GAWK (1) Free Software Foundation (Apr 15 1993) GAWK (1)

NAME

gawk — pattern scanning and processing language

SYNOPSIS

gawk [POSIX or GNU style options] —f program-file [—] file ...
gawk [POSIX or GNU style options] [—] program-text file ...

DESCRIPTION

Gawk isthe GNU Project’ s implementation of the AWK programming language. It conforms to the defini-
tion of the language in the POSIX 1003.2 Command Language And Utilities Standard. Thisversion in turn
is based on the description in The AWK Programming Language, by Aho, Kernighan, and Weinberger,
with the additional features defined in the System V Release 4 version of UNIX awk. Gawk also provides
some GNU-specific extensions.

The command line consists of options to gawk itself, the AWK program text (if not supplied via the —f or
—file options), and values to be made available in the ARGC and ARGV pre-defined AWK variables.

OPTIONS

Page 1

Gawk options may be either the traditional POSIX one letter options, or the GNU style long options.
POSIX style options start with a single **—’, while GNU long options start with ‘*‘—'". GNU style long
options are provided for both GNU-specific features and for POSIX mandated features. Other implementa-
tions of the AWK language are likely to only accept the traditional one letter options.

Following the POSIX standard, gawk-specific options are supplied via arguments to the -W option. Multi-
ple W options may be supplied, or multiple arguments may be supplied together if they are separated by
commas, or enclosed in quotes and separated by white space. Case is ignored in arguments to the —“W
option. Each —W option has a corresponding GNU style long option, as detailed below.

Gawk accepts the following options.

—Ffs
—field-separator=fs
Use fsfor the input field separator (the value of the FS predefined variable).

—v var =val

—assign=var =val
Assign the value val, to the variable var, before execution of the program begins. Such variable
values are available to the BEGIN block of an AWK program.

—f programtfile

—file=program-file
Read the AWK program source from the file program-file, instead of from the first command line
argument. Multiple —f (or —file) options may be used.

—W compat

—compat Run in compatibility mode. In compatibility mode, gawk behaves identically to UNIX awk;
none of the GNU-specific extensions are recognized. See GNU EXTENSIONS, below, for
more information.

-W copyleft

-W copyright

—copyleft

—copyright Print the short version of the GNU copyright information message on the error output.

-W help

—-W usage

—help

—Uusage Print arelatively short summary of the available options on the error output.

May 19, 1993

GAWK (1) Free Software Foundation (Apr 15 1993) GAWK (1)

W lint

—lint Provide warnings about constructs that are dubious or non-portable to other AWK imple-
mentations.

-W posix

—posix Thisturns on compatibility mode, with the following additional restrictions:

* \x escape sequences are not recognized.
» The synonym func for the keyword function is not recognized.
» The operators ** and **= cannot be used in place of " and "=.

—W sour ce=program-text

——Sour ce=program-text
Use program-text as AWK program source code. This option allows the easy intermixing of
library functions (used via the —f and —file options) with source code entered on the com-
mand line. It is intended primarily for medium to large size AWK programs used in shell
scripts.

The -W source= form of this option uses the rest of the command line argument for pro-
gram-text ; no other options to -W will be recognized in the same argument.

-W version

—version Print version information for this particular copy of gawk on the error output. Thisis useful
mainly for knowing if the current copy of gawk on your system is up to date with respect to
whatever the Free Software Foundation is distributing.

— Signal the end of options. This is useful to allow further arguments to the AWK program
itself to start with a*‘—'". Thisismainly for consistency with the argument parsing conven-
tion used by most other POSIX programs.

Any other options are flagged asillegal, but are otherwise ignored.

