EDB Manual

An Emacs Database

by Michael Ernst

Copyright (©) 1991-1993 by Michael Ernst <mernst@theory.lcs.mit.edu>

This documentation describes version 1.17 of EDB, dated June 14, 1993. The documenta-
tion was last modified on Jun 14 1993.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

1 Introduction

EDB is a database program for GNU Emacs. It permits users to manipulate structured (or
not-so-structured) data within Emacs and provides many of the usual database features,
including:
e Flexible, customizable file layouts. Data may contain any character, including those
used to delimit fields and records. Files read and written by the database may have
arbitrary formats.

e Typed fields (e.g. integer, date, string); fields may also be subject to additional con-
straints (prime number, date before today, string that appears in some other record,
etc.).

e Arbitrary data display formats for viewing records. Multiple display formats can be
open on a database simultaneously, viewing the same or different records. The data
display format can be automatically chosen based on the record’s field values.

e Selective display of only those records of interest; others become temporarily user-
invisible.

e Standard GNU Emacs editing commands, which work only within data fields and not
on the surrounding text.

e Database summaries, which show in a single buffer one or more lines of information
about each record.

e Sorting, with an easy-to-use a graphical interface for defining the sorting criteria; most
sorting orders you would care about are easy to specify, but arbitrary ones are also
permitted.

e Merging and reconciliation of databases.

e Reports generated from database information.

e Highly customizable via the underlying programming language, Emacs Lisp; many
hooks and useful variables are provided to make this even easier.

e Documented by an 80-page manual.

EDB is more ambitious—and therefore more complex—than its forerunners (such as
Forms Mode by Johan Vromans <jv@mbh.nl>). While other packages don’t provide as much
functionality as EDB, they may be more appropriate for simple needs.

1.1 Organization of this manual

This manual contains two major parts. The first part describes how to use EDB to manip-
ulate an existing database, and the second part describes how to design a new database.

The first part—which could be called the EDB User Manual—first presents basic com-
mands such as starting up the database, adding, deleting, and modifying records, and
searching; then it describes features for the more advanced user, such as sorting, displaying
record summaries, marking or ignoring certain records, and producing reports.

The second part—which could be called the EDB Database Designer Manual—describes
the three forms that database information can take: when being manipulated by EDB, when
stored on disk, and when displayed on the screen. Separate chapters discuss specifying each
of these representations. The manual then goes on to discuss customization hooks and

Chapter 1: Introduction 2

explains some of the lower-level implementation details that an advanced designer may
need to know.

1.2 Invoking EDB

You need three files to run EDB: a data file, a format file, and an auxiliary file. The data file
(usual suffix .dat) contains the information that makes up the database. The format file
(usual suffix .fmt) specifies how the fields of a particular record appear in the data display
buffer, where the user may view or edit one record at a time. The auxiliary file (usual suffix
.dba) contains additional information about the database, such as the number of fields in
each record, the layout of the data file (including what characters or strings serve as field
and record separators), customizations, etc. A fourth type of file is the report format file,
which is a format file used in generating reports printed on the screen, to a file, or to a
printer; see Chapter 10 [Reports], page 28.

For examples of data, format, and auxiliary files, a description of how to create your
own, and pointers to even more information, see Section 12.1 [Creating a new database],
page 32, or see the examples provided with EDB (see Chapter 2 [Installation], page 5).

You can combine the format and auxiliary files (by placing the additional information at
the end of the format file, in the “Local variables” section), but it is simpler to consider the
two files separately. There may be many different ways to lay out a record on the screen,
so a database could have many different format files; for the time being we will concentrate
on the format file which is used first, which is called the primary format file, even though
it might not be the one that is used most often.

When invoking the database, you typically only need to name the data file; the names
of the others will be inferred from its name (see Section 16.1 [Auxiliary files|, page 59) or
may be mentioned explicitly by it. The db-find-file command starts up the database:

M-x db-find-file

Read a database from database-file; prompts when called interactively. If the
database file doesn’t specify a format and the format file can’t be inferred from
database-file, the user is prompted for it too. The user is always prompted
for the format if prefix arg prompt-for-format is non-nil. If the database is
already read in and prompt-for-format is nil, the existing database buffer is
merely selected. When called non-interactively, argument prompt-for-format
may be a string, the name of a format file to use.

You can also arrange that find-file automatically invokes EDB when called on a
database file; see Chapter 2 [Installation], page 5, for details.

The usual save-file and write-file keystrokes are rebound in all database modes.

C-x C-s (db-save-database) Save the database to disk in the default save file. Any
changes to the current record are processed first. The default save file is the
file it was last saved to or read from. If optional arg query is specified, the user
is asked first. Optional second arg quietly suppresses messages regarding the
filename.

C-x C-w (db-write-database-file) Save the database to disk in file filename; it be-
comes the default save file. Any changes to the current record are processed

Chapter 1: Introduction 3

first. If filename is not specified, the user is prompted for it. Optional second
arg quietly suppresses messages regarding the filename.

1.3 Example EDB session

This section describes some of the most frequently used EDB commands. All of the com-
mands used here are more fully documented elsewhere in the manual. For a very brief
introduction to database mode, its submodes (view mode and edit mode), the data display
buffer, EDB concepts, and more, see Chapter 3 [Database mode], page 12.

M-x db-find-file RET forms-demoZ2.dat RET

TAB
C-n

Load the database. After calling db-find-file, you may be asked for the
name of the format file if EDB can’t infer it from the name or contents of the
data file. See Section 1.2 [Invoking EDBJ, page 2. When the database finishes
loading, the data display buffer is visible and EDB is in database view mode
(see Chapter 4 [Database view mode], page 14).

Go to the next or previous record (see Section 4.1 [Moving around in the data-
base], page 14). The data display buffer is in view mode, which is read-only
and does not permit editing (see Chapter 4 [Database view mode], page 14).

Go to the first field and switch to database edit mode. See Section 4.2 [Changing
to edit mode|, page 14, and Chapter 5 [Database edit mode], page 17. Once you
are on a field, printing characters insert themselves and the other usual editing
commands will work as well. TAB moves to the next field, and C-n moves to a
field on the next line (or to the next line of this field, if it spans multiple lines).
See Section 5.4 [Moving from field to field], page 18, and Section 5.5 [Movement
within a field], page 18.

Like TAB and C-n, but move backward by fields or lines.
Search for a value in the current field. See Chapter 6 [Searching], page 19.

Return to view mode.

See a summary of all the records of the database; h stands for “headers” and
D stands for “Directory”. See Chapter 8 [Summary mode], page 24. You can
move around in the summary buffer using ordinary movement commands, and
the record under point will be displayed in the data display buffer. Use v or e
to return to the data display buffer; v puts you in view mode and e puts you
in edit mode.

M-x db-sort RET

Invoke the database sort interface, which permits easy specification of how
records should be sorted, and then perform the sort. Type C-hm or ? for
help while in the database sort interface (or anywhere in EDB). See Chapter 7
[Sorting], page 21.

Chapter 1: Introduction 4

C-x C-s Save to disk any changes you have made to the database.

C-h m Display a list of commands. This command works in all Emacs modes (and in
paricular, in all EDB modes).

x Quit EDB. q just buries the buffer; x also offers to save if changes have been
made.

EDB provides many more commands than these; see this manual’s table of contents or
index (see [Concept Index], page 81) to find the topic that interests you.

1.4 Terminology

A database is a collection of records, each of which is comprised of fields. A record’s fields
are usually all related to some central object or concept; for instance, they might describe
various information about a particular person such as name, address, and phone number.
All records of a database have the same structure (they contain the same fields), though
typically different records will have different information in the fields.

EDB permits database records to be viewed, edited, and manipulated in a structured
way.

2 Installation

FTP the files from theory.lcs.mit.edu:/pub/emacs/edb/; the package is in a single com-
pressed tar file edb.tar.Z, and the individual files can also be obtained from the code
subdirectory. Install the files in your Emacs load path (probably in a directory of their
own). You can add a directory to your Emacs lisp load path by putting something similar
to the following in your .emacs file:

(setq load-path (cons (expand-file-name "~/emacs/edb") load-path))
Finally, cause EDB to be autoloaded by putting the following in your .emacs file:

(autoload 'db-find-file "database" "EDB database package" t)
(autoload 'load-database "database" "EDB database package" t)
(autoload 'byte-compile-database "database" "EDB database package" t)

Now, when you start up Emacs, you will already be able to execute db-find-file;
EDB will be loaded automatically. (You may also wish to autoload function edb-update;
see Section 2.1 [EDB is in beta test], page 6.) See below if you wish to byte-compile the
EDB sources.

Here is one way to arrange to automatically run EDB when you read a database file via
the usual find-file command (ordinarily bound to C-x C-f), whether or not you choose
to autoload EDB. This only works on databases which have been stored in EDB internal
file layout (see Section 14.1 [Internal file layout|, page 40).

(setq find-file-hooks (cons 'after-find-file-edb find-file-hooks))
(defun after-find-file-edb ()
"If this is a database file in EDB internal file layout, run EDB."
;; When this is called, we are at the beginning of the buffer.
(if (looking-at ";; Database file written by EDB")
(progn
(require 'database)
(db-this-buffer)
;3 db—this-buffer kills the current buffer; and an error results
;; when Emacs tries to switch back to it. find-file—noselect
;; uses the buf variable to hold the new buffer.
(setq buf (buffer-name (current-buffer))))))

Naturally, running EDB will do you little good without a database to manipulate;
for information about creating a new database or using an existing one (EDB can
handle nearly any file layout imaginable and many that aren’t), see Chapter 12
[Designing a database], page 32. You may also want to use existing databases as
guides, or to help familiarize yourself with EDB. A number of examples can be
found in the compressed tar file examples.tar.Z or in the examples/ subdirectory
of theory.lcs.mit.edu:/pub/emacs/edb/ (the two locations contain the same
examples). You can test out function after-find-file-edb by performing find-file on
forms-demo2-int.dat.

It is strongly recommended that you run EDB byte-compiled, as otherwise it is very
sluggish. To byte-compile EDB, type M-x byte-compile-database RET. (You may need
to load EDB first, by typing M-x load-library RET database RET or M-x load-file RET
database.el RET, in order to define this function.) If you perform the byte-compilation

Chapter 2: Installation 6

yourself rather than using the byte-compile-database function, you must fully load the
code before compiling it, by typing C-u M-x load-database RET. For more details, See
Section 2.2.4 [Compiling EDBJ, page 8.

The texinfo documentation must be processed using release 2 of texinfo (which
is available via anonymous ftp from prep.ai.mit.edu, directory pub/gnu), but the
resulting Info files can be read using any Info reader. If you don’t have texinfo
version 2, you can get the EDB documentation pre-processed in info format from
theory.lcs.mit.edu:/pub/emacs/edb/, files database.info and database.info-
[123456] (seven files in all). Similarly, that directory contains ready-to-print versions of
the manual (file database.dvi or database.ps).

2.1 EDB is in beta test

EDB is a project I undertook because the existing tools for manipulating structured in-
formation in Emacs were lacking features I considered important. EDB now meets my
needs—and those of a number of other users—but it still contains some important lacunae.
I will fill these in as I can. I encourage users of EDB to mention which ones are most im-
portant to them, so that I can decide in what order to undertake the many projects on my
“to do” list. I encourage you even more strongly to contribute code for features currently
lacking—then you’ll be sure of its inclusion in EDB, and you’ll be helping others as well.

EDB has been in use since the summer of 1991, but it has not been exhaustively and
systematically tested, so it may still contain bugs. Please send me bug reports and (if
possible) bug fixes, and I'll correct the problems in the next release.

The mailing list edb-1list@theory.lcs.mit.edu is intended for discussions relating to
EDB: trading extensions, sharing experiences, asking questions, reporting bugs and bug
fixes, and distributing updates to EDB. Send requests to be added to (or removed from)
the list to edb-list-request@theory.lcs.mit.edu.

You can make it easy to install updates of EDB by putting something like the following
in your .emacs file:

(setq edb-directory "~/emacs/edb")
(autoload 'edb-update "database" "EDB database package" t)

Then, when you receive a message containing diffs for a new version of EDB, you only
have to type M-x edb-update RET in order to install them.

M-x edb-update

Install the EDB update found in the current buffer after point. EDB is assumed
to be in the directory specified by edb-directory. If you have trouble with
this command, it is likely that your version of EDB is not exactly the same as
the last release. You might have an old release, or you might have a pre-release.
(When users request features or report bugs, I sometimes place a pre-release
of the next version of EDB on theory.lcs.mit.edu so that their problems are
corrected right away.)

edb-directory
A string, the name of the directory containing the EDB source files.

If edb-directory is not set, the user is prompted for the location of the files,
which should all be in a single directory.

Chapter 2: Installation 7

These diffs are also available by anonymous ftp from theory.lcs.mit.edu:/pub/emacs/edb/diffs/ ||

The filenames are of the form edb-diff-oldversion-newversion.Z, and the files are
compressed patch files. To apply such a patch, uncompress it, connect to your EDB
directory, and run the patch program with the diff file as input, like so: ‘patch <
edb-diff-1.14-1.15’. Don’t forget to load EDB and byte-recompile your EDB source
directory\n" (use M-x byte-compile-database RET) if you run EDB compiled. If you
have been running a prerelease of this version, you must get the entire distribution from
theory.lcs.mit.edu.

2.2 In case of trouble

2.2.1 Data display buffer

In the data display buffer, if point is not where EDB expects it to be, or if other information
gets out of synch, you may get an error message about a string not being found in the buffer
where it was expected. (In order to prevent this sort of confusion, the user is prohibited
from aborting when a record is being displayed in the database format buffer; this is done
by setting inhibit-quit to t, if db-debug-p is non-nil.)

When it looks like point is not in the field it should be in or the text surrounding the fields
has been illegally modified, EDB automatically calls the following function and displays the
message “I was confused about where I was. Changes to the field might have been lost.”
(This error message is produced by function db-parse-buffer-error.) In the unlikely
event that the data display buffer does get confused and is not automatically corrected, you
can call the function yourself.

M-x db—emergency-restore-format
Replace a format with a fresh one; use this if the format gets munged. Changes
made to the current field since last moving onto it may be lost. If optional prefix
arg recompute is non-nil, display-record recomputes the displayed text as
well.

2.2.2 Variables

You may find that in some cases the documentation strings and/or default values of some
variables are missing—as if the variables hadn’t been defined yet. That’s because they
aren’t defined yet; they are associated with part of EDB which hasn’t been loaded because
it hasn’t been needed yet. The documentation and default values will appear when that
part of EDB is loaded (if you set such variables, your values will not be replaced). Such
variables are correctly declared buffer-local (if appropriate), so you can set them without
fear of the changes affecting other buffers.

2.2.3 Exiting Emacs or saving files

If you find you are unable to exit Emacs or to execute mde-save-some-buffers (which
replaced save-some-buffers, which is ordinarily bound to C-x s) because Emacs is trying
to manipulate a database which doesn’t exist or because an EDB bug is triggered by the
attempt to save an existing database, you can set the variable db-databases to nil. This
indicates to EDB that there are no databases read into memory and, therefore, no operations
will be attempted on them as a part of saving all modified Emacs buffers.

Chapter 2: Installation 8

db-databases
Assoc list of database names and databases.

2.2.4 Compiling EDB

2.2.4.1 Expected compilation errors

When EDB is compiled with Jamie Zawinski’s optimizing byte-compiler, (available from
the GNU Emacs Lisp Code Archive at archive.cis.ohio-state.edu), several errors will
be signalled. The following are expected errors which result from insufficiently fine control
of the (otherwise outstanding) byte-compiler’s error output.

e Functions with-electric-help and x-flush-mouse-queue are not known to be de-
fined. EDB supports electric-help and X Windows when they are present, but they
may not be in many environments. No run-time error will be raised by the absence of
these features.

e Function link-set-record is defined as both af unction and a macro. This function
is automatically defined when the link structure is defined, but EDB needs a different
definition for the function than the one provided by the link structure creator.

2.2.4.2 Load EDB before compiling it

You must always fully load EDB before attempting to byte-compile it. The easiest way to
ensure this is to compile EDB by using function byte-compile-database, which automat-
ically fully loads EDB.

Otherwise, do C-u M-x load-database RET to load a full uncompiled version of EDB
before you compile. You may need to load EDB before doing this (in order to define the
load-database function), but do not omit this step even if you have already loaded EDB.
It is not enough to simply do ‘(require 'database)’ or call db-find-file, since neither
of those actions loads all of EDB, only parts of it.

There are two reasons for loading the code before compiling it. The first is that, when
the byte-compiler encounters an unknown symbol used in function position, it assumes that
it is a function and attempts to funcall it. If the symbol is later defined to be a macro,
this leads to a runtime error. The second reason is that, if the variable db-disable-
debugging-support is non-nil (most users will want to use the default value, which is t)
when compilation occurs, then code for assisting debugging will be compiled out and the
code will be slightly smaller and faster, because it will not contain conditional code for
printing status reports and intermediate results.

One symptom of compiling EDB without having loaded it is a message along the lines of
‘Invalid function: (macro ...)’. (EDB’s implementation uses macros for efficiency, so
problems result if, when compiling, an unknown symbol is assumed to be a function but is
actually later defined as a macro.) Another symptom is that variables defined in autoloaded
files will be reported as “not known to be defined.” A problem with compiling EDB when
an old version is loaded is that, if macro definitions have changed, the old definitions will
be compiled into the new code.

M-x load-database
Load all the files of EDB, the Emacs database. With prefix arg, load source, not
compiled, code; EDB will run interpreted. This function is a good candidate
for autoloading.

Chapter 2: Installation 9

M-x byte-compile—-database
Compile source (.el) files in EDB, the Emacs database, which need it. If optional
prefix argument all is non-nil, every source file is recompiled.

M-x byte-compile-database-all
Compile all source (.el) files in EDB, the Emacs database, unconditionally.
Calls byte-compile-database.

2.2.4.3 No insert-hook

EDB uses db-insert instead of insert. However, Emacs has a byte-code for insert,
so EDB’s redefinition may be ignored in compiled code. Emacs should really provide an
insert-hook variable; version 19 does (two of them, in fact).

2.2.5 Using the mouse

EDB redefines various text deletion and insertion commands to ensure that inter-field text
is not deleted, that indentation is correctly added and removed when appropriate, and so
forth. When cutting or pasting is done with the mouse, however, these function redefined
by EDB are bypassed and the data display buffer can be manipulated almost arbitrarily.
This can cause various problems; x-paste-text often raises errors or produces incorrect
results. There are no known problems with using the mouse to select fields and to move
around within fields.

Correcting this bug does not have high priority, but users are encouraged to help find a
solution or to provide a fix. One solution might be redefining the functions that are called
when mouse deletion or insertion occurs; it might also be possible to use insertion-hooks or
deletion-hooks, in versions of Emacs that provide them.

2.2.6 Long file names

EDB’s files were named to accommodate systems which limit filenames to 14 characters
or less; this is why the backtrace-fix package was renamed backtracef and other file
names (like db-interfa.el appear to be truncated. There is one remaining problem, how-
ever. When the Texinfo documentation is converted into an Info tree, files with names like
database.info-3 are created, but the Info files are (all) saved as database.info-. Users
with this problem can rename database.texi to edb.texi and modify the ‘setfilename’
in its third line to refer to edb. info; then the resulting files edb.info-1 through edb.info-
6 will be saved correctly. Some of the example files may also have names with more than
fourteen characters.

2.2.7 Debugging EDB

2.2.7.1 Enabling debugging messages

Two useful sources of information for locating a problem in EDB are backtraces and the
database log. If you encounter an EDB error, you should generate a backtrace and a
database log; even if they do not provide you any information, they may help others who
will see your bug report. Execute the following command and then repeat the commands
that caused an error previously.

Chapter 2: Installation 10

M-x db-prepare-to-debug
Prepare to debug EDB. Set variables debug-on-error, db-disable-
debugging-support, and db-debug-p. Also load wuncompiled EDB
source.

EDB’s source code contains calls to debugging macros which print useful messages and
save them in the ‘*Database-Log+’ buffer for later examination. By default, the calls to
these macros are removed at compile time; this results in slightly smaller, faster code. The
following variables control this behavior.

db-disable-debugging-support
If non-nil, then debugging calls will be compiled out of the source and the
variable db-debug-p will have no effect. Setting this variable at run-time has
no effect if you are running EDB compiled; you must set it when you compile
EDB, or run EDB interpreted. Defaults to t.

db-debug-p
T if database debugging is enabled. Defaults to nil. Has no effect on code
compiled with db-disable-debugging-support set.

2.2.7.2 Printing circular structures

EDB’s internal representation of the database structure is circular; if you try to print it,
Emacs will signal an error. This is a particular problem when debugging functions that
manipulate a database. EDB provides a partial fix by including the backtracef (originally
backtrace-fix; the name was changed to accommodate systems with 14-character maxi-
mum file name lengths) package, which at least lets backtrace operate in the presence of
circular structures; this can let you know where the specific problem lies.

A more complete fix is the custom-print package, which defines versions of the printing
commands which support printing circular structures. You will also need to use a debug-
ger which knows about these functions; Edebug version 2.7 or higher fits the bill and is
well worth using in its own right. Both custom-print and Edebug are available by anony-
mous ftp from the GNU Emacs Lisp Code Directory at archive.cis.ohio-state.edu,
which is rooted at the directory /pub/gnu/emacs/elisp-archive. The files of interest are
functions/custom-print.el.Z and packages/edebug.tar.Z.

After installing these packages (see their documentation for details), you can simply do
something like
(setq print-level 4)
to make circular structures easily debugable. Be sure to reset print-level and print-
length to nil before byte-compiling! (If you do not, the byte-compiled code may contain
a ‘#’ in place of some of the byte codes, resulting in the error message “Invalid read syntax:
"#"”) One way to do this is to put the following code in your .emacs file:
(setq pre-byte-compile-file-hook
(function (lambda ()
(setq print-level nil
print-length nil))))
(insert-hooks 'byte-compile-file 'pre-byte-compile-file-hook)
You can get Noah Friedman’s insert-hooks.el from the GNU Emacs Lisp Code Di-
rectory.

Chapter 2: Installation 11

2.2.8 Reporting bugs

If you have problems with EDB or think you’ve found a bug, please report it to Michael
Ernst; he doesn’t promise to do anything but he might well want to fix it. Questions about
EDB that are not answered in the manual are welcome as well; if the manual is unclear,
that’s a bug in the documentation. Suggestions for new features or modifications are always
welcome (and implementations of such features, even more so); input from users determines
which features are moved to the front of EDB’s “to-do” list and which ones users apparently
don’t care about. The edb-1ist mailing list (see Section 2.1 [EDB is in beta test], page 6)
is also a valuable resource for users of EDB.

