Mac OS Sound

Including Sound Manager 3.3

[]

Apple Computer, Inc.
Technical Publications
April, 1998

[0 Apple Computer, Inc.

© 1994, 1998 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system,
or transmitted, in any form or by any
means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
HyperCard, LaserWriter, Macintosh,
Macintosh Quadra, MPW, and
PowerBook are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.
AppleDesign, AudioVision, Finder,
MacinTalk, QuickDraw, and QuickTime
are trademarks of Apple Computer, Inc.
Adobe lllustrator, Adobe Photoshop,
and PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
Classic®is a registered trademark
licensed to Apple Computer, Inc.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
Internet is a trademark of Digital
Equipment Corporation.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

NuBus™ is a trademark of Texas
Instruments.

Optrotech is a trademark of Orbotech
Corporation.

Sony™ is a trademark of Sony
Corporation, registered in the U.S. and
other countries.

Windows is a trademark of Microsoft
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS 1S,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK ASTO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-62272-6
1234567 89-CRW-9897969594
First Printing, May 1994

7

The paper used in this book meets the
EPA standards for recycled fiber.

Library of Congress Cataloging-in-Publication Data

Inside Macintosh. Sound / [Apple Computer, Inc.]

p. cm.
Includes index.
ISBN 0-201-62272-6

1. Macintosh (Computer) 2. Computer sound processing.

Computer, Inc.
QA76.8.M3153 1994
006.5--dc20

1. Apple

94-16209
CIP

Preface

Contents

Figures, Tables, and Listings 9

About This Book 13

Chapter 1

Format of a Typical Chapter 14
Conventions Used in This Book 14
Special Fonts 14
Types of Notes 14
Assembly-Language Information 15
Development Environment 15

Introduction to Sound on the Macintosh

17

Chapter 2

About Sound on Macintosh Computers 18
Sound Capabilities 18
Sound Production 24
Sound Recording 29
Sound Resources 31
Sound Files 32
Speech Generation 34
The User Interface for Sound 37
Using Sound on Macintosh Computers 38
Producing an Alert Sound 38
Playing a Sound Resource 39
Playing a Sound File 40
Checking For Sound-Recording Equipment 41
Recording a Sound Resource 42
Recording a Sound File 45
Checking For Speech Capabilities 45
Generating Speech From a String 46
Sound Reference 48
Routines 48
Playing Sounds 48
Recording Sounds 52
Generating and Stopping Speech 55

Sound Manager 59

About the Sound Manager 60
Sound Data 62

Square-Wave Data 62
Wave-Table Data 63
Sampled-Sound Data 64

Sound Commands 66

Sound Channels 68

Sound Compression and Expansion 69

Using the Sound Manager 72

Managing Sound Channels 74
Allocating Sound Channels 75
Initializing Sound Channels 77
Releasing Sound Channels 79
Manipulating a Sound That Is Playing 80
Stopping Sound Channels 83
Pausing and Restarting Sound Channels 84
Synchronizing Sound Channels 85

Managing Sound Volumes 86

Obtaining Sound-Related Information 87
Obtaining Information About Available Sound Features 88
Obtaining Version Information 89
Testing for Multichannel Sound and Play-From-Disk Capabilities 90
Obtaining Information About a Single Sound Channel 92
Obtaining Information About All Sound Channels 94
Determining and Changing the Status of the System Alert Sound 95

Playing Notes 96
Installing Voices Into Channels 98
Looping a Sound Indefinitely 100

Playing Sounds Asynchronously 101
Using Callback Procedures 102
Synchronizing Sound With Other Actions 106
Managing an Asynchronous Play From Disk 107
Playing Selections 108
Managing Multiple Sound Channels 108

Parsing Sound Resources and Sound Files 111
Obtaining a Pointer to a Sound Header 112
Playing Sounds Using Low-Level Routines 116
Finding a Chunk in a Sound File 117

Compressing and Expanding Sounds 121

Using Double Buffers 123
Setting Up Double Buffers 125
Writing a Doubleback Procedure 127

Sound Storage Formats 128

Sound Resources 129
The Format 1 Sound Resource 130
The Format 2 Sound Resource 135

Sound Files 136
Chunk Organization and Data Types 137
The Form Chunk 138

The Format Version Chunk 139
The Common Chunk 140
The Sound Data Chunk 142
Format of Entire Sound Files 142
Sound Manager Reference 144

Constants 144
Gestalt Selector and Response Bits 145
Channel Initialization Parameters 146
Sound Command Numbers 147
Chunk IDs 153

Data Structures 154
Sound Command Records 154
Audio Selection Records 155
Sound Channel Status Records 156
Sound Manager Status Records 157
Sound Channel Records 158
Sound Header Records 159
Extended Sound Header Records 161
Compressed Sound Header Records 163
Sound Double Buffer Header Records 166
Sound Double Buffer Records 167
Chunk Headers 168
Form Chunks 168
Format Version Chunks 169
Common Chunks 170
Extended Common Chunks 170
Sound Data Chunks 172
Version Records 173
Leftover Blocks 174
State Blocks 174

Sound Manager Routines 174
Playing Sound Resources 175
Playing From Disk 178
Allocating and Releasing Sound Channels 182
Sending Commands to a Sound Channel 185
Obtaining Information 187
Controlling Volume Levels 194
Compressing and Expanding Audio Data 197
Managing Double Buffers 202
Performing Unsigned Fixed-Point Arithmetic 203
Linking Modifiers to Sound Channels 204

Application-Defined Routines 206
Completion Routines 206
Callback Procedures 207
Doubleback Procedures 208

Resources 209
The Sound Resource 209

Chapter 3 Sound Input Manager 213

About the Sound Input Manager 214
Sound Recording Without the Standard Interface 214
Interaction With Sound Input Devices 215
Sound Input Device Drivers 215
Using the Sound Input Manager 216
Recording Sounds Directly From a Device 216
Defining a Sound Input Completion Routine 220
Defining a Sound Input Interrupt Routine 220
Getting and Setting Sound Input Device Information 220
Writing a Sound Input Device Driver 223
Responding to Status and Control Requests 224
Responding to Read Requests 226
Supporting Stereo Recording 226
Supporting Continuous Recording 227
Sound Input Manager Reference 227
Constants 227
Gestalt Selector and Response Bits 228
Sound Input Device Information Selectors 229
Data Structures 236
Sound Input Parameter Blocks 236
Sound Input Manager Routines 237
Recording Sounds 238
Opening and Closing Sound Input Devices 241
Recording Sounds Directly From Sound Input Devices
Manipulating Device Settings 251
Constructing Sound Resource and File Headers 254
Registering Sound Input Devices 258
Converting Between Milliseconds and Bytes 261
Obtaining Information 263
Application-Defined Routines 263
Sound Input Completion Routines 264
Sound Input Interrupt Routines 265

Chapter 4 Sound Components 267

243

About Sound Components 268
Sound Component Chains 268
The Apple Mixer 270
The Data Stream 272
Writing a Sound Component 273
Creating a Sound Component 273
Specifying Sound Component Capabilities 276
Dispatching to Sound Component-Defined Routines 277
Registering and Opening a Sound Component 281

Finding and Changing Component Capabilities 283
Sound Components Reference 286
Constants 287
Sound Component Information Selectors 287
Audio Data Types 290
Sound Component Features Flags 291
Action Flags 292
Data Format Flags 292
Data Structures 294
Sound Component Data Records 294
Sound Parameter Blocks 295
Sound Information Lists 296
Compression Information Records 297
Sound Manager Utilities 297
Opening and Closing the Apple Mixer Component 298
Saving and Restoring Sound Component Preferences 300
Sound Component-Defined Routines 301
Managing Sound Components 302
Creating and Removing Audio Sources 307
Getting and Setting Sound Component Information 309
Managing Source Data 311

Chapter 5 Sound Manager 3.3 Features 315

Features of Sound Manager 3.2.1 316
Pre-mixer Effects 316
Native PowerPC Code 316
Three New Audio Codecs Added 316
Playing Alert Sounds Asynchronously 317
New Features of Sound Manager 3.3 317
General 317
The Ability to Schedule Sounds 318
New Sound Commands 318
Multi-platform Support 319
The Issue of “Endianness” 319
Sound Formats 320
A New Sound Codec Included: a-Law Compression 320
New Sample Sizes Supported: 24 and 32 Bit Integer 320
New Codecs to Import & Export Samples 320
New Functions Added to the SoundConverter Suite 321
New Sound Info Selectors Created 321
Interface Changes 322
Using the Sound Manager 323
Determining the Sound Manager Version 324
Converting Between Sound Formats 324
The Process of Converting a Sound 325

An Example of Converting a Buffer of Silence to IMA 4:1 326
Scheduling Two Sounds with the Sound Clock 328
Converting to 32-bit Little Endian Data 329

A List of Audio Atoms 331

Using the SoundL.ib Shared library (PowerPC Only) 333

Chapter 6 Sound Manager 3.3 Reference 335

New API Elements 335
Sound Commands 335
Sound Informational Selectors 338
Sound Manager Routines 341
Example Extended Common Chunk 346
Example Compressed Sound Header 346

Glossary 351

Index 359

Chapter 1

Chapter 2

Figures, Tables, and Listings

Introduction to Sound on the Macintosh 17

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 1-9
Figure 1-10
Figure 1-11
Figure 1-12
Figure 1-13
Figure 1-14
Figure 1-15
Figure 1-16

Table 1-1

Listing 1-1
Listing 1-2
Listing 1-3
Listing 1-4
Listing 1-5
Listing 1-6
Listing 1-7
Listing 1-8
Listing 1-9
Listing 1-10

Basic sound capabilities on Macintosh computers 19
Enhanced sound capabilities on Macintosh computers 20
High quality sound capabilities on Macintosh computers 22
A sound component chain 23

A sound component chain with a DSP board 23

The Sound Out control panel 25

The relation of the Sound Manager to the audio hardware 26
Bypassing the command queue 27

Mixing multiple channels of sampled sound 28

The Sound In control panel 29

The Alert Sounds control panel 30

The sound recording dialog box 31

The speech generation process 35

The Speech Manager and multiple voices 35

An icon for a Finder sound 37

A sound in the Scrapbook 38

AIFF and AIFF-C capabilities 33

Playing a sound resource with SndPlay 39

Playing a sound file with SndStartFilePlay 40

Determining whether sound recording equipment is available
Recording through the sound recording dialog box 42
Recording a sound resource 43

Recording a sound file 45

Checking for speech generation capabilities 45

Using SpeakString to generate speech from a string 46
Generating speech synchronously 47

Stopping speech generated by SpeakString 48

Sound Manager 59

41

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9

The position of the Sound Manager 61
A graph of a wave table 64

Interleaving stereo sample points 66
The structure of 'snd* resources 129
The location of the data offset bit 130
The general structure of a chunk 138

A sample AIFF-C file 143

The'snd' resource type 210

The sound resource header 211

10

Table 2-1
Table 2-2

Listing 2-1
Listing 2-2
Listing 2-3
Listing 2-4
Listing 2-5
Listing 2-6
Listing 2-7
Listing 2-8
Listing 2-9
Listing 2-10
Listing 2-11
Listing 2-12
Listing 2-13
Listing 2-14
Listing 2-15
Listing 2-16
Listing 2-17
Listing 2-18
Listing 2-19
Listing 2-20
Listing 2-21
Listing 2-22
Listing 2-23
Listing 2-24
Listing 2-25
Listing 2-26
Listing 2-27
Listing 2-28
Listing 2-29

Listing 2-30
Listing 2-31
Listing 2-32
Listing 2-33
Listing 2-34
Listing 2-35
Listing 2-36
Listing 2-37

Listing 2-38
Listing 2-39
Listing 2-40
Listing 2-41

Sample rates 71
Frequencies expressed as MIDI note values 98

Creating a sound channel 75

Reinitializing a sound channel 79

Disposing of memory associated with a sound channel 80
Halving the frequency of a sampled sound 81

Changing the amplitude of a sound channel 82

Getting the amplitude of a sound in progress 83

Adding a channel to a group of channels to be synchronized 85
Setting left and right volumes 87

Determining if stereo capability is available 89

Determining if the enhanced Sound Manager is present 90
Testing for multichannel play capability 91

Testing for play-from-disk capability 92

Determining whether a sound channel is paused 94
Determining the number of allocated sound channels 95
Using the freqDurationCmd ~ command 97

Installing a sampled sound as a voice in a channel 99
Looping an entire sampled sound 100

Issuing a callback command 103

Defining a callback procedure 103

Checking whether a callback procedure has executed 104
Stopping a sound that is playing asynchronously 105
Starting an asynchronous sound play 105

Defining a completion routine 107

Defining a data structure to track many sound channels 109
Marking a channel for disposal 110

Disposing of channels that have been marked for disposal 110
Playing a sound resource 112

Obtaining the offset in bytes to a sound header 113

Converting an offset to a sound header into a pointer to a sound
header 115

Playing a sound using the bufferCmd command 116
Finding a chunk in a sound file 118

Loading a chunk from a sound file 120

Compressing audio data 122

Setting up double buffers 125

Defining a doubleback procedure 128

A format 1 'snd’ resource 131

A format 1'snd" resource containing sampled-sound

data 132

An'snd’ resource containing compressed sound data 133

A resource specification 134
A resource specification for the Simple Beep 134
Aformat2'snd' resource 136

Chapter 3

Chapter 4

Chapter 5

Sound Input Manager 213

Figure 3-1
Figure 3-2

Table 3-1
Listing 3-1

Listing 3-2
Listing 3-3

An example of the csParam field for a Status request 224
An example of the csParam field for a Control request 225

The sampled sound header format used by
SetupSndHeader 255

Recording directly from a sound input device 217
Determining the name of a sound input device 222
Determining some sound input device settings 222

Sound Components 267

Figure 4-1
Figure 4-2

Figure 4-3
Figure 4-4

Listing 4-1
Listing 4-2
Listing 4-3
Listing 4-4
Listing 4-5

The component-based sound architecture 269

A component chain for audio hardware that can convert sample
rates 270

Mixing multiple channels of sound 271

A sound output device component that can mix sound
channels 272

Rez input for a component resource 276

Handling Component Manager selectors 278

Finding the address of a component-defined routine 279
Initializing an output device 282

Getting sound component information 284

Sound Manager 3.3 Features 315

Table 5-1
Listing 5-1
Listing 5-2
Listing 5-3
Listing 5-4
Listing 5-5

Listing 5-6
Listing 5-7

A new set of constants, replacing old constants 323

Changing the 32 bit floating point codec to consume little endian
format 321

Using the SoundComponentSetinfo function to show the dailog of
options 322

The simplest method for determing the Sound Manager
version 324

An example of scheduling two sounds with the sound clock 328
Converting to Little Endian 330

A list of audio atoms of any possible ordering 331

How to read a list of audio atoms 332

11

12

P REFATCE

About This Book

This book, Mac OS Sound, describes the parts of the Macintosh system
software that allow you to manage sounds. It describes the services provided
by the three principal sound-related system software managers (the Sound
Manager and the Sound Input Manager) and shows in detail how your
application can record and play back sounds, compress and expand audio
data, convert text to speech, and perform other similar operations.

If you are not yet experienced with playing or recording sounds on Macintosh
computers, you should begin with the chapter “Introduction to Sound on the
Macintosh.” That chapter describes the services provided by the system
software and shows how to use the most basic sound-related capabilities of
Macintosh computers. It provides complete source code examples illustrating
how to record sounds into resources and files, how to play sounds stored in
resources and files, and how to convert written text into spoken words. It’s
possible that this introductory chapter contains all the information you need
to successfully integrate sound into your application.

Once you are familiar with basic sound recording and production on
Macintosh computers, you might want to read other chapters in this book. The
chapter “Sound Manager” provides complete information about sound
output. It shows how to control sound production at a very low level, how to
produce sound asynchronously (that is, while other operations in the
computer take place), and how to compress and expand audio data. This
chapter also provides complete details about the structure of the two main
sound storage formats, sound resources and sound files.

If you need more control over the sound recording process than is offered by
the basic recording functions described in the chapter “Introduction to Sound
on the Macintosh,” you need to read the chapter “Sound Input Manager.” That
chapter shows how to record sound without displaying the sound recording
dialog box or to interact directly with a sound input device driver.

The chapter “Sound Components” describes how to write sound components.
The Sound Manager uses sound components to manipulate audio data or to
communicate with sound output devices. You need to read this chapter only if
you are developing a new sound output device or want to use a custom audio
data compression and expansion scheme.

Finally, the chapters “Sound Manager 3.3: Features” and “Sound Manager 3.3:
Reference” bring you up to date. They contain information about changes and
improvements to the Sound Manager from release 3.0 to the latest version,
release 3.3. An important update is that the Mac OS Sound Manager code is
now compatible with Windows 95 and Windows NT.

13

P REFATCE

Format of a Typical Chapter

Almost all chapters in this book follow a standard structure. For example, the
chapter “Sound Input Manager” contains these sections:

= “About the Sound Input Manager.” This section provides an overview of
the features provided by the Sound Input Manager.

= “Using the Sound Input Manager.” This section describes the tasks you can
accomplish using the Sound Input Manager. It describes how to use the
most common routines, gives related user interface information, provides
code samples, and supplies additional information.

= “Sound Input Manager Reference.” This section provides a complete
reference for the Sound Input Manager by describing the constants, data
structures, routines, and resources it uses. Each routine description also
follows a standard format, which presents the routine declaration followed
by a description of every parameter of the routine. Some routine
descriptions also give additional descriptive information, such as
assembly-language information or result codes.

Conventions Used in This Book

14

This book uses special conventions to present certain types of information.
Words that require special treatment appear in specific fonts or font styles.
Certain information, such as parameter blocks, appears in special formats so
that you can scan it quickly.

Special Fonts

All code listings, reserved words, and the names of actual data structures,
constants, fields, parameters, and routines are shown in Courier (this
is Courier).

Words that appear in boldface are key terms or concepts and are defined in
the glossary.

Types of Notes

There are several types of notes used in this book.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 1-21.) O

P REFATCE

IMPORTANT
A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 1-24.) a

A WARNING
Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (An example appears on
page 2-79.) a

Assembly-Language Information

This book provides information about the registers for specific routines in this
format:

Registers on entry
A0 Contents of register A0 on entry

Registers on exit
DO Contents of register DO on exit

In addition, this book presents information about the fields of a parameter
block in this format:

Parameter block

- inAndOut Integer Input/output parameter.
- outputl Ptr Output parameter.
- inputl Ptr Input parameter.

The arrow in the far left column indicates whether the field is an input
parameter, output parameter, or both. You must supply values for all input
parameters and input/output parameters. The routine returns values in
output parameters and input/output parameters.

The second column shows the field name as defined in the interface files; the
third column indicates the data type of that field. The fourth column provides
a brief description of the use of the field. For a complete description of each
field, see the discussion that follows the parameter block or the description of
the parameter block in the reference section of the chapter.

Development Environment

The system software routines described in this book are available using C
interfaces. How you access these routines depends on the development
environment you are using. When showing system software routines, this
book sometimes uses Pascal interfaces. However, the chapters “Sound

15

16

P REFATCE

LI N3

Components,” “Sound Manager 3.3: Features,” and “Sound Manager 3.3:
Reference”use C interfaces.

All code listings in this book are shown in Pascal or C. They show methods of
using various routines and illustrate techniques for accomplishing particular
tasks. All code listings have been compiled and, in most cases, tested.
However, Apple Computer, Inc. does not intend for you to use these code
samples in your application.

This book occasionally illustrates concepts by referring to a sample application
called SurfWriter. This application is not an actual product of Apple
Computer, Inc. This book also uses the names SurfBoard and WaveMaker to
refer to sample sound output and input devices. These devices are not actual
products of Apple Computer, Inc.

CHAPTER 1

Introduction to Sound on the
Macintosh

This chapter provides an introduction to managing sound on Macintosh computers. It’s
intended to help you quickly get started integrating sound into your application. This
chapter introduces the concepts described in detail throughout the rest of this book and
provides source code examples that show you how to use the most basic sound-related
capabilities of Macintosh computers. These examples use the Sound Manager to play
sounds and the Sound Input Manager to record sounds.

Even if your application is not specifically concerned with creating or playing sounds,
you can often improve your application at very little programming expense by using
these system software services to integrate sound or speech into its user interface. For
example, you might use the techniques described in this chapter to

= play a sound to alert the user that a lengthy spreadsheet calculation is completed
= provide voice annotations for a word-processing document
= read aloud the text string that is displayed in a dialog box

If you want to use sound in these simple ways, this chapter will probably provide all the
information you need. The Sound Manager and Sound Input Manager provide high-level
routines that make it very easy to play or record sounds without knowing very much
about how sounds are stored or produced electronically.

If, on the other hand, you are writing an application that is primarily concerned with
sound, you should read this chapter and some of the remaining chapters in this book.
You also need to read those chapters if you want to play computer-generated tones
without using sound resources or sound files, play sounds asynchronously, play sounds
at different pitches, record sounds without using the standard sound recording interface,
or customize the quality of speech output to make it easier to understand.

To benefit most from this chapter, you should already be familiar with simple resource
and file management, discussed in the chapters “Resource Manager” in Inside Macintosh:
More Macintosh Toolbox and “Introduction to File Management” in Inside Macintosh: Files.

CHAPTER 1

Introduction to Sound on the Macintosh

In particular, this chapter does not explain how to open or close resource or data files,
although it does provide source code examples that demonstrate how to play a sound
from, or record a sound to, a resource or data file that is already open.

This chapter begins with an overview of sound on Macintosh computers. It describes the
audio capabilities available on all Macintosh computers and some of the capabilities
achievable by adding additional hardware and software to Macintosh computers. Then
this chapter describes how you can use the available system software routines to

= play the system alert sound

= play sounds stored as resources

= play sampled sounds stored in sound files

= determine whether a particular Macintosh computer is capable of recording sounds
= record sounds into resources

= record sounds into sound files

= convert text strings into spoken words

For your convenience, this chapter also includes a reference section containing complete
descriptions of the routines used to perform these tasks, and both Pascal and C language
summaries. All of the routines in the reference section of this chapter are also in the
reference sections of the chapter that describes the manager they are part of.

About Sound on Macintosh Computers

18

The Macintosh hardware and system software provide a standard and extensible set

of capabilities for producing and recording sounds. No matter what kind of application
you are developing, you can use these capabilities to enrich your application, often at
very little programming expense. For example, you might allow users to attach voice
annotations to documents or to other collections of data. Or, you might play a certain
sound to signal that some operation has completed.

This section provides a general overview of the sound input and output capabilities
available on Macintosh computers. It defines some of the concepts used throughout
this book and describes how sounds can be stored by your application. This section
also describes the standard ways of representing sounds in the Macintosh graphical
user interface.

Sound Capabilities

The Macintosh family of computers provides sound input and output capabilities that far
exceed the capabilities of most other personal computers. The principal reason for this is
that the hardware and software aspects of creating or recording sounds are more tightly
integrated with one another than they are on other personal computers.

About Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

Figure 1-1 illustrates the basic audio hardware and the sound-related system software
that are now standard on all Macintosh computers.

Figure 1-1 Basic sound capabilities on Macintosh computers

Speech Manager

J

[_——>| Sound Input Manager @ Sound Manager I— |<])))

- Internal
Built-in speaker
microphone

The audio hardware includes an internal speaker (for producing sounds), a microphone
(for recording sounds), and one or more integrated circuits that convert digital data to
analog signals, or analog signals to digital data. The actual integrated circuits that
perform the conversion of digital to analog data (and vice versa) vary among different
models of Macintosh computers. What'’s important is that, together with the available
sound-related system software, the basic audio hardware provides a wide range of sound
input and output capabilities, including

= playback of digitally recorded (that is, sampled) sounds

» playback of simple sequences of notes or of complex waveforms

= recording of sampled sounds

= conversion of text to spoken words

= mixing and synchronization of multiple channels of sampled sounds

= compression and decompression of sound data to minimize storage space

In general, you’ll interact directly with the system software that provides these and other
capabilities. The Macintosh sound architecture includes three principal system software
services:

= The Sound Manager provides the ability to play sounds through the speaker. It also
provides an extensive set of tools for manipulating sounds. You can use the Sound
Manager to alter virtually any characteristic of a sound, such as its loudness, pitch,
timbre, and duration. You can also use the Sound Manager to compress sounds so that
they occupy less disk space. The Sound Manager can work with sounds stored in
resources or in a file’s data fork. It can also play sounds that are generated dynamically
(and not necessarily stored on disk).

= The Sound Input Manager provides the ability to record sounds through a
microphone or other sound input device. It manages the standard sound recording

About Sound on Macintosh Computers 19

YsOJUIdRIAl BY]) UO PUNOS 0} UOIdNPO.IU| -

CHAPTER 1

Introduction to Sound on the Macintosh

dialog box (shown in Figure 1-12 on page 31) and can record sounds into resources or
into files.

= The Speech Manager provides the ability to convert written text into spoken words.
You might use the Speech Manager to read aloud a block of text that for various
reasons cannot be sampled (perhaps the amount of text is too large to be recorded and
then replayed, or perhaps the text itself is generated dynamically by the user). The
Speech Manager allows you to select from among a number of different voices, alter
some of the readback characteristics (such as speech, pitch, and volume), and provide
custom pronunciation dictionaries.

The basic sound hardware and system software also provide the ability to integrate and
synchronize sound production with the display of other types of information, such as
video and still images. For example, QuickTime uses the Sound Manager to handle all the
sound data in a QuickTime movie.

It’s very easy for users to enhance the quality of the sounds they play back or record by
substituting different speakers or microphones for the ones built into a Macintosh
computer. All current Macintosh computers include a stereo sound output jack that
allows users to add high quality speakers (such as the AppleDesign Powered Speakers).
A user can also substitute a higher quality microphone for the one supplied with the
computer. Figure 1-2 illustrates a slightly better audio configuration than the one shown
in Figure 1-1.

Figure 1-2 Enhanced sound capabilities on Macintosh computers

20

Speech Manager

J

[C_——>| Sound Input Manager @ Sound Manager

External ﬁ

microphone

External speakers

Note that the enhanced sound input and output capabilities shown in Figure 1-2 are
provided entirely by the improved hardware. The system software (in particular, the
Sound Manager and the Sound Input Manager) can support both the built-in audio
hardware and any external hardware connected to the built-in audio jacks.

About Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

It’s possible to enhance the audio capabilities of a Macintosh computer even further. For
example, a user can add a NuBus™ expansion card that contains very high quality digital
signal processing (DSP) circuitry, together with sound input or output hardware. These
cards typically bypass the standard Macintosh sound circuitry altogether and therefore
require additional software (a device driver) to work with the Sound Manager or the
Sound Input Manager. The system software is, however, designed to make it easy for
developers to add software to drive their sound output or sound input devices.

A user can also enhance the audio capabilities of a Macintosh computer by adding a
MIDI interface to one of its serial ports. MIDI (the Musical Instrument Digital Interface)
is a standard protocol for sending audio data and commands to digital devices. A user
can connect any MIDI devices (such as synthesizers, drum machines, or lighting
controllers) to a Macintosh computer through the MIDI interface. Apple Computer
supplies a software driver, the MIDI Manager, to control the flow of MIDI data and
commands through the MIDI interface.

Note

The MIDI Manager is not documented in this book. For complete
information about the MIDI Manager, contact APDA. O

Figure 1-3 illustrates a very high capability sound and music configuration built around a
Macintosh computer. This enhanced hardware and system software configuration allows
users to run digital sound editing or recording applications and MIDI sequencing
applications.

About Sound on Macintosh Computers 21

YsOJUIdRIAl BY]) UO PUNOS 0} UOIdNPO.IU| -

CHAPTER 1

Introduction to Sound on the Macintosh

Figure 1-3

High quality sound capabilities on Macintosh computers

Sound Input Manager

=

Sound Manager

SCSI port @:. Device driver MIDI Manager
A\
Digital
audio
data

Digital sound
compact disc \' MIDI
‘¢1 converter
MIDI
data

LJ :] <])>> Serial port
Audio
Digital sound card

MIDI-controlled
instruments

22

It’s possible to enhance the sound environment on a Macintosh computer by adding
software alone, for example by adding custom sound compression/decompression
components (codecs). Apple Computer supplies codecs that can handle 3:1 and 6:1
compression and expansion, which are suitable for most audio requirements. For special
purposes, however, it might be advantageous to use other compression and expansion
ratios or algorithms. The Sound Manager can use any available codec to handle
compression and expansion of audio data.

More generally, the Sound Manager supports arbitrary modifications on sound data
using stand-alone code resources known as sound components. A sound component can
perform one or more signal-processing operations on sound data. For example, the
Sound Manager includes sound components for compressing and decompressing sound
data (as described in the previous paragraph) and for converting sample rates. Sound
components have a standard programming interface and local storage, which allows
them to be hooked together in series to perform complex tasks. For instance, to play an
11 kHz compressed sampled sound on a Macintosh 1l computer, the Sound Manager

About Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

needs to expand the compressed data into audio samples, convert the samples from

11 kHz to 22 kHz, mix the samples with any other sounds that are playing, and then send
the mixed samples to the available audio hardware (in this case, the Apple Sound Chip).
The Sound Manager uses four different sound components to accomplish this task, as
shown in Figure 1-4.

Figure 1-4 A sound component chain

Sound
@@ Ma?g;er [—>|Source|—>

- Audi
Application harg\?vgre
Al el
11 kHz Decompressed 22 kHz 22 kHz
compressed audio samples audio samples decompressed
sound sound
"snd "' resource

[

S Rate Apple Output device)
|:> conversion |:> : >| || component >|<])
component component Mixer (ASderiver)

Except for the lowest-level components that communicate directly with hardware (here,
the Apple Sound Chip), the components of this chain operate solely on a stream of bytes.
This allows Apple and other developers to create sound components that operate
independently of the actual sound-producing hardware available on a particular
Macintosh computer. This also allows the Sound Manager to modify the component
chain used at any time according to the actual capabilities of the output hardware. For
example, a digital signal processing card might be able to do rate conversion internally. In
that case, the Sound Manager can bypass the rate conversion component and send the

11 kHz samples directly to the DSP card, as shown in Figure 1-5.

Figure 1-5 A sound component chain with a DSP board

Application Audio

—

: Output device
|:> Sound |:> I:; Expansion Apple)
Manager (!)component — Mixer — (‘I:DOS”I]DdeR\?Q:) —

hardware

In general, an application that wants to produce a sound is unaware of the sound
component chain required to produce that sound on the current sound output device.
The Sound Manager keeps track of which sound output device the user has selected and

About Sound on Macintosh Computers 23

YSOJUIOBI 8Y] UO PUNOS 0] UOHINPOIU| -

24

CHAPTER 1

Introduction to Sound on the Macintosh

constructs a component chain suitable for producing the desired quality of sound on that
device. As a result, even though the capabilities of the available sound output hardware
can vary greatly from one Macintosh computer to another, the Sound Manager ensures
that a given chunk of audio data always sounds as good as possible on the available
sound hardware. This means that you can use the same code to play sounds, regardless
of the actual sound-producing hardware that is available on a particular machine.

The Sound Manager provides sound components for modifying and producing sounds
on the built-in audio hardware and on any hardware attached to the sound output jack.
The Macintosh sound architecture currently allows you to add sound components for
two special purposes: to support alternate compression and decompression algorithms
and to support third-party audio hardware. See the chapter “Sound Components” in this
book for information on developing codecs and sound output device components.

IMPORTANT

You don’t need to know how to develop sound components simply to
play or record sounds on Macintosh computers using the available
sound output or input devices. a

The following sections describe in greater detail the operations of the Sound Manager, the
Sound Input Manager, and the Speech Manager. You'll use the Sound Manager to
produce sounds, the Sound Input Manager to record sounds, and the Speech Manager to
generate speech from text.

Sound Production

A Macintosh computer produces sound when the Sound Manager sends some data
through a sound channel to the available audio hardware, usually at the request of an
application. The audio hardware is a digital-to-analog converter (DAC) that translates
digital sound data into analog audio signals. Those signals are then sent to the internal
speaker, to a sound output connector (to which the user can connect headphones,
external speakers, or sound amplification equipment), or to other sound output
hardware.

The DAC in Macintosh Plus and Macintosh SE computers is a Sony sound chip. The
Macintosh Il, Macintosh Portable, Macintosh PowerBook and Macintosh Quadra families
of computers contain two Sony sound chips (to provide stereo output capability) as well
as the Apple Sound Chip (ASC), a customized chip that provides enhanced audio
output characteristics as well as emulation capabilities for the earlier sound hardware.

Some recent models of Macintosh computers contain built-in sound hardware that
extends the Apple Sound Chip’s features. For example, Macintosh computers with
built-in microphones include the Enhanced Apple Sound Chip (EASC). Some Macintosh
computers contain DSP chips that provide very high-quality sound (16-bit stereo sound,
at rates up to 44 kHz). There are also NuBus expansion cards available from third-party
developers that provide other audio DAC hardware.

A user can select a sound output device or control characteristics of the selected device
through the Sound Out control panel, shown in Figure 1-6. The available sound output
devices are listed in the center of the panel. In this case, two sound output devices are

About Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

attached to the computer, the built-in speaker and a speaker attached to the SurfBoard
DSP card. The highlighted icon shows which device is the current sound output device.
All sounds produced by the Sound Manager are sent to that device for playback, unless
you specify some other device when creating a sound channel. (See the description of
SndNewChannel in the chapter “Sound Manager” for details on specifying an output
device explicitly.)

Figure 1-6 The Sound Out control panel
S =——"——— Sound gl
----- | Sound Out hd |

Choose a source for playback:

; it
= qf&
SurfBoard 6

Rate: | 22.254kHz « |

Size: @ 8 bit (O 1% nit

Use: O =anas @ Stereo

Note

This book shows the Sound control panels introduced with version 3.0 of
the Sound Manager. Users can use the pop-up menu at the top of the
panel to select one of four or more subpanels (Alert Sounds, Sound In,
Sound Out, and Volumes). It’s possible to add new subpanels to the
Sound control panel. See the chapter on control panel extensions in the
book Inside Macintosh: Operating System Utilities. O

You can play a sound by calling a Sound Manager routine such as SysBeep (to play the
system alert sound), SndPI ay (to play a sound stored in memory), or

SndSt art Fi | ePl ay (to play a sound stored in a file). The Sound Manager then issues
one or more sound commands to the audio hardware. A sound command is an
instruction to produce sound, modify sound, or otherwise assist in the overall process of
sound production.

To ensure that sound commands are issued in the correct order, the Sound Manager uses
a structure called a sound channel to store commands. A sound channel is associated
with a first-in, first-out (FIFO) queue of sound commands. Queued commands are sent to
the sound hardware through a sound output device component, a component that
manages the last stage of communication with the audio hardware. Figure 1-7 shows
how your application communicates, through the Sound Manager and the sound output
device component, with the current sound output device.

About Sound on Macintosh Computers 25

YsOJUIdRIAl BY]) UO PUNOS 0} UOIdNPO.IU| -

CHAPTER 1

Introduction to Sound on the Macintosh

Figure 1-7 The relation of the Sound Manager to the audio hardware

26

Commandsﬁ

| Sound Manager I

|
U

\
Sound channel ﬂ

Sound component
chain

[l

U
1)

Note

This chapter does not discuss sound commands or channels in detail,
because you do not need to know about these details to play sound data
stored in sound resources or sound files. This chapter describes only how
to play and record sampled sounds. For more information on sound
channels and sound commands, see the chapter “Sound Manager” in this
book. O

You can play sounds either synchronously or asynchronously. When you play a sound
synchronously, the Sound Manager alone has control over the CPU while it executes
commands in a sound channel. Your application does not continue executing until the
sound has finished playing. When you play a sound asynchronously, your application
can continue other processing while the sound is playing. This chapter shows how to
play sounds only synchronously. To learn how to play sounds asynchronously, see the
chapter “Sound Manager” in this book.

Sometimes it is necessary to bypass the queue of sound commands. If, for example, you
want to stop all sound production on a particular channel immediately, it would be
counterproductive to put the command into the sound channel because that command

About Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

wouldn’t be processed until any others already in the queue were processed. You can
send sound commands directly to the hardware component, as shown in Figure 1-8.

When you bypass the sound channel in this way, any commands that are already queued
but not yet sent to the sound output device component remain queued. You can,
however, flush the channel at any time by sending the Sound Manager the appropriate
request.

Figure 1-8 Bypassing the command queue

Commandsﬁ

Sound Manager I

Sound channel

4

Sound component
chain

[l

U
1)

It’s possible to have several channels of sound open at one time. The Sound Manager
(using a sound-mixing component called the Apple Mixer component) mixes together
the data coming from all open sound channels and sends a single stream of sound data to
the current sound output device. This allows a single application to play two or more
sounds at once. It also allows multiple applications to play sounds at the same time, as
illustrated in Figure 1-9.

About Sound on Macintosh Computers 27

YsOJUIdRIAl BY]) UO PUNOS 0} UOIdNPO.IU| -

CHAPTER 1

Introduction to Sound on the Macintosh

Figure 1-9 Mixing multiple channels of sampled sound

Application 1

Expansion
> S
ource I:>(component ‘

Output device
component

Apple I:>
Mixer (ASC driver)

Sound . Rate @
Ma?;’éer@SourceQ Expansion [—>| |lconversion ||C——>

component component |

D

D

Rate

— —>|Source| >| ||conversion ||/

Application 2

|
=)

Audio
hardware

28

The Sound Manager was first released for all Macintosh computers as part of system
software version 6.0. System software versions 6.0.7 and later include an enhanced
Sound Manager (that is, version 2.0) that provides routines for continuous play from
disk, sound mixing, and audio compression and expansion. System software versions
6.0.7 and later also include the Sound Input Manager, which allows for recording sounds
through either a built-in microphone or some other sound input device.

More recent versions of the Sound Manager significantly improve the performance of the
Sound Manager’s operations and extends its capabilities. Version 3.0 of the Sound
Manager is as much as two to three times more efficient than previous versions, which
allows your application to do more processing while a sound is playing. In addition,
version 3.0 of the Sound Manager provides three important new capabilities:

Support for 16-bit audio samples. Versions of the Sound Manager earlier than version
3.0 support only 8-bit monophonic or stereo audio samples with sample rates up to

22 kHz. The Sound Manager version 3.0 supports 16-bit stereo audio samples with
sample rates up to 64 kHz, thereby allowing your application to produce CD-quality
sound. Moreover, the Sound Manager version 3.0 automatically converts 16-bit
samples into 8-bit samples on Macintosh computers that do not have the hardware to
output 16-bit sounds.

Support for non-Apple audio hardware. The Sound Manager version 3.0 and later
use a sound architecture that allows support for third-party audio hardware. This
allows a user to install audio hardware capable of recording and producing
CD-quality sound. Versions 3.0 and later also include a new Sound control panel that
allows the user to redirect sound output to any available audio hardware.

Support for plug-in codecs. Versions of the Sound Manager earlier than version 3.0
support audio compression and expansion only at ratios of 3:1 and 6:1. The Sound
Manager version 3.0 provides support for other compressed audio data formats by
allowing plug-in audio compression and expansion components (or codecs).

About Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

You provide support for your own sound output devices or for your own compression
and decompression algorithms by writing an appropriate sound component. See the
chapter “Sound Components” later in this book for complete details.

The Sound Manager version 3.0 is supported only on Macintosh computers with an ASC
or comparable hardware. In particular, the Sound Manager version 3.0 is not supported
on Macintosh Classic, Macintosh Plus, or Macintosh SE computers. As a result, you
should always test whether the specific capabilities you want to use are present before
attempting to use them. You can use the Gest al t function to do this, as illustrated in
“Checking For Sound-Recording Equipment” beginning on page 41 and in “Checking
For Speech Capabilities” beginning on page 45.

This book describes the capabilities and programming interfaces of version 3.0 of the
Sound Manager. Many of the techniques described here can also be used with earlier
versions of the Sound Manager, but some cannot. Make sure to test your application
thoroughly with all versions of the Sound Manager you want to run under.

Sound Recording

The Sound Input Manager provides the ability to record and digitally store sounds in a
device-independent manner. You can create a resource or a file containing a recorded
sound simply by calling either the SndRecor d function or the SndRecor dToFi | e
function. You can then use the recorded sound in any way appropriate to your
application.

The sound input and storage routines can be used with any available sound input
hardware for which there is an appropriate device driver. A user can select from
among the available sound input devices through the Sound In control panel,
shown in Figure 1-10.

Figure 1-10 The Sound In control panel
SO0=—————— Sound
~| Sound In b

Choose a source for recording:

o

Built-in waveMaker

=

<

About Sound on Macintosh Computers 29

YsOJUIdRIAl BY]) UO PUNOS 0} UOIdNPO.IU| -

CHAPTER 1

Introduction to Sound on the Macintosh

The available sound input devices are listed in the center of the panel. The control panel
lists a device if its driver has previously registered itself with the Sound Input Manager
and has provided a name and device icon. In Figure 1-10, two sound input devices are
available, a device named Built-in and a device named WaveMaker. The highlighted icon
shows which device is the current sound input device.

The Alert Sounds control panel lists the available system alert sounds, as illustrated in
Figure 1-11.

Figure 1-11 The Alert Sounds control panel

30

E=——— Sound gl

..... | Alert Sounds - |

=g Nathan's Beep
Simple Beep
Tenli's HiHi
Wild Eep
wrnng

wrnng sick

Hylophone

Alert [Add...] [Hemnue]
lolume

The Alert Sounds control panel also includes two buttons, Add and Remove. These
buttons allow the user to add sounds to and remove sounds from the list of available
system alert sounds. The Add button is used to record a new alert sound and add it to the
list. Clicking the Add button causes the Sound Input Manager to display a sound
recording dialog box (described later in this section). Clicking the Remove button causes
the Sound Input Manager to remove the selected alert sound from the list. The user can
achieve the same effect by selecting a sound and then choosing the Clear command in the
Edit menu. If no sound input drivers are installed in the system, these two buttons do not
appear.

If the user records a sound using the Alert Sounds control panel, the recorded sound is
saved as a resource of type’ snd ' in the System file. That sound then appears in the list
of available alert sounds. Note that the Alert Sounds control panel supports the standard
Edit menu commands on sounds stored in the System file. The Cut command copies the
selected sound to the Clipboard and removes it from the list of system alert sounds. The
Copy command just copies the selected sound to the Clipboard. The Paste command
takes a sound copied from the Clipboard and places it in the list of available alert sounds.
If your application allows users to manipulate sound resources, it should support the
copying and pasting of sound resources through the Clipboard. However, the Undo
command does not work with sound-related editing operations.

About Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

The Sound Input Manager provides two high-level routines that allow your application
to record sounds from the user and store them in memory or in a file. When you call
either SndRecor d or SndRecor dToFi | e, the Sound Input Manager presents a sound
recording dialog box to the user, illustrated in Figure 1-12.

Figure 1-12 The sound recording dialog box

® HIEA
Record Stop Pause Play

[] :00 L
C - =N

seconds

Using the controls in this dialog box, the user can start, pause, resume, and stop
recording on the currently selected sound input device. The user can also play back the
recorded sound. The time indicator bar provides an indication of the current length of the
recorded sound.

