Installation instructions for the Crynwr Packet Driver Collection

Document conventions

All numbers in this document are given in C-style representation. Decimal is expressed as 11,
hexadecimal is expressed as 0x0B, octal is expressed as 013. All reference to network hardware addresses
(source, destination and multicast) and demultiplexing information for the packet headers assumes they
are represented as they would be in a MAC-level packet header being passed to the send_pkt() function.

Using the packet drivers

The packet driver must be installed prior to use. Since each packet driver takes only a few
thousand bytes, this is best done in your autoexec.bat. Since the Ethernet boards typically have jumpers
on board, the packet driver must be informed of the values of these jumpers (auto-configure is possible,
but can disturb other boards). The first parameter is the entry point used to communicate with the packet
driver. And again, because each board is different, the rest of the parameters will be different.

All parameters must be specified in C-style representation. The same number is expressed in decimal as
11, hexadecimal is expressed as 0x0B, octal is expressed as 013. Any numbers that the packet driver prints
will be in the same notation.

Before installing the packet driver, you must choose an entry point (software interrupt) number in the
range between 0x60 and 0x7e inclusive. Some people have reported trouble with dBase when using
interrupts in the low 60’s. These problems go away when they switch to an interrupt in the high 70’s (e.g.
0x7e).

Interrupt 0x67 is unavailable because it’s used by the EMS interface interrupt. Interrupts 0x70 through
0x77 are unavailable because the second interrupt controller uses them for IRQ 8 through IRQ 15.
Interrupts 0x7f and 0x80 are unavailable because at least one package, when locating a packet driver, stops
searching before 0x7f.

Running a packet driver with no specifications will give a usage message. The parameters for each packet
driver are documented below.

Options

-d -- Most drivers can also be used in a PROM boot environment, see PROMBOOT.NOT for how to use -d
and -n options for that purpose. This switch delays the adapter’s initialization until the first time the
packet driver is accessed.

-n -- NetWare can use two different framing types on Ethernet, "IEEE 802.3" and Ethernet II. The BYU
packet driver shell requires Ethernet II. However, the Crynwr packet drivers can convert Ethernet II into
Novell’s version of IEEE 802.3 (and back) when the -n switch is used.

-p - A certain small level of security can be achieved by disabling promiscuous mode with the -p switch.
Do not mistake this for real security, however.

-w -- A switch used with Windows, obsoleted by the creation of winpkt. If you think you need the -w
switch, or you used to run it, then consider running winpkt instead. Winpkt actually solves the problem
that -w only attempts to solve. Winpkt (and -w) are only needed for non-resident DOS TCP stacks, e.g.
NCSA Telnet, PC-Gopher, etc.

-i - A switch used with client software that expects to find an IEEE 802.3 packet driver. Many Crynwr
Ethernet packet drivers implement both IEEE 802.3 (class 11) and Ethernet II aka Bluebook (class 1)
framing. The packet driver specification only allows a driver to report one class. The default is to report
Ethernet II. Using -i switches the reported class to IEEE 802.3.

3Com 3C501
usage: 3C501 [options] packet_int_no [hardware_irq [io_addr]]

The 3¢501 driver requires two additional parameters -- the hardware interrupt number and the I/O
address. The defaults are 3 and 0x300.

3Com 3C503
usage: 3C503 [options] packet_int_no [int_level(2-5) [io_addr [cable_typel]]]

The 3c503 driver requires up to three additional parameters -- the hardware interrupt number, the
I/0 address, and the cable type. The 3c503 can be attached to thick or thin Ethernet cables, and the
selection is made in software. The cable type is automatically determined at start-up, but may be forced to
external transceiver (AUI/Thickwire) by specifying zero or internal transceiver
(Thinwire/10BaseT/10Base2) or one for thin. The defaults are 2, 0x300, and 65535 (automatic). The 3¢503
can use shared memory, but the driver automatically determines that parameter from the hardware.

