ILISP User Manual

A GNU Emacs Interface for Interacting with Lisp
Edition 0.9, March 1991
For ILISP Version 4.11.

by Todd Kaufmann and Chris McConnell

Copyright (© 1991 Todd Kaufmann

This is edition 0.9 of the ILISP User Manual for ILISP Version 4.11, March 1991.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by this author.

How to get the latest ILISP distribution.

ILISP is "free"; this means that everyone is free to use it and free to redistribute it on a
free basis. ILISP is not in the public domain; it is copyrighted and there are restrictions
on its distribution, but these restrictions are designed to permit everything that a good
cooperating citizen would want to do. What is not allowed is to try to prevent others from
further sharing any version of ILISP that they might get from you. The precise conditions
appears following this section.

The easiest way to get a copy of ILISP is from someone else who has it. You need not
ask for permission to do so, or tell any one else; just copy it.

If you do start using the package, please send mail to ‘ccm@cs.cmu.edu’ so that I can
keep a mailing list of users. Any comments or code are also welcome.

FTP directions

You can anonymously ftp the source files from CMU:
e Ftp to katmandu.mt.cs.cmu.edu (128.2.250.68)
e login as anonymous, with user@host as password
e cd pub/ilisp
Get the files you need:
e get ilisp.tar.Z or
e mget README HISTORY *.el *.1lisp *.texi *.info *.ps *.dvi *.lcd

e If Franz gives permission for the Franz online CL. manual: get fi.tar.Z

Unpack and install:
1. uncompress ilisp.tar.Z; tar xf ilisp.tar
2. uncompress fi.tar.Z; tar xf fi.tar

3. See Chapter 1 [Installation], page 7.

Acknowledgements

ILISP is based on comint mode and derived from a number of different interfaces including
Symbolics, cmulisp, and Thinking Machines. There are many people that have taken the
time to report bugs, make suggestions and even better send code to fix bugs or implement
new features. Special thanks to Todd Kaufmann for the texinfo file, work on bridge, epoch-
pop and for really exercising everything. Thanks to Neil Smithline, David Braunegg, Fred
White, Jim Healy, Larry Stead, Hans Chalupsky, Michael Ernst, Frank Ritter, Tom Emer-
son, David Duff, Dan Pierson, Michael Kashket, Jamie Zawinski, Bjorn Victor and Brian
Dennis for bug reports, suggestions and code. Please send bug reports, fixes and extensions
to ‘ccm@cs.cmu.edu’ so I can merge them into the master source.

——Chris McConnell 18-Mar-91

Introduction

ILISP is an interface from GNU Emacs to an inferior LISP. It has the following features:

Support for multiple LISP dialects including Lucid, Allegro and CMU on multiple
machines even at the same time.

Dynamically sized pop-up windows that can be buried and scrolled from any window.

Packages are properly handled including the distinction between exported and internal
symbols.

Synchronous, asynchronous or batch eval and compile of files, regions, definitions and
sexps with optional switching and automatic calling.

Arglist, documentation, describe, inspect and macroexpand.
Completion of filename components and LISP symbols including partial matches.

Find source both with and without help from the inferior LISP, including CLOS meth-
ods, multiple definitions and multiple files. Also works for automatically generated
functions like defstruct.

Edit the callers of a function with and without help from the inferior LISP.
Trace/untrace a function.

M-q (“Fill-paragraph”) works properly on paragraphs in comments, strings and code.
Find unbalanced parentheses.

Super brackets.

Handles editing, entering and indenting full LISP expressions.

Next, previous, and similar history mechanism compatible with comint.
Handles LISP errors.

Result histories are maintained in the inferior LISP.

Does not create spurious symbols and handles case issues.

Online manuals for ILISP and Common LISP.

1 How to install ILISP

Installation of ILISP and some initialization of your computing environment are described

in this chapter. Please read the following sections carefully before getting started with
ILISP.

If ILISP has already been installed at your location, you can probably skip ahead to
“Autoloading.”

1.1 Files of ILISP

The files you need to use ilisp are:

ilisp.emacs
File with sample .emacs code for ILISP.

symlink.el
Expand pathnames resolving links.

completer.el
Partial completion code.

completion.el
Completion package from TMC.

popper.el
Shrink-wrapped temporary windows.

epoch-pop.el
Popper for epoch.

bridge.el
Process to process communication.

comint.el
The basic comint abstraction.

comint-ipc.el
Extensions for sending commands and getting results.

ilisp-ext.el
Standalone lisp-mode extensions.

ilisp-src.el
ILISP source code module.

ilisp-bat.el
ILISP batch code module.

ilisp.el Actual ILISP definitions.
*.1lisp ILISP support code. Each dialect will have one of these files.
x.1lcd Package descriptors for the Lisp Code Directory.

fi/* Online Franz Common LISP manual.

8 The ILISP Inferior LISP Interface

ilisp.texi
Texinfo file for ILISP.

All of the ‘.el’ files in the ilisp directory and the ‘fi’ subdirectory should be byte-
compiled by typing C-u M-x byte-recompile-directory. Before compiling, make sure
that load-path has the location of the files on it. If you plan to use epoch, you must make
sure that the epoch EMACS code is loaded before compiling epoch-pop. If you do not
plan to use epoch, you should rename the epoch-pop.el file to epoch-pop so that it will
not get compiled. The first time a dialect is started, the interface files will complain about
not being compiled, just hit i to ignore the message. Once a lisp dialect is started up, you
should execute the command ilisp-compile-inits which will compile the ‘*.1isp’ files
and write them to the same directory as the ilisp files.

The binary files should have a unique extension for each different combination of ar-
chitecture and LISP dialect. You will need to change ilisp-init-binary-extension and
ilisp-init-binary-command to get additional extensions. The binary for each different
architecture should be different. If you want to build the interface files into a LISP world,
you will also need to set ilisp-load-inits to nil in the same place that you change
ilisp-program to load the LISP world.

There is an ilisp-site-hook for initializing site specific stuff like program locations
when ILISP is first loaded. You may want to define appropriate autoloads in your system
Emacs start up file.