Before reporting a bug or trying to fix it yourself, please perform the following steps.
First, make sure you are using the most recent version of EDB, since the problem may
have already been fixed. The most recent version of EDB can always be found in directory
theory.lcs.mit.edu:/pub/emacs/edb/; the file code/database.el contains the version
number, which is also apparent from the filenames of the contents of directory diffs/. You
can find out which version of EDB you have by looking in your version of database.el or
by typing C-h v edb-version RET.

Second, read the appropriate manual sections, so you understand how EDB ought to be
behaving (and whether your bug is considered a feature).

Third, try to isolate the problem (for instance, by using the smallest possible data,
format, and auxiliary files). If the problem causes an error (usually causing Emacs to beep
and display a message in the echo area), then run command db-prepare-to-debug and
then reproduce the error. This will produce a backtrace and a database log. For further
debugging techniques, see Section 2.2.7 [Debugging EDB], page 9.

Send a bug report which includes all of the following information.

A description of how to reproduce the bug and what you expected to occur.

e The version of EDB you are running (do M-x edb-version RET) and the version of
Emacs (do M-x emacs-version RET).

e All files necessary to reproduce the bug, including the database file, the format file,
and the auxiliary file, if any. I promise not to look at the content of your database
file or distribute it; if you feel uncomfortable sending it nonetheless, construct another
one that will result in the same error. Reproducing these files, when they are absent,
usually takes longer than tracking down the bug, so if they are not included, I cannot
promise to take any action on the bug.

e The backtrace and the database log (found in the *Backtrace* and *Database Logx
buffers).

12

3 Database mode

A single database record (typically the “current record”) is viewed in a data display buffer.!
The layout and formatting of the data display buffer—where and how the fields of the
current record are shown, and what fixed explanatory text surrounds them—is specified
by a data display format. Only the database fields can be edited; the explanatory text
is fixed. Creating a new data display format is described in Chapter 11 [Specifying the
display format], page 29. Creating a new data display buffer (with the same or a different
data display format) is described in Section 11.3 [Making additional data display buffers],
page 31. Viewing summary information about all database records at once is described in
Chapter 8 [Summary mode], page 24.

Database mode has two basic submodes, view mode (see Chapter 4 [Database view
mode], page 14) and edit mode (see Chapter 5 [Database edit mode], page 17). These
modes are used, respectively, when examining or manipulating records and when changing
information in a particular record. Keystrokes have different meanings in these two modes.
In view mode no editing may be done, and many printable characters are redefined to make
manipulation of the database easy (for instance, n moves to the next record). In edit mode
point is in a field of the current record which is being edited; most printable keys insert
themselves, and other editing and movement commands work in the ordinary way. In the
data display buffer, where database records are ordinarily viewed and edited, one of these
two modes is always in effect. (You may be tempted to directly edit a raw database file in
its on-disk layout. Do so only if you know what you are doing, and never change a database
buffer out of database mode.)

The mode line indicates which mode you are in. It looks something like:

-x*x*x-Database: machine-dbase (Edit Abbrev 42/431)---A11-——--—-——-——-

The mode line consists of three modification indicators, the word ‘Database:’ (which re-
minds you that you are in database mode), the name of the database file being manipulated,
minor mode information within parentheses, and the usual percentage-of-screen-visible in-
dicator. The minor mode information consists of the database submode (such as view, edit,
or summary), any other minor modes which are turned on (such as Abbrev Mode), the
number of the current record, and the total number of records in the database.

Ordinarily the Emacs mode line contains only one modification indicator consisting of
two dashes (not modified), asterisks (modified), or percent signs (read-only). The EDB
mode line contains three modification indicators, one each for the database, the displayed
record, and the current field. The field indicator is ‘*’ if the field under point has been
modified, ‘=’ if it has not, and ‘) if it is read-only or if no field is under point (for instance,
if the data display buffer is in database view mode rather than database edit mode).

The database is modified only when a changed record is written into it; changes to
the displayed record (also called the current record) do not immediately affect the database
proper. This permits such modifications to be conveniently undone. (See Section 4.3 [Undo-
ing all changes to a record|, page 15, and Section 4.4 [Making changes permanent], page 15.)
The upshot of this is that the current record may be modified without the database being
modified, since the database is considered modified only when the current record has been

! The data display buffer was previously called the format buffer; this is one reason that all of the variables
and functions relating to it start with the dbf- prefix.

Chapter 3: Database mode 13

processed and the resulting value placed in the database. A similar situation exists for
the current field and the displayed record. (See Section 5.2 [Undoing changes to a field],
page 17.)

Do not attempt to directly change the major mode of a database buffer; if a database
buffer is placed in another mode, the database functions will cease working (they refuse to
operate on non-database buffers, since the consequences of such action could be severe); for
instance, you may be unable to save any of your work due to errors raised in the execution of
save-some-buffers. Furthermore, EDB makes assumptions about where point is located
in view and edit modes; violating these can cause changes to the current record to be lost.

14

4 Database view mode

The data display buffer is in view mode whenever field information is not being edited.
Most commands to move from record to record and to manipulate records (sorting, printing
reports, showing summaries, etc.) are performed in view mode.

Basic operations are described here; more complicated ones, such as searching (see Chap-
ter 6 [Searching], page 19), are given sections of their own.

4.1 Moving around in the database

n (db-next-record) Go to the argth next record. In that record, go to the
current field, if any.

p (db-previous-record) Go to the argth previous record. In that record, go to
the current field, if any.

<

M-< (db-first-record) Show the database’s first record. With optional prefix
argument, ignores omitting.

>

M-> (db-last-record) Show the database’s last record. With optional prefix argu-
ment, ignores omitting.

j (db-jump-to-record) Show the database’s argth record. Omitting is ignored

unless optional argument respect-omitting is specified.

There are two special hybrid commands that show more of the current record if there’s
more to see and otherwise show the next (or previous) record.

SPC (db-next-screen-or-record) Go to the argth next screenful of this display,
or to the argth next record, if this is the last screenful of this display. If point
is in the summary buffer and the data display buffer is not visible, then move
to the next record.

DEL (db-previous-screen-or-record) Go to the argth previous screenful of this
display, or to the argth previous record, if this is the first screenful of this
display. If point is in the summary buffer and the data display buffer is not
visible, then move to the previous record.

4.2 Changing to edit mode

When in database view mode, you cannot edit the record being displayed without first
changing to database edit mode; this is done by moving to the field you wish to edit. You
can click the mouse on the field you wish to edit, or move to the first or last field (and from
there to the desired field) via the following keystrokes:

TAB
C-n
e (db-first-field) Move to first field.

C-p
M-TAB (db-last-field) Move to last field.

Chapter 4: Database view mode 15

4.3 Undoing all changes to a record

C-xu (db-revert-record) Set the record to be the same as the corresponding one
in the database. In other words, undo any changes made since entering this
record.

C-xr (db-revert-database) Replace the database with the data on disk. This un-

does all changes since the database was last saved.

You can also undo changes to only a particular field; see Section 5.2 [Undoing changes
to a field], page 17.

4.4 Making changes permanent

The user edits a copy of a database record; the database itself is not changed until the user
commits the changes. This occurs automatically whenever any command causes a different
record to be displayed, when the database is saved, when a report is generated, and so forth.
It does not occur when the user switches from edit mode to view mode, though the field
modification flag (in the mode line) will become a percent sign and the record modification
flag, an asterisk. When the record is committed, the record modification flag will become
a dash and the database modification flag will become an asterisk.

The user can manually install the current record, as modified, into the database. The
following two functions are identical:

RET (db-accept-record) Install the current record in the database; make any
changes permanent.

M-x db-commit-record
Install the current record in the database; make any changes permanent.

Committing a record makes the changes permanent only insofar as they become part of
the in-memory representation of the database. The on-disk version is not affected unless
the user overwrites it by using db-save-database or db-write-database (see Section 1.2
[Invoking EDB], page 2), or otherwise indicates that the database should be written to disk
(say, by responding to a question about saving the database).

4.5 Adding and removing records

i (db-add-record) Add a new record to the database immediately before the
current record.

c (db-copy-record) Insert a copy of the current record in the database immedi-
ately after it. The second of the two records is made the current record. With
a prefix arg, inserts that many copies.

o (db-output-record-to-db) Copy the current record to database. database
must be read in and compatible with the current database.

d

k (db-delete-record) Remove the current record from the database. With a

prefix arg, doesn’t verify.

Chapter 4: Database view mode 16

By default, deleting a record marks the database as modified. Set the following variable
to change this behavior.

db-delete-record-modifies-database-p
Non-nil if deleting a record should mark the database as modified.

4.6 Exiting database mode

q (db-quit) Quit editing the database for now; bury its buffers.

x (db-exit) Be done with the database; like db-quit, but offers to save any
changes. With prefix arg, kills the data display buffer, and the database, if
that was its only data display buffer.

You can also kill a database buffer in the usual way (for instance, by using kill-buffer);
this causes db-kill-buffers to be called. If the database’s last buffer is killed this way,
the database itself is also killed. No offer is made to save changes; call db-exit in order to
do that.

db-kill-buffers
Kill this buffer, and the associated summary or data display buffer, if any. If
its last data display buffer is killed, the database is killed too. Does not offer
to save changes to the database or to this record; use db-exit with optional
argument to do so.

17

5 Database edit mode

In database edit mode, point is always in the field currently being edited. The database is
not modified as soon as changes are made in edit mode. A copy of the record in question
is displayed and edited, and only when the user moves to a new record, initiates some
other global action (not specific to the edited record), or explicitly commits the changes
(see Section 4.4 [Making changes permanent], page 15). This permits easier undoing of
incorrect modifications.

In order to perform most record-level operations, the user exits edit mode, switching to
view mode, and then performs them there. Several commonly used commands, however,
such as searching and moving from record to record, are accessible directly from edit mode.

Commands that move from field to field check the validity of the current field before
moving off it; commands that move from record to record do this as well, then make any
changes in the current record permanent (though the database file on disk is not changed).

Basic operations are described here; more complicated ones are given sections of their
own.

5.1 Exiting edit mode

C-c C-c (db-view-mode) Switch to database view mode. With an argument, toggle
between view and edit modes.

5.2 Undoing changes to a field

You can undo changes to the current field via Emacs’ usual undo facility; use C-x u or C-_
to undo changes made since entering the current field.

You can also revert the current field to its original value; this is useful if you made a
change, moved off the field, and then moved back onto it.

C-xU (db-revert-field) Replace the onscreen text in this field with that of the
underlying record. In other words, undo any changes made since entering this
field.

From database view mode, you can simultaneously revert every modified field of a record
to its original value; see Section 4.3 [Undoing all changes to a record], page 15.

5.3 Moving from record to record

These commands make any changes to the current record permanent.

M-n (db-next-record) Go to the argth next record. In that record, go to the
current field, if any.

M-p (db-previous-record) Go to the argth previous record. In that record, go to
the current field, if any.

Chapter 5: Database edit mode 18

5.4 Moving from field to field

TAB (db-next-field) Move to argth next reachable field, wrapping if necessary.
When called interactively, arg defaults to 1.

M-TAB (db-previous-field) Move to argth previous reachable field, wrapping if nec-
essary. When called interactively, arg defaults to 1.

M-< (db-first-field) Move to first field.

M-> (db-last-field) Move to last field.

Also see the keystrokes C-n and C-p, described below.

5.5 Movement within a field

Many Emacs cursor motion commands retain their standard meanings, except that they do
not move outside the field; among these are C-f (forward-char), C-b (backward-char),
M-f (forward-word), M-b (backward-word), C-a (beginning-of-1line), and C-e (end-of-
line).

The line-movement commands have slightly changed meanings: if the motion would take
the cursor out of the current field, then they move to the next field.

C-n (db-next-line-or-field) Move to argth next line. If that would move out
of the current field, move to the closest field to that, but not the current one,
wrapping if necessary.

C-p (db-previous-line-or-field) Move to argth previous line. If that would
move out of the current field, move to the closest field to that, but not the
current one, wrapping if necessary.

5.6 Editing a field

Many Emacs editing commands retain their standard meanings; for instance, printing char-
acters insert themselves and deletion commands work as usual, except that they will not
make changes outside the field; among these are C-d (delete-char), DEL (backward-
delete-char), M-d (kill-word), M-DEL (backward-kill-word), and C-k (kill-line).

5.7 Getting help

You can get some information about the current field, such as what type of value it expects
or what its contents signify, by using the following command.

M-? (db-field-help) Display help for current field using the recordfieldspec help-
info field. If this is a string, display it. If it is a form, eval it and display the
result.

19

6 Searching

A useful and commonly used database operation is searching for records that meet some
criteria: for instance, finding a particular record or indicating that following operations
should only apply to records that correspond to an address in greater Boston. EDB provides
several functions to support such operations.

To perform a search pertaining to the contents of only one field, move to that field and
use the following command:

M-s (db-search-field) Search for occurrences of pattern in the current field of any
record. Finds the first match after the current record; wraps around automati-
cally. With prefix arg, marks all matches in addition to going to the first one.
If omitting is in effect, omitted records are ignored.

The same keystroke in view mode permits specification of patterns which depend upon
the contents of several fields:

s

M-s

M-S (db-search) Please do not use db-search, which is unimplemented; use db-
search-field. In a future version of EDB, db-search will permit searching
on all fields of a record simultaneously.

For a description of marking, see Chapter 9 [Marking and omitting], page 25.

6.1 Search patterns

Search patterns can be as simple as a datum to match exactly or as complicated as the
conjunction, disjunction, and negation of tests to be performed on field contents.

6.1.1 Basic patterns

A basic search pattern has the same form as the data that is kept in the field; for instance,
to search in a string field for a particular string, use that string; to search for the date
March 14, 1967, use ‘3/14/67 or ‘14 March 1967’ or any other accepted date format. A
basic pattern is treated somewhat more richly than a literal, however. In a string field,
typing a string results in a match for any element which contains it as a substring; typing
‘ail’, without the quotes of course, will match both “ailment” and “fail”. In a date field,
*3/67’ will match any date in March of 67, not just those March 67 dates which specifically
exclude a day of the month.

6.1.2 Comparisons

A search pattern may also be a comparison prefix (<, >, or =) plus a datum which is treated
exactly like any other element of that field. In a string field, ‘<ail’ will match all elements
lexicographically less than “ail”; ‘=ail’ will match only fields containing exactly “ail”, but
not “ailment” or “fail”. Warning: ‘= ail’ looks for an entry containing “ ail”, that is,
four-character sequence starting with a space.

In a date field, searches work slightly differently; for instance, ‘>3/14’ will match dates
after March 14 in any year, and ‘=3/67’ will match only dates in March 67 whose day of
month is not specified. For more information about the interpretation of patterns, see the
documentation for the particular types.

Chapter 6: Searching 20

6.1.3 Logical connectives

More complicated patterns can be built up out of simpler ones via the logical connectives
AND, OR, and NOT. These work in the obvious way. One pattern which finds any date
between the ides of March and Christmas, inclusive, is ‘> 3/14 AND < 12/26’; two patterns
which find dates except March 14 are ‘NOT 3/14’ and ‘< 3/14 OR > 3/14’. To find strings
that either contain the substring “ail” or start with a, b, or ¢, use ‘ail OR < d’.

The precedence of these connectives is: NOT, which is most tightly bound to its test,
then OR, then AND. There are no provisions for grouping or otherwise overriding this
ordering. Connectives (and REGEXP, described below) consume all surrounding spaces
and tabs.

6.1.4 Other pattern operations

One other pattern operation of interest is the regexp operator for string fields. This is
invoked by either using REGEXP with surrounding spaces, or / without a trailing space.
For instance, ‘/~ [ace]’ matches any string field starting with a, ¢, or e; ‘/.” matches any
nonblank string field; and ‘NOT REGEXP a.*b.*c’ matches any string which does not contain
the letters a, b, and ¢ in order. This last example shows that EDB’s search commands are
more powerful than general regular expression searching.

21

7 Sorting

M-x db-sort
Sort the database. With a prefix arg, don’t confirm the sort order.

Ordinarily, calling this function invokes a graphical field ordering tool which permits
easy specification of which fields are significant and what their order of importance as sort
keys is. In a database whose records had fields foo, bar, baz, bum, and bee, and in which
records should first be sorted on baz in increasing order, then on foo in decreasing order,
and finally on bum in increasing order, ignoring bar and bee entirely for the purposes of
the sort, the display would look like

==== Significant fields:

baz increasing

foo decreasing

bum increasing
==== Nonsignificant fields:

bar increasing

bee increasing

==== (Omitted records to end: No

In addition to which fields should be sorted by, the sort interface permits specification
of how omitted records should be treated.

t (dbsi-toggle-omitted-to-end) Toggle the boolean value of dbsi-omitted-to-
end-p. This controls whether omitted records should all be placed at the end
of the sorted order or should be sorted according to the same criteria as non-
omitted records.

To change the relative order of fields, and whether they’re significant or not, use the
following commands.

C-k (dbsi-kill-line) Kill field on current line, placing it in the sort interface kill
stack.
C-y (dbsi-yank-line) Yank most recently killed (lifo ordering) field, inserting it

before point. This removes the field from the sort interface kill stack.

To specify how a particular field should be ordered, use the following commands.

i (dbsi-increasing) Specify that the field at point should use an increasing
ordering.

d (dbsi-decreasing) Specify that the field at point should use a decreasing or-
dering.

) (dbsi-ordering-function) Specify an ordering function for the field at point.

An “ordering function” returns -1, 0, or 1 depending on whether its first argu-
ment is less than, equivalent to, or greater than its second argument.

s (dbsi-sorting-function) Specify a sorting function for the field at point. A
“sorting function” returns t if its first argument is less than its second argument
and nil otherwise.

Chapter 7: Sorting 22

1 (dbsi-1list) Specify a custom ordering for the field of enumerated type at
point. Comparisons will be done according to rank in this list.

Each database has a default sort order in its field-priorities slot (see Section 17.1
[The database structure], page 67) which is used when setting up the sort interface (and is
used for sorting when no other ordering information is specified). When the user exits the
sort interface, that slot can be set to the ordering depicted on the screen (see below).

Each data display buffer also has a default sort order: the database’s field-priorities
slot is ignored if the variable dbf-field-priorities is nil. The sort interface permits the
setting and clearing of this value as well; when it is cleared, the default sort order is once
again taken from the database’s field-priorities slot. Setting the database’s sort order
automatically clears the buffer-local sort order.

dbf-field-priorities
The list of field priorities for this database in this data display buffer. If non-
nil, overrides the database’s field-priorities slot.

dbf-omitted-to-end-p
The default, local to this data display buffer, for the omitted-to-end-p database
slot. Only used if dbf-field-priorities is non-nil.

The following commands are used to exit the sort interface; most of them also cause the
database to be sorted. Some of them set the default ordering for the database or the data
display buffer.

RET

C-c C-c (dbsi-use-ordering-make-database-default) Use the current ordering to
sort, and make it the default for future sorts of this database. The user is
warned if there are killed, non-yanked fields.

A

U (dbsi-use-ordering-make-buffer-default) Use the current ordering to sort,
and make it the default for future sorts in this data display buffer only. The
user is warned if there are killed, non-yanked fields.

a

u (dbsi-use-ordering) Use the current ordering for this sort only.

! (dbsi-this-field-only) Sort according to only the field at point. All editing
of other fields is ignored.

q (dbsi-quit) Abort the sort and exit the sort interface.

c (dbsi-quit-clear-buffer-default) Clear the default sort order for this

buffer and exit the sort interface without sorting. In the future, the default
sort order will come from the database.

The sort interface returns a field priorities list to be used when sorting; when the sort
interface is entered, either the value of the dbf-field-priorities variable, or the data-
base’s field-priorities slot, is being used. For information about the format of the field
priorities list, see Section 17.1 [The database structure], page 67.

Sorting does not ordinarily mark the database as modified, because not the data itself,
but only the way it is arranged, has been changed. If you can set db-sort-modifies-p to

Chapter 7: Sorting 23

non-nil, then whenever a database is sorted (even if the resulting order is the same as the
original one), the database will be marked as modified.

db-sort-modifies-p
If non-nil, then sorting a database marks it as modified too.

7.1 Sorting and ordering functions

In order to specify the relative order of two field values (for the same field, but from different
records), the database designer provides a sorting function, an ordering function, or both.
If only one is provided, the other is automatically generated from it. In any event, only one
of them is used for a given field on any particular sort.

A sorting function takes two field values as arguments and returns t if its first argument
is less than its second argument (that is, the first argument appears previous to the second
in the sorted order). The sorting function returns nil if the arguments are equal or if the
first argument is greater than the second (appears later in the sorted order).

An ordering function, on the other hand, returns complete information about the relative
order of its two arguments: it returns -1, 0, or 1 depending on whether its first argument is
less than, equivalent to, or greater than its second argument.

Use of an ordering function can result in fewer comparisons in some cases, because it
returns more information. This is worthwhile if a significant amount of processing is required
before the comparison is done. For example, suppose that two addresses are being carefully
checked for equality and some of the steps leading up to that are expansion of abbreviations,
standardization of spelling, capitalization, and spacing, etc.; then it is better to return
the exact relative ordering than to possibly require another time-consuming operation to
determine it.

If it is possible to canonicalize the values beforehand, that may be even more efficient,
but that is not always possible; consider the case of a small (but tedious to extract) part of
the information in each field being compared. Therefor, the user is permitted to specify an
ordering function.

24

8 Summary mode

A summary is a listing containing abbreviated information about every record; it permits
many records to be viewed at once.

This is available in view mode via the following command:

h (db-summary) Display a summary (or directory) of all database records accord-
ing to the variable dbf-summary-function, which is set by dbf-set-summary-
format. The summary appears in a separate buffer. When called from the
summary buffer, this updates the summary.

When a summary is created, the summary display format appears in the summary
buffer once for each record, with appropriate values substituted for its display specifications.
Omitted records are included in the summary only if the data display buffer variable dbf-
summary-show-omitted-records-p is non-nil.

dbf-summary-show-omitted-records-p
Nil if omitted records should be omitted from the summary, t otherwise.

The entire format is indented by two characters; the first and second columns contain
‘+” and ‘[’, respectively, if the record is marked or omitted. For information about marking
and omitting records, see Chapter 9 [Marking and omitting], page 25.

