



Apple Technical Publications
© Apple Computer, Inc. 1998



Programming with
QuickTime Sprites



Apple Computer, Inc.
© 1998 Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except in the normal use of the
software or to make a backup copy
of the software or documentation.
The same proprietary and copyright
notices must be affixed to any
permitted copies as were affixed to
the original. This exception does not
allow copies to be made for others,
whether or not sold, but all of the
material purchased (with all backup
copies) may be sold, given, or loaned
to another person. Under the law,
copying includes translating into
another language or format. You
may use the software on any
computer owned by you, but extra
copies cannot be made for this
purpose.
The Apple logo is a trademark of
Apple Computer, Inc. Use of the
“keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, FireWire,
Mac, Macintosh, and QuickTime are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
The QuickTime logo is a trademark
of Apple Computer, Inc.
Adobe, Acrobat, Photoshop, and
PostScript are trademarks of Adobe
Systems Incorporated or its
subsidiaries and may be registered in
certain jurisdictions.
MacPaint is a trademark of Apple
Computer, Inc., registered in the U.S.
and other countries.
Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
Indeo and Intel are registered
trademarks of Intel.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

PowerPC and the PowerPC logo are
trademarks of International Business
Machines Corporation, used under
license therefrom.

Simultaneously published in the
United States and Canada.
Printed in the United States of
America.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF
DISTRIBUTION OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS
DISTRIBUTED “AS IS,” AND YOU
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Preface About This Book 7

Book Structure 7
Conventions Used in This Book 8

Special Fonts 8
Types of Notes 8

Development Environment 9

Chapter 1 Introduction to Sprites and the Sprite Toolbox 11

Introduction to Sprites and the Sprite Toolbox 12
Sprite Animation 12
Sprite Spatial Concepts 13

Sprite Track’s Local Coordinate System 13
Source Box 14
Sprite’s Bounding Box 15
Sprites’ Four Corners 15
Registration Points 16
Display Space 20

Sprite Properties 22
Sprite World Characteristics 22
Sprite Tracks 23
Sprite Toolbox 24

Using the Sprite Toolbox 24
Creating and Initializing a Sprite World 25
Creating and Initializing Sprites 26

Creating Sprites for a Sample Application 27
Animating Sprites 29
Disposing of a Sprite Animation 32
Sprite Hit Testing 33

New Hit Testing Flags 34
Enhancing Sprite Animation Performance 34

Sprite Toolbox Reference 34
Background Sprites 35
Flags for Sprite Hit Testing 35
Sprite Properties 36
Flags for SpriteWorldIdle 37
Sprite and Sprite World Identifiers 38

Sprite Toolbox Functions 38
Sprite World Functions 38
Sprite Functions 45
3

Chapter 2 Sprite Media Handler 53

About the Sprite Media Handler 54
Key Frame Samples and Override Samples 55
Sprite Track Media Format 56

Assigning Group IDs 58
Sprite Image Registration 59

Sprite Track Properties 60
Alternate Sources for Sprite Image Data 62

Supported Modifier Inputs 62
New Features of the Sprite Media Handler 63

Wired Sprites 63
New and Obsolete Routines 63
New Hit Testing Flags 64

Using the Sprite Media Handler 64
Defining a Key Frame Sample 65

Creating the Movie, Sprite Track, and Media 65
Adding Images to the Key Frame Sample 67
Adding More Images for Other Sprites 68
Adding Sprites to the Key Frame Sample 69
Adding More Actions to Other Sprites 73
Adding Sample Data in Compressed Form 73

Defining Override Samples 74
Setting Properties of the Sprite Track 75
Getting Sprite Data From a Modifier Track 76

Sprite Media Handler Reference 81
Constants 81

Sprite Track Formats 81
Sprite Media Atom Types 81

Sprite Media Handler Functions 84
Sprites Functions Specific to Wired Sprites 94
SpriteDescription Structure 95

Chapter 3 Wired Sprites 97

About Wired Sprites 98
QuickTime Events 98
Actions and Their Targets 99
Action Parameters 100
Expressions 101
Operators 101
Operands 102

Using Wired Sprites 102
Actions of the First Penguin 104
Actions of the Second Penguin 104
Creating a Wired Sprite Movie 104
4

Assigning the No Controller to the Movie 105
Setting Up the Sprite Track’s Properities 105
Adding Logic to the Penguin 106
Adding a Series of Actions to the Penguins 107
Important Things to Note in the Sample Code 109

Wired Sprites Reference 109
Action Media Format Atoms 110
Action Sprites Media Format Extensions 110
New Sprite Track Property Atoms 110
New Atom Types 112
Event Constants 113

Action Constants 115
Movie Action Constants 116
Actions for All Tracks 118
Actions for Spatial Tracks 118
Actions for Sound Tracks 119
Actions for Sprites in a Sprite Track 120
Actions for QuickTime VR Tracks 122
Actions for Music Tracks 123
Actions for Sprite Tracks 125
Actions That Do Not Have a Target 125
Control Statement Actions 128
Target Constants 129
Action Parameter Constants 130
Expression-Related Constants 133
Operator Type Constants 134
Operand Type Constants 136
Operands for a Movie 136
Operands for Any Tracks 137
Operands Targeting Spatial Tracks 137
Operands Targeting Sound Tracks 138
Operands for Sprites in a Sprite Track 138
Operands for a Sprite Track 140
Operands for a QuickTime VR Track 141
Operands That Have No Target 141

Additions to the Standard Movie Controller 143
Data Types 144

Appendix A QTAtomContainer-Based Data Structure
Descriptions 145

QTAtomContainer Description Key 145
5

Appendix B Sprite Media Handler Media Format Definition 147

Appendix C QTWiredSprite.c Sample Code 157
6

P R E F A C E

About This Book

This book is a programmer’s guide to QuickTime 3 sprites for Macintosh and
Windows. It describes all the features in QuickTime sprites and supersedes all
existing documentation about them.

A sprite is an animated graphic created by QuickTime. With traditional video
animation, you describe a frame by specifying the color of each pixel in it. With
sprite animation you describe a frame by specifying the images that appear at
various locations. Sprites may be parts of movies or they may exist
independently. Sprites in movies are defined by their own track, called a sprite
track.

The original QuickTime-related Inside Macintosh books documented QuickTime
for Macintosh through the 1.5 software release. If you are an application
developer, your main source for information on programming in QuickTime is
now the combination of this book, along with the suite of other
QuickTime-related books, including QuickTime 3 Reference, QuickTime Music
Architecture, Inside Macintosh: QuickTime, Inside Macintosh: QuickTime
Components, and Mac OS For QuickTime Programmers.

Book Structure 0

Chapter 1, “Introduction to Sprites and the Sprite Toolbox,” begins with an
overview of sprite animation and the features available to you in the QuickTime
sprite toolbox. It also includes the sprite reference section, listing all the
constants, data types, and functions associated with sprites in QuickTime 3.

Chapter 2, “Sprite Media Handler,” discusses the sprite media handler, which
enables you to add a track containing a sprite animation to a QuickTime movie.

Chapter 3, “Wired Sprites,” introduces you to wired sprites, which are new to
QuickTime 3.

Appendix A provides you with a key to QTAtomContainer-based data structures
that are being widely used in QuickTime. Appendix B describes formats and
defines a grammar for sprite media handlers and their data containers.
Appendix C presents sample code from MakeActionSpriteMovie.c, listed in the
7

P R E F A C E

QuickTime 3 SDK, which allows you to create a sample wired sprite movie
containing one sprite track.

Conventions Used in This Book 0

This book provides various conventions to present information. Words that
require special treatment appear in specific fonts or font styles. Certain types of
information, such as parameter blocks, use special fonts so that you can scan
them quickly.

Special Fonts 0

All code listings, reserved words, and the names of actual data structures,
constants, fields, parameters, and functions are shown in Letter Gothic (this is
Letter Gothic).

Words that appear in boldface are key terms or concepts that are defined in the
glossary.

Types of Notes 0

There are several types of notes used in this book.

Note
A note like this contains information that is interesting but
not essential to an understanding of the main text. ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. ▲

▲ W AR N I N G

A warning like this indicates potential problems that you
should be aware of as you design your application. Failure
to heed these warnings could result in system crashes or
loss of data. ▲
8

P R E F A C E

Development Environment 0

The functions described in this book are available using C interfaces. How you
access them depends on the development environment you are using.

Code listings in this book are shown in ANSI C. They suggest methods of using
various functions and illustrate techniques for accomplishing particular tasks.
Although most code listings have been compiled and tested, Apple Computer
Inc., does not intend for you to use these code samples in your application.
9

P R E F A C E
10

C H A P T E R 1

Figure 1-0
Listing 1-0
Table 1-0

Introduction to Sprites and the
Sprite Toolbox 1
This chapter introduces you to the fundamentals of sprite animation and the
sprite toolbox. Sprites were new to QuickTime 2.5 and have since been
enhanced in QuickTime 3.

This chapter discusses the ways in which sprite animation differs from
traditional video animation. The metaphor of a sprite animation as a theatrical
play is used, in which sprite tracks are characterized as the boundaries of the
stage and a sprite world as the stage itself. To extend the metaphor, you may
want to think of sprites as actors performing on that stage.

Each sprite has properties that describe its location and appearance at a given
time. During an animation sequence, the application modifies the sprite’s
properties to cause it to change its appearance and move around the screen.
Sprites may be mixed with still-image graphics to produce a wide variety of
effects while using relatively little memory.

A sprite world is a graphics world for a sprite animation. To create a sprite
animation in an application but outside a movie, you must first create a sprite
world. (You do not need to create a sprite world to create a sprite track in a
QuickTime movie.) Once you have created a sprite world, you create sprites
associated with that sprite world. You can think of a sprite world, again
metaphorically, as a stage on which your sprite actors may perform.

You use the sprite toolbox to add sprite-based animation to your application.
The sprite toolbox, which is a set of data types and functions, handles all the
tasks necessary to compose and modify sprites, their backgrounds and
properties, in addition to transferring the results to the screen or to an alternate
destination.

This chapter is divided into the following major sections:

■ “Introduction to Sprites and the Sprite Toolbox” (page 12) discusses the
terminology used to define sprites and sprite animation. It introduces you to
sprite tracks and the sprite toolbox.
11

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox

■ “Using the Sprite Toolbox” (page 24) discusses how you create and initialize
a sprite world, as well as how to animate a sprite, using SetSpriteProperty.
This function lets you change one or more of a sprite’s properties, such as its
matrix, layer, or image data.

■ “Sprite Toolbox Reference” (page 34) describes the constants, data types, and
functions in the sprite toolbox.

Introduction to Sprites and the Sprite Toolbox 1

This section introduces you to the terminology used to define sprites and
describes the characteristics that govern the creation of sprite animation in an
application.

If you’re writing an application that uses sprite animation outside of a
QuickTime movie, you use the routines available to you in the sprite toolbox,
described in the “Sprite Toolbox Reference” (page 34). If your application is
designed to work with QuickTime movies, you can take advantage of the
routines available to you in the sprite media handler, which is discussed in
Chapter 2, “Sprite Media Handler.” With QuickTime 3, you can also add
various types of user interactivity to your movie by using wired sprites. They
are discussed in detail in Chapter 3, “Wired Sprites.”

Sprite Animation 1

Sprite animation differs substantially from traditional video animation. With
traditional video animation, you describe a frame by specifying the color of
each pixel. By contrast, with sprite animation, you describe a frame by
specifying which sprites appear at various locations. At a given moment a
sprite displays a single image selected from a pool of images shared by all of the
sprites.

You can think of a sprite animation as a theatrical play. In a QuickTime movie,
the sprite track bounds are the stage; in an application, a sprite world is the
stage. The background is the play’s set; the background may be a single solid
color, an image, or a combination of images. The sprites are the actors in the
play.

A sprite has properties that describe its location and appearance at a given
point in time. During the course of an animation, you modify a sprite’s
12 Introduction to Sprites and the Sprite Toolbox

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox

properties to cause it to change its appearance and move around the set or
stage.

Each sprite has a corresponding image. During the animation, you can change a
sprite’s image. For example, you can assign a series of images to a sprite in
succession to perform cell-based animation.

Sprite Spatial Concepts 1

This section explains sprite spatial concepts, which you may need to
understand in order to work with sprites both on the desktop (outside a
QuickTime movie) and within QuickTime movies. These concepts include

■ a sprite track’s local coordinate system

■ the source box of a sprite image

■ bounding box

■ a sprite’s “four corners”

■ registration points

■ display space

Sprite Track’s Local Coordinate System 1

A sprite track’s local coordinate system—where a sprite is displayed within a
sprite world or a sprite track—is defined by the sprite’s matrix and its image’s
registration point.

This is the coordinate system, shown in Figure 1-1, that results when the sprite
track’s matrix and the movie matrix are both ignored. The origin is the sprite
track’s upper left corner.

For example, if a sprite’s matrix contains a horizontal translation of 50 and a
vertical translation of 25, the sprite will be positioned such that its current
image’s registration point is located 50 pixels to the right of the sprite track’s left
side, and 25 pixels down from the top of the sprite track.
Introduction to Sprites and the Sprite Toolbox 13

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox

Figure 1-1 A track’s local coordinate system of a sprite

Source Box 1

A sprite’s source box, as shown in Figure 1-2, is defined as a rectangle with a
top-left point of (0, 0), and its width and height set to the width and height of
the sprite’s current image.

Figure 1-2 A sprite’s source box

Sprite matrix dx

Sprite matrix dy

(0,0)

(0,0) 70

80
Sprite image
natural height

Sprite image
natural width
14 Introduction to Sprites and the Sprite Toolbox

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox

Sprite’s Bounding Box 1

A sprite’s bounding box and its four corners are both expressed in its track’s
local coordinate system.

The bounding box of a sprite, shown in Figure 1-3, is the smallest rectangle that
encloses the sprite’s area after its matrix is applied. If a sprite is only translated,
its bounding box will have the same dimensions as its source box. However, if
the sprite is rotated 45 degrees, the bounding box may be larger than its source
box.

Figure 1-3 A bounding box in a sprite track’s local coordinate system

Sprites’ Four Corners 1

Some sprite actions and operands refer to a sprite’s “four corners.” These four
corners are expressed in its track’s local coordinate system. They are the points
derived by taking the four corners of the sprite’s source box and applying the
current image’s registration point and the sprite’s source matrix. The first corner
is the top-left, the second corner is the top-right, the third corner is the bottom
right, and the fourth corner is the bottom-left.

Figure 1-4 shows a rotated bounding box in a sprite track’s local coordinate
system.

(93,45) (153,45)

(93,125) (153,125)
Introduction to Sprites and the Sprite Toolbox 15

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox

Figure 1-4 The rotated bounding box becomes the sprite four corners

Registration Points 1

New in QuickTime 3 are sprite image registration points. These image
registration points, shown in Figure 1-5, define an offset which is applied to a
sprite’s source matrix. A sprite’s default registration point is (0,0), or the top left
of its source box.

Figure 1-5 Default sprite image registration points

(130,35)

(172,77)

(73,92)

(116,134)

(0,0) (0,0) (0,0)40 70 100

50

80

120

= Sprite Image Index

1

2

31
16 Introduction to Sprites and the Sprite Toolbox

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox

When a sprite with a default registration point of (0,0) is translated to a location
by setting the x and y translation elements of its source matrix, the sprite’s
upper left corner is placed at the given location. If a sprite’s source box is 100
pixels wide and 100 pixels tall, then setting the sprite image’s registration point
to (50,50) causes the center of the sprite to be translated to the x and y
translation of its source matrix. This also causes the wired sprite action
kActionSpriteRotate to rotate the sprite about its center.

Figure 1-6 shows a default registration point in a sprite track’s local coordinate
system.

Figure 1-6 Default registration point in a sprite track’s local coordinate system

If your animation is cell-based, your images may vary in size, so you may want
the registration for the center in order for the images used by the sprites to line
up correctly, as shown in Figure 1-7. For example, if you have a sprite-displayed
explosion, the first cells may be smaller than the last. By setting the registration
point to the center of each image, the explosion animation will be centered at
the sprite’s location defined by its matrix.

(50,50) (90,50)

(50,100) (90,100)

(0,0)

Sprite Matrix
translation x

Sprite Matrix
translation y

Registration Point placed at (50,50)

50

50
Introduction to Sprites and the Sprite Toolbox 17

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox

Figure 1-7 Centered registration points

Figure 1-8 shows a centered registration point in a sprite track’s local coordinate
system.

Figure 1-8 A centered registration point in a sprite track’s local coordinate system

(15,20)

(30,40)

(45,60)

30

60

90

40 80 120

= Sprite Image Index

4

5

6

4

(50,40) (110,40)

(50,120) (110,120)

(0,0)

Registration Point placed at (80,80)

Sprite Matrix
translation x

Sprite Matrix
translation y

80

80
18 Introduction to Sprites and the Sprite Toolbox

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox

Note
When a sprite uses images of different sizes, you assign
group IDs to the images. (For more information on group
IDs, see “Assigning Group IDs” (page 58)). Group IDs are
illustrated in the code sample in Appendix C. ◆

Figure 1-9 shows an example of registration points in a QuickTime movie.

Figure 1-9 Registration points in a QuickTime movie

Figure 1-10 shows an example of centered registration points in a QuickTime
movie.

Sprite Matrix Translation x

1 2 3

Sprite Matrix Translation y

Sprite Image Index

20 20 20

20 20 20
Introduction to Sprites and the Sprite Toolbox 19

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox

Figure 1-10 Centered registration points in a QuickTime movie

Display Space 1

Display space, shown in Figure 1-11, refers to the pixels drawn in a window. In
order to determine the area that a sprite is drawn to in display space, its
registration point is first applied to its source matrix. This result is concatenated
with its track’s matrix and then concatenated with its movie’s matrix.

Sprite Matrix Translation x

4 5 6

Sprite Matrix Translation y

Sprite Image Index

100 100 100

80 80 80
20 Introduction to Sprites and the Sprite Toolbox

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox

Figure 1-11 A sprite display space and movie matrix identity

Figure 1-12 shows a movie matrix scaled down to one-half size.

Figure 1-12 A movie matrix scaled down to one-half size

Track 1
Identity
Matrix

Track 2
Matrix translated
to (200,0) and
scaled down to
one-half size

200
pixels

100
pixels

100
pixels

50
pixels
Introduction to Sprites and the Sprite Toolbox 21

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox

Sprite Properties 1

A sprite’s matrix property (kSpritePropertyMatrix) describes the sprite’s
location and scaling within its sprite world or sprite track. By modifying a
sprite’s matrix, you can modify the sprite’s location so that it appears to move
in a smooth path on the screen or so that it jumps from one place to another.
You can modify a sprite’s size, so that it shrinks, grows, or stretches. Depending
on which image compressor is used to create the sprite images, other
transformations, such as rotation, may be supported as well. Translation-only
matrices provide the best performance.

A sprite’s layer property (kSpritePropertyLayer) is a numeric value that
specifies a sprite’s layer in the animation. Sprites with lower layer numbers
appear in front of sprites with higher layer numbers. To designate a sprite as a
background sprite, you should assign it the special layer number
kBackgroundSpriteLayerNum.

A sprite’s visible property (kSpritePropertyVisible) specifies whether or not
the sprite is visible. To make a sprite visible, you set the sprite’s visible property
to TRUE.

A sprite’s graphics mode property (kSpritePropertyGraphicsMode) specifies a
graphics mode and blend color that indicates how to blend a sprite with any
sprites behind it and with the background. To set a sprite’s graphics mode, you
call SetSpriteProperty, passing a pointer to a ModifierTrackGraphicsModeRecord
structure.

Sprite World Characteristics 1

A sprite world is a graphics world for a sprite animation. To create a sprite
animation in an application, you must first create a sprite world. You do not
need to create a sprite world to create a sprite track in a QuickTime movie.

Once you have created a sprite world, you create sprites associated with that
sprite world. You can think of a sprite world as a stage on which your sprites
perform. When you dispose of a sprite world, its associated sprites are disposed
of as well.

For sprites in a sprite world, you modify a sprite’s properties by calling the
SetSpriteProperty function, passing a constant to indicate which property you
want to modify. SetSpriteProperty invalidates the appropriate portions of the
sprite world, which are redrawn when SpriteWorldIdle is called.
22 Introduction to Sprites and the Sprite Toolbox

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
When you call SetSpriteProperty to modify a property of a sprite,
SetSpriteProperty invalidates the appropriate regions of the sprite world.
When your application calls SpriteWorldIdle, the sprite world redraws its
invalid regions. A sprite’s sprite world coordinate system is defined by
translating the sprite’s display coordinate system by the sprite world’s matrix,
as shown in Figure 1-13.

Figure 1-13 Sprite world coordinate system

For sprites in a sprite world, you control a sprite’s image by setting the sprite’s
kSpritePropertyImageDescription and kSpritePropertyImageDataPtr properties.

Sprite Tracks 1

For sprites in a sprite track, all sprite images are stored in one of the sprite
track’s key frame samples. This allows the sprites in the sprite track to share
images. A sprite’s image index (kSpritePropertyImageIndex) specifies the
sprite’s current image in the pool of available images. All images assigned to a
sprite must share the same image description, unless you assign group IDs
(kSpriteImagePropertyGroupID).

(0,0)

Sprite matrix dx

Sprite matrix dy

Sprite world
matrix dx

Sprite world matrix dy

Sprite
world
Introduction to Sprites and the Sprite Toolbox 23

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
For sprites in a sprite track, you modify a sprite property by creating an
override sample of the appropriate type.

Three sprite track properties, kSpriteTrackPropertyBackgroundColor,
kSpriteTrackPropertyOffscreenBitDepth, and
kSpriteTrackPropertySampleFormat, describe properties of a sprite track in a
QuickTime movie. These properties are discussed in more detail in Chapter 2,
“Sprite Media Handler.”

Additional sprite track properties that are new to QuickTime 3 are discussed in
detail inChapter 3, “Wired Sprites.”

Sprite Toolbox 1

The sprite toolbox is a set of data types and functions you can use to add
sprite-based animation to an application. The sprite toolbox handles
invalidating appropriate areas as sprite properties change, the composition of
sprites and their background on an offscreen buffer, and the transfer of the
result to the screen or to an alternate destination.

To create a sprite track in a QuickTime movie, you create media samples used
by the sprite media handler, which, in turn, makes use of the sprite toolbox. For
information on how to use the sprite media handler, see Chapter 2, “Sprite
Media Handler.”

Using the Sprite Toolbox 1

The following section discusses how you can use the sprite toolbox to create
sprite worlds and sprite animations. It is divided into these topics:

■ “Creating and Initializing a Sprite World” (page 25)

■ “Creating and Initializing Sprites” (page 26)

■ “Animating Sprites” (page 29)

■ “Disposing of a Sprite Animation” (page 32)

■ “Sprite Hit Testing” (page 33)

■ “Enhancing Sprite Animation Performance” (page 34)
24 Using the Sprite Toolbox

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
Creating and Initializing a Sprite World 1

To create a sprite animation in an application, you first create a sprite world to
contain your sprites. To do this, you perform the following steps:

■ Allocate a sprite layer graphics world that corresponds to the size and bit
depth of your destination graphics world.

■ If you plan to have a background image behind your sprites that is static or
that changes infrequently, create a background graphics world that is the
same size and depth as the sprite layer graphics world. You do not need to
do this if you plan to have a solid background color behind your sprites.
Animations that use a solid background color require less memory and
perform slightly better than animations that use a background image.

■ Call LockPixels on the pixel maps of the sprite layer and background
graphics worlds. These graphics worlds must remain valid for the lifetime of
the sprite world.

■ Call the NewSpriteWorld function to create the new sprite world.

The sample code function CreateSpriteStuff, shown in Listing 1-1, calculates
the bounds of the destination window and calls NewGWorld to create a new sprite
layer graphics world. It then calls LockPixels to lock the pixel map of the sprite
layer graphics world.

Next, CreateSpriteStuff calls NewSpriteWorld to create a new sprite world,
passing the destination graphics world (WindowPtr) and the sprite layer graphics
world. CreateSpriteStuff passes a background color to NewSpriteWorld instead
of specifying a background graphics world. The newly created sprite world is
returned in the global variable gSpriteWorld.

Finally, CreateSpriteStuff calls the sample code function CreateSprites to
populate the sprite world with sprites.

Listing 1-1 Creating a sprite world

// global variables
GWorldPtr spritePlane = nil;
SpriteWorld gSpriteWorld = nil;
Rect gBounceBox;
RGBColor gBackgroundColor;
Using the Sprite Toolbox 25

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
void CreateSpriteStuff (Rect *windowBounds, CGrafPtr windowPtr)
{

OSErr err;
Rect bounds;

// calculate the size of the destination
bounds = *windowBounds;
OffsetRect (&bounds, -bounds.left, -bounds.top);
gBounceBox = bounds;
InsetRect (&gBounceBox, 16, 16);

// create a sprite layer graphics world with a bit depth of 16
NewGWorld (&spritePlane, 16, &bounds, nil, nil, useTempMem);
if (spritePlane == nil)

NewGWorld (&spritePlane, 16, &bounds, nil, nil, 0);

if (spritePlane)
{

LockPixels (spritePlane->portPixMap);
gBackgroundColor.red = gBackgroundColor.green =

gBackgroundColor.blue = 0;

// create a sprite world
err = NewSpriteWorld (&gSpriteWorld, (CGrafPtr)windowPtr,

spritePlane, &gBackgroundColor, nil);

// create sprites
CreateSprites ();

}
}

Creating and Initializing Sprites 1

Once you have created a sprite world, you can create sprites within it. To do
this, you must first obtain image descriptions and image data for your sprites.
This image data may be any image data that has been compressed using
QuickTime’s Image Compression Manager.

You create sprites and add them to your sprite world using the NewSprite
function. If you want to create a sprite that is drawn to the background graphics
26 Using the Sprite Toolbox

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
world, you should specify the constant kBackgroundSpriteLayerNum for the layer
parameter.

Note
The compressed image data must remain locked as long as
it is set to be the sprite’s image data. ◆

Creating Sprites for a Sample Application 1

The sample code function CreateSprites, shown in Listing 1-2, creates the
sprites for the sample application shown in Listing 1-1.

First, the function initializes some global arrays with position and image
information for the sprites. Next, CreateSprites iterates through all the sprite
images, preparing each image for display. For each image, CreateSprites calls
the sample code function MakePictTransparent function, which strips any
surrounding background color from the image. MakePictTransparent does this
by using the animation compressor to recompress the PICT images using a key
color. Then, CreateSprites calls ExtractCompressData, which extracts the
compressed data from the PICT image. This is one technique for creating
compressed images; there are other, more optimized ways to store and retrieve
sprite images.

Once the images have been prepared, CreateSprites calls NewSprite to create
each sprite in the sprite world. CreateSprites creates each sprite in a different
layer.

Listing 1-2 Creating sprites

// constants
#define kNumSprites 4
#define kNumSpaceShipImages 24
#define kBackgroundPictID 158
#define kFirstSpaceShipPictID (kBackgroundPictID + 1)
#define kSpaceShipWidth 106
#define kSpaceShipHeight 80

// global variables
SpriteWorld gSpriteWorld = nil;
Sprite gSprites[kNumSprites];
Rect gDestRects[kNumSprites];
Using the Sprite Toolbox 27

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
Point gDeltas[kNumSprites];
short gCurrentImages[kNumSprites];
Handle gCompressedPictures[kNumSpaceShipImages];
ImageDescriptionHandle gImageDescriptions[kNumSpaceShipImages];

void CreateSprites (void)
{

long i;
Handle compressedData = nil;
PicHandle picture;
CGrafPtr savePort;
GDHandle saveGD;
OSErr err;
RGBColor keyColor;

SetRect (&gDestRects[0], 132, 132, 132 + kSpaceShipWidth,
132 + kSpaceShipHeight);

SetRect (&gDestRects[1], 50, 50, 50 + kSpaceShipWidth,
50 + kSpaceShipHeight);

SetRect (&gDestRects[2], 100, 100, 100 + kSpaceShipWidth,
100 + kSpaceShipHeight);

SetRect (&gDestRects[3], 130, 130, 130 + kSpaceShipWidth,
130 + kSpaceShipHeight);

gDeltas[0].h = -3;
gDeltas[0].v = 0;
gDeltas[1].h = -5;
gDeltas[1].v = 3;
gDeltas[2].h = 4;
gDeltas[2].v = -6;
gDeltas[3].h = 6;
gDeltas[3].v = 4;

gCurrentImages[0] = 0;
gCurrentImages[1] = kNumSpaceShipImages / 4;
gCurrentImages[2] = kNumSpaceShipImages / 2;
gCurrentImages[3] = kNumSpaceShipImages * 4 / 3;

keyColor.red = keyColor.green = keyColor.blue = 0xFFFF;

// recompress PICT images to make them transparent
28 Using the Sprite Toolbox

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
for (i = 0; i < kNumSpaceShipImages; i++)
{

picture = (PicHandle) GetPicture (i + kFirstSpaceShipPictID);
DetachResource ((Handle)picture);

MakePictTransparent (picture, &keyColor);
ExtractCompressData (picture, &gCompressedPictures[i],

&gImageDescriptions[i]);
HLock (gCompressedPictures[i]);

KillPicture (picture);
}

// create the sprites for the sprite world
for (i = 0; i < kNumSprites; i++)
{

MatrixRecord matrix;

SetIdentityMatrix (&matrix);

matrix.matrix[2][0] = ((long)gDestRects[i].left << 16);
matrix.matrix[2][1] = ((long)gDestRects[i].top << 16);

err = NewSprite (&(gSprites[i]), gSpriteWorld,
gImageDescriptions[i],* gCompressedPictures[i],
&matrix, true, i);

}
}

Animating Sprites 1

To animate a sprite, you use the SetSpriteProperty function to change one or
more of the sprite’s properties, such as its matrix, layer, or image data. In
addition to modifying a property, SetSpriteProperty invalidates the
appropriate areas of the sprite’s sprite world.

The SpriteWorldIdle function is responsible for redrawing a sprite world’s
invalid regions. Your application should call this function after modifying sprite
properties to give the sprite world the opportunity to redraw.
Using the Sprite Toolbox 29

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
Listing 1-3 shows the sample application’s main function. It performs all of the
application’s initialization tasks, including initializing the sprite world and its
sprites. It displays the window and loops until the user clicks the button in the
window. To perform the animation, main calls the sample code function
MoveSprites each time through the loop, to modify the properties of the sprites,
and then calls SpriteWorldIdle to give the sprite world the opportunity to
redraw its invalid areas.

