.
C-d (delete-char-or-pop-ilisp)
If at end of buffer, pop a level in break loop.

If 1isp-wait-p is nil (the default), all sends are done asynchronously and the results will be
brought up only if there is more than one line or there is an error. In case, you will be given the
option of ignoring the error, keeping it in another buffer or keeping it and aborting all pending
sends. If there is not a command already running in the inferior LISP, you can preserve the break
loop. If called with a negative prefix, the sense of lisp-wait-p will be inverted for the next

command.

4.11 Command history

ILISP mode is built on top of comint-mode, the general command-interpreter-in-a-buffer mode.
As such, it inherits many commands and features from this, including a command history mecha-

nism.

Each ILISP buffer has a command history associated with it. Commands that do not match
ilisp-filter-regexp and that are longer than ilisp-filter-length and that do not match the
immediately prior command will be added to this history.

M-n (comint-next-input)
M-p (comint-previous-input)
Cycle through the input history.
M-s (comint-previous-similar-input)
Cycle through input that has the string typed so far as a prefix.
M-N (comint-psearch-input)
Search forwards for prompt.
M-P (comint-msearch-input)

Search backwards for prompt.

28 The ILISP Inferior LISP Interface

C-c R (comint-msearch-input-matching)

Search backwards for occurrence of prompt followed by string which is prompted for
(not a regular expression).

See comint-mode documentation for more information on ‘comint’ commands.

4.12 Completion
Commands to reduce number of keystrokes.

M-TAB (complete-lisp)

will try to complete the previous symbol in the current inferior LISP. Partial comple-
tion is supported unless ilisp-prefix-match is set to t. (If you set it to t, inferior
LISP completions will be faster.) With partial completion, ‘p=-n’ would complete to
‘position-if-not’ in Common LISP. If the symbol follows a left paren or a ‘#°’, only
symbols with function cells will be considered. If the symbol starts with a ‘*’ or you
call with a positive prefix all possible completions will be considered. Only external
symbols are considered if there is a package qualification with only one colon. The
first time you try to complete a string the longest common substring will be inserted
and the cursor will be left on the point of ambiguity. If you try to complete again,
you can see the possible completions. If you are in a string, then filename completion
will be done instead. And if you try to complete a filename twice, you will see a list
of possible completions. Filename components are completed individually, so ‘/u/mi/’
could expand to ‘/usr/misc/’. If you complete with a negative prefix, the most recent
completion (symbol or filename) will be undone.

M-RET (complete)

will complete the current symbol to the most recently seen symbol in Emacs that
matches what you have typed so far. Executing it repeatedly will cycle through poten-
tial matches. This is from the TMC completion package and there may be some delay
as it is initially loaded.

4.13 Miscellany

Indentation, parenthesis balancing, and comment commands.

Chapter 4: ILISP Commands 29

TAB (indent-line-ilisp)

indents for LISP. With prefix, shifts rest of expression rigidly with the current line.
M-C-q (indent-sexp-ilisp)

will indent each line in the next sexp.
M-q (reindent-lisp)

will reindent the current paragraph if in a comment or string. Otherwise it will close
the containing defun and reindent it.

C-Z ; (comment-region-1lisp)
will put prefix copies of comment-start before and comment-end’s after the lines in
region. To uncomment a region, use a minus prefix.

C-Z) (find-unbalanced-lisp)

will find unbalanced parens in the current buffer. When called with a prefix it will look

in the current region.
] (close-all-lisp)

will close all outstanding parens back to the containing form, or a previous left bracket
which will be converted to a left parens. If there are too many parens, they will be
deleted unless there is text between the last paren and the end of the defun. If called
with a prefix, all open left brackets will be closed.

30

The ILISP Inferior LISP Interface

Chapter 5: ILISP Customization 31

5 ILISP Customization

Starting a dialect runs the hooks on comint-mode-hook and ilisp-mode-hook and then DI-
ALECT-hooks specific to dialects in the nesting order below.

clisp
allegro
lucid
kcl
akcl
ibcl
cmulisp
scheme
oaklisp

On the very first prompt in the inferior LISP, the hooks on ilisp-init-hook are run. For more
information on creating a new dialect or variables to set in hooks, see ‘ilisp.el’.

