
GNU graphics

Utilities for plotting scientific data

Copyright c© 1989 Free Software Foundation

1

1 The GNU Graphics Utilities

The GNU graphics utilities are a set of programs for plotting scientific data. The program
graph reads data files and writes a stream of plotting commands in a device independent
format refered to below as a GNU plot file. The remaining programs provide support for
displaying GNU plot files on tektronix 4010, PostScript (TM)*, and X window system
compatible output devices.

graph reads both ascii and binary data files and writes a plot file with or without axes
and labels. You can specify labels and ranges for the axes, and you can set the sizes and
position of the plot on the page. Each invocation of graph produces a plot with single set
of axes and data. You can place an arbitrary number of plots on the page by concatenating
the plot output of several invocations.

plot2ps is a utility for converting plot files into PostScript. The plot2ps utility reads
plotting commands from named files or the standard input and writes PostScript to the
standard output. You can then print the PostScript output on a printer, or edit it using the
idraw graphics editor. You can also easily include the output in LaTeX documents using
dvips and the LaTeX command psfig.

Why is this useful? The plot file format is a common standard on un*x systems. To
produces figures for publication, you might need to take data sets, and produce labeled
figures from them. This can be done using graph, plot2ps and the idraw editor. You can
also include these figures in LaTeX documents using the dvips utility. All of these utilities,
as well as the plot file format and plot library, are discussed in the following sections.

This documentation is under revision. Any comments, suggestions, or additions would
greatly benifit GNU users. Please mail them to either ‘bug-gnu-utils@prep.ai.mit.edu’
or ‘Rich@Rice.edu’.

* PostScript is a trademark of Adobe Systems Incorporated.

1.1 graph Examples

Each invocation of graph plots data read from stdin or named files togeather in a single
plot with or without axes and labels. The following sections show common usage of graph.

1.2 Simple examples using graph

By default, graph reads ascii data from the standard input or files specified on the command
line. graph reads pairs of values, x and y coordinates:

0.0 0.0

1.0 0.2

2.0 0.0

3.0 0.4

4.0 0.2

5.0 0.6

To plot this data, you might use

graph < ascii_data_file |plot

Chapter 1: The GNU Graphics Utilities 2

where ascii data file could contain data similar to the above example. You can replace
the command plot with plot2tek if you have a tektronix 4010 compatible graphics termi-
nal, plot2ps if you have a postscript compatible printer or previewer, or xplot if you have
an X window system display.

Note that graph is commonly supplied with some operating systems. If so, some con-
fusion may arise if the system supplied version is executed mistakenly. On unix systems,
you can determine which version you invoke by typing the command which graph, which
prints the file name of the version you invoke by default.

To reduce the change the size of the plot and position it in the middle of the display,
you could use

graph -h .4 -w .4 -r .2 -u .2 < ascii_data_file |plot

where h and w are the height and width of the plot and r and u indicate how far up and
to the right the plot is positioned.

You can put symbols at each data point using

graph -S 2 .01 < ascii_data_file |plot

where 2 indicates which symbol to plot, and .01 indicates it’s size.

You can choose the type of line draw on each curve:

graph -m 2 < ascii_data_file |plot

where 2 indicates what kind of line connects the data points.

1.3 The format of input to graph

As mentioned above, by default graph reads ascii pairs of values, x and y coordinates, from
the standard input or files specified on the command line. Optional labels may be placed
after each coordinate in the data file. The label ends at the end of the line:

3.0 0.4 this is a label for point (3.0, 0.4).

The label must be enclosed in double quotes if it would otherwise be appear to be a
coordinate:

3.0 0.4 "5.0 looks like a value."

You can use the ‘-b’ to break lines after each label in the input. Use a pair of empty
double quotes if you need to break a line, but do not need a label.

0.0 0.0

2.0 0.0

1.0 0.2

""

0.0 0.1

2.0 0.2

4.0 0.3

You can also break cuves using ‘-M’ option to break lines whenever the abscissal values
between successive pairs of points decrease. When using ‘-M’, each continuous curve has
monotonicly increasing abscissal values.

0.0 0.0 first data set

2.0 0.0

Chapter 1: The GNU Graphics Utilities 3

4.0 0.2

0.0 0.1 second data set

2.0 0.2

4.0 0.3

graph will automaticly generate abscissal values for you if you specify the ‘-a’ option.
Only ordinate values are given in the data, and the data is then assumed to be equally
sampled along the abscissa. The values following ‘-a’ on the command line specify the
sampling interval and the abscissal value of the first data point.

0.0

0.1

0.2 label for point (2.0, 0.2)

0.3

0.2

0.3

1.4 Combining several data sets in one plot

There are cases where you will want to superimpose several data sets or several plots on
top of each other. If for example, the data sets are in seperate files, you can specify each
by it’s name on the command line. Since graph reads the standard input only if no files
are named on the command line, you must add the name -- if you want graph to read the
standard input as well.

graph data-file-one data-file-two data-file-three |plot

For comparison sake, you might wish to distinguish the data in one set from another
either by using different symbols at each point or by distinguishing the type of line draw.
You can do this by preceeding each file name with options affecting the synbol or line style
used to plot that data.

graph -S 1 data-file-one -S 3 data-file-two -S 4 data-file-three |plot

or

graph -m 1 data-file-one -m 3 data-file-two -S 4 data-file-three |plot

If you need to superimpose several data sets, but must invoke graph seperately for each,
you will have to specify the limits of the axes.

graph -x 0 100 -y -3 3 -S 3 -m -1 < ascii_data_file_1 >> plot_file

where -x 0 100 specifies the limits on the x axis, -y -3 3 specifies the limits on the y
axis, -S 2 specifies a box to be drawn at each point, and -m -1 specifies that no line is to
be draw connecting the points. You can overlay a second data set on the first by using:

graph -s -g 0 -x 0 100 -y -3 3 -m 0 < ascii_data_file_1 >> plot_file

where -s avoids erasing the page, -g 0 avoids drawing the axis, tick marks and labels
which were drawn previously, and -m 0 specifies that solid lines are draw connecting the
points.

