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Fig.12: Flow chart for controlling FTP conversations.

The inverse transform method maps uniformly distributed 0–1 random variates through the

“y-axis” of the cumulative probability distribution onto the “x-axis.”  With distributions fitted to

analytical expressions, the inverse transform method involves inverting an equation.  Consider,

for example, generating an exponential random variate.  If µ is a 0–1 uniform random variate and

l is the parameter of the exponential, then x=-log(1-µ)/l is an exponentially distributed random

variate.  In our case, we built a histogram of the individual data points, and then summed the

histogram bin heights to create our distribution function.  Hence, our distributions are

represented by arrays rather than expressions.  An array index i corresponds to a particular value

of the distribution.  The contents of the array element at index i, x[i], is the value of the

cumulative distribution.  Hence, to generate a random variate, we first generate a 0–1 uniform

random variate µ.  We then perform a binary search on the array elements until we find the

element x[k] into which µ falls.  Finally, we linearly interpolate between x(k) and x(k+1) to

determine our random variate x.
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Rather than forming a histogram, another approach is to keep every single data point and sort

the set.  Then sample every 100th or 1000th element and place them in subsequent array

locations that correspond to 0.01-quantile and 0.001-quantile increments.  The array can then be

directly indexed by µ, eliminating the search for the bin in which µ fell.  We didn’t adopt this

approach because it takes more memory to implement than the scheme described in the previous

paragraph.

5.  Applying the Traffic Model

Since we are not suggesting that algorithm robustness testing should use our workload model

in place of worst-case scenarios, just what good is a tool for generating realistic internetwork

traffic?  This section describes one problem that needs a realistic internetwork traffic model.

The problem of multiplexing application datagram traffic over wide-area virtual circuits

reappears with the advent of high-speed Asynchronous Transfer Mode (ATM) networks.

Assuming the existence of a reservation scheme for handling the requirements of multimedia

traffic [32], we still have to accommodate the dynamics and requirements of traditional datagram

traffic.  When a datagram arrives at an ATM gateway, it needs to be routed onto an appropriate

virtual circuit.  If such a circuit doesn’t exist, data transmission must wait until one is established.

On the other hand, idle virtual circuits consume resources inside the ATM network.  We want to

find ways to multiplex TCP conversations over ATM virtual circuits that provide adequate

performance while making efficient use of network resources.

We need to trade the performance costs of establishing new virtual circuits with the resource

utilization advantages of closing idle circuits.  Evaluating this tradeoff requires a good, average

case internetwork traffic source model.  With such a model we could decide how to map a set of

TCP conversations onto a possibly smaller set of ATM virtual circuits, choose the queueing

discipline for multiplexing datagrams onto these virtual circuits, and arrive at a timeout

algorithm for reclaiming idle virtual circuits.
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No previous model of wide-area traffic is appropriate for this study.  To evaluate the

performance of different mapping schemes, we need a realistic internetwork traffic matrix.

Without accurate knowledge of application mix and behavior, we cannot predict the effect of

multiplexing several different TCP conversations through a single ATM virtual circuit.  To

evaluate timeout schemes, we need the distribution of conversation durations and conversation

interarrival times.

There are other cases where a detailed characterization of applications as presented in this

paper will be required.  Even for studies that aim to prove only the robustness of new designs or

algorithms, using our model can show how new designs or algorithms perform on the common

case.

6.  Implications and Conclusions

 Analysis of traffic traces collected from three different stub-networks show that the sequence

of packets that application programs generate can be characterized by certain application-specific

characteristics which are independent of the stub-network.  We constructed an artificial workload

model of a TCP/IP internetwork composed of a stub-network independent set of application

source models and a stub-network dependent set of application arrival processes.

We also identified application characteristics that contradict the following commonly held

beliefs regarding current wide-area traffic:

• Bulk sources transfer large amounts of data per conversation.

• Bulk sources send large packets in only one direction.

• Interactive sources send small packets in one direction, and receive echoes of comparable

size in the opposite direction.

• Internetwork traffic can be modeled by either a Poisson interarrival process or a packet-train

model alone.
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Addressing these myths in order, we have shown that:

• Eighty percent of the time, classic bulk transfer application such as FTP transfer less than 10

kilobytes per conversation.  Other applications commonly categorized as bulk traffic sources,

such as SMTP, transfer even smaller amounts of data (see Figure 1a).

• Traffic generated by FTP, SMTP, NNTP, and VMNET is strongly bidirectional.  Furthermore,

SMTP and NNTP send as many small packets as large packets (see Figures 5b and 3b).

• Interactive applications routinely generate 10 times more data in one direction than the other,

using packet sizes ranging from 1 byte to 512 bytes (see Figures 5a and 3a).

• Interactive packet interarrivals closely match a uniform plus exponential distribution (see

Figure 4a).

We are continuing work on tools to create wide-area network traffic based upon our

characterizations.  We will also study various algorithms' responses to average case data,

especially flow control and congestion control algorithms whose robustness, but not average case

behavior, was evaluated in previous studies.  There is more work to be done in understanding

traffic reference patterns, and a better understanding of these should impact the design of future

networks.
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Appendix 1

Comparative Data from the Three Sites

In the following figures, curves labelled uc␣represent UCB data, ones labelled bc represent

Bellcore data, and ones labelled sc represent USC data.
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