ILISP Mode Hooks:

ilisp-site-hook
Executed when file is loaded
ilisp-load-hook
Executed when file is loaded
ilisp-mode-hook
Executed when an ilisp buffer is created
ilisp-init-hook
Executed after inferior LISP is initialized and the first prompt is seen.
DIALECT-hook

Executed when dialect is set

Variables you might want to set in a hook or dialect:

ilisp-prefix

Keys to prefix ilisp key bindings

32

ilisp-program

Program to start for inferior LISP
ilisp-motd

String printed on startup with version
lisp-wait-p

Set to T for synchronous sends
lisp-no-popper

Set to T to have all output in inferior LISP
lisp-show-status

Set to nil to stop showing process status
ilisp-prefix-match

Set to T if you do not want partial completion
ilisp-filter-regexp

Input history filter
ilisp-filter-length

Input history minimum length
ilisp-other-prompt

Prompt for non- top-level read-eval print loops

The ILISP Inferior LISP Interface

Chapter 6: Dialects 33

6 Dialects

A dialect of lisp is a specific implementation. For the parts of Common Lisp which are well
specified, they are usually the same. For the parts that are not (debugger, top-level loop, etc.),

there is usually the same functionality but different commands.

ILISP provides the means to specify these differences so that the ILISP commands will use the
specific command peculiar to an implementation, but still offer the same behavior with the same
interface.

6.1 Defining new dialects

To define a new dialect use the macro defdialect. For examples, look at the dialect definitions
in ‘41isp.el’. There are hooks and variables for almost anything that you are likely to need to
change. The relationship between dialects is hierarchical with the root values being defined in
setup-ilisp. For a new dialect, you only need to change the variables that are different than in
the parent dialect.

6.2 Writing new commands
Basic tools for creating new commands:

deflocal Define a new buffer local variable.
ilisp-dialect

List of dialect types. For specific dialect clauses.
lisp-symbol

Create a symbol.
lisp-symbol-name

Return a symbol’s name
lisp-symbol-delimiter

Return a symbol’s qualification
lisp-symbol-package

Return a symbol’s package

34 The ILISP Inferior LISP Interface

lisp-string-to-symbol

Convert string to symbol
lisp-symbol-to-string

Convert symbol to string
lisp-buffer-symbol

Convert symbol to string qualified for buffer
lisp-previous-symbol

Return previous symbol
lisp-previous-sexp

Return previous sexp
lisp-def-name

Return name of current definition
lisp-function-name

Return previous function symbol
ilisp-read

Read an sexp with completion, arglist, etc
ilisp-read-symbol

Read a symbol or list with completion
ilisp-completing-read

Read from choices or list with completion

Notes:

e Special commands like arglist should use ilisp-send to send a message to the inferior LISP.

e Eval/compile commands should use eval-region-1lisp or compile-region-1lisp.

Concept Index

Concept Index

*
Aborted Commands buffer..................... 15, 26
A11-Callers buffer........... 15, 23
Changed-Definitions buffer................... .. 15
xCompletions buffer........... 15
xEdit-Definitions* buffer..................... 15, 23
Error OQutput buffer.............. 15
xErrors* buffer........ L 15
ilisp-send buffer...........o 15
Last-Changes buffer.................. 15, 25
OQutput buffer..........o 15
Cel’files. ..o 9
‘cemacs’ forms. ...l 10
A

Aborting commandso. i 26
‘and-go’ functionso ool 20
Anonymous FTP o 1
Apropos help ... 21
Arglist lisp ..o 21
autoload definitions.......... oL 10
B

Break loop...... ..o 26
‘bridge.el’.o 7
Buffer package........o 22
Buffer package caching............ 22
buffers of ILISP....... ... 15
bury output window ..., 16
Byte-compiling ILISP files 9
C

Call .o 19
Change commands............ ..., 24
Clearing changes.......... ... 24
Close all parens.............ooiiiiiiiiian. 29
Close brackets 29

35
‘comint-ipc.el’ 7
comint-mode.oiiiiiii 27
fcomint.el’ 7
Command history.................o i 27
Comment regioncouuiiiiiinuiinnennne.n. 29
Common Lisp manual......... oo 21
‘compat.el’. 7
Compile last form........... ... il 20
Compile region i 20
Compile/eval commands........................... 19
Compiling changes. ..., 25
Compiling files........ ... i 25
Compiling ILISP filest 9
‘completer.el’ 7
Completion. ... 28
Current directory.......... i 25
Currently running command 19
Customization............. i 31
D
Default directory i 25
defining autoloads o ool 10
Defining new dialects 33
Defun o 19
Describing bindings............... oL 19
Describing lisp objects, 21
Dialect startup ... 31
Dialects ... 33
Dialects supported........ ... 13
Directories and files........... i 25
Displaying commands.............. ... oL 19
Documentation Functions.......................... 21
E
€POCh POPPEr ... 16
‘epoch-pop.el’ 7
Errors 26
Evalregion..........ooo oo 20

