
Abstract Execution:

A Technique for E�ciently Tracing Programs

James R. Larus

larus@cs.wisc.edu

Computer Sciences Department

University of Wisconsin{Madison

1210 West Dayton Street

Madison, WI 53706

February 9, 1990

Copyright
c

1990 by James R. Larus

Abstract

Many areas of computer performance analysis require detailed traces of

events that occur during a program's execution. Collecting traces is ex-

pensive. The additional code required to record events greatly slows a pro-

gram's execution. In addition, the resulting trace �les can grow unmanage-

ably large. This paper describes a technique called Abstract Execution that

alleviates both problems.

Abstract Execution records a small set of events during the traced pro-

gram's execution. These events serve as input to an abstract version of the

program that generates a full trace by reexecuting selected portions of the

original program. This process greatly reduces both the cost of tracing the

original program and the size of the trace �les. The cost of regenerating a

trace is insigni�cant in comparison to the cost of applications that use it.

This paper also describes a system called AE that implements Abstract

Execution. The paper contains measurements that demonstrate that AE

can e�ciently trace large programs.

Contents

1 Introduction 1

2 Example of Abstract Execution 1

3 Abstract Execution 5

4 Details of AE 8

4.1 Changes to gcc : 10

4.1.1 Analysis : 11

4.1.2 Schema Generation and Instrumentation : : : : : : : : 13

4.2 AEC : 13

5 Applications 15

6 Performance 16

7 Related Work 18

8 Status 19

9 Conclusion 20

A Details of MIPS R2000 Implementation 22

B Parameters for AE 24

1 Introduction

Many areas of computer performance analysis require detailed traces of

events that occur during a program's execution. A few obvious examples

include: cache memory simulation, which requires a list of memory locations

accessed by a program [10]; performance analysis, which requires a count of

each basic block's execution frequency [8]; and program parallelism analy-

sis, which requires a trace of addresses and noti�cation upon loop entry and

iteration [7]. Traditionally, collecting this information is expensive. The

mechanism that records events severely slows a program's execution. This

slowdown not only makes large, long-running programs di�cult to charac-

terize, but it also a�ects the behavior and measurements of real-time and

parallel programs. Equally serious is the cost of storing and manipulating

huge trace �les. A 10 million instructions per second (MIPS) computer pro-

duces 40{60 megabytes of trace data in a second of execution. Clever com-

pression schemes can reduce the volume of data by an order of magnitude

[9], but the size of traces is a major limitation on measuring long-running

programs.

This report describes a new technique called Abstract Execution that

greatly alleviates both problems. The technique|which has been imple-

mented in a system called AE|records a small subset of the events produced

by a program. When a full trace is needed, the system reexecutes small por-

tions of the program|using the traced events as a guide|to generate a

full trace. Abstract Execution adds only 50{80% to the traced program's

execution time and compresses the trace data by 2{3 orders of magnitude.

This report has �ve sections. The next contains an extended example

that introduces the technique. Section 3 describes Abstract Execution. The

next section is a detailed description of AE. Section 5 brie
y describes some

applications of AE. And, the �nal section surveys related work. The ap-

pendix contains details of the MIPS R2000 implementation of AE and a

description of the machine-speci�c information required by AE.

2 Example of Abstract Execution

The example in this section illustrates major aspects of Abstract Execution.

The example is self-contained and can be read as a quick summary of the rest

of the paper. Consider the C program in Figure 1. It sets each element in a

100�100 array to the sum of its coordinates, so when it �nishes, a[i; j] = i+j

1

int a[100][100];

main ()

{

int i;

for (i = 0; i < 100; i = i + 1)

sub (a[i], i);

}

sub (x, i)

int x[];

int i;

{

int j;

for (j = 0; j < 100; j = j + 1)

x[j] = i + j;

}

Figure 1: Example C program. It sets each element of the array a to the sum of its

coordinates, so a[i, j] = i + j.

for 0 � i; j < 100. We want to produce a full address trace that lists the

memory address of each executed instruction and of each location read or

written by an instruction.

We produce this trace by compiling the program with a modi�ed version

of the GNU C compiler. This compiler instruments the compiled code to

record important events and produces a schema �le that describes how to

interpret the trace data to recreate a full address trace. To understand this

process, we �rst need to examine the assembly code produced by the com-

piler (Figure 2). This code is for the MIPS R2000 processor and omits, for

clarity, the procedure entry and exit code that saves and restores registers.

Figure 3 contains the schema for this program. A schema delimits each

function and basic block in a program. The schema fully describes instruc-

tions that contribute to the calculation of a memory address for a load or

store instruction. These instructions' values can either be recorded during

execution in the trace �le (unknown defn) or recalculated when the schema

is interpreted (compute defn). Placeholders (uneventful inst) represent

instructions that do not contribute to the
ow of control or to address cal-

2

main:

prologue omitted

ori R16, R0, 0

ori R19, R0, 99

la R18, sub

la R17, a

j L2

L5:

addiu R29, R29, -16

addu R4, R0, R17

addu R5, R0, R16

jal R31, R18

addiu R29, R29, 16

addiu R17, R17, 400

addiu R16, R16, 1

L2:

ble R16, R19, L5

#epilogue omitted

sub:

prologue omitted

ori R3, R0, 0

ori R6, R0, 99

j L7

L10:

addu R2, R5, R3

sw R2, 0(R4)

addiu R4, R4, 4

addiu R3, R3, 1

L7:

ble R3, R6, L10

epilogue omitted

Figure 2: Compiled code for program in previous �gure. Details of register saving

and restoring and procedure call linkage are omitted for clarity. R0 always contains the

constant 0. ori is a or-immediate operation, which loads a constant into a register. la

is a load-address operation. addiu is an add-immediate unsigned operation and addu is

an add unsigned operation. jal is jump-and-link, a procedure call. ble is a branch on

less-than-equal operation. sw is a store word operation.