The summary buffer is not updated whenever a record value changes; in the interest of
efficiency, it remains as is until the next db-summary command is issued, at which time the
summaries are redisplayed after all, some, or none of them have been recomputed. For the
same reason, when a single mark or omit bit changes, the summary is updated; when many
change, it is usually not. [[[Describe exceptions. This may change soon in any event.||]

When point is in the summary buffer, the associated data display buffer (nearly) always
displays the record under point. (Some Emacs commands can move point without EDB
noticing.) Movement in the summary buffer is by any of the ordinary Emacs commands,
including searching. Most view mode commands also work in the summary buffer.

The summary display format defaults to the first non-literal line in the database display
format—that is, the first line which contains a display specification.

Summary display formats can display information any way that an ordinary display
format can, including showing more than one field of the record in question or spanning
several lines. The only restriction is that the summary display format must cover a specific
number of lines: each display specification must have its min-height and max-height slots
set to equal values. For more information about display formats, See Chapter 15 [How
information is displayed], page 51.

The following command may appear in a format file or an auxiliary file, or it can be
invoked directly by the user. When it appears as an Emacs Lisp form, remember the special
meaning of the backslash character and double it where necessary.

M-x dbf-set-summary-format
Specify the format used in the Database Summary buffer. Argument summary-
format is a string containing display specifications. Call this in the data display
buffer, or in a format file or auxiliary file.

25

9 Marking and omitting

The marking facility permits operations to be performed on only certain records of a data-
base. For instance, to create a report which describes only some of the database records, you
would first mark the records of interest. Then you would call db-report with a prefix ar-
gument (do so by pressing C-u first), or would make optional second argument MARKEDP
non-nil. See the documentation of the individual operations to see whether they support
operation on only the marked records.

The omitting facility is similar to the marking facility in that it restricts attention to a
subset of the current database; however, omitted records are ignored by most operations.
By default omitted records are skipped by the record-motion commands, excluded from
searches, reports, and other functions, and so forth. Omitting is useful when the user
wishes to concentrate on a subset of the database without being distracted by other records
that may be present; while the records are still present in the database, they are not seen
by the user.

Mark and omit bits are associated only with the version of a database being operated
upon. They are never saved in the database file, and when a database is first read in, all
of its mark and omit bits are unset; that is, they are boolean false. (When a database is
written to disk, although the disk version of the data will not contain the mark and omit
information, that information is not lost from the working copy of the database.)

This behavior is a feature, not a bug. Marking and omitting are intended to help the
user temporarily group database records for operations upon it; if there is information that
cannot be recreated from a record’s fields, then the user should consider adding another
field for that information. On the other hand, mark or omit criteria may be complicated.
If such a pattern is used often, then the user may wish to write a function to set the bits
appropriately, which function could be bound to a keystroke or automatically executed
when the database is read in.

9.1 Setting the mark and omit bits

Every record may be thought of as having a pair of bits or boolean values indicating whether
it is marked and whether it is omitted. The most straightforward way to set these bits is
to use an operation to mark, unmark, omit, or unomit a particular record; these are bound
to keystrokes in database view mode.

m (db-mark-record) Toggle whether the current record is marked. With a
nonzero prefix argument, set it to be marked. With a zero prefix argument,
set it to be unmarked.

0 (db-omit-record) Change whether the current record is omitted. With a
nonzero prefix argument, set it to be omitted. With a zero prefix argument, set
it to be unomitted.

The searching commands, when called with a prefix argument, mark each matching
record; Chapter 6 [Searching], page 19.

Once all records of interest have been marked, through one or more marking and/or
searching commands, unmarked records can be omitted from consideration. This is useful if
you want to work on only a small number of records, or if specifying the records of interest is

Chapter 9: Marking and omitting 26

easier than specifying those not of interest: instead of omitting all the uninteresting records,
simply mark the interesting ones, then use the following command to cause the unmarked
ones to become omitted.

M-x db-omit-unmarked-records
Omit all unmarked records. Also clears all mark bits and sets dbc-omit-p.

The converse operation transfers information from the omit bits to the mark bits.

M-x db-mark-unomitted-records
Mark all unomitted records. Also clears all omit bits.

It is also possible to clear all the mark or omit bits.

M-x db-unmark-all
Clear the mark bit of every record.

M-x db-unomit-all
Clear the omit bit of every record.

9.2 Movement among marked and omitted records

Ordinarily, record movement commands (those which move from one record to another)
ignore omitted records, so that the user never lands on an omitted record. Marked records,
on the other hand, are not treated specially by the record movement commands. The
following database view mode keystrokes permit you to move to omitted records or to move
directly to marked records.

M-n (db-next-record-ignore-omitting) Go to the argth next record, ignoring
omissions. That is, all records, even those which are omitted, are counted.

M-p (db-previous-record-ignore-omitting) Go to the argth previous record,
ignoring omissions. That is, all records, even those which are omitted, are
counted.

M-C-n (db-next-marked-record) Go to the argth next marked record. Omitted

records are treated according to db-omit-p.

M-C-p (db-previous-marked-record) Go to the argth previous marked record.
Omitted records are treated according to db-omit-p.

9.3 Details of omitting
The “omitted” bit of each record has no effect unless the following variable is set:

dbc-omit-p
Non-nil if omitting is in effect, nil otherwise. Use function dbc-set-omit-p,
which works in either a data display buffer or a summary buffer and sets the
variable’s value in both, instead of setting this directly. Setting this to nil is
cheaper than changing the omit function to the empty one, since no omit bits
are recomputed. This variable is automatically set by the omitting functions.

When dbc-omit-p is nil, the values of records’ omit bits are remembered, and they
may still be set and unset, but they have no effect on any operations until dbc-omit-p is

Chapter 9: Marking and omitting 27

once again set to non-nil. When dbc-omit-p is non-nil, “Omit” will appear in the mode
line of the database buffer.

The following operations work in either database view mode or database summary mode.

M-o

M-0

(db-omitting-toggle) Change whether omitting is in effect. With a nonzero
prefix argument, turn omitting on. With a zero prefix argument, turn omitting
off.

This does not change the current omit-function, and an omit bit is always
computed for each record, but omit bits have no effect on any operations if
omitting is not in effect.

(db-toggle-show-omitted-records) Toggle whether omitted records are
shown in the summary. With a nonzero prefix argument, show omitted records
in the summary. With a zero prefix argument, don’t show omitted records in
the summary.

(db-omitting-set) Set the criteria for automatically determining whether to
omit a record. This isn’t implemented yet.

28

10 Reports

Reports can be generated from a database by using the following command in view mode:

r (db-report) Create a report according to report-filename. Prefix argument
markedp, if non-nil, means report on only marked records. If omitting is
in effect, omitted records are not reported upon. When called interactively,
prompts for report-filename.

The way a report looks is specified in precisely the same as are display formats and
summary formats (see Chapter 15 [How information is displayed], page 51). This informa-
tion must be placed in a file; the user cannot type it directly when creating a report. This
restriction makes errors in the report format easier to correct.

The report is placed in the ‘*Database Report*’ buffer, which is in Text mode. The
information may then be edited, saved to disk, or otherwise manipulated. The buffer is in
Text mode and is not yet a file; you must save it to make it a file.

To create a report which mentions only marked records (see Chapter 9 [Marking and
omitting], page 25), supply a prefix argument to the report command by typing C-u first.

10.1 Bugs in report generation

There are currently a few unfortunate bugs in EDB’s handling of reports. The most not-
icable of these are errors in the handling of format information: primarily, indentation is
not respected. These problems will be corrected in a future release of EDB.

29

11 Specifying the display format

Different layouts and on-screen arrangements of the values stored in database records are
appropriate when the user is concentrating on different aspects of the data. Sometimes
the user would prefer to see just a few of the fields; at other times he may want to see
the records in full detail. It may also be appropriate for the display format of a record to
depend on the record’s field values. This section describes how to choose a different display
format for the record being displayed, either manually or automatically.

11.1 Changing display formats

EDB permits the creation and use of a variety of display formats with a single database;
the user can also conveniently change the way that a particular record is displayed by using
db-alternate-format and specifying the filename of the new display format, or a nickname
for the format that has been specified by the user or the database designer. Choosing a
different format does not create a new data display buffer; it changes the way that records
are displayed in the current one.

M-x db-alternate-format

Select and use an alternate display format to view the database. If neither
format-name nor filename is specified (as is the case when this is called inter-
actively), the user is prompted for them. In Emacs Lisp code, if dbf-alternate-
format-names has been been set, usually only one of the arguments is specified.
If both are specified, then format-name becomes a name for the format filename
specifies; if format-name is already associated with a different format file, an
error is signalled.

If the current format is unnamed, the user is prompted for a name to give it,
so that it can be conveniently restored if need be. This behavior is suppressed,
and the record is not displayed, if the function is not being called interactively.

Selecting the current format does not cause any work to be done.

Some databases automatically set the format of the record being displayed, usu-
ally by setting dbf-before-display-record-function to a function that overrides
the format in effect when a record is about to be displayed. This may cause
this function to appear not to be doing any work. In actuality the format is
being set, then reset.

dbf-alternate-format-names
Association list of format names and format specifiers. Each format name is an
arbitrary string. A format specifier is a filename or a list of values for format
variables. The user sets the format specifier to a filename, and after that format
file has been read, EDB replaces the filename with a list of values for format
variables, so that the file need not be read again.

It is convenient for a database designer to set this, pre-assigning format names
to files so that the user only needs to remember the format names, not the
filenames.

dbf-format-name
The string representing the format currently in use.

Chapter 11: Specifying the display format 30

dbf-format-file
The format file from which this format was built.

These values can be set in the auxiliary or format files so that the user can choose a
format name (with completion) instead of having to remember a filename. If the selected
format’s specifier is a filename, then after the file is read in, the format-spec is modified
by replacing the filename with information about the format such as the displayspecs, the
invariant text between them, and so forth. Subsequent selections of that format will not
cause disk accesses. For an example of the use of db-alternate-format, see Section 16.2.3
[Record display hooks], page 61.

While it is not currently possible to selectively omit certain fields from a data display
buffer, judicious use of alternate formats can result in nearly the same effect.

11.2 Execution of format file eval expressions

Often the “local variables” section of a format file contains code that should only be executed
once, or should only be executed before the database is read in, because of either efficiency
or correctness constraints. Because of this, the “local variables” section of a format file is
executed only when it is read in from disk (which is usually only once). In order to cause
an expression to be evaluated every time that a particular display format is selected, use
the dbf-always macro:

dbf-always
Execute body, and place its forms in dbf-always-forms. They will be executed
each time that this format replaces another.

dbf-always-forms
Forms executed every time that the format is selected. These forms are only
executed when a different format is replaced, not every time that a record is
displayed (or even every time that db-alternate-format is called). See also
dbf-before-display-record-function.

Of course, it is often valuable to overwrite a value when the display format changes; this
is the purpose of dbf-always. It is always safe to set variables whose name begins with
dbf in such forms, though changes to some such values—mnone of which the user should be
changing anyway—will not take when a display format is being returned to (though they
will work when it is first chosen). This will affect the user only in that a call to dbf-set-
summary-format will have an effect only the first time that a format file is read in, not
every time that it replaces another, even if it is enclosed in a dbf-always form.

The forms in dbf-always-forms are not executed every time that a record is displayed,
or even every time that db-alternate-format is called, but only when a format replaces
another one (that is, db-alternate-format is called and its first argument is not equal to
dbf-format-name).

Here is an example of a common problem with an expression which causes an error if
evaluated every time that the format is selected. The primary format file (the one that is
used when the database is read in) is permitted to set the fieldnames slot of the database
structure to a list; other parts of the database initialization code propagate that information
into other slots of the database structure and change the list into a vector, which is its proper
representation. If the user switches to another display format and back to the primary one,

Chapter 11: Specifying the display format 31

and the database-set-fieldnames expression was evaluated, then the next attempt to
access the fieldnames slot of the database as a vector would cause an error. In this case,
the proper solution is to use database-set-fieldnames-to-list (see Section 17.1 [The
database structure|, page 67) instead, but such functions are not provided for every slot
that it would be dangerous to set. If several format files all set a value which is dangerous
to change, then another possibility is to check the value before setting it: if it is already
set, then don’t do anything. Another possibility is to move all assignments to database slot
values from the format file to the auxiliary file.

11.3 Making additional data display buffers

In addition to changing the display format of an existing data display buffer, it is sometimes
useful to have two different data display buffers both examining the same database, either
so that two different records can be viewed or edited simultaneously or so that two different
formats can be used at the same time—or both.

Use the following function to create a second (or additional) data display buffer for the
current database.

M-x db-additional-data-display-buffer
Create another data display buffer in which to view this database.

If you edit the same record in more than one data display buffer, only the last one
committed (by calling db-commit-record, moving to another record, saving the database,
etc.) will have an effect. (Simply switching from database edit mode to database view mode
does not commit the changes; failing to commit changes will make it appear that changes
in one data display buffer are not being communicated to the other ones associated with
the same database. For more on committing, see Section 4.4 [Making changes permanent],
page 15.) It is perfectly safe, however, to edit different records of the same database in
different data display buffers, or to perform any other database manipulations.

This section does not describe how to specify a new format, only how to use multiple
data display buffers. To learn about formatting directives and specification of display format
files, see Chapter 15 [How information is displayed], page 51.

32

12 Designing a database

Preceding chapters have discussed the use of an already-existing database. However, before
a user can manipulate a database using EDB, a database designer (who will possibly also
be a user later on) must have specified pertinent information about the database, including

e the number of fields per record and the type of each one (see Chapter 13 [Record field
types], page 35);

e the layout of the file containing the database (see Chapter 14 [Database file layout],
page 40);

e how each record should be displayed on the screen when it is being viewed or edited
(see Chapter 15 [How information is displayed], page 51); and

e special actions to be performed, such as updating the last-edit-date field of a record
whenever any other field is modified (see Chapter 16 [Customization], page 59).

Detailed information about the database’s internal representation is supplied in Chap-
ter 17 [Database representation], page 67.

12.1 Creating a new database

This section tells you how to quickly create a trivial database; please don’t be satisfied with
this, but follow the references to learn how to access EDB’s more sophisticated features.
Another good way to learn about EDB is to look at the example databases provided with
EDB (see Chapter 2 [Installation], page 5).

First, you must decide how many fields the database shall contain, and what their names
are. The names are Lisp symbols, and they are primarily used internally—most users will
never be aware of how EDB refers to the fields. Let us make a name database with three
string fields called “first”, “middle”, and “last” and one integer field called “age”.

As mentioned in Section 1.2 [Invoking EDB], page 2, you need three files to run EDB: a
data file, a format file, and an auxiliary file. The auxiliary file is optional; its functionality
can be placed in the format file.

The data file may have any one of a number of layouts. Perhaps the simplest is tab-
delimited text, which is also the default: fields are separated by tab characters and records
are separated by newlines. EDB doesn’t deal well with empty databases (because it always
tries to display a record in the data display buffer), so create a file with at least one record.
For instance, we could create a file names.dat containing

Harry S Truman 88

where a single tab character separates the words. It doesn’t matter whether the file
contains a final newline. The easiest way to create a database file laid out in EDB’s internal
representation, which permits faster reading and writing of the data file, is the follow-
ing. Create a database in some simpler format (such as tab-delimited text), read it in
the usual way, set database slot internal-file-layout-p to t (for instance, via C-u M-x
db-toggle-internal-file-layout RET), and finally save the database. It will be saved in
EDB’s internal file layout; for details, see Section 14.1 [Internal file layout], page 40. For
more information about different data file layouts, see Chapter 14 [Database file layout],
page 40.

Chapter 12: Designing a database 33

The format file specifies how a record is displayed on the screen; a backslash followed by
a field name indicates that the field’s contents should be inserted there. For instance, here
is a format for our names database:
Family: \last
Given: \first
Middle: \middle

Age: \age

For more information about specifying display formats, see Chapter 15 [How information
is displayed], page 51.

The auxiliary file is used to customize EDB for a particular database; the only infor-
mation that it absolutely must contain is the names (and possibly types) of the database
fields. They are set by function database-set-fieldnames-to-1list (see Section 17.1 [The
database structure], page 67); by providing additional information to this call, you can spec-
ify types other than string (which is the default) for your record fields. Any auxiliary file
customization may instead appear in the “Local variables” section of the format file (see
Section 14.5 [Reading from disk], page 49). So our format file names.fmt would look like
this:

Family: \last
Given: \first
Middle: \middle

Age: \age

Local Variables:
eval: (database-set-fieldnames-to-list database

'(first middle last (age . integer)))]]
End:

For more information about customizing EDB for your application, see Chapter 16 [Cus-
tomization|, page 59.

Now that we have the two files names.dat and names.fmt, we are ready to invoke the
database. Simply call db-find-file on names.dat; names.fmt will be automatically used
as the format file, and you can begin editing the database and adding new records.

12.2 Manipulating database fields

EDB will have a graphical method to manipulate databses by adding, removing, and rear-
range fields, among other other manipulations; a rudimentary version of this functionality
exists in the db-convert.el file but lacks a good user interface or documentation. Here is
a way to perform those actions by directly manipulating the database file.

Make sure the database is stored in a regular layout (the rest of this section assumes
that the standard tab-separated text layout is used; see Section 14.2 [Regular file layout],
page 41). If the database file is in EDB’s internal file layout, convert it to a regular layout
by reading in the database, setting database slot internal-file-layout-p to nil (for
instance, via C-u 0 M-x db-toggle-internal-file-layout RET), and saving the database.
(See Section 14.1 [Internal file layout], page 40.)

Chapter 12: Designing a database 34

In the tab-separated database format, you can add new fields by adding new tabs in the
right places in each record; simply edit the database file to add the next fields as desired.
Similarly, you can delete or rearrange fields. You may wish to use keyboard macros, or
write an Emacs Lisp function, to help youwith this chore.

When you perform this edit, be sure that auto-fill-mode is turned off, lest spurious
newlines be added to the file.

You will also need to modify any parts of your database that depend on the number or
order of fields; for instance, a call to database-set-fieldnames-to-list will need to be
changed, and the format file(s) should be edited if you wish to be able to view or edit the
contents of the new fields.

35

13 Record field types

Each of a database’s records consists of similarly-typed fields: the fifth field might always
contain an invoice number, for instance, but the invoice number would vary from record to
record. This chapter describes how to specify and use different field types.

The most important information about a record field is
e display representation onscreen and in reports
e EDB'’s internal representation
e storage representation in data files
e how to convert among these representations

e how to sort items of that type

This information is separated into a display specification and a record field specification.
The display specification determines how a field’s contents are displayed and parsed onscreen
(say, in a data display buffer). The record field specification controls everything else about
the record field; its information does not depend on the onscreen (or in-report) visual
appearance of the field. The database designer specifies a displaytype for each display
specification in the format file (that is, for each location in the data display buffer that will
contain a representation of some record field). The database designer specifies a record field
type for each field in a database record, whether or not the field is ever displayed to the
user. (A particular field’s contents may appear zero, one, or more times in a data display
buffer; one displayspec structure is created for each occurrence.)

Displaytypes and record field types are distinct; they supply complementary information.
There is not even a one-to-one relation between them. A particular record field type may
be displayed in any of a number of ways by using different displaytypes—dates are such an
example. On the other hand, record field types which are interpreted, sorted, and stored on
disk differently, but which have the same internal representation—say, as a string—could
all be displayed and edited using the same displaytype.

This chapter discusses record field types, record field specifications, and the recordfield-
spec structure, the internal structure which holds the information specified by the former
two items. For more information about displaytypes, display specifications, and the dis-
playspec structure, see Chapter 15 [How information is displayed], page 51.

13.1 Specifying a record field type

The function database-set-fieldnames-to-list (see Section 17.1 [The database struc-
ture], page 67) is used to specify the types (and names) of record fields.

A record field type gives information about one field of the database’s records: the type
of the contents, what sorting function to use, how to write it to disk and read it back,
constraints on its value, etc. The database designer must provide one for each record field.
Most of the time one of the predefined types (see Section 13.2 [Predefined record field types],
page 36) suffices. The remainder of this section describes how to define a new record field
type, when that is necessary.

The first step in creating a new record field type is to make a recordfieldspec structure
(when a predefined record field type is used, EDB looks up an existing recordfieldspec).

Chapter 13: Record field types 36

A recordfieldspec can be created from scratch by calling make-recordfieldspec, but it is
often easier to copy an existing one with copy-recordfieldspec (use recordfieldtype-
>recordfieldspec to look up a predefined recordfieldspec; for a list of such, see Section 13.2
[Predefined record field types]|, page 36) and then modify the copy as appropriate.

recordfieldtype->recordfieldspec
Return the recordfieldspec associated with symbol recordfieldtype.

Next, set the recordfieldspec’s slots to appropriate values by using recordfieldspec-—
set-slotname; for a list of the slots, see Section 13.3 [The recordfieldspec structure],
page 37. Finally, install the record field type by calling define-recordfieldtype-from-
recordfieldspec

define-recordfieldtype-from-recordfieldspec
Define a recordfieldtype named typename (a symbol) with the default
recordfieldspec. DISPLAYSPEC may also be a typename symbol itself.
After this call, recordfieldtype->recordfieldspec called with argument
typename returns the proper record field specification.

Examples of record field type creation can be found in the file db-types.el, which
contains a number of record field type (and displaytype) definitions that can be studied or
copied.

Record field types should not be confused with display types; a display type is used to
specify how a particular value is shown on the screen, but a record field type constrains the
information actually contained in the record field.

13.2 Predefined record field types

The following record field types are predefined by EDB; their definitions can be found in the
file db-types.el. The recordfieldspec structure contains a record field type’s information;
see Section 13.3 [The recordfieldspec structure|, page 37. Users can define record field types
in the same way as db-types.el does; these record field types are not privileged in any
way and are provided only for convenience. For more information about recordfieldspec
creation, see Section 13.1 [Specifying a record field type], page 35.

integer Ordinary integers.

integer-or-nil
Integers or nil, the empty value; by default, nil is treated as larger than any
integer, so it comes last in an increasing-order sort.

number Ordinary numbers. A number is either an integer or a floating-point number.

number-or-nil
Numbers or nil, the empty value; by default, nil is treated as larger than any
number, so it comes last in an increasing-order sort.

boolean This displayspec corresponds to the yes-no displaytype. For the purposes of
sorting, t is considered less than nil, so it appears first in a sort in increasing
order.

string Ordinary strings.

