Autoconf

Generating Automatic Configuration Scripts
Edition 1.4, for Autoconf version 1.4
May 1993

by David MacKenzie, Roland McGrath, Noah Friedman




Copyright (©) 1992, 1993 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Foundation.



1 Introduction

Autoconf is a tool for producing shell scripts that automatically configure software source
code packages to adapt to many kinds of UNIX-like systems. For each software package
that Autoconf is used with, it creates a configuration script from a template file that lists
the operating system features that the package can use.

The configuration scripts produced by Autoconf normally require no manual user inter-
vention when run; they do not even take an argument specifying the system type. Instead,
they test for the presence of each feature that might be needed individually (after printing a
one-line message stating what they are checking for, so the user doesn’t get too bored while
waiting for the script to finish). As a result, they deal well with systems that are hybrids or
customized from the more common UNIX variants. There is no need to maintain files that
list the features supported by each release of each variant of UNIX, except for occasional
quirks.

After the shell code needed to recognize and respond to an operating system feature has
been written, Autoconf allows it to be shared between many software packages that can use
(or need) that feature. If it later turns out that the shell code needs adjustment for some
reason, it needs to be changed in only one place; all of the the configuration scripts can be
regenerated automatically to take advantage of the updated code.

Autoconf was developed for configuring packages of small utilities; it might not be able
to deduce all of the information needed to configure programs with more specialized needs.
Larry Wall’s Metaconfig package is similar in purpose to Autoconf, but is more general;
the scripts it produces are hairier and require manual user intervention, which is quite
inconvenient when configuring large source trees.

Unlike Metaconfig scripts, Autoconf scripts can support cross-compiling if some care
is taken in writing them. They should avoid executing test programs, since test programs
compiled with a cross-compiler can not be executed on the host system. Also, they shouldn’t
do anything that tests features of the host system instead of the target system.

Autoconf imposes some restrictions on the names of macros used with #ifdef in C
programs (see [Preprocessor Symbol Index], page 39).

Autoconf was written by David MacKenzie, with help from Francois Pinard, Karl Berry,
Richard Pixley, Ian Lance Taylor, and Roland McGrath. It was inspired by Brian Fox’s
automatic configuration system for BASH, by Larry Wall’s Metaconfig, and by Richard
Stallman, Richard Pixley, and John Gilmore’s configuration tools for the GNU compiler
and object file utilities.






2 Distributing Autoconf Output

The configuration scripts that Autoconf produces are covered by the GNU General Public
License. This is because they consist almost entirely of parts of Autoconf itself, rearranged
somewhat, and Autoconf is distributed under the terms of the GPL. However, programs that
use Autoconf scripts to configure themselves do not automatically come under the GPL.
Distributing an Autoconf configuration script as part of a program is considered to be mere
aggregation of that work with the Autoconf script. Such programs are not derivative works
based on Autoconf; only their configuration scripts are. We still encourage software authors
to distribute their work under terms like those of the GPL, but doing so is not required to
use Autoconf.






3 Making configure Scripts

The configuration scripts that Autoconf produces are by convention called configure when
they are distributed. When run, they create several files:

e one or more Makefile files (one in each subdirectory of the package), from template
Makefile.in files (see Chapter 7 [Makefiles|, page 31);

e optionally, a C header file, the name of which is configurable, containing #define
statements;

e a shell script called config.status that, when run, will recreate the current configu-
ration parameter settings.
To create a configure script with Autoconf, you need to write an Autoconf input file

and run Autoconf on it to produce the script. And, of course, test the resulting script.

Here is a diagram showing how the files that can be used in configuration are produced:

acgeneral.m4 \ Makefile.in \

acspecific.m4 \ \

autoconf* -> m4* -> configurex -> config.status*x -> Makefile \

configure.in / | | \
| | | | make* -> your
| | | | /package
| | config.status* -> config.h /

configure.in \ /

autoheader* -> - - - - - - - - - - - > config.h.in /

acconfig.h /

Executables are suffixed by ‘*’, while files appearing twice are linked with lines of ‘|’.

3.1 Writing configure.in

To produce a configure script for a software package, create a file called configure.in
that contains invocations of the Autoconf macros that test the system features your package
needs or can use. Autoconf macros already exist to check for many features; see Chapter 4
[Specific Tests], page 9, for their descriptions. For most other features, you can use Auto-
conf template macros to produce custom checks; see Section 5.2 [General Tests|, page 20,
for information about them. For especially tricky or specialized features, configure.in
might need to contain some hand-crafted shell commands. See Chapter 6 [Writing Macros],
page 25, for guidelines on writing tests from scratch.

Every configure.in must begin with a call to AC_INIT and end with a call to AC_OUTPUT
(see Section 5.1 [Setup]|, page 19). Other than that, the order in which configure.in calls
the Autoconf macros is generally not important, except that some macros rely on other
macros having been called first, because they check previously set values of some variables
to decide what to do. These macros are noted in the individual descriptions (see Chapter 4
[Specific Tests|, page 9).

To encourage consistency, here is a suggested order for calling the Autoconf macros. A
few macros need to be called in a different order from the one given here; they are noted in



6 Autoconf

their individual descriptions (see Chapter 4 [Specific Tests], page 9). (Note that there must
not be any space between the macro name and the open parentheses.)

AC_INIT(file)

checks for programs

checks for UNIX variants that set DEFS
checks for header files

checks for typedefs

checks for functions

checks for structure members
checks for compiler characteristics
checks for operating system services
other checks for UNIX variants
AC_OUTPUT([file...])

You can include comments in configure. in files by starting them with the m4 predefined
macro dnl, which discards text up through the next newline. These comments do not appear
in the generated configure scripts. For example, it is helpful to begin configure.in files
with a line like this:

dnl Process this file with autoconf to produce a configure script.

See Section 9.1 [Sample configure.in], page 35, for an example of a real configure.in
script.

3.2 Invoking autoconf

To create configure from configure.in, run the autoconf program with no arguments.
autoconf processes configure.in with the m4 macro processor, using the Autoconf macros.
If you give autoconf an argument, it reads that file instead of configure.in and writes the
configuration script to the standard output instead of to configure. If you give autoconf
the argument ‘-’, it reads the standard input instead of configure.in and writes the
configuration script on the standard output.

The Autoconf macros are defined in two or more files. Two of the files are distributed
with Autoconf: acgeneral.m4 (see Chapter 5 [General Purpose Macros], page 19) and
acspecific.m4 (see Chapter 4 [Specific Tests], page 9). autoconf also looks for an optional
file called aclocal.m4 both in the directory that contains other installed Autoconf macro
files and in the current directory. (If both files exist, it uses both of them.) Those files can
contain your site’s own locally written Autoconf macro definitions. See Chapter 6 [Writing
Macros], page 25, for more information.

You can override the location where autoconf looks for the installed macro files by
setting the AC_MACRODIR environment variable to the appropriate value. You can also use
the ‘--macrodir’ option (which has higher precedence than the value of AC_MACRODIR).

Autoconf requires GNU m4. It uses features that some UNIX versions of m4 do not have;
it is also reported to overflow internal limits of some versions of m4.

Autoconf does not work well with GNU C library releases before 1.06. The GNU C
library contains stubs (which always return an error) for functions that are not available
instead of omitting them from the library. As a result, Autoconf scripts are fooled into
thinking that those functions are available. This problem does not exist with releases 1.06



Chapter 3: Making configure Scripts 7

and later of the GNU C library, which define C preprocessor macros that the Autoconf
macro AC_FUNC_CHECK tests, indicating that certain functions are stubs (see Section 5.2
[General Tests], page 20, for more information on checking for functions).

3.3 Invoking autoheader

You can use the program autoheader to create a template file of C ‘#define’ statements
for configure to use. By default, the file that autoheader creates is called config.h.in.
autoheader scans configure.in and figures out which C preprocessor symbols it might de-
fine. It copies comments and #define and #undef statements from a file called acconfig.h,
which comes with Autoconf; it also uses a file called acconfig.h in the current directory,
if present. For symbols that AC_HAVE_HEADERS or AC_HAVE_FUNCS define, autoheader gen-
erates comments itself rather than copying them from a file, since the possible symbols are
effectively limitless.

If you give autoheader an argument, it uses that file instead of configure.in and writes
the header file to the standard output instead of to config.h.in. If you give autoheader
an argument of ‘=’ it reads the standard input instead of configure.in and writes the
header file to the standard output.

You can override the location where autoheader looks for the installed macro and
acconfig.h files by setting the AC_MACRODIR environment variable to the appropriate value.
You can also use the ‘--macrodir’ option (which has higher precedence than the value of
AC_MACRODIR).






4 Specific Tests

These macros test for particular operating system features that packages might need or
want to use. If you need to test for a feature that none of these macros check for, you can
probably do it by calling one of the general purpose test macros with appropriate arguments
(see Section 5.2 [General Tests|, page 20).

All of these macros that set make variables call AC_SUBST on those variables (see Sec-
tion 5.3 [Setting Variables], page 23, for details about AC_SUBST). The phrase “define name”
is used below as a shorthand to mean either add ‘-Dname=1’ to the make variable DEFS, or
put ‘#define name 1’ in the configuration header file, depending on whether AC_CONFIG_
HEADER has been called. See Section 5.3 [Setting Variables], page 23, for more information.