3

start_function main 4

... prologue code omitted ...

start_block 0

uneventful_inst

uneventful_inst

uneventful_inst ; la requires 2 instructions

compute_defn_2 R18 #I0 + #Ssub

uneventful_inst ; la requires 2 instructions

uneventful_inst

end_block_jump 0 2 %loop_entry(2 0)

start_block_target 1

uneventful_inst

uneventful_inst

uneventful_inst

call_inst sub

uneventful_inst

uneventful_inst

uneventful_inst

end_block 1 %loop_back(2 0)

start_block 2

end_block_cjump 2 3 1 %loop_exit(3 0)

start_block_target 3

end_block 3

... epilogue code omitted ...

end_function main

start_function sub 4

... prologue code omitted, but includes unknown_defn R4

start_block 0

uneventful_inst

uneventful_inst

end_block_jump 0 2 %loop_entry(2 0)

start_block_target 1

uneventful_inst

store_inst 0(#R4)

compute_defn_2 R4 #R4 + #I4

uneventful_inst

end_block 1 %loop_back(2 0)

start_block 2

end_block_cjump 2 3 1 %loop_exit(3 0)

start_block_target 3

end_block 3

... epilogue code omitted ...

end_function sub

Figure 3: The schema produced for the sample program. compute defn operators de-

�ne a value that can be computed when the schema is interpreted. unknown defn operators

cannot be computed later, so their result is saved in the trace �le. uneventful inst do not

contribute to the calculation of an address. In real schemas, consecutive uneventful inst

are combined into one placeholder.

4

culations. These instructions compute and use values. The program's
ow

of control is dynamically recorded at conditional branches, where it cannot

be predicted from the schema.

Several aspects of the schema are worth noting. First, the array reference

in main does not produce an event since no load or store instruction in

that routine uses the address. In the routine sub, this address appears

as a parameter and is recorded as an unknown defn since it is used in a

store instruction. Second, certain instructions in the assembly code (e.g.,

load address: la) are actually assembler macro instructions that expand to

multi-instruction sequences.

Another compiler (aec) translates a schema into a C program that reads

the trace �le produced by the instrumented program and uses it to generate

a full address trace. For example, the schema for the sub function translates

into the code in Figure 4.

Executing the sample program produces a 11,005 byte trace �le (on a

MIPS R2000 processor). The full address trace contains 72,737 addresses

(62,325 instructions and 10,412 memory references) and consumes 363,685

bytes (5 bytes per address including a byte for the reference type). AE

compressed the trace data 33 times. By subsequently compacting the trace

�le with the Unix compress utility (to 630 bytes), we can increase this �gure

to 577 times.

3 Abstract Execution

Abstract Execution is a general technique for tracing incidents during a

program's execution. Assume that we want to notice and record occurrences

of a set of events E during the execution of program P with input I (see

Figure 5). Abstract Execution derives a program P

0

that generates the set

of events E, but is simpler and faster than program P . The set of signi�cant

events SE recorded in the original program P drives program P

0

. SE should

be smaller than E so the tracing does not disrupts the original program and

so the trace �le is small.

This formulation allows a continuum of interpretation programs. At one

extreme, we execute an instrumented version of the original program and

record events directly, so SE = E and P

0

just reads this �le. At the other

extreme, P records nothing and the regeneration program is an instrumented

version of the original program, so P

0

= P and SE = I . In general, we want

a point between the extremes so the size of SE is much less than the size of

5

/* Start of block 0 */

L0:

PC = in_pc+20;

ISSUE_INST(4);

ISSUE_INST(4);

ISSUE_INST(4);

LOOP_START(1); goto L2;

/* End of block 0 */

/* Start of block 1 */

L1:

PC = in_pc+32;

ISSUE_INST(4);

ISSUE_INST(4);

WRITE_MEM(R4+0);

ISSUE_INST(4);

R4 = R4+4;

ISSUE_INST(4);

LOOP_CONT(1);/* End of block 1 */

/* Start of block 2 */

L2:

PC = in_pc+48;

ISSUE_INST(4);

GET_BYTE(temp); /* Read from trace file */

switch(temp)

{

case 1: goto L1;

case 3: LOOP_END(1); goto L3;

default: cjump_err();

}

/* End of block 2 */

/* Start of block 3 */

L3:

PC = in_pc+52;

/* End of block 3 */

ISSUE_INST(4);

R8 = R30+0;

ISSUE_INST(4);

READ_MEM(R8+-16);

ISSUE_INST(4);

READ_MEM(R8+-12);

ISSUE_INST(4);

R29 = R8+0;

Figure 4: Portion of the regeneration code for the schema in the previous �gure. The

schema for the sub function translates into the C code above, which generates a full

address trace from the trace information recorded by the function.

6

Program
 P

Program
 P’

Input
 I

Events
 E

Significant Events
 SE

Derived by AE

Regenerated Events

Recorded
During
Execution

Figure 5: Process of Abstract Execution. Instead of directly instrumenting a program

P to record a set of events E, Abstract Execution collect a smaller set of signi�cant events

SE and derives a program P

0

that uses SE to generate the desired events.

E and the cost of running P

0

is less than the cost of directly measuring P .

These goals con
ict. The principal way to reducing the size of SE is

to shift computations to program P

0

instead of recording values in program

P . P

0

can perform a computation that depends only on values that are

statically determinable from program P . These computations increase the

cost of P

0

, but decrease the size of SE.

