The “stabs” debug format

Julia Menapace
Cygnus Support

Cygnus Support
Revision: 2.27
TgXinfo 2024-02-10.22

Copyright (© 1992 Free Software Foundation, Inc. Contributed by Cygnus Support.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

1 Overview of stabs

Stabs refers to a format for information that describes a program to a debugger. This
format was apparently invented by the University of California at Berkeley, for the pdx
Pascal debugger; the format has spread widely since then.

1.1 Overview of debugging information flow

The GNU C compiler compiles C source in a .c file into assembly language in a .s file,
which is translated by the assembler into a .o file, and then linked with other .o files and
libraries to produce an executable file.

With the ‘-g’ option, GCC puts additional debugging information in the .s file, which
is slightly transformed by the assembler and linker, and carried through into the final exe-
cutable. This debugging information describes features of the source file like line numbers,
the types and scopes of variables, and functions, their parameters and their scopes.

For some object file formats, the debugging information is encapsulated in assembler
directives known collectively as ‘stab’ (symbol table) directives, interspersed with the gen-
erated code. Stabs are the native format for debugging information in the a.out and xcoff
object file formats. The GNU tools can also emit stabs in the coff and ecoff object file
formats.

The assembler adds the information from stabs to the symbol information it places by
default in the symbol table and the string table of the .o file it is building. The linker
consolidates the .o files into one executable file, with one symbol table and one string
table. Debuggers use the symbol and string tables in the executable as a source of debugging
information about the program.

1.2 Overview of stab format

There are three overall formats for stab assembler directives differentiated by the first word
of the stab. The name of the directive describes what combination of four possible data
fields will follow. It is either .stabs (string), .stabn (number), or .stabd (dot).

The overall format of each class of stab is:

.stabs "string",type,0,desc,value
.stabn type,0,desc,value
.stabd type,0,desc

In general, in .stabs the string field contains name and type information. For .stabd
the value field is implicit and has the value of the current file location. Otherwise the value
field often contains a relocatable address, frame pointer offset, or register number, that
maps to the source code element described by the stab.

The number in the type field gives some basic information about what type of stab this
is (or whether it is a stab, as opposed to an ordinary symbol). Each possible type number
defines a different stab type. The stab type further defines the exact interpretation of, and
possible values for, any remaining "string", desc, or value fields present in the stab. Table
A (see Section C.1 [Table A: Symbol types from stabs], page 47) lists in numeric order the
possible type field values for stab directives. The reference section that follows Table A

2 STABS

describes the meaning of the fields for each stab type in detail. The examples that follow
this overview introduce the stab types in terms of the source code elements they describe.

For .stabs the "string" field holds the meat of the debugging information. The gen-
erally unstructured nature of this field is what makes stabs extensible. For some stab types
the string field contains only a name. For other stab types the contents can be a great deal
more complex.

The overall format is of the "string" field is:

"name[: symbol_descriptor]
[type_number|=type_descriptor ...||"

name is the name of the symbol represented by the stab. name can be omitted, which
means the stab represents an unnamed object. For example, ":t10=*2" defines type 10 as a
pointer to type 2, but does not give the type a name. Omitting the name field is supported
by AIX dbx and GDB after about version 4.8, but not other debuggers.

The symbol_descriptor following the ‘:’ is an alphabetic character that tells more specif-
ically what kind of symbol the stab represents. If the symbol_descriptor is omitted, but
type information follows, then the stab represents a local variable. For a list of sym-
bol_descriptors, see Section C.3 [Table C: Symbol descriptors]|, page 48.

The ‘¢’ symbol descriptor is an exception in that it is not followed by type information.
See Chapter 3 [Constants], page 9.

Type information is either a type_number, or a ‘type_number=". The type_number alone
is a type reference, referring directly to a type that has already been defined.

The ‘type_number=’is a type definition, where the number represents a new type which
is about to be defined. The type definition may refer to other types by number, and those
type numbers may be followed by ‘=" and nested definitions.

In a type definition, if the character that follows the equals sign is non-numeric then it
is a type_descriptor, and tells what kind of type is about to be defined. Any other values
following the type_descriptor vary, depending on the type_descriptor. If a number follows
the ‘=" then the number is a type_reference. This is described more thoroughly in the section
on types. See Section C.4 [Table D: Type Descriptors], page 49, for a list of type_descriptor
values.

There is an AIX extension for type attributes. Following the ‘=’ is any number of type

attributes. Each one starts with ‘@’ and ends with ¢;’. Debuggers, including AIX’s dbx,
skip any type attributes they do not recognize. The attributes are:

aboundary
boundary is an integer specifying the alignment. I assume that applies to all
variables of this type.

ssize Size in bits of a variabe of this type.

pinteger Pointer class (for checking). Not sure what this means, or how integer is inter-
preted.

P Indicate this is a packed type, meaning that structure fields or array elements
are placed more closely in memory, to save memory at the expense of speed.

All this can make the "string" field quite long. All versions of GDB, and some versions
of DBX, can handle arbitrarily long strings. But many versions of DBX cretinously limit

Chapter 1: Overview of stabs 3

the strings to about 80 characters, so compilers which must work with such DBX’s need
to split the .stabs directive into several .stabs directives. Each stab duplicates exactly
all but the "string" field. The "string" field of every stab except the last is marked as
continued with a double-backslash at the end. Removing the backslashes and concatenating
the "string" fields of each stab produces the original, long string.

1.3 A simple example in C source

To get the flavor of how stabs describe source information for a C program, let’s look at
the simple program:
main()

{
printf ("Hello world");

by

When compiled with ‘-g’, the program above yields the following .s file. Line numbers
have been added to make it easier to refer to parts of the .s file in the description of the
stabs that follows.

1.4 The simple example at the assembly level

1 gcc2_compiled.:

2 .stabs "/cygint/sl/users/jcm/play/",100,0,0,Ltext0

3 .stabs "hello.c",100,0,0,LtextO

4 .text

5 LtextO:

6 .stabs "int:tl1=r1;-2147483648;2147483647;",128,0,0,0
7 .stabs "char:t2=r2;0;127;",128,0,0,0

8 .stabs "long int:t3=r1;-2147483648;2147483647;",128,0,0,0
9 .stabs "unsigned int:t4=r1;0;-1;",128,0,0,0

10 .stabs "long unsigned int:t5=r1;0;-1;",128,0,0,0

11 .stabs "short int:t6=r1;-32768;32767;",128,0,0,0

12 .stabs "long long int:t7=r1;0;-1;",128,0,0,0

13 .stabs "short unsigned int:t8=r1;0;65535;",128,0,0,0
14 .stabs "long long unsigned int:t9=r1;0;-1;",128,0,0,0
15 .stabs "signed char:t10=r1;-128;127;",128,0,0,0

16 .stabs "unsigned char:t11=r1;0;255;",128,0,0,0

17 .stabs "float:t12=r1;4;0;",128,0,0,0

18 .stabs "double:t13=r1,;8;0;",128,0,0,0

19 .stabs "long double:t14=r1;8;0;",128,0,0,0

20 .stabs "void:t15=15",128,0,0,0

21 .align 4

22 LCO:

23 .ascii "Hello, world!\12\0"

24 .align 4

25 .global _main

26 .proc 1

27 _main:

4 STABS

28 .stabn 68,0,4,LM1

29 LM1:

30 I#PROLOGUE# O

31 save 7%sp,-136,%sp
32 '#PROLOGUE# 1

33 call ___main,0O

34 nop

35 .stabn 68,0,5,LM2

36 LM2:

37 LBB2:

38 sethi %hi(LCO),%o01
39 or %ol,%lo(LCO), %00
40 call _printf,0

41 nop

42 .stabn 68,0,6,LM3

43 LM3:

44 1LBE2:

45 .stabn 68,0,6,LM4

46 LM4:

47 L1:

48 ret

49 restore

50 .stabs "main:F1",36,0,0,_main
51 .stabn 192,0,0,LBB2
52 .stabn 224,0,0,LBE2

This simple “hello world” example demonstrates several of the stab types used to describe
C language source files.

2 Encoding for the structure of the program

2.1 The path and name of the source file

Directive: .stabs
Type: N_SO

The first stabs in the .s file contain the name and path of the source file that was compiled
to produce the .s file. This information is contained in two records of stab type N_SO (100).

.stabs "path_name", N_SO, NIL, NIL, Code_address_of_program_start
.stabs "file_name:", N_SO, NIL, NIL, Code_address_of_program_start

2 .stabs "/cygint/sl/users/jcm/play/",100,0,0,Ltext0
3 .stabs "hello.c",100,0,0,LtextO

4 .text

5 LtextO:

2.2 Line Numbers

Directive: .stabn
Type: N_SLINE

The start of source lines is represented by the N_SLINE (68) stab type.
.stabn N_SLINE, NIL, line, address

line is a source line number; address represents the code address for the start of that
source line.

27 _main:

28 .stabn 68,0,4,LM1
29 LM1:

30 I#PROLOGUE# O

2.3 Procedures
All of the following stabs use the ‘N_FUN’ symbol type.

A function is represented by a ‘F’ symbol descriptor for a global (extern) function, and ‘f’
for a static (local) function. The next ‘N_SLINE’ symbol can be used to find the line number
of the start of the function. The value field is the address of the start of the function. The
type information of the stab represents the return type of the function; thus ‘foo:f5” means
that foo is a function returning type 5.

The AIX documentation also defines symbol descriptor ‘J’ as an internal function. I
assume this means a function nested within another function. It also says Symbol descriptor
‘m’ is a module in Modula-2 or extended Pascal.

Procedures (functions which do not return values) are represented as functions returning
the void type in C. I don’t see why this couldn’t be used for all languages (inventing a void
type for this purpose if necessary), but the AIX documentation defines ‘I’, ‘P’, and ‘Q’ for

6 STABS

internal, global, and static procedures, respectively. These symbol descriptors are unusual
in that they are not followed by type information.

After the symbol descriptor and the type information, there is optionally a comma,
followed by the name of the procedure, followed by a comma, followed by a name specifying
the scope. The first name is local to the scope specified. I assume then that the name of
the symbol (before the ‘:’), if specified, is some sort of global name. I assume the name
specifying the scope is the name of a function specifying that scope. This feature is an AIX
extension, and this information is based on the manual; I haven’t actually tried it.

The stab representing a procedure is located immediately following the code of the
procedure. This stab is in turn directly followed by a group of other stabs describing
elements of the procedure. These other stabs describe the procedure’s parameters, its block
local variables and its block structure.

48 ret
49 restore

The .stabs entry after this code fragment shows the name of the procedure (main); the
type descriptor desc (F, for a global procedure); a reference to the predefined type int for
the return type; and the starting address of the procedure.

Here is an exploded summary (with whitespace introduced for clarity), followed by line
50 of our sample assembly output, which has this form:

.stabs "name:
desc (global proc ‘F’)
return_type_ref (int)
",N_FUN, NIL, NIL,
address

50 .stabs "main:F1",36,0,0,_main

2.4 Block Structure

Directive: .stabn
Types: N_LBRAC, N_RBRAC

The program’s block structure is represented by the N_LBRAC (left brace) and the N_
RBRAC (right brace) stab types. The following code range, which is the body of main, is
labeled with ‘LBB2:’ at the beginning and ‘LBE2:’ at the end.

37 LBB2:

38 sethi %hi(LCO),%o1l
39 or %o01,%1lo(LCO),%00
40 call _printf,0

41 nop

42 .stabn 68,0,6,LM3

43 LM3:

44 1BE2:

The N_LBRAC and N_RBRAC stabs that describe the block scope of the procedure are
located after the N_FUNC stab that represents the procedure itself. The N_LBRAC uses the
LBB2 label as the code address in its value field, and the N_RBRAC uses LBE2.

