
1

1 Introduction to S-mode

The S and Splus packages provide sophisticated statistical and graphical routines for ma-
nipulating data. The S-mode package provides useful routines for making the use of these
packages much easier.

A bit of notation before we begin. I will refer to both the ‘new S’ package (as described
in Becker, Chambers and Wilks, The New S Language: A programming environment for
data analysis and graphics) and ‘Splus’ (an enhanced version of new S from Statsci) simply
by “S”. The interface which is used to run S under Emacs (which this manual documents)
will be referred to as “S-mode”, which should not be confused with the GNU Emacs major
mode S-mode which is used for editing S source. Finally, the GNU Emacs Lisp source code
in which this package is defined will be referred to as S.el.

For exclusively interactive users of S, S-mode provides a number of features to make life
easier. There is an easy-to-use command history mechanism, including a quick prefix-search
history. To reduce typing, command-line completion is provided for all S objects and “hot
keys” are provided for common S function calls. Help files are easily accessible, and a paging
mechanism is provided to view them. Finally, an incidental (but very useful) side-effect of
S-mode is that a transcript of your session is kept for later saving or editing. No special
knowledge of Emacs is necessary when using S interactively under S-mode.

For those that use S in the typical edit-test-revise cycle when programming S functions,
S-mode provides for editing of S functions in Emacs edit buffers. Unlike the typical use
of S where the editor is restarted every time an object is edited, S-mode uses the current
Emacs session for editing. In practical terms, this means that you can edit more than
one function at once, and that the S process is still available for use while editing. Error
checking is performed on functions loaded back into S, and a mechanism to jump directly to
the error is provided. S-mode also provides for maintaining text versions of your S functions
in specified source directories.

1.1 Authors of and contributors to S-mode

S-mode is based on Olin Shivers’ excellent comint package (which comes with the
S-mode distribution). The original version of S-mode was written by Doug Bates
(bates@stat.wisc.edu) and Ed Kademan (kademan@stat.wisc.edu). Frank Ritter
(ritter@psy.cmu.edu) then merged this version with his own S mode to form S.el

version 2.1.

Version 2.1 of S.el was then updated and expanded by David Smith to form version 3.4.
Most bugs have now been fixed (and several new ones introduced) and many new features
have been added. Thanks must go to the beta testers for version 3.4:

• S-eval-line-and-next-line is based in an idea by Rod Ball.

• Thanks to Doug Bates for many useful suggestions.

• comint-isearch was written by Terry Glanfield (tg.southern@rxuk.xerox.com).

• Thanks to Martin Maechler for reporting and fixing bugs.

• Thanks to Frank Ritter for updates from the previous version, suggestions and invalu-
able comments on the manual.

Chapter 1: Introduction to S-mode 2

• Thanks to Ken’ichi Shibayama for his excellent indenting code, and many comments
and suggestions.

• Thans to Bob Stine for testing an early version of the Tek graphics support.

1.2 Getting the latest version of S-mode

The latest version of S-mode is always available for anonymous FTP from

attunga.stats.adelaide.edu.au

in the directory pub/S-mode. Check the README file first to see which files you need. S-mode
is also available from the Emacs-Lisp archive on archive.cis.ohio-state-edu — retrieve

pub/gnu/emacs/elisp-archive/README

for information on the archive. The latest version is also available from Statlib by sending a
blank message with subject “send index from S” to statlib@stat.cmu.edu, and following
the directions from there.

1.3 Changes from version 2.1

For current users of S-mode, here are some of the incompatible changes and features new
to version 3.3 of S-mode:

• Command-line completion of object names, and faster completion in other situations.

• ‘Hot Keys’ for the commonly-used functions objects(), search() and attach() and
a facility to add your own hot keys with keyboard macros.

• Simultaneous multiple function editing, with integrated error-checking and parsing.
Mnemonic names for edit buffers.

• Debugging features: facility for stepping through S code and evaluating portions of
code with the output appearing as if the commands has been typed in manually.

• S can now be run from a different directory each session.

• A dedicated mode for viewing S help files. Individual help buffers are maintained for
quick repeated access. Completion for help files without a corresponding object.

• Facility for maintaining organised backups of S source code.

• Indenting and formatting commands for editing S source code.

• Special handling of the S graphics facilities, including an experimental Tek graphics
mode.

• Better handling of temporary files and buffers.

• Some keybindings have changed to conform to GNU guidelines.

• General code cleanups and optimizations.

1.4 How to read this manual

If S-mode has already been installed on your system, the next chapter has details on how
to get started using S under S-mode.

If you need to install S-mode, read Appendix A [Installation], page 21, for details on
what needs to be done before proceeding to the next chapter.

Chapter 1: Introduction to S-mode 3

Appendix B [Customization], page 23, provides details of user variables you can change
to customize S-mode to your taste, but it is recommended that you defer this section until
you are more familiar with S-mode.

Don’t forget that this manual is not the only source of information about S-mode. In
particular, the mode-based online help (obtained by pressing C-h m when in the process
buffer, edit buffer or help buffer) is quite useful. However the best source of information is,
as always, experience — try it out!

4

2 Starting the S process

To start an S session, simply type M-x S RET, i.e. press ESC, then x, then capital S and then
the RETURN key.

If the variable S-ask-for-S-directory has a non-nil value, you will be prompted with

From which directory?

with a default value chosen on the basis of the variable S-directory. The S program will
be run from the directory you specify at this point, that is S will use the .Data subdirectory
of this directory (if it exists.) Using this facility it is possible to have a number of distinct
S directories for separate projects, etc. If the value of S-ask-for-S-directory is nil, the
S program will be run from the directory specified by S-directory (which defaults to your
home directory).

Next, if the value of S-ask-about-display is non-nil you will be presented with the
prompt

Which X-display?

The value you enter here will be used as the value of the DISPLAY environment variable of
the S process for use with the X windowing system. Unless this variable is set correctly, S
commands such as X11() or help.start() will not work. Completion is provided on the
basis of the variable X-displays-list.

Once these questions are answered (if they are asked at all) the program defined by
inferior-S-program will be executed with arguments specified by explicit-S_program_

name-args. You will be popped into a buffer with name ‘*S*’ which will be used for
interacting with the S process, and you can start entering commands.

5

3 Interacting with the S process

The primary function of the S-mode package is to provide an easy-to-use front end to the
S interpreter. This is achieved by running the S process from within an Emacs buffer,
so that the Emacs editing commands are available to correct mistakes in commands, etc.
A sophisticated command history and recall mechanism is also provided, thanks to the
comint package. Command-line completion of S objects and a number of ‘hot keys’ for
commonly-used S commands are also provided for ease of typing.

3.1 Entering commands and fixing mistakes

Sending a command to the S process is as simple as typing it in and pressing the RETURN

key:

• RET (inferior-S-send-input)
Send the command on the current line to the S process.

If you make a typing error before pressing RET all the usual Emacs editing commands are
available to correct it (see Section “Basic editing commands” in The GNU Emacs Reference
Manual.) Once the command has been corrected you can press RETURN (even if the cursor
is not at the end of the line) to send the corrected command to the S process.

S-mode provides two other commands which are useful for fixing mistakes:

• C-c C-w (backward-kill-word)
Deletes the previous word (such as an object name) on the command line.

• C-c C-u (comint-kill-input)
Deletes everything from the prompt to point. Use this to abandon a command you
have not yet sent to the S process.

