Using 1d

The GNU linker

1d version 2
March 1993

Steve Chamberlain and Roland Pesch
Cygnus Support




Cygnus Support

steve@cygnus.com, pesch@cygnus.com

Using LD, the GNU linker

Edited by Jeffrey Osier (jeffrey@cygnus.com), March 1993.

Copyright (©) 1991, 1992, 1993 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided also that the entire resulting derived work is distributed under the

terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,

under the above conditions for modified versions.



Chapter 1: Overview 1

1 Overview

1d combines a number of object and archive files, relocates their data and ties up symbol references.
Usually the last step in compiling a program is to run 1d.

14 accepts Linker Command Language files written in a superset of AT&T’s Link Editor Command
Language syntax, to provide explicit and total control over the linking process.

This version of 1d uses the general purpose BFD libraries to operate on object files. This allows 1d
to read, combine, and write object files in many different formats—for example, COFF or a.out.
Different formats may be linked together to produce any available kind of object file. See Chapter 4
[BFD], page 29 for a list of formats supported on various architectures.

Aside from its flexibility, the GNU linker is more helpful than other linkers in providing diagnostic
information. Many linkers abandon execution immediately upon encountering an error; whenever
possible, 1d continues executing, allowing you to identify other errors (or, in some cases, to get an
output file in spite of the error).



Using LD, the GNU linker



Chapter 2: Invocation 3
2 Invocation

The GNU linker 1d is meant to cover a broad range of situations, and to be as compatible as
possible with other linkers. As a result, you have many choices to control its behavior.

Here is a summary of the options you can use on the 1d command line:

1d [-o output ] obfjfile...

[ -Aarchitecture 1 [ -b input-format ] [ -Bstatic ]

[ -¢ MRI-commandfile ] [ -d | -dc | -dp 1]

[ -defsym symbol=expression ]

[ —eentry ] [ -F] [ -F format ]

[ -format input-format 1 [ -g 1 [ -i]

[ -lar 1 [ -Lsearchdir ] [ -M | -m ]

[ -n | -N ] [ -noinhibit-exec ] [ -R filename ]

[ -relax ] [ -r | -Ur ] [ -S] [-s1] [ -T commandfile ]
[ -Ttext textorg ] [ -Tdata dataorg 1 [ -Tbss bssorg ]
[-t] [ -usyml [-vl] [-X1 [ -x1 [ -ysymbol ]
[ { script } ]

This plethora of command-line options may seem intimidating, but in actual practice few of them
are used in any particular context. For instance, a frequent use of 1d is to link standard Unix
object files on a standard, supported Unix system. On such a system, to link a file hello.o:

1d -o output /lib/crt0.o hello.o -lc

This tells 1d to produce a file called output as the result of linking the file /1ib/crt0.o with
hello.o and the library libc.a, which will come from the standard search directories. (See the

discussion of the ‘-1’ option below.)

The command-line options to 1d may be specified in any order, and may be repeated at will.
Repeating most options with a different argument will either have no further effect, or override
prior occurrences (those further to the left on the command line) of that option.

The exceptions—which may meaningfully be used more than once—are ‘-A’; ‘=b’ (or its synonym
‘~format’), ‘~defsym’, ‘-L’, ‘-1’, ‘-R’, and ‘-u’.



4 Using LD, the GNU linker

The list of object files to be linked together, shown as objfile. . ., may follow, precede, or be mixed in
with command-line options, except that an objfile argument may not be placed between an option
and its argument.

Usually the linker is invoked with at least one object file, but other forms of binary input files can
also be specified with ‘-1’; ‘-R’, and the script command language. If no binary input files at all
are specified, the linker does not produce any output, and issues the message ‘No input files’.

Option arguments must either follow the option letter without intervening whitespace, or be given
as separate arguments immediately following the option that requires them.

objfile...  The object files to be linked.
-b input-format

Specify the binary format for input object files that follow this option on the command
line. You don’t usually need to specify this, as 1d is configured to expect as a default
input format the most usual format on each machine. input-format is a text string, the
name of a particular format supported by the BFD libraries. ‘-format input-format’
has the same effect. See Chapter 4 [BFD], page 29.

You may want to use this option if you are linking files with an unusual binary format.
You can also use ‘-b’ to switch formats explicitly (when linking object files of different
formats), by including ‘-b input-format’ before each group of object files in a particular
format.

The default format is taken from the environment variable GNUTARGET. You can also
define the input format from a script, using the command TARGET; see Section 3.6
[Other Commands]|, page 25.

-Bstatic Ignored. This option is accepted for command-line compatibility with the SunOS linker.
-c¢ MRI-commandfile

For compatibility with linkers produced by MRI, 1d accepts script files written in an
alternate, restricted command language, described in Appendix A [MRI Compatible

4

Script Files|, page 35. Introduce MRI script files with the option ‘-c¢’; use the ‘=T’

option to run linker scripts written in the general-purpose 1d scripting language.

-dc

-dp These three options are equivalent; multiple forms are supported for compatibility with
other linkers. They assign space to common symbols even if a relocatable output file
is specified (with ‘-r’). The script command FORCE_COMMON_ALLOCATION has the same
effect. See Section 3.6 [Other Commands], page 25.



Chapter 2: Invocation 5

-defsym symbol=expression

Create a global symbol in the output file, containing the absolute address given by ex-
pression. You may use this option as many times as necessary to define multiple symbols
in the command line. A limited form of arithmetic is supported for the expression in
this context: you may give a hexadecimal constant or the name of an existing symbol,
or use + and - to add or subtract hexadecimal constants or symbols. If you need more
elaborate expressions, consider using the linker command language from a script (see
Section 3.2.6 [Assignment: Symbol Definitions], page 13). Note: there should be no

white space between symbol, the equals sign (“="), and expression.

-e entry  Use entry as the explicit symbol for beginning execution of your program, rather than
the default entry point. See Section 3.5 [Entry Point]|, page 24, for a discussion of
defaults and other ways of specifying the entry point.

-F

-Fformat Ignored. Some older linkers used this option throughout a compilation toolchain for
specifying object-file format for both input and output object files. The mechanisms
1d uses for this purpose (the ‘-b’ or ‘-~format’ options for input files, the TARGET
command in linker scripts for output files, the GNUTARGET environment variable) are

more flexible, but 1d accepts the ‘-F’ option for compatibility with scripts written to
call the old linker.

-format input-format

Synonym for ‘~b input-format’.

-g Ignored. Provided for compatibility with other tools.
-i Perform an incremental link (same as option ‘-r’).
-lar Add archive file ar to the list of files to link. This option may be used any number of

times. 1d will search its path-list for occurrences of 1libar.a for every ar specified.
-Lsearchdir

Add path searchdir to the list of paths that 1d will search for archive libraries. You
may use this option any number of times.

The paths can also be specified in a link script with the SEARCH_DIR command.

-M

-m Print (to the standard output) a link map—diagnostic information about where sym-
bols are mapped by 1d, and information on global common storage allocation.

-N Set the text and data sections to be readable and writable. Also, do not page-align

the data segment. If the output format supports Unix style magic numbers, mark the
output as OMAGIC.