Within each section below, the macros are listed in alphabetical order. The macros are
generally named for the make variables or C preprocessor macros that they define; those
names are based largely on what existing GNU programs use. These macros are defined in
the file acspecific.m4.

4.1 Alternative Programs
The following macros check for the presence or behavior of particular programs:

AC_DECLARE_YYTEXT
Define DECLARE_YYTEXT to declare yytext appropriately, depending on whether
lex or flex is being used. This macro calls AC_PROG_CPP and AC_PROG_LEX if
they haven’t been called already.

AC_LN_S If ‘1n -s’ works on the current filesystem (the O.S. and filesystem support
symbolic links), set shell and make variable LN_S to ‘ln -s’, otherwise set it to
‘In’.

AC_MINUS_C_MINUS_O
If the C compiler does not accept the
define NO_MINUS_C_MINUS_O.

‘~¢” and ‘-o’ options simultaneously,

AC_PROG_YACC
If bison is found, set make variable YACC to ‘bison -y’. Otherwise, if byacc is
found, set YACC to ‘byacc’. Otherwise set YACC to ‘yacc’.

AC_PROG_CPP
Set shell and make variable CPP to a command that runs the C preprocessor. If
‘$CC -E’ doesn’t work, it uses /1ib/cpp.

Many of the specific test macros use the value of CPP indirectly by calling
AC_TEST_CPP, AC_HEADER_CHECK, AC_HEADER_EGREP, or AC_PROGRAM_EGREP.
Those macros call this macro first if it hasn’t been called already. It should be
called after AC_PROG_CC.

AC_PROG_LEX
If flex is found, set make variable LEX to ‘flex’ and LEXLIB to ‘-1f1’ (or the
full pathname of the ‘£1’ library, if it is in a standard place). Otherwise set LEX
to ‘lex’ and LEXLIB to ‘-11’.



10

AC_

AC_

AC_

AC_

AC_

AC_

Autoconf
PROG_AWK
Check for mawk, gawk, nawk, and awk, in that order, and set make variable AWK
to the first one that it finds.
PROG_CC
If gcc is found, set make variable CC to ‘gcc’, and set shell variable GCC to 1 for
use by macros such as AC_GCC_TRADITIONAL.
GCC_TRADITIONAL

Add ‘-traditional’ tomake variable CC if using the GNU C compiler and ioctl
does not work properly without ‘-traditional’. This macro calls AC_PROG_CC
and AC_PROG_CPP if they haven’t been called already.

PROG_INSTALL
Set make variable INSTALL_PROGRAM to ‘install -c’ and the variable INSTALL_
DATA to ‘install -c -m 644’ if install is found, otherwise set both to ‘cp’.
Screens out the false matches /etc/install and /usr/sbin/install (shell
scripts found on System V).

PROG_RANLIB
Set make variable RANLIB to ‘ranlib’ if ranlib is found, otherwise to ‘:’ (do
nothing).

RSH If a remote shell is available, put ‘rtapelib.o’ in make variable RTAPELIB.
Otherwise, also do so if netdb.h exists (implying the rexec function), and in
addition define HAVE_NETDB_H. If neither a remote shell nor rexec is available,
define NO_REMOTE.

4.2 Header Files

The following macros check for the presence of certain C header files:

AC_

DIR_HEADER
If the system has dirent.h, define DIRENT; otherwise, if it has sys/ndir.h,
define SYSNDIR; otherwise, if it has sys/dir.h, define SYSDIR; otherwise, if it
has ndir.h, define NDIR. Also, if the directory library header file contains a
declaration of the closedir function with a void return type, define VOID_
CLOSEDIR. The directory library declarations in the source code should look
something like the following:



Chapter 4: Specific Tests 11

/* unistd.h defines _POSIX_VERSION on POSIX.1 systems. x*/
#if defined (DIRENT) || defined(_POSIX_VERSION)
#include <dirent.h>

#define NLENGTH(dirent) (strlen((dirent)->d_name))
#else /* not (DIRENT or _POSIX_VERSION) */
#define dirent direct

#define NLENGTH(dirent) ((dirent)->d_namlen)
#ifdef SYSNDIR

#include <sys/ndir.h>

#endif /* SYSNDIR */

#ifdef SYSDIR

#include <sys/dir.h>

#endif /* SYSDIR */

#ifdef NDIR

#include <ndir.h>

#endif /* NDIR *x/

#endif /* not (DIRENT or _POSIX_VERSION) x*/

Using the above declarations, the program would declare variables to be type
struct dirent, not struct direct, and would access the length of a directory
entry name by passing a pointer to a struct dirent to the NLENGTH macro.

AC_MAJOR_HEADER
If sys/types.h does not define major, minor, and makedev, but sys/mkdev.h
does, define MAJOR_IN_MKDEV; otherwise, if sys/sysmacros.h does, define
MAJOR_IN_SYSMACROS.

AC_MEMORY_H
Define NEED_MEMORY_H if memcpy, memcmp, etc. are not declared in
string.h and memory.h exists. This macro is obsolete; instead, use

AC_HAVE_HEADERS (memory.h). See the example for AC_STDC_HEADERS.

AC_STDC_HEADERS
Define STDC_HEADERS if the system has ANSI C header files. Specifically, this
macro checks for stdlib.h, stdarg.h, string.h, and float.h; if the system
has those, it probably has the rest of the ANSI C header files. This macro also
checks whether string.h declares memchr (and thus presumably the other mem
functions) and whether the ctype.h macros work on characters with the high
bit set, as ANSI C requires.

Use STDC_HEADERS instead of __STDC__ to determine whether the system has
ANSI-compliant header files (and probably C library functions) because many
systems that have GCC do not have ANSI C header files.

To check whether to use the System V/ANSI C string functions and header file,
you can put the following in configure.in:

AC_STDC_HEADERS
AC_HAVE_HEADERS(string.h memory.h)

Then, in the code, use a test like this:



12

Autoconf

#if STDC_HEADERS || HAVE_STRING_H

#include <string.h>

/* An ANSI string.h and pre-ANSI memory.h might conflict. */
#if !STDC_HEADERS && HAVE_MEMORY_H

#include <memory.h>

#endif /* not STDC_HEADERS and HAVE_MEMORY_H */

#define index strchr

#define rindex strrchr

#define bcopy(s, d, n) memcpy ((d), (s), (n))

#define bcmp(sl, s2, n) memcmp ((s1), (s2), (n))
#define bzero(s, n) memset ((s), 0, (n))

#else /* not STDC_HEADERS and not HAVE_STRING_H */
#include <strings.h>

/* memory.h and strings.h conflict on some systems. */
#endif /* not STDC_HEADERS and not HAVE_STRING_H */

This example asssumes that your code uses the BSD style functions. If you
use the System V/ANSI C style functions, you will need to replace the macro
definitions with ones that go in the other direction.

AC_UNISTD_H

AC_USG

Define HAVE_UNISTD_H if the system has unistd.h. The way to check if the
system supports POSIX.1 is:

#if HAVE_UNISTD_H
#include <sys/types.h>
#include <unistd.h>
#endif

#ifdef _POSIX_VERSION
/* Code for POSIX.1 systems. x*/
#endif

_POSIX_VERSION is defined when unistd.h is included on POSIX.1 systems.
If there is no unistd.h, it is definitely not a POSIX.1 system. However, some
non-POSIX.1 systems do have unistd.h.

Define USG if the system does not have strings.h, rindex, bzero, etc. This
implies that it has string.h, strrchr, memset, etc.

The symbol USG is obsolete. Instead of this macro, use AC_HAVE_

HEADERS (string.h) and use HAVE_STRING_H in your code. See the example
for AC_STDC_HEADERS.

4.3 Typedefs
The following macros check for predefined C types:

AC_GETGROUPS_T

Define GETGROUPS_T to be whichever of gid_t or int is the base type of the
array argument to getgroups.



Chapter 4: Specific Tests 13

AC_MODE_T

AC_PID_T

If mode_t is not defined in sys/types.h, define mode_t to be int.

If pid_t is not defined in sys/types.h, define pid_t to be int.

AC_RETSIGTYPE

AC_SIZE_T

AC_UID_T

If signal.h declares signal as returning a pointer to a function returning void,
define RETSIGTYPE to be void; otherwise, define it to be int.

Define signal handlers as returning type RETSIGTYPE:

RETSIGTYPE
hup_handler ()
{

If size_t is not defined in sys/types.h, define size_t to be unsigned.

If uid_t is not defined in sys/types.h, define uid_t to be int and gid_t to
be int.

4.4 Library Functions

The following macros check for particular C library functions:

AC_ALLOCA

Check how to get alloca. Tries to get a builtin version by checking for
alloca.h or the predefined C preprocessor macros __GNUC__ and _AIX. If
that fails, it looks for a function in the standard C library. If that fails, it sets
the make variable ALLOCA to ‘alloca.o’. This variable is separate from LIBOBJS
so multiple programs can share the value of ALLOCA without needing to create
an actual library.

If this macro finds alloca.h, it defines HAVE_ALLOCA_H.

This macro does not try to get alloca from the SVR3 1ibPW or the SVR4
libucb because those libraries contain some incompatible functions that cause
trouble. Some versions do not even contain alloca or contain a buggy version.
If you still want to use their alloca, use ar to extract alloca.o from them
instead of compiling alloca.c.

