
Dynamic Macro

A program for creating structured text in GNU Emacs

Wayne Mesard

November 1991, Version 2.0

Copyright c© 1991 Wayne Mesard.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the same conditions as for modified versions.

1

Administrivia

This manual and the Dmacro software package may be redistributed only under the terms
of the GNU Emacs General Public License. See Section “General Public License” in Gnu
Emacs Manual, for details.

Questions, problems, suggestions should be sent to ‘WMesard@Oracle.com’. Enhance-
ment requests are always welcome. Be sure to mention the version of Dmacro that you’re
using.

The author would like to thank Jan-Erik Strömquist and Dean Norris for their numerous
suggestions and bug reports on the beta versions of this release; and Aamod Sane for
converting this manual to Texinfo format.

2

Overview

Dynamic Macro is a program for creating structured text in Emacs. It can significantly
reduce typing time and increase the formatting consistency of source code and other struc-
tured text. It allows users to easily construct and use dynamic macros for complex text
such as time stamps, comments and common program blocks.

There are three levels of interaction with Dmacro:

• DM users – people who use existing Dmacro files when writing source code or some
other document.

• DM builders – people who create new Dmacro files or modify old ones. Requires
minimal knowledge of Elisp (e.g., what a symbol is; how to customize a .emacs file).

• DM function builders – people who create new functions. Requires proficiency in Elisp
(e.g., how to invoke and define Elisp functions).

This document covers each of these levels more or less in sequence. So if you find yourself
getting bored and/or confused, you’ve probably read far enough.

3

1 Dmacros for C — A tutorial

This section is a step-by-step illustration of how a user interacts with Dmacro. Most of
Dmacro’s basic features will be touched on. Familiarity with Emacs is expected. The
example uses a collection of macros built for writing C programs. Familiarity with C is not
required for this tutorial, but it will probably help.

If Dmacro has already been properly installed at your site (see Chapter 3 [Installation],
page 10), load it by typing: M-x load-library RET dm-c RET If this generates an error you
must do it the hard way, using the load-file command to load the file dmacro.el and
dm-c.el. Type:

M-x load-file RET mydirectory/dmacro.el RET

M-x load-file RET mydirectory/dm-c.el RET

where mydirectory is the name of the directory where you unpacked Dmacro. If either
of these produces an error message, contact your system administrator or local Emacs guru
for help.

Now let’s begin, the demo. Since the macros we’re working with are for writing C
programs, we need an empty C-mode buffer to work with. Type:

C-x C-f ~/dmacro-demo.c RET

But wait a minute! Even though it’s a new file, it contains a comment block like this:

/* Copyright (c) 1991 by A BIG Corporation. All Rights Reserved */

/***

NAME

dmacro-demo

PURPOSE

NOTES

HISTORY

wmesard - Dec 24, 1991: Created.

***/

What happened was that the masthead macro automatically got inserted when you created
the file. As you can see, masthead contains standard information that might go at the top
of any C file. Notice that it contains the current year and date as well as your user id. It
also contains the name of the current file, dmacro-demo. The cursor is positioned on the
line below the ‘PURPOSE’ header so that you may immediately begin typing to fill in the rest
of the comment block.

Automatic macro insertion is just the beginning; you can also insert macros explicitly.
But first move the cursor below the comment block, to the very end of the buffer:

M->

Now type:

C-c d

This invokes the command, insert-dmacro. Notice that you are being prompted for the
name of a dynamic macro in the minibuffer. Type:

m

Chapter 1: Dmacros for C — A tutorial 4

followed by a question mark:

?

In the ‘*Completions*’ buffer, Dmacro displays a list of all macros that have names
beginning with ‘m’:

Possible completions are:

main mal

masthead

Type question mark a second time:

?

Now the list in the ‘*Completions*’ buffer has expanded so that each macro name is
accompanied by a brief description:

Possible completions are:

main: an empty main() function with args

mal: call to malloc (prompts for var type)

masthead: comment block for the top of a .c file

This two-level help feature can be used whenever you are being prompted for a macro name.
(Feel free to use it as we progress through this tutorial, even though we won’t mention it
again until the very end. In this case we want main, so finish typing the word and hit RET.

The mainmacro gets inserted into the buffer. The cursor is now positioned in the [empty]
body of the function, ready for you to begin typing:

main(argv, argc)

char **argv;

int argc;

{

}

Let’s insert a printf statement. For this we use the p macro. Type:

C-c d p RET

The following is inserted with the cursor at the start of the string:

(void) printf("\n");

Finish the command by typing some text like ‘Hello world’.

Now, let’s make the program a little more interesting. Position the cursor after the left
curly brace (‘{’). Add a variable declaration before the printf command:

Linefeed int mycounter;

Now let’s try a for loop. Move the cursor so that it’s on the right curly brace (‘}’).
and type:

C-c d ifor RET.

The skeleton of a for statement is inserted:

for (<var> = 0; <var> < ; ++<var>)

{

}

Chapter 1: Dmacros for C — A tutorial 5

and in the minibuffer, Dmacro is prompting you for the name of the increment variable
to use. Enter the name of the variable you just declared:

mycounter RET

Notice that the placeholders are replaced by the variable name and the entire statement
is indented properly:

for (mycounter = 0; mycounter < ; ++mycounter)

{

}

And, as usual, the cursor is positioned at the point where you’re mostly likely to type next.
Type a 5 to complete the upper bounds condition of the loop.

