
- 18 -

January 21, 1992

[10] Joseph Weizenbaum, “Eliza – A Computer Program for the Study of Natural Language

Communication between Man and Machine”, Communications of the ACM, Volume 9,

Number 1, January 1966, p. 36-45.

Don Libes
National Institute of Standards and Technology

photo

Don Libes received a B.A. in Mathematics from

Rutgers University and an M.S. in Computer Sci-

ence from the University of Rochester.

Currently at the National Institute of Standards and

Technology, Don is engaged in research that will

help U.S. industry measure the standard hack. Un-

fortunately, NIST does not have a very good sense

of humor, so he was forced to write his first book

- 17 -

January 21, 1992

Nonetheless, stelnet proved very useful in the AMRF, and got me to thinking about a more gener-

ic tool.

John Ousterhout is responsible for Tcl, without which expect would not have been written. John

also critiqued expect as well as this paper. I am indebted to him.

Several people made important observations or wrote early scripts while I was still developing the

command semantics. Thanks to Rob Densock, Ken Manheimer, Eric Newton, Scott Paisley,

Steve Ray, Sandy Ressler, and Barry Warsaw. And also, like, thanks to my grammarians, Scott

Bodarky, Ted Hopp, and Sue Mulroney, who read read and corrected everry sentence in the paper

but like this one, right.

10 Availability

Since the design and implementation of expect was paid for by the U.S. government, it is in the

public domain. However, the author and NIST would like credit if this program, documentation

or portions of them are used. expect may be ftp’d as pub/expect/expect.shar.Z from ftp.cme

.nist.gov.

11 References

[1] AT&T, UNIX Programmer’s Manual, Section 8.

[2] Don Libes, “expect(1) – programmatic dialogue with interactive programs”, unpublished

manual page, National Institute of Standards and Technology, February, 1989.

[3] Chris McDonald and Trevor Dix, “Support for Graphs of Processes in a Command Inter-

preter”, Software: Practice & Experience, Volume 18 Number 10, p. 1011-1016, October

1988.

[4] D. Nowitz, “Uucp Implementation Description”, UNIX Programmer’s Manual, Bell Labo-

ratories, October, 1978.

[5] John Ousterhout, “Tcl: An Embeddable Command Language”, Proceedings of the Winter

1990 USENIX Conference, Washington, D.C., January 22-26, 1990.

[6] John Ousterhout, “tcl(3) – overview of tool command language facilities”, unpublished

manual page, University of California at Berkeley, January 1990.

[7] Dennis Ritchie and Ken Thompson, “The UNIX time-sharing system”, Communications of

the ACM, Volume 17, Number 7, 635-375 (1974).

[8] Stephen Uhler, “MTX – A Shell that Permits Dynamic Rearrangement of Process Connec-

tions and Windows”, Proceedings of the Winter 1990 USENIX Conference, Washington,

D.C., January 22-26, 1990.

[9] Larry Wall, “rn(1) – read news program”, unpublished manual page, May 1985.

- 16 -

January 21, 1992

Internally, expect processing is heavily dependent upon scripts. For example, the rogue script

presented earlier examines about 10 games per second (and is fun to watch). Most of the real time

is spent waiting for the game itself. Of the CPU time, about 40% is spent pattern matching to

guide the script, 26% in I/O, 16% in open, close, and ioctl, 8% in fork, and 5% in timer calls.

The large amount of time spent in open, close, and ioctl are due to the inefficient technique re-

quired by BSD UNIX to locate and initialize ptys.

The rogue script is so biased towards short dialogues, it is likely that most other scripts will spend

even larger percentages of time pattern matching. While guiding the dialogue is a primary func-

tion, this indicates an area for improvement. The current (Tcl-supplied) pattern matcher could be

improved, for example, by compiling patterns. But expect has even more demands. Regular ex-

pression pattern matching is performed on input each time a read completes. If characters arrive

slowly, the pattern matcher scans the same data many times. System indigestion can play a big

role here, as larger scheduling quanta drive the pattern matcher less frequently when more charac-

ters at a time are gathered from each pty. The performance of a pattern matcher that does not need

to rescan over earlier data needs to be studied.