Source files that use alloca should start with a piece of code like the following,
to declare it properly. Note that in some versions of AIX, the declaration of
alloca must precede everything else except for comments and preprocessor
directives. The #pragma directive is indented so that pre-ANSI C compilers
will ignore it, rather than choke on it.



14

Autoconf

/* AIX requires this to be the first thing in the file. */
#ifdef __GNUC__

#define alloca __builtin_alloca
#else /* not __GNUC__ */

#if HAVE_ALLOCA_H

#include <alloca.h>

#else /* not HAVE_ALLOCA_H */
#ifdef _AIX

#pragma alloca

#else /* not _AIX */

char *alloca ();

#endif /* not _AIX */

#endif /* not HAVE_ALLOCA_H */
#endif /* not __GNUC__ */

AC_GETLOADAVG

Check how to get the system load averages. It tries to get the getloadavg
function from /usr/lib/libutils.a, if present (such as on 4.4BSD), or from
/usr/lib/libgetloadavg.a or /usr/local/lib/libgetloadavg.a (such as
is commonly installed on AIX systems). Otherwise, it adds ‘getloadavg.o’ to
the make variable LIBOBJS and defines SVR4, DGUX, UMAX, or UMAX4_3 if on those
systems. It then checks for nlist.h. If it finds it, it defines NLIST_STRUCT and
checks whether ‘struct nlist’ has an ‘n_un’ member; if so, it defines NLIST_
NAME_UNION. Then it determines whether compiling getloadavg.c would de-
fine the LDAV_PRIVILEGED; this indicates whether the program will need to
be installed specially for getloadavg to work. If so, it defines GETLOADAVG_
PRIVILEGED. It always defines the make variable NEED_SETGID; the value is
‘true’ if special installation is required, or ‘false’ if not. If NEED_SETGID is de-
fined to ‘true’, the ‘make’ variable KMEM_GROUP is also defined to be the special
group which should own the installed program.

AC_SETVBUF_REVERSED

AC_STRCOLL

If setvbuf takes the buffering type as its second argument and the buffer pointer
as the third, instead of the other way around, define SETVBUF_REVERSED. This
is the case on System V before release 3.

Check for a proper declaration of the strcoll function. This does a bit more
than ‘AC_HAVE_FUNCS (strcoll)’, because some systems have incorrect defini-
tions of strcoll, which should not be used.

AC_UTIME_NULL

AC_VFORK

If ‘utime (file, NULL)’ sets file’s timestamp to the present, define HAVE_UTIME_
NULL.

If vfork.h is found, define HAVE_VFORK_H. If a working vfork is not found,
define vfork to be fork. This macro checks for several known errors in imple-
mentations of vfork and considers the system to not have a working vfork if
it detects any of them.



Chapter 4: Specific Tests 15

AC_VPRINTF
If vprintf is found, define HAVE_VPRINTF. Otherwise, if _doprnt is found,
define HAVE_DOPRNT.

AC_WAIT3 If wait3 is found and fills in the contents of its third argument (a ‘struct
rusage *’), which HP-UX does not do, define HAVE_WAIT3.

4.5 Structures

The following macros check for certain structures or structure members:

AC_ST_BLKSIZE
If struct stat contains an st_blksize member, define HAVE_ST_BLKSIZE.

AC_ST_BLOCKS
If struct stat contains an st_blocks member, define HAVE_ST_BLOCKS. Oth-
erwise, add ‘fileblocks.o’ to the make variable LIBOBJS.

AC_ST_RDEV
If struct stat contains an st_rdev member, define HAVE_ST_RDEV.

AC_TIME_WITH_SYS_TIME
If a program may include both time.h and sys/time.h, define TIME_WITH_
SYS_TIME. On some older systems sys/time.h includes time.h, but time.h is
not protected against multiple inclusion, so programs should not explicitly in-
clude both files. This macro is useful in programs that use for example struct
timeval or struct timezone as well as struct tm. It is best used in conjunc-

tion with HAVE_SYS_TIME_H.

#ifdef TIME_WITH_SYS_TIME
#include <sys/time.h>
#include <time.h>

#else

#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#else

#include <time.h>

#endif

#endif

AC_STRUCT_TM
If time.h does not define struct tm, define TM_IN_SYS_TIME, which means that
including sys/time.h defines struct tm.

AC_TIMEZONE
Figure out how to get the current timezone. If struct tm has a tm_zone mem-
ber, define HAVE_TM_ZONE. Otherwise, if the external array tzname is found,
define HAVE_TZNAME. This macro calls AC_STRUCT_TM if it hasn’t been called
already.



16 Autoconf

4.6 Compiler Characteristics

The following macros check for C compiler or machine architecture features:

AC_ARG_ARRAY
If the address of an argument to a C function can not be used like the start
of an array, define NO_ARG_ARRAY. This ability allows a sequence of arguments
with the same type to be accessed as if they were an array of values.

AC_CROSS_CHECK
If the C compiler being used does not produce executables that can run on the
system where configure is being run, set the shell variable cross_compiling
to 1. This information can be used by AC_TEST_PROGRAM to determine whether
to take a default action instead of trying to run a test program (see Section 5.2
[General Tests], page 20).

AC_CHAR_UNSIGNED
If the C type char is unsigned, define __CHAR_UNSIGNED
piler predefines it.

unless the C com-

-

AC_CONST If the C compiler does not fully support the keyword const, define const to be
empty. Some C compilers that do not define __STDC__ do support const; some
compilers that define __STDC__ do not completely support const. Programs
can simply use const as if every C compiler supported it; for those that don’t,
the Makefile or configuration header file will define it as empty.

AC_INLINE
If the C compiler is a version of GCC that supports the keyword __inline but
not inline (such as some NeXT versions), define inline to be __inline. This
macro calls AC_PROG_CC if it hasn’t been called already.

AC_INT_16_BITS
If the C type int is smaller than the type long, define INT_16_BITS.

AC_LONG_DOUBLE
If the C compiler supports the long double type, define HAVE_LONG_DOUBLE.
Some C compilers that do not define __STDC__ do support the long double
type; some compilers that define __STDC__ do not support long double.

AC_WORDS_BIGENDIAN
If words are stored with the most significant byte first, define WORDS_BIGENDIAN.

4.7 System Services

The following macros check for operating system services:

AC_HAVE_POUNDBANG (action-if-exists [, action-if-not-exists]||)
Prints ‘checking if “#!' works in shell scripts’ to the standard output,
then creates sample shell scripts to determine whether using lines of the form
#!/bin/csh have any effect on what shell is invoked to read the script. action-
if-exists is a list of shell commands to run if #! works; action-if-not-exists is a
list of shell commands to run otherwise. There are no default actions.



Chapter 4: Specific Tests 17

AC_LONG_FILE_NAMES
If the system supports file names longer than 14 characters, define HAVE_LONG_
FILE_NAMES.

AC_REMOTE_TAPE
If BSD tape drive ioctls are available, define HAVE_SYS_MTIO_H, and if sockets
are available add rmt to make variable PROGS.

AC_RESTARTABLE_SYSCALLS
If the system automatically restarts a system call that is interrupted by a signal,
define HAVE_RESTARTABLE_SYSCALLS.

4.8 UNIX Variants

The following macros check for certain operating systems that need special treatment for
some programs, due to exceptional oddities in their header files or libraries:

AC_AIX If on AIX, define _ALL_SOURCE. Allows the use of some BSD functions. Should
be called before any macros that run the C compiler.

AC_DYNIX_SEQ
If on DYNIX/ptx (Sequent UNIX), add ‘~1seq’ to make variable LIBS. Allows
use of some BSD system calls and getmntent.

AC_IRIX_SUN
If on IRIX (Silicon Graphics UNIX), add ‘-1sun’ to make variable LIBS. Needed
to get getmntent.

AC_ISC_POSIX
If on a POSIXized ISC UNIX, define _POSIX_SOURCE and add ‘-posix’ (for the
GNU C compiler) or ‘-Xp’ (for other C compilers) to make variable CC. This
allows the use of POSIX facilities. Must be called after AC_PROG_CC and before
any other macros that run the C compiler.

AC_MINIX If on Minix, define _MINIX and _POSIX_SOURCE and define _POSIX_1_SOURCE
to be 2. This allows the use of POSIX facilities. Should be called before any
macros that run the C compiler.

AC_SCO_INTL
If on SCO UNIX, add ‘-1intl’ to make variable LIBS. Used to get strftime.
It must be called before checking for strftime.

AC_XENIX_DIR
If on Xenix, define VOID_CLOSEDIR and add ‘-1x’ to make variable LIBS. Also,
if sys/ndir.h is not being used, add ‘-1dir’ to LIBS. Needed when using the
directory reading functions. This macro must be called after AC_DIR_HEADER.






19

5 (General Purpose Macros

These macros provide ways for other macros to control the kind of output that Autoconf
produces or to check whether various features are available. They all take arguments. When
calling these macros, there must not be any blank space between the macro name and the
open parentheses.

Arguments to these macros can be more than one line long if they are enclosed within
the m4 quote characters ‘[’ and ‘]’.

Within each section below, the macros are listed in alphabetical order. These macros
are defined in the file acgeneral .m4.