Listing 1-3 The main function

// global variables
SpriteWorld gSpriteWorld = nil;

void main (void)
{

// ...
// initialize everything and create a window
// create a sprite world and the sprites in it
// show the window
// ...
CreateSpriteStuff(...);
while (!Button())
{

// animate the sprites
MoveSprites ();
SpriteWorldIdle (gSpriteWorld, 0, 0);

}

// ...
// dispose of the sprite world and its sprites
// shut down everything else
// ...
DisposeEverything();

}

The MoveSprites function, shown in Listing 1-4, is responsible for modifying the
properties of the sprites. For each sprite, the function calls SetSpriteProperty
twice, once to change the sprite’s matrix and once to change the sprite’s image
data pointer.
30 Using the Sprite Toolbox

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
Listing 1-4 Animating sprites

// constants
#define kNumSprites 4
#define kNumSpaceShipImages 24

// global variables
Rect gBounceBox;
Sprite gSprites[kNumSprites];
Rect gDestRects[kNumSprites];
Point gDeltas[kNumSprites];
short gCurrentImages[kNumSprites];
Handle gCompressedPictures[kNumSpaceShipImages];

void MoveSprites (void)
{

short i;
MatrixRecord matrix;

SetIdentityMatrix (&matrix);

// for each sprite
for (i = 0; i < kNumSprites; i++)
{

// modify the sprite’s matrix
OffsetRect (&gDestRects[i], gDeltas[i].h, gDeltas[i].v);

if ((gDestRects[i].right >= gBounceBox.right) ||
(gDestRects[i].left <= gBounceBox.left))
gDeltas[i].h = -gDeltas[i].h;

if ((gDestRects[i].bottom >= gBounceBox.bottom) ||
(gDestRects[i].top <= gBounceBox.top))
gDeltas[i].v = -gDeltas[i].v;

matrix.matrix[2][0] = ((long)gDestRects[i].left << 16);
matrix.matrix[2][1] = ((long)gDestRects[i].top << 16);

SetSpriteProperty (gSprites[i], kSpritePropertyMatrix, &matrix);

// change the sprite’s image
Using the Sprite Toolbox 31

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
gCurrentImages[i]++;
if (gCurrentImages[i] >= (kNumSpaceShipImages * (i+1)))

gCurrentImages[i] = 0;
SetSpriteProperty (gSprites[i], kSpritePropertyImageDataPtr,

*gCompressedPictures[gCurrentImages[i] / (i+1)]);
}

}

Disposing of a Sprite Animation 1

When your application has finished displaying a sprite animation, you should
do the following things in the order shown:

1. Dispose of the sprite world associated with the animation. (You need to do
this first.) Disposing of a sprite world automatically destroys the sprites in
the sprite world.

2. Dispose of the sprite image data.

3. Dispose of graphics worlds associated with the sprite animation.

In the sample application, main calls the sample code function
DisposeEverything to dispose of sprite-related structures. This function, shown
in Listing 1-5, iterates through the sprites, disposing of each sprite’s image data.
Then, DisposeEverything calls DisposeSpriteWorld to dispose of the sprite world
and all of the sprites in it. Finally, the function calls DisposeGWorld to dispose of
the graphics world associated with the sprite world.

Listing 1-5 Disposing of sprites and the sprite world

// constants
#define kNumSprites 4
#define kNumSpaceShipImages 24

// global variables
SpriteWorld gSpriteWorld = nil;
Sprite gSprites[kNumSprites];
Handle gCompressedPictures[kNumSpaceShipImages];
ImageDescriptionHandle gImageDescriptions[kNumSpaceShipImages];

void DisposeEverything (void)
32 Using the Sprite Toolbox

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
{
short i;
// dispose of the sprite world and associated graphics world
if (gSpriteWorld)

DisposeSpriteWorld (gSpriteWorld);

// dispose of each sprite’s image data
for (i = 0; i < kNumSprites; i++)
{

if (gCompressedPictures[i])
DisposeHandle (gCompressedPictures[i]);

if (gImageDescriptions[i])
DisposeHandle ((Handle)gImageDescriptions[i]);

}
DisposeGWorld (spritePlane);

}

Sprite Hit Testing 1

The sprite toolbox provides two functions for performing hit testing operations
with sprites, SpriteWorldHitTest and SpriteHitTest.

The SpriteWorldHitTest function determines whether any sprites exist at a
specified location in a sprite world’s display coordinate system. This function
retrieves the frontmost sprite at the specified location.

The SpriteHitTest function determines whether a particular sprite exists at a
specified location in the sprite’s display coordinate system. This function is
useful for hit testing a subset of the sprites in a sprite world and for detecting
multiple sprites at a single location.

For either hit test function, there are two flags, spriteHitTestBounds and
spriteHitTestImage, that control the hit test operation. For example, you set the
spriteHitTestBounds flag to check if there has been a hit anywhere within the
sprite’s bounding box, and you set the spriteHitTestImage flag to check if there
has been a hit anywhere within the sprite image.

These flags are described in “Flags for Sprite Hit Testing” (page 35).
Using the Sprite Toolbox 33

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
New Hit Testing Flags 1

The following new hit testing flags are included in QuickTime 3. These flags are
used with both the sprite toolbox and the movie sprite track hit testing routines:

■ spriteHitTestInvisibleSprites, which you set if you want invisible sprites
to be hit tested along with visible ones.

■ spriteHitTestLocInDisplayCoordinates, which you set if the hit testing point
is in display coordinates instead of local sprite track coordinates.

■ spriteHitTestIsClick, which you set if you want the hit testing operation to
pass a click on to the codec currently rendering the sprites image. For
example, this can be used to make the Ripple Codec ripple.

Enhancing Sprite Animation Performance 1

To achieve the best performance for your sprite animation, you should observe
the following guidelines when creating a sprite world.

■ When you create a graphics world to be used for your sprite world, you
achieve the best performance if the graphics world’s dimensions are a
multiple of 16 pixels.

■ Your sprite layer graphics world and background graphics world should
both be the same size and depth as the destination of your sprite animation.

■ Use translation-only matrices for creating sprite worlds and sprites.

■ Do not set a clipping region for your sprite world.

■ Call the SpriteWorldIdle function frequently.

■ Avoid clipping sprites with the sprite world boundary.

■ Use the Animation compressor to create sprites with transparent areas.

Sprite Toolbox Reference 1

This section describes the constants and functions available to your application
in the sprite toolbox.
34 Sprite Toolbox Reference

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
Background Sprites 1

You assign the following constant to a sprite’s kSpritePropertyLayer property to
designate the sprite as a background sprite.

enum {
kBackgroundSpriteLayerNum = 32767

};

Flags for Sprite Hit Testing 1

You can pass the following flags to SpriteWorldHitTest (page 44) and
SpriteHitTest (page 48) to control sprite hit testing.

enum {
spriteHitTestBounds = 1L << 0,
spriteHitTestImage = 1L << 1
spriteHitTestInvisibleSprites = 1L << 2,
spriteHitTestIsClick = 1L << 3,
spriteHitTestLocInDisplayCoordinates = 1L << 4

};

Flag descriptions

spriteHitTestBounds
The specified location must be within the sprite’s bounding
box.

spriteHitTestImage
If both this flag and spriteHitTestBounds are set, the
specified location must be within the shape of the sprite’s
image.

spriteHitTestInvisibleSprites
This flag enables invisible sprites to be hit tested.

spriteHitTestIsClick
This flag is for codecs that want mouse events, such as the
ripple codec.

spriteHitTestLocInDisplayCoordinates

You set this flag if you want to pass a display coordinate
point to SpriteHitTest, such as returned by the Mac OS
Toolbox routine getMouse.
Sprite Toolbox Reference 35

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
Sprite Properties 1

The following constants represent the different properties of a sprite. When you
call SetSpriteProperty (page 50) to set a sprite property, you pass one of these
constants to specify the property you wish to modify.

enum {
kSpritePropertyMatrix = 1,
kSpritePropertyImageDescription = 2,
kSpritePropertyImageDataPtr = 3,
kSpritePropertyVisible = 4,
kSpritePropertyLayer = 5,
kSpritePropertyGraphicsMode = 6,
kSpritePropertyImageIndex = 100

};

Constant descriptions

kSpritePropertyMatrix
A matrix of type MatrixRecord that defines the sprite’s
display coordinate system.

kSpritePropertyImageDescription
An image description handle that describes the sprite’s
image data. This must be valid as long as the sprite uses it.
The caller owns the storage. The sprite toolbox does not
copy this data.

kSpritePropertyImageDataPtr
A pointer to the sprite’s image data. This must be valid as
long as the sprite uses it. The caller owns the storage. The
sprite toolbox does not copy this data.

kSpritePropertyVisible
A Boolean value that indicates whether the sprite is visible.

kSpritePropertyLayer
A short integer value that defines the sprite’s layer. You set
this property to kBackgroundSpriteLayerNum to designate the
sprite as a background sprite.

kSpritePropertyGraphicsMode
A ModifierTrackGraphicsModeRecord value that specifies the
graphics mode to be used when drawing the sprite.
36 Sprite Toolbox Reference

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
kSpritePropertyImageIndex
In a sprite track, the index of the sprite’s image in the pool
of shared images.

Flags for SpriteWorldIdle 1

You can pass the following flags as input to SpriteWorldIdle (page 42) to control
drawing of the sprite world.

enum {
kOnlyDrawToSpriteWorld = 1L << 0,
kSpriteWorldPreFlight = 1L << 1

};

Flag descriptions

kOnlyDrawToSpriteWorld
You set this flag to indicate that drawing should take place
in the sprite world only; drawing to the final destination
should be suppressed.

kSpriteWorldPreFlight
You can set this flag to determine whether the sprite world
has any invalid areas that need to be drawn. If so, the
SpriteWorldIdle function returns the
kSpriteWorldNeedsToDraw flag in the flagsOut parameter.

The following flags may be returned in the flagsOut parameter of
SpriteWorldIdle (page 42).

enum {
kSpriteWorldDidDraw = 1L << 0,
kSpriteWorldNeedsToDraw = 1L << 1

};

Flag descriptions

kSpriteWorldDidDraw
If set, this flag indicates that SpriteWorldIdle updated the
sprite world.
Sprite Toolbox Reference 37

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
kSpriteWorldNeedsToDraw
If set, this flag indicates that the sprite world has invalid
areas that need to be drawn.

Sprite and Sprite World Identifiers 1

The sprite world and sprite data structures are private data structures. You
identify a sprite world or a sprite data structure to the sprite toolbox by means
of a data type that is supplied by the sprite toolbox. The following data types
are currently defined:

Sprite Specifies the sprite for an operation. Your application
obtains a sprite identifier when you create a new sprite by
calling NewSprite (page 45).

SpriteWorld Specifies the sprite world for an operation. Your application
obtains a sprite world identifier when you create a sprite
world by calling NewSpriteWorld (page 38).

Sprite Toolbox Functions 1

This section describes the functions provided by the Movie Toolbox for sprite
support.

Sprite World Functions 1

This section describes functions that you use to create and manipulate sprite
worlds.

NewSpriteWorld 1

The NewSpriteWorld function creates a new sprite world.

pascal OSErr NewSpriteWorld (SpriteWorld *newSpriteWorld,
GWorldPtr destination,
GWorldPtr spriteLayer,
RGBColor *backgroundColor,
GWorldPtr background);
38 Sprite Toolbox Reference

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
newSpriteWorld
Contains a pointer to a field that is to receive the new sprite
world’s identifier. On return, this field contains the identifier for
the newly created sprite world.

destination Contains a pointer to a graphics world to be used as the
destination.

spriteLayer Contains a pointer to a graphics world to be used as the sprite
layer.

backgroundColor
Contains a pointer to an RGB color to be used as the background
color. If you pass a background graphics world to this function
by setting the background parameter, you can set this parameter
to nil.

background Contains a pointer to a graphics world to be used as the
background. If you pass a background color to this function by
setting the backgroundColor parameter, you can set this
parameter to nil.

DISCUSSION

You call this function to create a new sprite world with associated destination
and sprite layer graphics worlds, and either a background color or a
background graphics world. Once created, you can manipulate the sprite world
and add sprites to it using other sprite toolbox functions. The sprite world
created by this function has an identity matrix. The sprite world does not have a
clip shape.

The newSpriteWorld, destination, and spriteLayer parameters are all required.
You should specify a background color, a background graphics world, or both.
You should not pass nil for both parameters. If you specify both a background
graphics world and a background color, the sprite world is filled with the
background color before the background sprites are drawn. If no background
color is specified, black is the default. If you specify a background graphics
world, it should have the same dimensions and depth as the graphics world
specified by spriteLayer. If you draw to the graphics worlds associated with a
sprite world using standard QuickDraw and QuickTime functions, your
drawing is erased by the sprite world’s background color.

Before calling NewSpriteWorld, you should call LockPixels on the pixel maps of
the sprite layer and background graphics worlds. These graphics worlds must
Sprite Toolbox Reference 39

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
remain valid and locked for the lifetime of the sprite world. The sprite world
does not own the graphics worlds that are associated with it; it is the caller’s
responsibility to dispose of the graphics worlds when they are no longer
needed.

RESULT CODES

DisposeSpriteWorld 1

The DisposeSpriteWorld function disposes of a sprite world.

pascal void DisposeSpriteWorld (SpriteWorld theSpriteWorld);

theSpriteWorld
Specifies the sprite world to dispose.

DISCUSSION

You call this function to dispose of a sprite world created by the NewSpriteWorld
function. This function also disposes of all of the sprites associated with the
sprite world. This function does not dispose of the graphics worlds associated
with the sprite world. It is safe to pass nil to this function.

SetSpriteWorldClip 1

The SetSpriteWorldClip function sets a sprite world’s clip shape to the specified
region.

pascal OSErr SetSpriteWorldClip (SpriteWorld theSpriteWorld,
RgnHandle clipRgn);

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
gWorldsNotSameDepthAndSizeErr –2066 Dimensions and pixel depth of

the two graphics worlds do not
match
40 Sprite Toolbox Reference

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
theSpriteWorld
Specifies the sprite world for this operation.

clipRgn Specifies the new clip shape for the sprite world.

DISCUSSION

You call this function to change the clip shape of a sprite world. You may pass a
value of nil for the clipRgn parameter to indicate that there is no longer a clip
shape for the sprite world. This means that the whole area is drawn.

The clip shape should be specified in the sprite world’s source space, the
coordinate system of the sprite layer’s graphics world before the sprite world’s
matrix is applied to it. The specified region is owned by the caller and is not
copied by this function.

RESULT CODES

SetSpriteWorldMatrix 1

The SetSpriteWorldMatrix function sets a sprite world’s matrix to the specified
matrix.

pascal OSErr SetSpriteWorldMatrix (SpriteWorld theSpriteWorld,
const MatrixRecord *matrix);

theSpriteWorld
Specifies the sprite world for this operation.

matrix Contains a pointer to the new matrix for the sprite world.

DISCUSSION

You call this function to change the matrix of a sprite world. You may pass a
value of nil for the matrix parameter to set the sprite world’s matrix to an
identity matrix.

noErr 0 No error
paramErr –50 Invalid parameter specified
Sprite Toolbox Reference 41

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
Transformations, including translation, scaling, rotation, skewing, and
perspective, are all supported in QuickTime 3.

RESULT CODES

SpriteWorldIdle 1

The SpriteWorldIdle function allows a sprite world to update its invalid areas.

pascal OSErr SpriteWorldIdle (SpriteWorld theSpriteWorld,
long flagsIn,
long *flagsOut);

theSpriteWorld
Specifies the sprite world for this operation.

flagsIn Contains flags describing actions that may take place during the
idle.

flagsOut On return, contains a pointer to flags describing actions that
took place during the idle.

DISCUSSION

You call this function to allow a sprite world the opportunity to redraw its
invalid areas. This is the only function that causes drawing to occur; you should
call it as often as is necessary.

The flagsIn parameter contains flags that describe allowable actions during the
idle period. For the default behavior, you should set the value of this parameter
to 0. The flagsOut parameter is optional; if you do not need the information
returned by this parameter, set the value of this parameter to nil.

Typically, you would make changes in perspective for a number of sprites and
then call SpriteWorldIdle to redraw the changed sprites.

noErr 0 No error
paramErr –50 Invalid parameter specified
42 Sprite Toolbox Reference

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
RESULT CODES

InvalidateSpriteWorld 1

The InvalidateSpriteWorld function invalidates a rectangular area of a sprite
world.

pascal OSErr InvalidateSpriteWorld (SpriteWorld theSpriteWorld,
Rect *invalidArea);

theSpriteWorld
Specifies the sprite world for this operation.

invalidArea Contains a pointer to the rectangular area that should be
invalidated.

DISCUSSION

Typically, your application calls this function when the sprite world’s
destination window receives an update event. Invalidating an area of the sprite
world will cause the area to be redrawn the next time that SpriteWorldIdle is
called.

The invalid rectangle pointed to by the invalidArea parameter should be
specified in the sprite world’s source space, the coordinate system of the sprite
layer’s graphics world before the sprite world’s matrix is applied to it. To
invalidate the entire sprite world, pass nil for this parameter.

When you modify sprite properties, invalidation takes place automatically; you
do not need to call InvalidateSpriteWorld.

RESULT CODES

noErr 0 No error
paramErr –50 Invalid parameter specified

noErr 0 No error
paramErr –50 Invalid parameter specified
Sprite Toolbox Reference 43

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
SpriteWorldHitTest 1

The SpriteWorldHitTest function determines whether any sprites are at a
specified location in a sprite world.

pascal OSErr SpriteWorldHitTest (SpriteWorld theSpriteWorld,
long flags,
Point loc,
Sprite *spriteHit);

theSpriteWorld
Specifies the sprite world for this operation.

flags Specifies flags to control the hit testing operation. These flags are
described in “Flags for Sprite Hit Testing” (page 35).

loc Specifies a point in the sprite world’s display space to test for
the existence of a sprite.

spriteHit Contains a pointer to a field that is to receive a sprite identifier.
On return, this field contains the identifier of the frontmost
sprite at the location specified by loc. If no sprite exists at the
location, the function sets the value of this parameter to nil.

DISCUSSION

You call this function to determine whether any sprites exist at a specified
location in a sprite world’s display coordinate system. If you are drawing the
sprite world in a window, you should call GlobalToLocal to convert the location
to your window’s local coordinate system before passing it to
SpriteWorldHitTest.

You use the spriteHitTestBounds and spriteHitTestImage flags in the flags
parameter to control the hit test operation. Set the spriteHitTestBounds flag to
check if there has been a hit anywhere within the sprite’s bounding box. Set the
spriteHitTestImage flag to check if there has been a hit anywhere within the
sprite image.

A hit testing operation does not occur unless you pass one of the flags, either
SpriteHitTestBound or SpriteHitTestImage. You can add other flags as needed.
44 Sprite Toolbox Reference

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
RESULT CODES

DisposeAllSprites 1

The DisposeAllSprites function disposes all sprites associated with a sprite
world.

pascal void DisposeAllSprites (SpriteWorld theSpriteWorld);

theSpriteWorld
Specifies the sprite world for this operation.

DISCUSSION

This function calls the DisposeSprite function for each sprite associated with
the sprite world.

Sprite Functions 1

This section describes functions that you use to create and manipulate sprites.

NewSprite 1

The NewSprite function creates a new sprite in the specified sprite world.

pascal OSErr NewSprite (Sprite *newSprite,
SpriteWorld itsSpriteWorld,
ImageDescriptionHandle idh,
Ptr imageDataPtr,
MatrixRecord *matrix,
Boolean visible,
short layer);

noErr 0 No error
paramErr –50 Invalid parameter specified
Sprite Toolbox Reference 45

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
newSprite Contains a pointer to field that is to receive the new sprite’s
identifier. On return, this field contains the identifier of the
newly created sprite.

itsSpriteWorld
Specifies the sprite world with which the new sprite should be
associated.

idh Contains a handle to an image description of the sprite’s image.

imageDataPtr Contains a pointer to the sprite’s image data.

matrix Contains a pointer to the sprite’s matrix. If you pass nil for the
matrix parameter, an identity matrix is assigned to the sprite.

visible Specifies whether the sprite is visible.

layer Specifies the sprite’s layer.

DISCUSSION

You call this function to create a new sprite associated with a sprite world. Once
you have created the sprite, you can manipulate it using SetSpriteProperty
(page 50).

The newSprite, itsSpriteWorld, visible, and layer parameters are required.
Sprites with lower layer values appear in front of sprites with higher layer
values. If you want to create a sprite that is drawn to the background graphics
world, you should specify the constant kBackgroundSpriteLayerNum for the layer
parameter.

You can defer assigning image data to the sprite by passing nil for both the idh
and imageDataPtr parameters. If you choose to defer assigning image data, you
must call SetSpriteProperty to assign the image description handle and image
data to the sprite before the next call to SpriteWorldIdle. The caller owns the
image description handle and the image data pointer; it is the caller’s
responsibility to dispose of them after it disposes of a sprite.

RESULT CODES

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
46 Sprite Toolbox Reference

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
DisposeSprite 1

The DisposeSprite function disposes of a sprite.

pascal void DisposeSprite (Sprite theSprite);

theSprite The sprite for this operation.

DISCUSSION

You call this function to dispose of a sprite created by the NewSprite function.
The image description handle and image data pointer associated with the sprite
are not disposed by this function.

InvalidateSprite 1

The InvalidateSprite function invalidates the portion of a sprite’s sprite world
that is occupied by the sprite.

pascal void InvalidateSprite (Sprite theSprite);

theSprite The sprite for this operation.

DISCUSSION

In most cases, you do not need to call this function. When you call the
SetSpriteProperty function to modify a sprite’s properties, SetSpriteProperty
takes care of invalidating the appropriate regions of the sprite world. However,
you might call this function if you change a sprite’s image data, but retain the
same image data pointer.
Sprite Toolbox Reference 47

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
SpriteHitTest 1

The SpriteHitTest function determines whether a location in a sprite’s display
coordinate system intersects the sprite.

pascal OSErr SpriteHitTest (Sprite theSprite,
long flags,
Point loc,
Boolean *wasHit);

theSprite Specifies the sprite for this operation.

flags Specifies flags to control the hit testing operation. These flags are
described in “Flags for Sprite Hit Testing” (page 35).

loc Specifies a point in the sprite world’s display space to test for
the existence of a sprite.

wasHit Contains a pointer to a Boolean. On return, the value of the
Boolean is true if the sprite is at the specified location.

DISCUSSION

You call this function to determine whether a sprite exists at a specified location
in the sprite’s display coordinate system. This function is useful for hit testing a
subset of the sprites in a sprite world and for detecting multiple hits for a single
location.

You should apply the sprite world’s matrix to the location before passing it to
SpriteHitTest. To convert a location to local coordinates, you should use the
GlobalToLocal function to convert the location to your window’s local
coordinate system and then apply the inverse of the sprite world’s matrix to the
location.

You use the spriteHitTestBounds and spriteHitTestImage flags in the flags
parameter to control the hit test operation. Set the spriteHitTestBounds flag to
check if there has been a hit anywhere within the sprite’s bounding box. Set the
spriteHitTestImage flag to check if there has been a hit anywhere within the
sprite image.
48 Sprite Toolbox Reference

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
RESULT CODES

GetSpriteProperty 1

The GetSpriteProperty function retrieves the value of the specified sprite
property.

pascal OSErr GetSpriteProperty (Sprite theSprite,
long propertyType,
void *propertyValue);

theSprite Specifies the sprite for this operation.

propertyType Specifies the property whose value should be retrieved.

propertyValue
A pointer to a variable that will hold the value on return.

DISCUSSION

You call this function to retrieve a value of a sprite property. You set the
propertyType parameter to the property you want to retrieve. The following
table lists the sprite properties and the data types of the corresponding property
values.

In the case of the kSpritePropertyImageDescription and
kSpritePropertyImageDataPtr properties, this function does not return a copy of
the data; rather, the pointers returned are references to the sprite’s data.

noErr 0 No error
paramErr –50 Invalid parameter specified

Sprite Property Data Type

kSpritePropertyMatrix MatrixRecord

kSpritePropertyImageDescription ImageDescriptionHandle

kSpritePropertyImageDataPtr Ptr

kSpritePropertyVisible Boolean

kSpritePropertyLayer short

kSpritePropertyGraphicsMode ModifierTrackGraphicsModeRecord
Sprite Toolbox Reference 49

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
RESULT CODES

SetSpriteProperty 1

The SetSpriteProperty function sets the specified property of a sprite.

pascal OSErr SetSpriteProperty (Sprite theSprite,
long propertyType,
void *propertyValue);

theSprite Specifies the sprite for this operation.

propertyType Specifies the property to be set.

propertyValue
Specifies the new value of the property.

DISCUSSION

You animate a sprite by modifying its properties. You call this function to
modify a property of a sprite. This function invalidates the sprite’s sprite world
as needed.

You set the propertyType parameter to the property you want to modify.
Depending on the property type, you set the propertyValue parameter to either
a pointer to the property value or the property value itself, cast as a void*.

The following table lists the sprite properties and the data types of the
corresponding property values.

noErr 0 No error
invalidSpritePropertyErr –2065 The specified sprite property does

not exist

Sprite Property Data Type

kSpritePropertyMatrix MatrixRecord *

kSpritePropertyImageDescription ImageDescriptionHandle

kSpritePropertyImageDataPtr Ptr
50 Sprite Toolbox Reference

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
RESULT CODES

kSpritePropertyVisible Boolean

kSpritePropertyLayer short

kSpritePropertyGraphicsMode ModifierTrackGraphicsModeRecord *

noErr 0 No error
memFullErr –108 Not enough memory available
invalidSpritePropertyErr –2065 Specified sprite property does not

exist

Sprite Property Data Type
Sprite Toolbox Reference 51

C H A P T E R 1

Introduction to Sprites and the Sprite Toolbox
52 Sprite Toolbox Reference

C H A P T E R 2

Figure 2-0
Listing 2-0
Table 2-0
Sprite Media Handler 2
This chapter describes the sprite media handler, a media handler you can use
to add a sprite animation track to a QuickTime movie. The sprite media handler
provides routines for manipulating the sprites and images in a sprite track. The
sprite media handler makes use of the functionality provided by the sprite
toolbox, which is discussed in Chapter 1 of QuickTime 3 Reference. If you are
using the sprite media handler, you don’t need to use the toolbox API.

This chapter discusses some of the new features of the sprite media handler
available in QuickTime 3, including wired sprites (described in detail in
Chapter 3), new and obsolete routines, and new sprite hit testing flags.

A sprite track is defined by one or more key frame samples, each followed by
any number of override samples. The sprite track media format is hierarchical
and is based on QT atoms and atom containers. A sprite track sample is a QT
atom container structure. In addition to defining properties for individual
sprites, you can also define properties that apply to an entire sprite track.

This chapter is divided into the following major sections:

■ “About the Sprite Media Handler” (page 54) discusses the sprite media
handler, which provides routines for manipulating the sprites and images in
a sprite track.

■ “New Features of the Sprite Media Handler” (page 63) provides a list of new
sprite media handler features available in QuickTime 3.

■ “New Features of the Sprite Media Handler” (page 63) provides you with
code snippets from the sample program MakeSpriteMovie.c, listed in
Appendix C, which shows how to create a QuickTime sprite track. The
sample code creates a 640 by 480 pixel movie with one sprite track.

■ “Sprite Media Handler Reference” (page 81) includes a list of the constants
and functions in the sprite media handler.
53

C H A P T E R 2

Sprite Media Handler
About the Sprite Media Handler 2

The sprite media handler is a media handler that makes it possible to add a
track containing a sprite animation to a QuickTime movie. The sprite media
handler provides routines for manipulating the sprites and images in a sprite
track.

The sprite media handler makes use of routines provided by the sprite toolbox.
For background information about sprites, sprite animation, and the sprite
toolbox, see Chapter 1, “Introduction to Sprites and the Sprite Toolbox.”

As with sprites created in a sprite world, sprites in a sprite track have properties
that define their locations, images, and appearance. However, you create the
sprite track and its sprites differently than you create the sprites in a sprite
world.

A sprite track is defined by one or more key frame samples, each followed by
any number of override samples. A key frame sample and its subsequent
override samples define a scene in the sprite track. A key frame sample is a QT
atom container that contains atoms defining the sprites in the scene and their
initial properties. The override samples are other QT atom containers that
contain atoms that modify sprite properties, thereby animating the sprites in the
scene. For more information about QT atoms and atom containers, see
Chapter 1, “Movie Toolbox,” in QuickTime 3 Reference.

A key frame sample also contains all of the images used by the sprites. This
allows the sprites in a sprite track to share image data. The images consist of
two parts, an image description handle (ImageDescriptionHandle) concatenated
with compressed image data. The image description handle describes the
compressed image. You can compress the image using any QuickTime codec.

Images are stored in a key frame sample by index; each sprite has an image
index property (kSpritePropertyImageIndex) that specifies the sprite’s current
image. All images assigned to a sprite must be created using the same image
description, unless you use group IDs.

The matrix, layer, visible, and graphics mode sprite properties have the same
meaning for a sprite in a sprite track as for a sprite created in a sprite world.
54 About the Sprite Media Handler

C H A P T E R 2

Sprite Media Handler
As with sprite worlds, you can create a sprite track that has a solid background
color, a background image composed of the images of one or more background
sprites, or both a background color and a background image.

Key Frame Samples and Override Samples 2

A sprite track is defined by one or more key frame samples, each followed by
any number of override samples. A key frame sample for a sprite track defines
the following aspects of a sprite track:

■ The number of sprites in the scene and their initial properties.

■ All of the shared image data to be used by the sprites in the scene, including
image data to be used in the subsequent override samples. Because a key
frame sample contains the image data for the scene, the key frame sample
tends to be larger than its subsequent override samples.

An override sample overrides some aspect of the key frame sample. For
example, an override sample might modify the location of sprites defined in the
key frame sample. Override samples do not contain any image data, so they can
be very small. An override sample can show or hide a sprite defined in the key
frame sample, but it cannot define new sprites or remove sprites defined in its
key frame sample. An override sample can override any number of properties
for any number of sprites. For example, a single override sample might change
the layer and location of sprite ID 3, and hide sprite ID 10.