1

The alternative is to save the result

of a computation in P and read the value in P

0

. This approach may reduce

the cost of P , but it increase the size of SE.

It might seem as if P

0

needs to recompute most of the original program.

In fact, AE only recalculates instructions in a program slice for each event

that must be recorded. A program slice with respect to an instruction I is

the set of instructions in the program that directly or indirectly a�ect the

value produced by I [6, 12]. For example, to produce an address trace, we

are only interested in instructions that contribute to addresses used in load

or store instructions and can ignore the other instructions that produce or

1

However, reading the value from the trace �le has an non-trivial cost, so a simple

recalculation may be cheaper.

7

utilize the values that are loaded and stored. P

0

also needs to know whether

an instruction in a slice executed, so AE also traces the program's
ow of

control. Each instruction in a slice can either be reexecuted by the regen-

eration program or its value can be recorded in the trace �le. The choice

depends on the complexity and cost of the recalculation and is discussed

below.

Abstract Execution o�ers two advantages over other techniques of pro-

gram tracing. First, since SE is smaller than E, it reduces the amount of

data that must be stored. Previous systems attempted to reduce the size

of �les by compacting them with a data compression algorithm. As we will

see, these techniques do not reduce a trace as well as AE and they can be

applied to the �le SE to increase AE's advantage. Second, Abstract Execu-

tion reduces the cost of tracing P . This reduction is valuable in its own right

if P is long-running or if tracing a�ects the program's behavior. However,

it may appear as if this reduction is illusionary since the cost of P plus the

cost of P

0

can be larger than the cost of directly tracing P|ignoring system

overhead required to write larger �les. AE's advantage is that P

0

can run

many times, thereby amortizing the cost of one run of P over many uses of

the data. In addition, P

0

is smaller and simpler than the original program

and uses a bounded amount of memory, so it is better suited to being linked

with a program that consume the full trace.

Abstract Execution is a general technique that can record any type of

event during a program's execution. In this discussion, we will assume that

the events of interest are the memory addresses of the executed instructions

and the referenced data, in other words, a full address trace. This is a

common application of program tracing and, because of the volume of data,

a demanding test of a tracing technique. We will also show that other types

of events can easily be incorporated into the framework.

4 Details of AE

Figure 6 depicts the overall structure of the AE pro�ling system. Its �rst

part is a modi�ed version of gcc|the GNU C compiler [11]. In addition to

compiling a program (foo.c), this version of the compiler produces a schema

�le (foo.sma) and inserts code into the executable program to record signif-

icant events. The compiled program is linked with startup code (aecrt0.o).

When the program runs, it produces a trace �le (ae.out) that contains the

signi�cant events. The process is similar to the Unix prof or gprof pro�ling

8

aec
Schema compiler

foo
Executable

foo.sma
Schema

ae.out
Trace file

gcc

Input Data

foo.sma.c
Regneration
Program

foo.c
Application

foo.o
Object file

aecrt0.o
AE startup code

AE System

Trace
Consumer

consume.c

gcc -AE

Figure 6: Overview of AE system. The -AE
ag to the GNU C compiler (gcc) causes it

to instrument the compiled program and produce a schema �le (foo.sma). The schema �le

describes how to interpret the trace �le (ae.out) produced by running the instrumented

program. The schema compiler (aec) translates a schema into a C program (foo.sma.c)

that reads the trace �le and produces a full program trace. This program is linked with

an application program (application.c) that uses the trace information.

systems [5].

To produce a full trace from the signi�cant events, AE translates the

program's schema into a C program that interprets the signi�cant event

trace �le to generate a full trace. The schema compiler (aec) translates

schema �les into a C program. This program can be compiled and linked

with a program that uses the trace data. Alternatively, the full trace can be

written to a �le or Unix pipe to supply input to an existing program.

The regeneration program is speci�c to the program compiled by gcc.

When the original program is compiled again, gcc produces a new schema

�le, which must be translated again by aec. However, a regeneration pro-

gram correctly interprets any ae.out �le produced by the instrumented

program, so it may be used to analyze many di�erent executions of the

instrumented program.

The rest of this section provides details about AE. The �rst part de-

9

Scanner/
Parser Optimizations Peephole

Optimization
Assembly Code
Generation

AE
Analysis

Schema Generation
Code Instrumentation

AE Additions to gcc

RTL code

Program
Assembly
Code

Figure 7: Organization of gcc and AE's additions to it. gcc's internal representation

of a program is register-transfer code (RTL). After applying a variety of optimizations,

gcc performs peephole optimization on this code and then produces assembly instructions.

AE examines the RTL code immediately before peephole optimization (but, after all other

optimization) and watches as it is translated to machine instructions.

scribes the changes to gcc to accommodate AE. The second part describes

aec and the translation process.

4.1 Changes to gcc

The code added to gcc to implement AE was carefully designed to require

minimal changes to the compiler. This requirement was desirable and nec-

essary because gcc is an evolving program that is developed and maintained

by other people. As new versions emerge, AE can be quickly \snapped" into

place so it always runs in latest version of this compiler. Machine-speci�c

information used by AE is collected into a single �le in a manner similar to

gcc. Appendix B describes this information in detail.

To understand where AE �ts into gcc, we must brie
y examine this

compiler. Figure 7 illustrates the organization of gcc. This program is a

well-engineered, conventional compiler that has been retargeted to a wide

variety of computers. Its parser translates a program into an intermedi-

ate form called RTL, which is a register-transfer level representation of the

program. This code is similar to the instruction set of a simple load/store

computer that has an in�nite supply of registers and a very orthogonal

instruction set. All optimizations|such as strength reduction, dead code

elimination, and many others|modify the RTL instructions.