5.1 Controlling Autoconf Setup
The following macros control the kind of output that Autoconf produces.

AC_CONFIG_HEADER (header-to-create)

Create a file header-to-create containing C preprocessor #define statements
instead of setting the DEFS variable in a Makefile. This macro should be
called right after AC_INIT. Your distribution should contain a file header-
to-create.in that looks as you want the final header file to look, including
comments, with default values in the #define statements. A default value can
be to #undef the variable instead of to define it to a value, if your code tests
for configuration options using #ifdef instead of #if.

The usual name for the configuration header file is config.h. Some GNU
library routines contain

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

so if you use those routines, you should add ‘~-DHAVE_CONFIG_H’ to CFLAGS
in Makefile.in and call your configuration header file config.h. If you
use AC_CONFIG_HEADER, then AC_OUTPUT replaces the string ‘@DEFS@ with
‘~DHAVE_CONFIG_H’ instead of with the value of DEFS (see Section 5.1 [Setup],
page 19).

You can use the program autoheader to create header-to-create.in (see
Section 3.3 [Invoking autoheader|, page 7).

AC_INIT(unique-file-in-source-dir)
Process the command-line arguments and find the source code directory.
unique-file-in-source-dir is some file that is in the package’s source directory;
configure checks for this file’s existence to make sure that the directory
that it is told contains the source code in fact does (see Chapter 8 [Running
configure Scripts], page 33, for more information).

AC_PREPARE(unique-file-in-source-dir)
Find the source code directory and set up shell variables necessary for other
Autoconf macros to work. unique-file-in-source-dir is some file that is in the
package’s source directory; configure checks for this file’s existence to make



20 Autoconf

sure that the directory that it is told contains the source code in fact does
(see Chapter 8 [Running configure Scripts|, page 33, for more information).
AC_PREPARE is the last thing done by AC_INIT. Use AC_PREPARE instead of
AC_INIT if you want to do argument parsing yourself; never use both.

AC_OUTPUT([file...])

Create output files (typically one or more Makefiles) and config.status. If
AC_CONFIG_HEADER has been called, also create the header file that was named
as its argument. The argument is a whitespace-separated list of files to create;
if it is omitted, no files are created. AC_OUTPUT creates each file file in the list
by copying file.in, substituting the variable values that have been selected by
calling AC_SUBST. It creates the directory that each file is in if it doesn’t exist
(but not the parents of that directory). A plausible value for the argument to
AC_OUTPUT is ‘Makefile src/Makefile man/Makefile X/Imakefile’.

5.2 Checking for Kinds of Features

These macros are templates that, when called with actual parameters, check for various
kinds of features. Many of these macros handle two cases: what to do if the given condition
is met, and what to do if the condition is not met. In some places you you might want to
do something if a condition is true but do nothing if it’s false, or vice versa. To omit the
true case, pass an empty value for the action-if-found argument to the macro. To omit the
false case, omit the action-if-not-found argument to the macro, including the comma before
it.

One shell programming construction that you should not use in the action arguments
to these macros is ‘var=${var:-value}’. Old BSD shells, including the Ultrix sh,
don’t understand the colon, and complain and die. If you omit the colon, it works fine:
‘var=${var-value}’.

See Chapter 6 [Writing Macros|, page 25, for more information on how best to use these
macros.

AC_COMPILE_CHECK (echo-text, includes, function-body, action-if-found [,

action-if-not-found))
Print ‘checking for echo-text’ to the standard output. Then create a test C
program to see whether a function whose body consists of function-body can be
compiled and linked; includes is any #include statements needed by the code
in function-body. If the file compiles and links successfully, run shell commands
action-if-found, otherwise run action-if-not-found. To include double quotes in
function-body or includes, quote them with backslashes.

AC_FUNC_CHECK (function, action-if-found [, action-if-not-found|)
If function is available, run shell commands action-if-found, otherwise action-
if-not-found.

AC_HAVE_FUNCS(function. . .)
For each given function in the whitespace-separated argument list that is avail-
able, define HAVE_function (in all caps). See Chapter 4 [Specific Tests|, page 9,
for a precise definition of “define” as it is used here.



Chapter 5: General Purpose Macros 21

To check whether a particular library exists, you can use the AC_HAVE_LIBRARY
macro. If you need to check whether a library other than the default C library
actually contains a particular function, temporarily change the shell variable
LIBS, which contains a list of libraries to use when compiling test files. Here
is an example that checks whether the function rint is present in the math
library:

LIBS_save="$LIBS"
LIBS="$LIBS -1m"
AC_HAVE_FUNCS(rint)
LIBS="$LIBS_save"

Note that the above code does not decide whether to link the program with
‘~1m’.

AC_HAVE_HEADERS (header-file...)
For each given header-file in the whitespace-separated argument list that exists,
define HAVE_header-file (in all caps). See Chapter 4 [Specific Tests|, page 9,
for a precise definition of “define” as it is used here.

AC_HAVE_LIBRARY(library [, action-if-found [, action-if-not-found]||)

Print ‘checking for library’ to the standard output. Then create a test C
program to see whether that program can be linked with the specified library.
action-if-found is a list of shell commands to run if the link succeeds (which
means that the library is present); action-if-not-found is a list of shell com-
mands to run if the link fails. If action-if-found and action-if-not-found are not
specified, the default action is to add ‘~1foo’ to LIBS and define ‘HAVE_LIBfoo’
for library ‘foo’. library can be written as any of ‘foo’, ‘-1foo’, or ‘libfoo.a’.
In all of those cases, the compiler is passed ‘-1foo’.

AC_HEADER_CHECK (header-file, action-if-found [, action-if-not-found])
If header-file exists, execute shell commands action-if-found, otherwise execute
action-if-not-found.

AC_HEADER_EGREP (pattern, header-file, action-if-found [,

action-if-not-found))
If the output of running the C preprocessor on header-file contains the egrep
regular expression pattern, execute shell commands action-if-found, otherwise
execute action-if-not-found.

AC_PREFIX(program)
If the user did not specify an installation prefix on the command line, guess a
value for it by looking for program in PATH, the way the shell does. If program
is found, set the prefix to the parent of the directory containing program; oth-
erwise leave the prefix specified in Makefile.in unchanged. For example, if
program is gcc and the PATH contains /usr/local/gnu/bin/gcc, set the prefix
to /usr/local/gnu.



22 Autoconf

AC_PROGRAM_CHECK (variable, prog-to-check-for, value-if-found,
value-if-not-found)
Check whether program prog-to-check-for exists in PATH. If it is found, set
variable to value-if-found, otherwise to value-if-not-found. Calls AC_SUBST for
variable.

AC_PROGRAM_EGREP (pattern, program, action-if-found [, action-if-not-found)])
program is the text of a C program, on which shell variable and backquote
substitutions are performed. If the output of running the C preprocessor on
program contains the egrep regular expression pattern, execute shell commands
action-if-found, otherwise execute action-if-not-found.

AC_PROGRAMS_CHECK (variable, progs-to-check-for [, value-if-not-found])n
Check for each program in the whitespace-separated list progs-to-check-for ex-
ists in PATH. If it is found, set variable to the name of that program. Other-
wise, continue checking the next program in the list. If none of the programs
in the list are found, set variable to value-if-not-found; if value-if-not-found is
not specified, the value of variable will not be changed. Calls AC_SUBST for
variable.

AC_REPLACE_FUNCS (function-name. . .)
For each given function-name in the whitespace-separated argument list that is
not in the C library, add ‘function-name.o’ to the value of the make variable
LIBOBJS.

AC_TEST_PROGRAM(program, action-if-true [, action-if-false] [,
action-if-cross-compiling])
program is the text of a C program, on which shell variable and backquote
substitutions are performed. If it compiles and links successfully and returns
an exit status of 0 when executed, run shell commands action-if-true. Otherwise
run shell commands action-if-false.

If the optional argument action-if-cross-compiling is given and the C com-
piler being used does not produce executables that run on the system where
configure is being run, then the test program is not run. Instead, the shell
commands action-if-cross-compiling are run. If that argument is given, this
macro calls AC_CROSS_CHECK if it has not already been called (see Section 4.6
[Compiler Characteristics|, page 16).

AC_TEST_CPP(includes, action-if-true [, action-if-false|)
includes is C #include statements and declarations, on which shell variable and
backquote substitutions are performed. (Actually, it can be any C program, but
other statements are probably not useful.) If the C preprocessor produces no er-
ror messages while processing it, run shell commands action-if-true. Otherwise
run shell commands action-if-false.

This macro calls AC_PROG_CPP if it hasn’t been called already.
AC_WITH(package, action-if-true [, action-if-false])

If the user gave configure the option ‘--with-package’, run shell commands
action-if-true. Otherwise run shell commands action-if-false. The name package



Chapter 5: General Purpose Macros 23

should consist only of alphanumeric characters and dashes; typical package
names are ‘gnu-libc’ and ‘x’.

5.3 Setting Variables

These macros help provide ways for other macros to define shell and make variables.

AC_DEFINE(variable [, value))
Define C preprocessor variable variable. If value is given, set variable to that
value, otherwise set it to 1. To use a value containing double quotes, protect
them with backslashes.

This macro adds to the shell variable DEFS. AC_OUTPUT later substitutes the
values in DEFS into the Makefile.in file(s), or if AC_CONFIG_HEADER has been
called, into the header file named as its argument.