There are two sprite track formats that define how a key frame sample and its
subsequent override samples are interpreted. If the current sample is a key
frame sample, the key frame sample alone fully describes the current state of
the track. If the current sample is an override sample, the current state may
differ depending on the sprite track format:

■ If the sprite track format is kKeyFrameAndSingleOverride, the current state is
defined by the most recent key frame sample and the current override
sample. This is the default format. The advantage of this format is that it
allows for excellent performance during random access. A sprite track that
uses this format can play backwards and drop frames smoothly. The
disadvantage of this format is that the file size of the track may be larger than
a track that uses the other format.

■ If the sprite track format is kKeyFrameAndAllOverrides, the current state is
defined by the most recent key sample and all subsequent override samples,
including the current override sample. This format results in a smaller file
About the Sprite Media Handler 55

C H A P T E R 2

Sprite Media Handler
size. However, you should not use this format if you want your sprite track
to play backwards or drop frames smoothly. When you play a movie that
contains a sprite track whose format is kKeyFrameAndAllOverrides, you
should configure the movie to play all frames.

IMPORTANT

A sprite track must be authored exclusively with a single
format, i.e., either all with kKeyFrameAndSingleOverride or
all with kKeyFrameAndAllOverrides. ▲

Sprite Track Media Format 2

The sprite track media format is hierarchical and is based on QT atoms and
atom containers. A sprite track sample is a QT atom container structure. For
more information on QT atoms and atom containers, see Chapter 1, “Movie
Toolbox,” in QuickTime 3 Reference. For more information about the sprite media
format, see Appendix B in this book. For information about a key to
QTAtomContainer-based data structures that are being widely used in
QuickTime, see Appendix A.

Figure 2-1 shows the high-level structure of a sprite track key frame sample. A
key frame sample is represented by a QT atom container. Each atom in the atom
container is represented by its atom type, atom ID, and, if it is a leaf atom, the
type of its data.

Figure 2-1 A key frame sample atom container

QT atom
container

kSpriteAtomType

ID:numSprites

kSpriteSharedDataAtomType

ID:1

kSpriteAtomType

ID:1

Sprite property atoms Shared data atoms
56 About the Sprite Media Handler

C H A P T E R 2

Sprite Media Handler
The QT atom container contains one child atom for each sprite in the key frame
sample. Each sprite atom has a type of kSpriteAtomType. The sprite IDs are
numbered from one to the number of sprites defined by the key frame sample
(numSprites).

Each sprite atom contains leaf atoms that define the properties of the sprite, as
shown in Figure 2-2. For example, the kSpritePropertyLayer property defines a
sprite’s layer. Each sprite property atom has an atom type that corresponds to
the property and an ID of 1.

Figure 2-2 Atoms that describe a sprite and its properties

In addition to the sprite atoms, the QT atom container contains one atom of
type kSpriteSharedDataAtomType with an ID of 1. The atoms contained by the
shared data atom describe data that is shared by all sprites. The shared data
atom contains one atom of type kSpriteImagesContainerAtomType with an ID
of 1 (Figure 2-3). The image container atom contains one atom of type
kImageAtomType for each image in the key frame sample. The image atom IDs are
numbered from one to the number of images (numImages). Each image atom
contains a leaf atom that holds the image data (type kSpriteImageDataAtomType)
and an optional leaf atom (type kSpriteNameAtomType) that holds the name of the
image.

kSpriteAtomType

ID:1

kSpritePropertyImageIndex

ID:1

short

kSpritePropertyLayer

ID:1

short

kSpritePropertyGraphicsMode

ID:1

ModifierTrackGraphicsModeRecord

kSpritePropertyMatrix

ID:1

MatrixRecord

kSpritePropertyVisible

ID:1

short

kSpriteNameAtomType

ID:1

"The sprite name"

kSpriteURLLinkAtomType

ID:1

"The URL"
About the Sprite Media Handler 57

C H A P T E R 2

Sprite Media Handler
Figure 2-3 Atoms that describe sprite images

Assigning Group IDs 2

Before QuickTime 3, sprites could only display images with the same image
description. This restriction has been relaxed, but you must assign group IDs to
sets of equivalent images in your key frame sample. For example, if the sample
contains 10 images where the first 2 images are equivalent, and the last 8 images
are equivalent, you could assign a group ID of 1000 to the first 2 images, and a
group ID of 1001 to the last 8 images. This divides the images in the sample into
two sets. The actual ID does not matter; it just needs to be a unique positive
integer.

Each image in a sprite media key frame sample is assigned to a group. You add
an atom of type kSpriteImageGroupIDAtomType as a child of the
kSpriteImageAtomType atom and set its leaf data to a long containing the
group ID.

You must assign group IDs to your sprite sample if you want a sprite to display
images with non-equivalent image descriptions (i.e., images with different
dimensions).

kSpriteImageContainerAtomType

ID:1

kSpriteSharedDataAtomType

ID:1

kSpriteImageAtomType

ID:1

kSpriteImageDataAtomType

 ID:1

 Image data

kSpriteNameAtomType

 ID:1

 "The image name"

kSpriteImageDataAtomType

 ID:1

 Image data

kSpriteImageAtomType

ID:numImages
58 About the Sprite Media Handler

C H A P T E R 2

Sprite Media Handler
Sprite Image Registration 2

Sprite images have a default registration point of 0, 0. To specify a different
point, you add an atom of type kSpriteImageRegistrationAtomType as a child
atom of the kSpriteImageAtomType and set its leaf data to a FixedPoint value
with the desired registration point.

The format of an override sample is identical to that of a key frame sample with
the following exceptions:

■ An override sample does not contain images, which means it does not
contain an atom of type kSpriteImagesContainerAtomType or any of its
children.

■ In an override sample, all of the sprite atoms and sprite property atoms are
optional.

For example, to define an override sample that modifies the location of the third
sprite defined by the previous key frame sample, you would create a QT atom
container and add the following atoms to it (assuming that the sprite track
format is of type kKeyFrameAndSingleOverride):

Figure 2-4 An example of an override sample atom container

kSpritePropertyMatrix

ID:1

MatrixRecord

kSpriteAtomType

ID:3

QT atom
container
About the Sprite Media Handler 59

C H A P T E R 2

Sprite Media Handler
Sprite Track Properties 2

In addition to defining properties for individual sprites, you can also define
properties that apply to an entire sprite track. These properties may override
default behavior or provide hints to the sprite media handler. The following
sprite track properties are supported:

■ The kSpriteTrackPropertyBackgroundColor property specifies a background
color for the sprite track. The background color is used for any area that is
not covered by regular sprites or background sprites. If you do not specify a
background color, the sprite track uses black as the default background color.

■ The kSpriteTrackPropertyOffscreenBitDepth property specifies a preferred
bit depth for the sprite track’s offscreen buffer. The allowable values are 8
and 16. To save memory, you should set the value of this property to the
minimum depth needed. If you do not specify a bit depth, the sprite track
allocates an offscreen buffer with the depth of the deepest intersecting
monitor.

■ The kSpriteTrackPropertySampleFormat property specifies the sample format
for the sprite track. If you do not specify a sample format, the sprite track
uses the default format, kKeyFrameAndSingleOverride.

For wired sprites, which are discussed in Chapter 3, “Wired Sprites,” of this
programmer’s guide, the following new sprite track properties are supported:

■ The SpriteTrackPropertyHasActions property. You must add an atom of this
type with its leaf data set to true if you want the movie controller to execute
the actions in your sprite track’s media. The atom’s leaf data is of type
Boolean. The default value is false, so it is very important to add an atom of
this type if you want interactivity to take place.

■ The kSpriteTrackPropertyQTIdleEventsFrequency property. You must add an
atom of this type if you want the sprites in your sprite track to receive
kQTEventIdle QTEvents. The atom’s leaf data is of type UInt32. The value is
the mimimum number of ticks that must pass before the next QTIdle event is
sent. Each tick is 1/60th of one second. For more information, see “New
Sprite Track Property Atoms” (page 110).

■ The kSpriteTrackPropertyVisible property. You may cause the entire sprite
track to be invisible by setting the value of this Boolean property to false.
This is useful for using a sprite track as a hidden button track—for example,
placing an invisible sprite track over a video track would allow the
characters in the video to be clicked on. The default value is visible (true).
60 About the Sprite Media Handler

C H A P T E R 2

Sprite Media Handler
■ The kSpriteTrackPropertyScaleSpritesToScaleWorld property. You may cause
each sprite to be rescaled when the sprite track is resized by setting the value
of this Boolean property to true. Setting this property can improve the
drawing performance of a scaled sprite track. This is particularly useful for
sprite images compressed with codecs which are resolution-independent,
such as the Curve codec. The default value for this property is false.

To specify sprite track properties, you create a single QT atom container and
add a leaf atom for each property you want to specify. To add the properties to a
sprite track, you call the new media handler function SetMediaPropertyAtom. To
retrieve a sprite track’s properties, you call the media handler function
GetMediaPropertyAtom.

The sprite track properties and their corresponding atom data are outlined in
Table 2-1.

Note
When pasting portions of two different tracks together, the
Movie Toolbox checks to see that all sprite track properties
match. If, in fact, they do match, the paste results in a single
sprite track instead of two. ◆

Table 2-1 Sprite track properties

Atom type
Atom
ID

Leaf data
type

kSpriteTrackPropertyBackgroundColor 1 RGBColor

kSpriteTrackPropertyOffscreenBitDepth 1 unsigned
short

kSpriteTrackPropertySampleFormat 1 long

kSpriteTrackPropertyHasActions 1 Boolean

kSpriteTrackPropertyQTIdleEventsFrequency 1 UInt32

kSpriteTrackPropertyVisible 1 Boolean

kSpriteTrackPropertyScaleSpritesToScaleWorld 1 Boolean
About the Sprite Media Handler 61

C H A P T E R 2

Sprite Media Handler
Alternate Sources for Sprite Image Data 2

A sprite in a sprite track can obtain its image data from sources other than the
images in the sprite track’s key frame sample. The alternate image data
overrides a particular image index in the sprite track so that all sprites with that
image index will use the image data provided by the alternate source.

A sprite track can receive image data from another track within the same
movie, called a modifier track. This is useful for compositing traditional video
tracks with sprites. For example, you might create a sprite track in which sprite
characters are watching television. The sprite track can receive video from
another track, called a modifier track, to use as the image data for the television
screen sprite. Other sprites can move in front of and behind the television. A
sprite track can have more than one modifier track feeding it image data and
more than one sprite can use the image data from a modifier track at one time.

In order for a sprite to receive image data from a modifier track, you must call
the AddTrackReference function to link the modifier track to the sprite track that
it modifies. In addition, you must update the sprite media’s input map with an
atom that specifies the input type (kTrackModifierTypeImage) and an atom that
specifies the index of the image to replace (kSpritePropertyImageIndex).

A sprite track can also receive sprite image data from an application. For
example, an application might provide live, digitized video data to a sprite
track by calling MediaSetNonPrimarySourceData.

Supported Modifier Inputs 2

In addition to receiving image data, a sprite track can receive modifier track
data to control its sprites. The following modifier inputs are supported:

■ images from a video track (kTrackModifierTypeImage)

■ a matrix from a base track (kTrackModifierObjectMatrix)

■ a graphics mode from a base track (kTrackModifierObjectGraphicsMode)

■ an image index from a base track (kTrackModifierObjectImageIndex)

■ an object layer from a base track (kTrackModifierObjectLayer)

■ an object visible from a base track (kTrackModifierObjectVisible)

For example, a modifier track can send matrices to individual sprites to control
their locations. To do this, you set up a modifier track, such as a tween track, to
send matrix data to the sprite track. You must update the sprite media’s input
62 About the Sprite Media Handler

C H A P T E R 2

Sprite Media Handler
map with an atom that specifies the input type (kTrackModifierObjectMatrix)
and an atom that specifies the ID of the sprite to replace
(kTrackModifierObjectID). If the sprite track also contains matrices to move the
sprites, the results are undefined.

Note
With the exception of image data, the source for all
modifier tracks can be tween or base tracks. ◆

For background information on modifier tracks, see Chapter 1, “Movie
Toolbox,” in QuickTime 3 Reference.

New Features of the Sprite Media Handler 2

The following is a list of new sprite media handler features available in
QuickTime 3.

Wired Sprites 2

QuickTime 3 introduces wired sprites, which are designed to extend the
interactive capabilities of QuickTime, enabling application developers to create
movies that respond to user interaction. These interactive movies can be played
in any Web browser using the QuickTime plug-in, or anywhere you can play
QuickTime movies. When you wire a sprite track, you add actions to it. These
actions are not only provided by sprite tracks. In principle, you can “wire” any
QuickTime media handler. For more information, see Chapter 3, “Wired
Sprites.”

New and Obsolete Routines 2

The Sprite Media Handler routines shown in Table 2-2 are new. The
older-named routines should be considered obsolete.

The obsolete routines incorrectly refer to a sprite ID as spriteIndex, using a
short integer instead of a QT atom ID.
New Features of the Sprite Media Handler 63

C H A P T E R 2

Sprite Media Handler
Table 2-2 New versus obsolete sprite media handler routines

Each of these newly-renamed routines is described in the “Sprite Media
Handler Reference” (page 81).

New Hit Testing Flags 2

The following new hit testing flags are included in QuickTime 3. These flags are
for use with SpriteMediaHitTestAllSprites and SpriteMediaHitTestOneSprite:

■ spriteHitTestInvisibleSprites, which you set if you want invisible sprites
to be hit tested along with visible ones.

■ spriteHitTestLocInDisplayCoordinates, which you set if the hit testing point
is in display coordinates instead of local sprite track coordinates.

■ spriteHitTestIsClick, which you set if you want the hit testing operation to
pass a click on to the codec currently rendering the sprites image. For
example, this can be used to make the Ripple codec ripple.

Using the Sprite Media Handler 2

The sprite media handler provides functions that allow an application to create
and manipulate a sprite animation as a track in a QuickTime movie.

The following sections are illustrated with code from the sample program
QTWiredSprites.c, which creates a 320 by 240 pixel QuickTime movie with one
sprite track. The sprite track contains six sprites, including two penguins and
four buttons. The sample program, which takes advantage of wired sprites, is
explained in greater detail in Chapter 3, “Wired Sprites.” Its full code is listed in
Appendix C.

New sprite media handler routines Obsolete sprite media handler routines

SpriteMediaSetSpriteProperty SpriteMediaSetProperty

SpriteMediaGetSpriteProperty SpriteMediaGetProperty

SpriteMediaHitTestAllSprites SpriteMediaHitTestSprites
64 Using the Sprite Media Handler

C H A P T E R 2

Sprite Media Handler
Defining a Key Frame Sample 2

To create a sprite track in a QuickTime movie, you must first create the movie
itself, a track to contain the sprites, and the track’s media. Then you can define a
key frame sample. A key frame sample defines the number of sprites, their
initial property values, and the shared image data used by the sprites in the key
frame sample and in all override samples that follow the key frame sample. The
sample code discussed in this section creates a single key frame sample and
shows how to add images for other sprites, as well as actions for other sprites.

Creating the Movie, Sprite Track, and Media 2

Listing 2-1 shows a code fragment from the sample code QTWiredSprites.c. This
sample code, which is available in Appendix C, illustrates how you can create a
new movie file that calls a sample code function, AddSpriteTrackToMovie, which
is responsible for creating a sprite track and adding it to the movie.

Listing 2-1 Creating a sprite track movie

// Create a QuickTime movie containing a wired sprites track.

OSErr QTWired_CreateWiredSpritesMovie (void)
{

short myResRefNum = 0;
Movie myMovie = NULL;
Track myTrack;
Media myMedia;
StandardFileReply myReply;
QTAtomContainer mySample = NULL;
QTAtomContainer myActions = NULL;
QTAtomContainer myBeginButton, myPrevButton, myNextButton,

myEndButton;
QTAtomContainer myPenguinOne, myPenguinTwo,

myPenguinOneOverride;
QTAtomContainer myBeginActionButton, myPrevActionButton,

myNextActionButton, myEndActionButton;
QTAtomContainer myPenguinOneAction, myPenguinTwoAction;
RGBColor myKeyColor;
Point myLocation;
short isVisible, myLayer, myIndex, myResID, i,
Using the Sprite Media Handler 65

C H A P T E R 2

Sprite Media Handler
myDelta;
Boolean hasActions;
long myFlags = createMovieFileDeleteCurFile |

createMovieFileDontCreateResFile;
OSType myType = FOUR_CHAR_CODE('none');
UInt32 myFrequency;
QTAtom myEventAtom;
long myLoopingFlags;
ModifierTrackGraphicsModeRecord myGraphicsMode;
OSErr myErr = noErr;

// create a new movie file and set its controller type
// ask the user for the name of the new movie file
StandardPutFile("\pSprite movie file name:", "\pSprite.mov",

&myReply);
if (!myReply.sfGood)

goto bail;

// create a movie file for the destination movie
myErr = CreateMovieFile(&myReply.sfFile, FOUR_CHAR_CODE('TVOD'), 0,

myFlags, &myResRefNum, &myMovie);
if (myErr != noErr)

goto bail;

// select the "no controller" movie controller
myType = EndianU32_NtoB(myType);
SetUserDataItem(GetMovieUserData(myMovie), &myType, sizeof(myType),

kUserDataMovieControllerType, 1);

The following code fragment from AddSpriteTrackToMovie (Listing 2-2) creates a
new track and new media, and creates an empty key frame sample.
AddSpriteTrackToMovie then calls BeginMediaEdits (Listing 2-4) to prepare to
add samples to the track’s media.

Listing 2-2 Creating a track and media

// create the sprite track and media

myTrack = NewMovieTrack(myMovie, ((long)kSpriteTrackWidth << 16),
((long)kSpriteTrackHeight << 16), kNoVolume);
66 Using the Sprite Media Handler

C H A P T E R 2

Sprite Media Handler
myMedia = NewTrackMedia(myTrack, SpriteMediaType,
kSpriteMediaTimeScale, NULL, 0);

// create a new, empty key frame sample
myErr = QTNewAtomContainer(&mySample);
if (myErr != noErr)

goto bail;

myKeyColor.red = 0xffff; // white
myKeyColor.green = 0xffff;
myKeyColor.blue = 0xffff;

Adding Images to the Key Frame Sample 2

The AddPICTImageToKeyFrameSample function (Listing 2-3) adds images to the key
frame sample.

Listing 2-3 Adding images to the key frame sample

// add images to the key frame sample
AddPICTImageToKeyFrameSample(mySample, kGoToBeginningButtonUp,

&myKeyColor, kGoToBeginningButtonUpIndex, NULL, NULL);
AddPICTImageToKeyFrameSample(mySample, kGoToBeginningButtonDown,

&myKeyColor, kGoToBeginningButtonDownIndex, NULL, NULL);
AddPICTImageToKeyFrameSample(mySample, kGoToEndButtonUp, &myKeyColor,

kGoToEndButtonUpIndex, NULL, NULL);
...

AddPICTImageToKeyFrameSample(mySample, kPenguinForward, &myKeyColor,
kPenguinForwardIndex, NULL, NULL);

AddPICTImageToKeyFrameSample(mySample, kPenguinLeft, &myKeyColor,
kPenguinLeftIndex, NULL, NULL);

AddPICTImageToKeyFrameSample(mySample, kPenguinRight, &myKeyColor,
kPenguinRightIndex, NULL, NULL);

AddPICTImageToKeyFrameSample(mySample, kPenguinClosed, &myKeyColor,
kPenguinClosedIndex, NULL, NULL);

for (myIndex = kPenguinDownRightCycleStartIndex, myResID =
kWalkDownRightCycleStart; myIndex <= kPenguinDownRightCycleEndIndex;
Using the Sprite Media Handler 67

C H A P T E R 2

Sprite Media Handler
myIndex++, myResID++)
AddPICTImageToKeyFrameSample(mySample, myResID, &myKeyColor, myIndex,

NULL, NULL);

Adding More Images for Other Sprites 2

To add more images to other sprites, you assign group IDs to those images,
using the AssignImageGroupIDsToKeyFrame function. You then create the sprite
track, add it to theMovie, and then begin to add samples to the tracks’ media, as
shown in Listing 2-4.

Listing 2-4 Adding more images to other sprites and specifying button actions

// assign group IDs to the images
AssignImageGroupIDsToKeyFrame(mySample);

// add samples to the sprite track's media
//

BeginMediaEdits(myMedia);

// go to beginning button with no actions
myErr = QTNewAtomContainer(&myBeginButton);
if (myErr != noErr)

goto bail;
myLocation.h = (1 * kSpriteTrackWidth / 8) - (kStartEndButtonWidth

/ 2);
myLocation.v = (4 * kSpriteTrackHeight / 5) -

(kStartEndButtonHeight / 2);
isVisible = false;
myLayer = 1;
myIndex = kGoToBeginningButtonUpIndex;
myErr = SetSpriteData(myBeginButton, &myLocation, &isVisible,

&myLayer, &myIndex, NULL, NULL, myActions);
if (myErr != noErr)

goto bail;
68 Using the Sprite Media Handler

C H A P T E R 2

Sprite Media Handler
Adding Sprites to the Key Frame Sample 2

The AddSpriteTrackToMovie function adds the sprites with their initial property
values to the key frame sample, as shown in Listing 2-5. The key frame contains
four buttons and two penguins. If the withBackgroundPicture parameter is true,
the function adds a background sprite. The function initializes the background
sprite’s properties, including setting the layer property to
kBackgroundSpriteLayerNum to indicate that the sprite is a background sprite.
The function calls SetSpriteData (Listing 2-6), which adds the appropriate
property atoms to the spriteData atom container. Then, AddSpriteTrackToMovie
calls AddSpriteToSample (Listing 2-7) to add the atoms in the spriteData atom
container to the key frame sample atom container.

AddSpriteTrackToMovie adds the other sprites to the key frame sample and then
calls AddSpriteSampleToMedia (Listing 2-8) to add the key frame sample to the
media.

Listing 2-5 Creating more key frame sprite media

// add actions to the six sprites
//
// add go to beginning button
myErr = QTCopyAtom(myBeginButton, kParentAtomIsContainer,

&myBeginActionButton);
if (myErr != noErr)

goto bail;

AddSpriteSetImageIndexAction(myBeginActionButton,
kParentAtomIsContainer, kQTEventMouseClick, 0, NULL, 0, 0, NULL,
kGoToBeginningButtonDownIndex, NULL);

AddSpriteSetImageIndexAction(myBeginActionButton,
kParentAtomIsContainer, kQTEventMouseClickEnd, 0, NULL, 0, 0,

NULL, kGoToBeginningButtonUpIndex, NULL);
AddMovieGoToBeginningAction(myBeginActionButton,

kParentAtomIsContainer, kQTEventMouseClickEndTriggerButton);
AddSpriteSetVisibleAction(myBeginActionButton,

kParentAtomIsContainer, kQTEventMouseEnter, 0, NULL, 0, 0, NULL,
true, NULL);

AddSpriteSetVisibleAction(myBeginActionButton,
kParentAtomIsContainer, kQTEventMouseExit, 0, NULL, 0, 0, NULL,

false, NULL);
Using the Sprite Media Handler 69

C H A P T E R 2

Sprite Media Handler
AddSpriteToSample(mySample, myBeginActionButton,
kGoToBeginningSpriteID);

QTDisposeAtomContainer(myBeginActionButton);

// add go to prev button
myErr = QTCopyAtom(myPrevButton, kParentAtomIsContainer,

&myPrevActionButton);
if (myErr != noErr)

goto bail;

AddSpriteSetImageIndexAction(myPrevActionButton,
kParentAtomIsContainer, kQTEventMouseClick, 0, NULL, 0, 0, NULL,
kGoToPrevButtonDownIndex, NULL);

AddSpriteSetImageIndexAction(myPrevActionButton,
kParentAtomIsContainer, kQTEventMouseClickEnd, 0, NULL, 0, 0,

NULL, kGoToPrevButtonUpIndex, NULL);
AddMovieStepBackwardAction(myPrevActionButton,

kParentAtomIsContainer, kQTEventMouseClickEndTriggerButton);
AddSpriteSetVisibleAction(myBeginActionButton,

kParentAtomIsContainer, kQTEventMouseEnter, 0, NULL, 0, 0, NULL,
true, NULL);

AddSpriteSetVisibleAction(myBeginActionButton,
kParentAtomIsContainer, kQTEventMouseExit, 0, NULL, 0, 0, NULL,

false, NULL);
AddSpriteToSample(mySample, myPrevActionButton, kGoToPrevSpriteID);

QTDisposeAtomContainer(myPrevActionButton);

// add go to next button
myErr = QTCopyAtom(myNextButton, kParentAtomIsContainer,

&myNextActionButton);
if (myErr != noErr)

goto bail;

For each new property value that is passed into it as a parameter, the
SetSpriteData function (Listing 2-6) calls QTFindChildByIndex to find the
appropriate property atom. If the property atom already exists in the QT atom
container, SetSpriteData calls QTSetAtomData to update the property’s value. If
the property atom does not exist in the container, SetSpriteData calls
QTInsertChild to insert a new property atom.
70 Using the Sprite Media Handler

C H A P T E R 2

Sprite Media Handler
Listing 2-6 The SetSpriteData function

OSErr SetSpriteData (QTAtomContainer sprite, Point *location,
short *visible, short *layer, short *imageIndex)

{
OSErr err = noErr;
QTAtom propertyAtom;

if (location) {
MatrixRecordmatrix;

// set up the value for the matrix property
SetIdentityMatrix (&matrix);
matrix.matrix[2][0] = ((long)location->h << 16);
matrix.matrix[2][1] = ((long)location->v << 16);

// if no matrix atom is in the container, insert a new one
if ((propertyAtom = QTFindChildByIndex (sprite, 0,

kSpritePropertyMatrix, 1, nil)) == 0)
FailOSErr (QTInsertChild (sprite, 0, kSpritePropertyMatrix,

1, 0, sizeof(MatrixRecord), &matrix, nil))
// otherwise, replace the atom’s data else

FailOSErr (QTSetAtomData (sprite, propertyAtom,
sizeof(MatrixRecord), &matrix));

}

// ...
// handle other properties in a similar fashion
// ...

return err;
}

The AddSpriteToSample function (Listing 2-7) checks to see whether a sprite has
already been added to a sample. If not, the function calls QTInsertChild to
create a new sprite atom in the atom container that represents the sample. Then,
AddSpriteToSample calls QTInsertChildren to insert the atoms in the sprite atom
container as children of the newly created atom in the sample container.
Using the Sprite Media Handler 71

C H A P T E R 2

Sprite Media Handler
Listing 2-7 The AddSpriteToSample function

OSErr AddSpriteToSample (QTAtomContainer theSample,
QTAtomContainer theSprite, short spriteID)

{
OSErr err = noErr;
QTAtom newSpriteAtom;

FailIf (QTFindChildByID (theSample, 0, kSpriteAtomType, spriteID,
nil), paramErr);

FailOSErr (QTInsertChild (theSample, 0, kSpriteAtomType, spriteID,
0, 0, nil, &newSpriteAtom)); // index of zero means append

FailOSErr (QTInsertChildren (theSample, newSpriteAtom, theSprite));

bail:
return err;

}

The AddSpriteSampleToMedia function, shown in Listing 2-8, calls AddMediaSample
to add either a key frame sample or an override sample to the sprite media.

Listing 2-8 The AddSpriteSampleToMedia function

OSErr AddSpriteSampleToMedia (Media theMedia, QTAtomContainer sample,
TimeValue duration, Boolean isKeyFrame)

{
OSErr err = noErr;
SampleDescriptionHandle sampleDesc = nil;

FailMemErr (sampleDesc = (SampleDescriptionHandle) NewHandleClear(
sizeof(SampleDescription)));

FailOSErr (AddMediaSample (theMedia, (Handle) sample, 0,
GetHandleSize(sample), duration, sampleDesc, 1,
isKeyFrame ? 0 : mediaSampleNotSync, nil));
72 Using the Sprite Media Handler

C H A P T E R 2

Sprite Media Handler
bail:
if (sampleDesc)

DisposeHandle ((Handle)sampleDesc);

return err;
}

Adding More Actions to Other Sprites 2

To set the movie’s looping mode to palindrome, you add an action that is
triggered when the key frame is loaded, as shown in Listing 2-9. This action is
triggered every time the key frame is reloaded.

Listing 2-9 Adding more actions to other sprites

loopingFlags = loopTimeBase | palindromeLoopTimeBase;
FailOSErr(AddMovieSetLoopingFlagsAction(sample,

kParentAtomIsContainer,
kQTEventFrameLoaded, loopingFlags))

Adding Sample Data in Compressed Form 2

To add the sample data in a compressed form, you use a QuickTime DataCodec
to perform the compression, as shown in Listing 2-10. You replace the sample
utility AddSpriteSampleToMedia call with a call to the sample utility
AddCompressedSpriteSampleToMedia.

Listing 2-10 Adding the key frame sample in compressed form

/* AddSpriteSampleToMedia(myMedia, mySample, kSpriteMediaFrameDuration,
true, NULL); */

AddCompressedSpriteSampleToMedia(myMedia, mySample,
kSpriteMediaFrameDuration, true, zlibDataCompressorSubType,
NULL);
Using the Sprite Media Handler 73

C H A P T E R 2

Sprite Media Handler
Defining Override Samples 2

Once you have defined a key frame sample for the sprite track, you can add any
number of override samples to modify sprite properties.

Listing 2-11 shows the portion of the AddSpriteTrackToMovie function that adds
override samples to the sprite track to make the first penguin sprite appear to
waddle and move across the screen. For each override sample, the function
modifies the first penguin sprite’s image index and location. The function calls
SetSpriteData to update the appropriate property atoms in the sprite atom
container. Then, the function calls AddSpriteToSample to add the sprite atom
container to the sample atom container. After all of the modifications have been
made to the override sample, the function calls AddSpriteSampleToMedia to add
the override sample to the media.

After adding all of the override samples to the media, AddSpriteTrackToMovie
calls EndMediaEdits to indicate that it is done adding samples to the media.
Then, AddSpriteTrackToMovie calls InsertMediaIntoTrack to insert the new
media segment into the track.