Chapter 1: The GNU Graphics Utilities 4

1.5 How to put multiple plots on one page

The command

graph -h .4 -w .4 -r .1 -u .1 < ascii_data_file_1 > plot_file

will put a single box containing the plot in the lower left hand quarter of the page. You
can add another plot to the upper left hand corner of the page using the command

graph -s -h .4 -w .4 -r .1 -u .6 < ascii_data_file_2 >> plot_file

Be sure you use the -s option so the the first plot isn’t erased.

Likewise you can add plots to the right hand side of the page using

graph -s -h .4 -w .4 -r .6 -u .1 < ascii_data_file_3 >> plot_file

graph -s -h .4 -w .4 -r .6 -u .6 < ascii_data_file_4 >> plot_file

The tick marks can be moved inside the box and labels moved to the opposite sides using

graph -T -.005 < ascii_data_file >> plot_file

1.6 Reading other data formats

graph will read binary data in integer, short integer, float, and double float format when
you use the -d option followed by f, or d, respectively. There are two advantage to using
binary data: 1) graph runs significantly faster because the computational overhead for
converting data from ascii to binary is eliminated, and 2) the input files can be significantly
smaller than the ascii format would be. Double float is the fastest format to read, while
short integer is the most space conservative. If you have very large data sets, using a binary
format can reduce storage and runtime costs.

For example, you can create double float data as output from C language programs:

#include <stdio.h>

void write_point (x, y)

double x, y;

{

fwrite(&x, sizeof (double), 1, stdout);

fwrite(&y, sizeof (double), 1, stdout);

}

You can then plot data written this way using:

graph -d d <datafile >plotfile

1.7 Graph Command Line Options

The following table describes each of the command line arguments to graph. Each option
which takes an argument is followed by the type and default values of the argument in
parentheses.

‘-a [step_size [lower_limit]]’
‘+auto-abscissa [step_size [lower_limit]]’

(floats, defaults 1 and 0) Automaticly generate abscissa (x) values. This option
specifies that the data contains only ordinate (y) values. The difference between
successive x values will be step size, and the first x value will be lower limit.
To return to reading abscissal values from the input you can specify -a 0,

Chapter 1: The GNU Graphics Utilities 5

which disables automatic generation of the abscissa and returns step size and
lower limit to their default values.

‘-b’
‘+break-on-labels’

Assumes multiple data sets are in the data file, and the data sets are separated
by a label. The default is don’t break on labels.

‘-M’
‘+break-non-monotone’

When successive abscissa (x) values decrease, a separate data set is assumed.
This allows multiple data sets in each file. Similar to -b.

‘-f size’
‘+fontsize size’

Specify the size of the desired font as size points. Not all display devices will
honor this command.

‘-N x|y’
‘+no-label x|y’

By default, values at each tick mark are labeled beside the axis. This option
removes the labeling of the tick marks on the specified axis.

‘-R’
‘+dont-round-to-next-tick’

By default, the ends of the axes are extended to the next tick mark. This option
prohibits rounding the limits of the axes to the next tick mark.

‘-c string’
‘+point-label string’

This option defines string as the default label for each point. Any label in the
input will override this default.

‘-S symbol_number [symbol_size]’
‘+symbol symbol_number [symbol_size]’

(integer and float, defaults -1 and 0.01) Draw a symbol at each point in the data.
symbol number specifies the shape of the symbol according to the following
table and symbol size specifies the fractional size of the symbol with respect
to the height and width of the plot. Note that you can specify symbols to be
drawn without any line connecting them by specifying the option -m -1.

-1 no symbol at all
0 plus sign (+)
1 cross (x)

2 star (*)

3 box

4 diamond

5 circle

Chapter 1: The GNU Graphics Utilities 6

‘-T tick_size’
‘+ticksize tick_size’

(float, default .01) tick size is the fractional size of the tick marks on each axis.
A value of 1.0 produces tick marks on the x (y) axis whose length is equal to
the width (height) of the plot.

‘-X x_label’
‘+xtitle x_label’

(string, default blank) x label is a label printed below the x axis.

‘-Y y_label’
‘+ytitle y_label’

(string, default blank) y label is a label printed to the right of the y axis.

‘-d data-format’
‘+data-format data-format’

This specifies what format the input data is in. Note labels can be used only
in ascii format input files.

‘a’
‘A’ ascii data

‘i’
‘I’ binary integer data

‘s’
‘S’ binary short integer data

‘f’
‘F’ binary float data

‘d’
‘D’ binary double data

‘+debug’ Debugging information, including the data read in, is sent to the standard error
output.

‘-g grid_style’
‘+grid grid_style’

(integer, default 1) grid style specifies the type of box framing the plot and
whether grid lines are drawn inside the box.