Example site init:

;53 CMU site
(setq ilisp-site-hook
'(lambda ()
(setq ilisp-motd "CMU ILISP V%s")
(setq expand-symlinks-rfs-exists t)
(setq allegro-program "/usr/misc/.allegro/bin/cl")
(setq lucid-program "/usr/misc/.lucid/bin/lisp")))

1.2 How to define autoload entries

These are sample forms for your .emacs file. They can be found in the file i1isp.emacs in
the ilisp-directory.
;35 This file shows examples of some of the things you might want to
;35 do to install or customize ILISP. You may not want to include all
;55 of them in your .emacs. For example, the default key binding
;35 prefix for ILISP is C-z and this file changes the default prefix to
;33 C-c. For more information on things that can be changed, see the
;55 file ilisp.el.

39

;55 If ilisp lives in some non-standard directory, you must tell emacs
;55 where to get it. This may or may not be necessary.

(setq load-path (cons (expand-file-name "~ jones/emacs/ilisp/") load-path))]]

Chapter 1: How to install ILISP 9

;55 If you always want partial minibuffer completion
(require 'completer)

;55 If want always want TMC completion
(Load "completion")
(initialize-completions)

;535 If you want to redefine popper keys
(setq popper-load-hook

'(lambda ()
(define-key global-map "\C-cl" 'popper-bury-output)
(define-key global-map "\C-cv" 'popper-scroll-output)
(define-key global-map "\C-cg" 'popper-grow-output)))

;55 If you always want popper windows
(if (boundp 'epoch::version)

(require 'epoch-pop)

(require 'popper))

;33 Autoload based on your LISP. You only really need the one you use.
;55 If called with a prefix, you will be prompted for a buffer and program.|j]
(autoload 'run-ilisp "ilisp" "Select a new inferior LISP." t)

(autoload 'clisp "ilisp" "Inferior generic Common LISP." t)
(autoload 'allegro "ilisp" "Inferior Allegro Common LISP." t)
(autoload 'lucid "ilisp" "Inferior Lucid Common LISP." t)
(autoload 'cmulisp "ilisp" "Inferior CMU Common LISP." t)
(autoload 'kcl "ilisp" "Inferior Kyoto Common LISP." t)
(autoload 'akcl "ilisp" "Inferior Austin Kyoto Common LISP." t)
(autoload 'ibcl "ilisp" "Ibuki Common LISP." t)

(autoload 'scheme "ilisp" "Inferior generic Scheme." t)

(autoload 'oaklisp "ilisp" "Inferior QOaklisp Scheme." t)

;33 Define where LISP programs are found. (This may already be done
;35 at your site.)

(setq allegro-program "/usr/misc/.allegro/bin/cl")

(setq lucid-program "/usr/misc/.lucid/bin/lisp")

(setq cmulisp-program "/usr/misc/.cmucl/bin/lisp")

;55 This makes reading a lisp file load in ilisp.
(set-default 'auto-mode-alist

(append '(("\\.lisp$" . lisp-mode)) auto-mode-alist))
(setq lisp-mode-hook '(lambda () (require 'ilisp)))

;33 Sample load hook
(setq ilisp-load-hook
' (lambda ()
;3 Change default key prefix to C-c

10

The ILISP Inferior LISP Interface

(setq ilisp-prefix "\C-c")
;; Sample initialization hook. Set the inferior LISP directory to
;3 the directory of the buffer that spawned it on the first prompt.
(add-hook 'ilisp-init-hook
(function (lambda ()

(default-directory-lisp ilisp-last-buffer))))))

;55 Setup to always show output in the Inferior LISP buffer.
; (setq lisp-no-popper t
; comint-always-scroll t)

11

2 How to run a Lisp process using ILISP

To start a Lisp use M-x run-ilisp, or a specific dialect like M-x allegro. If called with a
prefix you will be prompted for a buffer name and a program to run. The default buffer
name is the name of the dialect. The default program for a dialect will be the value of
DIALECT-program or the value of ilisp-program inherited from a less specific dialect. If
there are multiple LISP’s, use the dialect name or M-x select-ilisp (C-z S) to select the
current ILISP buffer.

These are the currently supported dialects. The dialects are listed so that the indentation
correponds to the hierarchical relationship between dialects.
clisp
allegro
lucid
kcl
akcl
ibcl
cmulisp
scheme
oaklisp

If anyone figures out support for other dialects I would be happy to include it in future
releases. See Chapter 6 [Dialects|, page 27.

Entry into ILISP mode runs the hooks on comint-mode-hook and ilisp-mode-hook
and then DIALECT-hooks specific to LISP dialects in the nesting order above.

13

3 Buffers used by ILISP, and their commands

dialect
The Lisp listener buffer. Forms can be entered in this buffer in, and they will
be sent to lisp when you hit return if the form is complete. This buffer is in
ilisp-mode, which is built on top of comint-mode, and all comint commands
such as history mechanism and job control are available.

lisp-mode-buffers
A buffer is assumed to contain Lisp source code if its major mode is in the list
lisp-source-modes. If it’s loaded into a buffer that is in one of these major
modes, it’s considered a lisp source file by find-file-1isp, load-file-lisp
and compile-file-1lisp. Used by these commands to determine defaults.

Completionsx
Used for listing completions of symbols or files by the completion commands.
See Section 4.12 [Completion], page 22.

Aborted Commandsx
See Section 4.10 [Interrupts|, page 20.

Errorsx
0utputx
Error Qutputx

used to pop-up results and errors from the inferior LISP.
ilisp-send

Buffer containing the last form sent to the inferior LISP.
Edit-Definitions
A11-Callersx

See Section 4.6 [Source code commands], page 18.

Last-Changes
Changed-Definitionsx
See Section 4.7 [Batch commands|, page 19.

3.1 Popper buffers

ILISP uses a dynamically sized pop-up window that can be buried and scrolled from any
window for displaying output. By default the smallest window will have just one line. If
you like bigger windows, set window-min-height to the number of lines desired plus one.

The variable popper-pop-buffers has a list of temporary buffer names that will be
displayed in the pop-up window. By default only *Typeout-window* and *Completions*
will be displayed in the pop-up window (remember to include the leading space in a buffer
name if it has it). If you want all temporary windows to use the pop-up window, set
popper-pop-buffers to t.