-n Set the text segment to be read only, and mark the output as NMAGIC if possible.



Using LD, the GNU linker

-noinhibit-exec

—-o output

-R filename

-relax

-r

-5
-s

{ script }

Retain the executable output file whenever it is still usable. Normally, the linker will
not produce an output file if it encounters errors during the link process; it exits without
writing an output file when it issues any error whatsoever.

Use output as the name for the program produced by 1d; if this option is not specified,
the name ‘a.out’ is used by default. The script command OUTPUT can also specify the
output file name.

On some platforms, this option performs global optimizations that become possible
when the linker resolves addressing in the program, such as relaxing address modes
and synthesizing new instructions in the output object file.

An option with machine dependent effects. Currently this option is only supported on
the H8/300.

On some platforms, use option performs global optimizations that become possible
when the linker resolves addressing in the program, such as relaxing address modes
and synthesizing new instructions in the output object file.

On platforms where this is not supported, ‘-relax’ is accepted, but ignored.

Generate relocatable output—i.e., generate an output file that can in turn serve as
input to 1d. This is often called partial linking. As a side effect, in environments that
support standard Unix magic numbers, this option also sets the output file’s magic
number to OMAGIC. If this option is not specified, an absolute file is produced. When
linking C++ programs, this option will not resolve references to constructors; to do
that, use ‘-Ur’.

This option does the same as -1i.

Omit debugger symbol information (but not all symbols) from the output file.

Omit all symbol information from the output file.

You can, if you wish, include a script of linker commands directly in the command
line instead of referring to it via an input file. When the character ‘{’ occurs on the
command line, the linker switches to interpreting the command language until the end
of the list of commands is reached; the end is indicated with a closing brace ‘}’. 1d
does not recognize other command-line options while parsing the script. See Chapter 3

[Commands], page 9, for a description of the command language.

-Tbss bssorg

-Tdata dataorg

-Ttext textorg

Use org as the starting address for—respectively—the bss, data, or the text segment
of the output file. org must be a single hexadecimal integer; for compatibility with other
linkers, you may omit the leading ‘0x’ usually associated with hexadecimal values.



Chapter 2: Invocation 7

-T commandfile

-Tcommandfile

Read link commands from the file commandfile. These commands completely override
1d’s default link format (rather than adding to it); commandfile must specify everything
necessary to describe the target format. See Chapter 3 [Commands|, page 9.

You may also include a script of link commands directly in the command line by
bracketing it between ‘{’ and ‘}’.

Print the names of the input files as 1d processes them.

Force sym to be entered in the output file as an undefined symbol. Doing this may,
for example, trigger linking of additional modules from standard libraries. ‘-u’ may be
repeated with different option arguments to enter additional undefined symbols.

For anything other than C++ programs, this option is equivalent to ‘-r’: it generates
relocatable output—i.e., an output file that can in turn serve as input to 1d. When

linking C++ programs, ‘~Ur’ will resolve references to constructors, unlike ‘-r’.
Display the version number for 1d.

If ‘-8’ or ‘-8’ is also specified, delete only local symbols beginning with ‘L’.

‘-8’ is also specified, delete all local symbols, not just those beginning with

If ‘-8’ or
‘L.
Print the name of each linked file in which symbol appears. This option may be given

any number of times. On many systems it is necessary to prepend an underscore.

This option is useful when you have an undefined symbol in your link but don’t know

where the reference is coming from.



Using LD, the GNU linker



Chapter 3: Command Language 9

3 Command Language

The command language provides explicit control over the link process, allowing complete specifi-
cation of the mapping between the linker’s input files and its output. It controls:

e input files

e file formats

e output file format

e addresses of sections

e placement of common blocks

You may supply a command file (also known as a link script) to the linker either explicitly through
the ‘-T’ option, or implicitly as an ordinary file. If the linker opens a file which it cannot recognize
as a supported object or archive format, it tries to interpret the file as a command file.

You can also include a script directly on the 1d command line, delimited by the characters ‘{’ and

6}7.

3.1 Linker Scripts

The 1d command language is a collection of statements; some are simple keywords setting a partic-
ular option, some are used to select and group input files or name output files; and two statement

types have a fundamental and pervasive impact on the linking process.

The most fundamental command of the 1d command language is the SECTIONS command (see
Section 3.4 [SECTIONS], page 18). Every meaningful command script must have a SECTIONS
command: it specifies a “picture” of the output file’s layout, in varying degrees of detail. No other
command is required in all cases.

The MEMORY command complements SECTIONS by describing the available memory in the target
architecture. This command is optional; if you don’t use a MEMORY command, 1d assumes sufficient
memory is available in a contiguous block for all output. See Section 3.3 [MEMORY], page 16.

You may include comments in linker scripts just as in C: delimited by ‘/*’ and ‘x/’. As in C,
comments are syntactically equivalent to whitespace.



10 Using LD, the GNU linker

3.2 Expressions

Many useful commands involve arithmetic expressions. The syntax for expressions in the command
language is identical to that of C expressions, with the following features:

All expressions evaluated as integers and are of “long” or “unsigned long” type.

All constants are integers.

All of the C arithmetic operators are provided.
e You may reference, define, and create global variables.
e You may call special purpose built-in functions.
3.2.1 Integers

An octal integer is ‘0’ followed by zero or more of the octal digits (‘01234567’).

_as_octal = 0157255;

A decimal integer starts with a non-zero digit followed by zero or more digits (‘0123456789’).

_as_decimal = 57005;

A hexadecimal integer is ‘0x’ or ‘0OX’ followed by one or more hexadecimal digits chosen from
‘0123456789abcdef ABCDEF’.

_as_hex = Oxdead;

To write a negative integer, use the prefix operator ‘-’; see Section 3.2.4 [Operators], page 12.

_as_neg = -57005;

Additionally the suffixes K and M may be used to scale a constant by 1024 or 1024* respectively.
For example, the following all refer to the same quantity:



Chapter 3: Command Language 11

_fourk_1 = 4K;
_fourk_2 4096;
_fourk_3 0x1000;

3.2.2 Symbol Names

Unless quoted, symbol names start with a letter, underscore, point or hyphen and may include any
letters, underscores, digits, points, and minus signs. Unquoted symbol names must not conflict
with any keywords. You can specify a symbol which contains odd characters or has the same name

as a keyword, by surrounding the symbol name in double quotes:

"SECTION" = 9;
"with a space" = "also with a space" + 10;

3.2.3 The Location Counter

The special linker variable dot ‘.’ always contains the current output location counter. Since the
. always refers to a location in an output section, it must always appear in an expression within
a SECTIONS command. The . symbol may appear anywhere that an ordinary symbol is allowed in
an expression, but its assignments have a side effect. Assigning a value to the . symbol will cause
the location counter to be moved. This may be used to create holes in the output section. The

location counter may never be moved backwards.

SECTIONS

{
output :
{
filel(.text)
.= . + 1000;
file2(.text)
. += 1000;
file3(.text)
} = 0x1234;

}

In the previous example, filel is located at the beginning of the output section, then there is a
1000 byte gap. Then file2 appears, also with a 1000 byte gap following before file3 is loaded.
The notation ‘= 0x1234’ specifies what data to write in the gaps (see Section 3.4.3 [Section Options],
page 23).



