VM User’s Manual

Second Edition, VM Version 5

June 1991

Kyle E. Jones
kyle@uunet.uu.net

Copyright (©) 1989, 1991 Kyle E. Jones

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

License

GNU GENERAL PUBLIC LICENSE

Version 1, February 1989

Copyright (©) 1989 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The license agreements of most software companies try to keep users at the mercy of those
companies. By contrast, our General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. The
General Public License applies to the Free Software Foundation’s software and to any other
program whose authors commit to using it. You can use it for your programs, too.

When we speak of free software, we are referring to freedom, not price. Specifically, the
General Public License is designed to make sure that you have the freedom to give away or
sell copies of free software, that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs; and that you know
you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of a such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that they,
too, receive or can get the source code. And you must tell them their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

1. This License Agreement applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of this
General Public License. The “Program”, below, refers to any such program or work,
and a “work based on the Program” means either the Program or any work containing
the Program or a portion of it, either verbatim or with modifications. Each licensee is
addressed as “you”.

2. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish

GNU GENERAL PUBLIC LICENSE 3

on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this General Public License and to the absence of any warranty;
and give any other recipients of the Program a copy of this General Public License along
with the Program. You may charge a fee for the physical act of transferring a copy.

3. You may modify your copy or copies of the Program or any portion of it, and copy and
distribute such modifications under the terms of Paragraph 1 above, provided that you
also do the following:

e cause the modified files to carry prominent notices stating that you changed the
files and the date of any change; and

e cause the whole of any work that you distribute or publish, that in whole or in part
contains the Program or any part thereof, either with or without modifications, to
be licensed at no charge to all third parties under the terms of this General Public
License (except that you may choose to grant warranty protection to some or all
third parties, at your option).

e If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the simplest and
most usual way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this General Public License.

e You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

Mere aggregation of another independent work with the Program (or its derivative) on
a volume of a storage or distribution medium does not bring the other work under the
scope of these terms.

4. You may copy and distribute the Program (or a portion or derivative of it, under
Paragraph 2) in object code or executable form under the terms of Paragraphs 1 and
2 above provided that you also do one of the following:

e accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Paragraphs 1 and 2 above; or,

e accompany it with a written offer, valid for at least three years, to give any third
party free (except for a nominal charge for the cost of distribution) a complete
machine-readable copy of the corresponding source code, to be distributed under
the terms of Paragraphs 1 and 2 above; or,

e accompany it with the information you received as to where the corresponding
source code may be obtained. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form
alone.)

Source code for a work means the preferred form of the work for making modifications
to it. For an executable file, complete source code means all the source code for all
modules it contains; but, as a special exception, it need not include source code for
modules which are standard libraries that accompany the operating system on which
the executable file runs, or for standard header files or definitions files that accompany
that operating system.

GNU GENERAL PUBLIC LICENSE 4

10.

11.

You may not copy, modify, sublicense, distribute or transfer the Program except as
expressly provided under this General Public License. Any attempt otherwise to copy,
modify, sublicense, distribute or transfer the Program is void, and will automatically
terminate your rights to use the Program under this License. However, parties who
have received copies, or rights to use copies, from you under this General Public License
will not have their licenses terminated so long as such parties remain in full compliance.

By copying, distributing or modifying the Program (or any work based on the Program)
you indicate your acceptance of this license to do so, and all its terms and conditions.

Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein.

The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of the license which applies to it and “any later version”, you have the option
of following the terms and conditions either of that version or of any later version
published by the Free Software Foundation. If the Program does not specify a version
number of the license, you may choose any version ever published by the Free Software
Foundation.

If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT

GNU GENERAL PUBLIC LICENSE 5

LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU GENERAL PUBLIC LICENSE 6

Appendix: How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the greatest possible use to humanity,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type “show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type “show c' for details.
The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts
of the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show ¢’; they could even be mouse-clicks or menu items—whatever

suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
program ~Gnomovision' (a program to direct compilers to make passes
at assemblers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

That’s all there is to it!

Introduction

VM (View Mail) is an Emacs subsystem that allows UNIX mail to be read and disposed of
within Emacs. Commands exist to do the normal things expected of a mail user agent, such
as generating replies, saving messages to folders, deleting messages and so on. There are
other more advanced commands that do tasks like bursting and creating digests, message
forwarding, and organizing message presentation according to various criteria.

To invoke VM simply type M-x vm. VM gathers any mail that has arrived in your system
mailbox and appends it to a file known as your primary inbox, and visits that file for reading.
See Chapter 1 [Starting Up]|, page 9. A file visited for reading by VM is called the current
folder.

If there are any messages in the primary inbox, VM selects the first new or unread
message, and previews it. Previewing is VM’s way of showing you part of message and
allowing you to decide whether you want to read it. See Section 3.1 [Previewing], page 13.
By default VM shows you the message’s sender, recipient, subject and date headers. Typing
SPC (vm-scroll-forward) exposes the body of the message and flags the message as read.
Subsequent SPC’s scroll forward through the message, b or DEL scrolls backward. When you
reach the end of a message, typing SPC or n moves you forward to preview the next message.
See Section 3.2 [Paging], page 14.

If you do not want to read a message that’s being previewed, just type n and VM will
move on to the next message (if there is one). See Chapter 2 [Selecting Messages|, page 11.