0 no box around plot, no axes, no labels.
1 box containing a grid and axes with tick marks and labels.
2 box around plot, tick marks around the box and labels.
3 box around plot, ticks on left and lower sides only and labels.
4 axes intersect at the origin without a box or grid.

‘-h height’
‘+height-plot height’

(float, default 0.8) height specifies the fractional height of the plot with respect
to the height of the plotting area. A value of 1.0 will produce a box which fills
the available area. Note that the tick marks and labels are outside this area so
that values less than 1.0 are generally used.

Chapter 1: The GNU Graphics Utilities 7

‘-L top_label’
‘+toptitle top_label’

(string, default blank) top label is a label placed above the plot.

‘-m line_mode’
‘+linestyle line_mode’

(integer, default 0) line mode specifies the mode (or style) of lines drawn be-
tween data points.

-1 no line at all
0 solid

1 dotted

2 shortdashed
3 dotdashed
4 longdashed
5 disconnected

‘-r right’
‘+right-margin-posn right’

(float, default 0.1) Move the plot to the right by a fractional amount right with
respect to the width of the plotting area. This produces a margin on the left
hand side of the plot. A value of 0.5 will produce a margin half the width of the
available area. Note that the tick marks and labels are drawn in the margin.

‘-u up’
‘+bottom-margin-posn up’

(float, default 0.1) Move the plot up by a fractional amount up with respect
to the height of the plotting area. This produces a margin below the plot. A
value of 0.5 will produce a margin half the height of the available area. Note
that the tick marks and labels are drawn in the margin.

‘-s’
‘+save-screen’

Save the screen. This option prevent graph from erasing the previous contents
of the graphics window or device.

‘-t’
‘+transpose’

Transpose the abscissa and ordinate. This option causes the axes to be inter-
changed, and the options which apply to each axis to be applied to the opposite
axis. That is, data is read in as (y, x) pairs and ‘-x’, ‘-X’ and ‘-lx’ apply to
the y axis.

‘-w width’
‘+width-plot width’

(float, default 0.8) width specifies the fractional width of the plot with respect
to the width of the plotting area. A value of 1.0 will produce a box which fills
the available area. Note that the tick marks and labels are outside this area, so
values less than 1.0 are generally used.

Chapter 1: The GNU Graphics Utilities 8

‘-x lower_limit upper_limit’
‘+xlimits lower_limit upper_limit’

(floats) The arguments lower limit and upper limit specify the limits of the
x axis. By default the upper and lower limits are taken from the data. If
unspecified the limits of the data are used.

‘-y lower_limit upper_limit’
‘+ylimits lower_limit upper_limit’

These arguments specify the scale and limits of the y axis as for the x axis
above.

‘-l x|y’
‘+log-axis x|y’

The argument indicates which axis should be a log axis. Either one or both x-
and y-axes can be specified by using the appropriate letter. Use xy or yx to
specify both.

‘+high-byte-first’
‘+low-byte-first’

These options force graph to use the specified byte order when writing out the
plot file. By default the byte order is host dependent.

1.8 Examples Using plot2ps

To produce a plot of data arranged in ordered pairs of x and y coordinates in an ASCII file,
you can use:

graph <asciiDataFile | plot2ps | lpr -Plw

To create a simple PostScript figure you can use:

echo 0 0 1 1 2 0 | spline | graph | plot2ps > test.ps

To edit the plot:

idraw test.ps

To use the previewer to look at the plot:

gs test.ps

1.9 Plot2ps Command Line Options

plot2ps is a relatively simple utility in that there are few command line options to choose
from. The plot file format does not contain methods for specifying font or font size, so
you must specify these things with options. There are no other options for controlling the
picture.

The plot file format is machine dependent on the byte order of unformatted, signed,
two byte integer coordinates contained in plot commands. The ‘-high-byte-first’ or
‘-low-byte-first’ option specifies this order explicitly. plot2ps attempts to determine
the byte order from commands early in the plot file, but the method is heuristic and is
not foolproof. Several standard plot sizes specified by the open command are used to
recognize byte order by plot2ps. If these sizes are recognized in byte reversed order,
plot2ps adjusts accordingly. These sizes include 504x504, 2048x2048 (versatek plotters),
2100x2100, 3120x3120(tektronix 4010 terminals) and 4096x4096 (gsi 300 terminals).

Chapter 1: The GNU Graphics Utilities 9

The remaining command line options may be used specify an alternate PostScript pro-
logue and to print the licensing information.

Input plot files names may be specified anywhere on the command line. If no file names
are specified, or the name ‘-’ is specified, the standard input is read for plotting instructions.
Only the font or font size options which precede a file name will affect the text for that file.

‘-H’
‘+help’ The help option prints a summary of command line syntax for plot2ps, a list of

the font names (the standard builtin PostScript fonts), and version, copyright
and warranty information. Specifying this options causes plot2ps to ignore files
on the standard input. You can specify a file on the standard input explicitly
with the option ‘-’ if you want it to read the standard input as well.

‘-v’
‘-V’
‘+version’

This option prints version, copyright and warranty information.

‘-fontsize size’
‘-f size’ The fontsize options specifies the default size in printer’s points (1/72 inch) of

all text appearing in the plot. If unspecified, the size defaults to 14 points.

Some sizes are supported better than others under X windows. The standard
sizes distributed with X windows are 8, 10, 12, 14, 18, and 24 points. Text
at these point sizes will display correctly in the idraw editor. Other font sizes
will print correctly on a PostScript device such as the laserwriter, but may not
appear at the correct size in the idraw editor.