Finally, the beginning-of-line command (C-a) has been slightly redefined to leave you at
the start of the current command instead:

• C-a (comint-bol)
Move to the beginning of the line, and then skip forwards past the prompt, if any.

3.2 Completion of object names

In the process buffer, TAB only inserts a ‘TAB’ character when the cursor is not following an
object name. Otherwise, the TAB key is for completion:

• TAB (S-complete-object-name)
Complete the S object name before point.

When the cursor is just after a partially-completed object name, pressing TAB provides
completion in a similar fashion to tcsh except that completion is performed over S object
names instead of file names. S-mode maintains a list of all objects known to S at any
given time, which basically consists of all objects (functions and datasets) in every attached
directory listed by the search() command along with the component objects of attached
data frames (if your version of S supports them).

For example, consider the three functions (available in Splus version 3.0) called
binomplot(), binom.test() and binomial(). Typing bin TAB after the S prompt will
insert the characters ‘om’, completing the longest prefix (‘binom’) which distinguishes these

Chapter 3: Interacting with the S process 6

three commands. Pressing TAB once more provides a list of the three commands which
have these prefix, allowing you to add more characters (say, ‘.’) which specify the function
you desire. After entering more characters pressing TAB yet again will complete the object
name up to uniqueness, etc. If you just wish to see what completions exist without adding
any extra characters, pass a prefix command to S-complete-object-name with C-u TAB.

S-mode automatically keeps track of any objects added or deleted to the system to
make completion as accurate as possible. As long as the command that changed the search
list matched S-change-sp-regex, when a directory or data frame is attached, the objects
associated with it immediately become available for a completion; when detached completion
is no longer available on those objects. Efficiency is gained by maintaining a cache of objects
currently known to S; when a new object becomes available or is deleted, only one component
of the cache corresponding to the associated directory is refreshed. The command M-x

S-resynch forces the entire cache to be refreshed — use this command whenever S-mode
gets confused about completion. One warning: S never automatically refreshes its idea of
the components of attached data frames; if the names of the components of a data frame
are modified during an S session, S-mode will not recognise any new components (or ignore
any deleted components) until the command M-x S-resynch is issued.

S-mode also provides completion over the components of named lists accessed using
the ‘$’ notation, to any level of nested lists. Such information is never cached, and so
is guaranteed to always be correct. This feature is particularly useful for checking what
components of a list object exist while partway through entering a command: simply type
the object name and ‘$’ and press TAB to see the names of existing list components for that
object.

3.3 Moving through the process buffer

Most of the time, the cursor spends most of its time at the bottom of the S process buffer,
entering commands. Sometimes, however, we want to move back up through the buffer, to
look at the output from previous commands for example.

Viewing the output of the command you have just entered is a common occurence and
S-mode provides a number of facilities for doing this. Within the S process buffer, the
variable scroll-step is set to 4 (you can redefine this using inferior-S-mode-hook if you
wish - see Section B.2 [Hooks], page 26,) so that the cursor is usually near the bottom of the
window. Longish command outputs may cause S to place the cursor at the middle of the
window, however, making the first part of the output hidden above the top of the window.
If this happens, you can use the command

• C-c C-v (S-view-at-bottom)
Move to the end of the buffer, and place cursor on bottom line of window.

will make more of the last output visible. If the first part of the output is still obscured,
use

• C-c C-r (comint-show-output)
Moves cursor to the previous command line and and places it at the top of the window.

to view it. Finally, if you want to discard the last command output altogether, use

• C-c C-o (S-kill-output)
Deletes everything from the last command to the current prompt.

Chapter 3: Interacting with the S process 7

to kill it.

If you want to view the output from more historic commands than the previous command,
commands are also provided to move backwards and forwards through previously entered
commands in the process buffer:

• M-P (comint-msearch-input)
Moves point to the preceding command in the process buffer.

• M-N (comint-psearch-input)
Moves point to the next command in the process buffer.

• C-c C-b (comint-msearch-input-matching)
Prompts for a string and jump to the previous command you entered which matched
that string.

When the cursor is not after the current prompt, the RETURN key has a slightly different
behaviour than usual. Pressing RET on any line containing a command that you entered
(i.e. a line beginning with a prompt) sends that command to the S process once again.
This even works if the current line is a continuation line (i.e. the prompt is ‘+ ’ instead
of ‘> ’) — in this case all the lines that form the multi-line command are concatenated
together and the resulting command is sent to the S process (currently this is the only way
to resubmit a multi-line command to the S process in one go.) If the current line does
not begin with a prompt, an error is signalled. This feature, coupled with the command-
based motion commands described above, could be used as a primitive history mechanism.
S-mode provides a more sophisticated mechanism, however, which is described below.

3.4 Command History

S-mode provides easy-to-use facilities for re-executing or editing previous commands. An
input history of the last few commands is maintained (by default the last 50 commands are
stored, although this can be changed by setting the variable input-ring-size in inferior-

S-mode-hook.) The simplest history commands simply select the next and previous com-
mands in the input history:

• M-p (comint-next-input)
Select the previous command in the input history.

• M-n (comint-previous-input)
Select the next command in the input history.

For example, pressing M-p once will re-enter the last command into the process buffer after
the prompt but does not send it to the S process, thus allowing editing or correction of the
command before the S process sees it. Once corrections have been made, press RET to send
the edited command to the S process.

If you have an idea which command you want from the history, the commands

• M-s (comint-previous-similar-input)
Select the previous command in the history which matches the string typed so far.

• M-S (comint-next-similar-input)
Select the next command in the history which matches the string typed so far.

may be more useful, as they only select commands starting with those characters already
entered. For instance, if you wanted to re-execute the last attach() command, all you need
to do is type attach and then M-s and RET.

Chapter 3: Interacting with the S process 8

Sometimes you want to re-execute a command that matches a particular string (a variable
name for example) which does not appear at the start of the command. In this case

• M-r (comint-isearch)
Interactively search backwards through the input history for a string.

may be useful. This command is very similar to isearch-backward, except that it operates
on the input history instead of the buffer text. After typing M-r, commands which match
the search string are displayed as you enter the string itself. If you entered some text before
pressing M-r then only commands which begin with that text are considered as candidates,
and the string is matched against the remaining part of the command. Use C-r to search
further backwards and C-s to search forwards. RET sends the selected comand directly to
the S process; use ESC if you wish to edit it first.

3.5 Hot keys for common commands

S-mode provides a number of commands for executing the commonly used functions.
These commands below are basically information-gaining commands (such as objects()

or search()) which tend to clutter up your transcript and for this reason some of the hot
keys display their output in a temporary buffer instead of the process buffer by default.
This behaviour is controlled by the variable S-execute-in-process-buffer which, if
non-nil, means that these commands will produce their output in the process buffer
instead. In any case, passing a prefix argument to the commands (with C-u) will reverse
the meaning of S-execute-in-process-buffer for that command, i.e. the output will be
displayed in the process buffer if it usually goes to a temporary buffer, and vice-versa.
These are the hot keys that behave in this way:

• C-c C-x (S-execute-objects)
Sends the objects() command to the S process. A prefix argument specifies the
position on the search list (use a negative argument to toggle S-execute-in-process-
buffer as well.) A quick way to see what objects are in your working directory.

• C-c C-s (S-execute-search)
Sends the search() command to the S process.

• C-c C-e (S-execute)
Prompt for an S expression, and evaluate it.

