
About Visual Speller
VisualSpeller is an OCX custom control that allows you to add spell checking to your application with a
minimum of programming.

VisualSpeller is primarily a spell checking enginea tool for adding spell checking functionality to a higher-
level application. Using it is a matter of passing in text for spell checking and reading the corrected text
when spell checking is complete. Standard features include:

Multiple standard dictionaries    You can access multiple standard dictionaries during a spell
check.

Multiple custom dictionaries    You can create dictionaries customized for specific documents,
activities, departments, organizations, and so on. You can access multiple custom dictionaries and add
words to custom dictionaries during a spell check.

Ignore/replace lists    For each dictionary, VisualSpeller maintains a list of words to be ignored
and a list of words to be replaced by other words. When one of these words appears in a spell check,
VisualSpeller either acts automatically or prompts the user, according to your instructions.

Word or block checking    Text to be spell checked can be passed a word at a time or in
multiword blocks.

Automatic suggestion generation    You can generate suggested spellings either automatically
or on demand. The number of suggestions can be limited in order to improve performance.

Shared memory for dictionaries    This reduces the total amount of memory needed when
multiple users access the same dictionary.

Extensive customization capability    You can use default settings or customize almost every
aspect of operation.

Standard dictionary maker    This application allows you to create your own standard
dictionaries and manage their contents.

Technical Support
The Visual Components technical support staff is ready to help you with any problem you have using
VisualSpeller. If you need help, contact Visual Components in any of the following ways:

By phone.    You can contact our technical support staff at 913-599-6500 on weekdays between
8:30 and 5:30 Central Time.

By FAX.    You can contact us by FAX at 913-599-6597.

Via BBS.    You can contact us through our 24-hour bulletin board service at 913-599-6713.

Via CompuServe.    You can contact us through CompuServe74774,443.

Visual Components also maintains a message and library section in the MS Windows
Components A+ Forum on CompuServe. These sections are used for peer to peer suppor and
the distribution of example projects, maintenance releases, etc. To reach the Visual Components
section, type:

GO VISTOOLS

When communicating with Visual Components via the CompuServe forums, include our account
number with all messages. This assures that your message receives prompt attention.

On the World Wide Web. Contact us at www.visualcomp.com

By mail.    Please send correspondence to the following address:
Customer Service Department
Visual Components, Inc.
15721 College Blvd.
Lenexa, KS 66219

In Europe, contact:

Visual Components Europe
Lenexa House
11 Eldon Way
Paddock Wood, Kent
England TN12 6BE

Phone +44 1892 834343
Fax +44 1892 835843
BBS +44 1892 835579

Distributing a VisualSpeller application
When you develop an application using VisualSpeller, you can distribute run time versions of it subject to
the conditions in your Visual Components license agreement.

You can use all of the files included with VisualSpeller as you develop your application. The 32-bit run
time files are as follows:

File Description

VSPELL32.OCX VisualSpeller OCX custom control

VSPELL32.DLL VisualSpeller Dynamic Link Library

AMERICAN.VTD U.S. English dictionary supplied with VisualSpeller.

VSPELL.HLP Context sensitive help for the Word Not Found and Spell
Options dialog boxes.

In addition, running 32-bit VisualSpeller applications require the presence of the latest versions of
MFCANS32.DLL, OC30.DLL, and MSVCRT20.DLLon your user's systems. These files are provided on
your VisualSpeller installation disks.

The 16-bit run time files are as follows:

File Description

VSPELL16.OCX VisualSpeller OCX custom control

VSPELL16.DLL VisualSpeller Dynamic Link Library

VSPELL.HLP Context sensitive help for the Word Not Found and Spell
Options dialog boxes.

AMERICAN.VTD U.S. English dictionary supplied with VisualSpeller.

In addition, running 16-bit VisualSpeller applications require the presence of the latest versions of
OC25.DLL, OLE2DISP.DLL, and TYPELIB.DLL on your user's systems. The file OC25.DLL is provided
with VisualSpeller, the other two DLLs are not.

Spellchecking Context
A context is one of the most fundamental VisualSpeller concepts. It is the specific information necessary
to manage the spellchecking process for an application. In most development environments, a context is
assigned automatically when you add the VisualSpeller OCX control to your project. A context contains
the following information:

Text to be spellchecked.

Dictionaries to be used.

Words to ignore (treat as correct) or to replace (substitute another word for).

Information about the current misspelled word.

Suggested spellings for the current misspelled word.

User options for controlling spellchecker behavior.

Information not included in a context includes information about dictionaries themselves. This information
is maintained by VisualSpeller on behalf of all contexts, allowing all users of a dictionary to share that
dictionary.

When VisualSpeller assigns a context, much of the information it contains is default information. The
application can adjust the context by assigning values to properties. One of the most important
adjustments would be to open at least one standard dictionary. Opening a dictionary adds it to a list of
dictionaries available in the current context. When an application opens a dictionary already in use by
another context, the dictionary is shared. Both contexts can search the dictionary without interfering with
each other.

Text Buffer
In a multi-word spellcheck, one performed in a CheckText operation rather than a CheckWord operation,
the text to be spellchecked resides in a buffer. Placing text there and later retrieving it are the first and last
steps in any multi-word spellcheck.

In some environments, such as Visual Basic, the buffer is internal and filled when you assign a string to
the Text property. In other development environments, the buffer can be either internal or
external.VisualSpeller automatically controls the size of internal buffers. If you use external buffers, you
must control their sizing through your code.

Parsing
BeforeVisualSpeller can perform a CheckText operation, it must parse the text into discrete words. In this
process,VisualSpeller considers a word to be any unbroken string comprised of alphanumeric characters,
apostrophes, and hyphens, excluding leading and trailing apostrophes and hyphens. All other characters
are ignored. In a CheckWord operation,VisualSpeller does not parse the text but instead considers it to
be a single word.

Word Lookup
The most basic function of the spell checking control is to look up words in dictionaries. When it finds a
word, the word is assumed to be spelled correctly. When it fails to find a word, the search continues in the
ignore/replace list. This list contains exceptions specified by the user for the current spellcheck. If the
word is not found in the ignore/replace list, it is assumed to be misspelled.

At that point VisualSpeller normally generates a list of suggested spellings for the word and presents
them to the user for a decision. Normally,VisualSpeller searches for words first in standard dictionaries,
then in custom dictionaries, then in the ignore/replace list.

Ignore/Replace Lists
Often a word is spelled correctly even though it doesnt appear in one of the open dictionaries. If the word
could appear in other documents, the user may decide to add it to a custom dictionary. If, however, it is
not likely to appear in other documents or if the user just doesnt want to take the time to add it to a
dictionary, the user can elect to add it to an ignore/replace list.

An ignore/replace list is essentially a temporary custom dictionary. It allows dynamic adjustment of the
spellchecking process. Each word in an ignore/replace list is flagged in one of the following ways:

VSIR_SPELLED_OK Treat the word as though it is spelled correctly without
asking the user for confirmation.

VSIR_REPLACE_ALL Replace all future occurrences of the word with
ReplacementWord without asking the user for confirmation.

VSIR_MISSPELLED Ask user to confirm whether word is misspelled.

VSIR_PROMPT_REPLACE Ask the user before replacing the word with
ReplacementWord.

VSIR_HYPHENATION Hyphenation information for the word can be added to the
list. This code, if used, must be added to one of the codes
listed above and the Hyphenation property must be set.

There are two types of ignore/replace lists:common and dictionary-specific. Both are memory resident
and associated with a specific context. The common ignore/ replace list is created and enabled
automatically by . A dictionary ignore/replace list is associated with a specific standard dictionary. (Custom
dictionaries dont have ignore/replace lists because they are themselves reusable ignore/replace lists.)
Enabling the ignore/replace list for a dictionary causes it to become an extension of the common
ignore/replace list. Words added to the common ignore/replace list are also added to any dictionary
ignore/replace lists that is enabled and for which the associated dictionary is enabled.

The purpose of a dictionary-specific ignore/replace list is to allow language-specific control over the
replacement process. For instance, suppose you are spellchecking a document that contains both
English and French paragraphs. You want to ignore instances of spizbot in English but not in French. You
could accomplish this by enabling dictionary-specific ignore/replace lists, then performing separate
spellchecks on the English and French sections of the document, enabling only the appropriate dictionary
in each case. In a default spellcheck, dictionary ignore/replace lists are disabled.

Case Sensitivity
VisualSpeller is inherently case sensitive. That is, it always looks for an exact match for the current word.
In normal usage, however, words are often capitalized, written in all caps, abbreviated, and so on. To
cover most such cases,VisualSpeller looks for a misspelled word as follows:

1. Search for the word as it was originally presented.

2. If the word is in initial caps or all caps, search for the word in all lower case.

3. If the word contains hyphens and the AllowJoinedWords property is True, check each individual
word (CheckText only, not CheckWord).

4. If the word was followed in text by a period, add a period and try steps 1 and 2 again to check for
possible abbreviation (CheckText only, not CheckWord).

If any variation is found, the original word is considered correct. You can alter the way VisualSpeller
handles case sensitivity by changing the EnableSpellOptions property. This property allows you to
ignore words written in all caps, to ignore words that contain numerals, or to require an exact match.

Suggestions
When VisualSpeller identifies a misspelled word, it also generates a list of suggested replacement words.
To do this, it modifies the misspelled word in a series of ways, checks each new word, and places valid
ones in the list. A default search uses all of the following modification techniques, in order.

· Capitalization. The word is checked in all lower case, initial caps, and all caps.

· Example:Windows

· Suggestions:windows, Windows, WINDOWS

· Splits. A space is inserted between each successive pair of letters and the resulting two words
are checked individually. If both are valid words, the pair become a suggestion.

· Example:ofthe

· Suggestions:o fthe, of the, oft he, ofth e

· CharSwap. Successive pairs of letters are swapped and resulting word(s) spellchecked.

· Example:adujst

· Suggestions:daujst, audjst, adjust, adusjt, adujts

· Doubles. Occurrences of doubled letters are moved to adjacent letters.

· Example:seetings

· Suggestions:ssetings, settings

· Exchange. Each letter is replaced with all other alphabetic characters.

· Example:qill

· Suggestions:aill, bill, cill, dill . . . qall, qbll, qcll, qdll . . .

· Deletes.    Each letter is removed in sequence.

· Example:coldt

· Suggestions:oldt, cldt, codt, colt, cold

· Hyphens.    A hyphen is inserted between successive pairs of letters.

· Example:byline

· Suggestions:b-yline, by-line, byl-ine, byli-ne, bylin-e

· Insertions.    An extra letter is inserted between successive pairs of letters, running through the
entire alphabet.

· Example:bll

· Suggestions:ball, bbll, bcll, bdll, bell . . . blal, blbl, blcl, bldl . . .
·
VisualSpeller stops generating suggestions when it reaches SuggestionsLimit or MaxSuggestions,
whichever is greater. No matter how many suggestions are generated internally, only the number
specified by MaxSuggestions appear in the list. Suggestions are ordered from most likely to least likely
as determined by VisualSpeller.

Normally,VisualSpeller offers suggestions that match the case of the misspelled word. If the misspelled
word appears in lower case, for instance,VisualSpeller presents lower case suggestions. Likewise, if the
misspelled word appears in all caps or initial caps, only similarly capitalized suggestions appear in the list.

Note    You can generate suggestions for any word, not just a misspelled word. For instance, you could
create a function that allows the user to highlight the word trails and generate a list of alternatives, such
as trials.

Standard Dictionaries
A standard dictionary is an indexed and compressed dictionary created with the Visual Components
Dictionary Maker (VTDMAKER.EXE). It is not updatable and is always opened as shareable. When a
standard dictionary is loaded, its index and certain other data become memory resident, but all other
information is read into memory only as it is needed and managed by a caching system. The data in a
standard dictionary is divided into four sections:

Header

Index (information on where to find parts of the word lists)

Section of the word list that is required to be in memory

Generally large section of the word list that resides on disk

The disk-resident section is organized in blocks. These blocks are designed so VisualSpeller must read
only one of them to check the dictionary for a specific word.

In addition to the four main sections, a standard dictionary can have an optional sub-dictionary of
commonly used words. This section, when present, is loaded totally in memory. The words in the common
list are duplicated in the main word list of the dictionary. The common word list provides fast access to the
most often used words in the dictionary.

Within properties, standard dictionaries are referenced by a dictionary index number, which is a positive
number from 1 to 255. The first standard dictionary opened for a context that is still open is number 1; the
second standard dictionary opened that is still open is number 2, and so on. When a dictionary is closed,
other dictionaries with are renumbered to fill the gap.

Custom Dictionaries

Dictionary Caching

Maximum Number of Open Dictionaries

Enabling and Loading Dictionaries

Dictionary Categories

Custom Dictionaries
A custom dictionary is an ANSI text file in which each line represents a word. When loaded, it is copied
entirely into memory and stored in a hash table. Because of this, a custom dictionary may take longer to
load than a standard dictionary.

There are two types of custom dictionary: compatible and extended. A compatible dictionary is one that
uses the Microsoft Word custom dictionary format. It is a simple list of words arranged one per line. The
default extension for a compatible dictionary is DIC.

The format of an extended custom dictionary is unique to VisualSpeller. In addition to a word list, an
extended dictionary can also contain replacement and hyphenation information. This allows it to act as a
disk-based ignore/replace list. The default extension for an extended custom dictionary is VTC.

Within properties, custom dictionaries are referenced by a dictionary index number, which is a negative
number from -1 to -255. The first custom dictionary opened for a context that is still open is number -1; the
second custom dictionary opened that is still open is number -2, and so on. As you may note, when a
dictionary is closed, the remaining open dictionaries are renumbered to fill the gap.

Standard Dictionaries

Sharing Custom Dictionaries

Alphabetization in Custom Dictionaries

Extended Custom Dictionary Format

Exclusion and Automatic Replacement Lists

Dictionary Caching

Maximum Number of Open Dictionaries

Enabling and Loading Dictionaries

Dictionary Categories

Sharing Custom Dictionaries
Normally, VisualSpeller opens a custom dictionary as shareable and writable, and leaves it open. When a
context requests an update, the disk file and the in-memory list are updated simultaneously. Because of
this, multiple contexts can write to the same custom dictionary. Updates are immediately visible to all
contexts.

Note    It is possible to open a custom dictionary that is read-only. In this case, the dictionary can be used
for spellchecking, but no updates are possible. Use the CustomIsUpdateable property to test for this
situation.

Each context maintains a separate dictionary list based on the order in which the dictionaries were
opened by the context. This order determines how VisualSpeller searches dictionaries. The first dictionary
in the list is the one VisualSpeller searches first. Because of this, it is important that the dictionary that is
likely to contain the most words be loaded first.

Dictionaries are referenced through the dictionary array. When a dictionary is opened, it is added to the
array. When it is closed, it is removed from the array. The index for a specific dictionary changes therefore
as dictionaries come and go. This is easy to handle because the user normally chooses a dictionary from
a list box. As long as the application reloads the list box each time it is displayed, the index returned by
the list box will be correct.

Custom Dictionaries

Alphabetization in Custom Dictionaries

Extended Custom Dictionary Format

Exclusion and Automatic Replacement Lists

Alphabetization in Custom Dictionaries

To make searching a custom dictionary more efficient, VisualSpeller sorts it into a special hashing order
when it places the dictionary in memory. Because of this, there is no benefit to alphabetizing the words in
a custom dictionary. So words in a custom dictionary appear in the order in which they were added to the
dictionary. This makes the AddToCustom action very fast.

Custom Dictionaries

Sharing Custom Dictionaries

Extended Custom Dictionary Format

Exclusion and Automatic Replacement Lists

Extended Custom Dictionary Format
Like a compatible custom dictionary, an extended custom dictionary is a simple text file. Its format,
however, provides for replacement and hyphenation information along with correctly spelled words. An
extended custom dictionary always begins with the following line:

VTSpell*Extended,language
Language is the language code for the dictionary. It is one of the following values:

Code Language

0 American

1 English

2 French

3 German

4 Spanish

5 Portuguese

6 Italian

7 Dutch

8 Swedish

9 Finnish

10 Norwegian

11 Latin

12 Welsh

13 Polish

14 Hungarian

15 Flemish

16 Czech

17 Icelandic

18 Esperanto

19 Catalan

20 Romanian

21 Bulgarian

22 Russian

23 Quechua

24 Turkish

25 Indonesian

26 Hebrew

27 Danish

28 Canadian

The general format for each line in an extended custom dictionary is as follows:

Word [?][/|\|"Replacement/|\|"] [Hyphenation]

Word is the string that VisualSpeller compares to each word in the text buffer. The question mark, if

present, specifies that user intervention is required. Omitting the question mark specifies that no user
intervention is required. Replacement, if present, is the default replacement word for Word. The question
mark and the Replacement string combine to have the following meanings:

? Replacement Meaning

Not Present Not Present Treat any occurrence of Word as a correct spelling.

Present Not Present Treat any occurrence of Word as a normal
misspelling.

Not Present Present Automatically replace any occurrence of Word with
Replacement without intervention from the user.

Present Present Treat any occurrence of Word as a misspelling with
Replacement as the only suggestion.