3Com 3¢505
usage: 3¢505 [options] packet_int_no [hardware_irq [io_addr [base_addr]]]

The 3¢505 driver requires three additional parameters -- the hardware interrupt number, the I/O
address, and the memory base address. The defaults are 2 and 0x300 and 0xd000.

3Com 3c507
usage: 3¢507 [options] packet_int_no io_addr

The 3c507 will determine its parameters by reading the board. The only time you would need to
specify the parameters is when you have multiple 3c507s in the same machine.

The 3¢507 driver will use three additional parameters -- the hardware interrupt number, the I/O
address, and the memory base address.

3Com 3c¢509
usage: 3¢509 [options] packet_int_no [id_port] | [io_port] | [board_num]

The 3¢509 will determine its parameters by reading the board. The only time you would need to
specify the parameters is when you have multiple 3c509s in the same machine, or if you have an I/O
conflict with the default id_port (0x110).

The 3c509 driver will use three additional parameters -- the id port, or the I/O port, or the board
number. If the number is between 0 and 0xff, it is the board number. If between 0x100 and 0x1ff, it is an
ID port. Otherwise it is an I/O port number.

3Com 3c523
usage: 3¢523 [options] packet_int no [hardware_irq [io_addr [base_addr]]]

The 3¢523 driver requires no additional parameters. It gets the board’s parameters out of the
Microchannel POS registers.

AQUILA
usage: aquila [options] packet_int_no [hardware_irq [io_addr [base_addr]]]

The AQUILA driver requires three additional parameters -- the hardware interrupt number, the
I/0 address, and the memory base address. The defaults are 3 and 0x360 and 0xd000.

ARCETHER

usage: arcether [options] packet_int_no [hardware_irq [io_addr [base_addr]]]

The ARCNET driver requires three additional parameters -- the hardware interrupt number, the
I/0 address, and the memory base address. The defaults are 5 and 0x2e0 and 0xd800. Note that a packet
driver client must specifically support ARCNET. The only known client is Phil Karn’s (KA9Q) networking
package, NOS.

ARCNET

usage: arcnet [options] packet_int_no [hardware_irq [io_addr [base_addr]]]

The ARCNET driver requires three additional parameters -- the hardware interrupt number, the
I/0 address, and the memory base address. The defaults are 5 and 0x2e0 and 0xd800. Note that a packet

driver client must specifically support ARCNET. The only known client is Phil Karn’s (KA9Q) networking
package, NOS.

AT1500
usage: at1500 [options] packet_int_no [io_addr]

The Allied Telesis AT1500 packet driver will automatically search for the adapter’s I/O address. If
you are using two boards, or the automatic search fails, then you should specify the proper I/O address.

AT1700
usage: at1700 [options] packet_int_no [io_addr]

The Allied Telesis AT1700 packet driver will automatically search for the adapter’s I/O address. If
you are using two boards, or the automatic search fails, then you should specify the proper I/O address.

AT&T
usage: at&t [options] packet_int_no [hardware_irq [io_addr [base_addr]]]

The AT&T driver requires three additional parameters -- the hardware interrupt number, the I/O
address, and the memory base address. The defaults are 2 and 0x360 and 0xd000. This driver supports
the StarLAN 1, StarLAN 10 NAU, EN100 and StarLAN Fiber NAU.

AT&T_LP 0x62 2 0x360 0xd000 0 0

usage: at&t_lp [options] <packet_int_no> [<hardware_irq> [<io_addr> [<base_addr> [<media_sel>
[<li_enabl>]]]]]

The AT&T_LP driver requires five additional parameters -- the hardware interrupt number, the
I/0 address, the memory base address, media select, and link integrity. The defaults are 2 and 0x360 and
0xd000. This driver supports the ATStarStation, ATStarLAN 10 LanPACER+ NAU, ATStarLAN 10
LanPACER NAU and ATMicroelectronics T7231 evaluation board.

The final two numbers are new attributes.