In the �nal stage, peephole optimization tries to combine an RTL instruc-

10

tion with its successors. Then, code generation translates a RTL instruction

into one or more instructions for the target machine. gcc only represents a

program as RTL code. It never creates a machine language representation

of the program, except in the output �le.

AE interfaces to this process in three places. First, immediately before

the program is put through the peephole optimizer and translated into as-

sembly code, AE analyzes the entire RTL code sequence to �nd basic block

boundaries, loops, and the instructions that must be instrumented. Sec-

ond, after each RTL instruction is run through the peephole optimizer, but

before it is translated to machine instructions, AE produces tracing code

that must run before the instruction, e.g., to record the address of a load

instruction. AE also examines the assembly code to count the number of

machine instructions produced by gcc for a RTL instruction. This division

of labor re
ects the constraints of gcc. AE needs to analyze the entire body

of fully-optimized code, so it must run immediately before peephole opti-

mization, which produces non-standard RTL code. But, AE must also watch

the assembly code to create a schema that accurately re
ects the program.

4.1.1 Analysis

AE heavily analyzes the RTL program produced by gcc. Its �rst analysis|

reaching de�nition data
ow analysis|has two roles. First, it identi�es the

basic blocks in a function. Although gcc also �nds blocks, its optimizations

that modify the
ow of control typically corrupt this information. In addi-

tion, gcc only analyzes control
ow when it optimizes a program. Therefore,

basic block information is unavailable for programs compiled without the -0

ag.

Reaching de�nitions analysis identi�es the assignments to a register

whose values reach a use of the register [2]. This analysis determines which

instructions produce a value used in a memory address calculation. AE

works backwards from a load or store instruction to �nd other instructions

that contributed to the memory address. Assume that AE wants to deter-

mine the value in R1. De�nitions reaching a use of R1 can be divided into

three categories:

2

� Easy instructions of the form: mov R1, <constant>. These instruc-

tions move a constant, e.g., 0, 1, or the address of a global symbol,

2

Note that all RTL instructions operate on registers since this code models a load/store

architecture.

11

into a register.

� Hard instructions of the form: add R1, R2, R3. To calculate the

value of R1 , AE must know the contents of R2 and R3, which requires

a recursive application of this analysis.

� Impossible instructions of the form: load R1, 4(R2), a function call

that produces a result in R1, or if R1 is an incoming argument. AE

cannot predict what value will be in this register, so it instruments the

program to record the value in R1.

Only impossible instructions require additional code to record a signi�cant

event. The �rst two types of instructions result in a compute-defn, which

recalculates the value when the full trace is generated.

The regeneration program also needs to know the control
ow in the

original program. The minimal information necessary to recreate the
ow

is a record of which branch was taken in each conditional jump.

3

The

program's control-
ow graph identi�es the instructions that are targets of

conditional branches. Before each target instructions is written to the output

�le, AE adds code to record the instruction's basic block number in the trace

�le. The
ow of control between all other instructions|unconditional jumps

and computational instructions|is apparent from the schema �le.

AE's other analysis �nds loops in a program. This information identi�es

when each loop starts, �nishes, and begins a new iteration. gcc also marks a

rough outline of the loops in the RTL code. Although these markings su�ce

for gcc, they are inadequate for AE since they do not identify all edges

exiting a loop or adequately distinguish the beginnings of nested loops.

AE uses a more re�ned analysis technique to identify control-
ow edges

that enter a loop, exit a loop, and begin a new iteration of a loop in a three

step process. The �rst step identi�es loop backedges and the blocks that

head a loop by �nding the control-
ow edges whose destination dominates

their source. It then uses a greedy algorithm to �nd all blocks within the

loop. Finally, AE examines the edges from these blocks to �nd the exit and

backedges for the loop.

3

If AE knew the values compared in a conditional statement, it could omit the control-

ow event. Although these quantities could be recorded in a manner similar to addresses,

their values are in a di�erent domain than addresses. Recomputing them might require

performing most of the original program's computation.

12

4.1.2 Schema Generation and Instrumentation

The other part of AE examines each instruction after it has passed through

peephole optimization, but before it is translated to machine code. This part

produces one or more schema instructions that describe the instruction and

various annotations that identify whether the instruction is the beginning or

end of a program structure such as a basic block or program loop. Since an

RTL instruction may translate to more than one machine instruction, AE

watches the assembly code to determine the number of uneventful inst

produced for an RTL instruction.

AE also adds assembly code to the output �le to record signi�cant events.

These sequences are written directly to the assembly output �le, either im-

mediately before or after an instruction. Currently, there are two types of

signi�cant events. The �rst records the number of a basic block that is the

target of a conditional branch. This quantity is typically a byte, but it can

be a half word in functions containing more than 256 blocks. The other type

of event records the value produced by an impossible instruction. This quan-

tity is a full word. On a MIPS R2000, the instruction sequence to record a

signi�cant event is 6 instructions for the �rst event in a basic block (which

checks for su�cient bu�er space) and 3 instructions for all subsequent events

in the block. On computers without the ability to do unaligned stores (e.g.,

SPARC), a full word must be stored one byte at a time.

4.2 AEC

The other half of AE is a compiler (aec) that translates a schema into a

C program that generates a full address trace from the limited information

in the �le of signi�cant events. This translation is simple, so we will only

outline it and describe a few interesting aspects.

aec takes as input the executable program and the schema �les from each

constituent C �le. It produces a �le containing a C program.