AC_OUTPUT creates header-to-create from header-to-create.in by substitut-
ing the correct values in #define statements. For example, suppose your
configure.in calls AC_CONFIG_HEADER (conf.h) and AC_UNISTD_H. You could
have code like this in conf.h.in:

/* Define as 1 if you have unistd.h. */
#define HAVE_UNISTD_H O

On systems that have unistd.h, configure will change the 0 to a 1. On
other systems, it will leave the line unchanged. Alternately, if you prefer to use
#ifdef, your conf.h.in could have code like this:

/* Define if you have unistd.h. */
#undef HAVE_UNISTD_H

On systems that have unistd.h, configure will change the second line to read
‘#define HAVE_UNISTD_H 1’. On other systems, it will leave the line unchanged.

If header-to-create already exists and its contents are identical to what AC_
OUTPUT would put in it, it is left alone. Doing this allows some changes in
configuration without needlessly causing object files that depend on the header
file to be recompiled.

AC_DEFINE_UNQUOTED(variable [, value|)
This is just like AC_DEFINE, but it does nothing to quote value from various
shell and sed expansions it will undergo. value will be used in many different
contexts requiring different quoting, and it is up to you to make sure it works
right.

AC_SUBST(variable)
Substitute the variable variable when creating the output files (typically one
or more Makefiles). This means replace instances of ‘Qvariable@’, e.g. in
Makefile.in, with the current value of the shell variable variable. If this macro
were not called, the value of variable would not be set in the output files, even
though configure had figured out a value for it.

You can set or add to the value of variable in the usual shell way. For example,
to add ‘-1termcap’ to the value of the variable LIBS:

LIBS="$LIBS -ltermcap"



24 Autoconf

5.4 Macro Ordering

These macros provide ways for other macros to make sure that they are called in the correct
order.

AC_BEFORE(this-macro-name, called-macro-name)
Make m4 print a warning message on the standard error output if called-macro-
name has already been called. this-macro-name should be the name of the
macro that is calling AC_BEFORE. The macro called-macro-name must contain
a call to AC_PROVIDE to indicate that it has been called.

This macro should be used when one macro makes changes that might affect
another macro, so that the other macro should probably not be called first.
For example, AC_PROG_CPP checks whether the C compiler can run the C pre-
processor when given the ‘-E’ option. It should therefore be called after any
macros that change which C compiler is being used, such as AC_PROG_CC. So
AC_PROG_CC contains:

AC_BEFORE([$0], [AC_PROG_CPP])

This warns the user if a call to AC_PROG_CPP has already occurred when AC_
PROG_CC is called.

AC_PROVIDE (macro-name)
Set a flag recording that macro-name has been called. The argument should
be the name of the macro that is calling AC_PROVIDE. An easy way to get it is
from the m4 builtin variable $0, like this:

AC_PROVIDE([$0]1)

AC_REQUIRE (macro—-name)
If the m4 macro macro-name has not already been called, call it (without any
arguments). Make sure to quote macro-name with square brackets. The body
of macro-name must contain a call to AC_PROVIDE to indicate that it has been
called.

Macros that need some other macro to be called before they are called can
use AC_REQUIRE to ensure that it has been, in case the person who made
configure.in forgot or didn’t know to do it. AC_REQUIRE and AC_PROVIDE
together can ensure that a macro is only called if it is needed, and only called
once. See Section 6.3 [Dependencies Between Macros|, page 26, for more infor-
mation.



25

6 Writing Macros

If your package needs to test for some feature that none of the macros supplied with Autoconf
handles, you’ll need to write one or more new Autoconf macros. Here are some suggestions
and some of the rationale behind why the existing macros are written the way they are.
You can also learn a lot about how to write Autoconf macros by looking at the existing
ones. If something goes wrong in one or more of the Autoconf tests, this information can
help you understand why they work the way they do and the assumptions behind them,
which might help you figure out how to best solve the problem.

If you add macros that you think would be useful to other people, or find problems with
the distributed macros, please send electronic mail to bug-gnu-utils@prep.ai.mit.edu,
so we can consider them for future releases of Autoconf. Please include the Autoconf version
number, which you can get by running ‘autoconf --version’.

6.1 Macro Format

Autoconf macros are defined as arguments to the m4 builtin command define. Their overall
structure looks like this:

define(macro-name, [macro-body])dnl

The square brackets here do not indicate optional text: they should literally be present in
the macro definition.

All of the Autoconf macros have names starting with ‘AC_’ to prevent them from acci-
dentally conflicting with other text. You should prefix your own macro names with some
other sequence, such as your initials or an abbreviation for the name of your organization
or software package, to ensure that their names don’t conflict with the names of present or
future Autoconf macros.

The m4 builtin dnl prevents a newline from being inserted in the output where the macro
is defined; without it, the generated configure script would begin with dozens of blank
lines. dnl is also used to introduce comments in m4; it causes m4 to discard the rest of the
input line.

You should quote the entire macro body with square brackets to avoid macro expansion
problems (see Section 6.2 [Quoting], page 25). You can refer to any arguments passed to
the macro as ‘$1°, ‘$2’, etc.

See Section “How to define new macros” in GNU m4, for more complete information on
writing m4 macros.

6.2 Quoting

Macros that are called by other macros are evaluated by m4 several times; each evaluation
might require another layer of quotes to prevent unwanted expansions of macros or m4
builtins, such as ‘include’ and ‘$1°. Quotes are also required around macro arguments
that contain commas, since commas separate the arguments from each other.

1

Autoconf (in acgeneral.m4) changes the m4 quote characters from the default >’ and ¢
to ‘[’ and ‘]’, because many of the macros use ‘>’ and ‘'’, mismatched. However, in a few



26 Autoconf

places the macros need to use brackets. In those places, they use the m4 builtin command

changequote to temporarily disable quoting before the code that uses brackets, like this:
changequote(,)dnl

Then they turn quoting back on again with another call to changequote:
changequote([,])dnl

When you create a configure script using newly written macros, examine it carefully
to check whether you need to add more quotes in your macros. If one or more words have
disappeared in the m4 output, you need more quotes. When in doubt, quote.

However, it’s also possible to put on too many layers of quotes. If this happens, the
resulting configure script will contain unexpanded macros. The autoconf program checks
for this problem by doing ‘grep AC_ configure’.

6.3 Dependencies Between Macros

Some Autoconf macros depend on other macros having been called first in order to work
correctly, or in some cases, to work at all. Autoconf provides a way to ensure that certain
macros are called if needed and a way to warn the user if macros are called in an order that
might cause incorrect operation.

6.3.1 Prerequisite Macros

A macro that you write might need to use values that have previously been computed
by other macros. For example, if you write a new macro that uses the C preprocessor, it
depends on AC_PROG_CPP having been called first to set the shell variable CPP (see Section 4.1
[Alternative Programs|, page 9).

Rather than forcing the user of the macros to keep track of all of the dependencies
between them, you can use the macros AC_PROVIDE and AC_REQUIRE to do it automatically.
See Section 5.4 [Macro Ordering], page 24, for more information on their syntax.

The new macro that runs the C preprocessor should contain, somewhere before CPP is
used, the statement

AC_REQUIRE([AC_PROG_CPP])
and the macro AC_PROG_CPP should contain the statement (anywhere in its body)
AC_PROVIDE([$0])

Then, when the new macro is run, it will invoke AC_PROG_CPP if and only if AC_PROG_CPP
has not already been run.

6.3.2 Suggested Ordering

Some macros should be run before another macro if both are called, but neither requires
the other to be called. For example, a macro like AC_AIX that changes the behavior of the
C compiler (see Section 4.8 [UNIX Variants], page 17) should be called before any macros
that run the C compiler. Many of these dependencies are noted in the documentation.

Autoconf provides a way to warn users when macros with this kind of dependency appear
out of order in a configure.in file. The warning occurs when creating configure from
configure.in, not when running configure. It is not a fatal error; configure is created
as usual.



Chapter 6: Writing Macros 27

The AC_BEFORE macro causes m4 to print a warning message on the standard error output
when a macro is used before another macro which might change its behavior. The macro
which should come first should contain a call to AC_BEFORE and the macro which should
come later should contain a call to AC_PROVIDE.

For example, AC_AIX contains
AC_BEFORE([$0], [AC_COMPILE_CHECK])
and AC_COMPILE_CHECK contains
AC_PROVIDE([$0])

As aresult, if AC_AIX is called after AC_COMPILE_CHECK, it will note that AC_COMPILE_CHECK
has already been called and print a warning message.

6.4 Checking for Files

If you need to check whether a file other than a C header file exists, use ‘test -f filename’.
If you need to make multiple checks using test, combine them with the shell operators ‘&&’
and ‘| |’ instead of using the test operators ‘-a’ and ‘-o’. On System V, the precedence of
‘-a’ and ‘-0’ is wrong relative to the unary operators; consequently, POSIX does not specify
them, so using them is nonportable. If you combine ‘&€&’ and ‘||’ in the same statement,
keep in mind that they have equal precedence.

Do not use ‘test -x’, because 4.3BSD does not have it. Use ‘test -f’ or ‘test -r’
instead.

6.5 Checking for Symbols

If you need to check whether a symbol is defined in a C header file, you can use AC_
HEADER_EGREP if the symbol is not a C preprocessor macro (see Section 5.2 [General Tests],
page 20), or compile a small test program that includes the file and references the symbol
(see Section 6.6 [Test Programs]|, page 28). Don’t directly grep for the symbol in the file,
because on some systems it might be defined in another header file that the file you are
checking ‘#include’s.