‘-font name’
‘-fo name’ The font name option specifies the name of the default font for all text appearing

in the plot. ‘plot2ps -help’ prints a listing of the font names on the standard
output. These names include the available builtin fonts on standard PostScript
printers.

‘-high-byte-first’
‘-h’ The high-byte-first option specifies explicitly that the higher order byte of each

signed, two byte integer occurs first in the file. It disables determination of byte
order from the file itself.

‘-line-width width’
width is the width of lines drawn in the plot, and defaults to a value of 0. A
value of 0 will produce the thinest line possible in a device dependent fashion,
however this is known to cause problems for older versions of idraw. The line
width is device independent for a positive values of width.

‘-low-byte-first’
‘-l’ The low-byte-first option specifies explicitly that the lower order byte of each

signed, two byte integer occurs first in the file. It disables determination of byte
order from the file itself.

Chapter 1: The GNU Graphics Utilities 10

‘-prologue filename’
‘-p filename’

The prologue option specifies the name of an alternate PostScript prologue
filename to be used in place of the default idraw prologue. The prologue
declares procedures used to draw each graphic object. The default prologue
was generously provided by John Interante and is a part of the InterViews
distribution, version 2.5.

‘-copying’
‘-warranty’

The copying and warranty options print a copy of the GNU General Public Li-
cense on the standard error output. Included is conditions for copying plot2ps

and information on the lack of any warranty.

These conditions do not cover the output of plot2ps. The only conditions
imposed on the output are those which come from the prologue that you are
using.

‘-signed’
‘-unsigned’

The signed and unsigned options specify whether coordinates in the plot file are
signed. By convention, coordinates are always signed. Some plot files do not
follow this convention, and you can use the unsigned option to convert those
files.

‘-bbox’ The bbox option specifies that a bounding box comment will be written at the
end of the output file. This information is useful for document preparation
systems which determine how to size and place the figure using the bounding
box. See also the atend script.

1.10 A plot file previewer for X11

xplot is a plot file previewer for the X window system. It reads GNU plot commands from
its standard input and draws the resulting graphics in an X window.

After xplot reaches the end-of-file on the input, it puts itself in the background (forks).
Control returns to the calling program, while xplot continues, remaining on screen.

To exit, click the left mouse button in the xplot window. Note that xplot ignores SIGHUP
signals, so you must use another signal to kill xplot if necessary.

1.11 Xplot Options

xplot accepts all of the standard X toolkit command line options, and the initial geometry
specification determines the resolution, with a default geometry of 500x500 pixels.

The following standard X Toolkit command line arguments may be used with xplot:

‘-bg color’
This specifies the color to use for the background of the window. The default
is white.

Chapter 1: The GNU Graphics Utilities 11

‘-bd color’
This specifies the color to use for the border of the window. The default is
black.

‘-bw number’
This specifies the width in pixels of the border surrounding the window.

‘-fg color’
This specifies the color to use for displaying text. The default is black.

‘-fn font’ This specifies the font to be used for displaying normal text. The default is
6x10.

‘-rv’ This indicates that reverse video should be simulated by swapping the fore-
ground and background colors.

‘-geometry geometry’
This specifies the preferred size and position of the plot window.

‘-display host:display’
This specifies the X server to contact.

‘-xrm resourcestring’
This specifies a toolkit resource property. See the manual page for xrdb.

xplot uses the athena Command widget in the X Toolkit. So, it understands all of the
core resource names and classes as well as:

‘reverseVideo’
(class ReverseVideo) Specifies that the foreground and background colors should
be reversed.

1.11.1 Example

The resources:

Xplot.font: 6x9

Xplot.geometry: 300x300

will set the font used in the plot window to ‘6x9’ and the size of the window to 300 by
300 pixels.

1.12 Using Plot2fig

To create a simple plot file one can use:

echo 0 0 1 1 2 0 | spline | graph | plot2fig > test.fig

To edit the plot:

fig test.fig

To convert the fig file into dvi code, create a latex file containing a document which
includes the figure:

\\documentstyle\[\]{article}

\\begin{document}

\\input{test}

\\end{document}

Chapter 1: The GNU Graphics Utilities 12

Then, run transfig on the figure and latex on the document:

% transfig -L latex test.fig

% make test.tex

% latex t.tex

To edit a plot of data arranged in ordered pairs of x and y coordinates in an ascii file,
one can use:

% graph <asciiDataFile | plot2fig >file.fig

% fig file.fig

1.13 A plot file to fig file translator

plot2fig reads plotting instructions from the specified input files and/or the standard input
and produces Fig compatible code on it’s standard output. This output file can be edited
with the fig (Facility for Interactive Generation of figures) graphics editor. The output can
subsequently be converted to pictex, PostScript, latex, epic, eepic, and tpic languages using
the transfig translator.

Any unrecognized options on the command line are assumed to be input files. The
standard input is read by default only if no other files specified on the command line are
successfully opened. A single dash (-) on the command line indicates the standard input
is to be read. Each option is set and each file read in the order they are specified on the
command line.

For compatibility with pic2fig, plot2fig ignores leading white space in labels. Labels
containing all white space are ignored.

‘-fn name’
‘-fontname name’

Default: the default font of the transfig output device. This option sets the
font for all subsequent text to name. Recognized font names are typewriter,
modern, italic, bold, and times. In addition, courier is an alias for typewriter
and roman is an alias for times. Note that the fonts are device dependent.