4

The resulting

program has a simple and �xed structure. It begins with collection of boiler-

plate macro de�nitions, which make the translated code smaller and easier

to read. It then de�nes a global variable for each register that is not saved

on a per-function basis. For example, if register 10 is a standard register,

the program declares int R10, so subsequent references to R10 refer to this

location.

4

Some form of separate compilations is desirable and will be added shortly.

13

The rest of the �le contain a sequence of function de�nitions derived from

each function's schema. A derived function's name is formed by prepending

the function's name with a distinct pre�x (ae). Each function de�nes a

local variable corresponding to each register that is saved and restored on a

function-by-function basis. The body of the function is composed of:

� ISSUE INST (len). The macro ISSUE INST indicates that a new in-

struction (whose length in bytes is len) is executed at the current

PC.

� READ MEMORY (addr), WRITE MEMORY (addr). These macros indicate

that the memory location with address addr is read or modi�ed.

� Annotations. Currently AE marks the control-
ow edges that enter,

iterate, and exit a loop with the annotations LOOP ENTRY, LOOP BACK,

and LOOP EXIT, respectively. This set of annotations can easily be

expanded.

� Function calls. Calls in which the callee is known by gcc directly

invoke the appropriate schema routine. For example, a call on foo

involves the translated schema routine ae foo. Calls in which the

callee is unknown require a signi�cation event during execution to

record the address of the callee. The translated schema uses a table

of function addresses to map the address from the trace �le into the

appropriate schema routine.

� Branches. Unconditional jumps translate directly into unconditional

jumps in the schema program. Conditional branches must read the

trace �le to �nd which target block was reached and then jump to the

appropriate point in the schema program.

� Computation. The translated schema directly executes compute defn

to compute values. These computations use the \registers" in the

schema program. unknown defn's correspond to impossible instruc-

tions and read their value from the trace �le.

The interface to AE is the routine ae recreate (file, func). file is

the name of the trace �le containing the signi�cant events. func is a function

that the regeneration program invokes on each event in the trace. func is

passed two or three arguments. The �rst is a value indicating the type of

14

event. The second is the address of the event. The optional third argument is

auxiliary data. ae recreate returns when the trace is completely produced.

The regeneration program does not dynamically allocate memory since

it does not record values. Its only memory usage is the program stack. The

maximum depth (in frames) of this stack is the same as the original program.

It is not necessary to pro�le all pieces of a program (for example system

libraries). AE produces dummy routines for all functions in the executable

�le for which it does not �nd a schema. However, it is a serious mistake

to omit a schema �le for a �le compiled with AE pro�ling, since the pro-

gram will produce and record signi�cant events that confuse the recreation

program.

5 Applications

AE has been used in two applications to date. The �rst is memory-system

analysis, which feeds the sequence of memory addresses referenced by a

program to a simulator that predicts the performance of a memory system.

AE's main advantage in this application is the large compression of the trace

�le. Previously, memory address traces were compressed by computing the

di�erence between successively-accessed addresses|which uncovers under-

lying regularity in access patterns|and feeding the result to a compression

program such as the Unix compress utility [9]. This process typically re-

duces the volume of a full address trace by a factor of 10 and an instruction

trace by a factor of 200. Section 6 demonstrates that AE can greatly ex-

ceed this compression. The additional compaction enables longer (and hence

more realistic) traces to be analyzed, stored, and exchanged.

The other application is a parallelism analyzer, which examines the exe-

cutions of program loops to �nd the possibility of parallel overlap [7]. This

system, called pp, uses a full address trace in addition to events to indicate

the beginning, end, and iteration of a loop. pp records the last read and

modi�cation of each memory location. It uses this information to detect

loop-carried data dependences. These con
icts partially serialize a loop's

execution and necessitate delays in initiating iterations. pp computes and

reports the potential speed improvement o�ered by parallel execution of the

program as well as data about the characteristics of loops and data depen-

dences.

In this application, AE's main advantage is again the large compres-

sion of trace �les. However, another advantage is the ease of identifying

15

higher-level program constructs in the trace. Some features, such as loops,

can be found by analyzing an assembly language program. However, other

features, such as the type of object referenced by a memory access, cannot

be recovered from an assembly program. Because gcc can relate each RTL

instruction to a source-level command, AE could distinguish con
icts over

variables, arrays and pointer-linked structures.

6 Performance

Three aspects of AE's performance are important: the additional time re-

quired to trace the original program, the size of the trace �le, and the time

required to regenerate a full address trace. The other costs, such as addi-

tional overhead in gcc and the size of the schema �les, are insigni�cant. All

measurements were run on a DECstation 3100 (a 14 MIPS computer that

contains a MIPS R2000 processor) with 24 megabytes of main memory and

a local disk. All programs were compiled with optimization.

The test programs are:

Program Application Lines

of Code

pdp Connectionism simulator 4,400

compress Unix utility 1,510

polyd Polydominoes game 528

sgefa Gaussian elimination 1,218

The next table shows their execution times with and without pro�ling. Time

was measured with the time command. \Program time" is the execution

time for the unpro�led version of a program. \Pro�le time" is the di�erence

between the execution time of the pro�led and unpro�led programs.