In addition to setting the point in the right place, the ifor macro sets a mark in its
body. (In fact, this is true of many of the macros defined in dm-c.) So instead of cursoring
down to fill in the body, you can simply type:

C-x C-x

to run the Emacs command exchange-point-and-mark. (‘Point’ is Emacs terminology
for the cursor. See Section “The Mark and the Region” in GNU Emacs Manual, for more
information about marks.)

Using the p macro as before, create the following line:

(void) printf("value is %d\n", mycounter);

Suppose we decide that we want to print something else when the variable is equal to
three. That means we want to wrap the printf command in a conditional statement. Type:

C-u C-c l

(Note that that last character is an ‘L’ not the number ‘1’). At the familiar ‘Dmacro:’
prompt, type:

ife RET

The for loop now looks like:

if ()

(void) printf("value is %d\n", mycounter);

else

Okay, a lot just happened. Let’s look at it again in slow motion. We’ll get to that C-u
in a minute. First let’s look at the C-c l. This key sequence invokes the command dmacro-

wrap-line. This is similar to insert-dmacro (C-c d), but instead of merely inserting the
macro, it wraps the current line inside of the macro. If you look at the buffer, that’s exactly
what happened: the old printf statement got stuck in the middle of the if/else macro.

You may be wondering how Dmacro decides where to stick the text. As we’ve seen,
many macros leave the cursor strategically positioned after they’re inserted. Normally,
dmacro-wrap-line sticks the old text at this point. However, in the current example, the
ife macro leaves the cursor in the parenthesis immediately after the word if.

So how did the printf wind up on the next line? As we saw with ifor, many macros
also set marks. ife does just that, it sets a mark where the then and else clauses go. And
that’s where the mysterious C-u comes in. It tells dmacro-wrap-line to swap the point

Chapter 1: Dmacros for C — A tutorial 6

and the first mark. See Chapter 2 [Using DM], page 8, for more information about this
command, and it’s sibling, dmacro-wrap-region.

Now back to our tutorial. Type:

C-x C-x

The cursor jumps back to the mark (which would normally be the point). Enter the condi-
tion for the if statement:

mycounter != 3

Now move the cursor down to the line below the word ‘else’ and enter the else clause
(using the p macro if you like):

(void) printf("and now for something completely different\n");

Finally, lets add a comment. Move the cursor up to the beginning of the main() body
and create a blank line. Now put a comment on that line by typing:

M-; Tab

An empty comment gets created. (This is an Emacs thing, not a Dmacro thing, although
it would be easy to create a macro to do this.) Fill it in so that it looks something like:

/* Print the value iff it isn't 3 */

Since you’re a conscientious programmer, you want to initial and date this comment, so
others will know who to blame. Type:

C-c t

Notice that your initials and today’s date get inserted so that the line looks something like:

/* Print the value iff it isn't 3 -wsm12/24/91.*/

Time for some more slow motion playback. Any macro can be bound to a key sequence.
This makes it easy to invoke frequently used macros. In this case, dm-c has a macro named
dstamp that it binds to C-c t. (The t stands for “timestamp”.) So another way to do what
you just did would be to type:

C-c d dstamp RET

Let’s undo what we just did and do it again the long way. This will also give us a chance
to show off another feature of the ‘Dmacro:’ prompt. Type:

C-x u

(or which ever key the undo command is bound to on your system) to undo the last action.
Then type:

C-c d d

but don’t hit RET yet. Type a question mark:

?

Notice that several macro names start with the letter ‘d’ but only dstamp starts with
the letters ds Wouldn’t it be nice if you only had to type enough letters of a macro name
to identify it uniquely, rather than typing the entire name? Well in fact, you can. Type:

s RET

The dstamp macro gets inserted (again).

Chapter 1: Dmacros for C — A tutorial 7

Now let’s take a look at your final product:

/* Copyright (c) 1991 by A BIG Corporation. All Rights Reserved */

/***

NAME

dmacro-demo

PURPOSE

To learn about Dmacro.

NOTES

HISTORY

wmesard - Dec 24, 1991: Created.

***/

main(argc, argv)

int argc;

char **argv;

{

int mycounter;

(void) printf("Hello world\n");

for (mycounter = 0; mycounter < 5; ++mycounter)

{

/* Print the value iff it isn't 3 -wmesard12/24/91. */

if (mycounter != 3)

(void) printf("value is %d\n", mycounter);

else

(void) printf("and now for something completely different\n");

}

}

You’ve created a runnable (albeit, not very useful) C program with far less wear and
tear on your fingertips. Once you get used to Dmacro, you’ll find that it will significantly
reduce the amount of time you spend typing. It can also reduce the effort needed to get
programs to compile since it reduces the risk of syntax errors.

There are many more macros defined in dm-c than the few we covered here. To list them
all type:

C-c d ?

This collection of macros can be used by any C programmer, but it was based on the
coding standards of one particular software house. You are encouraged to extend and
customize it to suit your needs.

8

2 Using DM

This section describes the commands and keys users invoke when inserting macros. See
Chapter 5 [dont-bind-my-keys], page 19, for information about changing the default key
bindings.