S-execute may seem pointless when you could just type the command in anyway, but
it proves useful for ‘spot’ calculations which would otherwise clutter your transcript, or for
evaluating an expression while partway through entering a command. You can also use this
command to generate new hot keys using the Emacs keyboard macro facilities; see Section
“Keyboard Macros” in The GNU Emacs Reference Manual.

The following hot keys do not use S-execute-in-process-buffer to decide where to
display the output — they either always display in the process buffer or in a separate buffer,
as indicated:

• C-c C-a (S-execute-attach)
Prompts for a directory to attach to the S process with the attach() command. If a
numeric prefix argument is given it is used as the position on the search list to attach
the directory; otherwise the S default of 2 is used. The attach() command actually
executed appears in the process buffer.

Chapter 3: Interacting with the S process 9

• C-c C-l (S-load-file)
Prompts for a file to load into the S process using source(). If there is an error
during loading, you can jump to the error in the file with C-x ` (S-parse-errors).
See Section 4.5 [Error Checking], page 15, for more details.

• C-c C-h (S-display-help-on-object)
Pops up a help buffer for an S object or function. See See Chapter 5 [Help], page 16,
for more details.

• C-c C-q (S-quit)
Sends the q() command to the S process, and cleans up any temporary buffers (such
as help buffers or edit buffers) you may have created along the way. Use this command
when you have finished your S session instead of simply typing q() yourself, otherwise
you will need to issue the command M-x S-cleanup command explicitly to make sure
that all the files that need to be saved have been saved, and that all the temporary
buffers have been killed.

3.6 Other commands provided by inferior-S-mode

The following commands are also provided in the process buffer:

• C-c C-c (comint-interrupt-subjob)
Sends a Control-C signal to the S process. This has the effect of aborting the current
command.

• C-c C-z (S-abort)
Sends a STOP signal to the S process, killing it immediately. It’s not a good idea to
use this, in general: Neither q() nor .Last will be executed and device drivers will not
finish cleanly. This command is provided as a safety to comint-stop-subjob, which is
usually bound to C-c C-z. If you want to quit from S, use C-c C-q (S-quit) instead.

• C-c C-d (S-dump-object-into-edit-buffer)
Prompts for an object to be edited in an edit buffer. See Chapter 4 [Editing], page 10.

• C-c C-t (S-tek-mode-toggle)
Toggles Tek graphics mode. See Section 6.2 [tek4014], page 18, for more details.

10

4 Editing S functions

S-mode provides facilities for editing S objects within your Emacs session. Most editing is
performed on S functions, although in theory you may edit datasets as well. Edit buffers are
always associated with files, although you may choose to make these files temporary if you
wish. Alternatively, you may make use of a simple yet powerful mechanism for maintaining
backups of text representations of S functions. Error-checking is performed when S code is
loaded into the S process.

4.1 The edit buffer

To edit an S object, type

• C-c C-d (S-dump-object-into-edit-buffer)
Edit an S object in its own edit buffer.

from within the S process buffer (*S*). You will them be prompted for an object to edit:
you may either type in the name of an existing object (for which completion is available
using the TAB key,) or you may enter the name of a new object. A buffer will be created
containing the text representation of the requested object or, if you entered the name of
a non-existent object at the prompt and the variable S-insert-function-templates is
non-nil, you will be presented with a template defined by S-function-template which
defaults to a skeleton function construct.

You may then edit the function as required. The edit buffer generated by S-dump-

object-into-edit-buffer is placed in the S-mode major mode which provides a number
of commands to facilitate editing S source code. Commands are provided to intelligently
indent S code, evaluate portions of S code and to move around S code constructs.

Note: when you dump a file with C-c C-d, S-mode first checks to see whether there
already exists an edit buffer containing that object and, if so, pops you directly to that
buffer. If not, S-mode next checks whether there is a file in the appropriate place with the
appropriate name (See Section 4.3 [Source Files], page 13) and if so, reads in that file. You
can use this facility to return to an object you were editing in a previous session (and which
possibly was never loaded to the S session.) Finally, if both these tests fail, the S process is
consulted and a dump() command issued. If you want to force S-mode to ask the S process
for the object’s definition (say, to reformat an unmodified buffer or to revert back to S’s idea
of the object’s definition) pass a prefix argument to S-dump-object-into-edit-buffer by
typing C-u C-c C-d.

4.1.1 Sending code to the S process

There are a wide range of commands for sending code to the S process. The primary
command is for loading the current buffer (which usually contains a single function) into
the S process:

• C-c C-l (S-load-file)
Loads a file into the S process using source().

After typing C-c C-l you will prompted for the name of the file to load into S; usually this
is the current buffer’s file which is the default value (selected by simply pressing RET at the
prompt.) Your will be asked to save the buffer first if it has been modified (this happens

Chapter 4: Editing S functions 11

automatically if the buffer was generated with C-c C-d.) If the buffer is not modified, S-
mode assumed its contents are equivalent to S’s value of the function and you will need
to confirm that you want to load the file into S. The file will then be loaded and you will
be returned to the S process. If any errors occur, S-mode will inform you of this fact: See
Section 4.5 [Error Checking], page 15.

Other commands are also available for evaluating portions of code in the S process. You
may choose whether both the commands and their output appear in the process buffer (as
if you had typed in the commands yourself) or if the output alone is echoed. The behaviour
is controlled by the variable S-eval-visibly-p whose default is nil (display output only.)
Passing a prefix argument (C-u) to any of the following commands, however, reverses the
meaning of S-eval-visibly-p for that command only — for example C-u C-c C-j echoes
the current line of S-code in the S process buffer, followed by its output. This method of
evaluation is an alternative to S’s source() function when you want the input as well as
the output to be displayed. (You can sort of do this with source() when the option echo=T

is set, except that prompts do not get displayed. S-mode puts prompts in the right places.)
The commands for evaluating code are:

• C-c C-j (S-eval-line)
Send the line containing point to the S process.

• C-c M-j (S-eval-line-and-go)
As above, but returns you to the S process buffer as well.

• C-c C-f or ESC C-x (S-eval-function)
Send the S function containing point to the S process.

• C-c M-f (S-eval-function-and-go)
As above, but returns you to the S process buffer as well.

• C-c C-r (S-eval-region)
Send the text between point and mark to the S process.

• C-c M-r (S-eval-region-and-go)
As above, but returns you to the S process buffer as well.

• C-c C-b (S-eval-buffer)
Send the contents of the edit buffer to the S process.

• C-c M-b (S-eval-buffer-and-go)
As above, but returns you to the S process buffer as well.

• C-c C-n (S-eval-line-and-next-line)
Sends the current line to the S process, echoing it in the process buffer, and moves
point to the next line. Useful when debugging for stepping through your code.

It should be stressed once again that these S-eval- commands should only be used
for evaluating small portions of code for debugging purposes, or for generating transcripts
from source files. When editing S functions, C-c C-l is the command to use to update the
function’s value. In particular, S-eval-buffer is now largely obsolete.

One final command is provided for spot-evaluations of S code:

C-c C-e (S-execute-in-tb)
Prompt for an S expression and evaluate it. Displays result in a temporary buffer.

This is useful for quick calculations, etc.