Program Program Pro�le Pro�le/

Time Time Program

(User + System) Time

pdp 1.9u + 0s 1.3u + 5.7s 3.7

compress 1.3u + 0.4s 1.2u + 3.1s 2.5

polyd 3.5u + 0.0s 2.7u + 10.6s 3.8

sgefa 1.0u + 1.6s 0.6u + 1.5s 0.8

I chose the programs' input data to produce reasonable duration executions

whose trace �les did not exceed the capacity of my local disk. As can be

16

seen from the table, the overhead of pro�ling ranged from 0.8{3.8 times the

cost of executing the program. Most of the cost is system overhead to write

trace �les to disk. This cost re
ects the design of the Unix �le system and

the slow speed of the local disk. Only considering user time, the overhead

of pro�ling is always less than the cost of running a program.

The following table shows the characteristics of the trace �les. ae.out is

the signi�cant event trace �le written by the traced program. ae.out.Z is

the compressed version of this �le.

5

The next two columns list the number

of instructions and memory references in the regenerated trace.

Program ae.out ae.out.Z # Inst. # Refs.

(bytes) (bytes)

pdp 10,117,340 697,790 19,777,774 6,622,419

compress 5,222,138 1,964,649 15,840,343 4,950,641

polyd 16,692,484 2,198,161 42,510,559 9,318,059

sgefa 1,590,518 137,871 12,651,297 3,464,586

The following table contains the ratio of the size of the full trace (at 5

bytes per address) to the size of the signi�cant event �le, uncompress and

compressed.

Program Size trace / Size Event

ae.out ae.out.Z

pdp 9.8 141.7

compress 19.9 52.9

polyd 15.5 117.9

sgefa 50.7 584.0

The signi�cant event �le is 10{50 times smaller than the full address trace.

However, when the event �le is compressed by the Unix compress utility,

this ratio increases to 50{600 times. Of course, the full address trace can

be compressed also, so these �gures only show the reduction with respect to

the full trace. The program pdp has the lowest ratio for the uncompressed

�le because its memory reference pattern was very irregular and had to be

recorded at execution time. On the other hand, sgefa has the largest ratio

since it traversed arrays in a regular pattern that was easily reproduced by

the schema program.

5

A future modi�cation is to directly write a compressed trace �le. This change may

reduce the system overhead, at the expense of greatly increasing the user time. However,

it will permit longer traces to be recorded.

17

The next table shows the time to regenerate the address trace. The

regeneration code was compiled without optimization. This test passed the

generated events and addresses to a dummy routine that contained a case

statement that discriminated on the type of event and then discarded the

data.

Name Regeneration Time Addresses/Second

pdp 103.4u + 12.9s 171,533

compress 53.9u + 5.5s 350,017

polyd 190.3u + 19.0s 247,628

sgefa 40.9u + 1.3s 381,893

The test programs generated and consumed 171,000{381,000 address per

second of CPU time. By pro�ling a test program, we �nd that approximately

half of the time is spent in the dummy routine that consumes the addresses,

rather than in the code that regenerates them. The rate at which address are

generated roughly correlates with the compression factor (and inversely with

the size of ae.out), which means that AE can calculate addresses faster than

it can read them from the trace �le. Even in the worst case, AE produces

address much faster than an application can consume them. Cache memory

simulators generally process tens of thousands of address per second. This

means that the additional time to generate address is insigni�cant for these

programs.

The cost of regeneration cannot be directly compared with the traced

program's execution cost. The program trace is incomplete (its advantage)

and unusable without the additional work performed by the regeneration

program. Directly instrumenting a program to collect a full trace would

slow its speed below that of the regeneration program since it would perform

both programs' computations.

7 Related Work

Many researchers have build systems for collecting memory address traces.

An early technique examined every instruction before it executed to deter-

mine its memory accesses. Because this approach trapped each instruction

and did a process context switch to the analyzer, it slows program execution

by two or three orders of magnitude. A faster approach modi�ed the VAX's

microcode to record the addresses that it produced. Agarwal's ATUM sys-

tem still slowed programs by a factor of 20 [1]. However, it did not require

18

program modi�cations or recompilation and could trace all processes run-

ning on a computer. Neither scheme compressed the data.

Borg's system for tracing programs on the DEC Titan inspired this e�ort

[3]. This system uses a modi�ed linker to insert tracing code in a compiled

program. This code records the execution of each basic block, the number

of instructions in the block, and the address of referenced memory loca-

tions. Currently, the system saves space by not recording the interleaving

of memory references among instruction addresses. Tracing slows program

execution 8{12 times and produces such a large volume of data that analysis

is generally conducted on-line by interrupting the program and running an

analysis process. However, the system can trace all processes and the kernel

running on a machine.

Independently, but slightly earlier than this work, Eggers, Keppel, Kold-

inger, and Levy developed a system that uses many of the same ideas as

AE [4]. Their system, MPtrace, produces address traces of multithreaded

parallel programs. It reduces the volume of trace data by recording control

ow among superblocks (a basic block with a single entry, but multiple exits)

and by recognizing special cases of load and stores (e.g., a load o� the frame

pointer). Their system reads and modi�es the assembly code produced by

the Sequent C and Fortran compilers.

From published reports, MPtrace does not have schemas, although it

regenerates some address from a smaller set of data collected during exe-

cution. The special cases recognized by their system does not include all

cases recognized by AE. For example, superblocks record events for uncon-

ditional jumps that AE infers from the schema �le. In addition, it is unclear

whether the special cases that their system recognizes includes regular ar-

ray access such as the one in the example. Because MPtrace operates on

an assembly language, it cannot identifying higher-level construction (see

Section 5). The execution time overhead of their system is worse than AE.

Programs executed 1.6{2.3 times slower without �le IO and 10 times slower

if the overhead to write the trace �le is included. They do not report on the

compression of the data �le.