12 Using LD, the GNU linker

3.2.4 Operators

The linker recognizes the standard C set of arithmetic operators, with the standard bindings and
precedence levels:

Precedence | Associativity Operators

highest

1 left -1 ]

2 left x /%

3 left + -

4 left >> <<

5 left == I= > < <= >=

6 left &

7 left |

8 left &&

9 left Il

10 right ?

11 right &= += -= x= /= T
lowest

T Prefix operators.
I See Section 3.2.6 [Assignment|, page 13.

3.2.5 Evaluation

The linker uses “lazy evaluation” for expressions; it only calculates an expression when absolutely
necessary. The linker needs the value of the start address, and the lengths of memory regions, in
order to do any linking at all; these values are computed as soon as possible when the linker reads
in the command file. However, other values (such as symbol values) are not known or needed until
after storage allocation. Such values are evaluated later, when other information (such as the sizes

of output sections) is available for use in the symbol assignment expression.

3.2.6 Assignment: Defining Symbols

You may create global symbols, and assign values (addresses) to global symbols, using any of the

C assignment operators:



Chapter 3: Command Language 13

symbol = expression ;

symbol &= expression ;
symbol += expression ;
symbol —-= expression ;
symbol *= expression ;
symbol /= expression ;

Two things distinguish assignment from other operators in 1d expressions.

e Assignment may only be used at the root of an expression; ‘a=b+3;’ is allowed, but ‘a+b=3;’

is an error.

e You must place a trailing semicolon (“;”) at the end of an assignment statement.

Assignment statements may appear:

e as commands in their own right in an 1d script; or
e as independent statements within a SECTIONS command; or

e as part of the contents of a section definition in a SECTIONS command.

The first two cases are equivalent in effect—both define a symbol with an absolute address. The last
case defines a symbol whose address is relative to a particular section (see Section 3.4 [SECTIONS],
page 18).

When a linker expression is evaluated and assigned to a variable, it is given either an absolute or a
relocatable type. An absolute expression type is one in which the symbol contains the value that
it will have in the output file, a relocatable expression type is one in which the value is expressed

as a fixed offset from the base of a section.

The type of the expression is controlled by its position in the script file. A symbol assigned within a
section definition is created relative to the base of the section; a symbol assigned in any other place
is created as an absolute symbol. Since a symbol created within a section definition is relative to
the base of the section, it will remain relocatable if relocatable output is requested. A symbol may
be created with an absolute value even when assigned to within a section definition by using the
absolute assignment function ABSOLUTE. For example, to create an absolute symbol whose address

is the last byte of an output section named .data:



14 Using LD, the GNU linker

SECTIONS{ ...
.data :
{
*(.data)
_edata = ABSOLUTE(.) ;
}
.t

The linker tries to put off the evaluation of an assignment until all the terms in the source expression
are known (see Section 3.2.5 [Evaluation], page 12). For instance, the sizes of sections cannot be
known until after allocation, so assignments dependent upon these are not performed until after
allocation. Some expressions, such as those depending upon the location counter dot, ‘.’ must be
evaluated during allocation. If the result of an expression is required, but the value is not available,
then an error results. For example, a script like the following

SECTIONS { ...
text 9+this_isnt_constant :
{...
}
.}

will cause the error message “Non constant expression for initial address”.

3.2.7 Built-In Functions

The command language includes a number of built-in functions for use in link script expressions.

ABSOLUTE (exp)

Return the absolute (non-relocatable, as opposed to non-negative) value of the expres-
sion exp. Primarily useful to assign an absolute value to a symbol within a section
definition, where symbol values are normally section-relative.

ADDR (section)

Return the absolute address of the named section. Your script must previously have
defined the location of that section. In the following example, symbol_1 and symbol_2

are assigned identical values:



Chapter 3: Command Language 15

SECTIONSA ...
.outputl :

{
start_of_output_1 = ABSOLUTE(.);

X
.output :

{
symbol_1 = ADDR(.outputl);
symbol_2 = start_of_output_1;

ALIGN (exp)

Return the result of the current location counter (.) aligned to the next exp boundary.
exp must be an expression whose value is a power of two. This is equivalent to

(. +exp-1) & “(exp - 1)

ALIGN doesn’t change the value of the location counter—it just does arithmetic on it.
As an example, to align the output .data section to the next 0x2000 byte boundary
after the preceding section and to set a variable within the section to the next 0x8000
boundary after the input sections:

SECTIONS{ ...
.data ALIGN(0x2000): {
*(.data)
variable = ALIGN(0x8000) ;
}
.}

The first use of ALIGN in this example specifies the location of a section because it is
used as the optional start attribute of a section definition (see Section 3.4.3 [Section
Options|, page 23). The second use simply defines the value of a variable.

The built-in NEXT is closely related to ALIGN.
DEFINED (symbol)

Return 1 if symbol is in the linker global symbol table and is defined, otherwise return
0. You can use this function to provide default values for symbols. For example, the
following command-file fragment shows how to set a global symbol begin to the first
location in the .text section—but if a symbol called begin already existed, its value
is preserved:

SECTIONSAo ...

.text ¢ Ao
begin = DEFINED(begin) ? begin : . ;



16 Using LD, the GNU linker

NEXT (exp)

Return the next unallocated address that is a multiple of exp. This function is closely
related to ALIGN (exp); unless you use the MEMORY command to define discontinuous

memory for the output file, the two functions are equivalent.
SIZEQF (section)

Return the size in bytes of the named section, if that section has been allocated. In
the following example, symbol_1 and symbol_2 are assigned identical values:
SECTIONSA ...

.output {
.start = . ;

.end = . ;
¥
symbol_1 = .end - .start ;

symbol_2 = SIZEOF(.output);

SIZEOF_HEADERS
sizeof_headers

Return the size in bytes of the output file’'s headers. You can use this number as the
start address of the first section, if you choose, to facilitate paging.

3.3 MEMORY Command

The linker’s default configuration permits allocation of all available memory. You can override this
configuration by using the MEMORY command. The MEMORY command describes the location and size
of blocks of memory in the target. By using it carefully, you can describe which memory regions
may be used by the linker, and which memory regions it must avoid. The linker does not shuffle
sections to fit into the available regions, but does move the requested sections into the correct
regions and issue errors when the regions become too full.

The command files may contain at most one use of the MEMORY command; however, you can define

as many blocks of memory within it as you wish. The syntax is:

MEMORY

{
name (attr) : ORIGIN = origin, LENGTH = len



Chapter 3:

name

(attr)

origin

len

Command Language 17

is a name used internally by the linker to refer to the region. Any symbol name may be
used. The region names are stored in a separate name space, and will not conflict with
symbols, file names or section names. Use distinct names to specify multiple regions.

is an optional list of attributes, permitted for compatibility with the AT&T linker but
not used by 1d beyond checking that the attribute list is valid. Valid attribute lists
must be made up of the characters “LIRWX”. If you omit the attribute list, you may
omit the parentheses around it as well.

is the start address of the region in physical memory. It is an expression that must
evaluate to a constant before memory allocation is performed. The keyword ORIGIN
may be abbreviated to org or o.

is the size in bytes of the region (an expression). The keyword LENGTH may be abbre-
viated to len or 1.