Chapter 4: Editing S functions 12

4.1.2 Indenting and formatting S code

S-mode now provides a sophisticated mechanism for indenting S source code (thanks to
Ken’ichi Shibayama.) Compound statements (delimited by ‘{’ and ‘}’) are indented relative
to their enclosing block. In addition, the braces have been electrified to automatically indent
to the correct position when inserted, and optionally insert a newline at the appropriate
place as well. Lines which continue an incomplete expression are indented relative to the
first line of the expression. Function definitions, if statements, calls to expression() and
loop constructs are all recognised and indented appropriately. User variables are provided
to control the amount if indentation in each case, and there are also a number of predefined
indentation styles to choose from. See Section B.1.3 [Indentation variables], page 24.

Comments are also handled specially by S-mode, using an idea borrowed from the Emacs-
Lisp indentation style. Comments beginning with ‘###’ are aligned to the beginning of the
line. Comments beginning with ‘##’ are aligned to the current level of indentation for
the block containing the comment. Finally, comments beginning with ‘#’ are aligned to
a column on the right (the 40th column by default, but this value is controlled by the
variable comment-column,) or just after the expression on the line containing the comment
if it extends beyond the indentation column.

The indentation commands provided by S-mode are:

• TAB (S-indent-command)
Indents the current line as S code. If a prefix argument is given, all following lines
which are part of the same (compound) expression are indented by the same amount
(but relative indents are preserved).

• ESC C-q (S-indent-exp)
Indents each line in the S (compound) expression which follows point. Very useful for
beautifying your S code.

• { and } (S-electric-brace)
The braces automatically indent to the correct position when typed.

• M-; (indent-for-comment)
Indents a comment line appropriately, or inserts an empty (single-‘#’) comment.

• M-x S-set-style

Set the formatting style in this buffer to be one of the predefined styles (GNU, BSD,
K&R and C++ by default). This command causes all of the formatting variables to be
buffer-local.

4.1.3 Commands for motion, completion and more

A number of commands are provided to move across function definitions in the edit buffer:

• ESC C-e (S-beginning-of-function)
Moves point to the beginning of the function containing point.

• ESC C-a (S-end-of-function)
Moves point to the end of the function containing point.

• ESC C-h (S-mark-function)
Places point at the beginning of the S function containing point, and mark at the end.

Don’t forget the usual Emacs commands for moving over balanced expressions and paren-
theses: See Section “Lists and Sexps” in The GNU Emacs Reference Manual.

Chapter 4: Editing S functions 13

Completion is also available in the edit buffer:

• ESC TAB (S-complete-object-name)
Completes the S object name before point.

Note however that completion is only provided over globally known S objects (such as
system functions) — it will not work for arguments to functions or other variables local to
the function you are editing.

Finally, two commands are provided for returning to the S process buffer:

• C-c C-z (S-switch-to-end-of-S)
Returns you to the S process buffer, placing point at the end of the buffer.

• C-c C-y (S-switch-to-S)
Also returns to to the S process buffer, but leaves point where it is.

In addition some commands available in the process buffer are also available in the edit
buffer. You can still read help files with C-c C-h, edit another function with C-c C-d and
of course C-c C-l can be used to load a source file into S. See Section 3.6 [Other inferior-
S-mode commands], page 9, for more details on these commands.

4.2 Modification flags in edit buffers

Within S-mode edit buffers, the modification flag has a slightly different meaning than it
usually does. In general, S-mode tries to set the modification flag whenever the contents of
the edit buffer differ from S’s idea of the objects value, and clears the flag whenever the edit
buffer has been successfully loaded into the S process. Thus you will be warned whenever
you attempt to kill a buffer which represents an edited (i.e. different) version of the existing
S object.

Edit buffers are marked as temporary buffers within S-mode, and will be killed whenever
S-quit or S-cleanup are called. If the modification flag is set, however, you will be warned
before that buffer is killed.

4.3 Maintaining S source files

Every edit buffer in S-mode is associated with a dump file on disk. Dump files are cre-
ated whenever you type C-c C-d (S-dump-object-into-edit-buffer), and may either be
deleted after use, or kept as a backup file or as a means of keeping several versions of an S
function.

[User Option]S-keep-dump-files
If this has a non-nil value, then dump files are never deleted. Otherwise dump files
are silently deleted after each use, unless an error occurs.

When S-keep-dump-files is nil, the dump file is deleted immediately after it is read
into the edit buffer. This is so that you can kill the edit buffer at any time without leaving
the dump file behind. When loading the file back into S with C-c C-l, the dump file is again
written out to disk and loaded into S. If the load is successful, the file is again deleted. If
there is an error in your function, however, the file is retained so that you may edit the file
at any time to correct the error.

Chapter 4: Editing S functions 14

When S-keep-dump-files is non-nil, dump files are never deleted. Thus you can
maintain a complete text record of the functions you have editied within S-mode. Backup
files are always kept, and so by using the Emacs numbered backup facility — see Section
“Single or Numbered Backups” in The Gnu Emacs Reference Manual, you can keep a
historic record of function definitions. As long as a dump file exists in the appropriate place
for a particular object, editing that object with C-c C-d finds that file for editing (unless a
prefix argument is given) — the S process is not consulted. Thus you can keep comments
outside the function definition as a means of documentation that does not clutter the S
object itself. Another useful feature is that you may format the code in any fashion you
please without S re-indenting the code every time you edit it. These features are particularly
useful for project-based work.

Dump buffers are always autosaved, regardless of the value of S-keep-dump-files.

When an object is dumped to a file, S-mode adds some comment lines to the end of the
file, such as

Local Variables:

mode:S

S-temp-buffer-p:t

End:

These are included to ensure that whenever you next edit the file, it is in the correct
mode for editing S source, and that the associated buffer is marked as a temporary buffer.
If S-keep-dump-files is nil and you wish to keep the file associated with the edit buffer,
remove the line

S-temp-buffer-p:t

and save the buffer. The buffer will still be marked as temporary, however, and so deleted
when you quit from S. You can change this by using M-x set-variable to set the value of
S-temp-buffer-p to nil.

4.4 Names and locations of dump files

Every dump file should be given a unique file name, usually the dumped object name with
some additions.

[User Option]S-dump-filename-template
Template for filenames of dumped objects. %s is replaced by the object name.

By default, dump file names are the user name, followed by ‘.’ and the object and end-
ing with ‘.S’. Thus if user joe dumps the object myfun the dump file will have name
joe.myfun.S. The username part is included to avoid clashes when dumping into a publicly-
writable directory, such as /tmp; you may wish to remove this part if you are dumping into
a directory owned by you.

You may also specify the directory in which dump files are written:

[User Option]S-source-directory
Directory name (ending in a slash) where S dump files are to be written.

By default, dump files are always written to /tmp, which is fine when S-keep-dump-

files is nil. If you are keeping dump files, then you will probably want to keep them

Chapter 4: Editing S functions 15

somewhere in your home directory, say ~/S-source. This could be achieved by including
the following line in your .emacs file:

(setq S-source-directory (expand-file-name "~/S-source/"))

If you would prefer to keep your dump files in separate directories depending on the
value of some variable, S-mode provides a facility for this also.

[User Option]S-source-directory-generator
Variable whose value is a function which, when called with no arguments, will return
a directory name (ending in ‘/’) into which dump files will be written. nil means use
the value of S-source-directory.

If the directory generated by this function does not exist but can be created, you will be
asked whether you wish to create the directory. If you do not or the directory cannot be
created, the value of S-source-directory is used.