‘-fs size’
‘-fontsize size’

Default: 12. This option sets the size of subsequent text to size (in printer’s
points).

‘-h’
‘-high-byte-first’

This option specifies that the byte ordering of two byte integers in the input
plot file is high byte first.

‘-l’
‘-low-byte-first’

This option specifies that the byte ordering of two byte integers in the input
plot file is low byte first.

‘-warranty’
‘-copying’

This option prints out the copying conditions and warranty information.

Chapter 1: The GNU Graphics Utilities 13

‘-signed’
‘-unsigned’

Default: signed. This option specifies whether two byte integers in the input
plot file are unsigned or signed.

‘-’ This option specifies explicitly that the standard input should be read for plot-
ting instructions.

1.14 Tektronix 4010 output

‘-H’
‘+help’ The help option prints a summary of command line syntax, a list of the known

font names, and version, copyright and warranty information. Specifying this
options causes plot to ignore the standard input, so you must specify the option
‘-’ if you want it to read the standard input as well.

‘-v’
‘-V’
‘+version’

This option prints version, copyright and warranty information.

‘-f size’
‘+fontsize size’

The fontsize options specifies the default size in printer’s points (1/72 inch) of
all text appearing in the plot. If unspecified, the size defaults to 14 points.

‘+high-byte-first’
‘+low-byte-first’

These options force graph to use the specified byte order when writing out the
plot file. By default the byte order is host dependent.

‘-F name’
‘+fontname name’

The font name option specifies the name of the default font for all text appearing
in the plot. ‘plot -help’ prints a listing of the font names on the standard
output. These names include the available builtin fonts on standard PostScript
printers.

‘-h’
‘+high-byte-first’

The high-byte-first option specifies explicitly that the higher order byte of each
signed, two byte integer occurs first in the file. It disables determination of byte
order from the file itself.

‘-l’
‘+low-byte-first’

The low-byte-first option specifies explicitly that the lower order byte of each
signed, two byte integer occurs first in the file. It disables determination of byte
order from the file itself.

Chapter 1: The GNU Graphics Utilities 14

‘-p filename’
‘+prologue filename’

The prologue option specifies the name of an alternate PostScript prologue
filename to be used in place of the default idraw prologue. The prologue
declares procedures used to draw each graphic object. The default prologue
was generously provided by John Interante and is a part of the InterViews
distribution, version 2.5.

‘+copying’
‘+C’
‘+warranty’
‘+W’ The copying and warranty options print a copy of the GNU General Public

License on the standard error output. Included is conditions for copying plot

and information on the lack of any warranty.

‘-s’
‘+signed-input’
‘-u’
‘+unsigned-input’

The signed and unsigned options specify whether coordinates in the plot file are
signed. By convention, coordinates are always signed. Some plot files do not
follow this convention, and you can use the unsigned option to convert those
files.

1.15 Including a Figure in an Article

This is an example of LaTeX code which places the figure generated in the previous example
in a page of text.

\documentstyle[]{article}

\input{psfig}

\begin{document}

\title{Title of the article.}

\author{The Author's name}

\maketitle

This is an example of how to include PostScript figures in LaTeX documents.

\begin{figure}[h]

\centerline{\psfig{figure=test.ps,height=3in}}

\caption{Here is a description of the figure which will appear below it.}

\end{figure}

Note that the above figure was included using dvips.

\end{document}

If the above LaTeX code is contained in a file called mytext.tex you can use the com-
mands

latex mytext

dvips mytext.dvi >mytext.ps

lpr -Plw mytext.ps

to format and print the example text.

Chapter 1: The GNU Graphics Utilities 15

1.16 Options to psfig for Including Figures

psfig is a LaTeX command used to insert a PostScript figure into a document.

psfig can be used to insert plot2ps generated PostScript into a LaTeX document. The
placement of the psfig command tells LaTeX where in the document to place the Post-
Script, and arguments to the command give the name of the file containing the PostScript,
and the desired size of the figure. Arguments are separated by commas or blanks, and
are of the form ‘keyword=value’. The following is a list of valid arguments for the psfig

command:

file=name

The file name of the PostScript figure.

height=size

The height of the figure (eg. 3in). If you specify only a height or only a width,
the width and height are scaled equally. If you specify both a width and a
height the aspect ratio will be affected.

width=size

The width of the figure (eg. 3in).

bbllx=coordinate

The bounding box lower left-hand x coordinate. Any PostScript file which con-
forms to the PostScript Document Structuring Conventions version 2.0 should
contain a bounding box information at the head of the file. plot2ps output
conforms to the version 2.0 conventions so that you should not need to use any
of the bounding box options.

bblly=coordinate

The bounding box lower left-hand y coordinate.

bburx=coordinate

The bounding box upper right-hand x coordinate.

bbury=coordinate

The bounding box upper right-hand y coordinate.

rheight=size

Horizontal space to reserve for the figure.

rwidth=size

Vertical space to reserve for the figure.

clip= Clip the figure. clip= is a switch and takes no value, but the ‘=’ must be
present. This option is useful for including PostScript figures which use the size
of the clipping path to size themselves.

1.17 A perl script for use with psfig

atend.pl is a perl script which moves the bounding box comment from the trailer to the
header. Although either is legal, most document preparation software, such as psfig, will
only accept bounding box comments in the header. If you use psfig and the -bbox option
togeather, run atend.pl on the output of plot2ps before importing the graphics using
psfig.