For example, to specify that memory has two regions available for allocation—one starting at 0 for
256 kilobytes, and the other starting at 0x40000000 for four megabytes:

MEMORY

{

rom : ORIGIN = O, LENGTH = 256K
ram : org = 0x40000000, 1 = 4M
b

Once you have defined a region of memory named mem, you can direct specific output sections

there by using a command ending in ‘>mem’ within the SECTIONS command (see Section 3.4.3

[Section Options]|, page 23). If the combined output sections directed to a region are too big for

the region, the linker will issue an error message.

3.4 SECTIONS Command

The SECTIONS command controls exactly where input sections are placed into output sections, their

order and to which output sections they are allocated.

You may use at most one SECTIONS command in a commands file, but you can have as many

statements within it as you wish. Statements within the SECTIONS command can do one of three

things:



18 Using LD, the GNU linker

e define the entry point;
e assign a value to a symbol;

e describe the placement of a named output section, and what input sections make it up.

The first two possibilities—defining the entry point, and defining symbols—can also be done outside
the SECTIONS command: see Section 3.5 [Entry Point], page 24, see Section 3.2.6 [Assignment],
page 13. They are permitted here as well for your convenience in reading the script, so that

symbols or the entry point can be defined at meaningful points in your output-file layout.

When no SECTIONS command is specified, the default action of the linker is to place each input
section into an identically named output section in the order that the sections are first encountered
in the input files; if all input sections are present in the first file, for example, the order of sections
in the output file will match the order in the first input file.

3.4.1 Section Definitions

The most frequently used statement in the SECTIONS command is the section definition, which you
can use to specify the properties of an output section: its location, alignment, contents, fill pattern,
and target memory region. Most of these specifications are optional; the simplest form of a section
definition is

SECTIONS { ...
secname : {
contents

}

secname is the name of the output section, and contents a specification of what goes there—for
example, a list of input files or sections of input files. As you might assume, the whitespace shown
is optional. You do need the colon ‘:’ and the braces ‘{}’, however.

secname must meet the constraints of your output format. In formats which only support a limited
number of sections, such as a.out, the name must be one of the names supported by the format
(a.out, for example, allows only .text, .data or .bss). If the output format supports any number
of sections, but with numbers and not names (as is the case for Oasys), the name should be supplied
as a quoted numeric string. A section name may consist of any sequence characters, but any name



Chapter 3: Command Language 19

which does not conform to the standard 1d symbol name syntax must be quoted. See Section 3.2.2
[Symbol Names], page 11.

3.4.2 Section Contents

In a section definition, you can specify the contents of an output section by listing particular object
files, by listing particular input-file sections, or by a combination of the two. You can also place
arbitrary data in the section, and define symbols relative to the beginning of the section.

The contents of a section definition may include any of the following kinds of statement. You can
include as many of these as you like in a single section definition, separated from one another by
whitespace.

filename  You may simply name a particular input file to be placed in the current output section;
all sections from that file are placed in the current section definition. To specify a list
of particular files by name:

.data : { afile.o bfile.o cfile.o }

The example also illustrates that multiple statements can be included in the contents
of a section definition, since each file name is a separate statement.

If the file name has already been mentioned in another section definition, with an
explicit section name list, then only those sections which have not yet been allocated
are used.

filename ( section )
filename ( section, section, ... )
filename ( section section ... )

You can name one or more sections from your input files, for insertion in the current
output section. If you wish to specify a list of input-file sections inside the parentheses,
you may separate the section names by either commas or whitespace.

* (section)
* (section, section, ...)
* (section section ...
Instead of explicitly naming particular input files in a link control script, you can refer

to all files from the 1d command line: use ‘*’ instead of a particular file name before
the parenthesized input-file section list.

For example, to copy sections 1 through 4 from an Oasys file into the .text section of
an a.out file, and sections 13 and 14 into the .data section:



20 Using LD, the GNU linker

SECTIONS {
.text :{
*(lllll ll2ll ||3|| ll4ll)
}
.data :{
*(ll13ll ll14ll)
}
}

If you have already explicitly included some files by name, ‘*’ refers to all remaining
files—those whose places in the output file have not yet been defined.

[ section ]
[ section, section, ... ]
[ section section ... ]

This is an alternate notation to specify named sections from all unallocated input files;
its effect is exactly the same as that of ‘*x (section...)’

filename ( COMMON )
( COMMON )

Specify where in your output file to place uninitialized data with this notation.
* (COMMON) by itself refers to all uninitialized data from all input files (so far as it
is not yet allocated); filename (COMMON) refers to uninitialized data from a particular
file. Both are special cases of the general mechanisms for specifying where to place
input-file sections: 1d permits you to refer to uninitialized data as if it were in an
input-file section named COMMON, regardless of the input file’s format.

For example, the following command script arranges the output file into three consecutive sections,
named .text, .data, and .bss, taking the input for each from the correspondingly named sections
of all the input files:

SECTIONS {

.text : { *(.text) }

.data : { *(.data) }

.bss : { *(.bss) =*(COMMON) }
}

The following example reads all of the sections from file all.o and places them at the start of
output section outputa which starts at location 0x10000. All of section .inputl from file foo.o

follows immediately, in the same output section. All of section .input2 from foo.o goes into



Chapter 3: Command Language 21

output section outputb, followed by section .inputl from fool.o. All of the remaining .inputl

and .input2 sections from any files are written to output section outputc.

SECTIONS {
outputa 0x10000 :
{
all.o
foo.o (.inputl)
}
outputb :
{
foo.o (.input2)
fool.o (.inputl)
}
outputc :
{
*(.inputl)
*(.input?2)
}
}

There are still more kinds of statements permitted in the contents of output section definitions.
The foregoing statements permitted you to arrange, in your output file, data originating from your
input files. You can also place data directly in an output section from the link command script.
Most of these additional statements involve expressions; see Section 3.2 [Expressions|, page 10.
Although these statements are shown separately here for ease of presentation, no such segregation
is needed within a section definition in the SECTIONS command; you can intermix them freely with
any of the statements we’ve just described.

CREATE_OBJECT_SYMBOLS

Create a symbol for each input file in the current section, set to the address of the first
byte of data written from the input file. For instance, with a.out files it is conventional
to have a symbol for each input file. You can accomplish this by defining the output
.text section as follows:

SECTIONS {
.text 0x2020 :
{
CREATE_OBJECT_SYMBOLS
*(.text)
_etext = ALIGN(0x2000);
}



22

Using LD, the GNU linker

If objsym is a file containing this script, and a.o, b.o, c.o0, and d.o are four input files
with contents like the following—

/* a.c x/
afunction() { }

int adata=1;
int abss;

‘ld -M sample a.o b.o c.o d.o” would create a map like this, containing symbols
matching the object file names:

00000000 A __DYNAMIC
00004020 B _abss
00004000 D _adata
00002020 T _afunction
00004024 B _bbss
00004008 D _bdata
00002038 T _bfunction
00004028 B _cbss
00004010 D _cdata
00002050 T _cfunction
0000402c B _dbss
00004018 D _ddata
00002068 T _dfunction
00004020 D _edata
00004030 B _end
00004000 T _etext
00002020 t a.o
00002038 t b.o
00002050 t c.o
00002068 t d.o

symbol = expression ;

symbol f= expression ;

symbol is any symbol name (see Section 3.2.2 [Symbols], page 11). “f=" refers to any
of the operators &= += -= *= /= which combine arithmetic and assignment.

