VM User’s Manual

First Edition, VM Version 4

June 1989

Kyle E. Jones
kyle@cs.odu.edu

Copyright (©) 1989 Kyle E. Jones

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Introduction

VM (View Mail) is an Emacs subsystem that allows UNIX mail to be read and disposed of
within Emacs. Commands exist to do the normal things expected of a mail user agent, such
as generating replies, saving messages to folders, deleting messages and so on. There are
other more advanced commands that do tasks like bursting and creating digests, message
forwarding, and organizing message presentation according to various criteria.

To invoke VM simply type M-x vm. VM gathers any mail that has arrived in your system
mailbox and appends it to a file known as your primary inbox, and visits that file for reading.
See Chapter 1 [Starting Up]|, page 3. A file visited for reading by VM is called the current
folder.

If there are any messages in the primary inbox, VM selects the first new or unread
message, and previews it. Previewing is VM’s way of showing you part of message and
allowing you to decide whether you want to read it. See Section 2.1 [Previewing], page 5.
By default VM shows you the message’s sender, recipient, subject and date headers. Typing
SPC (vm-scroll-forward) exposes the body of the message and marks the message as read.
Subsequent SPC’s scroll forward through the message, b scrolls backward. When you reach
the end of a message, typing a SPC or n moves you forward to preview the next message.

If you do not want to read a message that’s being previewed, just type n and VM will
move on to the next message (if there is one). See Chapter 2 [Selecting Messages|, page 4.

To save a message to a mail folder use s (vm-save-message). VM will prompt you for
the folder name in the minibuffer. See Chapter 4 [Saving Messages|, page 8.

Messages are deleted by typing d (vm-delete-message) while previewing or reading
them. The message is not deleted right away; it is simply marked for deletion. If you change
your mind about deleting a message just select it and type u (vm-undelete-message),
and the message will be undeleted. See Chapter 5 [Deleting Messages|, page 10. The
actual removal of deleted messages from the current folder is called expunging and it is
accomplished by typing # (vm-expunge-folder). The message is still present in the on-
disk version of the folder until the folder is saved.

Typing h (vm-summarize) causes VM to pop up a window containing a summary of
contents of the current folder. The summary is presented one line per message, by message
number, listing each message’s author, date sent, line and byte count, and subject. Also
various letters appear beside the message number to indicate that a message is new, unread,
marked for deletion, etc. An arrow ‘->’ appears to the left of the line summarizing the
current message. The summary format is user configurable, see Chapter 9 [Summaries],
page 14.

When you are finished reading mail the current folder must be saved, so that the next
time the folder is visited VM will know which messages have been already read, replied
to and so on. Typing S (vm-save-folder) expunges all deleted messages and saves the
folder. C-x C-s saves the folder without expunging deleted messages but the messages are
still marked deleted. The next time the folder is visited these messages will still be marked
for deletion.

To quit VM you can type g (vm-quit) or x (vm-quit-no-change). Typing q expunges
and saves the current folder before quitting. Also, any messages marked new are changed
to be marked unread, before saving. The x command quits VM without expunging, saving

Introduction 2

or otherwise modifying the current folder. Quitting is not required; you can simply switch
to another Emacs buffer when you’ve finished reading mail.

At any time while reading mail in the primary inbox you can type g (vm-get-new-mail)
to check to see if new mail has arrived. If new mail has arrived it will be merged into the
primary inbox. If you are not in the middle of another message, VM will also jump to the
first new message.

1 Starting Up

There are two ways to start VM: M-x vm and M-x vm-visit-folder.

M-x vm causes VM to gather any mail present in your system mailbox and append it to
a file known as your primary inbox, creating this file if necessary. The default name of this
file is “/INBOX, but VM will use whatever file is named by the variable vm-primary-inbox.