When the user clicks the Save button after initiating a recording from the Sound control
panel, another dialog box appears asking the user to give the sound a name. Unless the
user cancels the save operation at that point, the Sound control panel saves the recorded
sound into a sound resource in the System file. Note that if your application can save
recorded sound resources, the SndRecor d function does not present the dialog box that
allows the user to name the sound and does not automatically save the recorded sound
into a resource file. Your application must provide code to accomplish these tasks.

Sound Resources

Resources of type’ snd ' (also called sound resources) can contain both sound
commands and sound data, and are widely used by sound-producing applications. These
resources provide a simple and portable way for you to incorporate sounds into your
application. For example, the sounds that a user can select in the Sound control panel as
the system alert sound are stored in the System file as’ snd ' resources. The user can
select the current system alert sound with the Alert Sounds control panel, as illustrated in
Figure 1-11. More generally, you can load a sound resource into memory and then play it
by calling the SndPI ay function.

Note

If you do not use the sound-recording routines provided by the Sound
Input Manager, you must know the structure of ' snd ’ resources before
you can create them. For information on this, see the chapter “Sound
Manager” in this book. You can also use the Set upSndHeader function,
described in the chapter “Sound Input Manager” in this book, to help
you create an’ snd ' resource. O

About Sound on Macintosh Computers 31

YsOJUIdRIAl BY]) UO PUNOS 0} UOIdNPO.IU| -

32

CHAPTER 1

Introduction to Sound on the Macintosh

The Sound Manager can read sound resources in two formats, format 1 or format 2.
However, the format 2’ snd ' resource is obsolete, so your application should use
format 1’ snd ' resources. For more information on the differences between format 1
and format 2’ snd ' resources, see the chapter “Sound Manager” in this book.

The format1’ snd ' resource is the most general kind of sound resource. A format 1
"snd ' resource can contain a sequence of Sound Manager commands and associated
sound data (such as wave-table data or a sampled sound header that both describes a
digitally recorded sound and includes the sampled-sound data itself). Your application
can produce sounds simply by passing a handle to that resource to the SndPl| ay
function, which opens a sound channel and sends the commands and data contained in
the resource into the channel. Alternatively, a format 1’ snd ' resource might contain a
sequence of commands that describe a sound, without providing any other sound data.
For example, such a resource could contain a command that alters the amplitude (or
loudness) of sound playing on a channel. In this case, your application can use the
SndPI ay function to execute the commands on any channel.

Sound Files

Although most sampled sounds that you want your application to produce can be stored
as sound resources, there are times when it is preferable to store sounds in sound files.
For example, it is usually easier for different applications to share files than it is to share
resources. So, if you want your application to play a sampled sound created by another
application (or if you want other applications to be able to play a sampled sound created
by your application), it might be better to store the sampled-sound data in a file, notin a
resource. Similarly, if you are developing versions of your application that run on other
operating systems, you might need a method of storing sounds that is independent of the
Macintosh Operating System and its reliance on resources to store data. Generally, it is
easier to transfer data stored in data files from one operating system to another than it is
to transfer data stored in resources.

There are other reasons you might want to store some sampled sounds in files and not in
resources. If you have a very large sampled sound, it might not be possible to create a
resource large enough to hold all the audio data. Resources are limited in size by the
structure of resource files (and in particular because offsets to resource data are stored as
24-bit quantities). Sound files, however, can be much larger because the only size
limitations are those imposed by the file system on all files. If the sampled-sound data for
some sound occupies more than about a half megabyte of space, you should probably
store the sound as a file.

To address these various needs, Apple and several third-party developers have defined
two sampled-sound file formats, known as the Audio Interchange File Format (AIFF)
and the Audio Interchange File Format Extension for Compression (AIFF-C). The
names emphasize that the formats are designed primarily as data interchange formats.
However, you should find both AIFF and AIFF-C flexible enough to use as data storage
formats as well. Even if you choose to use a different storage format, your application
should be able to convert to and from AIFF and AIFF-C if you want to facilitate sharing

About Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

of sound data among applications. AIFF format files have file type ' Al FF' and AIFF-C
format files have file type* Al FC .

Note

Do not confuse AIFF and AIFF-C files (referred to in this chapter as sound
files) with Finder sound files. Each Finder sound file contains a sound
resource that plays when the user double clicks on the file in the Finder
(or selects the file and chooses Open from the File menu). A user can
create a Finder sound file by dragging a sound out of the System file, and
a user can drag a Finder sound file into the System file to add the file’s
sound to the list of available system alert sounds. You can create a Finder
sound file by creating a file of type’ sfi |’ with a creator of " movr’ and
placing in the file a single sound resource. You can play such a file by
using Resource Manager routines to open the Finder sound file and then
by using the SndPI ay function to play the single sound resource
contained in it. O

The main difference between the AIFF and AIFF-C formats is that AIFF-C allows you to
store either compressed or noncompressed audio data, whereas AIFF allows you to store
noncompressed audio data only. The AIFF-C format is more general than the AIFF format
and is easier to modify. The AIFF-C format can be extended to handle new compression
types and application-specific data. As a result, if your application reads or writes sound
files, it should be able to handle both AIFF and AIFF-C files. Table 1-1 summarizes the
capabilities of the AIFF and AIFF-C file formats.

Table 1-1 AIFF and AIFF-C capabilities

File Read Read Write Write

type sampled compressed sampled compressed
AIlFF Yes No Yes No

AIFF-C Yes Yes Yes Yes

The enhanced Sound Manager includes play-from-disk routines that allow you to play
AIFF and AIFF-C files continuously from disk even while other tasks execute. You might
think of the play-from-disk routines as providing you with the ability to install a “tape
player” in a sound channel. Once the sound begins to play, it continues uninterrupted
until it finishes or until an application pauses or stops it.

You can play a sampled sound stored in a file of type AIFF or AIFF-C by opening the file
and passing its file reference number to the SndSt ar t Fi | ePl ay function. If the file is of
type AIFF-C and the data is compressed, then the data is automatically expanded during
playback. The SndSt ar t Fi | ePl ay function works like the SndPl ay function but does
not require the entire sound to be in RAM at one time. Instead, the Sound Manager uses
two buffers, each of which is smaller than the sound itself. The Sound Manager plays one
buffer of sound while filling the other with data from disk. After it finishes playing the
first buffer, the Sound Manager switches buffers, and plays data in the second while
refilling the first. This double buffering technique minimizes RAM usage at the expense

About Sound on Macintosh Computers 33

YsOJUIdRIAl BY]) UO PUNOS 0} UOIdNPO.IU| -

34

CHAPTER 1

Introduction to Sound on the Macintosh

of additional disk overhead. As a result, SndSt art Fi | ePl ay is ideal for playing very
large sounds.

The disk overhead incurred when using SndSt ar t Fi | ePl ay is relatively light, and
most mass-storage devices currently available for Macintosh computers have response
times that are good enough that SndSt ar t Fi | ePl ay can retrieve audio data from disk
and play a sound without audible gaps. There are no limits on the number of concurrent
disk-based sampled-sound playbacks other than those imposed by processor speed and
disk capability. On machines with sufficient CPU resources, several continuous playbacks
can occur at once. Disk fragmentation can affect the performance of playing
sampled-sound files from disk. In addition, playing multiple sounds from the same hard
disk may degrade overall performance.

The Sound Manager currently supports continuous play from disk only on certain
Macintosh computers. You should use the Gest al t function to determine whether a
specific machine supports play from disk. Also, if a sound channel is being used for
continuous play from disk, then no other sound commands can be sent to that channel.

Speech Generation

The Speech Manager converts text into sound data, which it passes to the Sound
Manager to play through the current sound output device. The Speech Manager’s
interaction with the Sound Manager is transparent to your application, so you don’t need
to be familiar with the Sound Manager to take advantage of the Speech Manager’s
capabilities. This section provides an overview of the Speech Manager and outlines the
process that the Speech Manager uses to convert text into speech.

Figure 1-13 illustrates the speech generation process. Your application can initiate speech
generation by passing a string or a buffer of text to the Speech Manager. The Speech
Manager is responsible for sending the text to a speech synthesizer, a component that
contains executable code that manages all communication between the Speech Manager
and the Sound Manager. A synthesizer is usually contained in a resource in a file within
the System Folder. The synthesizer uses built-in dictionaries and pronunciation rules to
help determine how to pronounce text. Your application can use the default system voice
to generate speech; it can also specify that some other available voice be used for speech
generation.

As Figure 1-13 suggests, the Speech Manager is a dispatching mechanism that allows
your application to take advantage of the capabilities of whatever speech synthesizers,
voices, and hardware are installed. The Speech Manager itself does not do any of the
work of converting text into speech; it just provides a convenient programming interface
that manages access to speech synthesizers and, indirectly, to the sound hardware. The
Speech Manager uses the Component Manager to access whatever speech synthesizers
are available and allows applications to take maximum advantage of a computer’s
speech facilities without knowing what those facilities are.

About Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

Figure 1-13 The speech generation process

— I:> Speech Manager I:> Speech synthesizer I:> Sound Manager

ﬂ
)

Audio
hardware

Note

The Component Manager is described in Inside Macintosh:
More Macintosh Toolbox, but you do not need to be familiar with
it to use the Speech Manager. O

A speech synthesizer can include one or more voices, as illustrated in Figure 1-14. Just as
different people’s voices have different tonal qualities, so too can different voices in a
synthesizer. A synthesized voice might sound male or female, and might sound like an
adult or child. Some voices sound distinctively synthetic, while others sound more like
real people. As speech synthesizing technology develops, the voices that your application
can access are likely to sound more and more human. Because the Speech Manager’s
routines work on all voices and synthesizers, you will not need to rewrite your
application to take advantage of improvements in speech technology.

Figure 1-14 The Speech Manager and multiple voices

Speech Manager

Speech
synthesizers \J

v
|

Voice 1 Voice 2 Voice 3 Voice 4

g

O
p— (ﬂ'—

About Sound on Macintosh Computers 35

YSOJUIOBI 8Y] UO PUNOS 0] UOHINPOIU| -

36

CHAPTER 1

Introduction to Sound on the Macintosh

Any given person has only one voice, but can alter the characteristics of his or her speech
in a number of different ways. For example, a person can speak slowly or quickly, and
with a low or a high pitch. Similarly, the Speech Manager provides routines that allow
you to modify these and other speech attributes, regardless of which voice is in use.

To indicate to the Speech Manager which voice or attributes you would like it to use in
generating speech, your application must use a speech channel. A speech channel is a
data structure that the Speech Manager uses when processing text; it can be associated
with a particular voice and particular speech attributes. Because multiple speech
channels can coexist, your application can create several different vocal environments (to
simulate a conversation, for example). Because a synthesizer can be associated with only
one language and region, your application would need to create a separate speech
channel to process each language in bilingual or multilingual text. (Currently, however,
only English-producing synthesizers are available.)

Different speech channels can even generate speech simultaneously, subject to processor
capabilities and Sound Manager limitations. This capability should be used with
restraint, however, because it can be hard for the user to understand any speech when
more than one channel is generating speech at a time. Also, your application should in
general generate speech only at the specific request of the user and should allow the user
to turn off speech output. At the very least, your application should include an option
that allows the user to view text instead of hearing it. Some users might have trouble
understanding speech generated by the Speech Manager, and others might be
hearing-impaired. Even users who are able to clearly understand computer-synthesized
speech might prefer to read rather than hear.

In general, your application does not need to know which speech synthesizer it is using.
You can obtain a list of all available voices, but in most cases, you do not need to be
concerned with which speech synthesizer a voice is associated. Sometimes, however, a
speech synthesizer may provide special capabilities beyond that provided by the Speech
Manager. For example, a speech synthesizer might allow you to select an option to read
numbers in a nonstandard way. The Speech Manager allows you to determine which
synthesizer is associated with a voice for these circumstances, and provides hooks that
allow your application to take advantage of synthesizer-specific capabilities.

In general, however, your application can achieve the best results by making no
assumptions about which synthesizers might be available. The user of a 2 MB Macintosh
Classic® might use a synthesizer with low RAM requirements, while the user of a 20 MB
Macintosh Quadra 950 might take advantage of a synthesizer that provides better audio
guality at the expense of memory usage. The Speech Manager makes it easy to
accommodate both kinds of users.

The most basic use of the Speech Manager is to convert a text string into speech. The
Speak St ri ng function, described in “Generating Speech From a String” beginning on
page 46, lets you do this even without allocating a speech channel. The chapter “Speech
Manager” in this book describes how you can customize the quality of speech output to
make it easier to understand and how you can obtain more control over speech by
allocating speech channels and embedding commands within text strings.

About Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

The User Interface for Sound

As you have seen, the Macintosh system software provides you with a wide array of
easy-to-use sound-input and sound-output services. With very little programming,
you can

= play the user’s system alert sound or any sound contained in a sound resource or file
= record sounds through the available sound-input hardware

= convert text into speech

The system software has already defined a set of user interface elements and metaphors
that are designed to facilitate the integration of sound into the Macintosh graphical user
interface. In general, you should use the existing system software services to present the
standard interface elements designed by Apple. For example, if you want to have the
user record through the available sound-input hardware, you can call the SndRecor d
function, which displays the sound recording dialog box (shown in Figure 1-12 on

page 31). That dialog box contains controls that are modelled on the buttons typically
found on an audio tape recorder or a video cassette recorder. In this way, the system
software draws on the user’s knowledge of how to operate a tape recorder and uses it as
a metaphor for recording sounds on Macintosh computers.

The system software also provides visual representations of sounds themselves. In some
cases, sounds are represented by their names only, as in the Alert Sounds control panel
(shown in Figure 1-11 on page 30). In other cases, sounds are represented by icons. For
example, the icon for a Finder sound looks like the one shown in Figure 1-15. All Finder
sounds are represented by the same icon; they are distinguished from each other by their
names.

Figure 1-15 An icon for a Finder sound

)

“ylophone

If the user copies or cuts a sound from the available system alert sounds and then pastes
the sound into the Scrapbook, the sound is shown as in Figure 1-16.

About Sound on Macintosh Computers 37

YsOJUIdRIAl BY]) UO PUNOS 0} UOIdNPO.IU| -

CHAPTER 1

Introduction to Sound on the Macintosh

Figure 1-16 A sound in the Scrapbook

SO=———— Scrapbook

<)

a/9 Play Sound snd

As you can see, the metaphor in both cases is that of a speaker, a sound-producing device
familiar to most computer users. If you need to design icons to represent sounds created
by your application, you might want to use (or suitably adapt) these existing metaphors.
For example, if your application supports document annotations with recorded voices or
other sounds, you can display a speaker icon within the document. Clicking or
double-clicking the icon should result in playing the sound.

Keep in mind that applications that play sound should allow users to turn off sound
output, because there might be users who object to it or environments where it is
inappropriate. Also, there might be cultural biases or preferences associated with certain
sounds. Thus, if your application plays specific sounds, you should store them as
resources, which can be easily modified for local regions, or if they are very large, in
sound files, which you can replace easily during localization.

Using Sound on Macintosh Computers

38

This section describes the most basic ways of using the Sound Manager, the Sound Input
Manager, and the Speech Manager. In particular, it provides source code examples that
show how to produce an alert sound, play a sound resource, play a sound file, determine
whether your application can access sound recording equipment, record a sound
resource, record a sound file, and convert a text string to spoken words.

Producing an Alert Sound

You can produce a system alert sound to catch the user’s attention by calling the
SysBeep procedure. The SysBeep procedure is a Sound Manager routine that plays the
alert sound selected by the user in the Alert Sounds control panel. Here’s an example of
calling SysBeep:

Using Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

IF nyErr <> noErr THEN
SysBeep(30);

You must supply a parameter when you call the SysBeep procedure, even though the
Sound Manager ignores that parameter in most cases. All system alert sounds are stored
asformat1’ snd ' resources in the System file and are played by the Sound Manager.
There is one instance in which the number passed to SysBeep is not ignored: if the user
has selected the Simple Beep as the system alert sound on some Macintosh computers
(for example, a Macintosh Plus or Macintosh SE), the beep is generated by code stored in
ROM rather than by the Sound Manager, and the duration parameter is interpreted in
ticks (sixtieths of a second).

The SysBeep procedure has no effect if an application has disabled the system alert
sound. You might do this to prevent the system alert sound from interrupting some other
sound. For information on enabling and disabling the system alert sound, see the chapter
“Sound Manager” in this book.

You should not call the SysBeep procedure at interrupt time, because doing so causes
the Sound Manager to attempt to allocate memory and load a resource.

Note

If your primary use of the SysBeep procedure is to alert the user of
important or abnormal occurrences, it might be preferable to use the
Notification Manager. See the chapter “Notification Manager” in
Inside Macintosh: Processes for complete details on alerting the user. O

Playing a Sound Resource

You can play a sound stored in a resource by calling the SndPI ay function, which
requires a handle to an existing’ snd ' resource. An’ snd ’ resource contains sound
commands that play the desired sound. The’ snd ' resource might also contain sound
data. If it does (as in the case of a sampled sound), that data might be either compressed
or noncompressed. SndPl ay decompresses the data, if necessary, to play the sound.
Listing 1-1 illustrates how to play a sound resource.

Listing 1-1 Playing a sound resource with SndPl ay

FUNCTI ON MyPl aySndResource (nySndlD: |Integer): OSErr;
CONST

kAsync = TRUE; {for asynchronous pl ay}
VAR
mySndHandl e: Handl e; {handle to an "snd ' resource}
myErr: CSErr;
BEG N
mySndHandl e : = Get Resource(’snd ’, mySndl D);
nyErr := ResError, {remenber any error}
| F nySndHandl e <> NI L THEN {check for a N L handl e}

Using Sound on Macintosh Computers 39

YsOJUIdRIAl BY]) UO PUNOS 0} UOIdNPO.IU| -

CHAPTER 1

Introduction to Sound on the Macintosh

BEG N
HLock(mySndHandl e) ; {l ock the sound dat a}
nyErr := SndPlay(N L, nmySndHandl e, NOT kAsync);
HUNnl ock(mySndHandl e) ; {unl ock the sound dat a}
Rel easeResour ce(nySndHandl e) ;

END;

MyPl aySndResource : = nyErr; {return the result}

END;

When you pass SndPl ay a NI L sound channel pointer in its first parameter, the Sound
Manager automatically allocates a sound channel (in the application’s heap) and then
disposes of it when the sound has completed playing. Note, however, that when your
application does pass NI L as the pointer to a sound channel, the third parameter to
SndPl ay is ignored; the sound plays synchronously even if you specify that you want it
to play asynchronously.

IMPORTANT

The handle you pass to SndPl ay must be locked for as long as the sound
is playing. a

Playing a Sound File

You can initiate and control a playback of sampled sounds stored in a file using the
SndSt art Fi | ePl ay, SndPauseFi | ePl ay, and SndSt opFi | ePl ay functions. You use
SndSt art Fi | ePl ay to initiate the playing of a sound file. If you allocate your own
sound channel and specify that play be asynchronous, you can then use the

SndPauseFi | ePl ay and SndSt opFi | ePl ay functions to pause, resume, and stop
sound files that are playing. The chapter “Sound Manager” in this book describes these
two functions in detail.

To play a sampled sound that is contained in a file, you pass SndSt art Fi | ePl ay the
file reference number of the file to play. The sample should be stored in either AIFF or
AIFF-C format. If the sample is compressed, it is automatically expanded during
playback. If you specify NI L as the sound channel, then SndSt ar t Fi | ePl ay allocates
memory for a channel internally. Listing 1-2 defines a function that plays a file specified
by its file reference number.

Listing 1-2 Playing a sound file with SndSt art Fi | ePl ay

40

FUNCTI ON MyPl aySoundFi l e (nyFil eRef Num |nteger): OSErr;
CONST

kAsync = TRUE; {for asynchronous pl ay}
kBuf ferSi ze = 20480; {20K play buffer}

VAR
myErr: CSErr;

BEG N

Using Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

nyErr := SndStartFilePlay(NIL, nyFileRefNum O, kBufferSize,
NIL, NIL, NIL, NOT kAsync);
MyPl aySoundFil e : = nyErr;
END;

To allow the Sound Manager to handle all memory allocation automatically, you should
pass NI L as the first and fifth parameters to SndSt art Fi | ePl ay, as done in Listing 1-2.
The first NI L specifies that you want SndSt ar t Fi | ePl ay to allocate a sound channel
itself. The NI L passed as the fifth parameter specifies that SndSt ar t Fi | ePl ay should
automatically allocate buffers to play the sound. The SndSt art Fi | ePl ay function then
allocates two buffers, each half the size specified in the fourth parameter; if the fourth
parameter is 0, the Sound Manager chooses a default size for the buffers.

The third parameter passed to SndSt art Fi | ePl ay here is set to 0. That parameter is
used only when playing sound resources from disk.

The seventh parameter to SndSt art Fi | ePl ay allows you to specify a routine to be
executed when the sound finishes playing. This is useful only for asynchronous play. In
Listing 1-2, the value NOT kAsync (that is, FALSE) is passed as the eighth parameter to
SndSt art Fi | ePl ay to request synchronous playback. SndSt art Fi | ePl ay would
return a badChannel result code if you request asynchronous playback because

MyPI ay SoundFi | e does not allocate a sound channel.

Checking For Sound-Recording Equipment

Before allowing a user to record a sound, you must ensure that sound-recording
hardware and software are installed. You can record sound through the microphone built
into several Macintosh models, or through third-party sound input devices. Because
low-level sound input device drivers handle communication between your application
and the sound recording hardware, you do not need to know what type of microphone is
available. Listing 1-3 defines a function that determines whether sound recording
hardware is available.

Listing 1-3 Determining whether sound recording equipment is available

FUNCTI ON MyHasSoundl nput : Bool ean;

VAR
myFeature: Longlnt;
nmyErr: CSErr;
BEG N
nmyErr := Cestalt(gestaltSoundAttr, myFeature);
| F nyErr = noErr THEN {test sound input device bit}
MyHasSoundl nput : = BTst(myFeature, gestaltHasSoundl nputDevi ce)
ELSE
MyHasSoundl nput : = FALSE; {no sound features avail abl e}
END;

Using Sound on Macintosh Computers 41

YsOJUIdRIAl BY]) UO PUNOS 0} UOIdNPO.IU| -

CHAPTER 1

Introduction to Sound on the Macintosh

The MyHasSoundlI nput function defined in Listing 1-3 uses the Gest al t function to
determine whether sound input hardware is available and usable on the current
Macintosh computer. MyHas Soundl nput tests the gest al t HasSoundl nput Devi ce
bit and returns TRUE if you can record sounds. MyHas Soundl nput returns FALSE if you
cannot record sounds (either because no sound input device exists or because the Sound
Input Manager is not available).

Note

For more information on the Gest al t function, see Inside Macintosh:
Operating System Utilities. O

Recording a Sound Resource

You can record sounds from the current input device by using the SndRecor d function.
The SndRecor d function presents the sound recording dialog box. When calling
SndRecor d, you need to provide a handle to a block of memory where the incoming
data should be stored. If you pass the address of a NI L handle, however, the Sound Input
Manager allocates a large block of space in your application heap and resizes it when the
recording stops. Listing 1-4 illustrates how to call SndRecor d.

Listing 1-4 Recording through the sound recording dialog box

42

PROCEDURE MyRecor dThrubi al og (VAR nySndHandl e: Handl e) ;
VAR

nmyErr: OSErr;
my Cor ner : Poi nt ;
BEG N
My Get TopLef t Cor ner (myCor ner) ;
nySndHandl e : = NI L; {use default nenory allocation}

nyErr := SndRecord(NI L, myCorner, siBestQuality, nySndHandl e);
IF (nyErr <> noErr) AND (nyErr <> userCancel edErr) THEN
DoError (nyErr);
END;

If the user cancels sound recording, then the SndRecor d function returns the result code
user Cancel edErr. The MyRecor dThr uDi al og procedure defined in Listing 1-4
returns a NI L sound handle if the user cancels recording.

If you pass a sound handle that is not NI L as the fourth parameter to the SndRecord
function, the Sound Input Manager derives the maximum time of recording from the
amount of space reserved by that handle. The handle is resized on completion of the

recording.

The first parameter in the call to SndRecor d is the address of a filter procedure
that determines how user actions in the dialog box are filtered. In Listing 1-4, no
filter procedure is desired, so the parameter is specified as NI L. For information

Using Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

on filter procedures, see the chapter “Dialog Manager” in Inside Macintosh:
Macintosh Toolbox Essentials.

The second parameter in the call to SndRecor d is the desired location (in global
coordinates) of the upper-left corner of the dialog box. For example, the Sound control
panel displays the dialog box near the control panel. Your application might place the
dialog box elsewhere (for example in the standard alert position on the main screen).
For more information on centering dialog boxes, see the chapter “Dialog Manager” in
Inside Macintosh: Macintosh Toolbox Essentials.

The third parameter in the call to SndRecor d specifies the quality of the recording.
Currently three values are supported:

CONST
siBestQuality = ' best’; {the best quality avail abl e}
siBetterQuality = "betr’; {a quality better than good}
si GoodQual ity = 'good’; {a good quality}

The precise meanings of these constants are defined by the current sound-input device
driver. The constant si Best Qual i t y indicates that you want the highest quality
recorded sound, usually at the expense of increased storage space (possibly because no
compression is performed on the sound data). The constant si GoodQual i t y indicates
that you are willing to sacrifice audio quality if necessary to minimize the amount of
storage space required (typically this means that 6:1 compression is performed on the
sound data). For most voice recording, you should specify si GoodQual i ty. The
constant si Bet t er Qual i t y defines a quality and storage space combination that is
between those provided by the other two constants.

You could play the sound recorded using the MyRecor dThr uDi al og procedure defined
in Listing 1-4 by calling SndPI ay and passing it the sound handle ny SndHandl e. That

handle refers to some data in memory that has the structure of an’ snd ' resource, but it

is not a handle to an existing resource. To save the recorded data as a resource, you can
use the Resource Manager. Listing 1-5 calls the MyRecor dThr uDi al og procedure and
then uses the Resource Manager to save the recorded data as a resource in an open
resource file.

Listing 1-5 Recording a sound resource

PROCEDURE MyRecor dSndResource (resFil eRef Num | nteger);

CONST
kM nSysSndRes = O0; {lowest reserved 'snd ' resource |D}
kMaxSysSndRes = 8191, {hi ghest reserved |D}
VAR
nyPrevResFi | e: I nt eger; {current resource file}
nmy SndHandl e: Handl e; {handl e to resource data}
nyResl D: Longl nt; {1D of resource}
nmyResNane: Str 255; {nane of resource}

Using Sound on Macintosh Computers 43

YsOJUIdRIAl BY]) UO PUNOS 0} UOIdNPO.IU| -

CHAPTER 1

Introduction to Sound on the Macintosh

myErr: OSErr;

BEG N
nyPrevResFil e : = CurResFil e; {remenber current resource file}
UseResFi |l e(resFil eRef Nunj ; {tenporarily switch resource files}

MyRecor dThr ubDi al og(nySndHandl e); {record via standard interface}

| F mySndHandl e <> NI L THEN
BEA N {recordi ng finished successfully}
REPEAT {find acceptabl e resource |ID nunber}
nyReslI D : = Uni quell D(’ snd ");
UNTIL (nyResID < kM nSysSndRes) OR (nyResl D > kMaxSysSndRes) ;
My Get SoundNane(nyResNare) ; {get name for sound resource}
{add resource to file}
AddResour ce(nmySndHandl e, "snd ', nmyResl D, nyResNane);
myErr := ResError;
IF nyErr = noErr THEN
BEG N
Updat eResFi | e(resFi | eRef Num ; {update resource file}
nmyErr := ResError,
END;
I F nyErr <> noErr THEN
DoError (nyErr);
END;
UseResFi | e(myPrevResFile); {restore previous resource file}
END;

44

The MyRecor dSndResour ce procedure defined in Listing 1-5 takes as a parameter the
reference number of an open resource file to which you wish to record. The procedure
makes that resource file the current resource file and, after recording, reverts to what was
previously the active resource file. Note that you should not record to your application’s
resource fork, because applications that write to their own resource forks cannot be used
by multiple users at once over a network. For more information on reference numbers for
resource files, see the chapter “Resource Manager” in Inside Macintosh: More Macintosh
Toolbox.

The MyRecor dSndResour ce procedure first presents the sound recording dialog box by
calling the MyRecor dThr uDi al og procedure defined in Listing 1-4 on page 42. If that
procedure returns a valid sound handle, MyRecor dSndResour ce finds an acceptable
resource ID for the resource file and then calls a procedure that returns a name for the
resource (perhaps by presenting a dialog box that asks the user to name the sound).
Finally, MyRecor dSndResour ce adds the resource to the specified resource file and
updates that file by calling the Resource Manager procedure Updat eResFi | e.

Using Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

Recording a Sound File

To record a sound directly into a file, you can call the SndRecor dToFi | e function,
which works exactly like SndRecor d except that you pass it the file reference number
of an open file instead of a handle to some memory. When SndRecor dToFi | e exits
successfully, that file contains the recorded audio data in AIFF or AIFF-C format.

You can then play the recorded sound by passing that file reference number to the
SndSt art Fi | ePl ay function. (See Listing 1-2 on page 40 for a sample function that
uses the SndSt art Fi | ePl ay function.) Listing 1-6 defines a procedure that records a
sound into a file using SndRecor dToFi | e.

Listing 1-6 Recording a sound file

PROCEDURE MyRecor dSoundFile (myFil eRef Num | nteger);

VAR
myErr: OSErr;
my Cor ner : Poi nt ;
BEG N

My Get TopLef t Cor ner (myCor ner) ;
myErr := SndRecordToFile(N L, nyCorner, siBestQuality, nyFileRefNum;
IF (myErr <> noErr) AND (nmyErr <> userCancel edErr) THEN
DoError (nmyErr);
END;

The SndRecor dToFi | e function records the sound in the file specified in its

fourth parameter. You must open the file before calling the MyRecor dSoundFi | e
procedure, and you must close the file after calling it. For more information on creating,
opening, and closing files, see the chapter “Introduction to File Management” in

Inside Macintosh: Files.

Checking For Speech Capabilities

Because the Speech Manager is not available in all system software versions, your
application should always check for speech capabilities before attempting to use them.
Listing 1-7 defines a function that determines whether the Speech Manager is available.

Listing 1-7 Checking for speech generation capabilities

FUNCTI ON MyHasSpeech: Bool ean;

VAR
nmyFeat ur e: Longl nt; {feature being tested}
myErr: OSErr;

BEG N

nmyErr := CGestalt(gestaltSpeechAttr, nyFeature);

Using Sound on Macintosh Computers

45

YsOJUIdRIAl BY]) UO PUNOS 0} UOIdNPO.IU| -

CHAPTER 1

Introduction to Sound on the Macintosh

| F nyErr = noErr THEN {test Speech Manager-present bit}
MyHasSpeech : = BTst(nyFeature, gestaltSpeechMyrPresent)
ELSE
MyHasSpeech : = FALSE; {no speech features avail abl e}
END;

The MyHas Speech function defined in Listing 1-7 uses the Gest al t function to
determine whether the Speech Manager is available. The MyHas Speech function tests
the gest al t SpeechMyr Pr esent bit and returns TRUE if and only if the Speech
Manager is present. If the Gest al t function cannot obtain the desired information and
returns a result code other than noEr r , the MyHas Speech function assumes that the
Speech Manager is not available and therefore returns FALSE.

Generating Speech From a String

It is easy to have the Speech Manager generate speech from a string stored as a variable
of type St r 255. The SpeakSt ri ng function takes one parameter, the string to be
spoken. SpeaksSt ri ng automatically allocates a speech channel, uses that channel to
produce speech, and then disposes of the speech channel when speaking is complete.
Speech generation is asynchronous, but because Speak St r i ng copies the string you
pass it into an internal buffer, you are free to release the memory you allocated for the
string as soon as SpeakSt ri ng returns.

Listing 1-8 show how you can use the Speak St r i ng function to convert a string stored
in a resource of type’ STR#' into speech.

Listing 1-8 Using SpeakSt ri ng to generate speech from a string

PROCEDURE MySpeakStringResource (nyStrListlD: Integer; nylndex: Integer);
VAR

nyString: Str255; {the string to speak}
myErr: OSErr;

BEG N
GetlndString(myString, nyStrListlD, nylndex); {load the string}
nyErr := SpeakString(nyString); {start speaki ng}

| F nyErr <> noErr THEN
DoError (nyErr);
END;

The MySpeakSt ri ngResour ce procedure defined in Listing 1-8 takes as parameters the
resource ID of the’ STR#' resource containing the string and the index of the

string within that resource. MySpeak St r i ngResour ce passes these values to the

Get I ndSt ri ng procedure, which loads the string from the resource file into memory.
My SpeakSt ri ngResour ce then calls the Speak St ri ng function to convert the string
into speech; if an error occurs, it calls an application-defined error-handling procedure.

46 Using Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

The speech that the Speak St ri ng function generates is asynchronous; that is, control
returns to your application before the function finishes speaking the string. If you would
like to generate speech synchronously, you can use SpeakSt ri ng in conjunction with
the SpeechBusy function, which returns the number of active speech channels,
including the speech channel created by the SpeakSt ri ng function.

Listing 1-9 illustrates how you can use SpeechBusy and SpeakSt ri ng to generate
speech synchronously.

Listing 1-9 Generating speech synchronously

PROCEDURE MySpeakStri ngResourceSync (nyStrListlD: Integer; nylndex: |Integer);
VAR

acti veChannel s: I nt eger; {nunber of active speech channel s}
BEG N

activeChannel s : = SpeechBusy; {find nunber of active channel s}

MySpeakSt ri ngResource(nyStrListlD, mnylndex); {speak the string}

{wWait until channel is no |onger processing speech.}
REPEAT
UNTI L SpeechBusy = activeChannel s;

END;

The MySpeakSt ri ngResour ceSync procedure defined in Listing 1-9 uses the

My SpeakSt ri ngResour ce procedure defined in Listing 1-8 to speak a string. However,
before calling MySpeakSt ri ngResour ce, MySpeak St ri ngResour ceSync calls the
SpeechBusy function to determine how many speech channels are active. After the
speech has begun, the My Speak St ri ngResour ceSync function does not return until
the number of speech channels active again falls to this level.

Note

Ordinarily, you should play speech asynchronously, to allow the user to
perform other activities while speech is being generated. You might play
speech synchronously if other activities performed by your application
should not occur while speech is being generated. O

You can use the SpeakSt ri ng function to stop speech being generated by a prior call

to SpeakSt ri ng. You might do this, for example, if the user switches to another
application or closes a document associated with speech being generated. To stop speech,
simply pass a zero-length string to the SpeakSt ri ng function (or if you are
programming in C, pass NULL).

Listing 1-10 shows how your application can stop speech generated by a call to the
SpeakSt ri ng function.

Using Sound on Macintosh Computers 47

YsOJUIdRIAl BY]) UO PUNOS 0} UOIdNPO.IU| -

CHAPTER 1

Introduction to Sound on the Macintosh

Listing 1-10 Stopping speech generated by SpeakSt ri ng

PROCEDURE My St opSpeech;

VAR
nyString: Str 255; {an enmpty string}
nmyErr: OSErr;
BEG N
nyString[0] := Char(0); {set length of string to 0}

myErr := SpeakString(myString); {stop previous speech}
I F nyErr <> noErr THEN
DoError (nyErr);
END;

The My St opSpeech procedure defined in Listing 1-10 sets the length byte of a string to 0
before calling the SpeakSt ri ng function. To execute this code in some development
systems, you need to ensure that range checking is disabled. Consult your development
system’s documentation for details on enabling and disabling range checking.

Sound Reference

Routines

This section describes the routines used in this chapter to illustrate basic sound
producing and recording operations. These are high-level routines that you can use to
play and record sound resources and sound files, and to convert text to speech. The
routines described in this section also appear in the appropriate reference sections of the
other chapters in this book.

For a description of sound-related data structures and other sound-related routines, see
the chapters “Sound Manager,” “Sound Input Manager,” and “Speech Manager” in this
book. For a detailed description of the formats of sound resources and sound files, see the
chapter “Sound Manager” in this book.

This section describes the high-level system software routines that you can use to play
and record sound resources and sound files, or to convert a text string to spoken words.
These routines belong to the Sound Manager.

Playing Sounds

48

You can use the SysBeep procedure to play the system alert sound, the SndPI ay
function to play the sound stored inany’ snd ' resource, and the SndSt art Fi | ePl ay
function to play a sound file.

Sound Reference

CHAPTER 1

Introduction to Sound on the Macintosh

SysBeep
You can use the SysBeep procedure to play the system alert sound.
PROCEDURE SysBeep (duration: Integer);
duration The duration (in ticks) of the resulting sound. This parameter is ignored
except on a Macintosh Plus, Macintosh SE, or Macintosh Classic when
the system alert sound is the Simple Beep. The recommended duration is
30 ticks, which equals one-half second.
DESCRIPTION

The SysBeep procedure causes the Sound Manager to play the system alert sound at its
current volume. If necessary, the Sound Manager loads into memory the sound resource
containing the system alert sound and links it to a sound channel. The user selects a
system alert sound in the Alert Sounds subpanel of the Sound control panel.

The volume of the sound produced depends on the current setting of the system alert
sound volume, which the user can adjust in the Alert Sounds subpanel of the Sound
control panel. The system alert sound volume can also be read and set by calling the

CGet SysBeepVol une and Set SysBeepVol une routines. If the volume is set to 0 (silent)
and the system alert sound is enabled, calling SysBeep causes the menu bar to blink
once.

SPECIAL CONSIDERATIONS

SEE ALSO

SndPlay

Because the SysBeep procedure moves memory, you should not call it at interrupt time.

For information on enabling and disabling the system alert sound or for information on
reading and adjusting the system alert sound volume, see the chapter “Sound Manager”
in this book.

You can use the SndPI ay function to play a sound resource that your application has
loaded into memory.

FUNCTI ON SndPl ay (chan: SndChannel Ptr; sndHdl: Handl e;
async: Bool ean): OSErr;

chan A pointer to a valid sound channel. You can pass NI L instead of a pointer

to a sound channel if you want the Sound Manager to internally allocate a
sound channel in your application’s heap zone.

Sound Reference 49

YsOJUIdRIAl BY]) UO PUNOS 0} UOIdNPO.IU| -

DESCRIPTION

CHAPTER 1

Introduction to Sound on the Macintosh

sndHdl A handle to the sound resource to play.

async A Boolean value that indicates whether the sound should be played
asynchronously (TRUE) or synchronously (FALSE). This parameter is
ignored (and the sound plays synchronously) if NI L is passed in the
first parameter.

The SndPI ay function attempts to play the sound located at sndHdl , which is expected
to have the structure of aformat 1’ snd ' resource. If the resource has not yet been
loaded, the SndPI ay function fails and returns the r esPr obl emresult code. The handle
you pass in the sndHdl parameter must be locked for as long as the sound is playing
asynchronously.

The chan parameter is a pointer to a sound channel. If chan is not NI L, it is used as a
valid channel. If chan is NI L, an internally allocated sound channel is used. Commands
and data contained in the sound handle are then sent to the channel. Note that you can
pass SndPl ay a handle to some data created by calling the Sound Input Manager’s
SndRecor d function as well as a handle to an actual * snd ’ resource that you have
loaded into memory.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

Because the SndPI ay function moves memory, you should not call it at interrupt time.

noErr 0 No error

not EnoughHar dwar eEr r -201 Insufficient hardware available
resProbl em -204 Problem loading the resource
badChannel -205 Channel is corrupt or unusable
badFor mat -206 Resource is corrupt or unusable

For an example of how to play a sound resource using the SndPI ay function, see
“Playing a Sound Resource” on page 39. For more information on the SndPI ay function,
see the chapter “Sound Manager” in this book.

SndStartFilePlay

50

You can call the SndSt art Fi | ePl ay function to initiate a play from disk.

FUNCTI ON SndStartFil ePlay (chan: SndChannel Ptr; fRef Num |Integer;
resNum Integer; bufferSize: Longlnt;
theBuffer: Ptr;

Sound Reference

DESCRIPTION

CHAPTER 1

Introduction to Sound on the Macintosh

t heSel ecti on: Audi oSel ecti onPtr;
t heConpl etion: ProcPtr;
async: Bool ean): OSErr;

chan A pointer to a valid sound channel. You can pass NI L instead of a pointer
to a sound channel if you want the Sound Manager to internally allocate a
sound channel in your application’s heap zone.

f Ref Num The file reference number of the AIFF or AIFF-C file to play. To play a
sound resource rather than a sound file, this field should be 0.

resNum The resource ID number of a sound resource to play. To play a sound file
rather than a sound resource, this field should be 0.

bufferSize
The number of bytes of memory that the Sound Manager is to use for
input buffering while reading in sound data. For SndSt art Fi | ePl ay to
execute successfully on the slowest Macintosh computers, use a buffer of
at least 20,480 bytes. You can pass the value 0 to instruct the Sound
Manager to allocate a buffer of the default size.

t heBuf f er A pointer to a buffer that the Sound Manager should use for input
buffering while reading in sound data. If this parameter is NI L, the Sound
Manager allocates two buffers, each half the size of the value specified in
the buf f er Si ze parameter. If this parameter is not NI L, the buffer
should be a nonrelocatable block of size buf f er Si ze.

t heSel ecti on
A pointer to an audio selection record that specifies which portion of a
sound should be played. You can pass NI L to specify that the Sound
Manager should play the entire sound.

t heConpl eti on
A pointer to a completion routine that the Sound Manager calls when the
sound is finished playing. You can pass NI L to specify that the Sound
Manager should not execute a completion routine. This field is useful only
for asynchronous play.

async A Boolean value that indicates whether the sound should be played
asynchronously (TRUE) or synchronously (FALSE). You can play sound
asynchronously only if you allocate your own sound channel (using
SndNewChannel). If you pass NI L in the chan parameter and TRUE for
this parameter, the SndSt ar t Fi | ePl ay function returns the
badChannel result code.

The SndSt art Fi | ePl ay function begins a continuous play from disk on a sound
channel. The chan parameter is a pointer to the sound channel. If chan isnot NI L, it

is used as a valid channel. If chan is NI L, an internally allocated sound channel is used
for play from disk. This internally allocated sound channel is not passed back to you.
Because SndPauseFi | ePl ay and SndSt opFi | ePl ay (described in the chapter “Sound
Manager”) require a sound-channel pointer, you must allocate your own channel if you
wish to use those routines.

Sound Reference 51

YsOJUIdRIAl BY]) UO PUNOS 0} UOIdNPO.IU| -

CHAPTER 1

Introduction to Sound on the Macintosh

The sounds you wish to play can be stored either inafileorinan’ snd ' resource. If
you are playing a file, then f Ref Numshould be the file reference number of the file to be
played and the parameter r esNumshould be set to 0. If you are playingan’ snd ’
resource, then f Ref Numshould be set to 0 and r esNumshould be the resource ID
number (not the file reference number) of the resource to play.