To save a message to a mail folder use s (vm-save-message). VM will prompt you for
the folder name in the minibuffer. See Chapter 5 [Saving Messages|, page 18.

Messages are deleted by typing d (vm-delete-message) while previewing or reading
them. The message is not deleted right away; it is simply flagged for deletion. If you change
your mind about deleting a message just select it and type u (vm-undelete-message),
and the message will be undeleted. See Chapter 6 [Deleting Messages|, page 20. The
actual removal of deleted messages from the current folder is called expunging and it is
accomplished by typing # (vm-expunge-folder). The message is still present in the on-
disk version of the folder until the folder is saved.

Typing h (vm-summarize) causes VM to pop up a window containing a summary of
contents of the current folder. The summary is presented one line per message, by message
number, listing each message’s author, date sent, line and byte count, and subject. Also
various letters appear beside the message number to indicate that a message is new, unread,
flagged for deletion, etc. An arrow ‘->’ appears to the left of the line summarizing the
current message. The summary format is user configurable, see Chapter 12 [Summaries],
page 26.

When you are finished reading mail the current folder must be saved, so that the next
time the folder is visited VM will know which messages have been already read, replied
to and so on. Typing S (vm-save-folder) expunges all deleted messages and saves the
folder. C-x C-s saves the folder without expunging deleted messages but the messages are
still flagged deleted. The next time the folder is visited these messages will still be flagged
for deletion.

To quit VM you can type g (vm-quit) or x (vm-quit-no-change). Typing q expunges
and saves the current folder before quitting. Also, any messages flagged new are changed

Introduction 8

to be flagged unread, before saving. The x command quits VM without expunging, saving
or otherwise modifying the current folder. Quitting is not required; you can simply switch
to another Emacs buffer when you’ve finished reading mail.

At any time while reading mail in the primary inbox you can type g (vm-get-new-mail)
to check to see if new mail has arrived. If new mail has arrived it will be moved from
the system spool area and merged into the primary inbox. If you are not in the middle of
another message, VM will also jump to the first new message, if you are not in the midst
of reading another message.

If vm-get-new-mail is given a prefix argument, it will prompt for another file from which
to gather messages instead of the usual spool files. In this case the source folder is copied
but not deleted.

1 Starting Up

There are three ways to start VM: M-x vm, M-x vm-visit-folder and vm-mode. The first
time VM is started in an Emacs session (by any of these methods), it attempts to load the
file ©/.vm. If present this file should contain Lisp code, much like the .emacs file. Since
VM has in excess of forty configuration variables, use of the ~/.vm can considerably reduce
clutter in the .emacs file. You can force the reloading of this file on demand by typing L
from within VM.

M-x vm causes VM to gather any mail present in your system mailbox and append it to
a file known as your primary inbox, creating this file if necessary. The default name of this
file is “/INBOX, but VM will use whatever file is named by the variable vm-primary-inbox.

VM transfers the mail from the system mailbox to the primary inbox via a temporary
file known as the crash box. The variable vm-crash-box names the crash box file. VM
first copies the mail to the crash box, deletes the system mailbox, merges the crash box
contents into the primary inbox, and then deletes the crash box. If the system or Emacs
should crash in the midst of this transfer, any message not present in the primary inbox
will be either in the system mailbox or the crash box. Some messages may be duplicated
but no mail will be lost.

If the file named by vm-crash-box already exists when VM is started up, VM will merge
that with the primary inbox before getting any new messages from the system mailbox.

By default, the location of the system mailbox is determined heuristically based on what
type of system you’re using. VM can be told explicitly where the system mailbox is through
the variable vm-spool-files. The value of this variable should be a list of strings naming
files VM should try when searching for newly arrived mail. Multiple mailboxes can be
specified if you receive mail in more than one place. The value of vm-spool-files will
be inherited from the shell environmental variables MAILPATH or MAIL if either of these
variables are defined.

M-x vm-visit-folder (v from within VM) allows you to visit some other mail folder
than the primary inbox. The folder name will be prompted for in the minibuffer.

Once VM has read the folder, the first new or unread message will be selected. If there
is no such message, the first message in the folder is selected.

M-x vm-mode can be used on a buffer already loaded into Emacs to put it into the VM
major mode so that VM commands can be executed from within it. This command is
suitable for use in Lisp programs, and for inclusion in auto-mode-alist to automatically
start VM on a file based on a particular filename suffix. vm-mode foregoes some of VM'’s
startup procedures (e.g. starting up a summary) to faciliate noninteractive use.

The variable vm-startup-with-summary controls whether VM automatically displays a
summary of the folder’s contents at startup. A value of nil gives no summary; a value of t
gives a full screen summary. A value that is neither t nor nil splits the screen between the
summary and the folder display. The latter only works if the variable pop-up-windows’s
value is non-nil, and the value of vm-mutable-windows is non-nil. The default value of
vm-startup-with-summary is nil.

The variable vm-mail-window-percentage tells VM what percentage of the screen
should be given to the folder display when both it and the folder summary are being
displayed. Note that Emacs enforces a minimum window size limit, so a very high or very

Chapter 1: Starting Up 10

low value for this variable may squeeze out one of the displays entirely. This variable’s
default value is 75, which works with Emacs’ default minimum window size limit, on a 24
line terminal. Note that the value of vm-mutable-windows must be t or VM will not do
window resizing regardless of the value of vm-mail-window-percentage.