VM transfers the mail from the system mailbox to the primary inbox via a temporary
file known as the crash box. The variable vm-crash-box names the crash box file. VM
first copies the mail to the crash box, deletes the system mailbox, merges the crash box
contents into the primary inbox, and then deletes the crash box. If the system or Emacs
should crash in the midst of this transfer, any message not present in the primary inbox
will be either in the system mailbox or the crash box. Some messages may be duplicated
but no mail will be lost.

If the file named by vm-crash-box already exists when VM is started up, VM will merge
that with the primary inbox before getting any new messages from the system mailbox.

By default, the location of the system mailbox is determined heuristically by VM based
on what type of system you’re using. VM can be told explicitly where the system mailbox is
through the variable vm-spool-files. The value of this variable should be a list of strings
naming files VM should try when searching for newly arrived mail. Multiple mailboxes can
be specified if you receive mail in more than one place.

M-x vm-visit-folder (v from within VM) allows you to visit some other mail folder
than the primary inbox. The folder name will be prompted for in the minibuffer.

Once VM has read the folder, the first new or unread message will be selected. If there
is no such message, the first message in the folder is selected.

The variable vm-startup-with-summary controls whether VM automatically displays a
summary of the folder’s contents at startup. A value of nil gives no summary; a value of t
gives a full screen summary. A value that is neither t nor nil splits the screen between the
summary and the folder display. The latter only works if the variable pop-up-windows’s
value is non-nil, and the value of vm-mutable-windows is non-nil. The default value of
vm-startup-with-summary is nil.

The variable vm-mail-window-percentage tells VM what percentage of the screen
should be given to the folder display when both it and the folder summary are being
displayed. Note that Emacs enforces a minimum window size limit, so a very high or very
low value for this variable may squeeze out one of the displays entirely. This variable’s
default value is 75, which works with Emacs’ default minimum window size limit, on a 24
line terminal. Note that the value of vm-mutable-windows must be t or VM will not do
window resizing regardless of the value of vm-mail-window-percentage.

A non-nil value for the variable vm-inhibit-startup-message disables the display of
the VM’s copyright, copying and warranty disclaimer. If you must, set this variable in your
own .emacs file; don’t set it globally for everyone. Users should be told their rights. The
startup messages abort at the first keystroke after startup, so they do not impede mail
reading.

2 Selecting Messages

The primary commands for selecting messages in VM are n (vm-next-message) and p (vm-
previous-message). These commands move forward and backward through the current
folder. When they go beyond the end or beginning of the folder they wrap to the beginning
and end respectively. By default these commands skip messages marked for deletion. This
behavior can be disabled by setting the value of the variable vm-skip-deleted-messages
to nil. These commands can also be made to skip messages that have been read; set vm-
skip-read-messages to t to do this. If all the messages in the current folder would be
skipped (i.e all are read and/or deleted), n and p simply move to the next message.

The commands n and p also take prefix arguments that specify the number of messages
to move forward or backward. If the magnitude of the prefix argument is greater than 1, no
message skipping will be done regardless of the settings of the previously mentioned skip
control variables.

The variable vm-circular-folders determines whether VM folders will be considered
circular by various commands. Circular means VM will wrap from the end of the folder to
the start and vice versa when moving the message pointer, deleting, undeleting or saving
messages before or after the current message.

A value of t causes all VM commands to consider folders circular. A value of nil causes
all of VM commands to signal an error if the start or end of the folder would have to be
passed to complete the command. For movement commands, this occurs after the message
pointer has been moved as far it can go. For other commands the error occurs before any
part of the command has been executed, i.e. no moves, saves, etc. will be done unless they
can be done in their entirety. A value other than nil or t causes only VM’s movement
commands to consider folders circular. Saves, deletes and undeletes will behave as if the
value is nil. The default value of vm-circular-folders is O.

Other commands to select messages:

RET (vm-goto-message)
Go to message number n. n is the prefix argument, if provided, otherwise it is
prompted for in the minibuffer.