AWK PROGRAM EXECUTION
An AWK program consists of a sequence of pattern-action statements and optional function definitions.

pattern { action statements }
function name(parameter list) { statements }

Gawk first reads the program source from the program-file(s) if specified, or from the first non-option
argument on the command line. The —f option may be used multiple times on the command line. Gawk
will read the program text as if al the program-iles had been concatenated together. This is useful for
building libraries of AWK functions, without having to include them in each new AWK program that uses
them. To use alibrary function in afile from a program typed in on the command line, specify /dev/tty as
one of the programfiles, type your program, and end it with a"D (control-d).

The environment variable AWK PATH specifies a search path to use when finding source files named with
the —f option. If this variable does not exist, the default path is" .:/usr/lib/awk:/usr/local/lib/awk" . If a
file name given to the —f option containsa*‘/’’ character, no path search is performed.

Gawk executes AWK programs in the following order. First, gawk compiles the program into an internal
form. Next, al variable assignments specified via the —v option are performed. Then, gawk executes the
code in the BEGIN block(s) (if any), and then proceeds to read each file named in the ARGV array. If
there are no files named on the command line, gawk reads the standard input.

If afilename on the command line has the form var =val it istreated as a variable assignment. The variable
var will be assigned the value val . (This happens after any BEGIN block(s) have been run.) Command
line variable assignment is most useful for dynamically assigning values to the variables AWK uses to
control how input is broken into fields and records. It is aso useful for controlling state if multiple passes
are needed over asingle datafile.

May 19, 1993 Page 2

GAWK (1) Free Software Foundation (Apr 15 1993) GAWK (1)

If the value of aparticular element of ARGV isempty (" "), gawk skips over it.

For each line in the input, gawk tests to see if it matches any pattern in the AWK program. For each pat-
tern that the line matches, the associated action is executed. The patterns are tested in the order they occur
in the program.

Finally, after all the input is exhausted, gawk executes the code in the END block(s) (if any).

VARIABLES AND FIELDS

AWK variables are dynamic; they come into existence when they are first used. Their values are either
floating-point numbers or strings, or both, depending upon how they are used. AWK also has one dimen-
sion arrays; multiply dimensioned arrays may be simulated. Severa pre-defined variables are set as a pro-
gram runs; these will be described as needed and summarized below.

Fields

As each input line is read, gawk splits the line into fields, using the value of the FS variable as the field
separator. If FSis a single character, fields are separated by that character. Otherwise, FSis expected to
be a full regular expression. In the specia case that FSis a single blank, fields are separated by runs of
blanks and/or tabs. Note that the value of IGNORECASE (see below) will also affect how fields are split
when FSisaregular expression.

If the FIELDWIDTHS variable is set to a space separated list of numbers, each field is expected to have
fixed width, and gawk will split up the record using the specified widths. The value of FS is ignored.
Assigning anew value to FS overrides the use of FIELDWIDTHS, and restores the default behavior.

Each field in the input line may be referenced by its position, $1, $2, and so on. $0 isthe whole line. The
value of afield may be assigned to aswell. Fields need not be referenced by constants:

n=>5

print $n

prints the fifth field in the input line. The variable NF is set to the total number of fields in the input line.

References to non-existent fields (i.e. fields after $NF) produce the null-string. However, assigning to a
non-existent field (e.g., $(NF+2) = 5) will increase the value of NF, create any intervening fields with the
null string as their value, and cause the value of $0 to be recomputed, with the fields being separated by
the value of OFS.

Built-in Variables

Page 3

AWK’ sbuilt-in variables are:

ARGC The number of command line arguments (does not include options to gawk, or the pro-
gram source).

ARGIND Theindex in ARGV of the current file being processed.

ARGV Array of command line arguments. The array isindexed from 0to ARGC —1. Dynami-

cally changing the contents of ARGV can control the files used for data.
CONVFMT The conversion format for numbers, " %.6g9" , by default.

ENVIRON An array containing the values of the current environment. The array isindexed by the
environment variables, each element being the value of that variable (e.g., ENVI-
RON["HOME"] might be /u/arnold). Changing this array does not affect the environ-
ment seen by programs which gawk spawns via redirection or the system() function.
(Thismay change in afuture version of gawk.)