A non-nil value for the variable vm-inhibit-startup-message disables the display of
the VM'’s copyright, copying and warranty disclaimer. If you must, set this variable in your
own .emacs file; don’t set it globally for everyone. Users should be told their rights. The
startup messages abort at the first keystroke after startup, so they do not impede mail
reading.

11

2 Selecting Messages

The primary commands for selecting messages in VM are n (vm-next-message) and p (vm-
previous-message). These commands move forward and backward through the current
folder. When they go beyond the end or beginning of the folder they wrap to the beginning
and end respectively. By default these commands skip messages flagged for deletion. This
behavior can be disabled by setting the value of the variable vm-skip-deleted-messages
to nil. These commands can also be made to skip messages that have been read; set
vm-skip-read-messages to t to do this.

The commands n and p also take prefix arguments that specify the number of messages
to move forward or backward. If the magnitude of the prefix argument is greater than 1, no
message skipping will be done regardless of the settings of the previously mentioned skip
control variables.

The variable vm-circular-folders determines whether VM folders will be considered
circular by various commands. Circular means VM will wrap from the end of the folder to
the start and vice versa when moving the message pointer, deleting, undeleting or saving
messages before or after the current message.

A value of t causes all VM commands to consider folders circular. A value of nil causes
all of VM commands to signal an error if the start or end of the folder would have to be
passed to complete the command. For movement commands, this occurs after the message
pointer has been moved as far it can go. For other commands the error occurs before any
part of the command has been executed, i.e. no deletions, saves, etc. will be done unless
they can be done in their entirety. A value other than nil or t causes only VM’s movement
commands to consider folders circular. Saves, deletes and undeletes will behave as if the
value is nil. The default value of vm-circular-folders is O.

Other commands to select messages:

RET (vm-goto-message)
Go to message number n. n is the prefix argument, if provided, otherwise it is
prompted for in the minibuffer.

TAB (vm-goto-message-last-seen)
Go to message last previewed or read.

N (vm-Next-message)

P (vm-Previous-message)
Go to the next (previous) message, ignoring the settings of the skip control
variables.

M-n (vm-next-unread-message)

M-p (vm-previous-unread-message)
Move forward (backward) to the nearest new or unread message. If no such
message exists then these commands work like n and p.

M-s (vm-isearch-forward)
This works just like Emacs’ normal incremental search except that when the
search ends, VM selects the message containing point. If the value of the
variable vm-search-using-regexps is non-nil, a regular expression may be

Chapter 2: Selecting Messages 12

used instead of a fixed string for the search pattern. VM defaults to the fixed
string search. See Section “Incremental Search” in the GNU Emacs Manual.

13

3 Reading Messages

Once a message has been selected, VM will present it to you. By default presentation is
done in two stages: previewing and paging.

3.1 Previewing

Previewing is VM’s way of showing you a small portion of a message and allowing you to
decide whether you want to read it. Typing SPC exposes the body of the message, and from
there you can repeatedly type SPC to page through the message.

By default the sender, recipient, subject and date headers are shown when previewing;
the rest of the message is hidden. This behavior may be altered by changing the settings
of two variables: vm-visible-headers, vm-invisible-header-regexp and vm-preview—
lines.

The value of vm-preview-lines should be a number that tells VM how many lines of
the text of the message should be visible. The default value of this variable is 0. If vm-
preview-lines is nil, then previewing is not done at all; when a message is first presented
it is immediately exposed in its entirety and is flagged as read.

The value of vm-visible-headers should be a list of regular expressions matching the
beginnings of headers that should be made visible when a message is presented. The regexps
should be listed in the preferred presentation order of the headers they match.

If non-nil, the variable vm-invisible-header-regexp specifies what headers should
not be displayed. Its value should be a string containing a regular expression that matches
all headers you do not want to see. Setting this variable non-nil implies that you want
to see all headers not matched by it; therefore the value of vm-visible-headers is only
used to determine the order of the visible headers in this case. Headers not matched by
vm-invisible-header-regexp or vm-visible-headers are displayed last.

If you change the value of either vm-visible-headers or vm-invisible-header-regexp
is the middle of a VM sesssion the effects will not be immediate. You will need to use the
command vm-discard-cached-data on each message (bound to j by default) to force VM
rearrange the message headers. A good way to do this is to mark all the messages in
the folder and apply vm-discard-cached-data to the marked messages. See Chapter 8
[Message Marks|, page 22.

Another variable of interest is vm-highlighted-header-regexp. The value of this vari-
able should be a single regular expression that matches the beginnings of any header
that should be presented in inverse video when previewing. For example, a value of
‘"“From\\ | "Subject"’ causes the From and Subject headers to be highlighted.

By default VM previews all messages, even if they have already been read. To have VM
preview only those messages that have not been read, set the value of vm-preview-read-
messages to nil.

Typing t (vm-expose-hidden-headers) causes VM toggle between exposing and hiding
headers that would ordinarily be hidden.

Chapter 3: Reading Messages 14

3.2 Paging

Typing SPC during a message preview exposes the body of the message. If the message was
new or previously unread, it will be flagged “read”. At this point you can use SPC to scroll
forward, and b or DEL to scroll backward a windowful of text at a time. Typing space at the
end of a message moves you to the next message. If the value of vm-auto-next-message is
nil, SPC will not move to the next message; you must type n explicitly.

