
Name Server Operations Guide

for BIND
Release 4.9

Releases from 4.9

Paul Vixie

<vixie@pa.dec.com>

<paul@vix.com>

Digital Equipment Corporation

Network Systems Laboratory

250 University Avenue

Palo Alto CA 94301

Releases through 4.8.3

Kevin J. Dunlap*

Michael J. Karels

Computer Systems Research Group

Computer Science Division

Department of Electrical Engineering and Computer Sciences

University of California

Berkeley CA 94720

1. Introduction

The Berkeley Internet Name Domain (BIND) implements an Internet name server for the UNIX†

operating system. The BIND consists of a server (or ‘‘daemon’’) and a resolver library. A name server

is a network service that enables clients to name resources or objects and share this information with

other objects in the network. This in effect is a distributed data base system for objects in a computer

network. BIND is fully integrated into BSD (4.3 and later releases) network programs for use in storing

and retrieving host names and address. The system administrator can configure the system to use BIND

as a replacement to the older host table lookup of information in the network hosts file / etc/ hosts. The

default configuration for BSD uses BIND.

2. Building A System with a Name Server

BIND is composed of two parts. One is the user interface called the resolver which consists of a

group of routines that reside in the C library /lib/libc.a. Second is the actual server called named. This

is a daemon that runs in the background and services queries on a given network port. The standard port

for UDP and TCP is specified in / etc/ services.

* The author was an employee of Digital Equipment Corporation’s Ultrix Engineering Advanced Development Group and was

on loan to CSRG when this work was done. Ultrix is a trademark of Digital Equipment Corporation.

†UNIX is a Trademark of AT&T Bell Laboratories

SMM:11-2 Name Server Operations Guide for BIND

2.1. Resolver Routines in libc

When building your 4.3BSD system you may either build the C library to use the name server

resolver routines or use the host table lookup routines to do host name and address resolution. The

default resolver for 4.3BSD uses the name server. Newer BSD systems include both name server

and host table functionality with preference given to the name server if there is one or if there is a

/etc/resolv.conf file.

Building the C library to use the name server changes the way gethostbyname (3N),

gethostbyaddr (3N), and sethostent (3N) do their functions. The name server renders

gethostent (3N) obsolete, since it has no concept of a next line in the database. These library calls

are built with the resolver routines needed to query the name server.

The resolver contains functions that build query packets and exchange them with name

servers.

Before building the 4.3BSD C library, set the variable HOSTLOOKUP equal to named in

/ usr/ src/ lib/ libc/ Makefile. You then make and install the C library and compiler and then compile

the rest of the 4.3BSD system. For more information see section 6.6 of ‘‘Installing and Operating

4.3BSD on the VAX‡’’.

If your operating system isn’t VAX‡ 4.3BSD, it is probably the case that your vendor has

included resolver support in the supplied C Library. You should consult your vendor’s documenta-

tion to find out what has to be done to enable resolver support. Note that your vendor’s resolver

may be out of date with respect to the one shipped with BIND, and that you might want to build

BIND’s resolver library and install it, and its include files, into your system’s compile/link path so

that your own network applications will be able to use the newer features.

2.2. The Name Service

The basic function of the name server is to provide information about network objects by

answering queries. The specifications for this name server are defined in RFC1034, RFC1035 and

RFC974. These documents can be found in /usr/src/etc/named/doc in 4.3BSD or ftped from

ftp.rs.internic.net. It is also recommended that you read the related manual pages, named (8),

resolver (3), and resolver (5).

The advantage of using a name server over the host table lookup for host name resolution is to

avoid the need for a single centralized clearinghouse for all names. The authority for this informa-

tion can be delegated to the different organizations on the network responsible for it.

The host table lookup routines require that the master file for the entire network be main-

tained at a central location by a few people. This works fine for small networks where there are

only a few machines and the different organizations responsible for them cooperate. But this does

not work well for large networks where machines cross organizational boundaries.

With the name server, the network can be broken into a hierarchy of domains. The name

space is organized as a tree according to organizational or administrative boundaries. Each node,

called a domain, is giv en a label, and the name of the domain is the concatenation of all the labels of

the domains from the root to the current domain, listed from right to left separated by dots. A label

need only be unique within its domain. The whole space is partitioned into several areas called

zones, each starting at a domain and extending down to the leaf domains or to domains where other

zones start. Zones usually represent administrative boundaries. An example of a host address for a

host at the University of California, Berkeley would look as follows:

‡VAX is a Trademark of Digital Equipment Corporation

Name Server Operations Guide for BIND SMM:11-3

monet . Berkeley . EDU

The top level domain for educational organizations is EDU; Berkeley is a subdomain of EDU and

monet is the name of the host.

2.3. About Hesiod, and HS-class Resource Records

Hesiod, developed by MIT Project Athena, is an information service built upon BIND. Its

intent is similar to that of Sun’s NIS: to furnish information about users, groups, network-accessible

file systems, printcaps, and mail service throughout an installation. Aside from its use of BIND

rather than separate server code another important difference between Hesiod and NIS is that Hesiod

is not intended to deal with passwords and authentication, but only with data that are not security

sensitive. Hesiod servers can be implemented by adding resource records to BIND servers; or they

can be implemented as separate servers separately administered.

To learn about and obtain Hesiod make an anonymous FTP connection to host ATHENA-

DIST.MIT.EDU and retrieve the compressed tar file pub/hesiod.tar.Z. You will not need the named

and resolver library portions of the distribution because their functionality has already been inte-

grated into BIND 4.9. To learn how Hesiod functions as part of the Athena computing environment

obtain the paper pub/usenix/athena-changes.PS from the above FTP server host. There is also a tar

file of sample Hesiod resource files.

Whether one should use Hesiod class is open to question, since the same services can proba-

bly be provided with class IN, type TXT and type CNAME records. In either case, the code and

documents for Hesiod will suggest how to set up and use the service.

Note that while BIND includes support for HS-class queries, the zone transfer logic for non-

IN-class zones is still experimental.

3. Types of Zones

A ‘‘zone’’ is a point of delegation in the DNS tree. It contains all names from a certain point

‘‘downward’’ except those which are delegated to other servers. A ‘‘delegation point’’ has one or more

NS records in the ‘‘parent zone’’, which should be matched by equivalent NS records at the root of the

‘‘delegated zone’’ (i.e., the ‘‘@’’ name in the zone file).

Understanding the difference between a ‘‘zone’’ and a ‘‘domain’’ is crucial to the proper opera-

tion of a name server. As an example, consider the DEC.COM domain, which includes names such as

POBOX1.PA.DEC.COM and QUABBIN.CRL.DEC.COM ev en though the DEC.COM zone includes only

delegations for the PA.DEC.COM and CRL.DEC.COM zones. A zone can map exactly to a single

domain, but could also include only part of a domain (the rest of which could be delegated to other

name servers). Technically speaking, every name in the DNS tree is a ‘‘domain’’, even if it is ‘‘termi-

nal’’, that is, has no ‘‘subdomains’’. Technically speaking, every subdomain is a domain and every

domain except the root is also a subdomain. The terminology is not intuitive and you would do well to

read RFC’s 1033, 1034, and 1035 to gain a complete understanding of this difficult and subtle topic.