TAB (vm-goto-message-last-seen)
Go to message last previewed or read.

N (vm-Next-message)

P (vm-Previous-message)
Go to the next (previous) message, ignoring the settings of the skip control
variables.

M-n (vm-next-unread-message)

M-p (vm-previous-unread-message)
Move forward (backward) to the nearest new or unread message. If no such
message exists then these commands work like n and p.

M-s (vm-isearch-forward)
This works just like Emacs’ normal incremental search except that when the
search ends, VM selects the message containing point. If the value of the
variable vm-search-using-regexps is non-nil, a regular expression may be

Chapter 2: Selecting Messages 5

used instead of a fixed string for the search pattern. VM defaults to the fixed
string search. See Section “Incremental Search” in the GNU Emacs Manual.

Selecting a message within VM normally causes VM to preview it. See Section 2.1
[Previewing], page 5.

2.1 Previewing

Previewing is VM’s way of showing you a small portion of a message and allowing you to
decide whether you want to read it. Typing SPC exposes the body of the message.

By default the sender, recipient, subject and date headers are shown when previewing;
the rest of the message is hidden. This behavior may be augmented by the settings of two
variables: vm-visible-headers and vm-preview-lines.

The value of vm-preview-lines should be a number that tells VM how many lines of
the text of the message should be visible. The default value of this variable is 0. If vm-
preview-lines is nil, then previewing is not done at all; when a message is first presented
it is immediately exposed in its entirety and is marked as read.

The value of vm-visible-headers should be a list of regular expressions matching the
beginnings of headers that should be made visible when a message is presented. The regexps
should be listed in the preferred order of presentation for the headers they match.

Another variable of interest is vm-highlighted-header-regexp. The value of this vari-
able should be a single regular expression that matches the beginnings of any header
that should be presented in inverse video when previewing. For example, a value of
‘"“From\\ | “Subject"’ causes the From and Subject headers to be highlighted.

By default VM previews all messages, even if they have already been read. To have VM
preview only those messages that have not been read, set the value of vm-preview-read-
messages to nil.

3 Sending Messages

When sending messages from within VM, you will be using the standard Mail major mode
provided with GNU Emacs. See Section “Mail Mode” in the GNU Emacs Manual. However,
‘*mail*’ buffers created by VM have extra command keys:

C-c C-y Copies a message from the current folder into the ‘*mail#*’ buffer. The mes-
sage number is read from the minibuffer. By default each line of the copy is
prepended with the value of the variable vm-included-text-prefix. If a prefix
argument is given, this prepending is not done.

C-c¢ C-v <Any VM command key>
All VM commands may be accessed in the ‘*mail#’ buffer by prefixing them

with C-¢ C-v.

The simplest command is m (vm-mail) which sends a mail message much as M-x mail
does but allows the added commands described above.

3.1 Replying

VM has special commands that make it easy to reply to a message. When a reply command
is invoked VM fills in the subject and recipient headers for you, since it is apparent to whom
the message should be sent. You can change these headers manually if you wish.

VM also helps you quote material from a message to which you are replying by providing
included text as a feature of some of the commands. Included text is a copy of the message
being replied to with some fixed string prepended to each line so that included text can be
distinguished from the text of the reply. The variable vm-included-text-prefix specifies
what the prepended string will be.

The variable vm-included-text-attribution-format specifies the format for the at-
tribution of included text. This attribution is a line of text that tells who wrote the text
that is to be included; it will be inserted before the included text. If non-nil, the value
of vm-included-text-attribution-format should be a string format specifiation similar
to vm-summary-format. See Chapter 9 [Summaries|, page 14. A nil value causes the
attribution to be omitted.

The variable vm-in-reply-to-format specifies the format of the In-Reply-To header
that is inserted into header section of the reply buffer. Like vm-included-text-
attribution-format, vm-in-reply-to-format should be a string similar to that of
vm-summary-format. A nil value causes the In-Reply-To header to be omitted.