2.1 insert-dmacro

This is the main interface to Dmacro. It is normally bound to C-c d. It prompts for a macro
name. Question mark (?) and TAB work as expected during prompting. For example, if you
type ds followed by question mark at the prompt, a buffer will pop up containing a list of
macro names that start with the letters ‘ds’. If you type ? again it will also display the
documentation for those macros, or the actual macro text if the macro is undocumented.

After entering the name, the macro is expanded and inserted in the current buffer.

2.2 dmacro-wrap-line

This is similar to insert-dmacro except that it has the effect of sticking the current line
in the middle of the to-be-inserted macro. It is normally bound to C-c l. For example,
consider a macro named ife that expands to:

if (p)

m

else

m

where the p represents where the point winds up and each m indicates a mark. If you
type ‘abc’ on a line by itself and then invoke dmacro-wrap-line, the result will look like:

if (abc)

else

With a prefix argument the line will be wrapped at a mark instead of point. So in the
current example, typing C-u C-c l would produce:

if ()

abc

else

If a macro has more than one mark, you select which one to wrap at with a prefix
argument. So typing C-u 2 C-c l would use the second mark, producing:

if ()

else

abc

(The observant Emacs user will note that the default value of a prefix argument is 4.
So why did C-u C-c C-l use the first mark? Because DM knows to use the first mark if
the user specifies one that doesn’t exist. (So it looked for a fourth mark, didn’t find it, and
used the first one instead.) Since most macros have, at most, two or three marks, this is a
useful shortcut.)

Chapter 2: Using DM 9

What’s actually happening is that the original line is being deleted, then the macro is
inserted, then the original text is put back in. This mechanism allows the same macros to
be used for both wrapping and insertion. Many macros (such as ife, b, iifd, etc. from
dm-c) are useful for both operations.

2.3 dmacro-wrap-region

This command, normally bound to C-c r is just like dmacro-wrap-line except that it
operates on all the text between point and mark. For example, to wrap several lines of C
code in curly braces using the b macro defined in dm-c.el; or to apply a macro containing
a TEX command to a word or sentence.

Mark-setting commands such as mark-word (ESC @) and mark-paragraph (ESC h) are
useful for specifying the to-be-wrapped region (see Section “The Mark and the Region” in
GNU Emacs Manual).

10

3 Installing Dynamic Macro

This section describes how to make Dmacro a permanent part of your Emacs environment.

1. Put the file dmacro.el, and optionally, dmacro-bld.el and dm-c.el in your Emacs
load-path if they’re not already there. Byte-compile these files after you’ve copied
them over. (See Section “Compiling Libraries” in GNU Emacs Manual, for details.)

2. In your .emacs file, add a command to load each Dmacro file that you plan to use. For
example:

(load "dm-c")

11

4 Creating Macros

This section describes two ways of constructing new dynamic macros. The old-fashioned
way is to create a Dmacro file by hand. However, this release introduces Dmacro Builder,
which allows you to create macros interactively. This section also describes all the built-in
Dmacro functions and modifiers. These are the building blocks from which macros are
constructed.

Dmacros are stored in Emacs Abbrev tables. An Abbrev table is associated with one or
more major modes. For example, macros for Lisp programs would go in the lisp-mode-

abbrev-table, macros for text would go in the text-mode-abbrev-table. If you want a
macro to be available all the time, it should be stored in the global-abbrev-table. See
Section “Abbrevs” in GNU Emacs Manual, for more information about the Abbrev facility.

A Dmacro file is a file containing macro definitions (e.g., the dm-c.el file which came
with the Dmacro distribution). See Chapter 3 [Installation], page 10, for information about
making a collection of macros a permanent part of your Emacs environment. To load
Dmacro files on a per-session basis use the load-file or load-library commands.

4.1 Dmacro Builder

There are an awful lot of syntax rules and other nastiness to be aware of when you are
building macros by hand (see Section 4.2 [Dmacro Files], page 12). Dmacro Builder is
designed to take care of all that for you. See Section 5.1.1 [dont-bind-my-keys], page 19, for
information about changing the key bindings described here.

4.1.1 build-dmacro

Invoke this command by typing:

M-x build-dmacro

to begin defining a new mode-specific macro.

To define a global macro, preface the command with an argument:

C-u M-x build-dmacro

You will be prompted for the name of the new macro and its documentation string. If
the macro already exists, you will be asked if you really want to redefine it. You will then
be advised:

Build macro. Type C-c C-d to insert directive. ESC C-c when done.

Begin typing the text of the new macro. When you’re done, position the cursor at the
end of the text and type M-C-c. All the text between the cursor’s starting location and
its current location will be used as the new macro definition. If any line of the text was
indented, the new macro will automatically indent, as well. If you change your mind, you
can abort the macro definition by typing C-].

4.1.2 dmacro-build-directive

When typing the text of the new macro, you may find that you need something more than
plain old hard-coded text. That’s where dmacro-build-directive comes in. Normally,
this is bound to C-c C-d.

Chapter 4: Creating Macros 12

You will be prompted for a function name and, where appropriate, function arguments.
After you have supplied the required information, the text that would result from the
directive is inserted in the buffer.

For example, if you invoke the ~month function, the text ‘December’ might be inserted.
See Section 4.3.1 [Functions], page 14, for a complete list of DM functions.