Though BIND is a Domain Name Server, it deals primarily in terms of zones. The primary and

secondary declarations in the named.boot file specify zones, not domains. When you ask someone if

they are willing to be a secondary server for your ‘‘domain’’, you are actually asking for secondary ser-

vice for some collection of zones.

Each zone will have one ‘‘primary’’ server, which loads the zone contents from some local file

which is edited by humans or perhaps generated mechanically from some other local file which is

edited by humans. Then there will be some number of ‘‘secondary’’ servers, which load the zone con-

tents using the IP/DNS protocol (that is, the secondary servers will contact the primary and fetch the

zone using IP/TCP). This set of servers (the primary and all of the secondaries) should be listed in the

NS records in the parent zone, which will constitute a ‘‘delegation’’. This set of servers must also be

SMM:11-4 Name Server Operations Guide for BIND

listed in the zone file itself, usually under the ‘‘@’’ name which is a magic cookie that means the ‘‘top

level’’ or ‘‘root’’ of current $ORIGIN. You can list servers in the zone’s top-level ‘‘@’’ NS records that

are not in the parent’s NS delegation, but you cannot list servers in the parent’s delegation that are not

present in the zone’s ‘‘@’’. (This latter condition is one form of what is called a ‘‘lame delegation’’.)

4. Types of Servers

Servers do not really have ‘‘types’’. A server can be a primary for some zones and a secondary

for others, or it can be only a primary, or only a secondary, or it can serve no zones and just answer

queries via its ‘‘cache’’. Previous versions of this document referred to servers as ‘‘master’’ and

‘‘slave’’ but we now feel that those distinctions — and the assignment of a ‘‘type’’ to a name server —

are not useful.

4.1. Caching Only Server

All servers are caching servers. This means that the server caches the information that it

receives for use until the data expires. A Caching Only Server is a server that is not authoritative for

any domain. This server services queries and asks other servers, who have the authority, for the

information needed. All servers keep data in their cache until the data expires, based on a TTL

(‘‘Time To Liv e’’) field which is maintained for all resource records.

4.2. Remote Server

A Remote Server is an option given to people who would like to use a name server from their

workstation or on a machine that has a limited amount of memory and CPU cycles. With this

option you can run all of the networking programs that use the name server without the name server

running on the local machine. All of the queries are serviced by a name server that is running on

another machine on the network. This kind of host is technically not a ‘‘server’’, since it has no

cache and does not answer queries. A host which has an /etc/resolv.conf file listing only remote

hosts, and which does not run a name server of its own, is sometimes called a Remote Server but

more often it is called simply a DNS Client.

4.3. Slave Server

A Slave Server is a server that always forwards queries it cannot satisfy from its cache, to a

fixed list of forwarding servers instead of interacting with the master nameservers for the root and

other domains. The queries to the forwarding servers are recursive queries. There may be one or

more forwarding servers, and they are tried in turn until the list is exhausted. A Slave and forwarder

configuration is typically used when you do not wish all the servers at a given site to be interacting

with the rest of the Internet servers. A typical scenario would involve a number of workstations and

a departmental timesharing machine with Internet access. The workstations might be administra-

tively prohibited from having Internet access. To giv e the workstations the appearance of access to

the Internet domain system, the workstations could be Slave servers to the timesharing machine

which would forward the queries and interact with other nameservers to resolve the query before

returning the answer. An added benefit of using the forwarding feature is that the central machine

develops a much more complete cache of information that all the workstations can take advantage

of. The use of Slave mode and forwarding is discussed further under the description of the named

bootfile commands.

Note that a Slave Server still needs a cache directive in its bootfile, since it will otherwise not

be able to locate the root servers. There is no prohibition against declaring a server to be a slave

ev en though it has primary and/or secondary zones as well; the effect will still be that anything in

the local server’s cache or zones will be answered, and anything else will be forwarded using the

forwarders list.

Name Server Operations Guide for BIND SMM:11-5

5. Setting up Your Own Domain

When setting up a domain that is going to be on a public network the site administrator should

contact the organization in charge of the network and request the appropriate domain registration form.

An organization that belongs to multiple networks (such as the Internet and BITNET) should register

with only one network.

The contacts are as follows:

5.1. Internet

Sites on the Internet who need information on setting up a domain should contact the registrar

for their network, which is one of the following:

MILnet HOSTMASTER@NIC . DDN . MIL

other HOSTMASTER@RS . INTERNIC . NET

You may also want to be placed on the BIND mailing list, which is a mail group for people on the

Internet who run BIND. The group discusses future design decisions, operational problems, and

other related topic. The address to request being placed on this mailing list is:

bind-request @ uunet . uu . net

5.2. BITNET

If you are on the BITNET and need to set up a domain, contact INFO@BITNIC.

5.3. Subdomains of Existing Domains

If you want a subdomain of some existing domain, you should find the contact point for the

parent domain rather than asking one of the above top-level registrars. There should be a conven-

tion that registrar@domain or hostmaster@domain for any giv en domain will always be an alias

for that domain’s registrar (somewhat analogous to postmaster), but there is no such convention.

Try it as a last resort, but first you should examine the SOA record for the domain and send mail to

the ‘‘responsible person’’ shown therein.

6. Files

The name server uses several files to load its data base. This section covers the files and their for-

mats needed for named.

6.1. Boot File

This is the file that is first read when named starts up. This tells the server what type of server

it is, which zones it has authority over and where to get its initial data. The default location for this

file is / etc / named . boot . Howev er this can be changed by setting the BOOTFILE variable when

you compile named or by specifying the location on the command line when named is started up.

6.1.1. Domain

A default domain may be specified for the nameserver using a line such as

domain Berkeley . Edu

Older name servers use this information when they receive a query for a name without a ‘‘.’’ that

is not known. Newer designs assume that the resolver library will append its own idea of a

‘‘default domain’’ to any unqualified names. Though the name server can still be compiled with

support for the domain directive in the boot file, the default is to leave it out and we strenuously

recommend against its use. If you use this feature, clients outside your local domain which send

SMM:11-6 Name Server Operations Guide for BIND

you requests about unqualified names will have the implicit qualification of your domain rather

than theirs. The proper place for this function is on the client, in their /etc/resolv.conf (or equiv-

alent) file. Use of the domain directive in your boot file is strongly discouraged.

6.1.2. Directory

The directory directive specifies the directory in which the nameserver should run, allow-

ing the other file names in the boot file to use relative path names. There can be only one direc-

tory directive and it should be given before any other directives that specify file names.

directory /var/named

If you have more than a couple of named files to be maintained, you may wish to place the

named files in a directory such as /var/named and adjust the directory command properly. The

main purposes of this command are to make sure named is in the proper directory when trying

to include files by relative path names with $Include and to allow named to run in a location that

is reasonable to dump core if it feels the urge.