ERRNO If a system error occurs either doing a redirection for getline, during aread for getline,
or during a close, then ERRNO will contain a string describing the error.

FIELDWIDTHS A white-space separated list of fieldwidths. When set, gawk parses the input into fields
of fixed width, instead of using the value of the FS variable as the field separator. The
fixed field width facility is still experimental; expect the semantics to change as gawk

May 19, 1993

GAWK (1) Free Software Foundation (Apr 15 1993) GAWK (1)

evolves over time.

FILENAME The name of the current input file. If no files are specified on the command line, the
value of FILENAME is*'—".

FNR Theinput record number in the current input file.

FS Theinput field separator, a blank by default.

IGNORECASE Controls the case-sensitivity of all regular expression operations. If IGNORECASE
has a non-zero value, then pattern matching in rules, field splitting with FS, regular
expression matching with ™ and !”, and the gsub(), index(), match(), split(), and sub()
pre-defined functions will all ignore case when doing regular expression operations.
Thus, if IGNORECASE is not equal to zero, /aB/ matches all of the strings "ab",
"aB", "Ab", and "AB". Aswith al AWK variables, the initial value of IGNORE-
CASE iszero, so al regular expression operations are normally case-sensitive.

NF The number of fields in the current input record.

NR Thetotal number of input records seen so far.

OFMT The output format for numbers, " %.6g" , by default.

OFS The output field separator, a blank by default.

ORS The output record separator, by default a newline.

RS The input record separator, by default a newline. RSisexceptional in that only the first

character of its string value is used for separating records. (Thiswill probably change
in afuture release of gawk.) If RSisset to the null string, then records are separated by
blank lines. When RSiis set to the null string, then the newline character always acts as
afield separator, in addition to whatever value FS may have.

RSTART Theindex of the first character matched by match(); O if no match.

RLENGTH Thelength of the string matched by match(); —1 if no match.

SUBSEP The character used to separate multiple subscripts in array elements, by default " \034" .
Arrays

Arrays are subscripted with an expression between square brackets ([and]). If the expression is an
expression list (expr, expr ...) then the array subscript is a string consisting of the concatenation of the
(string) value of each expression, separated by the value of the SUBSEP variable. Thisfacility isused to
simulate multiply dimensioned arrays. For example:

i="A";j="B";k="C"
X[i, j, k] =" hello, world\n"

assigns the string "hello, world\n" to the element of the array x which is indexed by the string
" A\034B\034C" . All arraysin AWK are associative, i.e. indexed by string values.

The special operator in may be used in an if or while statement to see if an array has an index consisting of
aparticular value.

if (val in array)
print array[val]

If the array has multiple subscripts, use (i, j) in array.
Thein construct may also be used in afor loop to iterate over all the elements of an array.
An element may be deleted from an array using the delete statement.

Variable Typing And Conversion
Variables and fields may be (floating point) numbers, or strings, or both. How the value of a variable is
interpreted depends upon its context. If used in a numeric expression, it will be treated as a number, if used

May 19, 1993 Page 4

GAWK (1) Free Software Foundation (Apr 15 1993) GAWK (1)

asastring it will be treated as a string.

To force avariable to be treated as a number, add 0 to it; to force it to be treated as a string, concatenate it
with the null string.

When a string must be converted to a number, the conversion is accomplished using atof (3). A number is
converted to a string by using the value of CONVFMT as a format string for sprintf(3), with the numeric
value of the variable as the argument. However, even though all numbersin AWK are floating-point, inte-
gral values are always converted asintegers. Thus, given

CONVFMT ="%2.2f"
a=12
b=a""

the variable b hasavalue of " 12" and not " 12.00" .