8 Comments and conclusions

The UNIX shell paradigms are incapable of intelligently managing interactive programs. This

has been a long-standing problem, traditionally solved by avoidance. Yet the number of interac-

tive programs grows daily, and shells have not changed to address this.

expect solves these problems directly and with elegance. expect scripts are small and simple for

problems that are small and simple. While I am not so naive to believe all expect scripts will be

small, it is apparent that the scripts scale well. They are comparable in style to shell scripts, being

task-oriented, and provide synergy with shell scripts, both because they can call shell scripts and

be called by them. It would be a worthwhile experiment to marry the features of expect to the

shell, and I see little technical difficulty in doing so.

Some interesting open questions remain: How would the buffering work in a combined expect/s-

elect command. If expect had a built-in terminal emulator, could one look for “regions” of char-

acter graphics? Lastly, how could expect emulate interactions with window systems, such as

mousing and dragging. Each of these requires further research. Nonetheless, as long as there are

shells, there will be interactive programs that are not controllable by them, and expect will contin-

ue to be useful.

9 Acknowledgements

This work was jointly funded by the NIST Automated Manufacturing Research Facility (AMRF,

project 734-3385) and Scientific and Technical Research Services (STRS, project 734-3106).

Thanks to Scott Paisley for writing a program called stelnet (smart telnet). stelnet ran telnet and

performed a simple send/expect conversation to login. stelnet had only straight-line control with-

out error processing, used pipes instead of ptys, and lacked pattern matching and job control.

- 15 -

January 21, 1992

lease 2, which forces applications to poll by busy-waiting. (POSIX has not yet provided a means

of performing multisource asynchronous I/O, though it seems inevitable.) Earlier systems, such

as V7, could not even poll. Typically, programs such as uucp forked an auxiliary process which

blocked waiting for data from one direction while the original process blocked waiting for data

from the other direction. I consider this untenable, since some expect applications spawn many

processes, both sequentially and in parallel. Using this style of communication requires two extra

utility processes for each real process requested by the user. For example, Figure 5 would need 12

more processes than it does in the current implementation.

For lack of more sophisticated code (and being not at all clear that it is even possible), the imple-

mentation cannot simultaneously interact with multiple processes on systems lacking select, poll,

or something similar.

7.3 Job control

This section discusses the interaction between BSD-style job control and expect. expect has its

own way of controlling jobs, discussed extensively in section 2.2.

In a sense, expect finesses the problem of job control. When sitting at the keyboard running ex-

pect, a user may perform job control (i.e., by pressing job control characters), which will affect

the expect program just like any UNIX program. For example, by default, a ^Z will stop expect.

An exception to this is during the interact command. Since expect has no idea if its client pro-

grams are interested in seeing job control characters, all characters (except an optional escape

character) are passed through to the current process. Thus, programs that run in raw mode (e.g.

rogue) and programs that handle job control themselves (e.g., csh) can run with their full func-

tionality.

Of course, users choosing to interact directly must understand that programs which do not handle

job control signals can be unpleasant. For example, sending a ^Z to a program that does not catch

SIGSTOP will cause it to be stopped by the kernel. But since there is no program behind it to

catch control, expect will wait as well. The program can be resumed by sending a SIGCONT,

but this is presumably inconvenient. The moral is, when dealing with programs that do not under-

stand job control, either do not send them job control signals or place a shell behind them that

does.

Switching jobs internal to expect from within interact can be done without needing to back every

process with a shell. The technique is to escape to the expect interpreter (by pressing interact’s

escape character), set spawn_id to the desired process, and return to interact (via return). The

user will now be interacting with the desired process.

7.4 Throughput

While throughput statistics are de rigueur in USENIX implementation papers, it is difficult to

quantify performance in this type of program. For example, how does one compare expect’s

overall impact on system throughput to that introduced by canonical input processing of typical

human typing? About the only thing that is clear is that expect uses a fraction of the real time that

a user does.

- 14 -

January 21, 1992

expect can call the shell and be called by it. The two work very well together. An obvious ques-

tion is if one can be subsumed into the other. Adding the expect commands to the shell is proba-

bly the easiest implementation, and I see little technical difficulty in doing so.

7 Implementation discussion

This section discusses areas of the implementation that are unusual in some way and might be ed-

ucational to a large percentage of readers. The source code is quite readable and perusal of it is

encouraged.

7.1 Command language

From the list of examples in section 5, it should be apparent that the functions provided by expect

have long been desired. I began thinking about them several years ago and have experimented

with various implementations. The biggest stumbling block was the language. I knew I needed

one, I knew how to write one, but I wasn’t sure how far to go nor was I particularly interested in

the task of writing yet-another-utility-language.