Replacement must be bracketed by slashes (/), backslashes (\), or double quotes ("). The replacement
word itself must not contain the delimiter. In the following example, the name MacDonald has the
suggested replacement McDonald:

MacDonald ?/McDonald/

Hyphenation information can be added to standard dictionaries and to extended custom dictionaries. This
information is not used by VisualSpeller in any way. It is provided solely for use by applications. When
present, hyphenation information has the form #^#^ . . .    where # is the syllable length and the caret (^) is
a preferred hyphenation point. A hyphen (-) can be used to mark less desirable hyphenation points. The
sum of the syllable lengths must be less than the word length. In the following example, the word present
is hyphenated present:

present 3^

Here, the word magnificent is hyphenated magnificent. Notice that two of the three hyphenation points are
marked with a caret. This indicates that magnificent and magnificent are the preferred hyphenations for
the word:

magnificent 3^3-1^

Hyphenation information applies to the original word, not to the replacement word. Because of this,
hyphenation information is meaningless in an entry that also contains replacement information.

Custom Dictionaries

Sharing Custom Dictionaries

Alphabetization in Custom Dictionaries

Exclusion and Automatic Replacement Lists

Exclusion and Automatic Replacement Lists

You can use an extended custom dictionary to create exclusion lists and automatic replacement lists. An
exclusion list is a list of words that you always want to be considered invalid even if they are listed as
valid in another dictionary. If, for example, you tend to confuse the words effect and affect, you could
create an extended custom dictionary in which these words are tagged VSIR_MISSPELLED. Then, you
could change the SearchOrder so custom dictionaries are first, and make sure you open the exclusion
dictionary first. When you perform a spellcheck, VisualSpeller looks for each word first in the exclusion list
and asks for confirmation on any use of effect or affect.

An automatic replacement list is an alternate find and replace mechanism. If, for example, you prefer
never to use contractions in a document, you could create an extended dictionary that contains only
contractions and replacements tagged with VSIR_REPLACE_ALL. When you spellcheck with
AutoReplace on, all contractions listed in the dictionary are automatically and transparently replaced. If
you prefer to confirm each replacement, tag each word in the automatic replacement list with
VSIR_MISSPELLED.

Custom Dictionaries

Sharing Custom Dictionaries

Alphabetization in Custom Dictionaries

Extended Custom Dictionary Format

Dictionary Caching
VisualSpeller can access a dictionary stored in memory much faster than one stored in a disk file.
Because of this, custom dictionaries and ignore/replace lists are always stored in memory. Standard
dictionaries, however, are often too large to be stored entirely in memory and must therefore be cached.

Caching sets aside a small group of memory blocks that are shared among standard dictionaries. When
VisualSpeller needs the information in a section of the dictionary, it looks first in the cache. If the
information is not there, it copies the information from the dictionary file to an unused memory block in the
cache. Eventually, the cache is full. From this point forward, information from the disk replaces the oldest
information in the cache.

If VisualSpeller fails to find a word in the cache, however, it searches the custom dictionaries and
ignore/replace lists before seaching the rest of the standard dictionary on disk. This maximizes the
opportunity for finding the word in memory.

VisualSpeller allows you to adjust the size of the cache at run time. The goal of caching is to strike a
balance between performance and memory usage. Searching is fastest when a dictionary is totally in
memory, but memory availability often makes this impossible. A larger cache improves performance at the
expense of memory. A smaller cache conserves memory at the expense of performance.

A higher cache setting for a specific standard dictionary forces more of that dictionary into memory and
diminishes its need for caching. A lower setting may force less of the dictionary into memory and
increases its need for caching.

The effectiveness of the cache depends on factors such as its size, the size of the dictionary, and the
words being checked. For instance, if a one block cache were used with a dictionary that contains only
two blocks of data, VisualSpeller would have a 50% chance of finding a specific word in the cache. In this
case, the cache would be 50% effective. With a large dictionary, such as AMERICAN.VTD, which has
over 200 blocks of data, a one block cache would require a read almost every time.

Users can change the performance level by adjusting the Performance control in the Spell Options dialog
box.

Standard Dictionaries

Custom Dictionaries

Dictionary Caching

Enabling and Loading Dictionaries

Dictionary Categories

Maximum Number of Open Dictionaries
The number of dictionaries that VisualSpeller can open and use are limited only by memory and available
file handles. Standard dictionaries, when used by multiple contexts, share memory but not file handles.
Every context must have a separate file handle for the dictionary.

Standard Dictionaries

Custom Dictionaries

Enabling and Loading Dictionaries

Making a dictionary available for spellchecking involves three processes. The dictionary must be opened,
the information in the dictionary must be loaded into memory, and the dictionary must be enabled.
VisualSpeller opens a dictionary in response to an OpenStandard or OpenCustom action. It closes a
dictionary in response to a CloseDictionary action.

Loading a custom dictionary copies it entirely into memory. Loading a standard dictionary copies all or
part of it into memory, depending on the setting of DictionaryPerformance. Unloading a dictionary leaves it
open but removes it from memory and flushes all of its data from the cache if it is not in use by another
context. Pre-loading a dictionary speeds initial access at the expense of memory. Unloading it saves
memory but causes a delay when it is needed again. Use LoadDictionary to load an open dictionary and
UnLoadDictionary to unload it.

Enabling a dictionary flags it as available for spellchecking. Disabling a dictionary flags it as unavailable
for spellchecking. Enabling and disabling do not affect whether a dictionary resides in memory. When a
spellcheck begins, however, all enabled dictionaries are immediately loaded into memory. After a
spellcheck, dictionaries must be explicitly unloaded. Use EnableDictionary to enable or disable an open
and loaded dictionary.

The idea behind enabling and disabling is to make multi-language spellchecking practical. Rather than
continually opening and closing dictionaries, you can open all of the dictionaries you will need, then
enable or disable them as necessary during the spellcheck. This avoids opening and closing during a
spellcheck and makes the spellcheck much faster.

Standard Dictionaries

Custom Dictionaries

Dictionary Categories

Dictionary categories make it easy to perform operations on multiple dictionaries. Most properties and
functions that require an index also accept dictionary categories. You can combine categories with the Or
operator or by adding them together. For example, VSCAT_STANDARD by itself selects all standard
dictionaries. VSCAT_STANDARD + VSCAT_ENABLED, however, selects only standard dictionaries that
are enabled. Dictionary categories are as follows:

Category Description

VS_ALL All dictionaries (enabled or not)

VSCAT_STANDARD All standard dictionaries (enabled or not)

VSCAT_IRLIST All ignore/replace lists (enabled or not)

VSCAT_CUSTOM All custom dictionaries (enabled or not)

VSCAT_ENABLED All enabled dictionaries

VSCAT_DISABLED All disabled dictionaries

SpellChecking Overview

Spellchecking can be as simple or as elaborate a process as you need for your application. In a
straightforward situation, you can integrate a spellchecking control    into your application with just a few
lines of code. When you need greater control, VisualSpeller provides almost free rein as you tailor its
functionality to your application.VisualSpeller checks text in blocks up to 65,535 characters long. By
dividing longer blocks into 64K sections, you can check documents of almost any length.

Basic Spellcheck Procedure

Properties That Control Spellchecking

Properties Changed by the Spellchecking Process

Spellchecking a Single Word

Spellchecking a Text Block

Basic Spellcheck Procedure
VisualSpeller has properties that display a standard dialog box when a misspelling occurs. If you decide
to use the standard dialog box, your main task is to provide the text to be spellchecked and later to
update the original text if replacements are made. The simplest VisualSpeller implementation is as
follows:

VSpell1.OpenStandard = "american.vtd"

VSpell1.ClearCounts = True

While (text is left to spellcheck)

VSpell1.CheckText = (next block of text)

While VSpell1.ResultCode < 0

,

, prompt for misspelling if AutoPopUp is disabled

,

VSpell1.ResumeCheck = VSR_NOTHING_TO_CHECK

Wend

If VSpell1.ResultCode <> 0 Then

.

. handle error condition

.

Else

.

. zero result code means spellcheck is complete

. replace changed text, if necessary

.

End If

Wend

When a misspelling occurs, the ResultCode property provides important information you can use to
determine what action to take. A negative ResultCode specifies a normal condition such as a misspelling
or an ignore/replace list hit that requires attention. A positive value specifies an error condition.

Error and Status Conditions

Properties That Control Spellchecking

Properties Changed by the Spellchecking Process

Spellchecking a Single Word

Spellchecking a Text Block

Properties That Control Spellchecking
The following are properties that provide basic control over multi-word spellchecking. All of them are
available at both design time and run time. None affect single word spellchecking:

Property Affect on Spellchecking

AutoPopUp Causes    to display the    dialog box automatically when a
word is misspelled.

AutoReplace Enables global replacements.

AutoSuggest Causes    to call FindSuggestions when a word is
misspelled.

BreakWordCount Causes    to return control to the application after
processing a specific number of words.

IgnoreFullCaps Determines whether    checks words in all caps.

IgnorePartialNumbers Determines whether    checks words that contain a mixture
of letters and numbers.

MultiLine Enables use of LineBreak property for determining line
endings. Causes    to increment the CurrentLine and
LineOffset properties automatically.

SpellOptions
    =VSOPT_EXACT_MATCH

Determines whether exact case matches are required.

SpellOptions

    =VSOPT_IGNORE_PURE_NUMBERS

Causes    to check words comprised entirely of numerals.

SpellOptions
    = VSOPT_RETURN_EACH_WORD

Causes    to return control to the application after each
word.

Properties Changed by the Spellchecking Process

Properties Changed by the Spellchecking Process
The following table shows how single-word and multi-word spellchecking affect certain properties.

Property CheckWord Effect CheckText Effect

MisspelledWord None. Clears property after each word.
When a misspelling occurs, sets
property to the misspelled word or
the word that needs replacement.

ReplacementWord Clears property when spellchecking
begins. Sets property to replacement
word if a word tagged for replacement is
found in an ignore/replace list.

Clears property when spellchecking
begins. Sets property to
replacement word if a word tagged
for replacement is found in an
ignore/replace list.

CheckWord If word is found in dictionary, sets
property to actual word found. (Case of
found word may differ from original.)

If word is found in dictionary, sets
property to actual word found. (Case
of found word may differ from
original.)

Hyphenation Sets property to hyphenation data found
in dictionary if word is found and
hyphenation data is available.

Sets property to hyphenation data
found in dictionary if word is found
and hyphenation data is available.

ResumeOffset,WordOffset None. Sets ResumeOffset to location of
next word to spellcheck. Sets
WordOffset to location of word
currently being spellchecked.

IRAction Sets property to prescribed action if word
is found in an ignore/replace list.

Sets property to prescribed action if
word is found in an ignore/replace
list.

WhereFound,IRWhereFound Sets property to a code that identifies the
dictionary or list that contains a found
word.

Sets property to a code that
identifies the dictionary or list that
contains a found word.

WordCount,ReplaceCount None. Increments property for each word
spellchecked or replaced.

ResultCode Sets property to status of spellchecking
when CheckWord is complete.

Sets property to current status of
spellchecking throughout a
CheckText.

Because word checking has little effect on text checking properties, it is possible to check individual
words behind the scenes during a text spellcheck. The only properties affected by this action are
ReplacementWord, CheckWord, IRAction, and ResultCode. These properties must be saved prior to
the CheckWord action if their contents are important.

Properties That Control Spellchecking

Events
Many activities in an application occur in response to specific actions or situations. One way to time such
activities is to monitor the result code. Another is to respond to events. You can configure    to generate
events during any CheckText action. Events other than Found have little effect on performance. The
Found event, however, slows spellchecking significantly. It is normally disabled. No events are generated
during a CheckWord action.

Most    events occur during a CheckText action. Because of this, you cannot use CheckText inside an
event procedure. Doing so generates a VSR_IN_EVENT error. You can use the CheckWord property
inside an event if you save and restore any ReplacementWord or IRAction values that are needed on
exit from the event. These values are needed when the Word Not Found In Dictionary dialog box is
displayed.

AfterPopup Event

AfterReplace Event

BeforeReplace Event

CheckError Event

CheckStatus Event

Complete Event

Found Event

Misspelled Event

Spellchecking a Single Word
When you spellcheck a single word, it is passed directly to . No interpretation occurs, except for certain
uppercase checks. If the word has spaces or unusual characters, they are passed without modification.

A CheckWord action does not affect the MisspelledWord property, and does not automatically generate
replacement suggestions. This allows you to check a single word during a CheckText action without
affecting most context data. Only ReplacementWord, Hyphenation, IRAction, and the CheckWord
property itself are affected by a CheckWord action.

Basic Spellcheck Procedure

Spellchecking a Text Block

Spellchecking a Text Block
When you check a block of text,    VisualSpeller parses the block into separate words and checks them in
order, one at a time. Depending on the values stored in the context,    the spellcheck control either informs
the application of the misspelling or informs the user directly. In this process, control may return to the
application many times. It is up to the application to examine the return code and determine whether
spellchecking should resume. View on of the following examples for more information:

CheckText Example

Word Not Found Example

Global Replace Example

Number of Words Processed Example

Return After Each Word Example

CheckText Example

With these settings, a CheckText action runs to completion. Misspelled words are displayed automatically
in the    dialog box, and replacement words are automatically replaced.

Property Value

AutoPopup True

AutoReplace True

BreakWordCount 0

SpellOptions (VSOPT_RETURN_EACH_WORD) False

Control returns to the application in only four situations (result code is shown in parentheses):

1. All words in the text block are checked (0).

2. The user cancels the spellcheck (VSR_CHECK_CANCELED).

3. A replacement fails because the text buffer is too small (VSR_REPLACE_OVERFLOW).

4. An error such as a dictionary read failure occurs (VSR_ . . .).

In the third situation (text buffer overflow), you must determine whether to cancel the spellcheck or to
continue. To continue, move the text to a larger buffer, perform the replacement, adjust WordOffset and
ResumeOffset if necessary, and set ResumeCheck.

Spellchecking a Text Block

Word Not Found Example
In this case, control returns to the application when a word is not found in a dictionary or ignore/replace
list, and it is not tagged for automatic replacement.

Property Value

AutoPopup False

AutoReplace True

BreakWordCount 0

SpellOptions (VSOPT_RETURN_EACH_WORD) False

When control returns, ResultCode is VSR_WORD_MISSPELLED if the word was misspelled. It is
VSR_IGNORE_REPLACE if the word was found in an ignore/replace list and a VSIR_PROMPT action is
needed. (VSIR_GLOBAL actions are handled automatically.)

The application must take appropriate action, usually with a PopUpWordMisspelled, or with a custom
dialog box. After handling the word, the application normally uses a ResumeCheck action. If WordOffset
and ResumeOffset are unchanged, spellchecking proceeds normally. Eventually, one of the situations
listed in the CheckText example arises. Note that with these settings, ResultCode can never be
VSR_CHECK_CANCELED. Only events and popup dialog boxes can generate this status.

Spellchecking a Text Block

Global Replace Example
This example is the same as the Word Not Found example, except that control also returns when a global
replace flag is found in an ignore/replace list. In this case, the ResultCode is VSR_IGNORE_REPLACE
and IRAction is VSIR_GLOBAL + VSIR_REPLACE.

Property Value

AutoPopup False

AutoReplace False

BreakWordCount 0

SpellOptions (VSOPT_RETURN_EACH_WORD) False

The application must handle the replacement. This can be accomplished using the ReplaceLastWord
property because all pertinent information is stored in the context.

Spellchecking a Text Block

Number of Words Processed Example
With these settings, control returns to the application and ResultCode is set to VSR_BREAK after 20
words are handled by . This type of control keeps the spellchecker from maintaining exclusive control of
the system.

Property Value

AutoPopup False

AutoReplace False

BreakWordCount 20

SpellOptions (VSOPT_RETURN_EACH_WORD) False

When control returns to the application, use the DoEvents to relinquish control to other Windows
applications.

Spellchecking a Text Block

Return After Each Word Example
In this example, the VSOPT_RETURN_EACH_WORD option of the SpellOptions property is enabled.
This causes    to return control to the application after every word, whether it is misspelled or not.

Property Value

AutoPopup False

AutoReplace False

BreakWordCount 0

SpellOptions (VSOPT_RETURN_EACH_WORD) True

When control returns to the application, ResultCode is VSR_REPLACED if the words was automatically
replaced. It is VSR_FOUND if the word was found in a dictionary or ignore/replace list. If the word was
found, the WhereFound and possibly IRWhereFound properties are valid. One reason to use the
settings in this example, is to generate an analysis of the text block based on property settings at the time
control is returned.

Spellchecking a Text Block

Language Considerations

VisualSpeller is designed to allow spellchecking in multiple languages. Note, however, that as a Windows
application it assumes text passed to it conforms to the ANSI character set. Checking text that originates
outside of Windows may generate false misspellings.

AboutBox Property

Description

Displays the About VisualSpeller dialog box. This dialog box contains information about your version of
VisualSpeller, including your serial number. You must have your serial number to receive technical
support or upgrade pricing on future product releases.

Syntax

spellcontrol.AboutBox

AddSuggestion Property

Description

Adds a word you specify to the word suggestion list.

Syntax

spellcontrol.AddSuggestion (matchCode)    = text

Part Type Description

matchCode Integer A value that VisualSpeller uses to determine
the placement of text in the suggestion list.
Larger values (up to 32,767) force text higher
in the list. If matchCode is zero, VisualSpeller
places the word using the same algorithm it
uses for internal suggestions.

text String The    word to add to the suggestion list.

Remarks

Use the MaxSuggestions property to control how many suggestions VisualSpeller generates and
displays to the user.

Example

The following example adds the string assigned to the variable MySuggestion$ to the top of the
suggestion list.

VSpell1.AddSuggestion (32767) = MySuggestion$

AddToCommonIRList    Property

Description

Stores current MisspelledWord in the common ignore/replace list.

Syntax

spellcontrol.AddToCommonIRList = code

Part Type Description

code Integer Determines the action that should be taken if the word is found again.
Following are the valid settings for code:

Constant Description

VSIR_SPELLED_OK Treat the word as though it is spelled correctly
without asking the user for confirmation.