6.1.3. Primary Service

The line in the boot file that designates the server as a primary server for a zone looks as

follows:

primary Berkeley . Edu ucbhosts

The first field specifies that the server is a primary one for the zone stated in the second field.

The third field is the name of the file from which the data is read.

6.1.4. Secondary Service

The line for a secondary server is similar to the primary except that it lists addresses of

other servers (usually primary servers) from which the zone data will be obtained.

secondary Berkeley . Edu 128.32.0.10 128.32.0.4 ucbhosts.bak

The first field specifies that the server is a secondary master server for the zone stated in the sec-

ond field. The two network addresses specify the name servers which have data for the zone.

Note that at least one of these will be a primary, and, unless you are using some protocol other

than IP/DNS for your zone transfer mechanism, the others will all be other secondary servers.

Having your secondary server pull data from other secondary servers is usually unwise, since

you can add delay to the propagation of zone updates if your network’s connectivity varies in

pathological but common ways. The intended use for multiple addresses on a secondary decla-

ration is when the primary server has multiple network interfaces and therefore multiple host

addresses. The secondary server gets its data across the network from one of the listed servers.

The server addresses are tried in the order listed. If a filename is present after the list of primary

servers, data for the zone will be dumped into that file as a backup. When the server is first

started, the data is loaded from the backup file if possible, and a primary server is then consulted

to check that the zone is still up-to-date. Note that listing your server as a secondary server does

not neccessarily make it one — the parent zone must delegate authority to your server as well as

the primary and the other secondaries, or you will be transferring a zone over for no reason; no

other server will have a reason to query you for that zone unless the parent zone lists you as a

server for the zone.

6.1.5. Caching Server

You do not need a special line to designate that a server is a caching server. What denotes

a ‘‘caching only’’ server is the absence of authority lines, such as secondary or primary in the

boot file.

Name Server Operations Guide for BIND SMM:11-7

All servers, including ‘‘caching only’’ servers, should have a line as follows in the boot

file to prime the name servers cache:

cache . root.cache

All cache files listed will be read in at named boot time and any values still valid will be rein-

stated in the cache and the root nameserver information in the cache files will be used until a

root query is actually answered by one of the name servers in your cache file, at which time that

answer will be used until it times out and your cache file will be ignored.

Do not put anything into your cache files other than root server information.

6.1.6. Forwarders

Any server can make use of forwarders. A forwarder is another server capable of pro-

cessing recursive queries that is willing to try resolving queries on behalf of other systems. The

forwarders command specifies forwarders by internet address as follows:

forwarders 128.32.0.10 128.32.0.4

There are two main reasons for wanting to do so. First, some systems may not have full net-

work access and may be prevented from sending any IP packets into the rest of the Internet and

therefore must rely on a forwarder which does have access to the full net. The second reason is

that the forwarder sees a union of all queries as they pass through his server and therefore it

builds up a very rich cache of data compared to the cache in a typical workstation nameserver.

In effect, the forwarder becomes a meta-cache that all hosts can benefit from, thereby reducing

the total number of queries from that site to the rest of the net.

The effect of ‘‘forwarders’’ is to prepend some fixed addresses to the list of name servers

to be tried for every query. Normally that list is made up only of higher-authority servers dis-

covered via NS record lookups for the relevant domain. If the forwarders do not answer, then

unless the slave directive was given, the appropriate servers for the domains will be queried

directly.

6.1.7. Slave Servers

Slave mode is used if the use of forwarders is the only possible way to resolve queries due

to lack of full net access or if you wish to prevent the nameserver from using other than the

listed forwarders. Slave mode is activated by placing the simple command

slave

in the bootfile. If slave is used, then you must specify forwarders. When in slave mode, the

server will forward each query to each of the the forwarders until an answer is found or the list

of forwarders is exhausted. The server will not try to contact any remote name server other than

those named in the forwarders list.

So while forwarders adds to the end of the ‘‘server list’’ for each query, slave causes the

‘‘server list’’ to contain only those addresses listed in the forwarders declarations. Careless use

of the slave directive can cause really horrible forwarding loops, since you could end up for-

warding queries only to some set of hosts which are also slaves, and one or several of them

could be forwarding queries back to you.

Use of the slave directive should be considered very carefully.

6.1.8. Zone Transfer Restrictions

It may be the case that your organization does not wish to give complete lists of your

hosts to anyone on the Internet who can reach your name servers. While it is still possible for

people to ‘‘iterate’’ through your address range, looking for PTR records, and build a list of your

hosts the ‘‘slow’’ way, it is still considered reasonable to restrict your export of zones via the

SMM:11-8 Name Server Operations Guide for BIND

zone transfer protocol. To limit the list of neighbors who can transfer zones from your server,

use the

xfrnets

directive. This directive has the same syntax as forwarders except that you can list network

numbers in addition to host addresses. For example, you could add the directive xfrnets 16.0.0.0

if you wanted to permit only hosts on Class A network number 16 to transfer zones from your

server. This is not nearly granular enough, and a future version of BIND will permit such

access-control to be specified on a per-zone basis rather than the current ‘‘global’’ basis.

The xfrnets directive may also be given as tcplist for compatibility with interim releases of

BIND 4.9.

Note that xfrnets support is a compile-time option which your vendor may not have

enabled when they built your operating system.

6.1.9. Sorting Addresses

If there are multiple addresses available for a name server which BIND wants to contact,

BIND will try the ones it believes are ‘‘closest’’ first. ‘‘Closeness’’ is defined in terms of similar-

ity-of-address; that is, if one address is on the same subnet as some interface of the local host,

then that address will be tried first. Failing that, an address which is on the same network will

be tried first. Failing that, they will be tried in a more-or-less random order unless the sortlist

directive was given in the named.boot file. sortlist has a syntax similar to forwarders and xfr-

nets; you give it a list of networks and it uses these to ‘‘prefer’’ some remote name server

addresses over others. If you are on a Class C net which has a Class B net between you and the

rest of the Internet, you could try to improve the name server’s luck in getting answers by listing

the Class B network’s number in a sortlist directive. This should have the effect of trying

‘‘closer’’ servers before the more ‘‘distant’’ ones. Note that this behaviour is new in BIND 4.9.

The other and older effect of the sortlist directive is to cause BIND to sort the A records in

any response it generates, so as to put those which appear on the sortlist earlier than those which

do not. This is not as helpful as you might think, since many clients will reorder the A records

either at random or using LIFO.

In actual practice, noone uses this directive since it hardwires information which changes

rapidly; a network which is ‘‘close’’ today may be ‘‘distant’’ next month. Since BIND builds up

a cache of the remote name servers’ response times, it will quickly converge on ‘‘reasonable’’

behaviour, which isn’t the same as ‘‘optimal’’ but it’s close enough. Future directions for BIND

include choosing addresses based on local interface metrics (on hosts which have more than

one) and perhaps on routing table information. We do not intend to solve the generalized

‘‘multi-homed host’’ problem, but we should be able to do a little better than we’re doing now.