SPECIAL CONSIDERATIONS

Because the SndSt ar t Fi | ePl ay function moves memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the SndSt art Fi | ePl ay function are

Trap macro Selector
_SoundDi spat ch $0D000008

nokErr 0 No error

not EnoughHar dwar eEr r -201 Insufficient hardware available

queueFul | -203 No room in the queue

resProbl em -204 Problem loading the resource

badChannel -205 Channel is corrupt or unusable

badFor mat -206 Resource is corrupt or unusable

not EnoughBuf f er Space =207 Insufficient memory available

badFi | eFor mat -208 File is corrupt or unusable, or not AIFF or
AIFF-C

channel Busy -209 Channel is busy

buf f er sTooSnal | -210 Buffer is too small

si I nval i dConpr essi on -223 Invalid compression type

For an example of how to play a sound file using the SndSt art Fi | ePl ay function, see
“Playing a Sound File” on page 40. For information on completion routines, see the
chapter “Sound Manager” in this book.

Recording Sounds

52

The Sound Input Manager provides two high-level sound input routines, SndRecor d
and SndRecor dToFi | e, for recording sound. These input routines are analogous to the
two Sound Manager functions SndPl ay and SndSt ar t Fi | ePl ay. By using these
high-level routines, you can be assured that your application presents a user interface
that is consistent with that displayed by other applications recording sounds. Both
SndRecor d and SndRecor dToFi | e attempt to record sound data from the sound input
hardware currently selected in the Sound In control panel.

Sound Reference

SndRecord

CHAPTER 1

Introduction to Sound on the Macintosh

DESCRIPTION

You can use the SndRecor d function to record sound resources into memory.

FUNCTI ON SndRecord (filterProc: ProcPtr; corner: Point;
quality: OSType; VAR sndHandl e: Handl e):
OSErr;

filterProc
A pointer to an event filter function that determines how user actions in
the sound recording dialog box are filtered (similar tothefi | t er Proc
parameter specified in a call to the Mbdal Di al og procedure). By
specifying your own filter function, you can override or add to the
default actions of the items in the dialog box. Iffi | t er Proc isn't NI L,
SndRecor d filters events by calling the function thatfi | t er Proc
points to.

cor ner The horizontal and vertical coordinates of the upper-left corner of the
sound recording dialog box (in global coordinates).

quality The desired quality of the recorded sound.

sndHandl e On entry, a handle to some storage space or NI L. On exit, a handle to a
valid sound resource (or unchanged, if the call did not execute
successfully).

The SndRecor d function records sound into memory. The recorded data has the
structure of aformat 1’ snd ’ resource and can later be played using the SndPl ay
function or can be stored as a resource. SndRecor d displays a sound recording dialog
box and is always called synchronously. Controls in the dialog box allow the user to start,
stop, pause, and resume sound recording, as well as to play back the recorded sound. The
dialog box also lists the remaining recording time and the current microphone sound
level.

The qual i t y parameter defines the desired quality of the recorded sound. Currently,
three values are recognized for the qual i t y parameter:

CONST
siBestQual ity = 'best’; {the best quality avail abl e}
siBetterQuality = "betr’; {a quality better than good}
si GoodQual ity = ’'good’; {a good quality}

The precise meanings of these parameters are defined by the sound input device driver.
For Apple-supplied drivers, this parameter determines whether the recorded sound is to
be compressed, and if so, whether at a 6:1 or a 3:1 ratio. The quality si Best Qual ity
does not compress the sound and provides the best quality output, but at the expense of
increased memory use. The quality si Bet t er Qual i t y is suitable for most nonvoice
recording, and si GoodQual i ty is suitable for voice recording.

Sound Reference 53

YsOJUIdRIAl BY]) UO PUNOS 0} UOIdNPO.IU| -

CHAPTER 1

Introduction to Sound on the Macintosh

The sndHandl e parameter is a handle to some storage space. If the handle is NI L, the
Sound Input Manager allocates a handle of the largest amount of space that it can find in
your application’s heap and returns this handle in the sndHand| e parameter. The Sound
Input Manager resizes the handle when the user clicks the Save button in the sound
recording dialog box. If the sndHandl e parameter passed to SndRecor d is not NI L, the
Sound Input Manager simply stores the recorded data in the location specified by that
handle.

SPECIAL CONSIDERATIONS
Because the SndRecor d function moves memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SndRecor d function are

Trap macro Selector
_SoundDi spat ch $08040014

RESULT CODES
nokErr 0 No error
user Cancel edErr -128 User canceled the operation
si BadSoundl nDevi ce =221 Invalid sound input device
si UnknownQual ity -232 Unknown quality

SEE ALSO

For an example of how to record a sound resource using the SndRecor d function, see
“Recording a Sound Resource” on page 42. See the chapter “Dialog Manager” in Inside
Macintosh: Macintosh Toolbox Essentials for a complete description of event filter functions.

SndRecordToFile

You can use SndRecor dToFi | e to record sound data into a file.

FUNCTI ON SndRecordToFile (filterProc: ProcPtr; corner: Point;
quality: OSType;
fRef Num Integer): OSErr;

filterProc
A pointer to a function that determines how user actions in the sound
recording dialog box are filtered.

cor ner The horizontal and vertical coordinates of the upper-left corner of the
sound recording dialog box (in global coordinates).

54 Sound Reference

CHAPTER 1

Introduction to Sound on the Macintosh

quality The desired quality of the recorded sound. The values you can use for this
parameter are described on page 53.

f Ref Num The file reference number of an open file to save the audio data in.

DESCRIPTION

The SndRecor dToFi | e function works just like SndRecor d except that it stores the
sound input data into a file. The resulting file is in either AIFF or AIFF-C format and
contains the information necessary to play the file by using the Sound Manager’s
SndSt art Fi | ePl ay function. The SndRecor dToFi | e function is always called
synchronously.

Your application must open the file specified in the f Ref Numparameter before calling the
SndRecor dToFi | e function. Your application must close the file sometime after calling
SndRecor dToFi | e.

SPECIAL CONSIDERATIONS

Because the SndRecor dToFi | e function moves memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SndRecor dToFi | e function are

Trap macro Selector
_SoundDi spat ch $07080014

RESULT CODES
noErr 0 No error
user Cancel edErr -128 User canceled the operation
si BadSoundl nDevi ce -221 Invalid sound input device
si UnknownQual ity -232 Unknown quality

SEE ALSO

For an example of how to record a sound file using the SndRecor dToFi | e function, see
“Recording a Sound File” on page 45. See the chapter “Dialog Manager” in Inside
Macintosh: Macintosh Toolbox Essentials for a complete description of event filter functions.

Generating and Stopping Speech

Your application can use the SpeakSt ri ng function to generate speech or stop speech
currently being generated by SpeakSt ri ng. By calling the SpeechBusy function before
and after a call to SpeakSt ri ng, your application can determine when speaking is
complete. These routines belong to the Speech Manager.

Sound Reference 55

YsOJUIdRIAl BY]) UO PUNOS 0} UOIdNPO.IU| -

CHAPTER 1

Introduction to Sound on the Macintosh

SpeakString

DESCRIPTION

You can use the SpeakSt r i ng function to have the Speech Manager read a text string.
FUNCTI ON SpeakString (s: Str255): OSErr;

S The string to be spoken.

The SpeaksSt ri ng function attempts to speak the Pascal-style text string contained in
the string s. Speech is produced asynchronously using the default system voice. When an
application calls this function, the Speech Manager makes a copy of the passed string and
creates any structures required to speak it. As soon as speaking has begun, control is
returned to the application. The synthesized speech is generated asynchronously to the
application so that normal processing can continue while the text is being spoken. No
further interaction with the Speech Manager is required at this point, and the application
is free to release the memory that the original string occupied.

If SpeakSt ri ng is called while a prior string is still being spoken, the sound currently
being synthesized is interrupted immediately. Conversion of the new text into speech is
then begun. If you pass a zero-length string (or, in C, anul | pointer) to SpeakSt ri ng,
the Speech Manager stops any speech previously being synthesized by SpeakSt ri ng
without generating additional speech. If your application uses SpeakSt ri ng, it is often
a good idea to stop any speech in progress whenever your application receives a suspend
event. (Note, however, that calling SpeakSt r i ng with a zero-length string has no effect
on speech channels other than the one managed internally by the Speech Manager for the
SpeakSt r i ng function.)

The text passed to the Speak St ri ng function may contain embedded speech
commands, which are described in the chapter “Speech Manager” in this book.

SPECIAL CONSIDERATIONS

Because the SpeakSt ri ng function moves memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

56

The trap macro and routine selector for the SpeakSt ri ng function are

Trap macro Selector
_SoundDi spat ch $0220000C

Sound Reference

RESULT CODES

SEE ALSO

CHAPTER 1

Introduction to Sound on the Macintosh

nokErr 0 No error
mentul | Err -108 Not enough memory to speak
synt hOpenFai | ed -241 Could not open another speech synthesizer channel

For an example of how to read a text string using the SpeakSt r i ng function, see
“Generating Speech From a String” on page 46. See the chapter “Dialog Manager”
in Inside Macintosh: Macintosh Toolbox Essentials for a complete description of event
filter functions.

SpeechBusy

DESCRIPTION

You can use the SpeechBusy function to determine whether any channels of speech are
currently synthesizing speech.

FUNCTI ON SpeechBusy: I nteger;

The SpeechBusy function returns the number of speech channels that are currently
synthesizing speech in the application. This is useful when you want to ensure that an
earlier speech request has been completed before having the system speak again. Note
that paused speech channels are counted among those that are synthesizing speech.

The speech channel that the Speech Manager allocates internally in response to calls to
the SpeakSt ri ng function is counted in the number returned by SpeechBusy. Thus, if
you use just SpeakSt ri ng to initiate speech, SpeechBusy always returns 1 as long as
speech is being produced. When SpeechBusy returns 0, all initiated speech has finished.

SPECIAL CONSIDERATIONS

You can call the SpeechBusy function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SpeechBusy function are

Trap macro Selector
_SoundDi spat ch $003C000C

Sound Reference 57

YsOJUIdRIAl BY]) UO PUNOS 0} UOIdNPO.IU| -

58

CHAPTER 1

Introduction to Sound on the Macintosh

Sound Reference

CHAPTER 2

Sound Manager

This chapter describes the Sound Manager, the part of the Macintosh system software
that controls the production and manipulation of sounds on Macintosh computers. You
can use the Sound Manager to create a wide variety of sounds and to manipulate sounds
in many ways. The Sound Manager is also used by other parts of the Macintosh system
software that produce sounds, such as QuickTime.

To use this chapter, you should already be familiar with the information in the chapter
“Introduction to Sound on the Macintosh” earlier in this book, especially with the
portions of that chapter that describe the Macintosh sound architecture and the routines
related to sound output. That chapter shows how your application can play a sound
resource or a sound file synchronously (that is, with other processing suspended while
the sound plays).

You should read this chapter if you need a greater degree of control over sound output
than the routines described in that introductory chapter provide. For example, if you
want to play sounds asynchronously or to exercise very fine control over the process of
sound production, this chapter contains information you need.

This chapter begins by describing the capabilities of the Sound Manager and the role of
sound commands and sound channels in producing sound. Then it explains how you can
use the Sound Manager to

» create and manage sound channels

= obtain information about available sound features and sound channels
= play notes and other sounds at various frequencies and volumes

= play one or more sounds asynchronously

= parse sound resources and sound files to obtain information about them
= compress and expand sound data

= use double buffers to bypass the normal play-from-disk routines

You’re not likely to use all of these capabilities in a single application. In general, you
should read the section “About the Sound Manager” and then turn to the parts of the

CHAPTER 2

Sound Manager

section “Using the Sound Manager” that describe the features you want to use in your
application. The section “Sound Storage Formats” beginning on page 128 explains in
detail the format of sound resources and sound files. You can find a complete reference to
the Sound Manager data structures and routines in the section “Sound Manager
Reference” beginning on page 144.

IMPORTANT

This chapter describes the capabilities and programming interfaces of
version 3.0 of the Sound Manager. See the chapter “Introduction to
Sound on the Macintosh” for some information on how version 3.0
differs from earlier versions. The capabilities and performance of version
3.0 are significantly better than those of all previous Sound Manager
versions, even though their programming interfaces are largely identical.
This chapter occasionally warns you about techniques or routines that
cannot be used in versions prior to 3.0, but it does not provide an
exhaustive comparison of all available versions. a

About the Sound Manager

60

The Sound Manager is a collection of routines that your application can use to create
sound without a knowledge of or dependence on the actual sound-producing hardware
available on any particular Macintosh computer. More generally, the Sound Manager is
responsible for managing all sound production on Macintosh computers. Other parts of
the Macintosh system software that need to create or modify sounds use the Sound
Manager to do so. Figure 2-1 shows the position of the Sound Manager in relation to
sound-producing applications and to other parts of the system software, such as the
Speech Manager and QuickTime.

About the Sound Manager

CHAPTER 2

Sound Manager

Figure 2-1 The position of the Sound Manager

Text-to-speech

Sound-producing
Application

Sound Manager <

J

Sound components

1
)

Audio
hardware

Movie Player Application
ﬂ ﬁ

(]

QuickTime Speech 8
Manager =1

=1

<

D

>

)

Q

@

Sound Input
Manager

Il

The Sound Manager was first introduced in system software version 6.0 and has been
significantly enhanced since that time. Prior to system software version 6.0, applications
could create sounds using the Sound Driver.

IMPORTANT
To ensure compatibility across all models of Macintosh computers, you
should always use the Sound Manager rather than the Sound Driver,
which is no longer documented or supported by Apple Computer, Inc.
The Sound Manager is simpler and much more powerful than the
Sound Driver. Moreover, Sound Driver code might not work on some
Macintosh computers. a

This section describes the three basic ways of defining sounds, namely using wave-table
data, square-wave data, or sampled-sound data. Usually, you’ll use sampled data to
define the sounds you want to create, because sampled data provides the greatest
flexibility and variety of sounds. You might use wave-table or square-wave data for very
simple sounds. For instance, the Simple Beep alert sound is defined using square-wave
data. Most other alert sounds are defined using sampled-sound data.

About the Sound Manager 61

62

CHAPTER 2

Sound Manager

This section also describes sound commands and sound channels, which you need to
know about to be able to do anything more complex than play sound resources or files
synchronously using high-level Sound Manager routines.

Sound Data

The Sound Manager can play sounds defined using one of three kinds of sound data:
= square-wave data

= wave-table data

= sampled-sound data

This section provides a brief description of each of these kinds of audio data and
introduces some of the concepts that are used in the remainder of this chapter. A
complete description of the nature and format of audio data is beyond the scope of this
book. There are, however, numerous books available that provide complete discussions
of digital audio data.

Square-Wave Data

Square-wave data is the simplest kind of audio data supported by the Sound Manager.
You can use square-wave data to generate a sound based on a square wave. Your
application can use square-wave data to play a simple sequence of sounds in which each
sound is described completely by three factors: its frequency or pitch, its amplitude (or
volume), and its duration.

The frequency of a sound is the number of cycles per second (or hertz) of the sound
wave. Usually, you specify a sound’s frequency by a MIDI value. MIDI note values
correspond to frequencies for musical notes, such as middle C, which is defined to have a
MIDI value of 60, which on Macintosh computers is equivalent to 261.625 hertz.

Pitch is a lister’s subjective interpretation of the sound’s frequency. The terms frequency
and pitch are used interchangeably in this chapter.

Asound’s duration is the length of time a sound takes to play. In the Sound Manager,
durations are usually specified in half-milliseconds.

The amplitude of a sound is the loudness at which it is being played. Two sounds played
at the same amplitude might not necessarily sound equally loud. For example, one sound
could be played at a lower volume (which the user may set with the Sound control
panel). Or, a sampled sound of a fleeting whisper might sound softer than a sampled
sound of continuous gunfire, even if your application plays them at the same amplitude.

Note

Amplitude is traditionally considered to be the height of a sound wave,
so that two sounds with the same amplitude would always sound
equally loud. However, the Sound Manager considers amplitude to be
the adjustment to be made to an existing sound wave. A sound played at
maximum amplitude still might sound soft if the wave amplitude
issmall. O

About the Sound Manager

CHAPTER 2

Sound Manager

A sound’s timbre is its clarity. A sound with a low timbre is very clear; a sound with a
high timbre is buzzing. Only sounds defined using square-wave data have timbres.

Wave-Table Data

To produce more complex sounds than are possible using square-wave data, your
applications can use wave-table data. As the name indicates, wave-table data is based on
a description of a single wave cycle. This cycle is called a wave table and is represented
as an array of bytes that describe the timbre (or tone) of a sound at any point in the cycle.

Your application can use any number of bytes to represent the wave, but 512 is the
recommended number because the Sound Manager resizes a wave table to 512 bytes if
the table is not exactly that long. Your application can compute the wave table at run time
or load it from a resource.

A wave table is a sequence of wave amplitudes measured at fixed intervals. For instance,
a sine wave can be converted into a wave table by taking the value of the wave’s
amplitude at every /512 interval of the wave (see Figure 2-2).

A wave table is represented as a packed array of bytes. Each byte contains a value in the
range $00-$FF. These values are interpreted as offset values, where $80 represents an
amplitude of 0. The largest negative amplitude is $00 and the largest positive amplitude
is $FF. When playing a wave-table description of a sound, the Sound Manager loops
through the wave table for the duration of the sound.

About the Sound Manager 63

Jabeuey punos -

CHAPTER 2

Sound Manager

Figure 2-2 A graph of a wave table

64

Single wave cycle

$FF

Amplitude

$80 F——— - — |- m - m

$00
1 512

Packed array of bytes

Sampled-Sound Data

You can use sampled-sound data to play back sounds that have been digitally recorded
(that is, sampled sounds) as well as sounds that are computed, possibly at run time.
Sampled sounds are the most widely used of all the available sound types primarily
because it is relatively easy to generate a sampled sound and because sampled-sound
data can describe a wide variety of sounds. Sampled sounds are typically used to play
back prerecorded sounds such as speech or special sound effects.

You can use the Sound Manager to store sampled sounds in one of two ways, either as
resources of type’ snd * or as AIFF or AIFF-C format files. The structure of resources of
type’ snd ' isgiven in “Sound Resources” on page 129, and the structure of AIFF and
AIFF-C files is given in “Sound Files” on page 136. If you simply want to play short
prerecorded sampled sounds, you should probably include the sound datain’ snd
resources. If you want to allow the user to transfer recorded sound data from one
application to another (or from one operating system to another), you should probably
store the sound data in an AIFF or AIFF-C file. In certain cases, you must store sampled
sounds in files and not in resources. For example, a sampled sound might be too large to
be stored in a resource.

Regardless of how you store a sampled sound, you can use Sound Manager routines to
play that sound. If you choose to store sampled sounds in files of type AIFF or AIFF-C,

About the Sound Manager

CHAPTER 2

Sound Manager

you can play those sounds by calling the SndSt ar t Fi | ePl ay function, introduced in
the chapter “Introduction to Sound on the Macintosh” in this book. If you store sampled
sounds in resources, your application can play those sounds by passing the Sound
Manager function SndPI ay a handle to a resource of type’ snd ’ that contains a
sampled sound header. (The SndSt ar t Fi | ePl ay function can also play ' snd ’
resources directly from disk, but this is not recommended.)

There are three types of sampled-sound headers: the standard sound header, the
extended sound header, and the compressed sound header. The sound header contains
information about the sample (such as the original sampling rate, the length of the
sample, and so forth), together with an indication of where the sample data is to be
found. The sampled sound header can reference only buffers of monophonic, 8-bit
sound. The extended sound header can be used for 8- or 16-bit stereo sound data as well
as monophonic sound data. The compressed sound header can be used to describe
compressed sound data, whether monophonic or stereo. Data can be stored in a buffer
separate from the sound resource or as part of the sound resource as the last field of the
sound header.

Jabeuey punos -

Note

The terminology sampled sound header can be confusing because in most
cases the sound header (and hence the’ snd ' resource) contains the
sound data as well as information describing the data. Also, do not
confuse sampled sound headers with sound resource headers. Sampled
sound headers contain information about sampled-sound data, but
sound resource headers contain information on the format of an entire
sound resource. O

You can play a sampled sound at its original rate or play it at some other rate to change
its pitch. Once you install a sampled sound header into a channel, you can play it at
varying rates to provide a number of pitches. In this way, you can use a sampled sound
as a voice or instrument to play a series of sounds.

Sampled-sound data is made up of a series of sample frames, which are stored
contiguously in order of increasing time. For noncompressed sound data, each sample
frame contains one or more sample points. For compressed sound data, each sample
frame contains one or more packets.

For multichannel sounds, a sample frame is an interleaved set of sample points or
packets. (For monophonic sounds, a sample frame is just a single sample point or a single
packet.) The sample points within a sample frame are interleaved by channel number.
For example, the sound data for a stereo, noncompressed sound is illustrated in Figure
2-3.

About the Sound Manager 65

CHAPTER 2

Sound Manager

Figure 2-3 Interleaving stereo sample points

b= f

y _h ﬁ:ﬂ\)))

Frame n Frame n+1 U Frame n+2

ch A chB || ch A chB || ch A | chB

—

iy |
il)

66

Each sample point of noncompressed sound data in a sample frame is, for sound files, a
linear, two’s complement value, and, for sound resources, a binary offset value. Sample
points are from 1 to 32 bits wide. The size is usually 8 bits, but a different size can be
specified in the sanpl eSi ze field of the extended sound header (for sound resources) or
in the sanpl eSi ze field of the Common Chunk (for sound files). Each sample point is
stored in an integral number of contiguous bytes. Sample points that are from 1 to 8 bits
wide are stored in 1 byte, sample points that are from 9 to 16 bits wide are stored in 2
bytes, and so forth. When the width of a sample point is less than a multiple of 8 bits, the
sample point data is left aligned (using a shift-left instruction), and the low-order bits at
the right end are set to 0.

For example, for 8-bit noncompressed sound data stored in a sound resource, each
sample point is similar to a value in a wave-table description. These values are
interpreted as offset values, where $80 represents an amplitude of 0. The value $00 is the
most negative amplitude, and $FF is the largest positive amplitude.

Each packet of 3:1 compressed sound data is 2 bytes; a packet of 6:1 compressed sound is
1 byte. These byte sizes are defined in bits by the constants t hr eeToOnePacket Si ze
and si xToOnePacket Si ze, respectively.

Sound Commands

The Sound Manager provides routines that allow you to create and dispose of sound
channels. These routines allow you to manipulate sound channels, but they do not
directly produce any sounds. To actually produce sounds, you need to issue sound
commands. A sound command is an instruction to produce sound, modify sound, or
otherwise assist in the overall process of sound production. For example, the anpCnd
sound command changes the amplitude (or volume) of a sound.

You can issue sound commands in several ways. You can send sound commands one at a
time into a sound channel by repeatedly calling the SndDoConmand function. The
commands are held in a queue and processed in a first-in, first-out order. Alternatively,
you can bypass a sound queue altogether by calling the SndDol redi at e function. You
can also issue sound commands by calling the function SndPl ay and specifying a sound
resource of type’ snd ' that contains the sound commands you want to issue. A sound

About the Sound Manager

CHAPTER 2

Sound Manager

resource can contain any humber of sound commands. As a result, you might be able to
accomplish all sound-related activity simply by creating sound resources and calling
SndPI ay in your application. See “Sound Resources” on page 129 for details on the
format ofan’ snd ' resource.

Generally speaking, no matter how sound commands are issued, they are all eventually
sent to the Sound Manager, which interprets the commands and plays the sound on the
available audio hardware. The Sound Manager provides a rich set of sound commands.
The structure of a sound command is defined by the ShndCommand data type:

TYPE SndConmand =
PACKED RECORD

cnd: I nt eger; {command nunber}

par ant: I nt eger; {first parameter}

par ang: Longl nt; {second paraneter}
END;

Commands are always 8 bytes in length. The first 2 bytes are the command number, and
the next 6 make up the command’s options. The format of the last 6 bytes depends on the
command in use, although typically those 6 bytes are interpreted as an integer followed
by a long integer. For example, an application can install a wave table into a sound
channel by using SndDoComrand with a sound command whose cnd field is the
waveTabl eCnd constant. In that case, the par amil field specifies the length of the wave
table, and the par an? field is a pointer to the wave-table data itself. Other sound
commands may interpret the 6 parameter bytes differently or may not use them at all.

The sound commands available to your application are defined by constants.

CONST
nul | Cd = 0; {do not hi ng}
qui et Cd = 3; {stop a sound that is playing}
fl ushCnd = 4; {flush a sound channel }
relnitCnd = b; {reinitialize a sound channel}
wai t Cd = 10; {suspend processing in a channel}
pauseCnd = 11; {pause processing in a channel}
resuneCnd = 12; {resune processing in a channel}
cal | BackCnmd = 13; {execute a cal |l back procedure}
syncCmd = 14; {synchroni ze channel s}
avai | abl eCnd = 24; {see if initialization options are supported}
ver si onCnd = 25; {determ ne version}
t ot al LoadCnd = 26; {report total CPU | oad}
| oadCnd = 27; {report CPU | oad for a new channel}
freqDurati onCnrd = 40; {play a note for a duration}
rest Cnd = 41; {rest a channel for a duration}
freqCmd = 42; {change the pitch of a sound}
anpCnd = 43; {change the anplitude of a sound}
ti mbr eCnd = 44; {change the tinbre of a sound}

About the Sound Manager 67

Jabeuey punos -

68

CHAPTER 2

Sound Manager

get AmpCnd = 45; {get the anplitude of a sound}

vol uneCmd = 46; {set vol une}

get Vol uneCnd = 47; {get vol une}

waveTabl eCd = 60; {install a wave table as a voice}
soundCnd = 80; {install a sanpled sound as a voi ce}
buf f er Cd = 81; {play a sanpled sound}

rat eCnd = 82; {set the pitch of a sanpl ed sound}
get Rat eCd = 85; {get the pitch of a sanpled sound}

For details on individual sound commands, see the relevant sections in “Using the Sound
Manager” beginning on page 72. Also see “Sound Command Numbers” beginning on
page 147 for a complete summary of the available sound commands, their parameters,
and their uses.

Sound Channels

A sound channel is a queue of sound commands that is managed by the Sound Manager,
together with other information about the sounds to be played in that channel. The
commands placed into the channel might originate from an application or from the
Sound Manager itself. The commands in the queue are passed one by one, in a first-in,
first-out (FIFO) manner, to the Sound Manager for interpretation and processing.

The Sound Manager uses the SndChannel data type to define a sound channel.

TYPE SndChannel =
PACKED RECORD

next Chan: SndChannel Ptr; {pointer to next channel}
firstMod: Ptr; {used internally}
cal | Back: ProcPtr; {pointer to callback procedure}
user | nf o: Longl nt ; {free for application s use}
wai t: Longl nt ; {used internally}
cndl nProgress: SndConmand; {used internally}
flags: I nt eger; {used internally}
gLengt h: I nt eger; {used internally}
gHead: I nt eger; {used internally}
gTai l : I nt eger; {used internally}
gueue: ARRAY[0. . stdQLengt h-1] OF SndConmand;
END;

Most of the fields of the sound channel record are used internally by the Sound Manager,
and you should not access or change them. However, your application is free to use the
user | nf o field to store any information that you wish to associate with a sound channel.
For example, you might store a handle to an application-defined record that contains
information about how your application is using the channel.

Some applications do not need to worry about creating or disposing of sound channels
because the high-level Sound Manager routines take care of these automatically.

About the Sound Manager

CHAPTER 2

Sound Manager

However, if you wish to customize sound output or play sounds asynchronously, you
must create your own sound channels (with the SndNewChannel function).

The enhanced Sound Manager included in system software versions 6.0.7 and later
provides the ability to have multiple channels of sampled sound produce output on the
Macintosh audio hardware concurrently. (Previous versions of the Sound Manager could
play only a single channel of sampled sound at a time.) This allows a layering of sound
that can bring a touch of reality to a simulation or presentation and permits applications
to incorporate synthesized speech output with any other kind of Macintosh-generated
sound. Sound Manager version 3.0 extended this capability to allow multiple channels of
any kind of sound data to play simultaneously.

Your application can open several channels of sound for concurrent output on the
available audio hardware. Similarly, multiple applications can each open channels of
sound. The number and quality of concurrent channels of sound are limited only by the
abilities of the machine, particularly by the speed of the CPU. Different Macintosh
computers have different CPU clock speeds and execute instructions at quite different
rates. This means that some machines can manage more channels of sound and produce
higher-quality sound than other machines. For example, a Macintosh Quadra might be
able to support several channels of high-quality stereo sound without significant impact
on other processing, whereas a Macintosh Plus might be able to support only a single
channel of monophonic sound before other processing slows significantly.

The Sound Manager currently supports multiple channels of sound only on machines
equipped with an Apple Sound Chip or equivalent hardware. To maintain maximum
compatibility between machines for your applications, you should always check the
operating environment to make sure that the ability to play multiple channels of sampled
sound is present before attempting to do so. A technique for determining whether your
application can play multiple channels of sound is described in “Testing for Multichannel
Sound and Play-From-Disk Capabilities” on page 90.

Sound Compression and Expansion

One minute of monophonic sound recorded with the fidelity you would expect from a
commercial compact disc occupies about 5.3 MB of disk space. One minute of sound
digitized by the current low-fidelity digitizing peripherals for Macintosh computers
occupies more than 1 MB of disk space. Even one minute of telephone-quality speech
takes up more than half of a megabyte on a disk. Despite the increased capacities of
mass-storage devices, disk space can be a problem if your application incorporates large
amounts of sampled sound. The space problem is particularly acute for multimedia
applications. Because a large portion of the space occupied by a multimedia application
is likely to be taken up by sound data, the complexity and richness of the application’s
sound component are limited.

To help remedy this problem, the Sound Manager includes a set of routines known
collectively as Macintosh Audio Compression and Expansion (MACE). MACE enables
you to provide more audio information in a given amount of storage space by allowing
you to compress sound data and then expand it for playback. These enhancements are
based entirely in software and require no specialized hardware.

About the Sound Manager 69

Jabeuey punos -

70

CHAPTER 2

Sound Manager

The audio compression and expansion features allow you to enhance your application by
including more audio data. MACE also relieves some distribution problems by reducing
the number of disks required for shipping an application that relies heavily on sound.
MACE has made some kinds of applications, such as talking dictionaries and foreign
language-instruction software, more feasible than before.

MACE adds three main kinds of capabilities to those already present in the Sound
Manager: audio data compression, real-time expansion and playback of compressed
audio data, and buffered expansion and playback of compressed audio data.

= Compression. The Sound Manager can compress a buffer of digital audio data either
in the original buffer or in a separate buffer. If a segment of audio data is too large to
fit into a single buffer, your application can make repeated calls to the compression
routine.

» Real-time expansion playback. The Sound Manager can expand compressed audio
data contained in a small internal buffer and play it back at the same time. Because the
audio data expansion and playback occur at the same time, there is more of a strain on
the CPU when using this method of sound expansion rather than buffered expansion.

» Buffered expansion. The Sound Manager can expand a specified buffer of compressed
audio data and store the result in a separate buffer. The expanded buffer can then be
played back using other Sound Manager routines with minimal processor overhead
during playback. Applications that require screen updates or user interaction during
playback (such as animation or multimedia applications) should use buffered
expansion.

MACE provides audio data compression and expansion capabilities in ratios of either 3:1
or 6:1 for all currently supported Macintosh models, from the Macintosh Plus forward.
The principal tradeoff when using MACE is that the expanded audio data suffers a loss
of fidelity in comparison to the original data. A small amount of noise is introduced into
a 3:1 compressed sound when it is expanded and played back, and a greater amount of
noise for the 6:1 ratio. The 3:1 buffer-to-buffer compression and expansion option is well
suited for high-fidelity sounds. The 6:1 buffer-to-buffer compression and expansion
option provides greater compression at the expense of lower-fidelity results and is
recommended for voice data only. This technique reduces the frequency bandwidth of
the audio signal by a factor of two to achieve the higher compression ratio.

MACE allows for the compression of both monophonic and stereo sounds. However,
some Macintosh computer models (such as the Macintosh Plus and Macintosh SE) cannot
expand stereo sounds.

Note

With Sound Manager versions prior to 3.0, some Macintosh computers
play only the right channel of stereo’ snd ' data through the internal
speaker. Certain Macintosh Il models can play only a single channel
through the internal speaker. Sound Manager version 3.0 removes both
of these limitations. O

Existing applications that use the Sound Manager’s SndPI ay function to play digitized
audio signals can play compressed audio signals without modification or recompilation.

About the Sound Manager

CHAPTER 2

Sound Manager

The MACE routines assume that each original sample consists of 8-bit sound in binary
offset format. The compression techniques do not, however, depend on a particular
sample rate (the rate at which samples are recorded). Table 2-1 shows some common
sample rates, expressed both as hertz and as unsigned fixed-point values.

Table 2-1 Sample rates

Rate (Hz) Sample rate value (Fixed)
44100.00000 $AC440000
22254.54545 $56EE8BA3
22050.00000 $56EE8BA3
11127.27273 $2B7745D1
11025.00000 $2B110000

7418.1818 $1CFA2ESB

5563.6363 $15BBA2ES

The Sound Manager defines constants for the most common sample rates:

CONST
r at e44khz = $AC440000; {44100. 00000 in fixed-point}
rat e22khz = $56EE8BA3; {22254. 54545 in fixed-point}
rat e22050hz = $56220000; {22050. 00000 in fixed-point}
ratellkhz = $2B7745D1,; {11127. 27273 in fixed-point}
ratell025hz = $2B110000; {11025. 00000 i n fixed-point}

The compression techniques produce their best quality output when the sample rate is
the same as the output rate of the sound hardware of the machine playing the audio data.
The output rate used in most current Macintosh computers is 22.254 kilohertz (hereafter
referred to as the 22 kHz rate). Because of speed limitations, the Macintosh Plus and
Macintosh SE cannot perform sample-rate conversion during expansion playback. On
those machines, all sounds are played back at a 22 kHz rate. To provide consistent quality
in sounds that might be played on different machines, you should record all sounds at a
22 kHz sample rate.

The MACE algorithms are optimized to provide the best sound quality possible through
the internal speaker in real time. However, the user who employs high-quality speakers
might notice a high-frequency hiss for some sounds compressed at the 3:1 ratio. This hiss
results from a design tradeoff between maintaining real-time operation on the Macintosh
Plus and preserving as much frequency bandwidth of the signal as possible. If you think
that your output might be played on high-quality speakers, you might want to filter out
the hiss before compression by passing the audio output through an equalizer that
removes frequencies above 10 kHz. When you use the 6:1 compression and expansion
ratio, your frequency response is cut in half. For example, when you use the 22 kHz

About the Sound Manager 71

Jabeuey punos -

CHAPTER 2

Sound Manager

sample rate, the highest frequency possible would normally be 11 kHz; however, after
compressing and expanding the data at the 6:1 ratio, the highest frequency you could get
would be only 5.5 kHz.

Note

The Sound Manager uses compressions and decompression components
(codecs) to handle the MACE capabilities. You can provide custom
codecs to use other compression and decompression algorithms. See the
chapter “Sound Components” in this book for information on
developing audio codecs. O

Using the Sound Manager

72

The Sound Manager provides a wide variety of methods for creating sound and
manipulating audio data on Macintosh computers. Usually, your application needs to use
only a few of the many routines or sound commands that are available.

The Sound Manager routines can be divided into high-level routines and low-level
routines. The high-level routines (like SndPl ay and SysBeep) give you the ability to
produce very complex audio output at very little programming expense. The majority of
applications interact with the Sound Manager using these high-level routines, which
allow you to play sounds without knowing anything about the structure of sound
commands or sampled-sound data. You can let the high-level routines automatically
allocate channels, or, for increased control, you can allocate your own sound channels.

Applications that have more sophisticated sound capabilities use the low-level routines
(like SndDoCommand and SndDol medi at e) to send sound commands to sound
channels. For example, your application might send a sound command to alter the
amplitude of a sound that is playing (or is about to play).

Finally, a few very specialized applications use the Sound Manager’s low-level sound
playback routines, which allow fine-tuning of the algorithms the Sound Manager uses to
manage the double buffering of sound for its play-from-disk routines.

In general, you should use the highest-level routines capable of producing the kind of
sound you want. Many applications can simply play sounds stored in resources or files
and do not need to customize the sounds or continue with other processing while those
sounds are playing. In such cases, you can use the high-level Sound Manager routines, as
illustrated in the chapter “Introduction to Sound on the Macintosh” in this book. If,
however, you need to be able to exercise very fine control over sound output or to play
sounds asynchronously, you must manage your own sound channels. See “Managing
Sound Channels” on page 74 to learn how you can use the Sound Manager to

= allocate and dispose of sound channels manually by using the SndNewChannel and
SndDi sposeChannel functions

= manipulate sound that is playing (for example, by sending the anpCnd command to a
sound channel to change the amplitude of sound playing)

Using the Sound Manager

CHAPTER 2

Sound Manager

= stop sounds and flush sound channels by using the qui et Cnd and f | ushCnd
commands

= pause and restart sound channels by using the pauseCnd and r esuneCrrd commands
= synchronize sound channels by using the syncCnd command

As you’ve learned, the capabilities of the Sound Manager vary greatly from one
Macintosh computer to another, depending on which version of the Sound Manager is
available on a particular computer and on what audio hardware is available. To create
sounds effectively on all computers, you might need to obtain information about the
available sound features. “Obtaining Sound-Related Information” on page 87 explains
how you can

= use the Gest al t function to determine which basic sound features are available

= find the version number of the available Sound Manager or of the MACE compression
and expansion routines

Jabeuey punos -

= determine whether your application can take advantage of multichannel sound and
the play-from-disk routines

= obtain information about a single sound channel

Some applications need to be able to play computer-generated tones at different pitches.
In addition, some applications need to play waveforms or sampled sounds at different
pitches. For example, if you are writing an application that converts musical notes to
sound, you might record the sound of a violin playing middle C and then replay the
sound at a variety of pitches to simulate a violinist’s playing a concerto. The Sound
Manager allows you to do this by allocating a sound channel and sending sound
commands to it. “Playing Notes” on page 96 explains how you can

= play simple sequences of notes by using the f r eqCnd and f r eqDur at i onCnrd
commands

= install waveforms or sampled sounds into channels by using the soundCnd and
waveTabl eCmd commands so that you can play them at different frequencies

= set asound resource’s loop points so that the sound repeats if af r eqCnd or
freqgbur ati onCnd command lasts longer than the sound

Although some applications do not need to do other processing while sounds are
playing, others do. If your application allocates sound channels itself, it can request that
the Sound Manager play sounds asynchronously. By using callback procedures and
completion routines, your application can arrange for a sound channel to be disposed
when a sound finishes playing. “Playing Sounds Asynchronously” on page 101 explains
how you can

= play a sound resource asynchronously by defining a callback procedure

= use callback procedures to synchronize sounds you play asynchronously with
other actions

= play a sound file asynchronously and pause, restart, or stop such an asynchronous
playback

Using the Sound Manager 73

74

CHAPTER 2

Sound Manager

= manage multiple channels of sound to play more than one sound asynchronously at
the same time

The high-level Sound Manager routines automatically parse sound resources and sound
files to determine the information the Sound Manager needs to play the sounds
contained in the resources and files. However, you might need to obtain information
about sound resources or sound files for some other reason. Or, you might need to locate
a certain part of a sound resource or sound file. For example, to use the buf f er Cnd
sound command to play a buffer of sampled sound, you must obtain a pointer to the
sound header contained in that buffer. See the section “Parsing Sound Resources and
Sound Files” on page 111 for information on how to

= parse sound resources containing sampled-sound data to obtain information from the
sampled-sound data’s sound header

= use the buf f er Cnd command to play sampled-sound data stored within a sound
resource

= parse sound files to find a particular chunk and to extract the data from that chunk

High-level Sound Manager routines automatically expand sound data in real time when
playing compressed sounds. However, you might need to manually compress or expand
sound data at a time when you are not playing sounds. “Compressing and Expanding
Sounds” on page 121 explains how you can use the Sound Manager’s built-in sound
compression and expansion routines to compress or expand sounds.

The Sound Manager’s high-level play-from-disk routines use highly optimized
algorithms to manage the double buffering of data so that the play from disk is
continuous and without audible gaps. However, if you wish to bypass the high-level
Sound Manager play-from-disk routines, you may define your own double-buffering
routines. This might be useful if you need to change the sound data on disk before the
Sound Manager can process it. The section “Using Double Buffers” on page 123 explains
how you can set up your own double buffers and use a doubleback procedure to bypass
the normal play-from-disk routines.

Managing Sound Channels

To use most of the low-level Sound Manager routines, you must specify a sound channel
that maintains a queue of commands. Also, to take advantage of the full capabilities of
the high-level Sound Manager routines, including asynchronous sound play, you must
allocate your own sound channels. This section explains how your application can
allocate, dispose of, and use its own sound channels.

This section first describes how you can allocate and dispose of sound channels.

Then it explains how you can manipulate sounds playing in sound channels, stop sounds
playing in sound channels, and pause and restart the execution of sounds in sound
channels.

Using the Sound Manager

CHAPTER 2

Sound Manager

Allocating Sound Channels

Usually, you do not need to worry about allocating memory for sound channels because
the SndNewChannel function automatically allocates a sound channel record in the
application’s heap if passed a pointer to a NI L sound channel. SndNewChannel also
internally allocates memory for the sound channel’s queue of sound commands. For
example, the following lines of code request that the Sound Manager open a new sound
channel for playing sampled sounds:

nySndChan : = N L;
myErr : = SndNewChannel (nmySndChan, sanpledSynth, 0, NL);

If you are concerned with managing memory yourself, you can allocate your own
memory for a sound channel record and pass the address of that memory as the first
parameter to SndNewChannel . By allocating a sound channel record manually, you not
only obtain control over the allocation of the sound channel record, but you can specify
the size of the queue of sound commands that the Sound Manager internally allocates.
Listing 2-1 illustrates one way to do this.

Listing 2-1 Creating a sound channel
FUNCTI ON MyCr eat eSndChannel (synth: Integer; initOptions: Longlnt;
user Routine: ProcPtr;

queuelLengt h: Integer): SndChannel Ptr;

VAR
nySndChan: SndChannel Ptr; {pointer to a sound channel}
nmyErr: OSErr;

BEG N

{Al'l ocate nenory for sound channel .}
mySndChan : = SndChannel Ptr (NewPt r (Si zeof (SndChannel)));

| F mySndChan <> NIL THEN
BEG N
mySndChan”. gLengt h
{Create a new sound channel .}

nyErr : = SndNewChannel (nySndChan, synth,
IF nyErr <> noErr THEN
BEG N

Di sposePtr (Ptr(nySndChan));
mySndChan : = NIL;

END
ELSE
mySndChan”. userinfo : = 0;
END;
MyCr eat eSndChannel : = nmySndChan;
END;

Using the Sound Manager

. = queuelengt h;

{set nunber of comrands i n queue}
i nitOptions, userRoutine);
{couldn’t allocate channel}
{free nenory al ready all ocat ed}
{return NI L}

{reset userinfo field}

{return new sound channel }

75

Jabeuey punos -

76

CHAPTER 2

Sound Manager

The MyCr eat eSndChannel function defined in Listing 2-1 first allocates memory for a
sound channel record and then calls the SndNewChannel function to attempt to allocate
a channel. Note that My Cr eat eSndChannel checks the result code returned by
SndNewChannel to determine whether the function was able to allocate a channel. The
SndNewChannel function might not be able to allocate a channel if there are so many
channels open that allocating another would put too much strain on the CPU. Also,
SndNewChannel might fail if memory is low. (In addition to the memory for a sound
channel record that is passed in the first parameter to SndNewChannel , the function
must internally allocate memory in which to store sound commands.)