When you assign a value to a symbol within a particular section definition, the value
is relative to the beginning of the section (see Section 3.2.6 [Assignment|, page 13). If

you write

SECTIONS {
abs = 14 ;

.data : { ... rel =14 ; ... }
abs2 = 14 + ADDR(.data);

}...

abs and rel do not have the same value; rel has the same value as abs2.



Chapter 3: Command Language 23

BYTE (expression)
SHORT (expression)
LONG (expression)

By including one of these three statements in a section definition, you can explicitly
place one, two, or four bytes (respectively) at the current address of that section.

Multiple-byte quantities are represented in whatever byte order is appropriate for the
output file format (see Chapter 4 [BFD], page 29).

FILL (expression)

Specifies the “fill pattern” for the current section. Any otherwise unspecified regions
of memory within the section (for example, regions you skip over by assigning a new
value to the location counter ‘.’) are filled with the two least significant bytes from
the expression argument. A FILL statement covers memory locations after the point it
occurs in the section definition; by including more than one FILL statement, you can
have different fill patterns in different parts of an output section.

3.4.3 Optional Section Attributes

Here is the full syntax of a section definition, including all the optional portions:

SECTIONS {
secname start BLOCK (align) (NOLOAD) : { contents } =fill >region

secname and contents are required. See Section 3.4.1 [Section Definition], page 18, and see Sec-
tion 3.4.2 [Section Contents|, page 19 for details on contents. The remaining elements—start,
BLOCK (align), (NOLOAD) =fill, and >region—are all optional.

start You can force the output section to be loaded at a specified address by specifying start
immediately following the section name. start can be represented as any expression.
The following example generates section output at location 0x40000000:

SECTIONS {
output 0x40000000: {

3



24 Using LD, the GNU linker

BLOCK (align)

You can include BLOCK () specification to advance the location counter . prior to the
beginning of the section, so that the section will begin at the specified alignment. align
is an expression.

(NOLOAD) Use ‘(NOLOAD)’ to prevent a section from being loaded into memory each time it is
accessed. For example, in the script sample below, the ROM segment is addressed at

4

memory location ‘0’ and does not need to be loaded into each object file:

SECTIONS {
ROM O (NOLOAD) : { ...}

¥

=fill Including =fill in a section definition specifies the initial fill value for that section. You
may use any expression to specify fill. Any unallocated holes in the current output
section when written to the output file will be filled with the two least significant bytes
of the value, repeated as necessary. You can also change the fill value with a FILL
statement in the contents of a section definition.

>region Assign this section to a previously defined region of memory. See Section 3.3 [MEM-
ORY], page 16.

3.5 The Entry Point

The linker command language includes a command specifically for defining the first executable
instruction in an output file (its entry point). Its argument is a symbol name:

ENTRY (symbol)

Like symbol assignments, the ENTRY command may be placed either as an independent command
in the command file, or among the section definitions within the SECTIONS command—whatever
makes the most sense for your layout.

ENTRY is only one of several ways of choosing the entry point. You may indicate it in any of the
following ways (shown in descending order of priority: methods higher in the list override methods
lower down).

e the ‘-e’ entry command-line option;

e the ENTRY (symbol command in a linker control script;



Chapter 3: Command Language 25

the value of the symbol start, if present;

the value of the symbol _main, if present;

the address of the first byte of the .text section, if present;
The address 0.

For example, you can use these rules to generate an entry point with an assignment statement:
if no symbol start is defined within your input files, you can simply define it, assigning it an

appropriate value—

start = 0x2020;

The example shows an absolute address, but you can use any expression. For example, if your
input object files use some other symbol-name convention for the entry point, you can just assign

the value of whatever symbol contains the start address to start:

start = other_symbol ;

3.6 Other Commands

The command language includes a number of other commands that you can use for specialized
purposes. They are similar in purpose to command-line options.

FLOAT

NOFLOAT  These keywords were used in some older linkers to request a particular math subroutine
library. 1d doesn’t use the keywords, assuming instead that any necessary subroutines
are in libraries specified using the general mechanisms for linking to archives; but to
permit the use of scripts that were written for the older linkers, the keywords FLOAT
and NOFLOAT are accepted and ignored.

FORCE_COMMON_ALLOCATION

This command has the same effect as the ‘-d’ command-line option: to make 1d assign

space to common symbols even if a relocatable output file is specified (‘-r’).



26 Using LD, the GNU linker

INPUT ( file, file, ... )

INPUT ( file file ... )
Use this command to include binary input files in the link, without including them in
a particular section definition. Files specified this way are treated identically to object
files listed on the command line.

OUTPUT ( filename )
Use this command to name the link output file filename. The effect of OUTPUT (filename)
is identical to the effect of ‘-o filename’, and whichever is encountered last will control
the name actually used to name the output file. In particular, you can use this command
to supply a default output-file name other than a.out.

OUTPUT_ARCH ( bfdname )

Specify a particular output machine architecture, with one of the names used by the
BFD back-end routines (see Chapter 4 [BFD], page 29). This command is often un-
necessary; the architecture is most often set implicitly by either the system BFD con-
figuration or as a side effect of the OUTPUT_FORMAT command.

OUTPUT_FORMAT ( bfdname )

Specify a particular output format, with one of the names used by the BFD back-end
routines (see Chapter 4 [BFD], page 29). This selection will only affect the output file;
the related command TARGET affects primarily input files.

SEARCH_DIR ( path )
Add path to the list of paths where 1d looks for archive libraries. SEARCH_DIR (path)
has the same effect as ‘~-Lpath’ on the command line.

STARTUP ( filename )
Ensure that filename is the first input file used in the link process.

TARGET ( format )
Change the input-file object code format (like the command-line option ‘-b’ or its
synonym ‘-format’). The argument format is one of the strings used by BFD to name
binary formats. In the current 1d implementation, if TARGET is specified but OUTPUT_

FORMAT is not, the last TARGET argument is also used as the default format for the 1d
output file. See Chapter 4 [BFD], page 29.

If you don’t use the TARGET command, 14 uses the value of the environment variable
GNUTARGET, if available, to select the output file format. If that variable is also absent,
14 uses the default format configured for your machine in the BFD libraries.



