Tree Dired

The GNU Emacs
Directory Editor

Sebastian Kremer
sk@thp.uni-koeln.de

$Date: 1993/01/30 06:50:14 $
$Revision: 1.2 $

Copyright (©) 1991, 1992 Free Software Foundation

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the section entitled “GNU General
Public License” is included exactly as in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the section entitled
“GNU General Public License” may be included in a translation approved by the author
instead of in the original English.

1 Dired, the Directory Editor

Dired makes it easy to delete or visit many of the files in a single directory (and possibly
its subdirectories) at once. It makes an Emacs buffer containing a listing of the directories,
in the format of 1s -1R. You can use the normal Emacs commands to move around in this
buffer, and special Dired commands to operate on the files. You can run shell commands
on files, visit, compress, load or byte-compile them, change their file attributes and insert
subdirectories into the same buffer. You can “mark” files for later commands or “flag” them
for deletion, either file by file or all files matching certain criteria.

1.1 Entering Dired

To invoke Dired, do C-x d or M-x dired. The command reads a directory name or wildcard
file name pattern as a minibuffer argument just like the list-directory command, C-x
C-d. Invoking Dired with a prefix argument lets you enter the listing switches for the
directory.

Dired assumes you meant to use a wildcard if the last component of the name is not
an existing file. Note that only the last pathname component may contain wildcards.
With wildcards it uses the shell to do the filename globbing, whereas usually it calls ‘1s’
directly. Because of this, you might have to quote characters that are special to the shell.
For example, to dired all auto-save files in your ~/mail/ directory, use ‘~/mail/\#x*’ as
argument to Dired. Note the backslash needed to quote ‘#’ (at the beginning of a word) to
the shell.

Where dired differs from list-directory is in naming the buffer after the directory
name or the wildcard pattern used for the listing, and putting the buffer into Dired mode
so that the special commands of Dired are available in it. The variable dired-listing-
switches is a string used as an argument to 1s in making the directory; this string must
contain ‘-1’. Most other switches are also allowed, especially ‘-F’, ‘=i’ and ‘-s’. For the ‘-F’
switch to work you may have to set the variable dired-1s-F-marks-symlinks, depending
on what kind of ‘1s’ program you are using. See Section 1.10.2 [Dired Configuration],
page 17.

When a Dired buffer for the given directory already exists, it is simply selected without
refreshing it. You can type g if you suspect it is out of date.

To display the Dired buffer in another window rather than in the selected window, use
C-x 4 d (dired-other-window) instead of C-x d.

1.2 Editing in Dired

Once the Dired buffer exists, you can switch freely between it and other Emacs buffers.
Whenever the Dired buffer is selected, certain special commands are provided that operate
on files that are listed. The Dired buffer is “read-only”, and inserting text in it is not useful,
so ordinary printing characters such as d and x are used for Dired commands, and digits
are prefix arguments.

The file described by the line that point is on is called the current file. The directory
this file is in is the current Dired directory. Note that there may be several directories in
one Dired buffer as long as they belong to the same tree. The top level directory, the root
of the tree, is used as the working directory of the buffer.

Chapter 1: Dired, the Directory Editor 2

Some or all directories can be hidden, leaving only their headerlines visible, and exlcuding
their files from Dired operations.

Files can be marked for later commands. Marking means putting a special character,
usually ‘¥’ in the first column of the file line. To flag a file means to mark it for later
deletion. This special case of “marking” is distinguished so that you do not delete files
accidentally. Internally, the only difference between marking and flagging is the character
used to mark the file: ‘*’ (an asterisk) for a marked file, and ‘D’ for files flagged for deletion.

Most Dired commands operate on the “marked” files and default to the current file.
They are the mark-using commands. Deleting is the only mark-using command that does
not default to the current file.

Dired buffers “know” about each other. For example, copying from dirl into dir2 will
update dir2’s Dired buffer(s). When you move files or directories, file and dired buffers are
kept up to date and refer to the new location. But Dired only knows about files changed
by itself, not by other parts of Emacs or programs outside Emacs.

All the usual Emacs cursor motion commands are available in Dired buffers. Some
special purpose commands are also provided. The keys C-n and C-p are redefined so that
they try to position the cursor at the beginning of the filename on the line, rather than at
the beginning of the line.

For extra convenience, SPC and n in Dired are equivalent to C-n. p is equivalent to C-p.
Moving by lines is also done so often in Dired that it deserves to be easy to type. DEL (move
up and unflag) is often useful simply for moving up.

1.3 Listing Files in Dired

Initially the Dired buffer shows the directory you selected. The first line shows the full
directory name. It is an example of a headerline of a directory. Note that it is terminated
by a colon (‘:’) that is not part of the directory name. The second line usually displays
the total size of all files in the directory or the wildcard used. Both are examples of non-
file lines. Applying a command to a non-file line signals an error. The other lines of the
directory, called the file lines, show information about each file such as permission bits, size
and date of last modification, and the name of the file.

For example, the listing

/home/sk/1ib/emacs/lisp:

total 4973

“rw-r--r-- 1 sk users 231608 Feb 6 16:58 Changelog
drwxr-sr-x 2 sk users 2048 Feb 6 11:07 RCS
-r--r--r—-— 1 sk users 141389 Feb 6 10:45 dired.el
-r--r--r—- 1 sk users 113033 Feb 5 16:21 dired.texi

/home/sk/1ib/emacs/1lisp/RCS:

total 4798

-r--r—--r—- 1 sk users 231748 Feb 6 16:59 dired.texi,v
-r--r-—-r--— 1 sk users 763898 Feb 6 10:45 dired.el,v

Chapter 1: Dired, the Directory Editor 3

has a headerline for the 1isp directory, a total line saying there are 4973 K in all the files
of that directory (your ‘1s’ program may use units of blocks instead), and several file lines.
After that, a headerline for the RCS subdirectory with its total line and its files follows.
Here is an example of a wildcard listing:

/home/sk/1lib/emacs/lisp:
wildcard dired*

-rw-r—--r-- 1 sk users 113036 Feb 6 16:59 dired.texi
-r--r—--r-- 1 sk users 81267 Feb 6 16:29 dired.elc
-r--r--r—- 1 sk users 38436 Feb 6 16:28 dired-x.elc
-r--r--r—-— 1 sk users 60258 Feb 6 16:27 dired-x.el
-r--r--r—- 1 sk users 141389 Feb 6 10:45 dired.el

Since ‘1s’ does not provide a total count when called with a wildcard argument, the
second line now gives instead the wildcard used, here ‘dired#’. If there would have been a
directory matching the wildcard, e.g. a ‘dired/’ subdirectory, its file line would be shown,
but it would not have been expanded automatically.

Filenames may have embedded and trailing (but not leading) spaces. Leading spaces are
not recognized because different ‘1s’ programs differ in the amount of whitespace the insert
before the filename. Filenames may mot contain newlines or ‘"M”’s. You can get away with
‘"M”’s in filenames if you do

(setq selective-display nil)
in the Dired buffer (inside dired-mode-hook, See Section 1.10.3 [Dired Hooks|, page 17.).

But this also disables the = and $ hiding commands, See Section 1.8 [Hiding Directories in
Dired], page 14.

Other unprintable characters than ‘"M’ or newline (‘~J’) in filenames are no problem for
Dired. But your ‘1s’ program may not output them correctly (e.g., replacing all unprintable
characters with a question mark ‘?’). Dired can do nothing if ‘1s’ suppresses information
about the filenames. But some (System V derived) ‘1s’ programs have a ‘-b’ switch to quote
control characters, e.g. ‘\n’ for a newline character, or ‘\007’ for a ASCII bell character
(C-g), so you might want to add ‘b’ to your switches (see below). Dired translates the quoted
control character escapes when a ‘-b’ switch was used. The ‘-b’ switch is the recommended
method to cope with funny filenames containing newlines or leading spaces. But check if
your ‘ls’ understands ‘-b’ and really quotes newlines and spaces. Dired is known to work
with GNU ‘ls -b’, but other ‘1s -b’ don’t quote spaces, so leading spaces still don’t work
with these ‘1s’ programs.

The appearance of the listing is determined by the listing switches used, for example
whether you display or suppress .’ files with the ‘-a’ and ‘~A’ switches, use the ‘-F’ switch
to tag filenames etc. It may additionally be restricted to certain files if you used wildcards
to display only those files matching a shell file wildcard.

Dired has commands that change the listing switches for this buffer. They are mainly
used to set the sort mode, but can also be used to change other formatting options. The
buffer is automatically refreshed after the switches are changed to let the new format take
effect.

The default value for the switches comes from the variable dired-listing-switches; a
prefix argument to dired can be use to determine the switches used for a specific buffer. See

Chapter 1: Dired, the Directory Editor 4

Section 1.1 [Entering Dired], page 1. Each Dired buffer has its own value for the switches,
stored in the variable dired-actual-switches.

The Dired modeline displays ‘by name’ or ‘by date’ to indicate the sort mode. It uses the
regexps in the variables dired-sort-by-date-regexp and dired-sort-by-name-regexp
to decide what should be displayed. If neither of the regexps matches, the listing switches
are displayed literally. You can use this to always display the literal switches instead of
‘by name’ or ‘by date’: set them to a regexp that never matches any listing switches, for
example ‘" §’.

Most ‘1s’ programs can only sort by name (without ‘-t’) or by date (with ‘-t’), nothing
else. GNU ‘1s’ additionally sorts on size with ‘-S’, on extension with ‘-X’, and unsorted
(in directory order) with ‘~U’. So anything that does not contain these is sort "by name".
However, this is configurable in the variable dired-1s-sorting-switches, which defaults
to "SXU". It contains a string of ‘ls’ switches (single letters) except ‘t’ that influence
sorting. It is consulted at load time, so if you redefine it, you must do it before Dired is
loaded.

s (dired-sort-toggle-or-edit) Toggle between sort by name/date and refresh
the dired buffer. With a prefix argument you can edit the current listing
switches instead.

After some time the listing may become out of date because of actions by other programs
than Dired. You can refresh the complete Dired buffer from disk or only refresh the lines
of certain files or a single file.

1 (dired-do-redisplay) Redisplay all marked (or, with a prefix argument, the
next N) files. As always, if no files are marked, the current file is used.

If on a headerline, redisplay that subdirectory. In that case, a prefix arg lets
you edit the ‘1s’ switches used for the new listing.

g (revert-buffer) The g command in Dired ultimately runs dired-revert to
reinitialize the buffer from the actual disk directory (or directories). All marks
and flags in the Dired buffer are restored, except of course for files that have
vanished. Hidden subdirectories are hidden again. See Section 1.8 [Hiding
Directories in Dired], page 14.

k (dired-kill-line-or-subdir) Kill this line (but not this file). Optional prefix
argument is a repeat factor. If file is displayed as expanded subdirectory, kill
that as well.

If on a subdirectory line, kill that subdirectory. Reinsert it with i (dired-
maybe-insert-subdir), See Section 1.7 [Subdirectories in Dired], page 13.

Killing a file line means that the line is removed from the Dired buffer. The file
is not touched, and the line will reappear when the buffer is refreshed (using
g, revert-buffer). A killed subdirectory will not reappear after reverting the
buffer, since g only list those subdirectories that were listed before.

M-k (dired-do-kill) Kill all marked lines (not files). With a prefix argument, kill
all lines not marked or flagged.

(For file marking, See Section 1.4 [Marking Files in Dired], page 5.)