The variable popper-buffers-to-skip has a list of the buffer names C-x o (popper-
other-window) skips or t to skip all popper buffers. If popper-other-window is called with
a C-u prefix, the popper window will be selected.

C-z 1 (popper-bury-output)
buries the output window.

14 The ILISP Inferior LISP Interface

C-z v (popper-scroll-output)
scrolls the output window if it is already showing, otherwise it pops it up. If it
is called with a negative prefix, it will scroll backwards.

C-z G (popper-grow-output)
will grow the output window if showing by the prefix number of lines. Other-
wise, it will pop the window up.

If you are running ‘epoch’, the popper window will be in a separate X window that is
not automatically grown or shrunk. The variable popper-screen-properties can be used
to set window properties for that window.

An alternative to popper windows is to always have the inferior LISP buffer visible and
have all output go there. Setting lisp-no-popper to t will cause all output to go to the
inferior LISP buffer. Setting comint-always-scroll to t will cause process output to
always be visible. If a command gets an error, you will be left in the break loop.

3.2 Switching buffers

Commands to make switching between buffers easier.

C-z b (switch-to-1lisp)
will pop to the current ILISP buffer or if already in an ILISP buffer, it will return
to the buffer that last switched to an ILISP buffer. With a prefix, it will also
go to the end of the buffer. If you do not want it to pop, set pop—up-windows
to nil.

M-C-1 (previous-buffer-1lisp)
will switch to the last visited buffer in the current window or the Nth previous
buffer with a prefix.

15

4 TLISP Commands

Most of these key bindings work in both Lisp Mode and ILISP mode. There are a few
additional and-go bindings found in Lisp Mode.

4.1 Eval and compile functions

In LISP, the major unit of interest is a form, which is anything between two matching
parentheses. Some of the commands here also refer to “defun,” which is a list that starts at
the left margin in a LISP buffer, or after a prompt in the ILISP buffer. These commands
refer to the “defun” that contains the point.

“A call” refers to a reference to a function call for a function or macro, or a reference
to a variable. Commands which “insert a call” in the ILISP buffer will bring up the last
command which matches it or else will insert a template for a call.

When an eval is done of a single form matching ilisp-defvar-regexp the corresponding
symbol will be unbound and the value assigned again.

When you send a form to LISP, the status light will reflect the progress of the command.
In a lisp mode buffer the light will reflect the status of the currently selected inferior LISP
unless 1isp-show-status is nil. If you want to find out what command is currently running,
use the command C-z s (status-lisp). If you call it with a prefix, the pending commands
will be displayed as well.

Note that in this table as elsewhere, the key C-z (ilisp-prefix) is used as a prefix character
for ILISP commands, though this may be changed. For a full list of key-bindings, use M-x
describe-mode or M-x describe-bindings while in an ILISP-mode buffer.

The eval/compile commands verify that their expressions are balanced and then send
the form to the inferior LISP. If called with a positive prefix, the result of the operation will
be inserted into the buffer after the form that was just sent.

For commands which operate on a region, the result of the compile or eval is the last
form in the region.

The ‘and-go’ versions will perform the operation and then immediately switch to the
ILISP buffer where you will see the results of executing your form. If eval-defun-and-
go-lisp or compile-defun-and-go-1lisp is called with a prefix, a call for the form will be
inserted as well.

C-z The prefix-key for most ILISP commands. This can be changed by setting the
variable ilisp-prefix.

RET (return-ilisp)
In ILISP-mode buffer, sends the current form to lisp if complete, otherwise
creates a new line and indents. If you edit old input, the input will be copied
to the end of the buffer first and then sent.

C-] (close-and-send-1lisp)
Closes the current sexp, indents it, and then sends it to the current inferior
LISP.

16 The ILISP Inferior LISP Interface

LFD (newline-and-indent-1isp)
Insert a new line and then indent to the appropriate level. If called at the end
of the inferior LISP buffer and an sexp, the sexp will be sent to the inferior
LISP without a trailing newline.

C-z e (eval-defun-1lisp)

M-C-x (eval-defun-lisp)

C-z C-e (eval-defun-and-go-1isp)
Send the defun to lisp.

C-z r (eval-region-1isp)

C-z C-r (eval-region-and-go-lisp)
C-z n (eval-next-sexp-lisp)

C-z C-n (eval-next-sexp-and-go-1lisp)
C-z ¢ (compile-defun-1isp)

C-z C-c (compile-defun-1lisp-and-go)

When compile-defun-1isp is called in an inferior LISP buffer with no current
form, the last form typed to the top-level will be compiled.

C-z w (compile-region-1isp)
C-z C-w (compile-region-and-go-1isp)

If any of the forms contain an interactive command, then the command will never return.
To get out of this state, you need to use abort-commands-1isp (C-z g). If lisp-wait-p
is t, then EMACS will display the result of the command in the minibuffer or a pop-up
window. If lisp-wait-p is nil, (the default) the send is done asynchronously and the
results will be brought up only if there is more than one line or there is an error. In this
case, you will be given the option of ignoring the error, keeping it in another buffer or
keeping it and aborting all pending sends. If there is not a command already running in the
inferior LISP, you can preserve the break loop. If called with a negative prefix, the sense of
lisp-wait-p will be inverted for the next command.

4.2 Documentation functions

describe-1lisp, inspect-lisp, arglist-1isp, and documentation-1isp switch whether
they prompt for a response or use a default when called with a negative prefix. If they are
prompting, there is completion through the inferior LISP by using TAB or M-TAB. When
entering an expression in the minibuffer, all of the normal ilisp commands like arglist-lisp
also work.

Commands that work on a function will use the nearest previous function symbol. This
is either a symbol after a ‘#'’ or the symbol at the start of the current list.

C-z a (arglist-lisp)
Return the arglist of the current function. With a numeric prefix, the leading
paren will be removed and the arglist will be inserted into the buffer.

C-z d (documentation-1lisp)
Infers whether function or variable documentation is desired. With a negative
prefix, you can specify the type of documentation as well. With a positive prefix
the documentation of the current function call is inserted into the buffer.