0 0 --> This is for AUI setting

01 --> This is also for AUI setting

10 --> This is for TP setting, no link integrity

11 --> This is for TP setting, link integrity enabled

For the LP NAU only, "0 0" and "0 1" are invalid as there is no AUI port on that NIC.

David Systems Inc (DSI)

usage: davidsys [options] <packet_int_no> <hardware_irq> <io_addr> <delay_mult>
The DSI driver requires three additional parameters, the hardware interrupt number, the I/O port and the
delay multiplier. Delay_mult is a system dependent timing loop used for I/O to the card. A reasonable
value is calculated during initialization, but on some fast systems it may need to be somewhat larger. The

multipler is divided by ten, then multiplied by the calculated delay. The default multiplier is 10 (actually
1.0).

D-Link DE-600

usage: de600 [options] packet_int_no

The D-Link Pocket Lan Adapter packet driver requires no additional parameters.

Digital Equipment Corporation DEPCA
usage: depca [options] <packet_int_no> [<hardware_irq> [<io_addr> [<mem_addr>]]]

The DEPCA packet driver requires three additional parameters -- the hardware interrupt number,
the I/O address, and the memory base address. The defaults are 5 and 0x300 and 0xd000. The packet
driver will resolve the io_addr automatically if io_addr is set to '?’, e.g. depca 0x7e 5 ? 0xd000. The driver
requires that you set the jumpers to enable the boot prom.

Digital Equipment Corporation VAXMATE
usage: vaxmate [options] <packet_int_no> [<hardware_irq> [<io_addr> [<mem_addr>]]]

The VAXMATE packet driver requires three additional parameters -- the hardware interrupt
number, the I/O address, and the memory base address. The defaults are 2 and 0x300 and 0xd000. The
packet driver will resolve the io_addr automatically if io_addr is set to ’?’, e.g. depca 0x7e 2 ? 0xd000.

EtherSLIP

usage: ethersl [options] packet_int_no [-h] [hardware_irq]
[io_addr] [baud_rate] [send_buf_size] [recv_buf_size]

The EtherSLIP driver is a simulated Ethernet adapter. It appears to the application software to be
an Ethernet driver, but it transmits and receives SLIP packets on the serial line.

The parameters are as follows. The -h flag is included if you wish to use hardware handshaking (the
packet driver will then suspend the transmission of characters while CTS is low). The hardware_irq is the
hardware interrupt number, defaults to 4 (COM1). The io_addr is the hardware I/O address, defaults to
0x3f8 (COM1). The baud_rate defaults to 4800 baud. The send_buf_size and recv_buf_size default to 3000
each.

Fujitsu dk86960.com
usage: dk86960 [options] packet_int_no [hardware_irq [io_addr]]

The dk86960 driver requires two additional parameters -- the hardware interrupt number and the
I/0 address. The defaults are 3 and 0x300.

Fujitsu dk86965.com
usage: dk86965 [options] packet_int_no

The dk86965 driver requires no additional parameters. It always searches for the proper 1/0
address.

HP Ethertwist
usage: hppclan [options] packet_int_no [hardware_irq [io_addr]]

The hppclan driver requires two additional parameters -- the hardware interrupt number and the
I/0 address. The defaults are 3 and 0x300.

IBM Token Ring
usage: ibmtoken [options] packet_int_no [adapter_no]

The IBM Token Ring packet driver requires one additional parameters -- the adapter number. The
default is zero. See IBMTOKEN.DOC for more information.

ICL EtherTeam16

usage: ETHIIE [options] packet_int_no [int_level [io_addr [cable_type]]]

The ETHIIE driver requires three additional parameters -- the hardware interrupt number, the I/O
address, and the cable type. The interrupt levels supported by the adapter are 5, 9 (2), 12 and 15. The
Ethenet Ile can be attached to thick or thin Ethernet cables, and the selection is made in software. The cable
type parameter should be zero for thick, and one for thin. With the Twisted Pair (TP) version of the
adapter, you must set interface to the value 1 (thin).