Tcl was the solution: it was designed specifically as an embeddable language. Tcl comes with a

core of commands to which the application writer can add application-dependent commands.

Adding the expect commands was relatively painless although a number of different command

designs were tried before being finalized.

In my environment (Sun 3 running Sun OS 4.0.3), the Tcl library (version 2.1) is approximately

8000 lines, including comments (45k object code); the additional expect source (version 1.7) is

1700 lines (13k object code). Clearly, the Tcl code dominates expect. Here, expect is a wrapper

around Tcl, which is probably different than how the original Tcl designers foresaw its role.

Tcl is not the only possible base for expect-like functionality. Prior to Tcl, I looked at the send/ex-

pect control used by uucp, kermit, and other communication programs. However, these are quite

primitive and do not even provide adequate flexibility for their own tasks. For example, system

administrators always embed calls to uucp in shell scripts which can repeat dialing upon failure.

Two alternatives to Tcl that I could have chosen are emacs and perl. While not specifically de-

signed to provide a language for tools, both systems have embedded interpreters that can be used

this way. Unfortunately, the tradeoffs are numerous and deserve more space than I can devote

here. It would probably be worth doing an implementation in each to compare them.

7.2 Multisource asynchronous I/O

expect requires multisource asynchronous I/O primarily for the interact command (which listens

for characters from the user and a process at the same time). Using this feature requires different

implementations on different UNIX systems is probably the least portable part of the software.

Berkeley UNIX has long supported the select system call which permits waiting for activity from

a set of file descriptors. Thus, virtually all BSD-derived UNIX systems support select. On the

other hand, System V has only recently supported an equivalent of select. Release 3 supports poll

which is comparable to select; however, a large percentage of SV systems are still based on Re-

- 13 -

January 21, 1992

5.9 Dynamic and complex pipes and redirection

A number of projects have been built to step beyond the linearity of pipes enforced by the shell.

Two notable examples are gsh and MTX.

gsh [3] is based on the Bourne shell, but handles graphs of processes, such as sending the output

of one process to two processes, or building a set of three process in a cycle. While expect was

not designed for this purpose, it can do this as a byproduct of its complete control of any dialogue.

Of course, the result will not be as fast because expect necessarily interposes itself in order to

control the dialogue.

MTX [8] is a screen-based pipe manager. It solves the same set of problems as gsh, although the

interface is mouse-oriented instead of keyboard-oriented. In addition, MTX can rearrange con-

nections in use. It does this using the same pty mechanism that expect does (with a similar penal-

ty in throughput), although MTX does not provide any automated control of the dialogue.

In summary, expect can emulate dynamic and complex pipes and redirection. It is a simple mat-

ter to emulate processes of pipes in a graph. Automatic rearrangement is possible either under the

control of a user or when signalled by data. Complex redirection such as arbitrary fan-out is also

trivial and easily supercedes the capabilities of tee.

6 Is expect a shell?

The beginning of this paper compared the shell to expect. To repeat, the shell is incapable of the

interactive dialogue that expect can perform. But how does expect compare with the shell? Is

expect as powerful as a shell?

The base language of expect, Tcl, is quite powerful and is certainly capable of doing the same

kinds of programming as the shell. Indeed, as a programming language, Tcl is functionally almost

a replacement for any of sh, csh and ksh. One noticeably missing feature is redirection, which

Tcl can perform by calling the shell.

For interactive use, however, Tcl has little support. There is no history or job control. This is un-

derstandable, considering that Tcl was not designed to be used interactively. The additional com-

mands added by expect do not change that. Job control as supported by expect is strictly

command-based while the shell offers interrupt keys as shorthand. Indeed, typing job control

characters at expect itself only affects expect, not the other processes expect is interacting with.

(The exception to this is that when in interact, job control characters are sent to the current pro-

cess.)

While expect can be used interactively (by pressing the escape-character while in interact), it

was not designed to be and lacks pleasant features such as history and interrupt key-based job

control. Its interactive mode is seen as primarily useful for experimenting, although some very

powerful results are possible by typing expect commands in directly, or indirectly by say, pro-

grammable function keys or software stream modules that perform interactive line editing.

- 12 -

January 21, 1992

“Assume a yes response to all questions asked by fsck; this should be used with

extreme caution, as it is a free license to continue, even after severe problems

are encountered.”