C-xu

Chapter 1: Dired, the Directory Editor 5

(dired-undo) Undo in a Dired buffer. This doesn’t recover lost files, it is
just normal undo with a temporarily writable buffer. You can use it to re-
cover marks, killed lines or subdirs. In the latter case, you have to do M-x
dired-build-subdir-alist to parse the buffer again for the new subdirectory
list.

1.4 Marking Files in Dired

This section describes commands to mark and unmark single files, and commands to mark
several files at once if they match certain criteria. There also is a command to move to the
next marked file.

As always, hidden subdirs are not affected. See Section 1.8 [Hiding Directories in Dired],

page 14.

m

DEL

M-DEL

(dired-mark-subdir-or-file) If on a file line, mark the current file. A nu-
meric argument tells how many next or previous files to mark. If on a subdi-
rectory header line, mark all its files except ‘. and ‘..".

(dired-unmark-subdir-or-file) Like m, only unmarking instead of marking.

(dired-backup-unflag) Move up lines and remove flags there. Optional prefix
argument says how many lines to unflag; default is one line.

(dired-unflag-all-files) Remove a specific or all flags from every file. With
an argument, queries for each marked file. Type your help character, usually
C-h, at that time for help.

(dired-mark-executables) Mark all executable files. With prefix argument,
unflag all those files.

(dired-mark-symlinks) Mark all symbolic links. With prefix argument, unflag
all those files.

(dired-mark-directories) Mark all directory files except ‘> and ‘..". With
prefix argument, unflag all those files.

(dired-mark-files-regexp) Mark all files matching regexp for use in later
commands. A prefix argument means to unmark them instead. . and .. are
never marked.

The match is against the non-directory part of the filename. Use ‘~’ and ‘$’ to
anchor matches. Exclude subdirs by hiding them.

This is an Emacs regexp, not a shell wildcard. E.g., use ‘\.0$’ for object files
- just ‘.o’ will mark more than you might think. By default, the match is case
sensitive (just like filenames), since case-fold-search is set to nil in Dired

buffers.

(dired-next-marked-file) Move to the next marked file, wrapping around
the end of the buffer.

(dired-prev-marked-file) Move to the previous marked file, wrapping around
the beginning of the buffer.

Chapter 1: Dired, the Directory Editor 6

1.5 Mark-using Commands

Most Dired commands operate on the “marked” files and default to the current file. They
are the “mark-using” commands. Deleting is the only mark-using command that does not
default to the current file.

Mark-using Dired commands treat a numeric argument as a repeat count, meaning to
act on the files of the next few lines instead of on the marked files. That is, when you
give a prefix argument the marks are not consulted at all. A negative argument means to
operate on the files of the preceding lines. Either set of files is called marked files below,
whether they really come from marks or from a prefix argument. The prompt of a mark-
using command always makes clear which set of files is operated upon: it mentions either
the marker character ‘*’ or the ‘next N files, where a negative N really means the previous
-N files.

Thus you can use a prefix argument of 1 to apply a command to just the current file,
e.g, if you don’t want to disturb the other files you marked. As digits are prefix arguments
in Dired, simply type 1 followed by the command.

Many mark-using commands treat a prefix of N=0 specially, since it would otherwise be
a no-op.

All mark-using commands display a list of files for which they failed. Type W to see why
a (mark-using or other) command failed. Error messages from shell commands (‘stderr’)
cannot be redirected separately and goes together with the usual output (‘stdout’).

1.5.1 Copy, Move etc. Into a Directory

This section explains commands that create a new file for each marked file, for example
by copying (c) or moving (r) files. They prompt in the minibuffer for a target argument,
usually the target directory in which the new files are created. But if there is but one
marked file, the target may also be a plain file. (Otherwise you could not simply rename
or copy a single file within the same directory.) Even with one marked file the target may
still be an (existing) directory.

The target prompt displays a default target that will be used if you just type RET.
Normally the default target is the current Dired directory, so if you want to copy into
some specific subdirectory, move point into that subdirectory before typing c. But if there
is a Dired buffer in the next window, and dired-dwim-target is true, its current Dired
directory is used. This makes it easy to copy from one Dired buffer into another if both are
displayed. On the other hand you have to use C-x 1 to make other Dired buffers vanish if
you do not want to have them as default targets. To make Dired never look at the next
window, set the variable dired-dwim-target to nil (‘dwim’ means Do What I Mean). See
Section 1.10.1 [Dired User Options|, page 15, on how to set cutomization variables.

As a general rule, Dired will not let you remove or overwrite a file without explicit
confirmation. Dired asks you for each existing target file whether or not to overwrite just
this file (answer y or n) or all remaining files (answer !). You can also type your help
character, usually C-h, at that time for help.

c (dired-do-copy) Copy the marked (or next N) files into a directory, or copy a
single file.

Thus, a zero prefix argument (N-0) copies nothing. But it toggles the variable
dired-copy-preserve-time.

Chapter 1: Dired, the Directory Editor 7

See Section 1.10.1 [Dired User Options|, page 15, on how to set customization
variables.

r (dired-do-move) Move the marked files into a directory. If there is just one
marked file, rename that file. As the marked files default to the current file,
this can also be used to simply rename the current file.

Dired silently changes the visited file name of buffers associated with moved
files so that they refer to the new location of the file.

When a directory is renamed, its headerlines in Dired buffers are updated, and
any buffers visiting affected files have their visited file name changed to refer
to the new location. Their buffer name is changed if no buffer with such a
name already exists. Affected files are all those which contain the directory
somewhere in their absolute path name.

A zero prefix arguments does not move any files, but toggles the variable dired-
dwim-target.

H (dired-do-hardlink) Make hard links from the target directory to each marked
file.

Y (dired-do-symlink) Make symbolic links from the target directory to each
marked file.

Linking is very similar to copying in that new files are created while the old files stay.
If you want each newly copied or linked file to be marked with the same marker that its
original has, set the variables dired-keep-marker-copy, dired-keep-marker-hardlink
or dired-keep-marker-symlink to t. Set them to nil to not give these newly created files
marks. The default is to mark them with ‘C’, ‘H’ and ‘Y’, respectively.

Moving differs from copying and linking in that the old file is removed as part of the
creation of the new file. Thus it makes sense to set the variable dired-keep-marker-move
to t (the default) so that moved files “take their markers with them”.

1.5.2 Renaming (and More) With Regexps

A second class of Commands uses regular expressions to construct a new filename from
each marked file. See Section “Regular Expressions” in The GNU Emacs Manual. The
commands to make new names by regexp conversion are the same as those to make them
in another directory, except that they share a prefix char, 7.

T (dired-rename-regexp) Rename files with regexps

%c (dired-do-copy-regexp) Copy files with regexps.

%H (dired-do-hardlink-regexp) Make hard links with regexps.
7Y (dired-do-symlink-regexp) Make symbolic links with regexps.

These commands prompt in the minibuffer for a regexp and a newname. For each
marked file matching regexp, a new filename is constructed from newname. The match
can be anywhere in the file name, it need not span the whole filename. Use ‘~” and ‘$’ to
anchor matches that should span the whole filename. Only the first match in the filename
is replaced with newtext. (It would be easy to change this to replace all matches, but
probably harder to use.)

Chapter 1: Dired, the Directory Editor 8

‘\&’ in newname stands for the entire text being replaced. ‘\d’ in newname, where d is
a digit, stands for whatever matched the d’th parenthesized grouping in regexp. As each
match is found, the user must type a character saying whether or not to apply the command
to just this file (y or n) or to all remaining files(!). For help type your help character, usually
C-h, at that time.

For example, if you want to rename all .1sp files to .el files, type first 7%m with ‘\.1sp$’
as regexp to mark all .1sp files. Then type /r with ‘\.1lsp$” and ‘.el’ as regexp and
newtext arguments. Dired will prompt you for each file to be renamed.

Or to append .old to all marked files, use /r ‘$’ RET ‘.0l1d’ RET, replacing the empty
string at the end of each file name with ‘.old’.

You can use the regexp ‘\(.+\)\.\(.+\)$ to make the basename as ‘\1’ and the ex-
tension as ‘\2’ available in newtext.

With a zero prefix arg, renaming by regexp affects the complete pathname. Usually only
the non-directory part of file names is used and changed, and renaming only takes place
within the current directory. The zero prefix argument can be used to change the directory
part as well.

Often you will want to apply the command to all files matching the same regexp that
you use in the command. Simply use the 7m command with regexp as argument, which
will then also be the default for the next regexp using command.For example, to remove a
V17I12- prefix from several filenames, use 7m ‘"V17I12-" RET jir RET RET, in effect replacing
the prefix with the empy string.

1.5.3 Other File Creating Commands

Commands to change the case of file names:

su (dired-upcase) Rename each marked file to upper case.
al (dired-downcase) Rename each marked file to lower case.

1.5.4 Deleting Files With Dired

Deleting is a special mark-using command. It uses a special marker, ‘D’, and does not
default to the current file if no files are marked to prevent accidental deletions.

See Section 1.10 [Dired Customization], page 14, variable dired-del-marker to make
deleting behave exactly like any mark-using command.

d (dired-flag-file-deleted) Flag this file for deletion. If on a subdirectory
headerline, mark all its files except . and ...

u (dired-unmark-subdir-or-file) Remove deletion-flag on this line.

DEL (dired-backup-unflag) Remove deletion-flag on previous line, moving point

to that line.
%d (dired-flag-regexp-files) Flag all files containing the specified regexp for
deletion.

The match is against the non-directory part of the filename. Use ‘=’ and ‘$’ to
anchor matches. Exclude subdirs by hiding them.

The special directories . and .. are never flagged.

Chapter 1: Dired, the Directory Editor 9

(dired-do-deletions) Delete the files that are flagged for deletion (with ‘D).
(dired-do-delete) Delete the ‘*’-marked (as opposed to the ‘D’-flagged) files.

(dired-flag-auto-save-files) Flag all auto-save files (files whose names
start and end with ‘#’) for deletion (see Section “Auto Save” in The GNU
Emacs Manual).

(dired-flag-backup-files) Flag all backup files (files whose names end with
‘=) for deletion (see Section “Backup” in The GNU Emacs Manual).

. (Period) (dired-clean-directory) Flag excess numeric backup files for deletion. The
oldest and newest few backup files of any one file are exempt; the middle ones
are flagged.

You can flag a file for deletion by moving to the line describing the file and typing d or
C-d. The deletion flag is visible as a ‘D’ at the beginning of the line. Point is moved to the
beginning of the next line, so that repeated d commands flag successive files.

The files are flagged for deletion rather than deleted immediately to avoid the danger of
deleting a file accidentally. Until you direct Dired to delete the flagged files, you can remove
deletion flags using the commands u and DEL. u works just like d, but removes flags rather
than making flags. DEL moves upward, removing flags; it is like u with numeric argument
automatically negated.

To delete the flagged files, type x. This command first displays a list of all the file names
flagged for deletion, and requests confirmation with yes. Once you confirm, all the flagged
files are deleted, and their lines are deleted from the text of the Dired buffer. The shortened
Dired buffer remains selected. If you answer no or quit with C-g, you return immediately
to Dired, with the deletion flags still present and no files actually deleted.

Deletions proceed from the end of the buffer, so if subdirs are in a natural order in the
buffer, it usually works to flag ‘dir1’, ‘dir1/dir2’ and ‘dir1/dir2/#’ (by typing d on the
directory headerlines) and delete everything, including ‘dir1/dir2’ and ‘dir1’. Using shell
commands (e.g. ‘rm -rf’) to remove complete directories may be quicker than having Dired
remove each file separately. (See Section 1.5.5 [Dired Shell Commands], page 10.) However,
like all actions external to Dired, this does not update the display.