Chapter 4: ILISP Commands 17

C-z i (describe-lisp)
Describe the previous sexp (it is evaluated). If there is no previous sexp and if
called from inside an ILISP buffer, the previous result will be described.

C-z i (describe-lisp)
Describe the previous sexp (it is evaluated). If there is no previous sexp and if
called from inside an ILISP buffer, the previous result will be described.

C-z I (inspect-1lisp)
Switch to the current inferor LISP and inspect the previous sexp (it is evalu-
ated). If there is no previous sexp and if called from inside an ILISP buffer, the
previous result will be inspected.

C-z D (fi:clman)

C-z A (fi:clman-apropos)
If the Franz online Common LISP manual is available, get information on a
specific symbol. fi:clman-apropos will get information apropos a specific
string. Some of the documentation is specific to the allegro dialect, but most
of it is for standard Common LISP.

4.3 Macroexpansion

C-z M (macroexpand-1isp)

C-z m (macroexpand-1-1isp)
These commands apply to the next sexp. If called with a positive numeric
prefix, the result of the macroexpansion will be inserted into the buffer. With
a negative prefix, prompts for expression to expand.

4.4 Tracing functions

C-z t (trace-defun-lisp)
traces the current defun. When called with a numeric prefix the function will be
untraced. When called with negative prefix, prompts for function to be traced.

4.5 Package Commands

The first time an inferior LISP mode command is executed in a Lisp Mode buffer, the
package will be determined by using the regular expression ilisp-package-regexp to find
a package sexp and then passing that sexp to the inferior LISP through ilisp-package-
command. For the ‘clisp’ dialect, this will find the first (in-package PACKAGE) form in the
file. A buffer’s package will be displayed in the mode line. If a buffer has no specification,
forms will be evaluated in the current inferior LISP package.

C-z p (package-lisp)
Show the current package of the inferior LISP.

C-z P (set-package-lisp)
Set the inferior LISP package to the current buffer’s package or with a prefix
to a manually entered package.

18 The ILISP Inferior LISP Interface

M-x set-buffer-package-lisp
Set the buffer’s package from the buffer. If it is called with a prefix, the package
can be set manually.

4.6 Source Code Commands

The following commands all deal with finding things in source code. The first time that
one of these commands is used, there may be some delay while the source module is loaded.
When searching files, the first applicable rule is used:

e try the inferior LISP,
e try a tags file if defined,

e try all buffers in one of 1isp-source-modes or all files defined using lisp-directory.

M-x lisp-directory defines a set of files to be searched by the source code commands.
It prompts for a directory and sets the source files to be those in the directory that match
entries in auto-mode-alist for modes in 1isp-source-modes. With a positive prefix, the
files are appended. With a negative prefix, all current buffers that are in one of lisp-
source-modes will be searched. This is also what happens by default. Using this command
stops using a tags file.

edit-definitions-lisp, who-calls-lisp, and edit-callers-lisp will switch
whether they prompt for a response or use a default when called with a negative prefix. If
they are prompting, there is completion through the inferior LISP by using TAB or M-TAB.
When entering an expression in the minibuffer, all of the normal ILISP commands like
arglist-1lisp also work.

edit-definitions-lisp (M-.) will find a particular type of definition for a symbol. It
tries to use the rules described above. The files to be searched are listed in the buffer *Edit-
Definitions*. If 1isp-edit-files is nil, no search will be done if not found through the
inferior LISP. The variable ilisp-locator contains a function that when given the name
and type should be able to find the appropriate definition in the file. There is often a flag
to cause your LISP to record source files that you will need to set in the initialization file
for your LISP. The variable is *record-source-files* in both allegro and lucid. Once a
definition has been found, next-definition-lisp (M-,) will find the next definition (or
the previous definition with a prefix).

edit-callers-lisp (C-z ~) will generate a list of all of the callers of a function in
the current inferior LISP and edit the first caller using edit-definitions-lisp. Each
successive call to next-caller-1isp (M-") will edit the next caller (or the previous caller
with a prefix). The list is stored in the buffer *A11-Callers*. You can also look at the
callers by doing M-x who-calls-1isp.

search-lisp (M-7) will search the current tags files, lisp-directory files or buffers in
one of 1lisp-source-modes for a string or a regular expression when called with a prefix.
next-definition-1lisp (M-,) will find the next definition (or the previous definition with
a prefix).

replace-lisp (M-") will replace a string (or a regexp with a prefix) in the current tags
files, 1isp-directory files or buffers in one of 1isp-source-modes.

Here is a summary of the above commands (behavior when given prefix argument is
given in parentheses):

Chapter 4: ILISP Commands 19

M-x lisp-directory
Define a set of files to be used by the source code commands.

M-. (edit-definitions-1lisp)
Find definition of a symbol.

M-, (next-definition-1lisp)
Find next (previous) definition.

C-z ~ (edit-callers-lisp)
Find all callers of a function, and edit the first.

M-~ (next-caller-1lisp)
Edit next (previous) caller of function set by edit-callers-lisp.

M-x who-calls-1isp
List all the callers of a function.

M-7 (search-lisp)
Search for string (regular expression) in current tags, lisp-directory files or
buffers. Use next-definition-1isp to find next occurence.

M-" (replace-lisp)
Replace a string (regular expression) in files.

4.7 Batch commands

The following commands all deal with making a number of changes all at once. The first
time one of these commands is used, there may be some delay as the module is loaded. The
eval/compile versions of these commands are always executed asynchronously.

mark-change-1isp (C-z SPC) marks the current defun as being changed. A prefix causes
it to be unmarked. clear-changes-lisp (C-z * 0) will clear all of the changes. list-
changes-1isp (C-z * 1) will show the forms currently marked.

eval-changes-lisp (C-z * e), or compile-changes-lisp (C-z * ¢) will evaluate or
compile these changes as appropriate. If called with a positive prefix, the changes will be
kept. If there is an error, the process will stop and show the error and all remaining changes
will remain in the list. All of the results will be kept in the buffer *Last-Changes*.

Summary:

C-z SPC (mark-change-1lisp)
Mark (unmark) current defun as changed.

C-z * e (eval-changes-1lisp)
C-z * ¢ (compile-changes-1lisp)
Call with a positive prefix to keep changes.