If the value of vm-honor-page-delimiters is non-nil, VM will recognize and honor
page delimiters. This means that when you scroll through a document, VM will display
text only up to the next page delimiter. Text ater the delimiter will be hidden until you
type another SPC, at which point the text preceding the delimiter will becom hidden. The
Emacs variable page-delimiter determines what VM will consider to be a page delimiter.

You can “unread” a message (so to speak) by typing U (vm-unread-message). The
current message will be flagged unread.

15

4 Sending Messages

When sending messages from within VM, you will be using the standard Mail major mode
provided with GNU Emacs. See Section “Mail Mode” in the GNU Emacs Manual. However,
‘*mail*’ buffers created by VM have extra command keys:

C-c¢ C-y (vm-yank-message)

Copies a message from the current folder into the ‘*mail*’ buffer. The mes-
sage number is read from the minibuffer. By default each line of the copy is
prepended with the value of the variable vm-included-text-prefix. All mes-
sage headers are yanked along with the text. Point is left before the inserted
text, the mark after. Any hook functions bound to mail-yank-hooks are run, af-
tert inserting the text and setting point and mark. If a prefix argument is given,
this tells VM to ignore mail-yank-hooks, don’t set the mark, don’t prepend the
value of vim-included-text-prefix to every yanked line, and don’t yank any head-
ers other than those specified in vm-visible-headers/vm-invisible-headers.

C-c y (vm-yank-message-other-folder)
Work like vm-yank-message, but it first prompts for the name of a folder from
which to yank the message.

C-¢ C-v <Any VM command key>
All VM commands may be accessed in the ‘*mail#*’ buffer by prefixing them
with C-c C-v.

The simplest command is m (vm-mail) which sends a mail message much as M-x mail
does but allows the added commands described above.

vm-mail can be invoked outside of VM by typing M-x vm-mail. However, of the above
commands, only C-c y (vm-yank-message-other-folder) will work; all the other com-
mands require a parent folder.

If you send a message and it is returned by the mail system because it was undeliverable,
you an easily resend the message by typing C-r (vm-resend-bounced-message). VM will
extract the old message and its pertinent headers from the returned message, and place
you in a ‘*mail*’ buffer. You can then change the recipient addresses or do whatever is
necessary to correct the original problem and resend the message.

4.1 Replying

VM has special commands that make it easy to reply to a message. When a reply command
is invoked VM fills in the subject and recipient headers for you, since it is apparent to whom
the message should be sent and what the subject should be. There is an old convention of
prepending the string ‘"Re: "’ to the subject of replies if the string isn’t present already.
VM supports this indirectly by providing the variable vm-reply-subject-prefix. Its value
should be a string to prepend to the subject of replies, if the said string isn’t present already.
A nil value means don’t prepend anything to the subject (this is the default). In any case
you can edit any of the message headers manually, if you wish.

VM also helps you quote material from a message to which you are replying by providing
included text as a feature of some of the commands. Included text is a copy of the message
being replied to with some fixed string prepended to each line so that included text can be

Chapter 4: Sending Messages 16

distinguished from the text of the reply. The variable vm-included-text-prefix specifies
what the prepended string will be.

The variable vm-included-text-attribution-format specifies the format for the at-
tribution of included text. This attribution is a line of text that tells who wrote the text
that is to be included; it will be inserted before the included text. If non-nil, the value
of vm-included-text-attribution-format should be a string format specifiation similar
to vm-summary-format. See Chapter 12 [Summaries|, page 26. A nil value causes the
attribution to be omitted.

The variable vm-in-reply-to-format specifies the format of the In-Reply-To header
that is inserted into header section of the reply buffer. Like vm-included-text-
attribution-format, vm-in-reply-to-format should be a string similar to that of
vm-summary-format. A nil value causes the In-Reply-To header to be omitted.

The recipient headers generated for reply messages are created by simply copying the
appropriate headers for the message to which you are replying. This includes any full name
information, comments, etc. in these headers. If the variable vm-strip-reply-headers is
non-nil, the reply headers will stripped of all information but the actual addresses.

The reply commands are:

r (vm-reply)
Replies to the author of the current message.

R (vm-reply-include-text)
Replies to the author of the current message and provides included text.

f (vm-followup)
Replies to the all recipients of the current message.

F (vm-followup-include-text)
Replies to the all recipients of the current message and provides included text.

These commands all accept a numeric prefix argument n, which if present, causes VM
to reply to the next (or previous if the argument is negative) n-1 message as well as the
current message. Also all the reply commands set the “replied” attribute of the messages to
which you are responding, but only when the reply is actually sent. The reply commands
can also be applied to marked messages, see Chapter 8 [Message Marks|, page 22.

If you are one of multiple recipients of a message and you use f and F, your address will
be included in the recipients of the reply. You can avoid this by judicious use of the variable
vm-reply-ignored-addresses. Its value should be a list of regular expressions that match
addresses that VM should automatically remove from the recipient headers of replies.

4.2 Forwarding Messages

VM has two commands to forward messages: z (vm-forward-message) and @ (vm-send-
digest).