The #, ~ and . commands flag many files for deletion, based on their names. These
commands are useful precisely because they do not actually delete any files; you can remove
the deletion flags from any flagged files that you really wish to keep.

flags for deletion all files that appear to have been made by auto-saving (that is, files
whose names begin and end with ‘#’). ~ flags for deletion all files that appear to have been
made as backups for files that were edited (that is, files whose names end with ‘~’).

. (Period) flags just some of the backup files for deletion: only numeric backups that are
not among the oldest few nor the newest few backups of any one file. Normally dired-kept-
versions (not kept-new-versions; that applies only when saving) specifies the number of
newest versions of each file to keep, and kept-old-versions specifies the number of oldest
versions to keep. Period with a positive numeric argument, as in C-u 3 ., specifies the
number of newest versions to keep, overriding dired-kept-versions. A negative numeric
argument overrides kept-old-versions, using minus the value of the argument to specify
the number of oldest versions of each file to keep.

Chapter 1: Dired, the Directory Editor 10

1.5.5 Shell Commands on Marked files

You can run arbitrary shell commands on the marked files. If there is output, it goes to a
separate buffer.

! (dired-do-shell-command) Run a shell command on the marked files.

A command string is prompted for in the minibuffer. The list of marked files is appended
to the command string unless asterisks ‘*’ indicate the place(s) where the list should go.
Thus,

command -flags
is equivalent to
command -flags *

The filenames are inserted in the order they appear in the buffer. The file listed topmost
in the buffer will be the leftmost in the list.

Currently, there is no way to insert a real ‘*’ into the command.

As with all mark-using commands, if no files are marked or a specific numeric prefix arg
is given, the current or the next N files are used. The prompt mentions the file(s) or the
marker, as appropriate.

However, for shell commands, a zero argument is special. It means to run command on
each marked file separately:

cmd * |foo
results in

cmd F1 |foo; ...; cmd Fn |foo
Usually

cmd F1 ... Fn |foo
would be executed.

No automatic redisplay is attempted because Dired cannot know what files should be
redisplayed for a general shell command. For example, a ‘tar cvf’ will not change the
marked files at all, but rather create a new file, while a ‘ci —u -m'..."' %’ will probably
change the permission bits of all marked files.

Type 1 to redisplay just the marked files, or 1 on a directory headerline to redisplay just
that directory, or g to redisplay all directories.

The shell command has the top level directory as working directory, so output files
usually are created there instead of in a subdirectory, which may sometimes be surprising
if all files come from the same subdirectory. Just remember that an Emacs buffer can have
but one working directory, and this is the top level directory in Dired buffers.

Examples for shell commands:
e Type ! and
tar cvf foo.tar

to tar all marked files into a foo.tar file. Dired does not know that a new file has been
created and you have to type g to refresh the listing. If you have several subdirectories
in your Dired buffer, the names given to ‘tar’ will be relative to the top level directory,
and the output file foo.tar will also be created there.

Chapter 1: Dired, the Directory Editor 11

You can use

tar cvf - * | compress -c > foo.tar.Z
as an alternative to immediately compress the tar file.
Type 0 ! and

uudecode
to uudecode each of the marked files. Note the use of the zero prefix argument to apply
the shell command to each file separately (uudecode doesn’t accept a list of input files).
Type g afterwards to see the created files.
Type 0 ! and

uuencode * * >*x.uu
to uuencode each of the marked files, writing into a corresponding .uu file. Note the
use of the zero prefix argument to apply the shell command to each file separately.
Type g afterwards to see the created .uu files.
Type 1 ! and

mail joe@somewhere <*
to mail the current file (note the prefix argument ‘1’) to user ‘joe@somewhere’.
Here is a Dired shell command to execute the current file, assuming no other files are
marked (else just give the prefix 1 to !):

e
which will be expanded to ¢./cmd’, thus emd will be executed.. (Just ‘./’ would be
expanded to ‘./ cmd’, with an intervening SPC.) This will work even if you don’t have
. in your $PATH. If . is in your path (not a good idea, as you will find out if you dired
a directory containing a file named 1s), a single SPC as command would also work.

1.5.6 Compressing and Uncompressing

You can compress or uncompress the marked files. Dired refuses to compress files ending
in .Z (which are already compressed) or symbolic links (the link would be overwritten by a
plain, compressed file) and to uncompress files not ending in .Z.

o
U

(dired-do-compress) Compress the marked files.

(dired-do-uncompress) Uncompress the marked files.

1.5.7 Changing File Attributes

You can change the file attributes (mode, group, owner) of marked files.

M

(dired-do-chmod) Change the mode (also called “permission bits”) of the
marked files. This calls the ‘chmod’ program, thus symbolic modes like ‘g+w’
are allowed.

Multiple switches like ‘~fR g+w’ are not understood, though. Use ! (dired-do-
shell-command) for that.

(dired-do-chgrp) Change the group of the marked files.

(dired-do-chown) Change the owner of the marked files. This usually works for
the superuser only. It uses the program in the variable dired-chown-program
to do the change.

Chapter 1: Dired, the Directory Editor 12

1.5.8 Loading and Byte-compiling Emacs Lisp Files

You can load and byte-compile GNU Emacs Lisp files. Errors are caught and reported after
all files have been processed.

L (dired-do-load) Load the marked elisp files.
B (dired-do-byte-compile) Byte compile the marked elisp files.

1.5.9 Printing the Marked Files

P (dired-do-print) Print the marked (or next N) files. Uses the shell command
coming from variables 1pr-command and lpr-switches as default.

Since internally this is just a special case of dired-do-shell-command, you can
use ‘*’ and pipes like for shell command, e.g.,

(setq lpr-command: "1lwf")

(setq lpr-switches: '("-1 -m * | lpr -Palw"))
to print with the shell command ‘lwf -1 -m * | 1pr -Palw’, where ‘*’ will be
substituted by the marked files. The 1pr-buffer and lpr-region don’t know
about ‘*’ or ‘|’, though, only Dired does.

1.6 Commands That Do Not Use Marks

These are commands that visit files. See Section “Visiting” in The GNU Emacs Manual.

f (dired-advertised-find-file) Visits the file described on the current line.
It is just like typing C-x C-f and supplying that file name. If the file on this line
is a subdirectory, f actually causes Dired to be invoked on that subdirectory.

o (dired-find-file-other-window) Like f, but uses another window to display
the file’s buffer. The Dired buffer remains visible in the first window. This
is like using C-x 4 C-f to visit the file. See Section “Windows” in The GNU
Emacs Manual.

v (dired-view-file) Views the file described on this line using M-x view-file.
Viewing a file is like visiting it, but is slanted toward moving around in the file
conveniently and does not allow changing the file. See Section “Miscellaneous
File Operations” in The GNU Emacs Manual. Viewing a file that is a directory
goes to its headerline if it is in this buffer. Otherwise, it is displayed in another

buffer.

Commands to diff a file:

D (dired-diff) Compare file at point with another file (default: file at mark),
by running the system command ‘diff’. The other file is the first file given to
‘diff’.

M-~ (dired-backup-diff) Diff this file with its backup file. Uses the latest backup,

if there are several numerical backups. If this file is a backup, diff it with its
original. The backup file is the first file given to ‘diff’.

Other commands:

+ (dired-create-directory) Create a directory.

Chapter 1: Dired, the Directory Editor 13

W (dired-why) Pop up a buffer with error log output from Dired. All mark-using
commands log errors there. (Standard error from shell commands cannot be
logged separately, it goes into the usual shell command output buffer.) A group
of errors from a single command ends with a formfeed, so that you can use C-x
[(backward-page) to find the beginning of new error logs that are reported by
a command.

1.7 Subdirectories in Dired

Thise section explains how to insert (or expand) subdirectories in the same Dired buffer
and move around in them.

You can display subdirectories in your Dired buffer by using ‘-R’ in your Dired listing
switches. But you do not usually want to have a complete recursive listing in all your Dired
buffers. So there is a command to insert a single directory:

i (dired-maybe-insert-subdir) Insert this subdirectory into the same Dired
buffer. If it is already present, just move to it (type 1, dired-do-redisplay to
refresh it). Else inserts it as ‘1s -1R’ would have done. With a prefix arg, you
may edit the ls switches used for this listing. You can add ‘R’ to the switches to
expand the whole tree starting at this subdirectory. This function takes some
pains to conform to ‘ls -1R’ output. For example, it adds the headerline for
the inserted subdirectory.

The mark is dropped before moving, so C-x C-x takes you back to the old
position in the buffer.

Dired changes the buffer-local value of the variable page-delimiter to "\n\n", so
that subdirectories become pages. Thus, the page moving commands C-x [and C-x]
(backward-page and forward-page) can be used to move to the beginning (i.e., the head-
erlines) of subdirectories.

In addition, the following commands move around directory-wise, usually putting you
on a file line instead of on a headerline. For a mnemonic, note that they all look like rotated
versions of each other, and that they move in the direction they point to.

< (dired-prev-dirline) Goto previous directory file line.

> (dired-next-dirline) Goto next directory file line.

~

(dired-up-directory) Dired parent directory. Tries first to find its file line,
then its header line in this buffer, then its Dired buffer, finally creating a new
Dired buffer if necessary.

v (dired-view-file) When the current file is not a directory, view it. When file
is a directory, tries to go to its subdirectory.

This command is inverse to the
these two commands together.

command and it is very convenient to use

The following commands move up and down in the directory tree:
M-C-u (dired-tree-up) Go up to the parent directory’s headerline.

M-C-d (dired-tree-down) Go down in the tree, to the first subdirectory’s headerline.

Chapter 1: Dired, the Directory Editor 14

The following commands move forwards and backwards to subdirectory headerlines:

M-C-n (dired-next-subdir) Go to next subdirectory headerline, regardless of level.
M-C-p (dired-prev-subdir) Go to previous subdirectory headerline, regardless of
level.

1.8 Hiding Directories in Dired

Hiding a subdirectory means to make it invisible, except for its headerline. Files inside a
hidden subdirectory are never considered by Dired. For example, mark-using commands
will not “see” files in a hidden directory. Thus you can use hiding to temporarily exclude
subdirectories from operations without having to remove the markers.

The hiding commands toggle, that is they unhide what was hidden and vice versa.

$ (dired-hide-subdir) Hide or unhide the current subdirectory and move to
next directory. Optional prefix argument is a repeat factor.

= (dired-hide-all) Hide all subdirectories, leaving only their header lines. If
there is already something hidden, make everything visible again. Use this
command to get an overview in very deep directory trees or to move quickly to
subdirs far away.

1.9 Acknowledgement

I would like to thank

e Richard Stallman for providing a pre-release version of dired.el from Emacs 19, crit-
ical comments and many helpful suggestions

e Andy Norman for the collaboration that made Tree Dired and ange-ftp such a successful
combination

e Jamie Zawinski for insisting on and writing nested Dired format, and for lots of other
things

e Michael Ernst for the “omitting” code and helpful discussion about Dired design

e Hans Chalupsky for providing FTP service and writing dired-trns.el

e Roland McGrath for find-dired.el and bug fixes for the diffing commands

e Kevin Gallagher for sending me existing VMS Dired fixes

e Hal R. Brand for VMS support and porting his old dired fixes to Tree Dired

e Hugh Secker-Walker for writing dired-cd.el

e Tom Wurgler for ideas such as the dired-jump-back command

e Cengiz Alaettinoglu, who found more bugs in Tree Dired than anybody else (except

me)

and all other beta testers and people who reported bugs or just said “thanks”.

