
NCSA httpd tutorials

In an effort to make this documentation a bit more usable, we have written these tutorials on
various aspects of server setup.

NCSA httpd directory indexing

NCSA httpd provides a directory indexing format which is similar to that which will be
offered by the WWW Common Library. To set up this indexing, follow these steps.

For an example of what these indexes look like, take a look at the demo.

Activating Fancy indexing

You first need to tell httpd to use the advanced indexing instead of the simple version.
The simple version should be used if you prefer its simplicity, or if you are serving files
off of a remote file server, for which the stat() call would be costly. You tell the server
which you want to use with either the IndexOptions directive, or the older
FancyIndexing directive. We recommend:

IndexOptions FancyIndexing

Icons

NCSA httpd comes with a number of icons in the /icons subdirectory which are used for
directory indexing. The first thing you should do is make sure your Server Resource
Map h as the following line in it:

Alias /icons/ /usr/local/etc/httpd/icons/

You should replace /usr/local/etc/httpd/ with whatever you set ServerRoot
to be.

Next, you need to tell the server what icons to provide for different types of files. You
do this with the AddIcon and AddIconByType directives. We recommend something
like the following setup:

AddIconByType (IMG,/icons/image.xbm) image/*

AddIconByType (SND,/icons/sound.xbm) audio/*

AddIconByType (TXT,/icons/text.xbm) text/*

This covers the three main types of files. If you want to add your own icons, simply
create the appropriately sized xbm, place it in /icons, and choose a 3−letter ALT
identifier for the type.

httpd also requires three special icons, one for directories, one which is a blank icon the
same size as the other icons, and one which specifies the parent directory of this index.
To use the icons in the distribution, use the following lines in srm.conf:

AddIcon /icons/menu.xbm ^^DIRECTORY^^

AddIcon /icons/blank.xbm ^^BLANKICON^^

AddIcon /icons/back.xbm ..

However, not all files fit one of these types. To provide a general icon for any unknown
files, use the DefaultIcon directive:

DefaultIcon /icons/unknown.xbm

Descriptions

If you want to add descriptions to your files, use the AddDescription directive. For
instance, to add the description "My pictures" to
/usr6/rob/public_html/images, use the following line:

AddDescription "My pictures" /usr6/rob/public_html/images/*

If you want to have the titles of your HTML documents displayed for their descriptions,
use the IndexOptions directive to activate ScanHTMLTitles:

IndexOptions FancyIndexing ScanHTMLTitles

WARNING: You should only use this option if your server has time to spare!!! This is a
costly operation!

Ignoring certain items

Generally, you don’t want httpd sending references to certain files when it’s creating
indexes. Such files are emacs autosave and backup files, httpd’s .htaccess files, and
perhaps any file beginning with . (if you have a gopher or FTP server running in that
directory as well). We recommend you ignore the following patterns:

IndexIgnore */.??* */README* */HEADER*

This tells httpd to ignore any file beginning with ., and any file starting with README
or HEADER.

Creating READMEs and HEADERs

When httpd is indexing a directory, it will look for two things and insert them into the
index: A header, and a README. Generally, the header contains an HTML <H1> tag
with a title for this index, and a brief description of what’s in this directory. The
README contains things you may want people to read about the items being served.

httpd will look for both plaintext and HTML versions of HEADERs or READMEs. If
we add the following lines to srm.conf:

ReadmeName README

HeaderName HEADER

When httpd is indexing a directory, it will first look for HEADER.html. If it doesn’t
find that file, it will look for HEADER. If it finds neither, it will generate its own. If it
finds one, it will insert it at the beginning of the index. Similarly, the server will look
for README.html, then README to insert a trailer for the document.

Setting up CGI in NCSA httpd

CGI scripts are a way for documents to be generated on the fly. You should first read
the brief introduction to CGI to learn what it is and why you would want to use it.

There are two main mechanisms to tell NCSA httpd where your scripts are. Each has its
pluses and its minuses.

ScriptAlias

The first approach is based on the Server Resource Map directive ScriptAlias. With this
directive, you specify to the server that you want to designate a directory (or directories)
as script−only, that is, any time the server tries to retrieve a file from these directories it
will execute the file instead of reading it.