The defaults are 9 (2), 0x300 and 1 (thin).
Please note, that the adapter can be used only in a 16-bit slot of your computer.
Intel EtherExpress

usage: expl6 [options] <packet_int_no> [<io_addr>]

The Intel EtherExpress packet driver has one optional parameter. The <io_addr> is only needed if there is

more than one EtherExpress card in your system. Otherwise, the driver will search for adapter and get its
parameters from it.

BICC Data Networks” ISOLAN 4110 ethernet
usage: isolan [options] packet_int_no [hardware_irq [base_addr]]

The BICC Isolan requires two additional parameters -- the hardware interrupt number and the
memory base address. The defaults are 2 and 0xb800h.

BICC Data Networks” ISOLAN 4112/3 ethernet
usage: isolink [options] packet_int_no [hardware_irq [dma_no [io_addr]]]

The BICC Isolan requires three additional parameters -- the hardware interrupt number, the dma
channel number and the I/O base address. The defaults are 10 and 0, and to automatically search.

Kodiak Raven and Kombo

usage: kodiak8 [options] packet_int_no [hardware_irq [io_addr]]
usage: kodiak16 [options] packet_int_no [hardware_irq [io_addr]]
usage: kodiakk [options] packet_int_no [hardware_irq [io_addr]]

The Kodiak drivers require three additional parameters -- the hardware interrupt number and the
I/0O base address. The defaults are 2 and 0x300.

LocalTalk
usage: localtlk [options] <packet_int_no> [<IP address>]

The LocalTalk packet driver requires atalk.sys to be installed. Because it is not an Ethernet class
driver, it requires special code in the client. See LOCALTLK.NOT for more details.

Microdyne EXOS205T
usage: exos205 [options] <packet_int_no> [hardware_irq] [io_addr] [base_addr]

This Packet Driver supports the EXOS205T with 256K or 512K Byte RAM. It has not been tested with the
old EXOS205E with 128K Byte.

Where the last three arguments are optional. If you do not supply them, the driver uses "0x02 0x310
0xcc00’, these are the EXOS defaults.

The Interrupt must be set by a jumper on the card. The Packet Driver does not check for a valid setting.
Possible values are 2 (default), 3,4, 5, 6,7, 10,11, 12, 13 and 14.

Five bytes of i/0 address space are used by the EXOS205. A jumper on the EXOS205 board sets the
starting address. Possible values are 0x300, 0x310 (default), 0x320 and 0x330. The Packet Driver fails if it
does not find an EXOS205 card at the specified address.

The EXOS205 uses a shared memory to interface the Intel 82586 Ethernet chip to the host’s address space.
The EXOS205 memory can be 256 K or 512 K large. The Packet Driver uses a 16 K Byte window to access
the EXOS205 memory. The location of this window is set by software. The following segments are
possible:

0xa000 0xc000 0xc400
0xc800 0xcc00 (default) 0xd000
0xd400 0xd800 0xdc00

If you install a BOOT-PROM on the EXOS205 take care that you do not use the same address for the
PROM and for the shared memory.

The SQE check jumper is ignored by the EXOS205 Packet Driver.

Mitel Express
usage: express [options] <packet_int_no> [-n] [<driver_class> [<hardware_irq>]]
The Mitel Express packet driver has one optional switch, and two optional parameters. The

<driver_class> defaults to SLIP, and the <hardware_irq> defaults to 7. The -n switch instructs card to be
an NT. The <driver_class> should be SLIP or a number.

Multitech EN-301
usage: en301 [options] packet_int_no [hardware_irq [io_addr]]

The Multitech driver runs the EN-301 cards. The Multitech driver requires two additional
parameters, the hardware interrupt number, and the I/O port.

Mylex LNE-390B

usage: mylex [options] packet_int_no [int_level [io_addr [mem_base]]]

The Mylex driver requires three additional parameters -- the hardware interrupt number, the I/O
address, and the memory base address. The defaults are pulled out of the EISA configuration registers for
the first board found.