Chapter 2: Encoding for the structure of the program

50

51
52

.stabs

.stabn
.stabn

.stabn
.stabn

"main:F1",36,0,0,_main
N_LBRAC, NIL, NIL, left-brace-address
N_RBRAC, NIL, NIL, right-brace-address

192,0,0,LBB2
224,0,0,LBE2

3 Constants

The ‘¢’ symbol descriptor indicates that this stab represents a constant. This symbol
descriptor is an exception to the general rule that symbol descriptors are followed by type
information. Instead, it is followed by ‘=’ and one of the following:

bvalue Boolean constant. value is a numeric value; I assume it is 0 for false or 1 for
true.
cvalue Character constant. value is the numeric value of the constant.

etype-information, value
Enumeration constant. type-information is the type of the constant, as it would
appear after a symbol descriptor (see Chapter 1 [Overview|, page 1). value is
the numeric value of the constant.

ivalue Integer constant. value is the numeric value.

rvalue Real constant. value is the real value, which can be ‘INF’ (optionally preceded
by a sign) for infinity, ‘QNAN’ for a quiet NaN (not-a-number), or ‘SNAN’ for a
signalling NaN. If it is a normal number the format is that accepted by the C
library function atof.

[

sstring String constant. string is a string enclosed in either ‘'’ (in which case
characters within the string are represented as ‘\'’ or ‘"’ (in which case
characters within the string are represented as ‘\"’).

in?

Stype-information,elements,bits,pattern

Set constant. type-information is the type of the constant, as it would appear
after a symbol descriptor (see Chapter 1 [Overview|, page 1). elements is the
number of elements in the set (is this just the number of bits set in pattern?
Or redundant with the type? I don’t get it), bits is the number of bits in the
constant (meaning it specifies the length of pattern, I think), and pattern is a
hexadecimal representation of the set. AIX documentation refers to a limit of
32 bytes, but I see no reason why this limit should exist.

The boolean, character, string, and set constants are not supported by GDB 4.9, but it
will ignore them. GDB 4.8 and earlier gave an error message and refused to read symbols
from the file containing the constants.

This information is followed by ;’.

11

4 Simple types

4.1 Basic type definitions

Directive: .stabs
Type: N_LSYM

Symbol Descriptor:
t

The basic types for the language are described using the N_LSYM stab type. They are
boilerplate and are emited by the compiler for each compilation unit. Basic type definitions
are not always a complete description of the type and are sometimes circular. The debugger
recognizes the type anyway, and knows how to read bits as that type.

Each language and compiler defines a slightly different set of basic types. In this example
we are looking at the basic types for C emited by the GNU compiler targeting the Sun4.
Here the basic types are mostly defined as range types.

4.2 Range types defined by min and max value

Type Descriptor:
T

When defining a range type, if the number after the first semicolon is smaller than the
number after the second one, then the two numbers represent the smallest and the largest
values in the range.

4 .text
5 LtextO:

.stabs "name:
descriptor (type)
type-def=
type-desc
type-ref;
low-bound;
high-bound;

n
b

N_LSYM, NIL, NIL, NIL

6 .stabs "int:tl=r1;-2147483648;2147483647;",128,0,0,0
7 .stabs "char:t2=r2;0;127;",128,0,0,0
Here the integer type (1) is defined as a range of the integer type (1). Likewise char is
a range of char. This part of the definition is circular, but at least the high and low bound
values of the range hold more information about the type.
Here short unsigned int is defined as type number 8 and described as a range of type
int, with a minimum value of 0 and a maximum of 65535.

13 .stabs "short unsigned int:t8=r1;0;65535;",128,0,0,0

12 STABS

4.3 Range type defined by size in bytes

Type Descriptor:
r

In a range definition, if the first number after the semicolon is positive and the second
is zero, then the type being defined is a floating point type, and the number after the first
semicolon is the number of bytes needed to represent the type. Note that this does not
provide a way to distinguish 8-byte real floating point types from 8-byte complex floating
point types.

.stabs "name:
desc
type-def=
type-desc
type-ref;
bit-count;
0;

N_LSYM, NIL, NIL, NIL

17 .stabs "float:t12=r1;4;0;",128,0,0,0
18 .stabs "double:t13=r1;8;0;",128,0,0,0
19 .stabs "long double:t14=r1;8;0;",128,0,0,0
Cosmically enough, the void type is defined directly in terms of itself.

.stabs "name:
symbol-desc
type-def=
type-ref
",N_LSYM,NIL,NIL,NIL

20 .stabs "void:t15=15",128,0,0,0

13

5 A Comprehensive Example in C

Now we’ll examine a second program, example2, which builds on the first example to
introduce the rest of the stab types, symbol descriptors, and type descriptors used in C.
See Appendix A [Example2.c|], page 41, for the complete .c source, and see Appendix B
[Example2.s], page 43, for the .s assembly code. This description includes parts of those
files.

5.1 Flow of control and nested scopes

Directive: .stabn
Types: N_SLINE,N_LBRAC,N_RBRAC(Cont)

Consider the body of main, from example2.c. It shows more about how N_SLINE, N_
RBRAC, and N_LBRAC stabs are used.

20 {

21 static float s_flap;

22 int times;

23 for (times=0; times < s_g_repeat; times++){
24 int inner;

25 printf ("Hello world\n");

26 b

27 };

Here we have a single source line, the ‘for’ line, that generates non-linear flow of control,
and non-contiguous code. In this case, an N_SLINE stab with the same line number proceeds
each block of non-contiguous code generated from the same source line.

The example also shows nested scopes. The N_LBRAC and N_LBRAC stabs that describe
block structure are nested in the same order as the corresponding code blocks, those of the
for loop inside those for the body of main.

This is the label for the N_LBRAC (left brace) stab marking the start of main.
57 LBB2:

In the first code range for C source line 23, the for loop initialize and test, N_SLINE (68)
records the line number:
.stabn N_SLINE, NIL,
line,
address

58 .stabn 68,0,23,LM2

59 LM2:

60 st %g0, [%fp-20]

61 L2:

62 sethi %hi(_s_g_repeat), %00

63 1d [%fp-201,%o1

64 1d [%o0+%lo(_s_g_repeat)],’%o0

65 cmp %01,%00

14 STABS

66 bge L3
67 nop

label for the N_LBRAC (start block) marking the start of for loop

68 LBB3:

69 .stabn 68,0,25,LM3

70 LM3:

71 sethi %hi(LCO),%o1
72 or %o01,%1lo(LCO),%00
73 call _printf,0

74 nop

75 .stabn 68,0,26,LM4

76 LM4:

label for the N_RBRAC (end block) stab marking the end of the for loop

77 LBE3:

Now we come to the second code range for source line 23, the for loop increment and
return. Once again, N_SLINE (68) records the source line number:

.stabn, N_SLINE, NIL,
line,
address

78 .stabn 68,0,23,LM5

79 LMb5:

80 L4:

81 1d [%£fp-20],%00
82 add %00,1,%o01
83 st %ol, [%fp-201]
84 b,a L2

85 L3:

86 .stabn 68,0,27,LM6
87 LM6:

label for the N_RBRAC (end block) stab marking the end of the for loop

88 LBE2:

89 .stabmn 68,0,27,LM7

90 LM7:

91 L1i:

92 ret

93 restore

94 .stabs "main:F1",36,0,0,_main

95 .stabs "argc:pl",160,0,0,68

96 .stabs "argv:p20=*21=%2",160,0,0,72

Chapter 5: A Comprehensive Example in C 15

97 .stabs "s_flap:V12",40,0,0,_s_flap.0O
98 .stabs "times:1",128,0,0,-20

Here is an illustration of stabs describing nested scopes. The scope nesting is reflected in
the nested bracketing stabs (N_LBRAC, 192, appears here).

.stabn N_LBRAC,NIL,NIL,
block-start-address

99 .stabn 192,0,0,LBB2 ## begin proc label
100 .stabs "inner:1",128,0,0,-24
101 .stabn 192,0,0,LBB3 ## begin for label

N_RBRAC (224), “right brace” ends a lexical block (scope).

.stabn N_RBRAC,NIL,NIL,
block-end-address

102 .stabn 224,0,0,LBE3 ## end for label
103 .stabn 224,0,0,LBE2 ## end proc label

17

6 Variables

6.1 Locally scoped automatic variables

Directive: .stabs
Type: N_LSYM

Symbol Descriptor:
none

In addition to describing types, the N_LSYM stab type also describes locally scoped auto-
matic variables. Refer again to the body of main in example2.c. It allocates two automatic
variables: ‘times’ is scoped to the body of main, and ‘inner’ is scoped to the body of the
for loop. ‘s_flap’ is locally scoped but not automatic, and will be discussed later.

20 {

21 static float s_flap;

22 int times;

23 for (times=0; times < s_g_repeat; times++){
24 int inner;

25 printf ("Hello world\n");

26 }

27 };

The N_LSYM stab for an automatic variable is located just before the N_LBRAC stab
describing the open brace of the block to which it is scoped.

N_LSYM (128): automatic variable, scoped locally to main

.stabs "name:
type-ref",
N_LSYM, NIL, NIL,
frame-pointer-offset

98 .stabs "times:1",128,0,0,-20
99 .stabn 192,0,0,LBB2 ## begin “main' N_LBRAC

N_LSYM (128): automatic variable, scoped locally to the for loop

.stabs "name:
type-ref",
N_LSYM, NIL, NIL,
frame-pointer-offset

100 .stabs "inner:1",128,0,0,-24
101 .stabn 192,0,0,LBB3 ## begin “for' loop N_LBRAC

Since the character in the string field following the colon is not a letter, there is no symbol
descriptor. This means that the stab describes a local variable, and that the number after
the colon is a type reference. In this case it a a reference to the basic type int. Notice also
that the frame pointer offset is negative number for automatic variables.

18 STABS

6.2 Global Variables

Directive: .stabs
Type: N_GSYM

Symbol Descriptor:
G

Global variables are represented by the N_GSYM stab type. The symbol descriptor, fol-
lowing the colon in the string field, is ‘G’. Following the ‘G’ is a type reference or type
definition. In this example it is a type reference to the basic C type, char. The first source
line in example2.c,

1 char g_foo = 'c';

yields the following stab. The stab immediately precedes the code that allocates storage for
the variable it describes.

N_GSYM (32): global symbol

.stabs "name:
descriptor
type-ref",
N_GSYM, NIL, NIL, NIL

21 .stabs "g_foo0:G2",32,0,0,0

22 .global _g_foo
23 .data

24 _g_foo:

25 .byte 99

The address of the variable represented by the N_GSYM is not contained in the N_GSYM
stab. The debugger gets this information from the external symbol for the global variable.

6.3 Register variables

Register variables have their own stab type, N_RSYM, and their own symbol descriptor, r.
The stab’s value field contains the number of the register where the variable data will be
stored.

The value is the register number.

AIX defines a separate symbol descriptor ‘d’ for floating point registers. This seems
incredibly stupid—why not just just give floating point registers different register numbers.

If the register is explicitly allocated to a global variable, but not initialized, as in
register int g_bar asm ("%g5");
the stab may be emitted at the end of the object file, with the other bss symbols.

6.4 Initialized static variables

Directive: .stabs

Type: N_STSYM

Chapter 6: Variables 19

Symbol Descriptors:
S (file scope), V (procedure scope)

Initialized static variables are represented by the N_STSYM stab type. The symbol de-
scriptor part of the string field shows if the variable is file scope static (‘S’) or procedure
scope static (‘vV’). The source line

3 static int s_g_repeat = 2;
yields the following code. The stab is located immediately preceding the storage for the
variable it represents. Since the variable in this example is file scope static the symbol
descriptor is ‘S’.
N_STSYM (38): initialized static variable (data seg w/internal linkage)

.stabs "name:
descriptor
type-ref",

N_STSYM,NIL,NIL,
address

26 .stabs "s_g_repeat:S1",38,0,0,_s_g_repeat

27 .align 4
28 _s_g_repeat:
29 .word 2

6.5 Un-initialized static variables

Directive: .stabs
Type: N_LCSYM

Symbol Descriptors:
S (file scope), V (procedure scope)

Un-initialized static variables are represented by the N_LCSYM stab type. The symbol
descriptor part of the string shows if the variable is file scope static (‘S”) or procedure scope
static (‘V’). In this example it is procedure scope static. The source line allocating s_flap
immediately follows the open brace for the procedure main.