C-z * 0 (clear-changes-1isp)
C-z * 1 (list-changes-1lisp)

20 The ILISP Inferior LISP Interface

4.8 Files and directories

File commands in lisp-source-mode buffers keep track of the last used directory and file.
If the point is on a string, that will be the default if the file exists. If the buffer is one of
lisp-source-modes, the buffer file will be the default. Otherwise, the last file used in a
lisp-source-mode will be used.

C-x C-f (find-file-lisp)
will find a file. If it is in a string, that will be used as the default if it matches
an existing file. Symbolic links are expanded so that different references to the
same file will end up with the same buffer.

C-z 1 (load-file-1lisp)
will load a file into the inferior LISP. You will be given the opportunity to save
the buffer if it has changed and to compile the file if the compiled version is
older than the current version.

C-z k (compile-file-lisp)
will compile a file in the current inferior LISP.

C-z ! (default-directory-1lisp)
sets the default inferior LISP directory to the directory of the current buffer. If
called in an inferior LISP buffer, it sets the Emacs default-directory to the
LISP default directory.

4.9 Switching between interactive and raw keyboard modes

There are two keyboard modes for interacting with the inferior LISP, \"interactive\" and
\"raw\". Normally you are in interactive mode where keys are interpreted as commands to
EMACS and nothing is sent to the inferior LISP unless a specific command does so. In raw
mode, all characters are passed directly to the inferior LISP without any interpretation as
EMACS commands. Keys will not be echoed unless ilisp-raw-echo is T.

Raw mode can be turned on interactively by the command raw-keys-ilisp (C-z #)
and will continue until you type C-g. Raw mode can also be turned on/off by inferior LISP
functions if the command io-bridge-ilisp (M-x io-bridge-ilisp) has been executed in the
inferior LISP either interactively or on a hook. To turn on raw mode, a function should
print ~[17] and to turn it off should print ~[0"]. An example in Common LISP would be:

(progn (format t "elE") (print (read-char)) (format t "®OE"))

4.10 Interrupts, aborts, and errors

If you want to abort the last command you can use C-g.

If you want to abort all commands, you should use the command abort-commands-
lisp (C-z g). Commands that are aborted will be put in the buffer *Aborted Commands*
so that you can see what was aborted. If you want to abort the currently running top-level
command, use interrupt-subjob-ilisp (C-c C-c). As a last resort, M-x panic-lisp
will reset the ILISP state without affecting the inferior LISP so that you can see what is
happening.

delete-char-or-pop-ilisp (C-d) will delete prefix characters unless you are at the end
of an ILISP buffer in which case it will pop one level in the break loop.

Chapter 4: ILISP Commands 21

reset-ilisp, (C-z z) will reset the current inferior LISP’s top-level so that it will no
longer be in a break loop.

Summary:

C-c C-c (interrupt-subjob-ilisp)
Send a keyboard interrupt signal to lisp.

C-z g (abort-commands-1isp)
Abort all running or unsent commands.

M-x panic-1lisp (panic-lisp)
Reset the ILISP process state.

C-z z (reset-ilisp)
Reset lisp to top-level.

C-d (delete-char-or-pop-ilisp)
If at end of buffer, pop a level in break loop.

If 1isp-wait-p is nil (the default), all sends are done asynchronously and the results
will be brought up only if there is more than one line or there is an error. In case, you
will be given the option of ignoring the error, keeping it in another buffer or keeping it and
aborting all pending sends. If there is not a command already running in the inferior LISP,
you can preserve the break loop. If called with a negative prefix, the sense of 1isp-wait-p
will be inverted for the next command.

4.11 Command history

ILISP mode is built on top of comint-mode, the general command-interpreter-in-a-buffer
mode. As such, it inherits many commands and features from this, including a command
history mechanism.

Each ILISP buffer has a command history associated with it. Commands that do not
match ilisp-filter-regexp and that are longer than ilisp-filter-length and that do
not match the immediately prior command will be added to this history.

M-n (comint-next-input)
M-p (comint-previous-input)
Cycle through the input history.
M-s (comint-previous-similar-input)
Cycle through input that has the string typed so far as a prefix.

M-N (comint-psearch-input)
Search forwards for prompt.

M-P (comint-msearch-input)
Search backwards for prompt.

C-c R (comint-msearch-input-matching)
Search backwards for occurrence of prompt followed by string which is prompted
for (not a regular expression).

See comint-mode documentation for more information on ‘comint’ commands.

22 The ILISP Inferior LISP Interface

4.12 Completion

Commands to reduce number of keystrokes.

M-TAB (complete-lisp)

will try to complete the previous symbol in the current inferior LISP. Partial
completion is supported unless ilisp-prefix-match is set to t. (If you set
it to t, inferior LISP completions will be faster.) With partial completion,
‘p——n’ would complete to ‘position-if-not’ in Common LISP. If the symbol
follows a left paren or a ‘#'’, only symbols with function cells will be considered.
If the symbol starts with a ‘*’ or you call with a positive prefix all possible
completions will be considered. Only external symbols are considered if there
is a package qualification with only one colon. The first time you try to complete
a string the longest common substring will be inserted and the cursor will be
left on the point of ambiguity. If you try to complete again, you can see the
possible completions. If you are in a string, then filename completion will be
done instead. And if you try to complete a filename twice, you will see a list
of possible completions. Filename components are completed individually, so
‘/u/mi/’ could expand to ‘/usr/misc/’. If you complete with a negative prefix,
the most recent completion (symbol or filename) will be undone.

M-RET (complete)
will complete the current symbol to the most recently seen symbol in Emacs
that matches what you have typed so far. Executing it repeatedly will cycle
through potential matches. This is from the TMC completion package and
there may be some delay as it is initially loaded.

4.13 Miscellany

Indentation, parenthesis balancing, and comment commands.

TAB (indent-line-ilisp)
indents for LISP. With prefix, shifts rest of expression rigidly with the current
line.

M-C-q (indent-sexp-ilisp)
will indent each line in the next sexp.

M-q (reindent-1isp)
will reindent the current paragraph if in a comment or string. Otherwise it will
close the containing defun and reindent it.