However, if you need to check for a particular UNIX variant which is distinguished by
having certain text in a certain file, then use grep (or egrep). But don’t use ‘grep -s’
to suppress output, because ‘grep -s’ on System V does not suppress output, only error
messages. Instead, redirect the standard output and standard error (in case the file doesn’t
exist) of grep to /dev/null. Check the exit status of grep to determine whether it found
a match.

To check whether the Autoconf macros have already defined a certain C preprocessor
symbol, you can use a case statement like this:

case "$DEFS" in

*HAVE_F00x*) ;;

*) LIBOBJS="$LIBOBJS foo.o" ;;
esac

Make sure to enclose the variable name you are checking (usually DEFS) in double quotes,
because otherwise some old versions of bash misinterpret the statement.



28 Autoconf

6.6 Test Programs

Autoconf checks for many features by compiling small test programs. To find out whether
a library function is available, Autoconf tries to compile a small program that uses it. This
is unlike Larry Wall’s Metaconfig, which uses nm or ar on the C library to try to figure out
which functions are available. Trying to link with the function is usually a more reliable and
flexible approach because it avoids dealing with the variations in the options and output
formats of nm and ar and in the location of the standard libraries. It also allows configure
to check aspects of the function’s runtime behavior if needed. On the other hand, it is
sometimes slower than scanning the libraries.

If you need to check for a condition other than whether some symbol exists on the system
or has a certain value, then you can’t use AC_COMPILE_CHECK (see Section 5.2 [General Tests],
page 20). You have to write a test program by hand. You can compile and run it using
AC_TEST_PROGRAM (see Section 5.2 [General Tests|, page 20).

Try to avoid writing test programs if possible, because using them prevents people from
configuring your package for cross-compiling. If it’s really best that you test for a run-time
behavior, try to provide a default “worst case” value to use when cross-compiling makes
run-time tests impossible. You do this by passing the optional last argument to AC_TEST_
PROGRAM.

6.6.1 Guidelines for Test Programs

Test programs should return 0 if the test succeeds, nonzero otherwise, so that success can
be distinguished easily from a core dump or other failure; segmentation violations and other
failures produce a nonzero exit status. Test programs should exit, not return, from main,
because on some systems the argument to return in main is ignored. They should not write
anything to the standard output.

Test programs can use #if or #ifdef to check the values of preprocessor macros defined
by tests that have already run. For example, if you call AC_STDC_HEADERS, then later
on in configure.in you can have a test program that includes an ANSI C header file
conditionally:

#if STDC_HEADERS
#include <stdlib.h>
#endif

If a test program needs to use or create a data file, give it a name that starts with
conftest, such as conftestdata. The configure script cleans up by running ‘rm -f
conftest*’ after running test programs and if the script is interrupted.

6.6.2 Tricks for Test Programs

If a test program calls a function with invalid parameters (just to see whether it exists),
organize the program to ensure that it never invokes that function. You can do this by
calling it in another function that is never invoked. You can’t do it by putting it after a
call to exit, because GCC version 2 knows that exit never returns and optimizes out any
code that follows it in the same block.

If you include any header files, make sure to call the functions relevant to them with the
correct number of arguments, even if they are just 0, to avoid compilation errors due to pro-
totypes. GCC version 2 has internal prototypes for several functions that it automatically



Chapter 6: Writing Macros 29

inlines; for example, memcpy. To avoid errors when checking for them, either pass them the
correct number of arguments or redeclare them with a different return type (such as char).

6.7 Multiple Cases

Some operations are accomplished in several possible ways, depending on the UNIX variant.
Checking for them essentially requires a “case statement”. Autoconf does not directly
provide one; however, it is easy to simulate by using a shell variable to keep track of
whether a way to perform the operation has been found yet.

Here is an example excerpted from the configure.in for GNU find. It uses the shell
variable fstype to keep track of whether the remaining cases need to be checked. There
are several more cases which are not shown here but follow the same pattern.

echo checking how to get filesystem type

# SVR4.

AC_TEST_CPP([#include <sys/statvfs.h>

#include <sys/fstyp.h>], AC_DEFINE(FSTYPE_STATVFS) fstype=1)

if test -z "$fstype"; then

# SVR3.

AC_TEST_CPP([#include <sys/statfs.h>

#include <sys/fstyp.h>], AC_DEFINE(FSTYPE_USG_STATFS) fstype=1)
fi

if test -z "$fstype"; then

# AIX.

AC_TEST_CPP([#include <sys/statfs.h>

#include <sys/vmount.h>], AC_DEFINE(FSTYPE_AIX_STATFS) fstype=1)
fi






31

7 Makefiles

Fach subdirectory in a distribution should come with a file Makefile.in, from which
configure will produce a Makefile in that directory. Most of the substitutions that
configure does are simple: for each configuration variable that the package uses, it just re-
places occurrences of ‘@variable@’ with the value that configure has determined for that
variable. Any occurrences of ‘@variable@’ for variables that configure does not know
about are passed through unchanged.

There is no point in checking for the correct value to give a variable that is never
used. Every variable that the configure script might set a value for should appear in
a ‘@VARIABLEQ’ reference in at least one Makefile.in. If AC_CONFIG_HEADER is called,
configure replaces ‘@DEFS@’ with ‘~-DHAVE_CONFIG_H’, since the contents of DEFS would be
redundant.

See Section “Makefile Conventions” in The GNU Coding Standards, for more information
on what to put in Makefiles. See Section 9.2 [Sample Makefile.in|, page 35, for an example
of a real Makefile.in.

7.1 Predefined Variables

Some make variables are predefined by the Autoconf macros. AC_SUBST is called for them
automatically (see Section 5.3 [Setting Variables|, page 23), so in your Makefile.in files
you can get their values by enclosing their names in ‘@’ characters (see Chapter 7 [Makefiles],
page 31). The variables that are defined by the general purpose Autoconf macros are:

srcdir The directory that contains the source code for that Makefile.

DEFS ‘-D’ options to pass to the C compiler. Do not include ‘@DEFS@’ in your
Makefile.in files if you are using AC_CONFIG_HEADER.

LIBS ‘-1’ and ‘-L’ options to pass to the linker.

LIBOBJS  Names of object files (ending in .0). Set by AC_REPLACE_FUNCS (see Section 5.2
[General Tests|, page 20).

7.2 Installation Prefixes

If configure has figured out a value for the installation prefix, either by the user sup-
plying one on the command line (see Chapter 8 [Running configure Scripts], page 33) or
with AC_PREFIX, then it substitutes that value in Makefiles that it creates. Wherever a
Makefile.in contains a line like

prefix = /usr/local

configure substitutes the value it figured out. The word ‘prefix’ must not be preceded
by any other characters on the line.

There can be separate installation prefixes for architecture-specific files and architecture-
independent files see Chapter 8 [Running configure Scripts|, page 33). configure substi-
tutes the word exec_prefix in the same way that it does prefix.



32 Autoconf

7.3 VPATH Substitutions

You might want to compile a software package in a different directory from the one that
contains the source code. Doing this allows you to compile the package for several archi-
tectures simultaneously from the same copy of the source code and keep multiple sets of
object files on disk.

To support doing this, make uses the VPATH variable to find the files that are in the
source directory. GNU make and most other recent make programs can do this. Older make
programs do not support VPATH; when using them, the source code must be in the same
directory as the object files.

To support VPATH, each Makefile.in should contain two lines that look like:
srcdir = @srcdir@
VPATH = @srcdir@
Do not set VPATH to the value of another variable, for example ‘VPATH = $(srcdir)’,
because some versions of make do not do variable substitutions on the value of VPATH.
configure substitutes in the correct value for srcdir when it produces Makefile.in.

Do not use the make variable $<, which expands to the pathname of the file in the source
directory (found with VPATH), except in implicit rules. (An implicit rule is one such as
‘.c.o’, which tells how to create a .o file from a .c file.) Some versions of make do not set
$< in explicit rules; they expand it to an empty value.

Instead, Makefile command lines should always refer to source files by prefixing them
with ‘$(srcdir)/’. For example:

time.info: time.texinfo
makeinfo $(srcdir)/time.texinfo

7.4 Automatic Remaking

You can put rules like the following in the top-level Makefile.in for a package to automat-
ically update the configuration information when you change the configuration files.

# The next rule also takes care of making config.h from config.h.in. # If remaking
config.h does not change it, its timestamp is untouched. Makefile: Makefile.in config.status
$(SHELL) config.status config.status: configure $(SHELL) $(srcdir)/configure —no-create
configure: configure.in cd $(srcdir); autoconf config.h.in: configure.in c¢d $(sredir); auto-
header



33

8 Running configure Scripts

A software package that uses a configure script generated by Autoconf should be dis-
tributed with a file Makefile.in, but no Makefile; that way, the user has to properly
configure the package for the local system before compiling it. Normally, configuring con-
sists of simply doing a cd to the package’s source code directory and typing:

configure

If the PATH environment variable does not contain the directory ‘.’, the command is
instead:

./configure

Users running csh on old versions of System V might have to explicitly run sh on
configure:

sh configure

Running configure takes a minute or two. While it is running, it prints some messages
that tell what it is doing. If you don’t want to see the messages, run configure with its
standard output redirected to /dev/null; for example, ‘./configure >/dev/null’.