Chapter 1: The GNU Graphics Utilities 16

atend.pl can be used as a filter:

echo 0 0 1 1 2 0 | spline | graph >spline.pl

plot2ps -bbox |atend.pl - >spline.ps

Or, atend.pl can be used to fix the output file in place:

echo 0 0 1 1 2 0 | spline | graph |plot2ps -bbox >spline.ps

atend.pl spline.ps

1.18 How to Get dvips

The dvips utility mentioned previously is used convert dvi files generated by LaTeX
into post-script. It also has support for inclusion of PostScript figures into LaTeX doc-
uments. It is available via anonymous ftp from ‘labrea.stanford.edu’ (36.8.0.47). Look
for pub/dvips.tar.Z.

1.19 How to Get idraw

The idraw utility mentioned previously is an interactive graphics editor which
is distributed with InterViews. InterViews is available via anonymous ftp from
‘interviews.stanford.edu’ (36.22.0.175) in the file InterViews/2.5.tar.Z.

1.20 How to Get ghostscript

Ghostscript is a previewer which is intended to be compatible with the PostScript language.
It supports several output devices including the X window system and ega displays. Version
2.0 is suitable for previewing LaTeX documents with imbedded encapsulated PostScript fig-
ures, the type of PostScript figures generated by plot2ps and idraw. It is available via anony-
mous ftp from ‘prep.ai.mit.edu’ (18.71.0.38) - Look for pub/gnu/ghostscript.tar.Z.

1.21 libps, a Library of Plot Functions

Libps is a library of plot functions for drawing graphic object using PostScript. Before
drawing any objects or using any of the other functions, a program should call openpl.
Before exiting and after all other libps calls a program should call closepl.

1.21.1 alabel

int alabel (char x justify, char y justify, char *label);

alabel takes three arguments x justify, y justify, and label and places the label ac-
cording to the x and y axis adjustments specified in x justify and y justify respectively.
x justify is a character containing either ‘l’, ‘c’, or ‘r’ for left, center or right justified with
respect to the current x coordinate. y justify is a character containing either ‘b’, ‘c’, or ‘t’
for placing the bottom center or top of the label even with the current y coordinate. *label
is a string containing the label. The current point is moved to follow the end of the text.

See Section 1.21.9 [fontname], page 17, on how to change the default font. See Sec-
tion 1.21.10 [fontsize], page 18, on how to change the font size.

Chapter 1: The GNU Graphics Utilities 17

1.21.2 arc

int arc (int x, int y, int x0, int y0, int x1, int y1)

arc takes six integer arguments specifying the coordinates of the center (x, y), beginning
(x0, y0), and ending (x1, y1) of a circular arc. The current point becomes (x, y).

1.21.3 circle

int circle (int x, int y, int r)

circle takes three integer arguments specifying the center (x, y) of the circle and its
radius (r). The current point becomes (x, y).

1.21.4 closepl

int closepl ()

closepl takes no arguments. It merely outputs the PostScript trailer containing a
showpage command.

1.21.5 color

int color (int red, int green, int blue);

color sets the foreground color of all the following objects. The arguments red, green
and blue indicate the intensity of red, green and blue components of the foreground color
respectively. Each is a unsigned integer specifying an intensity in the range from 0 to
0xFFFF. A value of (0, 0, 0) represents black and a value of (0xFFFF, 0xFFFF, 0xFFFF)
indicates white.

1.21.6 cont

int cont (int x, int y)

cont takes two integer arguments specifying the coordinate (x, y) for the continuation
of a line. This draws a line segment from the current point to the point (x, y). The current
point then becomes (x, y).

1.21.7 erase

int erase ()

erase normally erases all the graphics from the display before a plot is viewed. Since
we start off with a blank page in PostScript and idraw this function does nothing.

1.21.8 fill

int fill (int level);

fill sets the intensity of the filler for closed paths. The argument level indicates the
grey level of the fill pattern. It’s value ranges from 1 to 0xFFFF. A value of 1 represents
black and a value of 0xFFFF indicates white. A value of 0 represents no fill, or transparent.

1.21.9 fontname

int fontname (char *font name);

fontname takes a single string argument, font name, specifying the name of the font to
be used for following text. The laser writer builtin fonts are supported:

courier-bold

Chapter 1: The GNU Graphics Utilities 18

courier-boldoblique

courier-oblique

courier

helvetica-bold

helvetica-boldoblique

helvetica-oblique

helvetica

symbol

times-bold

times-bolditalic

times-italic

times-roman

1.21.10 fontsize

int fontsize (int size);

fontsize takes a single integer argument size in printer’s points (1/72 inch) and sets
the font size accordingly.

1.21.11 label

int label (char *s)

label takes a single string argument s and draws the text contained in s at the most
recently used coordinate in the current font. By default the text is left justified and centered
vertically with respect to the current coordinate.

1.21.12 line

int line (int x1, int y1, int x2, int y2)

line takes four integer arguments specifying the beginning (x1, y1) and ending (x2, y2)
points of a line. The current point becomes (x2, y2).

See Section 1.21.13 [linemod], page 18, for how to specify the style or pattern of line.