Likewise, we hope to see a higher-level resolver library that sorts responses using topology

information that only exists on the client’s host.

6.1.10. Bogus Name Servers

It happens occasionally that some remote name server goes ‘‘bad’’. You can tell your

name server to refuse to listen to or ask questions of certain other name servers by listing them

in a bogusns directive in your named.boot file. Its syntax is the same as forwarders — you just

give it a list of dotted-quad Internet addresses.

Note that bogusns support is a compile-time option which your vendor may not have

enabled when they built your operating system.

Name Server Operations Guide for BIND SMM:11-9

6.1.11. Segmented Boot Files

If you are secondary for a lot of zones, you may find it convenient to split your

named.boot file into a static portion which hardly ever changes (directives such as directory,

sortlist, xfrnets and cache could go here), and dynamic portions that change frequently (all of

your primary directives might go in one file, and all of your secondary directives might go in

another file — and either or both of these might be fetched automatically from some neighbor so

that they can change your list of secondary zones without requiring your active intervention).

You can accomplish this via the include directive, which takes just a single file name as its argu-

ment. No quotes are needed around the file name. The file name will be evaluated after the

name server has changed its working directory to that specified in the directory directive, so you

can use relative pathnames if your system supports them.

6.2. Resolver Configuration

The resolver will try to contact a nameserver on the localhost if it cannot find its configuration

file. You should install the configuration file on every host anyway, since you can list the local

host’s address if the localhost runs a nameserver, and there is no other recommended way to specify

a system-level default domain. Note that if you wish to list the local host in your resolver configura-

tion file, you should probably use its primary Internet address rather than a localhost alias such as

127.0.0.1 or 0.0.0.0. This is due to a bug in the handling of connected SOCK_DGRAM sockets in

some versions of the BSD networking code. If you must use an address-alias, you should prefer

0.0.0.0 (or simply ‘‘0’’) over 127.0.0.1, though be warned that depending on the vintage of your

BSD-derived networking code, both of them are capable of failing in their own ways.

The configuration file’s name is / etc/ resolv . conf. This file designates the name servers on

the network that should be sent queries. It is considered reasonable to create this file even if you run

a local server, since its contents will be cached by each client of the resolver library when the client

makes its first call to a resolver routine. If you run a name server locally, list it in your resolv.conf

file.

The resolv.conf file contains directives, one per line, of the following forms:

; comment

another comment

domain local-domain

search search-list

nameserver server-address

The domain and search directives should be given exactly once. If the search directive is giv en, the

first item in the given search-list will override any previously-specified local-domain. The name-

server directive may be given up to three times; additional nameserver directives will be ignored.

Comments may be given by starting a line with a ‘‘ ; ’’ or ‘‘ # ’’; note that comments were not per-

mitted in versions of the resolver earlier than the one included with BIND 4.9 — so if your vendor’s

resolver supports comments, you know they are really on the ball.

The local-domain will be appended to any query-name that does not contain a ‘‘ . ’’. local-

domain can be overridden on a per-process basis by setting the LOCALDOMAIN environment vari-

able. Note that local-domain processing can be disabled by setting an option in the resolver.

The search-list is a list of domains which are tried, in order, as qualifying domains for query-

names which do not contain a ‘‘ . ’’. Note that search-list processing can be disabled by setting an

option in the resolver.

The server-address ’s are aggregated and then used as the default destination of queries gener-

ated through the resolver. This is, in other words, the way you tell the resolver which name servers

it should use. It is possible for a given client application to override this list, and this is often done

inside the name server (which is itself a resolver client) and in test programs such as nslookup.

SMM:11-10 Name Server Operations Guide for BIND

Finally, if the environment variable HOSTALIASES is set, it is taken to contain the name of a

file which in turn contains resolver-level aliases. These aliases are applied only to names which do

not contain any ‘‘ . ’’ characters, and they are applied to query-names before the query is generated.

Note that the resolver options governing the operation of local-domain and search-list do not apply

to HOSTALIASES.

6.3. Cache Initialization

6.3.1. root.cache

The name server needs to know the servers that are the authoritative name servers for the

root domain of the network. To do this we have to prime the name server’s cache with the

addresses of these higher authorities. The location of this file is specified in the boot file. This

file uses the Standard Resource Record Format (aka. Masterfile Format) covered further on in

this paper.

6.3.2. named . local

This file specifies the PTR record for the local loopback interface, better known as local-

host, whose network address is 127.0.0.1. The location of this file is specified in the boot file. It

is vitally important to the proper operation of every name server that the 127.0.0.1 address have

a PTR record pointing back to the name ‘‘localhost.my.dom.ain’’. The name of this PTR record

is always ‘‘1.0.0.127.IN-ADDR.ARPA’’. This is neccessary if you want your users to be able to

use hostname-authentication (hosts.equiv or ˜/.rhosts) on the name ‘‘localhost’’. As implied by

this PTR record, there should be an A record in your domain specifying that ‘‘local-

host.my.dom.ain’’ has the Internet address 127.0.0.1.

6.4. Domain Data Files

There are two standard files for specifying the data for a domain. These are hosts and

host . rev. These files use the Standard Resource Record Format covered later in this paper. Note

that the file names are arbitrary; many network administrators prefer to name their zone files after

the domains they contain, especially in the average case which is where a given server is primary

and/or secondary for many different zones.

6.4.1. hosts

This file contains all the data about the machines in this zone. The location of this file is

specified in the boot file.

6.4.2. hosts . rev

This file specifies the IN-ADDR . ARPA domain. This is a special domain for allowing

address to name mapping. As internet host addresses do not fall within domain boundaries, this

special domain was formed to allow inv erse mapping. The IN-ADDR . ARPA domain has four

labels preceding it. These labels correspond to the 4 octets of an Internet address. All four

octets must be specified even if an octets is zero. The Internet address 128.32.0.4 is located in

the domain 4 . 0 . 32 . 128 . IN-ADDR . ARPA. This reversal of the address is awkward to read

but allows for the natural grouping of hosts in a network.

6.5. Standard Resource Record Format

The records in the name server data files are called resource records. The Standard Resource

Record Format (RR) is specified in RFC1035. The following is a general description of these

records:

Name Server Operations Guide for BIND SMM:11-11

{name} {ttl} addr-class Record Type Record Specific data

Resource records have a standard format shown above. The first field is always the name of the

domain record and it must always start in column 1. For all RR’s other than the first in a file, the

name may be left blank; in that case it takes on the name of the previous RR. The second field is an

optional time to live field. This specifies how long this data will be stored in the data base. By leav-

ing this field blank the default time to live is specified in the Start Of Authority resource record (see

below). The third field is the address class; currently, only one class is supported: IN for internet

addresses and other internet information. Limited support is included for the HS class, which is for

MIT/Athena ‘‘Hesiod’’ information. The fourth field states the type of the resource record. The

fields after that are dependent on the type of the RR. Case is preserved in names and data fields

when loaded into the name server. All comparisons and lookups in the name server data base are

case insensitive.