Gawk performs comparisons as follows: If two variables are numeric, they are compared numerically. If
one value is numeric and the other has a string value that isa‘*numeric string,’”’ then comparisons are also
done numerically. Otherwise, the numeric value is converted to a string and a string comparison is per-
formed. Two strings are compared, of course, as strings. According to the POSIX standard, even if two
strings are numeric strings, a numeric comparison is performed. However, this is clearly incorrect, and
gawk does not do this.

Uninitialized variables have the numeric value 0 and the string value "" (the null, or empty, string).

PATTERNS AND ACTIONS

AWK is a line oriented language. The pattern comes first, and then the action. Action statements are
enclosed in { and }. Either the pattern may be missing, or the action may be missing, but, of course, not
both. If the pattern is missing, the action will be executed for every single line of input. A missing action
isequivalent to

{print}
which prints the entire line.

Comments begin with the *‘#" character, and continue until the end of the line. Blank lines may be used
to separate statements. Normally, a statement ends with a newline, however, this is not the case for lines
endingina“‘,’, “*{"",“*?’, """, ""&&"", or ““["". Linesending in do or else also have their statements
automatically continued on the following line. In other cases, a line can be continued by ending it with a
“\"’ in which case the newline will be ignored.

Multiple statements may be put on one line by separating them with a‘*;’’. This applies to both the state-
ments within the action part of a pattern-action pair (the usual case), and to the pattern-action statements
themselves.

Patterns

Page 5

AWK patterns may be one of the following:

BEGIN

END

/regular expression/
relational expression
pattern & & pattern
pattern || pattern

pattern ? pattern : pattern
(pattern)

| pattern

patternl, pattern2

BEGIN and END are two specia kinds of patterns which are not tested against the input. The action parts
of all BEGIN patterns are merged asif all the statements had been written in asingle BEGIN block. They

May 19, 1993

GAWK (1) Free Software Foundation (Apr 15 1993) GAWK (1)

are executed before any of the input is read. Similarly, all the END blocks are merged, and executed when
al the input is exhausted (or when an exit statement is executed). BEGIN and END patterns cannot be
combined with other patterns in pattern expressions. BEGIN and END patterns cannot have missing
action parts.

For /regular expression/ patterns, the associated statement is executed for each input line that matches the
regular expression. Regular expressions are the same asthose in egrep(1), and are summarized below.

A relational expression may use any of the operators defined below in the section on actions. These gen-
eraly test whether certain fields match certain regular expressions.

The & &, ||, and ! operators are logical AND, logical OR, and logical NOT, respectively, asin C. They do
short-circuit evaluation, also asin C, and are used for combining more primitive pattern expressions. Asin
most languages, parentheses may be used to change the order of evaluation.

The ?: operator is like the same operator in C. If the first pattern is true then the pattern used for testing is
the second pattern, otherwise it isthe third. Only one of the second and third patterns is evaluated.

The patternl, pattern2 form of an expression is called arange pattern. It matches all input records starting
with a line that matches patternl, and continuing until a record that matches pattern2, inclusive. It does
not combine with any other sort of pattern expression.

Regular Expressions
Regular expressions are the extended kind found in egrep. They are composed of characters as follows:

c matches the non-metacharacter c.

\c matches the literal character c.

matches any character except newline.

matches the beginning of aline or a string.

$ matches the end of aline or a string.

[abc...] character class, matches any of the characters abc....

[Cabc...] negated character class, matches any character except abc... and newline.

rijr2 alternation: matches either r1 or r2.

rir2 concatenation: matchesr1, and then r2.
r+ matches one or morer’s.

r* matches zero or morer’s.

r? matches zero or oner’s.

(r) grouping: matchesr.

The escape sequences that are valid in string constants (see below) are also legal in regular expressions.

Actions
Action statements are enclosed in braces, { and }. Action statements consist of the usual assignment, con-
ditional, and looping statements found in most languages. The operators, control statements, and input/out-
put statements available are patterned after thosein C.