Eval’ing changes........ ... 25

36
Eval/compile commands............. ...l 19
Expanding macro forms........... 22

F

features. 5
File changes i 24
Filename completion............. 28
Files and directories oo 25
Files of ILISP 7
Find callers.o 23
Find file.... ..o 25
Find unbalanced parens............... 29
Finding source......... i 23
First prompt......... o o 31
Franz manual............ oL 21
FTP site.....oooi 1

G

Getting ILISP o 1
Group changes........ i 24
grow output window oL 16

I

ILISP buffers ... 15
ILISP Mode Hooks ..., 31
‘ilisp-bat.el’ 9
‘ilisp-bug.el’ 7
‘lisp-cl.el’ ... 9
‘ilisp-cmp.el’ ... 9
‘ilisp-cmt.el’ ... 9
‘ilisp-def.el’ 8
‘ilisp-doc.el’ 8
‘ilisp-el.el’ ... 8
‘ilisp-ext.el’ 7
G1isp-hi.el’l 8
G1isp-hnd.el’oiiiiii i 9
‘ilisp-ind.el’ 8
‘ilisp-inp.el’ 8

‘ilisp-key.el’ 8

The ILISP Inferior LISP Interface

‘Alisp-kil.el’ 9
‘ilisp-low.el’ 8
‘ilisp-mod.el’ 8
‘ilisp-mov.el’ 8
‘ilisp-out.el’ 8
‘Alisp-pre.el’ ... 8
‘Alisp-pro.el’ ... 8
‘Alisp-rng.el’ 8
‘ilisp-snd.el’ 9
‘ilisp-src.el’ 9
‘ilisp-sym.el’ 8
‘ilisp-utl.el’ ... 8
‘ilisp-val.el’ 8
‘Alisp-xfr.el 7. ... 9
Aldsp.el’ 9
‘11iSP.emacs’ ... 7
‘Alisp.texi’. ... 9
In-package form......... il 22
Indentation............. ... i 29
Input search........ ... i 27
Inserting calls........... ... oo i 20
Inserting results oot 19
Installation ... 7
Interactive keyboard mode......................... 26
Internal ILISP functions................. 33
Interrupting commands............ 26

L

Last command........o 27
Lispfindfile.........ooo i 25
List callers.o 23
Listing bindings i i 19
Listing changeso i i 24
Loading files......... o i 25

M

Macroexpansion ... 22
Marking changes.......... ... oo o il 24
Minibuffer completion.............. 21
Modeline status............ ... i 19

N

Negative prefix ...t 21

Concept Index

Next definition......... ..o 24
Next input.....ccovieeii i 27
P

Package commands ...l 22
Parenthesis balancing 29
Partial completion......... ool 28
Pop in break loop......... ... i 26
Popper buffers....... 15
‘popper.el’. ... 7
Previous commands............ol 27
Previous definition......... o oL 24
Previous lisp buffer 17
R

Raw keyboard modeoiiiiiii 26
Region commands oo 19
Reindent lisp ... 29
Replace lisp ..o 24
Resetting lisp............ o i 26
Rigid indentation...........o ool 29
Running lisp........... o o 13

S

scrolling output........ ... i 16

37
Search input......... ..o i 27
Sending input to lisp............coiiiii it 20
Set buffer package oL 22
Set default directory oL 25
Show current package.............. 22
Similar inputo 27
Source Code Commandscooeeenueann... 23
Source Modes.oviuiiii 23
Starting up lisp. ... 13
Status light 19
Supported dialects.............. il 13
Switching bufferso oL 17
Symbolic link expansion 25
‘symlink-fix.el’....... 7
T
TMC completion ..., 28
Top-level, return to. ... 26
Tracing defuns. ... 22
Turning popper off.o 16
U
Uncomment region............c.ooviiiiiiiieaaann.. 29
Untracing defuns ... 22

38

The ILISP Inferior LISP Interface

Key Index

Key Index

T e 29
C

Cm 20
CmC Rttt 28
G et e 26
L 26
C—x G- 25
G Ottt 16
C=Z N 25
C=Z # . 26
C=Z) o 29
C=Z % 0t 24
CZ % Coott i 25
CmZ % @ 25
C=Z % L e 24
Cm 5 e 29
C=Z © 23
Gz L 16
CmZ @ i 21
C=Z Ao 21
Cm Dt 17
CmZ Gt 20
C=Z G it 20
C=Z e i 20
C=Z C M. et e 20
C=Z T e 20
(O O 20
C=Z ..o 21
C=Z Dttt 21
CmZ @ttt 20
CmZ g oot 21, 26
G-z Gt 16
C=Z A . 21
C=Z T 21
Cm Rt e 25
C=Z Lo 25
CoZ M. 22