The following characters have special meanings:

‘‘.’’ A free standing dot in the name field refers to the current domain.

‘‘@’’ A free standing @ in the name field denotes the current origin.

‘‘. .’’ Two free standing dots represent the null domain name of the root when used in the name

field.

‘‘\X’’ Where X is any character other than a digit (0-9), quotes that character so that its special

meaning does not apply. For example, ‘‘\.’’ can be used to place a dot character in a label.

‘‘\DDD’’

Where each D is a digit, is the octet corresponding to the decimal number described by DDD.

The resulting octet is assumed to be text and is not checked for special meaning.

‘‘()’’ Parentheses are used to group data that crosses a line. In effect, line terminations are not rec-

ognized within parentheses.

‘‘;’’ Semicolon starts a comment; the remainder of the line is ignored.

‘‘*’’ An asterisk signifies wildcarding. Note that this is just another data character whose special

meaning comes about only during internal name server search operations. Wildcarding is

only meaningful for some RR types (notably MX), and then only in the name field — not in

the data fields.

Anywhere a name appears — either in the name field or in some data field defined to contain

names — the current origin will be appended if the name does not end in a ‘‘ . ’’. This is useful for

appending the current domain name to the data, such as machine names, but may cause problems

where you do not want this to happen. A good rule of thumb is that, if the name is not in the

domain for which you are creating the data file, end the name with a ‘‘.’’.

6.5.1. $INCLUDE

An include line begins with $INCLUDE, starting in column 1, and is followed by a file

name, and, optionally, by a new temporary $ORIGIN to be used while reading this file. This

feature is particularly useful for separating different types of data into multiple files. An exam-

ple would be:

$INCLUDE /usr/local/adm/named/data/mail-exchangers

The line would be interpreted as a request to load the file /usr/named/data/mail-exchangers.

The $INCLUDE command does not cause data to be loaded into a different zone or tree. This is

simply a way to allow data for a given primary zone to be organized in separate files. Not even

the ‘‘temporary $ORIGIN’’ feature described above is sufficient to cause your data to branch out

into some other zone — zone boundaries can only be introduced in the boot file.

SMM:11-12 Name Server Operations Guide for BIND

6.5.2. ‘‘$ORIGIN’’

The origin is a way of changing the origin in a data file. The line starts in column 1, and

is followed by a domain origin. This seems like it could be useful for putting more then one

zone into a data file, but that’s not how it works. The name server fundamentally requires that a

given zone map entirely to some specific file. You should therefore be very careful to use $ORI-

GIN only once at the top of a file, or, within a file, to change to a ‘‘lower’’ domain in the zone

— nev er to some other zone altogether.

6.5.3. SOA - Start Of Authority

name {ttl} addr-class SOA Origin Person in charge

@ IN SOA ucbvax.Berkeley.Edu. kjd.ucbvax.Berkeley.Edu. (

1993041403 ; Serial

10800 ; Refresh

1800 ; Retry

3600000 ; Expire

259200) ; Minimum

The Start of Authority, SOA, record designates the start of a zone. The name is the name of the

zone. Origin is the name of the host on which this data file resides. Person in charge is the

mailing address for the person responsible for the name server. The serial number is the version

number of this data file; this number should be incremented whenever a change is made to the

data. Older servers permitted the use of a phantom ‘‘.’’ in this and other numbers in a zone file;

the meaning of n.m was ‘‘n000m’’ rather than the more intuitive ‘‘n*1000+m’’ (such that 1.234

translated to 1000234 rather than to 1234). This feature has been deprecated due to its obscu-

rity, unpredictability, and lack of neccessity. Note that using a ‘‘YYYYMMDDNN’’ notation

you can still make 100 changes per day until the year 4294. You should choose a notation that

works for you. If you’re a clever perl programmer you could even use RCS version numbers to

help generate your zone serial numbers. The refresh indicates how often, in seconds, the sec-

ondary name servers are to check with the primary name server to see if an update is needed.

The retry indicates how long, in seconds, a secondary server should wait before retrying a failed

zone transfer. Expire is the upper limit, in seconds, that a secondary name server is to use the

data before it expires for lack of getting a refresh. Minimum is the default number of seconds to

be used for the Time To Liv e field on resource records which do not specify one in the zone file.

It is also an enforced minimum on Time To Liv e if it is specified on an RR. There should only

be one SOA record per zone.

6.5.4. NS - Name Server

{name} {ttl} addr-class NS Name servers name

IN NS ucbarpa . Berkeley . Edu.

The Name Server record, NS, lists a name server responsible for a given domain. The first name

field lists the domain that is serviced by the listed name server. There should be one NS record

for each name server for the domain, and every domain should have at least two nameservers.

6.5.5. A - Address

{name} {ttl} addr-class A address

ucbarpa IN A 128.32.0.4

IN A 10.0.0.78

The Address record, A, lists the address for a given machine. The name field is the machine

name and the address is the network address. There should be one A record for each address of

the machine.

Name Server Operations Guide for BIND SMM:11-13

6.5.6. HINFO - Host Information

{name} {ttl} addr-class HINFO Hardware OS

IN HINFO VAX-11/780 UNIX

Host Information resource record, HINFO, is for host specific data. This lists the hardware and

operating system that are running at the listed host. If you want to include a space in the

machine name you must quote the name. There could be one HINFO record for each host,

though for security reasons most domains don’t hav e any HINFO records at all. No application

depends on them.

6.5.7. WKS - Well Known Services

{name} {ttl} addr-class WKS address protocol list of services

IN WKS 128.32.0.10 UDP who route timed domain

IN WKS 128.32.0.10 TCP (echo telnet

discard sunrpc sftp

uucp-path systat daytime

netstat qotd nntp

link chargen ftp

auth time whois mtp

pop rje finger smtp

supdup hostnames

domain

nameserver)

The Well Known Services record, WKS, describes the well known services supported by a partic-

ular protocol at a specified address. The list of services and port numbers come from the list of

services specified in /etc/services. There should be only one WKS record per protocol per ad-

dress. Note that RFC 1123 says of WKS records:

2.2 Using Domain Name Service

...

An application SHOULD NOT rely on the ability to locate a WKS

record containing an accurate listing of all services at a

particular host address, since the WKS RR type is not often used

by Internet sites. To confirm that a service is present, simply

attempt to use it.

...

5.2.12 WKS Use in MX Processing: RFC-974, p. 5

RFC-974 [SMTP:3] recommended that the domain system be queried

for WKS ("Well-Known Service") records, to verify that each

proposed mail target does support SMTP. Later experience has

shown that WKS is not widely supported, so the WKS step in MX

processing SHOULD NOT be used.

...

6.1.3.6 Status of RR Types

...