20 {
21 static float s_flap;

The code that reserves storage for the variable s_flap precedes the body of body of
main.

39 .reserve _s_flap.0,4,"bss",4

But since s_flap is scoped locally to main, its stab is located with the other stabs
representing symbols local to main. The stab for s_flap is located just before the N_LBRAC
for main.

N_LCSYM (40): uninitialized static var (BSS seg w/internal linkage)

.stabs "name:

20 STABS

descriptor
type-ref",
N_LCSYM, NIL, NIL,
address

97 .stabs "s_flap:V12",40,0,0,_s_flap.0O

98 .stabs "times:1",128,0,0,-20
99 .stabn 192,0,0,LBB2 # N_LBRAC for main.

6.6 Parameters

The symbol descriptor ‘p’ is used to refer to parameters which are in the arglist. Symbols
have symbol type ‘N_PSYM’. The value of the symbol is the offset relative to the argument
list.

If the parameter is passed in a register, then the traditional way to do this is to provide
two symbols for each argument:

.stabs "arg:pl" . . . ; N_PSYM
.stabs "arg:ril" . . . ; N_RSYM

Debuggers are expected to use the second one to find the value, and the first one to
know that it is an argument.

Because this is kind of ugly, some compilers use symbol descriptor ‘P’ or ‘R’ to indicate
an argument which is in a register. The symbol value is the register number. ‘P’ and ‘R’
mean the same thing, the difference is that ‘P’ is a GNU invention and ‘R’ is an IBM (xcoff)
invention. As of version 4.9, GDB should handle either one. Symbol type ‘C_RPSYM’ is used
with ‘R’ and ‘N_RSYM’ is used with ‘P’.

ATIX, according to the documentation, uses ‘D’ for a parameter passed in a floating point
register. This strikes me as incredibly bogus—why doesn’t it just use ‘R’ with a register
number which indicates that it’s a floating point register. I haven’t verified whether the
system actually does what the documentation indicates.

There is at least one case where GCC uses a ‘p’/‘r’ pair rather than ‘P’; this is where
the argument is passed in the argument list and then loaded into a register.

On the sparc and hppa, for a ‘P’ symbol whose type is a structure or union, the register
contains the address of the structure. On the sparc, this is also true of a ‘p’/‘r’ pair (using
Sun cc) or a ‘p’ symbol. However, if a (small) structure is really in a register, ‘r’ is used.
And, to top it all off, on the hppa it might be a structure which was passed on the stack and
loaded into a register and for which there is a ‘p’/‘r’ pair! I believe that symbol descriptor
‘i’ is supposed to deal with this case, (it is said to mean "value parameter by reference,
indirect access", I don’t know the source for this information) but I don’t know details or
what compilers or debuggers use it, if any (not GDB or GCC). It is not clear to me whether
this case needs to be dealt with differently than parameters passed by reference (see below).

There is another case similar to an argument in a register, which is an argument which is
actually stored as a local variable. Sometimes this happens when the argument was passed
in a register and then the compiler stores it as a local variable. If possible, the compiler
should claim that it’s in a register, but this isn’t always done. Some compilers use the pair
of symbols approach described above ("arg:p" followed by "arg:"); this includes geel (not

Chapter 6: Variables 21

gce2) on the sparc when passing a small structure and gee2 when the argument type is float
and it is passed as a double and converted to float by the prologue (in the latter case the
type of the "arg:p" symbol is double and the type of the "arg:" symbol is float). GCC, at
least on the 960, uses a single ‘p’ symbol descriptor for an argument which is stored as a
local variable but uses ‘N_LSYM’ instead of ‘N_PSYM’. In this case the value of the symbol is
an offset relative to the local variables for that function, not relative to the arguments (on
some machines those are the same thing, but not on all).

If the parameter is passed by reference (e.g. Pascal VAR parameters), then type symbol
descriptor is ‘v’ if it is in the argument list, or ‘a’ if it in a register. Other than the fact
that these contain the address of the parameter other than the parameter itself, they are
identical to ‘p’ and ‘R’, respectively. I believe ‘a’ is an AIX invention; ‘v’ is supported by
all stabs-using systems as far as I know.

Conformant arrays refer to a feature of Modula-2, and perhaps other languages, in which
the size of an array parameter is not known to the called function until run-time. Such
parameters have two stabs, a ‘x’ for the array itself, and a ‘C’, which represents the size of
the array. The value of the ‘x’ stab is the offset in the argument list where the address of
the array is stored (it this right? it is a guess); the value of the ‘C’ stab is the offset in the
argument list where the size of the array (in elements? in bytes?) is stored.

The following are also said to go with ‘N_PSYM”"

"name" -> "param_name:#type"
-> pP (<77>>)
=> pF (K<77>>)
-> X (function result variable)
-> b (based variable)

value -> offset from the argument pointer (positive).
As a simple example, the code
main (argc, argv)
int argc;
char **argv;

{

produces the stabs
.stabs "main:F1",36,0,0,_main ; 36 is N_FUN
.stabs "argc:pl1",160,0,0,68 ; 160 is N_PSYM
.stabs "argv:p20=+21=%2",160,0,0,72
The type definition of argv is interesting because it contains several type definitions.
Type 21 is pointer to type 2 (char) and argv (type 20) is pointer to type 21.

23

7 Aggregate Types

Now let’s look at some variable definitions involving complex types. This involves under-
standing better how types are described. In the examples so far types have been described
as references to previously defined types or defined in terms of subranges of or pointers to
previously defined types. The section that follows will talk about the various other type
descriptors that may follow the = sign in a type definition.

7.1 Array types

Directive: .stabs
Types: N_GSYM, N_LSYM

Symbol Descriptor:
T

Type Descriptor:
a

As an example of an array type consider the global variable below.
15 char char_vec[3] = {'a','Dd','c'};

Since the array is a global variable, it is described by the N_GSYM stab type. The
symbol descriptor G, following the colon in stab’s string field, also says the array is a global
variable. Following the G is a definition for type (19) as shown by the equals sign after the
type number.

After the equals sign is a type descriptor, a, which says that the type being defined is
an array. Following the type descriptor for an array is the type of the index, a semicolon,
and the type of the array elements.

The type of the index is often a range type, expressed as the letter r and some parameters.
It defines the size of the array. In in the example below, the range r1;0;2; defines an index
type which is a subrange of type 1 (integer), with a lower bound of 0 and an upper bound
of 2. This defines the valid range of subscripts of a three-element C array.

The array definition above generates the assembly language that follows.

<32> N_GSYM - global variable

.stabs "name:sym_desc(global)type_def(19)=type_desc(array)
index_type_ref(range of int from 0 to 2);element_type_ref(char)";
N_GSYM, NIL, NIL, NIL

32 .stabs "char_vec:G19=ar1;0;2;2",32,0,0,0

33 .global _char_vec
34 .align 4

35 _char_vec:

36 .byte 97

37 .byte 98

38 .byte 99

24 STABS

7.2 Enumerations

Directive: .stabs
Type: N_LSYM

Symbol Descriptor:
T

Type Descriptor:
e

The source line below declares an enumeration type. It is defined at file scope between
the bodies of main and s_proc in example2.c. Because the N_LSYM is located after the
N_RBRAC that marks the end of the previous procedure’s block scope, and before the
N_FUN that marks the beginning of the next procedure’s block scope, the N_LSYM does
not describe a block local symbol, but a file local one. The source line:

29 enum e_places {first,second=3,last};

generates the following stab, located just after the N.RBRAC (close brace stab) for main.
The type definition is in an N_LSYM stab because type definitions are file scope not global
scope.

<128> N_LSYM - local symbol
.stab "name:sym_dec(type)type_def(22)=sym_desc(enum)
enum_name:value(0),enum_name:value(3),enum_name:value(4),;",

N_LSYM, NIL, NIL, NIL
104 .stabs "e_places:T22=efirst:0,second:3,last:4,;",128,0,0,0

The symbol descriptor (T) says that the stab describes a structure, enumeration, or type
tag. The type descriptor e, following the 22= of the type definition narrows it down to an
enumeration type. Following the e is a list of the elements of the enumeration. The format
is name:value,. The list of elements ends with a ;.

7.3 Structure Tags

Directive: .stabs
Type: N_LSYM

Symbol Descriptor:
T

Type Descriptor:
S

The following source code declares a structure tag and defines an instance of the structure
in global scope. Then a typedef equates the structure tag with a new type. A seperate stab
is generated for the structure tag, the structure typedef, and the structure instance. The
stabs for the tag and the typedef are emited when the definitions are encountered. Since
the structure elements are not initialized, the stab and code for the structure variable itself
is located at the end of the program in .common.

6 struct s_tag {

Chapter 7: Aggregate Types 25

7 int s_int;

8 float s_float;

9 char s_char_vec[8];
10 struct s_tag* s_next;
11 } g_an_s;

12

13 typedef struct s_tag s_typedef;

The structure tag is an N_LSYM stab type because, like the enum, the symbol is file
scope. Like the enum, the symbol descriptor is T, for enumeration, struct or tag type. The
symbol descriptor s following the 16= of the type definition narrows the symbol type to
struct.

Following the struct symbol descriptor is the number of bytes the struct occupies, fol-
lowed by a description of each structure element. The structure element descriptions are
of the form name:type, bit offset from the start of the struct, and number of bits in the
element.

<128> N_LSYM - type definition

.stabs "name:sym_desc(struct tag) Type_def (16)=type_desc(struct type)
struct_bytes
elem_name:type_ref (int) ,bit_offset,field_bits;
elem_name:type_ref (float) ,bit_offset,field_bits;
elem_name:type_def (17)=type_desc(array)

index_type(range of int from O to 7);

element_type(char) ,bit_offset,field_bits;;",
N_LSYM,NIL,NIL,NIL

30 .stabs "s_tag:T16=s20s_int:1,0,32;s_float:12,32,32;
s_char_vec:17=ar1;0;7;2,64,64;s_next:18=%16,128,32;;",128,0,0,00
In this example, two of the structure elements are previously defined types. For these,
the type following the name: part of the element description is a simple type reference. The
other two structure elements are new types. In this case there is a type definition embedded
after the name:. The type definition for the array element looks just like a type definition
for a standalone array. The s_next field is a pointer to the same kind of structure that the
field is an element of. So the definition of structure type 16 contains an type definition for
an element which is a pointer to type 16.

7.4 Typedefs

Directive: .stabs

Type: N_LSYM

Symbol Descriptor:
t

Here is the stab for the typedef equating the structure tag with a type.
<128> N_LSYM - type definition
.stabs "name:sym_desc(type name)type_ref(struct_tag)",N_LSYM,NIL,NIL NIL

31 .stabs "s_typedef:t16",128,0,0,0

26 STABS

And here is the code generated for the structure variable.

<32> N_GSYM - global symbol
.stabs "name:sym_desc(global)type_ref(struct_tag)",N_GSYM,NIL,NIL,NIL

136 .stabs "g_an_s:G16",32,0,0,0
137 .common _g_an_s,20,"bss"

Notice that the structure tag has the same type number as the typedef for the structure
tag. It is impossible to distinguish between a variable of the struct type and one of its
typedef by looking at the debugging information.

7.5 Unions

Directive: .stabs
Type: N_LSYM

Symbol Descriptor:
T

Type Descriptor:
u

Next let’s look at unions. In example2 this union type is declared locally to a procedure
and an instance of the union is defined.

36 union u_tag {

37 int wu_int;

38 float u_float;
39 char* u_char;
40 } an_u;

This code generates a stab for the union tag and a stab for the union variable. Both use
the N_LSYM stab type. Since the union variable is scoped locally to the procedure in which
it is defined, its stab is located immediately preceding the N_LBRAC for the procedure’s
block start.