Chapter 13: Record field types 37

one-line-string
Strings which may not contain newlines.

string-or-nil
Either a string or the value nil, which is converted to the empty string. Sorting
treats nil identically to the empty string.

nil-or-string
Identical to the string-or-nil recordfieldspec (except for the name). This ex-
ists so that display fields of type nil-or-string can conveniently default to this
recordfieldspec.

one-line-string-or-nil
The obvious combination of the one-line-string and string-or-nil recordfield-
specs.

date A date which specifies zero or more of the year, month, and day. By default the
date is sorted by year, then month, then day; an unspecified component is larger
than any specified component ("March 14, 1967" would appear before "January
1" if dates were sorted in increasing order). Dates are read from database files
using the function value of storage-string->date, which is set by default to
date-stored->actual, which can parse nearly any string representation of a
date and returns a date if it is passed one. Dates are written using the function
value of storage-string->date, which defaults to format-date-full, which
produces a string of the form "March 14, 1967". If the speed of reading and
writing database files is very important to you, consider using fset to set date-
>storage-string and storage-string->date to more efficient functions, such
as date->storage-string-mmddyyyy and storage-string-mmddyyyy->date,
or date->storage-string-lisp and storage-string-lisp->date.

date-or-nil A date, or nil.

date-efficient-storage
When the dates in a database file are known to have a particular format, us-
ing parse-date-string is unnecessarily inefficient. The date-efficient-storage
recordfieldspec specifies that storage-string->date, which can efficently read
dates written by simple-format-date, be used instead. The time savings is
noticable on large databases.

time A time.

If you find any of these typenames cumbersome, you can create your own aliases for
them using define-displaytype-from-displayspec, define-recordfieldtype-from-
recordfieldspec, or define-type-alias.

define-type-alias
Make symbol alias refer to the same displaytype and recordfieldtype as
typename.

13.3 The recordfieldspec structure

The recordfieldspec structure contains information regarding the content of a record field,
but nothing concerning how it is displayed on the screen or read from user input.

Chapter 13: Record field types 38

The slots of a recordfieldspec are listed below; a slot may be accessed by using the macro
recordfieldspec-slotname and set using the macro recordfieldspec-set-slotname,
whose second argument is the value to be stored in the slot.

Most of the slots may be left nil, and reasonable default actions will occur.

type A symbol such as string or integer, the type of the data described by this
recordfieldspec.
When no displaytype is explicitly specified in a display specification, then a
displaytype with the same name as type slot is used by default; this is the only
use for this slot.

default-value
The default value for fields described by this recordfieldspec; used when creating
new records.

common-form-function
A function which, called on the contents of a record field, returns them in
canonical form. This can be used for determining non-trivial equality, when
two nonidentical values should be considered equivalent.

merge-function
A function which, called on the contents of two record fields, returns a combi-
nation of the two. Often it queries the user for help.

order-fn
sort-fn The record field’s ordering and sorting functions (see Section 7.1 [Sorting func-
tions], page 23). Both ordering and sorting are possible if either slot is filled.

If both slots are empty, then a dummy ordering or sorting function is used, so
sorting on this field has no effect. Since the function is called and its result
examined, this is more expensive than not sorting on the field in the first place.
If it does not make sense to sort on a particular field, then it is best to keep that
field out of the field priorities used for sorting (which is the field-priorities
database slot, or is interactively specified through the database sort interface
(see Chapter 7 [Sorting], page 21), or is specified as an argument to database-
sort).

Users may set the order-fn and sort-fn slots directly, but should use the
following functions to access them:

recordfieldspec-order-function

Return an order function for records described by recordfieldspec.
If optional argument reversep is non-nil, then the order function
goes in the opposite order. If the order-fn slot of the appropriate
recordfieldspec of database doesn’t contain one, one is made up on
the fly from the sort-fn slot; equal is used to determine whether
two records are equal. If the sort-fn slot is also empty, the resulting
function always returns 0, indicating equality.

recordfieldspec-sort-function
Return a sort function for records described by recordfieldspec. If
optional argument reversep is non-nil, then the sort function goes

Chapter 13: Record field types 39

in the opposite order. If the sort-fn slot of the appropriate record-
fieldspec of database doesn’t contain one, one is made up on the
fly from the order-fn slot. If the order-fn slot is also empty, the
resulting function always returns nil, indicating that it is not the
case that the first argument is less than the second.

match-function
A function which takes a pattern and a field value and returns non-nil if they
match. The function should also be able to take as its first argument a field
value rather than a pattern.

help-info
A string which is displayed by db-field-help when there is no field-specific
help available. Field-specific help is usually preferable to this help, which only
describes the type of the field’s contents.

actual->stored
A function which converts a field value into its on-disk representation (a string).

stored->actual
A function which recovers a field value from its on-disk representation (a string).
If this function returns a string, it should return something reasonable if sup-
plied the empty string as its argument. (That can happen when an empty
database is read.)

change-hook
A function called when the value of this field is changed. This is not currently
implemented. For more change hooks, see Section 16.2.5 [Display format change
hooks|, page 62, and see Section 16.2.6 [Recordfieldspec change hooks|, page 64.

constraint-function
A function which the value of this field must satisfy; that is, the function must
return non-nil on it. The function may reject the value either by returning
nil or by signalling an error; the latter permits the function to provide an
informative message about the problem.

Four arguments are supplied to constraint-function: the field value, the
record, the record fieldnumber, and the database. This permits cross-field and
cross-record constraints. The record argument may be nil, in which case the
function should return t if the value is acceptable for some conceivable record.
This occurs, for instance, when values are read in a call to db-field-query-
replace.

The constraint function may interact with the user; for instance, it may give
the use the opportunity to override the constraint.

40

14 Database file layout

This chapter discusses specifying how a database is read from a file (or saved back to it).

Broadly stated, there are three possible file representations for a database: EDB’s in-
ternal file layout, a regular layout, or a nonregular layout. EDB’s internal file layout is
designed for fast reading and writing, but is not very human-readable. A regular layout
is one in which records (and fields within a record) are separated from one another in a
predictable (though not necessarily invariant) way. A nonregular layout is any other kind of
layout; the user may specify arbitrary Emacs Lisp code to read and write such files. Support
for tagged file layout (a special case of nonregular file layout) is included with EDB.

If the database is to be stored in EDB internal file layout, a lot of this information is
not needed except when the database is first created.

The sections of this chapter each describe a file layout, except the last, which describes
in detail the process of reading a database from disk.

14.1 Internal file layout

The first line of a database file in EDB’s internal file layout looks something like
;; Database file written by EDB; format 0.3

followed by the printed representations of two Emacs Lisp forms, a record (the database
structure) and a list of records (the records of the database). Databases stored in this
layout can be loaded and saved very quickly (sometimes orders of magnitude faster than
databases which EDB must parse when reading), and they never suffer from ambiguities
between data and delimiting text, but they are not easy for people to read and understand.
A human- or program-readable version of the database can be generated when it is needed,
either by creating a report or by saving in some other file layout. This is a good option
when all manipulation of a database will be done via EDB.

Since this file layout is rather complicated, databases are often created in some other
file layout and then converted to this one. To convert from another file layout to EDB’s
internal file layout, read in the database, set database slot internal-file-layout-p to t
(for instance, via C-u M-x db-toggle-internal-file-layout RET), and then write or save
the database (via C-x C-w or C-x C-s). Convert a database from EDB file layout to some
other representation is similar, but slot internal-file-layout-p is set to nil (say, via C-u
0 M-x db-toggle-internal-file-layout RET), and certain variables and database values
may need to be set (see the documentation for the layout you desire, elsewhere in this
chapter). Making a report can also convert a database to a different file layout, with even
more flexibility than the techniques described here.

A database file in EDB internal file layout is basically the printed representation of the
Lisp database structure used by EDB when the database is read in. As such, it contains
all the information in the database slots described in Section 17.1 [The database structure],
page 67, except that the data-display-buffers and first-1link slots are set to nil; in
the file, the records follow the database structure. After a database has been saved in
internal file layout, then any forms in the auxiliary or format files that set these slots can
be removed if desired; this is not necessary, however.

Chapter 14: Database file layout 41

14.2 Regular file layout

EDB can conveniently read and write database files in which records are separated from
one another by a record delimiter and, within each record, fields are separated by a field
delimiter. When the delimiters are the newline and tab characters, respectively, the result
is the standard “tab-separated text” layout, which is often used for transferring information
from one program to another.

The record and field delimiters need not be single characters; they can be arbitrary
strings or can even be specified by a regular expression instead of a particular string. The
latter is useful if the exact delimiter is not known ahead of time (for example, if records
may be separated by one or more carriage returns). This regular expression mechanism
can only be used when reading the database: when writing a database, all the record and
field delimiters will be identical. (Exception: you may specify an arbitrary record-writing
function (see Section 14.4 [Nonregular file layout], page 47) and arbitrary functions for
either reading records or for separating records or fields in regular layout, but should use
the simpler reading mechanisms whenever possible, for your own sake.)

Regular file layout has two disadvantages. First, it is somewhat slower to read and write
than EDB’s internal representation. Second, the strings used as delimiters may not appear
in the database fields, lest those occurrences be misinterpreted as delimiters rather than
as data. EDB provides two solutions to the latter problem: substitution and quoting (see
Section 14.2.2 [Resolving ambiguities|, page 43).

14.2.1 How to specify regular file layouts

In a database stored in regular file layout, records and fields can be separated by particular
strings, by regular expressions, by context-sensitive regular expressions, or by arbitrary
functions. The sepinfo structure holds this information for use when reading the database
from disk (and writing it back). The sepinfos used when reading a database are stored in its
record-sepinfo and field-sepinfo slots (for more details about the database structure,
see Section 17.1 [The database structure], page 67).

When reading, if a separation function is specified, it is used; otherwise, if a regular
expression is specified, it is used; otherwise, a string must be specified. It is converted into
a regular expression, the regular expression slots of the sepinfo are filled in, and reading
proceeds as if the user had specified a regular expression. (A user who wishes to have a
regular expression recomputed when it is next needed should set it to nil when setting the
corresponding string value.)

When a sepinfo is used for writing, it must specify literal string separators. (The sepinfo
may have its separation function or regular expressions set as well, for reading, but those
slots are ignored when writing.)

14.2.1.1 The sepinfo structure

The sepinfo structre contains the information required to decide where records or fields
start and end (actually, to determine where the record or field separators start and end;
“sepinfo” is short for “separator information”). The slots of this structure may be accessed
by using the macro sepinfo-slotname. The slots may be set using the macro sepinfo-
set-slotname, whose second argument is the value to be stored in the slot.

Chapter 14: Database file layout 42

The pre-first- slots describe text that precedes the first item of interest. In a record
sepinfo they describe the file header, which precedes the first record. In a field sepinfo
they describe any information that preceded the first field of every record, after the record
separator.

The post-last- slots are similar, but are used to inform EDB of text following the last
information-carrying text. In a record sepinfo, they describe the file trailer, which follows
the last record in the file. A field sepinfo’s post-last- slots tell about information following
the last field of a record but preceding the record separator.

The -submatch integers describe which submatch of a regexp match is the actual sep-
arator, as opposed to surrounding text used to help make the match unambiguous. This
specification of the submatch permits context-sensitive matching that you might otherwise
expect could not be done with regular expressions alone. For instance, suppose a database
has records with a variable number of fields separated by newlines, that records are also
separated by newlines, and that the first field of each record has some special form different
from all other fields (say, it is a number with a decimal part). The following code would
permit separation of the records without writing a special function to do so and without
including the decimal number in the separating text:

(sepinfo-set-sep-regexp (database-record-sepinfo database)
"\\(A\n\\) [0-9]+\\. [0-9]+")

(sepinfo-set-sep-regexp-submatch (database-record-sepinfo database) 1)

When you set the slots of the sepinfo, be careful to use a correct value. For instance, if
your record separator is a form feed on a line by itself, you probably want to set the sep-
string slot of the database’s record-sepinfo to ‘"\f\n"’, or possibly ‘"\n\f\n"’, rather
than just ‘"\f"’, lest the newlines be considered to be part of the records rather than part
of the separator.

The slots of the sepinfo are listed below but are not described in detail; see the preceding
description for details of their use.

pre-first-string
Setting the slot to nil (or not setting it) is equivalent to setting it to the empty
string.

pre-first-regexp

pre-first-regexp-submatch

sep-string

sep-regexp

sep-regexp-submatch

sep—function
A function that takes a buffer position, the end of the previous separator (that
is, the start of the current record or field), as its argument and returns a pair of
two buffer positions bracketing the next separator. That is, the returned values
are the end of the current record of field and the beginning of the next one (or
nil if there are no more). When the function is called, point is at the beginning
of an item and the buffer is narrowed to the list being currently processed.

The use of a separation function is useful when the separation criteria cannot
be expressed as a combination of regexp expressions. The pre-first- and
post-last- slots are still used even if a function is specified.

Chapter 14: Database file layout 43

post-last-string
Setting the slot to nil (or not setting it) is equivalent to setting it to the empty
string.

post-last-regexp
post-last-regexp-submatch

14.2.1.2 Examples of setting record and field separators
[[Put examples here.]]]

[For instance, to parse "[Mary, John,Jack, and Jill]" and to write it back out as "[Mary,
John, Jack, Jill]", the following specification would suffice: pre-first-string "[" sep-string ",
" sep-regexp ", +\\(and +\\)?" sep-regexp-submatch 0 post-last-string "|"]]]

[[[The -string slots are used for writing; but what if you only have a regexp for the leading
or trailing junk, but you want that restored exactly? You can set pre-first-string *after®™ the
database file has been found. For instance, in db-before-read-hooks, use a function such as

(defun btxdb:read-comments ()
(save-excursion
(set-buffer db-buffer)
(goto-char (point-min))
(if (search-forward "@" nil t)
(sepinfo-set-pre-first-string
(database-record-sepinfo database)
(buffer-substring (point-min) (point))))))
or even put
(sepinfo-set-post-last-string
(database-record-sepinfo database)
(save-excursion
(set-buffer db-buffer)
(goto-char (point-min))
(re-search-forward "\n\C-1\n")
(buffer-substring (match-beginning 0) (point-max))))

as is in your auxiliary file.]|

[[If all records have the same number of lines on disk, use the following function to return
an appropriate sep-function. This is useful when, for instance, both the field separator and
the record separator are the newline character

make-n-line-sep-function
Return a sep-function useful when all records have exactly n lines on disk.

1Nl
14.2.2 Resolving ambiguities

Substitution and quoting are two mechanisms for dealing with the problem of distinguishing
field and record separators from the contents of database records. For instance, if the
newline character (actually, a string consisting of only the newline character) is used as a
record separator, and records may contain multiline text fields (or other fields whose storage

Chapter 14: Database file layout 44

representation contains a newline), then how would EDB know, when reading the database
back in, which newlines are record separators and which are part of fields?

There are several ways to avoid this ambiguity.

Disallow the use in record fields of the character or string causing the ambiguity. For
instance, in the example above, you might change the record field type of all of the
string fields to one-line-string.

Change the separator(s) to strings that do not appear in the storage representation of
any field. For instance, when reading a Unix password file, colons should not appear
in the field text, so a colon can be used as the field separator, like so:

(sepinfo-set-sep-string (database-field-sepinfo database) ":")

Strings containing non-printing characters are another good bet, but this method relies
on luck and the hope that the chosen separators will never appear in data.

Change the representation of the ambiguous string, when it appears in data; this guar-
antees that whenever the string does appear in a database file, it stands for a separator.
This scheme is called substitution, because another string is substituted for the ambigu-
ious one when it appears in data. This is similar to the previous workaround, which
changed the separators rather than the data-bearing instances of the string. Ambi-
guities are still possible, if the substituted text happens to appear elsewhere in data.
Specifying a substitution is described below.

When all of the previous methods are insufficient, the more powerful quoting mechanism
can be used. It works similarly to the quoting mechanisms of programming languages
that permit specification of strings which contain the character usually used to delimit
string constants. It permits any strings to be used in separators and also to appear in
data, but it slightly increases the size of the data and slows down reading a writing.
Specifying that quoting be performed is described below.

The simplest solution is to use EDB’s internal file layout (see Section 14.1 [Internal file
layout], page 40). Ambiguities can only occur when the field data and the separators
are both text to be interpreted by EDB. EDB’s internal file layout uses Emacs Lisp’s
mechanisms (a form of built-in quoting) to ensure that what is read in is identical
to what was written out. The database designer need not worry further about the
problem.

[[[Describe substitution in detail.]]]

Substitution is the replacement of potentially ambiguous strings by other ones. For

instance, when writing tab-separated text, each occurrence of the newline character in a
field could be replaced by control-k when the database is written. Then, when the file is
read in, every newline can be safely assumed to be a record separator. The final step is
converting the control-k characters back into newlines. This approach is taken by some
marketed databases; for instance, I believe that FileMaker does just this. The problem
with this approach is that if there were any control-k characters in the text, then when the
database is read back in, they will be (incorrectly) converted to newlines. EDB warns when
the database is being written out if this problem could occur; the user is given the option of
choosing a different substitution or of aborting the database write operation. It is usually
possible to find a substitution—a character or sequence of characters that doesn’t appear
in the data.

Chapter 14: Database file layout 45

[for instance, put
eval: (database-set-substitutions database '(("\n" . "\C-k")))

in the "Local Variables" section of your format file. Or probably just put a short blurb
here and put a longer one after the list.]]]

[[Describe quoting in detail.]]]
Quoting is...

14.2.3 Problems with end-of-file newlines

Here is a subtle problem which can come up if you use ‘"\n\n"’ as a record separator and
exactly one newline appears at end of your database file. For convenience, EDB adds a
record separator at the end of its working copy of the file, if there’s not one already there.
In this example, two newlines will be added, but then the file will still not end in a record
separator, since after finding the first pair of newlines after the last record, EDB won’t yet
be at the end of the file because there will still be another character (namely, \n) there.

The moral is that if there are any extra characters after the last record, even a newline,
they should be specified. Either of the following forms will do the trick:

(sepinfo-set-post-last-string (database-record-sepinfo database) "\n")

(sepinfo-set-post-last-regexp (database-record-sepinfo database) "\n\\'")J]
(sepinfo-set-post-last-regexp-submatch (database-record-sepinfo database) O)f

The ‘\\'’ is not strictly necessary in this example.

[[[Maybe I should special-case this; i.e., replace end-of-file test with end-of-file-or-only-
newline-remaining test? It comes up pretty frequently.]]]

Here is an even more subtle problem: suppose that you want to get rid of every newline
at the end of the database file, but you don’t know how many there are. Using ‘"\n*\\'"’
in place of ‘"\n\\'"’ above will not work, because the post-last-record regexp is searched
for backward from the end of the buffer, and (because of the way that regexp-search-
backward is implemented) the backwards regexp match for ‘\n#*’ is always the empty string!
The proper way to write this would be

(sepinfo-set-post-last-regexp (database-record-sepinfo database)
" \n]\\ (\n+\\'\\D) ™)

(sepinfo-set-post-last-regexp-submatch (database-record-sepinfo database) 1)[

14.3 Tagged file layout

Another popular file layout supported by EDB is that of field values preceded by the field-
name. For instance, a record might be represented in the file by

Where:Here
When: Now
What: This!

which indicates a record in which the ‘where’, ‘when’, and ‘here’ fields have the specified
values.

Tagged files are a special case of files in nonregular layout; support for them is imple-
mented through the mechanisms described in Section 14.4 [Nonregular file layout|, page 47.

Chapter 14: Database file layout 46

To read a database file in tagged format, call the function db-tagged-setup in the
database’s format or auxiliary file. Its argument specifies the names of the fields and the
tags that precede them in the database file.

db-tagged-setup

Ready the database to read files in tagged format. Creates database local vari-
ables and sets database slots. Argument tagged-field-specs is a list of tagged-
field specifications, one for each field in a database record. Each tagged-field
specification is a three-element list of the field name (a symbol), the tag used
to identify it in the file (a string), and a brief help string. Instead of a symbol,
the tagged-field name may be a cons of the field name and its type. To indicate
that a field is never found in the input file (typically because it is computed on
the fly), use nil for its tag.

This function should be called first in an auxiliary or format file, so that the
defaults it chooses can be overridden. database-set-fieldnames-to-list
should not be called if this function is.

Calling this function sets the database’s field names and installs appropriate functions
for reading and writing the database. It also creates some database local variables (see
Section 16.3 [Local variables], page 64) which can be modified (by use of the database-
set-local function) in order to customize the behavior of the parsing and output functions
with respect to what characters can appear in a tag, what the separator between tag and
value looks like, and how continuation lines are handled. By default, records are separated
by blank lines, tags are separated from field values by ‘:’, white space around the separator
is not significant on input, the separator is followed by one tab on output, and continuation
lines start with whitespace.

db-tagged-tag-chars
The characters that are allowed in field tags, in a form suitable for placing
inside [] in a regular expression.

db-tagged-separator
The string that separates field names from values. Used only if db-tagged-
separator-regexp or db-tagged-separator-output is nil (depending on whether
the record is being read or written).

db-tagged-separator-regexp
A regexp for the separator between field names and values when parsing.

db-tagged-separator-output
The separator between field names and values on output.

db-tagged-continuation
The string that marks (the beginning of) a continuation line. Used only if db-
tagged-continuation-regexp or db-tagged-continuation-output is nil (depend-
ing on whether the record is being read or written).

db-tagged-continuation-regexp
A regexp for a continuation line in a value when parsing.

db-tagged-continuation—-output
The fixed string to use (before) continuing values on output.

Chapter 14: Database file layout 47

Other hooks permit arbitrary manipulations of records; for instance, if a database nearly
conforms to the tagged file model, these can be used to customize the behavior of the existing
tagged code. One way to do this is to have a function in db-tagged-rrfr-hooks remove
the field from the file representation before the record is parsed, then have db-tagged-
wrfr-after-hooks modify the automatically generated tagged file representation for that
field. These functions can also be used for simpler tasks, of course.

db-tagged-rrfr-hooks
Hooks run on each database record before tagged parse.

db-tagged-wrfr-before-hooks
Hooks run before each tagged write of a database record. The record is bound
to the dynamic variable record, and point is where the record will be inserted
in the buffer.

db-tagged-wrfr-after-hooks
Hooks run after each tagged write of a database record. The record is bound
to the dynamic variable record, and point is immediately after the file repre-
sentation of the record.