If you allocate memory for a sound channel record, you should specify the size of the
gueue of sound commands by assigning a value to the gLengt h field of the sound
channel record you allocate. You can use the constant st dQLengt h to obtain a standard
gueue of 128 sound commands, or you can provide a value of your own.

CONST
stdQ.ength = 128; {default size of a sound channel}

If you know that your application will play only resources containing sampled sound,
you might set the gLengt h field to a considerably lower value, because resources created
with the SndRecor d function (described in the chapter “Introduction to Sound on the
Macintosh” in this book) contain only one sound command, the buf f er Crd command,
which specifies that a buffer of sound should be played. For example, if your application
uses a sound channel only to play a single sampled sound asynchronously, you can set
gLengt h to 2, to allow for the buf f er Cnd command and a cal | BackCnd command
that your application issues manually, as described in “Playing Sounds Asynchronously”
on page 101. By using a smaller than standard queue length, your application can
conserve memory.

Note

The number of sound commands in a channel should be an integer
greater than 0. If you open a channel with a 0-length queue, most of the
Sound Manager routines will return a badChannel result code. O

IMPORTANT

In general, however, you should let the Sound Manager allocate sound
channel records for you. The amount of memory you might save by
allocating your own is usually negligible. a

The second parameter in the SndNewChannel function specifies the kind of data you
want to play on that channel. You can specify one of the following constants:

CONST
squar eWaveSynt h = 1; {squar e-wave dat a}
waveTabl eSynt h = 3; {wave-tabl e dat a}
sanpl edSynt h = b5; {sanpl ed- sound dat a}

In some versions of system software prior to system software version 7.0 (including
system software version 6.0.7), high-level Sound Manager routines do not work properly

Using the Sound Manager

CHAPTER 2

Sound Manager

with sound resources that specify the sound data type twice. This might happen if a
resource specifies that a sound consists of sampled-sound data and an application does
the same when creating a sound channel. This might also happen if an application uses
the same sound channel to play several sound resources that contain different kinds of
sound data. There are several solutions to this problem that you can use if you must
maintain compatibility with old versions of system software:

= If your application plays only sampled-sound resources, then you need only ensure
that none of the sound resources specifies that it contains sampled-sound data. Then,
when you create a sound channel, pass sanpl edSynt h as the second parameter to
SndNewChannel so that the Sound Manager interprets the data in the sound
resources correctly. Do not use the SndPI ay routine.

= |If your application must be able to play sampled-sound resources as well as resources
that contain square-wave or wave-table data, ensure that all sound resources that your
application uses specify their data type. (Sound resources created with the Sound
Input Manager automatically specify that they contain sampled-sound data.) Then,
when creating a channel in which you plan to play a sound resource, pass 0 as the
second parameter to SndNewChannel , and then use the channel to play no more than
one sound resource.

Jabeuey punos -

= |If you do not wish to modify your application’s sound resources, and your application
plays only sampled-sound resources, then you can play sounds with low-level Sound
Manager routines, a technique described in “Playing Sounds Using Low-Level
Routines” on page 116.

Note that this problem does not occur with sound files, because sound files always
contain sampled-sound data and thus do not explicitly declare their data type. As a
result, when creating a channel in which you plan to play a sound file, pass

sanpl edSynt h as the second parameter to SndNewChannel .

The third parameter in the SndNewChannel function specifies the initialization
parameters to be associated with the new channel. These are discussed in the following
section. The fourth parameter in the SndNewChannel function is a pointer to a callback
procedure. If your application produces sounds asynchronously or needs to be alerted
when a command has completed, you can specify a callback procedure by passing the
address of that procedure in the fourth parameter and then by installing a callback
procedure into the sound channel. If you pass NI L as the fourth parameter, then

no callback procedure is associated with the channel. See “Playing Sounds
Asynchronously” on page 101 for more information on setting up and using

callback procedures.

Initializing Sound Channels

When you first create a sound channel with SndNewChannel , you can request that the
channel have certain characteristics as specified by a sound channel initialization
parameter. For example, to indicate that you want to allocate a channel capable of
producing stereo sound, you might use the following code:

myErr : = SndNewChannel (nySndChan, sanpl edSynth, initStereo, N L);

Using the Sound Manager 77

78

CHAPTER 2

Sound Manager

These are the currently recognized constants for the sound channel initialization
parameter.

CONST
i ni tChanLeft = $0002; {left stereo channel}
i ni t ChanRi ght = $0003; {right stereo channel}
wavel ni t Channel 0 = $0004; {wave-tabl e channel 0}
wavel ni t Channel 1 = $0005; {wave-tabl e channel 1}
wavel ni t Channel2 = $0006; {wave-tabl e channel 2}
wavel ni t Channel 3 = $0007; {wave-tabl e channel 3}
i ni t Mono = $0080; { monophoni ¢ channel }
initStereo = $00C0; {stereo channel}
i ni t MACE3 = $0300; {3:1 conpression}
i ni t MACEG = $0400; {6:1 conpression}
initNolnterp = $0004; {no linear interpolation}
i ni t NoDrop = $0008; {no drop-sanpl e conversion}

See “Channel Initialization Parameters” beginning on page 146 for a complete
description of these constants.

Note

Some Macintosh computers play only the left channel of stereo sounds
out the internal speaker. Other machines (for example, the Macintosh
SE/30 and Macintosh llsi) mix both channels together before sending a
signal to the internal speaker. You can use the Gest al t function to
determine if a particular machine mixes both left and right channels to
the internal speaker. All Macintosh computers except the Macintosh SE
and the Macintosh Plus, however, play stereo signals out the headphone
jack. O

The initialization parameters are additive. To initialize a channel for stereo sound with no
linear interpolation, simply pass an initialization parameter that is the sum of the desired
characteristics, as follows:

nyErr := SndNewChannel (nySndChan, sanpl edSynth,
initStereo+initNolnterp, NL);

A call to SndNewChannel is really only a request that the Sound Manager open a
channel having the desired characteristics. It is possible that the parameters requested are
not available. In that case, SndNewChannel returns a not EnoughHar dwar eEr r error.
In general, you should pass 0 as the third parameter to SndNewChannel unless you
know exactly what kind of sound is to be played.

You can alter certain initialization parameters, even while a channel is actively playing a
sound, by issuing the r el ni t Cmd command. For example, you can change the output
channel from left to right, as shown in Listing 2-2.

Using the Sound Manager

CHAPTER 2

Sound Manager

Listing 2-2 Reinitializing a sound channel
VAR
nmy SndCnd: SndCommand,;
ny SndChan: SndChannel Ptr;
nmyErr: OSErr;

mySndCd. cnd : = relnitCnd;

nmySndCnd. paranil : = 0; {unused}

mySndCnd. paran® : = initChanRi ght; {new init paraneter}
nyErr : = SndDol nredi at e(mySndChan, mySndCnd);

Jabeuey punos -

Ther el ni t Cnd command accepts the i ni t Nol nt er p constant to toggle linear
interpolation on and off; it should be used with noncompressed sounds only. If an
noncompressed sound is playing when you send ar el ni t Cnd command with this
constant, linear interpolation begins immediately. You can also passi ni t Mono,

i ni t ChanLeft,orinitChanRi ght to pan to both channels, to the left channel, or to
the right channel. This affects only monophonic sounds. The Sound Manager remembers
the settings you pass and applies them to all further sounds played on that channel.

Releasing Sound Channels

To dispose of a sound channel that you have allocated with SndNewChannel , use the
SndDi sposeChannel function. SndDi sposeChannel requires two parameters, a
pointer to the channel that is to be disposed and a Boolean value that indicates whether
the channel should be flushed before disposal. Here’s an example:

nyErr := SndDi sposeChannel (mySndChan, TRUE);

Because the second parameter is TRUE, the Sound Manager sends both a f | ushCnd
command and a qui et Cnd command to the sound channel (using SndDol mredi at e).
This removes all commands from the sound channel and stops any sound already in
progress. Then the Sound Manager disposes of the channel.

If the second parameter is FALSE, the Sound Manager simply queues a qui et Cnd
command (using SndDoCommrand) and waits until qui et Cnd is received by the channel
before disposing of the channel. In this case, the SndDi sposeChannel function does not
return until the channel has finished processing commands and the queue is empty.

WMRNING
If you dispose of a channel currently playing from disk, then your
completion routine will still execute, but will receive a pointer to a sound
channel that no longer exists. Thus, you should stop a play from disk
before disposing of a channel. See “Managing an Asynchronous Play
From Disk” on page 107 for more information on completion routines. a

Using the Sound Manager 79

CHAPTER 2

Sound Manager

Although the SndDi sposeChannel function always releases memory reserved for
sound commands, SndDi sposeChannel cannot release memory associated with a
sound channel record if you have allocated that memory yourself. For example, if you
use the MyCr eat eSndChannel function defined in Listing 2-1 to create a sound channel,
you must dispose first of the sound channel and then of the memory occupied by the
sound channel record, as illustrated in Listing 2-3.

Listing 2-3 Disposing of memory associated with a sound channel

FUNCTI ON MyDi sposeSndChannel (sndChan: SndChannel Ptr; qui et Now. Bool ean):

CSErr;
VAR
nmyErr: OSErr;
BEG N
nyErr := SndDi sposeChannel (sndChan, quietNow); {dispose of channel}
Di sposePtr (Ptr(sndChan)); {di spose of channel ptr}
MyDi sposeSndChannel := nyErr;
END;

If you have played a sound resource through a channel, the SndDi sposeChannel
function does not free the memory taken by the resource. You must call the Resource
Manager’s Rel easeResour ce function to do so, or, if you have detached a resource
from a resource file, you could free the memory by making the handle unlocked and
purgeable. Note that if you play a sound resource asynchronously, you should not release
the memory occupied by the resource until the sound finishes playing or the sound
might not play properly. For information on releasing a sound resource after playing a
sound asynchronously, see “Playing Sounds Asynchronously” on page 101.

IMPORTANT
In Sound Manager versions 3.0 and later, you can play sounds in any
number of sound channels. In earlier Sound Manager versions, however,
only one kind of sound can be played at one time. This results in several
important restrictions on your application. In Sound Manager version 2
and earlier, you should create sound channels just before playing sounds.
Once the sound is completed, you should dispose of the channel. If your
application is switched out and does not release a sound channel, then
other applications may be unable to open sound channels. In particular,
the system alert sound might not be heard and the user might not be
notified of important system occurrences. In general, while it is
acceptable to issue a number of sound commands to the same sound
channel, it’s not a good idea to play more than one sampled sound on the
same sound channel. a

Manipulating a Sound That Is Playing

The Sound Manager provides a number of sound commands that you can use to change
some of the characteristics of sounds that are currently playing. For example, you can

80 Using the Sound Manager

CHAPTER 2

Sound Manager

alter the rate at which a sampled sound is played back, thereby lowering or increasing
the pitch of the sound. You can also pause or stop a sound that is currently in progress.
See “Pausing and Restarting Sound Channels” on page 84 for information on how to
pause the processing of a sound channel.

You can use the get Rat eCmd command to determine the rate at which a sampled sound
is currently playing. If SndDol nmredi at e returns noEr r when you pass get Rat eCnd,
the current sample rate of the channel is returned as a Fi xed value in the location that is
pointed to by par an® of the sound command. (As usual, the high bit of that value
returned is not interpreted as a sign bit.) Values that specify sampling rates are always
interpreted relative to the 22 kHz rate. That is, the Fi xed value $00010000 indicates a rate
of 22 kHz. The value $00020000 indicates a rate of 44 kHz. The value $00008000 indicates
a rate of 11 kHz.

To modify the pitch of a sampled sound currently playing, use the r at eCrrd command.
The current pitch is set to the rate specified in the par an® field of the sound command.
Listing 2-4 illustrates how to halve the frequency of a sampled sound that is already
playing. Note that sending the r at eCnd command before a sound plays has no effect.

Jabeuey punos -

Listing 2-4 Halving the frequency of a sampled sound

FUNCTI ON MyHal veFreq (mySndChan: SndChannel Ptr): OSErr;

VAR
myRat e: Longl nt ; {rate of sound pl ay}
nmy SndCnd: SndCommand,; {a sound conmand}
myErr: OSErr;

BEG N

{CGet the rate of the sanple currently playing.}

nmySndCnd. cnd : = get Rat eCnd; {the conmmand is get Rat eCnd}
mySndCnd. paranil : = O; {unused}

nySndCnd. paran® : = Longlnt (@vyRate);

nyErr : = SndDol nmedi at e(mySndChan, mySndCnd);

I F nyErr = noErr THEN

BEG N
{Hal ve the sanple rate.}
nmySndCnd. cnd : = rat eCnd; {the command is rateCnd}
nmySndCnd. paranil : = 0; {unused}
nySndCnd. paran? : = Fi xDi v(nyRate, $00020000);
nyErr : = SndDol nredi at e(mySndChan, mySndCnd) ;

END;

MyHal veFreq : = nyErr;

END;

When you halve the frequency of a sampled sound using the technique in Listing 2-4, the
sound will play one octave lower than before. In addition, the sound will play twice as

Using the Sound Manager 81

CHAPTER 2

Sound Manager

slowly as before. Likewise, if you use the r at eCnd command to double the frequency of
a sound, it plays one octave higher and twice as fast. Using r at eCnd in this way is like
pressing the fast forward button on a tape player while the play button remains
depressed.

You can also use r at eCnd and get Rat eCrd to pause a sampled sound that is currently

playing. To do this, read the rate at which it is playing, issue a r at eCmd command with a
rate of 0, and then issue a r at eCrd command with the previous rate when you want the
sound to resume playing.

To change the amplitude (or loudness) of the sound in progress, issue the anpCnd
command. (See Listing 2-5 for an example.) If no sound is currently playing, anpCnd sets
the amplitude of the next sound. Specify the desired new amplitude in the par aml field
of the sound command as a value in the range 0 to 255.

Listing 2-5 Changing the amplitude of a sound channel

82

PROCEDURE MySet Anpl i tude (chan: SndChannel Ptr; nyAmp: Integer);
VAR

nmy SndCnd: SndCommand,; {a sound conmand}
myErr: OSErr;
BEG N
| F chan <> NIL THEN
BEG N
W TH nmySndCnd DO
BEG N
cmd = anmpCnd; {the command i s anpCnd}
paraml : = nmyAnp; {desired anplitude}
paran? := 0; {ignored}
END;

myErr := SndDol nmredi at e(chan, nySndCnd);
I F nyErr <> noErr THEN
DoError (nmyErr);
END;
END;

If your application has an option that allows users to turn off sound output, you could
call the MySet Anpl i t ude procedure on all open channels to set the amplitude of all
channels to 0. Note that the Sound control panel allows the user to adjust the sound from
0 (softest) to 7 (loudest). This value is independent of the values used for amplitudes of
sounds playing in channels, and the Sound Manager uses the Sound control panel value
jointly with the amplitude of a sound channel to determine how loudly to play a sound.
Sounds with low frequencies sound softer than sounds with high frequencies even if the
sounds play at the same amplitude. If the amplitude of a sound is 0, the sound hardware
produces no sound; however, when the value set in the Sound control panel is 0, sound
might still play, depending on the amplitude.

Using the Sound Manager

CHAPTER 2

Sound Manager

You can use the get AnpCnd command to determine the current amplitude of a sound in
progress. The get AmpCnd command is similar to get Rat eCnd, except that the value
returned is an integer. The value returned in par an® is in the range 0-255. Listing 2-6
shows an example:

Listing 2-6 Getting the amplitude of a sound in progress

VAR
my Anp: I nt eger;

BEG N g
mySndCrd. cnd : = get AmpCnd; =1
mySndCnd. paranil : = O; {unused} gz)
nySndCnd. paran? : = Longl nt (@yAmMm); %

nyErr : = SndDol nmedi at e(mySndChan, mnmySndCnd);
END;

To modify the timbre of a sound defined using by square-wave data, use the t i nbr eCnd
command. A sine wave is specified as 0 in par anl and produces a very clear sound. A
value of 254 in par aml represents a modified square wave and produces a buzzing
sound. To avoid a bug in some versions of the Sound Manager, you should not use the
value 255. You should change the timbre before playing the sound.

Stopping Sound Channels

The Sound Manager allows you both to stop a sound currently in progress in a channel
and to remove all pending sound commands from a channel.

Note

If you have started a sound playing by using the SndSt art Fi | ePl ay
function, then you can stop play by using the SndSt opFi | ePl ay
function. See “Managing an Asynchronous Play From Disk” on page 107
for more details. O

To cause the Sound Manager to stop playing the sound in progress, send the qui et Crd
command. Here’s an example:

nmySndCnd. cnd : = qui et Cnd; {the command is qui et Cnd}
mySndCnd. paranil : = 0; {unused}
nySndCnd. paran® : = 0; {unused}

{stop the sound now pl ayi ng}
nyErr : = SndDol nedi at e(mySndChan, mnmySndCnd, FALSE);

To bypass the command queue, you should issue qui et Cnd by using

SndDol medi at e. Any sound commands that are already in the sound channel
remain there, however, and further sound commands can be queued in that channel.

Using the Sound Manager 83

84

CHAPTER 2

Sound Manager

If you wish to flush a sound channel without disturbing any sounds already in progress,
issue the f | ushCnd command. Here’s an example:

nmySndCnd. cnd : = fl ushCnd; {the command is flushCnd}
mySndCnd. paranil : = O; {unused}
nmySndCd. paran? : = 0; {unused}

{flush the channel}
nyErr := SndDol nredi at e(mySndChan, mnmySndCnd, FALSE);

If you want to stop all sound production by a particular sound channel immediately, you
should issue a f | ushCnd command and then a qui et Crd command. If you issue only a
f I ushCnd command, the sound currently playing is not stopped. If you issue only a

gui et Cmd command, the Sound Manager stops the current sound but continues with
any other queued commands. (By calling f | ushCnd before qui et Cnd, you ensure that
no other queued commands are processed.)

Note

The Sound Manager sends a qui et Cmd command when your
application calls the SndDi sposeChannel function. The qui et Cnd
command is preceded by a f | ushCnd command if the qui et Now
parameter is TRUE. O

Pausing and Restarting Sound Channels

If you want to pause command processing in a particular channel, you can use either of
two sound commands, wai t Crrd or pauseCnd.

Note

If you have started a sound playing by using the SndSt art Fi | ePl ay
function, then you can pause and resume play by using the
SndPauseFi | ePl ay function. See “Managing an Asynchronous Play
From Disk” on page 107 for more details. O

The wai t Cnd command suspends all processing in a channel for a specified number of
half-milliseconds. Here’s an example:

nySndCnd. cnd : = wait Cnd; {the command is wait Cnd}
nmySndCnd. par anil : = 2000; {1-second wait duration}
nmySndCnd. paran? : = 0; {unused}

{pause the channel}
nyErr : = SndDol nredi at e(mySndChan, mnmySndCnd, FALSE);

To pause the processing of commands in a sound channel for an unspecified duration,
use the pauseCnd command. Unlike wai t Cnd, pauseCnd suspends processing for an
undetermined amount of time. Processing does not resume until the Sound Manager
receives a r esumreCnd command for the specified channel.

Using the Sound Manager

CHAPTER 2

Sound Manager

To issue wai t Cnd or pauseCnd, you can use either SndDol mredi at e or
SndDoConmaind, depending on whether you want the suspension of sound channel
processing to begin immediately or when the Sound Manager reaches that command in
the normal course of reading commands from a sound channel. The r esuneCnd
command, which is simply the opposite of pauseCnd, should be issued by using
SndDol medi at e. Neither wai t Crrd nor pauseCnd stops any sound that is currently
playing; these commands simply stop further processing of commands queued in the
sound channel.

Note

If no other commands are pending in the sound channel after a

r esumeCnd command, the Sound Manager sends an enpt yCnd
command. The enpt yCnd command is sent only by the Sound Manager
and should not be issued by your application. O

Synchronizing Sound Channels

You can synchronize several different sound channels by issuing sync Cnd commands.
The par am field of the sound command contains a count, and the par an® field contains
an arbitrary identifier. The Sound Manager keeps track of the count for each channel
being synchronized. When the Sound Manager receives a syncCnd command for a
certain channel, it decrements the count for each channel having the given identifier,
including the newly synchronized channel. Command processing resumes on a channel
when the count becomes 0. Thus, if you know how many channels you need to
synchronize, you can synchronize them all by arranging for all of their counts to become
zero simultaneously. Listing 2-7 illustrates the use of the syncCnd command.

Listing 2-7 Adding a channel to a group of channels to be synchronized

PROCEDURE MySynclChan (chan: SndChannel Ptr; count: Integer;
identifier: Longlnt);

VAR
my SndCnd: SndConmand; {a sound comand}
myErr: CSErr;
BEG N
W TH nmySndCnd DO
BEG N
cnd = syncCnd; {the conmmand is syncCnd}
paranl : = count;
paran? : = identifier; {ID of group to be synchroni zed}
END;

myErr := SndDol nmredi at e(chan, nySndCnd);
I F nyErr <> noErr THEN
DoError (nyErr);
END;

Using the Sound Manager 85

Jabeuey punos -

86

CHAPTER 2

Sound Manager

For example, to synchronize three channels, first create the channels and then call the
My Sync1Chan procedure defined in Listing 2-7 for the first channel with a count equal to
4, for the second channel with a count equal to 3, and for the third channel with a count
equal to 2, using the same arbitrary identifier for each call to My Sync1Chan. Then fill all
channels with appropriate sound commands. (For example, you might send commands
that will cause the same sequence of notes to be produced on all three synchronized
channels.) Finally, call the MySync1Chan procedure one final time, passing any of the
three channels and a count of 1. By that time, all of the other channels will have counts of
1, and all counts will become 0 simultaneously, thus initiating synchronized play.

Note

The syncCnd command is intended to make it easy to synchronize
sound channels. You can use the syncCnd command to start multiple
channels of sampled sound playing simultaneously, but if you require
precise synchronization of sampled-sound channels, you might

achieve better results with the Time Manager, which is described in Inside
Macintosh: Processes. O

Managing Sound Volumes

Versions of the Sound Manager prior to 3.0 allow you to set only one volume level, which
applies to all sounds produced by the audio hardware. The Sound Manager versions 3.0
and later provide greatly improved control over the volumes of the sounds you ask it to
create. You can use new facilities to

= set the volumes of the left and right channels of sound independently of each other
= set the volume of the system alert sound

= set the default volume of a particular sound output device

You can set the system alert sound volume to a different level than that of any other
sounds you produce. For example, you can set the system alert sound to play at a lower
volume than other sounds. This would allow a user to hear QuickTime movies at full
volume and to hear system alert sounds at a lower volume.

You can use the vol umeCnd and get Vol uneCnd sound commands to set and get the
right and left volumes of sound. You specify a channel’s volume with 16-bit value, where
0 represents no volume and hexadecimal $0100 represents full volume. The Sound
Manager defines constants for silence and full volume.

CONST
kFul | Vol ume = $0100;
kNoVol une = 0;

The vol umeCrd sound command expects the right and left volumes to be encoded as the
high word and low word, respectively, of par an®. For example, to set the left channel to
half volume and the right channel to full volume, you pass the value $01000080 in

par an®, as illustrated in Listing 2-8.

Using the Sound Manager

CHAPTER 2

Sound Manager

Listing 2-8 Setting left and right volumes

FUNCTI ON MySet Vol ure (chan: SndChannel Ptr): OSErr;

VAR
nmy SndCnd: SndCommand,;
myRi ght Vol : I nt eger;
nyLeft Vol : I nt eger;
myErr: OSErr;
BEG N
nyRi ght Vol := kFul | Vol une; %
nyLeft Vol := kFullVolume DV 2; C§L
mySndCnd. cmd : = vol umeCnd, =
nmySndCnd . paraml : = O; {unused wi th vol umeCnd} %
nmySndCnd. paran® : = BSL(nyRi ghtVol, 16) + nyLeft Vol ; Lc'flg

myErr : = SndDol nmredi at e(chan, nySndCnd);
MySet Vol urre : = nyErr;
END;

You can also use the vol umeCnd sound command to pan a sound from one side to
another. For example, to send the output signal entirely to the right channel, pass

the value $01000000 in par an®. To send the output signal entirely to the left channel,
pass the value $00000100 in par an®. You can overdrive a channel’s volume by passing
volume levels greater than $0100. For example, to play the left channel of a stereo
sound at twice full volume while playing the right channel at full volume, pass the
value $01000200.

You can use the Get SysBeepVol une and Set SysBeepVol une functions to get and set
the output volume level of the system alert sound. Any calls to the SysBeep procedure
use the volume set by the previous call to Set SysBeepVol une. As you’ve learned, this
allows you to set a lower volume for the system alert sound than for your other sound
output.

You can use the CGet Def aul t Qut put Vol urre and Set Def aul t Qut put Vol une
functions to set the default output volumes for a particular output device. Each output
device has its own current volume setting and its own default setting. If the user changes
the output device (using the Sound control panel), the newly selected device will use its
own default volume level.

Obtaining Sound-Related Information

Developments in the sound hardware available on Macintosh computers and in the
Sound Manager routines that allow you to drive that hardware have made it imperative
that your application pay close attention to the sound-related features of the operating
environment. For example, some Macintosh computers do not have the sound input
hardware necessary to allow sound recording. Similarly, some other Macintosh
computers are not able to record sounds and play sounds simultaneously. Before taking

Using the Sound Manager 87

CONST

gestal t St ereoCapability
gestal t St er eoM xi ng =
gest al t Soundl Ovgr Pr esent
gestal t Bui |l t I nSoundl nput
gest al t HasSoundl nput Devi ce
gest al t Pl ayAndRecord =
gestal t 16Bi t Soundl O

gest al t St er eol nput =

88

CHAPTER 2

Sound Manager

advantage of a sound-related feature that is not available on all Macintosh computers,
you should check to make sure that the target machine provides the features you need.

To make appropriate decisions about the sound you want to produce, you might need to
know some or all of the following types of information:

= whether a machine can produce stereophonic sounds
= what version of the Sound Manager is available

= whether a machine can play multiple channels of sound, and whether it can take
advantage of the enhanced Sound Manager’s play-from-disk capabilities

= whether a sound playing from disk is active or paused
= how many channels of sound are currently open
= whether the system beep has been disabled

The following sections describe how to use the Gest al t function and Sound Manager
routines to determine these types of information.

Obtaining Information About Available Sound Features

You can use the Gest al t function to obtain information about a number of hardware-
and software-related sound features. For instance, you can use Gest al t to determine
whether a machine can produce stereophonic sounds and whether it can mix both left
and right channels of sound on the internal speaker. Many applications don’t need to call
Cest al t to get this kind of information if they rely on the Sound Manager’s ability to
produce reasonable sounding output on whatever audio hardware is available. Other
applications, however, do need to use Gest al t to get this information if they depend on
specific hardware or software features that are not available on all Macintosh computers.

To get sound-related information from Gest al t, pass it the gest al t SoundAt t r
selector.

CONST
gestal t SoundAttr = 'snd ’; {sound attri butes}

If Gest al t returns successfully, it passes back to your application a 32-bit value that
represents a bit pattern. The following constants define the bits currently set or cleared by
Gestalt:

{built-in hw can play stereo sounds}
{built-in hw m xes stereo to nono}
{sound i nput routines avail abl e}
{built-in input hw avail abl e}

{sound i nput device avail abl e}
{built-in hw can play while recordi ng}
{built-in hw can handl e 16-bit data}
{built-in hw can record stereo sounds}

N ORWLEREO

Using the Sound Manager

CHAPTER 2

Sound Manager

gestal tLi neLevel | nput = 9; {built-in input hw needs line |evel}
gest al t SndPl ayDoubl eBuf fer = 10; {play fromdisk routines avail abl e}
gestal t Mul ti Channel s = 11; {mul tiple channel s of sound supported}
gestal t 16Bi t Audi oSupport = 12; {16-bit audi o data support ed}

If the bit gest al t St er eoCapabi | i ty is TRUE, the built-in hardware can play stereo
sounds. The bit gest al t St er eoM xi ng indicates that the sound hardware of the
machine mixes both left and right channels of stereo sound into a single audio signal for
the internal speaker. Listing 2-9 demonstrates the use of the Gest al t function to
determine if a machine can play stereo sounds.

Listing 2-9 Determining if stereo capability is available

Jabeuey punos -

FUNCTI ON MyHasSt er eo: Bool ean;

VAR
myFeat ur e: Longl nt;
myErr: OSErr;
BEG N
nyErr := Cestalt(gestaltSoundAttr, myFeature);
| F nyErr = noErr THEN {test stereo capability bit}
MyHasSt ereo : = BTst (nyFeature, gestaltStereoCapability)
ELSE
MyHasSt ereo : = FALSE; {no sound features avail abl e}
END;

As shown in the chapter “Introduction to Sound on the Macintosh,” you can determine
whether your application can record by testing the gest al t HasSoundI nput Devi ce
bit. To determine whether a built-in sound input device is available, you can test the
gestal t Bui | t 1 nSoundl nput bit. The gest al t Soundl OMgr Pr esent bit indicates
whether the sound input routines are available. Because the

gest al t HasSoundl nput Devi ce bit is not set if the routines are not available, only
sound input device drivers should need to use the gest al t Soundl OMgr Pr esent bit.

For a complete description of the response bits set by Gest al t , see “Gestalt Selector and
Response Bits” beginning on page 145.

Obtaining Version Information

The Sound Manager provides functions that allow you to determine the version numbers
both of the Sound Manager itself and of the MACE compression and expansion routines.
Generally, you should avoid trying to determine which features or routines are present
by reading a version number. Usually, the Gest al t function (discussed in the previous
section) provides a better way to find out if some set of features, such as sound input
capability, is available. In some cases, however, you can use these version routines to
overcome current limitations of the information returned by Gest al t .

Using the Sound Manager 89

CHAPTER 2

Sound Manager

Both of these functions return a value of type Nunier si on that contains the same
information as the first 4 bytes of a resource of type ’ ver s’ . The first and second bytes
contain the major and minor version numbers, respectively; the third and fourth bytes
contain the release level and the stage of the release level. For most purposes, the major
and minor release version numbers are sufficient to identify the version. (See the chapter
“Finder Interface” of Inside Macintosh: Macintosh Toolbox Essentials for a complete
discussion of the format of ' ver s’ resources.)

You can use the SndSoundManager Ver si on function to determine which version of the
Sound Manager is present. Listing 2-10 shows how to determine if the enhanced Sound
Manager is available.

Listing 2-10 Determining if the enhanced Sound Manager is present

90

FUNCTI ON MyHasEnhancedSoundManager : Bool ean;

VAR
nmyVer si on: NunVer si on;

BEG N
| F MyTrapAvai | abl e(_SoundDi spat ch) THEN
BEG N

nmyVer si on : = SndSoundManager Ver si on;
MyHasEnhancedSoundManager : = myVersion. ngj or Rev >= 2;
END
ELSE
MyHasEnhancedSoundManager : = FALSE
END;

The MyHasEnhancedSoundManager function defined in Listing 2-10 relies on the
My Tr apAvai | abl e function, which is an application-defined routine provided in

Inside Macintosh: Operating System Ultilities. If the _SoundDi spat ch trap is not available,
the SndSoundManager Ver si on function is not available either, in which case the
enhanced Sound Manager is certainly not available.

You can use the MACEVer si on function to determine the version number of the available
MACE routines (for example, Conp3t 01).

Testing for Multichannel Sound and Play-From-Disk Capabilities

The ability to play multiple channels of sound simultaneously and the ability to initiate
plays from disk were first introduced with the enhanced Sound Manager. Even with the
enhanced Sound Manager, however, these capabilities are present only on computers
equipped with suitable sound output hardware (such as an Apple Sound Chip). Sound
Manager version 3.0 defines 2 additional bits in the Gest al t response parameter that
allow you to test directly for these two capabilities.

Using the Sound Manager

CHAPTER 2

Sound Manager

CONST
gest al t SndPl ayDoubl eBuf f er
gestal t Mul ti Channel s

10; {play fromdi sk routines avail abl e}
11; {nultiple channels of sound supported}

Ideally, it should be sufficient to test directly, using Gest al t, for either multichannel
sound capability or play-from-disk capability. If your application happens to be running
under the enhanced Sound Manager, however, the two new response bits are not defined.
In that case, you’ll need to test also whether the Apple Sound Chip is available, because
multichannel sound and play from disk are supported by the enhanced Sound Manager
only if the Apple Sound Chip is available. To test for the presence of the Apple Sound
Chip, you can use the Gest al t function with the gest al t Har dwar eAt t r selector and
the gest al t Has ASCbit. Listing 2-11 combines these two tests into a single routine that
returns TRUE if the computer supports multichannel sound.

Listing 2-11 Testing for multichannel play capability

FUNCTI ON MyCanPl ayMul ti Channel s: Bool ean;

VAR
myResponse: Longl nt;
nyResul t : Bool ean;
nmyErr: CSErr;
ny\Ver si on: NunVer si on;
BEG N
nyResult := FALSE;

nyVer si on : = SndSoundManager Ver si on;
nmyErr := CGestalt(gestaltSoundAttr, myResponse);
| F myVer sion. maj or Rev >= 3 THEN
IF (myErr = noErr) AND (BTst(nyResponse, gestaltMiltiChannels)) THEN
nyResult := TRUE

ELSE
BEG N
nyErr := CGestalt(gestaltHardwareAttr, myResponse);
IF (nyErr = noErr) AND (BTst(nyResponse, gestaltHasASC)) THEN
nyResult := TRUE
END;
MyCanPl ayMul ti Channel s : = nyResult;
END;

The function MyCanPl ayMul t i Channel s first tries to get the desired information by
calling the Gest al t function with the gest al t SoundAt t r selector. If Gest al t returns
successfully and the gest al t Mul t i Channel s bitis set in the r esponse parameter,
then multichannel play capability is present. Notice that the multichannel bit is checked
only if the version of the Sound Manager is 3.0 or greater. If the version is not at least 3.0,
then MyCanPl ayMul t i Channel s calls the Gest al t function with the

Using the Sound Manager 91

Jabeuey punos -

CHAPTER 2

Sound Manager

gest al t Har dwar eAt t r selector. If the computer contains the Apple Sound Chip, then
again multichannel play capability is present.

Note

The gest al t HasASCbit is set only on machines that contain an Apple
Sound Chip. You should test for the presence of the Apple Sound Chip
only in the circumstances described above. O

You could write a similar function to test for the ability to initiate a play from disk.
Listing 2-12 shows an example.

Listing 2-12 Testing for play-from-disk capability

FUNCTI ON HasPl ayFr onDi sk: Bool ean;

VAR
myResponse: Longl nt ;
nyResul t: Bool ean;
nmyErr: OSErr;
nmy\Ver si on: NumVer si on;
BEG N
myResul t : = FALSE;

nmyVer si on : = SndSoundManager Ver si on;
nyErr := CGestalt(gestaltSoundAttr, myResponse);
I F nmyVersion. mjorRev >= 3 THEN
IF (nyErr = noErr) AND
(BTst (myResponse, gestalt SndPl ayDoubl eBuffer)) THEN
myResult : = TRUE

ELSE
BEG N
myErr := Gestalt(gestaltHardwareAttr, nyResponse);
IF (nyErr = noErr) AND (BTst(nyResponse, gestaltHasASC)) THEN
nyResult := TRUE
END;
HasPl ayFronDi sk : = nmyResul t;
END;
Obtaining Information About a Single Sound Channel
You can use the SndChannel St at us function to obtain information about a single
sound channel and about the status of a disk-based playback on that channel, if one
exists. For example, you can use SndChannel St at us to determine if a channel is being
used for play from disk, how many seconds of the sound have been played, and how
many seconds remain to be played.
92 Using the Sound Manager

CHAPTER 2

Sound Manager

One of the parameters required by the SndChannel St at us function is a pointer
to a sound channel status record, which you must allocate before calling
SndChannel St at us. A sound channel status record has this structure:

TYPE SCSt atus =

RECORD
scStart Ti ne: Fi xed; {starting time for play from di sk}
scEndTi ne: Fi xed; {ending tine for play from di sk}
scCurrent Ti nme: Fi xed; {current tine for play from di sk}
scChannel Busy: Bool ean; {TRUE if channel is processing cnds} 0
scChannel Di sposed: Bool ean; {reserved} §
scChannel Paused: Bool ean; {TRUE if channel is paused} CZL
scUnused: Bool ean; {unused} 2
scChannel Attri butes: Longl nt; {attributes of this channel} %
scCPULoad: Longl nt ; {CPU |l oad for this channel} -
END;

The scSt art Ti ne, scEndTi e, and scCur r ent Ti ne fields are 0 unless the Sound
Manager is currently playing from disk through the specified channel. If a play from disk
is occurring, the scSt art Ti me and scEndTi ne fields reflect the starting and ending
points of the play, defined in seconds; the scCur r ent Ti ne field indicates the number of
seconds between the beginning of the sound on disk and the part of the sound currently
being played. The Sound Manager sets the values of the scSt art Ti me and scEndTi ne
fields based on the values you set in an audio selection record. (See page 155 for a
description of the audio selection record.)

Note that because the Sound Manager might be playing only a selection of a sound, the
scCur rent Ti ne field does not reflect the number of seconds of sound play that have
elapsed. To compute the number of seconds of sound play elapsed, you can subtract the
value in the scSt ar t Ti e field from that in the scCur r ent Ti e field. However,
because the Sound Manager updates the value of the scCur r ent Ti ne field only
periodically, you should not rely on the accuracy of its value.

The scChannel Busy and scChannel Paused fields reflect whether a channel is
processing commands and whether a channel is paused, respectively. After issuing
a series of sound commands, you can use these fields to determine if the channel
has finished processing all of the commands. If both scChannel Busy and
scChannel Paused are FALSE, the Sound Manager has processed all of the
channel’s commands.

You can mask out certain values in the scChannel At t ri but es field to determine how
a channel has been initialized.

CONST
i ni t PanMask = $0003; {mask for right/left pan val ues}
i nitSRateMask = $0030; {mask for sanple rate val ues}
i nitStereoMask = $00C0; {mask for nono/stereo val ues}

Using the Sound Manager 93

CHAPTER 2

Sound Manager

The scCPULoad field previously reflected the percentage of CPU processing power
used by the sound channel. However, this field is obsolete, and you should not rely on its
value.

Listing 2-13 illustrates the use of the SndChannel St at us function. It defines a function
that takes a sound channel pointer as a parameter and determines whether a disk-based
playback on that channel is paused.

Listing 2-13 Determining whether a sound channel is paused

FUNCTI ON MyChannel | sPaused (chan: SndChannel Ptr): Bool ean;

VAR

nmyErr: CSErr;

my SCSt at us: SCSt at us;
BEG N

MyChannel | sPaused : = FALSE;
nyErr := SndChannel St atus(chan, Sizeof(SCStatus), @rySCStatus);
I F nyErr = noErr THEN
MyChannel | sPaused : = nmySCSt at us. scChannel Paused,;
END;

The function defined in Listing 2-13 simply reads the scChannel Paused field to see if
the playback is currently paused.

Note

In Sound Manager versions earlier than 3.0, pausing a sound channel by
issuing a pauseCrd command does not change the scChannel Paused
field. The scChannel Paused field is TRUE only if the Sound Manager is
executing a disk-based playback on the channel and that playback is
paused by the SndPauseFi | ePl ay function. This problem is fixed in
Sound Manager versions 3.0 and later. O

Obtaining Information About All Sound Channels

You can use the SndManager St at us function to determine information about all the
sound channels that are currently allocated by all applications. For example, you can use
this function to determine how many channels are currently allocated. One of the
parameters required by the SndManager St at us function is a pointer to a Sound
Manager status record, which you must allocate before calling SndManager St at us.

A Sound Manager status record has this structure:

TYPE SMSt atus =
PACKED RECCRD

snmivaxCPULoad: I nt eger; {maxi mum | oad on all channel s}

smNuntChannel s: I nt eger; {nunber of allocated channel s}

smCur CPULoad: I nt eger; {current load on all channel s}
END;

94 Using the Sound Manager

CHAPTER 2

Sound Manager

The smNunmChannel s field contains the number of sound channels currently allocated.
This does not mean that the channels are actually being used, only that they have been
created with the SndNewChannel function and not yet disposed.

The Sound Manager uses information that it returns in the smvax CPULoad and

snCur CPULoad fields to help it determine whether it can allocate a new channel
when your application calls the SndNewChannel function. The Sound Manager sets
snmivax CPULoad to a default value of 100 at startup time, and the snCur CPULoad field
reflects the approximate percentage of CPU processing power currently taken by
allocated sound channels.

WMRNING
Your application should not reply on the values returned in the
smvaxCPULoad and smCur CPULoad fields. To determine if it is safe to
allocate a channel, simply try to allocate it with the SndNewChannel
function. That function returns the appropriate result code if allocating
the channel would put too much of a strain on CPU processing. a

Jabeuey punos -

Listing 2-14 illustrates the use of SndManager St at us. It defines a function that returns
the number of sound channels currently allocated by all applications.

Listing 2-14 Determining the number of allocated sound channels

FUNCTI ON MyGet NuntChannel s: | nt eger;

VAR

myErr: CSErr;

my SMSt at us: SMVEt at us;
BEG N

MyGet NuntChannel s : = 0O;
nyErr := SndManager Status (Si zeof (SMst atus), @rySMst at us);
IF nyErr = noErr THEN
My CGet NunChannel s : = nySMst at us. snNuntChannel s;
END;

Determining and Changing the Status of the System Alert Sound

The enhanced Sound Manager includes two routines—SndCGet SysBeepSt at e and
SndSet SysBeepSt at e—that allow you to determine and alter the status of the system
alert sound. You might wish to disable the system alert sound if you are playing sound
and need to ensure that the sound you are playing is not interrupted. Currently, two
states are defined:

CONST
sysBeepDi sabl e = $0000; {system al ert sound di sabl ed}
sysBeepEnabl e = $0001; {system al ert sound enabl ed}

You can determine the status of the system alert sound like this:

Using the Sound Manager 95

96

CHAPTER 2

Sound Manager

SndCet SysBeepState(current State);
And you can disable the system alert sound like this:
nyErr : = SndSet SysBeepSt at e(sysBeepDi sabl e) ;

When the system alert sound is disabled, the Sound Manager effectively ignores all calls
to the SysBeep procedure. No sound is created and the menu bar does not flash. Also,
no resources are loaded into memory.