The stab for the union tag, however is located preceding the code for the procedure in
which it is defined. The stab type is N_.LSYM. This would seem to imply that the union
type is file scope, like the struct type s_tag. This is not true. The contents and position of
the stab for u_type do not convey any infomation about its procedure local scope.

<128> N_LSYM - type
.stabs "name:sym_desc(union tag)type_def(22)=type_desc(union)
byte_size(4)
elem_name:type_ref(int),bit _offset (0),bit_size(32);
elem_name:type_ref(float),bit_offset(0),bit_size(32);
elem_name:type_ref(ptr to char),bit_offset(0),bit_size(32);;"
N_LSYM, NIL, NIL, NIL
105 .stabs "u_tag:T23=u4u_int:1,0,32;u_float:12,0,32;u_char:21,0,32;;",
128,0,0,0
The symbol descriptor, T, following the name: means that the stab describes an enumer-
ation, struct or type tag. The type descriptor u, following the 23= of the type definition,
narrows it down to a union type definition. Following the u is the number of bytes in the

Chapter 7: Aggregate Types 27

union. After that is a list of union element descriptions. Their format is name:type, bit
offset into the union, and number of bytes for the element;.
The stab for the union variable follows. Notice that the frame pointer offset for local
variables is negative.
<128> N_LSYM - local variable (with no symbol descriptor)
.stabs "name:type_ref(u_tag)", N_LSYM, NIL, NIL, frame_ptr_offset

130 .stabs "an_u:23",128,0,0,-20

7.6 Function types

type descriptor f
The last type descriptor in C which remains to be described is used for function types.
Consider the following source line defining a global function pointer.
4 int (xg_pf)(;
It generates the following code. Since the variable is not initialized, the code is located
in the common area at the end of the file.

<32> N_GSYM - global variable
.stabs "name:sym_desc(global)type_def(24)=ptr_to(25)=
type-def(func)type_ref(int)
134 .stabs "g_pf:G24=+25=f1",32,0,0,0
135 .common _g_pf,4,"bss"
Since the variable is global, the stab type is N.GSYM and the symbol descriptor is G.
The variable defines a new type, 24, which is a pointer to another new type, 25, which is
defined as a function returning int.

29

8 Symbol information in symbol tables

This section examines more closely the format of symbol table entries and how stab as-
sembler directives map to them. It also describes what transformations the assembler and
linker make on data from stabs.

Each time the assembler encounters a stab in its input file it puts each field of the stab
into corresponding fields in a symbol table entry of its output file. If the stab contains a
string field, the symbol table entry for that stab points to a string table entry containing
the string data from the stab. Assembler labels become relocatable addresses. Symbol table
entries in a.out have the format:

struct internal_nlist {

unsigned long n_strx; /* index into string table of name */
unsigned char n_type; /* type of symbol */

unsigned char n_other; /* misc info (usually empty) */
unsigned short n_desc; /* description field */

bfd_vma n_value; /* value of symbol */

s
For .stabs directives, the n_strx field holds the character offset from the start of the

string table to the string table entry containing the "string" field. For other classes of stabs
(.stabn and .stabd) this field is null.

Symbol table entries with n_type fields containing a value greater or equal to 0x20
originated as stabs generated by the compiler (with one random exception). Those with
n_type values less than 0x20 were placed in the symbol table of the executable by the
assembler or the linker.

The linker concatenates object files and does fixups of externally defined symbols. You
can see the transformations made on stab data by the assembler and linker by examining
the symbol table after each pass of the build, first the assemble and then the link.

To do this use nm with the -ap options. This dumps the symbol table, including de-
bugging information, unsorted. For stab entries the columns are: value, other, desc, type,
string. For assembler and linker symbols, the columns are: value, type, string.

There are a few important things to notice about symbol tables. Where the value field
of a stab contains a frame pointer offset, or a register number, that value is unchanged by
the rest of the build.

Where the value field of a stab contains an assembly language label, it is transformed
by each build step. The assembler turns it into a relocatable address and the linker turns
it into an absolute address. This source line defines a static variable at file scope:

3 static int s_g_repeat
The following stab describes the symbol.
26 .stabs "s_g_repeat:S1",38,0,0,_s_g_repeat

The assembler transforms the stab into this symbol table entry in the .o file. The location
is expressed as a data segment offset.

21 00000084 - 00 0000 STSYM s_g_repeat:S1

30 STABS

in the symbol table entry from the executable, the linker has made the relocatable address
absolute.

22 0000e00c - 00 0000 STSYM s_g_repeat:S1
Stabs for global variables do not contain location information. In this case the debugger
finds location information in the assembler or linker symbol table entry describing the
variable. The source line:
1 char g_foo = 'c';
generates the stab:
21 .stabs "g_fo00:G2",32,0,0,0

The variable is represented by the following two symbol table entries in the object file.
The first one originated as a stab. The second one is an external symbol. The upper case
D signifies that the n_type field of the symbol table contains 7, N_.DATA with local linkage
(see Table B). The value field following the file’s line number is empty for the stab entry.
For the linker symbol it contains the rellocatable address corresponding to the variable.

19 00000000 - 00 0000 GSYM g_foo:G2
20 00000080 D _g_foo

These entries as transformed by the linker. The linker symbol table entry now holds an
absolute address.

21 00000000 - 00 0000 GSYM g_foo:G2

215 0000e008 D _g_foo

31

9 GNU C++ stabs

9.0.1 Symbol descriptors added for C++ descriptions:

P - register parameter.

9.0.2 type descriptors added for C++ descriptions
method type (two ## if minimal debug)

xS cross-reference

9.1 Basic types for C++

<< the examples that follow are based on a01.C >>

C++ adds two more builtin types to the set defined for C. These are the unknown type
and the vtable record type. The unknown type, type 16, is defined in terms of itself like
the void type.

The vtable record type, type 17, is defined as a structure type and then as a structure
tag. The structure has four fields, delta, index, pfn, and delta2. pfn is the function pointer.

<< In boilerplate $vtbl_ptr_type, what are the fields delta, index, and delta2 used for?
>>

This basic type is present in all C++ programs even if there are no virtual methods
defined.

.stabs "struct_name:sym_desc(type)type_def(17)=type_desc(struct)struct_bytes(8)
elem_name(delta):type_ref(short int),bit_offset(0),field_bits(16);
elem_name(index):type_ref(short int),bit_offset(16),field_bits(16);
elem_name(pfn):type_def(18)=type_desc(ptr to)type_ref(void),

bit_offset(32),field_bits(32);
elem_name(delta2):type_def(short int);bit_offset(32),field_bits(16);;"
N_LSYM, NIL, NIL

.stabs "$vtbl_ptr_type:t17=s8
delta:6,0,16;index:6,16,16;pfn:18=%15,32,32;delta2:6,32,16; ;"
,128,0,0,0

.stabs "name:sym_dec(struct tag)type_ref($vtbl_ptr_type)",N_LSYM,NIL,NIL,NIL
.stabs "$vtbl_ptr_type:T17",128,0,0,0

9.2 Simple class definition

The stabs describing C++ language features are an extension of the stabs describing C.
Stabs representing C++ class types elaborate extensively on the stab format used to describe
structure types in C. Stabs representing class type variables look just like stabs representing
C language variables.

Consider the following very simple class definition.

class baseA {
public:
int Adat;

32 STABS

int Ameth(int in, char other);
+;

The class baseA is represented by two stabs. The first stab describes the class as a
structure type. The second stab describes a structure tag of the class type. Both stabs are
of stab type N_LSYM. Since the stab is not located between an N_FUN and a N.LBRAC
stab this indicates that the class is defined at file scope. If it were, then the N_LSYM would
signify a local variable.

A stab describing a C++ class type is similar in format to a stab describing a C struct,
with each class member shown as a field in the structure. The part of the struct format
describing fields is expanded to include extra information relevent to C++ class members. In
addition, if the class has multiple base classes or virtual functions the struct format outside
of the field parts is also augmented.

In this simple example the field part of the C++ class stab representing member data
looks just like the field part of a C struct stab. The section on protections describes how
its format is sometimes extended for member data.

The field part of a C++ class stab representing a member function differs substantially
from the field part of a C struct stab. It still begins with ‘name:” but then goes on to
define a new type number for the member function, describe its return type, its argument
types, its protection level, any qualifiers applied to the method definition, and whether the
method is virtual or not. If the method is virtual then the method description goes on to
give the vtable index of the method, and the type number of the first base class defining
the method.

When the field name is a method name it is followed by two colons rather than one.
This is followed by a new type definition for the method. This is a number followed by an
equal sign and then the symbol descriptor ‘##’, indicating a method type. This is followed
by a type reference showing the return type of the method and a semi-colon.

The format of an overloaded operator method name differs from that of other methods.
It is "op$:: XXXX." where XXXX is the operator name such as + or +=. The name ends
with a period, and any characters except the period can occur in the XXXX string.

The next part of the method description represents the arguments to the method, pre-
ceeded by a colon and ending with a semi-colon. The types of the arguments are expressed
in the same way argument types are expressed in C++ name mangling. In this example an
int and a char map to ‘ic’.

This is followed by a number, a letter, and an asterisk or period, followed by another
semicolon. The number indicates the protections that apply to the member function. Here
the 2 means public. The letter encodes any qualifier applied to the method definition. In
this case A means that it is a normal function definition. The dot shows that the method
is not virtual. The sections that follow elaborate further on these fields and describe the
additional information present for virtual methods.

.stabs "class_name:sym_desc(type)type_def(20)=type_desc(struct)struct_bytes(4)
field_name(Adat):type(int),bit_offset(0),field_bits(32);

method_name(Ameth)::type_def(21)=type_desc(method)return_type(int);
:arg_types(int char);
protection(public)qualifier(normal)virtual(no);;"

Chapter 9: GNU C++ stabs 33

N_LSYM,NIL,NIL,NIL
.stabs "baseA:t20=s4Adat:1,0,32;Ameth: :21=##1;:ic;2A.;;",128,0,0,0

.stabs "class_name:sym_desc(struct tag)",N_LSYM,NIL,NIL,NIL

.stabs "baseA:T20",128,0,0,0

9.3 Class instance

As shown above, describing even a simple C++ class definition is accomplished by massively
extending the stab format used in C to describe structure types. However, once the class is
defined, C stabs with no modifications can be used to describe class instances. The following
source:

main () {
baseA Abasel;
}

yields the following stab describing the class instance. It looks no different from a standard
C stab describing a local variable.

.stabs "name:type_ref(baseA)", N_.LSYM, NIL, NIL, frame_ptr_offset
.stabs "AbaseA:20",128,0,0,-20

9.4 Method defintion

The class definition shown above declares Ameth. The C++ source below defines Ameth:

int
baseA: :Ameth(int in, char other)
{
return in;
}s;

This method definition yields three stabs following the code of the method. One stab
describes the method itself and following two describe its parameters. Although there is
only one formal argument all methods have an implicit argument which is the ‘this’ pointer.
The ‘this’ pointer is a pointer to the object on which the method was called. Note that the
method name is mangled to encode the class name and argument types. << Name mangling
is not described by this document - Is there already such a doc? >>

.stabs "name:symbol_desriptor(global function)return_type(int)",
N_FUN, NIL, NIL, code_addr_of_method_start

.stabs "Ameth__bbaseAic:F1",36,0,0,_Ameth__bbaselic

Here is the stab for the ‘this’ pointer implicit argument. The name of the ‘this’ pointer
is always ‘this.” Type 19, the ‘this’ pointer is defined as a pointer to type 20, baseA, but a
stab defining baseA has not yet been emited. Since the compiler knows it will be emited
shortly, here it just outputs a cross reference to the undefined symbol, by prefixing the
symbol name with xs.

