
#1 $2 +3 GNU Chess Move Generator

This file contains a description of GNU's new move generation algoritm.
      Copyright (C) 1989 Free Software Foundation, Inc.

This file is part of CHESS.

CHESS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY.    No author or
distributor accepts responsibility to anyone for the consequences of using it or for whether it serves any particular
purpose or works at all, unless he says so in writing.    Refer to the CHESS General Public License for full details.

Everyone is granted permission to copy, modify and redistribute CHESS, but only under the conditions described in
the CHESS General Public License.      A copy of this license is supposed to have been given to you along with
CHESS so you can know your rights and responsibilities.    It should be in a file named COPYING.    Among other
things, the copyright notice and this notice must be preserved on all copies.

New move Generation algoritm:

Revision: 1989-09-06

Author: Hans Eric Sandstroem.

This algortim is the result of an attempt to make an hardware move generator, but since I newer had the time and
resources to build the hardware I wrote a software version and incorporated that one into gnuchess. This was the
best way I could think of sharing this algorithm with the computer chess community.

If there is anybody out there with the time and rescources to build a hardware move generator I will be glad to assist.

The general idea behind this algoritm is to pre calculate a lot of data. The data that is pre calculated is every possible
move for every piece from every square disregarding any other pieces on the board. This pre calculated data is
stored in an array that looks like this:

struct sqdata {
    short nextpos;
    short nextdir;
};
struct sqdata posdata[8][64][64];
/* posdata[piecetype][fromsquare][destinationsquare] */
example:

the first move for a queen at e8 is stored at;
posdata[queen][e8][e8].nextpos
suppose this is e7 and e7 is occupied then the next move
will be found in;
posdata[queen][e8][e7].nextdir

To handle the differeces between white and black pawns (they move in opposite directions) an array ptype has been
introduced:
static const short ptype[2][8] = {
    no_piece,pawn,knight,bishop,rook,queen,king,no_piece,
    no_piece,bpawn,knight,bishop,rook,queen,king,no_piece};
                      ^^^^^

1# move_gen
2$ GNU Chess Move Generator
3+ index:0030

And it is used like this:
      piecetype = ptype[side][piece]
When generating moves for pieces that are not black pawns, piece can be used directly in posdata. As in the example
above.

Thus the only thing one has to do when generating the moves is to check for collisions with other pieces.    the move
generation to do this looks like this: (for non pawns)
        p = posdata[piece][sq];
        u = p[sq].nextpos;
        do {
            if (color[u] == neutral) {

LinkMove(ply,sq,u,xside);
u = p[u].nextpos;

            }
            else {

if (color[u] == xside) LinkMove(ply,sq,u,xside);
u = p[u].nextdir;

            }
        } while (u != sq);

 - I`nt this just beautiful!

The array posdata is initialized in the routine Initialize_moves. This routine is called just once and it works so no
time has been spent on the structure of this code. GenMoves and CaptureList generates the moves but the routines
ataks, BRscan, Sqatakd, KingScan and trapped also relies on the move generation algoritm so they have also been
rewritten.