14.4 Nonregular file layout

Unlike many databases, EDB can work with data stored in any file layout whatever—so long
as you specify how the information is to be extracted. If the file layout is too complicated
to be described by regular expressions describing the record and field separators and their
context (see Section 14.2 [Regular file layout], page 41), then you may write Emacs Lisp
code which extracts the information from the database file.

The great advantage of this mechanism is that it permits you to maintain your current
files, in exactly their current file layouts, and to keep the same tools and habits you've
accumulated with respect to them, but also to manipulate them in a structured way with
EDB when necessary. For instance, you might wish to maintain the database file in a file
format easy for people to read all the time, rather than having to create a report for that
purpose.

Three pieces of information must be provided: how to find the extent of a file record,
how to read a file record, and how to write a file record. The third may be omitted if
the database is only being read in the custom file layout (and will be saved in some more
tractable file format). If the second is provided (that is, the read-record-from-region
database slot is set), then the file will be assumed to be in a nonregular file layout and the
value of that slot will be used to read the database, no matter what other information is
provided.

Information about how to separate one record from another within the file is found in
the record-sepinfo slot of the database, as usual. In many cases, even if the file layout
of the data is nonregular, it will be easiest to describe the record separator with a string
or a regexp. For more details, see Section 14.2 [Regular file layout], page 41. You may also
set the sepinfo’s sep-function slot to a function. The function should take one argument,
the end of the previous record (nil the first time it’s called), and return a pair whose car
is the end of the current record and whose cdr is the start of the next record (nil if there
is no next record in the file).

Chapter 14: Database file layout 48

The read-record-from-region slot of the database contains a function of no arguments
which, when called with the current buffer narrowed to a single file record (that is, narrowed
to the representation of a single database record), returns a record in the database’s internal
file layout. The variable database is dynamically bound to the current database, and so
the right way to create the record to be returned is via (make-record database). Its fields
can then be set with record-set-field.

The write-region-from-record slot of the database optionally contains a function
which takes a database record as its argument and inserts the file representation of that
record in the current buffer; the variable database is dynamically bound to the current
database. If this slot is not specified (and slot internal-file-layout-p is nil), then
the fieldsep and recordsep information, if present, will be used to write the record (see
Section 14.2 [Regular file layout], page 41). This permits the use of a simple, regular output
file layout with a more flexible input file layout.

Tagged format is a special case of nonregular file layout for which EDB provides sup-
port; see the implementation of support for tagged database files in db-tagged.el and
Section 14.3 [Tagged file layout], page 45. Another example is given below.

14.4.1 Example of database in nonregular file layout

Here is a simple example of a database in a nonregular file layout; this does not mean that
the file representation of each record is vastly different from the others (it may be, but is
not in this instance), but that there is no regular rule for extracting field values from the
record.

Suppose we had a database of the following form:

Place: Dentist's Office
Time: Never!
Purpose: Root canal

Place: Home
Time: Midnight
Purpose: Sleep

Place: Other places
Time: Other times
Purpose: Other things

Then in order to read and write this database, we place the following code in the auxiliary
file (see Section 14.5 [Reading from disk], page 49):

(sepinfo-set-sep-string (database-record-sepinfo database) "\n\n")
(database-set-read-record-from-region database 'arb-demo-rrfr)
(database-set-write-region-from-record database 'arb-demo-wrfr)

(defun arb-demo-rrfr ()
(goto-char (point-min))
(if (re-search-forward
"Place: [\t]I*\\(.*\\)\nTime: [\t]*\\(.*\\)\nPurpose: [\tI*\\(.x\\)")]J

(let ((result-record (make-record database)))

Chapter 14: Database file layout 49

(record-set-field result-record 'place (match-string 1) database)f]
(record-set-field result-record 'time (match-string 2) database)
(record-set-field result-record 'purpose (match-string 3) database)]]
result-record)

(error "This didn't look right to me.")))

(defun arb-demo-wrfr (record)

(insert "Place: " (record-field record 'place database)
"\nTime: " (record-field record 'time database)
"\nPurpose: " (record-field record 'purpose database)))

The auxiliary file would also specify the database’s fieldnames:
(database-set-fieldnames-to-list database '(place time purpose))

as well as possibly other information such as the summary format or the name of the
default format file. See the example database auxiliary file arb-demo.dba for a concrete
example of this.

All this Emacs Lisp code may be placed in “Local Variables” section of the format file
instead of in the auxiliary file, if desired. For more information about the “Local Variables”
section of a file, Section “Variables” in The GNU Emacs Manual.

This particular example is simple enough that a special function for reading isn’t strictly
necessary. Reading can be done under the control of regular expressions; for instance, each
field separator would be "\n[~:]*: [\t]*". See the example database auxiliary file arb-
demo-regexp.dba for a concrete example of this. Or, you could just use EDB’s support for
database files in tagged file layout, which is exactly what this is; see Section 14.3 [Tagged
file layout], page 45.

14.5 What happens when a database is read in from disk

In brief, the following happens after you execute db-find-file:

1. If the database is already read in and its buffer has not been killed, the buffer is simply
selected. No other work is done.

2. Otherwise, the database file is inserted in a special buffer of its own. If the database
is in EDB internal file layout (that is, if an identifying header is found), it is read in
immediately. Otherwise, a new, empty database is created. In either case the dynamic
variable database is bound; this makes it possible to refer to the database in the
auxiliary and format files (even before it has been read in, if it is not in EDB internal
file layout).

3. The format file is found (see Section 16.1 [Auxiliary files], page 59), and the data display
buffer is created.

4. The function db-setup-format is called; it performs the rest of the work necessary
for setting up the data display buffer (everything up to the running of db-before-
read-hooks). Its first action is to insert the format file’s contents into the data display
buffer.

5. The auxiliary file, if any, is loaded. This happens in the data display buffer, and the
dynamic variable database and the buffer-local variable dbc-database are bound to

Chapter 14: Database file layout 50

10.

11.
12.

the current database. For more information about how the auxiliary file is found and
what it can do, see Section 16.1 [Auxiliary files|, page 59.

The auxiliary file is not read every time that db-setup-format is called, only when
a database’s primary display format is read. (The primary display format is the one
initially selected when a database is first read in.)

The “Local Variables” section, if any, of the format file is executed; this may set
variables and execute Emacs Lisp code, exactly analogously to the auxiliary file. EDB
ignores the value of inhibit-local-variables when evaluating this code. This section
is then deleted from the working copy of the file, so that it does not appear in the data
display buffer when a user is viewing database records. For more information about the
“Local Variables” section of a file, see Section “Variables” in The GNU Emacs Manual.

Database information is propagated; for instance, the names of the database fields
are known by now, and various other database slots are filled in depending on this
information, if they haven’t been set yet.

The format file is parsed, and literal text and formatting directives are distinguished
from one another. This work is done by the db-setup-format-parse-displayspecs
function. When that function is done, db-setup-format returns the database data
display buffer as its result.

The hooks in db-before-read-hooks are run in the data display buffer.

If the database had already been read because it was stored in internal file layout, it is
massaged a bit to get it into its final form; for instance, the backward links are added
between adjacent records.

Otherwise, the database is finally read; the values of the recordsep and fieldsep slots
of the database determine whether the layout is regular or nonregular and direct the
parsing. The substitutions slot and quotation slots (quotation-char, quotation-
char-regexp, quoted-regexp, and quoted-strings) direct replacement of characters
that could not be written into the file, and the stored->actual slot of each record-
fieldspec completes the translation to the data’s internal format from its file layout.

The hooks in db-after-read-hooks are run in the data display buffer.

The database has now been read and is in its final form. The first record of the database
is displayed in the data display buffer, which is then placed in view mode and selected
(made visible to the user).

o1

15 How information is displayed

The display of information, both on the screen (whether in the data display buffer, the
summary buffer, or elsewhere) and in other output (such as reports), is controlled by for-
matting commands. We will discuss a data display buffer by way of example; the formatting
specifications are the same for summary buffers and reports as well.

Display types should not be confused with record field types; a display type is used to
specify how a particular value is shown on the screen, but a record field type constrains the
information actually contained in the record field. This chapter does not discuss record field
specifications, which specify everything about a record field type except how it is displayed
and parsed in output intended for humans to read. For more information about that, and
about the distinction between record field types and displaytypes (the latter of which is
described in this chapter), see Chapter 13 [Record field types], page 35.

A display format gives all of the information necessary to create a data display buffer;
it consists of literal text that is displayed as is (and may not be edited by a user of the
database) and of display specifications that instruct EDB how to display a particular field’s
contents. The display specifications do not appear in the data display buffer; they are
replaced by fields’ values, which may or may not be editable. An example of a display
specification is ‘\name,width=16", which indicates that the ‘name’ field of the database
should be displayed (after being padded or truncated to exactly 16 characters).

When a format is first specified, it is parsed and the formatting information specified
in the display specification strings is used to create a displayspec structure. Users should
never have to manipulate displayspecs directly.

15.1 Display specifications

Here is a (quite complicated) example display format:
\name,one-line-string,actual->display=upcase\ , \occupation'
Pay: \\\salary,min-width=4: too much!
Address: \addr,indent is home sweet home
This display format is valid if the database contains fields called “name”, “occupation”,

“salary”, and “addr”; any other fields are ignored. Some typical records would be displayed
like this:

JOHN DOE, butcher
Pay: \ 22: too much!
Address: 123 Main St.
Anyplace, USA is home sweet home

JANE ROE, baker
Pay: \4444444: too much!
Address: 675 Massachusetts Avenue is home sweet home

A display specification consists of a backslash; a fieldname indicating which field of the
database record is to be inserted; optional comma-separated type and formatting informa-
tion; and optionally a backslash followed by a space. A display specification abbreviation,
which consists of a backslash and the abbreviation name (and so looks like a simple dis-
play specification in which no optional information is specified), can be used instead of a
standard display specification; Section 15.6 [Display specification abbreviations|, page 58.

Chapter 15: How information is displayed 52

A display specification starts with a backslash to distinguish it from the surrounding text.
To specify the backslash character in literal text, type it twice; when backslashes occur in
pairs they do not indicate the start of a display specification. Display specifications continue
as long as the text can be parsed as one. Almost any non-whitespace character may be
used as part of a display specification. Whitespace is a good way of indicating the end of
a field specification since it never appears in a display specification. A display specification
can be terminated without indicating any literal text by placing a backslash and a space at
its end; both of these characters will be ignored. This is useful when the literal text that
follows the display specification happens to conform to the display specification syntax (is
a letter, number, or almost any type of puntuation).

The optional information includes the type of this display field and formatting directives
for it; if the type is present, then it must come first among the displayspec’s optional specifi-
cations. Each optional parameter is preceded by a comma to separate it from the preceding
one (or from the fieldname, for the first optional parameter). The optional information is
typically of the form “slotname=value”, which sets the specified slot to the given value,
or “slotsetter”, which sets some slot to a particular value. Explicitly specified formatting
information overrides any defaults.

The display type can be specified by writing a typename (such as ‘string’ or ‘integer’)
as the first optional parameter. A type abbreviation may be used instead of a typename;
the defined type abbreviations are ‘#’ for integer, ‘$’ for number, ‘"’ for string, and ‘'’ for
one-line-string, and they need not be preceded by a comma, though they may be.

The display type specifies default values for the display specification (actually for the
displayspec structure, which is derived from the display specification). It is rarely necessary
even to specify the displaytype—most display specifications consist of simply a backslash
and a fieldname—since if the displaytype is omitted then a displaytype with the same
name as the record field type (actually the type slot of the recordfieldspec) will be used.
This works because typically displaytypes and recordfieldtypes with the same names and
complementary definitions are declared at the same time; displaytypes and recordfieldtypes
are conceptually distinct, however. In particular, you must specify a displaytype that
is compatible with the record field type; if you specify a displaytype of ‘integer’ when
the data is actually a string, an error will result. You can use function database-set-
fieldnames-to-1list to specify recordfieldtypes; see Section 17.1 [The database structure],
page 67.

15.2 Predefined displaytypes

The file db-types.el defines the following displaytypes, corresponding recordfieldtypes,
and some useful associated functions. Users can also define displaytypes; see Section 15.4
[Defining new displaytypes|, page 55.

integer Ordinary integers.

integer-or-nil
Integers or nil, the empty value; nil is formatted as the empty string.

number Ordinary numbers. A number is an integer or a floating-point number.

number-or-nil
Numbers or nil, the empty value; nil is formatted as the empty string.

Chapter 15: How information is displayed 53

yes-no This displayspec corresponds to the boolean recordfieldtype. The field is three
characters long and contains “Yes” or “No ”.

string Ordinary strings. By default there is no maximum or minimum width or height,
and subsequent lines are indented relative to the first character of the first line.

one-line-string
Strings which may not contain newlines.

string-or-nil
Either a string or the value nil, which is displayed as the empty string.

nil-or-string
Either a string or the value nil. When the user enters the empty string as the
field value, or when a new record is created, the value nil is used in preference
to the empty string.

one-line-string-or-nil
Both a one-line-string and a string-or-nil.

date A date which specifies zero or more of the year, month, and day. The date is
formatted by format-date and parsed by parse-date-string; see below for
details.

time A time which specifies zero or more of the hour, minute, and second. The time
is formatted by format-time and parsed by parse-time-string; see below for
details.

15.2.1 Date displaytype

EDB defines a date abstraction and a variety of useful operations upon it; the best way to
learn about these features is to read db-time.el

This section provides more detail about the date displaytype. A date specifies a year,
month, and day (all integers); any or all of these components may be omitted. Dates are
created by the constructor make-date and a date’s components are retrieved using the
selectors date-year, date-month, and date-day.

make-date
Make an EDB date object with arguments year month day.

[[[Document parse-date-string, format-date, simple-format-date, def-xxx-type.]]]

[[[T added several useful (to me, anyway) displayspecs for various date types. These
are meant to be used in a display spec, like: \datefield,date-mmddyy The displayspecs are
implemented with similarly named formatting functions, which I also implemented. All
of the new formatting functions are named format-date-XXX, where XXX are the various
styles. 1]]

15.2.2 Time displaytype
[[[Similarly to the above, for times.]|]

Chapter 15: How information is displayed 54

15.3 Enumeration types

An enumeration displaytype is used for fields whose values are one of a fixed set of alter-
natives. Each alternative may be a single character (say, M or F for gender) or specifyable
by a single character (for example, if the first letters of the alternatives are unique); the
user need only type a single character in order to select one of the alternatives. Another
possiblity is that each alternative consists of an entire string entered with completion. (The
string may consist of only a single character if desired, but the user must still type RET
after entering the string.) The internal representation of the data—its recordtype—meed
have nothing to do with the way that the alternatives are specified. The next two sections
describe the two types of enumeration displaytypes, which are nicknamed one-char-enum
and (for the multicharacter alternative type) enum.

15.3.1 One-character enumeration displaytypes

One-character enumeration displaytypes are not yet implemented.

define-one-char-enum-displaytype
Not documented.

15.3.2 Multi-character enumeration displaytypes

Multi-character enumeration displaytypes require a user to enter an entire string in order to
specify one of the alternatives. This typing may be done with completion in the minibuffer,
meaning keys such as TAB and 7 will complete a partly-entered choice or list the remaining
possibilities. (For more about completion, see Section “Completion” in The GNU Emacs
Manual.) The internal, input, display, and file storage represenations of the value may all be
different. Multi-character enumeration displaytypes (also known as enum displaytypes) are
created by calling the following function, which also creates a corresponding recordfieldtype.

define-enum-type
Make typename (a symbol or string) an enumerated type. Both a displaytype
and a recordfieldtype are created.

alternatives is a list. Each alternative is a list of up to four components: the
internal representation, any constant Lisp object, often a string; the input rep-
resentation typed by the user to specify this alternative, a string or list of strings
(for multiple input representations); the display representation, a string; and
the file storage representation, a string.

If the input representation is omitted and the internal representation is a string,
that string is used. If the display representation is omitted, it defaults to the first
input representation. The display representation is automatically also a valid
input representation. If the file storage representation is omitted, it defaults to
the display representation. If all the other components are omitted, the internal
representation string may be used in place of a one-element list containing just
it.

Optional argument optstring is a displayspec option string.

When a record field’s type is an enum type, both EDB and code written by the database
designer may assume that the value in the record field is one of the valid representations.
(Similarly, when a field’s type is string, EDB can assume that the field content is actually a

Chapter 15: How information is displayed 55

string.) This means that the empty string, nil, and other special values must be specifically
mentioned when the enumeration type is defined. Here is a way to define an enumeration
type which is either a day of the week or the empty string:

(define-enum-type 'workday
'("Monday" "Tuesday" "Wednesday" "Thursday" "Friday" ""))

If it is possible for the field value to be nil (but not the empty string) after reading the
database, and nil should be displayed as “Unknown” (and that string parsed into a value
of nil), the following definition suffices:

(define-enum-type 'workday
' ("Monday" "Tuesday" "Wednesday" "Thursday" "Friday" (nil "Unknown")))

15.4 Defining new displaytypes

When you are about to type a complicated display specification—or a simple one more than
once—consider defining and using a displaytype instead. Displaytypes are more concise (and
5o less cumbersome and less error-prone), easier to change (since a change to the displaytype
can affect every display specification that uses it), and clearer (since a descriptive typename
makes immediately clear what the intention is). Furthermore, displaytypes can be built up
incrementally, with each one making a few changes to those from which it inherits defaults.

There are two ways to define a new displaytype; each requires specifying the name of
the displaytype and some formatting information to be associated with that displaytype.

The first method permits a displaytype to be specified by the optional part of a display
specification, which is a string consisting of comma-delimited optional parameters. The
first optional parameter may be a type, in which case the defaults for values not explicitly
set in the other parameters are taken from that type.

define-displaytype-from-optstring
Define a displaytype named typename according to optstring. typename is a
symbol or string and optstring is the optional parameters part of a display
specification string.

The second method is more useful for complicated displaytypes; it is also somewhat more
efficient, which is why the file db-types.el uses it to define the standard predefined types.
This method is to create a displayspec directly, modify it as desired using the structure slot
modifiers (i.e., displayspec-set-slotname; see Section 15.5 [Display specification optional
parameters|, page 56, for a list of slotnames), and then associate a typename with the
displayspec. In fact, this is precisely what define-displaytype-from-optstring does.

define-displaytype-from—-displayspec
Define a displaytype named typename (a symbol) with the default displayspec.
displayspec may also be a typename symbol itself.

make-displayspec
Create and return a new displayspec.

displaytype—>displayspec
Return a copy of the displayspec corresponding to string or symbol displaytype.
Return nil if there’s no corresponding displayspec.

Chapter 15: How information is displayed 56

15.5 Display specification optional parameters

This section describes the display specification optional parameters, which correspond ex-
actly to slots of the displayspec, EDB’s internal representation of the display specification.

Optional display specification parameters are separated only by commas; display speci-
fications never contain whitespace. These parameters are of two forms: slotsetters, which
are a single word and set a slot to a particular value; and slot assigners, which are of the
form “slotname=value” and set the slot to the value. Unless otherwise specified, each slot
can be set by a slot assigner whose name is the same as that of the slot. An example of
a display specification containing two optional parameters, one a slot assigner and one a
slotsetter, is ‘\name ,width=16,unreachable’.

Display specification fields are processed in order, so only the last instance of a particular
parameter has any effect. Any explicitly specified parameter overrides defaults, values
inferred from the type, or previously specified parameters.

If you find yourself repeatedly writing similar display specifications, or large, bulky
display specifications, consider defining a new type to do some or all of the work for you;
see Section 15.4 [Defining new displaytypes]|, page 55.

record-index
This integer is the field index in a database record of the value formatted by
this displayspec. This is set by looking up the fieldname part of the displayspec.

indent This a boolean value determines whether the second and subsequent lines should
align with the beginning of the first one or should be flush left, in column 0.
It is set and unset with the indent and noindent slotsetters. The first of the
following displays has indent set, and the second does not:

Name: John Doe
Address: 123 Main St.
Anyplace, USA

Name: John Doe
Address: 123 Main St.
Anyplace, USA

This causes alignment of the first character of subsequent lines with the first
character of the first line; it does not do anything clever with whitespace in the
field value, nor does it align different lines differently.

min-width

max-width
These integers are the minimum and maximum widths which the display may
occupy. If the formatted value is too short, the function in the padding-action
slot is called to lengthen and/or justify it. If the formatted value is too long,
the function in the truncation-display-action slot is called to shorten it; if
that slot is empty, the field is simply truncated. The width slot assigner sets
both the min-width and max-width displayspec slots. The min-length, max-
length, and length slot specifiers are synonyms for the min-width, max-width,
and width slot specifiers.

Chapter 15: How information is displayed 57

min-height

max-height
These are analogous to min-width and max-width, but for the number of lines
occupied by the formatted value (actually, the number of newlines in the string,
plus one). There is a height slot assigner which sets them both.

truncation-display-action
This function helps reduce the size of the formatted value when it is too large
to fit in the specified displayspec size. It defaults to simply truncating the
formatted field to the maximum permissible size. It may also be set with the
trunc-display slot assigner. At present, this function is only called if the
formatted value is too wide; there is no analogous function called when it is too
tall.

padding-action
This function determines how a field that is too small for the displayspec (that
is, the printed representation contains fewer characters than specified in the
min-width slot) should be expanded to fit. The padding function takes three
arguments: the minimum length, the unpadded display representation, and the
length of that representation.

The padding-action slot may also be set to a cons of a padding character and
a padding direction: nil for left-justification (padding on the right), and non-
nil for right-justification. (You cannot set the padding-action displayspec
slot to a cons by using a display specification, since display specifications may
not contain whitespace, so the easiest way to right-justify a single field is to use
the right-justify slotsetter.) The default, which can also be obtained just
by setting the slot to nil, is to pad on the right with space characters.

actual->display

display->actual
These functions actually do the work of converting between the data’s internal
representation and its displayed representation (a string). Other functions (such
as those in the truncation-display-action and padding-action slots) may
then be called on the result returned by the actual->display function. These
slots may be set with the a->d and d->a slot assigners.

The display->actual function takes either one argument or four arguments:
either just the field text or the field text, the previous field value, the record
being operated upon, and the record fieldnumber of the field in question. EDB
ascertains at runtime how many arguments the function should be applied to.
The old field value is passed in case it contains hidden (undisplayed) attributes
that need to be preserved across changes. The other two arguments permit a
particular display->actual function to be used for more than one field of a
record, allow the field text parse to depend on other record field values, and
provide for other complicated needs. Most display->actual functions can be
specified to take a single argument.