The -n option has a similarly worthless meaning. This kind of interface is inexcusably bad, and

yet many programs have the same style. For example, ftp has an option that disables interactive

prompting so that it can be run from a script. But it provides no way to take alternative action

should an error occur.

expect is useful with such programs. For example, it could be programmed to answer “yes” and

“no” depending on the question from fsck. Control could be turned over to the user for question-

able cases.

5.7 Programs with poorly written interfaces

Ousterhout [5] makes the observation that “a general purpose, programmable command language

amplifies the power of a tool by allowing users to write programs in the command language in or-

der to extend the tool’s built-in facilities.”

Few tools actually include such a language. Examples are shells and emacs. There are also a

few that have more simplistic facilities such as the .rc files of mail, vi, and dbx. But in all, there

are very few tools with the flexibility of a good language. Indeed, Tcl was designed to address

this very problem.

Expecting UNIX tools to be rewritten using Tcl is a noble but unlikely proposition. However, a

similar effect can be achieved with expect. For example, expect can be used to initialize a tool,

much like a set of commands from an rc file. And like Tcl, expect presents a uniform language

for doing so. In effect, expect provides a way of giving the power of Tcl to tools without any ef-

fort spent rewriting them.

If desired, expect can be run in the background, completely disassociated from user input. expect

is capable of returning a status value to a script, often more meaningfully than the original tool or

task. (Realistically, there is little reason for a program that originally could only have been run in-

teractively to return a status of any type.)

5.8 Multiple programs never designed to work together

expect is capable of connecting programs that were not originally designed to be connected. In

contrast to non-interactive filters that form pipelines, interactive programs have foresaken any at-

tempt to be driven by another program. Eliza and chess, both mentioned earlier, are good exam-

ples.

A more complex example is communication with another network or bulletin board system.

Commercial systems such as MCI Mail and CompuServe do not forward mail, expecting that us-

ers will dial up and read mail interactively. An expect script can dial up such a system and check

for mail. If mail is found, a mail process can be started on the local system and fed input from the

remote system. Mail will then appear as if it was originally mailed to the local system. Since ex-

pect can run in the background, this can be done at night, every hour, or whatever is convenient.

- 11 -

January 21, 1992

5.1 Programs that demand interactivity

Programs that demand interactivity such as passwd and tip are easy to control with expect, but

impossible with the shell. In fact, tip has special code to do dialing before a conversation, but it is

quite limited in power. expect eliminates the need for this type of special code in many programs.

5.2 Programs that cross machine or program boundaries

Making a shell script run across machine boundaries is not possible except in limited ways. For

example, shell scripts that involve telneting to another host cannot log in nor can they continue the

shell script on the remote host. expect does not see these kinds of machine or program bound-

aries.

5.3 Programs that read and write /dev/tty

Programs that read and write /dev/tty cannot be used from shell scripts without the shell script ac-

cessing /dev/tty. passwd, crypt, and su are examples of programs that cannot be controlled by

the shell but can by expect.

5.4 Programs that flush input

Some interactive programs believe they are doing the user a favor by flushing input after detecting

an error. Particularly clever programs such as rn [9], not only flush input already received but

continue to flush input for a short time afterwards to allow for communications or user delays.

Redirecting standard input from the shell is ineffective with such programs since there is no con-

trol over how much can be lost when input flushing occurs. expect, on the other hand, will wait

for the desired prompt rather than proceeding to send commands blindly.

While it was not my intention, expect provides a foundation for a relentless password cracking

tool. However, to show my compassion I will remind system adminstrators that one preventative

measure is to lock out an account after a small number of incorrect passwords have been tried.

5.5 Passing control from user to/from script

Programs such as rogue, tip, telnet, and others have a frequently repeated, well-defined set of

commands and another set that are not well-defined. For example, telnet is always started by log-

ging in, after which the user can do anything. expect can pass control from the script to the user

to provide this ability. In fact, expect can take control at any time to execute sequences of com-

monly repeated commands.

5.6 Ostensibly non-interactive programs

Many programs are ostensibly non-interactive. This means that they can be run from a shell

script, but with greatly diminished functionality. For example, fsck can be run from a shell script

only with the -y or -n options. The manual [1] defines the -y option as follows:

- 10 -

January 21, 1992

If expect does not find what it is looking for, the dialogue is terminated via close (which will

cause rogue to go away) and the loop restarted. If the desired string is found, the loop is terminat-

ed and the user given control of the dialogue through interact on the last line.