1.10 Dired Customization

You can customize Dired by setting some variables in your ~/.emacs file. Other variables
are intended to be configured when Dired is installed. Finally, there are so-called ‘hook’
variables.

Chapter 1: Dired, the Directory Editor 15

1.10.1 Customization of Dired

The following variables are for personal customization in your ~/.emacs file. For example,
include a line similar to the following

(setq dired-listing-switches "-Alt") ; sort on time, ignore . and ..
to set your favorite Dired listing switches.
dired-listing-switches
Default: "-al"
Switches passed to ‘1s’ for Dired. Must contain the ‘1’ option.

dired-trivial-filenames
Default: "~\\.\\.?$\\ [~#"

Regexp of files to skip when moving point to the first file of a new directory
listing. Nil means move to the subdirectory line, t means move to first file.

dired-marker-char
Default: 7% (‘?*’ is the Lisp notation for the character ‘*’.)

In Dired, character used to mark files for later commands.
This is a variable so that one can write things like

(let ((dired-marker-char ?7X))
;; great code using X markers ...

)

dired-del-marker
Default: 7D

Character used to flag files for deletion.

Usually, marking for commands and flagging for deletion are separate features.
(Internally they use the same marking mechanism.) You type d to flag with ‘D’
and x to delete the ‘D’-flagged files.
This explains how to make deletion behave just like a special case of the general
file marking feature, so that you type m to mark with ‘*’ (as usual) and d to
delete the ‘*’ (or next N) files: In your ~/.emacs, include
(setq dired-del-marker dired-marker-char) ; use * also for deletions
(setq dired-load-hook
(function
(lambda (O
;; other customizations here
;; let "d" do the actual deletion:
(define-key dired-mode-map "d" 'dired-do-delete))))
If you do not like that d defaults to the current file if there are no marks, replace
the define-key statement in dired-load-hook above with this one:

(define-key dired-mode-map "d" 'dired-do-deletions)
dired-shrink-to-fit
Default: (if (fboundp 'baud-rate) (> (baud-rate) search-slow-speed)
t)

Whether Dired shrinks the display buffer to fit the marked files.

Chapter 1: Dired, the Directory Editor 16

dired-no-confirm
Default: nil
If non-nil, list of commands Dired should not confirm. Confirmation for com-
mands that require an argument to be entered (like the shell command for !)
means a list of marked files is displayed in a pop-up buffer. Confirmation for
commands that do not require an argument (like compressing with C) means
you have to confirm by typing y or SPC.

Except nil, it can be a sublist of

' (byte-compile chgrp chmod chown compress copy delete hardlink load
move print shell symlink uncompress)

to suppress confirmation for just those commands.

dired-keep-marker-move
Default: t

If nil, moved files are not marked.

If t, moved marked files are marked with the same marker they had before
(maybe none if you used the prefix argument to specify the next N files).

If a character, moved files (marked or not) are marked with that character.

This also applies to the following, similar variables for copied, and hard or
symbolically linked files:

dired-keep-marker-copy
Default: 7C

dired-keep-marker-hardlink
Default: 7H

dired-keep-marker-symlink
Default: 7Y

dired-dwim-target
Default: nil
If non-nil, Dired tries to guess a default target directory: If there is a Dired
buffer displayed in the next window, use its current subdirectory, instead of the
current subdirectory of this Dired buffer.

The target is used in the prompt for file copy, move etc., See Section 1.5.1 [Copy
and Move Into a Directory]|, page 6.

dired-copy-preserve-time
Default: nil

If non-nil, Dired preserves the last-modified time in a file copy. (This works
on only some systems.) Use ¢ (dired-do-copy) with a zero prefix argument
to toggle its value. The prompt of copy commands will display ‘Copy [-p]l’
instead of just ‘Copy’ if preservation of file times is turned on.

dired-backup-if-overwrite
Default: nil

Non-nil if Dired should ask about making backups before overwriting files. Spe-
cial value 'always suppresses confirmation.

Chapter 1: Dired, the Directory Editor 17

1.10.2 Dired Configuration

The following variables should have already been installed correctly by your system man-
ager. If not, you can still set them in your ~/.emacs file.

dired-chown-program
Pathname of chown command, default "chown" (or "/etc/chown" on System
V derived systems.)

dired-ls-program
Absolute or relative name of the ‘1s’ program used by Dired, default "1s".
dired-ls-F-marks-symlinks
Set this to t if dired-Is-program with ‘-1F’ marks the symbolic link itself with
a trailing ‘@ (usually the case under Ultrix).
Example: If
1In -s foo bar; 1ls -F bar
gives
bar -> foo
set it to nil, if it gives
bar@ -> foo
set it to t.
Dired checks if there is really a @ appended. Thus, if you have a marking ‘1s’
program on one host and a non-marking one on another host, and do not care

about symbolic links which really end in a @, you can always set this variable
to t.

1.10.3 Dired Hooks

Hook variables can contain functions that are run at certain times in Dired.

dired-load-hook
Run after loading Dired. You can customize key bindings or load extensions
with this. For example:

(setq dired-load-hook

(function

(lambda (O
;; Load extras:
(load "dired-x")
;; How to define your own key bindings:
(define-key dired-mode-map " " 'scroll-up)
(define-key dired-mode-map "b" 'scroll-down))))

dired-mode-hook
Run at the very end of dired-mode, after most buffer local variables have been
initialized (e.g., default-directory and dired-directory), but before the
directory listing has been read in.
Do buffer local things here, for example:

(setq dired-mode-hook

Chapter 1: Dired, the Directory Editor 18

(function
(lambda O
(dired-extra-startup) ;; dired-extra support
;; How to set (local) variables in each new Dired buffer:
(setq case-fold-search t)
(setq truncate-lines t))))

Since the listing has not yet been inserted you could still change dired-actual-
switches. For example, if you use ange-ftp.el, you might want to replace
the ‘A’ with the ‘-a’ switch, depending on whether default-directory cor-
responds to a System V hosts that does not understand all BSD ‘1s’ switches.
The dired.README file gives an example. If you set dired-actual-switches
remember that you may also have to set dired-sort-mode to the appropriate
string so that the modeline looks right.

Do not set dired-mode-hook inside your dired-load-hook, simply set it some-
where in your ~/.emacs (before Dired is loaded, if you explicitly load Dired).
This is so that extensions packages loaded via the load hook can add things to
the dired-mode-hook at the front or at the end, as they see fit.

In case you set truncate-lines to t as in the above example, here is a function
to toggle the value of truncate-lines, in Dired and other buffers:

(defun set-truncate-lines ()
"Toggle value of truncate-lines and refresh window display.
(interactive)
(setq truncate-lines (not truncate-lines))
;3 now refresh window display (an idiom from simple.el):
(save-excursion
(set-window-start (selected-window)
(window-start (selected-window)))))

You could bind it to C-x 4 $:
(define-key ctl-x-4-map "$" 'set-truncate-lines)

It is sometimes useful to toggle truncate-lines in Dired buffers to make long
filenames completely visible and get the listing properly aligned again.

dired-before-readin-hook
This hook is run before a dired buffer is newly read in (created or reverted).

dired-after-readin-hook
After each listing of a file or directory, this hook is run with the buffer narrowed
to the listing.

The dired-subdir-alist has already been updated so that the usual Dired
functions like dired-get-filename work. It is possible to modify the buffer
with this hook. The package dired-x.el does this to implement omitting
certain uninteresting files from a Dired buffer. Under X11, highlighting of
certain files is also possible (see package dired-x11.el).

19

2 Tree Dired Extra features

Numerous “extra” features are available, such as omitting certain files from listings, mini-
buffer history, RCS related commands, and more.

2.1 Tree Dired Extra Features
The rest of this manual describes the extra features provided by the file dired-x.el and
some other files.

To take advantage of these features, you must load the file and set some variables and
hooks. See the accompanying dired-x.README file for details and a template of code to
insert in your .emacs.

Miscellanous features not fitting anywhere else:
Variables:
dired-find-subdir
Default: nil

If non-nil, Dired does not make a new buffer for a directory if it can be found
(perhaps as subdirectory) in some existing Dired buffer.

If there are several Dired buffers for a directory, the most recently used is chosen.

Dired avoids switching to the current buffer, so that if you have a normal and
a wildcard buffer for the same directory, C-x d RET will toggle between those

two.

M-g (dired-goto-file) Goto file line of a file (or directory).

M-G (dired-goto-subdir) Goto headerline of an inserted directory. This commands
reads its argument with completion over the names of the inserted subdirecto-
ries.

& (dired-do-background-shell-command) Run a shell command on the marked

files, in the background. This requires background.el from Olin Shiver’s
comint package to work. Note that you can type input to the command in
its buffer.

W (dired-copy-filename-as-kill) The w command puts the names of the
marked (or next N) files into the kill ring, as if you had killed them with
C-w. With a zero prefix argument N=0, use the complete pathname of each
file. With a raw (just C-u) prefix argument, use the relative pathname of each
marked file. As a special case, if no prefix argument is given and point is on a
directory headerline, it gives you the name of that directory, without looking
for marked files.

The list of names is also stored onto the variable dired-marked-files for use,
e.g., in an ESC ESC (eval-expression) command.

As this command also displays what was pushed onto the kill ring you can use it
to display the list of currently marked files in the echo area (unless you happen
to be on a subdirectory headerline).

Chapter 2: Tree Dired Extra features 20

You can then feed the file name to other Emacs commands with C-y. For
example, say you want to rename a long filename to a slightly different name.
First type w to push the old name onto the kill ring. Then type r to rename it
and use C-y inside r’s minibuffer prompt to insert the old name at a convenient
place.

T (dired-do-toggle) Toggle marks. That is, currently marked files become un-
marked and vice versa. Files marked with other flags (such as ‘D’) are not

(3]

affected. The special directories ‘.” and ‘..” are never toggled.

2.2 Minibuffer History for Dired Shell Commands

If dired-x.el determines at load-time that the Gmhist package is available, the Dired shell
commands ! and & maintain a history of commands. Use M-p and M-n to scroll through
them while you are prompted in the minibuffer for a shell command. See Section “Gmbhist
Keys in the Minibuffer” in The Gmhist Manual, for more info.

Gmbhist also handles defaults:

dired-dangerous—-shell-command
Default: "rm"
Regexp for dangerous shell commands that should never be the default. It is
deliberately chosen to match ‘rm’ anywhere in the command, e.g. in ‘rmdir’.

2.3 Insert all marked subdirectories

I (dired-do-insert-subdir) Insert all marked subdirectories that are not al-
ready inserted. Non-directories are silently ignored.

Thus type /I to insert one more level of subdirectories. You can repeat this
until no new directories are inserted to fully expand the directory tree in this
buffer. As a faster alternative, use the prefix argument for C-x d (dired) to
add ‘R’ to the switches.

2.4 Dynamic Marker Characters

You can change the marker character from its usual value * to something else. Use this to
mark a different set of files while keeping the information on the already marked files. You
can nest several marker characters. The current stack of marker characters is displayed in
the Dired mode line, and all prompts of mark-using commands mention to which marker

they apply.

((dired-set-marker-char) Set the marker character to something else. Use)
to restore the previous value.

) (dired-restore-marker-char) Restore the marker character to its previous
value. Uses dired-default-marker if the marker stack is empty.

Instead of using m inside a (...), you can mark files “in passing” with, say ‘Z’ without
changing the current marker character. You will probably later use (to temporarily make
‘Z’ to the marker and do something on the ‘Z’-files, and then return using).
dired-mark-keys

Default: ' ("z")

Chapter 2: Tree Dired Extra features 21

List of keys (strings) that insert themselves as file markers.