4.1.3 dmacro-build-modifier

When the cursor is positioned on or immediately after the text from a directive, you may
apply one or more modifiers to it. Normally, this command is bound to C-c C-m. When
you invoke it, you will be prompted as follows:

Modifiers: (U)pper (L)ower (C)aps (P)ad (S)ubstring (E)xpression. Or Return

Enter one or more of the indicated letters. When you’re finished hit RET. The prompt
will disappear and the modifiers will be applied to the text. See Section 4.3.2 [Modifiers],
page 16, for a complete description of the modifiers.

4.1.4 write-dmacro-file

After you have defined your macros, you can create a Dmacro file to store them permanently.
Type M-x write-dmacros RET. You will be prompted for the name of a file.

4.2 Dmacro Files

A Dmacro file is nothing more than an Elisp file containing one or more Dmacro table
definitions. Each table definition is a call to the Elisp function add-dmacros. This function
takes two arguments: an Abbrev table name and a list of macro definitions. Each macro
definition consists of a list containing the macro name, the macro text, an optional expansion
qualifier and an optional documentation string.

The following expression defines two macros for C-mode:

(add-dmacros 'c-mode-abbrev-table

'(("d" "#define ")

("masthead" "/* File: ~(file). Copyright (c) ~(year) BIG Corp. */\n"

nil "Banner for the top of a source code file")

))

4.2.1 Dmacro Name

This should be an Elisp symbol in double quotes. This is what the user will eventually
enter at insert-dmacro’s prompt to invoke the macro.

4.2.2 Dmacro Text

The text is a string of characters interspersed with Dmacro directives. Each directive is
prefixed by the tilde character (‘~’). So this macro definition:

("test" "I am ~(user-name), and the time is ~(hour):~(min):~(sec).")

might product something like this:

I am Wayne Mesard, and the time is 11:33:20.

Chapter 4: Creating Macros 13

Several functions take arguments. For example, the insert-file function takes a file
name as an argument. So a macro definition using this function might look like:

("test2" "On ~(day) the file contained:\n ~(insert-file \"myfile.txt\").")

Notice that the file name must appear in quotes (because it is a string) and the quotes must
be preceded by backslashes since the directive itself appears in a string. (In Lisp syntax,
string constants begin and end with double-quotes. ‘\"’ stands for a double-quote as part of
the string. ‘\\’ for a backslash as part of the regexp, ‘\t’ for a tab and ‘\n’ for a newline.)

4.2.3 Expansion Qualifier

The expansion qualifier may be omitted (as it was in the two examples above). If specified,
it’s value should be nil or expand for ordinary macro expansion, or indent which means
that in addition to expansion, each line of the expanded text will be indented in whatever
way is appropriate for the current buffer’s mode.

4.2.4 Documentation

The fourth item in a macro definition list is an optional documentation string. See Sec-
tion 2.1 [insert-dmacro], page 8, for a description of how the documentation is accessed by
the user. So a more complete specification of the first example above would be:

("test" "I am ~(user-name), and the time is ~(hour):~(min):~(sec)."

expand "User's name and the current time.")

4.2.5 Shortcuts

If a directive doesn’t have any arguments or modifiers (described below) The parenthesis
may not be needed. In this case, the word immediately after the tilde is used as the directive.
So the previous example could be rewritten as:

("test" "I am ~(user-name), and the time is ~hour:~min:~sec."

expand "User's name and the current time.")

Notice that the parenthesis could not be removed from the ~(user-name) directive, since
the function name is two words long.

4.2.6 define-dmacro-table and define-dmacro

There are two other functions which may be used for macro definition. Neither of them are
recommended. But if you really want them, here they are. define-dmacro-table is just
like add-dmacros, except that it clears out the table before defining the new macros. Use
this function if you want a particular set of macros—and only those macros—defined.

define-dmacro is used for defining a single macro. It takes five arguments. The Abbrev
table, the new macro name, the macro text, the expansion qualifier and the documentation
string.

4.3 Dmacro Directives

At minimum, a Dmacro directive consists of a function name. It may also include arguments
and modifiers. This section describes these parts in more detail.

Chapter 4: Creating Macros 14

4.3.1 Functions

Dynamic Macro functions are the predefined set of routines on which all Dynamic Macro
directives are built. Each function returns a string or nil.

@ Synonym for ~point. See below.

~ A single tilde. Usage: ‘~~’ or ‘~(~)’.

ampm ‘am’ if it’s before noon, ‘pm’ after noon.

chron The complete time stamp as a 24 character string. Example: ‘Tue Dec 24

22:59:00 1991’

date Day of the month as a two digit string (1-31).

day The three character abbreviation for the day of the week. Example: ‘Tue’.

eval Takes a single argument, a Lisp form to be evaluated. This may be any valid
Elisp form. The result is converted to a string (if it isn’t one already). Usage:

~(eval (system-name))

~(eval (yow))

~(eval (mapconcat 'identity

(directory-files "~") "\n"))

The Lisp form must leave the point where it was.

file File name without directory. Example: ‘myfile.txt’.

file-dir Directory without file name. Example: ‘/home/bbush’.

file-ext File name extension. Example: ‘txt’.

file-long

The full name of the file being edited in the current buffer. Example:
‘/home/bbush/myfile.txt’.

file-name

File name without directory or extension. Example: ‘myfile’.

hour The hour as a two digit string (1-12).

hour24 The hour as a two digit string (0-23).

if Takes three args. expression is a directive. then and else can be strings (in
double quotes) or directives. else is optional. If expression returns something
other than an empty string or nil, then is evaluated and returned. Otherwise
else is evaluated and returned. Usage:

~(if (prompt optional-arg) ",")

~(if (eval (getenv "HOME"))

(eval (getenv "HOME")) "unknown!")

insert-file

Takes a single argument, a string containing the name of a file. Returns the
entire contents of that file. mark Tells Dmacro to leave a mark at this position.
The user can jump between the point and the current mark via C-x C-x. If a
macro contains multiple marks, the user can step through them via C-u C-Space

Chapter 4: Creating Macros 15

(or C-u C-@ on terminals which don’t handle C-Space). This is useful for macros
containing complex “fill in the blank” forms. The “mark ring” is one of the
nifty unsung features of Emacs. You are urged to use this function freely (and
make sure to tell your users about the mark manipulation commands).

min The minutes as an unpadded two digit string (00-59).

mon The three character abbreviation of the current month. Example: ‘Dec’.

month The current month (unabbreviated). Example: ‘December’.

month-num

The two digit number for the current month (1-12). point Tells Dmacro to leave
the cursor at this position after the macro is expanded. (Returns nil.)

prompt A user-specified string. Prompts for the string when the macro is expanded.
Takes several arguments, all of which are optional. name is the name of this
prompt; it can be any symbol; the default is “your-text”. prompt-string is
the string to display in the minibuffer at prompt time; the default is name
followed by a colon. prompter is the Elisp function to prompt with; the default
is read-string; other reasonable choices are functions like read-file-name or read-
minibuffer. Any other arguments to ~prompt are passed on to the prompter.
Usage:

~prompt

~(prompt datatype "Enter datatype: ")

~(prompt file-name "Header file name:

read-file-name "/usr/include")

The prompting arguments are only meaningful the first time that a particular
name appears in each macro. They are ignored thereafter (since a particular
prompt can appear multiple times in a macro, but it is only prompted for once).

sec The seconds as an unpadded two digit string (00-59).

shell Takes a single argument, command, a shell command to be run. Returns the
result. Usage:

~(shell "/usr/games/fortune")

~(shell "ls *.c")

Many commands, add a final newline to their output. To suppress the final
newline, specify substring modifiers of 0 and -1. For example:

~((shell "uptime") 0 -1)

dmacro Takes an argument name, which is a symbol corresponding to another macro.
The named macro is expanded and inserted. A second, optional argument,
pointP, if non-nil, will cause point to be left where the inner macro puts it. (By
default, the outer macro—the one that the user invoked directly—has control
of positioning point.) Usage:

~(dmacro malloc)

~(dmacro hifdef t)

If no macro name is currently defined, name itself is inserted. So the following
macro text:

"I play ~(guitar)."

Chapter 4: Creating Macros 16

could produce different results for different people. Someone who plays electric
guitar could define a new macro in his/her personal Dmacro file:

("guitar" "electric guitar")

Look at the mal and ifmal macros in dm-c.el for a more practical example.
(They use this technique with a macro named malloc to allow people to use
different malloc functions without having to modify the Dmacro file.

user-id The current user’s login id. Example: ‘bbush’.

user-initials

The current user’s initials. Example: ‘BB’.

user-name

The current user’s name. Example: ‘Barbara Bush’.

year The year as a four digit number.

4.3.2 Modifiers

Dmacro modifiers are transformations applied to a directive. This section lists the modifiers
available and gives several examples of their usage. Modifiers are applied to a directive using
the following format:

~((function args...) modifiers...)

4.3.2.1 Casification

The three modifiers, :up, :down and :cap will, respectively, convert the text to all upper
case, all lower case, or capitalize each word. So to display the current month in all upper
case, you would use the directive:

~((month) :up)

4.3.2.2 Padding

If the text contains any leading spaces, the :pad modifier can be used to specify how it
should be handled. For example, the ~(hour) directive always produces a two character
string. Before 10 o’clock the first character is a space. To replace the space with a zero,
you would say:

~((hour) :pad ?0)

Notice the question mark ‘?’. The :pad token must be followed by the character to use
as a pad. The question mark is Emacs’ way of saying it is “the character zero” as opposed
to “the number zero.” :pad may also be followed by nil. This means don’t pad at all. So:

~((hour) :pad nil)

would return a one character string before 10 o’clock.

4.3.2.3 Substrings

You may only be interested in a portion of the string returned by a directive. To return
a part of the string, specify the position of characters in which you are interested. If you
specify a negative number, Dmacro counts from the end of the string. For example:

~((user-id) 0 2) ==> wm

Chapter 4: Creating Macros 17

~((user-id) 2) ==> esard

~((user-id) -5) ==> esard

The behavior is the same as the Elisp function substring, except that the original string
is returned if there’s an error. For example:

~((user-id) 150 200) ==> wmesard

4.3.2.4 Sub-expressions

If you specify the :sexp modifier, Dmacro will return sub-expressions instead of a substring
of the original text. (An expression is a balanced Elisp expression, i.e., a string, token or
list.) For example, to get the user’s first name only, you would say:

~((user-name) :sexp 0 0)

To get the last name only, say:

~((user-name) :sexp -1)

4.4 Auto-Insertion of Dmacros

The Dmacro package can automatically insert a macro whenever you create a new file. This
behavior is controlled by the variable auto-dmacro-alist. Its format is similar to Emacs’
auto-mode-alist (see Section “Choosing Modes” in The GNU Emacs Manual). Each
element in the list is a dotted pair containing a regular expression describing a filename and
a macro name.