C-z ; (comment-region-1lisp)
will put prefix copies of comment-start before and comment-end’s after the
lines in region. To uncomment a region, use a minus prefix.

C-z) (find-unbalanced-1isp)
will find unbalanced parens in the current buffer. When called with a prefix it
will look in the current region.

] (close-all-1lisp)
will close all outstanding parens back to the containing form, or a previous left
bracket which will be converted to a left parens. If there are too many parens,

Chapter 4: ILISP Commands 23

they will be deleted unless there is text between the last paren and the end of
the defun. If called with a prefix, all open left brackets will be closed.

25

5 ILISP Customization

Starting a dialect runs the hooks on comint-mode-hook and ilisp-mode-hook and then
DIALECT-hooks specific to dialects in the nesting order below.
clisp
allegro
lucid
kcl
akcl
ibcl
cmulisp
scheme
oaklisp

On the very first prompt in the inferior LISP, the hooks on ilisp-init-hook are run.
For more information on creating a new dialect or variables to set in hooks, see ilisp.el.

ILISP Mode Hooks:
ilisp-site-hook
Executed when file is loaded
ilisp-load-hook
Executed when file is loaded
ilisp-mode-hook
Executed when an ilisp buffer is created
ilisp-init-hook
Executed after inferior LISP is initialized and the first prompt is seen.

DIALECT-hook
Executed when dialect is set

Variables you might want to set in a hook or dialect:

ilisp-prefix

Keys to prefix ilisp key bindings
ilisp-program

Program to start for inferior LISP
ilisp-motd

String printed on startup with version
lisp-wait-p

Set to T for synchronous sends
lisp-no-popper

Set to T to have all output in inferior LISP
lisp-show-status

Set to nil to stop showing process status
ilisp-prefix-match

Set to T if you do not want partial completion

26 The ILISP Inferior LISP Interface

ilisp-filter-regexp

Input history filter
ilisp-filter-length

Input history minimum length
ilisp-other-prompt

Prompt for non- top-level read-eval print loops

27

6 Dialects

A dialect of lisp is a specific implementation. For the parts of Common Lisp which are well
specified, they are usually the same. For the parts that are not (debugger, top-level loop,
etc.), there is usually the same functionality but different commands.

ILISP provides the means to specify these differences so that the ILISP commands will
use the specific command peculiar to an implementation, but still offer the same behavior
with the same interface.

6.1 Defining new dialects

To define a new dialect use the macro defdialect. For examples, look at the dialect
definitions in ilisp.el. There are hooks and variables for almost anything that you are
likely to need to change. The relationship between dialects is hierarchical with the root
values being defined in setup-ilisp. For a new dialect, you only need to change the
variables that are different than in the parent dialect.

6.2 Writing new commands
Basic tools for creating new commands:
deflocal Define a new buffer local variable.
ilisp-dialect

List of dialect types. For specific dialect clauses.
lisp-symbol

Create a symbol.
lisp-symbol-name

Return a symbol’s name
lisp-symbol-delimiter

Return a symbol’s qualification
lisp-symbol-package

Return a symbol’s package
lisp-string-to-symbol

Convert string to symbol
lisp-symbol-to-string

Convert symbol to string
lisp-buffer-symbol

Convert symbol to string qualified for buffer
lisp-previous-symbol

Return previous symbol
lisp-previous-sexp

Return previous sexp
lisp-def-name

Return name of current definition

28 The ILISP Inferior LISP Interface

lisp-function-name

Return previous function symbol
ilisp-read

Read an sexp with completion, arglist, etc
ilisp-read-symbol

Read a symbol or list with completion
ilisp-completing-read

Read from choices or list with completion
Notes:

e Special commands like arglist should use ilisp-send to send a message to the inferior
LISP.

e Eval/compile commands should use eval-region-lisp or compile-region-1lisp.

Concept Index

*
xAborted Commands* buffer................. 13, 20
xA11-Callers* buffer 13, 18
Changed-Definitions buffer................. 13
Completions buffer........... 13
xEdit-Definitions* buffer................. 13, 18
Error Qutput buffer 13
Errors buffer..........l 13
ilisp-send buffer........... oL 13
Last-Changes buffer 13, 19
xQutput* buffer........ i 13
celfiles ..o 8
cemacs forms ... 8

A

Aborting commandso 20
‘and-go’ functions........ oot 15
Anonymous FTP.... 1
Apropos help ... 17
Arglist lisp. ..o 16
autoload definitions oo 8

B

Break loop.......cooooiiiii 20
bridge.el...........o i 7
Buffer package o i 17
buffers of ILISP...... i 13
bury output window oL 13
Byte-compiling ILISP files....................... 8

Call .« 15
Change commands.coouiiiiiiinen.. 19
Clearing changes................, 19
Close all parens...........cooevviiiiiiiinnan. 23
Close bracketscooo i 23
comint-ipc.el..... ... 7
comint-mode............iiiiiiii 21
comint.el ... 7
Command history........... 21
Comment region.................ooiiiii... 22
Common Lisp manual.......................... 17
Compile last form........... 16
Compile region........... ... i 16
Compile/eval commands 15
Compiling changes............................. 19
Compiling files......... ... i 20

Compiling ILISP files 8

29

completer.el..........ooooiiiiiiiiiii.. 7
Completionoooiiiiiiiiiii i, 22
completion.el.............l 7
Current directory ... 20
Currently running command 15
Customization, 25

D

Default directory..............ooi i 20
defining autoloads.coviiiiiia... 8
Defining new dialects 27
Defun ..o 15
Describing bindingso oL 15
Describing lisp objects 16
Dialect startup...........oooiiiiiiiiiii 25
Dialects. ... 27
Dialects supported ... 11
Directories and files.................. 20
Displaying commands.......................... 15
Documentation Functions...................... 16

E

epoch popper ... 14
epoch-pop.el.............l 7
Errors...... ..o 20
Evalregion ... 16
Eval’ing changes oot 19
Eval/compile commands 15
Expanding macro forms........................ 17