2.5 Omitting Files in Dired

Omitting a file means removing it from the directory listing. Omitting is useful for keeping
Dired buffers free of uninteresting files (for instance, auto-save, auxiliary, backup, and
revision control files) so that the user can concentrate on the interesting files. Like hidden
files, omitted files are never seen by Dired. See Section “Hiding in Dired” in Tree Dired
Manual. Omitting differs from hiding in several respects:

e Omitting works on individual files, not on directories; an entire directory cannot be
omitted (though each of its files could be).

e Omitting is wholesale; if omitting is turned on for a dired buffer, then all “uninteresting”
files listed in that buffer are omitted. The user does not omit (or unomit) files one at
a time.

e Omitting can be automatic; uninteresting file lines in the buffer can be removed before
the user ever sees them.

e Marked files are never omitted.

M-o (dired-omit-toggle) Toggle between displaying and omitting “uninteresting”
files. With a prefix argument, don’t toggle and just mark the files, but don’t
actually omit them.

In order to make omitting work, you must have dired-omit-expunge on your dired-
after-readin-hook, and you must call dired-omit-startup (or dired-extra-startup,
which calls dired-omit-startup) in your dired-mode-hook. Simply loading dired-x.el
inside dired-load-hook takes care of all this.

The following variables can be used to customize omitting.

dired-omit-files-p
Default: nil
If non-nil, “uninteresting” files are not listed. Uninteresting files are those whose
filenames match regexp dired-omit-files, plus those ending with extensions
indired-omit-extensions. M-o (dired-omit-toggle) toggles its value, which
is buffer-local. Do

(setq dired-omit-files-p t)

inside your dired-mode-hook to have omitting initially turned on in every
Dired buffer. Since dired-x.el prepends the form ‘(dired-extra-startup)’
to what you put yourself in your dired-mode-hook, the setq will take place
after dired-omit-files-p has already been made local to the current Dired
buffer, so modelines of non-dired buffers are not affected. For this to work you
shouldn’t set dired-mode-hook inside dired-load-hook, but directly in your
~/.emacs (before Dired is loaded, if you explicitly load Dired).

You can then use M-o to unomit in that buffer.
dired-omit-files
Default: "~#\\|\\.$"

Filenames matching this buffer-local regexp will not be displayed. This only
has effect when dired-omit-files-p is t.

Chapter 2: Tree Dired Extra features 22

The default value omits the special directories . and .. and autosave files (plus
other files ending in “.”).

dired-omit-extensions

Default: The elements of completion-ignored-extensions, latex-
unclean-extensions, bibtex-unclean-extensions and texinfo-unclean-
extensions.

If non-nil, a list of extensions (strings) to omit from Dired listings. Its format
is the same as that of completion-ignored-extensions.

dired-omit-localp
Default: 'no-dir
The Iocalp argument dired-omit-expunge passes to dired-get-filename. If
it is 'no-dir, omitting is much faster, but you can only match against the
non-directory part of the filename. Set it to nil if you need to match the
whole pathname or t to match the pathname relative to the buffer’s top-level
directory.

dired-omit-marker-char
Default: C-o

Temporary marker used by by Dired to implement omitting. Should never be
used as marker by the user or other packages. There is one exception to this
rule: by doing

(setq dired-mark-keys "\C-o")

;; i.e., the value of dired-omit-marker-char

;5 (which is not defined yet)

anywhere in your ~/.emacs, you will bind the C-o key to insert a C-o marker,
thus causing these files to be omitted in addition to the usually omitted files.
Unfortunately the files you omitted manually this way will show up again after
reverting the buffer, unlike the others.
To avoid seeing RCS files and the RCS directory, do
(setq dired-omit-files "\\.$\\I[#\\|"RCS$\\|,v$")

This assumes dired-omit-localp has its default value of 'no-dir to make the ~-
anchored matches work. As a slower alternative, with dired-omit-localp set to nil,
you can use / instead of ~ in the regexp.

If you use tib, the bibliography program for use with TEX and LaTgX, you might want
to omit the INDEX and the -t.tex files:

(setq dired-omit-files "\\.$\\|#\\|“INDEXS\\|-t\\.tex$")

2.6 Advanced Mark Commands

M-((dired-mark-sexp) Mark files for which predicate returns non-nil. With a
prefix argument, unflag those files instead.

The predicate is a lisp expression that can refer to the following symbols:

inode [integer] the inode of the file (only for ‘1s -i’ output)

Chapter 2: Tree Dired Extra features 23

M-M

C-m C-c

C-m C-d

S [integer] the size of the file for ‘1s -s’ output (usually in blocks or,
with ‘-k’, in KBytes)

mode [string] file permission bits, e.g., ‘"-rw-r--r--""’

nlink [integer] number of links to file

uid [string] owner

gid [string] group (If the gid is not displayed by ‘1s’, this will still be
set (to the same as uid))

size [integer] file size in bytes

time [string] the time that ‘1s’ displays, e.g., ‘"Feb 12 14:17"’

name [string] the name of the file

sym [string] if file is a symbolic link, the linked-to name, else ‘"""’

For example, use
(equal 0 size)
to mark all zero length files.

To find out all not yet compiled Emacs lisp files in a directory, dired all .el
files in the lisp directory using the wildcard ‘*.el’. Then use M-(with

(not (file-exists-p (concat name "c")))

to mark all .el files without a corresponding .elc file.

(dired-do-unmark) Unmark marked files by replacing the marker with another
character. The new character defaults to a space, effectively unmarking them.

(dired-mark-rcs-files) Mark all files that are under RCS control. With
prefix argument, unflag all those files. Mentions RCS files for which a working
file was not found in this buffer. Type W (dired-why) to see them again.

(C-m C-c is the suggested binding for dired-mark-files-compilation-
buffer, it is not bound by default.) Mark the files mentioned in the
‘*compilation#*’ buffer. With an argument, you may specify the other buffer
and your own regexp instead of compilation-error-regexp. Use ‘7.+§’
(the default with a prefix argument) to match complete lines. In conjunction
with narrowing the other buffer you can mark an arbitrary list of files, one
per line, with this command. If your regexp contains a subexpression, i.e.
‘N(...\)’, that subexpression is taken for the file name, else the whole match
is used. Thus you can easily strip pre- and suffixes from filenames by using
‘prefix\ (.+\)postfix’ as regexp.

This is especially useful for a list of files obtained from M-x grep or output from
a similar shell command.

(C-m C-d is the suggested binding for dired-mark-files-from-other-dired-
buffer, it is not bound by default.) Mark those files in this Dired buffer that
have the same name as the marked files in the Dired buffer in the other window.

In short, mark the corresponding files from the other Dired buffer.

Chapter 2: Tree Dired Extra features 24

F (dired-do-find-file) Visit all marked files at once, and display them simul-
taneously. If you want to keep the dired buffer displayed, type C-x 2 first. If
you want just the marked files displayed and nothing else, type C-x 1 first.

The current window is split across all files. Remaining lines go to the last
window.

The number of files that can be displayed this way is restricted by the height
of the current window and the variable window-min-height.

dired-mark-extension
Mark all files with a certain extension for use in later commands. A ‘.’ is not
automatically prepended to the string entered.
When called from lisp, extension may also be a list of extensions and an optional
argument marker-char specifies the marker used.

dired-flag-extension
Flag all files with a certain extension for deletion. A ‘.’ is not automatically
prepended to the string entered.

dired-clean-patch
Flag dispensable files created by the ‘patch’ program for deletion. See variable
patch-unclean-extensions.

dired-clean-tex
Flag dispensable files created by TEX, LaTEX and ‘texinfo’ for deletion. See
variables tex-unclean-extensions, texinfo-unclean-extensions, latex-—
unclean-extensions and bibtex-unclean-extensions.

Variables used by the above cleanup commands (and in the default value for variable
dired-omit-extensions):

patch-unclean-extensions

Default: ' (".rej" ".orig")

List of extensions of dispensable files created by the ‘patch’ program.
tex-unclean-extensions

Default: ' (".toc" ".log" ".aux")

List of extensions of dispensable files created by TEX.
texinfo-unclean-extensions

Default: 1 (Il . CP" n . CpS" n .fnll n .fnS" n .kyll n .kysll n .pgll n -PgS" n .tpll
n .tpsll n .Vr" n .VI'S")

List of extensions of dispensable files created by texinfo.

latex—-unclean-extensions
Default: ' (".idx" ".lof" ".lot" ".glo")

List of extensions of dispensable files created by LaTeX.

bibtex-unclean-extensions
Default: ' (".blg" ".bbl")

List of extensions of dispensable files created by BibTeX.

Chapter 2: Tree Dired Extra features 25

2.7 Virtual Dired

Using Virtual Dired means putting a buffer with Dired-like contents in Dired mode. The
files described by the buffer contents need not actually exist. This is useful if you want to
peruse an ‘ls -1R’ output file, for example one you got from an FTP server. You can use
all motion commands usually available in Tree Dired. You can also use it to save a Dired
buffer in a file and resume it in a later session.

Type M-x dired-virtual to put the current buffer into virtual Dired mode. You will
be prompted for the top level directory of this buffer, with a default value guessed from
the buffer contents. To convert the virtual to a real Dired buffer again, type g (which calls
dired-virtual-revert) in the virtual Dired buffer and answer ‘y’. You don’t have to do
this, though: you can relist single subdirectories using 1 (dired-do-redisplay) on the
subdirectory headerline, leaving the buffer in virtual Dired mode all the time.

The function ‘dired-virtual-mode’ is specially designed to turn on virtual Dired mode
from the auto-mode-alist. To automatically edit all *.dired files in virtual Dired mode,
put this into your ~/.emacs:

(setq auto-mode-alist (cons '("["/]J\\.dired$" . dired-virtual-mode)
auto-mode-alist))

The regexp is a bit more complicated than usual to exclude ".dired" local variable files.

2.8 Multiple Dired Directories and Non-Dired Commands

An Emacs buffer can have but one working directory, stored in the buffer-local variable
default-directory. A Dired buffer may have several subdirectories inserted, but still has
but one working directory: that of the top level Dired directory in that buffer. For some
commands it is appropriate that they use the current Dired directory instead of default-
directory, e.g., find-file and compile.

A general mechanism is provided for special handling of the working directory in special
major modes:

default-directory-alist
Default: ((dired-mode . (dired-current-directory)))

Alist of major modes and their opinion on default-directory, as a lisp ex-
pression to evaluate. A resulting value of nil is ignored in favor of default-
directory.

default-directory
Function with usage like variable default-directory, but knows about the
special cases in variable default-directory-alist.

The following dired-x commands take special care about the current Dired directory:

find-this-file
Bind this to C-x C-f as a replacement for find-file that will prompt for the
filename within the current Dired subdirectory, not the top level directory.

find-this-file-other-window
Bind this to C-x 4 C-f as a replacement for find-file-other-window.

Chapter 2: Tree Dired Extra features 26

dired-smart-shell-command
Like function shell-command, but in the current Tree Dired directory. Bound
to M-! in Dired buffers.

dired-smart-background-shell-command
Like function background, but in the current Tree Dired directory. Bound to
M-& in Dired buffers.

dired-jump-back
(Suggested binding C-x j) Jump back to dired: If in a file, dired the current
directory and move to file’s line. If in Dired already, pop up a level and goto
old directory’s line. In case the proper Dired file line cannot be found, refresh
the Dired buffer and try again.

dired-jump-back-other-window
(Suggested binding C-x 4 j) Like dired-jump-back, but to other window.

dired-vm (V) Run VM on this file (assumed to be a UNIX mail folder). Further ‘v’
commands from within VM in that folder will default to the folder’s directory,
not the usual vm-folder-directory.