Typing z puts you into a ‘*mail#*’ buffer just like m, except the current message appears
as the body of the message in the ‘*mail*’ buffer. The forwarded message is surrounded
by RFC 934 complaint message delimiters. If the variable vm-rfc934-forwarding is non-
nil "~-" to "- -" character stuffing is done to the forwarded message (this is the default).
This behavior is required if the recipient of the forwarded message wants to use a RFC 934

Chapter 4: Sending Messages 17

standard bursting agent to access the message. If the variable vm-forwarding-subject-
format is non-nil it should specify the format of the Subject header of the forwarded
message. This subject will be used as the contents of the Subject header automatically
inserted into the ‘*mail*’ buffer. A nil value causes the Subject header to be left blank.
The forwarded message is flagged “forwarded”.The command @ (vm-send-digest) works
like z except that a digest of all the messages in the current folder is made and inserted
into the ‘“*mail*’ buffer. Also, vm-send-digest can be applied to marked messages. See
Chapter 8 [Message Marks|, page 22. When applied to marked messages, vm-send-digest
will only bundle marked messages, as opposed to the usual bundling of all messages in the
current folder. If you give vm-send-digest a prefix argument, VM will insert a list of
preamble lines at the beginning of the digest, one line per digestified message. The variable
vm-digest-preamble-format determines the format of the preamble lines. If the value of
vm-digest-center-preamble is non-nil, the preamble lines will be centered.

18

5 Saving Messages

Mail messages are normally saved to files that contain only mail messages. Such files are
called folders.

The VM command to save a message to a folder is s (vm-save-message); invoking this
command causes the current message to be saved to a folder whose name you specify in
the minibuffer. If vm-save-message is given a prefix argument n, the current message plus
the next n-1 message are saved. If n is negative, the current message and the previous n-1
messages are saved. Messages saved with vm-save-message are flagged “filed”.

If the value of the variable vm-confirm-new-folders is non-nil, VM will ask for con-
firmation before creating a new folder on interactive saves.

If you have a directory where you keep all your mail folders, you should set the variable
vm-folder-directory to point to it. If this variable is set, vm-save-message will insert
this directory name into the minibuffer before prompting you for a folder name; this will
save you some typing.

Another aid to selecting folders in which to save mail is the variable vm-auto-folder-
alist. The value of this variable should be a list of the form,

((header-name
(regexp . folder-name) ...)

)

where header-name and regexp are strings, and folder-name is a string or an s-expression
that evaluates to a string.

If any part of the contents of the message header named by header-name is matched
by the regular expression regexp, VM will evaluate the corresponding folder-name and
use the result as the default when prompting for a folder to save the message in. If the
resulting folder name is a relative pathname it resolves to the directory named by vm-
folder-directory, or the default-directory of the currently visited folder if vm-folder-
directory is nil.

When folder-name is evaluated, the current buffer will contain only the contents of the
header named by header-name. It is safe to modify this buffer. You can use the match data
from any ‘\(... \)’ grouping constructs in regexp along with the function buffer-substring
to build a folder name based on the header information. If the result of evaluating folder-
name is a list, then the list will be treated as another auto-folder-alist and will be descended
recursively.

Whether matching is case sensitive depends on the value of the variable vm-auto-
folder-case-fold-search. A non-nil value makes matching case insensitive. The default
value is t, which means matching is case sensitive. Note that the matching of header names
is always case insensitive becasue RFC 822 specifies that header names are case indistinct.

VM can save messages to a folder in two distinct ways. The message can be appended
directly to the folder on disk, or the folder can be visited as Emacs would visit any other file
and the message be appended to that buffer. In the latter method you must save the buffer
yourself to change the on-disk copy of the folder. The variable vm-visit-when-saving
controls which method is used. A value of t cuases VM to always visit a folder before
saving message to it. A nil value causes VM to always append directly to the folder file.

Chapter 5: Saving Messages 19

In this case VM will not save messages to the disk copy of a folder that is being visited.
This restriction is necessary to insure that the buffer and on-disk copies of the folder are
consistent. If the value of vm-visit-when-saving is not nil and not t (e.g. 0, the default),
VM will append to the folder’s buffer if the buffer is currently being visited, otherwise VM
will append to the file itself.

After a message is saved to a folder, the usual thing to do next is to delete it. If the
variable vm-delete-after-saving is non-nil VM will flag messages for deletion automat-
ically after saving them. This applies only to saves to folders, not for the w command (see
below).

Other commands:

w (vm-save-message-sans-headers)
Saves a message or messages to a file without their headers. This command
responds to a prefix argument exactly as vm-save-message does. Messages
saved this way are flagged “written”.

A (vm-auto-archive-messages)
Save all unfiled messages that auto-match a folder via vm-auto-folder-alist
to their appropriate folders. Messages that are flagged for deletion are not
saved by this command. If invoked with a prefix argument, confirmation will
be requested for each save.

| (vm-pipe-message-to-command)
Runs a shell command with the some or all of the current message as input.
By default the entire message is used.

If invoked with one C-u the text portion of the message is used.
If invoked with two C-u’s the header portion of the message is used.

If the shell command generates any output, it is displayed in a ‘*Shell Command
Output*’ buffer. The message itself is not altered.