The second example dials a phone. It can be used to reverse the charges, so that long-distance

phone calls are charged to the computer. It is invoked as expect callback.exp
12016442332 where the script is named callback.exp and +1 (201) 644-2332 is the phone

number to be dialed. (Scripts may also be turned into executables on systems which support the

#! magic.)

first give the user some time to logout
exec sleep 4
spawn tip modem
expect {*connected*} {}
send ATZ\r
expect {*OK*} {}
send ATDT[index $argv 1]\r
modem takes a while to connect
set timeout 60
expect {*CONNECT*} {}

The second line illustrates how a UNIX command with no interaction can be called. sleep 4
will cause the program to block for four seconds, giving the user a chance to logout, since the mo-

dem will presumably call back to the same phone number that the user is already using.

After spawning tip, the modem dials the number. (The modem is assumed to be using Hayes pro-

tocol, but it would be easy to expand the script to handle others.) No matter what happens, expect

terminates. If the call fails, it is possible for expect to retry, but that is not the point here. If the

call succeeds, getty will detect DTR on the line after expect exits, and prompt the user with log-
in:. (Actual scripts usually do more error checking.)

This script illustrates the use of command-line parameters, made available to the user as a list

named argv. Commands may also be passed in and executed by the program. A special flag (-c)

allows execution of commands before any in the script. For example, an expect script can be

traced without reediting by invoking it as expect -c “trace ...” script.exp (where

the ellipsis indicates a tracing option).

5 What classes of problems does expect address?

expect addresses a surprisingly large class of problems that the shell does not. At the same time,

expect does not attempt to subsume functions already handled by other utilities. For example,

there is no built-in file transfer capability, because expect can just call a program to do that.

The following categories are not meant to be disjoint but to sharpen the focus of examples that

may share multiple problems.

- 9 -

January 21, 1992

}

There is no command (analogous to csh’s bg) to let processes run without interaction, since pre-

sumably input is a necessary part of interaction and cannot be supplied in the background. Pro-

cesses that enter into a lengthy phase during which no input takes place will free run by default,

although output will eventually clog the pty if not periodically flushed. Fortunately, this is easy to

do.

3.3 Miscellaneous commands

The remaining commands will not be described in detail. For complete descriptions, see Libes

[2]. These miscellaneous commands fall into the following classes:

• tracing - Programs may be traced to assist debugging.

• exiting - expect can return an exit code, allowing it to be intelligently used in

shell scripts.

• logging - Logging to files and/or the user terminal is flexible. This allows in-

teraction with the user while hiding some or all of the interaction taking place

with programs.

4 More examples

expect scripts are similar in style to shell scripts. They look like the interaction they are supposed

to control. Just as shell scripts primarily consist of the commands as a user might type them, ex-

pect scripts consist primarily of the interaction that a user might see.

Here are two examples. The first runs the BSD adventure game rogue repeatedly until a configu-

ration with unusually good attributes (i.e., strength of 18) appears, after which control is given to

the user.

rogue.exp - find a good game of rogue
set timeout 3
for {} 1 {} {

spawn rogue
expect{*Str:\ 18*} break \

timeout close
}
interact

Some comments are in order: The first line is a comment, naming the file and explaining what it

does. The second line sets a short timeout. This is appropriate since we are dealing with a local

program that will respond very quickly.

for introduces a C-like for loop, with the same control arguments as in C. Here, the loop repeats

forever. After rogue is started, we look for the text of interest in the output. rogue is a graphics

program which uses curses. Curses does not guarantee screens are created in an intuitive manner,

and expect programmers must understand that. However, it is not a problem here.

- 8 -

January 21, 1992

3.2 Job control commands

close

closes the connection to the current process. Most interactive programs will detect EOF on

their standard input and exit; thus close usually suffices to kill the process as well. Both expect

and interact will detect when the current process exits and implicitly do a close.

spawn program [args]

creates a new process running program args. Its standard input, standard output, and standard

error are connected to expect, so that they may be read and written by other expect commands.

The connection is broken by close or if the process itself closes any of the file descriptors.

When a process is started by spawn, the variable spawn_id is set to a descriptor referring to

that process. The process described by spawn_id is considered the current process.

spawn returns the UNIX process id. Note that this is not equivalent to the descriptor in

spawn_id.