The recipient headers generated for reply messages are normally made by simply copy-
ing the appropriate headers for the message to which you are replying. This includes
any full name information, comments, etc. in these headers. If the variable vm-strip-
reply-headers is non-nil, the reply headers will stripped of all information but the actual
addresses.

The reply commands are:

r (vm-reply)
Replies to the author of the current message.

Chapter 3: Sending Messages 7

R (vm-reply-include-text)
Replies to the author of the current message and provides included text.

f (vm-followup)
Replies to the all recipients of the current message.

F (vm-followup-include-text)
Replies to the all recipients of the current message and provides included text.

All the reply commands mark the message to which you are responding as “replied”
when the reply is actually sent.

3.2 Forwarding Messages

VM has two commands to forward messages: z (vm-forward-message) and @ (vm-send-
digest).

Typing z puts you into a ‘*mail*’ buffer just like m, except the current message appears
as the body of the message in the ‘*mail*’ buffer. The forwarded message is surrounded
by RFC 934 complaint message delimiters. If the variable vm-rfc934-forwarding is non-
nil "~-" to "- -" character stuffing is done to the forwarded message (this is the default).
This behavior is required if the recipient of the forwarded message wants to use a RFC 934
standard bursting agent to access the message. If the variable vm-forwarding-subject-
format is non-nil it should specify the format of the Subject header of the forwarded
message. This subject will be used as the contents of the Subject header automatically
inserted into the ‘*mail*’ buffer. A nil value causes the Subject header to be left blank.The
command @ (vm-send-digest) works like z except that a digest of all the messages in the
current folder is made and inserted into the ‘*mailx’ buffer.

4 Saving Messages

Mail messages are normally saved to files that contain only mail messages. Such files are
called folders.

The VM command to save a message to a folder is s (vm-save-message); invoking this
command causes the current message to be saved to a folder whose name you specify in
the minibuffer. If vm-save-message is given a prefix argument n, the current message plus
the next n-1 message are saved. If n is negative, the current message and the previous n-1
messages are saved. Messages saved with vm-save-message are marked “filed”.

If the value of the variable vm-confirm-new-folders is non-nil, VM will ask for con-
firmation before creating a new folder on interactive saves.

If you have a directory where you keep all your mail folders, you should set the variable
vm-folder-directory to point to it. If this variable is set, vm-save-message will insert
this directory name into the minibuffer before prompting you for a folder name; this will
save you some typing.

Another aid to selecting folders in which to save mail is the variable vm-auto-folder-
alist. The value of this variable should be a list of the form,

((header-name
(regexp . folder-name) ...)

»

where header-name and regexp are strings, and folder-name is a string or an s-expression
that evaluates to a string.

If any part of the contents of the message header named by header-name is matched
by the regular expression regexp, VM will evaluate the corresponding folder-name and
use the result as the default when prompting for a folder to save the message in. If the
resulting folder name is a relative pathname it resolves to the directory named by vm-
folder-directory, or the default-directory of the currently visited folder if vm-folder-
directory is nil.

When folder-name is evaluated, the current buffer will contain only the contents of the
header named by header-name. It is safe to modify this buffer. You can use the match data
from any ‘\(... \)’ grouping constructs in regexp along with the function buffer-substring
to build a folder name based on the header information.

All vm-auto-folder-alist matching is case sensitive.

VM can save messages to a folder in two distinct ways. The message can be appended
directly to the folder on disk, or the folder can be visited as Emacs would visit any other file
and the message be appended to that buffer. In the latter method you must save the buffer
yourself to change the on-disk copy of the folder. The variable vm-visit-when-saving
controls which method is used. A nil value (the default) causes VM to append directly to
the folder file, a non-nil value makes VM load the file into a buffer and append to that.