Listing 2-11 Adding override samples to move penguin one and change its image
index

// original penguin one location
myLocation.h = (3 * kSpriteTrackWidth / 8) - (kPenguinWidth / 2);
myLocation.v = (kSpriteTrackHeight / 4) - (kPenguinHeight / 2);

myDelta = (kSpriteTrackHeight / 2) / kNumOverrideSamples;
myIndex = kPenguinDownRightCycleStartIndex;

for (i = 1; i <= kNumOverrideSamples; i++) {
QTRemoveChildren(mySample, kParentAtomIsContainer);
QTNewAtomContainer(&myPenguinOneOverride);

myLocation.h += myDelta;
myLocation.v += myDelta;
myIndex++;
if (myIndex > kPenguinDownRightCycleEndIndex)

myIndex = kPenguinDownRightCycleStartIndex;

SetSpriteData(myPenguinOneOverride, &myLocation, NULL, NULL,
74 Using the Sprite Media Handler

C H A P T E R 2

Sprite Media Handler
&myIndex, NULL, NULL, NULL);
AddSpriteToSample(mySample, myPenguinOneOverride,

kPenguinOneSpriteID);
AddSpriteSampleToMedia(myMedia, mySample,

kSpriteMediaFrameDuration, false, NULL);
QTDisposeAtomContainer(myPenguinOneOverride);

}

EndMediaEdits(myMedia);

// add the media to the track
InsertMediaIntoTrack(myTrack, 0, 0, GetMediaDuration(myMedia),

fixed1);

Setting Properties of the Sprite Track 2

Besides adding key frame samples and override samples to the sprite track, you
may want to set one or more global properties of the sprite track. For example,
if you want to define a background color for your sprite track, you must set the
sprite track’s background color property. You do this by creating a leaf atom of
type kSpriteTrackPropertyBackgroundColor whose data is the desired
background color.

After adding the override samples, AddSpriteTrackToMovie adds a background
color to the sprite track, as shown in Listing 2-12. The function calls
QTNewAtomContainer to create a new atom container for sprite track properties.
AddSpriteTrackToMovie adds a new atom of type
kSpriteTrackPropertyBackgroundColor to the container and calls
SpriteMediaSetSpriteProperty to set the sprite track’s property.

After adding a background color, AddSpriteTrackToMovie notifies the movie
controller that the sprite track has actions. If the hasActions parameter is true,
this function calls QTNewAtomContainer to create a new atom container for sprite
track properties. AddSpriteTrackToMovie adds a new atom of type
kSpriteTrackPropertyHasActions to the container and calls
SpriteMediaSetSpriteProperty to set the sprite track’s property.

Finally, after specifying that the sprite track has actions, AddSpriteTrackToMovie
notifies the sprite track to generate QTIdleEvents by adding a new atom of type
kSpriteTrackPropertyQTIdleEventsFrequency to the container. This new atom
specifies the frequency of QTEvent occurrences.
Using the Sprite Media Handler 75

C H A P T E R 2

Sprite Media Handler
Listing 2-12 Adding sprite track properties, including a background color, actions,
and frequency

{
QTAtomContainer myTrackProperties;
RGBColor myBackgroundColor;

// add a background color to the sprite track
myBackgroundColor.red = EndianU16_NtoB(0x8000);
myBackgroundColor.green = EndianU16_NtoB(0);
myBackgroundColor.blue = EndianU16_NtoB(0xffff);

QTNewAtomContainer(&myTrackProperties);
QTInsertChild(myTrackProperties, 0,

kSpriteTrackPropertyBackgroundColor, 1, 1,
sizeof(RGBColor), &myBackgroundColor, NULL);

// tell the movie controller that this sprite track has actions
hasActions = true;
QTInsertChild(myTrackProperties, 0,

kSpriteTrackPropertyHasActions, 1, 1,
sizeof(hasActions), &hasActions, NULL);

// tell the sprite track to generate QTIdleEvents
myFrequency = EndianU32_NtoB(60);
QTInsertChild(myTrackProperties, 0,

kSpriteTrackPropertyQTIdleEventsFrequency, 1, 1,
sizeof(myFrequency), &myFrequency, NULL);

myErr = SetMediaPropertyAtom(myMedia, myTrackProperties);
if (myErr != noErr)

goto bail;

QTDisposeAtomContainer(myTrackProperties);
}

Getting Sprite Data From a Modifier Track 2

The sample program AddReferenceTrack.c illustrates how you can modify a
movie to use a modifier track for a sprite’s image data. The sample program
prompts the user for a movie that contains a single sprite track. Then, it adds a
76 Using the Sprite Media Handler

C H A P T E R 2

Sprite Media Handler
track from a second movie to the original movie as a modifier track. The
modifier track overrides the image data for a selected image index.

Listing 2-13 shows the first part of the main function of the sample program. It
performs the following tasks:

■ It loads the movie containing the sprite track.

■ It calls GetMovieTrackCount to determine the total number of tracks in the
sprite track movie.

■ It loads the movie containing the modifier track (movieB).

Listing 2-13 Loading the movies

OSErr err;
short movieResID = 0, resFref, resID = 0, resRefNum;
StandardFileReply reply;
SFTypeList types;
Movie m;
FSSpec fss;
Movie movieB;
long origTrackCount;

// prompt for a movie containing a sprite track and load it
types[0] = MovieFileType;
StandardGetFilePreview (nil, 1, types, &reply);
if (!reply.sfGood) return;

err = OpenMovieFile (&reply.sfFile, &resFref, fsRdPerm);
if (err) return;

err = NewMovieFromFile (&m, resFref, &movieResID, (StringPtr)nil,
newMovieActive, ni);

if (err) return;

CloseMovieFile (resFref);

// get the number of tracks
origTrackCount = GetMovieTrackCount (m);
Using the Sprite Media Handler 77

C H A P T E R 2

Sprite Media Handler
// load the movie to be used as a modifier track
FSMakeFSSpec (reply.sfFile.vRefNum, reply.sfFile.parID, "\pAdd Me",

&fss);

err = OpenMovieFile (&fss, &resFref, fsRdPerm);
if (err) return;

err = NewMovieFromFile (&movieB, resFref, &resID, (StringPtr)nil, 0,
nil);

if (err) return;

CloseMovieFile (resFref);

Once the two movies have been loaded, the sample program retrieves the first
track, which is the sprite track, from the original movie, and sets the selection to
the start of the movie (Listing 2-14). The sample program iterates through all
the tracks in the modifier movie, disposing of all non-video tracks.

Next, the sample program calls AddMovieSelection to add the modifier track to
the original movie. Finally, the sample program calls AddTrackReference to
associate the modifier track with the sprite track it will modify.
AddTrackReference returns an index of the added reference in the
referenceIndex variable.

Listing 2-14 Adding the modifier track to the movie

Movie m;
TimeValue oldDuration;
Movie movieB;
long i, origTrackCount, referenceIndex;
Track newTrack, spriteTrack;

// get the first track in original movie and position at the start
spriteTrack = GetMovieIndTrack (m, 1);
SetMovieSelection (m, 0 ,0);

// remove all tracks except video in modifier movie
for (i = 1; i <= GetMovieTrackCount (movieB); i++)
{

Track t = GetMovieIndTrack (movieB, i);
78 Using the Sprite Media Handler

C H A P T E R 2

Sprite Media Handler
OSType aType;

GetMediaHandlerDescription (GetTrackMedia(t), &aType, nil, nil);
if (aType != VideoMediaType)
{

DisposeMovieTrack (t);
i--;

}
}

// add the modifier track to original movie
oldDuration = GetMovieDuration (m);
AddMovieSelection (m, movieB);
DisposeMovie (movieB);

// truncate the movie to the length of the original track
DeleteMovieSegment (m, oldDuration,

GetMovieDuration (m) - oldDuration);

// associate the modifier track with the original sprite track
newTrack = GetMovieIndTrack (m, origTrackCount + 1);
AddTrackReference (spriteTrack, newTrack, kTrackModifierReference,

&referenceIndex);

Besides adding a reference to the modifier track, the sample program must
update the sprite media’s input map to describe how the modifier track should
be interpreted by the sprite track. The sample program performs the following
tasks (Listing 2-15):

■ It retrieves the sprite track’s media by calling GetTrackMedia.

■ It calls GetMediaInputMap to retrieve the media’s input map.

■ It adds a parent atom to the input map of type kTrackModifierInput. The ID
of the atom is the reference index retrieved by the AddTrackReference
function.

■ It adds two child atoms, one that specifies that the input type of the modifier
track is of type kTrackModifierTypeImage, and one that specifies the index of
the sprite image to override.

■ It calls SetMediaInputMap to update the media’s input map.
Using the Sprite Media Handler 79

C H A P T E R 2

Sprite Media Handler
Listing 2-15 Updating the media’s input map

#define kImageIndexToOverride 1

Movie m, movieB;
long referenceIndex, imageIndexToOverride;
Track spriteTrack;
QTAtomContainer inputMap;
QTAtom inputAtom;
OSType inputType;
Media spriteMedia;

// get the sprite media’s input map
spriteMedia = GetTrackMedia (spriteTrack);
GetMediaInputMap (spriteMedia, &inputMap);

// add an atom for a modifier track
QTInsertChild (inputMap, kParentAtomIsContainer,

kTrackModifierInput, referenceIndex, 0, 0, nil, &inputAtom);

// add a child atom to specify the input type
inputType = kTrackModifierTypeImage;
QTInsertChild (inputMap, inputAtom, kTrackModifierType, 1, 0,

sizeof(inputType), &inputType, nil);

// add a second child atom to specify index of image to override
imageIndexToOverride = kImageIndexToOverride;
QTInsertChild (inputMap, inputAtom, kSpritePropertyImageIndex, 1, 0,

sizeof(imageIndexToOverride), &imageIndexToOverride, nil);

// update the sprite media’s input map
SetMediaInputMap (spriteMedia, inputMap);
QTDisposeAtomContainer (inputMap);

Once the media’s input map has been updated, the application can save the
movie.
80 Using the Sprite Media Handler

C H A P T E R 2

Sprite Media Handler
Sprite Media Handler Reference 2

Constants 2

Sprite Track Formats 2

The following constants represent formats of a sprite track. The value of the
constant indicates how override samples in a sprite track should be interpreted.
You set a sprite track’s format by creating a kSpriteTrackPropertySampleFormat
atom.

enum {
kKeyFrameAndSingleOverride = 1L << 1,
kKeyFrameAndAllOverrides = 1L << 2

};

Constant descriptions

kKeyFrameAndSingleOverride
The current state of the sprite track is defined by the most
recent key frame sample and the current override sample.
This is the default format.

kKeyFrameAndAllOverrides
The current state of the sprite track is defined by the most
recent key frame sample and all subsequent override
samples up to and including the current override sample.

Sprite Media Atom Types 2

The following constants represent atom types for sprite media.

enum {
kSpriteAtomType = 'sprt',
kSpriteImagesContainerAtomType = 'imct',
kSpriteImageAtomType = 'imag',
Sprite Media Handler Reference 81

C H A P T E R 2

Sprite Media Handler
kSpriteImageDataAtomType = 'imda',
kSpriteSharedDataAtomType = 'dflt',
kSpriteNameAtomType = 'name'
kSpriteURLLinkAtomType = 'url '
kSpritePropertyMatrix = 1
kSpritePropertyVisible = 4
kSpritePropertyLayer = 5
kSpritePropertyGraphicsMode = 6
kSpritePropertyImageIndex = 101
kSpritePropertyBackgroundColor = 101
kSpritePropertyOffscreenBitDepth = 102
kSpritePropertySampleFormat = 103

};

Constant descriptions

kSpriteAtomType The atom is a parent atom that describes a sprite. It
contains atoms that describe properties of the sprite.
Optionally, it may also include an atom of type
kSpriteNameAtomType that defines the name of the sprite.

kSpriteImagesContainerAtomType
The atom is a parent atom that contains atoms of type
kSpriteImageAtomType.

kSpriteImageAtomType
The atom is a parent atom that contains an atom of type
kSpriteImageDataAtomType. Optionally, it may also include
an atom of type kSpriteNameAtomType that defines the name
of the image.

kSpriteImageDataAtomType
The atom is a leaf atom that contains image data.

kSpriteSharedDataAtomType
The atom is a parent atom that contains shared sprite data,
such as an atom container of type
kSpriteImagesContainerAtomType.

kSpriteNameAtomType
The atom is a leaf atom that contains the name of a sprite or
an image. The leaf data is composed of one or more ASCII
characters.
82 Sprite Media Handler Reference

C H A P T E R 2

Sprite Media Handler
kSpritePropertyImageIndex
A leaf atom containing the image index property which is
of type short. This atom is a child atom of the kSpriteAtom.

kSpritePropertyLayer
A leaf atom containing the layer property which is of type
short. This atom is a child atom of the kSpriteAtom.

kSpritePropertyMatrix
A leaf atom containing the matrix property which is of type
MatrixRecord. This atom is a child atom of the kSpriteAtom.

kSpritePropertyVisible
A leaf atom containing the visible property which is of type
short. This atom is a child atom of the kSpriteAtom.

kSpritePropertyGraphicsMode
A leaf atom containing the matrix property which is of type
ModifyerTrackGraphicsModeRecord. This atom is a child
atom of the kSpriteAtom.

kSpritePropertyBackgroundColor
A leaf atom containing the background color property
which is of type RGBColor. This atom is used in a sprite
track’s MediaPropertyAtom atom container.

kSpritePropertyOffscreenBitDepth
A leaf atom containing the preferred offscreen bitdepth
which is of type short. This atom is used in a sprite track’s
MediaPropertyAtom atom container.

kSpritePropertySampleFormat
A leaf atom containing the sample format property which
is of type short. This atom is used in a sprite track’s
MediaPropertyAtom atom container.

kSpriteImageRegistrationAtomType

Sprite images have a default registration point of 0, 0. To
specify a different point, add an atom of type
kSpriteImageRegistrationAtomType as a child atom of the
kSpriteImageAtomType and set its leaf data to a FixedPoint
value with the desired registration point.

kSpriteImageGroupIDAtomType

Before QuickTime 3, sprites could only display images with
the same image description. This restriction has been
relaxed, but you must assign group IDs to sets of
Sprite Media Handler Reference 83

C H A P T E R 2

Sprite Media Handler
equivalent images in your key frame sample. For example,
if the sample contains ten images where the first two
images are equivalent, and the last eight images are
equivalent, then you could assign a group ID of 1000 to the
first two images, and a group ID of 1001 to the last eight
images. This divides the images in the sample into two sets.
The actual ID does not matter, it just needs to be a unique
positive integer.
Each image in a sprite media key frame sample is assigned
to a group. Add an atom of type
kSpriteImageGroupIDAtomType as a child of the
kSpriteImageAtomType atom and set its leaf data to a long
containing the group ID.

IMPORTANT

You must assign group IDs to your sprite sample if you
want a sprite to display images with non-equivalent image
descriptions (i.e., images with different dimensions). ▲

Note
All sprite media—specifically the leaf data in the QT atom
containers for sample and sprite track properties—should
be written in big-endian format. ◆

Sprite Media Handler Functions 2

SpriteMediaSetSpriteProperty 2

The SpriteMediaSetSpriteProperty function sets the specified property of a
sprite.

pascal ComponentResult SpriteMediaSetSpriteProperty (
MediaHandler mh,
QTAtomID spriteID,
long propertyType,
void* propertyValue);
84 Sprite Media Handler Reference

C H A P T E R 2

Sprite Media Handler
mh Specifies the sprite media handler for this operation.

spriteID Specifies the ID of the sprite to be modified.

propertyType Specifies the property to be set.

propertyValue
Specifies the new value of the property.

DISCUSSION

You call this function to modify a property of a sprite. You set the propertyType
parameter to the property you want to modify. You set the spriteID parameter
to the ID of the sprite whose property you want to set.

The type of data you pass for the propertyValue parameter depends on the
property type. The following table lists the sprite properties and the data types
of the corresponding property values.

RESULT CODES

Sprite Property Data Type

kSpritePropertyMatrix MatrixRecord *

kSpritePropertyVisible short

kSpritePropertyLayer short

kSpritePropertyGraphicsMode ModifierTrackGraphicsModeRecord *

kSpritePropertyImageIndex short

noErr 0 No error
invalidSpritePropertyErr –2065 Specified sprite property does not

exist
invalidSpriteIndexErr –2067 Sprite index is out of range
Sprite Media Handler Reference 85

C H A P T E R 2

Sprite Media Handler
SpriteMediaGetSpriteProperty 2

The SpriteMediaGetSpriteProperty function retrieves the value of the specified
sprite property.

pascal ComponentResult SpriteMediaGetSpriteProperty (
MediaHandler mh,
QTAtomID spriteID,
long propertyType,
void* propertyValue);

mh Specifies the sprite media handler for this operation.

spriteID Specifies the ID of the sprite for this operation.

propertyType Specifies the property whose value should be retrieved.

propertyValue
On return, contains a pointer to the value of the property.

DISCUSSION

You call this function to retrieve a value of a sprite property. You set the
propertyType parameter to the property you want to retrieve. You set the
spriteID parameter to the ID of the sprite whose property you want to retrieve.

On return, the propertyValue parameter contains a pointer to the specified
property’s value; the data type of that value depends on the property. The
following table lists the sprite properties and the data types of the
corresponding property values.

Sprite Property Data Type

kSpritePropertyMatrix MatrixRecord *

kSpritePropertyVisible short *

kSpritePropertyLayer short *

kSpritePropertyGraphicsMode ModifierTrackGraphicsModeRecord *

kSpritePropertyImageIndex short *
86 Sprite Media Handler Reference

C H A P T E R 2

Sprite Media Handler
RESULT CODES

SpriteMediaHitTestAllSprites 2

The SpriteMediaHitTestAllSprites function determines whether any sprites are
at a specified location.

pascal ComponentResult SpriteMediaHitTestAllSprites (
MediaHandler mh,
long flags,
Point loc,
QTAtomID *spriteHitID);

mh Specifies the sprite media handler for this operation.

flags Specifies flags to control the hit testing operation. The following
flags are valid for use with SpriteMediaHitTestAllSprites and
SpriteMediaHitTestOneSprite:

spriteHitTestBounds
The specified location must be within the sprite’s
bounding box.

spriteHitTestImage
If both this flag and spriteHitTestBounds are set,
the specified location must be within the shape
of the sprite’s image.

spriteHitTestInvisibleSprites

Set this flag if you want invisible sprites to be hit
tested along with the visible ones.

spriteHitTestLocInDisplayCoordinates

Set this flag if the hit testing point is in display
coordinates instead of local sprite track
coordinates.

noErr 0 No error
invalidSpritePropertyErr –2065 Specified sprite property does not

exist
invalidSpriteIndexErr –2067 Sprite index is out of range
Sprite Media Handler Reference 87

C H A P T E R 2

Sprite Media Handler
spriteHitTestIsClick

Set this flag if you want the hit testing operation
to pass a click on to the codec currently
rendering the sprites image. For example, this
can be used to make the Ripple codec ripple.

loc Specifies a point in the coordinate system of the sprite track’s
movie to test for the existence of a sprite.

spriteHitID
Contains a pointer to a short integer. On return, this integer
contains the ID of the frontmost sprite at the location specified
by loc. If no sprite exists at the location, the function sets the
value of this parameter to 0.

DISCUSSION

You call this function to determine whether any sprites exist at a specified
location in the coordinate system of a sprite track’s movie. You can pass flags to
this function to control the hit testing operation more precisely. For example,
you may want the hit test operation to detect a sprite whose bounding box
contains the specified location.

SpriteMediaCountSprites 2

The SpriteMediaCountSprites function retrieves the number of sprites that
currently exist in a sprite track.

pascal ComponentResult SpriteMediaCountSprites (
MediaHandler mh,
short* numSprites);

mh Specifies the sprite media handler for this operation.

numSprites Contains a pointer to a short integer. On return, this integer
contains the number of sprites for the sprite media’s current
time.
88 Sprite Media Handler Reference

C H A P T E R 2

Sprite Media Handler
DISCUSSION

This function determines the number of sprites that currently exist based on the
key frame that is in effect.

SpriteMediaCountImages 2

The SpriteMediaCountImages function retrieves the number of images that
currently exist in a sprite track.

pascal ComponentResult SpriteMediaCountImages (
MediaHandler mh,
short* numImages);

mh Specifies the sprite media handler for this operation.

numImages Contains a pointer to a short integer. On return, this integer
contains the number of images for the sprite media’s current
time.

DISCUSSION

This function determines the number of images that currently exist based on the
key frame that is in effect.

SpriteMediaGetIndImageDescription 2

The SpriteMediaGetIndImageDescription function retrieves an image description
for the specified image in a sprite track.

pascal ComponentResult SpriteMediaGetIndImageDescription (
MediaHandler mh,
short imageIndex,
ImageDescriptionHandle imageDescription);

mh Specifies the sprite media handler for this operation.
Sprite Media Handler Reference 89

C H A P T E R 2

Sprite Media Handler
imageIndex Specifies the index of the image whose image description should
be retrieved.

imageDescription
Specifies an image description handle. On return, this handle
contains the image description for the specified image.

DISCUSSION

You set the imageIndex parameter to the index of the image whose image
description you want to retrieve. The index must be between one and the
number of available images. You can determine how many images are available
by calling SpriteMediaCountImages.

The handle specified by the imageDescription parameter must be unlocked; this
function resizes the handle if necessary.

RESULT CODES

Memory Manager errors, as documented in Mac OS For QuickTime Programmers.

SpriteMediaGetDisplayedSampleNumber 2

The SpriteMediaGetDisplayedSampleNumber function retrieves the number of the
sample that is currently being displayed.

pascal ComponentResult SpriteMediaGetDisplayedSampleNumber (
MediaHandler mh,
long* sampleNum);

mh Specifies the sprite media handler for this operation.

sampleNum Contains a pointer to a long integer. On return, this integer
contains the number of the sample that is currently being
displayed.

noErr 0 No error
paramErr –50 Invalid parameter specified
invalidImageIndexErr –2068 Image index is out of range
90 Sprite Media Handler Reference

C H A P T E R 2

Sprite Media Handler
DISCUSSION

You call this function when you need to retrieve the sample number of the
sample that is being displayed.

SpriteMediaGetSpriteName 2

The SpriteMediaGetSpriteName function returns the name of the sprite with the
specified ID from the currently displayed sample.

pascal ComponentResult SpriteMediaGetSpriteName(
 MediaHandler mh,
 QTAtomID spriteID,
 Str255 spriteName);

mh Specifies the sprite media handler for this operation.

spriteID Specifies the sprite ID of the sprite name.

spriteName Returns a Pascal string with the name of the sprite or an empty
string if the sprite is unnamed.

SpriteMediaGetImageName 2

The SpriteMediaGetImageName function returns the name of the image with the
specified index from the current key frame sample.

pascal ComponentResult SpriteMediaGetImageName(
 MediaHandler mh,
 short imageIndex,
 Str255 imageName);

mh Specifies the sprite media handler for this operation.

imageIndex Specifies the index of the image whose image name should be
retrieved.

imageName Returns a Pascal string with the image name of the image or an
empty string if the image is unnamed.
Sprite Media Handler Reference 91

C H A P T E R 2

Sprite Media Handler
SpriteMediaHitTestOneSprite 2

The SpriteMediaHitTestOneSprite function performs a hit testing operation on
the sprite specified by the spriteID.

pascal ComponentResult SpriteMediaHitTestOneSprite(
 MediaHandler mh,
 QTAtomID spriteID,
 long flags,
 Point loc,
 Boolean *wasHit);

mh Specifies the sprite media handler for this operation.

spriteID Specifies the sprite ID of the sprite name.

flags Specifies the flags to control the hit testing operation.

loc The location loc should be in local coordinates of the sprite
track, unless the spriteHitTestLocInDisplayCoordinates flag is
set.

wasHit Contains a pointer to a Boolean. If the sprite is hit, wasHit is set
to true; otherwise, it is set to false. This routine allows you to
hit test a sprite which is fully or partially covered by other
sprites.

Note
Sprite indexes range from 1 to the number of sprites in the
key sample. ◆

SpriteMediaSpriteIndexToID 2

The SpriteMediaSpriteIndexToID function returns the ID of the sprite specified
by spriteIndex in spriteID.

pascal ComponentResult SpriteMediaSpriteIndexToID(
 MediaHandler mh,
 short spriteIndex,
 QTAtomID *spriteID);
92 Sprite Media Handler Reference

C H A P T E R 2

Sprite Media Handler
mh Specifies the sprite media handler for this operation.

spriteIndex Specifies the index of the sprite for this operation.

spriteID Contains a pointer to the sprite ID of the sprite index. If a sprite
with the specified index does not exist, the error paramErr is
returned.

SpriteMediaIDToIndex 2

The SpriteMediaSpriteIDToIndex function returns the sprite index of the sprite
specified by the spriteID.

pascal ComponentResult SpriteMediaSpriteIDToIndex(
 MediaHandler mh,
 QTAtomID spriteID,
 short *spriteIndex);

mh Specifies the sprite media handler for this operation.

spriteID Specifies the sprite ID of the sprite index.

spriteIndex Contains a pointer to a short integer. If a sprite with the
specified ID does not exist, the error invalidSpriteIDErr is
returned.

SpriteMediaGetIndImageProperty 2

The SpriteMediaGetIndImageProperty function returns a property value for the
image specified by imageIndex.

pascal ComponentResult SpriteMediaGetIndImageProperty(
 MediaHandler mh,
 short imageIndex,
 long imagePropertyType,
 void *imagePropertyValue);
Sprite Media Handler Reference 93

C H A P T E R 2

Sprite Media Handler
mh Specifies the sprite media handler for this operation.

imageIndex Specifies the index of the image.

imagePropertyType

Specifies an image property type whose value is returned in
imagePropertyValue. The allowed property types are:

kSpriteImagePropertyRegistrationPoint
imagePropertyValue is a FixedPoint value.

kSpriteImagePropertyGroupID
imagePropertyValue is a long integer.

imagePropertyValue

A pointer is set to the value of the image property.

Sprites Functions Specific to Wired Sprites 2

The following routines are specific to sprite tracks using wired sprites. For more
information on wired sprites, see Chapter 3, “Wired Sprites.”

SpriteMediaSetActionVariable 2

The SpriteMediaSetActionVariable function sets the value of the sprite track
variable with the ID of the variable to the supplied value.

pascal ComponentResult SpriteMediaSetActionVariable
(MediaHandler mh,
QTAtomID variableID,
const float *value);

mh Specifies the sprite media handler for this operation.

variableID Specifies a variable ID of the sprite name.

value Contains a pointer to a floating-point number. Note that the
value is passed by reference.
94 Sprite Media Handler Reference

C H A P T E R 2

Sprite Media Handler
SpriteMediaGetActionVariable 2

The SpriteMediaGetActionVariable returns the value of the sprite track variable
with the specified ID.

pascal ComponentResult SpriteMediaGetActionVariable(
MediaHandler mh,
QTAtomID variableID,
float *value);

mh Specifies the sprite media handler for this operation.

variableID Specifies a variable ID of the sprite variable.

value Contains a pointer to a floating-point value. If the specified
variable has never been set, the value is set to 0 and the error
cannotFindAtomErr is returned.

SpriteDescription Structure 2

Sprite samples may be compressed using a data compression codec.

struct SpriteDescription {
long descSize; /* total size of

SpriteDescription including extra data */
long dataFormat; /* */
long resvd1; /* reserved for apple use */
short resvd2;
short dataRefIndex;
long version; /* which version is this data */
OSType decompressorType; /* which decompressor to use, 0 for

 no decompression */
long sampleFlags; /* how to interpret samples */

};
typedef struct SpriteDescription SpriteDescription;
typedef SpriteDescription * SpriteDescriptionPtr;
typedef SpriteDescriptionPtr * SpriteDescriptionHandle;

Field descriptions
decompressorType This field in the SpriteDescription sample description

structure allows a data decompressor component type to be
Sprite Media Handler Reference 95

C H A P T E R 2

Sprite Media Handler
specified. If this field is nonzero, a component of the
specified type will be used to decompress the sprite sample
when it is loaded.
96 Sprite Media Handler Reference

C H A P T E R 3

Figure 3-0
Listing 3-0
Table 3-0
Wired Sprites 3
This chapter describes wired sprites, which are new with QuickTime 3. Wired
sprites extend the interactive capabilities of QuickTime, enabling you to create
movies that respond to user interaction. For example, you may “wire” sprite
buttons to a QuickTime movie, so that the buttons link to specific URLs, start or
stop the movie, or play a custom sound when pressed. These interactive movies
can then be played in any Web browser using the QuickTime plug-in, and in all
applications as long as they use the QuickTime movie controller API.

When you wire a sprite track, you add actions to it. Wired sprite tracks may be
the only tracks in a movie, but they are commonly used in concert with other
types of tracks. Actions associated with sprites in a sprite track, for example,
can control the audio volume and balance of an audio track, or the graphics
mode of a video track.

Wired sprite tracks may also be used to implement a graphical user interface for
an application. Applications can find out when actions are executed, and
respond however they wish. For example, a CD audio controller application
could use an action sprite track to handle its graphics and user interface.

These wired sprite actions are not only provided by sprite tracks. In principle,
you can “wire” any QuickTime media handler. The QuickTime 3D media
handler, for example, implements a subset of them.

Before you use wired sprites, you should be familiar with the information in
Chapter 1, “Introduction to Sprites and the Sprite Toolbox,” and Chapter 2,
“Sprite Media Handler.”

This chapter is divided into the following major sections:

■ “About Wired Sprites” (page 98) introduces QuickTime events, actions,
targets, parameters, expressions, operands, and operators.

■ “Using Wired Sprites” (page 102) gives some examples of creating wired
sprite tracks, including one with two penguins and four buttons. The
examples are based on the sample code provided in Appendix C.
97

C H A P T E R 3

Wired Sprites
■ “Wired Sprites Reference” (page 109) describes the constants and data types
used to create wired sprite tracks.

About Wired Sprites 3

Wired sprites enable you to create QuickTime movies that are interactive. User
input is translated into QuickTime events. In response to these QuickTime
events, actions may be performed. Each action has a specific target, which is the
element in a movie the action is performed on. Target types include sprites,
tracks, and the movie itself. A few actions do not require a target. Actions have
a set of parameters that help describe how the target element is changed.

Typical wired actions—such as jumping to a particular time in a movie or
setting a sprite’s image index—enable you to create a sprite that acts as a
button. In response to a mouse down event, for example, a wired sprite could
change its own image index property, so that its button-pressed image is
displayed. In response to a mouse up event, the sprite can change its image
index property back to the button up image and, additionally, specify that the
movie jump to a particular time.