Chapter 4: BFD 27

4 BFD

The linker accesses object and archive files using the BFD libraries. These libraries allow the linker
to use the same routines to operate on object files whatever the object file format. A different
object file format can be supported simply by creating a new BFD back end and adding it to the
library. You can use objdump -i (see section “objdump” in The GNU Binary Utilities) to list
all the formats available for each architecture under BFD. This was the list of formats, and of

architectures supported for each format, as of the time this manual was prepared:

BFD header file version 0.18

a.out-i386
(header big endian, data big endian)
m68k: 68020
a29%k
sparc
1386

a.out-sunos-big
(header big endian, data big endian)
m68k: 68020
a29%k
sparc
1386

b.out.big
(header big endian, data little endian)
i960:core

b.out.little
(header little endian, data little endian)
1960:core

coff-a29k-big
(header big endian, data big endian)
a29%k

cof£-h8300
(header big endian, data big endian)
H8/300

coff-i386
(header little endian, data little endian)
1386

coff-Intel-big
(header big endian, data little endian)
i960:core

coff-Intel-little
(header little endian, data little endian)
1960:core

coff-m68k
(header big endian, data big endian)
m68k: 68020



28

coff-m88kbcs
(header big endian, data big endian)
m88k:88100
ecoff-bigmips
(header big endian, data big endian)
mips
ecoff-littlemips
(header little endian, data little endian)
mips
elf-big
(header big endian, data big endian)
m68k: 68020
vax
i960:core
a2%k
sparc
mips
i386
m88k:88100
H8/300
rs6000:6000
elf-little
(header little endian, data little endian)
m68k: 68020
vax
1960:core
a2%k
sparc
mips
i386
m88k:88100
H8/300
rs6000:6000
ieee
(header big endian, data big endian)
m68k: 68020
vax
1960:core
a29%k
sparc
mips
1386
m88k:88100
H8/300
rs6000:6000

Using LD, the GNU linker



Chapter 4: BFD 29

srec
(header big endian, data big endian)
m68k: 68020
vax
i960:core
a29%k
sparc
mips
1386
m88k:88100
H8/300
rs6000:6000

As with most implementations, BFD is a compromise between several conflicting requirements.
The major factor influencing BFD design was efficiency: any time used converting between formats
is time which would not have been spent had BFD not been involved. This is partly offset by
abstraction payback; since BFD simplifies applications and back ends, more time and care may be
spent optimizing algorithms for a greater speed.

One minor artifact of the BFD solution which you should bear in mind is the potential for infor-
mation loss. There are two places where useful information can be lost using the BFD mechanism:
during conversion and during output. See Section 4.2 [BFD information loss], page 32.

4.1 How it works: an outline of BFD

When an object file is opened, BFD subroutines automatically determine the format of the input
object file, and build a descriptor in memory with pointers to routines that will be used to access
elements of the object file’s data structures.

As different information from the the object files is required, BFD reads from different sections of
the file and processes them. For example, a very common operation for the linker is processing
symbol tables. Each BFD back end provides a routine for converting between the object file’s
representation of symbols and an internal canonical format. When the linker asks for the symbol
table of an object file, it calls through the memory pointer to the BFD back end routine which
reads and converts the table into a canonical form. The linker then operates upon the common
form. When the link is finished and the linker writes the symbol table of the output file, another
BFD back end routine is called which takes the newly created symbol table and converts it into
the chosen output format.



30 Using LD, the GNU linker

4.2 Information Loss

Information can be lost during output. The output formats supported by BFD do not provide
identical facilities, and information which may be described in one form has nowhere to go in
another format. One example of this is alignment information in b.out. There is nowhere in an
a.out format file to store alignment information on the contained data, so when a file is linked from
b.out and an a.out image is produced, alignment information will not propagate to the output file.
(The linker will still use the alignment information internally, so the link is performed correctly).

Another example is COFF section names. COFF files may contain an unlimited number of sections,
each one with a textual section name. If the target of the link is a format which does not have
many sections (e.g., a.out) or has sections without names (e.g., the Oasys format) the link cannot
be done simply. You can circumvent this problem by describing the desired input-to-output section

mapping with the command language.

Information can be lost during canonicalization. The BFD internal canonical form of the exter-
nal formats is not exhaustive; there are structures in input formats for which there is no direct
representation internally. This means that the BFD back ends cannot maintain all possible data
richness through the transformation between external to internal and back to external formats.

This limitation is only a problem when using the linker to read one format and write another.
Each BEFD back end is responsible for maintaining as much data as possible, and the internal BFD
canonical form has structures which are opaque to the BFD core, and exported only to the back
ends. When a file is read in one format, the canonical form is generated for BFD and the linker. At
the same time, the back end saves away any information which would otherwise be lost. If the data
is then written back in the same format, the back end routine will be able to use the canonical form
provided by the BEFD core as well as the information it prepared earlier. Since there is a great deal
of commonality between back ends, there is no information lost when linking big endian COFF to
little endian COFF, or from a.out to b.out. When a mixture of formats is linked, the information

is only lost from the files whose format differs from the destination.

4.3 Mechanism

The greatest potential for loss of information occurs when there is the least overlap between the
information provided by the source format, that stored by the canonical format, and that needed by
the destination format. A brief description of the canonical form may help you understand which

kinds of data you can count on preserving across conversions.



Chapter 4: BFD 31

files

sections

symbols

Information on target machine architecture, particular implementation, and format
type are stored on a per-file basis. Other information includes a demand pagable bit
and a write protected bit. Information like Unix magic numbers is not stored here—
only the magic numbers’ meaning, so a ZMAGIC file would have both the demand pagable
bit and the write protected text bit set.

The byte order of the target is stored on a per-file basis, so that big- and little-endian
object files may be linked with one another.

Each section in the input file contains the name of the section, the original address in
the object file, various options, size and alignment information and pointers into other
BFD data structures.

Each symbol contains a pointer to the object file which originally defined it, its name,
its value, and various option bits. When a BFD back end reads in a symbol table, the
back end relocates all symbols to make them relative to the base of the section where
they were defined. Doing this ensures that each symbol points to its containing section.
Each symbol also has a varying amount of hidden private data for the BFD back end.
Since the symbol points to the original file, the private data format for that symbol is
accessible. 1d can operate on a collection of symbols of wildly different formats without

problems.

Normal global and simple local symbols are maintained on output, so an output file
(no matter its format) will retain symbols pointing to functions and to global, static,
and common variables. Some symbol information is not worth retaining; in a.out,
type information is stored in the symbol table as long symbol names. This information
would be useless to most COFF debuggers and may be thrown away with appropriate
command line switches. (The GNU debugger gdb does support a.out style debugging
information in COFF).

There is one word of type information within the symbol, so if the format supports
symbol type information within symbols (for example, COFF, IEEE, Oasys) and the
type is simple enough to fit within one word (nearly everything but aggregates), the
information will be preserved.

relocation level

Each canonical BFD relocation record contains a pointer to the symbol to relocate to,
the offset of the data to relocate, the section the data is in, and a pointer to a relocation
type descriptor. Relocation is performed by passing messages through the relocation
type descriptor and the symbol pointer. Therefore, relocations can be performed on
output data using a relocation method that is only available in one of the input formats.
For instance, Oasys provides a byte relocation format. A relocation record requesting
this relocation type would point indirectly to a routine to perform this, so the relocation
may be performed on a byte being written to a COFF file, even though 68k COFF has
no such relocation type.