NCR ET-105
usage: ncret105 [options] <packet_int_no> <hardware_irq> <base_addr> <Ethernet_address>
The NCR ET-105 driver requires four additional parameters -- the hardware interrupt number, the

I/0 address, the memory base address, and the Ethernet address. The Ethernet address assigned to any
particular board is printed on sticky labels that come with the board.

Netbios

usage: nb [options] packet_int_no ip.ad.dr.ess [receive queue size]

The netbios packet driver transports IP packets over NetBIOS.

Novell IPX
usage: ipxpkt [options] packet_int_no [-n [no_bytes]]

The ipxpkt packet driver simulates Ethernet on Novell IPX protocol.

Novell ne/2
usage: ne2 [options] <packet_int_no>

The ne/2 driver requires no additional parameters.

Novell ne1000
usage: nel000 [options] packet_int_no [hardware_irq [io_addr]]

The nel000 driver requires two additional parameters -- the hardware interrupt number and the
I/0 address. The defaults are 3 and 0x300.

Novell ne2000
usage: ne2000 [options] packet_int_no [hardware_irq [io_addr]]

The ne2000 driver requires two additional parameters -- the hardware interrupt number and the
I/0 address. The defaults are 2 and 0x300.

Novell ne2100 and ne1500

usage: ne2100 [options] packet_int_no [hardware_irq [io_addr [dma_no]]]

The ne2100 Ethernet card is software compatible with the ne1500 card. The ne2100 driver requires
three additional parameters -- the hardware interrupt number, the I/O address, and the DMA channel
number. The defaults are 3, 0x300, and 5.

Racal-Interlan (Formerly Interlan) ES3210
usage: es3210 [options] packet_int_no [int_level [io_addr [mem_base]]]

The es3210 driver requires three additional parameters -- the hardware interrupt number, the I/O
address, and the memory base address. There are no defaults.

Racal-Interlan (Formerly Interlan) NI5010

usage: NI5010 [options] packet_int_no [hardware_irq [io_addr]]

The NI5010 driver requires two additional parameters -- the hardware interrupt number and the
I/0 address. The defaults are 3 and 0x300.
Racal-Interlan (Formerly Micom-Interlan) NI5210

usage: ni5210 [options] packet_int_no [hardware_irq [io_addr [base_addr]]]

The NI5210 driver requires three additional parameters -- the hardware interrupt number, the I/O
address, and the memory base address. The defaults are 2 and 0x360 and 0xd000.

Racal-Interlan N16510
usage: ni6510 [options] packet_int_no [hardware_irq [io_addr]]
The ni6510 driver has two additional parameters -- the hardware interrupt number and the I/O

address. The defaults are 2 and auto-sense. These parameters do not need to be set unless the auto-sense
routine fails, or otherwise disrupts operation of your PC.

Racal-Interlan (Formerly Micom-Interlan) NI9210
usage: ni9210 [options] packet_int_no [hardware_irq [io_addr [base_addr]]]

The ni9210 driver requires three additional parameters -- the hardware interrupt number, the I/O
address, and the memory base address. The defaults are 2 and 0x360 and 0xd000.

NTI 16
usage: ntil6 [options] packet_int_no [hardware_irq [io_addr [base_addr]]]

The ntil6 driver requires three additional parameters -- the hardware interrupt number, the I/O
address, and the memory base address. The defaults are 3 and 0x338 and 0xd000.

SLIP8250

usage: SLIP8250 [options] packet_int_no [-h] [driver_class] [hardware_irq]
[io_addr] [baud_rate] [recv_buf_size]
The driver_class should be SLIP, KISS, AX.25, or a
number.

The SLIP8250 driver is not strictly an Ethernet adapter, however some software packages (such as
KA9Q’s NET and NCSA Telnet) support Serial Line IP (SLIP). SLIP must be specially supported because
it doesn’t use ARP and has no hardware addresses prepended to its packets. The PDS is not clear on this,
but the packet driver does the SLIP encoding.