Internally, spawn uses a pty, initialized the same way as the user’s tty. When this is not possi-

ble (such as when expect has no controlling terminal), spawn uses the default pty settings. If

these are not appropriate, the user can spawn a shell, set the pty parameters directly, and then

send (rather than spawn) the original command to the shell.

select spawn_id1 spawn_id2 ...

returns a subset of the given spawn_ids that have input pending. select waits until at least one

spawn_id can be read or until the timeout (see expect command above) has expired.

There is no explicit command to switch jobs. Rather, the variable spawn_id determines the cur-

rent process. spawn sets this as a side-effect so that a script interacting with only one process

need not ever mention spawn_id. spawn_id may be read and written through Tcl’s set command.

Here is an example showing how job control could be used to have two chess processes interact.

After spawning them, one move is sent by hand to get things started. In a loop, a move is sent

from one process to the other, and vice versa. The read_move and send_move procedures are

left as an exercise for the reader. (They are actually very easy to write, but too long to include

here.)

spawn chess
set chess1 $spawn_id
spawn chess
set chess2 $spawn_id
force someone to go first
send p/k2-k3
for {} {1} {} {

read_move
set spawn_id $chess1
send_move
read_move
set spawn_id $chess2
send_move

- 7 -

January 21, 1992

As the last bullet says, Tcl is designed to allow the addition of new commands. expect adds

twelve commands to the Tcl language. I will now present the more interesting of these new com-

mands.

3.1 Interaction commands

send args

sends args to the current process. Strings are interpreted following Tcl rules. For example, the

command

send hello world\r

sends the characters, h e l l o <space> w o r l d <return> to the current process.

expect patlist1 action1 patlist2 action2 . . .

waits until the output of the current process matches a pattern, or a specified time period has

passed. Each patlist consists of a single pattern or list of patterns. If a pattern is matched, the

corresponding action is executed. The result of the action is returned from expect. The exact

string matched (or read but unmatched, if a timeout occurred) is stored in the variable expect_-

match. If patlist is eof or timeout, the corresponding action is executed upon end-of-file or

timeout, respectively. The default timeout period is 10 seconds but may, for example, be set to

30 by the command set timeout 30.

The following fragment is from a script that involves a login. abort is a procedure defined

elsewhere in the script, while the other actions use Tcl primitives similar to their C namesakes.

expect {*welcome*} break \
{*busy*} {print busy; continue} \
{*failed*} abort \
timeout abort

Patterns are the usual C-shell-style regular expressions. Patterns must match the entire output

of the current process since the previous expect or interact (hence the reason most are sur-

rounded by the * wildcard). However, more than 2000 bytes of output can force earlier bytes

to be “forgotten”. This may be changed by setting the variable match_max.

interact [escape-character]

gives control to the user. User keystrokes are sent to the current process, and the standard out-

put and standard error of the current process are returned to the user. Any valid script com-

mands may be entered after pressing the optional escape-character. Control is returned to

interact if the continue command is entered. If the return command is entered, interact im-

mediately returns with the argument of return (or the empty string if none is given).

During interact (except when entering commands via the escape character), job control is dis-

abled so that all characters may be passed to the current process.

- 6 -

January 21, 1992

2.3 High-level language

The last important feature of expect is the language itself. It is described in the next section.

3 expect scripts – What do they look like?

expect scripts are written using a high-level procedural language. The language is interpreted and

resembles the shell in many ways. Elements are also derived from C and LISP. Despite its mixed

heritage, much of the excess baggage from these other languages has been omitted leaving a mod-

est but capable language. The language consists of a core of features called Tcl (Tool Command

Language) and is described by Ousterhout [5]. This section will only give a brief overview and

enough details to describe the sample expect scripts later on.

The Tcl core consists of control flow statements such as if, while, and case. Tcl supports proce-

dure definition, recursion, scoping, and more. UNIX programs may be called and files manipulat-

ed. Expression evaluation is provided by a small set of primitives that manipulate the only type –

strings. (Conversion to and from other types is performed automatically, a la SNOBOL.)