.stabs "name:sym_desc(register param)type_def (19)=
type_desc(ptr to)type_ref(baseld)=

34 STABS

type_desc(cross-reference to)baseA:" ,N_RSYM,NIL,NIL,register_number]]

.stabs "this:P19=%20=xsbaseA:",64,0,0,8

The stab for the explicit integer argument looks just like a parameter to a C function.
The last field of the stab is the offset from the argument pointer, which in most systems is
the same as the frame pointer.

.stabs "name:sym_desc(value parameter)type_ref (int)",
N_PSYM,NIL,NIL,offset_from_arg_ptr

.stabs "in:p1",160,0,0,72
<< The examples that follow are based on A1.C >>

9.5 Protections

In the simple class definition shown above all member data and functions were publicly
accessable. The example that follows contrasts public, protected and privately accessable
fields and shows how these protections are encoded in C++ stabs.

Protections for class member data are signified by two characters embeded in the stab
defining the class type. These characters are located after the name: part of the string. /0
means private, /1 means protected, and /2 means public. If these characters are omited
this means that the member is public. The following C++ source:

class all_data {
private:
int priv_dat;
protected:
char prot_dat;
public:
float pub_dat;
3
generates the following stab to describe the class type all_data.

.stabs "class_name:sym_desc(type)type_def(19)=type_desc(struct)struct_bytes
data_name: /protection(private)type_ref(int),bit_offset,num_bits;
data_name: /protection(protected)type_ref(char),bit_offset,num_bits;
data_name:(/num omited, private)type_ref(float),bit_offset,num_bits;;"
N_LSYM,NIL,NIL,NIL
.stabs "all_data:t19=s12
priv_dat:/01,0,32;prot_dat:/12,32,8;pub_dat:12,64,32;;",128,0,0,0
Protections for member functions are signified by one digit embeded in the field part of
the stab describing the method. The digit is 0 if private, 1 if protected and 2 if public.
Consider the C++ class definition below:

class all_methods {
private:

int priv_meth(int in){return in;};
protected:

char protMeth(char in){return in;};

Chapter 9: GNU C++ stabs 35

public:

};

float pubMeth(float in){return in;};

It generates the following stab. The digit in question is to the left of an ‘A’ in each case.
Notice also that in this case two symbol descriptors apply to the class name struct tag and

struct type.

.stabs "class_name:sym_desc(struct tag&type)type_def(21)=

sym_desc(struct)struct_bytes(1)
meth_name::type_def(22)=sym_desc(method)returning(int);
:args(int);protection(private)modifier(normal)virtual(no);
meth_name::type_def(23)=sym_desc(method)returning(char);
:args(char);protection(protected)modifier(normal)virual(no);
meth_name::type_def(24)=sym_desc(method)returning(float);
:args(float);protection(public)modifier(normal)virtual(no);;",
N_LSYM,NIL,NIL,NIL

.stabs "all_methods:Tt21=slpriv_meth::22=##1;:i;0A.;protMeth: :23=##2;:c;1A.;

pubMeth: :24=##12;:£;2A.;;",128,0,0,0

9.6 Method Modifiers (const, volatile, const volatile)

<< based on a6.C >>

In the class example described above all the methods have the normal modifier. This
method modifier information is located just after the protection information for the method.
This field has four possible character values. Normal methods use A, const methods use
B, volatile methods use C, and const volatile methods use D. Consider the class definition

below:
class A {
public:
int ConstMeth (int arg) const { return arg; };
char VolatileMeth (char arg) volatile { return arg; 1};
float ConstVolMeth (float arg) const volatile {return arg; };
s

This class is described by the following stab:

.stabs "class(A):sym_desc(struct)type_def(20)=type_desc(struct)struct_bytes(1)

meth_name(ConstMeth)::type_def(21)sym_desc(method)
returning(int);:arg(int);protection(public)modifier(const)virtual(no);
meth_name(VolatileMeth)::type_def(22)=sym_desc(method)
returning(char);:arg(char);protection(public)modifier(volatile)virt(no)
meth_name(ConstVolMeth)::type_def(23)=sym_desc(method)
returning(float);:arg(float);protection(public)modifer(const volatile)
virtual(no);;", ...

.stabs "A:T20=s1ConstMeth: :21=##1;:i;2B.;VolatileMeth: :22=##2;:c;2C.;

ConstVolMeth: :23=##12;:f;2D.;;",128,0,0,0

36 STABS

9.7 Virtual Methods

<< The following examples are based on a4.C >>

The presence of virtual methods in a class definition adds additional data to the class
description. The extra data is appended to the description of the virtual method and to
the end of the class description. Consider the class definition below:

class A {
public:
int Adat;
virtual int A_virt (int arg) { return arg; };
s
This results in the stab below describing class A. It defines a new type (20) which is an
8 byte structure. The first field of the class struct is Adat, an integer, starting at structure
offset 0 and occupying 32 bits.

The second field in the class struct is not explicitly defined by the C++ class definition
but is implied by the fact that the class contains a virtual method. This field is the vtable
pointer. The name of the vtable pointer field starts with $vf and continues with a type
reference to the class it is part of. In this example the type reference for class A is 20 so
the name of its vtable pointer field is $vf20, followed by the usual colon.

Next there is a type definition for the vtable pointer type (21). This is in turn defined
as a pointer to another new type (22).

Type 22 is the vtable itself, which is defined as an array, indexed by a range of integers
between 0 and 1, and whose elements are of type 17. Type 17 was the vtable record type
defined by the boilerplate C++ type definitions, as shown earlier.

The bit offset of the vtable pointer field is 32. The number of bits in the field are not
specified when the field is a vtable pointer.

Next is the method definition for the virtual member function A_virt. Its description
starts out using the same format as the non-virtual member functions described above,
except instead of a dot after the ‘A’ there is an asterisk, indicating that the function is
virtual. Since is is virtual some addition information is appended to the end of the method
description.

The first number represents the vtable index of the method. This is a 32 bit unsigned
number with the high bit set, followed by a semi-colon.

The second number is a type reference to the first base class in the inheritence hierarchy
defining the virtual member function. In this case the class stab describes a base class so
the virtual function is not overriding any other definition of the method. Therefore the
reference is to the type number of the class that the stab is describing (20).

This is followed by three semi-colons. One marks the end of the current sub-section, one
marks the end of the method field, and the third marks the end of the struct definition.

For classes containing virtual functions the very last section of the string part of the stab
holds a type reference to the first base class. This is preceeded by ‘~%’ and followed by a
final semi-colon.

.stabs "class_name(A):type_def(20)=sym_desc(struct)struct_bytes(8)
field_name(Adat):type_ref(int),bit_offset(0),field _bits(32);

Chapter 9: GNU C++ stabs 37

field_name(A virt func ptr):type_def(21)=type_desc(ptr to)type_def(22)=
sym_desc(array)index_type_ref(range of int from 0 to 1);
elem_type_ref(vtbl elem type),
bit_offset(32);
meth_name(A_virt)::typedef(23)=sym_desc(method)returning(int);
:arg_type(int),protection(public)normal(yes)virtual(yes)
vtable_index(1);class_first_defining(A);;;~ %first_base(A);",
N_LSYM,NIL,NIL,NIL

.stabs "A:t20=s8Adat:1,0,32;$vf20:21=+22=ar1;0;1;17,32;A_virt::23=##1;:1;2A*x-214748364

9.8 Inheritence

Stabs describing C++ derived classes include additional sections that describe the inheritence
hierarchy of the class. A derived class stab also encodes the number of base classes. For
each base class it tells if the base class is virtual or not, and if the inheritence is private or
public. It also gives the offset into the object of the portion of the object corresponding to
each base class.

This additional information is embeded in the class stab following the number of bytes
in the struct. First the number of base classes appears bracketed by an exclamation point
and a comma.

Then for each base type there repeats a series: two digits, a number, a comma, another
number, and a semi-colon.

The first of the two digits is 1 if the base class is virtual and 0 if not. The second digit
is 2 if the derivation is public and 0 if not.

The number following the first two digits is the offset from the start of the object to the
part of the object pertaining to the base class.

After the comma, the second number is a type_descriptor for the base type. Finally a
semi-colon ends the series, which repeats for each base class.

The source below defines three base classes A, B, and C and the derived class D.

class A {
public:
int Adat;
virtual int A_virt (int arg) { return arg; };
}s
class B {
public:
int B_dat;
virtual int B_virt (int arg) {return arg; };
};
class C {
public:

int Cdat;
virtual int C_virt (int arg) {return arg; };

38 STABS

s

class D : A, virtual B, public C {

public:
int Ddat;
virtual int A_virt (int arg) { return arg+l; };
virtual int B_virt (int arg) { return arg+2; };
virtual int C_virt (int arg) { return arg+3; 1};
virtual int D_virt (int arg) { return arg; };

I

Class stabs similar to the ones described earlier are generated for each base class.

.stabs "A:T20=s8Adat:1,0,32;$vf20:21=+22=ar1;0;1;17,32;
A_virt::23=##1;:1i;2A%-2147483647;20;;; %20;",128,0,0,0

.stabs "B:Tt25=s8Bdat:1,0,32;$vf25:21,32;B_virt: :26=##1;
11;2A%-2147483647;25;;;"%25;",128,0,0,0

.stabs "C:Tt28=s8Cdat:1,0,32;$vf28:21,32;C_virt::29=##1;
11;2A%-2147483647;28;;;"%28;",128,0,0,0
In the stab describing derived class D below, the information about the derivation of
this class is encoded as follows.

.stabs "derived_class_name:symbol_descriptors(struct tag&type)=
type_descriptor(struct)struct_bytes(32)!lnum_bases(3),
base_virtual(no)inheritence_public(no)base_offset (0),
base_class_type_ref(A);
base_virtual(yes)inheritence_public(no)base_offset(NIL),
base_class_type_ref(B);
base_virtual(no)inheritence_public(yes)base_offset(64),
base_class_type_ref(C); . ..

.stabs "D:Tt31=s32!3,000,20;100,25;0264,28;$vb25:24,128;Ddat :
1,160,32;A_virt: :32=##1;:1i;2A*%-2147483647;20; ;B_virt:
:32:1;2A%-2147483647;25;;C_virt::32:1;2A%-2147483647;
28;;D_virt::32:1;2A%-2147483646;31;;;"%20;",128,0,0,0

9.9 Virtual Base Classes

A derived class object consists of a concatination in memory of the data areas defined by
each base class, starting with the leftmost and ending with the rightmost in the list of base
classes. The exception to this rule is for virtual inheritence. In the example above, class
D inherits virtually from base class B. This means that an instance of a D object will not
contain it’s own B part but merely a pointer to a B part, known as a virtual base pointer.

In a derived class stab, the base offset part of the derivation information, described
above, shows how the base class parts are ordered. The base offset for a virtual base class
is always given as 0. Notice that the base offset for B is given as 0 even though B is not
the first base class. The first base class A starts at offset 0.

The field information part of the stab for class D describes the field which is the pointer
to the virtual base class B. The vbase pointer name is $vb followed by a type reference to

Chapter 9: GNU C++ stabs 39

the virtual base class. Since the type id for B in this example is 25, the vbase pointer name
is $vb25.
.stabs "D:Tt31=s32!3,000,20;100,25;0264,28;$vb25:24,128;Ddat:1,
160,32;A_virt: :32=##1; :1;2A%x-2147483647;20;;B_virt::32:1i;
2A*%-2147483647;25; ;C_virt::32:1i;2A%-2147483647;28;;D_virt:
:32:1;2A%-2147483646;31;;;"%20;",128,0,0,0
Following the name and a semicolon is a type reference describing the type of the virtual
base class pointer, in this case 24. Type 24 was defined earlier as the type of the B class
‘this* pointer. The ‘this’ pointer for a class is a pointer to the class type.

.stabs "this:P24=x25=xsB:",64,0,0,8
Finally the field offset part of the vbase pointer field description shows that the vbase
pointer is the first field in the D object, before any data fields defined by the class. The

layout of a D class object is a follows, Adat at 0, the vtable pointer for A at 32, Cdat at
64, the vtable pointer for C at 96, the virtual ase pointer for B at 128, and Ddat at 160.