F

features.ot 5
File changes ... 19
Filename completion........................... 22
Files and directories...................oiii. 20
Files of ILISP ... 7
Find callers............o i, 18
Findfile............ 20
Find unbalanced parens........................ 22
Finding source......... i 18
First prompt........ ... o il 25
Franz manual oL 17
FTP site. ... 1

G

Getting ILISP ... oo 1
Group changes. ... 19
grow output window 14

30

I

ilisp-bat.el......... ...l 7
ilisp-ext.el. ..ot 7
ilisp-src.el............oiiiiiiiiiiiilll L 7
ilisp.el oo 7
ilisp.emacs................iiiii 7
ilisp.texi.......oi 8
ILISP buffers ... 13
ILISP Mode Hooks............................. 25
In-package form........... i 17
Indentation........... ... o il 22
Input searchc o i i 21
Inserting calls..............o o i il 15
Inserting results.........o oL 15
Installationo i 7
Interactive keyboard mode 20
Internal ILISP functions 27
Interrupting commands 20

L

Last commando 21
Lispfindfile...........o i 20
List callers....... ..o 18
Listing bindings........... ..o 15
Listing changes 19
Loading files..........c.oooiiiii i 20

M

Macroexpansion ..., 17
Marking changes. ..o, 19
Minibuffer completion.................. 16
Modeline status. ...t 15

N

Negative prefix..........cooooiiiii i 16
Next definition. ..., 18
Next input........ooooiiiiiiii i 21

The ILISP Inferior LISP Interface

P

Package commandsol 17
Parenthesis balancing 22
Partial completion 22
Pop in break loop..........ol 20
Popper buffers........ 13
popper.el 7
Previous commands...........o 21
Previous definition............ oo 18
Previous lisp bufferl 14

R

Raw keyboard mode 20
Region commands L 15
Reindent lisp ... 22
Replace isp....covvvii i 18
Resetting lisp 21
Rigid indentation oL 22
Running lisp.......... ... ool 11

S

scrolling output it 14
Search input.......o i, 21
Sending input to lisp...............oii 15
Set buffer package 18
Set default directory 20
Show current packagecoooa.. 17
Similar input oo 21
Source Code Commandsooo... 18
Source MOdesovuviii i 18
Starting up lisp........ooooiii i 11
Status light ... 15
Supported dialects ... 11
Switching buffers....... oL 14
Symbolic link expansion........................ 20
symlink.el........ 7

T

TMC completion.........ccooiiiiiiiiiiia.. 22
Top-level, return to 21
Tracing defuns......... ... 17
Turning popper off............ o i 14

U

Uncomment region............................. 22
Untracing defuns............................... 17

Key Index

T 22
C

G 15
C=C Rt 21
(02T 20
g e 20
C=x C=f 20
Cm 0 ettt et e e 13
C=z b e 20
Cmz 20
CmZ) 22
C=zZ % Ottt e e e 19
CmZ % Gttt 19
CmZ % @ ittt e 19
C=z % Lo 19
CmZ et 22
CmZ T 18
C=z 1 13
[- 16
C=z A 17
CmZ Dt 14
CmZ vttt 16
CmZ GG ettt e 16
CmZ G . ittt e 16
C=Z Gl ottt 16
CmZ G ettt e 16
CmZ CmW e ettt e e e e e e 16
CmzZ d ot 16
C=zZ Do 17
CmZ B et e 16
CmZ g 16, 20
CmZ G oottt et e e e 14
CmZ A e 17
C=z Tt 17
CmZ Koot 20
C=Z L e e 20
CmZ ettt et e e e 17
C=z M. e 17
CmZ Dttt e 16

31

C-zprefixo 15
CmZ P o 17
CmZ X e 16
CmZ S it 15
C-Z SPC....o i 19
CoZ b 17
CmZ Vet et 14
CmZ Wt 16
CmZ Z ettt 21
L

LED . 16
M

M=t 18
Mo 18
Mo 18
M= 18
M= 18
M-C-d. 14
MG mq e et e 22
MmCmX e 16
o o 21
M=o 21
MoD 21
MoP 21
Mg 22
M-RET 22
Mo 21
M-TAB ..o 16, 22
M-x io-bridge-ilisp................iaa 20
M-x lisp-directory..........cooiiiiiiininnnn 18
M-x set-buffer-package-lisp................. 18
M-x who-calls-1isp.........ccoiviiiiiiiininn, 18
R

RET .. 15
T

TAB .o 16, 22

Command Index

Commands available via M-x prefix.

A

allegro ...
arglist-lisp........... ..o

C

comint-msearch-input
comint-msearch-input-matching..............
comint-next-input...............
comint-previous-input
comint-previous-similar-input..............
comint-psearch-input
comment-region-lisp...................
compile-changes-1isp
compile-defun-and-go-lisp...................
compile-defun-lisp...........................
compile-defun-lisp-and-go...................
compile-file-lisp.............oooiiiiiiiii.,
compile-region-and-go-lisp..................
compile-region-lisp..............o
complete ...
complete-1ispcoiiiiiiiiiiiiii

D

default-directory-lisp......................
defdialect.......................ll
delete-char-or-pop-ilisp....................
describe-lisp il
documentation-lisp....................,

E

edit-callers-lisp................. .ol
edit-definitions-lisp.......................
eval-changes-lisp............................
eval-defun-and-go-lisp 15,
eval-defun-lisp................. i
eval-next-sexp-and-go-lisp..................
eval-next-sexp-lisp.............cooiiiiiiiiat
eval-region-and-go-1isp.....................
eval-region-lisp.............