The usual setup is to have the following line in srm.conf:

ScriptAlias /cgi−bin/ cgi−bin/

This will make any request to the server which begins with /cgi−bin/ be fulfilled by
executing the corresponding program in ServerRoot/cgi−bin/.

You may have more than one ScriptAlias directive in srm.conf to desingnate different
directories as CGI.

The advantage of this setup is ease of administration, and centralization. Many system
managers don’t want things as dangerous as scripts anywhere in the filesystem. The
disadvantage is that anyone wishing to create scripts must either have their own entry in
srm.conf or must have write access to a ScriptAliased directory.

CGI as files

NCSA httpd 1.2 allows you to create CGI scripts anywhere, by specifying a "magic"
MIME type for files which tells the server to execute them instead of sending them. To
accomplish this, use the AddType directive in either the Server Resource Map or in a
per−directory access control file.

For instance, to make all files ending in .cgi scripts, use the following directive:

AddType application/x−httpd−cgi .cgi

Alternatively, you could add .sh and .pl after .cgi to allow automatic execution of shell
scripts and PERL scripts. Note that you have to have Options ExecCGI activated in the
directory you create scripts. (you might want to read more about directives like Option
in the docs for installation).

The advantage of this setup is that scripts may be absolutely anywhere. The disadvantage
is that scripts may be absolutely anywhere (especially places you don’t want them to be
like users’ home directories).

NCSA httpd server side includes

NCSA httpd allows users to create documents which provide simple information to
clients on the fly. Such information can include the current date, the file’s last
modification date, and the size or last modification of other files. In its more advanced
usage, it can provide a powerful interface to CGI and /bin/sh programs.

Issues

Having the server parse documents is a double edged sword. It can be costly for heavily
loaded servers to perform parsing of files while sending them. Further, it can be
considered a security risk to have average users executing commands as the server’s
User. If you disable the exec option, this danger is mitigated, but the performance issue
remains. You should consider these items carefully before activating server−side
includes on your server.

Setting Up Includes

First, you should decide which directories you want to allow Includes in. Most likely
this will not include users’ home directories or directories you do not trust. You should
then decide, of the directories you are allowing includes in, which directories are safe
enough to use exec in.

For the directories in which you want to fully enable includes, you need to use the
Options directive to turn on the option Includes. Similarly for the directories you
want crippled (no exec) includes, you should use the option IncludesNOEXEC. In any
directory you want to disable includes, use the Options directive without either option.

Next, you need to tell the server what filename extension you are using for the parsed
files. These files, while very similar to HTML, are not HTML and are thus not treated
the same. Internally, the server uses the magic MIME type
text/x−server−parsed−html to identify parsed documents. It will then
perform a format conversion to change these files into HTML for the client. To tell the
server which extension you want to use for parsed files, use the AddType directive. For
instance:

AddType text/x−server−parsed−html .shtml

This makes any file ending with .shtml a parsed file. Alternatively, if you don’t care
about the performance hit of having all .html files parsed, you could use:

AddType text/x−server−parsed−html .html

This would make the server parse all .html files.

Converting your old INC SRV documents to the new format

You should use the program inc2shtml in the support subdirectory of the httpd
distribution to translate your documents from httpd 1.1 and earlier to the new format.
Usage is simple: inc2shtml file.html > file.shtml.

The Include format

All directives to the server are formatted as SGML comments within the document.
This is in case the document should ever find itself in the client’s hands unparsed. Each
directive has the following format:

<!−−#command tag1="value1" tag2="value2" −−>

Each command takes different arguments, most only accept one tag at a time. Here is a
breakdown of the commands and their associated tags:

config

The config directive controls various aspects of the file parsing. There are two
valid tags:

errmsg controls what message is sent back to the client if an error
includes while parsing the document. When an error occurs, it is logged
in the server’s error log.

timefmt gives the server a new format to use when providing dates.
This is a string compatible with the strftime library call under most
versions of UNIX.

sizefmt determines the formatting to be used when displaying the size
of a file. Valid choices are bytes, for a formatted byte count (formatted
as 1,234,567), or abbrev for an abbreviated version displaying the
number of kilobytes or megabytes the file occupies.

