
Copyright © 1992-93 Apple Computer Inc. All Rights Reserved 1.

The DisplayLog Library
Martin Minow

Apple Computer Inc.

INTRODUCTION

The Log Library allows you to add event tracing to all types of Power PC code segments
running on PowerMacs that support the Driver Services and Name Registry Libraries,
including device drivers, callback routines, dynamically-loaded code segments, and
applications. Except for the initialization routine, all functions may be called at any time,
even within interrupt or I/O completion routines. The library is designed to be “fail-safe:”
it has no error conditions and, barring a malicious attack or dumb bug, will either do what
is requested or do nothing, but it should never crash or stall your program. In particular, if
your application tries to log data when no LogRecord has been established, or there is no
room in the LogRecord data area, your program will not stall, crash or damage the
system.

DisplayLog is based on the Audit library available for Macintosh Toolbox application and
driver development. DisplayLog, however, runs only on the systems that support the new
I/O architecture, in particular the first-generation PCI Power Macintosh computers. The
library may be linked directly into Power PC native code segments or loaded from a
shared library. When compiled in 68000 emulation, it builds a “glue” library that calls the
native shared library. It has not been adapted for Copeland, but this should not be difficult
as it only uses operating system services that are forward-compatible with Copeland.
(This might not be true for the MacsBug dcmd, of course.)

This library is Copyright © 1994-95 Apple Computer Inc. All Rights Reserved.

USAGE

To use the library, you must include its definition file, create a LogRecord, store data, and
read data. The following examples show this in the context of a single application;
however real-world users would probably split the functions among separate applications;
perhaps by creating the LogRecord in an init or driver initialization routine, storing data
in a driver or callback code-segment, and displaying data in a stand-alone application or
MacsBug dcmd.

Global Variable Definitions

A very simple DisplayLog display application might define the parameters it needs as
global values:

About Audit May 1, 2025

Copyright © 1992-93 Apple Computer Inc. All Rights Reserved 2.

#include "LogLibrary.h"
LogRecordPtr gLogRecordPtr; /* Returned by MakeLogRecord */
LogEntryRecord gCurrentEntry; /* Returned by ReadLogEntry */

Creating a Log Record

Using the above definitions, the following statements create and initialize a DisplayLog record:

gLogRecordPtr = MakeLogRecord("SampleLog", 64);

The above call creates a log record named "SampleLog" that can store 64 entries. Logging is initially enabled. If there is no room in the
record, the first entry waiting for the display routine will be used for this entry (i.e., only the last 64 entries will be retained). Note that
MakeLogRecord may only be called from applications or code-segments that can allocate memory in the system resident pool. In a driver,
this generally means that it must be called from the initialization routine.

About Audit May 1, 2025

Copyright © 1992-93 Apple Computer Inc. All Rights Reserved 3.

Writing a Log Record Entry

The following code sequence shows how the library might be used to log status errors. It would be called immediately after calling a library
function. In the example, the application tries to read data from a file and logs any errors that are returned:

status = FSRead(refNum, &bytesToRead, buffer);
if (status != noErr && status != eofErr) {

gLogRecordPtr = GetLogRecordPtr("Sample");
LogStatusString(

gLogRecordPtr ,
'Read',
status,
"\pRead error"

);
WriteLogEntry(

gLogRecordPtr ,
'Read',
LogFormat4(

kLogFormatSigned,
kLogFormatUnsigned,
kLogFormatAddress
kLogFormatString

),
(signed long) refNum,
bytesToRead,
buffer,
"\pFSRead"

);
}

}

This example shows two calls: the LogStatusString macro stores the status code and a string that identifies the function that called it, while
the general WriteLogEntry call stores four values: the device reference number, number of bytes, buffer address, and a labelling string.