After a message is saved to a folder, the usual thing to do next is to delete it. If the
variable vm-delete-after-saving is non-nil VM will mark messages for deletion auto-
matically after saving them. This applies only to saves to folders, not for the w command
(see below).

Chapter 4: Saving Messages 9

Other commands:

w (vm-save-message-sans-headers)
Saves a message or messages to a file without their headers. This command

responds to a prefix argument exactly as vm-save-message does. Messages
saved this way are not marked as filed, as “filed” is meant to mean saved to a
folder. You should not use this command to save to mail folders.

A (vm-auto-archive-messages)
Save all unfiled messages that auto-match a folder via vm-auto-folder-alist

to their appropriate folders.

| (vm-pipe-message-to-command)
Runs a shell command with the some or all of the current message as input.
By default the entire message is used.

If invoked with one C-u the text portion of the message is used.
If invoked with two C-u’s the header portion of the message is used.

If the shell command generates any output, it is displayed in a ‘*Shell Command
Output*’ buffer. The message is not altered or marked as filed.

10

5 Deleting Messages

In VM messages are marked for deletion, and then are subsequently expunged or removed
from the folder. The messages are not removed from the on-disk copy of the folder until
the folder is saved.

d (vm-delete-message)
Marks the current message for deletion. A prefix argument n causes the current
message and the next n-1 messages to be marked. A negative n causes the
current message and the previous n-1 messages to be marked.

u (vm-undelete-message)
Removes the deletion mark from the current message. A prefix argument n
causes the current message and the next n-1 messages to be unmarked. A
negative n causes the current message and the previous n-1 messages to be
unmarked.

k (vm-kill-subject)
Marks all message with the same subject as the current message (ignoring
“Re:”) for deletion.

(vm-expunge-folder)
Does the actual removal of messages marked for deletion in the current folder.

Setting the variable vm-move-after-deleting non-nil causes VM to move past the
messages after marking them for deletion.

11

6 Undoing

VM provides a special form of undo which allows message attribute changes to be undone.

Typing C-x u or C-_ (vm-undo) undoes the last attribute change. Consecutive vm-
undo’s undo further and further back. Any intervening command breaks the undo chain,
after which the undos themselves become undoable by subsequent invocations of vm-undo.

Note that expunges and saves are not undoable.

12

7 Grouping Messages

In order to make numerous related messages easier to cope with, VM provides the command
G (vm-group-messages), which groups all message in a folder according to some criterion.
Grouping causes messages that are related in some way to be presented consecutively. The
actual order of the folder is not altered; the messages are simply numbered and presented
differently. Grouping should not be confused with sorting; grouping only moves messages
that occur later in the folder backward to “clump” with other related messages.

The grouping criteria currently supported are:
‘subject’ Messages with the same subject (ignoring “Re:” prefixes) are grouped together.
‘author’ Messages with the same author are grouped together.

‘date-sent’
Messages sent on the same day are grouped together.

‘arrival-time’
Message presentation reverts to arrival time ordering (the default).
If the variable vm-group-by has a non-nil value it specifies the default grouping that

will be used for all folders. So if you like having your mail presented to you grouped by
subject, then put (setq vm-group-by "subject") in your .emacs file to get this behavior.

13

8 Reading Digests

A digest is one or more mail messages encapsulated in a single message.

VM supports digests by providing a command to “burst” them into their individual
messages. These messages can then be handled like any other messages under VM.

The command * (vm-burst-digest) bursts a digest into its individual messages and
appends them to current folder. These messages are then assimilated into the current folder
using the default grouping. See Chapter 7 [Grouping Messages], page 12. The original digest
message is not altered, and the messages extracted from it are not part of the on-disk copy
of the folder until a save is done.

14

9 Summaries

Typing h (vm-summarize) causes VM to display a summary of contents of the current
folder. An arrow ‘=>’ appears to the left of the line summarizing the current message. The
information in the summary is automatically updated as changes are made to the current
folder.