33

F

fitclman..............o i 17
fi:clman-apropos....................oi. 17
find-file-1lisp.......ccoiiiiiiiiiiiiiii, 20
find-unbalanced-lisp............... 22

Abcl. o 11
indent-line-ilisp............................ 22
indent-sexp—1iliSp........uuuiiiiiiiiiiiiinnnn 22
inspect-lisp..............l 16
interrupt-subjob-ilisp...................... 20
io-bridge-ilisp..................oilL 20

lisp-directoryccoiiiiiiiiiiiiia, 18
list-changes-1isp.........coviiiiiinnnnnnn. 19
load-file-lisp............oiiiiiii... 20
Tucid. .o 11

macroexpand-1-1isp.........ccouviiiiiiiiiiii.. 17
macroexpand-lisp.............l 17
mark-change-lisp...................... ... 19

N

newline-and-indent-lisp..................... 16
next-caller-lisp...........coiiiiiiiiiiiia, 18
next-definition-lisp............. ...t 18

package-1isp..........coiiiiiiiiiii i 17
panic-lisp........... ...l 20
popper-bury-output.............. 13
POPPer—-grow—output.......... ...t 14
popper-other-window.......................... 13
popper-scroll-outputuuiiiiin. 14

previous-buffer-1isp.............ccoooue.... 14

34

R

raw-keys-ilisp............ ...l 20
reindent-1iSpccvviiiiiiiiiiiiiiiiian 22
replace=liSp......uuiiiiiiiii 18
reset—ilisp.........ciiiiiiiiii i 21
return-ilisp....... ..o 15
TUN=31i8SP ..ttt 11

SCheme. ... 11
search-1isp......cooiiiiiiiiiiiiiiiiiii 18
set-buffer-package-lisp..................... 18

set-package-lisp..................... ... 17

The ILISP Inferior LISP Interface

setup-ilisp................iiL 27
status—1isp.....oviiiiiiii 15
SWitch—to-1ispcviiiiiiiii 14

T

trace-defun-lisp................... 17

W

who-calls-1isp............ccoiiiiiiiiiiina. 18

Variable Index

Variables and hooks of ILISP.

*

record-source-files 18

A

auto-mode-alisto 18

C

comint-always-scroll 14
comint-mode-hook............................. 25

D

default-directory............................ 20
DIALECT-hOOK...... ..ot 25

I

ilisp-defvar-regexp.......................... 15
ilisp-filter-length...................... 21, 26
ilisp-filter-regexp...................... 21, 26
ilisp-init-binary-command.................... 8
ilisp-init-binary-extension 8
ilisp-init-hook...........l 25
ilisp-load-hook................... 25
ilisp-load-inits............. il 8
ilisp-locator ... 18

35

ilisp-mode-hook................. 25
ilisp-motd...........l 25
ilisp-other-prompt........................... 26
ilisp-package-regexpoiiiinnn 17
ilisp-prefix............ 15, 25
ilisp-prefix-match....................... 22, 25
ilisp-program.................oiiiiiiiiii., 8, 25
ilisp-raw-echo 20
ilisp-site-hook............ooiiiiiiiiiiii., 8, 25

L

lisp-edit-files................... 18
IR E] ok s ok eTe) o] o =3 b 14, 25
lisp-show-status 15, 25
lisp-source-modes...........ooiiuiunnnnnnnnnn. 18
lisp-wait-p........oooiiiiiiiiiL 16, 21, 25

P

pop-up-windows 14
popper-buffers-to-skip...................... 13
popper-pop-buffers............... 13

popper-screen-properties.................... 14

Function Index

37

Internal functions of ILISP which can be used to write new commands.

C

compile-region-lisp.......................... 28

D

deflocaloiiii i 27

E

eval-region-1isp..............ciiiiiia 28

I

ilisp-compile-inits............... 8
ilisp-completing-read 28
ilisp-dialectl 27
ilisp-package-command 17
ilisp-read.................oilllllllL 28
ilisp-read-symbol...............l 28

ilisp-send.............. i il 28

L

lisp-buffer-symbol........................... 27
lisp-def-name 27
lisp-function-name........................... 28
1iSp-pPrevious=—SeXP........coviiiiiiiiiia.... 27
lisp-previous-symboloo.... 27
lisp-string-to-symbol 27
lisp-symbol..................l 27
lisp-symbol-delimiter 27
lisp-symbol-name..............ccoeiiiiiinnnnnn 27
lisp-symbol-package............coevvuuueeennn. 27
lisp-symbol-to-string....................... 27

Table of Contents

How to get the latest ILISP distribution.......... 1
FTP directionsvurieiiei e e e 1
Acknowledgements......................, 3
Introduction 5
1 How toinstall ILISP............................. 7
1.1 Files of ILISP . ..o e 7
1.2 How to define autoload entries..................ooiiiiiiiiinin. 8
2 How to run a Lisp process using ILISP....... 11

3 Buffers used by ILISP, and their commands . 13

3.1 Popper buffers 13
3.2 Switching buffers........ 14
4 ILISP Commands............................... 15
4.1 Eval and compile functions............. ... i, 15
4.2 Documentation functions...................coiiiiiiiii, 16
4.3 MaCToeXPanSIOno v vttt e 17
4.4 Tracing functions. ... 17
4.5 Package Commandscoiiiiiiiiiiiiii 17
4.6 Source Code Commands.oouviiiiiieniiineniinennn.. 18
4.7 Batch commands............c.ooiiiiiiiii 19
4.8 Files and directories.c.o.uuiiiieeeniiiiiiiiiiiiieea 20
4.9 Switching between interactive and raw keyboard modes........ 20
4.10 Interrupts, aborts, and errors.................cciiiiiiiiin.... 20
4.11 Command hiStory ... 21
4.12 Completion e 22
4.13 Miscellanyot 22
5 ILISP Customization........................... 25
6 Dialects.......... 27
6.1 Defining new dialects. ... 27
6.2 Writing new commands. ..ottt 27

Concept Index 29

ii

Key Index i, 31
Command Index 33
Variable Index............ 35

Function Index 37

	How to get the latest ILISP distribution.
	FTP directions

	Acknowledgements
	Introduction
	1 How to install ILISP
	Files of ILISP
	How to define autoload entries

	2 How to run a Lisp process using ILISP
	3 Buffers used by ILISP, and their commands
	Popper buffers
	Switching buffers

	4 ILISP Commands
	Eval and compile functions
	Documentation functions
	Macroexpansion
	Tracing functions
	Package Commands
	Source Code Commands
	Batch commands
	Files and directories
	Switching between interactive and raw keyboard modes
	Interrupts, aborts, and errors
	Command history
	Completion
	Miscellany

	5 ILISP Customization
	6 Dialects
	Defining new dialects
	Writing new commands

	Concept Index
	Key Index
	Command Index
	Variable Index
	Function Index