VSIR_REPLACE_ALL Replace all future occurrences of the word with
ReplacementWord without asking the user for
confirmation.

VSIR_MISSPELLED Ask user to confirm whether word is misspelled.

VSIR_PROMPT_REPLA
CE

Ask the user before replacing the word with
ReplacementWord.

VSIR_HYPHENATION Hyphenation information for the word can be
added to the list. This code, if used, must be
added to one of the codes listed above and the
Hyphenation property must be set.

Example

The following example specifies that the last misspelled word should be added to the common
ignore/replace list and flagged for global replacement by the ReplacementWord:

VSpell1.AddToCommonIRList = VSIR_REPLACE_ALL

AddToCustom Property

Description

Adds the last misspelled word to the specified custom dictionary.

Syntax

spellcontrol.AddToCustom (index) = code

Part Type Description

index Integer Indicates the dictionary in the DictionaryName array to which a
word is added. Note that since this must always be a custom
dictionary, the index is always a negative number. However, you
can use a dictionary category, such as VSCAT_CUSTOM to
instruct VisualSpeller to add the word to all custom libraries.
VS_ALL, VSCAT_ENABLED and VSCAT_DISABLED are also
valid variables for index.

code Integer Determines the action taken when the word is found in text.
Following are the valid constants for code:

Constant Description

VSIR_SPELLED_OK Treat the word as though it is
spelled correctly without asking
the user for confirmation.

VSIR_REPLACE_ALL Replace all future occurrences
of the word with
ReplacementWord without
asking the user for confirmation.

VSIR_MISSPELLED Ask user to confirm whether
word is misspelled.

VSIR_PROMPT_REPLACE Ask the user before replacing
the word with
ReplacementWord.

VSIR_HYPHENATION Hyphenation information for the
word can be added to the list.
This code, if used, must be
added to one of the codes listed
above and the Hyphenation
property must be set.

Example

The following example specifies that the last misspelled word should be added to the first custom
dictionary as spelled.

VSpell1.AddToCustom (-1) =VSIR_SPELLED_OK

AddToStandardIRList Property

Description

Adds the last misspelled word to the ignore/replace list associated with the specified standard dictionary.

Syntax

spellcontrol.AddToStandardIRList (index) = code

Part Type Description

index Integer Specifies a dictionary in the DictionaryName array. This must be a
positive number or a dictionary category such as VSCAT_STANDARD,
VSCAT_ENABLED, VSCAT_DISABLED, and VS_ALL.

code Integer Determines the action that should be taken if the word is found again.
Following are the valid constants for code:

Constant Description

VSIR_SPELLED_OK Treat the word as though it is spelled
correctly without asking the user for
confirmation.

VSIR_REPLACE_ALL Replace all future occurrences of the
word with ReplacementWord without
asking the user for confirmation.

VSIR_MISSPELLED Ask user to confirm whether word is
misspelled.

VSIR_PROMPT_REPLACE Ask the user before replacing the word
with ReplacementWord.

VSIR_HYPHENATION Hyphenation information for the word
can be added to the list. This code, if
used, must be added to one of the
codes listed above and the
Hyphenation property must be set.

AfterPopup Event

Description

This event occurs after a word has been handled by the Word Not Found dialog box.

Syntax

Private Sub spellcontrol_AfterPopup (EventAction As Integer)

Following are the valid constants for EventAction:

Constant Description

VS_DEFAULT_HANDLING Spellcheck continues.

VS_EVENT_HANDLED Spellcheck continues.

VS_CANCEL_SPELLCHECK Spellcheck halts and control returns to the application with
VSR_CHECK_CANCELED the result. A Complete event is
generated.

Remarks

This event occurs only if popup events are enabled and AutoPopup is True. It provides a convenient
place for updating a text control when the user chooses to replace the misspelled word. On entry to the
AfterPopup event, EventAction is set to VS_DEFAULT_HANDLING. To cancel the spellcheck, the event
code should set EventAction to VS_CANCEL_SPELLCHECK.

AfterReplace Event

Description

This event occurs after an automatic global replacement of a word with an entry from an ignore/replace
list or extended custom dictionary.

Syntax

Private Sub spellcontrol_AfterReplace (EventAction As Integer)

Following are the valid constants for EventAction:

Constant Description

VS_DEFAULT_HANDLING Spellcheck continues.

VS_EVENT_HANDLED Spellcheck continues.

VS_CANCEL_SPELLCHECK Spellcheck halts and control returns to the application with
VSR_CHECK_CANCELED the result. A Complete event is
generated.

Remarks

This event occurs only if replace events are enabled and AutoReplace is True. It provides a convenient
place for updating a text control after an automatic replacement action. On entry to the AfterReplace
event, EventAction is set to VS_DEFAULT_HANDLING, and may be changed to    VS_CANCEL_SPELLCHECK to
cancel the spellcheck.

AllowJoinedWords Property

Description

Determines whether hyphenated words are considered to be spelled correctly if the component words are
individually spelled correctly.

Syntax

spellControl.AllowJoinedWords [= boolean]

Remarks

If this property is True, VisualSpeller considers a hyphenated word to be spelled correctly if its component
words are individually spelled correctly. If it is False, hyphenated words must be explicitly found in a
dictionary to be considered spelled correctly.

Example

The following example specifies that hyphenated words must be explicitly found in the dictionary to be
considered correct:

VSpell1.AllowJoinedWords = False 'space-heater would fail

VSpell1.AllowJoinedWords = True 'space-heater would check OK

AutoPopup Property

Description

Determines whether a dialog box appears automatically when a misspelling occurs.

Syntax

spellcontrol.AutoPopup [= boolean]

Remarks

If this property is True, the Word Not Found In Dictionary dialog box appears automatically the first time   
VisualSpeller encounters a potentially misspelled word. It remains visible until the spellcheck is complete,
until it is canceled, or until some other condition returns control to the application.

If it is False, the dialog box appears only when explicitly called with the PopupWordMisspelled property.
It disappears when the user makes a decision.

When AutoPopup is True and popup events are enabled, VisualSpeller generates an AfterPopup event
each time the user makes a decision on a misspelled word.

Use EnableEventOptions to enable popup events.

AutoReplace Property

Description

Determines whether global replace conditions in ignore/replace lists and extended custom dictionaries
are handled automatically by VisualSpeller.

Syntax

spellcontrol.AutoReplace [= boolean]

Remarks

If this property is True, suggestions are generated after the dialog box appears if AutoPopup is enabled.
During this process, "Searching..." appears in the suggestion list box. If AutoPopup is disabled,
suggestions are generated before control returns to the application and before the Misspelled event
occurs.

If this property if False, suggestions are not generated automatically and must be explicitly generated via
FindSuggestions or via the suggestions buttons in the dialog box.

If AutoReplace is True and replace events are enabled, VisualSpeller generates BeforeReplace and
AfterReplace events.

Use EnableEventOptions to enable replace events.

AutoSuggest Property

Description

Determines whether VisualSpeller automatically generates the suggestion list for a misspelled word.

Syntax

spellcontrol.AutoSuggest [= boolean]

Remarks

If this property is True, suggestions are generated after the dialog box appears. During this process
Searching... appears in the suggestion list box.

If this property is False, suggestions are generated before control returns to the application and before
the Misspelled event occurs.

BeforeReplace Event

Description

The BeforeReplace event occurs when a global automatic replacement is about to occur.

Syntax

Private Sub spellcontrol_BeforeReplace (EventAction As Integer)

Following are the valid constants for EventAction:

Constant Description

VS_DEFAULT_HANDLING Word is replaced and spellchecking continues.

VS_EVENT_HANDLED Spellchecking continues with the next word. This is useful
when the event rather than VisualSpeller handles the
replacement. Text and ResumeOffset properties can be
used to adjust the text being spellchecked. The replacement
word is not spellchecked unless the ResumeOffset is
adjusted appropriately.

VS_CANCEL_SPELLCHECK Replacement does not occur. Spellchecking halts and
control is returned to the calling procedure with
VSR_CHECK_CANCELED the result.

Remarks

This event occurs in place of the Misspelled event for automatic replacements. It does not occur if
AutoReplace is False or replace events are disabled (The Misspelled event occurs instead.)
EventAction is preset to VS_DEFAULT_HANDLING on entry to the BeforeReplace procedure. You can
change the setting of EventAction during the procedure.

Use EnableEventOptions to enable replace events.

BeginCheck Property

Description

Begins spellchecking current text in buffer.

Syntax

resultCode = spellcontrol.BeginCheck

Part Type Description

resultCode Integer Variable that receives the returned value of the ResultCode.
Test this property to determine if the BeginCheck was
successful.

Remarks

Calling this property resets all offset values to zero and initiates a spellcheck from the beginning of the
current buffer text. If called during a spellcheck, BeginCheck restarts the spellcheck from the beginning
of the text.

CheckText is equivalent to "Text = text" followed by BeginCheck.

Example

The following example initiates a spellcheck and assigns the result code to the variable MyResult.

Dim MyResult As Integer

MyResult = VSpell1.BeginCheck

BreakWordCount Property

Description

Sets or returns the interval at which    returns control to the application during processing.

Syntax

spellcontrol.BreakWordCount [= count]

Part Type Description

count Integer The number of words to process before returning
control to the application.

Remarks

This property provides for a periodic break in the spellcheck process during a long spellcheck that has
few misspelled words. After checking the number of words specified by count, VisualSpeller returns
control to the application and/or triggers a CheckStatus event. Typically, control is given back to
Windows to process pending events. Then the spellcheck is resumed with ResumeCheck.

Example

The following example causes VisualSpeller to return control to the application after every 100th word
processed.

VSpell1.BreakWordCount = 100

CacheHits Property

Description

Returns the number of times data was found in the cache.

Syntax

number = spellcontrol.CacheHits

Part Type Description

number Long Variable that receives the
returned number of cache
hits.

Remarks

This property returns information you can use to fine tune the performance of cache.

See Also

CacheMisses property

CacheMisses Property

Description

Returns the number of times data was not found in cache. If the data is not found in the cache, a disk
access is required to find the data.

Syntax

number = spellcontrol.CacheMisses

Part Type Description

number Long Variable that receives the
returned number of cache
misses.

Remarks

This property returns information you can use to fine tune the performance of the cache.

See Also

CacheHits property

CacheSize Property

Description

Sets or returns the size of the internal memory cache used to manage blocks of data from standard
dictionaries.

Syntax

spellcontrol.CacheSize [= size]

Part Type Description

size Integer Size of the internal memory cache.

Remarks

The number of memory blocks assigned to the cache is shared among all loaded dictionaries and all
users of the spellchecker. The user that specifies the largest cache controls its size. A value of zero
specifies the default cache size. The larger the cache size, the better the overall spellchecking
performance. DictionaryBlockCount returns the cache size required to fit the entire dictionary in
memory.

CheckedWord Property

Description

Returns the last word checked in a CheckWord or CheckText operation.

Syntax

word = spellcontrol.CheckedWord

Part Type Description

word String Variable that receives the returned, last checked
word.

Remarks

The word returned will be the last variant of the word spellchecked. This may be a different case than the
original word, and reflects the actual word found if the word was not misspelled.

CheckError Event

Error Conditions

Description

The CheckError event occurs when there is an error condition during a CheckText, BeginCheck, or
ResumeCheck action.

Syntax

Private Sub spellcontrol_CheckError (EventAction As Integer)

Following are the valid constants for EventAction:

Constant Description

VS_DEFAULT_HANDLING Spellcheck halts and control returns to the application.

VS_EVENT_HANDLED Spellcheck continues.

VS_CANCEL_SPELLCHECK Spellcheck halts and control returns to the application with
VSR_CHECK_CANCELED the result. A Complete event is
generated.

Remarks

This event occurs only if error events are enabled. On entry to the CheckError event, EventAction is set
to VS_DEFAULT_HANDLING. It can be changed to one of the other settings during the process.

Use EnableEventOptions to enable error events.

CheckStatus Event

Status Conditions

Description

The CheckStatus event occurs when a status condition in a CheckText, BeginCheck, or
ResumeCheck action is not handled by a different event.

Syntax

Private Sub spellcontrol_CheckStatus (EventAction As Integer)

Following are the valid constants for EventAction:

Constant Description

VS_DEFAULT_HANDLING Spellcheck halts and control returns to the application.

VS_EVENT_HANDLED Spellcheck continues.

VS_CANCEL_SPELLCHECK Spellcheck halts and control returns to the application with
VSR_CHECK_CANCELED the result. A Complete event is
generated.

Remarks

This event occurs only if status events are enabled. Click here for information about Status Conditions.
On entry to the CheckStatus event, EventAction is set to VS_DEFAULT_HANDLING. It can be changed
to any of the other settings during the process.

Use EnableEventOptions to enable status events.

CheckText Property

Description

Specifies the text to be spellchecked and evokes a spellcheck session.

Syntax

spellcontrol.CheckText = text

Part Type Description

text String Text to be spellchecked.

Remarks

CheckText is one of the basic spellcheck properties. Assigning a buffer of text to it spellchecks the text. If
MultiLine is True, text can contain multiple lines.

When you start a spellcheck, it proceeds until    VisualSpeller encounters a condition that needs attention.
If control returns to the application, it must examine ResultCode and take appropriate action. If the
spellcheck is to continue, the application must initiate a ResumeCheck. When a misspell condition
occurs, MisspelledWord, WordOffset, and    ResumeOffset, will reflect the misspelled word and its
position in the text buffer. If MultiLine is enabled, then CurrentLine and LineOffset will be valid. If the
result is a VSR_IGNORE_REPLACE condition, then ReplacementWord may be set if the IRAction
includes VSIR_REPLACE.

To get the last variant of the current word that was checked, read CheckedWord.

Example

The following example checks the content of a text box without using events or automatically displayed
dialog boxes.

Dim ResCode As Integer

VSpell1.EventOptions = 0

VSpell1.AutoPopup = False

VSpell1.CheckText = TextBox.Text 'start spellcheck

ResCode = VSpell1.ResultCode 'get result

Do While ResCode < 0

Select Case ResCode

Case VSR_WORD_MISSPELLED, VSIR_IGNORE

VSpell1.PopupMisspelledWord = 1 'display misspell dialog box

ResCode = VSpell1.ResultCode 'get new result

Case VSR_BREAK

Do Events 'give Windows a time slice

End Select

If ResCode - VSR_CHECK_CANCELLED 'see if cancelled

Exit Loop

End If

ResCode = VSpell1.ResumeCheck 'resume w/o rechecking

Loop

TextBox.Text = VSpell1.Text 'read out spellchecked text

CheckWord Property

Description

Spellchecks a single specified word and sets the value of CheckedWord.

Syntax

spellcontrol.CheckWord = word

Part Type Description

word String Word to be spellchecked.

Remarks

word is spellchecked as is with no parsing. All characters, including spaces, are considered. It is
maintained in a buffer separate from that of the CheckTextproperty. CheckWord invokes no action,
generates no events or suggestions, performs no replacements, and does not affect the
MisspelledWordproperty.

To return the last variant of word that was checked with CheckWord use CheckedWord.

ClearCommonIRList Property

Description

Clears the specified types of words from the common ignore/replace list.

Syntax

spellcontrol.ClearCommonIRList = types

Part Type Description

types Integer Determines
which words are
cleared from the
list. It can be
composed of
one or more of
the following
four settings
which can be
combined with
the OR operator
or by addition:
Constant Description

VSIR_GLOBAL Remove words
tagged for
action without
confirmation.

VSIR_PROMPT Remove words
tagged for
action with
confirmation.

VSIR_IGNORE Remove words
that are to be
ignored.

VSIR_REPLAC
E

Remove words
that are to be
automatically
replaced.

The following four choices should not be added to any other
choice as this may change the selections.

Constant Description

VSIR_SPELLED_OK Remove words tagged as spelled
correctly.

VSIR_REPLACE_ALL Remove words tagged for global
replacement.

VSIR_MISSPELLED Remove misspelled words.

 VSIR_PROMPT_REPLACE Remove words tagged for
replacement with confirmation

Remarks

Only those words that have all of the settings specified by types are removed from the list. For example, if
types is VSIR_PROMPT, all entries that require confirmation are removed whether they are to be ignored
or replaced. If types is VSIR_PROMPT + VSIR_IGNORE, only those entries that are to be ignored with

confirmation are removed.

To remove all entries from the list, set types to zero.

ClearCounts Property

Description

Resets the ReplaceCount and WordCount properties to zero.

Syntax

spellcontrol.ClearCounts = 1

ClearOffsets Property

Description

Resets the CurrentLine, LineOffset, WordOffset, and ResumeOffset properties to zero.

Syntax

spellcontrol.ClearOffsets = 1

ClearStandardIRList Property

Description

Clears the specified types of words from the ignore/replace list associated with the specified standard
dictionary.

Syntax

spellcontrol.ClearStandardIRList (index) = types

Part Type Description

index Integer Identifies a
dictionary in the
DictionaryName
array. Positive
numbers refer to
standard
dictionaries. The
dictionary
categories
VS_ALL,
VSCAT_STAN
DARD,
VSCAT_ENAB
LED and
VSCAT_DISAB
LED may be
used to specify
multiple lists.

types Integer Determines
which words are
cleared from the
list. It can be
composed of
one or more of
the following
four settings
which can be
combined with
the OR operator
or by addition:
Constant Description

VSIR_GLOBAL Remove words
tagged for
action without
confirmation.

VSIR_PROMPT Remove words
tagged for
action with
confirmation.

VSIR_IGNORE Remove words
that are to be
ignored.