39
C-Z M. 22
C=Z M. i 20
CmZ Do 22
C=Z P 22
C-Zprefix..... ... 19
C=Z X 20
CmZ S 19
C-Z SPC. .. 24
CmZ b 22
CmZ Ve 16
CmZ Wittt 20
C=Z Z . it 26
L
LED . 20
M
M 24
Mo 23
Mo 24
M= 23
Mot 24
M=C-d. 17
M=C=q. oo 29
M=C=X.ooo 20
/o PP 27
M=l 27
Mo 27
Mo 27
G 29
M-RET. .. 28
e T 27
M-TAB. .. 21
M-TAB. .. 28
M-x io-bridge-ilisp..........cciiiiiiiiiiiiiiii, 26
M-x lisp-directory.................l 23
M-x set-buffer-package-lisp..................... 22

M-x who-calls-1isp...........c.ooiiiiiiiiii .. 23

40

The ILISP Inferior LISP Interface

Command Index

Command Index

Commands available via M-x prefix.

A

abort-commands-lisp.....................o.. 21, 26
AKCL . e 13
oI =T~ o 13
Arglist=1isp .. .vvvviiiii 21

C

clear-changes-1isp.............. ... 24
ClaSP 13
close-all-lisp.......ooiiiniiiiiiiiiiiiiiii 29
close-and-send-lisp 20
CIMULISD . vttt 13
comint-msearch-input 27
comint-msearch-input-matching.................. 28
comint-next-input...................l 27
comint-previous-input......................... 27
comint-previous-similar-input.................. 27
comint-psearch-input 27
comment-region-1ispl 29
compile-changes-1isSpccooiviiiiiiiiia... 25
compile-defun-and-go-1lisp....................... 20
compile-defun-lisp.............. il 20
compile-defun-lisp-and-go....................... 20
compile-file-lisp..................ciilL 25
compile-region-and-go-lisp 20
compile-region-lisp 20
complete 28
complete-lisp i 28

D

default-directory-lisp.....................o.un 25
defdialect...... ..o 33
delete-char-or-pop-ilisp........................ 26
describe-lisp........................ooLl 21

documentation-lisp..............ooiiiiiiiiiiia, 21

41
E
edit-callers-1isp...........coooiiiiiii ... 23
edit-definitions-lisp.................... 23
eval-changes-1isp............... ..., 25
eval-defun-and-go-lisp...........coiiiiiinna.. 20
eval-defun-1isp........coiiiiiiiiiiiiiii 20
eval-next-sexp-and-go-1lisp 20
eval-next-sexp-lispcoiiiiiiiiiiii 20
eval-region-and-go-lisp......................... 20
eval-region-lisp...............l 20
F
fitclmam. ... 21
fi:clman-apropos...............oiiiiiiiiii.. 21
find-file-lisp..........l 25
find-unbalanced-1isp 29
I
AbCl. o 13
indent-line-ilisp............l 29
indent-sexp-ilisp...............l 29
Inspect=1iSp ...oovviiiiiii i 21
interrupt-subjob-ilisp............. ol 26
io-bridge-ilisp...........ooiiiiiiiiiiiiiil 26
K
RO 13
L
lisp-directory............ ..., 23
list-changes=—1iSp........vvrrrrimiiminennnnnnnnnn 24
load-file-1lisp.........ooiiiiiiiiiii i 25
Tucid. ... 13
M
macroexpand-1-1isp............. ool 22
macroexpand-—1isSp.c.ouiiiiiiiiiiiiiiii 22

42

mark-change-1isp.............oooiiiiiiia... 24
newline-and-indent-lisp......................... 20
next-caller-1isSp.......c.cuuuiiiiiiiiiiiiiiiinan 23
next-definition-lisp...................... ... 23, 24
0aK1iSD ..ot 13
Package—l1iSpuiiiii e 22
PANIC—1iSP. . i 26
popper-bury-output................... ...l 16
popper-grow-output..................l 16
popper-other-window 16
popper-scroll-output 16
previous-buffer-lisp..................... 17
raw-keys—ilisp........ ..o 26

The ILISP Inferior LISP Interface

reindent-1isp ... 29
Teplace=1iSPurtitt e 24
reset—1ilisp. ... 26
return-ilisp ... 20
run-ilisp........o.o 13

S

SCheme i 13
S€ATCh-1i8P. . ..ottt e 24
set-buffer-package-1isp........covvininnnnnn... 22
set-package-1isp............. ... il 22
setup-1lisp. ... 33
status-1isp. ... 19
switch-to-1lisp............l 17

T

trace-defun-1lisp.............. ...l 22

A%

who-calls=1isp.......covuiiiiiiiiiiiiiiiii 23

Variable Index

Variable Index

Variables and hooks of ILISP.