1.21.13 linemod

int linemod (char *s)

linemod takes a single string argument s containing the name of the line style desired.
The names supported are longdashed, disconnected, dotdashed, dotted, solid and short-
dashed. These correspond to the following sixteen bit patterns:

solid --------------------------------

longdashed ------- -------

disconnected - -

dotdashed ----------- - ----------- -

dotted - - - - - - - - - - - - - - - -

shortdashed -- --

1.21.14 move

int move (int x, int y)

Chapter 1: The GNU Graphics Utilities 19

move takes two integer arguments specifying the coordinate (x, y) for the beginning of a
new line. This is equivalent to lifting the pen on a plotter and moving it to a new position
without drawing any line. The current point becomes (x, y).

1.21.15 openpl

int openpl ()

openpl normally opens the device. For PostScript we just print out the PostScript
prologue. The following global variables defined in openpl specify what prologue is written
to the output.

user has prologue is a flag. If it is non-zero then the open routine should output the
user specified prologue contained in the file specified in the string users prologue.

users prologue is a string containing the file name for any user specified PostScript
prologue. This file is a substitute for the default prologue.

1.21.16 point

int point (int x, int y)

point takes a pair of integer arguments specifying the coordinate (x, y) for a single
point. The current point then becomes (x, y).

1.21.17 rotate

int rotate (int angle);

rotate takes three integer arguments. The last argument, angle, specifies the angle in
degrees counter-clockwise from the x (horizontal) axis following text.

1.21.18 space

int space (int x0, int y0, int x1, int y1)

space takes two pair of integers arguments specifying the lower, left-hand and upper,
right-hand limits of the range of plot coordinates. The scaling of input to output coordinate
conversion is adjusted to fit these ranges into the page. Note however that if the ranges of
x and y coordinates are different the smallest scaling of the two is used to avoid affecting
the aspect ratio of the plot. This means that although the plot is scaled to fit on the page,
the axes are not stretched with respect to each other.

1.22 The Plot File Format

The plot file is a set of plotting commands and data. Each command is a single ascii
character indicating which operation is to be performed. The data following a command
is either a newline terminated ascii string or several signed, two byte integers in binary
format. For example, the command to move the current point to the coordinate (3,5)
would be m\000\003\000\005.

Note that the byte order of the binary representation of the signed, two byte
integers is machine dependent, so on some machines, this command might appear as
m\003\000\005\000. plot2ps tries to guess the byte order from the arguments to the
openpl command and adjust the order accordingly.

Chapter 1: The GNU Graphics Utilities 20

The following table lists each single character commands followed by the name of the
corresponding libps function called to handle the data and a description of the command
and data.

‘Command’ Description

‘a’ The arc command is followed by three pair of signed, two byte integers indicat-
ing the center, starting and ending points for a circular arc. The center becomes
the the current point. This is equivalent to the arc function (see Section 1.21.2
[arc], page 17).

‘c’ The circle command is followed by three signed, two byte integers. The first
two indicate the x and y coordinates of the center of the circle and the third
indicates the radius of the circle. The center becomes the the current point.
This is equivalent to the circle function (see Section 1.21.3 [circle], page 17).

‘C’ The color command is followed by three unsigned, two byte integer which indi-
cate the intensity of red, green and blue components respectively of the back-
ground color. For each component the range of intensity is from 0 to 65535. A
value of (0, 0, 0) represents black and (65535, 65535, 65535) represents white.
This is equivalent to the color function (see Section 1.21.5 [color], page 17).

‘e’ The erase command is followed by no data. The erase command is not needed
since in idraw and PostScript we start off with a blank page. For this reason
the erase command does not actually output any PostScript. This is equivalent
to the erase function (see Section 1.21.7 [erase], page 17).

‘f’ The linemod command is followed by a newline terminated string containing the
name of the line mode (or style) for all subsequent lines, circles and arcs. This
is equivalent to the linemod function (see Section 1.21.13 [linemod], page 18)
which describes the line styles and their names.

‘F’ The the fontname command is followed by a newline terminated string contain-
ing the name of the font to be used for all subsequent text. This is equivalent
to the fontname function (see Section 1.21.9 [fontname], page 17).

‘l’ The line command is followed by two pair of signed, two byte integers which
indicate the starting and ending points of the line. The second pair becomes the
the current point. This is equivalent to the line function (see Section 1.21.12
[line], page 18).

‘L’ The fill command is followed by an unsigned, two byte integer indicating the
intensity of the fill for closed paths. A value of 1 represents black and a value of
0xFFFF indicates white. The value 0 is special in that is indicates that no solid
fill should occur, and that the interior of the respective path is transparent.
This is equivalent to the fill function (see Section 1.21.8 [fill], page 17).

‘m’ The move command is followed by a pair of signed, two byte integers containing
the location of the new current point. No line is drawn to this point as opposed
to the continue command (c) which draws a line. This is equivalent to the move
function (see Section 1.21.14 [move], page 18).

‘n’ The continue command is followed by pair of signed, two byte integers contain-
ing the coordinates of the endpoint of a line segment. A line is drawn from

Chapter 1: The GNU Graphics Utilities 21

the previous current point if it was set using a command such as move or con-
tinue. This then becomes the the current point. This is equivalent to the cont
function (see Section 1.21.6 [cont], page 17).

‘p’ The point command is followed by pair of signed, two byte integers containing
the location of single point to be drawn. This then becomes the the current
point. This is equivalent to the point function (see Section 1.21.16 [point],
page 19).

‘r’ The rotate command is followed by one signed, two byte integer. It indicates
the rotation of all subsequent text. The rotation is in degrees counter-clockwise
from the x (horizontal) axis. This is equivalent to the rotate function (see
Section 1.21.17 [rotate], page 19).