VSIR_REPLAC
E

Remove words
that are to be

automatically
replaced.

The following four choices should not be added to any other choice
as this may change the selections.

Constant Description

VSIR_SPELLED_OK Remove words tagged as spelled
correctly.

VSIR_REPLACE_ALL Remove words tagged for global
replacement.

VSIR_MISSPELLED Remove misspelled words.

 VSIR_PROMPT_REPLACE Remove words tagged for
replacement with confirmation

Remarks

Only those words that have all of the settings specified by types are removed from the list. For example, if
types is VSIR_PROMPT, all entries that require confirmation are removed whether they are to be ignored
or replaced. If types is VSIR_PROMPT + VSIR_IGNORE, only those entries that are to be ignored with
confirmation are removed.

To remove all entries from the list, set types to zero.

ClearSuggestions Property

Description

Clears the word suggestion list.

Syntax

spellcontrol.ClearSuggestions = 1

ClickedButton Property

Description

Returns information about the button that was clicked during a ClickIn or ClickOut event.

Syntax

button = spellcontrol.ClickedButton

Part Type Description

button Long Variable that receives the returned information. Following are the valid constants returned to this
variable:

Constant Dialog Box Button

VSCLICK_WORD_MISSPELLED_HELP Word Not Found In Dictionary Help

VSCLICK_OPTIONS Word Not Found In Dictionary Options

VSCLICK_PROMPT_REPLACE Word Not Found In Dictionary Prompt Replace

VSCLICK_ADD_TO_CUSTOM Word Not Found In Dictionary Add To Custom

VSCLICK_REPLACE_ALL Word Not Found In Dictionary Replace All

VSCLICK_REPLACE Word Not Found In Dictionary Replace

VSCLICK_IGNORE_ALL Word Not Found In Dictionary Ignore All

VSCLICK_IGNORE Word Not Found In Dictionary Ignore

VSCLICK_SUGGEST_NOT_FOUND Word Not Found In Dictionary Suggestions Not
Found

VSCLICK_SUGGEST_REPLACE_WITH Word Not Found In Dictionary Suggestions
Replace With

VSCLICK_CANCEL_SPELLCHECK Word Not Found In Dictionary Cancel
Spellcheck

VSCLICK_THESAURUS Not Available in this release

VSCLICK_OPTIONS_HELP Spell Options Help

VSCLICK_OPTIONS_OK Spell Options OK

VSCLICK_OPTIONS_CANCEL Spell Options Cancel

VSCLICK_OPEN_CUSTOM Spell Options Open Custom

VSCLICK_CLOSE_CUSTOM Spell Options Close Custom

VSCLICK_OPEN_STANDARD Spell Options Open Standard

VSCLICK_CLOSE_STANDARD Spell Options Close Standard

VSCLICK_THESAURUS_OK Not Available in this release

VSCLICK_THESAURUS_SEARCH Not Available in this release

VSCLICK_THESAURUS_CANCEL Not Available in this release

VSCLICK_THESAURUS_HELP Not Available in this release

Remarks

These constants reflect different bit values.

ClickIn Event

Description

This event is triggered when a button is pressed on either the Word Not Found in Dictionary or Spell
Options dialog box. When the event is entered, you can read the ClickedButton property to determine
which button was clicked.

Syntax

Private Sub spellcontrol_ClickIn (EventAction As Integer)

Following are the valid constants for EventAction:

Constant Description

VS_DEFAULT_HANDLING Normal function of the button is executed upon return from
this event and a ClickOut event is triggered.

VS_EVENT_HANDLED Normal function of the button is bypassed and the ClickOut
event is not triggered.

VS_CANCEL_SPELLCHECK Spellcheck halts and control returns to the application with
VSR_CHECK_CANCELED the result. No ClickOut event is
generated.

Remarks

The ClickIn event is triggered before any action is taken by the spellchecker. In some cases you can read
the ClickInfo or ClickInfoText properties to provide more information about the button.

ClickInfo Property

Description

Returns data related to a ClickIn or ClickOut event. This is only valid inside the event and only returns
meaningful information for certain buttons.

Syntax

code = spellcontrol.ClickInfo

Part Type Description

code Long Variable that receives the returned data. Following are the valid
constants returned to this variable:

Constant Description

VSCLICK_ADD_TO_CUSTOM Returns a negative number indicating
the index of the custom dictionary
selected after clicking the Add To
Custom button on the Word Not
Found in Dictionary dialog box.

VSCLICK_OPEN_CUSTOM Returns zero or a negative number
indicating the index of the custom
dictionary to be opened after clicking
on the Open Custom button of the
Spell Options dialog box. This return
code is only valid in a ClickOut
event.

VSCLICK_CLOSE_CUSTOM Returns a negative number indicating
the index of the custom dictionary to
be close after clicking on the Close
Custom button of the Spell Options
dialog box. This code is only valid in a
ClickIn event.

VSCLICK_OPEN_STANDARD Returns zero or a positive number
indicating the index of the standard
dictionary to be opened after clicking
on the Open Standard button of the
Spell Options dialog box. This code is
only valid in a ClickOut event.

VSCLICK_CLOSE_STANDARD Returns a positive number indicating
the index of the standard dictionary to
be closed after clicking on the Close
Standard button of the Spell Options
dialog box. This code is only valid in a
ClickIn event.

ClickInfoText Property

Description

Returns data related to a ClickIn or ClickOut event. This property is only valid inside the event and only
returns meaningful information for certain buttons.

Syntax

text = spellcontrol.ClickInfoText

Part Type Description

text Long Variable that receives the returned data. Following are the valid
constants returned to this variable.

Constant Description

VSCLICK_PROMPT_REPLACE Returns the string
currently in the Replace
With edit box.

VSCLICK_REPLACE_ALL Returns the string
currently in the Replace
With edit box.

VSCLICK_REPLACE Returns the string
currently in the Replace
With edit box.

VSCLICK_SUGGEST_REPLACE_WITH Returns the string
currently in the Replace
With edit box.

ClickOut Event

Description

This event is triggered when a button is pressed on either the Word Not Found in Dictionary or Spell
Options dialog box. When the event is entered, you can read the ClickedButton property to determine
which button was clicked.

Syntax

Private Sub spellcontrol_ClickOut (EventAction As Integer)

Following are the valid constants for EventAction:

Constant Description

VS_DEFAULT_HANDLING Continues as would normally following the button press.

VS_EVENT_HANDLED Has no effect since the button function has already been
performed. Continues same as VS_DEFAULT_HANDLING.

VS_CANCEL_SPELLCHECK Spellcheck halts and control returns to the application with
VSR_CHECK_CANCELED the result.

Remarks

The ClickOut event is triggered after the ClickIn event and after the speller has performed whatever
functionality the button is supposed to do. If the ClickIn event overrides the normal button function by
setting the EventAction parameter to either VS_EVENT_HANDLED or VS_CANCEL_SPELLCHECK,
then the ClickOut event is not fired. In some cases the ClickInfo or ClickInfoText properties may
contain more information about the clicked button.

CloseDictionary Property

Description

Closes the specified dictionary.

Syntax

spellcontrol.CloseDictionary (    index   )

Part Type Description

index Integer Specifies a dictionary in the DictionaryName
array. Positive numbers refer to standard
dictionaries. Negative numbers refer to custom
dictionaries. You can also use any valid
dictionary category to specify multiple
dictionaries.

Remarks

When the dictionary is closed, the index numbers of the remaining dictionaries may change to fill in gap
left by the closed dictionary (s). For instance, if three standard dictionaries are open, and the second one
is closed, the dictionary which previously used index 3 now uses index 2.

Example

The following example closes the most recently opened custom dictionary:

VSpell1.CloseDictionary (-CustomCount)

CommonIRListIsEnabled Property

Description

Returns whether the common ignore/replace list is enabled.

Syntax

 boolean = spellcontrol.CommonIRListIsEnabled

Remarks

If this property is True, the common ignore/replace list is enabled. If this property is False, the common
ignore/replace list is disabled.

To enable or disable the common ignore/replace list, use EnableCommonIRList.

Complete Event

Description

This event occurs when a spellcheck action is complete or when it is canceled by the user.

Syntax

Private Sub spellcontrol_Complete (EventAction As Integer)

Following are the valid constants for EventAction:

Constant Description

VS_DEFAULT_HANDLING VisualSpeller returns control to the calling procedure with
VSVEOPT_COMPLETE the result.

VS_EVENT_HANDLED If the procedure specifies new text using the Text property
or changes the ResumeOffset property, spellchecking
continues. Otherwise, control returns to the calling
procedure and a VSR_NOTHING_TO_CHECK error occurs.

VS_CANCEL_SPELLCHECK Spellchecking halts and control is returned to the calling
procedure with VSR_CHECK_CANCELED the result.

Remarks

Complete events occur only when the complete events are enabled. When a spellcheck ends normally,   
presets EventAction to VS_DEFAULT_HANDLING on entry to the Complete procedure. When the user
cancels a spellcheck before completion,    presets EventAction to VS_CANCEL_SPELLCHECK. You can
change EventAction by setting it to one of the other values during the Complete procedure.

CreateCustom Property

Description

Creates an empty compatible custom dictionary.

Syntax

spellcontrol.CreateCustom = name

Part Type Description

name String Name of the dictionary to create.

Remarks

File must not already exist, or error VSR_FILE_EXISTS is generated. If successful, -CustomCount will
return the index number for the new dictionary.

CreateCustomExtended Property

Description

Creates an extended custom dictionary.

Syntax

spellcontrol.CreateCustomExtended (languagecode) = name

Part Type Description

languagecode Integer One of the predefined VisualSpeller language codes.
See DictionaryLanguage for a list of codes. This
code is for informational purposes only, and does not
affect the spellcheck or dictionary contents in any way.

name String Name of the dictionary to create.

Remarks

This property creates an empty extended custom dictionary. The file must not already exist, or error
VSR_FILE_EXISTS is generated. If successful, -CustomCount gives the index number for the dictionary.

CurrentLine Property

Description

Sets or returns the line number reference for the current word.

Syntax

spellcontrol.CurrentLine [= lineNumber]

Part Type Description

lineNumber Long Identifies the line within a text block.

Remarks

This value is for the application's use and is not used by the spellchecker. If MultiLine is enabled, then
the spellchecker increments this zero-based value on each new line (as determined by LineBreak) during
a spellcheck. For more information, refer to LineOffset.

Example

The following example displays the position of the misspelled word.

MsgBox "Word misspelled at line "& Str(VSpell1.CurrentLine + 1)& " character " &

Str(VSpell1.LineOffset + 1)

CustomCount Property

Description

Returns the number of open custom dictionaries.

Syntax

count = spellcontrol.CustomCount

Part Type Description

count Integer Variable that receives the returned number of
open dictionaries.

Remarks

Since this returns the number of open custom dictionaries, -CustomCount (negative CustomCount) is
always the index number of the most recently opened custom dictionary.

Example

The following example fills a list box with custom dictionary names:

Max = VSpell1.CustomCount

For X = 1 to Max

ListBox.AddItem = VSpell1.DictionaryName (-X)

End X

CustomDictionary Property

Description

Sets the initial custom dictionary. This is a design-time only property.

Syntax

spellcontrol.CustomDictionary = name

Part Type Description

name String Name of the custom dictionary.

Remarks

This property is used internally by VisualSpellers property pages. At runtime, use OpenCustom to
accomplish the same result.

CustomIsExtended Property

Description

Returns whether a custom dictionary is compatible or extended.

Syntax

status = spellcontrol.CustomIsExtended (index   )

Part Type Description

index Integer Specifies the DictionaryName index number of the custom dictionary for
which to return the type. Negative numbers indicate custom dictionaries.

status Boolean Variable that holds the returned information. If status is True, the dictionary
is an extended custom dictionary. An extended custom dictionary can
include ignore/replace and hyphenation information. The normal extension
for an extended dictionary is VTC.

If status is False, the dictionary is a compatible custom dictionary. These
dictionaries are compatible with the dictionaries used by Microsoft Word. It is
a simple text file that contains a list of correctly spelled works, arranged one
per line. The normal extension for a compatible dictionary is DIC.

CustomIsReadOnly Property

Description

Returns whether a custom dictionary was opened read-only.

Syntax

status = spellcontrol.CustomIsReadOnly (index   )

Part Type Description

index Integer Specifies the DictionaryName index number of the
custom dictionary for which to return the open flag.
Negative numbers indicate custom dictionaries.

status Boolean Variable that receives the returned information. If
status is True, the dictionary is read-only and cannot
be modified. If status is False, the dictionary is not
read-only. If the dictionary is also updateable, it can
be modified.

CustomIsUpdateable Property

Description

Returns whether a custom dictionary can be updated.

Syntax

status = spellcontrol.CustomIsUpdateable (index)

Part Type Description

index Integer Specifies the DictionaryName index number of
the custom dictionary for which to return the
updateable flag. Negative numbers indicate
custom dictionaries.

status Boolean Variable that receives the returned information.
If status is True, the dictionary is updateable. If
status is False, the dictionary is not
updateable.

Remarks

To enable or disable a custom dictionary, use EnableCustomUpdate.

DialogBGColor Property

Description

Sets or returns the background color of the Word Not Found in Dictionary and Spell Options dialog boxes.

Syntax

spellcontrol.DialogBGColor [= color]

Part Type Description

color OLE_COLOR The settings for color are:

Normal RGB colors specified
by using the Color palette or by
using the RGB or QBColor
functions in code.

System default colors
specified by system color
constants listed in the Visual
Basic object library in the Object
Browser. The Windows
operating environment
substitutes the user's choices
as specified in the Control
Panel settings.

DialogElements Property

Description

Returns bits indicating enabled dialog elements. Dialog elements are the controls in Word Not Found in
Dictionary and Spell Options dialog boxes. When disabled, a control is hidden leaving a blank spot in its
location.

Syntax

elements = spellcontrol.DialogElements

Part Type Description

elements Long Variable that receives the enabled information. Valid
constants for this variable can be tested by ANDing
with the following values:

Elements in Word Not Found in Dictionary
Dialog

VSD_WORD_MISSPELLED_HELP

VSD_OPTIONS

VSD_PROMPT_REPLACE

VSD_ADD_TO_CUSTOM

VSD_REPLACE_ALL

VSD_REPLACE

VSD_IGNORE_ALL

VSD_IGNORE

VSD_SUGGEST_NOT_FOUND

VSD_SUGGEST_REPLACE_WITH

VSD_CANCEL_SPELLCHECK

VSD_SUGGESTIONS_LIST

VSD_REPLACE_BOX

VSD_CUSTOM_LIST

VSD_THESAURUS

Elements in Spell Options Dialog Box

VSD_OPTIONS_HELP

VSD_CUSTOMS

VSD_STANDARDS

VSD_PERFORMANCE

VSD_SUGGESTION_LIMIT

VSD_AUTO_SUGGESTIONS

VSD_EXACT_MATCH

VSD_IGNORE_FULL_CAPS

VSD_IGNORE_PARTIAL

VSD_IGNORE_PURE

VSD_ALLOW_JOINED

VSD_RECHECK

Remarks

Dialog elements are enabled or disabled with the EnableDialogElements and DisableDialogElements
properties. All except the THESAURUS button in the Word Not Found in Dictionary dialog box are
enabled by default.

DialogHeight Property

Description

Returns the height of the Word Not Found in Dictionary dialog box.

Syntax

height = spellcontrol.DialogHeight

Part Type Description

height Long Variable that receives the current height of the dialog box
expressed in pixels.

DialogLeft Property

Description

Sets or returns the initial location of the left edge of the Word Not Found in Dictionary dialog box.

Syntax

spellcontrol.DialogLeft = position

Part Type Description

position Long Initial location expressed in pixels. When position is
zero, the dialog box is centered horizontally on the
screen.

DialogLeftActual Property

Description

Returns the actual location of the left edge of the Word Not Found in Dictionary dialog box.

Syntax

position = spellcontrol.DialogLeftActual

Part Type Description

position Long Variable that receives the current location of the left edge of
the dialog box expressed in pixels.

Remarks

When you move the dialog box using either the mouse or the DialogLeft property, the change is
automatically reflected in this property.

DialogTop Property

Description

Sets or returns the initial location of the top edge of the Word Not Found in Dictionary dialog box.

Syntax

spellcontrol.DialogTop = position

Part Type Description

position Long Initial location expressed in pixels. When the return value is
zero, the dialog box is centered vertically on the screen.

DialogTopActual Property

Description

Returns the actual location of the top edge of the Word Not Found in Dictionary dialog box.

Syntax

position = spellcontrol.DialogTopActual

Part Type Description

position Long Variable that receives the current location of the top edge of
the dialog box expressed in pixels.

Remarks

This property returns the current location of the top edge of the dialog box in pixels. When you move the
dialog box using either the mouse or the DialogTop property, the change is automatically reflected in this
property.

DialogWidth Property

Description

Returns the width of the Word Not Found in Dictionary dialog box.

Syntax

width = spellcontrol.DialogWidth

Part Type Description

width Long Variable that receives the current width of the dialog box
expressed in pixels.

DictionaryBlockCount Property

Description

Returns the number of cache blocks within a standard dictionary.

Syntax

blockCount = spellcontrol.DictionaryBlockCount (index)

Part Type Description

blockCount Integer Variable that receives the number of blocks in the
specified dictionary.

index Integer Specifies the standard dictionary for which to return the
block count.

Remarks

This data is for informational purposes only can be used to help determine optimal cache sizing. It is
generally recommended that the cache be sized to at least 10% of the number of blocks contained in the
dictionaries in use for reasonable performance. Returns 0 for custom dictionaries.