9.10 Static Members

The data area for a class is a concatenation of the space used by the data members of the
class. If the class has virtual methods, a vtable pointer follows the class data. The field
offset part of each field description in the class stab shows this ordering.

<< How is this reflected in stabs? See Cygnus bug #677 for some info. >>

Appendix A Example2.c - source code for

© 00 NO UL WN -

= =
= O

SO DD W WWWWWWWWWNNNNMMNMNNMNNNMNNMNNNMNNRERERREPRRR P B
W NP, O OO NO”OO P WNE O OO NOODOGPE WONEFE OO0 NO OGP WwN

extended example

char g_foo = 'c';

register int g_bar asm ("%g5");
static int s_g_repeat = 2;

int (xg_pf) O;

struct s_tag {
int s_int;
float s_float;
char s_char_vec[8];
struct s_tag* s_next;
} g_an_s;

typedef struct s_tag s_typedef;
char char_vec[3] = {'a','b','c'};

main (argc, argv)
int argc;
char*x argvl[];

static float s_flap;
int times;
for (times=0; times < s_g_repeat; times++){
int inner;
printf ("Hello world\n");
}
3

enum e_places {first,second=3,last};

static s_proc (s_arg, s_ptr_arg, char_vec)
s_typedef s_arg;
s_typedef* s_ptr_arg;
charx char_vec;
{
union u_tag {
int wu_int;
float u_float;
char* u_char;
} an_u;

3

41

Appendix B Example2.s - assembly code for

O 00 NO O WN -

10

O e N e el
O O 0 NO Ok WN -

21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44

extended example

gcc2_compiled.:
.stabs "/cygint/sl/users/jcm/play/",100,0,0,Ltext0
.stabs "example2.c",100,0,0,Ltext0O

.text
LtextO:
.stabs "int:t1=r1;-2147483648;2147483647;",128,0,0,0
.stabs "char:t2=r2;0;127;",128,0,0,0
.stabs "long int:t3=r1;-2147483648;2147483647;",128,0,0,0
.stabs "unsigned int:t4=r1;0;-1;",128,0,0,0
.stabs "long unsigned int:tb5=r1;0;-1;",128,0,0,0
.stabs "short int:t6=r1;-32768;32767;",128,0,0,0
.stabs "long long int:t7=r1;0;-1;",128,0,0,0
.stabs "short unsigned int:t8=r1;0;65535;",128,0,0,0
.stabs "long long unsigned int:t9=r1;0;-1;",128,0,0,0
.stabs "signed char:t10=r1;-128;127;",128,0,0,0
.stabs "unsigned char:t11=r1;0;255;",128,0,0,0
.stabs "float:t12=r1;4;0;",128,0,0,0
.stabs "double:t13=r1,;8;0;",128,0,0,0
.stabs "long double:t14=r1;8;0;",128,0,0,0
.stabs "void:t15=15",128,0,0,0
.stabs "g_fo00:6G2",32,0,0,0

.global _g_foo

.data
_g_foo:

.byte 99
.stabs "s_g_repeat:S1",38,0,0,_s_g_repeat

.align 4
_S_g_repeat:

.word 2
.stabs "s_tag:T16=s20s_int:1,0,32;s_float:12,32,32;s_char_vec:

17=ar1;0;7;2,64,64;s_next:18=%16,128,32;;",128,0,0,0

.stabs "s_typedef:t16",128,0,0,0
.stabs "char_vec:G19=ar1;0;2;2",32,0,0,0

.global _char_vec

.align 4
_char_vec:

.byte 97

.byte 98

.byte 99

.reserve _s_flap.0,4,"bss",4

.text

.align 4
LCO:

.ascii "Hello world\12\0"

.align 4

43

44

45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

.global _main
.proc 1
_main:
.stabn 68,0,20,LM1
LM1:
I#PROLOGUE# O
save %sp,-144,%sp
I#PROLOGUE# 1
st %10, [Jfp+68]
st %il, [hfp+72]
call ___main,O
nop
LBB2:
.stabn 68,0,23,LM2
LM2:
st %g0, [%fp-201]
L2:
sethi %hi(_s_g_repeat),%00
1d [%fp-20],%o1
1d [%o0+%lo(_s_g_repeat)],%o0
cmp %01,%00
bge L3
nop
LBB3:
.stabn 68,0,25,LM3
LM3:
sethi %hi(LCO),%o1
or %ol,%lo(LCO),%00
call _printf,0
nop
.stabn 68,0,26,LM4
LM4:
LBE3:
.stabn 68,0,23,LM5
LM5:
L4:
1d [%£fp-20],%00
add %00,1,%o01
st %ol, [%fp-20]
b,a L2
L3:
.stabn 68,0,27,LM6
LM6:
LBE2:
.stabn 68,0,27,LM7
LM7:
L1:

STABS

Appendix B: Example2.s - assembly code for extended example 45

92 ret

93 restore

94 .stabs "main:F1",36,0,0,_main

95 .stabs "argc:pl",160,0,0,68

96 .stabs "argv:p20=*21=%2",160,0,0,72
97 .stabs "s_flap:V12",40,0,0,_s_flap.0
98 .stabs "times:1",128,0,0,-20

99 .stabn 192,0,0,LBB2

100 .stabs "inner:1",128,0,0,-24

101 .stabn 192,0,0,LBB3

102 .stabn 224,0,0,LBE3

103 .stabn 224,0,0,LBE2

104 .stabs "e_places:T22=efirst:0,second:3,last:4,;",128,0,0,0
105 .stabs "u_tag:T23=u4u_int:1,0,32;u_float:12,0,32;u_char:21,0,32;;",
128,0,0,0

106 .align 4

107 .proc 1

108 _s_proc:

109 .stabn 68,0,35,LM8

110 LMS8:

111 I#PROLOGUE# O

112 save 7%sp,-120,%sp

113 '#PROLOGUE# 1

114 mov %10, %00

115 st hil, [hfp+72]

116 st %12, [hfp+76]

117 LBB4:

118 .stabn 68,0,41,LM9

119 LM9:

120 LBE4:

121 .stabn 68,0,41,LM10

122 LM10:

123 L5:

124 ret

125 restore

126 .stabs "s_proc:f1",36,0,0,_s_proc
127 .stabs "s_arg:p16",160,0,0,0

128 .stabs "s_ptr_arg:p18",160,0,0,72
129 .stabs "char_vec:p21",160,0,0,76
130 .stabs "an_u:23",128,0,0,-20

131 .stabn 192,0,0,LBB4

132 .stabn 224,0,0,LBE4

133 .stabs "g_bar:r1",64,0,0,5

134 .stabs "g_pf:G24=%25=f1",32,0,0,0
135 .common _g_pf,4,"bss"

136 .stabs "g_an_s:G16",32,0,0,0

137 .common _g_an_s,20,"bss"

Appendix C Quick reference

C.1 Table A: Symbol types from stabs

Table A lists stab types sorted by type number. Stab type numbers are 32 and greater.
This is the full list of stab numbers, including stab types that are used in languages other

than C.

The #define names for these stab types are defined in: devo/include/aout/stab.def

type
dec

72
72

74

80
80

84
96
100
128

130
132
160
162
164
192
194
196
224
226
228
232

240
242
244
246

Ox4a

0x50
0x50

0x54
0x60
0x64
0x80

0x82
0x84
0xal
Oxa2
Oxa4d
0xcO
0xc2
Oxcéd
0xe0
Oxe2
Oxed
Oxe8

#define
name

used to describe
source program feature

N_GYSM
N_FNAME
N_FUN
N_STSYM
N_LCSYM
N_MAIN
N_PC
N_NSYMS
N_NOMAP
N_RSYM
N_M2C
N_SLINE
N_DSLINE

N_BSLINE
N_BROWS

N_DEFD

N_EHDECL
N_MOD2

N_CATCH
N_SSYM
N_SO
N_LSYM

N_BINCL
N_SOL
N_PSYM
N_EINCL
N_ENTRY
N_LBRAC
N_EXCL
N_SCOPE
N_RBRAC
N_BCOMM
N_ECOMM
N_ECOML

global symbol

function name (for BSD Fortran)

function name or text segment variable for C
static symbol (data segment w/internal linkage)
.lcomm symbol(BSS-seg variable w/internal linkage)
Name of main routine (not used in C)

global symbol (for Pascal)

number of symbols (according to Ultrix V4.0)

no DST map for sym (according to Ultrix V4.0)
register variable

Modula-2 compilation unit

line number in text segment

line number in data segment

line number in bss segment
Sun source code browser, path to .cb file

GNU Modula2 definition module dependency

GNU C++ exception variable
Modula2 info "for imc" (according to Ultrix V4.0)

GNU C++ "catch" clause

structure of union element

path and name of source file

automatic var in the stack

(also used for type desc.)

beginning of an include file (Sun only)
Name of sub-source (#include) file.
parameter variable

end of an include file

alternate entry point

beginning of a lexical block

place holder for a deleted include file
modula2 scope information (Sun linker)
end of a lexical block

begin named common block

end named common block

end common (local name)

<< used on Gould systems for non-base registers syms >>

0xf0
0xf2
0xf4
0xf6

N_NBTEXT
N_NBDATA
N_NBBSS
N_NBSTS

°?
7
7
7

47

48

248

STABS

0xf8 N_NBLCS 77

C.2 Table B: Symbol types from assembler and linker

Table B shows the types of symbol table entries that hold assembler and linker symbols.

The #define names for these n_types values are defined in /include/aout/aout64.h

dec hex #define

n_type n_type name used to describe

1 0x0 N_UNDF undefined symbol

2 0x2 N_ABS absolute symbol -- defined at a particular address
3 0x3 extern " (vs. file scope)

4 0x4 N_TEXT text symbol -- defined at offset in text segment

5 0x5 extern " (vs. file scope)

6 0x6 N_DATA data symbol -- defined at offset in data segment

7 0x7 extern " (vs. file scope)

8 0x8 N_BSS BSS symbol -- defined at offset in zero'd segment
9 extern " (vs. file scope)

12 0x0C N_FN_SEQ func name for Sequent compilers (stab exception)
49 0x12 N_COMM common sym —- visable after shared lib dynamic link
31 Oox1f N_FN file name of a .o file

C.3 Table C: Symbol descriptors

(empty)

a

H Q@ T H O Q& Q o

—

|

pP
pF

Local variable, See Section 6.1 [Automatic variables|, page 17.

Parameter passed by reference in register, See Section 6.6 [Parameters|, page 20.
Constant, See Chapter 3 [Constants]|, page 9.

Conformant array bound, See Section 6.6 [Parameters|, page 20.

Floating point register variable, See Section 6.3 [Register variables|, page 18.
Parameter in floating point register, See Section 6.6 [Parameters|, page 20.
Static function, See Section 2.3 [Procedures], page 5.

Global function, See Section 2.3 [Procedures], page 5.

Global variable, See Section 6.2 [Global Variables], page 18.

See Section 6.6 [Parameters|, page 20.

Internal (nested) procedure, See Section 2.3 [Procedures], page 5.

Internal (nested) function, See Section 2.3 [Procedures|, page 5.

Label name (documented by AIX, no further information known).

Module, See Section 2.3 [Procedures|, page 5.

Argument list parameter See Section 6.6 [Parameters|, page 20.

See Section 6.6 [Parameters|, page 20.

See Section 6.6 [Parameters], page 20.

Appendix C: Quick reference 49

=

<

X

X

Global Procedure (AIX), See Section 2.3 [Procedures]|, page 5. Register param-
eter (GNU), See Section 6.6 [Parameters], page 20.

Static Procedure, See Section 2.3 [Procedures|, page 5.
Register parameter See Section 6.6 [Parameters], page 20.
Register variable, See Section 6.3 [Register variables], page 18.

Static file scope variable See Section 6.4 [Initialized statics], page 18, See Sec-
tion 6.5 [Un-initialized statics|, page 19.