Operators
The operators in AWK, in order of increasing precedence, are
= 4= =
*= [= %= "= Assignment. Both absolute assignment (var = value) and operator-assignment (the other
forms) are supported.
2 The C conditional expression. This has the form exprl ? expr2 : expr3. If exprl istrue, the

value of the expression is expr2, otherwise it is expr3. Only one of expr2 and expr3 is

May 19, 1993 Page 6

GAWK (1) Free Software Foundation (Apr 15 1993) GAWK (1)

evaluated.
[Logica OR.
&& Logical AND.

Regular expression match, negated match. NOTE: Do not use a constant regular expression
(/fool) on the left-hand side of a™ or !I”. Only use one on the right-hand side. The expression
/foo/ ~ exp has the same meaning as (($0 ~ /foo/) ~ exp). This is usualy not what was

intended.
<>
<= >=
=== Theregular relational operators.
blank String concatenation.
+— Addition and subtraction.
* % Multiplication, division, and modulus.
+-1 Unary plus, unary minus, and logical negation.
h Exponentiation (** may also be used, and ** = for the assignment operator).
++ — Increment and decrement, both prefix and postfix.
$ Field reference.

Control Statements

The control statements are as follows:

if (condition) statement [else statement |
while (condition) statement

do statement while (condition)

for (exprl; expr2; expr3) statement

for (var in array) statement

break

continue

delete array[index]

exit [expression |

{ statements }

1/0 Statements

Page 7

Theinput/output statements are as follows:

close(filename) Close file (or pipe, see below).

getline Set $0 from next input record; set NF, NR, FNR.
getline <file Set $0 from next record of file; set NF.
getline var Set var from next input record; set NF, FNR.

getlinevar <file Set var from next record of file.

next Stop processing the current input record. The next input record is read and processing
starts over with the first pattern in the AWK program. If the end of the input data is
reached, the END block(s), if any, are executed.

next file Stop processing the current input file. The next input record read comes from the
next input file. FILENAME isupdated, FNR isreset to 1, and processing starts over
with the first pattern in the AWK program. If the end of the input data is reached, the
END block(s), if any, are executed.

May 19, 1993

GAWK (1) Free Software Foundation (Apr 15 1993) GAWK (1)

The

print Prints the current record.
print expr-list Prints expressions.

print expr-list >file Prints expressions on file.
printf fmt, expr-list Format and print.

printf fmt, expr-list >file
Format and print on file.

system(cmd-line) Execute the command cmd-line, and return the exit status. (This may not be available
on non-POSIX systems.)

Other input/output redirections are also allowed. For print and printf, >>file appends output to the file,
while | command writes on apipe. Inasimilar fashion, command | getline pipesinto getline. Getline will
return O on end of file, and —1 on an error.

printf Statement
The AWK versions of the printf statement and sprintf() function (see below) accept the following conver-
sion specification formats:

%c An ASCII character. If the argument used for %c is numeric, it is treated as a character and
printed. Otherwise, the argument is assumed to be a string, and the only first character of that
string is printed.

%d A decima number (the integer part).

%i Just like %d.

%e A floating point number of the form [-]d.ddddddE[+-]dd.

%f A floating point number of the form [-]ddd.dddddd.

%g Use e or f conversion, whichever is shorter, with nonsignificant zeros suppressed.
%0 An unsigned octal number (again, an integer).

%s A character string.

%X An unsigned hexadecimal number (an integer).

% X Like %X, but using ABCDEF instead of abcdef.

%% A single % character; no argument is converted.

There are optional, additional parameters that may lie between the % and the control letter:
- The expression should be left-justified within its field.

width The field should be padded to this width. If the number has a leading zero, then the field will be
padded with zeros. Otherwise it is padded with blanks.

.prec A number indicating the maximum width of strings or digits to the right of the decimal point.

The dynamic width and prec capabilities of the ANSI C printf() routines are supported. A * in place of
either the width or prec specifications will cause their values to be taken from the argument list to printf

or sprintf().

