
Installation NIH Class Library Revision 3.0 Installation

INTRODUCTION

This is the Installation Guide for the NIH Class Library (previously known as the "OOPS"
Class Library) Revision 3.0.

The NIH Class Library is intended to be portable to a UNIX system compatible with either
System V or 4.2/4.3BSD and which supports the AT&T C++ translator Release 2.00,
Release 2.1, or other compatible C++ compiler. We have ported and tested this library on
the following systems:

Sun-3 with SunOS 3.5
Sun-3 with SunOS 4.0
Sun-4 with SunOS 4.0

Send comments to:

Keith Gorlen
Building 12A, Room 2033
Computer Systems Laboratory
Division of Computer Research and Technology
National Institutes of Health
Bethesda, MD 20892

phone: (301) 496-1111
Internet : kgorlen@alw.nih.gov
uucp: uunet!nih-csl!kgorlen

GUIDE TO THIS DISTRIBUTION KIT

The NIH Class Library distribution kit consists of a main directory and the following
subdirectories:

errfac Error Message Facility source files
lib Source files for the basic library classes
test Test suite for the basic library classes
vector Source files for the Vector classes
vectest Test suite for the Vector classes
ex Example programs for the book

The main directory is refered to as NIHCL in the following discussion, but may be placed
anywhere.

Most subdirectories have files named MAKEFILE and Makefile. The MAKEFILE is
used by the installation procedure, and should work with both the System V and BSD version
of the make utility. The fancier Makefile is used for development, and may not work
under BSD.

Page 1 May 25, 1990

Installation NIH Class Library Revision 3.0 Installation

SUMMARY OF STEPS IN INSTALLING THE NIH CLASS LIBRARY

1. Update C++ system library and include files
2. Edit NIHCL/Makefile
3. Edit NIHCL/lib/nihclconfig.h
4. Build and install error message facility*
5. Build NIHCL basic classes, Vector classes, and test suite
6. Test basic classes and Vector classes
7. Build NIHCL basic classes, Vector classes, and test suite with multiple

inheritance support
8. Test basic classes and Vector classes with multiple inheritance support
9. Install class libraries*
10. Build example programs
11. Test example programs

* root permission may be required

INSTALLING THE NIH CLASS LIBRARY

1. Update C++ system library and include files

No updates to R2.00 of the AT&T C++ Translator are required. However, if you are using
R2.1, be sure to make the changes documented in the section COMPILING UNDER AT&T
C++ TRANSLATOR RELEASE 2.1 in the NIH Class Library Release Notes.

2. Edit NIHCL/Makefile

Edit NIHCL/Makefile to change make variables as needed for your environment. Here
are the settings shipped with the distribution kit:

C++ compiler

CC = CC

C++ debug switch

CCDEBUG =

#CCDEBUG = -g

C++ flags

NOTE: Disable +p option when compiling with AT&T R2.1

#CCFLAGS = +p

#CCFLAGS =

C++ include files

Page 2 May 25, 1990

Installation NIH Class Library Revision 3.0 Installation

I = /usr/include/CC

If using BSD

SYS = BSD

If using System V

#SYS = SYSV

Compile with nested types

(works with AT&T R2.1 and GNU C++)

NESTED_TYPES =

#NESTED_TYPES = -DNESTED_TYPES

Disable AT&T R2.0/R2.1 bug work-around code

BUGDEFS =

#BUGDEFS = -DBUG_bC2728 -DBUG_38 -DBUG_39 -DBUG_OPTYPECONST

Defining BUG_TOOBIG disables code that

prevents C compiler "yacc stack overflows" error

#BUGDEFS = -DBUG_bC2728 -DBUG_38 -DBUG_39 -DBUG_OPTYPECONST

-DBUG_TOOBIG

Enable debug code

DEBUGDEFS =

#DEBUGDEFS = -DDEBUG_OBJIO -DDEBUG_PROCESS

Flags for ln

#LNFLAGS =

LNFLAGS = -s

If using "patch"

MAIN = _main.c_p

If using "munch"

#MAIN = _main.c_m

Target library for installation of Error Facility

LIB_ID = libC

Target Directories for Installation

directory for libnihcl.a

NIHCLLIBDIR = /usr/local/lib

directory for NIHCL include files

NIHCLINCDIR = /usr/include/nihcl

directory where ${LIB_ID}.a resides

CLIBDIR = /usr/local/lib/C++R2.0

directory for errgen utility

ERRGENDIR = /usr/local/bin

directory for errgen table file

Page 3 May 25, 1990

Installation NIH Class Library Revision 3.0 Installation

ERRTABDIR = /usr/local/lib

directory for errlib.h and errors.h

ERRINCDIR = $I

3. Edit NIHCL/lib files

3.1 Edit nihclconfig.h

The NIH Class Library source is configured for your system by setting flags in
NIHCL/lib/nihclconfig.h which specify the machine model and operating system
(UNIX variant).

To configure the NIH Class Library for one of the not yet implemented options, at least all of
the parameters appearing in nihclconfig.h will have to be defined for that option.