DictionaryBlockSize Property

Description

Returns the size of a specific standard dictionarys cache block.

Syntax

blockSize = spellcontrol.DictionaryBlockSize (index)

Part Type Description

index Integer Specifies the standard dictionary for which to return the
block size.

blockSize Integer Variable that receives the size in bytes.

Remarks

This data is for informational purposes only and can be used to help determine optimal cache sizing. The
dictionary cache block size multiplied by the block count approximates the amount of memory needed to
hold the entire dictionary.

Returns 0 for custom dictionaries.

DictionaryCommonCount Property

Description

Returns the number of common words in a specific standard dictionary.

Syntax

count = spellcontrol.DictionaryCommonCount (index)

Part Type Description

count Integer Variable that receives the number of common words.

index Integer Specifies the standard dictionary for which to return the
common word count.

Remarks

The common word list is an optional, memory-resident, word list of frequently used words, and is enabled
if DictionaryPerformance is 0 or greater.

Returns 0 for custom dictionaries.

DictionaryCompatibilityBits Property

Description

Returns the compatibility level for a standard dictionary.

Syntax

level = spellcontrol.DictionaryCompatibilityBits (index)

Part Type Description

level Integer Variable that receives the returned compatibility level.

index Integer Specifies the standard dictionary for which to return the
compatibility level.

Remarks

The only bit used is 1, which indicates a valid standard dictionary. Returns 0 for custom dictionaries.

DictionaryCopyright Property

Description

Returns copyright information for a specific standard dictionary.

Syntax

string = spellcontrol.DictionaryCopyright (index)

Part Type Description

string Integer Variable that receives the returned copyright string.

index Integer Specifies the standard dictionary for which to return the
copyright information.

Remarks

Returns an empty string for custom dictionaries.

DictionaryCopyrightDerived Property

Description

Returns the original copyright information for a specific standard dictionary.

Syntax

string = spellcontrol.DictionaryCopyrightDerived (index)

Part Type Description

string String Variable that receives the returned copyright string.

index Integer Specifies the standard dictionary for which to return the
copyright information.

Remarks

This string will be empty unless the standard dictionary being queried was created by merging new words
into a dictionary licensed by Visual Components.

DictionaryFlags Property

Description

Returns a set of bits which indicates information about the standard dictionary.

Syntax

flags = spellcontrol.DictionaryFlags (index)

Part Type Description

flags Integer Variable that returns the following bits:

Bit Information indicated

Bit 1 (0x1) Dictionary created by Visual
Components

Bit 2 (0x2) Dictionary derived from
dictionary created by Visual
Components

Bit 3 (0x4) Dictionary is exportable (can
be dumped to text in the
Dictionary Maker)

Bit 4 (0x8) Dictionary contains a
common word list

Bit 5 (0x10) Dictionary is modifiable by the
Dictionary Maker

index Integer Specifies the dictionary for which to
return the flags.

DictionaryIsEnabled Property

Description

Determines whether a specific dictionary is enabled for spellchecking.

Syntax

status = spellcontrol.DictionaryIsEnabled (index)

Part Type Description

index Integer Specifies a dictionary in the DictionaryName array. Positive
numbers indicate standard dictionaries and negative numbers
indicate custom dictionaries.

status Boolean Variable that receives the dictionary status.    If status is True,
the dictionary is enabled for spellchecking. If status is False, the
dictionary is not enabled and therefore not available for
spellchecking.

Remarks

Use EnableDictionary to enable or disable a dictionary.

DictionaryIsLoaded Property

Description

Determines whether a specific dictionary is loaded.

Syntax

status = spellcontrol.DictionaryIsLoaded (index)

Part Type Description

index Integer Specifies a dictionary in the DictionaryName array. Positive
numbers indicate standard dictionaries and negative numbers
indicate custom dictionaries.

status Boolean Variable that receives the dictionary load status. If status is
True, the dictionary is loaded. If status is False, the dictionary
is not loaded.

Remarks

In order to use a dictionary for spellchecking, it must be opened, loaded into memory, and enabled.

You may wish to unload a dictionary and conserve memory when a spellcheck is not in progress. Use
LoadDictionary to load a dictionary and UnloadDictionary to unload the dictionary.

DictionaryLanguage Property

Description

Returns a code that indicates the language of a specified dictionary.

Syntax

language = spellcontrol.DictionaryLanguage (index)

Part Type Description

index Integer Specifies the dictionary in the DictionaryName array for which
to return the language. Positive numbers refer to standard
dictionaries. Negative numbers refer to custom dictionaries.

language Integer Variable that receives one of the following language codes:

VSLANG_AMERICAN VSLANG_FLEMISH

VSLANG_ENGLISH VSLANG_CZECH

VSLANG_FRENCH VSLANG_ICELANDIC

VSLANG_GERMAN VSLANG_ESPERANTO

VSLANG_SPANISH VSLANG_CATALAN

VSLANG_PORTUGUESE VSLANG_ROMANIAN

VSLANG_ITALIAN VSLANG_BULGARIAN

VSLANG_DUTCH VSLANG_RUSSIAN

VSLANG_SWEDISH VSLANG_QUECHUA

VSLANG_FINNISH VSLANG_TURKISH

VSLANG_NORWEGIAN VSLANG_INDONESIAN

VSLANG_LATIN VSLANG_HEBREW

VSLANG_WELSH VSLANG_DANISH

VSLANG_POLISH VSLANG_CANADIAN

VSLANG_HUNGARIAN

DictionaryLoadCount Property

Description

Returns the number of different speller contexts which currently have the specified dictionary loaded.

Syntax

count = spellcontrol.DictionaryLoadCount (index)

Part Type Description

count Integer Variable that receives the number of speller contexts.

index Integer Specifies the dictionary in the DictionaryName array for
which to return the language. Positive numbers refer to
standard dictionaries. Negative numbers refer to custom
dictionaries.

Remarks

Valid for both standard and custom dictionaries.

DictionaryMakerVersion Property

Description

Returns a number which represents the version of the Dictionary Maker used to build the specified
standard dictionary.

Syntax

version = spellcontrol.DictionaryMakerVersion (index)

Part Type Description

index Integer Specifies the standard dictionary for which to return the
version number of the Dictionary Maker
(VTDMAKER.EXE).

version Integer Variable that receives the version. Currently 1 for all
standard dictionaries. Returns 0 for custom dictionaries

DictionaryName Property

Description

Returns the name of a specified dictionary.

Syntax

name = spellcontrol.DictName (index)

Part Type Description

index Integer The dictionary in the DictionaryName array for which to
return the name. Positive numbers refer to standard
dictionaries. Negative numbers refer to custom dictionaries.

name String Variable that receives the name of the specified dictionary.
Other path information is not included.

DictionaryNameFull Property

Description

Returns the full name for an open dictionary, complete with drive and directory names.

Syntax

name = spellcontrol.DictionaryNameFull (index)

Part Type Description

index Integer Specifies the dictionary for which to return the name.
Positive numbers refer to standard dictionaries. Negative
numbers refer to custom dictionaries.

name String Variable that receives the returned file name for the
specified dictionary, complete with drive and directory
path.

DictionaryOpenCount Property

Description

Returns the number of speller contexts which currently have this dictionary open.

Syntax

count = spellcontrol.DictionaryOpenCount (index)

Part Type Description

index Integer The dictionary in the DictionaryName array for which to return
the name. Positive numbers refer to standard dictionaries.
Negative numbers refer to custom dictionaries.

count Integer Variable that receives the returned number of speller
contexts.

Remarks

Valid for both standard and custom dictionaries.

DictionaryPerformance Property

Description

Sets or returns the performance level of spellchecking requested by the current context for a specific
standard dictionary.

Syntax

spellcontrol.DictionaryPerformance (index) [= performance]

Part Type Description

index Integer Specifies the standard dictionary for which to return
the performance information. Setting Index to the
dictionary category VS_ALL sets the performance level
for all dictionaries at once.

performance Integer Specifies the performance level. This level can be a
value between -7 and 7. Lower values degrade
performance but conserve memory. Higher values
increase performance but require more memory.
Actual performance is also affected by the dictionary
itself and by system memory. If memory is low, for
example, a value of 7 may force a dictionary into
virtual memory and result in poorer performance.

Remarks

The performance level indicated may be different than the actual performance level if more than one
context has this dictionary open. Returns 0 for custom dictionaries.

DictionaryPerformanceActual Property

Description

Returns the actual performance level for a specific standard dictionary.

Syntax

level = spellcontrol.DictionaryPerformanceActual (Index)

Part Type Description

index Integer Specifies the standard dictionary for which to return the
performance information.

level Integer Variable that receives the returned performance value. This
can be a value between -7 and 7. Lower values degrade
performance but conserve memory. Higher values increase
performance but require more memory.

Remarks

This property returns the highest performance level used when multiple speller contexts specify different
performance levels for the same dictionary.

Returns 0 for custom dictionaries.

DictionaryStatus Property

Description

Returns status information for the specified dictionary.

Syntax

status = spellcontrol.DictionaryStatus (index)

Part Type Description

index Integer Specifies the dictionary for which to return the status.
Positive numbers refer to standard dictionaries. Negative
numbers refer to custom dictionaries.

status Integer Variable that receives the returned status information. This
information is a set of bits that indicate the status of the
dictionary. It can consist of one or more of the following
constants combined with the Or operator or by addition:

Constant Description

VSDSTAT_ENABLED Dictionary is enabled.

VSDSTAT_LOADED Dictionary is loaded.

VSDSTAT_IRLIST_ENABLED Dictionarys
ignore/replace list is
enabled.

VSDSTAT_UPDATEABLE Updating is enabled

VSDSTAT_READONLY Dictionary is read-only

VSDSTAT_EXTENDED Extended custom
dictionary

VSDSTAT_HYPHENATION Dictionary contains
hyphenation information

VSDSTAT_PHONETICS Dictionary contains
phonetic search
information.

VSDSTAT_COMMONLIST Dictionary includes
common word list

Example

The following example assigns to the variable Custom1Status, a value that indicates the status of the first
custom dictionary and then uses it to test whether the dictionary is read-only:

Custom1Status = VSpell1.DictionaryStatus (-1)

If Custom1Status and VSDSTAT_READONLY Then

MsgBox "Dictionary is read-only"

End If

DictionarySymbolSetSize Property

Description

Returns the size of a standard dictionarys symbol set.

Syntax

size = spellcontrol.DictionarySymbolSetSize (index)

Part Type Description

index Integer Specifies the dictionary for which to return the symbol set
information.

size Integer Variable that receives the returned size of the symbol set in
bytes.

Remarks

The symbol set size is the number of unique letters contained in the entire dictionary. Returns 0 for
custom dictionaries.

DictionaryWordCount Property

Description

Returns the number of words in a specific dictionary.

Syntax

count = spellcontrol.DictionaryWordCount (index)

Part Type Description

index Integer Specifies the dictionary for which to return the status.
Positive numbers refer to standard dictionaries.
Negative numbers refer to custom dictionaries.

count Long Variable that receives the number of words in the
specified dictionary.

Remarks

Valid for both standard and custom dictionaries.

DisableDialogElements Property

Description

Disables one or more dialog elements in the Word Not Found in Dictionary dialog and the Spell Options
dialog.

Syntax

spellcontrol.DisableDialogElements = elements

Part Type Description

elements Long Dialog box elements to disable. One or more of the following
elements combined by addition:

Elements in Word Not Found in Dictionary Dialog

VSD_WORD_MISSPELLED_HELP

VSD_OPTIONS

VSD_PROMPT_REPLACE

VSD_ADD_TO_CUSTOM

VSD_REPLACE_ALL

VSD_REPLACE

VSD_IGNORE_ALL

VSD_IGNORE

VSD_SUGGEST_NOT_FOUND

VSD_SUGGEST_REPLACE_WITH

VSD_CANCEL_SPELLCHECK

VSD_SUGGESTIONS_LIST

VSD_REPLACE_BOX

VSD_CUSTOM_LIST

VSD_THESAURUS

Elements in Spell Options Dialog Box

VSD_OPTIONS_HELP

VSD_CUSTOMS

VSD_STANDARDS

VSD_PERFORMANCE

VSD_SUGGESTION_LIMIT

VSD_AUTO_SUGGESTIONS

VSD_EXACT_MATCH

VSD_IGNORE_FULL_CAPS

VSD_IGNORE_PARTIAL

VSD_IGNORE_PURE

VSD_ALLOW_JOINED

VSD_RECHECK

Remarks

Any elements not referenced are left unchanged, except that setting to 0 or VS_ALL disables all
elements.

DisableEventOptions Property

Description

Disables spellcheck events.

Syntax

spellcontrol.DisableEventOptions = events

Part Type Description

events Integer Determines which events are disabled. This can be composed of
multiple settings combined with the OR operator or by addition. Events
can assume the following constants:

Constant Description

VSEVOPT_COMPLETE Disables the Complete event.

VSEVOPT_FOUND Disables the Found event.

VSEVOPT_MISSPELLED Disables the Misspelled
event.

VSEVOPT_BEFORE_REPLACE Disables the BeforeReplace
event.

VSEVOPT_POPUP Disables the Popup event.

VSEVOPT_CHECK_STATUS Disables the CheckStatus
event.

VSEVOPT_CHECK_ERROR Disables the CheckError
event.

VSEVOPT_AFTER_REPLACE Disables the AfterReplace
event.

VSEVOPT_CLICK_IN Disables the ClickIn event.

VSEVOPT_CLICK_OUT Disables the ClickOut event.

VSEVOPT_DEFAULTS Disables all events except the
Found event.

Remarks

The state of events not specified are left unchanged. Setting to 0 or VS_ALL will disable all events.

Use EnableEventOptions to enable events and EventOptions to return the enabled status of events.

DisableSpellOptions Property

Description

Disables options defining how a spellcheck is performed.

Syntax

spellcontrol.DisableSpellOptions = options

Part Type Description

options Integer Determines which spell options are disabled. This can be composed of multiple
settings combined with the OR operator or by addition. options can assume the
following constants:

Constant Description

VSOPT_AUTO_REPLACE Sets the AutoReplace property
to False. This prevents
VisualSpeller from automatically
generating a suggestion list for a
misspelled word.

VSOPT_AUTO_SUGGEST Sets the AutoSuggest property
to False. This prevents a dialog
box from automatically appearing
when a misspelled word is
encountered.

VSOPT_AUTO_POPUP Sets the AutoPopUp property to
False. This prevents a dialog box
from automatically appearing
when a misspelled word is
encountered.

VSOPT_IGNORE_FULL_CAPS Sets the IgnoreFullCaps
property to False. This causes
VisualSpeller to look for fully
capped words in the
dictionary(s).

VSOPT_IGNORE_PARTIAL_NUMBERS Sets the IgnorePartialNumbers
property to False. This causes
VisualSpeller to question words
that contain a mixture of letters
and numbers during a
spellcheck.

VSOPT_MULTILINE Sets the MultiLine property to
False. This prevents
VisualSpeller from keeping track
of line breaks during a
spellcheck.

VSOPT_IGNORE_PURE_NUMBERS Causes VisualSpeller to question
all-numeral words.

VSOPT_ALLOW_JOINED_WORDS Sets the AllowJoinedWords
property to False. This prevents
VisualSpeller from considering
that hyphenated words are
spelled correctly if the
component words are individually
spelled correctly.

VSOPT_EXACT_MATCH Prevents VisualSpeller from
requiring an exact case match.

VSOPT_RETURN_EACH_WORD Prevents    from returning after
each word when spellchecking a
block of text with the CheckText
property.

VSOPT_REPLACE_RECHECK Sets the ReplaceRecheck
property to False. This prevents
Visual Speller from checking
words typed by the user in the
Word Not Found in Dictionary
dialog box.

Remarks

Any options not referenced are left unchanged. To disable all options, set options to zero or VS_ALL.

DisableSuggestOptions Property

Description

Disables options defining how word suggestions are generated.

Syntax

spellcontrol.DisableSuggestOptions = options

Part Type Description

options Integer Determines how options are cleared. options can be composed of multiple
settings combined with the OR operator or by addition. Following are the valid
constants for this argument:

Constant Descriptions

VSSUGOPT_CAPITALIZATION Disables the option that checks the word
in lowercase, initial caps, and all caps.

VSSUGOPT_CHARSWAP Disables the option that swaps each
successive pair of letters and checks the
result.

VSSUGOPT_DELETES Disables the option that removes each   
letter in the word in sequence (checks for
accidental extra character).

VSSUGOPT_DOUBLES Disables the option that moves double
letters to adjacent letters. For example,
seetings is tried as ssetings and settings.

VSSUGOPT_HYPHENS Disables the option that inserts a hyphen
between each successive pair of letters
(checks for missing hyphen).

VSSUGOPT_SPLITS Disables the option that inserts a space
between each successive pair of letters in
the word and checks the resulting two
words.

VSSUGOPT_EXCHANGES Disables the option that replaces each
letter in the word with all other alphabetic
characters and checks the result.

VSSUGOPT_INSERTIONS Disables the option that inserts an extra
letter between each successive pair of
letters, running through the entire
alphabet in each instance.

Remarks

VisualSpeller creates suggested spellings by modifying the misspelled word and checking the result using
techniques controlled by the suggestion options. All techniques are enabled by default.

To disable all suggestion options, set to 0 or VS_ALL.

DLLHandle Property

Description

Returns the handle to the VisualSpeller control.

Syntax

handle = spellcontrol.DLLHandle

Remarks

This property is not needed in general usage. However, if you write your own DLL, you can use this
property to return the handle to the speller control.

EnableCommonIRList Property

Description

Enables or disables the common ignore/replace list.