Special File Names

May 19,

When doing 1/O redirection from either print or printf into afile, or via getline from afile, gawk recog-
nizes certain special filenames internally. These filenames allow access to open file descriptors inherited
from gawk’s parent process (usually the shell). Other specia filenames provide access information about
the running gawk process. The filenames are:

/dev/pid Reading this file returns the process ID of the current process, in decimal, terminated with a
newline.

1993 Page 8

GAWK (1)

/dev/ppid

/dev/pgrpid

/dev/user

/dev/stdin
/dev/stdout
/dev/stderr
/dev/fd/n

Free Software Foundation (Apr 15 1993) GAWK (1)

Reading this file returns the parent process ID of the current process, in decimal, terminated
with anewline.

Reading this file returns the process group 1D of the current process, in decimal, terminated
with anewline.

Reading this file returns a single record terminated with a newline. The fields are separated
with blanks. $1 isthe value of the getuid(2) system call, $2 isthe value of the geteuid (2) sys-
tem call, $3 isthe value of the getgid(2) system call, and $4 is the value of the getegid(2) sys-
tem call. If there are any additiona fields, they are the group I1Ds returned by getgroups(2).
(Multiple groups may not be supported on all systems.)

The standard inpuit.
The standard output.
The standard error output.

Thefile associated with the open file descriptor n.

These are particularly useful for error messages. For example:

print " You blew it!" >"/dev/stderr"

whereas you would otherwise have to use
print " You blew it!" | " cat 1>& 2"

These file names may also be used on the command line to name data files.

Numeric Functions
AWK has the following pre-defined arithmetic functions:

atan2(y, x)
cos(expr)
exp(expr)
int(expr)
log(expr)
rand()
sin(expr)
sqrt(expr)
srand(expr)

returns the arctangent of y/x in radians.
returns the cosine in radians.

the exponential function.

truncates to integer.

the natural logarithm function.

returns a random number between 0 and 1.
returns the sine in radians.

the sgquare root function.

use expr as a new seed for the random number generator. If no expr is provided, the time of
day will be used. Thereturn value isthe previous seed for the random number generator.

String Functions
AWK has the following pre-defined string functions:

Page 9

gsub(r, s, t)

index(s, t)
length(s)

match(s, r)

split(s, a, r)

for each substring matching the regular expression r in the string t, substitute the
string s, and return the number of substitutions. If tisnot supplied, use $0.

returns the index of the string t in the string s, or O if t is not present.
returns the length of the string s, or the length of $0 if sis not supplied.

returns the position in s where the regular expression r occurs, or O if r is not
present, and sets the values of RSTART and RLENGTH.

splits the string s into the array a on the regular expression r, and returns the num-
ber of fields. If r is omitted, FSis used instead.

May 19, 1993

GAWK (1) Free Software Foundation (Apr 15 1993) GAWK (1)

sprintf(fmt, expr-list) prints expr-list according to fmt, and returns the resulting string.
sub(r, s, t) just like gsub(), but only the first matching substring is replaced.

substr (s, i, n) returns the n-character substring of s starting at i. If nis omitted, the rest of sis
used.

tolower (str) returns a copy of the string str, with all the upper-case characters in str translated
to their corresponding lower-case counterparts. Non-alphabetic characters are left
unchanged.

toupper (str) returns a copy of the string str, with all the lower-case characters in str translated
to their corresponding upper-case counterparts. Non-alphabetic characters are left
unchanged.

Time Functions
Since one of the primary uses of AWK programs is processing log files that contain time stamp informa-
tion, gawk provides the following two functions for obtaining time stamps and formatting them.

systime() returns the current time of day as the number of seconds since the Epoch (Midnight UTC, Janu-
ary 1, 1970 on POSIX systems).

strftime(format, timestamp)
formats timestamp according to the specification in format. The timestamp should be of the
same form as returned by systime(). If timestamp is missing, the current time of day is used.
See the specification for the strftime() function in ANSI C for the format conversions that are
guaranteed to be available. A public-domain version of strftime(3) and a man page for it are
shipped with gawk; if that version was used to build gawk, then all of the conversions described
in that man page are available to gawk.