Note

Even when the system alert sound is enabled, it’s possible that the
system alert sound will not play; for example, the speaker volume might
be set to 0, or playing the requested system alert sound might require too
much CPU time. In such a case, the menu bar flashes. O

By default, the system alert sound is enabled. If you disable the system alert sound so
that your application can play a sound without being interrupted, be sure to enable the
sound when your application receives a suspend event or when the user quits your
application.

Playing Notes

You can play notes one at a time by using the SndDoConmand or SndDol rmedi at e
function to issue f r eqDur at i onCrd sound commands. A sound plays for a specified
duration at a specified frequency. You can play sounds defined by any of the three sound
data formats. If you play wave-table data or sampled-sound data, then a voice must
previously have been installed in the channel. (See “Installing Voices Into Channels” on
page 98 for instructions on installing wave tables and sampled sounds as voices.)

You can also play notes by issuing the f r eqCnd command, which is identical to
the f r eqDur at i onCnd command, except that no duration is specified when you
issue f r eqCnd.

Note

AfreqDurati onCrd command might in certain cases continue playing
until another command is available in the sound channel. Therefore, to
play a single note for a specified duration, you should issue

freqgDur ati onCnd followed immediately by qui et Cnrd. See “Stopping
Sound Channels” on page 83 for further details on qui et Cd. O

The structure of a f r eqDur at i onCnd command is slightly different from that of most
other sound commands. The par ani field contains the duration of the sound, specified
in half-milliseconds. A value of 2000 represents a duration of 1 second. The maximum
duration is 32,767, or about 16 seconds, in Sound Manager versions 2.0 and earlier; the
maximum duration in Sound Manager version 3.0 and later is 65,536, or about

32 seconds. The par an® field specifies the frequency of the sound. The frequency is
specified as a MIDI note value (that is, a value defined by the established MIDI standard).
Listing 2-15 uses the f r eqDur at i onCnd command in a way that ensures the sound
stops after the specified duration.

Using the Sound Manager

CHAPTER 2

Sound Manager

Listing 2-15

PROCEDURE MyPl ayFr equencyOnce (mySndChan:
nyM DI Val ue:
mlliseconds:

CONST
kNoWait = TRUE;

VAR
my SndCnd: SndConmand;
myErr: CSErr;

BEG N

{Start the sound pl aying.}
W TH nySndCnd DO
BEG N
cmd
paranml : =
paran® :
END;
nyErr : = SndDoCommrand(mySndChan,
IF nyErr <> noErr THEN
DoError (myErr)
ELSE
BEG N
W TH nmySndCnd DO
BEG N
cnd : = quietCnd,
paranml : = O;
paranm? : = 0;
END;
nmyErr =
| F nyErr <> noErr
DoError (nyErr);

.= freqDurati onCnd;
mlliseconds * 2;
nyM DI Val ue;

THEN

END;
END;

SndDoConmand(my SndChan,

Using the f r eqDur at i onCnd command

SndChannel Ptr;
I nt eger;

I nt eger);
{add now to full queue?}

{a sound comand}

Jabeuey punos -

{play for period of tine}
{hal f-milliseconds}
{M DI value to play}

mySndCmd, NOT kNoWit) ;

{ensure that sound stops}

{stop playi ng sound}
{unused with qui et Cnd}
{unused with qui et Cnd}

nmySndCrd, NOT kNoWait);

Table 2-2 shows the decimal values that can be sent with af r eqDur at i onCnd or
f r eqCrd command. Middle C is represented by a value of 60 and is defined by a special

Sound Manager constant.

CONST

kM ddl eC = 60;

Using the Sound Manager

{M DI

note value for mddle C

97

CHAPTER 2

Sound Manager

Other specifiable frequencies correspond to MIDI note values.

Table 2-2 Frequencies expressed as MIDI note values

A A# B C C# D D# E F F# G G#
Octave 1 0 1 2 3 4 5 6 7 8
Octave 2 9 10 11 12 13 14 15 16 17 18 19 20
Octave 3 21 22 23 24 25 26 27 28 29 30 31 32
Octave 4 33 34 35 36 37 38 39 40 41 42 43 44
Octave 5 45 46 47 48 49 50 51 52 53 54 55 56
Octave 6 57 58 59 60 61 62 63 64 65 66 67 68
Octave 7 69 70 71 72 73 74 75 76 77 78 79 80
Octave 8 81 82 83 84 85 86 87 88 89 90 91 92
Octave 9 93 94 95 96 97 98 99 100 101 102 103 104
Octave 10 105 106 107 108 109 110 111 112 113 114 115 116
Octave 11 117 118 119 120 121 122 123 124 125 126 127

You can play square-wave and wave-table data at these frequencies only. If you are

playing a sampled sound, however, you can modify the sanpl eRat e field of the sound

header to play a sound at an arbitrary frequency. To do so, use the following formula:

new sample rate = (new frequency / original frequency) * original sample rate

where the new and original frequencies are measured in hertz. To convert a MIDI value

to hertz for use in this formula, note that middle C is defined as 261.625 Hz and that the

ratio between the frequencies of consecutive MIDI values equals the twelfth root of 2,

defined by the constant t wel f t hRoot Two.

CONST

t wel f t hRoot Two = 1.05946309434;

IMPORTANT

When calculating with numbers of type Fi xed, pay attention to possible

overflows. The maximum value of a number of type Fi xed is 65,535.0.

As a result, some sample rates and pitches cannot be specified. Sound

Manager version 3.0 fixes these overflow problems. a

You can rest a channel for a specified duration by issuing ar est Crd command. The

duration, specified in half-milliseconds, is passed in the par am field of the sound

command.

Installing Voices Into Channels

You can play frequencies defined by any of the three sound data types. By playing a

frequency defined by wave-table or sampled-sound data, you can achieve a different
98 Using the Sound Manager

CHAPTER 2

Sound Manager

sound than by playing that same frequency using square-wave data. For example, you
might wish to play the sound of a dog’s barking at a variety of frequencies. To do that,
however, you need to install a voice of the barking into the sound channel to which you
want to send f r eqCnd or f r eqDur at i onCnrd commands.

You can install a wave table into a channel as a voice by issuing the waveTabl eCnd
command. The par ant field of the sound command specifies the length of the wave
table, and the par an® field is a pointer to the wave-table data itself. Note that the Sound
Manager resamples the wave table so that it is exactly 512 bytes long.

You can install a sampled sound into a channel as a voice by issuing the soundCnd
command. You can either issue this command from your application or put it into an
"snd ’ resource. If your application sends this command, par an® is a pointer to the
sampled sound locked in memory. If soundCd is contained withinan’ snd ' resource,
the high bit of the command must be set. To use a sampled-sound’ snd ' as a voice, first
obtain a pointer to the sampled sound header locked in memory. Then pass this pointer
in par an? of a soundCnd command. After using the sound, your application is expected
to unlock this resource and allow it to be purged.

Jabeuey punos -

Listing 2-16 demonstrates how you can use the soundCnd command to install a sampled
sound in memory as a voice in a channel.

Listing 2-16 Installing a sampled sound as a voice in a channel

FUNCTI ON Myl nst al | Sanpl edVoi ce (mySndHandl e: Handl e;

nySndChan: SndChannel Ptr): OSErr;

VAR

nmy SndCnd: SndCommand,; {a sound conmand}

ny SndHeader : SoundHeader Pt r; {sound header fromresource}
BEG N

{get pointer to sound header}

nySndHeader : = MyGet SoundHeader (mySndHandl e) ;
W TH nySndCnd DO

BEG N
cnd : = soundCnd; {install sanpled voice}
paraml := O; {ignored wth soundCnd}
paranm? := Longl nt (nySndHeader); {store sound header | ocation}

END;

| F nySndHeader = NIL THEN {check for defective handl e}

Myl nst al | Sanpl edVoi ce :

ELSE

badFor mat

{install sound as voice}

Myl nst al | Sanpl edVoi ce : = SndDol nmedi at e(mySndChan, mySndCnd) ;

END;

Listing 2-16 relies on the MyGet SoundHeader function to obtain a pointer to the sound
header within the sound handle. That function is defined in “Obtaining a Pointer to a

Using the Sound Manager 99

CHAPTER 2

Sound Manager

Sound Header” on page 112 and returns NI L if the sound handle does not include a
sound header. Note that the MyGet SoundHeader function locks the sound handle in
memory so that the pointer to the sound header remains valid. When you are done with
the sound channel in which you have installed the sampled sound, you should unlock
the sound handle and make it purgeable so that it does not waste memory.

Looping a Sound Indefinitely

If you install a sampled sound as a voice in a channel and then play the sound using
afreqCnd or freqgDur ati onCnd command that lasts longer than the sound, the
sound will ordinarily stop before the end of the time specified by the f r eqCnrd or
fregqDur at i onCrd command. Sometimes, however, this might not be what you’d like
to have happen. For example, you might have recorded the sound of a violin playing and
then stored that sound in a resource so that you could play the sound of a violin at

a number of different frequencies. Although you could record the sound so that it is
long enough to continue playing through the longest f r eqCnd or f r eqDur at i onCnd
command that your application might require, this might not be practical. Fortunately,
the Sound Manager provides a mechanism that allows you to repeat sections of sampled
sound after the sound has finished playing once completely.

When you use the f r eqDur at i onCrd command with a sampled sound as the voice,

f reqDur at i onCrd starts at the beginning of the sampled sound. If necessary to achieve
the desired duration of sound, the command replays that part of the sound that is
between the loop points specified in the sampled sound header. Note that any sound
preceding or following the loop points will not be replayed. There must be an ending
point for the loop specified in the header in order for f r eqDur at i onCnd to work

properly.

Listing 2-17 Looping an entire sampled sound

PROCEDURE MyDolLoopEnti reSound (sndHandl e: Handl e) ;

VAR
nmy SndHeader : SoundHeader Pt r; {sound header from resource}
nyTot al Bytes: Longlnt; {bytes of data to | oop}

BEG N

100

nmySndHeader := MyGet SoundHeader (sndHandl e) ;
| F nySndHeader <> NI L THEN

{comput e bytes of sound dat a}

CASE nySndHeader ~. encode OF

st dSH: {standard sound header}
W TH nySndHeader DO
nyTot al Byt es : = nySndHeader ™. | engt h;
ext SH: {ext ended sound header}
W TH Ext SoundHeader Pt r (nySndHeader)~ DO
nmyTot al Byt es : = nunChannel s * nunfranes * (sanpleSize DV 8);
cnpSH: {conpressed sound header}

Using the Sound Manager

CHAPTER 2

Sound Manager

W TH CmpSoundHeader Pt r (nySndHeader)~ DO
myTot al Bytes : = numChannel s * nunfranes * (sanpleSize DIV 8);

END;
W TH nySndHeader* DO
BEG N {set | oop points}
| oopStart := 0; {start with first byte}
| oopEnd : = nmyTotal Bytes - 1; {end with |last byte}
END;
END;

END;

Listing 2-17 uses the MyGet SoundHeader function defined in “Obtaining a Pointer to a
Sound Header” on page 112. Note that the formula for computing the length of a sound
depends on the type of sound header. Also, while the formula is the same for both an
extended and a compressed sound header, you must write code that differentiates
between the two types of sound headers because the sanpl eSi ze field is not stored in
the same location in both sound headers.

Playing Sounds Asynchronously

The Sound Manager currently allows you to play sounds asynchronously only if you
allocate sound channels yourself, using techniques described in “Managing Sound
Channels” on page 74. But if you use such a technique, your application will need to
dispose of a sound channel whenever the application finishes playing a sound. In
addition, your application might need to release a sound resource that you played on a
sound channel.

To avoid the problem of not knowing when to dispose of a sound channel playing a
sound asynchronously, your application could simply allocate a single sound channel
when it starts up (or receives a resume event) and dispose of the channel when the user
quits (or the application receives a suspend event). However, this solution will not work
if you need to release a resource when a sound finishes playing. Also, you might not
want to keep a sound channel allocated when you are not using it. For instance, you
might want to use the memory taken up by a sound channel for other tasks when no
sound is playing.

Your application could call the SndChannel St at us function once each time through its
main event loop to determine if a channel is still making sound. When the scBusy field
of the sound channel status record becomes FALSE, your application could then dispose
of the channel. This technique is easy, but calling SndChannel St at us frequently uses
up processing time unnecessarily.

The Sound Manager provides other mechanisms that allow your application to find out
when a sound finishes playing, so that your application can arrange to dispose of sound
channels no longer being used and of other data (such as a sound resource) that you no
longer need after disposing of a channel. If you are using the SndPI ay function or
low-level commands to play sound in a channel, then you can use callback procedures. If
you are using the SndSt art Fi | ePl ay function to play sound in a channel, then you can

Using the Sound Manager 101

Jabeuey punos -

myErr

102

CHAPTER 2

Sound Manager

use completion routines. The following sections illustrate how to use callback procedures
and completion routines.

Note

Callback procedures are a form of completion routine. However, for
clarity, this section uses the terminology “completion routine” only for
the routines associated with the SndSt ar t Fi | ePl ay function. O

Using Callback Procedures

This section shows how you can use callback procedures to play one sound
asynchronously at a given time. “Managing Multiple Sound Channels” on page 108
expands the techniques in this section to show how you can play several asynchronous
sounds simultaneously.

The SndNewChannel function allows you to associate a callback procedure with a sound
channel. For example, the following code opens a new sound channel for which memory
has already been allocated and associates it with the callback procedure MyCal | Back:

: = SndNewChannel (gSndChan, sanpl edSynth, initMno, @Call back);

After filling a channel created by SndNewChannel with various commands to create
sound, you can then issue a cal | BackCrrd command to the channel. When the Sound
Manager encounters a cal | BackCnd command, it executes your callback procedure.
Thus, by placing the cal | BackCnhd command last in a channel, you can ensure that the
Sound Manager executes your callback procedure only after it has processed all of the
channel’s other sound commands.

Note

Be sure to issue cal | BackCnd commands with the SndDoConmrand
function and not the SndDol nmedi at e function. If you issue a

cal | BackCnd command with SndDol nmredi at e, your callback
procedure might be called before other sound commands you have
issued finish executing. O

A callback procedure has the following syntax:
PROCEDURE MyCal | Back (chan: SndChannel Ptr; cnd: SndCommand);

Because the callback procedure executes at interrupt time, it cannot access its application
global variables unless the application’s A5 world is set correctly. (For more information
on the A5 world, see the chapter “Memory Management Utilities” in Inside Macintosh:
Memory.) When called, the callback procedure is passed two parameters: a pointer to the
sound channel that received the cal | BackCrd command and the sound command that
caused the callback procedure to be called. Applications can use par ani or par an® of
the sound command as flags to pass information or instructions to the callback
procedure. If your callback procedure is to use your application’s global data storage, it
must first reset A5 to your application’s A5 and then restore it on exit. For example,
Listing 2-18 illustrates how to set up a cal | BackCnd command that contains the
required A5 information in the par an® field. The Myl nst al | Cal | back function

Using the Sound Manager

CHAPTER 2

Sound Manager

defined there must be called at a time when your application’s A5 world is known
to be valid.

Listing 2-18 Issuing a callback command

FUNCTI ON Myl nstal | Cal | back (nySndChan: SndChannel Ptr): OSErr;

CONST
kWait I fFull = TRUE; {wait for roomin queue}
VAR o
nmy SndCnd: SndCommand,; {a sound conmand} e
BEG N c:zx
W TH nySndCnd DO 2
BEG N &
cnd : = cal |l BackCnd; {install the callback commuand} -
paraml : = kSoundConpl ete; {last command for this channel}
paranmR := Set CurrentA5; {pass the call back the A5}
END;

Myl nstal | Cal | back : = SndDoConmmand(nySndChan, mySndCrd, kWaitlIfFull);

END;

In this function, kSoundConpl et e is an application-defined constant that indicates that
the requested sound has finished playing. You could define it like this:

CONST
kSoundConpl et e = 1; {sound i s done pl ayi ng}

Because par an® of a sound command is a long integer, Listing 2-18 uses it to pass the
application’s A5 to the callback procedure. That allows the callback procedure to gain
access to the application’s A5 world.

Note
You can also pass information to a callback routine in the user | nf o
field of the sound channel. 0O

The sample callback procedure defined in Listing 2-19 can thus set A5 to access the
application’s global variables.

Listing 2-19 Defining a callback procedure

PROCEDURE MyCal | back (theChan: SndChannel Ptr; theCnd: SndConmmrand);
VAR

my AS: Longl nt ;

BEG N
| F t heCnmd. paraml = kSoundConpl ete THEN
BEG N

Using the Sound Manager 103

CHAPTER 2

Sound Manager

nyA5 : = Set A5(t heCnd. par anR) ; {set ny A5}

gCal | backPerformed : = TRUE; {set a global flag}

nyA5 : = Set A5(nyA5) ; {restore the original A5}
END;

END;

A WARNING
Callback procedures are called at interrupt time and therefore must
not attempt to allocate, move, or dispose of memory, dereference
an unlocked handle, or call other routines that do so. Also,
assembly-language programmers should note that a callback
procedure is a Pascal procedure and must preserve all registers
other than A0-Al and D0-D2. a

Callback procedures cannot dispose of channels themselves, because that involves
disposing of memory. To circumvent this restriction, the callback procedure in Listing
2-19 simply sets the value of a global flag variable that your application defines. Then,
once each time through its main event loop, your application must call a routine that
checks to see if the flag is set. If the flag is set, the routine should dispose of the channel,
release any other memory allocated specifically for use in the channel, and reset the flag
variable. Listing 2-20 defines such a routine. Your application should call it once each
time through its main event loop.

Listing 2-20 Checking whether a callback procedure has executed

PROCEDURE MyCheckSndChan;

CONST

kQui et Now = TRUE; {need to quiet channel ?}
VAR

myErr: CSErr;
BEG N

| F gCal | backPerformed THEN {check gl obal fl ag}

BEG N {channel is done}

gCal | backPerfornmed : = FALSE; {reset global flag}
| F gSndChan”. userinfo <> 0 THEN
BEG N {rel ease sound dat a}
HUnl ock(Handl e(gSndChan”. user | nfo));
HPur ge(Handl e(gSndChan”. userinfo));

END;

nyErr := MyD sposeSndChannel (gSndChan, kQui et Now) ;

gSndChan : = NI L; {set pointer to N L}
END;

END;

104 Using the Sound Manager

CHAPTER 2

Sound Manager

The MyCheckSndChan procedure defined in Listing 2-20 checks the user | nf o field of
the sound channel to see if it contains the address of a handle. Thus, if you would like the
MyCheckSndChan procedure to release memory associated with a sound handle, you
need only put the address of the handle in the user | nf o field of the sound channel. (If
you do not want the MyCheck SndChan procedure to release memory associated with a
handle, then you should set the user | nf o field to 0 when you allocate the channel. The
My Cr eat eSndChannel function defined in Listing 2-1 on page 75 automatically sets this
field to 0.) After releasing the memory associated with the sound handle, the
MyCheckSndChan procedure calls the MyDi sposeSndChannel function (defined in
Listing 2-3 on page 80) to release the memory occupied by both the sound channel and
the sound channel record.

To ensure that the MyCheck SndChan procedure defined in Listing 2-20 does not
attempt to dispose a channel before you have created one, you should initialize the
gCal | backPer f or ned variable to FALSE. Also, you should initialize the gSndChan
variable to NI L, so that other parts of your application can check to see if a sound is
playing simply by checking this variable. For example, if your application must play a
sound but another sound is currently playing, you might ensure that the application
gives priority to the newer sound by stopping the old one. Listing 2-21 defines a
procedure that stops the sound that is playing.

Jabeuey punos -

Listing 2-21 Stopping a sound that is playing asynchronously

PROCEDURE My St opPl ayi ng;

BEG N
| F gSndChan <> NI L THEN {is sound really playing?}
gCal | backPerformed : = TRUE; {set gl obal flag}
My CheckSndChan; {call routine to do disposing}
END;

Once you have defined a callback procedure, a routine that installs the callback
procedure, a routine that checks the status of the callback procedure, and a routine that
can stop sound play, you need only allocate a sound channel, call the SndPI ay function,
and install your callback procedure to start an asynchronous sound play. Listing 2-22
defines a procedure that starts an asynchronous play.

Listing 2-22 Starting an asynchronous sound play

PROCEDURE MyStart Pl ayi ng (nySndl D: | nteger);

CONST
kAsync = TRUE; {play is asynchronous}

VAR
nmy SndHandl e: Handl e; {handle to an 'snd ' resource}
nmyErr: CSErr;

BEG N

Using the Sound Manager 105

CHAPTER 2

Sound Manager

| F gSndChan <> NI L THEN {check if channel is active}
My St opPl ayi ng;
gSndChan : = MyCreat eSndChannel (0, 0, @#Call backProc, stdQ.ength);
nySndHandl e : = Get Resource(’'snd ', nySndlD);
I F (nySndHandl e <> NIL) AND (gSndChan <> NI L) THEN
BEG N {start sound pl ayi ng}
Det achResour ce(nySndHandl e) ; {detach resource fromfile}
{remenber to rel ease sound handl e}
gSndChan”. userInfo := Longlnt(nySndHandl e);
HLock(mySndHandl e) ; {lock the resource data}
myErr := SndPl ay(gSndChan, mySndHandl e, kAsync);
I F nyErr = noErr THEN
nyErr := Mylnstall Cal | back(gSndChan) ;
IF nyErr <> noErr THEN
DoError (nyErr);
END;

END;

106

The MySt ar t Pl ayi ng procedure uses the MyCr eat eSndChannel function defined

in Listing 2-1 to create a sound channel, requesting that the function allocate a
standard-sized sound channel command queue. By using such a queue, you can be

sure that your application can play any sound resource that contains up to 127 sound
commands. If you are sure that your application will play only sampled-sound resources
created by the Sound Input Manager, you should request a queue of only two sound
commands, thereby leaving enough room for just the buf f er Cmd command contained
within the sound resource and the cal | BackCrrd command that your application issues.

Before playing the sound, the My St ar t Pl ayi ng procedure defined in Listing 2-22
detaches the sound resource from its resource file after loading it. This is important if
the resource file could close while the sound is still playing, or if your application
might create another sound channel to play the same sound resource while the sound
is still playing.

Synchronizing Sound With Other Actions

If your application uses callback procedures to play sound asynchronously, you might
wish to synchronize sound play with other activity, such as an onscreen animation.

Callback procedures allow your application to do that by using different constant values
in the par aml field of the callback command. For example, you could define a constant
kFi r st SoundFi ni shed to signal to your application that the first of a series of sounds
has finished playing. Then, your callback procedure could set an appropriate global flag
depending on whether the par aml field equals kFi r st SoundFi ni shed,

kSoundConpl et e, or some other constant that your application defines. Finally, a
procedure that you call once each time through your application’s event loop could check
to see which of the various global flag variables are set and respond appropriately.
Meanwhile, sound continues to play.

Using the Sound Manager

CHAPTER 2

Sound Manager

Managing an Asynchronous Play From Disk

The Sound Manager allows you to play a sound file asynchronously with the

SndSt art Fi | ePl ay function by defining a completion routine that sets a global flag to
alert the application to dispose of the sound channel when the sound is done playing.
Completion routines are thus similar to callback procedures, but they are easier to use in
that you do not need to install them. The Sound Manager automatically executes them
when a play from disk ends, whether it has ended because the application called the
SndSt opFi | ePl ay function, because the application disposed of the sound channel in
which the sound was playing, or because the sound has finished playing.

You define a completion routine like this:
PROCEDURE MySoundConpl eti onRouti ne (chan: SndChannel Ptr);

Note that unlike callback procedures, completion routines have only one parameter, a
pointer to a sound channel. Thus, for the completion routine to set the application’s A5
world properly, you should pass the value of the application’s A5 in the user | nf o field
of the sound channel, like this:

Jabeuey punos -

gSndChan”. userInfo := Set CurrentA5;
Then your completion routine can look in the user | nf o field of the sound channel to set

A5 correctly before it can access any application global variables. Listing 2-23 defines a
completion routine that sets A5 correctly.

Listing 2-23 Defining a completion routine

PROCEDURE MySoundConpl eti onRouti ne (chan: SndChannel Ptr);

VAR

my AS: Longl nt;
BEG N

nmyA5 : = Set A5(chan”. userl nfo); {set ny A5}

gConpl eti onPerforned : = TRUE; {set a global flag}

myA5 : = Set A5(nmyA5); {restore the original A5}
END;

The completion routine defined in Listing 2-23 sets a global flag variable to indicate that
the completion routine has been called. To start a sound file playing, you can use a
routine analogous to that defined in Listing 2-22, but when allocating a sound channel,
you need only allocate a queue of a single sound command. You can than use a
procedure analogous to that defined in Listing 2-20 to check the flag once each time
through the application’s event loop and dispose of the sound channel if the flag is set.

If you do use the SndSt art Fi | ePl ay function to play sounds asynchronously, then you
can pause, restart, and stop play simply by using the SndPauseFi | ePl ay and
SndsSt opFi | ePl ay functions.

Using the Sound Manager 107

108

CHAPTER 2

Sound Manager

You use SndPauseFi | ePl ay to temporarily suspend a sound from playing. If a sound
is playing and you call SndPauseFi | ePl ay, then the sound is paused. If the sound is
paused and you call ShndPauseFi | ePl ay again, then the sound resumes playing.
Hence, the SndPauseFi | ePl ay routine acts like a pause button on a tape player, which
toggles the tape between playing and pausing. (You can determine the current state of a
play from disk by using the SndChannel St at us function. See “Obtaining Information
About a Single Sound Channel” on page 92 for more details.) Finally, you can use

SndSt opFi | ePl ay to stop the file from playing.

Playing Selections

The sixth parameter passed to the SndSt art Fi | ePl ay function is a pointer to an
audio selection record, which allows you to specify that only part of the sound be
played. If that parameter has a value different from NI L, then SndSt art Fi | ePl ay
plays only a specified selection of the entire sound. You indicate which part of the entire
sound to play by giving two offsets from the beginning of the sound, a time at which to
start the selection and a time at which to end the selection. Currently, both time offsets
must be specified in seconds.

Here is the structure of an audio selection record:

TYPE Audi oSel ection =
PACKED RECORD

uni t Type: Longl nt; {type of time unit}

sel Start: Fi xed; {starting point of selection}

sel End: Fi xed; {endi ng point of selection}
END;

To play a selection, you should specify in the sel St art and sel End fields the starting
and ending point in seconds of the sound to play. Also, you must set the uni t Type field
to the constant uni t TypeSeconds.

If you wish to play an entire sound, you can simply pass NI L to the SndSt art Fi | ePl ay
function. Alternatively, you can set the uni t Type field to the constant

uni t TypeNoSel ecti on, in which case the values in the sel St art and sel End fields
are ignored.

Managing Multiple Sound Channels

If you are writing an application that can play multiple channels of sound on Macintosh
computers that support that feature, you can use the Sound Manager’s asynchronous
playing abilities, but you might encounter some special obstacles. The technique for
playing sounds asynchronously described in “Playing Sounds Asynchronously” on

page 101 has a limitation if you are using multiple sound channels. Using that technique
without modification, you would need to define each separate sound channel in a
different global variable, and you would need to use several global flags in your callback
procedure to signal which sound channels have finished processing sound commands.

Using the Sound Manager

CHAPTER 2

Sound Manager

Although it is easy to modify the code in “Playing Sounds Asynchronously” to use
several flags, this solution might not be satisfactory for an application in which the
number of sound channels open can vary. For example, suppose that you are writing
entertainment software with dozens of sound effects that correspond to actions on the
screen and you wish to use the Sound Manager asynchronously so that several sound
effects can be played at once. It would be cumbersome to associate a separate global
sound channel variable with each sound and create a flag variable for each of these sound
channels. Also, you might wish to play the same sound simultaneously in two separate
channels. It would be better to write code that manages a global list of sound channels
and then provides a simple routine that allows you to add a channel to the list. This
section shows how you might implement such a list of sound channels. Listing 2-24
defines a data structure that you could use to track multiple sound channels.

Jabeuey punos -

Listing 2-24 Defining a data structure to track many sound channels
CONST
kMaxNunmsndChans = 20; {max numnber of sound channel s}
TYPE
SCinfo =
RECORD
sndChan: SndChannel Ptr; {NIL or pointer to channel}
nmust Di spose: Bool ean; {flag to dispose channel}
i tsData: Handl e; {data to dispose with channel}
END;
SCLi st = ARRAY[1. . kMaxNunSndChans] OF SCl nf o;
VAR
gSndChans: SCLi st ;

The SCI nf o data structure defined in Listing 2-24 allows you to keep track of which
channels in the collection are being used and which were being used but currently need
disposal; it also allows you to associate data with a sound channel so that you can
dispose of the data when you dispose of the sound channel. Note that the value of the
kMaxNunSndChans constant might vary from application to application. Having defined
the data structure, you must initialize it (so that the sndChan and i t sDat a fields are

NI L and the nust Di spose field is FALSE). You must also write a procedure that finds an
available channel. You might declare such a procedure like this:

PROCEDURE DoTrackChan (chanToTrack: SndChannel Ptr; associ atedData: Handl e);

Using such a procedure, you could simply create sound channels by using local variables
and then add them to the tracking list so that your application disposes of them when
they finish executing. The exact implementation of such a procedure would depend on
the needs of your application. For example, if there are no channels available in the global
list of sound channels, your application might report an error, stop sound on all active
channels, or stop sound on the channel that has been playing the longest. If you want
your application to be compatible with computers that do not support multichannel

Using the Sound Manager 109

CHAPTER 2

Sound Manager

sound, this procedure could check whether multichannel sound is supported, and if not,
would stop any sound playing on other channels. This is particularly useful if your
application plays sound effects in response to actions on the screen; overlapping sound
effects sound best, but if this is unattainable, the newest sound should have the highest
priority.

One advantage of maintaining a list of sound channels is that you can use it in
conjunction with both callback procedures and completion routines. Listing 2-25 defines
a procedure that either your callback procedure or completion routine could call after
setting the application’s A5 world correctly.

Listing 2-25 Marking a channel for disposal

PROCEDURE My Set Tr ackChanDi spose (nySndChannel : SndChannel Ptr);

VAR
i ndex: I nt eger; {channel i ndex}
f ound: Bool ean; {flag vari abl e}
BEG N
i ndex := 1; {start at first spot}
found : = FALSE; {initialize flag vari abl e}

WHI LE (index <= kMaxNuntBndChans) AND (NOT found) DO
I F gSndChans[i ndex] . sndChan = nySndChannel THEN
found : = TRUE {proper channel found}
ELSE
index :=index + 1; {nove to next spot}
| F found THEN
gSndChans|[i ndex] . nust Di spose : = TRUE;
END;

The final thing you need to do is to define a procedure that your application calls once

each time through its main event loop. This procedure must dispose of sound channels
that are marked for disposal. Listing 2-26 defines such a routine.

Listing 2-26 Disposing of channels that have been marked for disposal

PROCEDURE Myd eanUpTr ackedChans;

CONST

kQui et Now = TRUE; {need to qui et channel ?}
VAR

i ndex: I nt eger;

nmyErr: CSErr;
BEG N

FOR index := 1 TO kMaxNuntndChans DO {go through all channel s}

W TH gSndChans[i ndex] DO

110 Using the Sound Manager

END;

CHAPTER 2

Sound Manager

| F nust Di spose THEN {check gl obal fl ag}
BEG N {channel needs di sposal}

| F gSndChans[index].itsData <> NIL THEN
BEA N {rel ease other data}
HUNnl ock(gSndChans[i ndex] .itsDat a);
HPur ge(gSndChans[i ndex] . i t sDat a) ;
END;
{free channel -rel at ed nenory}
nyErr := MyDi sposeSndChannel (sndChan, kQui et Now);
sndChan := NL; {set pointer to N L}
nmust Di spose : = FALSE; {reset global flag}
I F nyErr <> noErr THEN
DoError (nyErr);

END;

The Myd eanUpTr ackedChans procedure defined in Listing 2-26 works just like the

My CheckSndChan procedure defined in Listing 2-20, but instead of checking a single
global flag, it checks the flag associated with each allocated sound channel. Now that you
have defined such a procedure, you can easily write a routine to stop sound in all active
channels (for example, if your application receives a suspend event). Simply set the

nmust Di spose flag on all sound channels that are allocated (that is for all channels that
are not NI L) and then call My eanUpTr ackedChans. Note, however, that when the
MyC eanUpTr ackedChans procedure disposes of a sound channel processing a play
from disk, the completion routine will be called and will thus set the nust Di spose flag
to TRUE. Thus, the must Di spose flag must be reset to FALSE after the sound channel has
been disposed. Otherwise, the Myl eanUpTr ackedChans procedure would try to
dispose of the same sound channel again when the application called it from its main
event loop.

Parsing Sound Resources and Sound Files

This section explains how you can parse sound resources and sound files to find the
component of a sound resource or sound file that contains information about the sound.
For sound resources, this information is stored in the sound header. In addition to
obtaining information about a sound from a sound header, you might need a pointer to a
sound header to use any of several low-level sound commands. For sound files,
information is stored in the Form and Common Chunks. This section shows how you can
find those chunks and extract information from them.

Note

The techniques shown in this section assume that you are familiar with
the format of sound resources and sound files. See “Sound Storage
Formats” beginning on page 128 for complete information on sound
storage formats. O

Using the Sound Manager 111

Jabeuey punos -

CHAPTER 2

Sound Manager

Obtaining a Pointer to a Sound Header

This section shows how you can obtain a pointer to a sound header stored in a sound
resource. You can use this pointer to obtain information about the sound. You also need a
pointer to a sound header to install a sampled sound as a voice in a channel (as described
in “Installing Voices Into Channels” on page 98) and to play sounds using low-level
sound commands (as described below and in the next section). You can use a technique
similar to the one described in this section if you wish to obtain a pointer to wave-table
data that is stored in a sound resource.

Sound Manager versions 3.0 and later include the Get SoundHeader O f set function
that you can use to locate a sound header embedded in a sound resource. Listing 2-27
shows how to call the Get SoundHeader O f set function and then pass the returned
offset to the buf f er Crd sound command, to play a sampled sound using low-level
Sound Manager routines.

Listing 2-27 Playing a sound resource

FUNCTI ON MyPl aySanpl edSound (chan: SndChannel Ptr; sndHandl e: Handle): OSErr;

VAR
nyCor f set : Longl nt;
nmy SndCnd: SndCommand,; {a sound conmand}

BEG N

112

CSErr;

Get SoundHeader O f set (sndHandl e, nmyOf fset);
= noErr THEN

HLock(sndHandl e) ;
nmySndCnd. cnd : = buffer Cnd; {command is bufferCnd}
nySndCnd. par ani :
nmySndCnd. par an? :

0; {unused wi th buffer Cnd}
Longl nt (ORD4(sndHandl e®) + myOifset);
: = SndDol mredi at e(chan, nySndCnd) ;

MyPl aySanpl edSound : = nyErr;
END;

If the Get SoundHeader O f set function is not available but you still need to obtain a
pointer to a sound header, you can use the function My Get SoundHeader O f set
defined in Listing 2-28. The function defined there traverses a sound resource until it
reaches the sound data. It returns, in the of f set parameter, the offset in bytes from the
beginning of a sound resource to the sound header.

Using the Sound Manager

CHAPTER 2

Sound Manager

IMPORTANT

The Get SoundHeader O f set function is available in Sound Manager
versions 3.0 and later. As a result, you’ll need to use the techniques
illustrated in Listing 2-28 only if you want your application to find

a sound header when earlier versions of the Sound Manager

are available. a

Listing 2-28 Obtaining the offset in bytes to a sound header

FUNCTI ON MyGet SoundHeader Of f set (sndHdl : Handl e; VAR offset: Longint): OSErr;
TYPE

SndlHeader = {format 1 'snd ' resource header}
RECORD

format: I nt eger; {format of resource}

nunSynt hs: | nteger; {nunber of data types}

{synths, init option follow}

END;
SndlHdr Ptr = ~SndlHeader;
Snd2Header = {format 2 'snd ' resource header}
RECORD

format: I nt eger; {format of resource}

r ef Count : I nt eger; {for application use}
END;
Snd2Hdr Pt r = ~Snd2Header ;
IntPtr = ~Integer; {for type coercion}
SndCmdPt r = ~SndConmand; {for type coercion}

VAR
nmyPtr: Ptr; {to navi gate resource}
nyOf f set: Longl nt; {offset into resource}
nunBynt hs: I nt eger; {info about resource}
nuntCrds: I nt eger; {info about resource}
i sDone: Bool ean; {are we done yet ?}
myErr: OSErr;
BEG N

{Initialize variables.}
nyOrfset : = 0; {return 0 if no sound header found}
nyPtr := Ptr(sndHdl *); {point to start of resource data}
i sDone : = FALSE; {haven’t yet found sound header}

nmyErr : = noErr,

{Ski p everything before sound conmands. }
CASE SndiHdrPtr(myPtr)~. format OF
firstSoundFor mat : {format 1 'snd ' resource}
BEA N {skip header start, synth ID, etc.}

Using the Sound Manager 113

Jabeuey punos -

CHAPTER 2

Sound Manager

nunBSynt hs : = SndlHdr Pt r (myPtr)”~. nunSynt hs;
myPtr := Ptr(ORDA(nyPtr) + SizeO (SndlHeader));
nyPtr := Ptr(ORDA(nyPtr) +
nunBSynths * (SizeO (Integer) + SizeO (Longlnt)));

END;

secondSoundFor nat : {format 2 'snd ' resource}
nyPtr := Ptr(ORD4(nyPtr) + SizeO (Snd2Header));

OTHERW SE {unrecogni zed resource formnat}
BEG N

nyErr := badFornat;
i shone : = TRUE;
END;
END;

{Find nunber of conmands and nove to start of first conmand.}
nunCds .= IntPtr(nyPtr)”;
myPtr .= Ptr(ORDA(nyPtr) + SizeO (Integer));

{Search for bufferCnd or soundCnd to obtain sound header.}
VWH LE (nunCnds >= 1) AND (NOT i sDone) DO
BEG N

IF (IntPtr(nyPtr)~ = bufferCrd + dataOfsetFlag) OR

(IntPtr(myPtr)~ = soundCrd + dataCOf fset Fl ag) THEN
BEG N {bufferCrd or soundCnd found}
{copy offset from sound comuand}
myOof fset (= SndCrdPtr (nyPtr) ", parant;

i shone : = TRUE; {get out of | oop}
END
ELSE
BEG N {soundCnd or bufferCrd not found}

{nove to next comuand}
myPtr := Ptr(ORDA(nyPtr) + SizeO (SndComand)) ;
nunCrds : = nunCnds - 1;

END;
END; {WH LE}
of fset := nyOFfset; {return offset}
My Get SoundHeader O f set : = nyErr; {return result code}

END;
The MyGet SoundHeader O f set function defined in Listing 2-28 begins by initializing

several variables, including a pointer that it sets to point to the beginning of the data
contained in the sound resource. Then, after determining whether the sound resource is

114 Using the Sound Manager

CHAPTER 2

Sound Manager

format 1 or format 2, the function skips data contained in the format 1’ snd ' resource

header or in the format 2’ snd ' resource header, as appropriate.

Note

Do not confuse the format 1 or format 2’ snd ' header with the sound
header the MyGet SoundHeader O f set function defined in Listing 2-28
is designed to find. A sound header contains information about the
sampled-sound data stored in a sound resource; a sound resource header
contains information about the format of the sound resource. 0O

After skipping information in the sound resource header, My Get SoundHeader O f set
simply looks through all sound commands in the resource for a buf f er Cd or
soundCnd command, either of which must contain the offset from the beginning of the
resource to the sound header in its par an® field. If the given sound resource contains no
sound header (and thus no sampled-sound data), the MyGet SoundHeader O f set
function returns an error and sets the of f set variable parameter to 0.

Jabeuey punos -

After using the MyGet SoundHeader O f set function to obtain an offset to the sound
header, you can easily obtain a pointer to a sound header. Note, however, that because

a handle to a sound resource is contained in a relocatable block, you must lock the
relocatable block before you obtain a pointer to a sound header, and you must not unlock
it until you are through using the pointer. Listing 2-29 demonstrates how you can convert
an offset to a sound header into a pointer to a sound header after locking a relocatable
block.

Listing 2-29 Converting an offset to a sound header into a pointer to a sound header

FUNCTI ON MyGet SoundHeader (sndHandl e: Handl e): SoundHeader Ptr;

VAR
myo fset: Longl nt ; {of fset to sound header}
myErr: CSErr;

BEG N
HLockHi (sndHandl e) ; {l ock data in high nmenory}

{conpute offset to sound header}
nyErr : = MyGet SoundHeader O f set (sndHandl e, nmyOf fset);
IF nyErr <> noErr THEN
MyGet SoundHeader := NL {no sound header in resource}
ELSE
{comput e address of sound header}
My Get SoundHeader := SoundHeader Pt r (ORD4(sndHandl e®) + nmyOffset);
END;

The MyGet SoundHeader function defined in Listing 2-29 locks the sound handle you
pass it in high memory and then attempts to find an offset to the sound header in the
sound handle. If the MyGet SoundHeader O f set function defined in Listing 2-28
returns an offset of 0, then My Get SoundHeader returns a Nl L pointer to a sound header;

Using the Sound Manager 115

CHAPTER 2

Sound Manager

otherwise, it returns a pointer that remains valid as long as you do not unlock the sound
handle.

The MyGet SoundHeader function returns a pointer to a sampled sound header even if
the sound header is actually an extended sound header or a compressed sound header.
Thus, before accessing any other fields of the sound header, you should test the encode
field of the sound header to determine what type of sound header it is. Then, if the sound
header is, for example, an extended sound header, cast the sampled sound header to an
extended sound header. Then you can access any of the fields of the extended sound
header. For an example of this technique, see Listing 2-16 on page 99.

Playing Sounds Using Low-Level Routines

Once you obtain a pointer to a sampled sound header, you can use the buf f er Cnd
sound command to play a sound without using the high-level Sound Manager routines.
Many sampled-sound resources include buf f er Cmd commands, so the high-level Sound
Manager routines often issue the buf f er Cnd command indirectly. Thus, you might in
some cases be able to make your application slightly more efficient by issuing the

buf f er Cnd command directly. Also, you might issue a buf f er Cnd command directly if
you want the Sound Manager to ignore other parts of a sound resource.

Finally, you might issue buf f er Chd commands directly if you want your application to
be able to play a large sound resource without loading the entire resource at once. By
issuing several successive buf f er Crd commands, you can play a large sound resource
using a small buffer. In this case, each buffer must contain a sampled sound header. In
most cases, the sound will play smoothly, without audible gaps. It's generally easier,
however, to play large sampled sounds from disk by using the play-from-disk routines or
the SndPI ayDoubl eBuf f er function. See “Managing Double Buffers” on page 202 for
complete details.