20

6 Deleting Messages

In VM, messages are flagged for deletion, and then are subsequently expunged or removed
from the folder. The messages are not removed from the on-disk copy of the folder until
the folder is saved.

d (vm-delete-message)
Flags the current message for deletion. A prefix argument n causes the current
message and the next n-1 messages to be flagged. A negative n causes the
current message and the previous n-1 messages to be flagged.

u (vm-undelete-message)
Removes the deletion flag from the current message. A prefix argument n causes
the current message and the next n-1 messages to be undeleted. A negative n
causes the current message and the previous n-1 messages to be undeleted.

k (vm-kill-subject)
Flags all message with the same subject as the current message (ignoring “Re:”)
for deletion.

(vm-expunge-folder)
Does the actual removal of messages flagged for deletion in the current folder.
Setting the variable vm-move-after-deleting non-nil causes VM to move past the

messages after flagging them for deletion. Setting vm-move-after-undeleting non-nil
causes similar movement after undeletes.

21

7 Editing Messages

To edit a message, type e (vm-edit-message). The current message is copied into a tem-
porary buffer, and this buffer is selected for editing. The major mode of this buffer is
controlled by the variable vm-edit-message-mode. The default is Text mode.

Use C-c ESC (vm-edit-message-end) when you have finished editing the message. The
message will be inserted into its folder, replacing the old version of the message. If you
want to quit the edit without your edited version replacing the original, use C-c C-] (vm-
edit-message-abort), or you can just kill the edit buffer with C-x k (kill-buffer).

If you give a prefix argument to vm-edit-message, then the current message will be
flagged unedited.

As with VM ‘*mail*’ buffers, all VM commands can be accessed from the edit buffer
through the command prefix C-c C-v.

22

8 Message Marks

VM provides general purpose marks that may be applied to any and all messages within a
given folder. Certain VM commands can be subsequently invoked only on those message
that are marked.

To mark the current message, type C-c C-@ (vm-mark-message). If you give a numeric
prefix argument n, the next n-1 messages will be marked as well. A negative prefix argument
means mark the previous n-1. An asterisk (‘*’) will appear to the right of the message
numbers of all marked messages in the summary window.

To remove a mark from the current message, use C-¢ SPC (vm-unmark-message. Prefix
arguments work as with vm-mark-message.

Use C-c C-a to mark all message in the current folder; C-c a removes marks from all
messages.

To apply a VM command to all marked message you must prefix it with the key
sequence C-c RET (vm-next-command-uses-marks). The next VM command will
apply to all marked messages, provided the command can be applied to such messages
in a meaningful and useful way. The current commands that can be applied to
marked message are: vm-delete-message, vm-discard-cached-data, vm-followup,
vm-followup-include-text, vm-reply, vm-reply-include-text, vm-save-message,
vm-save-message-sans-headers, vm-send-digest, vm-undelete-message, and
vm-unread-message.

23

9 Undoing

VM provides a special form of undo which allows changes to message attributes to be
undone.

Typing C-x u or C-_ (vm-undo) undoes the last attribute change. Consecutive vm-
undo’s undo further and further back. Any intervening command breaks the undo chain,
after which the undos themselves become undoable by subsequent invocations of vm-undo.

Note that expunges, saves and message edits are not undoable.

24

10 Grouping Messages

In order to make numerous related messages easier to cope with, VM provides the command
G (vm-group-messages), which groups all message in a folder according to some criterion.
Grouping causes messages that are related in some way to be presented consecutively. The
actual order of the folder is not altered; the messages are simply numbered and presented
differently. Grouping should not be confused with sorting; grouping only moves messages
that occur later in the folder backward to “clump” with other related messages.

The grouping criteria currently supported are:
‘subject’ Messages with the same subject (ignoring “Re:” prefixes) are grouped together.
‘author’ Messages with the same author are grouped together.

‘recipient’
Mesage with the same recipients are grouped together.

‘date-sent’
Messages sent on the same day are grouped together.

‘physical-order’
Message presentation reverts to physical message order of the foler (the default).

If the variable vm-group-by has a non-nil value it specifies the default grouping that
will be used for all folders. So if you like having your mail presented to you grouped by
subject, then put (setq vm-group-by "subject") in your .emacs file to get this behavior.

25

11 Reading Digests

A digest is one or more mail messages encapsulated in a single message.

VM supports digests by providing a command to “burst” them into their individual
messages. These messages can then be handled like any other messages under VM.

The command * (vm-burst-digest) bursts a digest into its individual messages and
appends them to current folder. These messages are then assimilated into the current
folder using the default grouping. See Chapter 10 [Grouping Messages|, page 24. The
original digest message is not altered, and the messages extracted from it are not part of
the on-disk copy of the folder until a save is done.

If you give a prefix argumet to vm-burst-digest, it will attempt to cope with non-RFC
934 compliant digests. If vm-burst-digest seems to be breaking digests at inappropriate
places, most likely the digest is not compliant with the standard. In this case try using the
prefix arg.

26

12 Summaries

Typing h (vm-summarize) causes VM to display a summary of contents of the current
folder. The information in the summary is automatically updated as changes are made to the
current folder. An arrow ‘=>’ appears to the left of the line summarizing the current message.
The variable vm-auto-center-summary controls whether VM will keep the summary arrow
vertically centered within the summary window. A value of t causes VM to always keep
arrow cenered. A value of nil means VM will never bother centering the arrow. A value
that is not nil and not t causes VM to center the arrow only if the summary window is
not the only existing window.

The variable vm-summary-format controls the format of each message’s summary. Its
value should be a string. This string should contain printf-like “%” conversion specifiers
which substitute information about the message into the final summary.