include

include will insert the text of a document into the parsed document. Any
included file is subject to the usual access control. This command accepts two
tags:

virtual gives a virtual path to a document on the server. You must
access a normal file this way, you cannot access a CGI script in this
fashion. You can, however, access another parsed document.

file gives a pathname relative to the current directory. ../ cannot be
used in this pathname, nor can absolute paths be used. As above, you can
send other parsed documents, but you cannot send CGI scripts.

echo prints the value of one of the include variables (defined below). Any dates
are printed subject to the currently configured timefmt. The only valid tag to
this command is var, whose value is the name of the variable you wish to echo.

fsize prints the size of the specified file. Valid tags are the same as with the
include command. The resulting format of this command is subject to the
sizefmt parameter to the config command.

flastmod prints the last modification date of the specified file, subject to the
formatting preference given by the timefmt parameter to config. Valid tags
are the same as with the include command.

exec executes a given shell command or CGI script. It must be activated to be
used. Valid tags are:

cmd will execute the given string using /bin/sh. All of the variables
defined below are defined, and can be used in the command.

cgi will execute the given virtual path to a CGI script and include its
output. The server does not perform error checking to make sure your
script didn’t output horrible things like a GIF, so be careful. It will,
however, interpret any URL Location: header and translate it into an
HTML anchor.

Variables defined for Parsed Documents

A number of variables are made available to parsed documents. In addition to the CGI
variable set, the following variables are made available:

DOCUMENT_NAME: The current filename.

DOCUMENT_URI: The virtual path to this document (such as /~robm/foo.shtml).

QUERY_STRING_UNESCAPED: The unescaped version of any search query the
client sent, with all shell−special characters escaped with \.

DATE_LOCAL: The current date, local time zone. Subject to the timefmt
parameter to the config command.

DATE_GMT: Same as DATE_LOCAL but in Greenwich mean time.

LAST_MODIFIED: The last modification date of the current document. Subject
to timefmt like the others.

Making your setup more secure

When configuring the access control for your server, you will want to make sure you do
not give any unauthorized access to anyone. Please follow these guidelines to ensure that
your server is not compromised.

A word of caution on DNS based access control and user authentication

The access control by hostname and Basic user authentication facilities provided
by httpd are relatively safe, but not bulletproof. The user authentication sends
passwords across the network in plaintext, making them easily readable. The
DNS based access control is only as safe as DNS, so you should keep that in
mind when using it. Bottom line: If it absolutely positively cannot be seen by
outside people, you probably should not use httpd to protect it.

Disable Server−side includes wherever possible

Whenever you can, use the Options directive to disable server−side includes. At

the very least, you should disable the exec feature. Note that because the default
value of Options is All, you should include an Options directive in every
Directory cl ause in your global ACF and in every .htaccess file you write.

Use AllowOverride None whe rever possible

Use this directive to prevent any "untrusted" directories (such as users’ home
directories) from overriding your settings (and thus allowing their friends to
execute xterms as nobody with a server−side include or other such horrors). You
also gain a bonus in performance.

Protect your users’ home directories

Protect your users’ home directories with Directory directives. If your users
all have their home directories in one physical location (such as /home), then
this is easy:

<Directory /home>

AllowOverride None

Options Indexes

</Directory>

If they are not all in one location such as /home, then you should use this
wildcard pattern to secure them (assuming your UserDir is se t to
public_html):

<Directory /*/public_html*>

AllowOverride None

Options Indexes

</Directory>

In addition, if you wish to give your users the ability to create symbolic links to
things only they own, use the Option SymLinksIfOwnerMatch.

Mosaic User Authentication Tutorial

Introduction

This tutorial surveys the current methods in NCSA Mosaic for X version 2.0 and NCSA
httpd for restricting access to documents. The tutorial also walks through setup and use
of these methods.

Mosaic 2.0 and NCSA httpd allow access restriction based on several criteria:

Username/password−level access authorization.
Rejection or acceptance of connections based on Internet address of client.
A combination of the above two methods.