Reading a Log Record Entry

A typical display application calls ReadLogEntry each time within its event loop, even if no event was returned:

for (i = 0; i < 10; i++) {
if (ReadLogEntry(gLogRecordPtr , &gCurrentEntry) != noErr)

break; /* Nothing more to display */
MyProcessThisLogEntry();

}

Here, each pass through the event loop tries to process several entry records, exiting when no more data is available or a reasonable number
have been processed. Processing entries in a loop such as the one shown above may prevent a run-away asychronous process from
absorbing the entire machine by saturating the log.

Your display application would process each LogEntryRecord entry by formatting the data, including the timestamp, id code, and data.
Library routines are available to give a consistent format. Since each entry is self-formatting, a general display routine can be written that
will format any records.

Displaying the DisplayLog Entry Data

About Audit May 1, 2025

Copyright © 1992-93 Apple Computer Inc. All Rights Reserved 4.

The following functions convert the DisplayLog entry record into readable Pascal strings.

• LogConvertTimestamp converts the timestamp information from a system-specific up-time value to civil time.
Because the internal function, UpTime, is not publicly available to 68000 modules, and the Macintosh Toolbox
function, GetDateTime is not available to Power PC functions that use the more limited Driver Services library, this
must be called using the code sequence in the example below. LogConvertTimestamp uses a 64-bit integer math
package to convert AbsoluteTime to civil time. The function will return an incorrect value if the user changes the
base time using the Date Time Control Panel after the function is called.

• FormatLogEntryTimestamp formats the ConvertLogEntryTimestamp values, storing the time in a Pascal string
buffer. The time is given in ISO-standard date format as “yyyy.mm.dd hh.mm.ss.msec.” This is a fixed-length
string whose format is independent of the user’s time and date formatting choice. This function does not use the
Macintosh Toolbox.

• FormatLogEntryData converts the data portion of the entry record, storing it as a Pascal string. It does not use the
Macintosh Toolbox.

For example, the following C sequence may be used to display an entry record:
void
MyProcessLogEntry(void)
{

LogEntryRecord thisLogEntry;
DateTimeRec thisDateTime;
UInt32 residualNanoseconds;
Str255 timestamp;
Str255 content;

if (ReadLogEntry(gLogRecordPtr , &thisLogEntry)) {
LogConvertTimestamp(&thisLogEntry, &thisDateTime, &residualNanoseconds);
timestamp[0] = 0;
FormatLogEntryTimestamp(timestamp, &thisDateTime, residualNanoseconds);
FormatLogEntryData(&thisDateTime, content);
DrawString(timestamp);
DrawString("\p. ");
DrawString(content);

}
}

The source of FormatLogEntryTimestamp and FormatLogEntryData should be consulted to see how to process the entry data, including
converting the timestamp and “decompiling” the formatted data.

LOGRECORD DATA

The DisplayLog library uses a private data area in the System Resident Pool to store its
information. MakeLogRecord and GetLogRecordPtr return a pointer to that area, and all
other functions use that pointer as a parameter. The contents of the area are private: your
application should not access this record directly,. This is important to prevent
asychronous calls (from interrupt routines, for example) from accessing the data
simultaneously. The format of the record is, however, in the header file.

Your display application may need to understand the format of the LogEntry record that
is returned by ReadLogEntry. This contains the information that was stored as a result of
a WriteLogEntry call.

About Audit May 1, 2025

Copyright © 1992-93 Apple Computer Inc. All Rights Reserved 5.

LOGENTRY CONTENTS

ReadLogEntry. if successful, returns a LogEntryRecord. This is a C structure with the
following format:

typedef struct LogEntryRecord{
AbsoluteTime eventTime; /* UpTime() at call */
UInt32 sequence; /* Unique entry index */
OSType idCode; /* Why are we logging */
UInt32 format; /* Format of the data */
UInt32 data[10]; /* 40 bytes of data */

} LogEntryRecord, *LogEntryRecordPtr;

The structure elements are used as follows:

eventTime This value timestamps each entry: it is the value of UpTime
when the element was written into the log.

sequence This is a unique index for each entry. Gaps in the sequence
indicate that data was missed.

idCode This value is the idCode parameter when this record was
stored. Your application may use it for any purpose. By
convention, it is an OSType (four character string) that
further identifies the entry call.

format This defines the format of the rest of the record.

data This contains the actual data. There is enough space for up
to ten longwords. Some format parameters store a string
which can take up the remaining space. For example, if the
only parameter is kLogFormatString, up to 39 bytes
(plus a one-byte length code) may be stored.