The parameters are as follows. The -h flag is included if you wish to use hardware handshaking (the
packet driver will then suspend the transmission of characters while CTS is low). The driver_class is the
class that is returned to a client of the packet driver spec in the driver_info call. The hardware_irq is the
hardware interrupt number, defaults to 4 (COM1). The io_addr is the hardware I/O address, defaults to
0x3f8 (COM1). The baud_rate defaults to 4800 baud. The recv_buf_size defaults to 3000.
Thomas-Conrad tcenet

usage: tcenet [options] packet_int_no [int_no [io_addr]]

The tcenet driver requires two additional parameters -- the hardware interrupt number and the I/O
address. The defaults are 3 and autosense.

Ungermann-Bass NIC-PC
usage: ubnicpc [options] <packet_int_no> <hardware_irq> <base_addr>

The UB NIC-PC driver requires two additional parameters, the hardware interrupt number, and the
memory base address.

Ungermann-Bass NIC-PS/2
usage: ubnicps2 [options] <packet_int_no> <hardware_irq> <io_addr> <base_addr>
The UB NIC-PS/2 requires three additional parameters -- the hardware interrupt number, the I/O

address, and the memory base address. The defaults are the contents of the POS registers, so the only
time you would need to use the parameters is if you're using two NIC-PS/2 boards in one machine.

SMC (formerly Western Digital) (also IBM) SMCWD
usage: smc_wd [options] packet_int_no [-0] [int_level [io_addr [mem_base]]]

The SMC_WD driver runs the SMC (formerly Western Digital) E, EBT, EB, ET/A, and E/A
Ethernet cards (but not the Ultra), and also on the IBM Microchannel Ethernet cards with POS ID’s
OxEFE5, 0xEFD4 and 0xEFD5. The ISA SMC_WD requires three additional parameters -- the hardware
interrupt number, the I/O address, and the memory base address. The ISA defaults are 3 and 0x280 and
0xd000. The MCA SMC_WD picks up its default parameters from the POS registers, so you only need
specify them it you have multiple adapters. The smc_wd cards do not enable their memory until
configuration time. Some 386 memory mappers will map memory into the area that the card intends to
use. You should be able to configure your software to leave this area of memory alone. Also the driver
will refuse to map memory into occupied memory. The occupied memory test fails on some machines, so
the optional switch -o allows you to disable the check for occupied memory.

If you get the error "PROM ADDRESS Invalid", use EZSETUP to set all the parameters again (to the same
values). Occasionally wayward programs will write to locations that don’t belong to them. This can
corrupt the EEPROM checksum on the card. EZSETUP will restore the correct checksum.

Tiara Lancard
usage: tiara [options] packet_int_no [hardware_irq [io_addr]]

The Tiara driver runs the Tiara LANCARDY/E cards, both eight and sixteen bit cards. The Tiara
driver requires two additional parameters, the hardware interrupt number, and the I/O port.

Zenith Data Systems Z-Note
usage: znote [options] packet_int_no

The Z-Note packet driver also works on the IBM Thinkpad 300. The Z-Note packet driver has no
parameters beyond the packet driver software interrupt number. It picks up its parameters from the bios.
This driver also turns the hardware on when it starts, and off when it exits, so you do not need to enable
the adapter. In fact, you should leave it disabled, so that you save the power when the driver is not
installed.

Errorlevels
Some of the packet drivers return error codes. Some of these error codes indicate fatal errors, and

some are merely warnings. For the moment, you must consult the source to see what the errorcodes
mean. For example, pktchk returns 0 if a packet driver exists at a given address, and 1 if not. You might
use it in a batch file that only installs a packet driver if one is not found.

rem only install the packet driver if there isn’t one

rem already.

pktchk 0x7e

if errorlevel 0 goto gotit

ni5210 Ox7e
:gotit

The "errorlevel" test is true if the errorlevel is less than or equal to the parameter.

Utility Programs

There are also several utility programs for packet drivers:

PKTADDR

usage: pktaddr packet_int_no [ethernet_addr]

If the second argument is given, the Ethernet address of the given packet driver is set. The Ethernet
address is printed out.