For example, if you defined a macro named masthead that you want to automatically
insert whenever you create a new .c or .h file, and a macro named manskeleton that you
want inserted whenever you create a new .man file, you would put the following in your
.emacs file or directly in the file containing the macro definitions:

(setq auto-dmacro-alist (append '(("\\.[ch]$" . masthead)

("\\.man$" . manskeleton))

auto-dmacro-alist))

4.5 Binding Dmacros to Keys

Some die-hard Emacs users like to have everything bound to keys. Dmacro supports these
weirdos by making it possible to turn macros into Emacs commands using the Elisp func-
tion dmacro-command. It takes three arguments: dmacro1, dmacro2 and command-name.
dmacro2 and command-name are optional. The first two are macro names.

dmacro-command builds an Emacs command which invokes the macro named by the first
argument. If dmacro2 is specified, it will be inserted when the command is given a prefix
argument. If command-name is specified, the resulting Emacs command will be given that
name (otherwise the command is anonymous). The following examples illustrate how this
works.

These lines could be placed in a .emacs file, or in the Dmacro file where the particular
macros are defined:

(define-key c-mode-map "\C-cm" (dmacro-command "mal"))

(global-set-key "\C-ct" (dmacro-command "dstamp" "dtstamp"))

(define-key c-mode-map "\C-cf" (dmacro-command "for" nil 'c-insert-for))

Chapter 4: Creating Macros 18

The first command binds the mal macro to C-c m when editing C files. The second example
binds the dstamp macro to C-c d and the dtstamp macro to C-u C-c d. The final example
binds a macro named for to C-c f and creates a real live Emacs command called c-insert-

for, suitable for use with C-h f and M-x.

19

5 Customizing DM

This section describes user-settable variables which customize Dmacro’s behavior. They
can be set using the setq function in your .emacs file or in a Dmacro file. Alternatively,
you can use M-x set-variable or M-x edit-options to change their values interactively.

Use C-h v to find out the current setting of these options. See Section “Examining and
Setting Variables” in GNU Emacs Manual, for information on these variable manipulation
commands.

5.1 Interface Options

5.1.1 dont-bind-my-keys

Dmacro and Dmacro Builder automatically bind certain functions to keys. To prevent this,
set dont-bind-my-keys to t before loading these programs. This is useful if you want to
bind the functions to different keys or if you simply don’t want Dmacro messing with your
key mappings.

By default, this variable is unbound (which tells Dmacro to do the bindings).

5.1.2 dmacro-on-abbrev

As you may have realized by now, Dmacro is an overgrown hack built on top of Emacs’
Abbrev Mode. Some people like to use both Abbrev Mode and Dmacro at the same time,
but they don’t want their macros auto-expanded. If dmacro-on-abbrev is nil, macros will
only be expanded if they were accessed through: insert-dmacro, dmacro-wrap-line or
dmacro-wrap-region.

The default value is nil.

5.1.3 dmacro-prompt

One of Dmacro’s most important features is its ability get a string from the user at expansion
time. There are three modes in for doing this: prompting mode, post-expansion mode and
pre-expansion mode.

In prompting mode the user is prompted in the minibuffer for each string. This is the
default (and recommended) mode. To select it set dmacro-prompt to t.

In post-expansion mode, no prompting is done, instead the macro is inserted with place-
holders (surrounded by angle-brackets). For example:

for (i = <var>; <var> > 0; --<var>)

Then to complete the macro, the user types balanced expressions into the buffer (one
for each unique placeholder) and invokes the command dmacro-fill-in-blanks, which is
normally bound to C-c f. The expressions are deleted and then reinserted at each place-
holder. This can be done any time before the next macro is inserted (in other words, Dmacro
only remembers the most recent set of placeholders). To select post-expansion mode set
dmacro-prompt to nil.

In pre-expansion mode, the user must type the balanced expressions before inserting the
macro. The appropriate number of expressions will be deleted from the buffer and inserted
into the macro. To select this mode, set dmacro-prompt to something other than t or nil.

Chapter 5: Customizing DM 20

Pre- and post-expansion mode are provided for people who hate typing in the minibuffer.
Keep in mind, however, that if you forget to type the right number of balanced expressions,
Dmacro will blindly use—and delete—whatever it finds in the buffer. Use at your own risk.
Also, if the expression is a string, it will be inserted without the quotes. In other words,
you must wrap quotes around multi-word entries.

5.2 Expansion Options

5.2.1 dmacro-month-names

This variable contains a list of the names of the 12 months. The ~month function uses this
list. Change these to suit your language or your tastes.

The default value is:

("January" "February" "March" "April" "May" "June" "July"

"August" "September" "October" "November" "December")

5.2.2 dmacro-prefix-char

By default, Dmacro uses a tilde (‘~’) to mark the start of a directive within the macro text.
If, for some reason you want to use another character, set the value of this variable at the
top of your Dmacro files. It must be a string containing a single character. This applies to
every active Dmacro file, so don’t change it unless you know what you’re doing and have a
really good reason for doing it.

5.2.3 dmacro-rank-in-initials

When the ~(user-initials) function sees a rank (that is, ‘Jr’, ‘Sr’, ‘II’, ‘III’, etc.) in
a user’s name, it normally ignores it. If this variable is non-nil, it will include it as is. For
example, Pope John Paul II would normally have the initials ‘PJP’. If he set this variable
to non-nil, his initials would change to ‘PJPII’.