About Audit May 1, 2025

Copyright © 1992-93 Apple Computer Inc. All Rights Reserved 6.
While processing this data is not especially tricky, you may wish to re-read the sample code to unserstand how to format the
data values.

LOG RECORD CONTENTS

The DisplayLog library keeps all information it needs in private structures. It is essential
to understand that user applications must not modify these structure directly: they are
described here for developers who need to modify the library for their own specific
purposes.

typedef struct LogRecord {
volatile UInt32 semaphore; /* Atomic access flag */
volatile UInt32 lostLockCounter; /* Atomic lock lost */
volatile UInt32 sequenceCounter; /* Next record sequence */
volatile UInt32 flags; /* User configuration */
LogRecordNameBuf logName; /* System Registry Name */
volatile UInt32 entryPutIndex; /* Buffer write index */
volatile UInt32 entryGetIndex; /* Buffer read index */
volatile UInt32 entryMaxIndex; /* Entry max index */
LogEntryRecord entries[1]; /* Entries stored here */

} LogRecord, *LogRecordPtr;

The structure elements are used as follows:

semaphore In order to store data without blocking other programs, all
access to the LogRecord is controlled through a "test and
set" semaphore that will be locked before reading or
writing data to the LogRecord.

lostLockCounter This records the number of times the semaphore was
locked (and data consequently lost). Note that this is a
different "lost cause" than is recorded by lostDataCounter

sequenceCounter This records the sequence of records added to the log. The
first record will have number one. This value will be
incremented even if data cannot be stored because the log
was full or a semaphore interlock prevents storing an entry.
The current value of the sequence counter will be stored
into each log entry; gaps in the sequence thus indicate
missing data.

logName The name of this LogRecord. This is identical to the
property name stored in the System Name Registry. Having
a redundant copy simplifies the display application and
MacsBug dcmd.

flags This word contains two flag bits: kLogEnableMask and
kLogPreserveFirstMask. The flags variable is stored as a
longword so that all record elements are aligned to 32-bit

About Audit May 1, 2025

Copyright © 1992-93 Apple Computer Inc. All Rights Reserved 7.

boundaries: this improves performance on modern
hardware.

entryPutIndex This is the ring-buffer index used to store data in the entry
vector.

entryGetIndex This is the ring-buffer index used to retrieve data in the
entry vector. The case “entryPutIndex equals
entryGetIndex” indicates an empty buffer.

entryMaxIndex When the LogRecord is created, this element receives the
system ticks value.

entries[] This is a vector of LogEntryRecord elements that the
DisplayLog function uses to store data. There is one entry
more than the number provided in the call to serve as a
“full versus empty” marker.

About Audit May 1, 2025

Copyright © 1992-93 Apple Computer Inc. All Rights Reserved 8.

MakeLogRecord and GetLogRecordPtr return a pointer to the LogRecord.

FUNCTION USAGE

The LogLibrary contains functions to create LogRecords, store data in a LogRecord, and
extract data from a LogRecord. In addition, a number of functions that access records
within a LogRecord are provided so the library can evolve without requiring application
program modification and, especially, so that the library modifies its internal structures in
a way that prevents two asychronous requests from changing a structure element at the
same time.