Recognized specifiers are:

a - attribute indicators (always four characters wide)
The first char is ‘D’, ‘N’, ‘U’ or * ’ for deleted, new, unread
and read messages respectively.
The second char is ‘F’, ‘W’ or * ’ for filed (saved) or written
messages.
The third char is ‘R’, ‘Z’ or ¢’ for messages replied to,
and forwarded messages.
The fourth char is ‘E’ if the message has been edited, ‘ * otherwise.
A - longer version of attributes indicators (six characters wide)
The first char is ‘D’, ‘N’, ‘U’ or * ’ for deleted, new, unread
and read messages respectively.
The second is ‘r’ or ‘ ’, for message replied to.
The third is ‘z’ or ‘ ’, for messages forwarded.
The fourth is ‘f” or ¢ ’, for messages filed.
The fifth is ‘w’ or * ’, for messages written.
The sixth is ‘e’ or ‘ ’, for messages that have been edited.
¢ - number of characters in message (ignoring headers)
d - numeric day of month message sent
f - author’s address
F - author’s full name (same as f if full name not found)
h - hour message sent
i - message ID
1 - number of lines in message (ignoring headers)
m - month message sent
M - numeric month message sent (January = 1)
n - message number
s - message subject
t - addresses of the recipients of the message, in a comma-separated list
T - full names of the recipients of the message, in a comma-separated list
If a full name cannot be found, the corresponding address is used
instead.
w - day of the week message sent

Chapter 12: Summaries 27

y - year message sent
z - timezone of date when the message was sent
* _ ¥ if the current message is marked, ¢ > otherwise

Use “%%” to get a single “%”.

A numeric field width may be specified between the “%” and the specifier; this causes
right justification of the substituted string. A negative field width causes left justification.
The field width may be followed by a “.” and a number specifying the maximum allowed
length of the substituted string. If the string is longer than this value, it is truncated.

The summary format need not be one line per message but it must end with a newline,
otherwise the message pointer will not be displayed correctly in the summary window.

You can have a summary generated automatically at startup, see Chapter 1 [Starting
Upl, page 9.

All VM commands are available in the summary buffer just as they are in the folder
buffer itself. If you set vm-follow-summary-cursor non-nil, VM will select the message
under the cursor in the summary window before executing commands that operate on the
current message. Note that this occurs only when executing a command from the summary
buffer window.

28

13 Miscellaneous

Here are some VM customization variables that don’t really fit into the other chapters.

vm-confirm-quit
A value of t causes VM to always ask for confirmation before ending a VM visit
of a folder. A nil value means VM will ask only when messages will be lost
unwittingly by quitting, i.e. not removed by intentional delete and expunge. A
value that is not nil and not t causes VM to ask only when there are unsaved
changes to message attributes or message will be lost.

vm-berkeley-mail-compatibility
A non-nil value means to read and write BSD Mail(1) style Status: headers.
This makes sense if you plan to use VM to read mail archives created by Mail.

vm-gargle-uucp
A non-nil value means to use a crufty regular expression that does surprisingly
well at beautifying UUCP addresses that are substituted for %f and %t as part
of summary and attribution formats.

vm-mode-hooks
A non-nil value should be a list of hook functions to run when a buffer enters
vm-mode. These hook functions should generally be used to set key bindings
and local variables. Mucking about in the folder buffer is certainly possible,
but it is not encouraged.

vm-delete-empty-folders
A non-nil value for this variable causes VM to remove empty (zero length)
folder files after saving them.

vm-mutable-windows
This variable’s value controls VM’s window usage. A value of t gives VM free
run of the Emacs display; it will commandeer the entire screen for its purposes.
A value of nil restricts VM’s window usage to the window from which it was
invoked. VM will not create, delete, or use any other windows, nor will it resize
its own window. A value that is neither t nor nil allows VM to use other
windows, but it will not create new ones, or resize or delete the current ones.

mail-yank-hooks
Value should be a list of functions to be called after a message is yanked into
a ‘*mailx’ buffer via vm-yank-message. When each hook function is called,
point will be at the beginning of the yanked text and mark at the end.

This is not a VM specific variable, but rather an external variable that VM
honors so that citation packages such as SUPERCITE can be used with VM.

Key Index
P 20
%k

K 25
Q@
P 17
| 19
A
A 19
B

D 7
C
G 23
CC GV 15
CC Gy e 15
o Y 15
X Wt 23
D
P 20
DEL . 7
F

P 16
F o 16
G

B e 8
G 24
H
Mo 26
K

29

L

Lo 9
M

T et e e e e e e e e e 15
e o P 11
< 11
Mo ettt e 11
N

o AP 11
N o 11
P

<2 11
P o 11
Lo 7
R
O 16
Rt e 16
RET . e e 11
S

=2 P 18
S Pt 7
SPC e e 7
T

TAB . e 11
U

L0 20
V
2P 9
W

L 19

Key Index

30

Command Index

VI oot 9
vm-auto-archive-messages.................... 19
vm-burst-digestl 25
vm-delete-message............................ 20
vm-expose-hidden-headers.................... 13
vm-expunge-folder......................... ... 20
vm—followup..........oiiiiiii 16
vm-followup-include-text.................... 16
vm-forward-message........................... 16
vm-get-new-maill 8
VII—GOtO—MESSAZE . .o vvv et it 11
VI~ TOUP-—MESSAZES . .ot v v eirreeee i 24
vm-isearch-forward........................... 11
vm-kill-subject 20
vm-load-rCc............ oo 9
vm-mail L. 15
VIEMOAE oo 9
VI-NEXT-MESSAZE . .o vvv vt v iiie e 11
vm-Next-message ..., 11