21

6 Defining Functions

This section describes how to create new DM functions. If the existing set of functions are
not sufficient for your needs, you can build new ones. New function definitions should be
placed at the top of the Dmacro file in which they are used.

Dmacro Builder will recognize newly-defined functions. There are actually two types of
functions, proper functions and aliases. From the macro builder’s point of view they both
behave the same, so we tend to just say “function” rather than invent yet another term to
describe “functions and aliases. However, the way they are defined is very different.

6.1 def-dmacro-alias

Aliases are synonyms for directives. There are several reasons for defining aliases:

• A few long, complex directives are making your Dmacro file hard to read. If you define
aliases for these directives, you can then use the alias within the macro text.

• You use the same complex directive several times and you want to type it once so that
it’s easier to change later on.

• You simply hate the name of a built-in function. For example, it was mentioned above
that the ~(user-name) function always had to appear in parenthesis because of the
dash (‘-’) in its name. You could define an alias called ~username which would not
have this restriction.

The format for defining an alias is:

(def-dmacro-alias name dmacro-directive)

Examples:

;; The ~@ function is a synonym for ~point. It could have been defined like:

(def-dmacro-alias @ point)

;; The last 2 digits of the year.

(def-dmacro-alias year2 ((year) 2))

;; Prompt for header file name.

(def-dmacro-alias hfileprompt

(prompt header-file "Header file name:" read-file-name "/usr/include"))

6.2 def-dmacro-function

The ~eval function can be inconvenient if you’re macros contain complex or frequently-used
Elisp expression. In this case, you may want to create a new Dmacro function. You are
responsible for ensuring that your functions always return a string or nil, and that they
always leave the point where they found it.

def-dmacro-function comes in two flavors:

(def-dmacro-function macro-name Elisp-function)

For example, to define a function named ~env which does the same thing as the Elisp
function getenv, you would say:

(def-dmacro-function env getenv)

Chapter 6: Defining Functions 22

Since the Elisp function takes one string argument, the new function does, too. So this
could be used in macro text as follows: "My terminal type is ~(env \"TERM\"), isn’t that
interesting?"

The second format is exactly like the Emacs Lisp’s defun:

(def-dmacro-function macro-name (args...) body...)

For example, the ~ampm function could have been defined like this:

(def-dmacro-function ampm ()

(if (<= 12 (string-to-int (substring (current-time-string) 11 13)))

"pm"

"am"))

23

7 Changes Since Template 1.5

If you’re not a user of Template version 1.5, you may skip this section.

The predecessor to Dynamic Macro 2.0 is Template 1.5, released in April 1991. The
name was changed because people were confusing it with Template Mode by Mark Ardis,
a program which does many of the same things.

Backwards compatibility was maintained wherever it was possible to do so without sig-
nificantly harming the performance of Dmacro version 2.0.

This section describes some additional procedures to make Dmacro 2.0 behave like Tem-
plate 1.5.

7.1 Interface

C-c x is no longer bound to Emacs’ expand-abbrev command. This version of DM does
its best to hide the fact that it is built on top of the Abbrev facility. It will take a day or
so to get used to typing the command and then the macro name instead of the other way
’round. If you really miss the old behavior, add the following two lines to your Emacs init
file:

(global-set-key "\C-cx" 'expand-abbrev)

(setq dmacro-on-abbrev t)

See Chapter 5 [Customization], page 19, for information on dmacro-on-abbrev.

7.2 File Format

The DM directive syntax has been drastically changed. The good news is that it takes
about five minutes to update a typical Dmacro file by hand. If even that is too much for
you, the Dmacro 2.0 distribution contains a file called dm-compat.el. Loading this file
should enable Dmacro 2.0 to handle Template 1.5 files with the following exceptions:

• The ~s# directives are only partially supported. The user will be prompted, but with
a default prompt string, not the ones supplied in those ridiculous lambda expressions.
You are urged to upgrade to the new ~prompt function.

Old: (foo "The user typed ~s0" (lambda () (dmacro-prompt "Type it:

")))

New: (foo "The user typed ~(prompt type-it)")

• The ~pC directive is no longer supported. You must now use the :pad modifier.

• ~>> and ~>@ are not supported. You must use the new ~(dmacro) function.

• Some of the more obscure directives are not defined in dm-compat.el. For example, ~u#
is supported only if # is less than 4. ~fd is supported, but ~Fd is not. If your favorite
directive is missing, you should be able to add it by using the others as a model.

Note that ~@ and ~~ will work in both versions even without dm-compat.el.

24

8 Glossary

alias A symbol corresponding to a shorthand notation for a directive.

directive A function or alias, arguments (if required) and optional modifiers. Examples:

ampm

(prompt data-type)

((user-id) :cap)

Dmacro file
An Elisp file containing macro definitions.

Elisp The Emacs Lisp programming language. This is the language programmers use
to customize and extend GNU Emacs. Your .emacs file contains Elisp code.
Dmacro is written in Elisp.

expression
balanced expression

An Elisp S-expression. This can be a symbol, list, string, etc. Examples:

foobar2

my-dog-has-fleas

underscores_count

(and lists (and lists of lists))

"and strings, of course"

function An actual piece of Emacs Lisp code. In the context of DM, this is something
defined by def-dmacro-function and must return a string or nil.

modifier A transformation applied to the string returned by a directive. Modifiers are
used to change the case of a string, affect the left-padding of a string or extract
a portion of the string.