The actual->display function takes either one argument or three arguments:
either just the field value or the field value, the record, and the record fieldnum-
ber. EDB ascertains at runtime how many arguments the function should be

Chapter 15: How information is displayed 58

applied to. The reasons the additional arguments may be specified are similar
to those outlined above (for instance, to permit the displayed representation of
a field to depend on other information in the record); most actual->display
functions will just take one argument—for intance, upcase is a valid actual-
>display function.

match-actual->display

match-display->actual
These functions are like actual->display and display->actual, but are only
invoked when reading a displaying a search specification. If they are not spec-
ified (as will usually be the case), then the ordinary (match--less) versions are
used for search specifications too. This is used, for instance, for the string type,
so that dbm-string-prefix-regexp can be used to specify a regular expression
search rather than a substring search.

These slots should be set to symbols, not to functions proper; that is, to specify
that function foo should be use, set the slot to 'foo, not to (function foo).

I don’t know that these belong in the displayspec, but I don’t quite know where
they do belong.

truncation-editing-action
This function specifies what to do when a field being edited is too large for the
specified displayspec size; this action may be different from that taken when
simply displaying the offending value. It may also be set with the trunc-edit
slot assigner.

reachablep
A Boolean value determining whether movement commands should skip this
display field. The reachable and unreachable slotsetters are used to assign a
value to this slot.

15.6 Display specification abbreviations

Complicated display specifications—those which specify more than a few optional
parameters—can clutter the display format, keeping it from looking like the data
display buffer will when a database record is being displayed. The user may tolerate the
complicated display specification, define a new displaytype (which would permit the display
specification to consist of just the fieldname and displaytype), or use a field abbreviation
which is defined elsewhere in the format file. The display specification abbreviation
is a symbol which expands to a full display specification; when a field specification
consisting of only the abbreviation is encountered, the expansion is substituted and
processing continues. (Actually, a displayspec corresponding to the expansion is used, but
since displayspecs are immutable, this doesn’t make a difference.) Display specification
abbreviations can be much more concise than ordinary display specifications, which
contain at least a fieldname and often other information to boot.

[[[How to define display specification abbreviations.]]] [[[Poorly-named variable dbf-
fieldabbrevs controls this; it isn’t getting set anywhere, though.]]]

99

16 Customization

16.1 Awuxiliary and format files

A database designer can customize a database by providing code to be executed when the
database is read in (see Section 14.5 [Reading from disk], page 49). The optional auxiliary
file usually contains the code specific to a particular database, but the format file, which
specifies the on-screen arrangement of fields of a record, can also contain such code.

Since the auxiliary file is read after the format file has been found but before it has been
parsed, neither file can specify the other. The format file can, however, load arbitrary files,
which is nearly as good as being able to specify an auxiliary file.

The auxiliary file can be specified in the aux-file database slot; if it isn’t, EDB looks
for a file with the same name as the database file, but ending with one of the suffixes in
db-aux-file-suffixes.

db-aux-file-suffixes
List of auxiliary file suffixes; the basename is that of the database file. The
suffixes are tried in order; the default is (".dba" ".aux" "a"). The . that may
precede the extension must be specified explicitly.

db-aux-file-path
List of directories (strings) to search, in order, for auxiliary files not found in
the directory with their associated databases.

The auxiliary file is evaluated in the data display buffer and so can set variables local to
that buffer, such as hooks (see Section 16.2 [Hooks and customization functions], page 60).
The database itself can be manipulated via the dynamic variable database or the buffer-
local variable dbc-database. For instance, auxiliary files often set the print-name slot of
their associated databases.

Code in an auxiliary file should be specific to the particular database; more general code
is best placed in a separate file which is loaded (or, better, required) by the auxiliary file.
For instance, if you want to permit EDB to manipulate files of type Foo, you should put all
Emacs Lisp code that applies to every Foo file in one file (db-foo.el, say), and then put
(require 'db-foo) in the auxiliary file associated with a particular Foo file. (Alternately,
you may autoload a function that will be called in the auxiliary file; function db-tagged-
setup is autoloaded from db-tagged.el in this manner.) Either technique keeps auxiliary
files simple and small and makes Foo-specific code easier to debug, byte-compile, and load
only once per session. These advantages easily outweigh the introduction of an extra file.

Since the format file has not yet been interpreted, the auxiliary file could even change
the contents of the buffer (and so the apparent contents of the format file); such extreme
trickiness is only called for in special circumstances.

The format file can contain Emacs Lisp code in its “Local Variables” section; that
code can do anything that the code in the auxiliary file can do. If the format file is not
named explicitly in the database (in the default-format-file slot), then function db-
file->format-file tries to find one based on the database file name and the suffixes in
db-format-file-suffixes; if that doesn’t work either, the user is prompted for a display
format to use.

Chapter 16: Customization 60

db-format-file-suffixes
List of format file suffixes; the basename is that of the database file. The suffixes
are tried in order; the default is (".dbf" ".fmt" "f"). The . that may precede
the extension must be specified explicitly.

db-format-file-path
List of directories (strings) to search, in order, for format files not found in the
directory with their associated databases.

Code in the format file is useful for customizations specific to a particular format (such
as setting variables which are local to the data display buffer); they can also be used for
database-specific customizations if the database designer is sure that the file will always be
the primary (first-selected) format for the database.

16.2 Hooks and customization functions

Hooks are variables whose values are “hook functions” (or lists of hook functions) which are
called at particular times, such as when EDB has finished loading (to permit the user to
load customization code) or when a value has just been changed. Since hook functions can
contain arbitrary code, they permit very powerful customizations. Customization functions,
like hooks, can call arbitrary code, but are single functions, never lists. Sometimes “hook”
is used to mean either a hook or a customization function.

The following sections describe EDB’s hooks and customization functions. Many of
these hooks are change hooks, which permit a function (or functions) to be run whenever
a value changes. These change hooks may be divided into two basic types: format change
hooks and recordfieldspec change hooks. The former are associated with a particular display
format and are invoked when the value in a particular field, or in any field, changes. The
latter (which are not yet implemented) are associated with a recordfieldspec and are invoked
whenever a database record slot of a particular type is changed.

16.2.1 Load and read hooks

After EDB has finished loading, the following hook is run. This permits user customizations
to be loaded automatically when EDB is (rather than being loaded unconditionally in the
.emacs file, for instance), and permits users to change the definitions of functions defined
by EDB, if desired.

db-load-hooks
Function or list of functions run after loading EDB. You can use this to cus-
tomize key bindings or load extensions.

The following two hooks are useful for causing database values seen by EDB to be
different than those in the database file. The first can be used to modify the database file
before it is read in; the second can be used to modify the database after it has been read
in but before the user has had a chance to see it.

db-before-read-hooks
Function or list of functions run immediately before a database is first read
but after all local variables are set. The hooks are run in the data display
buffer with variable database bound. Variable db-buffer is bound to a buffer
containing the database file.

Chapter 16: Customization 61

This is a global variable. If you set it to be specific to a particular database (for
instance, in the format or auxiliary file), then consider having its last action be
to reset the variable to nil.

db-after-read-hooks
Function or list of functions run after a database is completely read. The hooks
are run in the data display buffer with variable database bound. For databases
with nonregular formats, you might put a call to database-stored->actual
here, for instance.

This is a global variable. If you set it to be specific to a particular database (for

instance, in the format or auxiliary file), then consider having its last action be
to reset the variable to nil.

16.2.2 Database minor mode hooks

EDB provides hooks that are run whenever the data display buffer is switched between view
mode and edit mode and which are run when a summary buffer is created.

db-view-mode-hooks
Function or list of functions called when database view mode is entered.

db-edit-mode-hooks
Function or list of functions called when database edit mode is entered.

database-summary-mode-hooks
Function or list of functions run when switching to database summary mode.

16.2.3 Record display hooks

The following function is run by the display-record function, which places a record’s
values in a data display buffer, each time a record is about to be displayed.

dbf-before-display-record-function
A function called before a record is displayed by display-record. The function
should take one argument, the record.

This is a good place to put calls to db-alternate-format. Depending on your
function’s implementation, however, you may silently override any user calls to
that function.

Here is an example of how you might use this:

(defun set-format-from-data (record)
(if (< 0 (record-field record 'net-profit dbc-database))
(db-alternate-format "loss format" "~/acct/db/loss.fmt")
(db-alternate-format "profit format" "~/acct/db/profit.fmt")))

(setq dbf-before-display-record-function 'set-format-from-data)

This uses two different display formats, depending on the value of one field of a record.
As the user moves from record to record in the database, each one is shown using the
appropriate display format. A preferable implementation omits the filenames from the calls
to db-alternate-format and instead uses, in the format or auxiliary file,

(setq dbf-alternate-format-names

Chapter 16: Customization 62

'"(("loss format" . "“/acct/db/loss.fmt")
("profit format" . "“/acct/db/profit.fmt")))

See the example file arb-demo.dba for an example of this. dbf-alternate-format-
names need not specify the full pathnames if the format files are located in the same directory
as the database or if ‘"~/acct/db"’ is placed in db-format-file-path.

It would also be profitable to set dbf-format-name to whichever the first format was
(this could be done in the format file’s “Local Variables” section so that the first-selected
buffer wouldn’t get read in twice (once when the database was read in and once when
display-record was first called).

Finally, the database designer would probably arrange for there to be a change hook on
the net-profit field so that when its value changed, the record could be redisplayed in the
appropriate format automatically.

16.2.4 Edit mode hooks

This function is called whenever the user enters a field to edit it, which provides an easy
way to customize the behavior of particular format fields.

dbf-enter-field-function
A function called whenever a display field is entered. The function takes the
displayspec index as an argument, which is guaranteed to be dbf-this-field-
index.

It is sometimes advantageous to have a particular action happen only once per edit of
a record. For instance, when a record’s address, city, state, or zip-code fields are edited,
we might like to copy all the values to the old-address, old-city, old-state, and old-zip-code
fields. We only want this to happen once, however: if the user edits first the address, then
the city, we don’t want to repeat the process, because then the old-address field would get
written over by the new value of the address field.

One way to prevent this from happening more than once is to set a variable when the
copying is done, and then don’t do the copying if that variable is set. The variable would
be reset whenever a new record was edited. The following variable, which contains a list of
other variables to reset each time database edit mode is entered, can accomplish just what
is desired, when combined with a judicious use of change hooks.
dbf-reset-on-edit-list

An alist of (variable-name . default-value) pairs. Every time Edit Mode is
entered, these buffer-local variables are reset to their default values. This is

good for making sure that something only happens once each time a record is
edited.

16.2.5 Display format change hooks
The following hook is run whenever a new record is created.

db-new-record-function
Function called on empty records before they’re inserted in the database. Takes
two arguments, the record and the database.

A typical use is to set default information or add a timestamp. For instance:

(defun set-update-date (record database)

Chapter 16: Customization 63

"Provide defaults for new records in the database."
(record-set-field new-rec 'updatedate
(parse-date-string (current-date)) database))|]
(setq db-new-record-function 'set-update-date)

The display format change hooks are called when a user changes a record field value.
There are separate change hooks that run the first time any field is modified, whenever any
field is modified, and whenever a particular field is modified. They run in the order dbf-
first-change-function, dbf-every-change-function, and finally one of the elements of
dbf-change-functions. Each change hook is either nil or a function of three variables:
the fieldname of the just-modified field (a symbol) and the pre- and post-modification
field values. The function should return a boolean which determines whether the entire
record should be redisplayed; it is useful to return t if the change hook modifies fields
other than that named by its first argument, and nil otherwise. (This result is ored
into dbf-redisplay-entire-record-p, which controls whether the record should be com-
pletely redisplayed after a field modification is done, and which may be set directly by the
adventurous.)

dbf-first-change-function
A function called the first time a record field is modified, or nil. The function
takes the fieldname and the old and new values as arguments, and returns t if
the record should be redisplayed.

Here is an example of code to update the last modification field of a record,
assuming its type is date:

(defun update-last-modified-date (fieldname oldvalue newvalue)
"Put the current date in this record's “last modified' field."H
(dbf-this-record-set-field 'last-modified

(parse-date-string (current-date))))l

(setq dbf-first-change-function 'update-last-modified-date)

dbf-every-change-function
A function called whenever a record field is modified, or nil. The function
takes the fieldname and the old and new values as arguments, and returns t if
the record should be redisplayed.

dbf-change-functions
A vector of one function (or nil) per record field (not display field). The
functions take the fieldname and the old and new values as arguments, and
return t if the record should be redisplayed. Use dbf-set-change-function
to set the fields of this vector.

dbf-set-change-function
Set the change function for fieldname to function in the current database. func-
tion should take the fieldname and the old and new values as arguments, and
return t if the record should be redisplayed.

It is easy to make a field’s value dependent on that of another field. For instance,
suppose a salesman’s commission should be 10% of the selling price of an item, and both
fields are of type number. The database designer might choose to make the commission

Chapter 16: Customization 64

field unreachable (see Section 15.5 [Display specification optional parameters|, page 56) and
compute it whenever the selling price field varies. The latter operation could be done as
follows:

(defun set-commission-from-selling-price (fieldname oldvalue newvalue)
;3 If we used (dbf-displayed-record-field 'selling-price) for newvalue, this]]
;5 would work even if not called as a change function for selling-price.|}
(dbf-displayed-record-set-field 'commission (/ newvalue 10)))

(dbf-set-change-function 'selling-price 'set-commission-from-selling-price)f]

The user may modify records explicitly by calling dbf-displayed-record-set-field
(see Section 17.3 [Manipulating records|, page 74); when that is done, the following hook is
invoked. It is different from the above functions in that they are called when the user edits
a field, while it is called when Emacs Lisp code modifies a field (usually as a result of some
user action).

dbf-set-this-record-modified-function
A function called every time the working copy dbf-this-record is created by
dbf-set-this-record-modified-p. The function takes no arguments and its
return value is ignored. It is called after dbf-this-record-original is copied to
dbf-this-record and after dbf-this-record-modified-p is set to t.

Another function is invoked when changes to a record are committed—that is, when
changes to the record which is being displayed are copied back into its original in the
database.

dbf-after-record-change-function
Function called whenever changes to a record are recorded semi-permanently
by dbf-process-current-record-maybe. For convenience, the function takes
the record as an argument, which is guaranteed to be dbf-this-record. Its return
value is ignored.

16.2.6 Recordfieldspec change hooks

Recordfieldspec change hooks are not yet implemented.

16.3 Local variables

Variables may be specified to be local to a particular data display buffer or to a database;
that is, when the variable’s value is changed in one data display buffer or in one database,
its value elsewhere is unaffected.

16.3.1 Per-data-display-buffer variables

Per-data-display-buffer variables permit different data display buffers to have different val-
ues for variables. This feature is heavily used by the EDB implementation; for instance, the
per-buffer variable dbc-database records which database the data display buffer is display-
ing. Per-data-display-buffer variables are also useful when several data display buffers are all
displaying the same database. The built-in Emacs function make-variable-buffer-local
makes an ordinary variable local to every buffer.

Chapter 16: Customization 65

db-default-field-type
The type to use for record fields whose type is not explicitly specified.

16.3.2 Per-database variables

Per-database variables permit every data display buffer viewing a particular database to
share information without making it global or interfering with other databases and other
data display buffers. When the database is saved in internal EDB file layout, per-database
variables are also saved, so their values persist from one invocation of the database to the
next. Use the following functions to create and manipulate per-database variables.

database-make-local
Declare a database-local variable named by symbol for database. Each such
variable should only be declared once. If optional argument value is specified,
the variable is set to it.

Database designers who are very concerned about speed should arrange to call
this function in increasing order of frequency of variable reference; that is, add
the least-used variables first.

database-local-p
Return non-nil if symbol is a database-local variable for database.

database-set-local
Set the value of database-local variable symbol, in database, to value. symbol
must have been declared by a previous call to database-make-local unless
optional argument no-error is supplied, in which case the function does that
automatically.

database-get-local
Return the value of database-local variable symbol for database. symbol must
have been declared by a previous call to database-make-local unless optional
argument no-error is supplied, in which case nil is returned.

To learn how to set local variables automatically whenever a record is edited, See Sec-
tion 16.2.4 [Edit mode hooks], page 62.

(This section of the manual does not refer to the “Local Variables” section of the database
format file, which may be used to set variables and execute arbitrary Emacs Lisp code when
a data display buffer is being set up; that is described in Section 14.5 [Reading from disk],
page 49.)

16.4 Global variables

This section describes a potpourri of customization variables which you can use to control
EDB’s behavior.

When a potentially slow computation is underway, EDB displays a message in the echo
area reporting how many records have been processed. Use the following variable to control
how often this message is updated.

db-inform-interval
When doing a lengthy computation, inform the user of progress every this many
records. If nil, don’t inform.

Chapter 16: Customization 66

To make EDB use with-electric-help where appropriate instead of with-output-to-
temp-buffer, set the following variables, which default to nil. You must have ehelp.el
on your load path or have already loaded it.

use-electric-help-p
Non-nil if Emacs programs should use electric help where possible. Don’t set
this to a non-nil value unless the ehelp package is available.

EDB does not simply test for (featurep 'ehelp) because some packages load ehelp
without determining whether the user desires that behavior. Even if that has happened,
users of EDB have a way to retain Emacs’s traditional behavior.

with-electric-help-maybe
Similar to ‘with-electric-help’ if use-electric-help-p is non-nil; otherwise like
with-output-to-temp-buffer with the "*Help*" buffer. Ehelp is loaded if
necessary. body is not a thunk (a function of no arguments) but simply a set
of forms.

67

17 Database representation

Perhaps the most important information about a database—besides the records it
contains—is the number of fields in each record, and the type of each field. As explained
in Section 1.4 [Terminology], page 4, a database consists of records with identical numbers
of fields; each field has an associated type such as string or integer. Each field also has a
name which is used when extracting its value from the record.

A database is basically just a doubly-linked circular list, where each link contains a
single record. The database contains some additional supporting information, and so does
each link in the list of records. The database is represented as a structure of type database
whose first-1link slot points to the circular list of links. Internally, database records are
represented by vectors; however, the programmer should never manipulate those vectors
directly, only through the functions described in this chapter.

Given a record, it is not possible to determine which link (if any) points to it; similarly,
you cannot go from a link to its containing database. The database-to-link and link-to-
record connections are one-way.

17.1 The database structure

The internal representation of a database is as a structure of type database. The slots of
this structure may be accessed by using the macro database-slotname. The slots may be
set using the macro database-set-slotname, whose second argument is the value to be
stored in the slot.

The slots of the database are as follows:

print-name
A string which briefly describes the database. It appears, among other places,
in prompts for questions regarding the database. It defaults to “Unnamed
databse n”, where the positive integers are assigned to n in order.

first-link
The first link in the database. The links are arranged as a doubly-linked cir-
cular list, and each link contains a record, among other information. See Sec-
tion 17.1.1 [The link structure], page 71.

no-of-records
An integer, the number of records (and links) in the database. The first link is
numbered 1 and the last link is numbered no-of-records.

file A string, the name of the file from which this database was read.

file-local-variables
A string, the text of the “Local Variables” section of the file from which this
database was read, if any.

aux-file A string, the name of this database’s auxiliary file. If it isnil, then a number of
default filenames are tried, based on db-aux-file-suffixes (see Section 16.1
[Auxiliary files], page 59).

Chapter 17: Database representation 68

data-display-buffers
A list of data display buffers which are displaying this database. Since every
summary buffer is associated with (and subordinate to) a data display buffer,
summary buffers are not listed in the database structure.

default-format-file
A string, the name of the default format file for this database. If it is nil, then
a number of default filenames are tried by function db-file->format-file
(see Section 16.1 [Auxiliary files], page 59).

omit-functions
This does not appear to be used at present.

no-of-fields
An integer, the number of fields in each record.

fieldnames
A vector of symbols, the names of the record fields. Function fieldnumber-
>fieldname (see Section 17.3.2 [Accessing record fields|, page 74) uses this to
determine the name of a field, given its index.

The user may set this slot to be a list, and EDB will automatically convert
it to a vector, as well as setting other database slots that can be determined
from it. (When doing so, use database-set-fieldnames-to-1list, which can
safely be placed in any format file, instead of database-set-fieldnames; for
details, see Section 11.1 [Changing display formats|, page 29.) This information
is duplicated in the recordfieldspecs.

database-set-fieldnames-to-1list
Set database’s fieldnames and record field types according to
fieldnames-list. Users should never call database-set-fieldnames
directly. fieldnames-list is a list of fieldnames (symbols); each list
element may instead be a cons of fieldname and type to specify
the field’s recordfieldtype as well. If no type is specified for a field,
the value of db-default-field-type is used.

This function sets several database slots besides the fieldnames slot,
but has no effect if the fieldnames slot of the database is already
set.

The following call specifies three fields of types one-line-string, integer, and
string, presuming that variable db-default-field-type (see Section 16.3.1
[Per-data-display-buffer variables|, page 64) has not been changed from its de-
fault of string:

(database-set-fieldnames-to-list database '((name . one-line-string)fj

(age . integer)
address))

fieldname-alist
An alist of fieldnames and indices. Function fieldname->fieldnumber (see
Section 17.3.2 [Accessing record fields], page 74) uses this to determine the
index of a field, given its name.

Chapter 17: Database representation 69

recordfieldspecs
A vector of symbols or recordfieldspecs which specify the type of each record
field. If the value is a symbol, it is a record field type name which is converted
to a recordfieldspec via function recordfieldtype->recordfieldspec, which
performs a lookup in db-recordfieldtypes. To access or change a particular
recordfieldspec, use the following functions:

database-recordfieldspec
Return the recordfieldspec of database corresponding to record-
index. Dereferences via recordfieldtype->recordfieldspec any
symbol found in the recordfieldspecs slot of database.

database-recordfieldspec-type
Return the type of the recordfieldspec of database corresponding
to record-index.

database-set-recordfieldspec
Set the recordfieldspec of database corresponding to record-index
to rs. Use this to redefine, on a per-field basis, subfields of the
recordfieldspec.

field-priorities
Determines in which order fields are compared when sorting records, and which
fields are ignored entirely.

This slot’s vlaue is a cons of two lists: the first list contains fields that will be
used for sorting, and the second list is the ignored fields. Each list consists of
pairs of fieldnumber and order-info. The user may use nil for the second list
when setting this slot. EDB always maintains the list of ignored fields, however,
as its order might be worthwhile—for instance, for reminding the user of what
the order used to be.

The order-info specifies how the field should be sorted: in increasing order, in
decreasing order, according to some list of values (if the field is of enumerated
type), or according to an arbitrary function. To choose the default ordering, or
its inverse, use the symbol increasing or decreasing. Otherwise, order-info
is a cons of type and value, where type is a symbol (one of order-function,
sort-function, and order-1list), and value specifies the function or list.