Syntax

spellcontrol.EnableCommonIRList = boolean

If this property is True, the common ignore/replace list is enabled. If this property is False, the common
ignore/replace list is disabled.

EnableCustomUpdate Property

Description

Enable or disable the ability to update the specified custom dictionary.

Syntax

spellcontrol.EnableCustomUpdate (index) = status

Part Type Description

index Integer Specifies a dictionary. Negative numbers refer to custom
dictionaries. The dictionary category VSCAT_CUSTOM can
be used to enable or disable update for all custom
dictionaries.

status Boolean If status is True, the dictionary can be updated. If status is
False, the dictionary cannot be updated.

EnableDialogElements Property

Description

Enables one or more dialog elements in the Word Not Found in Dictionary dialog box and the Spell
Options dialog box.

Syntax

spellcontrol.EnableDialogElements = elements

Part Type Description

elements Long Determines which dialog box elements are enabled. This can
be one or more of the following elements combined by addition:

Elements in Word Not Found in Dictionary Dialog

VSD_WORD_MISSPELLED_HELP

VSD_OPTIONS

VSD_PROMPT_REPLACE

VSD_ADD_TO_CUSTOM

VSD_REPLACE_ALL

VSD_REPLACE

VSD_IGNORE_ALL

VSD_IGNORE

VSD_SUGGEST_NOT_FOUND

VSD_SUGGEST_REPLACE_WITH

VSD_CANCEL_SPELLCHECK

VSD_SUGGESTIONS_LIST

VSD_REPLACE_BOX

VSD_CUSTOM_LIST

VSD_THESAURUS

Elements in Spell Options Dialog Box

VSD_OPTIONS_HELP

VSD_CUSTOMS

VSD_STANDARDS

VSD_PERFORMANCE

VSD_SUGGESTION_LIMIT

VSD_AUTO_SUGGESTIONS

VSD_EXACT_MATCH

VSD_IGNORE_FULL_CAPS

VSD_IGNORE_PARTIAL

VSD_IGNORE_PURE

VSD_ALLOW_JOINED

VSD_RECHECK

Remarks

Any elements not referenced are left unchanged. Set to 0 or VS_ALL to enable all elements.

EnableDictionary Property

Description

Enables or disables the specified dictionary.

Syntax

spellcontrol.EnableDictionary (index) = status

Part Type Description

index Integer Specifies a dictionary. Positive numbers refer to standard
dictionaries. Negative numbers refer to custom dictionaries.
You can also use the dictionary categories to enable or
disable a set of dictionaries.

status Boolean Determines the status of the specified dictionary. If status is
True, the dictionary is enabled. If status is False, the
dictionary is disabled.

Remarks

In order to use a dictionary for spellchecking, it must be opened, loaded into memory, and enabled.

EnableEventOptions Property

Description

Enables spellcheck events.

Syntax

spellcontrol.EnableEventOptions = events

Part Type Description

events Integer Determines which events are enabled. This can be composed of
multiple settings combined with the OR operator or by addition. events
can assume the following constants:

Constant Description

VSEVOPT_COMPLETE Enables the Complete
event.

VSEVOPT_FOUND Enables the Found event.

VSEVOPT_MISSPELLED Enables the Misspelled
event.

VSEVOPT_BEFORE_REPLACE Enables the BeforeReplace
event.

VSEVOPT_POPUP Enables the AfterPopup
event.

VSEVOPT_CHECK_STATUS Enables the CheckStatus
event.

VSEVOPT_CHECK_ERROR Enables the CheckError
event.

VSEVOPT_AFTER_REPLACE Enables the AfterReplace
event.

VSEVOPT_CLICK_IN Enables the ClickIn event.

VSEVOPT_CLICK_OUT Enables the ClickOut event.

VSEVOPT_DEFAULTS Enables all events except
the Found event.

Remarks

The state of events not specified are left unchanged. Set to 0 or VS_ALL to enable all events.

Use DisableEventOptions to disable events and EventOptions to return the enabled status of events.

EnableSpellOptions Property

Description

Enables the options for how a spellcheck is performed.

Syntax

spellcontrol.EnableSpellOptions = options

Part Type Description

options Integer Determines which spell options are enabled. This can be composed of
multiple settings combined with the OR operator or by addition. options
can assume the following constants:

Constant Description

VSOPT_AUTO_REPLACE Sets the AutoReplace property to True.
VisualSpeller automatically generates a
suggestion list for a misspelled word.

VSOPT_AUTO_SUGGEST Sets the AutoSuggest property to True.
This automatically displays a dialog box
when a misspelled word is encountered.

VSOPT_AUTO_POPUP Sets the AutoPopUp property to True.
This automatically displays a dialog box
when a misspelled word is encountered.

VSOPT_IGNORE_FULL_
CAPS

Sets the IgnoreFullCaps property to
True. This causes VisualSpeller to
ignore words in all caps during a
spellcheck.

VSOPT_IGNORE_PARTIAL
_NUMBERS

Sets the IgnorePartialNumbers
property to True. This causes
VisualSpeller to ignore words that
contain a mixture of letters and
numbers during a spellcheck.

VSOPT_MULTILINE Sets the MultiLine property to True.
VisualSpeller keeps track of line breaks
during a spellcheck.

VSOPT_IGNORE_PURE_
NUMBERS

Causes VisualSpeller to ignore all-
numeral words.

VSOPT_ALLOW_JOINED_
WORDS

Sets the AllowJoinedWordsproperty to
True. VisualSpeller considers
hyphenated words are spelled correctly
if the component words are individually
spelled correctly.

VSOPT_EXACT_MATCH Forces VisualSpeller to require an exact
case match.

VSOPT_RETURN_EACH_
WORD

Causes    to return after each word
when spellchecking a block of text with
the CheckText property.

VSOPT_REPLACE_
RECHECK

Sets the ReplaceRecheck property to
True. This forces Visual Speller to check
words typed by the user in the Word Not
Found in Dictionary dialog box.

VSOPT_DEFAULTS Sets the AutoReplace, AutoSuggest,
AutoPopup, and ReplaceRecheck   

properties, as well as the ignore pure
numbers option, to True. These are the
default settings for a spellcheck
session.

Remarks

Set to 0 or VS_ALL to enable all spell options.

EnableStandardIRList Property

Description

Enables or disables the ignore/replace list associated with the specified standard dictionary.

Syntax

spellcontrol.EnableStandardIRList (index) = status

Part Type Description

index Integer Specifies a dictionary. Positive numbers refer to standard dictionaries.
The dictionary categories VS_ALL, VSCAT_STANDARD,
VSCAT_ENABLED, and VSCAT_DISABLED can be used to enable or
disable multiple standard dictionary ignore/replace lists.

status Boolean Sets the state of the ignore/replace list. If status is True, the
ignore/replace list is enabled. If status is False, the ignore/replace list is
disabled.

EnableSuggestOptions Property

Description

Enables the options for how suggestions are generated.

Syntax

spellcontrol.EnableSuggestOptions = options

Part Type Description

options Integer Determines which options are enabled. options can be composed of
multiple settings combined with the OR operator or by addition.
Following are the valid constants for this argument:

Constant Descriptions

VSSUGOPT_CAPITALIZATION Checks the word in lowercase,
initial caps, and all caps.

VSSUGOPT_CHARSWAP Swaps each successive pair of
letters and checks the result.

VSSUGOPT_DELETES Removes each letter in the
word in sequence (checks for
accidental extra character).

VSSUGOPT_DOUBLES Moves double letters to
adjacent letters. For example,
seetings is tried as ssetings
and settings.

VSSUGOPT_HYPHENS Inserts a hyphen between
each successive pair of letters
(checks for missing hyphen).

VSSUGOPT_SPLITS Inserts a space between each
successive pair of letters in the
word and checks the resulting
two words.

VSSUGOPT_EXCHANGES Replaces each letter in the
word with all other alphabetic
characters and checks the
result.

VSSUGOPT_INSERTIONS Inserts an extra letter between
each successive pair of letters,
running through the entire
alphabet in each instance.

VSSUGOPT_DEFAULTS Enables all suggestion options.

Remarks

VisualSpeller creates suggested spellings by modifying the misspelled word and checking the result using
techniques controlled by the suggestion options. All techniques are enabled by default. Set to 0 or
VS_ALL to enable all suggestion options.

ErrorOffset Property

Description

Sets the offset for runtime errors for VSR* error values.

Syntax

spellcontrol.ErrorOffset = offset

Part Type Description

offset Integer Sets offset for runtime errors. Runtime error    = VSR_* errorcode +
ErrorOffset.

Remarks

By default, the offset is set to 32350.

ErrorText Property

Description

Returns the text of the error message for the current ResultCode.

Syntax

string =spellcontrol.ErrorText

Part Type Description

string String Variable that receives the returned text.

ErrorTitle Property

Description

Sets or returns the title for the Error message box. Setting to the empty string "" reverts to the default title.

Syntax

spellcontrol. ErrorTitle [= string]

Part Type Description

string String Error message box title.

EventOptions Property

Description

Returns the enabled spellcheck events.

Syntax

events = spellcontrol.EventOptions

Part Type Description

events Integer Determines which events are enabled. This can be composed of multiple
settings combined with the OR operator or by addition. events can
assume the following constants:

Constant Description

VSEVOPT_COMPLETE The Complete event is enabled.

VSEVOPT_FOUND The Found event is enabled.

VSEVOPT_MISSPELLED The Misspelled event is enabled.

VSEVOPT_BEFORE_REPLACE The BeforeReplace event is
enabled.

VSEVOPT_POPUP The AfterPopup event is enabled.

VSEVOPT_CHECK_STATUS The CheckStatus event is enabled.

VSEVOPT_CHECK_ERROR The CheckError event is enabled.

VSEVOPT_AFTER_REPLACE The AfterReplace event is enabled.

VSEVOPT_CLICK_IN The ClickIn event is enabled.

VSEVOPT_CLICK_OUT The ClickOut event is enabled.

Remarks

Use EnableEventOptions to enable events and DisableEventOptions to disable events.

Example

The following example enables Misspelled and Complete events and disables all other events:

VSpell1.EventOptions = VSEVOPT_MISSPELLED + VSEVOP_COMPLETE

FindSuggestions Property

Description

Generates a list of suggested spellings for the current misspelled word.

Syntax

spellcontrol.FindSuggestions = string

Part Type Description

string String Word for which to generate a suggestion list.

Remarks

Assigning an empty string to string causes VisualSpeller to generate suggestions for the last misspelled
word.

Use Suggestion to access the generated suggestions.

Example

The first example finds suggestions for the word returned by the MisspelledWord property:

VSpell1.FindSuggestions = " "

The second example finds suggestions for the word "gorble":

VSpell1.FindSuggestions = "gorble"

Found Event

Description

This event occurs when a word is found in a dictionary.

Syntax

Private Sub spellcontrol_Found (EventAction As Integer)

Following are the valid constants for EventAction:

Constant Description

VS_DEFAULT_HANDLING Spellchecking halts and control is returned to the calling
procedure with the result code VSR_FOUND.

VS_EVENT_HANDLED Spellchecking continues.

VS_CANCEL_SPELLCHECK Spellchecking halts and control is returned to the calling
procedure with VSR_CHECK_CANCELED the result.

Remarks

Found events occur only when the found events are enabled. They are useful when you must tabulate
data on found words. EventAction is preset to VS_EVENT_HANDLED on entry to the Found procedure.
It is preset to VS_DEFAULT_HANDLING if the VSOPT_RETURN_EACH_WORD spell option is enabled.
You can change EventAction by setting it to one of the other values during the Found procedure.

GetEntry Property

Description

Retrieves an entry from a custom dictionary or from a standard dictionary ignore/replace list. The
retrieved word is made available through the MisspelledWord, ReplacementWord, Hyphenation, and
IRAction properties.

Syntax

spellcontrol.GetEntry (index) = entryNumber

Part Type Description

index Integer Dictionary in the DictionaryName array from which to return an
entry. Negative numbers specify custom dictionaries. Positive
numbers specify ignore/replace lists associated with standard
dictionaries.

entryNumber Long Identifies the word to retrieve from the list. Words are identified by
number, with 1 referring to the first entry in the list.

Remarks

By getting successive entries, you can read out the entire dictionary. When you reach the end of a
dictionary, the ResultCode is VSR_END_LIST. Because dictionaries are shared among applications, it is
conceivable that another application could change a custom dictionary. If this were to happen, the
ResultCode would be VSR_CHANGED. The probability of such a change is low. If one should occur,
however, you should re-read the dictionary beginning with the first entry. Reading the first entry resets the
VSR_CHANGED status.

Example

The following example places in a list box all words in the common ignore replace list that age to be
ignored without confirmation:

DIM X As Integer

DIM ResCode As Integer

DIM IRAction As Integer

Do

ListBox.Clear

X = 1

Do
VSpell1.GetEntry(VSCAT_IRLIST) = X

ResCode = VSpell1.ResultCode

IRAction = VSpell1.IRAction And (VSR_IGNORE + VSR_GLOBAL)

If ResCode = 0 Then

If IRAction = VSR_IGNORE + VSR_GLOBAL Then

ListBox.AddItem VSpell1.MisspelledWord

End If

Else

Exit Do

End If

X = X + 1

Loop

If ResCode = VSR_END_OF_LIST Then

Exit Do

End If

Loop

Hyphenation Property

Description

Sets or returns hyphenation information for the last correctly spelled word.

Syntax

spellcontrol.Hyphenation [= string]

Part Type Description

string String Special string in which each character can be interpreted as a
binary number representing the length of a syllable. A null string
indicates that no hyphenation is possible or that hyphenation
information is not available in the dictionary.

Example

The following example assigns to the variable Last$ the hyphenation information for the last correctly
spelled word and displays the length of the word's first syllable.

Last$ = VSpell1.Hyphenation

If Last$ < > " " Then

MsgBox "Length of first syllable of " &VSpell1.ChecKWord &" = " & Str (Asc(Last$))

Else

MsgBox "No hyphenation available for word"

End If

IgnoreFullCaps Property

Description

Determines whether VisualSpeller ignores words in all caps during a spellcheck.

Syntax

spellcontrol.IgnoreFullCaps = boolean

Remarks

If this property is True, all-caps words are ignored during a spellcheck. If this property is False, all-caps
words are not ignored.

IgnorePartialNumbers Property

Description

Determines whether VisualSpeller ignores words that contain a mixture of letters and numbers during a
spellcheck.

Syntax

spellcontrol.IgnorePartialNumbers = boolean

Remarks

If this property is True, words with numbers are ignored during a spellcheck. If this property is False,
words with numbers are not ignored.

IRAction Property

Description

Returns a code that specifies what action to take when a word is found in the ignore/replace list.

Syntax

action = spellcontrol.IRAction

Part Type Description

action Integer Variable that receives one of the following codes, indicating the action
VisualSpeller will take regarding the misspelled word.

Constant Description

VSIR_MISSPELLED Treats word as a normal misspelling -
generally with an automatically displayed
dialog box.

VSIR_PROMPT_REPLACE Treats word as a misspelling, but does
not generate suggestions. Offers
ReplacementWord as the default
replacement.

VSIR_REPLACE_ALL Replaces word with ReplacementWord.
Normally, this occurs automatically, but if
AutoReplace is False, replacement
must be handled by the program.

Remarks

This property is relevant when the value of ResultCode is VSR_IGNORE_REPLACE at the end of a
CheckText, BeginCheck, ResumeCheck, or CheckWord action or inside a Misspelled event.

IRWhereFound Property

Description

Returns an index to the DictionaryName array that specifies in which ignore/replace list the last correctly
spelled word was found.

Syntax

list = spellcontrol.IRWhereFound

Part Type Description

list Integer Variable that receives the returned ignore/replace list index. This
variable contains 0 if the word was found in the common
ignore/replace list. Otherwise, it contains the index of the
standard dictionary associated with the ignore/replace list that
contained the word.

Example

For words found in an ignore/replace list, the following example displays a message that indicates which
list contained the word:

If VSpell1.WhereFound = 0 Then

If VSpell1.IRWhereFound = 0 Then

MsgBox "Word found in common IR list."

Else

MsgBox "Word found in IR list for dictionary " & DictionaryName

(VSpell1.IRWhereFound)

End If

End If

LineBreak Property

Description

Sets or returns the characters and character combinations that are treated as line breaks during a
multiline spellcheck.

Syntax

spellcontrol.LineBreak [= breakString]

Part Type Description

breakString String A string consisting of one or more groups of decimal numbers.
The first in each group is the number of characters that follow in
the group. Succeeding numbers in each group are decimal
values for non-alphanumeric characters which define a possible
end of line sequence. The string ends with a zero-length group.
The default string specifies CR and LF in all variants. The default
breakstring is 2 13 10 2 10 13 1 13 1 10 0.

Example

The following example specifies that only CRLF be treated as a line break:

VSpell1.LineBreak = Chr(2) & Chr(13) & Chr(10)

LineOffset Property

Description

Sets or returns the character offset within the current line at which spellchecking occurs or resumes.

Syntax

spellcontrol.LineOffset [= line]

Part Type Description

line Integer The character offset (based at 0) within the current line of the last
misspelled word.

Example

The following example displays the position of the misspelled word.

MsgBox "Word misspelled at line " & Str (VSpell1.CurrentLine + 1) & " character " &

Str(VSpell1.LineOffset + 1)

LoadDictionary Property

Description

Loads the specified dictionary.

Syntax

spellcontrol.LoadDictionary (index) = 1

Part Type Description

index Integer Specifies a dictionary in the DictionaryName array. Positive
numbers indicate standard dictionaries and negative numbers
indicate custom dictionaries.