Note

Using the buf f er Cmd command to play several consecutive compressed
samples on the Macintosh Plus, the Macintosh SE, or the Macintosh
Classic is not guaranteed to work without an audible pause or click. O

The pointer in the par an® field of a buf f er Cd command is the location of a sampled
sound header. A buf f er Cmd command is queued in the channel until the preceding
commands have been processed. If the buf f er Cnd command is contained within an
"snd ' resource, the high bit of the command must be set. If the sound was loaded in
froman’ snd ’ resource, your application is expected to unlock this resource and allow
it to be purged after using it. Listing 2-30 shows how your application can play a
sampled sound stored in a resource using the buf f er Chd command.

Listing 2-30 Playing a sound using the buf f er Crd command

FUNCTI ON MyLowLevel Sanpl edSndPl ay (chan: SndChannel Ptr; sndHandl e: Handl e):
OSErr;
CONST

116 Using the Sound Manager

CHAPTER 2

Sound Manager

kWai t1fFull = TRUE; {wait for roomin queue?}
VAR

nmy SndHeader : SoundHeader Pt r;

nmy SndCnd: SndCommand,; {a sound conmand}
BEG N

nmySndHeader := MyGet SoundHeader (sndHandl e) ;

W TH nySndCnd DO

BEG N
crmd : = bufferCnd, {comrand i s bufferCnd}
paraml : = O; {unused wi th buffer Cnd} 9
paran? : = Longl nt(nmySndHeader); {pointer to sound header} §

END; £

| F mySndHeader <> NI L THEN é
MyLowLevel Sanpl edSndPl ay : =]

ELSE

SndDoConmand(chan, nmySndCnd, NOT kWaitlfFull)

MyLowLevel Sanpl edSndPl ay : = badFor nat ;

END;

For the MyLowLevel Sanpl edSndPl ay function defined in Listing 2-30 to play a sound,
the channel passed to it must already be configured to play sampled-sound data.
Otherwise, the function returns a badChannel result code. Also, because the

buf f er Cnd command works asynchronously, you might want to associate a callback
procedure with the sound channel when you create the channel. For more information on
playing sounds asynchronously, see “Playing Sounds Asynchronously” on page 101.

You can use the buf f er Crd command to handle compressed sound samples in addition
to sounds that are not compressed. To expand and play back a buffer of compressed
samples, you pass the Sound Manager a buf f er Cd command where par an® points to
a compressed sound header.

To play sampled sounds that are not compressed, pass buf f er Cnd a standard or
extended sound header. The extended sound header can be used for stereo sampled
sounds. The standard sampled sound header is used for all other noncompressed
sampled sounds.

Finding a Chunk in a Sound File

Sound files are not as tightly structured as sound resources. As explained in “Sound
Files” on page 136, the chunks in a sound file can appear in any order, except that the
Form Chunk is always first. Most information about a sampled sound stored in a sound
file is contained in the Common Chunk. Thus, to be able to access this information, you
must be able to find a particular kind of chunk in a sound file. Listing 2-31 defines a
procedure that you can use to find the location of the first chunk of a specified type
beginning at the chunk you specify.

Using the Sound Manager 117

CHAPTER 2

Sound Manager

IMPORTANT

The techniques illustrated in this section are provided primarily to help
you understand the structure of sound files. Most sound-producing
applications don’t need to parse sound files. a

Listing 2-31 Finding a chunk in a sound file

FUNCTI ON MyFi ndChunk (rnyFile: |nteger; {file reference nunber}
nyChunkSought : | D {ID of chunk sought}
startPos: Longlnt; {file position to start at}
VAR chunkFPos: Longlnt) {file position of found chunk}
CSErr;
VAR
nyLengt h: Longl nt ; {nunber of bytes to read}
nyChunkHeader : ChunkHeader ; {characteristics of chunk}
f ound: Bool ean; {flag vari abl e}
nyErr: OSErr; {error fromFile Manager call s}
BEG N
found : = FALSE; {initialize flag vari abl e}

nmyErr

{set file mark at start}
Set FPos(nyFile, fsFronttart, startPos);

{Search file' s chunks for desired chunk ID.}
VWHI LE (NOT found) AND (nyErr = noErr) DO
BEA N {check current chunk}

118

nmyLength : = Si zeO (myChunkHeader);
{Load chunk header.}
nyErr := FSRead(nyFile, myLength, @ryChunkHeader);

| F nyErr = noErr THEN {chunk header | oaded okay}
| F myChunkHeader . ckl D = nyChunkSought THEN
BEG N
found : = TRUE {chunk has been found}

{find position in file}
Get FPos(nyFi | e, chunkFPos);
{conpute chunk’s start position}
chunkFPos : = chunkFPos - SizeO (nmyChunkHeader);
END
ELSE
BEG N {nmove to next chunk}
| F nyChunkHeader.ckl D = | D(Form D) THEN
{Adj ust Form Chunk’s size to size of fornfType field.}
nyChunkHeader . ckSi ze : = SizeO (I D);
| F nyChunkHeader . ckSize MDD 2 = 1 THEN

myErr

Using the Sound Manager

CHAPTER 2

Sound Manager

{Conpensate for pad byte.}
myChunkHeader . ckSi ze : = nmyChunkHeader. ckSi ze + 1;
nyErr := Set FPos(nyFile, fsFromvark, myChunkHeader.ckSize);

END;
END; {WH LE}
MyFi ndChunk : = nyErr;

END;

The MyFi ndChunk function defined in Listing 2-31 accepts four parameters. The nyFi | e
parameter is the file reference number of an open sound file. (For information on file
reference numbers, see Inside Macintosh: Files.) In the nyChunk Sought parameter, you
pass the ID of the type of chunk you wish to find. For example, you might pass

| D(For m D) to find the Form Chunk. The third parameter, st ar t Pos, is the file
position at which MyFi ndChunk should start searching for a chunk. This file position
must be the beginning of a chunk. To start at the beginning of a file, specify 0. Finally,

if the MyFi ndChunk function is successful, it returns in the chunkFPos parameter the
file position of the first chunk of the specified type that it found. If the function is
unsuccessful, it returns the appropriate File Manager result code (such as an end-of-file
error) and the chunkFPos parameter is undefined.

The MyFi ndChunk function works by looking at each chunk of the sound file, beginning
at the file position st ar t Pos and checking to see if the chunk is of the type sought. If a
chunk matches, the MyFi ndChunk function returns the file position of the start of the
chunk; otherwise, the function moves onto the next chunk. For each chunk, the

MyFi ndChunk function reads in the chunk header, checks for a match, and then moves to
the next chunk.

The MyFi ndChunk function moves from one chunk to the next by identifying the size of
the current chunk, not including the chunk header, from the ckSi ze field of the chunk
header. Whenever you parse sound files, you should always use the ckSi ze field of the
chunk header to determine the size of a chunk if the size of the chunk could vary in size.
The MyFi ndChunk function adjusts the value in the ckSi ze field before advancing to
the next chunk in two cases. First, the ckSi ze field for the Form Chunk reflects the size
of the entire sound file, so this function changes it to the size of the f or nTType field so
that the function does not skip the file’s local chunks. Second, if the ckSi ze field is odd,
1 byte is added because the number of bytes in a chunk is always even.

After using the MyFi ndChunk function defined in Listing 2-31, you might still need to
read the data contained in a chunk into memory. For example, you might read in the
Form and Common Chunks to obtain information about a sound file. Listing 2-32 uses
the MyFi ndChunk function to find a chunk in a sound file, allocates an appropriately
sized block of memory for that chunk, and reads the chunk into that block.

Using the Sound Manager 119

Jabeuey punos -

CHAPTER 2

Sound Manager

Listing 2-32 Loading a chunk from a sound file

FUNCTI ON MyGet ChunkData (myFile: |nteger; {file reference nunber}

nyChunkSought : | D {ID of chunk sought}
startPos: Longint): {file position to start at}

Ptr; {pointer to data or NI L}
VAR
ny FPos: Longl nt; {position in file}
myLengt h: Longl nt ; {nunmber of bytes to read}
nyChunkHeader : ChunkHeader ; {characteristics of a chunk}
nmy ChunkDat a: Ptr; {pointer to chunk data}
nmyErr: OSErr;
BEG N
myChunkData : = N L; {initialize variabl e}

myErr = MyFi ndChunk(nmyFil e, myChunkSought, startPos, nyFPos);
I F nyErr = noErr THEN
{move to start of chunk}
myErr := Set FPos(nyFile, fsFronStart, nyFPos);
I F nyErr = noErr THEN
BEA N {determ ne how nuch data to copy}
myLength : = Si zeOf (ChunkHeader) ;
nmyErr := FSRead(nyFile, myLength, @ryChunkHeader);
| F myChunkHeader . ckl D = | D{Form D) THEN
myChunkHeader . ckSi ze := SizeO (I1D); {don’t return |ocal chunks}
nyLength : = nyChunkHeader. ckSi ze + SizeOf (ChunkHeader);
IF nyErr = noErr THEN
{return to chunk’s start}
nyErr := SetFPos(mnyFile, fsFrontBtart, myFPos);
END;
IF nyErr = noErr THEN
BEG N {read chunk data into RAM
nmyChunkDat a : = NewPtr (myLength);
| F myChunkData <> NI L THEN
nyErr := FSRead(mnyFile, myLength, myChunkDat a);
END;
IF nyErr <> noErr THEN
| F myChunkData <> NI L THEN
Di sposePt r (myChunkDat a) ;
MyGet ChunkDat a : = myChunkDat a;

END;
The MyGet ChunkDat a function defined in Listing 2-32 attempts to find a chunk in afile.
If it finds the chunk, it reads the chunk header to determine the chunk’s size, and if the
chunk is the Form Chunk, adjusts the chunk size so that the sound file’s local chunks are
120 Using the Sound Manager

CHAPTER 2

Sound Manager

not included in the chunk size. Then the function attempts to allocate memory for the
chunk and read the chunk into the memory. If a problem occurs at any time, the function
simply returns NI L.

Note

The format of a sound file might not be the same as its operating-system
type. In particular, a file might have an operating-system type’ Al FC
but be formatted as an AIFF file because the sampled-sound data
contained in the file is noncompressed. O

Compressing and Expanding Sounds

Some of the capabilities provided by MACE are transparently available to your
application. For example, if you pass the SndPl ay function a handle to an’ snd
resource that contains a compressed sampled sound, the Sound Manager automatically
expands the sound data for playback in real time. Your application does not need to
know whether the’ snd ’ resource contains compressed or noncompressed samples
when it calls SndPI ay. This is because sufficient information is in the resource itself to
allow the Sound Manager to determine whether it should expand the data samples.

Jabeuey punos -

However, aside from expansion playback, all of the MACE capabilities need to be
specifically requested by your application. For example, you can use the procedure
Conp3t ol or Conp6t 01 if you want to compress a sampled sound (for example, to
create an’ snd ' resource containing compressed audio data). You can use the
procedures Exp1t 03 and Exp1t 06 to expand compressed audio data.

All of these procedures require you to specify both an input and an output buffer,

from and to which the sampled-sound data to be converted is read and written. Your
application must allocate the appropriate amount of storage for each buffer. For example,
if you want to expand a buffer of compressed monophonic sampled-sound data by using
Explt 06, the output buffer must be at least six times the size of the input buffer.

The MACE compression and expansion routines can work on only one channel of sound.
The numChannel s parameter of all four procedures allows you to specify how many
channels are in the original sample, and the whi chChannel parameter allows you to
specify which channel you wish to compress or expand. Because the MACE routines can
compress or expand only one channel of sound, you must make adjustments when
allocating an output buffer for stereo sound. For example, if you are compressing
two-channel sound using the Conp3t 01 procedure, your output buffer need only be
one-sixth the size of your input buffer.

Often when compressing polyphonic sound, being able to compress only one channel is
not a problem, because you lose sound quality during compression anyway. However,
you might at times wish to maintain more than one channel of a multichannel sound
even after compression and expansion. For example, two channels of a stereo sound
might be quite different and might both be necessary to achieve a full sound after
expansion. In these cases, you can compress each channel of a multichannel sound
individually and then manually interleave the samples on a packet basis. When you

Using the Sound Manager 121

CHAPTER 2

Sound Manager

expand polyphonic compressed sound data, you must interleave the channels of sound
on a sample frame basis.

The MACE routines work only with sampled-sound data in offset binary format. If you
are compressing data in a sound file, you must convert that data from linear, two’s
complement format to binary offset format before compression.

When calling the MACE routines, you can also specify addresses of two small buffers
(128 bytes each) that the Sound Manager uses to maintain state information about the
compression or expansion process. When you first call a MACE routine, the state buffers
should be filled with zeros to initialize the state information. When you subsequently call
another MACE routine, you can use the same state buffers. You can pass NI L for both
buffers if you do not want to save state information across calls to the MACE routines.
Listing 2-33 illustrates the use of the Conp3t 01 procedure when using state buffers.

Listing 2-33 Compressing audio data

PROCEDURE MyConpressBy3 (inBuf: Ptr; outBuf: Ptr; nunSanp: Longlnt);
CONST
kSt at eBuf fer Si ze = 128;

VAR
myl nSt at e: Ptr; {input state buffer}
nyCut St at e: Ptr; {output state buffer}
BEG N

mylnState : = NewPtrC ear (kSt at eBuf f er Si ze) ;
nyQut State : = NewpPtrC ear (kSt at eBuffer Si ze);
IF (mylnState <> NIL) AND (myQutState <> NI L) THEN
Comp3t ol(i nBuf, outBuf, nunSanp, nylnState, myQutState, 1, 1);
END;

Because the last two parameters (humChannel s and whi chChannel) are both set to 1,
My Conpr essBy 3 compresses monophonic audio data.

In practice, compressing a sound resource or sound file is considerably more complex
than calling the My Conpr essBy 3 procedure defined in Listing 2-33. To compress a sound
resource containing monophonic sampled-sound data, you would need to

= load the data into a handle and lock the handle

= ensure that the data in the handle is not already compressed by examining the sound
header

» find a pointer to the sampled-sound data by examining the sanpl ePt r field of the
sound header

= allocate an output buffer of the appropriate size, taking into account that only one
channel of the original data can be compressed

= compress the sampled-sound data by calling the Conp3Tol procedure

122 Using the Sound Manager

CHAPTER 2

Sound Manager

= determine the size that the header information (including, for example, sound
commands and the sampled sound header excluding the sampled-sound data itself)
will take in the resource by using the Sound Input Manager’s Set upSndHeader
function to create a sound resource header and sampled sound header with the
same sample rate, base frequency, and other characteristics as the original
sampled-sound data

= resize the handle so that it is large enough to contain both the non-sampled-sound
data information and the compressed sound data

= fill this handle by first calling Set upSndHeader once again and by then copying the
compressed sound data to the end of the header information

= update the resource file

Techniques for compressing sound files and for expanding both sound resources and
sound files are analogous to that sketched here. Remember that after compressing or
expanding each channel of polyphonic sampled-sound data, you must interleave frames
of sound data, on a packet basis after compression or on a sample basis after expansion.

Jabeuey punos -

Using Double Buffers

The play-from-disk routines make extensive use of the SndPl ayDoubl eBuf f er
function. You can use this function in your application directly if you wish to bypass the
normal play-from-disk routines. You might want to do this to maximize the efficiency of
your application while maintaining compatibility with the Sound Manager. Or, you
might define your own double-buffering routines so that your application can convert
16-bit sound data on disk to 8-bit data that all versions of the Sound Manager can play.
By using SndPl ayDoubl eBuf f er instead of the normal play-from-disk routines, you
can specify your own doubleback procedure (that is, the algorithm used to switch back
and forth between buffers) and customize several other buffering parameters.

IMPORTANT
SndPl ayDoubl eBuf f er is a very low-level routine and is not intended
for general use. In most cases, you should use the high-level Sound
Manager routines (such as SndPl ay or SndSt art Fi | ePl ay) or
standard sound commands (such as buf f er Cnrd) to play sounds.

You should use SndPI ayDoubl eBuf f er only if you require very

fine control over double buffering. Remember also that the

SndPI ayDoubl eBuf f er function is not always available. You’ll need to
ensure that it’s available in the current operating environment before
calling it. See “Testing for Multichannel Sound and Play-From-Disk
Capabilities” beginning on page 90 for details. a

You call SndPI ayDoubl eBuf f er by passing it a pointer to a sound channel (into which
the double-buffered data is to be written) and a pointer to a sound double buffer header
record. Here’s an example:

myErr : = SndPl ayDoubl eBuf f er (mySndChan, @ryDoubl eHeader);

A sound double buffer header record has the following structure:

Using the Sound Manager 123

124

CHAPTER 2

Sound Manager

TYPE SndDoubl eBuf f er Header =
PACKED RECORD

dbhNuntChannel s: I nt eger;
dbhSanpl eSi ze: I nt eger;
dbhConpressi onl D. | nteger;
dbhPacket Si ze: I nt eger;
dbhSanpl eRat e: Fi xed;
dbhBufferPtr: ARRAYT 0. . 1]
dbhDoubl eBack: ProcPtr;
END;

{nunmber of sound channel s}

{sanpl e size, if nonconpressed}
{1 D of conpression algorithnm
{nunber of bits per packet}
{sanpl e rate}

OF SndDoubl eBuf ferPtr;

{pointers to SndDoubl eBuf f er}
{poi nter to doubl eback procedure}

The values for the dbhConpr essi onl D, dbhNuntChannel s, and dbhPacket Si ze fields
are the same as those for the conpr essi onl D, nunChannel s, and packet Si ze fields
of the compressed sound header, respectively.

The dbhBuf f er Pt r array contains pointers to two records of type SndDoubl eBuf f er .
These are the two buffers between which the Sound Manager switches until all the sound
data has been sent into the sound channel. When the call to SndPl ayDoubl eBuf f er is
made, the two buffers should both already contain a nonzero number of frames of data.

IMPORTANT

The Sound Manager defines the data type SndDoubl eBuf f er Header 2
that is identical to the SndDoubl eBuf f er Header data type except that
it contains the dbhFor mat field (of type OSType) that defines a custom
codec to be used to decompress the sound data. The dbhFor mat field is
used only if the dbhConpr essi onl Dfield contains the value

fi xedConpr essi on. See “Sound Double Buffer Header Records”

beginning on page 166 for details. a

Here is the structure of a sound double buffer:

TYPE SndDoubl eBuf fer =
PACKED RECORD
dbNuntr anes: Longl nt;
dbFl ags: Longl nt;

{nunmber of franes in buffer}
{buffer status flags}

dbUser | nf o: ARRAY[0. .1] OF Longlnt;

{for application’s use}

dbSoundDat a: PACKED ARRAY[0..0] OF Byte;

END;

{array of data}

The buffer status flags field for each of the two buffers might contain either of

these values:

CONST
dbBuf f er Ready = $00000001;
dbLast Buf f er = $00000004;

Using the Sound Manager

CHAPTER 2

Sound Manager

All other bits in the dbFI ags field are reserved by Apple; your application should not
modify them.

The following two sections illustrate how to fill out these data structures, create your two
buffers, and define a doubleback procedure to refill the buffers when they become empty.

Setting Up Double Buffers

Before you can call SndPl ayDoubl eBuf f er, you need to allocate two buffers (of type
SndDoubl eBuf f er), fill them both with data, set the flags for the two buffers to
dbBuf f er Ready, and then fill out a record of type SndDoubl eBuf f er Header with the

-

appropriate information. Listing 2-34 illustrates how you can accomplish these tasks. c§n
Listing 2-34 Setting up double buffers é
9]
CONST
kDoubl eBuf fer Si ze = 4096; {size of each buffer (in bytes)}
TYPE
Local Vars = {vari abl es used by the doubl eback procedure}
RECORD
byt esTot al : Longl nt; {total nunber of sanpl es}
byt esCopi ed: Longl nt ; {nunber of sanples copied to buffers}
dat aPtr: Ptr; {pointer to sanple to copy}
END;

Local VarsPtr = ~Local Vars;

{This function uses SndPl ayDoubl eBuffer to play the sound specified.}
FUNCTI ON MyDBSndPI ay (chan: SndChannel Ptr; sndHeader: SoundHeaderPtr): OSErr;
VAR

nyvars: Local Vars;
nmy Dbl Header : SndDoubl eBuf f er Header ;
my Dbl Buf f er: SndDoubl eBuf fer Ptr;
my St at us: SCSt at us;
nyl ndex: I nt eger;
nmyEerr: CSErr;
BEG N
{Set up nyVars with initial information.}
nyVars. bytesTotal := sndHeader”. | ength;
nyVars. byt esCopi ed : = 0; {no sanpl es copi ed yet}

nyVars. dataPtr := Ptr(@ndHeader”. sanpl eArea[0]);
{pointer to first sanple}
{Set up SndDoubl eBuf f er Header . }
W TH nyDbl Header DO
BEG N

Using the Sound Manager 125

CHAPTER 2

Sound Manager

dbhNuntChannel s : = 1; {one channel }
dbhSanpl eSi ze : = 8; {8-bit sanples}
dbhConpressionl D : = 0; {no conpression}
dbhPacket Si ze : = 0; {no conpression}

dbhSanpl eRat e : = sndHeader ”. sanpl eRat ¢;
dbhDoubl eBack : = @Doubl eBackPr oc;
END;

FOR nylndex := 0 TO 1 DO {initialize both buffers}
BEG N
{Get menory for double buffer.}
nyDbl Buf fer := SndDoubl eBuf ferPtr(NewPtr (Si zeof (SndDoubl eBuf fer) +
kDoubl eBuf fer Si ze)) ;
| F nyDbl Buffer = NIL THEN
BEG N
MyDBSndPl ay : = MenError;
Exi t (MyDBSndPI ay) ;

END;
my Dbl Buf f er . dbNunfranmes : = 0; {no frames yet}
nyDbl Buf f er*. dbFl ags : = 0; {buffer is enpty}

nmyDbl Buf f er~. dbUser | nfo[0] := Longlnt(@wyVars);

{Fill buffer with sanples.}
MyDoubl eBackPr oc(sndChan, mnyDbl Buffer);

{Store buffer pointer in header.}

nmy Dbl Header . dbhBuf fer Ptr[nyl ndex] := myDbl Buffer;
END;
{Start the sound playing.}
nyErr : = SndPl ayDoubl eBuf f er (sndChan, @ryDbl Header) ;
IF nyErr <> noErr THEN
BEG N

MyDBSndPl ay : = nyErr;

Exi t (MyDBSndPI ay) ;
END;

{Wait for the sound’ s end by checking the channel status.}
REPEAT

nyErr := SndChannel Status(chan, sizeof(nyStatus), @tatus);
UNTI L NOT mySt at us. scChannel Busy;

{Di spose doubl e buffer nenory.}

126 Using the Sound Manager

CHAPTER 2

Sound Manager

FOR nylndex := 0 TO 1 DO
Di sposePtr (Ptr (nyDbl Header . dbhBuf ferPtr[nyl ndex]));

MyDBSndPl ay : = noErr;
END;

The function MyDBSNndPI ay takes two parameters, a pointer to a sound channel and a
pointer to a sound header. For information about obtaining a pointer to a sound header,
see “Obtaining a Pointer to a Sound Header” on page 112. The MyDBSndPI ay function
reads the sound header to determine the characteristics of the sound to be played (for
example, how many samples are to be sent into the sound channel). Then MyDBSndPI ay
fills in the fields of the double buffer header, creates two buffers, and starts the sound
playing. The doubleback procedure MyDoubl eBackPr oc is defined in the next section.

Jabeuey punos -

Writing a Doubleback Procedure

The dbhDoubl eBack field of a double buffer header specifies the address of a
doubleback procedure, an application-defined procedure that is called when the double
buffers are switched and the exhausted buffer needs to be refilled. The doubleback
procedure should have this format:

PROCEDURE MyDoubl eBackProc (chan: SndChannel Ptr;
exhaust edBuf fer: SndDoubl eBufferPtr);

The primary responsibility of the doubleback procedure is to refill an exhausted buffer
of samples and to mark the newly filled buffer as ready for processing. Listing 2-35
illustrates how to define a doubleback procedure. Note that the sound channel pointer
passed to the doubleback procedure is not used in this procedure.

This doubleback procedure extracts the address of its local variables from the

dbUser | nf o field of the double buffer record passed to it. These variables are used to
keep track of how many total bytes need to be copied and how many bytes have been
copied so far. Then the procedure copies at most a bufferfull of bytes into the empty
buffer and updates several fields in the double buffer record and in the structure
containing the local variables. Finally, if all the bytes to be copied have been copied,
the buffer is marked as the last buffer.

Note

Because the doubleback procedure is called at interrupt time, it cannot
make any calls that move memory either directly or indirectly. (Despite
its name, the Bl ockMove procedure does not cause blocks of memory to
move or be purged, so you can safely call it in your doubleback
procedure, as illustrated in Listing 2-35.) O

Using the Sound Manager 127

CHAPTER 2

Sound Manager

Listing 2-35 Defining a doubleback procedure

PROCEDURE MyDoubl eBackProc (chan: SndChannel Ptr;
doubl eBuf fer: SndDoubl eBufferPtr);

VAR
myVar sPtr: Local VarsPtr;
nmyNunByt es: Longl nt;

BEG N

{Get pointer to ny local variables.}
nmyVarsPtr := Local VarsPtr (doubl eBuffer”. dbUserInfo[O0]);

{Get nunber of bytes left to copy.}
nyNunBytes : = nyVarsPtr”. bytesTotal - mnyVarsPtr”. byt esCopi ed;

{1f the armount left is greater than double buffer size, linmt the nunber }
{ of bytes to copy to the size of the buffer.}
| F nyNunByt es > kDoubl eBuf ferSi ze THEN

myNunmByt es : = kDoubl eBufferSi ze;

{Copy sanples to double buffer.}
Bl ockMove(myVarsPtr”. dataPtr, @loubl eBuffer”. dbSoundDat a[0], nyNunBytes);

{Store nunber of sanples in buffer and mark buffer as ready.}
doubl eBuf f er». dbNuntr anes : = nyNunByt es;
doubl eBuf f er *. dbFl ags : = BOR(doubl eBuf f er . dbFl ags, dbBuf f er Ready) ;

{Updat e data pointer and nunber of bytes copied.}
nyVarsPtr”~. dataPtr := Ptr(ORD4(nyVarsPtr”.dataPtr) + myNunBytes);
nyVar sPtr”. byt esCopi ed : = nyVarsPtr”. byt esCopi ed + nmyNunByt es;

{I1f all sanples have been copied, then this is the | ast buffer.}
| F nyVarsPtr”. byt esCopi ed = nyVarsPtr”. bytesTotal THEN
doubl eBuf f er*. dbFl ags : = BOR(doubl eBuf f er . dbFl ags, dblLastBuffer);
END;

Sound Storage Formats

This section describes in detail the formats of sound resources and sound files, which are
the two principal storage formats for sound data on Macintosh computers. In general, an
application that uses the services provided by the Sound Manager and the Sound Input
Manager to play and record sounds does not need to know how the sound data is

128 Sound Storage Formats

CHAPTER 2

Sound Manager

organized in memory or on disk. For some special purposes, however, you might need
the information in this section.

Sound Resources

A sound resource is a resource of type’ snd ' that contains sound commands and
possibly also sound data. Sound resources are widely used by Macintosh applications
that produce sounds. These resources provide a simple and portable way for you to
incorporate sounds into your application. For example, the sounds that a user can select
in the Sound control panel as the system alert sound are stored in the System file as
"snd ' resources.

There are two types of " snd ’ resources, known as format 1 and format 2. Figure 2-4

illustrates the structures of both kinds of” snd ’ resources.
Figure 2-4 The structure of " snd ' resources
"snd ' format1
Format 2
Number of data formats 2
First data format ID 2 "snd ' format 2
These fields
may be Format 2
absent if Init option for channel 4
“Number of Reference count 2
data formats"
is 0 Number of sound commands 2 Number of sound commands 2
Z First sound command / 8 Z First sound command /8
Z Last sound command / 8 Z Last sound command /8
: Sampled-sound data : . :
Optional { or wave-table data { Variable { Sampled-sound data { Variable

IMPORTANT
The format 2’ snd ' resource is obsolete. Your application should create
only format 1’ snd ' resources. The format2’ snd ' resource was
designed for use by HyperCard and can be used with sampled-sound
dataonly. a

Sound Storage Formats 129

Jabeuey punos -

CHAPTER 2

Sound Manager

Resource IDs for’ snd ' resources in the range 0 to 8191 are reserved for use by

Apple Computer, Inc. The’ snd ' resources numbered 1 through 4 are defined to be

the standard system alert sounds, although more recent versions of system software have
included more standard system alert sounds.

When a sound command contained inan’ snd ’ resource has associated sound data,
the high bit of the command is set. This changes the meaning of the par an® field of the
command from a pointer to a location in RAM to an offset value that specifies the offset
in bytes from the resource’s beginning to the location of the associated sound data (such
as a sampled sound header). Figure 2-5 illustrates the location of this data offset bit.

Figure 2-5 The location of the data offset bit

130

~«— \Word —» -«—\Word —» -«— Long word ———»

[

Data offset bit (used by ' snd ' resource only)

cnd par aml par an

The offset bit is used only by sound commands that are stored in sound resources of
type’ snd ' and that have associated sound data (that is, sampled-sound or
wave-table data).

You can use a constant to access that flag.

CONST
dat a0 f set Fl ag = $8000; {sound conmand data offset bit}

If the dat aCf f set FI ag bit is not set, par an® is interpreted instead as a pointer to the
location in memory (outside the sound resource) where the data is located.

The first few bytes of the resource contain’ snd ’ header information and are a different
size for each format. An audio data type specified inaformat1’ snd ' requires 6 bytes.
The number of data types multiplied by 6 is added to this offset. The number of
commands multiplied by 8 bytes, the size of a sound command, is added to the offset.

The Format 1 Sound Resource

Figure 2-4 shows the fields of aformat 1’ snd ' resource. Aformat1’ snd ' resource
header contains information about the format of the resource (namely, 1), the data type,
and the initialization options for that data type. Aformat 1’ snd ' resource contains
sound commands and might also contain the actual sound data for wave-table sounds or
sampled sounds. Note that if a sound resource includes sampled-sound data, then part of
the sound data section is devoted to a sound header that describes the sampled-sound
data in the remainder of the sound data section.

Sound Storage Formats

CHAPTER 2

Sound Manager

Ifan’ snd ' resource specifies a data type, it can supply an initialization option in the
field immediately following the type. You specify the number of commands in the
resource in the number of sound commands field. The sound commands follow, in the
order in which they should be sent to the sound channel.

The format 1’ snd ' resource might contain only a sequence of commands describing a
sound. In this case, the number of data types should be 0, and there should be no data
type specification or initialization option in the’ snd ' resource. This allows the’' snd
resource to be used with any kind of sound data.

Listing 2-36 shows the output of the MPW tool DeRez when applied to the ' snd
resource with resource ID 1 contained in the System file.

Listing 2-36 Aformat1l ' snd ' resource

data 'snd ' (1, "Sinple Beep", purgeable) {
/*the sound resource header*/

$"0001" [*format type*/
$"0001" /*nunmber of data types*/
$"0001" / *squar e-wave data*/

$"00000000" /*initialization option*/
/*the sound commands*/

$"001B" [*nunber of sound comuands (27)*/
$"002C" /*comand 1--tinmbreCnd 090 000*/
$" 005A00000000"

$" 002B" /*command 2--anpCnd 224 000*/

$" 00E000000000"

$" 002A" /*command 3--freqCnd 000 069*/
$"000000000045"

$" 000A" /*command 4--wait Cnd 040 000*/
$"002800000000"

$" 002B" / *command 5--anpCnd 200 000*/

$"00C800000000"

/*commands 6 through 26 are onitted; they are */

/* alternating pairs of waitCnd and anpCnd conmands */
/* where the first paraneter of anmpCnd has the */

/* values 192, 184, 176, 168, 160, 144, 128, 96, */

/* 64, and 32*/

$" 002B" /*comand 27--anmpCnd 000 000*/
$"000000000000"

b

As you can see, the Simple Beep is actually a rather sophisticated sound, in which the
loudness (or amplitude) of the beep gradually decreases from an initial value of 224 to 0.

Sound Storage Formats 131

Jabeuey punos -

CHAPTER 2

Sound Manager

Notice that the sound shown in Listing 2-36 is defined using square-wave data and is
completely determined by a sequence of specific commands. (“Play an A at loudness 224,
wait 20 milliseconds, play it at loudness 200....””) Often, an’ snd ’ resource consists only
of a single sound command (usually the buf f er Cnd command) together with data that
describes a sampled sound to be played. Listing 2-37 shows an example like this.

Listing 2-37

132

data ’snd
/ *t he sound resource header*/

Aformatl ' snd ' resource containing sampled-sound data

' (19068, "hell o daddy", purgeable) {

$"0001" /*format type*/

$"0001" /*nunber of data types*/

$" 0005" / *sanpl ed- sound dat a*/

$"00000080" /*initialization option: initMno*/

/*the sound commands*/

$"0001" [*nunber of sound conmands that follow (1)*/
$"8051" /*command 1- - buf f er Crd*/

$"0000" /*paraml = 0%/

$"00000014" [*paran? = offset to sound header (20 bytes)*/
/*the sanpl ed sound header*/

$"00000000" /*pointer to data (it follows i mediately)*/
$"00000BB8" [*nunber of bytes in sanple (3000 bytes)*/
$" 56EE8BA3" /*sanmpling rate of this sound (22 kHz)*/

$" 000007D0" /*starting of the sanple’'s | oop point*/
$"00000898" /*ending of the sample’ s | oop point*/

$" 00" /*standard sanpl e encodi ng*/

$"3C' / *baseFrequency at which sanple was taken*/

/*t he sanpl ed- sound dat a*/

$"80 80 81 81 81 81 81 81 80 80 80 80 80 81 82 82"
$"82 83 82 82 81 80 80 7F 7F 7F 7E 7D 7D 7D 7C 7C'
$"7C 7C 7D 7D 7D 7D 7E 7F 80 80 81 81 82 82 83 83"
$"83 83 82 81 81 80 80 81 81 81 81 81 82 81 81 80"
$"80 80 81 81 81 83 83 83 82 81 81 80 7F 7E 7D 7D"
$"7F 7F 7F 7F 7TE 7F 7F 7F 7F 7F 7F 7F 7F 7F 7F 80"
/*rest of data onmitted in this exanple*/

b

This’ snd

resource indicates that the sound is defined using sampled-sound data. The

resource includes a call to a single sound command, the buf f er Crd command. The
offset bit of the command number is set to indicate that the sound data is contained in the
resource itself. Following the command and its two parameters is the sampled sound
header, the first part of which contains important information about the sample. The
second parameter to the buf f er Cd command indicates the offset from the beginning of
the resource to the sampled sound header, in this case 20 bytes. After the sound

Sound Storage Formats

CHAPTER 2

Sound Manager

commands, this resource includes a sampled sound header, which includes the
sampled-sound data. The format of a sampled sound header is described in “Sound
Header Records” on page 159.

For compressed sound data, the sampled sound header is replaced by a compressed

sampled sound header. Listing 2-38 illustrates the structure of an’ snd ' resource that

contains compressed sound data.

Listing 2-38 An ’snd ' resource containing compressed sound data

data 'snd ' (9004, "Raisa's Cry", purgeable) {

/ *t he sound resource header*/

$"0001" /*format type*/

$"0001" /*nunber of data types*/

$" 0005" /*first data type*/

$"00000380" /*initialization option: initMACE3 + initMno*/

/*t he sound

conmand*/

$"0001" [*nunber of sound conmands that follow (1)*/
$"8051" {*cmd: buf f er Crd*/
$"0000" [*paraml: unused*/
$"00000014" /*paranmR: offset to sound header (20 bytes)*/

/*the conpressed sanpl ed sound header*/

$"00000000" /*pointer to data (it follows inmrediately)*/
$"00000001" /*nunber of channels in sanple*/

$"56EE8BA3" /*sanpling rate of this sound (22 kHz)*/
$"00000000" /*starting of the sanple’s |oop point; not used*/
$"00000000" /*ending of the sanple’s |oop point; not used*/
$" FE" /*conpressed sanpl e encodi ng*/

$" 00" / *baseFr equency; not used*/

$"00006590" /*nunber of franes in sanple (26,000)*/

$" 400DADDD1745D145826B"

/*Al FFSanpl eRate (22 kHz in extended type)*/

$"00000000" /*marker Chunk; NIL for 'snd ' resource*/
$"4D414333" /*format; MACE 3: 1 conpressi on*/

$"00000000" /*futureUse2; NIL for "snd ' resource*/
$"00000000" /*stateVars; NIL for "snd ' resource*/
$"00000000" /*IeftOverBl ockPtr; not used here*/

$" FFFF" /*conpressionl D, -1 neans use format field*/
$"0010" [*packet Si ze, packetSize for 3:1 is 16 bits*/

$" 0000" /*snthiDis 0*/

$"0008" / *sanpl eSi ze, sound was 8-bit before processing*/

$"2F 85 81 32 64 87 33 86"

/*the conpressed sound dat a*/

$"6F 48 6D 65 72 6B 82 88"
$"91 FE 8D 8E 86 4E 7C E9"

Sound Storage Formats

133

Jabeuey punos -

CHAPTER 2

Sound Manager

$"6F 6D 71 70 7E 79 4F 83"
$"59 8F 8F 65" /*rest of data omtted in this exanple*/

b

This resource has the same general structure asthe’ snd ' resource illustrated in Listing
2-36. The principal difference is that the standard sound header is replaced by

the compressed sound header. This example resource specifies a monophonic sound
compressed by using the 3:1 compression algorithm. A multichannel compressed sound’s
data would be interleaved on a packet basis. See “Compressed Sound Header Records”
beginning on page 163 for a complete explanation of the compressed sound header.

As you’ve seen, it is not always necessary to specify ’ snd ’ resources by listing the raw
data stream contained in them; indeed, for certain types of format 1’ snd ' resources, it
can be easier to supply a resource specification like the one given in Listing 2-39.

Listing 2-39 A resource specification

resource 'snd ' (9000, "Nathan’s Beep", purgeable) {

For mat One {
{ [/*array of data types: 1 elenent*/
[*[1]*/
squar eWaveSynth, 0O
}
1
{ /*array SoundCmds: 3 el ements*/

/[*[1]*/ noData, tinbreCnd {90},
/*[2]*/ noData, freqDurationCnd {480, $00000045},
/*[3]*/ noData, quietCrd {},
1
{ /*array DataTabl es: 0 el enents*/
1
b

When you pass a handle to this resource to the SndPl ay function, three commands are
executed by the Sound Manager: at i nbr eCnd command, af reqDur ati onCnd
command, and a qui et Cnmd command. The sound specified in Listing 2-39 is just like the
Simple Beep, except that there is no gradual reduction in the loudness. Listing 2-40 shows
a resource specification for the Simple Beep.

Listing 2-40 A resource specification for the Simple Beep

134

resource 'snd ' (9001, "Copy of Sinple Beep", purgeable) {
For mat One {
{ [/*array of data types: 1 elenent*/

Sound Storage Formats

CHAPTER 2

Sound Manager

[*[1]*/
squar eWaveSynt h,
}
1
{ [/*array SoundCmds:
[*[1]*/ nodat a,
[*[2]*/ nodat a,
[*[3]*/ nodat a,
[*[4] %/ nodat a,
[*[5]*/ nodat a,
[*[6]*/ nodat a,
[*[7]/ nodat a,
[*[8]*/ nodat a,
[*[9]*/ nodat a,
/*[10]*/ nodat a,
[*[11]*/ nodat a,
[*[12] */ nodat a,
[*[13]*/ nodat a,
[*[14]*/ nodat a,
[*[15] */ nodat a,
/[*[16]*/ nodat a,
[*[17]*/ nodat a,
[*[18] */ nodat a,
[*[19]*/ nodat a,
/[*[20]*/ nodat a,
[*[21] */ nodat a,
[*[22]*]/ nodat a,
[*[23]*/ nodat a,
[*[24] */ nodat a,
[*[25]*/ nodat a,
[*[26]*/ nodat a,
[*[27] */ nodat a,
},

{ [/*array DataTabl es:

27 el ements*/
timbreCrd {90},
anpCnd {224},
fregCrd {69},
wai t Cnd {40},
anpCnd {200},
wai t Cnd {40},
anpCnd {192},
wai t Cnd {40},
anpCrd {184},
wai t Cnd {40},
anpCnd {176},
wai t Cnd {40},
anpCnd {168},
wai t Cnd {40},
anpCmd {160},
wai t Cnd {40},
anpCnd {144},
wai t Cnd {40},
anpCnd {128},
wai t Cnd {40},
anpCmrd {96},
wai t Cnd {40},
anmpCnd {64},
wai t Cnd {40},
anmpCnmd {32},
wai t Cnd {40},
ampCmd {0},

0 el enents*/

The Format 2 Sound Resource

The SndPI ay function can also play format 2’ snd ’
for use only with sampled sounds. The SndPI ay function supports this format by
automatically opening a sound channel and using the buf f er Crd command to send the
data contained in the resource to the channel.

Sound Storage Formats

resources, which are designed

135

Jabeuey punos -

CHAPTER 2

Sound Manager

Figure 2-4 illustrates the fields of aformat 2’ snd ' resource. The reference count field is
for your application’s use and is not used by the Sound Manager. The number of sound
commands field and the sound command fields are the same as described in a format 1
resource. The last field of this resource contains the sampled sound. The first command
should be either a soundCrrd command or buf f er Crd command with the data offset bit
set in the command to specify the location of this sampled sound header.

Listing 2-41 shows a resource specification that illustrates the structure of a format 2
"snd ' resource.

Listing 2-41 Aformat2’ snd ' resource

136

data 'snd ' (9003, "Pig Squeal", purgeable) {
/*the sound resource header*/

$"0002" /*format type*/

$" 0000" [*reference count for application’ s use*/
/*the sound conmmand*/

$"0001" / *nunber of sound commands that follow (1)*/
$"8051" /*command 1- - buf f er Cd*/

$" 0000" /*paranml = 0*/

$" 0000000E" /*param? = of fset to sound header (14 bytes)*/
/*the sanpl ed sound header*/

$"00000000" /*pointer to data (it follows imediately)*/
$"00000BB8" /*nunber of bytes in sanple (3000 bytes)*/
$" 56EE8BA3" /[*sanpling rate of this sound (22 kHz)*/
$"000007D0" /[*starting of the sanple’'s |oop point*/
$"00000898" /*endi ng of the sanmple’s | oop point*/

$" 00" /*standard sanpl e encodi ng*/

$"3C / *baseFrequency at which sanple was taken*/
$"80 80 81 82 84 87 93 84" / *t he sanpl ed- sound dat a*/

$"6F 68 6D 65 72 7B 82 88"
$"91 8E 8D 8F 86 7E 7C 79"
$"6F 6D 71 70 70 79 7F 81"
$"89 8F 8D 8B" /*rest of data omitted in this exanple*/

b

Note
Remember that format 2’ snd ’ resources are obsolete. You should
create only format 1’ snd ’ resources. O

Sound Files

This section describes in detail the structure of AIFF and AIFF-C files. Both of these types
of sound files are collections of chunks that define characteristics of the sampled sound
or other relevant data about the sound.