One application of S-source-directory-generator is to keep dump files in some sub-
directory of the current S directory:

(setq S-source-directory-generator

'(lambda ()

(expand-file-name

(concat

(directory-file-name S-directory)

"/Src/"))))

This is useful if you keep your dump files and you often edit objects with the same name
in different directories. Alternatively, if you often change your S working directory during
an S session, you may like to keep dump files in some subdirectory of the directory pointed
to by the first element of the current search list. This way you can edit objects of the same
name in different directories during the one S session:

(setq S-source-directory-generator

'(lambda ()

(file-name-as-directory

(expand-file-name (concat

(car S-search-list)

"/.Src")))))

4.5 Detecting and correcting errors

After loading a file into the S process with C-c C-l, S-mode will report whether the load
was successful. If it was not (i.e. there was some sort of error in your code) you can return
to the file from the S process buffer with C-x ` (S-parse-errors). You will be returned
to the offending file (loading it into a buffer if necessary) with point at the line S reported
as containing the error. You may then correct the error, and reload the file. Note that the
corresponding S object will not be changed until the file has been successfully loaded; it is
for this reason that temporary files containing errors are never deleted.

Sometimes the error is not caused by a syntax error (loading a non-existent file for
example.) In this case typing C-x ` will simply display a buffer containing S’s error message.
You can force this behaviour (and avoid jumping to the file when there is a syntax error)
by passing a prefix argument to S-parse-errors with C-u C-x `.

16

5 Reading help files in S-mode

S-mode provides an easy-to-use facility for reading S help files from within Emacs. From
within the S process buffer or any S-mode edit buffer, typing C-c C-h (S-display-help-on-
object) will prompt you for the name of an object for which you would like documentation.
Completion is provided over all objects which have help files.

If the requested object has documentation, you will be popped into a buffer (named
help(obj-name)) containing the help file. This buffer is placed in a special ‘S Help’
mode which disables the usual editing commands but which provides a number of keys for
paging through the help file:

Help commands:

• ? (S-describe-help-mode)
Pops up a help buffer with a list of the commands available in S help mode.

• h (S-display-help-on-object)
Pop up a help buffer for a different object

Paging commands:

• b or DEL (scroll-down)
Move one page backwards through the help file.

• SPC (scroll-up)
Move one page forwards through the help file.

• > (beginning-of-buffer) and < (end-of-buffer)
Move to the beginning and end of the help file, respectively.

Section-based motion commands:

• n (S-skip-to-next-section) and p (S-skip-to-previous-section)
Move to the next and previous section header in the help file, respectively. A section
header consists of a number of capitalised words, followed by a colon.

In addition, the s key followed by one of the following letters will jump to a particular
section in the help file:

‘a’ ARGUMENTS:

‘b’ BACKGROUND:

‘B’ BUGS:

‘d’ DETAILS:

‘D’ DESCRIPTION:

‘e’ EXAMPLES:

‘n’ NOTE:

‘o’ OPTIONAL ARGUMENTS:

‘r’ REQUIRED ARGUMENTS:

‘R’ REFERENCES:

‘s’ SIDE EFFECTS:

Chapter 5: Reading help files in S-mode 17

‘s’ SEE ALSO:

‘u’ USAGE:

‘v’ VALUE:

‘<’ Jumps to beginning of file

‘>’ Jumps to end of file

‘?’ Pops up a help buffer with a list of the defined section motion keys.

Miscellaneous:

• r (S-eval-region)
Send the contents of the current region to the S process. Useful for running examples
in help files.

• / (isearch-forward)
Same as C-s.

Quit commands:

• q (S-switch-to-end-of-S)
Returns to the S process buffer in another window, leaving the help window visible.

• x (S-kill-buffer-and-go)
Return to the S process, killing this help buffer.

In addition, all of the S-mode commands available in the edit buffers are also available
in S help mode (See Section 4.1 [Edit buffer], page 10). Of course, the usual (non-editing)
Emacs commands are available, and for convenience the digits and ‘-’ act as prefix argu-
ments.

If a help buffer already exists for an object for which help is requested, that buffer is
popped to immediately; the S process is not consulted at all. If the contents of the help file
have changed, you either need to kill the help buffer first, or pass a prefix argument (with
C-u) to S-display-help-on-object.

Help buffers are marked as temporary buffers in S-mode, and are deleted when S-quit

or S-cleanup are called.

18

6 Using graphics with S-mode

One of the main features of the S package is its ability to generate high-resolution graphics
plots, and S-mode provides a number of features for dealing with such plots.

6.1 Using S-mode with the printer() driver

This is the simplest (and least desirable) method of using graphics within S-mode. S’s
printer() device driver produces crude character based plots which can be contained within
the S process buffer itself. To start using character graphics, issue the S command

printer(width=79)

(the width=79 argument prevents Emacs line-wrapping at column 80 on an 80-column
terminal. Use a different value for a terminal with a different number of columns.) Plotting
commands do not generate graphics immediately, but are stored until the show() command
is issued, which displays the current figure.

6.2 Using S-mode with the tek4014() driver

When using S from the shell with the tek4014() driver active, control-codes are sent to your
terminal to generate high-resolution graphics plots. The terminal recognizes these control-
codes as graphics commands and duly generates the appropriate plots. When running S

from Emacs, however, the control-codes are not treated specially by Emacs and simply
appear as “garbage” in your S process buffer.

One way around this is to find out what tty you are using (by using the Unix tty

command outside of Emacs) and using the file= argument to the tek4014() function to
divert the graphics control codes directly to the terminal. For example, if the tty command
returned /dev/ttyp1 then the S command

tek4014(file="/dev/ttyp1")

will send graphics to your terminal. You may even use some other terminal which you are
logged on to to have the graphics appear on another terminal. There are some problems with
this method, however: depending on your terminal you may need to switch into graphics
mode before issuing the plotting command, and if you are displaying the graphics on the
same terminal as your Emacs session, you will need to switch back to text mode afterwards.
Issuing commands while in graphics mode presents its own problems, because control-codes
issued by Emacs interfere with the display.

S-mode attempts to automate this procedure by detecting output from S commands
which looks like Tek graphics control-codes and sends those control-codes directly to the
terminal. This behaviour is enabled by setting the variable S-tek-mode to any non-nil
value (which may be achieved by using the function S-tek-mode-toggle, bound to C-c

C-t by default. Tek mode is designed to work with Tek terminals which use the same
screen to share graphics an text and also with terminals which provide separate screens.
In the former case (tested on a Vis603 terminal) the variable S-tek-pause-for-graphics
should be set to t; in the latter case (tested using xterm’s Tek emulation facilities) S-tek-
pause-for-graphics should be set to nil.

This mode depends on being able to work out where the graphics finish and normal
(text) output starts. In the easiest case, it finishes with your prompt and S-mode has no

Chapter 6: Using graphics with S-mode 19

trouble detecting that. Sometimes plotting functions also display some text afterwards, and
provided the function finishes and your prompt is displayed at the start of a line this is no
problem either, but make sure any such function you write finishes any text with a newline.
Functions like

badfun <- function() { plot(1:10) cat("Hello") invisible() }

will break the graphics detector. Other functions, such as gam(obj,ask=T) present a menu
after the plot and wait for input (and so your prompt isn’t displayed). The variable S-tek-
possible-graph-prompts is a regular expression used to detect any alternative prompt
used in this case.

When the graphics display has completed, press any key to return to your Emacs display.
This mode also works with the ask=T option to tek4014(), however any single key is now
the appropriate response to the ‘GO?’ prompt.