PKTALL
usage: pktall packet_int_no [-v] [-p] [-a et:he:rn:et:ad:dr]

All packets are received and discarded from the given packet
driver. This program is of most use with PKTMODE and TRACE. The -v
switch causes the packet contents to be printed. The -p switch
causes the driver to enter promiscuous mode (receives all packets
regardless of destination address). The -a switch lets you filter
out all but a specific address.

PKTCHK

usage: pktchk packet_int_no [packet_int_no]

Test for existance of a packet driver. Returns with errorlevel 0 if the specified interrupt has a
packet driver. If the second argument is given, all interrupts in the range are checked for a packet driver.
If no packet driver is found at all, errorlevel 1 is returned.

PKTMODE
usage: pktmode packet_int_no [receive_mode]
If the second argument is given, the receive mode of the given packet driver is set. A decimal

number from the list of modes should be used. All the possible modes are printed out. Unimplemented
modes are marked with "xx", and the current mode is marked with "->".

PKTMULTI

usage: pktmulti packet_int_no [-f filename | address ...]

The specified addresses are set as allowed multicast addresses. If no list of addresses is given, then
the current list of addresses is printed. The addresses may either be specified on the command line, or in
a file using
the -f option. When a file is used, any whitespace in the file is ignored.

PKTSTAT
usage: pktstat first_int_no [last_int_no]

The statistics for all packet drivers in the given range are printed. The default range is 0x60
through 0x80. The meanings of the columns are given below.

pkt_in is the number of packets ever received by this driver.

pkt_out is the number of packets ever transmitted by this driver.

byt_in is the number of bytes ever received by this driver.

byt_out is the number of bytes ever transmitted by this driver.

pk_drop Packets dropped because there was no handler for that Ethernet packet type.

err_in Dependent upon the packet driver.
err_out Dependent upon the packet driver.

PKTSEND
usage: pktsend packet_int_no [-r] [-d delay] [-f filename | packet]

The specified packet is sent using the specified packet driver. The -r option says to repeat sending
as fast as possible. You shouldn’t use this option very often. The -d option inserts a system-dependent
delay between sending packets. Without -r, the program waits for a key before sending a packet. The
packet may either be specified on the command line, or in a file using the -f option. When a file is used,
any whitespace in the file is ignored.

PKTTRAF

usage: pkttraf packet_int_no

Graphically display traffic on an EGA or VGA screen. The first twenty Ethernet addresses
encountered are assigned a node number. The traffic between each pair of nodes is displayed as a line of
varying intensity. When any line reaches maximum intensity, the intensities of all lines are halved.

A cursor highlights one of the nodes. The Ethernet address of the highlighted node is printed in
the lower-right corner. The cursor is moved using space and backspace.

PKTWATCH

usage: pktwatch packet_int_no [-a et:he:rn:et:ad:dr]

Pktwatch runs the driver in promiscuous mode, and prints all packets recieved on the screen. The
-a switch lets you filter out all but a specific address.

TERMIN

usage: termin [-s] packet_int_no
The specified packet driver is terminated, and its memory recovered.

The s-option (stop) is used to prepare for termination. The in-use flag for all handles are cleared.
This prevents upcalls to handlers that are to be removed and also makes it possible to later terminate the
packet driver even though handles are not released. Actually, doing termin -s after prom boot is like
cutting the branch you are sitting on. Recipe for removing packet driver, IPX and NET:

pktdrvr 0x7c
MARKNET CA\IPX.MRK
PDIPX

NET3

NET3 u ; unload netx to avoid communication timeout
TERMIN -s 0x7c ; pkt drvr no longer calls any nonexistent rcvrs
RELNET C:\IPX.MRK ; IPX is "removed"

TERMIN 0x7c ; It is now safe to terminate the packet driver

TRACE

usage: trace packet_int_no [buffer_size]

Trace is very useful for debugging packet driver troubles. Trace lets you trace all transactions
between a user program and the packet driver. The transactions are stored in a memory buffer whose size
is set with buffer_size. The default size is 10,000 bytes.