Sound Storage Formats

CHAPTER 2

Sound Manager

Note

Most applications only need to read AIFF and AIFF-C files or to record
sampled-sound data directly to them. You can both play and record AIFF
and AIFF-C files without knowing the details of the AIFF and AIFF-C file
formats, as explained in the chapter “Introduction to Sound on the
Macintosh” in this book. Thus, the information in this section is for

advanced programmers only. O

Currently, the AIFF and AIFF-C specifications include the following chunk types.

Chunk type
Form Chunk

Format Version Chunk

Common Chunk
Sound Data Chunk

Marker Chunk
Comments Chunk
Sound Accelerator Chunk

Instrument Chunk

MIDI Data Chunk
Audio Recording Chunk

Application Specific
Chunk

Name Chunk
Author Chunk

Copyright Chunk
Annotation Chunk

Description

Contains information about the format of an AIFF or
AIFF-C file and contains all the other chunks of such a file.

Contains an indication of the version of the AIFF-C
specification according to which this file is structured
(AIFF-C only).

Contains information about the sampled sound such as the
sampling rate and sample size.

Jabeuey punos -

Contains the sample frames that comprise the
sampled sound.

Contains markers that point to positions in the sound data.
Contains comments about markers in the file.

Contains information intended to allow applications to
accelerate the decompression of compressed audio data.

Defines basic parameters that an instrument (such as a
sampling keyboard) can use to play back the sound data.

Contains MIDI data.

Contains information pertaining to audio recording
devices.

Contains application-specific information.

Contains the name of the sampled sound.

Contains one or more names of the authors (or creators) of
the sampled sound.

Contains a copyright notice for the sampled sound.
Contains a comment.

The following sections document the four principal kinds of chunks that can occur in

AIFF and AIFF-C files.

Chunk Organization and Data Types

An AIFF or AIFF-C file contains several different types of chunks. For example, there is a
Common Chunk that specifies important parameters of the sampled sound, such as its
size and sample rate. There is also a Sound Data Chunk that contains the actual audio
samples. A chunk consists of some header information followed by some data. The

Sound Storage Formats

137

CHAPTER 2

Sound Manager

header information consists of a chunk ID number and a number that indicates the size
of the chunk data. In general, therefore, a chunk has the structure shown in Figure 2-6.

138

Figure 2-6 The general structure of a chunk
B
ckl D)
— header info
ckSi ze
-/
B
data — data bytes
g

The header information of a chunk has this structure:

TYPE ChunkHeader =

RECORD

ckl D: | O {chunk type |D}

ckSi ze: Longlnt; {nunmber of bytes of data}
END;

The ckl Dfield specifies the chunk type. An ID is a 32-bit concatenation of any four
printable ASCII characters in the range’ ' (space character, ASCII value $20) through

' ~" (ASCII value $7E). Spaces cannot precede printing characters, but trailing spaces are
allowed. Control characters are not allowed. You can specify values for the four types of
chunks described later by using these constants:

CONST
Form D " FORM ; {1D for Form Chunk}
For mat Ver si onl D " FVER ; {1D for Format Version Chunk}
Commonl D = ' COW ; {ID for Conmon Chunk}
SoundDat al D " SSND' ; {I1D for Sound Data Chunk}

The ckSi ze field specifies the size of the data portion of a chunk and does not include
the length of the chunk header information.

The Form Chunk

The chunks that define the characteristics of a sampled sound and that contain the actual
sound data are grouped together into a container chunk, known as the Form Chunk. The
Form Chunk defines the type and size of the file and holds all remaining chunks in the
file. The chunk ID for this container chunk is’ FORM .

Sound Storage Formats

CHAPTER 2

Sound Manager

A chunk of type ' FORM has this structure:

TYPE Cont ai ner Chunk =

RECORD
ckl D I D {’ FORM }
ckSi ze: Longl nt; {nunber of bytes of data}
f or nType: | D {type of file}

END;

For a Form Chunk, the ckSi ze field contains the size of the data portion of this chunk.
Note that the data portion of a Form Chunk is divided into two parts, f or nifype and the
rest of the chunks of the file, which follow the f or niTy pe field. These chunks are called
local chunks because their chunk IDs are local to the Form Chunk.

The local chunks can occur in any order in a sound file. As a result, your application
should be designed to get a local chunk, identify it, and then process it without making
any assumptions about what kind of chunk it is based on its order in the Form Chunk.

The f or nTy pe field of the Form Chunk specifies the format of the file. For AIFF files,
formType is’ Al FF . For AIFF-C files, f or mType is’ Al FC . Note that this type might
not be the same as the operating-system type with which the File Manager identifies the
file. In particular, a file of operating-system type ' Al FC' might be formatted as an AIFF
file.

The Format Version Chunk

One difference between the AIFF and AIFF-C file formats is that files of type AIFF-C
contain a Format Version Chunk and files of type AIFF do not. The Format Version
Chunk contains at i nest anp field that indicates when the format version of this AIFF-C
file was defined. This in turn indicates what format rules this file conforms to and allows
you to ensure that your application can handle a particular AIFF-C file. Every AIFF-C file
must contain one and only one Format Version Chunk.

In AIFF-C files, a Format Version Chunk has this structure:

TYPE For mat Ver si onChunk =

RECORD

ckl D | O {' FVER' }

ckSi ze: Longl nt ; {4}

ti mestanp: Longlnt; {date of format version}
END;
Note

In AIFF files, there is no Format Version Chunk. O

Thet i nmest anp field indicates when the format version for this kind of file was created.
The value indicates the number of seconds since January 1, 1904, following the normal
time conventions used by the Macintosh Operating System. (See the chapter on date and

Sound Storage Formats 139

Jabeuey punos -

CHAPTER 2

Sound Manager

time utilities in Inside Macintosh: Operating System Utilities for several routines that allow
you to manipulate time stamps.)

You should not confuse the format version time stamp with the creation date of the file.
The format version time stamp indicates the time of creation of the version of the format
according to which this file is structured. Because Apple defines the formats of AIFF-C
files, only Apple can change this value. The current version is defined by a constant:

CONST
Al FCVer si onl = $A2805140; {May 23, 1990, 2:40 p.m}

The Common Chunk

Every AIFF and AIFF-C file must contain a Common Chunk that defines some
fundamental characteristics of the sampled sound contained in the file. Note that the
format of the Common Chunk is different for AIFF and AIFF-C files. As a result, you
need to determine the type of file format (by inspecting the f or niType field of the
Form Chunk) before reading the Common Chunk.

For AIFF files, the Common Chunk has this structure:

TYPE ComonChunk =

RECORD
ckl D | O {’ cOwW }
ckSi ze: Longl nt; {size of chunk dat a}
nunthannel s: I nt eger; {nunber of channel s}
nunBanpl eFrames: Longl nt; {nunmber of sanple franes}
sanpl eSi ze: I nt eger; {nunmber of bits per sanpl e}
sanpl eRat e: Ext ended,; {nunber of franes per second}
END;

For AIFF-C files, the Common Chunk has this structure:

TYPE Ext CommpbnChunk =

RECORD
ckl D | O {* cOw }
ckSi ze: Longl nt; {size of chunk data}
nunthannel s: I nt eger; {nunber of channel s}
nunSanpl eFranes: Longlnt; {nunber of sanple franes}
sanpl eSi ze: I nt eger; {nunber of bits per sanpl e}
sanpl eRat e: Ext ended,; {nunber of franes per second}
conpressi onType: 1D {conmpression type |D}

conpressi onNane: PACKED ARRAY[0..0] OF Byte;
{conpression type nane}
END;

The fields that exist in both types of Common Chunk have the following meanings:

140 Sound Storage Formats

CHAPTER 2

Sound Manager

The nunthannel s field of both types of Common Chunk indicate the number of audio
channels contained in the sampled sound. A value of 1 indicates monophonic sound, a
value of 2 indicates stereo sound, a value of 4 indicates four-channel sound, and so forth.
Any number of audio channels may be specified. The actual sound data is stored
elsewhere, in the Sound Data Chunk.

The nunBSanpl eFr anes field indicates the number of sample frames in the Sound Data
Chunk. Note that this field contains the number of sample frames, not the number of
bytes of data and not the number of sample points. For noncompressed sound data, the
total number of sample points in the file is numChannel s * nunSanpl eFr anes. (For
more information on sample points, see “Sampled-Sound Data” on page 64.)

The sanpl eSi ze field indicates the number of bits in each sample point of
noncompressed sound. Although the field can contain any integer from 1 to 32, the
Sound Manager currently supports only 8- and 16-bit sound. For compressed sound data,
this field indicates the number of bits per sample in the original sound data, before
compression.

The sanpl eRat e field contains the sample rate at which the sound is to be played back,
in sample frames per second. For a list of common sample rates, see Table 2-1 on page 71.

An AIFF-C Common Chunk includes two fields that describe the type of compression
(if any) used on the audio data. The conpr essi onType field contains the type of the
compression algorithm, if any, used on the sound data. Here are the currently available
compression types and their associated compression names:

CONST
{conpression types}
NoneType = " NONE' ;
ACE2Type = " ACE2’ ;
ACE8Type = " ACES8’;
MACE3Type = " MAC3’';
MACE6Type = ' MACE’ ;

You can define your own compression types, but you should register them with Apple.

Finally, the conpr essi onNane field contains a human-readable name for the
compression algorithm ID specified in the conpr essi onType field. Compression names
for Apple-supplied codecs are defined by constants:

CONST
{conpressi on nanes}
NoneNane = 'not conpressed’;
ACE2t o1Narme = "ACE 2-to-1";
ACES8t o3Nane = "ACE 8-to0-3';
MACE3t o1Nare = "MACE 3-to-1";
MACEG6t o1Narme = 'MACE 6-to0-1";

This string is useful when putting up alert boxes (perhaps because a necessary
decompression routine is missing). Pad the end of this array with a byte having the value

Sound Storage Formats 141

Jabeuey punos -

142

CHAPTER 2

Sound Manager

0 if the length of this array is not an even number (but do not include the pad byte in the
count).

The Sound Data Chunk

The Sound Data Chunk contains the actual sample frames that make up the sampled
sound. The Sound Data Chunk has this structure:

TYPE SoundDat aChunk =

RECORD

ckl D: | O {’ SSND'}

ckSi ze: Longl nt ; {size of chunk dat a}

of fset: Longl nt ; {offset to sound data}

bl ockSi ze: Longl nt; {size of alignnent bl ocks}
END;

The of f set field indicates an offset (in bytes) to the beginning of the first sample frame
in the chunk data. Most applications do not need to use the of f set field and should set
itto 0.

The bl ockSi ze field contains the size (in bytes) of the blocks to which the sound data

is aligned. This field is used in conjunction with the of f set field for aligning sound data
to blocks. As with the of f set field, most applications do not need to use the bl ockSi ze
field and should set it to 0.

The sampled-sound data follows the bl ockSi ze field. For information on the format of
sampled-sound data, see “Sampled-Sound Data” on page 64.

Note

The Sound Data Chunk is required unless the nunSanpl eFr anes field
in the Common Chunk is 0. A maximum of one Sound Data Chunk can
appear in an AIFF or AIFF-C file. O

Format of Entire Sound Files

Figure 2-7 illustrates an AIFF-C file that contains approximately 4.476 seconds of 8-bit
monophonic sound data sampled at 22 kHz. The sound data is not compressed. Note that
the number of sample frames in this example is odd, forcing a pad byte to be inserted
after the sound data. This pad byte is not reflected in the ckSi ze field of the Sound Data
Chunk, which means that special processing is required to correctly determine the actual
chunk size.

On a Macintosh computer, the Form Chunk (and hence all the other chunks in an AIFF or
AIFF-C file) is stored in the data fork of the file. The file type of an AIFF format file is

" Al FF' , and the file type of an AIFF-C format file is* Al FC . Macintosh applications
should not store any information in the resource fork of an AIFF or AIFF-C file because
that information might not be preserved by other applications that edit sound files.

Sound Storage Formats

CHAPTER 2

Sound Manager

Figure 2-7 A sample AIFF-C file
Bytes Example
r r ckl D 4 FORM
Form :
Chunk 1 ckSi ze 4 99690
L f or nType 4 AIFF-C
—
Version — ckSi ze 4 4
Chunk :
L ti mestanp 4 27263184 Cé’
>
(ckl D 4 COMM 2
- <
ckSi ze 4 38 2
AIFF-C__| nunChannel s 2 1 %
file Common nunSanpl eFr anes | 4 99611 =
Chunk sanpl eSi ze 2 8
sanpl eRat e 8 22254.54
conpr essi onType | 4 NONE
__| conpressi onName | 16 “not compressed”
[ckl D 4 SSND
Sound ckSi ze 4 99619
Data
Chunk of f set 4 0
bl ockSi ze 4 0
— A\
Sound (sound data Variable Frame 1 to frame n (to 99,611)
data L pad byte 1 0

Every Form Chunk must contain a Common Chunk, and every AIFF-C file must contain
a Format Version Chunk. In addition, if the sampled sound has a length greater than 0,
there must be a Sound Data Chunk in the Form Chunk. All other chunk types are
optional. Your application should be able to read all the required chunks if it uses AIFF or
AIFF-C files, but it can choose to ignore any of the optional chunks.

When reading AIFF or AIFF-C files, you should keep the following points in mind:

= Remember that the local chunks in an AIFF or AIFF-C file can occur in any order. An
application that reads these types of files should be designed to get a chunk, identify it,
and then process it without making any assumptions about what kind of chunk it is
based on its order.

= If your application allows modification of a chunk, then it must also update other
chunks that might be based on the modified chunk. However, if there are chunks
in the file that your application does not recognize, you must discard those
unrecognized chunks. Of course, if your application is simply copying the AIFF or
AIFF-C file without any modification, you should copy the unrecognized chunks, too.

Sound Storage Formats 143

CHAPTER 2

Sound Manager

= You can get the clearest indication of the number of sample frames contained in an
AIFF or AIFF-C file from the nunSanpl eFr anes parameter in the Common Chunk,
not from the ckSi ze parameter in the Sound Data Chunk. The ckSi ze parameter is
padded to include the fields that follow it, but it does not include the byte with a value
of 0 at the end if the total number of sound data bytes is odd.

= Remember that each chunk must contain an even number of bytes. Chunks whose
total contents would yield an odd number of bytes must have a pad byte with a value
of 0 added at the end of the chunk. This pad byte is not included in the ckSi ze field.

= Remember that the ckSi ze field of any chunk does not include the first 8 bytes of the
chunk (which specify the chunk type).

Sound Manager Reference

Constants

This section describes the constants, data structures, and routines provided by the Sound
Manager. It also describes the format of data stored in sound resources and files that the
Sound Manager can play.

The section “Constants” describes the constants defined by the Sound Manager that you
can use to specify channel initialization parameters and sound commands. It also lists the
sound attributes selector for the Gest al t function and the returned bit numbers.

The section “Data Structures” beginning on page 154 describes the Pascal data structures
for all of the Sound Manager records that applications can use, including sound
commands, sound channels, and sound headers.

The section “Sound Manager Routines” beginning on page 174 describes the routines that
allow you to play sounds, manage sound channels, and obtain sound-related
information. That section also includes information on routines that give you low-level
control over sound output.

The section “Application-Defined Routines” beginning on page 206 describes callback
procedures and completion routines that your application might need to define.

The section “Resources” beginning on page 209 describes the organization of format 1
and format 2’ snd ' resources.

144

This section describes the constants that you can use to specify channel initialization
parameters, sound commands, and chunk IDs. It also lists the Gest al t function sound
attributes selector and the returned bit numbers. All other constants defined by the
Sound Manager are described at the appropriate location in this chapter. (For example,
the constants that you can use to specify sound data types are described in connection
with the SndNewChannel function beginning on page 182.)

Sound Manager Reference

CHAPTER 2

Sound Manager

Gestalt Selector and Response Bits

You can pass the gest al t SoundAt t r selector to the Gest al t function to determine
information about the sound capabilities of a Macintosh computer.

CONST
gestal t SoundAt tr = 'snd

{sound attributes sel ector}

The Gest al t function returns information by setting or clearing bits in the r esponse
parameter. The bits currently used are defined by constants. Note that most of these bits
provide information about the built-in hardware only.

IMPORTANT

Bits 7 through 12 are not defined for versions of the Sound Manager

prior to version 3.0. a

CONST
gestal t StereoCapability
gest al t St ereoM xi ng
gest al t Soundl OMgr Pr esent
gestal t Bui | t I nSoundl nput
gest al t HasSoundl nput Devi ce
gest al t Pl ayAndRecor d
gestal t 16Bi t Soundl O
gest al t St er eol nput
gestal tLi neLevel | nput =
gest al t SndPl ayDoubl eBuf f er
gestal t Mul ti Channel s =
gestal t 16Bi t Audi oSupport

I
CoOoNoOORWERO

1
=
o -

I
ol
N P

Constant descriptions
gestal t StereoCapability

{built-in hw can play stereo sounds}
{built-in hw ni xes stereo to nono}
{sound i nput routines avail abl e}
{built-in input hw avail abl e}

{sound i nput device avail abl e}
{built-in hw can play while recordi ng}
{built-in hw can handl e 16-bit data}
{built-in hw can record stereo sounds}
{built-in input hw needs |line |evel}
{play fromdisk routines avail abl e}
{mul tiple channel s of sound supported}
{16-bit audi o data support ed}

Set if the built-in sound hardware is able to produce stereo sounds.

gestal t St er eoM xi ng

Set if the built-in sound hardware mixes both left and right channels
of stereo sound into a single audio signal for the internal speaker.

gest al t Soundl Ovgr Pr esent

Set if the Sound Input Manager is available.

gestal t Bui | t | nSoundl nput

Set if a built-in sound input device is available.

gest al t HasSoundl nput Devi ce

Set if a sound input device is available. This device can be either
built-in or external.

gest al t Pl ayAndRecor d

Set if the built-in sound hardware is able to play and record sounds
simultaneously. If this bit is clear, the built-in sound hardware can
either play or record, but not do both at once. This bit is valid only if

Sound Manager Reference

145

Jabeuey punos -

CHAPTER 2

Sound Manager

the gest al t Bui | t | nSoundl nput bit is set, and it applies only to
any built-in sound input and output hardware.

gestal t 16Bi t Soundl O
Set if the built-in sound hardware is able to play and record 16-bit
samples. This indicates that built-in hardware necessary to handle
16-bit data is available.

gest al t St er eol nput

Set if the built-in sound hardware can record stereo sounds.
gest al t Li neLevel | nput

Set if the built-in sound input port requires line level input.
gest al t SndPl ayDoubl eBuf f er

Set if the Sound Manager supports the play-from-disk routines.
gestal t Mul ti Channel s

Set if the Sound Manager supports multiple channels of sound.

gestal t 16Bi t Audi oSupport
Set if the Sound Manager can handle 16-bit audio data. This
indicates that software necessary to handle 16-bit data is available.

Note

For complete information about the Gest al t function, see the chapter
“Gestalt Manager” in Inside Macintosh: Operating System Utilities. O

Channel Initialization Parameters

You can use the following constants to specify initialization parameters for a sound
channel. You need to specify initialization parameters when you call SndNewChannel .

CONST
i ni t ChanLeft = $0002; {left stereo channel}
i ni t ChanRi ght = $0003; {right stereo channel}
wavel ni t Channel 0 = $0004; {wave-tabl e channel 0}
wavel ni t Channel 1 = $0005; {wave-tabl e channel 1}
wavel ni t Channel?2 = $0006; {wave-tabl e channel 2}
wavel ni t Channel 3 = $0007; {wave-tabl e channel 3}
i ni t Mono = $0080; {monophoni ¢ channel }
initStereo = $00C0; {stereo channel}
i ni t MACE3 = $0300; {3:1 conpression}
i ni t MACEG6 = $0400; {6:1 conpression}
i nitNolnterp = $0004; {no linear interpolation}
i ni t NoDrop = $0008; {no drop-sanpl e conversion}

Constant descriptions
i nitChanLeft Play sounds through the left channel of the Macintosh audio jack.
i ni tChanRi ght Play sounds through the right channel of the Macintosh audio jack.

146 Sound Manager Reference

CHAPTER 2

Sound Manager

wavel ni t Channel 0

Play sounds through the first wave-table channel.

wavel ni t Channel 1

Play sounds through the second wave-table channel.

wavel ni t Channel 2

Play sounds through the third wave-table channel.

wavel ni t Channel 3

ni t Mono

ni t St ereo

ni t MACE3

ni t MACEG

ni t Nol nterp

ni t NoDr op

Play sounds through the fourth wave-table channel.

Play the same sound through both channels of the Macintosh audio
jack and the internal speaker. This is the default channel mode.

Play stereo sounds through both channels of the Macintosh audio
jack and the internal speaker. Note that some machines cannot play
stereo sounds.

Assume that the sounds to be played through the channel are
MACE 3:1 compressed. The SndNewChannel function uses this
information to help determine whether it can allocate a new sound
channel. A noncompressed sound plays normally, even through a
channel that has been initialized for MACE.

Assume that the sounds to be played through the channel are
MACE 6:1 compressed. The SndNewChannel function uses this
information to help determine whether it can allocate a new sound
channel. A noncompressed sound plays normally, even through a
channel that has been initialized for MACE.

Do not use linear interpolation to smooth a sound played back at a
different sample rate from the sound’s recorded sample rate. Using
the i ni t Nol nt er p initialization parameter decreases the CPU load
for this channel. Sounds most affected by the absence of linear
interpolation are sinusoidal sounds. Sounds least affected are noisy
sound effects like explosions and screams.

Do not use drop-sample conversion to fake sample rate conversion.
Using the i ni t NoDr op initialization parameter increases the CPU
load for the channel but results in a smoother sound.

The Sound Manager also recognizes the following masks, which you can use to select
various channel attributes:

CONST
i ni t PanMask

i ni t SRat eMask
i ni t StereoMask

i ni t CompMask

Sound Command Numbers

= $0003; {mask for right/left pan val ues}
= $0030; {mask for sanple rate val ues}

= $00C0o; {mask for nono/stereo val ues}

= $FFOO0; {mask for conpression |Ds}

You can perform many sound-related operations by sending sound commands to a
sound channel. For example, to change the volume of a sound that is currently playing,
you can send the anpCnd sound command to the channel using the SndDol ntredi at e

Sound Manager Reference

147

Jabeuey punos -

CHAPTER 2

Sound Manager

routine. Similarly, to change the volume of all sounds subsequently to be played in a
sound channel, you can send the vol uneCrrd sound command to that channel using the
SndDoConmrand routine.

The cnd field of the SndCommand data structure (described on page 154) specifies the
sound command you want to execute. The par aml and par an® fields of that structure
contain any additional information that might be needed to complete the command. One
or both of these parameter fields might be ignored by a particular sound command. In
some cases, the Sound Manager returns information to your application in one of the
parameter fields.

IMPORTANT
In general, you’ll use either SndDoCommrand or SndDol nmredi at e to
send sound commands to a sound channel. With several commands,
however, you must use the SndCont r ol function to issue the sound
command. In Sound Manager version 3.0 and later, however, you
virtually never need to use SndCont r ol because the commands that
require it are either no longer supported (for example, avai | abl eCnd,
t ot al LoadCnd, and | oadCnd) or are obsolete (for example,

ver si onCnd). The sound commands specific to the SndCont r ol
function are documented here for completeness only. a

The sound commands available to your application are defined by constants.

CONST

nul | Cnd = 0; {do not hi ng}

qui et Cd = 3; {stop a sound that is playing}

fl ushCnd = 4; {flush a sound channel }

relnitCmd = b; {reinitialize a sound channel}

wai t Cd = 10; {suspend processing in a channel}

pauseCnd = 11; {pause processing in a channel}

resumeCmd = 12; {resume processing in a channel}

cal | BackCnmd = 13; {execute a cal |l back procedure}

syncCmd = 14; {synchroni ze channel s}

avai | abl eCnd = 24; {see if initialization options are }
{ supported}

ver si onCnd = 25; {determ ne version}

t ot al LoadCnd = 26; {report total CPU | oad}

| oadCnd = 27; {report CPU | oad for a new channel}

freqDurati onCrd = 40; {play a note for a duration}

rest Cnd = 41; {rest a channel for a duration}

freqCmd = 42; {change the pitch of a sound

anpCnd = 43; {change the anplitude of a sound}

ti mbr eCnd = 44; {change the tinbre of a sound}

get AnpCnd = 45; {get the anplitude of a sound}

vol uneCmd = 46; {set vol une}

get Vol uneCnd = 47; {get vol une}

148 Sound Manager Reference

CHAPTER 2

Sound Manager

waveTabl eCd = 60;
soundCnd = 80;
buf f er Cd = 81;
rat eCnd = 82;
get Rat eCd = 85;

Constant descriptions
nul | Cd

qui et Cd

flushCmd

relnitCnd

wai t Cnd

pauseCnd

r esuneCnd

cal | BackCnd

syncCrmd

{install a wave table as a voice}
{install a sanpled sound as a voi ce}
{play a sanpl ed sound}

{set the pitch of a sanpl ed sound}
{get the pitch of a sanpled sound}

Do nothing.
par ani: 0 (ignored on input and output)
par an®: 0 (ignored on input and output)

Stop the sound that is currently playing. You should send
qui et Cnd by using SndDol medi at e.

par ani: 0 (ignored on input and output)

par an®: 0 (ignored on input and output)

Remove all commands currently queued in the specified sound
channel. Af | ushCnd command does not affect any sound that is
currently in progress. You should send f | ushCnd by using
SndDol medi at e.

par ani: 0 (ignored on input and output)

par an®: 0 (ignored on input and output)

Reset the initialization parameters specified in par an® for the
specified channel.

par ani: 0 (ignored on input and output)

par an®: initialization parameters

Suspend further command processing in a channel until the
specified duration has elapsed. To achieve sounds longer than 32,767
half-milliseconds, Pascal programmers can pass a negative number
in par am, in which case the sound plays for 32,767
half-milliseconds plus the absolute value of par aml.

par anmil: duration in half-milliseconds (0 to 65,565)

par an®: 0 (ignored on input and output)

Pause any further command processing in a channel until
resuneCnd is received.

par ani: 0 (ignored on input and output)

par an®: 0 (ignored on input and output)

Resume command processing in a channel that was previously
paused by pauseCnd.

par ani: 0 (ignored on input and output)

par an®: 0 (ignored on input and output)

Execute the callback procedure specified as a parameter to the
SndNewChannel function. Both par anil and par an® are
application-specific; you can use these two parameters to send data
to your callback routine.

par ani: application-defined

par an®: application-defined

Synchronize multiple channels of sound. A syncCnd command is
held in the specified channel, suspending all further command

Jabeuey punos -

Sound Manager Reference 149

150

CHAPTER 2

Sound Manager

avai | abl eCnd

ver si onCnd

t ot al LoadCnd

| oadCmrd

freqDurati onCrd

processing. The par an® parameter contains an identifier that is
arbitrary. Each time the Sound Manager receives syncCnd, it
decrements the count parameter for each channel having that
identifier. When the count for a specific channel reaches 0, command
processing in that channel resumes.

par amil: count

par an®: identifier

Return 1 in par aml if the Sound Manager supports the initialization
options specified in par an? and 0 otherwise. However, the Sound
Manager might support certain initialization parameters in general
but not on a specific machine. You should send avai | abl eCnd
using the SndCont r ol function.

par aml: 0 on input; result of command on output

par an®: initialization parameters

Previously, this command determined which version of a sound
data format is available. The result is returned in par an®. The high
word of the result indicates the major revision number, and the low
word indicates the minor revision number. For example, version 2.0
of a data format would be returned as $00020000. However, this
command is obsolete, and your application should not rely on it.
You send ver si onCnd by using the SndCont r ol function.

par ani: 0 (ignored on input and output)

par an®: 0 on input; version on output

Previously, this command determined the total CPU load factor for
all existing sound activity and for a new sound channel having the
initialization parameters specified in par an2. However, this
command is obsolete, and your application should not rely on it.
You send t ot al LoadCnd by using the SndCont r ol function.

par aml: 0 on input, load factor on output

par an®: initialization parameters

Previously, this command determined the CPU load factor that
would be incurred by a new channel of sound having the
initialization parameters specified in par an®. The load factor
returned in par anti is the percentage of CPU processing power that
the specified sound channel would require. However, this command
is obsolete, and your application should not rely on it. You send

| oadCnd by using the SndCont r ol function.

par anml: 0 on input, load factor on output

par an®: initialization parameters

Play the note specified in par an? for the duration specified in

par aml. To achieve sounds longer than 32,767 half-milliseconds,
Pascal programmers can pass a negative number in par am, in
which case the sound plays for 32,767 half-milliseconds plus the
absolute value of par ani. The par an? parameter must contain a
value in the range 0 to 127. If you want the note to stop playing after
the duration specified in par ani, you must send qui et Cnd after
freqDurati onCnd.

Sound Manager Reference

CHAPTER 2

Sound Manager

rest Cnd

freqCmd

anpCnd

ti nbreCmd

get AnpCnd

vol umeCmd

get Vol uneCnd

par anmil: duration in half-milliseconds (0 to 65,565)
par an: desired frequency

Rest a channel for a specified duration. The duration is specified in
half-milliseconds in par ani. To achieve sounds longer than 32,767
half-milliseconds, Pascal programmers can pass a negative number
in par aml, in which case the sound plays for 32,767
half-milliseconds plus the absolute value of par aml.

par aml: duration in half-milliseconds (0 to 65,565)

par an?: 0 (ignored on input and output)

Change the frequency (or pitch) of a sound. If no sound is currently
playing, then f r eqCnd causes the Sound Manager to begin playing
indefinitely at the frequency specified in par an®. If, however, no
instrument is installed in the channel and you attempt to play either
wave-table or sampled-sound data, no sound is produced. The

par anR parameter must contain a value in the range 0 to 127. The

f r eqCrd command is identical to the f r eqDur at i onCnd
command, except that no duration is specified toa f r eqCnd
command.

par anil: 0 (ignored on input and output)

par an®: desired frequency

Change the amplitude (or loudness) of a sound. If no sound is
currently playing, then anpCnd sets the amplitude of the next sound
to be played. You specify the amplitude in par ani; the amplitude
should be an integer in the range 0 to 255.

par aml: desired amplitude

par an?: 0 (ignored on input and output)

Change the timbre (or tone) of a sound currently being defined
using square-wave data. A timbre value of 0 produces a clear tone; a
timbre value of 254 produces a buzzing tone. You can use

ti mbr eCnd only for sounds defined using square-wave data.

par anil: desired timbre (0 to 254)

par an®: 0 (ignored on input and output)

Determine the current amplitude (or loudness) of a sound. The
amplitude is returned in an integer variable whose address you pass
in par an? and is in the range 0 to 255.

par aml: 0 (ignored on input and output)

par an?: pointer to amplitude variable

Set the right and left volumes of the specified sound channel to the
volumes specified in the high and low words of par an®. The value
$0100 represents full volume, and $0080 represents half volume. You
can specify values larger than $0100 to overdrive the volume. For
example, setting par an® to $02000200 sets the volume on both left
and right speakers to twice full volume. Note, however, that

vol umeCnd is available only in Sound Manager versions 3.0 and
later.

par ani: 0 (ignored on input and output)

par an®: high word is right volume, low word is left volume

Get the current right and left volumes of the specified sound
channel. The volumes are returned in the high and low words of the

Sound Manager Reference 151

Jabeuey punos -

152

CHAPTER 2

Sound Manager

waveTabl eCnd

soundCnd

buf f er Cnd

rat eCmd

get Rat eCnd

long integer pointed to by par an®. The value $0100 represents full
volume, and $0080 represents half volume. Note, however, that
get Vol unmeCnd is available only in Sound Manager versions 3.0
and later.

par ani: 0 (ignored on input and output)

par an®: pointer to volume data

Install a wave table as a voice in the specified channel. The par aml
parameter specifies the length of the wave table, and the par an?
parameter is a pointer to the wave-table data itself. You can use
waveTabl eCnd only for sounds defined using wave-table data.
par aml: length of wave table

par an?: pointer to wave-table data

Install a sampled sound as a voice in a channel. If the high bit of the
command is set, par an® is interpreted as an offset from the
beginning of the’ snd ' resource containing the command to the
sound header. If the high bit is not set, par an® is interpreted as a
pointer to the sound header. You can use the soundCnd command
only with noncompressed sampled-sound data. You can also use
soundCnd to preconfigure a sound channel, so that you can later
send sound commands to it at interrupt time.

par ani: 0 (ignored on input and output)

par an®: offset or pointer to sound header

Play a buffer of sampled-sound data. If the high bit of the command
is set, par an® is interpreted as an offset from the beginning of the
"snd ’ resource containing the command to the sound header. If
the high bit is not set, par an?® is interpreted as a pointer to the
sound header. You can use buf f er Cnd only with sampled-sound
data. Note that sending a buf f er Cnd resets the rate of the channel
to 1.0.

par amil: 0 (ignored on input and output)

par an®: offset or pointer to sound header

Set the rate of a sampled sound that is currently playing, thus
effectively altering its pitch and duration. Your application can set a
rate of 0 to pause a sampled sound that is playing. The new rate is
set to the value specified in par an®, which is interpreted relative to
22 kHz. (For example, to set the rate to 44 kHz, pass $00020000 in
par an®; see Listing 2-4 on page 81 for sample code that uses

rat eCnd.) You can use r at eCnd only with sampled-sound data.
par ani: 0 (ignored on input and output)

par an®: desired rate of sound

Determine the sample rate of the sampled sound currently playing.
The current rate of the channel is returned in a Fi xed variable
whose address you pass in par an? of the sound command. The
values returned are always relative to the 22 kHz sampling rate, as
with the r at eCnrd sound command. You can use get Rat eCnd only
with sampled-sound data, and you should send it by using

SndDol nmedi at e.

par aml: 0 (ignored on input and output)

par an?: pointer to rate variable

Sound Manager Reference

Chunk IDs

CHAPTER 2

Sound Manager

CONST

You can use the following constants to specify a chunk ID, a 4-byte value that identifies
the type of a chunk in an AIFF or AIFF-C file.

{IDs for AIFF and AIFF-C fil e chunks}

Form D = 'FORM ; {1D for Form Chunk}

For mat Ver si onl D = 'FVER ; {1D for Format Version Chunk}
Commonl D = ' COW ; {ID for Conmon Chunk}

SoundDat al D = "SSND ; {ID for Sound Data Chunk} 9
Mar ker | D = ' MARK' ; {1D for Marker Chunk} §
Instrument| D = "I NST"; {ID for Instrunent Chunk} §
M Dl Dat al D ='"MD"’; {ID for MDI Data Chunk} §
Audi oRecor di ngl D = ' AESD ; {1D for Recording Chunk} K
ApplicationSpecificlD = 'APPL"; {ID for Application Chunk}

Comment | D = ' COMI" ; {1D for Comment Chunk}

Nanel D = " NAME' ; {1D for Name Chunk}

Aut hor I D = "AUTH ; {ID for Author Chunk}

CopyrightlI D ='(c) '; {1D for Copyright Chunk}

Annot ati onl D = " ANNO ; {1D for Annotation Chunk}

Constant descriptions

Form D The Form Chunk. A Form Chunk contains information about the
format of the file, and contains all the other chunks of the file.

For mat Ver si onl D
The Format Version Chunk. A Format Version Chunk contains an
indication of the version of the AIFF-C specification according to
which this file is structured (AIFF-C only).

Conmonl D The Common Chunk. A Common Chunk contains information
about the sampled sound, such as the sampling rate and
sample size.

SoundDat al D The Sound Data Chunk. A Sound Data Chunk contains the sample
frames that comprise the sampled sound.

Mar ker | D The Marker Chunk. A Marker Chunk contains markers that point to
positions in the sound data.

I nstrunent| D The Instrument Chunk. An Instrument Chunk defines basic
parameters that an instrument (such as a sampling keyboard) can
use to play back the sound data.

M Dl Dat al D The MIDI Data Chunk. A MIDI Chunk contains MIDI data.

Audi oRecor di ngl D
The Audio Recording Chunk. An Audio Recording Chunk contains
information pertaining to audio recording devices.

Appl i cationSpecificlD

The Application Chunk. An Application Chunk contains
application-specific information.

Sound Manager Reference 153

CHAPTER 2

Sound Manager

Commrent | D The Comment Chunk. A Comment Chunk contains a comment.

Nanel D The Name Chunk. A Name Chunk contains the name of the
sampled sound.

Aut hor I D The Author Chunk. An Author Chunk contains one or more names

of the authors (or creators) of the sampled sound.

Copyrightl D The Copyright Chunk. A Copyright Chunk contains a copyright
notice for the sampled sound.

Annot ati onl D The Annotation Chunk. An Annotation Chunk contains a comment.

Data Structures

This section describes the data structures that the Sound Manager defines. The Sound
Manager uses many of these data structures (such as sound headers) to store information
about sounds or sound channels. You should use these data structures only if you need to
access this information or to customize sound play. The Sound Manager also defines
several data structures that allow you to control sound output or to receive information
about its status.

You use the sound command record to define a sound command that you send to the
Sound Manager using either the SndDoConmmrand or SndDol nmedi at e functions.

If you want to play only a portion of a sound, you can use an audio selection record in
conjunction with the SndSt ar t Fi | ePl ay function.

You use the sound channel status record to obtain information from the Sound Manager
about a specific sound channel, and you use the Sound Manager status record to obtain
information about all sound channels.

The sound channel record stores information about a sound channel. Many of the fields
of this record are for internal Sound Manager use only, but there are a few that you can
access directly.

The sound header record stores information about sampled-sound data. You can use a
sound header record to obtain information on a sound or to change a sound’s loop
points. The extended sound header record and the compressed sound header record add
several fields to the sound header record that provide more information about a sound.

If your application uses the SndPl ayDoubl eBuf f er function to customize the double
buffering of sound data, you need to set up a sound double buffer header record, which
must include pointers to two sound double buffer records.

Sound Command Records

154

A sound command record describes a sound command that you send to a sound channel
using the SndDoConmand or SndDol rmedi at e function. The SndCommand data type
defines a sound command record.

Sound Manager Reference

CHAPTER 2

Sound Manager

TYPE SndCommand =
PACKED RECORD

cnd: I nt eger; {command nunber}

par aml: I nt eger; {first paraneter}

par ang: Longl nt ; {second paraneter}
END;

Field descriptions

cmd The number of the sound command you wish to execute.
par aml The first parameter of the sound command.
par anf The second parameter of the sound command.

The meaning of the par aml and par an® fields depends on the particular sound
command being issued. See “Sound Command Numbers” beginning on page 147 for
a description of the sound commands your application can use.

Jabeuey punos -

Audio Selection Records

You can pass a pointer to an audio selection record to the SndSt art Fi | ePl ay function
to play only part of a sound in a file on disk. The Audi 0Sel ect i on data type defines an
audio selection record.

TYPE Audi 0Sel ecti on =
PACKED RECORD

uni t Type: Longl nt ; {type of tinme unit}

sel Start: Fi xed; {starting point of selection}

sel End: Fi xed; {endi ng poi nt of selection}
END;

Field descriptions

uni t Type The type of unit of time used in the sel St art and sel End fields.
You can set this to seconds by specifying the constant
uni t TypeSeconds.

sel Start The starting point in seconds of the sound to play. If sel Start is
greater than sel End, SndSt art Fi | ePl ay returns an error.
sel End The ending point in seconds of the sound to play.

Use a constant to specify the unit type.

CONST
uni t TypeSeconds = $0000; {seconds}
uni t TypeNoSel ecti on = $FFFF; {no sel ection}

If the value in the uni t Type field is uni t TypeNoSel ect i on, then the values in the
sel Start and sel End fields are ignored and the entire sound plays. Alternatively, if
you wish to play an entire sound, you can pass NI L instead of a pointer to an audio
selection record to the SndSt art Fi | ePl ay function.

Sound Manager Reference 155

CHAPTER 2

Sound Manager

Sound Channel Status Records

To obtain information about a sound channel, you can pass a pointer to a sound channel
status record to the SndChannel St at us function. The SCSt at us data type defines a
sound channel status record.

TYPE SCSt atus =
RECORD

scStartTi me: Fi xed; {starting tine for play from di sk}
ScEndTi ne: Fi xed; {ending tine for play from disk}
scCurrent Ti ne: Fi xed; {current tine for play from di sk}
scChannel Busy: Bool ean; {TRUE i f channel is processing cnds}
scChannel Di sposed: Bool ean; {reserved}
scChannel Paused: Bool ean; {TRUE if channel is paused}
scUnused: Bool ean; {unused}
scChannel Attri butes: Longl nt; {attributes of this channel}
scCPULoad: Longl nt; {CPU |l oad for this channel}
END;
Field descriptions
scStart Ti ne If the Sound Manager is playing from disk through the specified
sound channel, then scSt ar t Ti e is the starting time in seconds
from the beginning of the sound for the play from disk. Otherwise,
scStartTineisO.
scEndTi ne If the Sound Manager is playing from disk through the specified
sound channel, then scEndTi ne is the ending time in seconds from
the beginning of the sound for the play from disk. Otherwise,
scEndTi me is 0.
scCurrent Ti me If the Sound Manager is playing from disk through the specified
sound channel, then scCur r ent Ti ne is the current time in seconds
from the beginning of the disk play. Otherwise, scCur r ent Ti ne is
0. The Sound Manager updates the value of this field only
periodically, and you should not rely on the accuracy of its value.
scChannel Busy If the specified channel is currently processing sound commands,
then scChannel Busy is TRUE; otherwise, scChannel Busy is
FALSE.
scChannel Di sposed
Reserved for use by Apple Computer, Inc.
scChannel Paused
If the Sound Manager is playing from disk through the specified
sound channel and the play from disk is paused, then
scChannel Paused is TRUE; otherwise, scChannel Paused is
FALSE. This field is also TRUE if the channel was paused with the
pauseCnd sound command.
scUnused Reserved for use by Apple Computer, Inc.
scChannel Attri butes
The current attributes of the specified channel. These attributes are
156 Sound Manager Reference

CHAPTER 2

Sound Manager

scCPULoad

in the channel initialization parameters format. The value returned
in this field is always identical to the value passed in thei ni t
parameter to SndNewChannel .

The CPU load for the specified channel. You should not rely on the
value in this field.

You can mask out certain values in the scChannel Attri but es field to determine how
a channel has been initialized.

CONST
i ni t PanMask

i ni t SRat eMask
i ni t StereoMask

i ni t CompMask

= $0003; {mask for right/left pan val ues}
= $0030; {mask for sanple rate val ues}

= $00C0; {mask for nono/stereo val ues}

= $FFO0O0; {mask for conpression |Ds}

Sound Manager Status Records

You can use the SndManager St at us function to get a Sound Manager status record,
which gives information on the current CPU loading caused by all open channels of
sound. The SMSt at us data type defines a Sound Manager status record.