8 Status

AE currently runs on the MIPS R2000/R3000 and SPARC processors. AE

is available by anonymous ftp from primost.cs.wisc.edu (128.105.8.17)

in the �le ~ftp/pub/ae.tar.Z. This �le is a compressed tar �le containing

19

additions to gcc. AE also requires a copy of gcc, which is available from

many places including prep.ai.mit.edu. AE is copyrighted and distributed

under the terms of the GNU General Public License.

9 Conclusion

Abstract Execution is a powerful and general technique for tracing the ex-

ecution of programs. By reducing the quantity of data collected during a

program's execution, it reduces the e�ect of pro�ling on the program's be-

havior and the volume of data that must be stored. Missing information

can easily be regenerated by reexecuting small portions of the program us-

ing the traced events as a guide. This division shifts some of the pro�ling

costs to the program that utilizes the data, which typically is an expensive

computation that is not adversely a�ected by a small amount of additional

work.

AE is a simple, portable system for tracing events in C program. It uses

Abstract Execution to greatly reduce the cost of pro�ling these programs in

detail.

Acknowledgments

Mark Hill, David Keppel, Rick Kessler, Robert Netzer, and Ben Zorn read

and commented on drafts of this paper. Their help is greatly appreciated.

References

[1] Annat Agarwal, Richard L. Sites, and Mark Horwitz. ATUM: A New Technique

for Capturing Address Traces Using Microcode. In Proceedings of the 13th Annual

International Symposium on Computer Architecture, pages 119{127, June 1986.

[2] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Techniques,

and Tools. Addison-Wesley, 1985.

[3] Anita Borg, R. E. Kessler, Georgia Lazana, and David W. Wall. Long Address

Traces from RISC Machines: Generation and Analysis. Technical Report 89/14,

Digital Equipment Corporation, Western Research Laboratory, September 1989.

[4] Susan J. Eggers, David R. Keppel, Eric J. Koldinger, and Henry M. Levy. Techniques

for E�cient Inline Tracing on a Shared-Memory Multiprocessor. Technical Report

89-09-18, Department of Computer Science, University of Washington, September

1989. Accepted for SIGMETRICS 1990.

20

[5] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. An Execution Pro�ler

for Modular Programs. Software Practice & Experience, 13:671{685, 1983.

[6] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural Slicing Using

Dependence Graphs. In Proceedings of the SIGPLAN '88 Conference on Programming

Language Design and Implementation, pages 35{46, June 1988.

[7] James R. Larus. Estimating the Potential Parallelism in Programs. Submitted to

ICPP '90, January 1990.

[8] MIPS Computer Systems, Inc. RISCompiler Languages Programmer's Guide, De-

cember 1988.

[9] A. Dain Samples. Mache: No-Loss Trace Compaction. In Proceedings of the Interna-

tional Conference on Measurment and Modeling of Computer Systems, pages 89{97,

May 1989.

[10] Alan J. Smith. Cache Memories. ACM Computing Surveys, 14(3):473{530, 1982.

[11] Richard M. Stallman. Using and Porting GNU CC. Free Software Foundation,

September 1989.

[12] Mark Weiser. Program Slicing. IEEE Transactions on Software Engineering, SE-

10(4):352{357, July 1984.

21

Appendix

A Details of MIPS R2000 Implementation

This section contains details of the implementation of AE on the MIPS

R2000/R3000 processor. It can be read either as a more detailed description

of AE or as hints about how to make AE run on other machines.

Programs compiled with the -AE
ag to gcc record events in a 1 megabyte

bu�er that resides on the program stack (see Figure 8). This location places

the bu�er above most of the program's address space and so lessens the

disruption caused by carving a large chunk out of the address space. It also

permits a quick test for bu�er over
ow. The code for the �rst �rst event in a

basic block checks whether the event bu�er has room for all events from the

block (actually 100 bytes since at this point, gcc does not know how many

events are in the block). In AE, register 23 is no longer a general-purpose

registers, but contains a pointer to the next free location in the bu�er. The

code for the �rst event is:

.set noat # Event w/ check

addu R1, R23, 29672

bgtz R1, L5

.set at

jal ae_flush_buffer

L5:

usw R29, 0(R23) # Save value in R29

addiu R23, R23, 4 # End Event

The stack on this machine grows down from just below 0x80000000,

which is also a negative number, unlike the valid program addresses. The

trace bu�er begins 28,672 bytes below this address. This o�set was chosen to

allow space for the environment and arguments to main above the bu�er and

to enable the o�set to �t in the signed 16-bit �eld in the addu instruction.

If R23 + 28; 672 + 100 is negative, the bu�er contains fewer than 100 free

locations and the routine ae flush buffer empties it. This procedure is

carefully written so it preserves values in all registers, not just those normally

saved by a function call. The last two instructions in the event store the

contents of register R29 into the bu�er and increment the bu�er pointer.

The store is an unaligned access since the bu�er contains bytes as well as

22

0x80000000

1 Megabyte

Program Stack

Environment

ae_start(argc, argv)

AE Buffer

main(argc, argv)

4K Reserved

28,672

padding

bytes Stack
Grows

Figure 8: Organization of MIPS stack. The stack grows down from address 0x8000000.

The stack frame for the startup routine (ae start) begins directly below the environment.

This routine allocates a 1 megabyte bu�er on the stack and then invokes the user program's

main routine.

words. Other events in the block, which do not check for free space, require

only these two instructions.

The MIPS assembler hides many details of the underlying architecture

by providing pseudo instructions that expand into one or more machine

instructions and by performing instruction scheduling. On one hand, this

approach reduces the complexity of producing code for the machine and

simpli�es AE. On the other hand, the assembly code produced by gcc dif-

fers from the executed code. AE estimates the size of the code sequence

produced for pseudo instructions. However, it does not attempt to predict

the instruction scheduling.