Creating a LogRecord

About Audit May 1, 2025

Copyright © 1992-93 Apple Computer Inc. All Rights Reserved 9.
pascal LogRecordPtr
MakeLogRecord(

const LogRecordNamePtr logRecordNamePtr,
unsigned short nEntries

);

MakeLogRecordcreates a new LogRecord as a non-relocatable object in the System Resident Pool that is identified by the
logNamePtr (a C-string). The record can store the indicated number of LogRecord entries. If successful, logging is initially
enabled and preserves the latest entries. MakeLogRecordreturns a pointer to the LogRecord it created or found, or NULL if it
cannot create a record. Several independent LogRecords can be active at any time, subject only to memory limitations and
good taste.

Because of the design of the Name Registry, LogRecords cannot be named “name.”

Finding an Existing LogRecord
pascal LogRecordPtr
GetLogRecordPtr

const LogRecordNamePtr logRecordNamePtr
);

GetLogRecordPtr returns a pointer to the named LogRecord, or NULL if no record is defined for this selector. Your
application would typically call this function when it starts since, if a LogRecord is present, it will remain until your system
is shutdown or restarted. The value returned by GetLogRecordPtr is used as a parameter to all other functions. Although your
application could call GetLogRecordPtr each time it tries to log some data, this requires an internal call to the System Name
Registry which would be inefficient.

Writing a LogRecord Entry
OSErr
WriteLogEntry(

LogRecordPtr logRecordPtr,
OSType idCode,
unsigned long format,
... /* Additional parameters, if any */

);

WriteLogEntry stores an entry in the LogRecord that contains the following data:

• WriteLogEntry timestamps each entry with the system UpTime() value. As will be seen, your display
procedure, running under the Macintosh Toolbox, can convert this value into civil time (hours, minutes,
seconds) when the entry is displayed.

• idCode is a value that you specify. By convention, it is assumed to be an OSType that the display
application uses to identify the WriteLogEntry request. This may be a unique value for each request or a
value that is common to a group of requests (such as a single function or function library).
WriteLogEntry does not interpret this value, however FormatLogEntryData interpretes it as an OSType.
Note that, on the Macintosh, an OSType can be coerced to any longword scalar, such as a memory
address. As you adapt the DisplayLog library to your own use, you may wish to consider passing some
state information in the idCode parameter (perhaps a task-specific handle) rather than using it as a
human-readable identifier.

• format is a 32-bit value that the FormatLogEntryData function interprets to understand how to process
the additional parameters, if any. It should be set to the result of expanding the LogFormat macro, or one
of two special values. It

About Audit May 1, 2025

Copyright © 1992-93 Apple Computer Inc. All Rights Reserved 10.

will be described below.

• Each log entry may store up to ten longword arguments. The format parameter defines their semantic
content.

Note: because of differences between various C compilers, it is essential that your program specify all data
parameters as longwords. For example, if you wish to log a value that is normally stored as a short value,
such as a system error code or Boolean, your program must explicitly cast it to long or unsigned long. If
you don’t do this, you will display incorrect data and may cause the library to crash. The DisplayLog
library operates compatibly under MPW, MetroWerks, and Think C. An application written in one
environment can access a LogRecord created by the other environment.

Of course, WriteLogEntry will only store an entry if several conditions are met:

• The logRecordPtr must be non-NULL. It is the value returned by GetLogRecordPtr or MakeLogRecord.
If it is NULL, WriteLogEntry silently returns.

• Logging must be enabled.

• There must be room for the entry in the LogRecord entry area. This test will fail if your display function
does not read LogRecord entries quickly enough and will be discussed further.

WriteLogEntry returns one of the following status values:

noErr The entry was stored. This is also returned if the entry could not be
stored because the LogRecord was not present or logging is disabled.

writErr The entry was not stored because the LogRecord was full and
“preserve first” selected.

fbsyErr The entry was not stored because the interlock semaphore indicated
that the LogRecord is currently being updated by an asynchronous
process.

WriteLogEntry may only be called from C. Pascal callers must use StoreLogEntry.