If you give this command a prefix argument, it will visit the folder read-only.
This only works in VM 5, not VM 4.

If the variable dired-vm-read-only-folders is t, dired-vm will visit all folders
read-only. If it is neither nil nor t, e.g., the symbol 'if-file-read-only, only
files not writable by you are visited read-only. This is the recommended value
if you run VM 5.

dired-rmail
Run Rmail on this file (assumed to be mail folder in Rmail/BABYL format).

2.9 Local Variables for Dired Directories

When Dired visits a directory, it looks for a file whose name is the value of variable dired-
local-variables-file (default: .dired). If such a file is found, Dired will temporarily
insert it into the Dired buffer and run hack-local-variables. See Section “Local Variables
in Files” in The GNU Emacs Manual. You can set dired-local-variables-file to nil
to suppress this.

For example, put

Local Variables:

dired-actual-switches: "-lat"
dired-sort-mode: " by date"
End:

into a .dired file of a directory to sort by date only in that directory. Note that since
dired-hack-local-variables is run inside dired-mode-hook the modeline has already
been set, so you have to update that for yourself by setting dired-sort-mode in addition
to changing the switches.

Chapter 2: Tree Dired Extra features 27

2.10 Making Relative Symbolic Links in Dired

In GNU Emacs version 18, the built-in function make-symbolic-1link always calls expand-
file-name on its arguments, so relative symlinks (e.g. ‘foo => ../bar/foo’) are impossible
to create.

Dired Extra uses call-process and ‘In -s’ for a workaround.

dired-make-symbolic-link
Arguments namel name2 and optional ok-if-already-exists. Create file name2,
a symbolic link pointing to namel (which may be any string whatsoever and
is passed untouched to ‘1n -s’). ok-if-already-exists means that name2 will be
overwritten if it already exists. If it is an integer, user will be asked about this.
On error, signals a file-error.

dired-make-relative-symlink
Three arguments: filel file2 and optional ok-if-already-exists. Make a symbolic
link file2 (pointing to filel). The link is relative (if possible), for example

(dired-make-relative-symlink "/vol/tex/bin/foo"
"/vol/local/bin/foo")

results in a link

/vol/local/bin/foo -> ../../tex/bin/foo

dired-do-relsymlink
(binding S) Symbolically link all marked (or next N) files into a directory, or
make a symbolic link to the current file. This creates relative symbolic links
like
foo -> ../bar/foo
not absolute ones like

foo -> /ugly/path/that/may/change/any/day/bar/foo

dired-do-relsymlink-regexp
(%#S) Symbolically link all marked files containing regexp to newname, using
relative (not absolute) names. See functions dired-rename-regexp and dired-
do-relsymlink for more info.

2.11 Letting Dired Guess What Shell Command to Apply

Based upon the name of a filename, Dired tries to guess what shell command you might
want to apply to it. For example, if you have point on a file named foo.tar and you press
! Dired will guess you want to ‘tar xvf’ it and suggest that as the default shell command.

If you are using the gmhist package (See Section 2.2 [Dired Minibuffer History], page 20),
the default will be mentioned in brackets and you can type M-p to get the default into the
minibuffer so that you can edit it, e.g., changing ‘tar xvf’ to ‘tar tvf’. If there are several
commands for a given file, e.g., ‘xtex’ and ‘dvips’ for a .dvi file, you can type M-p several
times to see each of the matching commands.

Dired only tries to guess a command for a single file, never for a list of marked files.

Chapter 2: Tree Dired Extra features 28

dired-auto-shell-command-alist-default
Predefined rules for shell commands. Set this to nil to turn guessing off. The
elements of dired-auto-shell-command-alist (defined by the user) will over-
ride these rules.

dired-auto-shell-command-alist
If non-nil, an alist of file regexps and their suggested commands overriding the
predefined rules in dired-auto-shell-command-alist-default.

Each element of the alist looks like
(regexp command. . .)

where each command can either be a string or a lisp expression that evaluates
to a string. If several COMMANDs are given, all will temporarily be pushed
on the history.

These rules take precedence over the predefined rules in the variable
dired-auto-shell-command-alist-default (to which they are prepended
when dired-x is loaded).

You can set this variable in your ~/.emacs. For example, to add rules for ‘. foo’
and ‘.bar’ file extensions, write

(setq dired-auto-shell-command-alist
(list
(l1ist "\\.foo$" "foo-command");; fixed rule
;3 possibly more rules...
(list "\\.bar$";; rule with condition test
'"(if condition
"bar-command-1"
"bar-command-2"))))

This will override any predefined rules for the same extensions.
dired-guess-have-gnutar
Default: nil

If non-nil, name of the GNU tar executable (e.g., ‘"tar"’ or ‘"gnutar"’). GNU
tar’s ‘z’ switch is used for compressed tar files. If you don’t have GNU tar, set
this to nil: a pipe using ‘zcat’ is then used.

2.12 Filename Transformers for Dired Shell Commands

File name transformers are functions that take a filename (a string) as an argument and
transform it into some other string (e.g., a filename without an extension). This package
makes transformers available in Dired shell commands.

For example, running the Dired shell command (type ! or M-x dired-do-shell-
command)

echo * [b] [db]
would list the full name, the basename, and the absolute basename of each marked file.

Each transformer is associated with a dispatch character. The associations are stored
in a keymap for fast and easy lookup. The dispatch character is used to activate the

Chapter 2: Tree Dired Extra features 29

associated transformer function at a particular position in a shell command issued in Dired.
The dispatch character must be enclosed in brackets to distinguish it from normal letters.

To take advantage of this package, simply load it after loading Dired, e.g., in your dired-
load-hook. You can then use transformers like "[b]" for the basename in your Dired shell
commands (see below).

You can define your own transformers using the macro dired-trans-define.

dired-trans-define
Macro that assigns the transformer function (lambda (file) body) to char (a
character or string). body must return a string: the transformed file.

Several transformers are predefined:

7 returns the unmodified filename (equivalent to ‘[dbe]’).

‘n’ returns the Name component of a filename without directory information

‘d’ returns the Directory component of a filename

‘v’ returns the Basename of a filename, i.e., the name of the file without directory

and extension (see variable dired-trans-re-ext) A basename with directory
component can be obtained by ‘[db]’.

‘e’ returns the Extension of a filename (i.e., whatever dired-trans-re-ext splits
off)

‘v’ returns a file without directory and without ,v suffixes if any.

‘z’ returns a file without directory and without .Z suffixes if any.

The following variables can be used to customize dired-trns.el:
dired-trans-re-ext
Default: "\\. [".1%\\(\\.Z\\)?$"
The part of a filename matching this regexp will be viewed as extension.
dired-trans-starters
Default: "[#[1"
User definable set of characters to be used to indicate the start of a transformer
sequence.
dired-trans-enders
Default: "[J# 1"

User definable set of characters to be used to indicate the end of a transformer
sequence.

2.13 Changing the Working Directory for Dired Shell
Commands

The package dired-cd.el permits the working directory of the Dired shell commands
! (dired-do-shell-command) and & (dired-do-background-shell-command) to be the
files’ subdirectory under certain circumstances. Loading this extension does not change the
behavior of Dired until the variables dired-cd-same-subdir and/or dired-cd-on-each
are non-nil.

Chapter 2: Tree Dired Extra features 30

If dired-cd-same-subdir is non-nil and if all the selected files (marked, non-zero nu-
meric argument, etc.) are in the same subdirectory, then dired-do-shell-command and
dired-do-background-shell-command cause the shell to perform a ‘cd’ into that direc-
tory before the commands are executed. Also, the selected filenames are provided to the
command without any directory components.

If dired-cd-on-each is non-nil and if the ‘on-each’ option is specified (numeric argu-
ment of zero), then ! (dired-do-shell-command) and & (dired-mark-background-shell-
command) use a subshell to perform a ‘cd’ into the subdirectory of each file before the com-
mands on that file are executed. Also, each filename is provided to the command without
any directory components. Note that this behavior occurs regardless of whether the files
are all in the same directory or not.

After the above ‘cd’ wrapping has occured, the existing dired-shell-stuff-it is used
to do the actual file-name quoting and substitution into the command. Thus, custom
versions of this procedure should work, e.g., the ‘dired-trans’ package will transform
commands correctly. However, since filenames lack any directory components, features that
use the directory components will fail, e.g. the ‘[d]’ transform specifier will be empty.

To use this package, load it in your dired-load-hook. Do
(setq dired-cd-same-subdir t)
and perhaps
(setq dired-cd-on-each t)

in your ~/.emacs. By default, dired-cd doesn’t change the behavior of Dired when it is

loaded.

If dired-cd-same-subdir is non-nil, then the shell commands ‘cd’ to the appropriate
directory if all the selected files are in that directory; however, on-each behavior (with zero
prefix argument) is not changed.

If dired-cd-on-each is non-nil, then each instance of the command for an on-each shell
command runs in the file’s directory regardless of whether the files are all in the same
directory.

2.14 Nested Dired format

[NO DOCUMENTATION YET]
This is still buggy, See Appendix B [Dired Known Problems|, page 34.

2.15 Feeding Find Output to Dired

The find-dired command runs the ‘find’ command in a buffer and starts Dired on the
inserted file lines, even while ‘find’ is still running. For example, with ‘~type d’ as argu-
ment, you will get a Dired buffer that contains all subdirectories of a given directory, but
none of the other files.

Note that ‘find’ just gives you file lines, not inserted subdirectories with associated
headerlines as repeated use of the i (dired-maybe-insert-subdir) command would. Also,
the names contain slashes if they are in a subdirectory, which never occurs in a normal Dired
buffer. Dired understands these names anyway and you can for example type f on such lines
as usual. However, while ‘find’ is still running you shouldn’t type i to insert subdirectories,

Chapter 2: Tree Dired Extra features 31

since new ‘find’ output is always appended at the end. Use f or o instead to dired the
specific subdirectory in a new Dired buffer. After ‘find’ has finished (as indicated by a
message and the modeline) all Dired commands work as usual.

find-dired
Run ‘£ind’ on a directory dir, with find arguments args, and go into dired-mode
on a buffer of the output. The command run (after changing into dir) is

find . \(args \) -1s
find-name-dired
Search dir recursively for files matching the globbing pattern pattern, and run

Dired on those files. pattern is a shell wildcard (not an Emacs regexp) and need
not be quoted. The command run (after changing into dir) is

find . -name 'pattern' -ls
find-grep-dired
Find files in directory dir containing a regexp arg and start Dired on output.
The command run (after changing into dir) is

find . -exec grep -s arg {} \; -1ls

32

Appendix A Dired Internals

This is a short introduction about how Dired’s Tree and Mark features work. You are
encouraged to read the code (dired.el) for more information.

A.1 Tree Dired Internals

In Tree Dired, instead of just one directory, all or part of the directory tree starting at
the top level directory (the working directory or default-directory of the buffer) may
be in a Dired buffer. Each file line belongs to exactly one of those subdirectories. After
the 1s program has inserted its output, Dired parses the buffer once to find out where
the subdirectory boundaries are and saves them in the variable dired-subdir-alist. The
beginning of the headerline inserted by ls serves as boundary between subdirectories.