String Constants
String constants in AWK are sequences of characters enclosed between double quotes (). Within strings,
certain escape sequences are recognized, asin C. These are:

\\ Aliteral backslash.

\a The'‘adert’” character; usualy the ASCII BEL character.
\b backspace.

\f form-feed.

\n newline

\r carriage return.

\t horizontal tab.

\v vertical tab.

\x hex digits
The character represented by the string of hexadecimal digits following the\x. Asin ANSI C, all fol-
lowing hexadecimal digits are considered part of the escape sequence. (This feature should tell us
something about language design by committee.) E.g., "\x1B" isthe ASCII ESC (escape) character.

\ddd The character represented by the 1-, 2-, or 3-digit sequence of octal digits. E.g. "\033" is the ASCII
ESC (escape) character.

\c Thelitera character c.

The escape sequences may also be used inside constant regular expressions (e.g., /[\t\f\n\r\v]/ matches
whitespace characters).

FUNCTIONS
Functions in AWK are defined as follows:

May 19, 1993 Page 10

GAWK (1) Free Software Foundation (Apr 15 1993) GAWK (1)

function name(parameter list) { statements }

Functions are executed when called from within the action parts of regular pattern-action statements.
Actua parameters supplied in the function call are used to instantiate the formal parameters declared in
the function. Arrays are passed by reference, other variables are passed by value.

Since functions were not originally part of the AWK language, the provision for local variables is rather
clumsy: They are declared as extra parameters in the parameter list. The convention is to separate local
variables from real parameters by extra spaces in the parameter list. For example:

function f(p,q, a,b){ #a& barelocal

labe/ {..;f(1,2); ..}

The left parenthesis in a function call is required to immediately follow the function name, without any
intervening white space. This is to avoid a syntactic ambiguity with the concatenation operator. This
restriction does not apply to the built-in functions listed above.

Functions may call each other and may be recursive. Function parameters used as local variables are ini-
tialized to the null string and the number zero upon function invocation.

The word func may be used in place of function.

EXAMPLES
Print and sort the login names of all users:

BEGIN {FS=":"}
{print $1| " sort" }

Count linesin afile:

{ nlines++ }
END {print nlines}

Precede each line by its number in the file:
{print FNR, $0}
Concatenate and line number (avariation on atheme):

{print NR, $0}

SEE ALSO
egrep(1)
The AWK Programming Language, Alfred V. Aho, Brian W. Kernighan, Peter J. Weinberger, Addison-
Wesley, 1988. ISBN 0-201-07981-X.

The GAWK Manual , Edition 0.15, published by the Free Software Foundation, 1993.

POSIX COMPATIBILITY
A primary goal for gawk is compatibility with the POSIX standard, as well as with the latest version of
UNIX awk. To this end, gawk incorporates the following user visible features which are not described in
the AWK book, but are part of awk in System V Release 4, and are in the POSIX standard.

The —v option for assigning variables before program execution starts is new. The book indicates that
command line variable assignment happens when awk would otherwise open the argument as afile, which
is after the BEGIN block is executed. However, in earlier implementations, when such an assignment
appeared before any file names, the assignment would happen before the BEGIN block was run.

Page 11 May 19, 1993

GAWK (1) Free Software Foundation (Apr 15 1993) GAWK (1)

Applications came to depend on this ‘‘feature.’”” When awk was changed to match its documentation, this
option was added to accomodate applications that depended upon the old behavior. (This feature was
agreed upon by both the AT& T and GNU developers.)

The -W option for implementation specific features is from the POSIX standard.