The TXT and WKS RR types have not been widely used by

Internet sites; as a result, an application cannot rely

on the the existence of a TXT or WKS RR in most

domains.

SMM:11-14 Name Server Operations Guide for BIND

6.5.8. CNAME - Canonical Name

aliases {ttl} addr-class CNAME Canonical name

ucbmonet IN CNAME monet

The Canonical Name resource record, CNAME, specifies an alias or nickname for the official, or

canonical, host name. This record should be the only one associated with the alias name. All

other resource records should be associated with the canonical name, not with the nickname.

Any resource records that include a domain name as their value (e.g., NS or MX) must list the

canonical name, not the nickname.

Nicknames are also useful when a host changes its name. In that case, it is usually a good

idea to have a CNAME record so that people still using the old name will get to the right place.

6.5.9. PTR - Domain Name Pointer

name {ttl} addr-class PTR real name

7.0 IN PTR monet . Berkeley . Edu .

A Domain Name Pointer record, PTR, allows special names to point to some other location in

the domain. The above example of a PTR record is used in setting up reverse pointers for the

special IN-ADDR . ARPA domain. This line is from the example hosts.rev file. PTR records are

needed by the gethostbyaddr function. Note the trailing ‘‘ . ’’ which prevents BIND from

appending the current $ORIGIN.

6.5.10. MX - Mail Exchanger

name {ttl} addr-class MX preference value mail exchanger

Munnari . OZ . AU . IN MX 0 Seismo . CSS . GOV .

* . IL . IN MX 0 RELAY . CS . NET .

Mail eXchanger records, MX, are used to specify a list of hosts which are configured to receive

mail sent to this domain name. Every name which receives mail should have an MX since if one

is not found at the time mail is being delivered, an MX will be ‘‘imputed’’ with a cost of 0 and a

destination of the host itself. If you want a host to receive its own mail, you should create an

MX for your host’s name, pointing at your host’s name. It is better to have this be explicit than

to let it be imputed by remote mailers. In the first example, above, Seismo . CSS . GOV . is a

mail gateway that knows how to deliver mail to Munnari . OZ . AU .. These two machines may

have a private connection or use a different transport medium. The preference value is the order

that a mailer should follow when there is more then one way to deliver mail to a single machine.

Note that lower numbers indicate higher precedence, and that mailers are supposed to randomize

same-valued MX hosts so as to distribute the load evenly if the costs are equal. See RFC 974 for

more detailed information.

Wildcard names containing the character ‘‘*’’ may be used for mail routing with MX

records. There are likely to be servers on the network that simply state that any mail to a

domain is to be routed through a relay. Second example, above, all mail to hosts in the domain

IL is routed through RELAY.CS.NET. This is done by creating a wildcard resource record,

which states that *.IL has an MX of RELAY.CS.NET. Wildcard MX records are not very useful

in practice, though, since once a mail message gets to the gateway for a given domain it still has

to be routed within that domain and it is not currently possible to have an apparently-different

set of MX records inside and outside of a domain. If you won’t be needing any Mail Exchangers

inside your domain, go ahead and use a wildcard. If you want to use both wildcard ‘‘top-level’’

and specific ‘‘interior’’ MX records, note that each specific record will have to ‘‘end with’’ a

complete recitation of the same data that is carried in the top-level record. This is because the

specific MX records will take precedence over the top-level wildcard records, and must be able

to perform the top-level’s if a giv en interior domain is to be able to receive mail from outside the

Name Server Operations Guide for BIND SMM:11-15

gateway. Wildcard MX records are very subtle and you should be careful with them.

6.5.11. TXT - Text

name {ttl} addr-class TXT string

Munnari . OZ . AU . IN TXT "foo"

A TXT record contains free-form textual data. The syntax of the text depends on the domain

where it is found; several systems use TXT records to encode the local user database

(/etc/passwd) and other administrative data. MIT Hesiod is one such system, which, though it

uses an addr-class of HS rather than IN, implements its database with TXT records in the DNS.

6.5.12. RP - Responsible Person

owner {ttl} addr-class RP mbox-domain-name TXT-domain-name

franklin IN RP ben.franklin.berkeley.edu. sysadmins.berkeley.edu.

The Responsible Person record, RP, identifies the name or group name of the responsible

person for a host. Often it is desirable to be able to identify the responsible entity for a particu-

lar host. When that host is down or malfunctioning, you would want to contact those parties

who might be able to repair the host.

The first field, mbox-domain-name, is a domain name that specifies the mailbox for the

responsible person. Its format in master files uses the DNS convention for mailbox encoding,

identical to that used for the Person-in-charge mailbox field in the SOA record. In the example

above, the mbox domain name shows the encoding for ‘‘<ben@franklin.berkeley.edu>’’. The

root domain name (just ‘‘ . ’’) may be specified to indicate that no mailbox is available.

The second field, TXT-domain-name, is a domain name for which TXT records exist. A

subsequent query can be performed to retrieve the associated TXT resource records at TXT

domain name. This provides a level of indirection so that the entity can be referred to from mul-

tiple places in the DNS. The root domain name (just ‘‘ . ’’) may be specified for TXT domain

name to indicate that no associated TXT RR exists. In the example above, ‘‘sysad-

mins.berkeley.edu.’’ is the name of a TXT record that might contain some text with names and

phone numbers.

The format of the RP record is class-insensitive. Multiple RP records at a single name

may be present in the database, though they should have identical TTLs.

The RP record is still experimental; not all name servers implement or recognize it.

6.6. Discussion about the TTL

The Time To Liv e assigned to the records and to the zone via the Minimul field in the SOA

record is very important. High values will lead to lower BIND network traffic and faster response

time. Lower values will tend to generate lots of requests but will allow faster propagation of

changes.

Only changes and deletions from the zone are affected by the TTLs. Additions propagate

according to the Refresh value in the SOA.

Experience has shown that sites use default TTLs for their zones varying from around 0.5 day

to around 7 days. You may wish to consider boosting the default TTL shown in former versions of

this guide from one day (86400 seconds) to three days (259200 seconds). This will drastically

reduce the number of requests made to your name servers.

If you need fast propagation of changes and deletions, it might be wise to reduce the Mini-

mum field a few days before the change, then do the modification itself and augment the TTL to its

former value.

SMM:11-16 Name Server Operations Guide for BIND

If you know that your zone is pretty stable (you mainly add new records without changing

regularly old ones) then you may even wish to consider a TTL higher than three days.

Note that in any case, it makes no sense to have records with a TTL below the SOA Refresh

delay, as Delay is the time required for secondaries to get a copy of the newly modified zone.

6.7. Sample Files

The following section contains sample files for the name server. This covers example boot

files for the different types of servers and example domain data base files.