In the sorting section’s example (see Chapter 7 [Sorting], page 21), the record
fields were foo, bar, baz, bum, and bee, and records were to first be sorted on
baz in increasing order, then on foo in decreasing order, and finally on bum in
increasing order, ignoring bar and bee entirely for the purposes of the sort. The
corresponding field priorities list would be

(((2 . increasing) (0 . decreasing) (3 . increasing))
((1 . increasing) (4 . increasing)))

omitted-to-end-p
A boolean which determines whether, when sorting, omitted records should be
sorted in the usual way or placed at the end of the sorted order.

Chapter 17: Database representation 70

internal-file-layout-p
A boolean which determines whether the database will be saved in internal file
layout. This has no effect when the database is read, but it is set at read time
so that, by default, the database will be written out as it was read in.

Setting this slot, then saving the database to disk, is a good way to convert
the database to or from internal file layout. It can be set in the usual way, or
interactively via use of the following function:

M-x db-toggle-internal-file-layout
Toggle whether the database will be saved in EDB’s internal file
layout. With a nonzero prefix argument, set it to use internal file
layout. With a zero prefix argument, set it not to use internal file
layout.

record-sepinfo

field-sepinfo

alternative-sepinfo
These sepinfos are used when reading databases with regular file layouts. A
sepinfo contains a particular string, a regular expression, or a function that
specifies how pieces of information are separated in the disk file (for more about
the sepinfo struture, see Section 14.2.1 [How to specify regular file layouts],
page 41). These sepinfos describe how to separate records, fields within a record,
and alternatives within a field. (The latter is not yet fully implemented.)

read-record-from-region
Nil or a function of no arguments which returns a record read from the cur-
rent region of the current buffer. For details, See Section 14.4 [Nonregular file
layout], page 47.

write-region-from-record
Nil or a function which takes a record as its argument and inserts the file
representation of that record in the current buffer. For details, See Section 14.4
[Nonregular file layout], page 47.

sub-fieldsep-string

sub-recordsep-string
When delimiter substitution is required in reading a database, these strings
are temporarily used to delimit fields and records, respectively. (These strings
replace the actual field and/or record separators before substitution occurs.)
Their values are chosen automatically if these slots aren’t set.

quotation-char
A character which is used to quote delimiters which appear in a database field.
This character is prepended to ambiguous strings; strings preceded by it are
treated verbatim rather than as delimiters. For more about quotation in reading
databases, see Section 14.2 [Regular file layout], page 41.

quotation-char-regexp
A regexp used to recognize the quotation character.

Chapter 17: Database representation 71

quoted-regexp
A regexp which matches all strings that should be quoted. If it is nil, it is set
from the quoted-strings slot.

quoted-strings
A list of strings that should be quoted. If it is nil, then the value returned
by function quoted-strings-default—basically all the strings mentioned in
the database’s record-sepinfo, field-sepinfo, and alternative-sepinfo
slots, plus the quotation-char slot—is used instead.

actual-quoted-regexp
The regexp that is actually used for finding quoted strings. The user should
never set this slot.

substitutions
An alist of actual and stored strings which permits translations from how the
data appears in the data file to how it should really look; for instance, in data
files with the tab-separated text layout, fields may not contain newlines, so any
newlines in the data can be converted to some other character (such as ‘°K’)
when the database is written and then converted back when it is read in again.
For more about substituion in reading databases, see Section 14.2 [Regular file
layout], page 41.

modified-p
Non-nil if this database has been modified since it was last read or written.

modifiable-p
Non-nil if this database may be modified. It is set to nil if the database file
is not writable, and occasionally for other reasons. This does not prevent the
user from editing edit mode, only from making changes while in edit mode.

The slot may be set directly, the following function is bound in view, edit, and
summary modes to permit the slot to be changed interactively.

C-x C-q (db-toggle-modifiable-p) Toggle whether the database may be
modified by the user. With a nonzero prefix argument, set it mod-
ifiable. With a zero prefix argument, set it non-modifiable.

locals An alist of symbols and values for per-database variables. (For the number
of local variables I expect each database to have, an alist is faster than a
hashtable, and it’s easier to save to disk besides.) Such variables should be
created with database-make-local, set using database-set-local (note the
singular form) and dereferenced with database-get-local; for more informa-
tion about these functions, see Section 16.3 [Local variables|, page 64.

17.1.1 The link structure

The records of the database—the information that the user cares most about—are kept
in a doubly-linked list, one record per link. The link structure also contains some other
information about the record which doesn’t belong in the record proper. The slots of a link
are listed below; a slot may be accessed by using the macro link-slotname and set using
the macro link-set-slotname, whose second argument is the value to be stored in the slot.

prev The previous link in the circular list.

Chapter 17: Database representation 72

next The next link in the circular list.

omittedp

markedp These booleans are non-nil if this record is marked or omitted, respectively.
For more information about marking and omitting, see Chapter 9 [Marking and
omitting], page 25.

summary A string which is used to represent this record in the summary buffer, or nil
if the record’s value has changed since the last summary buffer was made (or if
no summary buffer has been made).

record The database record proper, a vector with as many elements as the record has
fields. Setting this slot with the 1ink-set-record function also has the effect
of setting the summary slot to nil, which is usually what is desired; to set only
the record slot, use the 1ink-set-record-slot macro instead.

17.2 Mapping over the database

Mapping refers to applying a function to each link or record in the database, or executing
a piece of code for each link or record. Four functions provided this capability. The first
two, more complicated, ones, provide access to each link of the database in turn.

maplinks Apply FUNC to every link in database. If optional third arg omit is non-
nil, apply FUNC only to unomitted links. If optional fourth arg message is
non-nil, it should be a format string containing one numeric (%d) specifier.
That message will be issued every db-inform-interval links. If optional fifth arg
accumulate is non-nil, return a list of the results; otherwise return nil.

In the body, variable maplinks-index is bound to the index of the link being
operated upon, and maplinks-link is the argument to FUNC. The loop may
be short-circuited (aborted) by calling maplinks-break. To avoid the per-link
function call overhead, use maplinks-macro instead.

maplinks-macro
Execute BODY for each link in database, and return nil. If optional third arg
omit is non-nil, execute BODY only for unomitted links. If optional fourth
arg message is non-nil, it should be a format string containing one numeric
(%d) specifier. That message will be issued every db-inform-interval links.

In the body, variable maplinks-link is bound to the link being operated upon,
and maplinks-index is bound to its index. The loop may be short-circuited
(aborted) by calling maplinks-break. Speed demons should call this instead
of maplinks to avoid a function call overhead per link.

maplinks-break
Cause the maplinks loop to quit after executing the current iteration. This is
not a nonlocal exit! It sets a flag which prevents future iterations. Actually, it
sets maplinks-link.

Two other functions provide a slightly different interface which simplifies access to each
record. Links and the information contained in them are not accessible from database
records, but when that information is not of interest, these functions provide direct access
to records.

Chapter 17: Database representation 73

maprecords
Apply FUNC to every record in database. Return nil. If optional third arg
omit is non-nil, apply FUNC only to unomitted records. If optional fourth
arg message is non-nil, it should be a format string containing one numeric
(%d) specifier. That message will be issued every db-inform-interval records. If
optional fifth arg accumulate is non-nil, return a list of the results; otherwise
return nil.

This is syntactic sugar for a call to maplinks, which see. See also maprecords-
macro.

maprecords—macro
Execute BODY for each record in database, and return nil. If optional third
arg omit is non-nil, execute BODY only for unomitted records. If optional
fourth arg message is non-nil, it should be a format string containing one
numeric (%d) specifier. That message will be issued every db-inform-interval
links.

In the body, variable maprecords-record is bound to the record being operated
upon. The loop may be short-circuited (aborted) by calling maprecords-break.

This is syntactic sugar for a call to maplinks-macro, which see. See also
maprecords.

maprecords-break
Cause the maplinks loop to quit after executing the current iteration. This is
not a nonlocal exit! It sets a flag which prevents future iterations. Actually, it
sets maplinks-link.

For instance, to sum, for all records, the values contained in field summand (of type
number), you could use any of the following forms, presuming that variable database was
set to the database in question:

(let ((result 0))
(maplinks-macro
(setq result (+ result (record-field (link-record maplinks-1link)
'summand database)))
database)
result)

(let ((result 0))
(maprecords-macro
(setq result (+ result (record-field maprecords-record 'summand database)))]]
database)
result)

(let ((result 0))
(maprecords
(function (lambda (record)
(setq result (+ result (record-field record 'summand database)))))
database)
result)

Chapter 17: Database representation 74

(apply (function +)

(maprecords
(function (lambda (record) (record-field record 'summand database)))
database nil nil t))

17.3 Manipulating records

A database consists of records, each of which has the same makeup: corresponding fields
in a database’s records contain data of the same type. For instance, the fifth field of each
record might contain an address, and the seventh field, a date. The particular addresses
and dates would would vary from record to record. (Different databases will contain records
with different numbers and types of fields.) Each field has a name and a type, which specifies
what sort of information can be stored in the field; for more details about record field types,
see Chapter 13 [Record field types], page 35.

Records are represented internally as vectors, but should never be operated on as such;
use the abstractions described in this section.

17.3.1 Creating and copying records

make-record
Return a record with number of fields specified by argument database.

When the user creates a new record by using db-add-record (see Section 4.5
[Adding and removing records|, page 15), db-new-record-function is invoked
(see Section 16.2.5 [Display format change hooks], page 62), the number of
records in the database is modified, and so forth. make-record, on the other
hand, performs none of these housekeeping tasks.

copy-record
Return a copy of record.

copy-record-to-record
Copy the field values of the source record to the target record.

17.3.2 Accessing record fields

Ordinarily, record fields are accessed by specifying the name of the desired field; the data-
base must also be specified so that the fieldname-to-fieldnumber correspondence can be
determined.

record-field
Return from record the field with name fieldname. Third argument is database.

record-set-field
Set, in record, field fieldname to value. Fourth argument database. Check
constraints first unless optional fifth argument nocheck is non-nil. This version
correctly deals with reversed value and database arguments.

There are also special commands for manipulating the current record—that is, the one
that appears in the data display buffer. They are better because they require fewer ar-
guments, flag that a redisplay of the record is necessary, and automatically call dbf-set-
this-record-modified-p, which is essential if the changes are to be copied back into the

Chapter 17: Database representation 75

original record in the database from the one that is being displayed. (A copy is always
displayed so that changes can be gracefully undone.)

dbf-displayed-record
Return the record currently displayed in this data display buffer. This is dbf-
this-record if dbf-this-record-modified-p is non-nil and dbf-this-record-original
otherwise.

dbf-displayed-record-field
Return the value of the field named fieldname from the displayed record.

dbf-displayed-record-set-field
Set field with name fieldname in displayed record to value. Cause the entire
record to be redisplayed pretty soon.

dbf-displayed-record-set-field-and-redisplay
Set field with name fieldname in displayed record to value. Cause the entire
record to be redisplayed immediately.

dbf-set-this-record-modified-p
Set the value of dbf-this-record-modified-p to arg. If arg is non-nil and dbf-
this-record-modified-p is nil, also do the necessary record-copying and call
dbf-set-this-record-modified-function.

It is also possible—and more efficient—to use the fieldnumbers directly. The data-
base does this internally, remembering fields by their numbers and only converting to
fieldnames when interacting with the user. Adopting such a strategy for all field ac-
cesses would be cumbersome, error-prone, and make reading code difficult, but in some
situations—particularly when record-field or record-set-field is being called with a
constant second argument—it is worthwhile. The code can be sped up by allocating a
variable for the fieldnumber, looking it up after the database has been loaded (for instance,
by calling fieldname->fieldnumber after database-set-fieldnames-to-list or in db-
after-read-hooks), and then using that variable along with record-field-from-index
or record-set-field-from-index.

Do not confuse the record fieldnumber, which describes in what order fields happen to
occur in the database’s internal representation of a record, with the format fieldnumber,
which describes in what order fields are displayed in the data display buffer.

fieldname->fieldnumber
Given a fieldname and database, return a record fieldnumber. Do not be fooled
into thinking this is a format fieldnumber.

fieldnumber—->fieldname
Given a record fieldnumber and database, return a record fieldname. The first
argument is not a format fieldnumber.

record-field-from-index
Return from record the value of the fieldnoth field.

record-set-field-from-index
Set, in record, the fieldnoth field to value. Checks field constraints first if
database is non-nil.

Chapter 17: Database representation 76

17.3.3 Mapping over record fields
To perform an action on every field of a record, use the following function or macro.

mapfields
Apply func to each field in record, with variable mapfields-index bound. Third

argument is database.

mapfields-macro
Execute body for each field of record, a record of database, with variables

mapfields-field and mapfields-index bound.

7

18 Naming conventions

18.1 Function and variable naming conventions

The names of EDB’s functions and variables contain one of the following prefixes:

edb-

db-

database-

dbc-

dbf-

dbs-

dbfs-

dbsi-

These variables contain information about EDB such as the version number,
last modification date, or names of the files comprising EDB. They do not
relate to general database functionality, only to this particular implementation.

In a variable, indicates that the variable is global and affects all databases. In
a function, indicates that the function is user-visible and may be called inter-
actively. It is also used in some situations for internal database functionality
which is not connected with any particular buffer.

These functions operate on the (internal representation of) the database struc-
ture itself.

Indicates a variable local to the data display buffer which refers to the current
database (the database being manipulated by that data display buffer), or a
non-user-visible function which manipulates such variables. The ‘¢’ stands for
“current.”

Indicates a variable local to the data display buffer which controls some aspect
of formatting, or a non-user-visible function which manipulates such variables.
The ‘f’ stands for “format”; many such variables are intimately related to the
format, and the data display buffer used to be called the format buffer.

Indicates a variable local to the summary buffer, or a summary buffer function.
Since the summary buffer may disappear at any time, the summary buffer gets
most of its information from the associated data display buffer’s local variables.

Indicates a variable which is too important to be kept only in the summary
buffer, which may disappear at any time, but is so often used by the summary
buffer that it would be inefficient to keep it only in the data display buffer.
Such variables are kept in both the data display and summary buffers.

Indicates a variable local to a sort interface buffer, or a sort interface function.

18.2 File naming conventions

The names of EDB’s files contain one of the following suffixes:

.dat

.fmt

.dba

These are database files proper; they contain the information that makes up
the fields and records of the database. Database filenames may also contain no
extension at all.

Format files control the structure of the data display buffer, which displays one
record at a time.

Auxiliary files contain arbitrary Emacs Lisp code; they can be used to define
functions, set variables, or operate directly on the database.

For more information, see Section 1.2 [Invoking EDB], page 2.

Function Index

A

after-find-file-edb.......... 5

B

byte-compile-database 5,8,9
byte-compile-database-all.................... 9

C

COPY=TECOTA . ottt ettt eeii e 74
copy-record-to-record 74

D

database-get-local........................... 65
database-local-p..............oiiiiiii... 65
database-make-local...............coiiin... 65
database-recordfieldspec.................... 69
database-recordfieldspec-type.............. 69
database-set-fieldnames..................... 68
database-set-fieldnames-to-1list. 33, 35, 46, 68
database-set-local.....................a... 65
database-set-recordfieldspec............... 69
database-sortoiiiiiiiiiiiiii 38
database-stored->actual..................... 61
date->storage-string 37
date->storage-string-lisp................... 37
date->storage-string-mmddyyyy.............. 37
date-dayoiLL 53
date-month............. il 53
date-yearc.cuiiiiiiiii 53
db-accept-record........... ..ol 15
db-add-record............iiiiiiiii 15, 74
db-additional-data-display-buffer 31
db-alternate-format 29, 30, 61
db-commit-record.................l 15
db-copy-recordttt 15
db-delete-record.................. 15
db-emergency-restore-format 7
db-exit 16
db-field-help.............. 18, 39
db-file->format-file........................ 59
db-find-file........... il 2
db-first-field............... 14, 18
db-first-record............... L. 14
db-insert 9
db-jump-to-record............l 14
db-kill-buffers............. 16
db-last-field................. 14, 18
db-last-recordoiiiiiiiiiiia. 14
db-mark-recordl 25
db-mark-unomitted-records................... 26
db-next-field L 18

78

db-next-line-or-field....................... 18
db-next-marked-record....................... 26
db-next-record.............. 14, 17
db-next-record-ignore-omitting............. 26
db-next-screen-or-record.................... 14
db-omit-record il 25
db-omit-unmarked-records.................... 26
db-omitting-setiiiiiiiiiiiii 27
db-omitting-toggle............. 27
db-output-record-to-db...................... 15
db-prepare-to-debug..................l 10
db-previous-field.......................... 18
db-previous-line-or-field................... 18
db-previous-marked-record................... 26
db-previous-record....................... 14, 17
db-previous-record-ignore-omitting........ 26
db-previous-screen-or-record 14
db—quit ... 16
db-Teport ... 28
db-revert-database................. 15
db-revert-field.............................. 17
db-revert-record............... ...l 15
db-save-database................l 2
db-search.............ooiiiiiiiiiiiiiiii i 19
db-search-field.............................. 19
db-setup-format 49
db-setup-format-parse-displayspecs 50
db=SOTt ... 21
db-summaryoiiiiiii 24
db-tagged-setup..................iill 46
db-this-buffer 5
db-toggle-internal-file-layout............. 70
db-toggle-modifiable-p.............oovinnnn. 71
db-toggle-show-omitted-records............. 27
db-unmark-all 26
db-unomit-all 26
db-view-mode............ i, 17
db-write-database-file....................... 2
dbc-set-omit-p.........l 26
dbf-always............oiiiiiiiiiii 30
dbf-displayed-record 75
dbf-displayed-record-field.................. 75
dbf-displayed-record-set-field............. 75
dbf-displayed-record-set-field-and-
redisplayooiiiiiiii i 75
dbf-process-current-record-maybe........... 64
dbf-set-change-function..................... 63
dbf-set-summary-format 24, 30
dbf-set-this-record-modified-p......... 64, 75
dbsi-decreasingo 21
dbsi-increasing, 21
dbsi-kill-line 21
dbsi-list........oooiiiiiiiiiiiiiii 22
dbsi-ordering-function...................... 21

dbsi-quit.......oooiiiiiiiiii 22

Function Index

dbsi-quit-clear-buffer-default............. 22
dbsi-sorting-function.................... ... 21
dbsi-this-field-onlyoo.... 22
dbsi-toggle-omitted-to-end.................. 21
dbsi-use-ordering................. 22
dbsi-use-ordering-make-buffer-default..... 22
dbsi-use-ordering-make-database-default... 22
dbsi-yank-linel 21
debug-on-errorl 10
define-displaytype-from-displayspec....... 55
define-displaytype-from-optstring 55
define-enum—type..........c.ccuuiiiiiiiiiiiann. 54
define-one-char-enum-displaytype........... 54
define-recordfieldtype-from-
recordfieldspec.............coiuinnn. 35, 36
define-type-alias............................ 37
display-record...............ooiiinn. 7, 30, 61
displaytype->displayspec.................... 55

E

fieldname->fieldnumber 68, 75
fieldnumber->fieldname 68, 75
FANA=File. ... 2,5
format-date.......... il 53
format-date-full...................cooiann. 37

I

S 1 1= <5 s AP 9

K

kill-buffer.......... ... 16

L

link-set-record...........cooiiiiiiiiin... 8, 72
link-set-record-slot 72
load-database..........cooiiiiiiiiiiiiii 8

79

M
make-date............. ... 53
make-displayspec............................ 55
make-n-line-sep-function.................... 43
make-record 48, 74
mapfields........... i 76
mapfields-macro.............................. 76
maplinks....................ooooooo L 72,73
maplinks-breakiiiiiiiiiiian. 72
maplinks-macro.................oiiiiiiaan, 72,73
MAPTECOTAS ...ttt 73
maprecords-break.................. ... 73
maprecords—mMacIOoovvviinnnnnnnn... 73
mde-save-some-buffers 7
P
parse-date-string........................ 37, 53
Q
quoted-strings-default...................... 71
R
record-field.............. ... il 74
record-field-from-index..................... 75
record-set-field 48, 74
record-set-field-from-index 75
recordfieldspec-order-function............. 38
recordfieldspec-sort-function.............. 38
recordfieldtype->recordfieldspec ... 35, 36, 69
right-justifyl 57
right-justify display specification

parameter ... LY
S
save-some-buffers 7,13
simple-format-date........................ ... 37
storage-string->date 37
storage-string-lisp->date................... 37
storage-string-mmddyyyy->date.............. 37
\%\%
with-elecric-help............................. 8
with-electric-help........................... 66
with-electric-help-maybe.................... 66
with-output-to-temp-buffer.................. 66

X

x-flush-mouse-queue.................oouunnnn. 8
x-paste-text...................ooo 9

Variable Index

D

database-summary-mode-hooks 61
db-after-read-hooks 50, 61, 75
db-aux-file-path........................ 59
db-aux-file-suffixes 59
db-before-read-hooks..................... 50, 60
db-databases il 7,8
db-debug-p........... ... 10
db-default-field-type.................... 65, 68
db-delete-record-modifies-database-p...... 16
db-disable-debugging-support............. 5, 10
db-edit-mode-hooks............. ...l 61
db-format-file-path...................... 60, 62
db-format-file-suffixes 59, 60
db-inform-interval...................., 65
db-load-hooksooiiiiiiiiiiiit 60
db-new-record-function 62, 74
db-parse-buffer-error 7
db-recordfieldtypes.............cooiiiiiiii 69
db-sort-modifies-p.............l 23
db-tagged-continuation...................... 46
db-tagged-continuation-output.............. 46
db-tagged-continuation-regexp.............. 46
db-tagged-rrfr-hooks 47
db-tagged-separator...................o.o... 46
db-tagged-separator-output.................. 46
db-tagged-separator-regexp.................. 46
db-tagged-tag-chars...................o.o... 46
db-tagged-wrfr-after-hooks.................. 47
db-tagged-wrfr-before-hooks 47
db-view-mode-hooks................... 61
dbc-omit-p.......... .. 26
dbf-after-record-change-function........... 64
dbf-alternate-format-names.............. 29, 62
dbf-always—forms..........ccoiiiiiiiiiiiinnn. 30
dbf-before-display-record-function........ 61

dbf-change-functions 63

80

dbf-enter-field-function.................... 62
dbf-every-change-function................... 63
dbf-field-priorities..................... 22, 38
dbf-first-change-function................... 63
dbf-format-file................l 30
dbf-format-name................... 29, 61
dbf-omitted-to-end-poii.L. 22
dbf-redisplay-entire-record-p.............. 63
dbf-reset-on-edit-list...................... 62
dbf-set-this-record-modified-function..... 64
dbf-summary-show-omitted-records-p........ 24
dbm-string-prefix-regexp.................... 58
debug—on—error ... 11