The following Tcl fragment (from [5]), swaps the values of variables a and b, if a is less than b.

if {$a < $b} {
set tmp $a
set a $b
set b $tmp

}

Here is a command to define a recursive factorial procedure:

proc fac x {
if {$x == 1} {return 1}
return [expr {$x * [fac [expr $x-1]]}]

}

The syntax and semantics are sufficiently close to C and the shell that the meaning of these exam-

ples should be intuitively obvious. For lack of space, I will not describe Tcl further, however it is

completely described by Ousterhout [6]. For that matter, it is not particularly germane to the the-

ory of expect. Indeed, Ousterhout [5] makes the point that the “syntax of the Tcl language is un-

important: any programming language” could provide similar features. The salient features of

Tcl are that it is:

• simple – It is expected that most Tcl programs will be short.

• programmable – Tcl applications are general-purpose and are not known in ad-

vance.

• efficiently interpreted – Tcl must be able to execute commands quickly enough

that user interaction is not noticably impeded.

• internally interfaceable to C – Tcl must allow one to add new commands that

work synergistically with existing Tcl commands.

- 5 -

January 21, 1992

that if a user sitting at a terminal can make decisions based on a common output stream of both

standard output and the standard error, then so can the script.

Just as the user may redirect either standard input or standard output, so may the script. But by

default, neither is redirected. This is true for both expect and the shell.

2.2 Job control

The script may interact with a number of processes simultaneously. Figure 5 shows several pro-

cesses being controlled at the same time. To control multiple processes, a user would use job con-

trol. So does expect. Script job control is actually easier to use because it can be programmed

whereas shell job control must be hand entered.

For example, suppose you are using csh and have to type something at proc2 depending upon

what proc1 is telling you. If this happens 100 times, you have to type ^Z/fg sequences 200

times3! With expect, a simple loop suffices. A good example is to try and connect two Eliza [10]

or chess processes to each other. Remember that the output of the UNIX chess program is not di-

rectly usable as input.

The user can also be manipulated as if they were a process. The effect is exactly like a shell script

reading from and writing to the user. In other words, the source of I/O to the user is the script

rather than an underlying interactive process. This is illustrated by the user appearing alongside

the processes.

If desired, the user can take control (appearing on the left side of the figure) and enter commands

just like the script. Both the script and the user can take control from and return it to each other.

In the figure, the two have been moved closer together to emphasize the near equal relationship of

them.

3. Even if you were using a window system, you would still have to cut and paste 100 times.

Figure 5. expect is communicating with 5 processes simultaneously. The script
is in control and has disabled logging to the user. The user only sees what the
script says to send and is essentially treated as just another process.

expect

interactive
processes

script

- 4 -

January 21, 1992

The parent now reads a command script. When it finds send commands, it sends data to the child.

When it finds expect commands, it watches the output of the child for a pattern. If the pattern is

matched, the parent goes to the next command in the script (Figure 3).

When an interact command is found, the parent simply copies characters from the user to the

child and vice versa (Figure 4). Control may be returned to the script at the user’s convenience.

These simple ideas are the heart of expect. However, a few refinements allow expect to address

several more problems.

2.1 Pseudo-terminals

Pipes do not support terminal semantics. For example, programs such as rogue, emacs, etc.,

which require the terminal size in order to run, will not run over pipes. Thus, expect uses pseudo-

terminals (ptys). Ptys are logical device drivers that give the “look and feel” of real terminal driv-

ers despite the fact that they are used to connect two processes together. In addition, ptys solve

the /dev/tty problem noted above. Programs that open /dev/tty will actually end up speaking to

their pty.

Ptys support two paths of communication flow (much like two pairs of pipes). What happens to

the standard error? It is overloaded into the path already used by standard output. The rationale is

Figure 3. expect “talks” to the child process, according to the script. Interaction
is copied to the user terminal and appears as if the user actually typed it.

expect
interactive

process

(parent) (child)

script

Figure 4. In interact mode, the user takes control and types directly to the child
process.

expect
interactive

process

(parent) (child)

script

- 3 -

January 21, 1992

2 Solving the problem

Since I am claiming that expect can solve problems the shell cannot, let us first start by reviewing

what the shell is capable of.

Each process created by the shell is given a standard input (stdin), standard output (stdout) and

standard error (stderr) (although I will ignore the last one for now). The shell can connect these to

other processes or files. However, shell pipes and redirection are purely one-way. Ritchie [7] has

described shell pipe notation as “unabashedly linear”. There is no shell notation to create two

processes which have their standard input and output cross-connected (Figure 1).