6.7.1. Boot Files

6.7.1.1. Primary Server

;

; Boot file for Primary Name Server

;

; type domain source file or host

;

directory /usr/local/adm/named

primary Berkeley.Edu ucbhosts

primary 32.128.in-addr.arpa ucbhosts.rev

primary 0.0.127.in-addr.arpa named.local

cache . root.cache

6.7.1.2. Secondary Server

;

; Boot file for Secondary Name Server

;

; type domain source file or host

;

directory /usr/local/adm/named

secondary Berkeley.Edu 128.32.0.4 128.32.0.10 ucbhosts.bak

secondary 32.128.in-addr.arpa 128.32.0.4 128.32.0.10 ucbhosts.rev.bak

primary 0.0.127.in-addr.arpa named.local

cache . root.cache

6.7.1.3. Caching Only Server

Name Server Operations Guide for BIND SMM:11-17

;

; Boot file for Caching Only Name Server

;

; type domain source file or host

;

directory /usr/local/adm/named

cache . root.cache

primary 0.0.127.in-addr.arpa named.local

SMM:11-18 Name Server Operations Guide for BIND

6.7.2. Remote Server / DNS Client

6.7.2.1. /etc/resolv.conf

domain Berkeley.Edu

nameserver 128.32.0.4

nameserver 128.32.0.10

6.7.3. root.cache

;

; Initial cache data for root domain servers.

;

; This data was current as of April 15, 1993. The official and current

; version is always available from via anonymous FTP from RS.INTERNIC.NET

; as /domain/named.cache.

;

; Thanks to Long-Morrow@CS.Yale.EDU for providing this update.

;

. 99999999 IN NS NS.NIC.DDN.MIL.

99999999 IN NS NS.NASA.GOV.

99999999 IN NS KAVA.NISC.SRI.COM.

99999999 IN NS TERP.UMD.EDU.

99999999 IN NS AOS.ARL.ARMY.MIL.

99999999 IN NS C.NYSER.NET.

99999999 IN NS NIC.NORDU.NET.

99999999 IN NS NS.INTERNIC.NET.

; Prep the cache (hotwire the addresses).

NS.NIC.DDN.MIL. 99999999 IN A 192.112.36.4

NS.NASA.GOV. 99999999 IN A 128.102.16.10

NS.NASA.GOV. 99999999 IN A 192.52.195.10

KAVA.NISC.SRI.COM. 99999999 IN A 192.33.33.24

AOS.ARL.ARMY.MIL. 99999999 IN A 128.63.4.82

AOS.ARL.ARMY.MIL. 99999999 IN A 192.5.25.82

C.NYSER.NET. 99999999 IN A 192.33.4.12

TERP.UMD.EDU. 99999999 IN A 128.8.10.90

NIC.NORDU.NET. 99999999 IN A 192.36.148.17

NS.INTERNIC.NET. 99999999 IN A 198.41.0.4

6.7.4. named.local

Name Server Operations Guide for BIND SMM:11-19

@ IN SOA ucbvax.Berkeley.Edu. kjd.ucbvax.Berkeley.Edu. (

1993050201 ; Serial

10800 ; Refresh

1800 ; Retry

3600000 ; Expire

259200) ; Minimum

IN NS ucbvax.Berkeley.Edu. ; pedantic

1 IN PTR localhost.Berkeley.Edu.

SMM:11-20 Name Server Operations Guide for BIND

6.7.5. Hosts

Name Server Operations Guide for BIND SMM:11-21

;

; @(#)ucb-hosts 1.2 (berkeley) 88/02/05

;

@ IN SOA ucbvax.Berkeley.Edu. kjd.monet.Berkeley.Edu.

1988020501 ; Serial

10800 ; Refresh

1800 ; Retry

3600000 ; Expire

259200) ; Minimum

IN NS ucbarpa.Berkeley.Edu.

IN NS ucbvax.Berkeley.Edu.

localhost IN A 127.1

; note that 127.1 is the same as 127.0.0.1; see inet(3n)

ucbarpa IN A 128.32.4

IN A 10.0.0.78

IN HINFO VAX-11/780 UNIX

arpa IN CNAME ucbarpa

ernie IN A 128.32.6

IN HINFO VAX-11/780 UNIX

ucbernie IN CNAME ernie

monet IN A 128.32.7

IN A 128.32.130.6

IN HINFO VAX-11/750 UNIX

ucbmonet IN CNAME monet

ucbvax IN A 10.2.0.78

; 128.32.10 means 128.32.0.10; see inet(3n)

IN A 128.32.10

; HINFO and WKS are widely unused,

; but we’ll show them as examples.

IN HINFO VAX-11/750 UNIX

IN WKS 128.32.0.10 TCP (echo telnet

discard sunrpc sftp

uucp-path systat daytime

netstat qotd nntp

link chargen ftp

auth time whhois mtp

pop rje finger smtp

supdup hostnames

domain

nameserver)

vax IN CNAME ucbvax

toybox IN A 128.32.131.119

IN HINFO Pro350 RT11

toybox IN MX 0 monet.Berkeley.Edu.

csrg IN MX 0 Ralph.CS

IN MX 0 Zhou.CS

IN MX 0 Painter.CS

IN MX 0 Riggle.CS

IN MX 0 Terry.CS

IN MX 0 Kevin.CS

SMM:11-22 Name Server Operations Guide for BIND

6.7.6. host.rev

;

; @(#)ucb-hosts.rev 1.1 (Berkeley) 86/02/05

;

@ IN SOA ucbvax.Berkeley.Edu. kjd.monet.Berkeley.Edu. (

1986020501 ; Serial

10800 ; Refresh

1800 ; Retry

3600000 ; Expire

259200) ; Minimum

IN NS ucbarpa.Berkeley.Edu.

IN NS ucbvax.Berkeley.Edu.

0.0 IN PTR Berkeley-net.Berkeley.EDU.

IN A 255.255.255.0

0.130 IN PTR csdiv-net.Berkeley.EDU.

4.0 IN PTR ucbarpa.Berkeley.Edu.

6.0 IN PTR ernie.Berkeley.Edu.

7.0 IN PTR monet.Berkeley.Edu.

10.0 IN PTR ucbvax.Berkeley.Edu.

6.130 IN PTR monet.Berkeley.Edu.

7. Domain Management

This section contains information for starting, controlling and debugging named.

7.1. /etc/rc.local

The hostname should be set to the full domain style name in /etc/rc.local using hostname (1).

The following entry should be added to /etc/rc.local to start up named at system boot time:

if [-f /etc/named]; then

/etc/named [options] & echo -n ’ named’ >/dev/console

fi

This usually directly follows the lines that start syslogd. Do Not attempt to run named from inetd.

This will continuously restart the name server and defeat the purpose of the cache.

7.2. /etc/named.pid

When named is successfully started up it writes its process id into the file /etc/named.pid.

This is useful to programs that want to send signals to named. The name of this file may be changed

by defining PIDFILE to the new name when compiling named.