E

edb-directory..........l 6

F

find-file-hoOKS ...t 5

I

inhibit-local-variables..................... 50
inhibit-quit.........l 7
insert-hooK....... ..o 9

P

print-length...........l 10
print-level............ o ool 10

U

use-electric-help-p.......................... 66

Concept Index

*
‘*Database-Log*’ buffer......................... 9
dat filesuffix ... 2
dbafilesuffixoooooi 2
cemacs file..... ... 5, 6
gmt filesuffix ..o 2
<

<, in search pattern............................ 19
=, in search pattern.............., 19
>

> in search pattern............................ 19

1

14-character file names.......................... 9

A

a->d display specification parameter............ 57
accepting changes............... .. 15
accessing record fields.................., 74
actual->display displayspec slot.............. 57
actual->stored recordfieldspec slot............ 39
actual-quoted-regexp database slot........... 71
adding arecord........... ool 15
adding fields o 33
additional data display buffers, making......... 31
alternate display formats.................... ... 29
alternative-sepinfo database slot............ 70
alternatives, in enumeration types.............. 54
ambiguities in database files, resolving.......... 43
apparently circular structure being printed 10
autoloading EDB oo 5
aux-file database slot................., 67
auxiliary file oo 59
auxiliary filename........... oL 59

81

B

backtrace, viewing circular structures........... 10
beginning of file, text at................. 41
boolean recordfieldspec............., 36
bugs, reportingo i 11
byte-compiling EDB 5
byte-compiling EDB, trouble with............... 8

C

change hooks, for display formats 62
change hooks, for recordfieldspecs.............. 64
change-hook recordfieldspec slot 39
Changes to the field might have been lost........ 7
changes, accepting them 15
changes, committing them 15
changes, making them permanent 15
changing display formats....................... 29
circular structures, printing 10
committing changes................ 15
common-form-function recordfieldspec slot 38
compiling EDB 5
compiling EDB, trouble with.................... 8
constraint-function recordfieldspec slot 39
converting a file to or from EDB internal layout. 40
copying records 74
creating a database 32
creating records............. 74
custom-print package il 10
customization............. o i oL 59
customization functions........................ 60
customization, global variables................. 65
cutting, using the mouse 9

D

d->a display specification parameter............ 57
data display buffer, omitting fields 30
data display buffer, trouble with................. 7
data display buffers, making additional......... 31
data file layout........... oL 40
data file layout, internal........................ 40
data file layout, nonregular..................... 47
data file layout, regular 41
data file layout, tagged................ 45
data-dependent display format 61
data-display-buffer-local variables 64
data-display-buffers database slot........... 68
database edit mode ool 17
database file layoutl 40
database files, editing L 12
database minor mode hooks.................... 61
database representation........................ 67

database structure............................. 67

Concept Index

database summary mode....................... 24
database view mode............ ... oL 14
database-local variables........................ 65
date displaytype L. 53
date recordfieldspec............ ... ool 37
date-efficient-storage recordfieldspec............ 37
date-or-nil recordfieldspec...................... 37
debugging EDB...... 9
debugging messages, enabling 9
default-format-file database slot............ 68
default-value recordfieldspec slot............. 38
defining displaytypes..........cooiiiiiiiian. 55
deleting arecord............. oo il 15
deleting fields ... 33
delimiters, record and field..................... 41
dependent field values.................. 63
designing a database................ 32
diff files to upgrade EDB........................ 7
display format change hooks 62
display format file name.................. 59
display format, alternate....................... 29
display format, data-dependent................. 61
display format, selecting 29
display format, specifying 51
display format, swallowed characters 51
display format, variant......................... 29
display specification..............o 51
display specification optional parameters 56
display->actual displayspecslot.............. 57
displayspec fields.o 56
displayspec structure............... ... il 56
displaytype, compared to record field type...... 35
displaytype, defining L 55
displaytype, not set by display specification. 38, 52
displaytypes, predefined........................ 52

E

edb-list mailing list 6
EDB internal layout, converting to or from..... 40
EDB, new versions of o 6
EDB, upgrades...........coooiiiiiiiiiii 6
editmode..........cooiiii i i 17
edit mode hooks il 62
editing database files............ 12
ehelp package........ ... it 66
electric help packageol 66
Emacs initialization file.............. 5, 6
enabling debugging messages.................... 9
end of file, text at............coiiiiii ., 42
enforcing constraints........... 39
enumeration types............ ..o 54
eval expressions, in format file.................. 30
example databases, getting via ftp............... 5
exiting database mode 16
exiting Emacs, trouble with 7

82
F
field delimiters.............oiiiiiiiiii i, 41
field separator, setting, 41
field type, record......... ... i, 35
field-priorities databaseslot............... 69
field-sepinfo databaseslot................... 70
fieldname-alist database slot................. 68
fieldnames database slot...................... 68
fields, accessing them in records................ 74
fields, adding i 33
fields, deleting il 33
fields, reading them in records.................. 74
fields, rearranging............. ... o i, 33
fields, reorderingcoviiiiiiiiiiii... 33
fields, setting them in records.................. 74
fieldspec, see recordfieldspec.................... 37
file databaseslot o i 67
file format for data file.............. 40
file layout........oovuiinii i 40
file layout for data file............ 40
file layout, internal 40
file layout, nonregular........... 47
file layout, regular oL 41
file layout, tagged oL 45
file name, for auxiliary file 59
file name, for display format 59
file naming conventions 7
file-local-variables database slot........... 67
filesused by EDB....... ...t 2
files, editing database 12
find-file-hooks........ ... i 5
first-link databaseslot...................... 67
floating-point number displaytype.............. 52
floating-point number recordfieldspec........... 36
format file...... 59
format filename oL 59
format file, eval expressions in.................. 30
format file, local variables section 30
format file, path to search...................... 59
format file, primary........... 2, 30
format name....... oo 29
format, of data file............................. 40
format-spec structure 29
fourteen-character file names.................... 9
function naming conventions 7
H
height display specification parameter 57
help for record fields 18
help-info recordfieldspec slot.................. 39
hooks. ... 60
hooks, change, for display formats.............. 62
hooks, change, for recordfieldspecs.............. 64
hooks, database minor mode 61
hooks, edit mode.................ooiiiiia. 62

hooks, record display............. 61

Concept Index

I

I was confused about where I was................ 7
indent displayspecslot 56
insert-hook....... i 9
inserting arecord 15
installing EDB....... oo 5
integer displaytype............ oL 52
integer recordfieldspec 36
integer-or-nil displaytype................ 52
integer-or-nil recordfieldspec 36
internal data file layout 40
internal-file-layout-p database slot..... 48, 70
interpreted code, running................ 8
invalid function compilation error 8
invalid read syntax: "#" oo 10
invoking EDB..... 2

J

justification of display fields.................... 57

K

killing a database buffer............... 16
killing arecord......... oo 15

L

last modification field 63
layout, of data file 40
left justification of display fields................ 57
link structure............ .. i 71
loading EDB.......... . i 5
local variables........... ... it 64
local variables section of format file.. 30, 49, 50, 67
local variables, per data display buffer.......... 64
local variables, per database................ 65, 71
locals database slot........................... 71
log, of debugging messages...................... 9
long file names, trouble with 9
looping over the database...................... 72

M

mailing list for EDBo 6
making a database............ L 32
making changes permanent..................... 15
mapping over the database..................... 72
markedp link slot.............ol 72
marking ... 25
match-actual->display displayspec slot 58
match-display->actual displayspec slot....... 58
match-function recordfieldspec slot............ 39
max-height displayspecslot.................... 57
max-width displayspec slot..................... 56
merge-function recordfieldspec slot............ 38

min-height displayspecslot.................... 57

83
min-width displayspecslot..................... 56
mode line.......... .. . 12
modifiable-p databaseslot.................... 71
modified-p database slot 71
moving from field to field 18
moving from record to record............... 14, 17
multi-character enumeration displaytypes....... 54
N
name of a database 67
naming conventions for files.................... 7
naming conventions for functions and variables. 77
new records, settting default information....... 62
new versions of EDB......... 6
newline, at end of database file................. 45
next linkslot...... o 72
nil-or-string displaytype................ 53
nil-or-string recordfieldspec..................... 37
no-of-fields databaseslot.................... 68
no-of-records database slot................... 67
noindent display specification parameter....... 56
nonregular file layout oL 47
number displaytype..........cooiiiiiiiiiiii 52
number recordfieldspec........... 36
number-or-nil displaytype...................... 52
number-or-nil recordfieldspec................... 36
O
omit-functions database slot.................. 68
omitted-to-end-p database slot 69
omittedp link slot..........ol 72
omitting........... ... 25
omitting fields from a data display buffer....... 30
one-character enumeration displaytypes 54
one-line-strin-gor-nil recordfieldspec............ 37
one-line-string displaytype 53
one-line-string recordfieldspec.................. 37
one-line-string-or-nil displaytype 53
order-fn recordfieldspecslot................... 38
order-function recordfieldspec “slot”.......... 38
ordering functions...........ol 23

Concept Index

P

padding-action displayspecslot............... 57
pasting, using the mouse 9
patching to upgrde EDB L 7
per-data-display-buffer variables................ 64
per-database variables 65
post-last-regexp sepinfoslot................. 43
post-last-regexp-submatch sepinfo slot....... 43
post-last-string sepinfoslot................. 43
pre-first-regexp sepinfoslot................. 42
pre-first-regexp-submatch sepinfo slot....... 42
pre-first-string sepinfoslot................. 42
predefined displaytypesccooviii.... 52
predefined recordfieldspecs 36
prevlinkslot......... i 71
primary format file.................... 2,30
print-name database slot 67
printing circular structures............... 10
problems, reportingo 11
Q

quitting database mode 16
quotation-char databaseslot.................. 70
quotation-char-regexp database slot.......... 70
quoted-regexp database slot................... 71
quoted-strings databaseslot.................. 71
quoting, in reading a database file.............. 45

R

reachablep displayspec slot.................... 58
read-record-from-region database slot.... 48, 70
reading a database from disk.................... 2
reading from disk, details 49
reading large database isslow.................. 40
reading record fields 74
rearranging fields L 33
record delimiters.............. oo 41
record display hooks 61
record field indexl 56
record field type i 35
record field type, compared to displaytype...... 35
record field type, specifying 35
record fields, accessing 74
record link slot............ ... o il 72
record representation................. 74
record separator, setting 41
record-index displayspec slot.................. 56
record-sepinfo databaseslot.................. 70
recordfieldspec change hooks................... 64
recordfieldspec structure 37
recordfieldspecs databaseslot 69
recordfieldspecs, predefined..................... 36
regular file layout oL 41
removing arecord. ..., 15
reordering fields............ oo 33

reporting bugs in EDB............ ... o 11

84
reporting problems with EDB.................. 11
reporting trouble with EDB................. ... 11
TEPOTES .o 28
representation of database 67
resolving ambiguities in database files.......... 43
reverting changes to a field..................... 17
reverting changes to arecord................... 15
right justification of display fields 57
S
saving files, trouble with 7
saving todisk........o i 2
search patterns ool 19
searching 19
selecting only some records..................... 25
sep-function sepinfoslot...................... 42
sep-regexp sepinfoslot........................ 42
sep-regexp-submatch sepinfo slot.............. 42
sep-string sepinfoslot........................ 42
separator, setting field 41
separator, setting record 41
sepinfo examples........... ... ool 43
sepinfo structure................ i, 41
setting record fields.............. L. 74
simultaneously manipulating two records....... 31
simultaneously using two formats............... 31
slot assigners, for display specifications......... 56
slotsetters, for display specifications............ 56
slow reading of large databases................. 40
sort-fn recordfieldspec slot.................... 38
sort-function recordfieldspec “slot”........... 38
SOItING. ..o 21
sorting functions........... i 23
specifier, formatol 29
specifying a record field type................... 35
startingup EDB......... 2
stored->actual recordfieldspec slot............ 39
string displaytype............o i 53
string recordfieldspec...............coiiiii... 36
string-or-nil displaytype........................ 53
string-or-nil recordfieldspec..................... 37
sub-fieldsep-string databaseslot............ 70
sub-recordsep-string database slot........... 70
substituion, in reading a database file 44
substitutions databaseslot................... 71
summary format, setting....................... 24
summary link slot........... ool 72
summary mode 24

Concept Index

T

tab-separated text file layout................... 41
tagged file layout il 45
texinfo, EDB uses version 2 6
texinfo, produces filenames too long............. 9
three file types used by EDB.................... 2
time displaytype oo 53
time recordfieldspec.......... oL 37
trouble with compiling EDB..................... 8
trouble with data display buffer 7
trouble with exiting Emacs...................... 7
trouble with file name length.................... 9
trouble with saving files......................... 7
trouble with undefined variables................. 7
trouble, reporting............... .l 11
trunc-display display specification parameter . 57
trunc-edit display specification parameter. 58

truncation-display-action displayspec slot... 57
truncation-editing-action displayspec slot... 58

two formats, using simultaneously.............. 31
two records, manipulating simultaneously 31
type recordfieldspec slot 38
type, display, defining................ 55
type, display, predefined..................... ... 52
type, record field........ oo il 35

type, specifying record field 35

85
U
undoing changes to a field...................... 17
undoing changes to a record.................... 15
uneditable fields in data display buffer.......... 58
unreachable display specification parameter. ... 58
upgrades to EDBol 6
using the mouse, trouble with................... 9
AV
variable default value missing 7
variable documentation missing 7
variable naming conventions.................... 77
variable not known to be defined 8
variables, per-data-display-buffer............... 64
variables, per-database................. 65
variant display formats......................... 29
version number, of EDB................ 11
view mode. ... 14
\%\%
width display specification parameter 56
write-region-from-record database slot... 48, 70
writing todisk.......o 2
Y
yes-no displaytypeol 53

Short Contents

1 Introduction 1
2 Installation)
3 Databasemode e 12
4 Database view mode. i 14
5 Database edit mode 17
6 Searching......... ... e 19
T SOTING . o vttt 21
8 Summary mode.ot 24
9 Marking and omitting. i i 25
10 Reports .. e 28
11 Specifying the display format........... 29
12 Designing a database i 32
13 Record field types 35
14 Database file layout i 40
15 How information is displayed 51
16 Customizationo 59
17 Database representation............... 67
18 Naming conventionsc.ouuiiiieeeeennnn. 7
Function Index 78
Variable Index. 80

Concept Index. . ..o 81

Table of Contents

1 Introduction.............. 1
1.1 Organization of this manualot 1
1.2 Invoking EDBo 2
1.3 Example EDB sessioncooiiiiiiiiiiiiiiiii i 3
1.4 Terminologycouuuu i 4

2 Installation....................... ... 5
2.1 EDBisin beta test........c.oooiiii i 6
2.2 Incase of trouble...... 7

2.2.1 Datadisplay buffer 7
2.2.2 Variables 7
2.2.3 Exiting Emacs or saving files......................., 7
2.2.4 Compiling EDB ... 8
2.2.4.1 Expected compilation errors.............cooooiiiiin. 8
2.2.4.2 Load EDB before compiling it.......................... 8
2.2.4.3 No insert-hook.......... ..o 9
2.2.5 Using the mouse.o, 9
2.2.6 Long file names.o.uiiiiiii i 9
2.2.7 Debugging EDB 9
2.2.7.1 Enabling debugging messagescoevvn... 9
2.2.7.2 Printing circular structures oL 10
2.2.8 Reporting bugs ... 11

3 Databasemode 12

4 Database view mode 14
4.1 Moving around in the database.............. oL 14
4.2 Changing to edit mode 14
4.3 Undoing all changes to arecord...............ccoiiiiiiiii . 15
4.4 Making changes permanent.............. ..., 15
4.5 Adding and removing records. 15
4.6 Exiting database mode i 16

5 Database edit mode 17
5.1 Exiting edit modeo 17
5.2 Undoing changes to afield............ i, 17
5.3 Moving from record to record......... i, 17
5.4 Moving from field to field............. L 18
5.5 Movement within a field........... i i 18
5.6 Editing afield...... ... i 18
5.7 Getting helpo 18

ii

6 Searching............ 19
6.1 Search patterns......... ... 19
6.1.1 Basic patterns.oouuiiiiiiiii i e 19

6.1.2 ComPATISOIIS . ..\ vttt ettt ettt e et 19

6.1.3 Logical connectives......... ... 20

6.1.4 Other pattern operationsc.ooiiiiiiieiiia... 20

T SOrting 21
7.1 Sorting and ordering functions............ i 23

8 Summary mode.................., 24
9 Marking and omitting.......................... 25
9.1 Setting the mark and omit bits........... 25
9.2 Movement among marked and omitted records.................. 26
9.3 Details of omitting ... 26
10 Reports i 28
10.1 Bugs in report generation i i 28
11 Specifying the display format 29
11.1 Changing display formats........... ..., 29
11.2 Execution of format file eval expressions....................... 30
11.3 Making additional data display buffers.................. 31
12 Designing a database....................... ... 32
12.1 Creating a new database i, 32
12.2 Manipulating database fields il 33
13 Record field types.................. .. 35
13.1 Specifying a record field type......... ..o, 35
13.2 Predefined record field types..........cooiiiiii i 36

13.3 The recordfieldspec structure........... ... oL, 37

iii

14 Database file layout 40
14.1 Internal file layout........ ..o 40
14.2 Regular file layout........ ... o i 41
14.2.1 How to specify regular file layouts 41
14.2.1.1 The sepinfo structure............. ... oo, 41
14.2.1.2 Examples of setting record and field separators....... 43
14.2.2 Resolving ambiguities ... 43
14.2.3 Problems with end-of-file newlines 45
14.3 Tagged file layoutt e 45
14.4 Nonregular file layout i 47

14.4.1 Example of database in nonregular file layout............. 48
14.5 What happens when a database is read in from disk 49

15 How information is displayed................. 51
15.1 Display specifications............ oo 51
15.2 Predefined displaytypescovveiiiniiiii i 52

15.2.1 Date displaytypec.cooviiiiii i 53
15.2.2 Time displaytype. ... 53
15.3 Enumeration typesoeeiiiiiiiiii e 54
15.3.1 One-character enumeration displaytypes 54
15.3.2 Multi-character enumeration displaytypes................. 54
15.4 Defining new displaytypes ..o, 55
15.5 Display specification optional parameters...................... 56
15.6 Display specification abbreviations............................. 58

16 Customization................................. 59
16.1 Auxiliary and format files L. 59
16.2 Hooks and customization functions 60

16.2.1 Load and read hooks 60

16.2.2 Database minor mode hooks..................... 61

16.2.3 Record display hooks........... ..., 61

16.2.4 Edit mode hooks i i 62

16.2.5 Display format change hooks 62

16.2.6 Recordfieldspec change hooks............ 64

16.3 Local variables 64
16.3.1 Per-data-display-buffer variables.......................... 64
16.3.2 Per-database variables............. o i 65

16.4 Global variables. . ..o 65

iv

17 Database representation...................... 67

17.1 The database structure.................. ... 67
17.1.1 The link structure......... ..o i 71

17.2 Mapping over the database.............. 72
17.3 Manipulating records.......... ... i i 74
17.3.1 Creating and copying records............ccoviiiiiiio... 74
17.3.2 Accessing record fields............ ... 74
17.3.3 Mapping over record fields................ ... il 76

18 Naming conventions........................... 77
18.1 Function and variable naming conventions..................... 77
18.2 File naming conventions.............ccooiiiiiiiiiiiiiiiiiia.. 77
Function Index 78
Variable Index.................., 80

Concept Index, 81

	1 Introduction
	Organization of this manual
	Invoking EDB
	Example EDB session
	Terminology

	2 Installation
	EDB is in beta test
	In case of trouble
	Data display buffer
	Variables
	Exiting Emacs or saving files
	Compiling EDB
	Expected compilation errors
	Load EDB before compiling it
	No insert-hook

	Using the mouse
	Long file names
	Debugging EDB
	Enabling debugging messages
	Printing circular structures

	Reporting bugs

	3 Database mode
	4 Database view mode
	Moving around in the database
	Changing to edit mode
	Undoing all changes to a record
	Making changes permanent
	Adding and removing records
	Exiting database mode

	5 Database edit mode
	Exiting edit mode
	Undoing changes to a field
	Moving from record to record
	Moving from field to field
	Movement within a field
	Editing a field
	Getting help

	6 Searching
	Search patterns
	Basic patterns
	Comparisons
	Logical connectives
	Other pattern operations

	7 Sorting
	Sorting and ordering functions

	8 Summary mode
	9 Marking and omitting
	Setting the mark and omit bits
	Movement among marked and omitted records
	Details of omitting

	10 Reports
	Bugs in report generation

	11 Specifying the display format
	Changing display formats
	Execution of format file eval expressions
	Making additional data display buffers

	12 Designing a database
	Creating a new database
	Manipulating database fields

	13 Record field types
	Specifying a record field type
	Predefined record field types
	The recordfieldspec structure

	14 Database file layout
	Internal file layout
	Regular file layout
	How to specify regular file layouts
	The sepinfo structure
	Examples of setting record and field separators

	Resolving ambiguities
	Problems with end-of-file newlines

	Tagged file layout
	Nonregular file layout
	Example of database in nonregular file layout

	What happens when a database is read in from disk

	15 How information is displayed
	Display specifications
	Predefined displaytypes
	Date displaytype
	Time displaytype

	Enumeration types
	One-character enumeration displaytypes
	Multi-character enumeration displaytypes

	Defining new displaytypes
	Display specification optional parameters
	Display specification abbreviations

	16 Customization
	Auxiliary and format files
	Hooks and customization functions
	Load and read hooks
	Database minor mode hooks
	Record display hooks
	Edit mode hooks
	Display format change hooks
	Recordfieldspec change hooks

	Local variables
	Per-data-display-buffer variables
	Per-database variables

	Global variables

	17 Database representation
	The database structure
	The link structure

	Mapping over the database
	Manipulating records
	Creating and copying records
	Accessing record fields
	Mapping over record fields

	18 Naming conventions
	Function and variable naming conventions
	File naming conventions

	Function Index
	Variable Index
	Concept Index