The NIH Class Library should configure itself automatically for the following machines:

sun/mc68000
sun/sparc

Classes Process, HeapProc, StackProc, Scheduler, Semaphore, and
SharedQueue have some machine-specific dependencies and will not work unless the
SETJMP()/LONGJMP() functions are properly defined. See the NIH Class Library
Release Notes for directions on porting the Process classes.

3.2 Edit Object.h

The file Object.h defines three versions of a preprocessor macro named STRINGIZE,
which forms some symbol names by concatenating the class name argument with other
strings. Each version does this a different way. The version for use with ANSI C
preprocessors, conditionalized on the symbol __STDC__, uses ## for concatenation. If
you are not using an ANSI C preprocessor, defining the symbol BS_NL in Object.h
selects the version that uses the sequence \<newline> as the concatenation separator, which
seems to work with most System V UNIX systems. If you do not define BS_NL, you get
the version of DEFINE_CLASS that uses an empty comment sequence (/**/), which works
with most Berkeley UNIX systems.

Object.h should require no editing on most systems.

4. Install error message facility

(Skip this step for MASSCOMP/RTU)

su (if installing in protected directory)
make errorfacility

Page 4 May 25, 1990

Installation NIH Class Library Revision 3.0 Installation

This builds an error message registery facility and error processing library similar to
errcom and the 3E library routines on the MASSCOMP.

The errgen program reads a .err file to determine a facility name, and then reads the
file ${ERRTABDIR}/errgen_tab to lookup the number assigned to that facility. The
facility number determines the high-order bits of the error numbers which errgen assigns,
assuring that error numbers used by different libraries do not coincide. Errgen produces a
.h file containing error symbols and their assigned numbers, and a .c file containing a
table of error messages and formatting information.

This step creates a module containing the error handling library routines named errors.o
and adds it to ${CLIBDIR}/${LIB_ID}.a, and it copies the files errlib.h and
errors.h into the directory ${ERRINCDIR}.

The test program testerr on NIHCL/errfac verifies that the error facilities have been built
correctly. It returns the first and last error defined in the file testerrs.err.

5. Build the NIH Class Library, Vector classes, and test suite

make

6. Test the NIH Class Library

make verify

This runs the test suite and compares the output of each test program with the contents of a
.v file containing the correct output. If the program runs correctly, you’ll see the message
"No differences encountered". Some tests such as date, identdict, process,
random, stack, and tim produce output to the terminal. date outputs yesterday’s,
today’s, and tomorrow’s date. identdict dumps an identity dictionary. random prints
out a list of random numbers. stack prints out a CLTNEMPTY error message to test error
reporting, and tim prints out the current date and time.

The error test program frequently fails to compare because its output depends upon
memory addresses that change from implementation to implementation. error should
differ only in the object address printed in the CLTNEMPTY error message.

The output of fdset depends upon the maximum number of allowable file descriptors on
your system. The test output was generated under SunOS 4.0, which has a limit of 64 file
descriptors.

Several tests that print floating point numbers may fail to compare due to formatting
differences.

The byte size of the object printed by ex8-1 may vary for different systems. The test output

Page 5 May 25, 1990

Installation NIH Class Library Revision 3.0 Installation

was produced by a Sun-3.

7. Build the NIH Class Library, Vector classes, and test suite with multiple inheritance
support

make cleantest
make mi

8. Test the NIH Class Library, Vector classes, and test suite with multiple inheritance
support

make verify

This runs the same tests as in Step 6, with similar results.

9. Install the NIH Class Libraries

su (if installing in protected directory)
make install

The NIH Class Library archives libnihcl.a, libnihclmi.a, libnihclvec.a,
and libnihclvecmi.a are copied to ${NIHCLLIBDIR} and ranlib is executed
on the libraries. All header files for basic classes are copied to directory
${NIHCLINCDIR}.

10. Build example programs

make examples

11. Test example programs

make exverify

TROUBLE SHOOTING

YACC stack overflows

Some test programs may fail to compile because they are too complicated for your C
compiler and get a "yacc stack overflow". Either increase the table space in your C compiler
or simplify the program by breaking it up into separate functions. The inline copy
constructors that Release 2.0 automatically generates are frequently the source of this error.

Page 6 May 25, 1990

Installation NIH Class Library Revision 3.0 Installation

Explicitly defining non-inline copy constructors solves the problem. See the Release Notes
for further details.

Problems with class Exception

Test programs error and except test class Exception, the the NIH Class Library exception
handler. If these programs fail to perform correctly suspicion can be directed to the
performance of system functions setjmp() and longjmp().

Problems with Process classes

Progams process and stackproc test the NIH Class Library co-routine mechanism
(classes Process, HeapProc, StackProc, and Scheduler), the object queue
(class SharedQueue) and semaphore (class Semaphore). These are machine-
dependent and rely on the presence of alloca(), which all systems do not provide, and
on setjmp()/longjmp() being implemented by saving/restoring all machine registers,
which is not always the case for all systems either. If the process or stackproc tests
fail to compile, link, or run, check your system’s implementations of alloca()
setjmp(), and longjmp() -- you may need to implement your own versions.

Page 7 May 25, 1990