Unexpected redisplays of the Emacs screen (such as caused by display-time or garbage
collection) can possibly send garbage to your graphics display, but unfortunately there seems
to way to prevent this.

If you have a very simple prompt, it may by chance appear in the graphics output which
could possibly cause problems; if this occurs you will be given a warning. It is advisable to
choose a prompt with at least two characters. If your prompt changes during the S session,
be sure to tell the Tek graphics detector with M-x S-tek-get-simple-prompt.

When S-tek-mode is enabled, S-mode will make your Emacs process unusable while
waiting for the first output from a function (so it can determine whether or not it’s graphics
output). You may be stuck for a long time when executing a time-consuming function that
produces no output. If this becomes a problem, use C-c C-t to turn Tek mode on just
before pressing RET to issue a plotting command, and turn Tek mode off again after the
plotting command has completed.

6.2.1 Warning

Tek mode is really an experimental feature of S-mode, and has only been tested on one
system, and even then not particularly thoroughly. If it works for you, well and good, but
don’t be surprised if it takes some tinkering before it produces any results on your system.
See Chapter 7 [Bugs], page 20, for a few of the things that can go wrong.

6.3 Using S-mode with windowing devices

Of course, the ideal way to use graphics with S-mode is to use a windowing system. Under X
windows, this requires that the DISPLAY environment variable is appropriately set, which
may not always be the case within your Emacs process. S-mode provides a facility for setting
the value of DISPLAY before the S process is started if the variable S-ask-about-display
is non-nil. See Appendix B [Customization], page 23, for details of this variable, and see
Chapter 2 [Starting Up], page 4, for information on how to set the value of DISPLAY when
beginning an S session.

20

7 Known bugs in S-mode

• Commands like S-display-help-on-object and list completion cannot be used while
the user is entering a multi-line command. The only real fix in this situation is to use
another S process.

• The S-eval- commands can leave point in the S process buffer in the wrong place
when point is at the same position as the last process output. This proves difficult
to fix, in general, as we need to consider all windows with window-point at the right
place.

• It’s possible to clear the modification flag (say, by saving the buffer) with the edit buffer
not having been loaded into S.

• Backup files can sometimes be left behind, even when S-keep-dump-files is nil.

• Passing an incomplete S expression to S-execute causes S-mode to hang.

• Completing over lists indexed with ‘$’ destroys the value of .Last.value

• The function-based commands don’t always work as expected on functions whose body
is not a parenthesised or compound expression, and don’t even recognise anonymous
functions (i.e. functions not assigned to any variable).

• Multi-line commands could be handled better by the command history mechanism.

• There’s a zillion things wrong with Tek-mode:

- Any graphics output that does not come directly after the command is not de-
tected.

- Graphics output that does not end with some text (either the prompt or something
which matches S-tek-possible-graph-prompts) causes S-mode to hang.

- Spurious junk gets sent to the graphics display whenever Emacs updates its display
— display-time (which updates the mode line) and garbage collection (which
puts a message in the echo area) are the main culprits. If only there were a way
to stop Emacs from redisplaying for a time . . .

- Interaction with the plot (via the crosshair cursor) is not possible.

- S-tek-mode should really be a minor mode.

Let’s face it, Tek mode is flaky. It really needs a major overhaul by someone who really
knows about Tek control codes. It needs to be written using sentinels to detect the
start and end of graphics streams, and an efficient method for swapping between text
and graphics modes, including support for terminals with separate graphics and text
screens. Anyone who wants to have a go at it is more than welcome!

Until the end of August 1992, please send bug reports to dsmith@stats.adelaide.edu.au.
After this date, mail to that address will not be answered for some time; please contact
Frank Ritter (Frank_Ritter@SHAMO.SOAR.CS.CMU.EDU) or any of the other authors then
(please CC: to dsmith@stats as well though – you never know your luck!) Comments,
suggestions, words of praise and large cash donations are also more than welcome.

21

Appendix A Installing S-mode on your system

The following section details those steps necessary to get S-mode running on your system.

First of all, you need to create a directory (say, ~/elisp) to place the Emacs-Lisp
files. Copy S.el, S-tek.el, comint.el, comint-isearch.el and comint-extra.el to
that directory, and add the lines

(setq load-path (cons (expand-file-name "~/elisp") load-path))

(autoload 'S "S" "Run an inferior S process" t)

(autoload 's-mode "S" "Mode for editing S source" t)

to your .emacs file.

This will be enough to get S-mode running on most systems — see Chapter 2 [Starting
Up], page 4, for details on starting S-mode. If it does not work, see Section A.1 [System
dependent], page 21, for other variables you may need to change. See Appendix B [Cus-
tomization], page 23, for other variables you may wish to set in your .emacs file, but it is
suggested you defer this section until you are more familiar with S-mode.

It is recommended that the .el files all be byte-compiled with M-x byte-compile-file

for efficiency.

A.1 Other variables you may need to change

If you run the S program (from the shell) with a command other than ‘Splus’ you will
need to set the variable inferior-S-program to the name of the appropriate program by
including a line such as

(setq inferior-S-program "S+")

in your .emacs file (substituting ‘S+’ for the name of your S program.)

If you need to call this program with any arguments, the variable you need to set is
dependent on the value of inferior-S-program; for example if it is "Splus", set the variable
inferior-Splus-args to a string of arguments to the Splus program. If inferior-S-
program has some other value, substitute the Splus part of inferior-Splus-args with
the appropriate program name. There aren’t many instances where you need to call S with
arguments, however: in particular do not call the S program with the ‘-e’ command-line
editor argument since S-mode provides this feature for you.

If you are running an older version of S, you may need to set the variable S-version-

running to reflect this fact. The default is "3.0" which indicates the August ’91 revision;
any other value indicates an older version. This variable is effective only when S-mode is
loaded ; setting it during an S session has no effect.

If you are running Splus (the enhanced version of S from Statsci) you may also need to
set the variable S-plus to t. If your value of inferior-S-program is "S+" or Splus this
will not be necessary, however; S-plus defaults to t in this case.

Finally, if you use a non-standard prompt within S, you will need to set the variable
inferior-S-prompt to a regular expression which will match both the primary prompt
("> " by default) and the continuing prompt (default of "+ ".) The default value of this
variable matches S’s default prompts. For example, if you use ("$ ") as your primary

Appendix A: Installing S-mode on your system 22

prompt (you have options(prompt="$ ") in your .First function), add the following line
to your .emacs:

(setq inferior-S-prompt "^\\(\\+\\|[^\\$]*\\$\\) *")

You will also need to set the variable inferior-S-primary-prompt to a regular expression
which matches the primary prompt only. Do not anchor the regexp to the beginning of the
line with ‘^’. Once again, the default value matches S’s default prompt; in the example
above the appropriate value would be "[^\\$]*\\$ *".

Once these variables are set appropriately, S-mode should work on any system.

23

Appendix B Customizing S-mode

S-mode can be easily customised to your taste simply by including the appropriate lines in
your .emacs file. There are numerous variables which affect the behaviour of S-mode in
certain situations which can be modified to your liking. Keybindings may be set or changed
to your preferences, and for per-buffer customizations hooks are also available.

B.1 Variables for customization

S-mode is easily customisable by means of setting variables in your .emacs file. In most
cases, you can change defaults by including lines of the form

(setq variable-name value)

in your .emacs.