The variable vm-summary-format controls the format of each message’s summary. Its
value should be a string. This string should contain printf-like “%” conversion specifiers
which substitute information about the message into the final summary.

Recognized specifiers are:

a - attribute indicators (always three characters wide)
The first char is ‘D’, ‘N’, ‘U’ or * ’ for deleted, new, unread
and read message respectively.
The second char is ‘F’ for filed (saved) messages.
The third char is ‘R’ if the message has been replied to.
¢ - number of characters in message (ignoring headers)
d - date of month message sent
f - author’s address
F - author’s full name (same as f if full name not found)
h - hour message sent
i - message 1D
1 - number of lines in message (ignoring headers)
m - month message sent
n - message number
s - message subject
w - day of the week message sent
y - year message sent
z - timezone of date when the message was sent

Use “%%” to get a single “%”.

A numeric field width may be specified between the “%” and the specifier; this causes
right justification of the substituted string. A negative field width causes left justification.
The field width may be followed by a “.” and a number specifying the maximum allowed
length of the substituted string. If the string is longer than this value, it is truncated.

The summary format need not be one line per message but it must end with a newline,
otherwise the message pointer will not be displayed correctly in the summary window.

You can have a summary generated automatically at startup, see Chapter 1 [Starting
Up], page 3.

All VM commands are available in the summary buffer just as they are in the folder
buffer itself. If you set vm-follow-summary-cursor non-nil, VM will select the message
under the cursor in the summary window before executing commands that operate on the
current message. Note that this occurs only when executing a command from the summary
buffer window.

15

10 Miscellaneous

Here are some VM customization variables that don’t really fit into the other chapters.

vm-berkeley-mail-compatibility
A non-nil value means to read and write BSD Mail(1) style Status: headers.
This makes sense if you plan to use VM to read mail archives created by Mail.

vm-gargle-uucp
A non-nil value means to use a crufty regular expression that does surprisingly
well at beautifying UUCP addresses that are substituted for %f as part of
summary and attribution formats.

vm-mode-hooks
A non-nil value should be a list of hook functions to run when a buffer enters
vm-mode. These hook functions should generally be used to set key bindings
and local variables. Mucking about in the folder buffer is certainly possible,
but it is not encouraged.

vm-folder-type
This variable specifies the type of mail folder VM should expect to read and
write. Nil means expect the UNIX style folders characterized by the “\n\nFrom
” message separators. The only other supported value for this variable is the
symbol mmdf which causes VM to use “~A~A~A~A\n” MMDF style leaders and
trailers.

vm-delete-empty-folders
A non-nil value for this variable causes VM to remove empty (zero length)
folder files after saving them.

vm-mutable-windows
This variable’s value controls VM’s window usage. A value of t gives VM free
run of the Emacs display; it will commandeer the entire screen for its purposes.
A value of nil restricts VM’s window usage to the window from which it was
invoked. VM will not create, delete, or use any other windows, nor will it resize
it’s own window. A value that is neither t nor nil allows VM to use other
windows, but it will not create new ones, or resize or delete the current ones.

16

Key Index

O < <

o
g ===

o
—

13

A

S <.

©

A Bl Uhs @i M

Key Index

17

Command Index

VI oot 3
vm-auto-archive-messages..................... 9
vm-burst-digestl 13
vm-delete-message............................ 10
vm-expunge-folder............................ 10
VI=F0L1OWUP . vttt 7
vm-followup-include-text..................... 7
vm-forward-message............ ..o, 7
vm-get-new-mail i 2
VI-GOtO-MESSAZE . ..o ottt 4
VI~ @rOUP—MESSAZES . .ottt vevveee i 12
vm-isearch-forward............................ 4
vm-kill-subjectl 10
vm-mail ... 6
VI-NeXt-MeSSAZEottt 4
VI-NeXt-MeSSAZE\ 4
vm-next-unread-message 4