When processing arguments, gawk uses the special option ‘‘—'’ to signal the end of arguments, and warns
about, but otherwise ignores, undefined options.

The AWK book does not define the return value of srand(). The System V Release 4 version of UNIX awk
(and the POSIX standard) has it return the seed it was using, to allow keeping track of random number
seguences. Therefore srand() in gawk also returns its current seed.

Other new features are: The use of multiple —f options (from MK S awk); the ENVIRON array; the \a, and
\v escape sequences (done originaly in gawk and fed back into AT&T’s); the tolower () and toupper()
built-in functions (from AT&T); and the ANSI C conversion specifications in printf (done first in AT&T's
version).

GNU EXTENSIONS
Gawk has some extensions to POSIX awk. They are described in this section. All the extensions described
here can be disabled by invoking gawk with the “W compat option.

The following features of gawk are not available in POSIX awk.
» The\x escape sequence.
» The systime() and strftime() functions.
» The specid file names available for 1/O redirection are not recognized.
* The ARGIND and ERRNO variables are not special.
» The IGNORECASE variable and its side-effects are not available.
» The FIELDWIDTHS variable and fixed width field splitting.

* No path search is performed for files named via the —f option. Therefore the AWKPATH envi-
ronment variable is not special.

» The use of next file to abandon processing of the current input file.

The AWK book does not define the return value of the close() function. Gawk’s close() returns the value
from fclose(3), or pclose(3), when closing afile or pipe, respectively.

When gawk is invoked with the -W compat option, if the fs argument to the - option is *‘t’’, then FS
will be set to the tab character. Since this is arather ugly special case, it is not the default behavior. This
behavior also does not occur if "W posix has been specified.

HISTORICAL FEATURES
There are two features of historical AWK implementations that gawk supports. First, it is possible to call
the length() built-in function not only with no argument, but even without parentheses! Thus,

a=length
isthe same as either of

a=length()

a=length($0)

Thisfeature is marked as ‘‘ deprecated’’ in the POSIX standard, and gawk will issue awarning about its use
if “Wlint is specified on the command line.

The other feature is the use of the continue statement outside the body of awhile, for, or do loop. Tradi-
tional AWK implementations have treated such usage as equivalent to the next statement. Gawk will sup-
port this usage if “Wposix has not been specified.

May 19, 1993 Page 12

GAWK (1) Free Software Foundation (Apr 15 1993) GAWK (1)

BUGS

The —F option is not necessary given the command line variable assignment feature; it remains only for
backwards compatibility.

If your system actually has support for /dev/fd and the associated /dev/stdin, /dev/stdout, and /dev/stderr
files, you may get different output from gawk than you would get on a system without those files. When
gawk interprets these files internally, it synchronizes output to the standard output with output to
/dev/stdout, while on a system with those files, the output is actually to different open files. Caveat Emp-
tor.

VERSION INFORMATION

This man page documents gawk, version 2.15.

Starting with the 2.15 version of gawk, the —c, -V, —C, —a, and —e options of the 2.11 version are no longer
recognized.

AUTHORS

The original version of UNIX awk was designed and implemented by Alfred Aho, Peter Weinberger, and
Brian Kernighan of AT&T Bell Labs. Brian Kernighan continues to maintain and enhance it.

Paul Rubin and Jay Fenlason, of the Free Software Foundation, wrote gawk, to be compatible with the
origina version of awk distributed in Seventh Edition UNIX. John Woods contributed a number of bug
fixes. David Trueman, with contributions from Arnold Robbins, made gawk compatible with the new ver-
sion of UNIX awk.

The initial DOS port was done by Conrad Kwok and Scott Garfinkle. Scott Deifik is the current DOS
maintainer. Pat Rankin did the port to VMS, and Michal Jaegermann did the port to the Atari ST.

ACKNOWLEDGEMENTS

Page 13

Brian Kernighan of Bell Labs provided valuable assistance during testing and debugging. We thank him.

May 19, 1993