QuickTime Events 3

When it is associated with a QuickTime movie, the movie controller checks to
see if a track in the movie provides actions in response to QuickTime events. If
one or more tracks provide actions, the movie controller will then monitor the
activity of the mouse and send the appropriate mouse-related events.

These mouse events include: kQTEventMouseClick, kQTEventMouseClickEnd,
kQTEventMouseClickEndTriggerButton, kQTEventMouseEnter, and
kQTEventMouseExit.

Other types of events do not require user interaction in order to be generated.

The kQTEventIdle event is sent to each sprite in a sprite track if that sprite
track’s kSpriteTrackPropertyQTIdleEventsFrequency property is set to a value
other than the default value kNoQTIdleEvents.

The kQTEventFrameLoaded is generated when a sprite track sample which
contains actions for it is loaded.
98 About Wired Sprites

C H A P T E R 3

Wired Sprites
IMPORTANT

If you want the sprites in your sprite track to receive
kQTEventIdle QuickTime events, you must add an atom of
the type kSpriteTrackPropertyQTIdleEventsFrequency. This
atom’s leaf data is of type UInt32. The value is the
mimimum number of ticks that must pass before the next
QTIdle event is sent. Each tick is 1/60th of one second. To
specify “Idle as fast as possible,” you set the value to 0. The
default value is kNoQTIdleEvents which means don’t send
any idle events. For more information, see “New Sprite
Track Property Atoms” (page 110).

If you want the movie controller to execute the actions in
your sprite track’s media, you must add an atom of type
SpriteTrackPropertyHasActions with its leaf data set to true
The atom’s leaf data is of type Boolean. The default value is
false, so it is very important to add an atom of this type if
you want interactivity to take place. ▲

Actions and Their Targets 3

Any number of actions may be executed in response to a single QuickTime
event. By using sprite track variables to maintain state, as well as conditional
and looping actions, more sophisticated event handlers may be created—similar
to If..Then and While statements in the C programming language.

The target of an action specifies on which element of the movie the action
should be performed. Each action has an associated target type. For example,
the action kActionSpriteSetVisible should only target a sprite—not a track or
movie. Most of the track actions need to target either a specific track type, or a
subset of track types, such as spatial or audio tracks. The target types include
sprite, track, movie, and no target.

Sprite and track targets may be specified in several different ways using names,
IDs, or indices.

Targets are resolved at the time their action is executed. This is important to
keep in mind because movies may change over time. Actions which are
intended to target a movie element for the current movie time should precede
actions which change the movie time. Sprites, for example, may be considered
to have a lifetime lasting from one key frame to the next, so a sprite with a
About Wired Sprites 99

C H A P T E R 3

Wired Sprites
certain ID at one time may be different from a sprite with the same ID at
another time in the movie.

Note that you may only target “live” movie elements, that is, ones that exist for
the current movie time.

All events except the frameLoaded event are sent to a specific sprite. This sprite is
considered the current default Sprite target, and its track is considered the current
default Track target. Since the frameLoaded event is sent to a sprite track, only the
default track target is set.

Action Parameters 3

Actions have some number of required parameters. The parameters each have a
data type. For example, the SpriteSetVisible action has a single Boolean
parameter which makes the sprite visible if set to true, and invisible if set to
false.

Parameters with numeric data types may optionally be specified by an
expression. The SpriteSetVisible action, for example, could have an expression
which evaluates to true if the movie is playing and false if it is stopped.

Options which modify a parameter’s value may be specified for some
parameters. Each action defines which options are allowed for its parameters.
Parameters which allow options to be specified are typically associated with a
property of the action’s target. The current value of this property is used in
conjunction with the parameter’s value and options to determine the new
value.

The kActionFlagActionIsDelta constant takes the current property value and
adds the parameter’s value to it. This value is pinned to the minimum and
maximum values. The kActionFlagParameterWrapsAround constant causes the
value to wrap within the range defined by the minimum and maximum value.
If the new value is greater than the maximum value, it wraps around to the
minimum, plus the difference between the new and the maximum value.

Parameters all have default minimum and maximum values. When using the
delta, or delta with wraparound options, the minimum and maximum value
options further limit this range.

The kActionFlagActionIsToggle constant is used with properties that only have
two possible values, such as a visible property which may be either true or
false. Using it repeatedly on a sprite’s visible property, for example, will toggle
it between visible and invisible. The actual value of the parameter is ignored
100 About Wired Sprites

C H A P T E R 3

Wired Sprites
when using the toggle. For more information about these options, see “Action
Parameter Constants” (page 130).

Note
Named time parameters use the indexed chapter text tracks
to obtain time values from the names. ◆

Expressions 3

Expressions may generally be used in place of numeric and Boolean values.
Numeric action parameters, action target IDs, and action target indexes may all
use expressions. They are also used in conjunction with the Case and While
statement actions as conditional Boolean expressions.

Expressions may contain just a single operand, or may be complex, containing
any number of operators and operands.

For details on the grammar of expressions, see Appendix B.

IMPORTANT

Expressions are evaluated internally as single-precision,
floating-point numbers. This means that all operands with
numeric data types that are used in an expression are cast
to a single precision floating point. For a few of the
operand types, such as the sprite ID operands, it is possible
to have a round-off error problem. This can be avoided by
using sprite IDs that can be expressed using single-
precision, floating-point numbers. ▲

Operators 3

Operators are used in expressions, and are applied to their operands to
calculate numeric values. The data format for Binary operations is prefix-based.

Binary operators may be applied to a list of two or more operands. They are
first applied to the first two operands, then applied to this result and the next
operand in the list. For example, (2 * (4 * 6)) can be represented as the
kOperatorMultiply operator with a list of three kOperandConstant operands,
containing the values 4, 6, and 2 in that order.

Unary operators are applied to a single operand.
About Wired Sprites 101

C H A P T E R 3

Wired Sprites
Operands 3

Each operand is evaluated as part of an expression. Most operands have specific
target types, similar to actions, since they evaluate to the current value of a
specific property of the target. For example, the kOperandQTVRPanAngle returns
the current pan angle of the operand’s target QuickTime VR track.

Other operands, such as kOperandKeyIsDown and kOperandMouseLocalHLoc, allow
for a polling form of input by determining the current state of the keyboard or
the location of the mouse.

Constants may be specified using the kOperandConstant operand.

The kOperandExpression allows for expressions to be nested within other
expressions.

Using Wired Sprites 3

The sprite media handler provides functions that allow your application to
create and manipulate a wired sprite movie, with various types of user
interactivity.

The following sections are illustrated with code from the sample program
QTWiredSprites.c, which shows how to create a sample wired sprite movie
containing one sprite track. (For a complete code listing of the sample program,
see Appendix C.) The sample code creates a 320 by 240 pixel wired movie with
one sprite track that contains six sprites, two of which are penguins and four of
which are buttons. Figure 3-1 shows two penguins at the outset of the movie,
with the buttons invisible.
102 Using Wired Sprites

C H A P T E R 3

Wired Sprites
Figure 3-1 Two penguins from a sample program

Initially, the four buttons in the wired movie are invisible. When the mouse
enters or “rolls over” a button, it appears, as shown in Figure 3-2.

Figure 3-2 Two penguins and four buttons, indicating various directions in the
movie
Using Wired Sprites 103

C H A P T E R 3

Wired Sprites
When the mouse is clicked inside a button, its images change to its “pressed”
image. When the mouse is released, its image is changed back to its
“unpressed” image. If the mouse is released inside the button, it triggers an
action. The buttons perform the following set of actions:

■ go to beginning of movie

■ step backwards

■ step forwards

■ go to end of movie

Actions of the First Penguin 3

The first penguin shows all of the buttons when the mouse enters it, and hides
them when the mouse exits. The first penguin is the only sprite which has
properties that are overriden by the override sprite samples. These samples
override its matrix in order to move it, and its image index in order to make it
waddle.

When you mouse-click on the second penguin, the penguin changes its image
index to its “eyes closed” image. When the mouse is released, it changes back to
its normal image. This makes the penguin’s eyes appear to blink when clicked
on. When the mouse is released over the penguin, several other actions are
triggered. Both penguins’ graphics states are toggled between copyMode and
blendMode, and the movie’s rate is toggled between 0 and 1.

Actions of the Second Penguin 3

The second penguin moves once per second. This occurs whether the movie’s
rate is currently 0 or 1 because it is being triggered by a QuickTime idle event.
When the penguin receives the idle event, it changes its matrix using an action
which uses min, max, delta, and wraparound options.

The movie’s looping mode is set to palindrome by a kQTEventFrameLoaded event.

Creating a Wired Sprite Movie 3

The following tasks are performed in order to create the wired sprite movie:

■ You create a new movie file with a single sprite track, as explained in the
section “Creating the Movie, Sprite Track, and Media” (page 65).
104 Using Wired Sprites

C H A P T E R 3

Wired Sprites
■ You assign the “no controller” movie controller to the movie.

■ You set the sprite track’s background color, idle event frequency, and
hasActions properties.

■ You convert PICT resources to animation codec images with transparency.

■ A key frame sample containing six sprites and all of their shared images is
created. The sprites are assigned initial property values. A frameLoaded event
is created for the key frame.

■ You create some override samples which override the matrix and image
index properties of the first penguin sprite.

Assigning the No Controller to the Movie 3

The following code fragment (in Listing 3-1) assigns the “no controller” movie
controller to the movie. You make this assignment if you don’t want the
standard QuickTime movie controller to appear. In this code sample, you want
to create a set of sprite buttons in order to control user interaction with the
penguins in the movie.

There may also be other occasions when it is useful to make a “no controller”
assignment. For example, if you are creating non-linear movies—such as
Hypercard stacks where you access the cards in the stack by clicking on buttons
by sprites—you may wish to create your own sprite buttons.

Listing 3-1 Assigning the no controller movie controller

// select the "no controller" movie controller
myType = EndianU32_NtoB(myType);
SetUserDataItem(GetMovieUserData(myMovie), &myType, sizeof(myType),

kUserDataMovieControllerType, 1);

Setting Up the Sprite Track’s Properities 3

Listing 3-2 shows a code fragment that sets the sprite track’s background color,
idle event frequency and its hasActions properties.
Using Wired Sprites 105

C H A P T E R 3

Wired Sprites
Listing 3-2 Setting the background color, idle event frequency and hasActions
properties of the sprite track

// set the sprite track properties
{

QTAtomContainer myTrackProperties;
RGBColor myBackgroundColor;

// add a background color to the sprite track
myBackgroundColor.red = EndianU16_NtoB(0x8000);
myBackgroundColor.green = EndianU16_NtoB(0);
myBackgroundColor.blue = EndianU16_NtoB(0xffff);

QTNewAtomContainer(&myTrackProperties);
QTInsertChild(myTrackProperties, 0,

kSpriteTrackPropertyBackgroundColor, 1, 1,
sizeof(RGBColor), &myBackgroundColor, NULL);

// tell the movie controller that this sprite track has actions
hasActions = true;
QTInsertChild(myTrackProperties, 0,

kSpriteTrackPropertyHasActions, 1, 1,
sizeof(hasActions), &hasActions, NULL);

// tell the sprite track to generate QTIdleEvents
myFrequency = EndianU32_NtoB(60);
QTInsertChild(myTrackProperties, 0,

kSpriteTrackPropertyQTIdleEventsFrequency, 1, 1,
sizeof(myFrequency), &myFrequency, NULL);

myErr = SetMediaPropertyAtom(myMedia, myTrackProperties);
if (myErr != noErr)

goto bail;

QTDisposeAtomContainer(myTrackProperties);
}

Adding Logic to the Penguin 3

The AddPenguinTwoConditionalActions routine adds logic to our penguin. Using
this routine, you can transform the penguin into a two-state button that plays/
pauses the movie.
106 Using Wired Sprites

C H A P T E R 3

Wired Sprites
We are relying on the fact that a GetVariable for a variableID which has never
been set will return 0. If we need another default value, we could initialize it
using the frameLoaded event.

A higher level description of the logic is:

On MouseUpInside
 If (GetVariable(DefaultTrack, 1) = 0)
 SetMovieRate(1)
 SetSpriteGraphicsMode(DefaultSprite, { blend, grey })
 SetSpriteGraphicsMode(GetSpriteByID(DefaultTrack, 5), {

ditherCopy, white })
 SetVariable(DefaultTrack, 1, 1)
 ElseIf (GetVariable(DefaultTrack, 1) = 1)
 SetMovieRate(0)
 SetSpriteGraphicsMode(DefaultSprite, { ditherCopy, white })
 SetSpriteGraphicsMode(GetSpriteByID(DefaultTrack, 5), { blend,

grey })
 SetVariable(DefaultTrack, 1, 0)
 Endif
End

Adding a Series of Actions to the Penguins 3

The following code fragment in Listing 3-3 shows how you can add a key frame
with four buttons, enabling our penguins to move through a series of actions.

Listing 3-3 Adding a key frame with four buttons, enabling a series of actions for our
two penguins

// add actions to the six sprites
// add go to beginning button
myErr = QTCopyAtom(myBeginButton, kParentAtomIsContainer,

&myBeginActionButton);
if (myErr != noErr)

goto bail;

AddSpriteSetImageIndexAction(myBeginActionButton,
kParentAtomIsContainer, kQTEventMouseClick, 0, NULL,
0, 0, NULL, kGoToBeginningButtonDownIndex, NULL);
Using Wired Sprites 107

C H A P T E R 3

Wired Sprites
AddSpriteSetImageIndexAction(myBeginActionButton,
kParentAtomIsContainer, kQTEventMouseClickEnd, 0,
NULL, 0, 0, NULL, kGoToBeginningButtonUpIndex, NULL);

AddSpriteToSample(mySample, myPrevActionButton, kGoToPrevSpriteID);
NULL);

AddSpriteToSample(mySample, myNextActionButton, kGoToNextSpriteID);
QTDisposeAtomContainer(myNextActionButton);

. . .
// add go to end button
myErr = QTCopyAtom(myEndButton, kParentAtomIsContainer,

&myEndActionButton);
if (myErr != noErr)

goto bail;
kParentAtomIsContainer, kQTEventMouseExit, 0, NULL, 0, 0, NULL,

false,
. . .

// add penguin one
myErr = QTCopyAtom(myPenguinOne, kParentAtomIsContainer,

&myPenguinOneAction);
if (myErr != noErr)

AddSpriteSetVisibleAction(myBeginActionButton, goto bail;

// show the buttons on mouse enter and hide them on mouse exit
AddSpriteSetVisibleAction(myPenguinOneAction, kParentAtomIsContainer,

kQTEventMouseEnter, 0, NULL, 0,
kTargetSpriteID, (void
*)kGoToBeginningSpriteID, true, NULL);

AddSpriteSetVisibleAction(myPenguinOneAction, kParentAtomIsContainer,
kQTEventMouseExit, 0, NULL, 0,
kTargetSpriteID, (void
*)kGoToBeginningSpriteID, false, NULL);

. . .
// add penguin two
myErr = QTCopyAtom(myPenguinTwo, kParentAtomIsContainer,

&myPenguinTwoAction);
if (myErr != noErr)

goto bail;

// blink when clicked on
108 Using Wired Sprites

C H A P T E R 3

Wired Sprites
AddSpriteSetImageIndexAction(myPenguinTwoAction,
kParentAtomIsContainer,
kQTEventMouseClick, 0, NULL, 0, 0, NULL,
kPenguinClosedIndex, NULL);

. . .
// add go to next button
myErr = QTCopyAtom(myNextButton, kParentAtomIsContainer,

&myNextActionButton);
if (myErr != noErr)

goto bail;

Important Things to Note in the Sample Code 3

You should note the following in MakeActionSpriteMovie.c sample code:

■ There are event types other than mouse-related events (for example, Idle and
frameLoaded).

■ Idle events are independent of the movie’s rate, and can be gated, so they are
sent at most every n ticks. (The second penguin moves when the movie’s rate
is 0, and moves only once per second because of the value of the sprite tracks
idleEventFrequency property.)

■ Multiple actions may be executed in response to a single event (for example,
rolling over the first penguin shows and hides four different buttons).

■ Actions may target any sprite or track in the movie (for example, clicking on
one penguin changes the graphics mode of the other).

■ Conditional and looping control structures are supported. (The second
penguin uses the “case statement” action.)

■ Sprite track variables that have not been set have a default value of 0. (The
second penguin’s conditional code relies on this.)

Wired Sprites Reference 3

This section provides an extensive reference of constants and data types
available to your application with wired sprites.
Wired Sprites Reference 109

C H A P T E R 3

Wired Sprites
Action Media Format Atoms 3

The sprite track’s sample format has been extended to store the atoms necessary
to describe action lists which are executed in response to QuickTime events.
Appendix B defines a grammar for constructing valid action sprite samples,
which may include complex expressions.

Both key frame samples and override samples support the sprite action atoms.
Override samples override actions at the QuickTime event level. In effect, what
you do by overriding is to completely replace one event handler and all its
actions with another. The sprite track’s kSpriteTrackPropertySampleFormat
property has no effect on how actions are performed. The behavior is similar to
the default kKeyFrameAndSingleOverride format where, if in a given override
sample there is no handler for the event, the key frame’s handler is used, if
there is one.

Action Sprites Media Format Extensions 3

This section describes all of the new atom types and IDs which are used to
extend the sprite track’s media format, enabling the new action sprite
capabilities.

Chapter 2, “Sprite Media Handler,” describes how to create basic sprite samples
with images, sprites, and their properties. A complete description of the
grammar for sprite media handler samples, including action sprite extensions,
is included in Appendix B.

IMPORTANT

There are also new sprite track property atoms. In
particular, you must set the
kSpriteTrackPropertyHasActions track property in order for
your sprite actions to be executed. ▲

New Sprite Track Property Atoms 3

The following section describes new sprite track property atoms. Track property
atoms are applied to the whole track, not just to a single sample. See Chapter 2,
“Sprite Media Handler,” for information on other track property atoms and
how to add them to the sprite track’s media.
110 Wired Sprites Reference

C H A P T E R 3

Wired Sprites
Constant descriptions
kSpriteTrackPropertyHasActions

You must add an atom of this type with its leaf data set to
true if you want the movie controller to execute the actions
in your sprite track’s media. The atom’s leaf data is of type
Boolean. The default value is false, so it is very important
to add an atom of this type if you want interactivity to take
place.

kSpriteTrackPropertyQTIdleEventsFrequency

You must add an atom of this type if you want the Sprites
in your sprite track to receive kQTEventIdle QuickTime
events. The atom’s leaf data is of type UInt32. The value is
the mimimum number of ticks that must pass before the
next QTIdle event is sent. Each tick is 1/60th of one second.
To specify “Idle as fast as possible,” set the value to 0. The
default value is kNoQTIdleEvents which means don’t send
any idle events.
It is possible that for small idle event frequencies, the
movie will not be able to keep up, in which case they will
be sent as fast as possible.
Since sending idle events takes up some time, it is best to
specify the largest frequency that produces the results that
you desire, or kNoQTIdleEvents if you do not need them.

kSpriteTrackPropertyVisible

You may cause the entire sprite track to be invisible by
setting the value of this Boolean property to false. This is
useful for using a sprite track as a hidden button track—for
example, placing an invisible sprite track over a Video
Track would allow the characters in the video to be clicked
on. The default value is visible (true).

kSpriteTrackPropertyScaleSpritesToScaleWorld

You may cause each sprite to be rescaled when the sprite
track is resized by setting the value of this Boolean property
to true. Setting this property can improve the drawing
performance and quality of a scaled sprite track. This is
particularly useful for sprite images compressed with
codecs which are resolution-independent, such as the
Curve codec. The default value for this property is false.
Wired Sprites Reference 111

C H A P T E R 3

Wired Sprites
New Atom Types 3

kSpriteUsesImageIDsAtomType

This atom allows a sprite to specify which images it uses—
in other words, the subset of images that its imageIndex
property will ever refer to.
Add an atom of type kSpriteUsesImageIDsAtomType as a
child of a kSpriteAtomType atom, setting its leaf data to an
array of QTAtomIDs. This array contains the IDs of the
images used, not the indices.

Note
Although QuickTime does not currently use this atom
internally, tools that edit sprite media can use the
information provided to optimize certain operations, such
as Cut, Copy, and Paste. ◆

kSpriteImageRegistrationAtomType

Sprite images have a default registration point of 0, 0. To
specify a different point, add an atom of type
kSpriteImageRegistrationAtomType as a child atom of the
kSpriteImageAtomType and set its leaf data to a FixedPoint
value with the desired registration point.

kSpriteImageGroupIDAtomType

Prior to QuickTime 3, sprites could only display images
with the same image description. This restriction has been
relaxed, but you must assign group IDs to sets of equivalent
images in your key frame sample. For example, if the
sample contains 10 images where the first 2 images are
equivalent, and the last 8 images are equivalent, then you
could assign a group ID of 1000 to the first 2 images, and a
group ID of 1001 to the last 8 images. This divides the
images in the sample into two sets. The actual ID does not
matter, it just needs to be a unique positive integer.
Each image in a sprite media key frame sample is assigned
to a group. Add an atom of type
kSpriteImageGroupIDAtomType as a child of the
kSpriteImageAtomType atom and set its leaf data to a long
containing the group ID.
112 Wired Sprites Reference

C H A P T E R 3

Wired Sprites
IMPORTANT

You must assign group IDs to your sprite sample if you
want a sprite to display images with non-equivalent image
descriptions (i.e., images with different dimensions). ▲

Event Constants 3

Sprite samples are QTAtomContainers with kSpriteAtomType child atoms at the
root level. The new kQTEventType atom is inserted as a child of a
kSpriteAtomType atom in order to create an event handler for the given sprite.
All other new atom types are inserted into a kQTEventType atom or one of its
descendents. There is one exception: the kQTEventFrameLoaded atom is inserted
as a sibling of the kSpriteAtomType atoms, since the frame loaded event is
associated with the whole sprite sample, not with any particular sprite.

Constant descriptions

kQTEventType This atom is a container for a single type of QuickTime
event handler. For a given sprite, add one atom of this type
for each type of QuickTime event that you want it to
handle. The ID of the kQTEventType atom specifies the type
of QuickTime event. This atom’s parent type is
kSpriteAtomType.
All events are added to the sample using the kQTEventType
atom, except for the frame loaded event.

kQTEventMouseClick
Event sent to a sprite when the mouse is pressed down
over it. This sprite becomes the one that will receive the
kQTEventMouseClickEnd event when the mouse button is
released. If the mouse is released over the sprite, it will also
receive the kQTEventMouseClickEndTriggerButton event.
Set the ID of a kQTEventType atom to kQTEventMouseClick to
create a handler for it.

kQTEventMouseClickEnd
Event sent to the sprite that received the last
kQTEventMouseClick event when the mouse button is
released. This event is sent regardless of where the current
mouse location is. Set the ID of a kQTEventType atom to
kQTEventMouseClickEnd to create a handler for it.
Wired Sprites Reference 113

C H A P T E R 3

Wired Sprites
kQTEventMouseClickEndTriggerButton
Event sent to the sprite that received the last
kQTEventMouseClick event when the mouse button is
released over the sprite. This event is sent in addition to the
kQTEventMouseClickEnd event, not instead of it. Set the ID of
a kQTEventType atom to
kQTEventMouseClickEndTriggerButton to create a handler for
it.

kQTEventMouseEnter
Event sent to a sprite when the mouse first enters it.
This sprite becomes the one that will receive the
kQTEventMouseExit event. This event is sent whether or not
the mouse button is currently pressed. If two or more
sprites overlap, the sprite in front receives the event.
Set the ID of a kQTEventType atom to kQTEventMouseEnter to
create a handler for it.

kQTEventMouseExit
Event sent to the sprite that received the last
kQTEventMouseEnter event when the mouse is either no
longer over it, or enters another sprite which is in front of
it. This event is sent whether or not the mouse button is
currently pressed. Set the ID of a kQTEventType atom to
kQTEventMouseExit to create a handler for it.

kQTEventIdle

This event is sent to each sprite in a sprite track only if the
sprite track has the sprite track property
kSpriteTrackPropertyQTIdleEventsFrequency set to a value
other than the default value which is kNoQTIdleEvents.
Set the ID of a kQTEventType atom to kQTEventIdle to create
a handler for it.

kQTEventFrameLoaded

This event is sent to the sprite track when the current sprite
track frame is loaded and contains a handler for this event.
This event is not sent to a particular sprite; only one
handler of this type may be present in a single sprite track
frame. A typical use of this event would be to initialize
sprite track variables.
Note that each frame can have its own handler. If the frame
is a key frame, the scope of the handler is from the key
frame until the next key frame unless the handler is
114 Wired Sprites Reference

C H A P T E R 3

Wired Sprites
overridden. If an override containing a handler for a
particular event is followed by another override with no
handler for that event, the key frame’s handler for that
event is once again used.
To create a handler for this type of event, you add an atom
of type kQTEventTypeFrameLoaded to the sample as a sibling
of the kSpriteAtomType atom with an ID of 1.

Action Constants 3

Each individual action in an action list is contained by an atom of type
kActionAtom. Its child atoms define which action it is, what target in the movie it
operates on, what the values of each of its parameters are, and any parameter
options for each parameter.

Since each action is intended to be sent to a particular type of target, the action
constants are explained below, grouped by their target type.

Note
If minimum and maximum values are not specified, then
they may be assumed to be the full range of the
parameter’s data type. ◆

Constant descriptions

kAction This atom is a container for a single sprite action. Add an
atom of this type for each action in an action list. The list of
actions will be executed in order, based on the index of
these atoms, from one to the number of kAction atoms
present. The IDs may be any unique IDs. This atom’s
parent type is commonly kQTEventType. It may also be a
child atom of a kQTEventFrameLoaded atom, and of a
kActionListAtomType atom for nested action lists.

kWhichAction

This atom specifies the type of action that will be executed.
Add a child atom of this type to each kAction atom, setting
its ID to 1. The atom’s leaf data is a long which contains the
constant describing which action to execute. For example,
to create a set movie volume action, set the leaf data of the
kWhichAction atom to kActionMovieSetVolume.
Wired Sprites Reference 115

C H A P T E R 3

Wired Sprites
kCommentAtomType
This atom allows you to comment an action or an event in a
language independent manner. Tools which decompile
action lists may choose to display these comments. You
may add any number of comments to each action or event.
The order is defined by the atom index.
The parent atom type of the kCommentAtomType is either
kAction, kQTEventType, or kQTEventFrameLoaded. The leaf
data is a C string.

Movie Action Constants 3

The following movie action constants enable you to set the properties of a
movie. For example, you can use these constants to create play and pause
buttons which control the movie’s rate.

Constant descriptions

kActionMovieSetVolume
 Supported Flags: IsDelta, WrapsAround
Param1: [short volume]
Default Min: 0, Default Max: 255
 Sets the movie’s volume level.

kActionMovieSetRate
 Supported Flags:IsDelta, WrapsAround
Param1: [Fixed rate]
Default Min: minFixed, Default Max: maxFixed
Sets the movie’s playback rate. A rate of 1 means play back
at normal speed. A rate of two means play back at double
speed. A rate of 0 means stop. Negative rates make the
movie play backwards. Rates may be fractional.

kActionMovieSetLoopingFlags
 Supported Flags: none
Param1: [long loopingFlags]

Sets the looping mode of movie playback. Zero means no
looping. Setting the loopTimeBase flag means that the movie
will loop; additionally setting the palindromeLoopTimeBase
flag causes the movie to loop in palindrome fashion,
meaning that once it reaches the end, it goes backwards
until reaching the beginning, at which point it will go
116 Wired Sprites Reference

C H A P T E R 3

Wired Sprites
forward again. Note that the flags loopTimeBase and
palindromeLoopTimeBase are OR-combined together.

kActionMovieGoToTime
 Supported Flags: none
Param1: [TimeValue time]

Sets the movie’s current time. This value is expressed in the
movie’s timescale.

kActionMovieGoToTimeByName
 Supported Flags: none
Param1: [Str255 timeName]

Sets the movie’s current time to the one in the movie
corresponding to the chapter named timeName.

kActionMovieGoToBeginning
 Supported Flags: none
No Params
Sets the time to the beginning of the movie.

kActionMovieGoToEnd
 Supported Flags: none
No Params
Sets the time to the end of the movie.

kActionMovieStepForward
 Supported Flags: none
No Params
Causes the movie to step forward in the same fashion as
pressing the step forward button in the movie controller.

kActionMovieStepBackward
 Supported Flags: none
No Params
Causes the Movie to step backward in the same fashion as
pressing the step backward button in the movie controller.

kActionMovieSetSelection
 Supported Flags: none
Param1: [TimeValue startTime]
Param2: [TimeValue endTime]

Sets the movie’s selection to be the time range specified by
the startTime and endTime time values.
Wired Sprites Reference 117

C H A P T E R 3

Wired Sprites
kActionMovieSetSelectionByName
 Supported Flags:none
Param1: [Str255 startTimeName]
Param2: [Str255 endTimeName]
Sets the movie’s selection to be the time range specified by
the startTimeName and endTimeName chapter names.

kActionMoviePlaySelection
 Supported Flags:IsToggle
Param1: [Boolean selectionOnly]
When set to true, the movie plays only the current movie
selection. The movie selection may be set using
kActionMovieSetSelection or
kActionMovieSetSelectionByName.

kActionMovieSetLanguage
 Supported Flags:none
Param1: [long language]
Sets the movie’s current language. This will cause the
Tracks associated with that language to be enabled and
Track’s associated with other languages to be disabled.

Actions for All Tracks 3

This action for all tracks enables or disables a track. You can use it, for example,
to switch between two different sound tracks, or two different tween tracks.

Constant descriptions

kActionTrackSetEnabled
 Supported Flags:IsToggle
Param1: [Boolean enabled]
Enables or disables a Track.

Actions for Spatial Tracks 3

The following actions for spatial tracks let you change the spatial properties in
movies, such as scaling, resizing, or changing shapes.
118 Wired Sprites Reference

C H A P T E R 3

Wired Sprites
Constant descriptions

kActionTrackSetMatrix
 Supported Flags:IsDelta, WrapsAround
Param1: [MatrixRecord matrix]

For each matrix element, the default maximum and
minimum values are the largest and smallest possible Fixed
values.
Sets the target track’s matrix, allowing you to move, resize,
rotate, and otherwise distort a track’s shape. If you set the
Track’s matrix to a value that makes its display bounds fall
outside of the movie’s bounds, then the movie’s bounds are
resized to accommodate the new track box. Although this
work’s fine in the QuickTime Movie Player, be warned that
not all applications support this type of dynamic movie
resizing cleanly.

kActionTrackSetLayer
 Supported Flags:IsDelta, WrapsAround
Param1: [short layer]

Sets the target track’s layer number. This is used to specify its
front-to-back order relative to the other spatial track’s in the
movie. The smaller the layer number, the more forward the
track appears.

kActionTrackSetClip
 Supported Flags:none
Param1: [RgnHandle clip]

Sets the track’s clipping region. This parameter contains
QuickDraw Region data.