In what follows, variable names will be listed along with their descriptions and default
values. Just substitute the variable name and the new value into the template above.

B.1.1 Variables for starting S

[User Option]S-ask-for-S-directory
Default: t
If this variable has a non-nil value, then every time S-mode is run with M-x S you will
be prompted for a directory to use as the working directory for your S session; this
directory should have a .Data subdirectory. If the value of S-ask-for-S-directory
is nil, the value of S-directory is used as the working directory.

[User Option]S-directory
Default: Your home directory
The working directory for your S session if S-ask-for-S-directory is nil, and the
default when prompting for a directory if it is not. For example, you may wish to set
this to the value of the current buffer’s working directory before starting S by adding
the following line to your .emacs file (See Section B.2 [Hooks], page 26)

(setq S-pre-run-hook

'((lambda () (setq S-directory default-directory))))

[User Option]S-ask-about-display
Default: nil
If this variable has a non-nil value, then every time S-mode is run with M-x S you
will be asked for a value for the DISPLAY environment variable to be used in the
current S session. If this variable is not set correctly, S will not be able to create
any windows under the X windowing environment. Completion is provided over the
X-displays-list variable; the default is the current value of DISPLAY. This feature
is useful is you often run S on a different display than that of the machine you are
running S from. If S-ask-about-display is nil, the current value of DISPLAY is
used.

[User Option]X-displays-list
Default: '(":0.0")
List of possible values for the DISPLAY environment variable, provided for completion
when prompting for such a value.

Appendix B: Customizing S-mode 24

B.1.2 Variables for dump files

[User Option]S-insert-function-templates
Default: t
If this variable has a non-nil value, then dumping a non-existent object will result
in the edit buffer containing a skeleton function definition, ready for editing.

[User Option]S-source-directory
Default: "/tmp/"
Directory name (ending in ‘/’) in which dump files are placed. This should always be
a writable directory.

[User Option]S-source-directory-generator
Default: nil
Alternative, dynamic method of specifying the directory for dump files.

[User Option]S-dump-filename-template
Default: user name.object name.S
Naming system to use for dumped object files. See Section 4.4 [Source Directories],
page 14, for details of this and the previous two variables.

[User Option]S-keep-dump-files
Default: nil
Boolean flag signifying whether to keep dump files or to delete them after each use.
See Section 4.3 [Source Files], page 13, for more details.

B.1.3 Variables controlling indentation

[User Option]S-tab-always-indent
Default: t
If non-nil, then TAB in the edit buffer always indents the current line, regardless of
the position of point in the line. Otherwise, indentation is only performed if point
is in the lines indentation, and a tab character is inserted is point is after the first
nonblank character.

[User Option]S-auto-newline
Default: nil
Non-nil means automatically newline before and after braces inserted in S code.

[User Option]S-indent-level
Default: 2
Extra indentation of S statement sub-block with respect to enclosing braces.

[User Option]S-brace-imaginary-offset
Default: 0
Extra indentation (over sub-block indentation) for block following an open brace
which follows on the same line as a statement.

[User Option]S-brace-offset
Default: 0
Extra indentation for braces, compared with other text in same context.

Appendix B: Customizing S-mode 25

[User Option]S-continued-statement-offset
Default: 0
Extra indent for lines not starting new statements.

[User Option]S-continued-brace-offset
Default: 0
Extra indent for substatements that start with open-braces. This is in addition to
S-continued-statement-offset.

[User Option]S-arg-function-offset
Default: 2
Extra indent for arguments of function foo when it is called as the value of an argu-
ment to another function in arg=foo(...) form. If not number, the statements are
indented at open-parenthesis following foo.

[User Option]S-expression-offset
Default: 4
Extra indent for internal substatements of the call to expression() specified in

obj <- expression(...)

form. If not a number, the statements are indented at open-parenthesis following
‘expression’.

In addition, a number of default styles are defined for you (in S-style-alist):

[User Option]S-default-style
Default: GNU
The default formatting style to use in edit buffers: See Section 4.1 [Edit buffer],
page 10, for more details.

B.1.4 Variables controlling interaction with the S process

[User Option]input-ring-size
Default: 50
Number of commands to store in the command history.

[User Option]S-execute-in-process-buffer
Default: nil
If this is nil, then the S-execute- commands (see Section 3.6 [Other inferior-S-mode
commands], page 9) output to a temporary buffer. Otherwise, the output goes to the
S process.

[User Option]S-eval-visibly-p
Default: nil
If non-nil, then the S-eval- commands (see Section 4.1 [Edit buffer], page 10) echo
the S commands in the process buffer by default. In any case, passing a prefix
argument to the eval command reverses the meaning of this variable.

Appendix B: Customizing S-mode 26

B.2 Customizing S-mode with hooks

S-mode provides five hooks, as follows:

[Hook]S-mode-hook
Called every time S-mode is run, i.e. every time an edit buffer is generated.

[Hook]S-pre-run-hook
Called before the S process is started with M-x S.

[Hook]S-mode-load-hook
Called just after the file S.el is loaded. Useful for setting up your keybindings, etc.

[Hook]inferior-S-mode-hook
Called just after the S process starts up, when the S process buffer is initialised.

[Hook]S-help-mode-hook
Called every time an S help buffer is generated.

B.3 Changing the default S-mode keybindings

S-mode provides a separate keymap variable for the S process buffer, for edit buffers and
for help buffers.

[Keymap]inferior-S-mode-map
Keymap used in the S process buffer. The bindings from comint-mode-map are au-
tomatically inherited.

[Keymap]S-mode-map
Keymap used within edit buffers.

[Keymap]S-help-mode-map
Keymap used within help buffers. In addition, S-help-sec-map is the keymap for the
‘s’ prefix key. Keys defined in S-help-sec-keys-alist are automatically inserted
into this keymap when S-mode is loaded.

27

Concept Index

.

.Data directory . 4, 23

.emacs file . 15, 21, 23

.First function . 22

A
aborting S commands . 9
aborting the S process . 9
arguments to S program . 4, 21
authors . 1
autosaving . 14

B
bugs . 20
byte compilation . 21

C
changes to S-mode . 2
cleaning up . 9
comint . 1
command history . 7
command to run S program . 21
command-line completion . 5
command-line editing . 5
commands . 5
comments . 14
comments at end of file . 14
comments in S . 12
completion of object names . 5
completion on lists . 6
completion, not working on data frames 6
completion, when prompted for object names . . . 10
continuing prompt . 21
creating new objects . 10
credits . 1
customization . 23

D
data frames . 5
debugging S functins . 11
defaults . 23
deleting output . 6
directories . 4, 23
DISPLAY environment variable 4, 23
dump file directories . 14
dump file names . 14
dump files . 10, 13, 24
dump files, preserving . 14

E
echoing commands when evaluating 11
edit buffer . 10
editing commands . 7
editing functions . 10
entering commands . 5
environment variables . 23
errors . 15
evaluating code with echoed commands 11
evaluating S expressions . 11

F
features of S-mode . 2
formatting source code . 12, 24

G
graphics . 18

H
help files . 16
historic backups . 14
hooks . 26
hot keys . 8

I
indentation . 24
indenting . 12
installation . 21
interactive use of S . 1
interrupting S commands . 9
introduction . 1

K
keyboard short cuts . 8
killing temporary buffers . 9
killing the S process . 9

L
lists, completion on . 6
load path . 21

M
modification flag . 13
multi-line commands, resubmitting 7

Concept Index 28

N
name of S program . 21
new features . 2
new objects, creating . 10

O
objects . 8

P
paging commands in help buffers 16
parsing errors . 15
preserving dump files . 14
primary prompt . 21
process buffer . 4
programming in S . 1
project work in S . 14
prompts in S . 21

Q
quitting from S-mode . 9

R
re-executing commands . 7
reading long command outputs 6
reverting function definitions 10
running S . 4

S
S process buffer . 4
S process directory . 4
S program name . 21
search list . 8, 15
sending input . 5
Splus . 21
starting directory . 4, 23
starting S-mode . 4
stepping through code . 11

T
tcsh . 5
tek4014 terminal . 18
temporary buffers . 14, 17
temporary buffers, killing . 9
transcripts of S sessions . 1

U
using S interactively . 1

V
variables . 23
versions of S . 21

W
working directory . 4, 15

X
X windows . 4, 19, 23

29

Variable and command index

.