32 Using LD, the GNU linker

line numbers

Object formats can contain, for debugging purposes, some form of mapping between
symbols, source line numbers, and addresses in the output file. These addresses have
to be relocated along with the symbol information. Each symbol with an associated
list of line number records points to the first record of the list. The head of a line
number list consists of a pointer to the symbol, which allows finding out the address of
the function whose line number is being described. The rest of the list is made up of
pairs: offsets into the section and line numbers. Any format which can simply derive
this information can pass it successfully between formats (COFF, IEEE and Oasys).



Appendix A: MRI Compatible Script Files 33

Appendix A MRI Compatible Script Files

To aid users making the transition to GNU 1d from the MRI linker, 1d can use MRI compatible
linker scripts as an alternative to the more general-purpose linker scripting language described
in Chapter 3 [Command Language], page 9. MRI compatible linker scripts have a much simpler
command set than the scripting language otherwise used with 1d. GNU 1d supports the most
commonly used MRI linker commands; these commands are described here.

You can specify a file containing an MRI-compatible script using the ‘-c’ command-line option.

Fach command in an MRI-compatible script occupies its own line; each command line starts with
the keyword that identifies the command (though blank lines are also allowed for punctuation).
If a line of an MRI-compatible script begins with an unrecognized keyword, 1d issues a warning
message, but continues processing the script.

Lines beginning with ‘*’ are comments.

You can write these commands using all upper-case letters, or all lower case; for example, ‘chip’ is
the same as ‘CHIP’. The following list shows only the upper-case form of each command.

ABSOLUTE secname
ABSOLUTE secname, secname, ... secname

Normally, 1d includes in the output file all sections from all the input files. However, in
an MRI-compatible script, you can use the ABSOLUTE command to restrict the sections
that will be present in your output program. If the ABSOLUTE command is used at all
in a script, then only the sections named explicitly in ABSOLUTE commands will appear
in the linker output. You can still use other input sections (whatever you select on the
command line, or using LOAD) to resolve addresses in the output file.

ALTIAS out-secname, in-secname
Use this command to place the data from input section in-secname in a section called
out-secname in the linker output file.
in-secname may be an integer.

BASE expression
Use the value of expression as the lowest address (other than absolute addresses) in the
output file.

CHIP expression

CHIP expression, expression

This command does nothing; it is accepted only for compatibility.



34 Using LD, the GNU linker

END This command does nothing whatever; it’s only accepted for compatibility.
FORMAT output-format

Similar to the OUTPUT_FORMAT command in the more general linker language, but re-
stricted to one of these output formats:

1. S-records, if output-format is ‘S’
2. IEEE, if output-format is ‘IEEE’
3. COFF (the ‘coff-m68k’ variant in BFD), if output-format is ‘COFF’
LIST anything. ..
Print (to the standard output file) a link map, as produced by the 1d command-line
option ‘-M’.
The keyword LIST may be followed by anything on the same line, with no change in
its effect.
LOAD filename
LOAD filename, filename, ... filename

Include one or more object file filename in the link; this has the same effect as specifying
filename directly on the 1d command line.

NAME output-name

output-name is the name for the program produced by 1d; the MRI-compatible com-
mand NAME is equivalent to the command-line option ‘-0’ or the general script language
command OUTPUT.

ORDER secname, secname, ... sechame
ORDER secname secname secname

Normally, 1d orders the sections in its output file in the order in which they first appear
in the input files. In an MRI-compatible script, you can override this ordering with the
ORDER command. The sections you list with ORDER will appear first in your output file,
in the order specified.

PUBLIC name=expression
PUBLIC name, expression
PUBLIC name expression
Supply a value (expression) for external symbol name used in the linker input files.
SECT secname, expression
SECT secname=expression
SECT secname expression
You can use any of these three forms of the SECT command to specify the start address

(expression) for section secname. If you have more than one SECT statement for the
same secname, only the first sets the start address.



Index

Index

(

CCOMMON ) oottt e e et e s

*

*(SCCEIOM) .« oot

“b format. ...
“Bstatic . ...
—c MRI-cmdfile................ccciuiiiiiiieeeion..

-noinhibit-exec........ ... i

SO OULPUL . o oottt

ST SCIIPE . e et
=TDSS DSSOIZ . ..ot eii e
—Tdata dataorg ........ccouuuuueeeniiii e,
“Ttext textorg ...

35

TV e 7
T e 7
K 7
—ysymbol ... ... .. 7

.................................................. 11
’
P 13
ML o 24
[sections 1......ccouuuuuiiiiiii .. 20
"
e 11
Lscript oo 6
>
STEGIOI . oo oottt 24
0
L0 10
A
ABSOLUTE (MRI) ...\t 35
absolute and relocatable symbols................... 13
ABSOLUTE(EXD) + ettt et et 15
ADDR(SECEION) .« oo oot e et e e 15
ALTAS (MRI) .ot 35
ALIGNCEXP) - vt et e e e e 15
aligning sections.......... ... ... i il 24
allocating memory .......... ... ... .. ool 16
architectures available ............... ... oL 29



36

archive files, from cmd line.......................... 5
arithmetic........ ... o i 10
arithmetic operators............................... 12
assignment in scripts.............. o oo 13
assignment, in section defn............... ... ... ... 22

B

backend......... ... . 29
BASE (MRI). ...ttt 35
BFD canonical format ............................. 32
BFD requirements.......... ... 31
binary input files .......... ... .o 26
binary input format.......... ... ... ool 4
BLOCK(align) ..t 24
BYTE (EXPIreSSION) . ...vvveni e, 23

C

CHIP (MRI).....oooiiiii 35
command files ............ o i 9
command line........... ... . i 3
commands, fundamental .................. ... ... 9
COMMENES. ..ot 9
common allocation .................... ... 4, 26
commons inoutput ......... .. ... i 20
compatibility, MRI........ ... ... ..o oot 4
ConStTUCtOrS « . oot 7
contents of a section . ........ ..o, 19
CREATE_OBJECT_SYMBOLS . ........c.ooiiiiiiinnnn.. 21
current output location ............................ 11

D

decimal integers ............ ... . i 10
DEFINED(Symbol) ........ooiiiiii i 15
deleting local symbols................ ... ... . 7
direct output ... 23
discontinuous memory ................ ... 16
16 10 P 11

END (MRI)...ouiii e 36
entry point, defaults ................ .. ... . 25
entry point, from command line..................... 5

ENTRY(Symbol) .. ..ot 24

Using LD, the GNU linker

expression evaluation order ........................ 12
expression syntax.............ooiiiiiiiiiii i 10
expression, absolute............... ...l 15

filename .......... .. .. 19
filename symbols........... ... o il 21
filename (Section) ..o, 19
files and sections, section defn...................... 19
files, including in output sections................... 19
fill pattern, entire section ............ ... ... .. ..., 24
FILL(EXPIreSSION) « .ot e ettt 23
first input file........ ... 26
first instruction............ ... i i 24
FLOAT . o e 26
FORCE_COMMON_ALLOCATION .......cviniiiiinnen... 26
FORMAT (MRI) ..\t 36
format, output file.......... ... i 26
formats available............ ... ... il 29
functions in expression language ................... 14
fundamental script commands....................... 9