Actions for Sound Tracks 3

You use these actions for sound tracks to set volume and balance. With these,
you can create a button or slider to control sound tracks.

Constant descriptions

kActionTrackSetVolume
 Supported Flags:IsDelta, WrapsAround
Param1: [short volume] Default Min: 0, Default Max: 255
 Sets the track’s volume level.
Wired Sprites Reference 119

C H A P T E R 3

Wired Sprites
kActionTrackSetBalance
 Supported Flags:IsDelta, WrapsAround
Param1: [short volume]Default Min: -128, Default Max: 128
 Sets the track’s left to right balance.
The range of numbers is as follows: -128 = only left;
128 = only right; 0 = even amounts of left and right.

Actions for Sprites in a Sprite Track 3

The following actions enable you to control a sprite’s spatial properties.

Constant descriptions

kActionSpriteSetMatrix
 Supported Flags:IsDelta, WrapsAround
Param1: [MatrixRecord matrix]

Sets the target sprite’s matrix, allowing you to move, resize,
rotate, and otherwise distort a sprite’s shape. Sprites are
clipped by their containing sprite track’s bounds and clip
region.

kActionSpriteSetImageIndex
 Supported Flags:IsDelta, WrapsAround
Param1: [short imageIndex] Default Min: 1, Default Max:
num images
Sets the target sprite’s image index. Each sprite track
keyFrame contains a list of images. Setting a sprite’s image
index selects which image from this list is currently
displayed. The image index ranges from 1 to the number of
images.

kActionSpriteSetVisible
 Supported Flags:isToggle
Param1: [short visible]

Shows or hides the target Sprite.
kActionSpriteSetLayer

 Supported Flags:IsDelta, WrapsAround
Param1: [short layer]
120 Wired Sprites Reference

C H A P T E R 3

Wired Sprites
Sets the target sprite’s layer number. This is used to specify its
front-to-back order relative to the other sprites in the sprite
track. The smaller the layer number, the more forward the sprite
appears. Note that 32767 indicates that this is a background
sprite.

kActionSpriteSetGraphicsMode
 Supported Flags:IsDelta
Param1: [ModifierTrackGraphicsModeRecord graphicsMode]

Sets the target Sprite’s graphics mode.
kActionSpritePassMouseToCodec

 Supported Flags:none
No Params
Passes the location of the mouse event to the codec that is
drawing the sprite’s current image. (Note that currently,
only the Ripple codec accepts clicks, causing a ripple effect
originating from the location).
It only makes sense to use this action in response to mouse-
related events.

kActionSpriteClickOnCodec
 Supported Flags:none
Param1: [Point localLoc]

Passes the point localLoc to the codec that is drawing the
sprite’s current image. (Note that currently, only the Ripple
codec accepts clicks, causing a ripple effect originating
from the location.)
This action is similar to kActionPassMouseToCodec except the
location to click on is a parameter, so it may be used in
response to any type of event.

kActionSpriteTranslate
 Supported Flags:none
Param1: [Fixed x]
Param2: [Fixed y]
Param3: [Boolean isAbsolute]

If the isAbsolute parameter is true, this moves the sprite to
the absolute location specified by the x and y parameters; if
the isAbsolute parameter is false, it specifies how far from
the current location to move the sprite. The coordinate
system for x and y is the sprite track’s source space.
Wired Sprites Reference 121

C H A P T E R 3

Wired Sprites
kActionSpriteScale
 Supported Flags: none
Param1: [Fixed xScale]
Param2: [Fixed yScale]

Scales the target sprite by xScale and yScale about its
current image’s registration point. For example, to double a
sprite’s width and half its height, you would set xScale to
two and yScale to one-half.

kActionSpriteRotate
 Supported Flags: none
 Param1: [Fixed degrees]

Rotates the target sprite about its current image’s
registration point. The amount of rotation is specified by
degrees.

kActionSpriteStretch
 Supported Flags: none
Param1: [Fixed p1x]
Param2: [Fixed p1y]
Param3: [Fixed p2x]
Param4: [Fixed p2y]
Param5: [Fixed p3x]
Param6: [Fixed p3y]
Param7: [Fixed p4x]
Param8: [Fixed p4y]

The eight parameters specify four corners of a four-sided
polygon into which the sprite’s image is “stretched.” The
coordinate system for points is the sprite track’s source
space.

Actions for QuickTime VR Tracks 3

Constant descriptions

kActionQTVRSetPanAngle
 Supported Flags: IsDelta, WrapsAround
Param1: [float panAngle]
Default Min: min Pan Allowed By Media,
Default Max: max Pan Allowed By Media
Sets the target QuickTime VR track’s pan angle.
122 Wired Sprites Reference

C H A P T E R 3

Wired Sprites
kActionQTVRSetTiltAngle
 Supported Flags: IsDelta, WrapsAround
Param1: [float tiltAngle]
Default Min: min Tilt Allowed By Media,
Default Max: max Tilt Allowed By Media
Sets the target QuickTime VR track’s tilt angle.

kActionQTVRSetFieldOfView
 Supported Flags: IsDelta, WrapsAround
Param1: [float fieldOfView]
Default Min: min FieldOfView Allowed By Media,
Default Max: max FieldOfView Allowed By Media
Sets the target QuickTime VR track’s field of view.

kActionQTVRShowDefaultView
 Supported Flags:none
No Params
Causes the target QuickTime VR track to show its default
view.

kActionQTVRGoToNodeID
 Supported Flags:none
Param1: [UInt32 nodeID]

Causes the multi-node target QuickTime VR track to go to
the specified node ID.

Actions for Music Tracks 3

The following describes the constants you can use as actions for music tracks.
For more detailed explanations of how parameters for pitch and velocity are
interpreted, see QuickTime Music Architecture.

Constant descriptions

kActionMusicPlayNote
Supported Flags: none
Param1: [long sampleDescIndex]
Param2: [long partNumber]
Param3: [long delay]
Param4: [long pitch]
Param5: [long velocity]
Param6: [long duration]
Wired Sprites Reference 123

C H A P T E R 3

Wired Sprites
This causes the target music track to play a note. Since the
current selection of instruments for a music track is
determined by its sample description, you use the
sampleDescIndex parameter to select which sample
description to use. The partNumber parameter specifies
which part to use within the sample descriptions list. The
default is 1.
If you want the note to be delayed, you may pass a positive
value for the delay parameter, which is interpreted in the
time scale of the music track. Pass 0 for no delay. The pitch
parameter selects which note to play; for example, Middle
C is 60, Middle B is 59. The velocity specifies the volume
that the note is played at. The duration specifies the length
of time that the note is played for and is interpreted in the
time scale of the music track.
When using a music track to play notes, you should set the
kMusicFlagDontSlaveToMovie flag in the MusicDescription’s
musicFlags field. The music track used for playing notes
should not contain note information. If you wish to layer
notes on top of other music, you should use two separate
music tracks.
By setting duration to kNoteEventDurationMax, the note will
continue playing until you send another
kActionMusicPlayNote for the same pitch with a velocity of
0. This allows you to hold a note for an interactive period
of time. For example, on mouseDown, you play a note, and on
mouseUp to turn it off.

kActionMusicSetController
Supported Flags: none
Param1: [long sampleDescIndex]
Param2: [long partNumber]
Param3: [long delay]
Param4: [long controller]
Param5: [long value]

Sets a controller value for a part in the target music track.
Since the current selection of instruments for a music track
is determined by its sample description, you use the
sampleDescIndex parameter to select which sample
description to use. The partNumber parameter specifies
which part to use within the sample descriptions list.
124 Wired Sprites Reference

C H A P T E R 3

Wired Sprites
If you want the controller change to be delayed, you may
pass a positive value for the delay parameter, which is
interpreted in the time scale of the music track. Pass 0 for
no delay. Controller values control things, such as pitch
bend and reverb. For more information about available
controllers, see QuickTime Music Architecture.

Actions for Sprite Tracks 3

Constant descriptions
kActionSpriteTrackSetVariable

 Supported Flags:none
Param1: [QTAtomID variableID]
Param2: [float value]

Sets the value of the variable specified by variableID for
the target sprite track to value.
Each sprite track in a movie has its own set of variables.
Variables are runtime only; they are not saved and restored.
If you need to initialize variables to certain values, you can
use the kActionSpriteTrackSetVariable action in response
to the kQTEventFrameLoaded event.

Actions That Do Not Have a Target 3

The following perform global actions to a movie.

Constant descriptions

kActionGoToURL
 Supported Flags:none
Param1: [C string]

If the movie is currently being presented using the Web
browser plug-in, this causes the browser to go to the
specified URL. If the movie is being presented by
MoviePlayer, a Web browser is launched and goes to the
specified URL. You may optionally specify a particular
frame within a Web page.
To specify a URL, use the standard Web address format—
for example, http://www.apple.com. You may optionally
Wired Sprites Reference 125

C H A P T E R 3

Wired Sprites
use angle brackets—for example, <http://
www.apple.com>. To specify a particular frame within a
URL, you must use angle brackets followed by
T<frameName>—for example, <http://
www.apple.com>T<frameName>.

kActionSendQTEventToSprite
 Supported Flags:none
Param1: [(SpriteTargetAtoms)]
Param2: [QTEventRecord theEvent]

Sends theEvent to the sprite specified by
SpriteTargetAtoms. You may send any event to a sprite,
including a custom event that you define. Note that
kActionSendQTEventToSprite has no target, since it is
handled by the system, although you do specify a target
Param1 for the event that it sends Param2.
When sending a custom event, make sure the events
constant does not conflict with an existing event. If you
need to share a complicated event handler among many
sprites, you may wish to define a custom event handler on
a single sprite and have the others send it the custom event
using kActionSendQTEventToSprite.

kActionApplicationNumberAndString
Supported Flags:none
Param1: [long aNumber]
Param2:[Str255 aString]

QuickTime does nothing when this action is executed; it is
intended to be used by applications that wish to “hook” it,
using the movie contoller’s MCSetActionFilter routine with
the new constant mcActionExecuteOneActionForQTEvent.
Applications may look at the number and string
parameters to determine what they want to do when the
action is executed.

kActionDebugStr
Supported Flags:none
Param1: [Str255 theString]
Passes theString through the movie controller’s filter proc
using the mcActionShowMessageString constant.
Applications that wish to display the message string may
use the movie controller’s MCSetActionFilter routine along
with the new constant mcActionShowMessageString in order
to receive the string. QuickTime does not display the string.
126 Wired Sprites Reference

C H A P T E R 3

Wired Sprites
Your application can intercept actions using the movie
controller’s filter procedures. This action serves as a
placeholder, so that your application can look for actions of
this type with an aNumber or aString parameter that
identifies the application. QuickTime will not do anything
in response to this action. Your application can then do
anything it wants in reponse to the action. If your
application is an authoring tool, for example, you could set
the values of the aNumber and aString parameters. This is
currently the only action that is specific to applications.

kActionPushCurrentTime
Supported Flags:none
No Params

Places the current movie time onto the top of the movie
controller’s stack of times.
The movie controller maintains a stack data structure of
movie times. The stack is manipulated using these actions.

kActionPushCurrentTimeWithLabel
Supported Flags:none
Param1: [Str255 theLabel]]

Pushes the current time onto the top of the movie
controller’s stack of times, along with a label. This label is
not a chapter name, it is a tag that can be used in
conjunction with kActionPopAndGotoLabeledTime.

kActionPopAndGotoTopTime
Supported Flags:none
No Params

Retrieves the top time from the movie controller’s stack of
times and removes it from the stack. The movie’s current
time is then set to the time retrieved.

kActionPopAndGotoLabeledTime
Supported Flags:none
Param1: [Str255 theLabel]

Searches from the top of the movie controller’s stack of
times towards the bottom until it finds a time with the
specified label. If found, it removes all times from the top of
the stack through the labeled time and sets the movie’s
current time to this time. Note that only the topmost time
with a matching label is popped, not all occurrences times
with the same label.
Wired Sprites Reference 127

C H A P T E R 3

Wired Sprites
Control Statement Actions 3

Control statement actions have no target. They are used to control the flow of
execution in an action list, and provide a means to create nested action lists.
Using these actions along with the state provided by track variables allows you
to create more sophisticated event handlers.

Constant descriptions

kActionCase Supported Flags:none
Param1: [(CaseStatementActionAtoms)]

Provides a conditional control structure. The
CaseStatementActionAtoms allow for pairs of expressions
and actions to be defined. The list of expressions is
evaluated, when an expression evaluates to true, no other
expressions are evaluated and the list of actions associated
with that expression is executed.
Nested control structures are possible, since they are
themselves actions.

kActionWhile Supported Flags:none
Param1: [(WhileStatementActionAtoms)]

Provides a looping control structure. The
WhileStatementActionAtoms define an expression and a list
of actions to be defined. While the expression still evaluates
to true, the list of actions is performed.
If your list of actions does not contain an action which will
eventually cause the expression to evaluate to false, the
control structure will be caught in an infinite loop. Nested
control structures are possible, since they are themselves
actions.

kConditionalAtomType
This atom is used in conjunction with the case and while
statement actions. It contains atoms which desribe a
Boolean expression and an action list, which is executed on
the condition that the Boolean expression evaluates to true.
In both cases, this atom is a child atom of the action’s only
kActionParameter atom. The atom contains two child
atoms, one of type kExpressionContainerAtomType and one
of type kActionListAtomType.
128 Wired Sprites Reference

C H A P T E R 3

Wired Sprites
kActionListAtomType
This atom is used to contain an action list to be performed
by the kActionCase and kActionWhile actions when an
associated expression evaluates to true. In both cases, the
atom’s parent is of type kConditionalAtomType.

Target Constants 3

Each action is performed upon a particular type of target, usually an element of
the movie such as a sprite or a track. The track that is handling a QuickTime
event is the default track target. If the event is being handled by a sprite, then
that sprite is the default sprite target. For example, if a sprite has a handler for a
mouse down event, when it receives that event, it becomes the default sprite
and its sprite track becomes the default sprite track while the QuickTime event
is being handled.

To specify a target, you add a kActionTarget atom, and then add one or more of
the target type atoms as children. Tracks and sprites may be specified by name,
ID, or index. Tracks may additionally be specified by type and index within the
type.

Note
For sprite targets, you may specify a particular sprite track
as well as a particular sprite in that track. ◆

Constant descriptions

kActionTarget Add an atom of this type as a child of a kActionAtom, if you
wish to specify a target other than the default target for a
given action. This atom should contain one or more
target-related child atoms.

kTargetMovie Add this atom to specify the movie as the action’s target.
Since the movie is the default target for movie actions, this
atom is optional.

kTargetTrackName Add an atom of this type to specify a track by name as the
action’s track target. The leaf data is a Pascal string
containing the name of the track. Name matching is not
case-sensitive.

kTargetTrackType Add an atom of this type to specify a track by type as the
action’s track target. The leaf data is an OSType containing
the type of the Track. To specify a particular index within
Wired Sprites Reference 129

C H A P T E R 3

Wired Sprites
this Track type, you may additionally add a
kTargetTrackIndex atom. If no kTargetTrackIndex is present,
an index of one will be used as a default.

kTargetTrackIndex Add an atom of this type to specify a track by index as the
action’s track target. The leaf data is a long containing the
index of the track. Unless a kTargetTrackType atom is
present, the index refers to an index within all track types
in the movie. By adding a kTargetTrackType atom, you may
specify an index within a particular track type.

kTargetTrackID Add an atom of this type to specify a Track by ID as the
action’s track target. The leaf data is a long containing the
ID of the track.

kTargetSpriteName Add an atom of this type to specify a sprite by name as the
action’s sprite target. The leaf data is a Pascal String
containing the name of the sprite. You may additionally
add Track-related target atoms to specify that the sprite is
in a sprite track other than the default sprite track. Name
matching is not case sensitive

kTargetSpriteIndex Add an atom of this type to specify a sprite by index as the
action’s sprite target. The leaf data is a short containing the
index of the sprite. You may additionally add track-related
target atoms to specify that the sprite is in a sprite track
other than the default sprite track.

kTargetSpriteID Add an atom of this type to specify a sprite by ID as the
action’s sprite target. The leaf data is a QTAtomID containing
the ID of the sprite. You may additionally add track-related
target atoms to specify that the sprite is in a sprite track
other than the default sprite track.

Action Parameter Constants 3

kActionParameter This atom describes one parameter for a given action. Add
one atom of this type, as a child of the kAction atom, for
each parameter that the action requires. The number of
parameters and their data types is described for each action
in the section “Action Constants” (page 115) .
The atom’s index, not ID, correspond to the action’s
parameter numbers. The atom commonly contains leaf data
with the same type as its parameter’s data type. If the data
130 Wired Sprites Reference

C H A P T E R 3

Wired Sprites
type is numeric, then it may be described by an expression,
in which case it would have a child atom of type
kExpressionContainerAtomType. For the case and while
statement actions the kActionParameter always has a
kConditionalAtomType child atom.

kActionFlags This optional atom may be used to specify flags which
modify a parameter’s value. The leaf data of this atom is a
long which contains the flags. The ID of this atom must be
set to the ID of the corresponding kActionParameter atom
which it modifies. This atom’s parent is a kAction atom.
The following flags may be used. Note that the action flags
work in conjunction with the values specified by the
kActionParameterMinValue and kActionParameterMaxValue
atoms.

kActionFlagActionIsDelta
The parameter’s value will be added to the current value
instead of replacing the current value. This is useful, for
example, if you want an action to increment a Movie’s
volume by a fixed amount. The new value will be pinned to
the minimum and maximum values. Use the
kActionParamMinValue and kActionParamMaxValue atoms to
set the minimum and maximum values. You set this flag in
the leaf data of a kActionFlags atom.
When this flag is set, the parameter value is interpreted as a
signed value, allowing the delta to be positive or negative.
This is true even if the parameter itself is normally an
unsigned value, such as an entry of a graphic mode’s
RGBColor.

kActionFlagParameterWrapsAround
If after applying the parameter to the current value the new
value is greater than the maximum value or less than the
minimum value, then the value wraps around to a value
which is in range.
This is useful, for example, if you want to create an action
to cycle between sprite image indices, or layers. Use the
kActionParamMinValue and kActionParamMaxValue atoms to
set the minimum and maximum values. You set this flag in
the leaf data of a kActionFlags atom.
Wired Sprites Reference 131

C H A P T E R 3

Wired Sprites
kActionFlagActionIsToggle
This flag is supported by actions with a single two state
parameter. If this flag is set, the parameter value is ignored,
and instead the current value is toggled to its other state.
This is useful, for example, if you want a single action to
toggle a sprite’s visibility between visible and invisible. You
set this flag in the leaf data of a kActionFlags atom.

kActionParameterMinValue
Add an atom of this type for each parameter which you
wish to enforce a minimum value upon. Action parameters
have default minimum values, so you only need to add this
atom if you wish to override this default value. The atom
ID should match the ID of the associated kActionParameter
atom. Note that not all actions support this optional atom.
This atom’s parent is a kAction atom. The size of the leaf
data depends on the parameter’s data type.

kActionParameterMaxValue
Add an atom of this type for each parameter which you
wish to enforce a maximum value upon. Action parameters
have default maximum values so you only need to add this
atom if you wish to override this default value. The atom
ID should match the ID of the associated kActionParameter
atom. Note that not all actions support this optional atom.
This atom’s parent is a kAction atom. The size of the leaf
data depends on the parameter’s data type.
For MatrixRecord parameters, the delta is concatenated with
the current matrix. Each of the nine matrix elements are
constrained (pinned or wrapped around their max and
min) separately after the concatenation. This differs from
scaler values in that overflow from the delta operation is
not detected, so it is actually possible to have some
elements wrap around even if the wrap around flag is not
set. This can easily be avoided by choosing values for the
matrix param, and min and max matrices.
Each matrix contains nine elements, and each element is
concatenated separately. If you have matrices for specifying
maximum and minimum values, you define maximum and
minimum values for each of the individual matrix
elements. If you do not provide matrices for specifying
maximum and minimum values, the value of each element
132 Wired Sprites Reference

C H A P T E R 3

Wired Sprites
can wrap around if arithmetic overflow occurs. However,
there is no checking for overflow when performing a delta
operation on a matrix; this is in contrast to scalar values, for
which overflow can always be checked.
For ModifierTrackGraphicsModeRecord parameters, the
delta’s RGBColor elements are each added to the current
ModifierTrackGraphicsModeRecord’s RGBColor elements.
Each red, green, and blue element is constrained separately.
As with MatrixRecord records, you can have
ModifierTrackGraphicsModeRecord records that specify
maximum and minimum values for each field of the record.

Expression-Related Constants 3

Expressions may be used for numeric parameter types, targets, and with the
control statement actions.

Constant descriptions

kExpressionContainerAtomType
This atom is used to contain an expression. Expressions are
used to describe numeric paramers, sprite and track IDs
and indices, Boolean expressions for the case and while
statements, and as a special operand type which allows for
the nested sub-expressions within expressions. The
complete grammar of expressions is described in
Appendix B.
The kExpressionContainerAtomType has either a
kOperatorAtomType or a kOperandAtomType atom as its only
child atom. The parent type of the
kExpressionContainerAtomType atom may be any
kActionParameter atom associated with a numeric data
type, or any of the following: kTargetTrackIndex,
kTargetTrackID, kTargetSpriteIndex, kTargetSpriteID,
kConditionalAtomType, or kExpressionOperandAtomType.

kOperatorAtomType
This atom is used to describe an operation, such as
multiplication or addition, which forms part of an
expression. The atom’s ID defines which operator it
represents. Its parent atom is of type
Wired Sprites Reference 133

C H A P T E R 3

Wired Sprites
kExpressionContainerAtomType. Its child atoms are of type
kOperandAtomType and describe the operands which the
operator is applied to. The operator is applied to each of its
child kOperandAtomType atoms in order by their atom index.
Unary operators must have one kOperandAtomType child
atom. Binary operators must have two or more
kOperandAtomType child atoms.

kOperandAtomType This atom is used to describe an operand, such as a
constant number, a sprite property, or a variable. Its parent
atom type may be of type kExpressionContainerAtomType, in
which case the expression consists of only a single operand,
or of type kOperatorAtomType in which case its index is used
to define its order within the operators operand list. The
kOperandAtomType atom contains a single child atom which
can be any of the operand atom types.

Operator Type Constants 3

You set the ID of a kOperatorAtomType atom to one of the following constants to
associate it with a particular operator type. Boolean operations are applied to
two operands at a time. If the operand list contains more than two operands,
the operation is performed upon the first two and the result is saved. The
operation is then repeatedly applied to the current result and the next operand,
continuing until no more operands are left. Unary opererations are applied to
only one operand.

Operands are converted to single-precision, floating-point numbers before the
operation is performed.

For the Boolean operations, non-zero operands are considered to be true, and
operands equal to 0 are considered to be false.

The actual numeric result of the Boolean and conditional operations is 1 for true
and 0 for false.

Constant descriptions

kOperatorAdd This binary operator adds its two operands together
producing a numeric result.

kOperatorSubtract This binary operator subtracts its second operand from its
first producing a numeric result.
134 Wired Sprites Reference

C H A P T E R 3

Wired Sprites
kOperatorMultiply This binary operator multiplies its two operands together
producing a numeric result.

kOperatorDivide This binary operator divides its first operand by its second
producing a numeric result. If the second operand is 0, a
result of 0 is returned.

kOperatorOr This Boolean binary operator performs a Boolean OR
operation. If either of the two operands are true, then the
result is true, otherwise the result is false.

kOperatorAnd This Boolean binary operator performs a Boolean AND
operation. If both of the two operands are true, then the
result is true, otherwise the result is false

kOperatorNot This Boolean unary operator performs a Boolean NOT
operation on its single operand. If its operand is true, the
result is false, otherwise the result is true.

kOperatorLessThan This comparison binary operator compares its first operand
to its second. If the first is less than the second, the result is
true, otherwise the result is false.

kOperatorLessThanEqualTo
This comparison binary operator compares its first operand
to its second. If the first is less than or equal to the second,
the result is true, otherwise the result is false.

kOperatorEqualTo This comparison binary operator compares its first operand
to its second. If the first is equal to the second, the result is
true, otherwise the result is false.

kOperatorNotEqualTo
This comparison binary operator compares its first operand
to its second. If the first is not equal to the second, the result
is true, otherwise the result is false.

kOperatorGreaterThan
This comparison binary operator compares its first operand
to its second. If the first is greater than the second, the
result is true, otherwise the result is false.

kOperatorGreaterThanEqualTo
This comparison binary operator compares its first operand
to its second. If the first is greater than or equal to the
second, the result is true, otherwise the result is false.
Wired Sprites Reference 135

C H A P T E R 3

Wired Sprites
kOperatorModulo This binary operator divides its first operand by its second.
The remainder is returned as a numeric result. If the second
operand is 0, a result of 0 is returned.

kOperatorIntegerDivide
This binary operator divides its first operand by its second.
The remainder is truncated and the root is returned as a
numeric result. If the second operand is 0, a result of 0 is
returned.

kOperatorAbsoluteValue
This unary operator returns its single operand as a positive
numeric number. Positive operands are simply returned;
negative operands are multiplied by negative 1 to be made
positive, and returned.

kOperatorNegate This unary operator multiplies its single operand by
negative 1, producing a numeric result.

Operand Type Constants 3

Operands are used as part of an expression. Operands all return a floating-point
number. Most operands return a specific property of their target.

Add one of these atoms as a child atom of a kOperandAtomType atom to specify
the type of operand. Targets and parameters are specified in the same way that
they are for actions. Most of the operands do not need any parameters.

Operands for a Movie 3

Operands for a movie return the current value of a particular property of a
movie.

kOperandMovieVolume
No Params

The target movie’s current volume level is returned.
kOperandMovieRate

No Params

The target movie’s current rate is returned.
kOperandMovieIsLooping

No Params
136 Wired Sprites Reference

C H A P T E R 3

Wired Sprites
If the target movie is in looping mode a value of 1 is
returned; otherwise, a value of 0 is returned.

kOperandMovieLoopIsPalendrome
No Params

If the target movie is in palindrome mode, a looping value
of 1 is returned; otherwise, a value of 0 is returned.

kOperandMovieTime
No Params

The target movie’s current time value is returned.

Operands for Any Tracks 3

kOperandTrackEnabled
No Params

The target track’s enabled state is returned. A value of 1 is
returned if it is enabled, and 0 if it is not.

Operands Targeting Spatial Tracks 3

Operands targeting spatial tracks return the current value of a particular
property of a movie. You can use, for example, kOperandTrackWidth and
kOperandTrackHeight to center a sprite within a track.

kOperandTrackLayer
No Params

The target track’s layer is returned.
kOperandTrackWidth

No Params

The target track’s width is returned.
kOperandTrackHeight

No Params

The target track’s height is returned.
kOperandMouseLocalHLoc

No Params

The horizontal location of the mouse in the local coordinate
system of the target track is returned.

kOperandMouseLocalVLoc
No Params
Wired Sprites Reference 137

C H A P T E R 3

Wired Sprites
The vertical location of the mouse in the local coordinate
system of the target track is returned.

Operands Targeting Sound Tracks 3

kOperandTrackVolume
No Params

The current volume level of the target track is returned.
kOperandTrackBalance

No Params

The current balance setting of the target track is returned.

Operands for Sprites in a Sprite Track 3

kOperandSpriteBoundsLeft
No Params

The left side of the target sprite’s bounding box in its
track’s local coordinate system is returned. See “Sprite’s
Bounding Box” (page 15) for a description of a sprite’s
bounding box.

kOperandSpriteBoundsTop
No Params

The top of the target sprite’s bounding box in its track’s
local coordinate system is returned. See “Sprite’s Bounding
Box” (page 15) for a description of a sprite’s bounding box.

kOperandSpriteBoundsRight
No Params

The right side of the target sprite’s bounding box in its
track’s local coordinate system is returned. See “Sprite’s
Bounding Box” (page 15) for a description of a sprite’s
bounding box.

kOperandSpriteBoundsBottom
No Params

The bottom of the target sprite’s bounding box in its track’s
local coordinate system is returned. See “Sprite’s Bounding
Box” (page 15) for a description of a sprite’s bounding box.

kOperandSpriteImageIndex
No Params
138 Wired Sprites Reference

C H A P T E R 3

Wired Sprites
The current image index of the target sprite is returned.
kOperandSpriteVisible

No Params

The current value of the target sprite’s visible property is
returned. The value is 1 if it is visible, and 0 if it is invisible.

kOperandSpriteLayer
No Params

The layer of the target sprite is returned.
kOperandSpriteID

No Params

The ID of the target sprite is returned. Note that if the ID
has a value not expressable in a floating-point number, the
results will not be the same.

kOperandSpriteIndex
No Params

The index of the target sprite is returned.
kOperandSpriteFirstCornerX

No Params

The x coordinate of the target sprite’s first corner is
returned. See “Sprites’ Four Corners” (page 15) for a
description of a sprite’s four corners.

kOperandSpriteFirstCornerY
No Params

The y coordinate of the target sprite’s first corner is
returned. See “Sprites’ Four Corners” (page 15) for a
description of a sprite’s four corners.

kOperandSpriteSecondCornerX
No Params

The x coordinate of the target sprite’s second corner is
returned. See “Sprites’ Four Corners” (page 15) for a
description of a sprite’s four corners.

kOperandSpriteSecondCornerY
No Params

The y coordinate of the target sprite’s second corner is
returned. See “Sprites’ Four Corners” (page 15) for a
description of a sprite’s four corners.

kOperandSpriteThirdCornerX
No Params
Wired Sprites Reference 139

C H A P T E R 3

Wired Sprites
The x coordinate of the target sprite’s third corner is
returned. See “Sprites’ Four Corners” (page 15) for a
description of a sprite’s four corners.

kOperandSpriteThirdCornerY
No Params

The y coordinate of the target sprite’s third corner is
returned. See “Sprites’ Four Corners” (page 15) for a
description of a sprite’s four corners.

kOperandSpriteFourthCornerX
No Params

The x coordinate of the target sprite’s fourth corner is
returned. See “Sprites’ Four Corners” (page 15) for a
description of a sprite’s four corners.

kOperandSpriteFourthCornerY
No Params

The y coordinate of the target sprite’s fourth corner is
returned. See “Sprites’ Four Corners” (page 15) for a
description of a sprite’s four corners.

kOperandSpriteImageRegistrationPointX
No Params

The x coordinate of the target sprite’s current image’s
registration point is returned.

kOperandSpriteImageRegistrationPointY
No Params

The y coordinate of the target sprite’s current image’s
registration point is returned.