The code for ae start, ae flush buffer, and ae terminate is similar

to the pro�ling code for prof or gprof and is contained in the �le aecrt0.o.

23

ae.c ae-loop.c ae-rd.c ae-output.c

ae-buffer.c aecrt0.s

aec.c

ae-machine.h ae.h schema.h

ae-sparc.h
ae-mips.h

aec gcc aecrt0.o

Figure 9: Organization of �les in AE and AEC.

B Parameters for AE

This section describes the con�guration �le for AE (ae-machine.h). This

�le de�nes machine-speci�c quantities for AE and aec (see Figure 9. It is

similar to the gcc's machine description �les.

� AE BUFFER REG If de�ned, it is a string containing the name of the

register that AE uses to point to the next free byte in its bu�er. If

AE BUFFER VAR is de�ned, this quantity should be unde�ned.

� AE BUFFER VAR If de�ned, it is a string containing the name of the

variable that AE uses to hold a pointer to the next free byte in its

bu�er. If AE BUFFER REG is de�ned, this quantity should be unde�ned.

� MAKE AE BUFFER POINTER() An expression that produces RTL corre-

sponding to AE BUFFER REG or AE BUFFER VAR, as appropriate.

� AE BUFFER BOUND REG If de�ned, it is a string containing the name of

the register that AE uses to point to the end its bu�er. This quantity

should be unde�ned if AE BUFFER BOUND VAR is de�ned,

� AE BUFFER BOUND VAR If de�ned, it is a string containing the name of

the variable that AE uses to hold a pointer to the end of its bu�er. If

AE BUFFER BOUND REG is de�ned, this quantity should be unde�ned.

24

� MAKE AE BOUND POINTER() An expression that returns RTL form cor-

responding to AE BUFFER BOUND REG or AE BUFFER BOUND VAR, as ap-

propriate.

� The next two values are used instead of a bound register or variable.

If they are de�ned, AE BUFFER BOUND REG and AE BUFFER BOUND VAR

must be unde�ned.

{ STACK TOP The address of the �rst location of the C stack.

{ AE BUFFER STACK OFFSET The o�set from STACK TOP to the

end of AE's bu�er.

� AE BUFFER SIZE The size of AE's bu�er in bytes.

� AE START FRAME SIZE The size of the function AE START's stack frame.

� SP REG A string containing the name of the stack pointer register.

� MAX PEEP One plus the maximum number of instructions combined by

the peephole optimizer.

� REGISTER DEFINED IN CALL(REGNO) An expression that producing a

non-zero result if REGNO is the number of a register that may be de�ned

upon function entry.

� ASM COMMENT CHAR The character that precedes assembler comments.

� ASM DIRECTIVE CHAR The character that preceds assembler directives.

� JUMP DELAY SLOTS The number of instructions following an uncondi-

tional jump instruction that are executed. If the machine does not

have delayed branches or the assembler hides the delay, this value is

unde�ned.

� CJUMP DELAY SLOTSThe number of instructions following a conditional

jump instruction that are executed. If the machine does not have de-

layed branches or the assembler hides the delay, this value is unde�ned.

� CALL DELAY SLOTS The number of instructions following a subroutine

call instruction that are executed. If the machine does not have delayed

calls or the assembler hides the delay, this value is unde�ned.

� STD ASM INSN LENGTH The length of most instructions in bytes.

25

� ASM INSN SIZE EXCEPTIONS If de�ned, it is a list of that are longer

than normal because they are pseudo instructions that expand into

one or more instructions. The list is a sequence of instruction-size

pairs, ordered by the instruction name.

� BRANCH IS ANNULED(ASM INSN) An expression that produce a non-

zero result if the ASM INSN is a delayed branch that does not execute

(annuls) the following instructions.

� ASM INSN IS CALL (ASM INSN) An expression that produces a non-

zero results if the ASM INSN is a subroutine call.

� SCHEMA PROLOGUE(RECORD REG) Invoked to produce a schema corre-

sponding to the code generated for the function prologue. Element N

is RECORD REG is non-zero if register N's value should be recorded upon

function entry.

� SCHEMA EPILOGUE(RECORD REG) Invoked to produce a schema corre-

sponding to the code generated for the function epilogue.

� GENERATE SPACE CHECK(COMMENT, SIZE) Invoked to produce assem-

bly code to check if SIZE bytes remain in AE's bu�er.

� GENERATE EVENT(VALUE) Invoked to produce assembly code to save

VALUE.

� GENERATE SHORT EVENT(VALUE, BYTES) Invoked to produce assembly

code to save VALUE, which �ts in BYTES bytes.

� GENERATE ADDRESS EVENT(ADDRESS, BASE, OFFSET) Invoked to pro-

duce assembly code to save ADDRESS, which is composed of BASE and

OFFSET.

� AE START ASM The symbol in the #ifdef surrounding assembly code

for ae start.

� AE FLUSH BUFFER ASM The symbol in the #ifdef surrounding assem-

bly code for ae flush buffer.

� ECOFF AOUT De�ne if the machine uses MIPS's ECOFF format for

a.out �les.

� BSD AOUT De�ne if the machine uses BSD format for a.out �les.

26

� PC OFFSET AFTER CALL Number of bytes beyond call instruction that

a function returns.

� REG LOCAL TO FUNCTION(N) An expression that produces a non-zero

result if register N is local to a function.

� INITIALIZE REGISTERS() Invoked to produce code to initialize regis-

ters before the generation program executes.

27