This tutorial is based heavily on work done by Ari Luotonen at CERN and Rob McCool
at NCSA. In particular, Ari wrote the client−side code currently in Mosaic 2.0, and Rob
wrote NCSA httpd.

Getting Started

Before you can explore access authorization, you need to install NCSA httpd 1.0a5 or
later on a Unix machine under your control, or get write access to one or more
directories in a filespace already being served by NCSA httpd.

You also need to be running Mosaic for X version 2.0 or later, or another browser
known to support HTTP/1.0−based authentication.

Prepared Examples

Following are several examples of the range of access authorization capabilities
available through Mosaic and NCSA httpd. The examples are served from a system at
NCSA.

Simple protection by password.

This document is accessible only to user fido with password bones.

Important Note: There is no correspondence between usernames and passwords
on specific Unix systems (e.g. in an /etc/passwd file) and usernames and
passwords in the authentication schemes we’re discussing for use in the Web. As
illustrated in the examples, Web−based authentication uses similar but wholly

distinct password files; a user need never have an actual account on a given Unix
system in order to be validated for access to files being served from that system
and protected with HTTP−based authentication.

Protection by password; multiple users allowed.

This document is accessible to user rover with password bacon and user
jumpy with password kibbles.

Protection by network domain.

This document is only accessible to clients running on machines inside domain
ncsa.uiuc.edu.

Note for non−NCSA readers: The .htaccess file used in this case is as
follows:

AuthUserFile /dev/null

AuthGroupFile /dev/null

AuthName ExampleAllowFromNCSA

AuthType Basic

<Limit GET>

order deny,allow

deny from all

allow from .ncsa.uiuc.edu

</Limit>

Protection by network domain −− exclusion.

This document is accessible to clients running on machines anywhere but inside

domain ncsa.uiuc.edu.

Note for NCSA readers: The .htaccess file used in this case is as follows:

AuthUserFile /dev/null

AuthGroupFile /dev/null

AuthName ExampleDenyFromNCSA

AuthType Basic

<Limit GET>

order allow,deny

allow from all

deny from .ncsa.uiuc.edu

</Limit>

General Information

There are two levels at which authentication can work: per−server and per−directory.
This tutorial primarily covers per−directory authentication. Per−directory
authentication means that users with write access to part of the filesystem that is being
served can control access to their files as they wish. They need not have root access on
the system or write access to the server’s primary config files.

Access control for a given directory is controlled by a file named .htaccess that
resides in that directory. The server reads this file on each access to a document in that
directory (or documents in subdirectories).

By−Password Authentication: Step By Step

So let’s suppose you want to restrict files in a directory called turkey to username
pumpkin and password pie. Here’s what to do:

Create a file called .htaccess in directory turkey that looks like this:

AuthUserFile /otherdir/.htpasswd

AuthGroupFile /dev/null

AuthName ByPassword

AuthType Basic

<Limit GET>

require user pumpkin

</Limit>

Note that the password file will be in another directory (/otherdir).

Also note that in this case there is no group file, so we specify /dev/null (the
standard Unix way to say "this file doesn’t exist").

AuthName can be anything you want. AuthType should always currently be Basic.

Create the password file /otherdir/.htpasswd.

The easiest way to do this is to use the htpasswd program distributed with NCSA
httpd. Do this:

htpasswd −c /otherdir/.htpasswd pumpkin

Type the password −− pie −− twice as instructed.

Check the resulting file to get a warm feeling of self−satisfaction; it should look like
this:

pumpkin:y1ia3tjWkhCK2

That’s all. Now try to access a file in directory turkey −− Mosaic should demand a
username and password, and not give you access to the file if you don’t enter pumpkin
and pie. If you are using a browser that doesn’t handle authentication, you will not be
able to access the document at all.

How Secure Is It?

The password is passed over the network not encrypted but not as plain text −− it is
"uuencoded". Anyone watching packet traffic on the network will not see the password
in the clear, but the password will be easily decoded by anyone who happens to catch the
right network packet.

So basically this method of authentication is roughly as safe as telnet−style username
and password security −− if you trust your machine to be on the Internet, open to
attempts to telnet in by anyone who wants to try, then you have no reason not to trust
this method also.