vm-next-unread-message 11

31

vm-pipe-message-to-command.................. 19
VI-Previous-message. ... 11
vm-Previous-message.......................... 11
vm-previous-unread-message.................. 11
VIm-quit L. 7
vm-quit-no-change............... L 7
VImTEPLY . oot 16
vm-reply-include-text 16
vm-save-folderl 7
VI=SAVe-MESSAZE . ..o ovvveeeiiee e 18
vm-save-message-sans-headers............... 19
vm-scroll-backward................ ... 7
vm-scroll-forward................... 7
vm-send-digest ... 17
VI=SUMMATIZEt aeaas 26
vm-undelete-message. ..., 20
VI-UNAO . oo 23
vm-visit-folderl 9
VI-YanK-MeSSAZE . .. vvvvvttteeee 15
vm-yank-message-other-folder 15

Variable Index

M

mail-yank-hooksc.couuiiiiiinnnnnnn. 28

AY

vm-auto-center-summary 26
vm-auto-folder-alist 18
vm-auto-folder-case-fold-search............ 18
vm-auto-next-message 14
vm-berkeley-mail-compatibility............. 28
vm-circular-folders.......................... 11
vm-confirm-new-folders...................... 18
vm-confirm-quitl 28
vm-crash-box............. ... i 9
vm-delete-after-saving...................... 19
vm-delete-empty-folders..................... 28
vm-digest-center-preamble................... 17
vm-digest-preamble-format................... 17
vm-folder-directory.......................... 18
vm-follow-sSummary-cursor.................... 27
vm-forwarding-subject-format 16
VI—gargle—UucCPo 28
VI—gTroup-by..... ... 24

vm-highlighted-header-regexp............... 13

32

vm-in-reply-to-format 16
vm-included-text-attribution-format 16
vm-included-text-prefix..................... 15
vm-inhibit-startup-message.................. 10
vm-invisible-header-regexp.................. 13
vm-mail-window-percentage.................... 9
vm-mode-hooks il 28
vm-move-after-deleting...................... 20
vm-move-after-undeleting.................... 20
vm-mutable-windows.............. 28
vm-preview-lines.............. ... 13
vm-preview-read-messages.................... 13
vm-primary-inbox..........l 9
vm-reply-ignored-addresses.................. 16
vm-reply-subject-prefix..................... 15
vm-rfc934-forwvardingol 16
vm-search-using-regexps..................... 11
vm-skip-deleted-messages.................... 11
vm-skip-read-messages 11
vm-spool-filesl 9
vm-startup-with-summary...................... 9
vm-strip-reply-headers...................... 16
vm-summary-format............. 26
vm-visible-headers...................., 13
vm-visit-when-saving 18

Short Contents

License. . oo e 1
GNU GENERAL PUBLIC LICENSEo i 2
Introduction e 7
T Starting Up .. oo i 9
2 Selecting Messages . . . oo vttt 11
3 Reading Messages 13
4 Sending Messageso 15
5 Saving MesSagesot v it e 18
6 Deleting Messages.t 20
7 Editing Messages.o 21
8 Message Marks 22
9 Undoing.t e e 23
10 Grouping Messages . . . vt oottt 24
11 Reading Digests i 25
12 SUMMATIES . « ¢ v et e et e e e e e 26
13 Miscellaneous 28
Key Index ... o 29
Command Index 31

Variable Indexo oo 32

Table of Contents

License 1
GNU GENERAL PUBLIC LICENSE............. 2
Preamble 2
TERMS AND CONDITIONS . ..o e 2
Appendix: How to Apply These Terms to Your New Programs 6
Introduction 7
1 Starting Up................. 9
2 Selecting Messagesc.covuiiinnnnn... 11
3 Reading Messagescooii.... 13
3.1 Previewing e 13
3.2 Paging .. .o 14
4 Sending Messages.......................ciin.. 15
4.1 Replying ... 15
4.2 Forwarding MesSageso.uuiiniiii i 16
5 Saving Messagesccoiiiiiiiiiiiiiin. 18
6 Deleting Messages..........................o... 20
7 Editing Messages, 21
8 Message Marks 22
9 Undoingc.c.uuuimiiiiinn. 23
10 Grouping Messages.c.ccovuuieeenn... 24
11 Reading Digests............................... 25

12 Summaries 26

ii

13 Miscellaneous. ..., 28
Key Index i, 29
Command Index 31

Variable Index.......... 32

iii

	License
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS
	Appendix: How to Apply These Terms to Your New Programs

	Introduction
	1 Starting Up
	2 Selecting Messages
	3 Reading Messages
	Previewing
	Paging

	4 Sending Messages
	Replying
	Forwarding Messages

	5 Saving Messages
	6 Deleting Messages
	7 Editing Messages
	8 Message Marks
	9 Undoing
	10 Grouping Messages
	11 Reading Digests
	12 Summaries
	13 Miscellaneous
	Key Index
	Command Index
	Variable Index