To compile the package in a different directory from the one containing the source code,
you must use a version of make that supports the VPATH variable, such as GNU make. cd
to the directory where you want the object files and executables to go and run configure.
configure automatically checks for the source code in the directory that configure is
in and in ... If for some reason configure is not in the source code directory that you
are configuring, then it will report that it can’t find the source code. In that case, run
configure with the option ‘--srcdir=dir’, where dir is the directory that contains the
source code.

By default, ‘make install’ will install the package’s files in /usr/local/bin,
/usr/local/man, etc. You can specify an installation prefix other than /usr/local by
giving configure the option ‘--prefix=path’. Alternately, you can do so by giving a
value for the ‘prefix’ variable when you run make, e.g.,

make prefix=/usr/gnu

You can specify separate installation prefixes for machine-specific files and machine-
independent files. If you give configure the option ‘--exec-prefix=path’ or set the make
variable ‘exec_prefix’ to path, the package will use path as the prefix for installing pro-
grams and libraries. Normally, all files are installed using the same prefix.

Another configure option is useful mainly in Makefile rules for updating
config.status and Makefile. The ‘~-no-create’ option figures out the configuration
for your system and records it in config.status, without actually configuring the
package (creating Makefiles and perhaps a configuration header file). Later, you can run
./config.status to actually configure the package. You can also give config.status the
‘-—recheck’ option, which makes it re-run configure with the same arguments you used
before. This option is useful if you change configure.

Some packages pay attention to ‘~-with-package’ options to configure, where package
is something like ‘gnu-1ibc’ or ‘x’ (for X windows). The README should mention any
‘--with-’ options that the package recognizes.

configure ignores any other arguments that you give it.



34 Autoconf

On systems that require unusual options for compilation or linking that the package’s
configure script does not know about, you can give configure initial values for variables
by setting them in the environment. In Bourne-compatible shells, you can do that on the
command line like this:

CC='gcc -traditional' LIBS=-lposix ./configure

The make variables that you might want to override with environment variables when

running configure are:

(For these variables, any value given in the environment overrides the value that
configure would choose:)

CC C compiler program. The default is cc, or gecc if gcc is in your PATH.

INSTALL  Program to use to install files. The default is install if you have it, cp other-
wise.

(For these variables, any value given in the environment is added to the value that
configure chooses:)

DEFS Configuration options, in the form ‘-Dfoo -Dbar...’. Do not use this variable
in packages that use AC_CONFIG_HEADER.

LIBS Libraries to link with, in the form ‘-1foo -1lbar...".

Of course, in the long term, most problems requiring manual intervention should be fixed
by updating either the Autoconf macros or the configure.in file for that package. See
Chapter 3 [Making configure Scripts|, page 5, for a discussion of that subject.



35

9 An Example

Here are sample configure.in and Makefile.in files, to give a real illustration of using
Autoconf. They are from the GNU cpio package, which also includes the mt and rmt
programs.

9.1 Sample configure.in

Here is configure.in from GNU cpio. Note the use of the dnl macro after AC_SUBST to
suppress an extra unwanted, though harmless, newline in the generated configure script
(because the AC_SUBST macro does not produce any output where it is called).

dnl Process this file with autoconf to produce a configure script.
AC_INIT(cpio.h)

PROGS="cpio"

AC_SUBST (PR0OGS)dnl

AC_PROG_CC

AC_PROG_CPP

AC_GCC_TRADITIONAL

AC_PROG_INSTALL

AC_ATIX

AC_MINIX

AC_ISC_POSIX

AC_RETSIGTYPE

AC_MAJOR_HEADER

AC_REMOTE_TAPE

test -n "$have_mtio" && PROGS="$PROGS mt"
AC_RSH

AC_CONST

AC_UID_T

AC_STDC_HEADERS

AC_UNISTD_H

AC_HAVE_HEADERS(string.h fcntl.h utime.h)
AC_REPLACE_FUNCS (bcopy mkdir strdup)
AC_HAVE_FUNCS (strerror lchown)

AC_VPRINTF

AC_ALLOCA

AC_XENIX_DIR

AC_HAVE_LIBRARY (socket, [LIBS="$LIBS -lsocket"])
AC_HAVE_LIBRARY(nsl, [LIBS="$LIBS -1lnsl"])
AC_OUTPUT (Makefile)

9.2 Sample Makefile.in

Here is Makefile.in from GNU cpio, with some irrelevant lines omitted, for brevity.

#### Start of system configuration section. ####

srcdir = @srcdir@



Autoconf

VPATH = @srcdir@
CC = @CcCe
INSTALL = QINSTALLQ

INSTALL_PROGRAM = QINSTALL_PROGRAMG@
INSTALL_DATA = Q@INSTALL_DATAQ

DEFS ODEFSQ@
LIBS OLIBSQ@
RTAPELIB = QORTAPELIB@

CFLAGS = -g
LDFLAGS = -g

prefix = /usr/local
exec_prefix = $(prefix)

binprefix =

manprefix =

bindir = $(exec_prefix)/bin
libdir = /etc

mandir = $(prefix)/man/mani
manext = 1

#### End of system configuration section. ####
SHELL = /bin/sh

SRCS = copyin.c copyout.c copypass.c dstring.c fnmatch.c global.c \
main.c tar.c util.c error.c getopt.c getoptl.c filemode.c version.c \
rtapelib.c dirname.c idcache.c makepath.c xmalloc.c stripslash.c \
userspec.c xstrdup.c bcopy.c mkdir.c strdup.c

0OBJS = copyin.o copyout.o copypass.o dstring.o fnmatch.o global.o \
main.o tar.o util.o error.o getopt.o getoptl.o filemode.o version.o \

$ (RTAPELIB) dirname.o idcache.o makepath.o xmalloc.o stripslash.o \
userspec.o xstrdup.o @LIBOBJS@ Q@ALLOCAQ

# mt source files not shared with cpio.

MT_SRCS = mt.c argmatch.c

MT_OBJS = mt.o argmatch.o error.o getopt.o getoptl.o \

xmalloc.o $(RTAPELIB) QALLOCAQ

HDRS = cpio.h cpiohdr.h tar.h tarhdr.h dstring.h extern.h filetypes.h \
system.h fnmatch.h getopt.h rmt.h

DISTFILES = $(SRCS) $(HDRS) COPYING COPYING.LIB ChangeLog Makefile.in \
README NEWS INSTALL cpio.l mt.1 makefile.pc cpio.def cpio.cs \
configure configure.in $(MT_SRCS) rmt.c tcexparg.c alloca.c



Chapter 9: An Example 37

all: Q@PROGS@

$(CC) -c $(CFLAGS) $(CPPFLAGS) $(DEFS) -I$(srcdir) $<

install: all $(srcdir)/cpio.l $(srcdir)/mt.1
$ (INSTALL_PROGRAM) cpio $(bindir)/$(binprefix)cpio
test ! -f mt || $(INSTALL_PROGRAM) mt $(bindir)/$(binprefix)mt
-test ! -f rmt || $(INSTALL_PROGRAM) rmt /etc/rmt
$ (INSTALL_DATA) $(srcdir)/cpio.1 $(mandir)/$(manprefix)cpio.$(manext)
test ! ~f mt || \
$ (INSTALL_DATA) $(srcdir)/mt.1 $(mandir)/$(manprefix)mt.$ (manext)

cpio: $(0BJS)
$(CC) $(LDFLAGS) -o $@ $(0BJS) $(LIBS)

rmt: rmt.o
$(CC) $(LDFLAGS) -o $@ rmt.o $(LIBS)

mt: $(MT_OBJIS)
$(CC) $(LDFLAGS) -o $@ $(MT_OBJS) $(LIBS)

TAGS: $(SRCS)
etags $(SRCS)

clean:
rm -f cpio rmt mt *.o0 core

mostlyclean: clean

distclean: clean
rm -f Makefile config.status

realclean: distclean
rm —-f TAGS

dist:
echo cpio-"sed -e '/version_string/!d' \
-e 's/[70-9.1%\([0-9.1%\).*/\1/' -e q version.c™ > .fname
rm -rf “cat .fname"
mkdir “cat .fname"
1n $(DISTFILES) “cat .fname"
tar chZf “cat .fname” .tar.Z “cat .fname"
rm -rf “cat .fname” .fname






39

Preprocessor Symbol Index

This is an alphabetical list of the C preprocessor symbols that the Autoconf macros define.
To work with Autoconf, C source code needs to use these names in #if directives.