Formatting LogEntry parameters

In order to simplify display applications, each LogRecordEntry is self-formatting. The format parameter specifies the format
of all additional parameters. The format parameter should be constructed by expanding the LogFormat macro. For most uses,
you would use LogFormat1, LogFormat2, etc. which create the correct sequence.

The following, if present, must be the last — or only — LogFormat argument specification:

kLogFormatString This must be the last parameter in a LogFormat
specification. WriteLogEntry requires one additional
parameter, a Pascal string. If it is the only parameter, the
first 39 bytes of the string will be stored. If other
parameters preceed this, as many bytes as can fit will be
stored (each argument requires four bytes). Your
program does not need to concern itself with string
length; the DisplayLog function truncates the data as
needed. Note: The function will properly handle NULL
arguments, but may crash if an illegal address is passed.

About Audit May 1, 2025

Copyright © 1992-93 Apple Computer Inc. All Rights Reserved 11.

The following may appear anywhere in the LogFormat operation. Each argument defines the format of an associated
WriteLogEntry parameter:

kLogFormatSigned A signed integer longword value.

kLogFormatUnsigned An unsigned integer longword value.

kLogFormatHex An unsigned hexadecimal value that may be interpreted
as a 4-byte character, such as an OSType or ResType
value. This is displayed both in hexadecimal and as a
character string (with ‘.’ replacing any non-USASCII
bytes).

kLogFormatAddress An unsigned hexadecimal value that is never interpreted
as a character string.

kLogFormatEnd This terminates the list of parameters. The LogFormat1,
etc. macros append this as needed: by using these
macros, you do not need to be concerned with this value.

About Audit May 1, 2025

Copyright © 1992-93 Apple Computer Inc. All Rights Reserved 12.
In order to simplify the life of the poor programmer, the header file provides a family of macros that allow you to specify one
to eight arguments. Thus, instead of writing

WriteLogEntry(
gLogRecordPtr,
'Moof',
LogFormat(

kLogFormatSigned, kLogFormatEnd, kLogFormatEnd, kLogFormatEnd,
kLogFormatEnd, kLogFormatEnd, kLogFormatEnd, kLogFormatEnd,
kLogFormatEnd, kLogFormatEnd

),
(long) 12345

);

you can write
WriteLogEntry(

gLogRecordPtr,
'Moof',
LogFormat1(kLogFormatSigned),
(long) 12345

);

Note that the function call explicitly casts the integer parameter to long.

The header file provides LogFormat1 through LogFormat10 macros.

Writing a String to the LogRecord
OSErr
LogString(

LogRecordPtr logRecordPtr,
OSType idCode,
ConstStr255Param string

);

The LogString function stores a string in a single LogRecord entry. It is actually implemented as a macro as follows:

#define LogString(logRecordPtr, idCode, string) (\
WriteLogEntry(\

About Audit May 1, 2025

Copyright © 1992-93 Apple Computer Inc. All Rights Reserved 13.
(logRecordPtr), \
(idCode), \
DLogFormat1(kLogFormatString), \
(string) \

) \
)

An explicit function form is also available:

(LogString)(gLogRecordPtr, ‘ABCD’, “\pFoo”)

Writing a Status Error to the DisplayLog Record
OSErr
LogStatusString(

LogRecordPtr logRecordPtr,
OSType idCode,
OSErr status,
const StringPtr string

);

The LogStatusString function stores an operating-system status code and accompaning descriptive string in a single
LogRecord entry. LogStatusString is implemented as a macro that calls WriteLogEntry with the proper format expression.
An explicit function is also available.