vm-pipe-message-to-command................... 9

18

VI-Previous-meSSage.........oovviuiuuieeannnnn. 4
VM-Previous-meSsSage..........ooiiiiiiiiiannnn 4
vm-previous-unread-message................... 4
VI-qQUIt . 1
vm-quit-no-change................. 1
VI=TePly ..o 6
vm-reply-include-text, 6
vm-save-folder il 1
VII—SAVE—MESSAZE « it 8
vm-save-message-sans—headers 9
vm-scroll-backward................... 1
vm-scroll-forward..................... 1
vm-send-digestl 7
VI-SUMMArize.ooiuiiiiiiii 14
vm-undelete-message.......................... 10
VI-UNAO vttt 11
vm-visit-folder 3
VI-yanK-MeSSAZE ovtteeeiie i 6

Variable Index

vm-auto-folder-alist.......................... 8
vm-berkeley-mail-compatibility............. 15
vm-circular-folders........................... 4
vm-confirm-new-folders....................... 8
vm-crash-box.............. . i 3
vm-delete-after-saving....................... 8
vm-delete-empty-folders..................... 15
vm-folder-directory........................... 8
vm-folder-typel 15
vm-f0lloW-SUMMary—CULSOToouvuenn.nnnn 14
vm-forwarding-subject-format 7
VI—gargle—UucCP 15
VI-group-by........ ... 12
vm-highlighted-header-regexp................ 5
vm-in-reply-to-format 6
vm-included-text-attribution-format 6
vm-included-text-prefix...................... 6
vm-inhibit-startup-message................... 3

19

vm-mail-window-percentage.................... 3
vm-mode-hooks i 15
vm-move-after-deleting...................... 10
vm-mutable-windows..............l 15
vm-preview-lines..............l 5
vm-preview-read-messages..................... 5
vm-primary-inbox.............ol 3
vm-rfc934-forwarding........... ..., 7
vm-search-using-regexps...................... 4
vm-skip-deleted-messages..................... 4
vm-skip-read-messages 0. 4
vm-spool-filesl 3
vm-startup-with-summary...................... 3
vm-strip-reply-headers....................... [§
vm-summary-format............ol 14
vm-visible-headers............................ 5

vm-visit-when-saving............... 8

Short Contents

Introduction e 1
1 Starting Up ..o 3
2 Selecting MesSsages . ..ottt 4
3 Sending MesSages . . .« oottt 6
4 Saving Messageso v e 8
5 Deleting Messagest 10
6 Undoing........couiiiii i e 11
7 Grouping Messageso v vt e 12
8 Reading Digests 13
9 SUMMATIES .« o ettt e e 14
10 Miscellaneouso vt e e 15
Key Indexo e 16
Command Index 18

Variable Indexo 19

Table of Contents

Introduction 1
1 Starting Up........... 3
2 Selecting Messages..............ooiiiiiiiiinn.... 4

2.1 PIeVIEWINE . ..ottt et 5
3 Sending Messages.............cccoviiieeeeiiinnnn. 6

3.1 REPIYINE . o oottt 6

3.2 Forwarding MeSSAZES « - .« v vnneene e 7
4 Saving Messagesc.ouuiiiiiiiiiinnnnn.. 8
5 Deleting Messages..................cooiiiiinn, 10
6 Undoing........ 11
7 Grouping Messages.................ccooiiinnn... 12
8 Reading Digests 13
9 Summaries................. 14
10 Miscellaneous. ..., 15
Key Index i, 16
Command Index 18

Variable Index.......... 19

ii

	Introduction
	1 Starting Up
	2 Selecting Messages
	Previewing

	3 Sending Messages
	Replying
	Forwarding Messages

	4 Saving Messages
	5 Deleting Messages
	6 Undoing
	7 Grouping Messages
	8 Reading Digests
	9 Summaries
	10 Miscellaneous
	Key Index
	Command Index
	Variable Index