When you run trace, it sets itself up and then spawns COMMAND.COM so that you can run a
network program that uses the packet driver. After you quit your network session, you issue an "EXIT"

command. This returns you to trace, which writes the transaction log to "TRACE.OUT". The following
program, DUMP, interprets TRACE.OUT.

DUMP
usage: dump

Interprets the contents of TRACE.OUT as written by TRACE.

WINPKT

usage: winpkt <packet_int_no>

Provides a Packet Driver interface between Windows 3 Enhanced mode applications and a real Packet
Driver. This attempts to solve the problem of Windows moving DOS applications around in memory
willy nilly. It replaces the -w flag hack. Winpkt (and -w) are only needed for non-resident DOS TCP
stacks, e.g. NCSA Telnet, PC-Gopher, etc.

Previous versions of winpkt had two parameters and required that you use different interrupts for the
virtual packet driver and the real packet driver. This caused confusion when the software used the wrong
packet driver. This version requires that you use the same packet_int_no as the existing packet driver.

Install WINPKT after the Packet Driver and before starting Windows.

Appendix A

Interrupt usage in the range 0x60 through 0x80, from Ralf Brown’s interrupt list.

60 -- -- reserved for user interrupt

60 -- -- FTP Driver - PC/TCP Packet Driver Specification
60 01 FF FTP Driver - DRIVER INFO

60 02 -- FTP Driver - ACCESS TYPE

60 03 -- FTP Driver - RELEASE TYPE

60 04 -- FTP Driver - SEND PACKET

60 05 -- FTP Driver - TERMINATE DRIVER FOR HANDLE
60 06 -- FTP Driver - GET ADDRESS

60 07 -- FTP Driver - RESET INTERFACE

60 11 -- 10-NET - LOCK AND WAIT

60 12 -- 10-NET - LOCK

60 13 -- 10-NET - UNLOCK

60 20 -- FTP Driver - SET RECEIVE MODE

60 21 -- FTP Driver - GET RECEIVE MODE

60 24 -- FTP Driver - GET STATISTICS

61 -- -- reserved for user interrupt
62 -- - reserved for user interrupt
63 -- -- reserved for user interrupt
64 -- -- reserved for user interrupt
65 -- -- reserved for user interrupt
66 -- -- reserved for user interrupt

67 — - LIM EMS
67 DE 00 Virtual Control Program Interface - INSTALLATION CHECK

68 01 - APPC/PC

69 -- -- unuse'z.a
6A -- -- unused
6B -- -- unused

6C -- -- system resume vector (CONVERTIBLE)

6C -- -- DOS 3.2 Realtime Clock update

6D -- -- VGA - internal

6E -- -- unused

6F -- -- Novell NetWare - PCOX API (3270 PC terminal interface)
6F 00 -- 10-NET - LOGIN

70 -- -- IRQ8 - AT /XT286/PS50+ - REAL-TIME CLOCK
71 -- - IRQ9 - AT/XT286/PS50+ - LAN ADAPTER 1
72 -- --IRQ10 - AT /XT286/PS50+ - RESERVED

73 -- - IRQ11 - AT/XT286/PS50+ - RESERVED

74 - -- IRQ12 - PS50+ - MOUSE INTERRUPT

75 -- -- IRQ13 - AT /XT286/PS50+ - 80287 ERROR

76 -- -- IRQ14 - AT /XT286/PS50+ - FIXED DISK

77 -- --IRQ15 - AT /XT286/PS50+ - RESERVED

78 -- -- not used

79 -- -- not used

7A -- -- Novell NetWare - LOW-LEVEL API

7A -- -- AutoCAD Device Interface

7B -- -- not used

7C -- -- not used

7D -- -—- not used

7E -- -- not used

7F — - HDILOAD.EXE - 8514/ A VIDEO CONTROLLER INTERFACE
7F -- -- HLLAPI (High-Level Language API)
80 -- -- reserved for BASIC