Subsequent i (dired-maybe-insert-subdir) commands update this alist and insert the
appropriate headerline. Each retrieval of the filename on the current line first extracts the
basename (assuming a more or less standard 1s output format), and then function dired-
current-directory looks up the current Dired directory in dired-subdir-alist. The
lookup is keyed on buffer position, as each buffer position is between exactly two subdirec-
tory boundaries. (The end of the buffer serves as an implicit subdirectory boundary.)

dired-subdir-alist
Association list of subdirectories and their buffer positions:

((lastdir . lastmarker) ... (default-directory . firstmarker)).

The markers point right before the beginning of the line, so that they separate
subdirectories adjacent in the buffer. The directories must be in the form
returned by file-name-as-directory.

dired-subdir-regexp

Value: "~ \\([" \n\r]+\\)\\(:\\)[\n\r]"

Regexp matching a maybe hidden subdirectory line in ‘1s -1R’ output. Subex-
pression 1 is subdirectory proper, no trailing colon. The match starts at the
beginning of the line and ends after the end of the line (‘\n’ or ‘\r’). Subex-
pression 2 must end right before the ‘\n’ or \r. This is so that Dired can easily
check whether a subdirectory is hidden or not: hidden lines end with ‘\r’ (C-m)
instead of a newline.

This regexp used to be "~ . \\(/ ["\n\r]*\\)\\ (:\\) [\n\r]", allowing spaces,
but disallowing relative filenames (which occur when browsing ls -IR listing in
virtual Dired mode, so I changed it).

Note that "~. \\(["\n\rJ+\\)\\ (:\\) [\n\r]" (desirable since it allows both
spaces and relative names) will not always work: if you have a file that ends in
a colon, its whole line (including permission bits, date etc.) would be mistaken
for a subdirectory headerline when parsing ‘1s -1R’ output.

dired-subdir-regexp is only relevant for parsing ‘ls -1R’ output. If Dired
inserts subdirectories itself (using dired-insert-subdir), they will always be
absolute and there is no restriction on the format of filenames, e.g., they can
contain spaces.

Appendix A: Dired Internals 33

A.2 Dired Mark Internals

This is a short overview about how marking files and retrieving marked files in Dired works.

1s output is indented two spaces two make room for an optional marker character in
front of each file line. Marking simply replaces the first space with the marker character,
usually * or, for deletions, D. Indenting just by one would leave the markers adjacent to the
permission bits.

dired-mark-if
The macro dired-mark-if is used internally to mark files matching certain
criteria. It takes two arguments, the predicate, a lisp expression evaluating
non-nil on file lines to be marked, and msg, a message to be displayed while
scanning the buffer. msg may be nil to suppress the message.

dired-mark-map
To operate on the marked files, all internal Dired functions ultimately call the
macro dired-mark-map. It takes two arguments, body and arg, plus an optional
argument show-progress:

Perform body with point somewhere on each marked line (inside a save-
excursion) and return a list of body’s results. If no marked file could be
found, execute body on the current line.

If arg is an integer, use the next arg (or previous -arg, if arg<0) files instead of
the marked files. In that case point is dragged along. This is so that commands
on the next ARG (instead of the marked) files can be chained easily. Note that
for positive ARG point is left on the first file not operated upon, for negative
on the last file operated upon

If arg is otherwise non-nil, use current file instead.

If optional third argument show-progress evaluates to non-nil, we redisplay the
Dired buffer after each file is processed. No guarantee is made about the position
on the marked line. body must ensure this itself if it depends on this. Search
starts at the beginning of the buffer, thus the car of the list corresponds to the
line nearest to the buffer’s bottom. This is also true for (positive and negative)
integer values of arg. The body should not be too long as it is expanded four
times.

A common case is to retrieve the names of all marked files:

dired-mark-get-files

Return the marked files as list of strings. The list is in the same order as the
buffer, that is, the car is the first marked file. Values returned are normally
absolute pathnames. Optional argument localp equal to no-dir means return
the filename proper only, with no directory information; any other non-nil value
means make them relative to default-directory. Optional second argument arg
forces use of other files. If arg is an integer, use the next arg files. If arg is
otherwise non-nil, use the current file.

34

Appendix B Known Problems with Dired

There are some problems with Dired that are either not Dired’s fault, hard to fix or not
worth fixing.

e Renaming directories usually works fine (all affected Dired and file buffers are updated),
but moving a directory between different filesystems (those on different hard disks or
different partitions) does not work: it creates a plain target file containing the contents
of the original directory (inodes and filenames) or fails completely.

Unfortunately Emacs’ builtin function rename-file does not give you a clear er-
ror message like ‘cross-device link attempted’, but rather a spurious (file-error
"Removing old name" "not owner"), at least in Emacs 18.55.

On some systems renaming a directory always fails (even within the same filesystem)
with the spurious ‘not owner’ error.

e If foo is a symlink to a non-existing file, (file-exists-p "foo") returns nil. Thus,
Dired will overwite such (strange) kinds of symlinks without noticing.

Dired could test both file-symlink-p and file-exists-p, but this would slow down
all file operations to catch a very rare case.

e Copying a directory does not work - it results in a zero-length target file.
This comes from Emacs’ copy-file function, not from Dired.

If you really want to copy a directory (recursively), use ‘!" and your favorite shell
command to do it (e.g. cp -R or cp -1).

e Initial spaces in a filename are not recognized. If I could be sure that all ‘1s’ programs
insert exactly one space between the time and the filename, I could easily fix this. But
‘1s’ programs tend to vary in their amount of white space, and even with one ‘1s’
program there is a difference between year and clocktime formats

drwxr-xr-x 2 ab027 thp 512 Aug 13 1990 thp/
drwxr-xr-x 4 ab027 thp 512 Feb 3 21:59 ./
If your ‘1s’ supports the ‘-b’ switch and quotes spaces with that switch, simply add
‘b’ to your dired-listing-switches. See Section 1.3 [Listing Files in Dired], page 2.
Spaces anywhere but at the beginning do work.

e In general, only commands that may have targets outside of the current directory tree
update other buffers (copy, move and link commands).

Especially, deletions, (un)compress, chmod/chgrp/chown update only the current
buffer.

e Some compress programs make output even if all goes well. Dired takes output as a
sign of trouble and assumes that the subprocess failed.

Redefine function dired-check-process-checker suitably to look closer at the gen-
erated output. In Emacs 19, the exit status of compress will be checked.

e Aliases like ‘rm -i’ for ‘rm’ or ‘ls -F’ for ‘ls’ can cause problems in Dired’s (and
Emacs’) shell command. (Aliases for ‘1s’ only matter if you dired wildcards, because
only then the shell is used to run ‘1s’.) Csh expands aliases only for interactive shells,
which is probably what you want. In Bash, you can achieve this by testing PS1 in your
~/.bashrc:

" .bashrc' file

Appendix B: Known Problems with Dired 35

this test fails when invoked by rsh

if ["${PS1-no}" != "no"] # is this an interactive shell?
then

~/.bash_alias # if so, source aliases
fi

e Directory names starting with - (a minus) may lose when they are to be created or
removed. If you care about this, and your rmdir and mkdir understand about --
meaning end of options, change emacs-19.el accordingly.

In Emacs 19 the make-directory and remove-directory operations will be builtin,
not implemented with ‘rmdir’ and ‘mkdir’ subprocesses.

e dired-nstd.el: This is still buggy. For example, after you’ve compressed the last file
it may not correctly return that file’s absolute pathname (dired-current-directory
erronously returns nil because of markers collapsed during redisplay), ultimately leading
to lisp errors.

e The regexp-using /-commands get into an endless loop if you specify a regular expres-
sion that matches the empty string.

e Function find-alternate-file in Emacs 18.57 has a bug that causes C-x C-v RET
(which usually re-visits the current buffer) to fail on Dired buffers. This is fixed in the
version in emacs-19.el, automatically loaded by Dired.

e It is not possible to resort the Dired buffer without reverting it. That would be hard

to implement (and slow to run) given that ls date format would have to be parsed for
‘ls -t’ sorting order.

Dired Variable Index

A

auto-mode-alist i 25

B

bibtex-unclean-extensions................... 24

D

default-directory............................ 32
default-directory-alist..................... 25
dired-actual-switches 4
dired-after-readin-hook..................... 18
dired-auto-shell-command-alist............. 28
dired-auto-shell-command-alist-default.... 28
dired-backup-if-overwrite................... 16
dired-before-readin-hook.................... 18
dired-cd-on-each.............. ... 30
dired-cd-same-subdir..................... 29, 30
dired-chown-program...................... 11, 17
dired-copy-preserve-time 6, 16
dired-dangerous-shell-command.............. 20
dired-del-marker..............coiiiiiiiiiann. 15
dired-dwim-target 6, 16
dired-find-subdir.................... 19
dired-guess-have-gnutar..................... 28
dired-keep-marker-copy.................... 7, 16
dired-keep-marker-hardlink............... 7,16
dired-keep-marker-move.................... 7,16
dired-keep-marker-symlink................ 7,16
dired-kept-versions........................... 9
dired-listing-switches.................... 1,15
dired-load-hook 17
dired-local-variables-file.................. 26
dired-ls-F-marks-symlinks................... 17
dired-1S-program.........ccoovuuueeeennnnnenn.. 17
dired-ls-sorting-switches.................... 4
dired-marked-files........................... 19

36

dired-marker-char...............c.ccvuuuunann. 15
dired-mode-hooKooiiiiirniiinnan.. 17
dired-no-confirm.............., 15
dired-omit-extensions 22
dired-omit-files......... ..., 21
dired-omit-files-p..................... 21
dired-omit-localp...........ccoiiuuiiinnnn... 22
dired-omit-marker-char 22
dired-shrink-to-fit.......................... 15
dired-sort-by-date-regexp..............co.... 4
dired-sort-by-name-regexp.................... 4
dired-subdir-alist...........cooviiiinnn.. 32
dired-subdir-regexp.......................... 32
dired-trans-enders...............coiiiiiinn.. 29
dired-trans-re-ext............ciiiiiiiiiiin.. 29
dired-trans-starters 29
dired-trivial-filenames..................... 15
dired-vm-read-only-folders.................. 26

L

latex-unclean-extensions.................... 24
Ipr-command...............ooiiiiiiii... 12
lpr-switches...............o oo il 12

