
By Barry Seymour

Advice from your Uncle
No code this week; just a bunch of tips and good ideas.

Converting numbers to character strings:    Here's the old way, which takes more typing but 
ensures you don't have any leading or trailing blanks..

Number%=145

STRING$=Ltrim$(Rtrim$(Str$(Number%)))

Here's the new way, which is a lot easier to type and yields the same results:

Number%=145

String$=Format$(Number%, "0")

This command formats String$ in the same pattern you enter as the second parameter.    It 
performs multiple tasks; it converts the number (whatever type) to a string, it removes leading 
and trailing blanks and will format the number cleanly, with no commas, dollar signs, etc.    If the 
expression evaluates to zero, you'll get "0" as the result instead of a null string with the other 
method.

This works equally well with actual values or variables.    Bear in mind if you're converting non-
integer numbers that they'll get rounded off unless you leave room for the numbers to the right 
of the decimal in your Format$ call. 

Help with Error Messages:    Whenever you're writing code and something crashes, Visual 
Basic gives you an error message.    If you want more information on the nature of the error, 
press F1 before you dismiss the error message box.    VB.HLP will be opened to the relevant 
topic describing the error.    The help file often discusses many ways the error could have been 
caused, and can act as a convenient checklist of things to look for.    There've been many times 
I've found this useful, even though I thought I knew all about a given error condition. 

The Moral:    Don't be too macho to use F1!

Maniuplating forms by remote control:    The subs that control your forms don't have to be in 
the forms themselves!    Remember that memory is set aside for all the subroutines and 
functions in a form for the entire time the form is loaded.    If you're concerned about conserving 
on system resources, put your subs and functions in separate modules which are only loaded 
into memory when their code is called.

This can present a few problems with manipulating forms.    For one, you need to reference the 
controlled form by name in all your code.    For example, if you had a module called 
DISPLAY.BAS and it contained routines which controlled the display of SHOWOFF.FRM, 
(FormName = ShowOff), you'd need to use SHOWOFF's FormName in front of all calls 
controlling that form.    Thus the following differences:

This... Becomes this...



Height=600 ShowOff.Height = 600
Label1.Caption = "Kick Me" ShowOff.Label1.Caption = "Kick Me"
List1.ListIndex = 0 ShowOff.List1.ListIndex = 0

And so on.

Getting to a Sub or Function Quickly:    Highlight the sub or function call in your current code 
and press Shift F2.    This will immediately jump you to that Sub or Function.    This is a mixed 
blessing; when you're tracing code manually it's a big help; however there is no equally quick 
way to backtrack!    I usually stick in a comment with some totally unique combination of 
characters (such as three pipe symbols or something) and then key a search on that after I'm 
done with the sub in question.

Keeeeeyyboard Shortcuts!:    As a touch typist, I can't do without 'em.    They may seem 
obvious when you read them in the following table (they sure look obvious to me as I write 'em!) 
but if you take a few minutes to memorize them and use them as you code you speed things up 
immensely and maybe even save yourself some heartache!

Command What it does

ALT+F4 This closees your currently active code window    This gets it out of the way 
fast prior to a program run, but it can be a pain in the butt if you made a 
mistake and have to open it again.

ALT+FV File Save Project:    Updates your MAK file!.    Also fools you into thinking 
you've saved everything else as well!    You didn't.

ALT+FS File Save:    Saves the form or code module you're currently working on.    
This is NEVER bad unless you just saved a change you can't easily undo.    
(More on this later)

ALT+FR or F5 File Run:    Much faster than doing it from the menus with the mouse.    Trust 
me.

F3 Repeat Last Search:    This is convenient and can also be used to start a new 
search if there is no prior search.    However you could also inadvertently lose 
your place.

ALT+WI Window Immediate Window:    At Break Time, this brings up the Immediate 
Window:    If you're working on a large project or you have a screenful of 
cluttered large forms, this will cut to the IWindow quickly!    On the other hand, 
it could just be simpler just to click on the darn thing.    It all depends on your 
project.    (Now I'm starting to sound like Tom Bodett! 

Slingin' around them Controls:    You can move, cut, copy and paste groups of controls using 
the Ctrl key.    Click on the first control to highlight it; hold down the Ctrl key as you click on 
subsequent controls.    You can drag 'em all by grabbing any one of them;    If cut (Shift+Delete) 
or copy (Ctrl+Insert), you can then paste (Shift+Ins) the controls into the form, a frame or 
picturebox on the form or even to another form.    I've even used this technique to copy controls 
from one project to another, but the code in the controls does not survive the ride.



Detecting Keyboard Input:    Good Windows programs allow the user to control a lot of things 
via keyboard shortcuts, but that means you may have to write a keyboard handler.    Many 
events can be put in a menu and assigned accelerator keys, which is the simplest method.    
When the accelerator keys are pressed the function or sub is called without the menu 
displaying. 

If you have to trap non-ASCII keystrokes (arrow keys, PgUp, tabs, etc) your best bet is to write a 
KeyHandler routine which is accessible globally, then put calls to it in the KeyDown event of all 
controls which might be active when the user types.    There are a few catches you should be 
aware of:

Some controls don't have a KeyDown event.    Try to avoid letting them get the focus.

Don't put calls to KeyHandler in buttons; if you have several buttons on a form the left & 
right arrow keys will move the focus around on the button without calling the KeyDown 
event.

You can disable pictures without affecting their display.    This means you don't have to 
worry about or plan for their getting the focus and capturing/redirecting keystrokes.

You can simulate Keyboard repeats with a While..Wend or Do..Loop loop.    Set a form or 
global variable to TRUE and start looping in the KeyDown Event.    Reset the variable to 
FALSE in that control's KeyUp event to stop the loop.    This works either on the Control 
level or in the global KeyHandler routine.

The Unknown Form:    Here's a trick many people probably don't know about;    You can 
remove the title bar from your form!    It's not easy, but it can be done by setting the ControlBox, 
MinButton and MaxButton properties of your form to ZERO and setting the Caption to a null 
string.    At that point the blue title bar at the top of the form disappears with a sigh of resignation 
at run time.    This can be helpful if you want to prevent the user from moving your form.    A false 
title bar can easily be mocked up with a label control.

And finally...

Don't use END.    You're better off just unloading everything.    First of all, it's a good idea to 
unload everything anyway; if you have a multiple form application simply calling 'End' won't 
unload the other forms.    Clean up after yourself, whydontcha! 

The second (and more important) reason is that Windows and VB don't get along when it comes 
to ending a program.    This becomes a problem when Windows or some external agency tries 
to send a "shut yourself down" message to a running VB application. 

In the Form_Unload section of your main form, put code to clean up your application (prompt to 
save unsaved work, etc.)    Then unload all other forms.    After all this code completes, the form 
itself will bow out gracefully.    Put a call to Form_Unload in the File Exit section of your form's 



menu and all will be done!

This column is available on the Windows Online BBS in Danville, California, 
phone 1 510 736-8343.    This column in Windows HELP format (VB018EX.HLP) is 
in VB017EX.ZIP, and may be distributed as freeware.

for Windows Online "the Weekly"