25

Key Index

C-c C-d . 11
C-c C-m . 12
C-c d . 3, 8
C-c d ? . 7, 8

C-c f . 19
C-c l . 5, 8
C-c r . 9
C-c t . 6

26

Function and Variable Index

:
:cap . 16
:down . 16
:up . 16

@
@ . 16

~
~ . 16

A
ampm . 16
auto-dmacro-alist . 17

B
build-dmacro . 11

C
cap . 16
chron . 16

D
date . 16
day . 16
def-dmacro-alias . 21
def-dmacro-function . 21
define-dmacro . 13
define-dmacro-table . 13
dmacro . 16
dmacro-build-directive . 11
dmacro-build-modifier . 12
dmacro-command . 17
dmacro-fill-in-blanks . 19
dmacro-month-names . 20
dmacro-on-abbrev . 19
dmacro-prefix-char . 20
dmacro-prompt . 19
dmacro-rank-in-initials . 20
dmacro-wrap-line . 8
dmacro-wrap-region . 9
dont-bind-my-keys . 19
down . 16

E
eval . 16, 21

F
file . 16
file-dir . 16
file-ext . 16
file-long . 16
file-name . 16

H
hour . 16
hour24 . 16

I
if . 16
insert-dmacro . 8
insert-file . 16

M
min . 16
mon . 16
month . 16
month-num . 16

P
pad . 16
prompt . 16

S
sec . 16
sexp . 17
shell . 16

U
up . 16
user-id . 16
user-initials . 16
user-name . 16

W
write-dmacro-file . 12

Y
year . 16

27

Concept Index

A
abbrev tables . 11
aliases . 21
automatic macro insertion 3, 17

C
case modifiers . 16
completion in the minibuffer 4, 6

D
DM-C . 3
dmacros for C . 3

M
marks . 8
masthead . 17
modifiers . 16

P
padding modifier . 16
post-expansion . 19
pre-expansion . 19

S
sub-expressions . 17
substrings . 16

W
wrapping . 5
wrapping a line . 8
wrapping a region . 9

i

Table of Contents

Administrivia . 1

Overview . 2

1 Dmacros for C — A tutorial . 3

2 Using DM . 8
2.1 insert-dmacro . 8
2.2 dmacro-wrap-line . 8
2.3 dmacro-wrap-region . 9

3 Installing Dynamic Macro . 10

4 Creating Macros . 11
4.1 Dmacro Builder . 11

4.1.1 build-dmacro . 11
4.1.2 dmacro-build-directive . 11
4.1.3 dmacro-build-modifier . 12
4.1.4 write-dmacro-file . 12

4.2 Dmacro Files . 12
4.2.1 Dmacro Name . 12
4.2.2 Dmacro Text . 12
4.2.3 Expansion Qualifier . 13
4.2.4 Documentation . 13
4.2.5 Shortcuts . 13
4.2.6 define-dmacro-table and define-dmacro . 13

4.3 Dmacro Directives . 13
4.3.1 Functions . 14
4.3.2 Modifiers . 16

4.3.2.1 Casification . 16
4.3.2.2 Padding . 16
4.3.2.3 Substrings . 16
4.3.2.4 Sub-expressions . 17

4.4 Auto-Insertion of Dmacros . 17
4.5 Binding Dmacros to Keys . 17

5 Customizing DM . 19
5.1 Interface Options . 19

5.1.1 dont-bind-my-keys . 19
5.1.2 dmacro-on-abbrev . 19

ii

5.1.3 dmacro-prompt . 19
5.2 Expansion Options . 20

5.2.1 dmacro-month-names . 20
5.2.2 dmacro-prefix-char . 20
5.2.3 dmacro-rank-in-initials . 20

6 Defining Functions . 21
6.1 def-dmacro-alias . 21
6.2 def-dmacro-function . 21

7 Changes Since Template 1.5 23
7.1 Interface . 23
7.2 File Format . 23

8 Glossary . 24

Key Index . 25

Function and Variable Index . 26

Concept Index . 27

	Administrivia
	Overview
	1 Dmacros for C --- A tutorial
	2 Using DM
	insert-dmacro
	dmacro-wrap-line
	dmacro-wrap-region

	3 Installing Dynamic Macro
	4 Creating Macros
	Dmacro Builder
	build-dmacro
	dmacro-build-directive
	dmacro-build-modifier
	write-dmacro-file

	Dmacro Files
	Dmacro Name
	Dmacro Text
	Expansion Qualifier
	Documentation
	Shortcuts
	define-dmacro-table and define-dmacro

	Dmacro Directives
	Functions
	Modifiers
	Casification
	Padding
	Substrings
	Sub-expressions

	Auto-Insertion of Dmacros
	Binding Dmacros to Keys

	5 Customizing DM
	Interface Options
	dont-bind-my-keys
	dmacro-on-abbrev
	dmacro-prompt

	Expansion Options
	dmacro-month-names
	dmacro-prefix-char
	dmacro-rank-in-initials

	6 Defining Functions
	def-dmacro-alias
	def-dmacro-function

	7 Changes Since Template 1.5
	Interface
	File Format

	8 Glossary
	Key Index
	Function and Variable Index
	Concept Index