*

record-source-files 23

A

auto-mode-alistiiiiiiii 23

C

comint-always—-scrollcoiiiiiiiiii.. 16

comint-mode-hooK............ooiiiiiriiiannn.. 31

D

default-directory..................oooiiiiiii 25
DIALECT=R00K .« o\t otiii e 31

I

ilisp-defvar-regexp 19
ilisp-filter-length....................... ... 27, 32
ilisp-filter-regexp................ooiuio. .. 27, 32
ilisp-init-binary-command........................ 9
ilisp-init-binary-extension 9
ilisp-init-hook..............l 31
ilisp-load-hook..............coiiiiiiii... 31

ilisp-load-inits................ ..o i 9

43
ilisp-locator ... 23
ilisp-mode-hook..........l 31
ilisp-motd........ ... 32
ilisp-other-prompt............... 32
ilisp-package-—TegeXPvvvrinrrrereannneeennns 22
ilisp-prefixX. ... 19, 31
ilisp-prefix-match........................... 28, 32
11isp-program.oviiiiiiiiiiiiii 9, 32
ilisp-raw-echo.............. 26
ilisp-site-hook...............ol 9, 31
L
lisp-dont-cache-package......................... 22
lisp-edit-files...........l 23
1iSP—NO—POPPEL . .\ttt i 16, 32
lisp-show-status 19, 32
1isSp-SOUrCe—MOdeSvuurrriiea 23
lisp-wait-p ... 21, 27, 32
P
POP-UP-Windowsl 17
popper-buffers-to-skip...................... ... 16
popper-pop-buffers.......................Ll 15
popper-screen-properties. i 16

44

The ILISP Inferior LISP Interface

Function Index

Function Index

Internal functions of ILISP which can be used to write new commands.

C

compile-region-1isp 34
deflocal ...t 33
eval-region-lisp.............l 34
ilisp-compile-inits........................o.. 9
ilisp-completing-read.....................o... 34
ilisp-dialect ...t 33
ilisp-package-commandooiiuinnnnnn.. 22

ilisp-read. ...t 34

45
ilisp-read-symbol................ 34
ilisp-send........ 34
L
lisp-buffer-symbol.......... ..., 34
lisp-def-namec i 34
lisp-function-name............. ..., 34
1isp-previous—SexXp.........coiuiiiiiiiiiiii.. 34
lisp-previous-symbol 34
lisp-string-to-symbol........................ ... 34
lisp-symbol. ... 33
lisp-symbol-delimiter........................... 33
lisp-symbol-name................................. 33
lisp-symbol-packagec.coiuuiiiiiiiiiinn. 33
lisp-symbol-to-string...................., 34

46

The ILISP Inferior LISP Interface

Table of Contents

How to get the latest ILISP distribution............... 1
FTP directionso e e 1
Acknowledgements............. 3
Introduction 5
1 How toinstall ILISP 7
1.1 Files of ILISP o e 7
1.2 How to define autoload entries...............ccoiiiiiiiiiieeiinn... 10
2 How to run a Lisp process using ILISP 13
3 Buffers used by ILISP, and their commands... ... 15
3.1 Popper bufferso 15
3.2 Switching buffers........ . . 17
4 ILISP Commands........................cooiiin.... 19
4.1 Eval and compile functions........... ... i i 19
4.2 Documentation functions.............. ... i 21
4.3 MacCroeXPanSION . . o vttt ettt e e e 22
4.4 Tracing functions.o 22
4.5 Package Commandst 22
4.6 Source Code Commands.vvirereniiiiiiiiiieeeeeannnnns 23
4.7 Batch commands............... i 24
4.8 Files and directories.ooouiiiiiii i 25
4.9 Switching between interactive and raw keyboard modes........... 26
4.10 Interrupts, aborts, and errors............cooiiiiiii i 26
4.11 Command historyo 27
412 Completion 28
413 Miscellanyo 28
5 ILISP Customization 31
6 Dialects........... 33

6.1 Defining new dialects. ... 33

ii The ILISP Inferior LISP Interface

6.2 Writing new commandsooeiieiiiieiiiiiiiaa.. 33
Concept Index........... ... i 35
Key Index i 39
Command Index 41
Variable Index........... 43

Function Index 45