‘s’ The space command is followed by two pair of signed, two byte integers which
indicate the the lower right-hand and upper left-hand corners of the range of
plot coordinate space. plot2ps uses the third signed, two byte integer (the
right-hand limit) to try to determine the byte order. This is equivalent to
the space function (see Section 1.21.18 [space], page 19) which describes the
recognized sizes.

‘S’ The fontsize command is followed by an signed, two byte integer containing the
size in printers points of all subsequent text. This is equivalent to the fontsize
function (see Section 1.21.10 [fontsize], page 18).

‘t’ The label command is followed by a newline terminated string contains a label
which is printed at the current point. It is left justified and centered vertically
with respect to the current point. The current point is then set at the end of
the text. This is equivalent to the label function (see Section 1.21.11 [label],
page 18).

‘T’ The adjusted label command is followed by two characters which indicate the
horizontal and vertical justification respectively and a newline terminated string
containing the label. The label is drawn with the specified justification and the
current point is set at the end of the text. This is equivalent to the alabel

function (see Section 1.21.1 [alabel], page 16) which describes how to specify
justification.

1.23 Acknowledgements

Rich Murphey <Rich@Rice.edu> wrote the first version of the graph, plot2tek, plot2ps and
tek2plot and the documentation. Richard Stallman <Rms@ai.mit.edu> further directed
development of the programs and editorial support for the documentation. John Interrante
generously provided the PostScript prologue and helpful comments on the program.

Arthur Smith (Lassp, Cornell University) <arthur@helios.tn.cornell.edu> has generously
provided his code for the xplot utility.

Ray Toy <toy@dino.ecse.rpi.edu> provided code for graph and tek 4011 and rewrote the
tick mark spacing code, incorporated gnu getopt and provided the statistics package.

David B. Rosen <rosen@bu.edu>, jeffrey templon <templon@copper.ucs.indiana.edu>
and David W. Forslund <dwf%hope.ACL@lanl.gov> tested alpha versions.

Chapter 1: The GNU Graphics Utilities 22

1.24 Function Index

Chapter 1: The GNU Graphics Utilities 23

A
alabel (char x_justify, char y_justify, char

*label) . 16
arc (int x, int y, int x0, int y0, int x1, int

y1) . 17

C
circle (int x, int y, int r) 17
closepl () . 17
color (int red, int green, int blue) 17
cont (int x, int y) . 17

E
erase() . 17

F
fill (int level) . 17
fontname (char *font_name) 17
fontsize (int size) . 18

L
label (char *s) . 18
line (int x1, int y1, int x2, int y2) 18
linemod (char *s) . 18

M
move (int x, int y) . 18

O
openpl() . 19

P
point (int x, int y) . 19

R
rotate (int w, int h, int angle) 19

S
space (int x0, int y0, int x1, int y1) 19

i

Table of Contents

1 The GNU Graphics Utilities . 1
1.1 graph Examples . 1
1.2 Simple examples using graph . 1
1.3 The format of input to graph . 2
1.4 Combining several data sets in one plot . 3
1.5 How to put multiple plots on one page . 4
1.6 Reading other data formats . 4
1.7 Graph Command Line Options . 4
1.8 Examples Using plot2ps . 8
1.9 Plot2ps Command Line Options . 8
1.10 A plot file previewer for X11 . 10
1.11 Xplot Options . 10

1.11.1 Example . 11
1.12 Using Plot2fig . 11
1.13 A plot file to fig file translator . 12
1.14 Tektronix 4010 output . 13
1.15 Including a Figure in an Article . 14
1.16 Options to psfig for Including Figures . 15
1.17 A perl script for use with psfig . 15
1.18 How to Get dvips . 16
1.19 How to Get idraw . 16
1.20 How to Get ghostscript . 16
1.21 libps, a Library of Plot Functions . 16

1.21.1 alabel . 16
1.21.2 arc . 17
1.21.3 circle . 17
1.21.4 closepl . 17
1.21.5 color . 17
1.21.6 cont . 17
1.21.7 erase . 17
1.21.8 fill . 17
1.21.9 fontname . 17
1.21.10 fontsize . 18
1.21.11 label . 18
1.21.12 line . 18
1.21.13 linemod . 18
1.21.14 move . 18
1.21.15 openpl . 19
1.21.16 point . 19
1.21.17 rotate . 19
1.21.18 space . 19

1.22 The Plot File Format . 19
1.23 Acknowledgements . 21
1.24 Function Index . 22

	1 The GNU Graphics Utilities
	graph Examples
	Simple examples using graph
	The format of input to graph
	Combining several data sets in one plot
	How to put multiple plots on one page
	Reading other data formats
	Graph Command Line Options
	Examples Using plot2ps
	Plot2ps Command Line Options
	A plot file previewer for X11
	Xplot Options
	Example

	Using Plot2fig
	A plot file to fig file translator
	Tektronix 4010 output
	Including a Figure in an Article
	Options to psfig for Including Figures
	A perl script for use with psfig
	How to Get dvips
	How to Get idraw
	How to Get ghostscript
	libps, a Library of Plot Functions
	alabel
	arc
	circle
	closepl
	color
	cont
	erase
	fill
	fontname
	fontsize
	label
	line
	linemod
	move
	openpl
	point
	rotate
	space

	The Plot File Format
	Acknowledgements
	Function Index