Type name, See Section 7.4 [Typedefs], page 25.
enumeration, struct or union tag, See Section 7.5 [Unions], page 26.
Call by reference, See Section 6.6 [Parameters|, page 20.

Static procedure scope variable See Section 6.4 [Initialized statics], page 18, See
Section 6.5 [Un-initialized statics], page 19.

Conformant array, See Section 6.6 [Parameters|, page 20.

Function return variable, See Section 6.6 [Parameters], page 20.

C.4 Table D: Type Descriptors

(digits)

*

¢

Type reference, See Chapter 1 [Overview], page 1.
Pointer type.

Type Attributes (AIX), See Chapter 1 [Overview], page 1. Some C++ thing
(GNU).

Array type.
Enumeration type.
Function type.
Range type.
Structure type.

Union specifications.

o1

Appendix D Expanded reference by stab type.

Format of an entry:

The first line is the symbol type expressed in decimal, hexadecimal, and as a #define
(see devo/include/aout /stab.def).

The second line describes the language constructs the symbol type represents.
The third line is the stab format with the significant stab fields named and the rest NIL.

Subsequent lines expand upon the meaning and possible values for each significant stab
field. # stands in for the type descriptor.

Finally, any further information.

D.1 32 -0x20 - N_.GYSM
Global variable.

.stabs "name", N_.GSYM, NIL, NIL, NIL

"name" -> "symbol_name:#type"
#->G

Only the "name" field is significant. The location of the variable is obtained from the
corresponding external symbol.

D.2 34 - 0x22 - N_.FNAME
Function name (for BSD Fortran)
.stabs "name", N.FNAME, NIL, NIL, NIL
"name" -> "function_name"

Only the "name" field is significant. The location of the symbol is obtained from the
corresponding extern symbol.

D.3 36 - 0x24 - N_FUN

Function name (see Section 2.3 [Procedures|, page 5) or text segment variable (see Chapter 6
[Variables], page 17).

For functions:
"name" -> "proc_name:#return_type"
-> F (global function)
f (local function)

desc -> line num for proc start. (GCC doesn't set and DBX doesn't miss it.)]]

value -> Code address of proc start.

For text segment variables:
<<How to create one?>>

52 STABS

D.4 38 - 0x26 - N_STSYM
Initialized static symbol (data segment w/internal linkage).
.stabs "name", N_STSYM, NIL, NIL, value

"name" -> "symbol_name#type"
-> S (scope global to compilation unit)
-> V (scope local to a procedure)
value -> Data Address

D.5 40 - 0x28 - N_.LCSYM
Unitialized static (.lcomm) symbol(BSS segment w/internal linkage).
.stabs "name", N_.LCLSYM, NIL, NIL, value

"name" -> "symbol_name#type"
-> S (scope global to compilation unit)
-> V (scope local to procedure)
value -> BSS Address

D.6 42 - 0x2a - N_MAIN

Name of main routine (not used in C)
stabs "name", N_MAIN, NIL, NIL, NIL

"name" -> "name_of_main_routine"

D.7 48 - 0x30 - N_PC
Global symbol (for Pascal)
.stabs "name", N_PC, NIL, NIL, value

"name" -> "symbol_name" <<7>>
value -> supposedly the line number (stab.def is skeptical)

stabdump.c says:

global pascal symbol: name,,0,subtype,line
<< subtype? >>

D.8 50 - 0x32 - N_NSYMS

Number of symbols (according to Ultrix V4.0)
0, files,,funcs,lines (stab.def)

D.9 52 - 0x34 - N_.NOMAP

no DST map for sym (according to Ultrix V4.0)
name, ,0,type,ignored (stab.def)

Appendix D: Expanded reference by stab type. 53

D.10 64 - 0x40 - N_RSYM

register variable
.stabs "name:type",N_RSYM,0,RegSize,RegNumber (Sun doc)

D.11 66 - 0x42 - N_M2C

Modula-2 compilation unit
.stabs "name", N_M2C, 0, desc, value

"name" -> "unit_name,unit_time_stamp[,code_time_stamp]
desc -> unit_number
value -> 0 (main unit)

1 (any other unit)

D.12 68 - 0x44 - N_SLINE

Line number in text segment
.stabn N_SLINE, 0, desc, value

desc -> line_number
value -> code_address (relocatable addr where the corresponding code starts)]]

For single source lines that generate discontiguous code, such as flow of control state-
ments, there may be more than one N_SLINE stab for the same source line. In this case
there is a stab at the start of each code range, each with the same line number.

D.13 70 - 0x46 - N_DSLINE

Line number in data segment
.stabn N_DSLINE, 0, desc, value

desc -> line_number
value -> data_address (relocatable addr where the corresponding code
starts)

See comment for N_SLINE above.

D.14 72 - 0x48 - N_BSLINE

Line number in bss segment
.stabn N_BSLINE, 0, desc, value

desc -> line_number
value -> bss_address (relocatable addr where the corresponding code
starts)

See comment for N_.SLINE above.

D.15 72 - 0x48 - N_.BROWS

Sun source code browser, path to .cb file
<<7>> "path to associated .cb file"
Note: type field value overlaps with N_BSLINE

54 STABS

D.16 74 - Ox4a - N_DEFD

GNU Modula2 definition module dependency

GNU Modula-2 definition module dependency. Value is the modification time of the
definition file. Other is non-zero if it is imported with the GNU M2 keyword %INITIALIZE.
Perhaps N_M2C can be used if there are enough empty fields?

D.17 80 - 0x50 - N_EHDECL

GNU C++ exception variable <<7>>
"name is variable name"
Note: conflicts with N_MOD2.

D.18 80 - 0x50 - N_MOD2

Modula2 info "for imc" (according to Ultrix V4.0)
Note: conflicts with N.EHDECL <<7>>

D.19 84 - 0x54 - N_CATCH
GNU C++ "catch" clause

GNU C++ ‘catch’ clause. Value is its address. Desc is nonzero if this entry is immediately
followed by a CAUGHT stab saying what exception was caught. Multiple CAUGHT stabs
means that multiple exceptions can be caught here. If Desc is 0, it means all exceptions are
caught here.

D.20 96 - 0x60 - N_SSYM

Structure or union element
Value is offset in the structure.

<<?looking at structs and unions in C I didn’t see these>>

D.21 100 - 0x64 - N_SO

Path and name of source file containing main routine
.stabs "name", N_SO, NIL, NIL, value

"name" -> /source/directory/
-> source_file

value -> the starting text address of the compilation.

These are found two in a row. The name field of the first N_SO contains the directory
that the source file is relative to. The name field of the second N_SO contains the name of
the source file itself.

Only some compilers (e.g. gce2, Sun cc) include the directory; this symbol can be
distinguished by the fact that it ends in a slash. According to a comment in GDB’s partial-
stab.h, other compilers (especially unnamed C++ compilers) put out useless N_SO’s for
nonexistent source files (after the N_SO for the real source file).

Appendix D: Expanded reference by stab type. 55

D.22 128 - 0x80 - N_LSYM

Automatic var in the stack (also used for type descriptors.)
.stabs "name" N_LSYM, NIL, NIL, value

For stack based local variables:

"name" -> name of the variable
value -> offset from frame pointer (negative)

For type descriptors:

"name" -> '"name_of_the_type:#type"
#->t
type -> type_ref (or) type_def

type_ref -> type_number
type_def -> type_number=type_desc etc.

Type may be either a type reference or a type definition. A type reference is a number
that refers to a previously defined type. A type definition is the number that will refer to
this type, followed by an equals sign, a type descriptor and the additional data that defines
the type. See the Table D for type descriptors and the section on types for what data
follows each type descriptor.

D.23 130 - 0x82 - N_BINCL

Beginning of an include file (Sun only)

Beginning of an include file. Only Sun uses this. In an object file, only the name is
significant. The Sun linker puts data into some of the other fields.

D.24 132 - 0x84 - N_SOL

Name of a sub-source file (#include file). Value is starting address of the compilation.
<L7>>

D.25 160 - 0xa0 - N_PSYM

Parameter variable. See Section 6.6 [Parameters|, page 20.

D.26 162 - 0xa2 - N_EINCL

End of an include file. This and N_BINCL act as brackets around the file’s output. In an
ojbect file, there is no significant data in this entry. The Sun linker puts data into some of
the fields. <<7>>

D.27 164 - Oxa4 - N_ENTRY

Alternate entry point. Value is its address. <<7>>

56 STABS

D.28 192 - 0xcO - N_LBRAC

Beginning of a lexical block (left brace). The variable defined inside the block precede
the N_LBRAC symbol. Or can they follow as well as long as a new N_FUNC was not
encountered. <<7>>

.stabn N_LBRAC, NIL, NIL, value

value -> code address of block start.

D.29 194 - 0xc2 - N_EXCL

Place holder for a deleted include file. Replaces a N_BINCL and everything up to the
corresponding N_EINCL. The Sun linker generates these when it finds multiple indentical
copies of the symbols from an included file. This appears only in output from the Sun
linker. <<7>>

D.30 196 - Oxc4 - N_SCOPE

Modula2 scope information (Sun linker) <<7>>

D.31 224 - 0xe0 - N_RBRAC

End of a lexical block (right brace)
.stabn N_.RBRAC, NIL, NIL, value
value -> code address of the end of the block.

D.32 226 - 0xe2 - N_BCOMM

Begin named common block.
Only the name is significant. <<7>>

D.33 228 - Oxe4 - N_.ECOMM

End named common block.
Only the name is significant and it should match the N.BCOMM <<7>>

D.34 232 - 0xe8 - N_ECOML

End common (local name)

value is address. <<7>>

D.35 Non-base registers on Gould systems

<< used on Gould systems for non-base registers syms, values assigned at random, need real
info from Gould. >> <<7>>

240 0xf0 N_NBTEXT 7?7
242 0xf2 N_NBDATA 77
244 0xf4 N_NBBSS ??
246 0xf6 N_NBSTS °?

248 0xf8 N_NBLCS ??

Appendix D: Expanded reference by stab type. 57

D.36 - Oxfe - N_.LENG

Second symbol entry containing a length-value for the preceding entry. The value is the
length.

99

Appendix E Questions and anomalies

e For GNU C stabs defining local and global variables (N_LSYM and N_GSYM), the desc
field is supposed to contain the source line number on which the variable is defined. In
reality the desc field is always 0. (This behavour is defined in dbxout.c and putting a
line number in desc is controlled by #ifdef WINNING_GDB which defaults to false).
Gdb supposedly uses this information if you say °list var’. In reality var can be a
variable defined in the program and gdb says ‘function var not defined’

e In GNU C stabs there seems to be no way to differentiate tag types: structures, unions,
and enums (symbol descriptor T) and typedefs (symbol descriptor t) defined at file
scope from types defined locally to a procedure or other more local scope. They all
use the N_LSYM stab type. Types defined at procedure scope are emited after the
N_RBRAC of the preceding function and before the code of the procedure in which
they are defined. This is exactly the same as types defined in the source file between
the two procedure bodies. GDB overcompensates by placing all types in block #1, the
block for symbols of file scope. This is true for default, -ansi and -traditional compiler
options. (Bugs gece/1063, gdb/1066.)

e What ends the procedure scope? Is it the proc block’s N_.RBRAC or the next N_.FUN?
(I believe its the first.)

e The comment in xcoff.h says DBX_STATIC_.CONST_VAR_CODE is used for
static const variables. DBX_STATIC_CONST_VAR_CODE is set to N_FUN
by default, in dbxout.c. If included, xcoff.h redefines it to N_STSYM. But
testing the default behaviour, my Sun4 native example shows N_STSYM not
N_FUN is used to describe file static initialized variables. (the code tests for
TREE_READONLY (decl) && !TREE_THIS_.VOLATILE(decl) and if true uses
DBX_STATIC_CONST_VAR_CODE).

e Global variable stabs don’t have location information. This comes from the external
symbol for the same variable. The external symbol has a leading underbar on the
_name of the variable and the stab does not. How do we know these two symbol table
entries are talking about the same symbol when their names are different?

e (Can gcc be configured to output stabs the way the Sun compiler does, so that their
native debugging tools work? <NO7?> It doesn’t by default. GDB reads either format
of stab. (gcc or SunC). How about dbx?