Storing a LogRecord Entry
OSErr
StoreLogEntry(

LogRecordPtr logRecordPtr,
LogEntryPtr logEntryPtr

);

StoreLogEntry stores an entry in the LogRecord. This function is normally called from WriteLogEntry, but it may be called
directly by Pascal programs (and other languages that do not support C variable-length argument lists). It stores the event
time and sequence counter into caller’s LogEntry record and, if possible, stores the datum into the LogRecord. This is the
only function that stores entries into the LogRecord. It returns one of the following status values:

noErr The entry was stored. This is also returned if the entry could not be
stored because the LogRecord was not present or logging is disabled.

writErr The entry was not stored because the LogRecord was full and
“preserve first” selected.

fbsyErr The entry was not stored because the interlock semaphore indicated
that the LogRecord is currently being updated by an asynchronous
process.

Reading a LogRecord Entry
OSErr
ReadLogEntry(

LogRecordPtr logRecordPtr,
LogEntryPtr thisLogEntry

);

If there is a LogRecord entry waiting for this LogRecord, ReadLogEntry copies it to your entry buffer and returns noErr. If
nothing is waiting (or LogRecordPtr is NULL), it returns readErr. Note that ReadLogEntry does not care whether logging is
currently enabled.

If ReadLogEntry returns one of the following status values:

noErr The entry was retrieved and stored.

About Audit May 1, 2025

Copyright © 1992-93 Apple Computer Inc. All Rights Reserved 14.

readErr The entry was not retrieved, etther because the LogRecord does not
exist or no data is waiting to be stored.

fbsyErr The entry was not stored because the interlock semaphore indicated
that the LogRecord is currently being updated by an asynchronous
process.

About Audit May 1, 2025

Copyright © 1992-93 Apple Computer Inc. All Rights Reserved 15.

Formatting the DisplayLog Record Entry Data
void
FormatLogEntryData(

const LogEntryPtr logEntryPtr,
StringPtr result

);

FormatLogEntryData converts the data in the entry to a readable string, storing the formatted output in the result string. It
does not display the data, nor does it convert the timestamp. The FormatLogEntryData function is provided in LogFormat.c.

Formatting the Log Entry Timestamp
void
LogConvertTimestamp(

const LogEntryPtr logEntryPtr,
DateTimeRec *eventDateTime,
UInt32 *residualNanoseconds

);
void
FormatLogEntryTimestamp(

StringPtr result, const
DateTimeRec *eventDateTime, UInt32

residualNanoseconds
);

LogConvertTimestamp converts the entry UpTime value to the civil date and time, storing the result in, eventDateTime, and
residualNanoseconds. This function requires the Macintosh Toolbox. The first time it is called, it calls GetDateTime and
UpTime to determine the offset between AbsoluteTime and civil time. This means that, if the user changes the system civil
time after LogConvertTimestamp is called, subsequent calls will return an incorrect value. LogConvertTimestamp must be
linked with the Math64.c library. This function can be called from a 68000 compilation as it uses a cross-architecture call to
determine UpTime.

FormatLogEntryTimestamp converts the entry’s timestamp to a readable string, storing the formatted output in result. The
output is a fixed-length string with the following format:

1992.12.25 22:10:44.123

The result contains the year, month, and date (in ISO-date format), followed by the time of day in 24-hour clock format with
the residual clock ticks (in milliseconds). This format is independent of the time and date formatting selected by the computer
user. The FormatLogEntryTimestamp function is provided in LogFormatTimestamp.c.

Support Functions

Your application should use the following functions to access a DisplayLog record’s internal structure. They also make it
possible to extend the library without requiring changes in an application program. All LogRecord structure elements must be
accessed through these functions as they prevent two interrupt-driven code sequences from accessing structure elements
simultaneously.

About Audit May 1, 2025

Copyright © 1992-93 Apple Computer Inc. All Rights Reserved 16.

Enabling and Disabling DisplayLog Logging
Boolean
EnableLogRecord(

LogRecordPtr logRecordPtr,
Boolean enableLogging

);

If enableLogging is TRUE, calls to WriteLogEntry will store data in the LogRecord (assuming, of course, that there is room
to store data). If the parameter is FALSE, WriteLogEntry ignores calls for this LogRecord. EnableLogRecord returns the old
value of the enabling flag; thus your application can restore the previous LogRecord logging state.