Remarks

In order to use a dictionary for spellchecking, it must be opened, loaded into memory, and enabled.

You may wish to unload a dictionary and conserve memory when a spellcheck is not in progress. Use
DictionaryIsLoaded to determine whether a dictionary is loaded and UnloadDictionary to unload the
dictionary.

MaxSuggestions Property

Description

Sets or returns the maximum number of correction suggestions that VisualSpeller generates and displays.

Syntax

spellcontrol.MaxSuggestions = max

Part Type Description

max Integer Maximum number of displayed suggestions.

Misspelled Event

Description

This event occurs when a potentially misspelled word is encountered during a spellcheck.

Syntax

Private Sub spellcontrol_Misspelled (EventAction As Integer)

Following are the valid constants for EventAction:

Constant Description

VS_DEFAULT_HANDLING If AutoPopUp is True, the Word Not Found in Dictionary
dialog box appears. Otherwise, control returns to the calling
procedure.

VS_EVENT_HANDLED Spellchecking continues with the next word. Text and
ResumeOffset properties can be used to adjust the text
being spellchecked.

VS_CANCEL_SPELLCHECK Spellchecking halts and control is returned to the calling
procedure with VSR_CHECK_CANCELED the result.

Remarks

This event occurs for each misspelled word, including ignore/replace prompting. The event occurs before
a dialog box popup and thus acts in place of a BeforePopUp event. EventAction is preset to
VS_DEFAULT_HANDLING on entry to the Misspelled procedure. After responding to the misspelled
word, you can change EventAction by setting it to one of the other values.

MisspelledWord Property

Description

Sets or holds the text of the last misspelled word.

Syntax

spellcontrol.MisspelledWord = word

Part Type Description

word String Text of the last misspelled word.

Remarks

Generally, VisualSpeller keeps track of the last misspelled word. However, there are times when you may
want to provide a word that VisualSpeller treats as the last misspelled word.

Since actions such as AddToCommonIRList, AddToStandardIRList, and AddToCustom use the last
misspelled word, setting the misspelled word can be useful for automatically generating custom
dictionaries or preset ignore/replace lists.

Example

The following example displays the most recent misspelled word.

MsgBox "Misspelled: " & VSpell1.MisspelledWord

MultiLine Property

Description

Determines whether VisualSpeller keeps track of line breaks during a spellcheck.

Syntax

spellcontrol.MultiLine [= boolean]

Remarks

If this property is True, CurrentLine returns the number of the line that contains the last misspelled word
and LineOffsetreturns the position within that line of the misspelled word.

If this property is False, VisualSpeller does not keep track of line breaks.

MultiLine settings are valid only during CheckText actions.

OpenCustom Property

Description

Opens a specified custom dictionary.

Syntax

spellcontrol.OpenCustom (loadit) = DictionaryName

Part Type Description

loadit Boolean Indicates whether the dictionary is immediately loaded into
memory when it is opened. If True, the dictionary is loaded; if
False, it is not loaded.

DictionaryName String Identifies the dictionary to open.

Remarks

This property opens the custom dictionary specified by DictionaryNamefor spellchecking. Check
ResultCode after calling this property. If the operation was successful, -CustomCount returns the
dictionary index number.

OpenStandard Property

Description

Opens a specified standard dictionary.

Syntax

spellcontrol.OpenStandard (loadit) = DictionaryName

Part Type Description

loadit Boolean Indicates whether the dictionary is immediately loaded
into memory when it is opened. If True, the dictionary is
loaded; if False, it is not loaded.

DictionaryName String Identifies the dictionary to open.

Remarks

This property opens the standard dictionary specified by DictionaryName for spellchecking. Check
ResultCode after calling this property. If the operation was successful, StandardCount returns the
dictionary index number.

OptionsHelpFile Property

Description

Sets or returns the name and path of the help file associated with the Spell Options dialog box.

Syntax

spellcontrol.OptionsHelpFile [= string]

Part Type Description

string String Name and path of the help file displayed when the dialog box help
button is clicked. The default is "VSPELLER.HLP".

OptionsTitle Property

Description

Sets or returns the title for the Spell Options dialog box.

Syntax

spellcontrol.OptionsTitle = string

Part Type Description

string String Dialog box title. Setting this property to the empty
string "" reverts to the default title.

PopupError Property

Description

Displays the internal Error dialog box, which presents the text of the error contained in the ResultCode.

Syntax

spellcontrol.PopupError = 1

PopupOptions Property

Description

Displays the internal Spell Options dialog box, which will use the current context information to display
spellchecker options and allow the user to take action.

Syntax

spellcontrol.PopupOptions = 1

PopupWordMisspelled Property

Description

Displays the internal Word Not Found in Dictionary dialog box, which will use the current context
information to display the misspelled word and allow the user to take action.

Syntax

spellcontrol.PopupWordMisspelled = 1

RemoveFromCommonIRList Property

Description

Removes an entry from the common ignore/replace list.

Syntax

spellcontrol.RemoveIRListEntry = text

Part Type Description

text String Entry to remove from the list.

Remarks

If text is not found in the common ignore/replace list, ResultCode is set to the constant
VSR_ENTRY_NOT_FOUND.

RemoveFromStandardIRList Property

Description

Removes an entry from the ignore/replace list associated with a specific standard dictionary.

Syntax

spellcontrol.RemoveIRListEntry (index) = text

Part Type Description

index Integer Specifies a dictionary in the DictionaryName array or a
category of dictionaries. Setting index to the dictionary
category VS_ALL removes text from all standard
ignore/replace lists at once.

text String Entry to remove from the list.

Remarks

If text is not found in the specified ignore/replace list(s), ResultCode is set to the constant
VSR_ENTRY_NOT_FOUND.

ResultCode reflects a failure to find the word in any of the dictionaries or common ignore/replace list.
Therefore, the result code is VSR_ENTRY_NOT_FOUND, unless the word is found in all the lists. To
more accurately check for errors, individually remove words from each list in sequence. With only one
targeted list on each call, the result code correctly reflects whether the word is found and removed in that
list.

ReplaceCount Property

Description

Sets or returns the number of words replaced during the current spellcheck.

Syntax

spellcontrol.ReplaceCount [= count]

Part Type Description

count Long The number of words.

Remarks

This property counts global replacements, replacements made in response to a popup and replacements
made using the ReplaceLastWord property.

Example

The following example displays the number of replacements made during a spellcheck.

VSpell1.ReplaceCount = 0

.

. 'normal spellcheck

.

MsgBox "Replaced " & Str(VSpell1.ReplaceCount) & " words"

ReplaceLastWord Property

Description

Replaces the current misspelled word in the buffer text with ReplacementWord.

Syntax

spellcontrol.ReplaceLastWord = 1

Remarks

Using this property does not cause a BeforeReplace or AfterReplace event. Replacement location is
based on WordOffset and ResumeOffset, so changing these properties can adversely affect the
operation of ReplaceLastWord.

ReplacementWord Property

Description

Sets or returns the word to be used when a replacement is requested.

Syntax

spellcontrol.ReplacementWord [= word]

Part Type Description

word String The word to be used as a replacement.

Remarks

Following a misspell condition with a VSR_IGNORE_REPLACE status and IRAction set to
VSIR_REPLACE, this property contains the word that replaces the MisspelledWord. You can change the
word before replacement occurs, usually in response to a popup dialog box. ReplacementWord is also
used by ReplaceLastWord, AddToCustom, AddToStandardIRList, and AddToCommonIRList You can
change it prior to calling any of these properties.

Examples

The following example sets the replacement word to that entered in a text box and then replaces the
misspelled word.

VSpell1.ReplacementWord = TextBox.Text

VSpell1.ReplaceLastWord = True

ReplaceOccurred Property

Description

Indicates whether VisualSpeller made replacements since the last time this property was called.

Syntax

replacement = spellcontrol.ReplaceOccurred

Part Type Description

replacement Integer Variable that receives the state of the property. 0 is False and
1 is True.

Remarks

This property is cleared when it is read or when new text is loaded.

Example

The following example places the changed text in a text box if replacments were made during a
spellcheck:

If VSpell1.ReplaceOccurred Then '

TextBox.Text = VSpell1.Text

End If

ReplaceRecheck Property

Description

Determines whether VisualSpeller checks words typed by the user in an automatically displayed Word
Not Found in Dictionary dialog box.

Syntax

spellcontrol.ReplaceRecheck = boolean

Remarks

If this property is True, replacement words typed by the user in the Word Not Found in Dictionary dialog
box are spellchecked. This does not affect words chosen from the suggestion list.

If this property is False, the replacement words are not spellchecked.

ResultCode Property

Error Conditions Status Conditions

Description

Sets or returns the result of the last spellcheck action.

Syntax

spellcontrol.ResultCode = code

Part Type Description

code Integer When code is 0, the spellcheck was successful. A nonzero value
indicates failure or a warning condition.

Remarks

ResultCode is not changed by properties that to do not invoke an action or take a dictionary index.

Example

The following example displays the error code when a VisualSpeller error occurs:

If VSpell1.ResultCode > 0 Then

MsgBox "Error code = " + Str$(VSpell1.ResultCode)

End If

ResumeCheck Property

Error Conditions Status Conditions

Description

Resumes a spellcheck after control has been passed to the application.

Syntax

resultcode = spellcontrol.ResumeCheck

Part Type Description

ResultCode Integer Variable that receives the current value of the ResultCode
property. When ResultCode is 0, the spellcheck was successful.
A nonzero value indicates failure or a warning condition.

Remarks

ResumeCheck is most often used to continue a spellcheck begun with a CheckText or BeginCheck
action. It can however, be used to begin a spellcheck when you need specific control over where
spellchecking begins.

This property continues the spellcheck at ResumeOffset. In general, use this property to resume
spellchecking at the next word. Use ResumeWithRecheck to resume with first rechecking a replaced
word.

The example checks the content of a text box without using events or automatically displayed dialog
boxes.

DIM ResCode As Integer

VSpell1.EventOptions = 0

VSpell1.AutoPopUp =False

VSpell1.CheckText = TextBox.Text ' start spellcheck

ResCode = VSpell1.ResultCode ' get result

Do While ResCode < 0

Select Case ResCode

Case VSR_WORD_MISSPELLED, VSR_IGNORE_REPLACE

VSpell1.PopUpWordMisspelled ' display misspell dialog

ResCode = VSpell1.ResultCode ' get new result

Case VSR_BREAK

Do Events ' give Windows a time slice

End Select

If ResCode = VSR_CHECK_CANCELED ' see if canceled

Exit Loop

End If

ResCode = VSpell1.ResumeCheck ' resume w/o rechecking

Loop

TextBox.Text = VSpell1.Text ' read out spellchecked text

ResumeOffset Property

Description

Sets or returns the zero-based offset within a text block where spellchecking resumes when the
ResumeCheck property is called.

Syntax

offset = spellcontrol.ResumeOffset

Part Type Description

Offset Long Variable that receives the zero-based offset within text
block.

Remarks

This property is valid during a CheckText action when a misspelling has occurred. It is indeterminate
otherwise. It is set to zero by BeginCheck and CheckText actions. Changing ResumeOffset changes
where VisualSpeller resumes spellchecking after handling a misspelled word.

Example

The example starts a spellcheck on a text block at the current insertion point, if there is one.

If TextBox.SelText = "" Then ' Null string means SelStart

VSpell1.Text = TextBox.Text ' will be insertion point

VSpell1.ResumeOffset = TextBox.SelStart

VSpell1.ResumeCheck = VSR_NOTHING_TO_CHECK

.

.

.

End If

ResumeWithRecheck Property

Error Conditions Status Conditions

Description

Resumes a spellcheck and rechecks the previous word.

Syntax

resultCode = spellcontrol.ResumeWithRecheck

Part Type Description

resultCode Integer Variable that receives the value of    the ResultCode property.
When resultCode is 0, the spellcheck was successful. A
nonzero value indicates failure or a warning condition.

Remarks

ResumeWithRecheck continues the spellcheck at WordOffset. The first word checked increments
WordCount only when ResumeOffset and WordCount are the same. This situation indicates that the
user deleted the misspelled word from Text or that the offsets were changed by the application.

SearchOrder Property

Description

Sets or returns the order in which the three word sources (standard dictionaries, custom dictionaries, and
ignore/replace list) are searched during a spellcheck.

Syntax

spellcontrol.SearchOrder [= setting]

Part Type Description

setting Integer Valid settings for this property are:

Constant Description

VSORDER_SCIR Standard, custom, ignore/replace list

VSORDER_CIRS Custom, ignore/replace list, standard

VSORDER_IRSC Ignore/replace list, standard, custom

VSORDER_SIRC Standard, ignore/replace list, custom

VSORDER_CSIR Custom, standard, ignore/replace list

VSORDER_IRCS Ignore/replace list, custom, standard

If a cache miss occurs on a standard dictionary, the
search moves to the custom dictionaries and the
ignore/replace list before returning to the standard
dictionaries. You can defeat this feature by adding the
following special setting to any of the order settings:

Constant Description

VSORDER_NO_LOOKAHEAD Disable lookahead
feature.

Example

The example specifies that VisualSpeller search the ignore/replace list first, then the standard
dictionaries, then the custom dictionaries and that the look ahead feature be disabled.

VSpell1.SearchOrder = VSORDER_IRSC + VSORDER_NO_LOOKAHEAD

SpellOptions Property

Description

Returns the currently enabled options that control how a spellcheck is performed.

Syntax

options = spellcontrol.SpellOptions

Part Type Description

options Integer Variable that receives information about which spell options are enabled.
This can be composed of multiple settings combined with the OR operator
or by addition. options can assume the following constants:

Constant Description

VSOPT_AUTO_REPLACE VisualSpeller automatically
generates a suggestion list for
a misspelled word.

VSOPT_AUTO_SUGGEST A dialog box is automatically
displayed when a misspelled
word is encountered.

VSOPT_AUTO_POPUP A dialog box is automatically
displayed when a misspelled
word is encountered.

VSOPT_IGNORE_FULL_CAPS Words in all caps are ignored
during a spellcheck.

VSOPT_IGNORE_PARTIAL_NUMBERS Words that contain a mixture of
letters and numbers are
ignored during a spellcheck.

VSOPT_MULTILINE VisualSpeller keeps track of
line breaks during a
spellcheck.

VSOPT_IGNORE_PURE_NUMBERS All-numeral words are ignored
during a spellcheck.

VSOPT_ALLOW_JOINED_WORDS VisualSpeller considers
hyphenated words are spelled
correctly if the component
words are individually spelled
correctly.

VSOPT_EXACT_MATCH Forces VisualSpeller to require
an exact case match.

VSOPT_RETURN_EACH_WORD Causes VisualSpeller to return
after each word when
spellchecking a block of text
with the CheckText property.

VSOPT_REPLACE_RECHECK Forces Visual Speller to check
words typed by the user in the
Word Not Found in Dictionary
dialog box.

VSOPT_DEFAULTS Sets the AutoReplace,
Suggestion, AutoPopup,
IgnorePartialNumbers, and
ReplaceRecheck properties to
True. These are the default

settings for a spellcheck
session.

Remarks

Use EnableSpellOptions to enable options and DisableSpellOptions to disable options.

StandardCount Property

Description

Returns the number of open standard dictionaries.

Syntax

count = spellcontrol.StandardCount

Part Type Description

count Integer Variable that receives the index number of the most recently opened
standard dictionary.

Example

The following example fills a list box with standard dictionary names.

Max = VSpell1.StandardCount

For X = 1 to Max

ListBox.AddItem = VSpell1.DictionaryName(X)

End X

StandardDictionary Property

Description

Sets the initial standard dictionary. This is a design-time only property.

Syntax

spellcontrol.StandardDictionary = name

Part Type Description

name String Name of the standard dictionary.

Remarks

This property is used internally by VisualSpellers property pages. At runtime, use OpenStandard to
accomplish the same result.

StandardIRListIsEnabled Property

Description

Returns whether the ignore/replace list for a standard dictionary is enabled.

Syntax

status = spellcontrol.StandardIRListIsEnabled (index   )

Part Type Description

index Integer The dictionary in the DictionaryName array for which to
return the ignore/replace list information. Positive numbers
specify standard dictionaries.

status Boolean Variable that receives the returned state of the
ignore/replace list. If status is True, the list is enabled. If
status if False, the list is disabled.:

Remarks

Use EnableStandardIRList to enable or disable an ignore/replace list.

Suggestion Property

Description

Returns a suggestion from the array of suggestions generated by VisualSpeller for the most recent
misspelled word.

Syntax

SuggestionArray = spellcontrol.Suggestion (index)

Part Type Description

index Integer Index number from the array of suggestions for which
to return a suggestion. The values for the suggestion
array can range from 1 to SuggestionCount.

SuggestionArray String Variable that receives the returned list of suggestions.

SuggestionCount Property

Description

Returns the number of suggestions generated by VisualSpeller for the most recent misspelled word.

Syntax

count = spellcontrol.SuggestionCount

Part Type Description

count Integer Variable that receives the returned size of the Suggestion
array.

Example

The example fills a list box with the current suggestion list.

Count = VSpell1.SuggestionCount

For X = 1 to Count

ListBox.AddItem = VSpell1.Suggestions(X)

Next X

SuggestionsLimit Property

Description

Sets or returns the overall number of suggestions that are investigated for each misspelled word.

Syntax

spellcontrol.SuggestionsLimit [= limit]

Part Type Description

limit Integer Number of suggestions

Remarks

When the number of suggestions specified by SuggestionsLimit is greater than the value set by
MaxSuggestions, VisualSpeller investigates the number of suggestions specified by SuggestionsLimit.
However, only the number of suggestions specified by MaxSuggestions are displayed.