Operands for a Sprite Track 3

kOperandSpriteTrackNumSprites
No Params

The current number of sprites in the target sprite track is
returned. Since the number of sprites is defined by a sprite
media key frame sample, this depends on the current
movie time.

kOperandSpriteTrackNumImages
No Params
140 Wired Sprites Reference

C H A P T E R 3

Wired Sprites
The current number of images for the target sprite track is
returned. Since the number of sprite images is defined by a
sprite media key frame sample, this depends on the current
movie time.

kOperandSpriteTrackVariable
Param1: [QTAtomID variableID]

Returns the value of the variable with the specified ID for
the target sprite track. If the variable has never been set
with a set variable action, the value returned is 0.

Operands for a QuickTime VR Track 3

kOperandQTVRPanAngle
No Params

Returns the current pan angle for the target QuickTime VR
track.

kOperandQTVRTiltAngle
No Params

Returns the current tilt angle for the target QuickTime VR
track.

kOperandQTVRFieldOfView
No Params

Returns the current field of view for the target QuickTime
VR track.

kOperandQTVRNodeID
No Params

Returns the current node ID for the target QuickTime VR
track. Note that if the ID has a value not expressable in a
floating-point number, the results will not be the same.

Operands That Have No Target 3

kOperandExpression
[(kExpressionAtoms)]

This operand allows for nesting of sub expressions within
expressions. Add a child atom of type
kExpressionContainerAtomType which contains the
Wired Sprites Reference 141

C H A P T E R 3

Wired Sprites
expression atoms. This expression is evaluated and is
returned as the result of the operand.

kOperandConstant
[float theConstant]

The constant is returned as the result of the operand. Set
the leaf data of this atom to the desired constant using a
single precision floating point number.

kOperandKeyIsDown
Param1: [UInt16 modififerKeyFlags]
Param2: [UInt8 lowerCaseAsciiCharacterCode]

This operand returns 1 if the key with the specified lower
case ASCII character code is currently pressed, and 0 if it is
not pressed. If you specify modifier keys, these keys must
also be pressed for 1 to be returned. Note that if extra
modifier keys are pressed, a positive indication will still be
returned. The logic is “are these keys currently pressed?”,
not “are only these keys pressed?”.
Additionally, you may determine if the mouse button is
pressed.
You may pass 0 for modifier keys if you don’t care about
the modifier keys, and 0 for the ASCII character if you only
care about the modifier keys.

The following flags may be used from Events.h. Note the mapping of the flags
for Windows machines. Also, be warned that using the Control key may be a
bad idea if you plan on using the movie on a Windows machine due to the fact
that it is mapped to the Alt key, which is used by the Windows operating
system.

btnState The mouse button is pressed. Windows: the left
mouse button is pressed.

cmdKey The command key is pressed. Windows: the Ctrl
key is pressed.

shiftKey The Shift key is pressed.

alphaLock The Caps Lock key is pressed.

optionKey The option key is pressed. Under Windows: both
the Ctrl and the Alt keys are pressed.
142 Wired Sprites Reference

C H A P T E R 3

Wired Sprites
controlKey The control key is pressed. Windows: the Alt key
is pressed.

kOperandRandom
Param1: minimumValue
Param2: maximumValue

A random number that is greater than or equal to the minimum
value, and less than or equal to the maximum value is generated
and returned as the result of this operand. You may use negative
or positive numbers.

Additions to the Standard Movie Controller 3

mcActionExecuteAllActionsForQTEvent
This allows your application to filter QuickTime events for
which the movie has actions. This is sent before any actions
are executed. Return true from your filter proc if you do
not want the actions to be executed; return false if you do
want the actions executed.
The parameter is a ResolvedQTEventSpecPtr. The type of
QuickTime event may be determined from the QTAtomSpec
portion. The atom is either a kQTEventFrameLoaded atom, or
a kQTEventType atom in which case its ID specifies the type
of QuickTime event.

mcActionExecuteOneActionForQTEvent
This allows your application to filter individual actions
which are about to be executed in response to a QuickTime
event. This is sent before the action is executed. Return true
from your filter proc if you do not want the action to be
executed, return false if you do want the action executed.
The parameter is a ResolvedQTEventSpecPtr. The type of
action may be determined from the QTAtomSpec portion. The
atom is a kAction atom. The type of action is specified by
the leaf data of its child atom of type kWhichAction.

mcActionShowMessageString
This allows your application to receive and display a
message from the movie. Currently, the only way this
message is sent is by executing a kActionDebugStr action.
Wired Sprites Reference 143

C H A P T E R 3

Wired Sprites
The parameter is a StringPtr which contains the message.
Although named DebugStr, the action can be used for any
type of string-based message.

Data Types 3

The QTEventRecord data type is used by the kActionSendQTEventToSprite action.

struct QTEventRecord {
long version;
OSType eventType;
Point where;
long flags;

};
typedef struct QTEventRecord QTEventRecord;

typedef QTEventRecord * QTEventRecordPtr;
144 Wired Sprites Reference

A P P E N D I X A

Figure A-0
Listing A-0
Table A-0
QTAtomContainer-Based Data
Structure Descriptions A

QTAtomContainer-based data structures are being widely used in QuickTime.
This appendix is an attempt at standardizing how the format of these data
structures may be described and is documented. The key presented here is used
in the chapters on “Tween Media Handler” and “Tween Components and
Native Tween Types” in QuickTime 3 Reference.

QTAtomContainer Description Key 3

[(QTAtomFormatName)] =
atomType_1, id, index

data
atomType_n, id, index

data

The atoms may be required or optional:

<atomType> optional atom
atomType required atom

The atom id may be a number if it is required to be a constant, or may be a list
of valid atom id’s, indicating that multiple atoms of this type are allowed.

3 one atom with id of 3
(1..3) three atoms with id's of 1, 2, and 3
(1, 5, 7) three atoms with id's of 1, 5, and 7
(anyUniqueIDs) multiple atoms each with a unique id

The atom index may be a 1 if only one atom of this type is allowed, or it may be
a range from one to some constant or variable.
QTAtomContainer Description Key 145

A P P E N D I X

QTAtomContainer-Based Data Structure Descriptions
1 one atom of this type is allowed, index is always 1
(1..3) three atoms with indecies 1, 2, and 3
(1..numAtoms) numAtoms atoms with indicies of 1 to numAtoms

The data may be leaf data in which its data type is listed inside of brackets [], or
may be a nested tree of atoms.

[theDataType] leaf data of type theDataType
childAtoms a nested tree of atoms

Nested QTAtom format definitions [(AtomFormatName)] may appear in a
definition.
146 QTAtomContainer Description Key

A P P E N D I X B
Sprite Media Handler
Media Format Definition B

This appendix contains the following:

■ The sprite media handler sample description structure

■ The sprite media handler track properties QTAtomContainer format

■ The sprite media handler sample QTAtomContainer formats

Sprite MediaHandler Sample Description Structure B

struct SpriteDescription {
long descSize; /* total size of SpriteDescription

including extra data */
long dataFormat; /* */
long resvd1; /* reserved for apple use */
short resvd2;
short dataRefIndex;
long version; /* which version is this data */
OSType decompressorType; /* which decompressor to use,

0 for no decompression */
long sampleFlags; /* how to interpret samples */

};
typedef struct SpriteDescription SpriteDescription;
typedef SpriteDescription * SpriteDescriptionPtr;
typedef SpriteDescriptionPtr * SpriteDescriptionHandle;
147

A P P E N D I X B

Sprite Media Handler Media Format Definition
Sprite MediaHandler Track Properties QTAtomContainer Format B

[(SpriteTrackProperties)]
<kSpriteTrackPropertyBackgroundColor, 1, 1>

[RGBColor]
<kSpriteTrackPropertyOffscreenBitDepth, 1, 1>

[short]
<kSpriteTrackPropertySampleFormat, 1, 1>

[long]
<kSpriteTrackPropertyScaleSpritesToScaleWorld, 1, 1>

[Boolean]
<kSpriteTrackPropertyHasActions, 1, 1>

[Boolean]
<kSpriteTrackPropertyVisible, 1, 1>

[Boolean]
<kSpriteTrackPropertyQTIdleEventsFrequency, 1, 1>

[UInt32]

Sprite MediaHandler Sample QTAtomContainer Formats B

[(SpriteKeySample)] =
[(SpritePropertyAtoms)]
[(SpriteImageAtoms)]

[(SpriteOverrideSample)] =
[(SpritePropertyAtoms)]

[(SpriteImageAtoms)]
kSpriteSharedDataAtomType, 1, 1

kSpriteImagesContainerAtomType, 1, 1
kSpriteImageAtomType, theImageID, (1 .. numImages)

kSpriteImageDataAtomType, 1, 1
[ImageData is ImageDescriptionHandle prepended to

image data]
<kSpriteImageRegistrationAtomType, 1, 1>

[FixedPoint]
148

A P P E N D I X B

Sprite Media Handler Media Format Definition
<kSpriteImageNameAtomType, 1, 1>
[pString]

<kSpriteImageGroupIDAtomType, 1, 1>
[long]

[(SpritePropertyAtoms)]
<kQTEventFrameLoaded>, 1, 1

[(ActionListAtoms)]
<kCommentAtomType>, (anyUniqueIDs), (1..numComments)

[CString]

kSpriteAtomType, theSpriteID, (1 .. numSprites)
<kSpritePropertyMatrix, 1, 1>

[MatrixRecord]
<kSpritePropertyVisible, 1, 1>

[short]
<kSpritePropertyLayer, 1, 1>

[short]
<kSpritePropertyImageIndex, 1, 1>

[short]
<kSpritePropertyGraphicsMode, 1, 1>

[ModifierTrackGraphicsModeRecord]

<kSpriteUsesImageIDsAtomType, 1, 1>
[array of QTAtomID's, one per image used]

<[(SpriteActionAtoms)]>

[(SpriteActionAtoms)] =
kQTEventType, theQTEventType, (1 .. numEventTypes)

[(ActionListAtoms)]
<kCommentAtomType>, (anyUniqueIDs), (1..numComments)

[CString]

[(ActionListAtoms)] =
kAction, (anyUniqueIDs), (1..numActions)

kWhichAction 1, 1
149

A P P E N D I X B

Sprite Media Handler Media Format Definition
[long whichActionConstant]
<kActionParameter> (anyUniqueIDs), (1..numParameters)

[(parameterData)] (whichActionConstant, paramIndex)
// either leaf data or child atoms

<kActionFlags> parameterID, (1..numParamsWithFlags)
[long actionFlags]

<kActionParameterMinValue> parameterID, (1.. numParamsWithMin)
[data depends on param type]

<kActionParameterMaxValue> parameterID, (1.. numParamsWithMax)
[data depends on param type]

[(ActionTargetAtoms)]

<kCommentAtomType>, (anyUniqueIDs), (1..numComments)
[CString]

[(ActionTargetAtoms)] =
<kActionTarget>

<kTargetMovie>
[no data]

<kTargetTrackName>
[PString trackName]

<kTargetTrackType>
[OSType trackType]

<kTargetTrackIndex>
[long trackIndex]
OR
[(kExpressionAtoms)]

<kTargetTrackID>
[long trackID]
OR
[(kExpressionAtoms)]

<kTargetSpriteName>
[PString spriteName]

<kTargetSpriteIndex>
[short spriteIndex]
OR
[(kExpressionAtoms)]

<kTargetSpriteID>
[QTAtomID spriteIID]
OR
[(kExpressionAtoms)]
150

A P P E N D I X B

Sprite Media Handler Media Format Definition
[(kExpressionAtoms)] =
kExpressionContainerAtomType, 1, 1

<kOperatorAtomType, theOperatorType, 1>
kOperandAtomType, (anyUniqueIDs), (1..numOperands)

[(OperandAtoms)]
OR
<kOperandAtomType, 1, 1>

[(OperandAtoms)]

[(OperandAtoms)] =
<kOperandExpression> 1, 1

[(kExpressionAtoms)] // allows for recursion
OR
<kOperandConstant> 1, 1

[float theConstant]
OR
<kOperandSpriteTrackVariable> 1, 1

[(ActionTargetAtoms)]
kActionParameter, 1, 1

[QTAtomID spriteVariableID]
OR
<kOperandKeyIsDown> 1, 1

kActionParameter, 1, 1
[UInt16 modifierKeys]

kActionParameter, 2, 2
[UInt8 asciiCharCode]

OR
<kOperandRandom> 1, 1

kActionParameter, 1, 1
[short minimum]

kActionParameter, 2, 2
[short maximum]

OR
<any other operand atom type>

[(ActionTargetAtoms)]

The format for parameter data depends on the action and parameter index.
151

A P P E N D I X B

Sprite Media Handler Media Format Definition
In most cases, the kActionParameter atom is a leaf atom containing data; for a
few parameters, it contains child atoms.

whichAction corresponds to the action type which is specified by the leaf data of
a kWhichAction atom.

paramIndex is the index of the parameter’s kActionParameter atom.

[(parameterData)] (whichAction, paramIndex) =
{

kActionMovieSetVolume:
param1: short volume

kActionMovieSetRate
param1: Fixed rate

kActionMovieSetLoopingFlags
param1: long loopingFlags

kActionMovieGoToTime
param1: TimeValue time

kActionMovieGoToTimeByName
param1: Str255 timeName

kActionMovieGoToBeginning
no params

kActionMovieGoToEnd
no params

kActionMovieStepForward
no params

kActionMovieStepBackward
no params

kActionMovieSetSelection
param1: TimeValue startTime
param2: TimeValue endTime

kActionMovieSetSelectionByName
152

A P P E N D I X B

Sprite Media Handler Media Format Definition
param1: Str255 startTimeName
param2: Str255 endTimeName

kActionMoviePlaySelection
param1: Boolean selectionOnly

kActionMovieSetLanguage
param1: long language

kActionMovieChanged
no params

kActionTrackSetVolume
param1: short volume

kActionTrackSetBalance
param1: short balance

kActionTrackSetEnabled
param1: Boolean enabled

kActionTrackSetMatrix
param1: MatrixRecord matrix

kActionTrackSetLayer
param1: short layer

kActionTrackSetClip
param1: RgnHandle clip

kActionSpriteSetMatrix
param1: MatrixRecord matrix

kActionSpriteSetImageIndex
parm1: short imageIndex

kActionSpriteSetVisible
param1: short visible
153

A P P E N D I X B

Sprite Media Handler Media Format Definition
kActionSpriteSetLayer
param1: short layer

kActionSpriteSetGraphicsMode
param1: ModifierTrackGraphicsModeRecord graphicsMode

kActionSpritePassMouseToCodec
no params

kActionSpriteClickOnCodec
param1: Point localLoc

kActionSpriteTranslate
param1: Fixed x
param2: Fixed y
param3: Boolean isRelative

kActionSpriteScale
param1: Fixed xScale
param2: Fixed yScale

kActionSpriteRotate
param1: Fixed degrees

kActionSpriteStretch
param1: Fixed p1x
param2: Fixed p1y
param3: Fixed p2x
param4: Fixed p2y
param5: Fixed p3x
param6: Fixed p3y
param7: Fixed p4x
param8: Fixed p4y

kActionQTVRSetPanAngle
param1: float panAngle

kActionQTVRSetTiltAngle
param1: float tileAngle
154

A P P E N D I X B

Sprite Media Handler Media Format Definition
kActionQTVRSetFieldOfView
param1: float fieldOfView

kActionQTVRShowDefaultView
no params

kActionQTVRGoToNodeID
param1: UInt32 nodeID

kActionMusicPlayNote
param1: long sampleDescIndex
param2: long partNumber
param3: long delay
param4: long pitch
param5: long velocity
param6: long duration

kActionMusicSetController
param1: long sampleDescIndex
param2: long partNumber
param3: long delay
param4: long controller
param5: long value

kActionCase
param1: [(CaseStatementActionAtoms)]

kActionWhile
param1: [(WhileStatementActionAtoms)]

kActionGoToURL
param1: CString urlLink

kActionSendQTEventToSprite
param1: [(SpriteTargetAtoms)]
param2: QTEventRecord theEvent

kActionDebugStr
param1: Str255 theMessageString
155

A P P E N D I X B

Sprite Media Handler Media Format Definition
kActionPushCurrentTime
no params

kActionPushCurrentTimeWithLabel
param1: Str255 theLabel

kActionPopAndGotoTopTime
no params

kActionPopAndGotoLabeledTime
param1: Str255 theLabel

kActionSpriteTrackSetVariable
param1: QTAtomID variableID
param2: float value

kActionApplicationNumberAndString
param1: long aNumber
param2: Str255 aString

}

Both [(CaseStatementActionAtoms)] and [(WhileStatementActionAtoms)] are
child atoms of a kActionParameter 1, 1 atom

[(CaseStatementActionAtoms)] =
kConditionalAtomType, (anyUniqueIDs), (1..numCases)

[(kExpressionAtoms)]
kActionListAtomType 1, 1

[(ActionListAtoms)] // may contain nested conditional
actions

[(WhileStatementActionAtoms)] =
kConditionalAtomType, 1, 1

[(kExpressionAtoms)]
kActionListAtomType 1, 1

[(ActionListAtoms)] // may contain nested
conditional actions
156

A P P E N D I X C

Figure B-0
Listing B-0
Table B-0
QTWiredSprite.c Sample Code C

This appendix includes sample code from QTWiredSprite.c. For information on
how to use this sample code in your application, see Chapter 2, “Sprite Media
Handler,” and Chapter 3, “Wired Sprites.”

//////////
//
// File: QTWiredSprites.c
//
// Contains: QuickTime wired sprites support for QuickTime movies.
//

// Written by: Sean Allen
// Revised by: Chris Flick and Tim Monroe
// Based (heavily!) on the existing MakeActionSpriteMovie.c
// code written by Sean Allen.
//
// Copyright: © 1997-1998 by Apple Computer, Inc., all rights reserved.
//
// Change History (most recent first):
//
// <2> 03/26/98 rtm made fixes for Windows compiles
// <1> 03/25/98 rtm first file; integrated existing code
// with shell framework
//
//
// This sample code creates a wired sprite movie containing one sprite
//track. The sprite track contains six sprites: two penguins and four
//buttons.
//
// The four buttons are initially invisible. When the mouse enters (or
// "rolls over") a button, it appears.
// When the mouse is clicked inside a button, its image changes to its /
// "pressed" image. When the mouse
// is released, its image changes back to its "unpressed" image. If the
// mouse is released inside the button,
157

A P P E N D I X C

QTWiredSprite.c Sample Code
// an action is triggered. The buttons perform the actions of go to
// beginning of movie, step backward,
// step forward, and go to end of movie.

//
// The first penguin shows all of the buttons when the mouse enters it,
// and hides them when the mouse exits.
// The first penguin is the only sprite that has properties that are
// overriden by the override sprite samples.
// These samples override its matrix (in order to move it) and its image
// index (in order to make it "waddle").
//
// When the mouse is clicked on the second penguin, it changes its image
// index to its "eyes closed" image.
// When the mouse is released, it changes back to its normal image. This
// makes it appear to blink when clicked on.
// When the mouse is released over the penguin, several actions are
// triggered. Both penguins' graphics states are
// toggled between copyMode and blendMode, and the movie's rate is
// toggled between zero and one.
//
// The second penguin moves once per second. This occurs whether the
// movie's rate is currently zero or one,
// because it is being triggered by a gated idle event. When the penguin
// receives the idle event, it changes
// its matrix using an action which uses min, max, delta, and wraparound
// options.
//
// The movie's looping mode is set to palindrome by a frame-loaded
// action.
//
// So, our general strategy is as follows (though perhaps not in the
// order listed):
//
// (1) Create a new movie file with a single sprite track.
// (2) Assign the "no controller" movie controller to the movie.
// (3) Set the sprite track's background color, idle event
// frequency, and hasActions properties.
// (4) Convert our PICT resources to animation codec images with
// transparency.
// (5) Create a key frame sample containing six sprites and all of
158

A P P E N D I X C

QTWiredSprite.c Sample Code
// their shared images.
// (6) Assign the sprites their initial property values.
// (7) Create a frameLoaded event for the key frame.
// (8) Create some override samples that override the matrix and
// image index properties of the first penguin sprite.
//

// NOTES:
//
// *** (1) ***
// There are event types other that mouse related events (for instance,
// Idle and FrameLoaded).
// Idle events are independent of the movie's rate, and they can be
// gated so they are send at most
// every n ticks. In our sample movie, the second penguin moves when the
// movie's rate is zero,
// and moves only once per second because of the value of the sprite
// track's idleEventFrequencey property.
//
// *** (2) ***
// Multiple actions may be executed in response to a single event. In
// our sample movie, rolling over
// the first penguin shows and hides four different buttons.
//
// *** (3) ***
// Actions may target any sprite or track in the movie. In our sample
// movie, clicking on one penguin
// changes the graphics mode of the other.
//
// *** (4) ***
// Conditional and looping control structures are supported. In our
// sample movie, the second penguin
// uses the "case statement" action.
//
// *** (5) ***
// Sprite track variables that have not been set have a default value of
// zero. (The second penguin's
// conditional code relies on this.)
//
// *** (6) ***
// Wired sprites were previously known as "action sprites". Don't let
159

A P P E N D I X C

QTWiredSprite.c Sample Code
// the names of some of the utility
// functions confuse you. We'll try to update the source code as time
// permits.
//
// *** (7) ***
// Penguins don't fly, but I hear they totally shred halfpipes on
// snowboards.
//
//////////
// header files
#include "QTWiredSprites.h"

//////////
//
// QTWired_CreateWiredSpritesMovie
// Create a QuickTime movie containing a wired sprites track.
//
//////////

OSErr QTWired_CreateWiredSpritesMovie (void)
{

short myResRefNum = 0;
Movie myMovie = NULL;
Track myTrack;
Media myMedia;
StandardFileReply myReply;
QTAtomContainer mySample = NULL;
QTAtomContainer myActions = NULL;
QTAtomContainer myBeginButton, myPrevButton, myNextButton,

myEndButton;
QTAtomContainer myPenguinOne, myPenguinTwo,

myPenguinOneOverride;
QTAtomContainer myBeginActionButton, myPrevActionButton,

myNextActionButton, myEndActionButton;
QTAtomContainer myPenguinOneAction, myPenguinTwoAction;
RGBColor myKeyColor;
Point myLocation;
short isVisible, myLayer, myIndex, myResID, i,

myDelta;
Boolean hasActions;
160

A P P E N D I X C

QTWiredSprite.c Sample Code
long myFlags = createMovieFileDeleteCurFile |
createMovieFileDontCreateResFile;

OSType myType = FOUR_CHAR_CODE('none');
UInt32 myFrequency;
QTAtom myEventAtom;
long myLoopingFlags;
ModifierTrackGraphicsModeRecord myGraphicsMode;
OSErr myErr = noErr;

//////////
//
// create a new movie file and set its controller type
//
//////////

// ask the user for the name of the new movie file
StandardPutFile("\pSprite movie file name:", "\pSprite.mov",

&myReply);
if (!myReply.sfGood)

goto bail;

// create a movie file for the destination movie
myErr = CreateMovieFile(&myReply.sfFile, FOUR_CHAR_CODE('TVOD'), 0,

myFlags, &myResRefNum, &myMovie);
if (myErr != noErr)

goto bail;

// select the "no controller" movie controller
myType = EndianU32_NtoB(myType);
SetUserDataItem(GetMovieUserData(myMovie), &myType, sizeof(myType),

kUserDataMovieControllerType, 1);

//////////
//
// create the sprite track and media
//
//////////

myTrack = NewMovieTrack(myMovie, ((long)kSpriteTrackWidth << 16),
((long)kSpriteTrackHeight << 16), kNoVolume);

myMedia = NewTrackMedia(myTrack, SpriteMediaType,
161

A P P E N D I X C

QTWiredSprite.c Sample Code
kSpriteMediaTimeScale, NULL, 0);

//////////
//
// create a key frame sample containing six sprites and all of their
// shared images
//
//////////

// create a new, empty key frame sample
myErr = QTNewAtomContainer(&mySample);
if (myErr != noErr)

goto bail;

myKeyColor.red = 0xffff; // white
myKeyColor.green = 0xffff;
myKeyColor.blue = 0xffff;

// add images to the key frame sample
AddPICTImageToKeyFrameSample(mySample, kGoToBeginningButtonUp,

&myKeyColor, kGoToBeginningButtonUpIndex, NULL, NULL);
AddPICTImageToKeyFrameSample(mySample, kGoToBeginningButtonDown,

&myKeyColor, kGoToBeginningButtonDownIndex, NULL, NULL);
AddPICTImageToKeyFrameSample(mySample, kGoToEndButtonUp, &myKeyColor,

kGoToEndButtonUpIndex, NULL, NULL);
AddPICTImageToKeyFrameSample(mySample, kGoToEndButtonDown,

&myKeyColor, kGoToEndButtonDownIndex, NULL, NULL);
AddPICTImageToKeyFrameSample(mySample, kGoToPrevButtonUp,

&myKeyColor, kGoToPrevButtonUpIndex, NULL, NULL);
AddPICTImageToKeyFrameSample(mySample, kGoToPrevButtonDown,

&myKeyColor, kGoToPrevButtonDownIndex, NULL, NULL);
AddPICTImageToKeyFrameSample(mySample, kGoToNextButtonUp,

&myKeyColor, kGoToNextButtonUpIndex, NULL, NULL);
AddPICTImageToKeyFrameSample(mySample, kGoToNextButtonDown,

&myKeyColor, kGoToNextButtonDownIndex, NULL, NULL);
AddPICTImageToKeyFrameSample(mySample, kPenguinForward, &myKeyColor,

kPenguinForwardIndex, NULL, NULL);
AddPICTImageToKeyFrameSample(mySample, kPenguinLeft, &myKeyColor,

kPenguinLeftIndex, NULL, NULL);
AddPICTImageToKeyFrameSample(mySample, kPenguinRight, &myKeyColor,

kPenguinRightIndex, NULL, NULL);
162

A P P E N D I X C

QTWiredSprite.c Sample Code
AddPICTImageToKeyFrameSample(mySample, kPenguinClosed, &myKeyColor,
kPenguinClosedIndex, NULL, NULL);

for (myIndex = kPenguinDownRightCycleStartIndex, myResID =
kWalkDownRightCycleStart; myIndex <= kPenguinDownRightCycleEndIndex;
myIndex++, myResID++)

AddPICTImageToKeyFrameSample(mySample, myResID, &myKeyColor,
myIndex, NULL, NULL);

// assign group IDs to the images
AssignImageGroupIDsToKeyFrame(mySample);

//////////
//
// add samples to the sprite track's media
//
//////////

BeginMediaEdits(myMedia);

// go to beginning button with no actions
myErr = QTNewAtomContainer(&myBeginButton);
if (myErr != noErr)

goto bail;
myLocation.h = (1 * kSpriteTrackWidth / 8) -

(kStartEndButtonWidth / 2);
myLocation.v = (4 * kSpriteTrackHeight / 5) -

(kStartEndButtonHeight / 2);
isVisible = false;
myLayer = 1;
myIndex = kGoToBeginningButtonUpIndex;
myErr = SetSpriteData(myBeginButton, &myLocation, &isVisible,

&myLayer, &myIndex, NULL, NULL, myActions);
if (myErr != noErr)

goto bail;

// go to previous button with no actions
myErr = QTNewAtomContainer(&myPrevButton);
if (myErr != noErr)

goto bail;
myLocation.h = (3 * kSpriteTrackWidth / 8) -
163

A P P E N D I X C

QTWiredSprite.c Sample Code
(kNextPrevButtonWidth / 2);
myLocation.v = (4 * kSpriteTrackHeight / 5) -

(kStartEndButtonHeight / 2);
isVisible = false;
myLayer = 1;
myIndex = kGoToPrevButtonUpIndex;
myErr = SetSpriteData(myPrevButton, &myLocation, &isVisible,

&myLayer, &myIndex, NULL, NULL, myActions);
if (myErr != noErr)

goto bail;

// go to next button with no actions
myErr = QTNewAtomContainer(&myNextButton);
if (myErr != noErr)

goto bail;
myLocation.h = (5 * kSpriteTrackWidth / 8) -

(kNextPrevButtonWidth / 2);
myLocation.v = (4 * kSpriteTrackHeight / 5) -

(kStartEndButtonHeight / 2);
isVisible = false;
myLayer = 1;
myIndex = kGoToNextButtonUpIndex;
myErr = SetSpriteData(myNextButton, &myLocation, &isVisible,

&myLayer, &myIndex, NULL, NULL, myActions);
if (myErr != noErr)

goto bail;

// go to end button with no actions
myErr = QTNewAtomContainer(&myEndButton);
if (myErr != noErr)

goto bail;
myLocation.h = (7 * kSpriteTrackWidth / 8) -

(kStartEndButtonWidth / 2);
myLocation.v = (4 * kSpriteTrackHeight / 5) -

(kStartEndButtonHeight / 2);
isVisible = false;
myLayer = 1;
myIndex = kGoToEndButtonUpIndex;
myErr = SetSpriteData(myEndButton, &myLocation, &isVisible, &myLayer,

&myIndex, NULL, NULL, myActions);
if (myErr != noErr)
164

A P P E N D I X C

QTWiredSprite.c Sample Code
goto bail;

// first penguin sprite with no actions
myErr = QTNewAtomContainer(&myPenguinOne);
if (myErr != noErr)

goto bail;
myLocation.h = (3 * kSpriteTrackWidth / 8) - (kPenguinWidth / 2);
myLocation.v = (kSpriteTrackHeight / 4) - (kPenguinHeight / 2);
isVisible = true;
myLayer = 2;
myIndex = kPenguinDownRightCycleStartIndex;
myGraphicsMode.graphicsMode = blend;
myGraphicsMode.opColor.red = myGraphicsMode.opColor.green =

myGraphicsMode.opColor.blue = 0x8FFF; // grey
myErr = SetSpriteData(myPenguinOne, &myLocation, &isVisible,