Multiple Usernames/Passwords

If you want to give access to a directory to more than one username/password pair,
follow the same steps as for a single username/password with the following additions:

Add additional users to the directory’s .htpasswd file.

Use the htpasswd command without the −c flag to additional users; e.g.:

htpasswd /otherdir/.htpasswd peanuts

htpasswd /otherdir/.htpasswd almonds

htpasswd /otherdir/.htpasswd walnuts

Create a group file.

Call it /otherdir/.htgroup and have it look something like this:

my−users: pumpkin peanuts almonds walnuts

... where pumpkin, peanuts, almonds, and walnuts are the usernames.

Then modify the .htaccess file in the directory to look like this:

AuthUserFile /otherdir/.htpasswd

AuthGroupFile /otherdir/.htgroup

AuthName ByPassword

AuthType Basic

<Limit GET>

require group my−users

</Limit>

Note that AuthGroupFile now points to your group file and that group my−users
(rather than individual user pumpkin) is now required for access.

That’s it. Now any user in group my−users can use his/her individual username and
password to gain access to directory turkey.

CERN has extensive documents on http−based authentication. The URL is
http://info.cern.ch/hypertext/WWW/AccessAuthorization/Overview.html.

Graphical Information Map Tutorial

Introduction

This document is a step−by−step tutorial for designing and serving graphical maps of
information resources. Through such a map, users can be provided with a graphical
overview of any set of information resources; by clicking on different parts of the
overview image, they can transparently access any of the information resources
(possibly spread out all across the Internet).

First Steps

This tutorial assumes use of NCSA httpd (version 1.0a5 or later). Some other servers
(e.g. Plexus) can also serve image maps, in server−specific ways; see the specific
server’s docs for more information.

Make sure you have a working NCSA httpd server installed and running.

Make sure you have write privileges to the server’s conf/imagemap.conf config
file.

Also make sure that the imagemap program is compiled and in the server’s htbin
directory.

This tutorial also assumes use of NCSA Mosaic for X version 2.0. Other clients that
support inlined GIF images and HTTP/1.0 URL redirection will also work.

Your First Image Map

In this section we walk through the steps needed to get an initial image map up and
running.

First, create an image.

There are a number of image creation and editing programs that will work nicely −− the

one I use is called xpaint (you can find it on ftp.x.org in /R5contrib; The important

thing is that the image ends up in GIF format.

A common scheme for an image map is a collection of rectangles and circles, each

containing a short text description of some piece of information or some information
server; interconnections are conveyed through lines or arcs. Try to keep the
individual items in the map spaced out far enough so a user will clearly know what
he or she is clicking on.

Second, create an image map file.

Here is what an image map file looks like:

default /X11/mosaic/public/none.html

rect http://cui_www.unige.ch/w3catalog 15,8 135,39

rect gopher://rs5.loc.gov/11/global 245,86 504,143

rect http://nearnet.gnn.com/GNN−ORA.html 117,122 175,158

The format is fairly straightforward. The first line specifies the default response (the
file to be returned if the region of the image in which the user clicks doesn’t correspond
to anything).

Subsequent lines specify rectangles in the image that correspond to arbitrary URLs −−
for the first of these lines, the rectangle specified by 15,8 (x,y of the upper−left
corner, in pixels) and 135,39 (lower−right corner) corresponds to URL
http://cui_www.unige.ch/w3catalog.

So, what you need to do is find the upper−left and lower−right corners of a rectangle for
each information resource in your image map. A good tool to use for this is xv (also on

ftp.x.org in /contrib)−− pop up the Info window and draw rectangles over the image
with the middle mouse button.

It doesn’t matter where you put your map file or what you name it. For the purposes of
this example, let’s assume it’s called /foo/sample.map.

Third, tell your server about your image map file.

You do this by adding a file to the server’s conf/imagemap.conf file. The line
looks like this:

sample : /foo/sample.map

... where sample is the symbolic name for your image map and /foo/sample.map is
the actual name of your map file.

Fourth, create an HTML document that contains your map image.