G

GNU linker .. ... 1
GNUTARGET . ... e e e e 27

H

header size ........ ... 16
hexadecimal integers.............. ... ... ... 10
holes ..o 11
holes, filling ... 23

I

incremental link.......... ... ... L 5
INPUT (fIlesS ) oo s 26
input file format ....... ... ... 26
input filename symbols............... ...l 21
input files, displaying ............ ... ... L. 7
input files, section defn ............. ... oL 19
input format. ........ ... 4
input sections to output section.................... 20
integer notation............. .. .ol 10
integer suffixes........ ... ... i 11



Index

internal object-file format................ ... . ... 32

K

K and M integer suffixes................ ... ... .. 11

L = 17
L, deleting symbols beginning....................... 7
layout of output file.......... ... ... L 9
lazy evaluation............ ... il 12
LOn = 17
LENGTH = . ot e e e e 17
Hnk map. ..o 5
LIST (MRI). ..ot 36
LOAD (MRI). ..ot 36
local symbols, deleting ................ ... ... .. ... 7
location counter ............. ... ... . oL 11
LONG (€XPIreSSION) .. .vvve e et 23

M

M and K integer suffixes.............. ... ... 11
machine architecture, output............... ... ... 26
MEMORY ... 16
memory region attributes.......... ... ... o oL 17
memory regions and sections....................... 24
MRI compatibility ......... ... oo i 35

N

NAME (MRI). ..ot 36
0 Eo 1 T 11
naming memory regions. ............oovvuuieinnnn. 17
naming output sections ............. ... .o 18
naming the output file................... ... ... 6, 26
negative integers........... ... il 10
11004 N Q=>q 2 ) 16
NMAGIC ..o 5
NOFLOAT . oo e 26
NOLOAD ..ot e 24
Non constant eXpression.................c.c.eeuunn. 14
@)

O T 17
object file management .......... ... ... ... .. 29

37
object files. ... 3
octal integers......... ... ... i 10
OMAGIC . e e 5
opening object files .......... ... o ool 31
Operators for arithmetic................. ... . ... 12
OPLIONS ...t 3
ORDER (MRI) ..o 36
0L = it 17
DRIGIN = ..ttt 17
OUTPUT ( filename ) .........ouuvuuieiininnnennnnnn.. 26
output file after errors ........... ...l 6
output file layout .......... ... . 9
OUTPUT_ARCH ( bfdname ) ............c.cooiiiinn.. 26
OUTPUT_FORMAT ( bfdname )........................ 26
P
partial link ... ... o 6
path for libraries.......... ... ... o i 26
precedence in eXpressions . .........o.o.eeeeiiniiaa... 12
prevent unnecessary loading............. ... ... ... 24
PUBLIC (MRI) .. ..ottt 36
Q
quoted symbol names....... ... ... 11
R
read-only text....... ... i i 5
read/write from cmd line.................. oo 5
regions of MemMoOry ... 16
relaxing addressing modes. ............. ...l 6
relocatable and absolute symbols................... 13
relocatable output ........ ...l 6
requirements for BFD......... ... .. .o 31
rounding up location counter................ ... ... 15
S
scaled integers......... ...l i 11
seript files ... 7
scripts on command line ................. ... ... 6
search directory, from cmd line................... ... 5
search path, libraries....... ... ... ... ... ... L 26
SEARCHDIR ( path ) ....oooovuieeaeiiiaaaaa... 26

SECT (MRI) ...t 36



38

section address....... ...l 15, 24
section alignment ............ ... .. i 24
section definition .......... .. ... oo ool 18
section defn, full syntax............. ... ... .. .. 23
section fill pattern ................ ... ... ... ...... 24
SECHION SIZE ..ot 16
section start ........ ... i 24
section, assigning to memory region................ 24
SECTIONS . ot 18
segment origins, cmd line .......... ... .o oo L 6
Semicolon . .. ..o 13
SHORT (€XPIeSSION) . ...vvvvennie i, 23
SIZEOF (SECtION) .. .vvvvi e 16
sizeof_headers ............... ... ... il 16
SIZEOF_HEADERS ... .. e 16
standard Unix system........... ..., 3
start address, section ..., 24
start of execution............ ... .ot 24
STARTUP ( filename ) ...........ccvviiiiiieinannn. 26
strip all symbols........ ... ... 6
strip debugger symbols........... ... ...l 6
suffixes for integers ........... ... i 11
Symbol = eXpression 5............c..coiiiiiiiiaii.. 22
symbol defaults....... ... ... .o i 15

symbol definition, scripts. ............oooiiiii. 13

Using LD, the GNU linker

symbol f= expression ; ................cciiiiiii.. 22
Symbol NAMES . ......ooii e 11
symbol tracing......... ... ... i 7
symbol-only input .......... ... ..o oL 6
symbols, from command line........................ 4
symbols, relocatable and absolute.................. 13
synthesizing linker .......... ... ... ... . i 6

T

TARGET ( format ) ... 26

U

unallocated address, next ................ ... ..., 16
undefined symbol ....... ... ... i 7
uninitialized data........... ..o i 20
unspecified memory........... ... oo 23

v

variables, defining........ ... ... ... . oL 13
VEIDOSE . oo 7
VEISIONL © ettt et e et et e 7

\%\%

what is this?. ... ... . 1



Index

The body of this manual is set in
cmrl0 at 10.95pt,
with headings in cmb10 at 10.95pt

and examples in cmtt10 at 10.95pt.

emitil0 at 10.95pt and
cmsl10 at 10.95pt
are used for emphasis.

39



40

Using LD, the GNU linker



Table of Contents

1 OVervieW . . ... 1
2 Invocation............ ... 3
3 Command Language ......................... i, 9
3.1 Linker SCripts ... ..coouuiii 9

3.2 EXPIeSSIONS . . oo 10

321 Inbegers. .. oot 10

3.22 Symbol Names.........ooiiiiiiiiii i 11

3.2.3 The Location Counter. ...........c.oouiuiiinininnn.. 11

3.2.4  OPerators. ..ottt e 12

3.2.5 Evaluation...........oo 12

3.2.6 Assignment: Defining Symbols .......................... 12

3.2.7 Built-In Functions ........ ... 14

3.3 MEMORY Command . ........ouurii i 16

3.4 SECTIONS Command .........ouuuiiiii i 17

3.4.1 Section Definitions .. ...t 18

3.4.2 Section Contents. ...... ..o 19

3.4.3 Optional Section Attributes............................. 23

3.5 The Entry Point ...... ... 24

3.6 Other Commands .........uiiriiii e 25

4 BEFD .. 27
4.1 How it works: an outline of BFD . ... ... 29

4.2 Information LoSS . ... 30

4.3 MecChaniSmy. . ..ot 30
Appendix A MRI Compatible Script Files.......... 33



ii

Using LD, the GNU linker