&myLayer, &myIndex, &myGraphicsMode, NULL, myActions);
if (myErr != noErr)

goto bail;

// second penguin sprite with no actions
myErr = QTNewAtomContainer(&myPenguinTwo);
if (myErr != noErr)

goto bail;
myLocation.h = (5 * kSpriteTrackWidth / 8) - (kPenguinWidth / 2);
myLocation.v = (kSpriteTrackHeight / 4) - (kPenguinHeight / 2);
isVisible = true;
myLayer = 3;
myIndex = kPenguinForwardIndex;
myErr = SetSpriteData(myPenguinTwo, &myLocation, &isVisible,

&myLayer, &myIndex, NULL, NULL, myActions);
if (myErr != noErr)

goto bail;

//////////
//
// add actions to the six sprites
//
//////////

// add go to beginning button
myErr = QTCopyAtom(myBeginButton, kParentAtomIsContainer,
165

A P P E N D I X C

QTWiredSprite.c Sample Code
&myBeginActionButton);
if (myErr != noErr)

goto bail;

AddSpriteSetImageIndexAction(myBeginActionButton,
kParentAtomIsContainer, kQTEventMouseClick, 0, NULL, 0, 0, NULL,
kGoToBeginningButtonDownIndex, NULL);

AddSpriteSetImageIndexAction(myBeginActionButton,
kParentAtomIsContainer, kQTEventMouseClickEnd, 0, NULL, 0, 0,
NULL, kGoToBeginningButtonUpIndex, NULL);

AddMovieGoToBeginningAction(myBeginActionButton,
kParentAtomIsContainer, kQTEventMouseClickEndTriggerButton);

AddSpriteSetVisibleAction(myBeginActionButton,
kParentAtomIsContainer, kQTEventMouseEnter, 0, NULL, 0, 0, NULL,
true, NULL);

AddSpriteSetVisibleAction(myBeginActionButton,
kParentAtomIsContainer, kQTEventMouseExit, 0, NULL, 0, 0, NULL,
false, NULL);

AddSpriteToSample(mySample, myBeginActionButton,
kGoToBeginningSpriteID);
QTDisposeAtomContainer(myBeginActionButton);

// add go to prev button
myErr = QTCopyAtom(myPrevButton, kParentAtomIsContainer,

&myPrevActionButton);
if (myErr != noErr)

goto bail;

AddSpriteSetImageIndexAction(myPrevActionButton,
kParentAtomIsContainer, kQTEventMouseClick, 0, NULL, 0, 0, NULL,
kGoToPrevButtonDownIndex, NULL);

AddSpriteSetImageIndexAction(myPrevActionButton,
kParentAtomIsContainer, kQTEventMouseClickEnd, 0, NULL, 0, 0,
NULL, kGoToPrevButtonUpIndex, NULL);

AddMovieStepBackwardAction(myPrevActionButton,
kParentAtomIsContainer, kQTEventMouseClickEndTriggerButton);

AddSpriteSetVisibleAction(myBeginActionButton,
kParentAtomIsContainer, kQTEventMouseEnter, 0, NULL, 0, 0, NULL,
true, NULL);

AddSpriteSetVisibleAction(myBeginActionButton,
166

A P P E N D I X C

QTWiredSprite.c Sample Code
kParentAtomIsContainer, kQTEventMouseExit, 0, NULL, 0, 0, NULL,
false, NULL);

AddSpriteToSample(mySample, myPrevActionButton, kGoToPrevSpriteID);
QTDisposeAtomContainer(myPrevActionButton);

// add go to next button
myErr = QTCopyAtom(myNextButton, kParentAtomIsContainer,

&myNextActionButton);
if (myErr != noErr)

goto bail;

AddSpriteSetImageIndexAction(myNextActionButton,
kParentAtomIsContainer, kQTEventMouseClick, 0, NULL, 0, 0, NULL,
kGoToNextButtonDownIndex, NULL);

AddSpriteSetImageIndexAction(myNextActionButton,
kParentAtomIsContainer, kQTEventMouseClickEnd, 0, NULL, 0, 0,
NULL, kGoToNextButtonUpIndex, NULL);

AddMovieStepForwardAction(myNextActionButton, kParentAtomIsContainer,
kQTEventMouseClickEndTriggerButton);

AddSpriteSetVisibleAction(myBeginActionButton,
kParentAtomIsContainer, kQTEventMouseEnter, 0, NULL, 0, 0, NULL,
true, NULL);

AddSpriteSetVisibleAction(myBeginActionButton,
kParentAtomIsContainer, kQTEventMouseExit, 0, NULL, 0, 0, NULL,
false, NULL);

AddSpriteToSample(mySample, myNextActionButton, kGoToNextSpriteID);
QTDisposeAtomContainer(myNextActionButton);

// add go to end button
myErr = QTCopyAtom(myEndButton, kParentAtomIsContainer,

&myEndActionButton);
if (myErr != noErr)

goto bail;

AddSpriteSetImageIndexAction(myEndActionButton,
kParentAtomIsContainer, kQTEventMouseClick, 0, NULL, 0, 0, NULL,
kGoToEndButtonDownIndex, NULL);

AddSpriteSetImageIndexAction(myEndActionButton,
kParentAtomIsContainer, kQTEventMouseClickEnd, 0, NULL, 0, 0,
NULL, kGoToEndButtonUpIndex, NULL);

AddMovieGoToEndAction(myEndActionButton, kParentAtomIsContainer,
167

A P P E N D I X C

QTWiredSprite.c Sample Code
kQTEventMouseClickEndTriggerButton);
AddSpriteSetVisibleAction(myBeginActionButton,

kParentAtomIsContainer, kQTEventMouseEnter, 0, NULL, 0, 0, NULL,
true, NULL);

AddSpriteSetVisibleAction(myBeginActionButton,
kParentAtomIsContainer, kQTEventMouseExit, 0, NULL, 0, 0, NULL,
false, NULL);

AddSpriteToSample(mySample, myEndActionButton, kGoToEndSpriteID);
QTDisposeAtomContainer(myEndActionButton);

// add penguin one
myErr = QTCopyAtom(myPenguinOne, kParentAtomIsContainer,

&myPenguinOneAction);
if (myErr != noErr)

goto bail;

// show the buttons on mouse enter and hide them on mouse exit
AddSpriteSetVisibleAction(myPenguinOneAction, kParentAtomIsContainer,

kQTEventMouseEnter, 0, NULL, 0, kTargetSpriteID,
(void *)kGoToBeginningSpriteID, true, NULL);

AddSpriteSetVisibleAction(myPenguinOneAction, kParentAtomIsContainer,
kQTEventMouseExit, 0, NULL, 0, kTargetSpriteID,
(void *)kGoToBeginningSpriteID, false, NULL);

AddSpriteSetVisibleAction(myPenguinOneAction, kParentAtomIsContainer,
kQTEventMouseEnter, 0, NULL, 0, kTargetSpriteID,
(void *)kGoToPrevSpriteID, true, NULL);

AddSpriteSetVisibleAction(myPenguinOneAction, kParentAtomIsContainer,
kQTEventMouseExit, 0, NULL, 0, kTargetSpriteID,
(void *)kGoToPrevSpriteID, false, NULL);

AddSpriteSetVisibleAction(myPenguinOneAction, kParentAtomIsContainer,
kQTEventMouseEnter, 0, NULL, 0, kTargetSpriteID,
(void *)kGoToNextSpriteID, true, NULL);

AddSpriteSetVisibleAction(myPenguinOneAction, kParentAtomIsContainer,
kQTEventMouseExit, 0, NULL, 0, kTargetSpriteID,
(void *)kGoToNextSpriteID, false, NULL);

AddSpriteSetVisibleAction(myPenguinOneAction, kParentAtomIsContainer,
kQTEventMouseEnter, 0, NULL, 0, kTargetSpriteID,
(void *)kGoToEndSpriteID, true, NULL);

AddSpriteSetVisibleAction(myPenguinOneAction, kParentAtomIsContainer,
kQTEventMouseExit, 0, NULL, 0, kTargetSpriteID,
(void *)kGoToEndSpriteID, false, NULL);
168

A P P E N D I X C

QTWiredSprite.c Sample Code
AddSpriteToSample(mySample, myPenguinOneAction, kPenguinOneSpriteID);
QTDisposeAtomContainer(myPenguinOneAction);

// add penguin two
myErr = QTCopyAtom(myPenguinTwo, kParentAtomIsContainer,

&myPenguinTwoAction);
if (myErr != noErr)

goto bail;

// blink when clicked on
AddSpriteSetImageIndexAction(myPenguinTwoAction,

kParentAtomIsContainer, kQTEventMouseClick, 0, NULL, 0, 0, NULL,
kPenguinClosedIndex, NULL);

AddSpriteSetImageIndexAction(myPenguinTwoAction,
kParentAtomIsContainer, kQTEventMouseClickEnd, 0, NULL, 0, 0,
NULL, kPenguinForwardIndex, NULL);

AddQTEventAtom(myPenguinTwoAction, kParentAtomIsContainer,
kQTEventMouseClickEndTriggerButton, &myEventAtom);

// toggle the movie rate and both of the birds' graphics modes
QTWired_AddPenguinTwoConditionalActions(myPenguinTwoAction,

myEventAtom);

QTWired_AddWraparoundMatrixOnIdle(myPenguinTwoAction);

AddSpriteToSample(mySample, myPenguinTwoAction, kPenguinTwoSpriteID);
QTDisposeAtomContainer(myPenguinTwoAction);

// add an action for when the key frame is loaded, to set the movie's
// looping mode to palindrome;
// note that this will actually be triggered every time the key frame
// is reloaded,
// so if the operation was expensive we could use a conditional to
// test if we've already done it
myLoopingFlags = loopTimeBase | palindromeLoopTimeBase;
AddMovieSetLoopingFlagsAction(mySample, kParentAtomIsContainer,

kQTEventFrameLoaded, myLoopingFlags);

// add the key frame sample to the sprite track media
//
169

A P P E N D I X C

QTWiredSprite.c Sample Code
// to add the sample data in a compressed form, you would use a
// QuickTime DataCodec to perform the
// compression; replace the call to the utility
// AddSpriteSampleToMedia with a call to the utility
// AddCompressedSpriteSampleToMedia to do this

AddSpriteSampleToMedia(myMedia, mySample, kSpriteMediaFrameDuration,
true, NULL);

//AddCompressedSpriteSampleToMedia(myMedia, mySample,
// kSpriteMediaFrameDuration, true, zlibDataCompressorSubType, NULL);

//////////
//
// add a few override samples to move penguin one and change its
// image index
//
//////////

// original penguin one location
myLocation.h = (3 * kSpriteTrackWidth / 8) - (kPenguinWidth / 2);
myLocation.v = (kSpriteTrackHeight / 4) - (kPenguinHeight / 2);

myDelta = (kSpriteTrackHeight / 2) / kNumOverrideSamples;
myIndex = kPenguinDownRightCycleStartIndex;

for (i = 1; i <= kNumOverrideSamples; i++) {
QTRemoveChildren(mySample, kParentAtomIsContainer);
QTNewAtomContainer(&myPenguinOneOverride);

myLocation.h += myDelta;
myLocation.v += myDelta;
myIndex++;
if (myIndex > kPenguinDownRightCycleEndIndex)

myIndex = kPenguinDownRightCycleStartIndex;

SetSpriteData(myPenguinOneOverride, &myLocation, NULL, NULL,
&myIndex, NULL, NULL, NULL);

AddSpriteToSample(mySample, myPenguinOneOverride,
kPenguinOneSpriteID);

AddSpriteSampleToMedia(myMedia, mySample,
kSpriteMediaFrameDuration, false, NULL);
170

A P P E N D I X C

QTWiredSprite.c Sample Code
QTDisposeAtomContainer(myPenguinOneOverride);
}

EndMediaEdits(myMedia);

// add the media to the track
InsertMediaIntoTrack(myTrack, 0, 0, GetMediaDuration(myMedia),

fixed1);

//////////
//
// set the sprite track properties
//
//////////
{

QTAtomContainer myTrackProperties;
RGBColor myBackgroundColor;

// add a background color to the sprite track
myBackgroundColor.red = EndianU16_NtoB(0x8000);
myBackgroundColor.green = EndianU16_NtoB(0);
myBackgroundColor.blue = EndianU16_NtoB(0xffff);

QTNewAtomContainer(&myTrackProperties);
QTInsertChild(myTrackProperties, 0,

kSpriteTrackPropertyBackgroundColor, 1, 1,
sizeof(RGBColor), &myBackgroundColor, NULL);

// tell the movie controller that this sprite track has actions
hasActions = true;
QTInsertChild(myTrackProperties, 0,

kSpriteTrackPropertyHasActions, 1, 1,
sizeof(hasActions), &hasActions, NULL);

// tell the sprite track to generate QTIdleEvents
myFrequency = EndianU32_NtoB(60);
QTInsertChild(myTrackProperties, 0,

kSpriteTrackPropertyQTIdleEventsFrequency, 1, 1,
sizeof(myFrequency), &myFrequency, NULL);

myErr = SetMediaPropertyAtom(myMedia, myTrackProperties);
if (myErr != noErr)
171

A P P E N D I X C

QTWiredSprite.c Sample Code
goto bail;

QTDisposeAtomContainer(myTrackProperties);
}

//////////
//
// finish up
//
//////////

// add the movie resource to the movie file
myErr = AddMovieResource(myMovie, myResRefNum, 0,

myReply.sfFile.name);

bail:
if (mySample != NULL)

QTDisposeAtomContainer(mySample);

if (myBeginButton != NULL)
QTDisposeAtomContainer(myBeginButton);

if (myPrevButton != NULL)
QTDisposeAtomContainer(myPrevButton);

if (myNextButton != NULL)
QTDisposeAtomContainer(myNextButton);

if (myEndButton != NULL)
QTDisposeAtomContainer(myEndButton);

if (myResRefNum != 0)
CloseMovieFile(myResRefNum);

if (myMovie != NULL)
DisposeMovie(myMovie);

return(myErr);
}

172

A P P E N D I X C

QTWiredSprite.c Sample Code
//////////
//
// QTWired_AddPenguinTwoConditionalActions
// Add actions to the second penguin that transform him (her?) into a two
// state button
// that plays or pauses the movie.
//
// We are relying on the fact that a "GetVariable" for a variable ID
// which has never been set
// will return zero. If we needed a different default value, we could
// initialize it using the
// frameLoaded event.
//
// A higher-level description of the logic is:
//
// On MouseUpInside
// If (GetVariable(DefaultTrack, 1) = 0)
// SetMovieRate(1)
// SetSpriteGraphicsMode(DefaultSprite, { blend, grey })
// SetSpriteGraphicsMode(GetSpriteByID(DefaultTrack, 5),
// { ditherCopy, white })
// SetVariable(DefaultTrack, 1, 1)
// ElseIf (GetVariable(DefaultTrack, 1) = 1)
// SetMovieRate(0)
// SetSpriteGraphicsMode(DefaultSprite, { ditherCopy, white })
// SetSpriteGraphicsMode(GetSpriteByID(DefaultTrack, 5),
// { blend, grey })
// SetVariable(DefaultTrack, 1, 0)
// Endif
// End
//
//////////

OSErr QTWired_AddPenguinTwoConditionalActions (QTAtomContainer
theContainer, QTAtom theEventAtom)

{
QTAtom myNewActionAtom, myNewParamAtom, myConditionalAtom;
QTAtom myExpressionAtom, myOperatorAtom, myActionListAtom;
short myParamIndex, myConditionIndex, myOperandIndex;
float myConstantValue;
QTAtomID myVariableID;
173

A P P E N D I X C

QTWiredSprite.c Sample Code
ModifierTrackGraphicsModeRecord myBlendMode, myCopyMode;
OSErr myErr = noErr;

myBlendMode.graphicsMode = blend;
myBlendMode.opColor.red = myBlendMode.opColor.green =

myBlendMode.opColor.blue = 0x8fff; // grey

myCopyMode.graphicsMode = ditherCopy;
myCopyMode.opColor.red = myCopyMode.opColor.green =

myCopyMode.opColor.blue = 0xffff; // white

AddActionAtom(theContainer, theEventAtom, kActionCase,
&myNewActionAtom);

myParamIndex = 1;
AddActionParameterAtom(theContainer, myNewActionAtom, myParamIndex,

0, NULL, &myNewParamAtom);

// first condition
myConditionIndex = 1;
AddConditionalAtom(theContainer, myNewParamAtom, myConditionIndex,

&myConditionalAtom);
AddExpressionContainerAtomType(theContainer, myConditionalAtom,

&myExpressionAtom);
AddOperatorAtom(theContainer, myExpressionAtom, kOperatorEqualTo,

&myOperatorAtom);

myOperandIndex = 1;
myConstantValue = kButtonStateOne;
AddOperandAtom(theContainer, myOperatorAtom, kOperandConstant,

myOperandIndex, NULL, myConstantValue);

myOperandIndex = 2;
myVariableID = kPenguinStateVariableID;
AddVariableOperandAtom(theContainer, myOperatorAtom, myOperandIndex,

0, NULL, 0, myVariableID);

AddActionListAtom(theContainer, myConditionalAtom,
&myActionListAtom);

AddMovieSetRateAction(theContainer, myActionListAtom, 0,
Long2Fix(1));
174

A P P E N D I X C

QTWiredSprite.c Sample Code
AddSpriteSetGraphicsModeAction(theContainer, myActionListAtom, 0, 0,
NULL, 0, 0, NULL, &myBlendMode, NULL);

AddSpriteSetGraphicsModeAction(theContainer, myActionListAtom, 0, 0,
NULL, 0, kTargetSpriteID, (void *)kPenguinOneSpriteID,
&myCopyMode, NULL);

AddSpriteTrackSetVariableAction(theContainer, myActionListAtom, 0,
kPenguinStateVariableID, kButtonStateTwo, 0, NULL, 0);

// second condition
myConditionIndex = 2;
AddConditionalAtom(theContainer, myNewParamAtom, myConditionIndex,

&myConditionalAtom);
AddExpressionContainerAtomType(theContainer, myConditionalAtom,

&myExpressionAtom);
AddOperatorAtom(theContainer, myExpressionAtom, kOperatorEqualTo,

&myOperatorAtom);

myOperandIndex = 1;
myConstantValue = kButtonStateTwo;
AddOperandAtom(theContainer, myOperatorAtom, kOperandConstant,

myOperandIndex, NULL, myConstantValue);

myOperandIndex = 2;
myVariableID = kPenguinStateVariableID;
AddVariableOperandAtom(theContainer, myOperatorAtom, myOperandIndex,

0, NULL, 0, myVariableID);

AddActionListAtom(theContainer, myConditionalAtom,
&myActionListAtom);

AddMovieSetRateAction(theContainer, myActionListAtom, 0,
Long2Fix(0));

AddSpriteSetGraphicsModeAction(theContainer, myActionListAtom, 0, 0,
NULL, 0, 0, NULL, &myCopyMode, NULL);

AddSpriteSetGraphicsModeAction(theContainer, myActionListAtom, 0, 0,
NULL, 0, kTargetSpriteID, (void *)kPenguinOneSpriteID,
&myBlendMode, NULL);

AddSpriteTrackSetVariableAction(theContainer, myActionListAtom, 0,
kPenguinStateVariableID, kButtonStateOne, 0, NULL, 0);
175

A P P E N D I X C

QTWiredSprite.c Sample Code
bail:
return(myErr);

}

//////////
//
// QTWired_AddWraparoundMatrixOnIdle
// Add beginning, end, and change matrices to the specified atom
// container.
//
//////////

OSErr QTWired_AddWraparoundMatrixOnIdle (QTAtomContainer theContainer)
{

MatrixRecord myMinMatrix, myMaxMatrix, myDeltaMatrix;
long myFlags = kActionFlagActionIsDelta |

kActionFlagParameterWrapsAround;
QTAtom myActionAtom;
OSErr myErr = noErr;

myMinMatrix.matrix[0][0] = myMinMatrix.matrix[0][1] =
myMinMatrix.matrix[0][2] = EndianS32_NtoB(0xffffffff);

myMinMatrix.matrix[1][0] = myMinMatrix.matrix[1][1] =
myMinMatrix.matrix[1][2] = EndianS32_NtoB(0xffffffff);

myMinMatrix.matrix[2][0] = myMinMatrix.matrix[2][1] =
myMinMatrix.matrix[2][2] = EndianS32_NtoB(0xffffffff);

myMaxMatrix.matrix[0][0] = myMaxMatrix.matrix[0][1] =
myMaxMatrix.matrix[0][2] = EndianS32_NtoB(0x7fffffff);

myMaxMatrix.matrix[1][0] = myMaxMatrix.matrix[1][1] =
myMaxMatrix.matrix[1][2] = EndianS32_NtoB(0x7fffffff);

myMaxMatrix.matrix[2][0] = myMaxMatrix.matrix[2][1] =
myMaxMatrix.matrix[2][2] = EndianS32_NtoB(0x7fffffff);

myMinMatrix.matrix[2][1] = EndianS32_NtoB(Long2Fix((1 *
kSpriteTrackHeight / 4) - (kPenguinHeight / 2)));

myMaxMatrix.matrix[2][1] = EndianS32_NtoB(Long2Fix((3 *
kSpriteTrackHeight / 4) - (kPenguinHeight / 2)));

SetIdentityMatrix(&myDeltaMatrix);
176

A P P E N D I X C

QTWiredSprite.c Sample Code
myDeltaMatrix.matrix[2][1] = Long2Fix(1);

// change location
myErr = AddSpriteSetMatrixAction(theContainer,

kParentAtomIsContainer, kQTEventIdle, 0, NULL, 0, 0, NULL,
&myDeltaMatrix, &myActionAtom);

if (myErr != noErr)
goto bail;

myErr = AddActionParameterOptions(theContainer, myActionAtom, 1,
myFlags, sizeof(myMinMatrix), &myMinMatrix,
sizeof(myMaxMatrix), &myMaxMatrix);

bail:
return(myErr);

}

177

T H E A P P L E P U B L I S H I N G S Y S T E M

Preview Release 1. Apple Computer, Inc. 4/28/98

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Mac OS computers
and Adobe™ FrameMaker software.
Line art was created using
Adobe™Illustrator and Adobe Photoshop.
PostScript™, the page-description
language for the LaserWriter, was
developed by Adobe Systems
Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITER
Tom Maremaa

DEVELOPMENTAL EDITOR
Laurel Rezeau

ILLUSTRATOR
David Arrigoni

PRODUCTION EDITOR
Gerri Gray

SPECIAL THANKS TO
Sean Allen
Bruce Barrett
Deeje Cooley
Chris Flick
Steven Gulie
Michael Hinkson
Tim Monroe
George Towner
Bill Wright

ACKNOWLEDGMENTS TO
Mitchell Gass
Jeff Mitchell

	About This Book
	Book Structure
	Conventions Used in This Book
	Special Fonts
	Types of Notes

	Development Environment

	Introduction to Sprites and the Sprite Toolbox
	Introduction to Sprites and the Sprite Toolbox
	Sprite Animation
	Sprite Spatial Concepts
	Sprite Track’s Local Coordinate System
	Figure�1-1 A track’s local coordinate system of a sprite

	Source Box
	Figure�1-2 A sprite’s source box

	Sprite’s Bounding Box
	Figure�1-3 A bounding box in a sprite track’s local coordinate system

	Sprites’ Four Corners
	Figure�1-4 The rotated bounding box becomes the sprite four corners

	Registration Points
	Figure�1-5 Default sprite image registration points
	Figure�1-6 Default registration point in a sprite track’s local coordinate system
	Figure�1-7 Centered registration points
	Figure�1-8 A centered registration point in a sprite track’s local coordinate system
	Figure�1-9 Registration points in a QuickTime movie
	Figure�1-10 Centered registration points in a QuickTime movie

	Display Space
	Figure�1-11 A sprite display space and movie matrix identity
	Figure�1-12 A movie matrix scaled down to one-half size

	Sprite Properties
	Sprite World Characteristics
	Figure�1-13 Sprite world coordinate system

	Sprite Tracks
	Sprite Toolbox

	Using the Sprite Toolbox
	Creating and Initializing a Sprite World
	Listing�1-1 Creating a sprite world

	Creating and Initializing Sprites
	Creating Sprites for a Sample Application
	Listing�1-2 Creating sprites

	Animating Sprites
	Listing�1-3 The main function
	Listing�1-4 Animating sprites

	Disposing of a Sprite Animation
	Listing�1-5 Disposing of sprites and the sprite world

	Sprite Hit Testing
	New Hit Testing Flags

	Enhancing Sprite Animation Performance

	Sprite Toolbox Reference
	Background Sprites
	Flags for Sprite Hit Testing
	Sprite Properties
	Flags for SpriteWorldIdle
	Sprite and Sprite World Identifiers
	Sprite Toolbox Functions
	Sprite World Functions
	NewSpriteWorld
	DisposeSpriteWorld
	SetSpriteWorldClip
	SetSpriteWorldMatrix
	SpriteWorldIdle
	InvalidateSpriteWorld
	SpriteWorldHitTest
	DisposeAllSprites

	Sprite Functions
	NewSprite
	DisposeSprite
	InvalidateSprite
	SpriteHitTest
	GetSpriteProperty
	SetSpriteProperty

	Sprite Media Handler
	About the Sprite Media Handler
	Key Frame Samples and Override Samples
	Sprite Track Media Format
	Figure�2-1 A key frame sample atom container
	Figure�2-2 Atoms that describe a sprite and its properties
	Figure�2-3 Atoms that describe sprite images
	Assigning Group IDs
	Sprite Image Registration
	Figure�2-4 An example of an override sample atom container

	Sprite Track Properties
	Table 2-1 Sprite track properties

	Alternate Sources for Sprite Image Data
	Supported Modifier Inputs

	New Features of the Sprite Media Handler
	Wired Sprites
	New and Obsolete Routines
	Table 2-2 New versus obsolete sprite media handler routines

	New Hit Testing Flags

	Using the Sprite Media Handler
	Defining a Key Frame Sample
	Creating the Movie, Sprite Track, and Media
	Listing�2-1 Creating a sprite track movie
	Listing�2-2 Creating a track and media

	Adding Images to the Key Frame Sample
	Listing�2-3 Adding images to the key frame sample

	Adding More Images for Other Sprites
	Listing�2-4 Adding more images to other sprites and specifying button actions

	Adding Sprites to the Key Frame Sample
	Listing�2-5 Creating more key frame sprite media
	Listing�2-6 The SetSpriteData function
	Listing�2-7 The AddSpriteToSample function
	Listing�2-8 The AddSpriteSampleToMedia function

	Adding More Actions to Other Sprites
	Listing�2-9 Adding more actions to other sprites

	Adding Sample Data in Compressed Form
	Listing�2-10 Adding the key frame sample in compressed form

	Defining Override Samples
	Listing�2-11 Adding override samples to move penguin one and change its image index

	Setting Properties of the Sprite Track
	Listing�2-12 Adding sprite track properties, including a background color, actions, and frequency

	Getting Sprite Data From a Modifier Track
	Listing�2-13 Loading the movies
	Listing�2-14 Adding the modifier track to the movie
	Listing�2-15 Updating the media’s input map

	Sprite Media Handler Reference
	Constants
	Sprite Track Formats
	Sprite Media Atom Types

	Sprite Media Handler Functions
	SpriteMediaSetSpriteProperty
	SpriteMediaGetSpriteProperty
	SpriteMediaHitTestAllSprites
	SpriteMediaCountSprites
	SpriteMediaCountImages
	SpriteMediaGetIndImageDescription
	SpriteMediaGetDisplayedSampleNumber
	SpriteMediaGetSpriteName
	SpriteMediaGetImageName
	SpriteMediaHitTestOneSprite
	SpriteMediaSpriteIndexToID
	SpriteMediaIDToIndex
	SpriteMediaGetIndImageProperty
	Sprites Functions Specific to Wired Sprites
	SpriteMediaSetActionVariable
	SpriteMediaGetActionVariable

	SpriteDescription Structure

	Wired Sprites
	About Wired Sprites
	QuickTime Events
	Actions and Their Targets
	Action Parameters
	Expressions
	Operators
	Operands

	Using Wired Sprites
	Figure�3-1 Two penguins from a sample program
	Figure�3-2 Two penguins and four buttons, indicating various directions in the movie
	Actions of the First Penguin
	Actions of the Second Penguin
	Creating a Wired Sprite Movie
	Assigning the No Controller to the Movie
	Listing�3-1 Assigning the no controller movie controller

	Setting Up the Sprite Track’s Properities
	Listing�3-2 Setting the background color, idle event frequency and hasActions properties of the s...

	Adding Logic to the Penguin
	Adding a Series of Actions to the Penguins
	Listing�3-3 Adding a key frame with four buttons, enabling a series of actions for our two penguins

	Important Things to Note in the Sample Code

	Wired Sprites Reference
	Action Media Format Atoms
	Action Sprites Media Format Extensions
	New Sprite Track Property Atoms
	New Atom Types
	Event Constants
	Action Constants
	Movie Action Constants
	Actions for All Tracks
	Actions for Spatial Tracks
	Actions for Sound Tracks
	Actions for Sprites in a Sprite Track
	Actions for QuickTime VR Tracks
	Actions for Music Tracks
	Actions for Sprite Tracks
	Actions That Do Not Have a Target
	Control Statement Actions
	Target Constants
	Action Parameter Constants
	Expression-Related Constants
	Operator Type Constants
	Operand Type Constants
	Operands for a Movie
	Operands for Any Tracks
	Operands Targeting Spatial Tracks
	Operands Targeting Sound Tracks
	Operands for Sprites in a Sprite Track
	Operands for a Sprite Track
	Operands for a QuickTime VR Track
	Operands That Have No Target

	Additions to the Standard Movie Controller
	Data Types

	QTAtomContainer-Based Data Structure Descriptions
	QTAtomContainer Description Key

	Sprite Media Handler Media Format Definition
	Sprite MediaHandler Sample Description Structure
	Sprite MediaHandler Track Properties QTAtomContainer Format
	Sprite MediaHandler Sample QTAtomContainer Formats

	QTWiredSprite.c Sample Code