7.3. /etc/hosts

The gethostbyname () library call can detect if named is running. If it is determined that

named is not running it will look in /etc/hosts to resolve an address. This option was added to allow

ifconfig (8C) to configure the machines local interfaces and to enable a system manager to access the

network while the system is in single user mode. It is advisable to put the local machines interface

addresses and a couple of machine names and address in /etc/hosts so the system manager can rcp

files from another machine when the system is in single user mode. The format of /etc/hosts has not

changed. See hosts (5) for more information. Since the process of reading /etc/hosts is slow, it is not

Name Server Operations Guide for BIND SMM:11-23

advisable to use this option when the system is in multi user mode.

7.4. Signals

There are several signals that can be sent to the named process to have it do tasks without

restarting the process.

7.4.1. Reload

SIGHUP - Causes named to read named.boot and reload the database. This is useful

when you have made a change to a ‘‘primary’’ data file and you want named ’s internal database

to reflect the change. If you build BIND with the FORCED_RELOAD option, then SIGHUP also

has the effect of scheduling all ‘‘secondary’’ zones for serial-number checks, which could lead

to zone transfers ahead of the usual schedule. Normally serial-number compares are done only

at the intervals specified in the zone’s SOA record.

7.4.2. Debugging

When named is running incorrectly, look first in /var/log/messages and check for any

messages logged by syslog. Next send it a signal to see what is happening. Unless you run it

with the ‘‘-d’’ option, named has very little to say on its standard output or standard error.

Everything named has to say, it says to syslog.

SIGINT - Dumps the current data base and cache to /var/ tmp/ named_dump . db This

should give you an indication to whether the data base was loaded correctly. The name of the

dump file may be changed by defining DUMPFILE to the new name when compiling named.

Note: the following two signals only work when named is built with DEBUG defined.

SIGUSR1 - Turns on debugging. Each following USR1 increments the debug level. The

output goes to /var/tmp/named.run The name of this debug file may be changed by defining

DEBUGFILE to the new name before compiling named.

SIGUSR2 - Turns off debugging completely.

For more detailed debugging, define DEBUG when compiling the resolver routines into

/lib/libc.a.

SIGWINCH - Toggles tracing of all incoming queries if named has been compiled with

QRYLOG defined. The trace is sent to syslog, and is huge, but it is very useful for tracking

down problems.

To run with tracing of all queries specify the -q flag on the command line. If you routinely log

queries you will probably want to analyze the results using the dnsstats stats script in the contrib

directory.

ACKNOWLEDGEMENTS

Many thanks to the users at U.C. Berkeley for falling into many of the holes involved with integrating

BIND into the system so that others would be spared the trauma. I would also like to extend gratitude to

Jim McGinness and Digital Equipment Corporation for permitting me to spend most of my time on this

project.

Ralph Campbell, Doug Kingston, Craig Partridge, Smoot Carl-Mitchell, Mike Muuss and everyone

else on the DARPA Internet who has contributed to the development of BIND. To the members of the orig-

inal BIND project, Douglas Terry, Mark Painter, David Riggle and Songnian Zhou.

SMM:11-24 Name Server Operations Guide for BIND

Anne Hughes, Jim Bloom and Kirk McKusick and the many others who have reviewed this paper

giving considerable advice.

This work was sponsored by the Defense Advanced Research Projects Agency (DoD), Arpa Order

No. 4871 monitored by the Naval Electronics Systems Command under contract No. N00039-84-C-0089.

The views and conclusions contained in this document are those of the authors and should not be inter-

preted as representing official policies, either expressed or implied, of the Defense Research Projects

Agency, of the US Government, or of Digital Equipment Corporation.

Update for the 4.9 release: the alpha-test group was extremely helpful in furnishing improvements,

finding and repairing bugs, and being patient. I would like to express special thanks to Brian Reid for fund-

ing this work. Robert Elz, Alan Barrett, Paul Albitz, Bryan Beecher, Andrew Partan, Andy Cherenson,

Tom Limoncelli, Berthold Paffrath, Fuat Baran, Anant Kumar, Art Harkin, Win Treese, Don Lewis,

Christophe Wolfhugel, and a cast of dozens all helped out above and beyond the call of duty. Special

thanks to Phil Almquist, who got the project started and contributed a lot of the code and fixed several of

the worst bugs. [Paul Vixie, DECWRL and DECNSL, April ’93].

Name Server Operations Guide for BIND SMM:11-25

REFERENCES

[Birrell] Birrell, A. D., Levin, R., Needham, R. M., and Schroeder, M.D., “Grapevine: An Exercise

in Distributed Computing.” In Comm. A.C.M. 25, 4:260-274 April 1982.

[RFC819] Su, Z. Postel, J., “The Domain Naming Convention for Internet User Applications.”

Internet Request For Comment 819 Network Information Center, SRI International,

Menlo Park, California. August 1982.

[RFC974] Partridge, C., “Mail Routing and The Domain System.” Internet Request For Comment

974 Network Information Center, SRI International, Menlo Park, California. February

1986.

[RFC1032] Stahl, M., “Domain Administrators Guide” Internet Request For Comment 1032 Network

Information Center, SRI International, Menlo Park, California. November 1987.

[RFC1033] Lottor, M., “Domain Administrators Guide” Internet Request For Comment 1033 Net-

work Information Center, SRI International, Menlo Park, California. November 1987.

[RFC1034] Mockapetris, P., “Domain Names - Concept and Facilities.” Internet Request For Com-

ment 1034 Network Information Center, SRI International, Menlo Park, California.

November 1987.

[RFC1035] Mockapetris, P., “Domain Names - Implementation and Specification.” Internet Request

For Comment 1035 Network Information Center, SRI International, Menlo Park, Califor-

nia. November 1987.

[RFC1101] Mockapetris, P., “DNS Encoding of Network Names and Other Types.” Internet Request

For Comment 1101 Network Information Center, SRI International, Menlo Park, Califor-

nia. April 1989.

[RFC1123] R. Braden, Editor, “Requirements for Internet Hosts -- Application and Support” Internet

Request For Comment 1123 Network Information Center, SRI International, Menlo Park,

California. October 1989.

[RFC1183] Everhart, C., Mamakos, L., Ullmann, R., and Mockapetris, P., “New DNS RR Defini-

tions” Internet Request For Comment 1183 Network Information Center, SRI Interna-

tional, Menlo Park, California. October 1990.

[Terry] Terry, D. B., Painter, M., Riggle, D. W., and Zhou, S., The Berkeley Internet Name

Domain Server. Proceedings USENIX Summer Conference, Salt Lake City, Utah. June

1984, pages 23-31.

[Zhou] Zhou, S., The Design and Implementation of the Berkeley Internet Name Domain (BIND)

Servers. UCB/CSD 84/177. University of California, Berkeley, Computer Science Divi-

sion. May 1984.

[Mockapetris] Mockapetris, P., Dunlap, K, Development of the Domain Name System ACM Computer

Communications Review 18, 4:123-133. Proceedings ACM SIGCOMM ’88 Sympo-

sium, August 1988.

[Liu] Liu, C., Albitz, P., DNS and BIND O’Reilly & Associates, Sebastopol, CA, 502 pages,

ISBN 0-937175-82-X 1992