__CHAR_UNSIGNED __.....ciiiiiiiiiiininnnnnnn 16
_ALL _SOURCE. ...ttt ettt e 17
MINT K. o e e e 17
_POSIX_1_SOURCE ......ititiiiiiininieann 17
_POSIX_SOURCE ........iiiiiiiii i 17
_POSIX_VERSION ..ottt 12
C
o7 o3+ = V20N 16
D
DECLARE_YYTEXT ... ... i 9
DIRENT . ... e 10
G
GETGROUPS _T ... e e e e 12
GETLODAVG_PRIVILEGED ..............covvin.n.. 14
Gld_ t. . 13
H
HAVE_ALLOCA_H ... .. 13
HAVE_CONFIG_H ......cooiiii i, 19
HAVE _DOPRNT . ... e 15
HAVE_function .........couuuiiieuinnunnnnnnnn. 20
HAVE_header..........c.uuuuininiiinananan.. 21
HAVE_LONG_DOUBLE . ........cotiiiiiiiinann, 16
HAVE_LONG_FILE_NAMES ..............cciiuinn.. 17
HAVE_NETDB_H......... ... ., 10
HAVE_RESTARTABLE_SYSCALLS................... 17
HAVE_ST _BLKSIZE .......coitiiiiniinnnnnann, 15
HAVE_ST_BLOCKS ... .ot 15
HAVE _ST_RDEV. . ... ...t 15
HAVE _STRCOLL. ..ottt e e e et 14
HAVE_SYS_MTIO_H........coiiiiiiiiiiinnnn. 17
HAVE_TM_ZONE. ... ..ottt 15
HAVE_TZNAME. . ... .. it i i 15
HAVE_UNISTD_H .....coiiii it 12
HAVE _UTIME_NULL ........citititiiiinnnnnnnn 14
HAVE_VFORK_H...... ... .. i, 14
HAVE_VPRINTF..... ... .. i 15
HAVE _WAITS . ... et 15
I
inline. ... 16
INT_16_BITS. ... .o e e 16

MAJOR_IN_MKDEV . ...ttt 11
MAJOR_IN_SYSMACROS.....coiiiiiiieeeenn. 11
MOAE _ B it 13
ND IR ..t e 10
NEED_MEMORY_H ........ .. i 11
NEED_SETGID....... .00t 14
NLIST_NAME _UNION...........iviriiiiinnnnnnnnn 14
NLIST_STRUCT . ..ottt i 14
NO_ARG_ARRAY ... ... e 16
NO_MINUS_C_MINUS_O.....ovvriniiiiinininnnnn. 9
NO_REMOTE . . ... e et 10
Pid_t... . 13
RETSIGTYPE . ... et 13
SETVBUF_REVERSED . ............ciitiiinn.. 14
S1Ze Tt e 13
STDC_HEADERS. . ... .ot e ee e 11
SYSDIR. ..o e 10
SYSNDIR . ... 10
TIME_WITH_SYS_TIME.............civirininennn.. 15
TM_IN_SYS_TIME .......c0itiiiiiiiiienan, 15
VI b oo e 13
USG .ot 12
VL OT K . ettt 14
VOID_CLOSEDIR......ciititiiiiininnannnn 10, 17



40

shouldnt see this

Autoconf



Macro Index

41

This is an alphabetical list of the Autoconf macros. To make the list easier to use, the
macros are listed without their preceding ‘AC_’.

ATX 17
ALLOCA. .. 13
ARG_ARRAY .. ... 16
BEFORE. ... ... 24
CHAR_UNSIGNED ........ ..., 16
COMPILE_CHECK ........ ..o 20
CONFIG_HEADER ............oiiiiiiiiiiinn.. 19
CONST . .o 16
CROSS_CHECK...... ..ot 16
DECLARE_YYTEXT ...... ..ot 9
DEFINE. ... ..o i 23
DEFINE_UNQUOTED ..........coiiiiiiniiiiinnnn.. 23
DIR_HEADER ....... .00 10
DYNIX_SEQ.... oottt 17
F

FUNC_CHECK...... ... 20
GCC_TRADITIONAL ......... ..ot 10
GETGROUPS_T.... ... 12
GETLOADAVG . ... ..ot 14
HAVE_FUNCS ... ..o 20
HAVE_HEADERS........ .. ... it 21
HAVE_LIBRARY........ ... . i 21
HAVE_LONG_DOUBLE...................ooiiii... 16
HAVE_POUNDBANG . ..., 16
HEADER_CHECK........ ... .. it 21
HEADER_EGREP........ ... ... .. ...t 21

I

INIT . 19
INLINE. ..o s 16
INT_16_BITS.. ...t 16
IRIX_SUN ..ot e e 17
ISC_POSIX ... 17
L

LN S 9
LONG_FILE_NAMES ....... ... ..o, 17
M

MAJOR_HEADER........ ... . 11
MEMORY_H ... ... e 11
MINIX . . 17
MINUS_C_MINUS_O......ccoviiiniiiiiiiiiii, 9
MODE_T. ..\t i i e 13
@)

OUTPUT. ... e 20
P

PID T 13
PREFIX. ... 21
PREPARE . ... ... 19
PROG_AWK . ... 10
PROG_CC ... 10
PROG_CPP ... ..o 9
PROG_INSTALL.......ooiiiiii i 10
PROG_LEX . ... i 9
PROG_RANLIB...... ... e 10
PROG_YACC ... o 9
PROGRAM_CHECK ....... ... 22
PROGRAM_EGREP ....... ... ... ..., 22
PROGRAMS_CHECK . ...... ... 22
PROVIDE ... ..ot e 24
R

REMOTE_TAPE. ... .. ... i 17
REPLACE_FUNCS ... ... 22
REQUIRE ...... ... 24
RESTARTABLE_SYSCALLS ..............cooiii... 17
RETSIGTYPE....... ... 13



42

S

SCO_INTL ..ot e 17
SETVBUF_REVERSED .............ooiiiiiiiiinnt. 14
SIZE T 13
ST_BLKSIZE...... ..ot 15
ST_BLOCKS . ..o 15
ST_RDEV ... 15
STDC_HEADERS. ... ... 11
STRCOLL ..ot e 14
STRUCT_TM ... .t i s 15
SUBST .. 23
T

TEST_CPP ... s 22
TEST_PROGRAM. ........ ... i 22
TIME_WITH_SYS_TIME...............oiiiiiiinn.. 15
TIMEZONE ... ... 15

Autoconf

UID T ..t e e 13
UNISTD_H.... ..ot i 12
USG . o 12
UTIME_NULL . ...t 14
VEORK. ..o 14
VPRINTF ... e 15
WAITS . . 15
WITH. ... o s 22
WORDS_BIGENDIAN .......... ..., 16

XENIX DIR . ..ot 17



Table of Contents

1 Introduction.............. ... ... ... ... ... 1
2 Distributing Autoconf Output.................. 3
3 Making configure Scripts ....................... 5
3.1 Writing configure.in........... ... i 5
3.2 Invoking autocont . ..... ...ttt 6
3.3 Invoking autoheader...........ouuiiiiiiiiiiii 7

4 Specific Tests............... ... ... ... ... ... 9
4.1 Alternative Programs.......... ..., 9
4.2 Header Files. . ... ..o e 10
4.3 Typedefs. . ... 12
4.4 Library Functions ........... .. i 13
4.5 StrUCTUTES . . v vttt e 15
4.6 Compiler Characteristics ..., 16
4.7 SYStemM SEIVICES ...ttt 16
4.8 UNIX Variants . .......ccoooiiiiii e 17

5 General Purpose Macros....................... 19
5.1 Controlling Autoconf Setup. ..., 19
5.2 Checking for Kinds of Features ............... .. ... ... ..., 20
5.3 Setting Variables......... ..o i 23
5.4 Macro Ordering . .......o.oueiuiin e 24

6 Writing Macros................ooiiiiiiiiinn... 25
6.1 Macro Format. ... ... e 25
6.2 QUOLING . ..ottt 25
6.3 Dependencies Between Macros. ..., 26
6.3.1 Prerequisite Macros ..., 26

6.3.2 Suggested Ordering...........ccoviiiiiiiiiiinnnann.. 26

6.4 Checking for Files....... .. i 27
6.5 Checking for Symbols ...... ... ... i 27
6.6 Test Programs ... 28
6.6.1 Guidelines for Test Programs................. ... .. ..... 28

6.6.2 Tricks for Test Programs ... .. 28

6.7 Multiple Cases . ..ot 29



ii

7 Makefiles............ ... ... 31
7.1 Predefined Variables......... ... ... 31
7.2 Installation Prefixes........ ... oo i i 31
7.3 VPATH Substitutions .......... .o, 32
7.4 Automatic Remaking....... ... ... 32

8 Running configure Scripts..................... 33

9 An Example........... ... . ... .. 35
9.1 Sample configure.in.......... .. ... i 35
9.2 Sample Makefile . dm.....ouiutttenn i 35

Preprocessor Symbol Index ....................... 39

Macro IndexX. ... 41



	1 Introduction
	2 Distributing Autoconf Output
	3 Making configure Scripts
	Writing configure.in
	Invoking autoconf
	Invoking autoheader

	4 Specific Tests
	Alternative Programs
	Header Files
	Typedefs
	Library Functions
	Structures
	Compiler Characteristics
	System Services
	UNIX Variants

	5 General Purpose Macros
	Controlling Autoconf Setup
	Checking for Kinds of Features
	Setting Variables
	Macro Ordering

	6 Writing Macros
	Macro Format
	Quoting
	Dependencies Between Macros
	Prerequisite Macros
	Suggested Ordering

	Checking for Files
	Checking for Symbols
	Test Programs
	Guidelines for Test Programs
	Tricks for Test Programs

	Multiple Cases

	7 Makefiles
	Predefined Variables
	Installation Prefixes
	VPATH Substitutions
	Automatic Remaking

	8 Running configure Scripts
	9 An Example
	Sample configure.in
	Sample Makefile.in

	Preprocessor Symbol Index
	Macro Index

