A guide to the internals of the GNU
linker

Per Bothner, Steve Chamberlain
Cygnus Support

Cygnus Support
Revision: 1.2
TgXinfo 2024-02-10.22

Copyright (© 1992 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Chapter 3: Porting the linker 1

1 The README File

Check the README file; it often has useful information that does not appear anywhere else
in the directory.

2 How linker emulations are generated

The linker is controlled by linker scripts written in a linker control language. A linker
emulation gives the personality of the linker, and is mainly defined by certain builtin scripts.
If you want to understand how these builtin scripts are generated, the main file to look at
is the genscripts. sh shell script, which invoked by the Makefile for each “emulation” to
generate a set of 5 linker scripts.

For example, for the sun3 emulation used by 1d68k, genscripts.sh sources the file
sun3.sh, which sets the emulation parameters, and specifies that the format is a.out, and
to use aout.sc-sh to generate the linker scripts.

genscripts.sh generates 5 different linker scripts, one for each of the 1d options ‘-z’

(default), ‘-n’, ‘-N’, ‘-r’ and ‘-Ur’, where each script is slightly different and is generated
using the template in aout.sc-sh (for the sun3).

3 Porting the linker

Before porting 14 itself, you will need to port the BFD library; see ../bfd/PORTING.

The host is the system a tool runs on. The target is the system a tool runs for; i.e.,
a tool can read and write the binaries of the target. Most often, host==target, but 1d
supports cross-linking (and to some extent the same 1d binary can be used a linker for
multiple target architectures).

3.1 Porting to a new host

Pick a name for your host. Call that host-type. You need to create the file config/mh-
host-type.

3.2 Porting to a new target

Pick a name for your target. Call that target. You need to create at least config/mt-
target. It should contain

EMUL=emulation

An emulation controls the “personality” of 1d, such as the default linker script. Usually,
the emulation will have the same name as the target, and you will need to create a new
emulation (see below).

You also need to edit Makefile.in and possibly configure.in. To see how to do that,
search for existing examples (e.g., sun3, sun4, hp300bsd).

Chapter 3: Porting the linker 2

3.3 Porting to a new emulation target

Pick a name for your target. Call that emulation. Usually, emulation and target are the
same. You need to create at least emulation.sh. You will also need to edit Makefile.in.
To see how to do that, search for existing examples.

The file emulation.sh defines a set of parameters that are used to generate the emula-
tion. Its syntax is that of a Bourne shell script. It is “sourced” by genscripts.sh.

3.4 Writing emulation.sh

Usually, emulation.sh contains:

EMULATION_NAME=emulation

SCRIPT_NAME=script

OUTPUT_FORMAT="target-name"
TEXT_START_ADDR=text-start-addr

PAGE_SIZE=page-size

SEGMENT _SIZE=segment-size # If different from PAGE_SIZE.
ARCH=arch

Here:

target—-name
Matches the filename field of the bfd_target you want to use. (This is a string,
and currently the first field.) For an a.out target, target-name matches the
TARGETNAME defined in . ./bfd/target.c.

arch The architecture: e.g., m68k, sparc,

script The file script.sc-sh is a shell script which, when evaluated (by
genscripts.sh), writes a linker script file to standard output. You may need
to write a new script. If you use the a.out format or something similar, you
can probably set

SCRIPT_NAME=aout

text-start-addr

page—size

segment-size
These set the shell variables TEXT_START_ADDR, PAGE_SIZE, and SEGMENT_SIZE
for use by script.sc-sh. If your script doesn’t use these variables, you don’t
have to define the variables, For emulations using a.out files, you can get these
values from ../bfd/target.c.

In some cases, you may need more more definitions. For example, if you can’t use
generic.em, you may need to add:

TEMPLATE_NAME=emulation

and write your own emulation.en file.

3.5 Writing a new linker script script.sc-sh

You may need to write a new script file for your emulation.

Chapter 3: Porting the linker 3

Your script can use the shell variable LD_FLAG, which has the value:
LD_FLAG= when building a script to be used by default

LD_FLAG=n
when building a script to be used for ‘1d -n’

LD_FLAG=N
when building a script to be used for ‘1d -N’

LD_FLAG=r
when building a script to be used for ‘1d -r’

LD_FLAG=u
when building a script to be used for ‘1d -Ur’

The variable RELOCATING is only set if relocation is happening (i.e., unless the linker is
invoked with ‘-r’). Thus your script should has an action ACTION that should only be done
when relocating, express that as:

${RELOCATING+ ACTION}

In general, this is the case for most assignments, which should look like:
${RELOCATING+ _end = .}

Also, you should assign absolute addresses to sections only when relocating, so:

.text ${RELOCATING+ ${TEXT_START_ADDR}}:

The forms:
.section { ... } > section
should be:
.section { ... } > ${RELOCATING+ section}

RELOCATING is set except when LD_FLAG=r or LD_FLAG=u. CONSTRUCTING is set except
when LD_FLAG=u.

Alignment of the data segments is controlled by the variables DATA_ALIGNMENT_ (note
trailing underscore), DATA_ALIGNMENT _n, DATA_ALIGNMENT_N, DATA_ALIGNMENT_r, or DATA_
ALIGNMENT_u depending on the value of LD_FLAGS. Normally, the default value works (this
is "ALIGN (${SEGMENT_SIZE})" for the ‘_n’, and ‘__’ (default) variants; "." for the ‘_N’,
variant; and "" for the ‘_r’ and ‘_u’ variants).

3.6 Handling ‘-n’ and ‘-N’ style binaries in your linker script

The ‘-n’ linker option requests the linker to create a binary with a write-protected text
segment, but not demand-pagable (NMAGIC). SunOS starts the text segment for demand-
paged binaries at 0x2020 and other binaries at 0x2000, since the exec header (0x20 bytes)
is paged in with the text. Some other Unix variants do the same.

In that case, the emulation.sh should define:

NONPAGED_TEXT_START_ADDR
The text start address to use when linking with ‘-n’ or ‘-N’ options.

Chapter 3: Porting the linker 4

For example, on a sun4:
TEXT_START_ADDR=0x2020
NONPAGED_TEXT_START_ADDR=0x2000

The ‘-N’ linker option creates a binary with a non-write-protected text segment (NMAGIC).
This is like ‘-n’, except that the data segment needs not be page-aligned.

Table of Contents

1 The README File.......
2 How linker emulations are generated...........

3 Porting the linker................................

3.1 Portingtoamnew host
3.2 Porting to anew target........ ..o
3.3 Porting to a new emulation targetl
3.4 Writing emulation.sh........ ...,
3.5 Writing a new linker script script.sc-sh........................
3.6 Handling ‘-n’ and ‘-N’ style binaries in your linker script.........

	1 The README File
	2 How linker emulations are generated
	3 Porting the linker
	Porting to a new host
	Porting to a new target
	Porting to a new emulation target
	Writing emulation.sh
	Writing a new linker script script.sc-sh
	Handling -n and -N style binaries in your linker script