P

patch-unclean-extensions.................... 24

T

tex-unclean-extensions 24
texinfo-unclean-extensions.................. 24

vV

vm-folder-directory.................... 26

Dired Function Index

B

background..............o ool 26

D

default-directory............................ 25
Dired...... ..ot 1
dired-advertised-find-file.................. 12
dired-backup-diff................. 12
dired-backup-unflag........................ 5,8
dired-clean-directory 9
dired-clean-patch............................ 24
dired-clean-teXccoiiiiiiiinnn. 24
dired-copy-filename-as-kill 19
dired-create-directory................. ..., 12
dired-diff.......... il 12
dired-do-background-shell-command 19
dired-do-byte-compile 12
dired-do-chgrp.............ooiiiiiiii. 11
dired-do-chmodl 11
dired-do-chowno 11
dired-do-COmMPress.........covvvviiiinnnnnn... 11
dired-do-copy.............. it 6
dired-do-copy-Tregexp.........ccvviiiiiiiiiii.. 7
dired-do-deletecciiiiiiiiiiii., 9
dired-do-deletions............ccoiiiiiiiia.. 8
dired-do-find-file..................... ... 24
dired-do-hardlink............................. 7
dired-do-hardlink-regexp..................... 7
dired-do-insert-subdir...................... 20
dired-do-kill.......... ..., 4
dired-do-loado, 12
dired-do-move............l 7
dired-do-printoiiiiiiiiii 12
dired-do-redisplay.........c..euuuiiiiiiiinann. 4
dired-do-relsymlink...................ouin. 27
dired-do-relsymlink-regexp.................. 27
dired-do-shell-command...................... 10
dired-do-symlink.............................. 7
dired-do-symlink-regexp...................... 7
dired-do-togglel 20
dired-do—UNCoOmpPresSS.uuuururrrneennnnn 11
dired-downcasel 8
dired-find-file-other-window............... 12
dired-flag-auto-save-files................... 9
dired-flag-backup-files...................... 9
dired-flag-extension........................ 24
dired-flag-file-deleted...................... 8
dired-flag-regexp-files...................... 8
dired-goto-file...................... 19
dired-goto-subdir................... ... L 19
dired-hide-allcooiiiiiiinnn... 14
dired-hide-subdir.................... 14

dired-jump-backl 26

37

dired-jump-back-other-window............... 26
dired-kill-line-or-subdir.................... 4
dired-make-relative-symlink 27
dired-make-symbolic-link.................... 27
dired-mark-directories....................... 5
dired-mark-executables....................... 5
dired-mark-extension 24
dired-mark-files-regexp...................... 5
dired-mark-get-files 33
dired-mark-ifl 33
dired-mark—mapc.c.euuuiiiiiiiiiiiaan 33
dired-mark-sexp.............. ... 22
dired-mark-subdir-or-file.................... 5
dired-mark-symlinks........................... 5
dired-maybe-insert-subdir............... 13, 32
dired-next-dirline.................. 13
dired-next-marked-file....................... 5
dired-next-subdir......................... 14
dired-omit-toggle............ ..., 21
dired-other-window............ccovvviieeeeeannn 1
dired-prev-dirline........................... 13
dired-prev-marked-file....................... 5
dired-prev-subdir............ ... 14
dired-rename-regexpP...........oovriiiaaaiiin.. 7
dired-restore-marker-char................... 20
dired-rmail.............. ..o 26
dired-set-marker-char 20
dired-smart-background-shell-command...... 26
dired-smart-shell-command................... 26
dired-sort-toggle-or-edit.................... 4
dired-trans-define.................. 29
dired-tree-downiiiiiiii.. 13
dired-tree-upl 13
dired-undo............. il 5
dired-unflag-all-files....................... 5
dired-unmark-subdir-or-file............... 5,8
dired-up-directory.................. 13
dired-upcase................ ...l 8
dired-view-file................... 12,13
dired-virtuall 25
dired-virtual-mode.................. 25
dired-virtual-revert 25
dired-vm....... i 26
dired-whyl 13

F

find-dired.......... 31
find-file....... 25
find-file-other-window...................... 25
find-grep-dired.............................. 31
find-name-dired........... i, 31
find-this-file 25
find-this-file-other-window 25

Dired Function Index

R

revert-buffer...........

S

38

Dired Key Index

!
b e 10, 20
B o 9
e 14
%
e 7
/< 8
RH e 7
/2 8
/5 P 5
/5 <N 7
/2 P 8
Y e 7
&
.2 P 19, 20
oo 20
) 20
b S
K e e e e 5
+
o 12
9
e e 23
... 9

39

<

LS 13
2SS 14
>

D 13
A

PP 13
O e e 5
R 9
A 20
B

B oot 12
C et e e e 6
C ot 11
e 5
Cm GGt ittt e 23
Cm C=d. .t 23
C-X 4 C-f i e 25
CmX A d .t 1
C—Xx 4 .. 26
C=x C— 25
C=X A i 1
X J e 26
[0 E 4
D

Aot 8
D ot 12
DEL. .ottt e 5, 8

Dired Key Index

F

PP 12
B o 24
= 4,25
G 11
H

Hoooo 7
I

Ao 13, 32
Lo 20
K

R ottt 4
L
Lo 4
Lo 12
M

1 5, 20
Mo 11
M=l 26
Mo e 26
M=o 22
M= 5
M= 5
Mo e 12
M=C=d . et e 13
MG ettt 14
M=CmD 14
O PP 13
M=DEL . .. e 5
M-g 19
MGttt 19
MR e e 4
MM e 23
e ¢ 20
MmO et 21

40
O
O it 12
D ot 11
P
P o 12
R
PP 7
S
=2 4
T
T ot 20
U
L P 58
U o 11
V
7275 12, 13
Vo 26
W
W ottt e e e e e 19
Wt e 6, 13
X
P 8
X 9
Y
Y 7
Z
e 20

Dired Concept Index

B

Background Dired shell commands............. 19
Basename of a file, how to use in Dired shell
COMMANAS . .vve ettt 28
C
Case-changing Dired commands................. 8
Changing marker character in Dired............ 20
Compilation files, how to mark them 23
Corresponding files, how to mark them......... 23
Creating a directory in Dired................... 12
Current file (in Dired)............... 1
current file, how torunit...................... 11

D

Default target in Dired............. 6
Deletion (of files)o.ovvvviiiiiiiniiiii i, 1
Diffing files in Diredoo.... 12
Directory, how to create one in Dired........... 12
Dired..... ... o 1
Dired case-changing commands.................. 8
Dired file marking internals 33
Dired listing switches 3
Dired regexp commands......................... 7
Dired target commands 6
Dynamic marker characters.................... 20

E

Error logging in Dired 6, 13
executing the current file....................... 11
Expanded subdirectory............. 13
Expanding subdirectories in Dired.............. 13
Extension of a file, how to use in Dired shell
COMMANAS . ..ttt 28

F

Fileline......o i i 2
File marking internals in Dired................. 33
Find and Dired 30

G

Gmbhist 20

H

Headerline o il 2,13
Hiding in Dired 14
History of Minibuffer input.................. ... 20

How to make omitting the default in Dired..... 21

41

I

In-situ subdirectoryia 13
Input to Dired shell commands................. 19
Inserted subdirectory 13
Inserting subdirectories in same Dired buffer ... 13
Interactive Dired shell commands 19
Internal of Dired file marking 33
Internals of Tree Dired 32

Lisp expression, marking files with in Dired 22
List of files, how to mark them................. 23
Local Variables for Dired Directories 26
Is listings, how to peruse them in Dired 25

M

Mark file by lisp expression 22
Mark-using commands................ 2,6
Mark-using commands, use of prefix argument as
repeat count o il 6
Marker character, how to replace it............. 23
Marker characters in Dired, changing them..... 20
Marking a list of files from a buffer............. 23
Marking compilation files 23
Marking files (in Dired)ooo. .. 2
Marking files in Dired, internals of 33
Marking RCS controlled files................... 23
Minibuffer History ..., 20
Multiple Dired directories...................... 25

Non-file line............ ..o i 2
Numeric argument to Dired’s mark-using
commands 6

o

Omitting additional files 22
Omitting Files in Dired 21
Omitting RCS files in Dired.................... 22
Omitting tib files in Dired...................... 22
Overwriting of files in Dired..................... 6

P

Perusing Is listings L 25
Prefix argument to Dired’s mark-using commands. 6
Prefix argument via digit keys................... 6

Dired Concept Index

R

RCS controlled files, how to mark them 23
RCS files, how to omit them in Dired........... 22
Refreshing a Dired listing 4
Regexp commands in Dired 7

Repeat count for Dired’s mark-using commands . 6
Replacing one marker character with another... 23
running the current file 11

S

Shell commands (in Dired)..................... 10
Simultaneous visiting of several files............ 24
Stack of marker characters in Dired 20

42
T
Target commands in Dired 6
Target default in Dired.......................... 6
Tib files, how to omit them in Dired 22
Transformerc.iiiiiiina. 28
Tree Dired Internals 32
A%
Virtual Dired ... 25
Visiting several files at once.................... 24

W

Why something went wrong in Dired 6, 13
Working directory............... ... ool 25

Table of Contents

1 Dired, the Directory Editor..................... 1
1.1 Entering Diredo e 1
1.2 Editingin Dired...........o i 1
1.3 Listing Filesin Dired....... ... o i 2
1.4 Marking Files in Dired i i)
1.5 Mark-using Commandscoouiiiiiiiiiiiiii .. 6

1.5.1 Copy, Move etc. Into a Directorycooiii. ... 6
1.5.2 Renaming (and More) With Regexps..................ooo... 7
1.5.3 Other File Creating Commands....................ooi... 8
1.5.4 Deleting Files With Dired.......... i, 8
1.5.5 Shell Commands on Marked files........................... 10
1.5.6 Compressing and Uncompressing.coovuueeeann... 11
1.5.7 Changing File Attributes it 11
1.5.8 Loading and Byte-compiling Emacs Lisp Files.............. 12
1.5.9 Printing the Marked Files o i, 12
1.6 Commands That Do Not Use Marks........................... 12
1.7 Subdirectories in Diredo 13
1.8 Hiding Directories in Dired i .. 14
1.9 Acknowledgement i 14
1.10 Dired Customizationot .. 14
1.10.1 Customization of Dired.............. ... 15
1.10.2 Dired Configurationccoiiiiiiiiiiiia .. 17
1.10.3 Dired HOOKS.ttt 17

2 Tree Dired Extra features...................... 19
2.1 Tree Dired Extra Features................ ... 19
2.2 Minibuffer History for Dired Shell Commands.................. 20
2.3 Insert all marked subdirectories............... 20
2.4 Dynamic Marker Characters........... ...t 20
2.5 Omitting Files in Dired........... ..o i 21
2.6 Advanced Mark Commandscoiiiiiiiiiiniina ... 22
2.7 Virtual Diredo 25
2.8 Multiple Dired Directories and Non-Dired Commands.......... 25
2.9 Local Variables for Dired Directories........................... 26
2.10 Making Relative Symbolic Links in Dired...................... 27
2.11 Letting Dired Guess What Shell Command to Apply........... 27
2.12 Filename Transformers for Dired Shell Commands 28
2.13 Changing the Working Directory for Dired Shell Commands ... 29
2.14 Nested Dired format ... 30
2.15 Feeding Find Output to Dired, 30

Appendix A Dired Internals..................... 32

A.1 Tree Dired Internalsooomeeee e 32

A.2 Dired Mark Internals

Appendix B Known Problems with Dired

Dired Variable Index

Dired Function Index

Dired Key Index

Dired Concept Index

ii

	1 Dired, the Directory Editor
	Entering Dired
	Editing in Dired
	Listing Files in Dired
	Marking Files in Dired
	Mark-using Commands
	Copy, Move etc. Into a Directory
	Renaming (and More) With Regexps
	Other File Creating Commands
	Deleting Files With Dired
	Shell Commands on Marked files
	Compressing and Uncompressing
	Changing File Attributes
	Loading and Byte-compiling Emacs Lisp Files
	Printing the Marked Files

	Commands That Do Not Use Marks
	Subdirectories in Dired
	Hiding Directories in Dired
	Acknowledgement
	Dired Customization
	Customization of Dired
	Dired Configuration
	Dired Hooks

	2 Tree Dired Extra features
	Tree Dired Extra Features
	Minibuffer History for Dired Shell Commands
	Insert all marked subdirectories
	Dynamic Marker Characters
	Omitting Files in Dired
	Advanced Mark Commands
	Virtual Dired
	Multiple Dired Directories and Non-Dired Commands
	Local Variables for Dired Directories
	Making Relative Symbolic Links in Dired
	Letting Dired Guess What Shell Command to Apply
	Filename Transformers for Dired Shell Commands
	Changing the Working Directory for Dired Shell Commands
	Nested Dired format
	Feeding Find Output to Dired

	A Dired Internals
	Tree Dired Internals
	Dired Mark Internals

	B Known Problems with Dired
	Dired Variable Index
	Dired Function Index
	Dired Key Index
	Dired Concept Index