Controlling Data Overrun
Boolean
PreserveLogRecord(

LogRecordPtr logRecordPtr,
Boolean preserveFirst

);

If preserveFirst is TRUE and WriteLogEntry is called when there is no room to store data, WriteLogEntry will ignore the call
request, preserving the entries waiting to be displayed. If preserveFirst is FALSE, WriteLogEntry will throw away the first
(earliest) entry in the “to be displayed” queue, thus retaining the latest nEntries worth of data. PreserveLogRecord returns the
old value of the preserveFirst flag; thus your application can restore the previous state. Note that there is no “right” value for
this flag: different applications require different preservation strategies.

Getting the Semaphore Lost Counter
UInt32
GetLogSemaphoreLostCounter(

LogRecordPtr logRecordPtr,
);

The semaphroe lost counter is incremented whenever a function cannot access the LogRecord because another asynchronous
application is using it. This is unlikely and indicates that data was lost.

Enumeration Utilities
OSErr
LogRecordIterateCreate(

LogRecordIterPtr cookie
);
void
LogRecordIterateDispose(

LogRecordIterPtr cookie
);
LogRecordPtr
LogRecordIterate(

LogRecordIterPtr cookie
);

These routines allow an application to retrieve all known LogRecords. The iteration process is as follows:
if (LogRecordIterateCreate(&cookie) == noErr) {

while ((logRecordPtr = LogRecordIterate(&cookie)) != NULL) {
... Process this log record, the name is in the record ...
}

}
LogRecordIterateDispose(&cookie);

These functions can be called from 68000 compilations by using LogLibrary68.c.

About Audit May 1, 2025

Copyright © 1992-93 Apple Computer Inc. All Rights Reserved 17.

PERFORMANCE TIMING

Because the LogLibrary timestamps all entries, it is fairly easy to use it to instrument
device drivers. To test a driver, you can define a Timestamp macro as follows:

#define Timestamp(tag) do { \
WriteLogEntry(gLogRecordPtr, tag, LogNoFormat); \

 } while (0)

Then, you could bracket interesting sequences as follows:
Timestamp('XFE+'); /* Overall transfer start */
PBWriteSync(&TEST.pb);
Timestamp('XFE-'); /* Overall transfer ends */

After each transfer, the log was read and sequence times computed using the following algorithm:
const OSType gTagNames[sMaxStatistics] = {

'XFE ','DMA ','IOS ','PMI ','Q2I ','IOC ','SWT ','CWT ','SSI '
};

while (ReadLogEntry(gLogRecordPtr, &logEntryRecord) == noErr) {
switch (logEntryRecord.idCode & 0x000000FF) {
case '+': isStart = TRUE; break;
case '-': isStart = FALSE; break;
default: continue;
}
eventTag = (logEntryRecord.idCode & 0xFFFFFF00) | ' ';
for (i = 0; i < sMaxStatistics; i++) {
 if (eventTag == gTagNames[i]) {
 if (isStart)

eventStart[i] = logEntryRecord.eventTime;
else {

eventNanoseconds = AbsoluteDeltaToNanoseconds(
logEntryRecord.eventTime,
eventStart[i]

);
 eventVector[i] += eventNanoseconds.lo;

eventStart[i].lo = eventStart[i].hi = 0;
 }

}
}

}

The test program then wrote the results to a file where they were processed by a statistics package to yield the following
chart:

About Audit May 1, 2025

Copyright © 1992-93 Apple Computer Inc. All Rights Reserved 18.

Mean(DMA)

Mean(I/O Start)

Mean(PrepareMemoryForIO)

Mean(QueueSecondaryInterrupt)

Mean(I/O Completion)

Mean(Start Watchdog Timeout)

Mean(Cancel Watchdog Timeout)

Mean(Other Overhead)

0 100 200 300 400 500 600

Time µSec

About Audit May 1, 2025