SuggestionsMade Property

Description

Indicates whether suggestions have been generated since the misspelled word changed.

Syntax

boolean = spellcontrol.SuggestionsMade

Remarks

If this property is True, suggestions have been generated. If this property is False, suggestions have not
been generated.

This property is set when either FindSuggestions or AddSuggestion is used. It is reset when
ClearSuggestions is used or when MisspelledWord changes.

SuggestOptions Property

Description

Returns the enabled options that control how suggestions are generated.

Syntax

options = spellcontrol.SuggestOptions

Part Type Description

options Integer Variable that receives the enabled option information. Options can be
composed of multiple settings combined with the OR operator or by
addition. Following are the valid constants for this argument:

Constant Descriptions

VSSUGOPT_CAPITALIZATION Checks the word in lowercase,
initial caps, and all caps.

VSSUGOPT_CHARSWAP Swaps each successive pair of
letters and checks the result.

VSSUGOPT_DELETES Removes letter in the word in
sequence (checks for accidental
extra character).

VSSUGOPT_DOUBLES Moves double letters to adjacent
letters. For example, seetings is
tried as ssetings and settings.

VSSUGOPT_HYPHENS Inserts a hyphen between each
successive pair of letters (checks
for missing hyphen).

VSSUGOPT_SPLITS Inserts a space between each
successive pair of letters in the
word and checks the resulting two
words.

VSSUGOPT_EXCHANGES Replaces each letter in the word
with all other alphabetic
characters and checks the result.

VSSUGOPT_INSERTIONS Inserts an extra letter between
each successive pair of letters,
running through the entire
alphabet in each instance.

Remarks

VisualSpeller creates suggested spellings by modifying the misspelled word and checking the result using
techniques controlled by this property. All techniques are enabled by default. Use
EnableSuggestOptions to enable options and to disable options you do not want.

Text Property

Description

Sets or returns the text to be spellchecked.

Syntax

spellcontrol.Text [= text]

Part Type Description

text String Holds the text to be spellchecked using a CheckText,
BeginCheck, or ResumeCheck action. CheckText automatically
loads Text with the text to be spellchecked, but you can get the
same effect by loading Text and using the BeginCheck property.
After a spellcheck in which replacements were made, you must
update the source of the text (such as a text control) by reading the
Text property.

Example

The example loads the Text property with text from a control and begins spellchecking from the
beginning.

VSpell1.Text = TextBox.Text

VSpell1.BeginCheck = True

.

.

.

TimerTicks Property

Description

Returns the system timer tick count.

Syntax

count = spellcontrol.TimerTicks

Part Type Description

count Long Variable that receives the returned number of milliseconds
since Windows was started.

UnloadDictionary Property

Description

Unloads the specified dictionary.

Syntax

spellcontrol.UnloadDictionary (index) = 1

Part Type Description

index Integer Specifies a dictionary in the DictionaryName array. Positive
numbers indicate standard dictionaries and negative numbers
indicate custom dictionaries.

Remarks

In order to use a dictionary for spellchecking, it must be opened, loaded into memory, and enabled.

You may wish to unload a dictionary and conserve memory when a spellcheck is not in progress. Use
DictionaryIsLoaded to determine whether a dictionary is loaded and LoadDictionary to load the
dictionary.

UserData Property

Description

A place to store any information for future use.

Syntax

spellcontrol.UserData [= data   ]

Part Type Description

data Long Variable used to store or receive information.

Version Property

Description

Returns a string that represents the version number of VisualSpeller.

Syntax

version = spellcontrol.Version

Part Type Description

version String Variable that receives the returned version number.

Remarks

This property is for reference only.

WhereFound Property

Description

Returns the dictionary index indicating where a correctly spelled word was found.

Syntax

index = spellcontrol.WhereFound

Part Type Description

index Integer Variable that receives the returned dictionary index. A positive
value indicates that the word was found in a standard dictionary.
A negative value indicates it was found in a custom dictionary.
Zero indicates the word was found in the ignore/replace list, in
which case the IRWhereFound property can be read to
determine which list.

Example

The example displays a message indicating where a word was found in a CheckWord action or Found
event.

If VSpell1.WhereFound > 0 Then

MsgBox "Found in a standard dictionary"

ElseIf VSpell1.WhereFound < 0 Then

MsgBox "Found in a custom dictionary"

ElseIf VSpell1.WhereFound = 0 Then

MsgBox "Found in the ignore/replace list"

End If

WordCount Property

Description

Counts the number of words spellchecked since the word count was cleared.

Syntax

spellcontrol.WordCount [= count]

Part Type Description

count Long Number of spellchecked words.

WordLength Property

Description

Return the length of misspelled word.

Syntax

length = spellcontrol.WordLength

Part Type Description

length Long Variable that receives the returned length of the misspelled word.

Remarks

Equivalent to ResumeOffset - WordOffset.

WordMisspelledHelpFile Property

Description

Sets or returns the name and path of the help file associated with the Word Not Found in Dictionary dialog
box.

Syntax

spellcontrol.WordMisspelledHelpFile [= string]

Part Type Description

string String Name and path of the help file displayed when the dialog box help
button is clicked. The default is "VSPELLER.HLP".

WordMisspelledTitle Property

Description

Sets or returns the title for the Word Not Found in Dictionary dialog box.

Syntax

spellcontrol.WordMisspelledTitle [= string]

Part Type Description

string String The dialog box title. Setting this property to the
empty string "" reverts to the default title.

WordOffset Property

Description

Specifies the zero-based offset from the beginning of a text block where a misspelled word was found.

Syntax

spellcontrol.WordOffset [= offset]

Part Type Description

offset Long Zero-based offset from the beginning of a text block.

Remarks

This property is valid during a CheckText, BeginCheck, or ResumeCheck action when a misspelling
has occurred and at the end of a CheckText action, when it contains the final length of the text checked.
It is indeterminate otherwise. WordOffset is used by ResumeWithRecheck. It is set to zero by
BeginCheck and CheckText action.

Example

The example displays a misspelled word highlighted in a text control.

TextControl.Text = VSpell1.Text

TextControl.SelStart = VSpell1.WordOffset

TextControl.SelLength = Len(VSpell1.MisspelledWord)

VisualSpeller Control Properties
A number of the most commonly used properties can be set in the VisualSpeller Control Properties dialog
box.

To display the VisualSpeller Control Properties dialog box:

1. Right-click on the spellcheck control to display the shortcut menu.

2. Select Properties from the shortcut menu.

Click on a tab in the following illustration to view all the Property pages..

VisualSpeller Control Properties
A number of the most commonly used properties can be set in the VisualSpeller Control Properties dialog
box.

To display the VisualSpeller Control Properties dialog box:

1. Right-click on the spellcheck control to display the shortcut menu.

2. Select Properties from the shortcut menu.

Click on a tab in the following illustration to view all the Property pages..

VisualSpeller Control Properties
A number of the most commonly used properties can be set in the VisualSpeller Control Properties dialog
box.

To display the VisualSpeller Control Properties dialog box:

1. Right-click on the spellcheck control to display the shortcut menu.

2. Select Properties from the shortcut menu.

Click on a tab in the following illustration to view all the Property pages..

VisualSpeller Control Properties
A number of the most commonly used properties can be set in the VisualSpeller Control Properties dialog
box.

To display the VisualSpeller Control Properties dialog box:

1. Right-click on the spellcheck control to display the shortcut menu.

2. Select Properties from the shortcut menu.

Click on a tab in the following illustration to view all the Property pages..

VisualSpeller Control Properties
A number of the most commonly used properties can be set in the VisualSpeller Control Properties dialog
box.

To display the VisualSpeller Control Properties dialog box:

1. Right-click on the spellcheck control to display the shortcut menu.

2. Select Properties from the shortcut menu.

Click on a tab in the following illustration to view all the Property pages..

Error and Status Conditions
VisualSpeller sets the ResultCode property each time you use an action property or assign a value to a
writable property. Negative values indicate status conditions those that are a normal result of an
operation. Positive values indicate error conditions.    A value of zero indicates no error.

Reading properties other than action properties and properties with indices does not affect ResultCode
except in cases where an indexed property is read and the index is invalid. This allows you to retrieve
information on an operation without affecting the result code of the previous operation.

Status Constants

Error Constants

Status Constants
Error Constants

Following are the constants you can use to test for status conditions:

Status Constant Descriptions

VSR_WORD_MISSPELLED Word misspelled return (check properties).

VSR_IGNORE_REPLACE Ignore/replace requested (check properties).

VSR_CHECK_CANCELED Spellcheck cancelled.

VSR_BREAK Spellcheck break (see BreakWordCount).

VSR_FOUND Word found in dictionary.

VSR_REPLACED Word was replaced.

VSR_CHANGED List/custom changed during GetEntry.

VSR_END_LIST End of list (GetEntry).

VSR_ENTRY_NOT_FOUND Word not found (RemoveIREntry).

VSR_CREATED Custom dictionary created on open.

VSR_OPENED_READONLY Custom dictionary opened read-only.

VSR_REPLACE_OVERFLOW Buffer too small on replace action.

VSR_NOT_ADDED Word not added during AddSuggestion.

VSR_POPPED Word handled by internal popup dialog box (if
VSOPT_RETURN_EACH_WORD option was used).

VSR_CLICK_IN ClickIn event was triggered.

VSR_CLICK_OUT ClickOut event was triggered.

Error Constants
Status Constants

The following are constants that you can use to test for error conditions.

Error Constant Description

 VSR_NO_ERROR No error was generated. Operation was successfully completed.

VSR_WORD_TOO_LONG Word exceeded 75 characters during assignment to MisspelledWord,
ReplacementWord, or Hyphenation.

VSR_NO_MISSPELL An action was attempted that required a MisspelledWord when none
existed. Actions such as AddToIRList and AddToCustom can occur only
when a misspell occurs or when a word is explicitly assigned to
MisspelledWord in code. MisspelledWord is cleared at the beginning of
each spellcheck.

VSR_UNKNOWN_OPTION A DLL function was called using an option that is unknown for that
function.

VSR_ALREADY_OPEN An attempt was made to open a standard or custom dictionary that was
already open for the current context.

VSR_OPEN_FAILED An attempt to open a dictionary failed because it could not be found or
because it was open for exclusive use by another application.

VSR_CREATE_FAILED An attempt to create a custom dictionary failed because the path was
invalid or because the target directory was not writeable by the
application.

VSR_INVALID_DICTIONARY An attempt to open a standard dictionary failed because it was corrupt or
because its format was invalid.

VSR_NO_FLOPPY_ALLOWED An attempt was made to open a dictionary stored on a floppy diskette.
(Dictionaries must be stored on non-removeable media.)

VSR_WRITE_FAILURE An attempt to create or write to a custom dictionary failed, probably as a
result of inadequate disk space.

VSR_READ_FAILURE An attempt to open or load a dictionary failed, probably because the
dictionary was corrupt or because there was a hardware problem.

VSR_BAD_FILE_NAME An attempt to open a dictionary failed because the file name was invalid.

VSR_NOT_UPDATEABLE An attempt to make a custom dictionary updateable failed because the
dictionary file was read-only.

VSR_DUPLICATE_WORD An attempt to add a word to a custom dictionary failed because the word
was already in the dictionary.

VSR_BAD_CUSTOM An attempt to open or load a custom dictionary failed because it
contained nonASCII characters or because the format of the data was
bad.

VSR_IN_EVENT A CheckText, ResumeCheck, or BeginCheck action failed because an
event was already in progress.

VSR_NOT_LOADED An AddToCustom action failed because the specified dictionary was not
loaded.

VSR_REPLACE_ERROR An automatic replacement or ReplaceLastWord action failed because the
text buffer was too short to accept the expanded text.

VSR_CACHE_ERROR was unable to allocate the minimum cache size.

VSR_INVALID_CONTEXT The OCX control does not contain a valid context handle, probably
because a memory problem existed at the time the control was initialized.

VSR_NOTHING_TO_CHECK A BeginCheck or ResumeCheck action failed because there was no text

to spellcheck.

VSR_DIALOG_ERROR An error prevented a popup dialog box from appearing.

VSR_OUT_OF_MEMORY There was insufficient memory to complete the operation.

VSR_BAD_INDEX The dictionary index was out of range.

VSR_OUT_OF_STRING_SPACE Visual Basic is out of string memory. This could occur anytime you read a
property that returns a string.

VSR_IN_DIALOG An error occurred in the Word Not Found in Dictionary or Spell Options
dialog box..

VSR_FILE_EXISTS There is already an existing file with the name of the file you are trying to
create.

Runtime Errors
Visual Basic generates trappable errors for all abnormal conditions. The codes for these errors are the
same as their VisualSpeller counterparts but are incremented by VB_OFFSET. By default, this value is
32350. If this range conlicts with another control, you can adjust it by setting the ErrorOffset property.
The following list shows the constants and values for the Visual Basic OCX runtime error conditions:

Error Constant Value

VBR_WORD_TOO_LONG 1 + VB_OFFSET

VBR_NO_MISSPELL 2+ VB_OFFSET

VBR_UNKNOWN_OPTION 3+ VB_OFFSET

VBR_ALREADY_OPEN 4+ VB_OFFSET

VBR_OPEN_FAILED 5+ VB_OFFSET

VBR_CREATE_FAILED 6+ VB_OFFSET

VBR_INVALID_DICTIONARY 7+ VB_OFFSET

VBR_NO_FLOPPY_ALLOWED 8+ VB_OFFSET

VBR_WRITE_FAILURE 9+ VB_OFFSET

VBR_READ_FAILURE 10+ VB_OFFSET

VBR_BAD_FILE_NAME 11+ VB_OFFSET

VBR_NOT_UPDATEABLE 12+ VB_OFFSET

VBR_DUPLICATE_WORD 13+ VB_OFFSET

VBR_BAD_CUSTOM 14+ VB_OFFSET

VBR_IN_EVENT 15+ VB_OFFSET

VBR_NOT_LOADED 16+ VB_OFFSET

VBR_REPLACE_ERROR 17+ VB_OFFSET

VBR_CACHE_ERROR 18+ VB_OFFSET

VBR_INVALID_CONTEXT 19+ VB_OFFSET

VBR_NOTHING_TO_CHECK 20+ VB_OFFSET

VBR_DIALOG_ERROR 21+ VB_OFFSET

VBR_OUT_OF_MEMORY 22+ VB_OFFSET

VBR_BAD_INDEX 23+ VB_OFFSET

VBR_OUT_OF_STRING_SPACE 24+ VB_OFFSET

VBR_IN_DIALOG 25+ VB_OFFSET

VBR_FILE_EXISTS 26+ VB_OFFSET

Welcome to VisualSpeller

Getting Started with VisualSpeller

Basic Concepts

Dictionaries

Adding VisualSpeller to Your Application

Handling Errors

OCX Property Reference

Welcome to VisualSpeller

Getting Started with VisualSpeller

Introduction

Technical Support

Distributing a VisualSpeller application

Basic Concepts

Spellchecking Context

Text Buffer

Parsing

Word Lookup

Ignore/Replace Lists

Case Sensitivity

Suggestions

Dictionaries

Standard Dictionaries

Custom Dictionaries

Sharing Custom Dictionaries

Alphabetization in Custom Dictionaries

Extended Custom Dictionary Format

Exclusion and Automatic Replacement Lists

Dictionary Caching

Maximum Number of Open Dictionaries

Enabling and Loading Dictionaries

Dictionary Categories

Adding VisualSpeller to Your Application

Using VisualSpeller in Your Application

Basic Spellcheck Procedure

Properties That Control Spellchecking

Properties Changed by the Spellchecking Process

Events

Spellchecking a Single Word

Spellchecking a Text Block

Language Considerations

Handling Errors

Error and Status Conditions

Status Constants

Error Constants

Runtime Errors

OCX Property Reference

Welcome to VisualSpeller

Getting Started with VisualSpeller

Introduction

Technical Support

Distributing a VisualSpeller application

Basic Concepts

Dictionaries

Adding VisualSpeller to Your Application

Handling Errors

OCX Property Reference

Welcome to VisualSpeller

Getting Started with VisualSpeller

Basic Concepts

Spellchecking Context

Text Buffer

Parsing

Word Lookup

Ignore/Replace Lists

Case Sensitivity

Suggestions

Dictionaries

Adding VisualSpeller to Your Application

Handling Errors

OCX Property Reference

Welcome to VisualSpeller

Getting Started with VisualSpeller

Basic Concepts

Dictionaries

Standard Dictionaries

Custom Dictionaries

Sharing Custom Dictionaries

Alphabetization in Custom Dictionaries

Extended Custom Dictionary Format

Exclusion and Automatic Replacement Lists

Dictionary Caching

Maximum Number of Open Dictionaries

Enabling and Loading Dictionaries

Dictionary Categories

Adding VisualSpeller to Your Application

Handling Errors

OCX Property Reference

Welcome to VisualSpeller

Getting Started with VisualSpeller

Basic Concepts

Dictionaries

Adding VisualSpeller to Your Application

Using VisualSpeller in Your Application

Basic Spellcheck Procedure

Properties That Control Spellchecking

Properties Changed by the Spellchecking Process

Events

Spellchecking a Single Word

Spellchecking a Text Block

Language Considerations

Handling Errors

OCX Property Reference

Welcome to VisualSpeller

Getting Started with VisualSpeller

Basic Concepts

Dictionaries

Adding VisualSpeller to Your Application

Handling Errors

Error and Status Conditions

Status Constants

Error Constants

Runtime Errors

OCX Property Reference