An example follows:

Click on the information resource you wish to see: <P>

 <P>

Note:

machine is the name of the machine on which your HTTP server resides.

sample is the symbolic name of your image map (from above).

sample.gif is the name of your image (assuming, of course, that it’s in the
same directory on your server as the HTML file).

Fifth, try it out! Load the HTML file, look at the inlined image, click somewhere, and
see what happens.

Subsequent Image Maps

You can serve as many image maps from a single server as you want. Just add lines to
conf/imagemap.conf pointing to each image map file you create.

Real−World Examples

Following are examples of distributed image maps on servers in the real world; they
may or may not work at any point in time. The URL for them is provided.

Experimental Internet Resources Metamap
http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/Demo/metamap.html

University of California Museum of Paleontology
http://ucmp1.berkeley.edu/.

National Institute of Standards and Technology
http://www.nist.gov/welcome.html

server map at NCHPC information server
http://info.lcs.mit.edu/Info/structure.html

WAIS and HTTP Integration

Introduction

This document overviews existing methods for using WAIS as a back−end search engine
for HTTP servers.

Information herein is currently experimental and may or may not work for you.

WAIS and Plexus

Plexus is a powerful Perl−based HTTP server written and maintained by Tony Sanders
at BSDI. The URL’s you might be interested in are:
http://www.bsdi.com/server/doc/plexus.html
http://www.cs.cmu.edu:8001/Web/People/rgs/perl.html

WAIS and GN

GN is a multi−protocol server written and maintained by John Franks at NWU. It is
shipped with support for WAIS as a back−end search engine.

The URL’s you might be interested in are:
http://hopf.math.nwu.edu/
http://hopf.math.nwu.edu:70/0h/docs/waisgn.guide

WAIS and NCSA httpd 1.0

Rob McCool has written a CGI script which allows NCSA httpd 1.0 as well as other
CGI compliant servers to access a WAIS database in the same way that is mentioned in
this document. The script is in the CGI archive. It contains instructions for setting it up
under httpd 1.0.

The URL’s you might be interested in are:
ftp://ftp.ncsa.uiuc.edu/Web/ncsa_httpd/cgi/wais.tar.Z

freeWAIS 0.202’s URL Type

freeWAIS 0.202 is shipped with support for type "URL". Use of this type is a little
tricky.

First, Mosaic 2.0 doesn’t know how to deal with this type directly, but Mosaic 2.1
(when it is released) will.

Second, use of this type apparently implies overloading the "headline" of a WAIS hit
with the URL. This is fine, except then the description that the user sees of a given
document is the URL, and URLs are, as usual, pretty cryptic things to just throw in front
of average users.

But anyway, here’s how it works:

 waisindex ... −t URL what−to−trim what−to−add ...

So what does that mean?

Well, first, −t URL tells waisindex to use type URL (note use of lowercase −t in
this instance).

Second, what−to−trim and what−to−add are parameters that tell the indexer
how to put together the URL that’s returned as the result of a query.

Suppose your documents are normally stored in /X11/mosaic/public. Suppose
also that these documents are normally served via a URL that begins with
http://wintermute.ncsa.uiuc.edu:8080.

This means that a file stored as /X11/mosaic/public/foo.html, for
example, is normally served as
http://wintermute.ncsa.uiuc.edu:8080/foo.html.

The waisindex command you’d use in this case would be something like the
following:

 waisindex −d ~/localwais/sources/www −export

 −t URL /X11/mosaic/public http://wintermute.ncsa.uiuc.edu:8080

 /X11/mosaic/public/*.html

... where ~/localwais/sources/www is the name of the WAIS index file and
/X11/mosaic/public/*.html are the files you are indexing.

When queries are made on this database, the string /X11/mosaic/public is
removed from the beginning of the filename of a matching file and the string
http://wintermute.ncsa.uiuc.edu:8080 is put in its place.

As per our previous example: /X11/mosaic/public/foo.html turns into
http://wintermute.ncsa.uiuc.edu:8080/foo.html as the result of
a WAIS hit.

As you can see, this is perfect −− the WAIS server passes back the exact same URL that
would normally be used to access this file via HTTP. So, everything from relative
hyperlinks to relative inlined image references in the file will work correctly when the
file is retrieved.