The traditional notation proc1 | proc2 indicates that output flows from proc1 to proc2. There is

no data flow from proc2 to proc1. Indeed, the only entity that the shell can interact with on a 2-

way basis is the user. Viewed from the opposite direction, only the user is capable of 2-way inter-

action with programs.

Since the shell cannot construct such connections nor can it participate in them, it cannot “talk” to

interactive programs. This prevents any program from interacting with another unless both have

been specially designed to do so. This is the first problem.

A second problem is that the shell has no way to prevent a program from bypassing the standard

input and output conventions. Programs are free to open /dev/tty to communicate directly with

the user. This is often used to bypass shell redirection. For example, crypt does this because its

input is redirected while it interactively demands an encryption password.2

The first problem is easy to solve. A program is created (by the shell) which internally spawns the

process to be controlled. The spawned process is established so that its standard input and stan-

dard output remain connected to the original program (Figure 2).

2. Again, this was done for security reasons.

stdin

stdin

stdout

stdout

Figure 1. The shell cannot connect two processes in this way.

Figure 2. The parent creates a child process so that it can read the child’s
standard input and write its standard output. The user is left connected by the
shell, but plays no role here.

stdin

stdin

stdout

stdout

parent child

- 2 -

January 21, 1992

1 Introduction

UNIX programs used to be designed so that they could be connected with pipes created by a shell.

This paradigm is insufficient when dealing with many modern programs that demand to be used

interactively.

For example, the passwd program is used to change passwords. passwd prompts for the pass-

word. There is no provision for passing the information any other way. This means that you can-

not write a shell script which uses passwd without letting it do the prompting and reading. Thus,

it is impossible to write a script that, say, rejects passwords that are in the system dictionary.1

This illustrates one type of difficulty in the user interface provided by shells such as sh, csh, ksh

and others (which I will generically refer to as “the shell” in the rest of the paper). I will discuss

several other difficulties later. All of them have to do with the shell’s inability to communicate

with interactive programs. My solution is called “expect”.

expect is a program that “talks” to other interactive programs according to a script. By following

the script, expect knows what can be expected from a program and what the correct responses

should be. An interpreted language provides branching and high-level control structures to direct

the dialogue. In addition, the user can take control and interact directly when desired, afterward

returning control to the script.

The name “expect” comes from the idea of send/expect sequences [4] popularized by uucp, ker-

mit and other communications programs. However, unlike these programs, expect is generalized

so that it can be run as a user-level command with any program and task in mind. (expect can ac-

tually talk to several programs at the same time.)

Using expect, it is possible to create a script that solves the passwd problem. Here are some other

things expect can do, each requiring only a small amount of script:

• Have your computer dial you back, so that you can login without paying for the

call.

• Start a game (e.g., rogue) and if the optimal configuration does not appear, re-

start it (again and again) until it does, then hand over control to you.

• Run fsck, and in response to its questions, answer “yes”, “no” or give control

back to you.

• Connect to another network or BBS (e.g., MCI Mail, CompuServe) and auto-

matically retrieve your mail so that it appears as if it was originally sent to your

local system.

Although these problems are conceptually simple, none of them can be solved by the shell. What

is wrong? What do we do with the hard cases!?!

1. Ironically, the original reason for having passwd perform the prompting was for security!

January 21, 1992

expect: Curing Those Uncontrollable Fits of Interaction

Don Libes

National Institute of Standards and Technology

Gaithersburg, MD 20899

libes@cme.nist.gov

ABSTRACT

UNIX programs used to be designed so that they could be connected with pipes cre-

ated by a shell. This paradigm is insufficient when dealing with many modern pro-

grams that demand to be used interactively.

expect is a program designed to control interactive programs. expect reads a script

that resembles the dialogue itself but which may include multiple paths through it.

Scripts include:

• send/expect sequences - expect patterns can include regular expressions.

• high-level language - Control flow (if/then/else, while, etc.) allows different

actions on different inputs, along with procedure definition, built-in expression

evaluation, and execution of arbitrary UNIX programs.

• job control - Multiple programs can be controlled at the same time.

• user interaction - Control can be passed from scripted to interactive mode and

vice versa at any time. The user can also be treated as an I/O source/sink.

expect successfully deals with interactive programs. It also solves several other

large classes of problems which UNIX shells do not.

Keywords: expect, interaction, programmed dialogue, shell, Tcl, UNIX, uucp

Reprinted from Proceedings of the Summer 1990 USENIX Conference, Anaheim,

California, June, 1990.