.Last.value . 20

A
attach() . 8

B
backward-kill-word . 5
byte-compile-file . 21

C
comint-bol . 5
comint-interrupt-subjob . 9
comint-isearch . 8
comint-kill-input . 5
comint-mode-map . 26
comint-msearch-input . 7
comint-msearch-input-matching 7
comint-next-input . 7
comint-next-similar-input . 7
comint-previous-similar-input 7
comint-psearch-input . 7
comint-show-output . 6
comint-stop-subjob . 9
comment-column . 12

D
dump() . 10

E
expression() . 25

H
help.start() . 4

I
inferior-S-mode-hook . 6, 26
inferior-S-mode-map . 26
inferior-S-primary-prompt 22
inferior-S-program . 4, 21
inferior-S-prompt . 21
inferior-S-send-input . 5
inferior-Splus-args . 21
input-ring-size . 7, 25

L
load-path . 21

O
objects() . 8
options() . 22

P
printer() . 18

Q
q() . 9

S
S . 4, 23, 26
S-abort . 9
S-arg-function-offset . 25
S-ask-about-display 4, 19, 23
S-ask-for-S-directory . 4, 23
S-auto-newline . 24
S-beginning-of-function . 12
S-brace-imaginary-offset . 24
S-brace-offset . 24
S-change-sp-regex . 6
S-cleanup . 9, 13, 17
S-complete-object-name . 5
S-continued-brace-offset . 25
S-continued-statement-offset 25
S-default-style . 25
S-describe-help-mode . 16
S-directory . 4, 23
S-display-help-on-object . 16
S-displays-list . 4
S-dump-filename-template 14, 24
S-dump-object-into-edit-buffer 9, 10
S-end-of-function . 12
S-eval-buffer . 11
S-eval-function . 11
S-eval-function-and-go . 11
S-eval-line . 11
S-eval-line-and-go . 11
S-eval-line-and-next-line . 11
S-eval-region . 11, 17
S-eval-region-and-go . 11
S-eval-visibly-p . 11, 25
S-execute . 8
S-execute-attach . 8
S-execute-in-process-buffer 8, 25
S-execute-in-tb . 11

Variable and command index 30

S-execute-objects . 8
S-execute-search . 8
S-expression-offset . 25
S-function-template . 10
S-help-mode-hook . 26
S-help-mode-map . 26
S-help-sec-keys-alist . 26
S-indent-level . 24
S-insert-function-templates 10, 24
S-keep-dump-files . 13, 24
S-kill-output . 6
S-load-file . 9, 10
S-mode-hook . 26
S-mode-load-hook . 26
S-mode-map . 26
S-parse-errors . 9, 15
S-plus . 21
S-pre-run-hook . 26
S-quit . 9, 13, 17
S-resynch . 6
S-search-list . 15
S-skip-to-help-section . 16
S-skip-to-next-section . 16

S-skip-to-previous-section . 16
S-source-directory . 14, 24
S-source-directory-generator 15, 24
S-style-alist . 25
S-switch-to-end-of-S . 13, 17
S-switch-to-S . 13
S-tab-always-indent . 24
S-tek-get-simple-prompt . 19
S-tek-mode . 18
S-tek-mode-toggle . 18
S-tek-pause-for-graphics . 18
S-tek-possible-graph-prompts 19
S-temp-buffer-p . 14
S-version-running . 21
S-view-at-bottom . 6
scroll-step . 6
search() . 5, 8
source() . 10, 11

X
X-displays-list . 23
X11() . 4

i

Table of Contents

1 Introduction to S-mode . 1
1.1 Authors of and contributors to S-mode . 1
1.2 Getting the latest version of S-mode . 2
1.3 Changes from version 2.1 . 2
1.4 How to read this manual . 2

2 Starting the S process . 4

3 Interacting with the S process 5
3.1 Entering commands and fixing mistakes . 5
3.2 Completion of object names . 5
3.3 Moving through the process buffer . 6
3.4 Command History . 7
3.5 Hot keys for common commands . 8
3.6 Other commands provided by inferior-S-mode . 9

4 Editing S functions . 10
4.1 The edit buffer . 10

4.1.1 Sending code to the S process . 10
4.1.2 Indenting and formatting S code . 12
4.1.3 Commands for motion, completion and more 12

4.2 Modification flags in edit buffers . 13
4.3 Maintaining S source files . 13
4.4 Names and locations of dump files . 14
4.5 Detecting and correcting errors . 15

5 Reading help files in S-mode 16

6 Using graphics with S-mode 18
6.1 Using S-mode with the printer() driver . 18
6.2 Using S-mode with the tek4014() driver . 18

6.2.1 Warning . 19
6.3 Using S-mode with windowing devices . 19

7 Known bugs in S-mode . 20

Appendix A Installing S-mode on your system . 21
A.1 Other variables you may need to change . 21

ii

Appendix B Customizing S-mode 23
B.1 Variables for customization . 23

B.1.1 Variables for starting S . 23
B.1.2 Variables for dump files . 24
B.1.3 Variables controlling indentation . 24
B.1.4 Variables controlling interaction with the S process 25

B.2 Customizing S-mode with hooks . 26
B.3 Changing the default S-mode keybindings . 26

Concept Index . 27

Variable and command index . 29

	1 Introduction to S-mode
	Authors of and contributors to S-mode
	Getting the latest version of S-mode
	Changes from version 2.1
	How to read this manual

	2 Starting the S process
	3 Interacting with the S process
	Entering commands and fixing mistakes
	Completion of object names
	Moving through the process buffer
	Command History
	Hot keys for common commands
	Other commands provided by inferior-S-mode

	4 Editing S functions
	The edit buffer
	Sending code to the S process
	Indenting and formatting S code
	Commands for motion, completion and more

	Modification flags in edit buffers
	Maintaining S source files
	Names and locations of dump files
	Detecting and correcting errors

	5 Reading help files in S-mode
	6 Using graphics with S-mode
	Using S-mode with the printer() driver
	Using S-mode with the tek4014() driver
	Warning

	Using S-mode with windowing devices

	7 Known bugs in S-mode
	A Installing S-mode on your system
	Other variables you may need to change

	B Customizing S-mode
	Variables for customization
	Variables for starting S
	Variables for dump files
	Variables controlling indentation
	Variables controlling interaction with the S process

	Customizing S-mode with hooks
	Changing the default S-mode keybindings

	Concept Index
	Variable and command index