61

Appendix F Differences between GNU stabs in
a.out and GNU stabs in xcoff

(The AIX/RS6000 native object file format is xcoff with stabs). This appendix only covers
those differences which are not covered in the main body of this document.

e Instead of .stabs, xcoff uses .stabx.

e The data fields of an xcoff .stabx are in a different order than an a.out .stabs. The
order is: string, value, type. The desc and null fields present in a.out stabs are missing
in xcoff stabs. For N_.GSYM the value field is the name of the symbol.

e BSD a.out stab types correspond to AIX xcoff storage classes. In general the mapping
is N_.STABTYPE becomes C_.STABTYPE. Some stab types in a.out are not supported
in xcoff. See Table E. for full mappings.
exception: initialised static N_STSYM and un-initialized static N_LCSYM both
map to the C_STSYM storage class. But the destinction is preserved because in
xcoff N_.STSYM and N_LCSYM must be emited in a named static block. Begin the
block with .bs sfRW] data_section-name for N_STSYM or .bs s bss_section_name for
N_LCSYM. End the block with .es

e xcoff stabs describing tags and typedefs use the N_.DECL (0x8c)instead of N_LSYM
stab type.

e xcoff uses N_RPSYM (0x8e) instead of the N_RSYM stab type for register variables. If
the register variable is also a value parameter, then use R instead of P for the symbol
descriptor.

6. xcoff uses negative numbers as type references to the basic types. There are no
boilerplate type definitions emited for these basic types. << make table of basic types
and type numbers for C >>

e xcoff .stabx sometimes don’t have the name part of the string field.

e xcoff uses a .file stab type to represent the source file name. There is no stab for the
path to the source file.

e xcoff uses a .line stab type to represent source lines. The format is: .line line_number.
e xcoff emits line numbers relative to the start of the current function. The start of a

function is marked by .bf. If a function includes lines from a seperate file, then those
line numbers are absolute line numbers in the <<sub-7>> file being compiled.

e The start of current include file is marked with: .bi "filename" and the end marked
with .ei "filename"

o If the xcoff stab is a N.FUN (C_FUN) then follow the string field with ,. instead of
just ,

(I think that’s it for .s file differences. They could stand to be better presented. This is
just a list of what I have noticed so far. There are a *lot* of differences in the information
in the symbol tables of the executable and object files.)

Table E: mapping a.out stab types to xcoff storage classes

stab type storage class
N_GSYM C_GSYM
N_FNAME unknown

62

N_FUN
N_STSYM
N_LCSYM
N_MAIN
N_PC
N_RSYM
N_RPSYM
N_M2C
N_SLINE
N_DSLINE
N_BSLINE
N_BROWSE
N_CATCH
N_SSYM
N_SO
N_LSYM
N_DECL
N_BINCL
N_SOL
N_PSYM
N_EINCL
N_ENTRY
N_LBRAC
N_EXCL
N_SCOPE
N_RBRAC
N_BCOMM
N_ECOMM
N_ECOML

N_LENG

(0x8e)

(0x8c)

C_FUN
C_STSYM
C_STSYM
unkown
unknown
C_RSYM
C_RPSYM
unknown
unknown
unknown
unknown
unchanged
unknown
unknown
unknown
C_LSYM
C_DECL
unknown
unknown
C_PSYM
unknown
C_ENTRY
unknown
unknown
unknown
unknown
C_BCOMM
C_ECOMM
C_ECOML

unknown

STABS

63

Appendix G Differences between GNU stabs and
Sun native stabs.

e GNU C stabs define *all* types, file or procedure scope, as N_.LSYM. Sun doc talks
about using N_GSYM too.

e Stabs describing block scopes, N.LBRAC and N_RBRAC are supposed to contain the
nesting level of the block in the desc field, re Sun doc. GNU stabs always have 0 in
that field. dbx seems not to care.

e Sun C stabs use type number pairs in the format (a,b) where a is a number starting
with 1 and incremented for each sub-source file in the compilation. b is a number
starting with 1 and incremented for each new type defined in the compilation. GNU C
stabs use the type number alone, with no source file number.

Table of Contents

1 Overview ofstabs.......... 1
1.1 Overview of debugging information flow.......................... 1
1.2 Overview of stab format i 1
1.3 A simple example in C SOUICE. ... vvvirir et iieeenns 3
1.4 The simple example at the assembly level 3

Encoding for the structure of the program.... 5
2.1 The path and name of the source file............................. 5
2.2 Line NUumbers 5
2.3 Procedures 5
2.4 Block Structureo 6

Constants. ... 9

Simple types ... 11
4.1 Basic type definitions.............. i 11
4.2 Range types defined by min and max value 11
4.3 Range type defined by size in bytes.............., 12

A Comprehensive Example in C 13
5.1 Flow of control and nested scopes...............oooiiiiiia.. 13

Variables 17
6.1 Locally scoped automatic variables 17
6.2 Global Variables.o 18
6.3 Register variables 18
6.4 Initialized static variables. 18
6.5 Un-initialized static variables....... 19
6.6 Parameters. 20

Aggregate Types................................ 23
T 1 ATTAY By DS « ettt e 23
7.2 Enumerationst 24
7.3 Structure Tags 24
T4 Typedefs. ... 25
7.0 UNIONS . oottt e e 26
7.6 Function types 27

8 Symbol information in symbol tables......... 29

ii

9 GNU CH+stabs 31
9.0.1 Symbol descriptors added for C+-+ descriptions: 31
9.0.2 type descriptors added for C++ descriptions............... 31

9.1 Basic types for CH+ ..ot 31
9.2 Simple class definition........... ... 31
0.3 Class INSLANCEottt e 33
9.4 Method defintion......... .o 33
9.5 Protections........ ... 34
9.6 Method Modifiers (const, volatile, const volatile)............... 35
9.7 Virtual Methods 36
9.8 Inheritence........ ..o 37
9.9 Virtual Base Classes.cooviiiiiiiiiiiiiii i 38
9.10 Static Members 39

Appendix A Example2.c - source code for
extended example......................, 41

Appendix B Example2.s - assembly code for

extended example.............. 43
Appendix C Quick reference 47
C.1 Table A: Symbol types from stabs.............................. 47
C.2 Table B: Symbol types from assembler and linker............... 48
C.3 Table C: Symbol descriptorsooiiiiiiineninnann.. 48
C.4 Table D: Type Descriptorsvuiiii i 49

Appendix D Expanded reference by stab type.. 51

D1 32-0x20-N_GYSM ...t 51
D2 34-0x22-N_FNAME. 51
D3 36-0x24-N_FUN o1
D4 38-0x26-N_STSYM ... 52
D5 40-0x28 - N_.LCSYM ...t e 52
D6 42-0x2a- N_MAIN ... e 52
D7 48-0x30-N_PC.. . 52
D8 50-0x32-N_NSYMSo 52
D.9 52-0x34-N.NOMAPo 52
D10 64-0x40 - N_.RSYM ..o 53
D11 66 - 0x42 - N.M2C ..o 53
D.12 68 -0x44 - N.SLINE 53
D.13 70-0x46 - N_.DSLINE 93
D14 72-0x48 - N.BSLINE 53
D15 72-0x48 - NNBROWS 53
D16 74-0x4a-N_DEFD..... .. 54

D.17 80-0x50 - NNEHDECL. ... i o4

D.18 80 -0x50 - N.MOD2 ..o 54

D19 84 -0x54-N_CATCH 54
D.20 96 - 0x60 - N_SSYMt 54
D.21 100 -0x64 - N_SO ..ot 54
D.22 128 - 0x80 - N_LLSYM . ..o 55
D.23 130-0x82-N_BINCL 99
D.24 132-0x84 - N_SOL. ... e 99
D.25 160 -0xa0 - N_LPSYM ... e 99
D.26 162-0xa2 - N_.EINCL ... e 55
D.27 164 -0xad - N.ENTRYo 55
D.28 192-0xcO- N_LBRAC 56
D.29 194-0xc2 - N_EXCL ... 51§
D.30 196 - Oxcd - N_.SCOPEo 56
D.31 224 -0xe0 - NNRBRAC 56
D.32 226 -0xe2 - NNBCOMM i 56
D.33 228 - 0xed - NNECOMMt 56
D.34 232-0xe8 - N_ECOML ... 56
D.35 Non-base registers on Gould systems.......................... 56
D.36 - Oxfe - N.LENG ..o 57
Appendix E Questions and anomalies.......... 59

Appendix F Differences between GNU stabs in
a.out and GNU stabs in xcoff 61

Appendix G Differences between GNU stabs and
Sun native stabs.............. ... L. 63

	1 Overview of stabs
	Overview of debugging information flow
	Overview of stab format
	A simple example in C source
	The simple example at the assembly level

	2 Encoding for the structure of the program
	The path and name of the source file
	Line Numbers
	Procedures
	Block Structure

	3 Constants
	4 Simple types
	Basic type definitions
	Range types defined by min and max value
	Range type defined by size in bytes

	5 A Comprehensive Example in C
	Flow of control and nested scopes

	6 Variables
	Locally scoped automatic variables
	Global Variables
	Register variables
	Initialized static variables
	Un-initialized static variables
	Parameters

	7 Aggregate Types
	Array types
	Enumerations
	Structure Tags
	Typedefs
	Unions
	Function types

	8 Symbol information in symbol tables
	9 GNU C++ stabs
	Symbol descriptors added for C++ descriptions:
	type descriptors added for C++ descriptions
	Basic types for C++
	Simple class definition
	Class instance
	Method defintion
	Protections
	Method Modifiers (const, volatile, const volatile)
	Virtual Methods
	Inheritence

	Virtual Base Classes
	Static Members
	A Example2.c - source code for extended example
	B Example2.s - assembly code for extended example
	C Quick reference
	Table A: Symbol types from stabs
	Table B: Symbol types from assembler and linker
	Table C: Symbol descriptors
	Table D: Type Descriptors

	D Expanded reference by stab type.
	32 - 0x20 - N_GYSM
	34 - 0x22 - N_FNAME
	36 - 0x24 - N_FUN
	38 - 0x26 - N_STSYM
	40 - 0x28 - N_LCSYM
	42 - 0x2a - N_MAIN
	48 - 0x30 - N_PC
	50 - 0x32 - N_NSYMS
	52 - 0x34 - N_NOMAP
	64 - 0x40 - N_RSYM
	66 - 0x42 - N_M2C
	68 - 0x44 - N_SLINE
	70 - 0x46 - N_DSLINE
	72 - 0x48 - N_BSLINE
	72 - 0x48 - N_BROWS
	74 - 0x4a - N_DEFD
	80 - 0x50 - N_EHDECL
	80 - 0x50 - N_MOD2
	84 - 0x54 - N_CATCH
	96 - 0x60 - N_SSYM
	100 - 0x64 - N_SO
	128 - 0x80 - N_LSYM
	130 - 0x82 - N_BINCL
	132 - 0x84 - N_SOL
	160 - 0xa0 - N_PSYM
	162 - 0xa2 - N_EINCL
	164 - 0xa4 - N_ENTRY
	192 - 0xc0 - N_LBRAC
	194 - 0xc2 - N_EXCL
	196 - 0xc4 - N_SCOPE
	224 - 0xe0 - N_RBRAC
	226 - 0xe2 - N_BCOMM
	228 - 0xe4 - N_ECOMM
	232 - 0xe8 - N_ECOML
	Non-base registers on Gould systems
	- 0xfe - N_LENG

	E Questions and anomalies
	F Differences between GNU stabs in a.out and GNU stabs in xcoff
	G Differences between GNU stabs and Sun native stabs.