TYPE SMst atus =

PACKED RECCRD

snmivaxCPULoad: I nt eger; {maxi mum | oad on all channel s}

smNuntChannel s: I nt eger; {nunber of allocated channel s}

smCur CPULoad: I nt eger; {current load on all channel s}
END;

Field descriptions
smvaxCPULoad

smNuntChannel s

snmCur CPULoad

IMPORTANT

The maximum CPU load that the Sound Manager will not exceed
when allocating channels. The smvax CPULoad field is set to a
default value of 100 when the system starts up.

The number of sound channels that are currently allocated by all
applications. This does not mean that the channels allocated are
being used, only that they have been allocated and that CPU loading
is being reserved for these channels.

The CPU load that is being taken up by currently allocated channels.

Although you can use the information contained in the Sound Manager
status record to determine how many channels are allocated, you should
not rely on the information in the smvaxCPULoad or smCur CPULoad
field. To determine whether the Sound Manager can create a new
channel, simply call the SndNewChannel function, which returns

an appropriate result code if it is unable to allocate a new channel. a

Sound Manager Reference 157

Jabeuey punos -

CHAPTER 2

Sound Manager

Sound Channel Records

158

The Sound Manager maintains a sound channel record to store information about each
sound channel that you allocate directly by calling the SndNewChannel function or
indirectly by passing a NI L channel to a high-level Sound Manager routine like the
SndPl ay function. The SndChannel data type defines a sound channel record.

TYPE SndChannel =
PACKED RECORD

next Chan: SndChannel Ptr; {pointer to next channel}
firstMd: Ptr; {used internally}
cal | Back: ProcPtr; {pointer to callback procedure}
user | nf o: Longl nt ; {free for application s use}
wai t: Longl nt ; {used internally}
cndl nProgress: SndConmand; {used internally}
fl ags: I nt eger; {used internally}
gLengt h: I nt eger; {used internally}
gHead: I nt eger; {used internally}
gTail : I nt eger; {used internally}
gueue: ARRAY[0. . st dQ.engt h-1] OF SndComand
END;

Field descriptions

next Chan A pointer to the next sound channel in a single queue of channels
that the Sound Manager maintains for all applications.

firstMd Used internally.

cal | Back A pointer to the callback procedure associated with the sound
channel. See page 207 for information on this callback procedure.

userinfo A value that your application can use to store information.

wai t Used internally.

cndl nProgress Used internally.

fl ags Used internally.

gLength Used internally.

gHead Used internally.

gTai | Used internally.

gueue The sound commands pending for the sound channel.

The only field of the sound channel record that you are likely to need to access directly is
the user | nf o field. This field is useful if you need to pass a value to a Sound Manager
callback procedure or completion routine. For example, you might pass the value stored
in the A5 register so that your callback procedure can access your application’s global
variables. Or, you might store a handle to sound data here so that a routine that disposes
of an allocated channel can also release the sound data that the channel played.

In rarer instances, you might need to access the cal | Back field of the sound channel
record directly. Ordinarily, you set this field by specifying a callback procedure when you

Sound Manager Reference

CHAPTER 2

Sound Manager

call the SndNewChannel function. However, you can change the callback procedure
associated with a channel by changing this field directly. The Sound Manager will then
execute the procedure you specify in this field whenever the channel processes a

cal | BackCnd command.

A WARNING
You should not attempt to manipulate all open sound channels by using
the next Chan field to walk the sound channel queue. The queue might
contain channels opened by other applications. If you need to perform
some operation on all sound channels that your application has
allocated, you should maintain your own data structure that keeps track
of your application’s channels. a

Sound Header Records

Jabeuey punos -

Sound resources often contain sampled-sound data as well as sound commands. The
sound data is contained in the last field of the sound header. You can access a sound
header record to find information about sampled-sound data. The standard sound header
is used only for simple monophonic sounds. The SoundHeader data type defines a
sampled sound header record.

TYPE SoundHeader =
PACKED RECORD

sanpl ePtr: Ptr; {if NIL, sanples in sanpl eArea}
| engt h: Longl nt ; {nunber of sanples in array}
sanpl eRat e: Fi xed; {sanpl e rate}
| oopStart: Longl nt; {l oop poi nt begi nni ng}
| oopEnd: Longl nt ; {l oop poi nt endi ng}
encode: Byt e; {sanmpl e’ s encodi ng option}
baseFrequency: Byte; {base frequency of sanple}
sanpl eAr ea: PACKED ARRAY[0..0] OF Byte;

END;

Field descriptions

sanpl ePtr A pointer to the sampled-sound data. If the sampled sound is
located in memory immediately after the baseFr equency field,
then this field should be set to NI L. Otherwise, this field is a pointer
to the memory location of the sampled-sound data. (This might be
useful if you want to change some fields of a sound header but do
not want to modify a handle to a sound resource directly.)

[ength The number of bytes of sound data.

sanpl eRat e The rate at which the sample was originally recorded. The Sound
Manager can play sounds sampled at any rate up to 64 kHz. The
values corresponding to the three most common sample rates
(11 kHz, 22 kHz, and 44 kHz) are defined by constants:

Sound Manager Reference 159

160

CHAPTER 2

Sound Manager

| oopSt art

| oopEnd

encode

baseFr equency

sanpl eAr ea

CONST
rat e4dkhz = $AC440000; {44100. 00000 Fi xed}
rat e22khz = $56EE8BA3; {22254. 54545 Fi xed}
ratellkhz = $2B7745D1,; {11127. 27273 Fi xed}

Note that the sample rate is declared as a Fi xed data type, but the
most significant bit is not treated as a sign bit; instead, that bit is
interpreted as having the value 32,768.

The starting point of the portion of the sampled sound header that is
to be used by the Sound Manager when determining the duration of
freqDur at i onCd. These loop points specify the byte numbers in
the sampled data to be used as the beginning and end points to cycle
through when playing the sound. The loop starting and ending
points are 0-based.

The end point of the portion of the sampled sound header that is to
be used by the Sound Manager when determining the duration of
freqDur at i onCrd. If no looping is desired, set both | oopSt art
and | oopEnd to 0.

The method of encoding used to generate the sampled-sound data.
The current encoding option values are

CONST
st dSH = $00; {standard sound header}
ext SH = $FF; {ext ended sound header}
cnpSH = $FE; {compressed sound header}

For a standard sound header, you should specify the constant

st dSH. Encode option values in the ranges 0 through 63 and 128 to
255 are reserved for use by Apple. You are free to use numbers in the
range 64 through 127 for your own encode options.

The pitch at which the original sample was taken. This value must
be in the range 1 through 127. Table 2-2 on page 98 lists the possible
baseFr equency values. The baseFr equency value allows the
Sound Manager to calculate the proper playback rate of the sample
when an application uses the f r eqDur at i onCnrd command.
Applications should not alter the baseFr equency field of a
sampled sound; to play the sample at different pitches, use
fregDurati onCnd orfreqCnd.

If the value of sanpl ePt r is NI L, this field is an array of bytes, each
of which contains a value similar to the values in a wave-table
description. These values are interpreted as offset values, where $80
represents an amplitude of 0. The value $00 is the most negative
amplitude, and $FF is the largest positive amplitude. The samples
are numbered 1 through the value in the | engt h parameter.

If you need to create a sound header for sampled-sound data that your application has
recorded, then you should use the Set upSndHeader function, described in the chapter
“Sound Input Manager” in this book.

Sound Manager Reference

CHAPTER 2

Sound Manager

Extended Sound Header Records

For sampled-sound data that is more complex than a standard sound header can
describe, the Sound Manager uses an extended sound header record. Sound data
described by such a header can be monophonic or stereo, but it cannot be compressed.

Most of the fields of the extended sound header correspond to fields of the sampled
sound header. However, the extended sound header allows the encoding of stereo sound.

The numChannel s field contains the number of channels of sound recorded, and the
nunfr anes field contains the number of frames of sound recorded in each channel. For
more information on the format of sampled sound frames, see “Sound Files” on page 136.

Note

The word “channel” can be confusing in this context, because a sound
resource containing polyphonic sound (that is, multichannel sound) can
be played on a single Sound Manager sound channel. Channel is a
general term for the portion of sound data that can be described by a

single sound wave. Monophonic sound is composed of a single channel.

Stereo sound (also called polyphonic sound) is composed of several
channels of sound played simultaneously. “Sound channel” is a term
specific to the Sound Manager. O

Jabeuey punos -

TYPE Ext SoundHeader =
PACKED RECORD

sanpl ePtr: Ptr; {if NIL, sanples in sanpl eArea}
nunthannel s: Longl nt ; {nunber of channels in sanpl e}
sanpl eRat e: Fi xed; {rate of original sanple}
| oopStart: Longl nt; {l oop poi nt begi nni ng}
| oopEnd: Longl nt ; {l oop poi nt endi ng}
encode: Byt e; {sanmpl e’ s encodi ng option}
baseFr equency: Byt e; {base freq. of original sanple}
nunfr ames: Longl nt ; {total nunber of frames}
Al FFSanpl eRat e: Ext ended80; {rate of original sanple}
mar ker Chunk: Ptr; {reserved}
i nstrument Chunks: Ptr; {pointer to instrument info}
AESRecor di ng: Ptr; {pointer to audio info}
sanpl eSi ze: I nt eger; {nunber of bits per sanpl e}
futureUsel: I nt eger; {reserved}
futureUse2: Longl nt; {reserved}
futureUse3: Longl nt; {reserved}
futureUse4: Longl nt ; {reserved}
sanpl eAr ea: PACKED ARRAY[0..0] OF Byte;

END;

Field descriptions

sanpl ePtr

A pointer to the sampled-sound data. If the sampled sound is
located in memory immediately after the f ut ur eUse4 field, then

Sound Manager Reference 161

162

CHAPTER 2

Sound Manager

numChannel s
sanpl eRat e

| oopSt art

| oopENnd

encode

baseFr equency

numfr ames

Al FFSanpl eRat e

mar ker Chunk

this field should be set to NI L. Otherwise, this field is a pointer to
the memory location of the sampled-sound data.

The number of channels in the sampled-sound data.

The rate at which the sample was originally recorded. The
approximate sample rates are shown in Table 2-1 on page 71. Note
that the sample rate is declared as a Fi xed data type, but the most
significant bit is not treated as a sign bit; instead, that bit is
interpreted as having the value 32,768.

The starting point of the portion of the extended sampled sound
header that is to be used by the Sound Manager when determining
the duration of f r eqDur at i onCnd. These loop points specify the
byte numbers in the sampled data to be used as the beginning and
end points to cycle through when playing the sound. The loop
starting and ending points are 0-based.

The end point of the portion of the extended sampled sound header
that is to be used by the Sound Manager when determining the
duration of f r eqDur at i onCnd.

The method of encoding used to generate the sampled-sound data.
For an extended sound header, you should specify the constant

ext SH. Encode option values in the ranges 0 through 63 and 128 to
255 are reserved for use by Apple. You are free to use numbers in the
range 64 through 127 for your own encode options.

The pitch at which the original sample was taken. This value must
be in the range 1 through 127. Table 2-2 on page 98 lists the possible
baseFr equency values. The baseFr equency value allows the
Sound Manager to calculate the proper playback rate of the sample
when an application uses the f r eqDur at i onCnd command.
Applications should not alter the baseFr equency field of a
sampled sound; to play the sample at different pitches, use
freqDurati onCnd or f r eqCnd.

The number of frames in the sampled-sound data. Each frame
contains nuntChannel s bytes for 8-bit sound data.

The sample rate at which the frames were sampled before
compression, as expressed in the 80-bit extended data type
representation.

Synchronization information. The mar ker Chunk field is not
presently used and should be set to NI L.

i nst runent Chunks

AESRecor di ng
sanpl eSi ze
futureUsel
futureUse2
futureUse3
futureUsed

Instrument information.

Information related to audio recording devices.
The number of bits in each sample frame.
Reserved.

Reserved.

Reserved.

The four f ut ur eUse fields are reserved for use by Apple. To
maintain compatibility with future releases of system software, you
should always set these fields to 0.

Sound Manager Reference

CHAPTER 2

Sound Manager

sanpl eAr ea An array of interleaved sample points, each of which contains a
value similar to the values in a wave-table description. For 8-bit
sampled-sound data, these values are interpreted as offset values,
where $80 represents an amplitude of 0. The value $00 is the largest
negative amplitude, and $FF is the largest positive amplitude.

To compute the total number of bytes of a sample, multiply the values in the
nunthannel s, nunfr anes, and sanpl eSi ze fields and divide by the number of bytes
per sample (typically 8 or 16).

Note

Although extended sound headers (and compressed sound headers,
described next) support the storage of 16-bit sound, only versions 3.0 and
later of the Sound Manager can play 16-bit sounds. If your application
uses 16-bit sound, you must convert it to 8-bit sound before earlier
versions of the Sound Manager can play it. O

Compressed Sound Header Records

To describe compressed sampled-sound data, the Sound Manager uses a compressed
sound header record. Compressed sound headers include all of the essential fields of
extended sound headers in addition to several fields that pertain to compression. The

Jabeuey punos -

CnpSoundHeader data type defines the compressed sound header record.

TYPE CnpSoundHeader =
PACKED RECORD

sanpl ePtr: Ptr; {if NIL, sanples in sanpl eArea}
nunthannel s: Longl nt; {nunber of channels in sanpl e}
sanpl eRat e: Fi xed; {rate of original sanple}

| oopStart: Longl nt ; {1l oop poi nt begi nni ng}

| oopENd: Longl nt; {l oop poi nt endi ng}

encode: Byt e; {sanpl e’ s encodi ng opti on}
baseFr equency: Byt e; {base freq. of original sanple}
nunfr anes: Longl nt; {length of sanple in franes}

Al FFSanpl eRat e: Ext ended80; {rate of original sanple}

mar ker Chunk: Ptr; {reserved}

format: CSType; {data format type}

futureUse2: Longl nt ; {reserved}

stateVars: Stat eBl ockPtr; {pointer to StateBl ock}

| ef t Over Sanpl es: Left Over Bl ockPtr;
{pointer to LeftOverBl ock}

conpr essi onl D I nt eger; {ID of conpression algorithnt
packet Si ze: I nt eger; {nunber of bits per packet}
snt hl D: I nt eger; {unused}

Sound Manager Reference

163

sanpl eSi ze:
sanpl eAr ea:

END;

164

CHAPTER 2

Sound Manager

Field descriptions

sanpl ePtr

numChannel s
sanpl eRat e

| oopSt art

| oopEnd
encode

baseFr equency

numfr ames

Al FFSanpl eRat e

mar ker Chunk

f or mat

I nt eger; {bits in each sanple point}
PACKED ARRAY[0..0] OF Byte;

The location of the compressed sound frames. If sanpl ePtr isNI L,
then the frames are located in the sanpl eAr ea field of the
compressed sound header. Otherwise, sanpl ePt r points to a buffer
that contains the frames.

The number of channels in the sample.

The sample rate at which the frames were sampled before
compression. The approximate sample rates are shown in Table 2-1
on page 71. Note that the sample rate is declared as a Fi xed data
type, but the most significant bit is not treated as a sign bit; instead,
that bit is interpreted as having the value 32,768.

The beginning of the loop points of the sound before compression.
The loop starting and ending points are 0-based.

The end of the loop points of the sound before compression.

The method of encoding (if any) used to generate the
sampled-sound data. For a compressed sound header, you should
specify the constant cnpSH. Encode option values in the ranges

0 through 63 and 128 to 255 are reserved for use by Apple. You are
free to use numbers in the range 64 through 127 for your own
encode options.

The pitch of the original sampled sound. It is not used by

buf f er Cnd. If you wish to make use of baseFr equency with a
compressed sound, you must first expand it and then play it with
soundCnd and f r eqDur at i onCnd.

The number of frames contained in the compressed sound header.
When you store multiple channels of noncompressed sound, store
them as interleaved sample frames (as in AIFF). When you store
multiple channels of compressed sounds, store them as interleaved
packet frames.

The sample rate at which the frames were sampled before
compression, as expressed in the 80-bit extended data type
representation.

Synchronization information. The mar ker Chunk field is not
presently used and should be set to NI L.

The data format type. This field contains a value of type OSType
that defines the compression algorithm, if any, used to generate the
audio data. For example, for data generated using MACE 3:1
compression, this field should contain the value’ MAC3’ . See

page 141 for a list of the format types defined by Apple. This field is
used only if the conpr essi onl Dfield contains the value

fi xedConpr essi on.

Sound Manager Reference

CHAPTER 2

Sound Manager

futureUse2 This field is reserved for use by Apple. To maintain compatibility
with future releases of system software, you should always set this
field to 0.

stateVars A pointer to a state block. This field is used to store the state

variables for a given algorithm across consecutive calls. See “State
Blocks” on page 174 for a description of the state block.

| ef t Over Sanpl es
A pointer to a leftover block. You can use this block to store samples
that will be truncated across algorithm invocations. See “Leftover
Blocks™” on page 174 for a description of the leftover block.

-

conpressi onl D The compression algorithm used on the samples in the compressed (é’
sound header. You can use a constant to define the compression 2
algorithm. §

>
CONST &

vari abl eConpr essi on
= -2; {variable-ratio conpr.}

fi xedConpression = -1; {fixed-ratio conpr.}

not Conpr essed = 0; {nonconpressed sanpl es}
t hreeToOne = 3; {3:1 conpressed sanpl es}
si xToOne = 4; {6:1 conpressed sanpl es}

The constant f i xedConpr essi on is available only with Sound
Manager versions 3.0 and later. If the conpr essi onl Dfield
contains the value f i xedConpr essi on, the Sound Manager reads
the f or mat field to determine the compression algorithm used to
generate the compressed data. Otherwise, the Sound Manager reads
the conpr essi onl Dfield. Apple reserves the right to use
compression IDs in the range 0 through 511. Currently the constant
vari abl eConpr essi on is not used by the Sound Manager.

packet Si ze The size, in bits, of the smallest element that a given expansion
algorithm can work with. You can use a constant to define the packet
size.

CONST
si xToOnePacket Si ze
t hr eeToOnePacket Si ze

8, {size for 6:1}
16; {size for 3:1}

Beginning with Sound Manager version 3.0, you can specify the
value 0 in this field to instruct the Sound Manager to determine the
packet size itself.

snthl D This field is unused. You should set it to 0.

sanpl eSi ze The size of the sample before it was compressed. The samples
passed in the compressed sound header should always be
byte-aligned, and any padding done to achieve byte alignment
should be done from the left with zeros.

Sound Manager Reference 165

CHAPTER 2

Sound Manager

sanpl eAr ea The sample frames, but only when the sanpl ePt r field is NI L.
Otherwise, the sample frames are in the location indicated
by sanpl ePtr.

Sound Double Buffer Header Records

You must fill in a sound double buffer header record and two sound double
buffer records if you wish to manage your own double buffers. The
SndDoubl eBuf f er Header data type defines a sound double buffer header.

TYPE SndDoubl eBuf f er Header =
PACKED RECORD

dbhNuntChannel s: I nt eger; {nunber of sound channel s}
dbhSanpl eSi ze: I nt eger; {sanmpl e size, if nonconpressed}
dbhConpr essi onl D I nt eger; {ID of conpression algorithnt
dbhPacket Si ze: I nt eger; {nunber of bits per packet}
dbhSanpl eRat e: Fi xed; {sampl e rate}
dbhBufferPtr: ARRAY[0. . 1] OF SndDoubl eBufferPtr;

{pointers to SndDoubl eBuf f er}
dbhDoubl eBack: ProcPtr; {poi nter to doubl eback procedure}

END;

Sound Manager versions 3.0 and later support custom compression and decompression
algorithms by defining the revised sound double buffer header record, of type
SndDoubl eBuf f er Header 2. It’s identical to the SndDoubl eBuf f er Header data type
except that it contains the dbhFor mat field at the end.

TYPE SndDoubl eBuf f er Header 2 =
PACKED RECORD

dbhNunChannel s: I nt eger; {nunmber of sound channel s}
dbhSanpl eSi ze: I nt eger; {sanpl e size, if nonconpressed}
dbhConpr essi onl D I nt eger; {1 D of conpression algorithnm
dbhPacket Si ze: I nt eger; {nunber of bits per packet}
dbhSanpl eRat e: Fi xed; {sanpl e rate}

dbhBufferPtr: ARRAY[0. .1] OF SndDoubl eBufferPtr;

{pointers to SndDoubl eBuf f er}
dbhDoubl eBack: ProcPtr; {poi nter to doubl eback procedure}
dbhFor mat : CSType; {signature of codec}

END;

166

Field descriptions

dbhNumChannel s
The number of channels for the sound (1 for monophonic sound,
2 for stereo).

dbhSampl eSi ze The sample size for the sound if the sound is not compressed. If the
sound is compressed, dbhSanpl eSi ze should be set to 0. Samples

Sound Manager Reference

CHAPTER 2

Sound Manager

that are 1-8 bits have a dbhSanpl eSi ze value of 8; samples that are
9-16 bits have a dbhSanpl eSi ze value of 16. Currently, only 8-bit
samples are supported. For further information on sample sizes,
refer to the AIFF specification.

dbhConpr essi onl D

dbhPacket Si ze

dbhSanpl eRat e

dbhBufferPtr

dbhDoubl eBack

dbhFor mat

The compression identification number of the compression
algorithm, if the sound is compressed. If the sound is not
compressed, dbhConpr essi onl Dshould be set to 0.

The packet size in bits for the compression algorithm specified by
dbhConpr essi onl D, if the sound is compressed.

The sample rate for the sound. Note that the sample rate is declared
as a Fi xed data type, but the most significant bit is not treated as a
sign bit; instead, that bit is interpreted as having the value 32,768.

An array of two pointers, each of which should point to a valid
SndDoubl eBuf f er record.

A pointer to the application-defined routine that is called when the
double buffers are switched and the exhausted buffer needs to
be refilled.

The data format type. This field contains a value of type OSType
that defines the compression algorithm, if any, to be used to
decompress the audio data. For example, for data generated using
MACE 3:1 compression, this field should contain the value ' MAC3' .
See page 141 for a list of the format types defined by Apple. This
field is used only if the dbhConpr essi onl Dfield contains the
value f i xedConpr essi on.

The dbhBuf f er Pt r array contains pointers to two sound double buffer records, whose
format is defined below. These are the two buffers between which the Sound Manager
switches until all the sound data has been sent into the sound channel. When you make
the call to SndPI ayDoubl eBuf f er, the two buffers should both already contain a
nonzero number of frames of data.

Sound Double Buffer Records

You must fill in a sound double buffer header record if you wish to manage your own
double buffers. The dbhBuf f er Pt r field of the sound double buffer header record
references two sound double buffer records, which you must also fill out. The
SndDoubl eBuf f er Header data type defines a sound double buffer header.

TYPE SndDoubl eBuf fer =
PACKED RECORD
dbNuntr anes: Longl nt;
dbFl ags: Longl nt;
dbUser I nf o: ARRAY] 0.

{nunmber of franes in buffer}
{buffer status flags}

. 1] OF Longlnt; {for application’s use}

dbSoundDat a: PACKED ARRAY[0..0] OF Byte; {array of data}

END;

Sound Manager Reference 167

Jabeuey punos -

CHAPTER 2

Sound Manager

Field descriptions

dbNunfr ares The number of frames in the dbSoundDat a array.

dbFl ags Buffer status flags.

dbUserl nfo Two long words into which you can place information that you need
to access in your doubleback procedure.

dbSoundDat a A variable-length array. You write samples into this array, and the

Sound Manager reads samples out of this array.

The buffer status flags field for each of the two buffers can contain either of these values
that your doubleback procedure must set when appropriate:

CONST
dbBuf f er Ready = $00000001;
dbLast Buf f er = $00000004;

All other bits in the dbFI ags field are reserved by Apple; your application should not
modify them.

Chunk Headers

Every chunk in an AIFF or AIFF-C file contains a chunk header that defines
characteristics of the chunk. The ChunkHeader data type defines a chunk header.

TYPE ChunkHeader =

RECORD

ckl D: | O {chunk type |D}

ckSi ze: Longlnt; {nunmber of bytes of data}
END;

Field descriptions

ckl D The ID of the chunk. An ID is a 32-bit concatenation of any four
printable ASCII characters in the range’ ' (space character, ASCII
value $20) through’ ~’ (ASCII value $7E). Spaces cannot precede
printing characters, but trailing spaces are allowed. Control
characters are not allowed. See “Chunk IDs” on page 153 for a list of
the currently recognized chunk IDs.

ckSi ze The size of the chunk in bytes, not including the ckl Dand ckSi ze
fields.

Form Chunks

168

All sound files begin with a Form Chunk. This chunk defines the type and size of the file
and can be thought of as enclosing the remaining chunks in the sound file. The
Cont ai ner Chunk data type defines a Form Chunk.

Sound Manager Reference

CHAPTER 2

Sound Manager

TYPE Cont ai ner Chunk =

RECORD
ckl D:
ckSi ze:
f or mlype:
END;

Field descriptions
ckl D

ckSi ze

formlype

| O {" FORM }
Longl nt; {nunber of bytes of data}
I D {type of file}

The ID of this chunk. For a Form Chunk, this ID is’ FORM .

The size of the data portion of this chunk. Note that the data portion
of a Form Chunk is divided into two parts, f or ml'ype and the
remaining chunks of the sound file.

The type of audio file. For AIFF files, f or mType is’ Al FF' . For
AIFF-C files, f or mType is’ Al FC .

The size of an entire sound file is ckSi ze+8, because the ckSi ze field incorporates the
size of all chunks of the sound file, except the sizes of the ckl Dand ckSi ze fields of the

Form Chunk itself.

Format Version Chunks

AIFF-C files each contain exactly one Format Version Chunk, but files of type AIFF do not
contain any. You can examine the Format Version Chunk to ensure that your application
can process an AIFF-C file. The For mat Ver si onChunk data type defines a Format

Version Chunk.

TYPE For mat Ver si onChunk =

RECORD

ckl D

ckSi ze:

ti mest anp:
END;

Field descriptions
ckl D

ckSi ze

ti mestanp

| O {' FVER' }
Longl nt ; {4}
Longl nt; {date of format version}

The ID of this chunk. For a Format Version Chunk, this ID is

" FVER' .

The size of the data portion of this chunk. This value is always 4 in a
Format Version Chunk because the t i mest anp field is 4 bytes long
(the 8 bytes used by the ckl Dand ckSi ze fields are not included).

An indication of when the format version for this kind of file was
created. The value indicates the number of seconds between
midnight, January 1, 1904, and the time at which the AIFF-C file
format was created.

Sound Manager Reference 169

Jabeuey punos -

CHAPTER 2

Sound Manager

Common Chunks

Every AIFF and AIFF-C file contains a Common Chunk that defines some fundamental
characteristics of the sampled sound contained in the file. The format of the Common
Chunk is different for AIFF and AIFF-C files. As a result, you need to determine the type
of file format (by inspecting the f or nTType field of the Form Chunk) before reading the
Common Chunk.

For AIFF files, the CommonChunk data type defines a Common Chunk.

TYPE CommonChunk =

RECORD
ckl D | O {* coOw }
ckSi ze: Longl nt; {size of chunk data}
nunChannel s: I nt eger; {nunmber of channel s}
nunSanpl eFranes: Longlnt; {nunber of sanple franes}
sanpl eSi ze: I nt eger; {nunber of bits per sanpl e}
sanpl eRat e: Ext ended; {nunber of franes per second}
END;

Field descriptions
ckl D The ID of this chunk. For a Common Chunk, this ID is’ COW .

ckSi ze The size of the data portion of this chunk. In AIFF files, this field is
always 18 because the 8 bytes used by the ckl Dand ckSi ze fields
are not included.

nuntChannel s The number of audio channels contained in the sampled sound. A
value of 1 indicates monophonic sound, a value of 2 indicates stereo
sound, a value of 4 indicates four-channel sound, and so forth.

nunBanpl eFr anes
The number of sample frames in the Sound Data Chunk. Note that
this field contains the number of sample frames, not the number of
bytes of data and not the number of sample points. For
noncompressed sound data, the total number of sample points in the
file is nunChannel s * nunSanpl eFr anes.

sanpl eSi ze The number of bits in each sample point of noncompressed sound
data. The sanpl eSi ze field can contain any integer from 1 to 32.
For compressed sound data, this field indicates the number of bits
per sample in the original sound data, before compression.

sanpl eRat e The sample rate at which the sound is to be played back, in sample
frames per second.

Extended Common Chunks

170

An AIFF-C file contains an extended Common Chunk that includes all of the fields of
the Common Chunk, but adds two fields that describe the type of compression (if any)
used on the audio data. The Ext CormonChunk data type defines an extended
Common Chunk.

Sound Manager Reference

CHAPTER 2

Sound Manager

TYPE Ext CommpbnChunk =

RECORD
ckl D | O {* coOw }
ckSi ze: Longl nt; {size of chunk data}
nunChannel s: I nt eger; {nunber of channel s}
nunSanpl eFranes: Longlnt; {nunber of sanple franes}
sanpl eSi ze: I nt eger; {nunber of bits per sanpl e}
sanpl eRat e: Ext ended; {nunber of franes per second}
conpressi onType: 1D {compression type |D}

conpressi onNanme: PACKED ARRAY[0..0] OF Byte;
{conpressi on type nane}
END;

Field descriptions

ckl D The ID of this chunk. For an extended Common Chunk, this ID
is’ COW .
ckSi ze The size of the data portion of this chunk. For an extended Common

Chunk, this size is 22 plus the number of bytes in the
conpr essi onNane string.

nunthannel s The number of audio channels contained in the sampled sound. A
value of 1 indicates monophonic sound, a value of 2 indicates stereo
sound, a value of 4 indicates four-channel sound, and so forth.

nunBanpl eFr anmes
The number of sample frames in the Sound Data Chunk. Note that
this field contains the number of sample frames, not the number of
bytes of data and not the number of sample points. For
noncompressed sound data, the total number of sample points in the
file is nunChannel s * nunSanpl eFr anes.

sanpl eSi ze The number of bits in each sample point of noncompressed sound
data. The sanpl eSi ze field can contain any integer from 1 to 32.
For compressed sound data, this field indicates the number of bits
per sample in the original sound data, before compression.

sanpl eRat e The sample rate at which the sound is to be played back, in sample
frames per second.

conpressi onType
The ID of the compression algorithm, if any, used on the sound data.
Compression algorithms supplied by Apple have the following

types:

CONST
NoneType = " NON\E' ;
ACE2Type = " ACE2’ ;
ACE8Type = " ACES8’;
MACE3Type = " MAC3';
MACE6Type = ' MACE’ ;

Sound Manager Reference 171

Jabeuey punos -

CHAPTER 2

Sound Manager

conpr essi onNamne

Sound Data Chunks

You can define your own compression types, but you should register
them with Apple.

A human-readable name for the compression algorithm ID specified
in the conpr essi onType field. If the number of bytes in this field
is odd, then it is padded with the digit 0. Compression algorithms
supplied by Apple have the following names:

CONST
NoneNare = 'not conpressed’;
ACE2t o1Narme = "ACE 2-to-1";
ACES8t o3Nane = "ACE 8-to0-3';
MACE3t o1Nane = 'MACE 3-to-1";
MACE6t o1Narme = "MACE 6-to-1";

You can define your own compression types, but you should register
them with Apple.

172

AIFF and AIFF-C files generally contain a Sound Data Chunk that contains the actual
sampled-sound data. The SoundDat aChunk data type defines a Sound Data Chunk.

TYPE SoundDat aChunk =

RECORD
ckl D
ckSi ze:
of f set:

bl ockSi ze:

END;

Field descriptions
ckl D

ckSi ze

of f set

bl ockSi ze

| O {’ SSND' }

Longl nt; {size of chunk data}

Longl nt ; {of fset to sound data}
Longl nt; {size of alignnent blocks}

The ID of this chunk. For a Sound Data Chunk, this ID is’ SSND' .

The size of the data portion of this chunk. This size does not include
the 8 bytes occupied by the values in the ckl Dand the ckSi ze
fields.

An offset (in bytes) to the beginning of the first sample frame in the
chunk data. Most applications do not need to use the offset field and
should set it to 0.

The size (in bytes) of the blocks to which the sound data is aligned.
This field is used in conjunction with the of f set field for aligning
sound data to blocks. As with the of f set field, most applications

do not need to use the bl ockSi ze field and should set it to 0.

The sampled-sound data follows the bl ockSi ze field. If the data following the
bl ockSi ze field contains an odd number of bytes, a pad byte with a value of 0 is added
at the end to preserve an even length for this chunk. If there is a pad byte, it is not

Sound Manager Reference

CHAPTER 2

Sound Manager

included in the ckSi ze field. For information on the format of the sampled-sound data,
see “Sound Files” on page 136.

\Version Records

The functions SndSoundManager Ver si on and MACEVer si on return version
information using a version record. The NumVer si on data type defines a version record.

TYPE NunVer sion =
PACKED RECORD
CASE | NTEGER OF

Jabeuey punos -

0:
(rmaj or Rev: Si gnedByt e; {maj or revision |level in BCD}
nm nor AndBugRev: Si gnedByt €; {m nor revision |evel}
st age: Si gnedByt e; {devel opnment st age}
nonRel Rev: Si gnedByt e) ; {nonrel eased revision |evel}
1:
(version: Longl nt); {all 4 fields together}
END;
IMPORTANT

A version record has the same structure as the first four fields of a
version resource (a resource of type’ ver s’). See the chapter “Finder
Interface” in Inside Macintosh: Macintosh Toolbox Essentials for complete
information about version resources. a

Field descriptions
maj or Rev The major revision level. This field is a signed byte in binary-coded
decimal format.

m nor AndBugRev
The minor revision level. This field is a signed byte in binary-coded
decimal format.

st age The development stage. You should use the following constants to
specify a development stage:

CONST
devel opSt age = $20; {preal pha rel ease}
al phaSt age = $40; {al pha rel ease}
bet aSt age = $60; {beta rel ease}
fi nal St age = $80; {final rel ease}
nonRel Rev The revision level of a prereleased version.
version A long integer that contains all four version fields.

Sound Manager Reference 173

CHAPTER 2

Sound Manager

Leftover Blocks

State Blocks

The | ef t Over Sanpl es field of a compressed sound header contains a pointer to a
leftover block, defined by the Lef t Over Bl ock data type.

TYPE LeftOverBl ock =

RECORD

count: Longl nt;

sanpl eAr ea: PACKED ARRAY[0. .l eft OverBl ockSi ze - 1] OF Byte;
END;

Field descriptions
count The number of bytes in the sanpl eAr ea field.

sampl eAr ea An array of bytes. This field contains samples that are truncated
across invocations of the compression algorithm. The size of this
field is defined by a constant.

CONST
| eft Over Bl ockSi ze = 32;

The st at eVar s field of a compressed sound header contains a pointer to a state block,
defined by the St at eBl ock data type.

TYPE StateBl ock =
RECORD

stateVar: ARRAY[0. . st at eBl ockSi ze - 1] OF Integer;
END;

Field descriptions

st at eVar An array of integers. This field contains state variables that need to
be preserved across invocations of the compression algorithm. The
size of this field is defined by a constant.

CONST
st at eBl ockSi ze = 64;

Sound Manager Routines

174

This section describes the routines provided by the Sound Manager. You can use these
routines to

= play sound resources
= play sounds stored in files directly from disk

= allocate and release sound channels

Sound Manager Reference

CHAPTER 2

Sound Manager

send commands to a sound channel

obtain information about the Sound Manager, a sound channel, all sound channels, or
the system alert sound’s status

compress and expand audio data

manage the reading and writing of double sound buffers

The section “Application-Defined Routines” on page 206 describes routines that your
application might need to define, including callback procedures, completion routines,
and doubleback procedures.

Assembly-Language Note

Most Sound Manager routines are accessed through the

_SoundDi spat ch selector. However, the SndAddModi fi er,
SndCont r ol , SndbDi sposeChannel , SndDoConmrand,

SndDol mmedi at e, SndNewChannel , and SndPl ay functions and the
SysBeep procedure are accessed through their own trap macros. O

Playing Sound Resources

You can use the SysBeep procedure to play the system alert sound. Alert sounds are

stored in the System file as format 1’ snd
function to play the sounds that are stored in any ' snd

resources. You can use the SndPl ay
' resource, either format 1 or

format 2.

The SysBeep and SndPI ay routines are the highest-level sound routines that the

Sound Manager provides. Depending on the needs of your application, you might be
able to accomplish all desired sound-related activity simply by using SysBeep to
produce the system alert sound or by using SndPI ay to play other sounds that are stored

as’ snd

resources.

SysBeep
You can use the SysBeep procedure to play the system alert sound.
PROCEDURE SysBeep (duration: Integer);
duration The duration (in ticks) of the resulting sound. This parameter is ignored
except on a Macintosh Plus, Macintosh SE, or Macintosh Classic when the
system alert sound is the Simple Beep. The recommended duration is 30
ticks, which equals one-half second.
DESCRIPTION

The SysBeep procedure causes the Sound Manager to play the system alert sound at its
current volume. If necessary, the Sound Manager loads into memory the sound resource

Sound Manager Reference 175

Jabeuey punos -

CHAPTER 2

Sound Manager

containing the system alert sound and links it to a sound channel. The user selects a
system alert sound in the Alert Sounds subpanel of the Sound control panel.

The volume of the sound produced depends on the current setting of the system alert
sound volume, which the user can adjust in the Alert Sounds subpanel of the Sound
control panel. The system alert sound volume can also be read and set by calling the

Get SysBeepVol une and Set SysBeepVol une routines. If the volume is set to 0 (silent)
and the system alert sound is enabled, calling SysBeep causes the menu bar to blink
once.

SPECIAL CONSIDERATIONS

SEE ALSO

SndPlay

Because the SysBeep procedure moves memory, you should not call it at interrupt time.

For information on enabling and disabling the system alert sound, see the description of
SndCGet SysBeepSt at e and SndGet SysBeepSt at e on page 192. For information on
reading or adjusting the system alert sound volume, see “Controlling Volume Levels”
beginning on page 194.

DESCRIPTION

176

You can use the SndPl ay function to play a sound resource that your application has
loaded into memory.

FUNCTI ON SndPl ay (chan: SndChannel Ptr; sndHdl: Handl e;
async: Bool ean): OSErr;

chan A pointer to a valid sound channel. You can pass NI L instead of a pointer
to a sound channel if you want the Sound Manager to internally allocate a
sound channel in your application’s heap zone.

sndHdl A handle to the sound resource to play.

async A Boolean value that indicates whether the sound should be played
asynchronously (TRUE) or synchronously (FALSE). This parameter is
ignored (and the sound plays synchronously) if NI L is passed in the first
parameter.

The SndPI ay function attempts to play the sound located at sndHdl , which is expected
to have the structure of a format 1 or format 2’ snd ' resource. If the resource has not
yet been loaded, the SndPI ay function fails and returns the r esPr obl emresult code.

All commands and data contained in the sound handle are then sent to the channel. Note
that you can pass SndPI ay a handle to some data created by calling the Sound Input

Sound Manager Reference

CHAPTER 2

Sound Manager

Manager’s SndRecor d function as well as a handle to an actual ' snd ' resource that

you have loaded into memory.

WMRNING
In some versions of system software prior to system software version 7.0,
the SndPI ay function will not work properly with sound resources that
specify the sound data type twice. This might happen if a resource
specifies that a sound consists of sampled-sound data and an application
does the same when creating a sound channel. For more information on
this problem, see “Allocating Sound Channels” on page 75. a

The chan parameter is a pointer to a sound channel. If chan is not NI L, it is used as
avalid channel. If chan is NI L, an internally allocated sound channel is used. If you

do supply a sound channel pointer in the chan parameter, you can play the sound
asynchronously. When a sound is played asynchronously, a callback procedure can be
called when a cal | BackCnd command is processed by the channel. (This procedure

is the callback procedure supplied to SndNewChannel .) See “Playing Sounds
Asynchronously” on page 101 for more information on playing sounds asynchronously.
The handle you pass in the sndHdl parameter must be locked for as long as the sound is
playing asynchronously.

Ifaformat1’ snd ’ resource does not specify which type of sound data is to be played,
SndPl ay defaults to square-wave data. SndPI ay also supports format2’ snd ’
resources using sampled-sound data and a buf f er Chd command. Note that to use
SndPl ay and sampled-sound data with a format 1’ snd ' resource, the resource must
include a buf f er Cd command.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

Because the SndPI ay function moves memory, you should not call it at interrupt time.

noErr 0 No error

not EnoughHar dwar eEr r -201 Insufficient hardware available
resProbl em -204 Problem loading the resource
badChannel -205 Channel is corrupt or unusable
badFor mat -206 Resource is corrupt or unusable

For an example of how to play a sound resource using the SndPI ay function, see the
chapter “Introduction to Sound on the Macintosh” in this book.

For information on playing a sound resource without using the SndPIl ay function, see
“Playing Sounds Using Low-Level Routines” on page 116.

Sound Manager Reference 177

Jabeuey punos -

CHAPTER 2

Sound Manager

Playing From Disk

Use the SndSt art Fi | ePl ay, SndPauseFi | ePl ay, and SndSt opFi | ePl ay functions
to manage a continuous play from disk.

SndStartFilePlay

178

You can call the SndSt ar t Fi | ePl ay function to initiate a play from disk.

FUNCTI ON SndStartFil ePlay (chan: SndChannel Ptr; fRef Num I nteger;

chan

f Ref Num

resNum

bufferSi ze

t heBuf f er

resNum Integer; bufferSize: Longlnt;
theBuffer: Ptr;

t heSel ecti on: Audi oSel ectionPtr;

t heConpl etion: ProcPktr;

async: Bool ean): OSErr;

A pointer to a valid sound channel. You can pass NI L instead of a pointer
to a sound channel if you want the Sound Manager to internally allocate
a sound channel in your application’s heap zone.

The file reference number of the AIFF or AIFF-C file to play. To play a
sound resource rather than a sound file, this field should be 0.

The resource ID number of a sound resource to play. To play a sound file
rather than a sound resource, this field should be 0.

The number of bytes of memory that the Sound Manager is to use for
input buffering while reading in sound data. For SndSt art Fi | ePl ay to
execute successfully on the slowest Macintosh computers, use a buffer of
at least 20,480 bytes. You can pass the value 0 to instruct the Sound
Manager to allocate a buffer of the default size.

A pointer to a buffer that the Sound Manager should use for input
buffering while reading in sound data. If this parameter is NI L, the Sound
Manager allocates two buffers, each half the size of the value specified in
the buf f er Si ze parameter. If this parameter is not NI L, the buffer
should be a nonrelocatable block of size buf f er Si ze.

t heSel ection

A pointer to an audio selection record that specifies which portion of a
sound should be played. You can pass NI L to specify that the Sound
Manager should play the entire sound.

t heConpl eti on

A pointer to a completion routine that the Sound Manager calls when the
sound is finished playing. You can pass NI L to specify that the Sound
Manager should not execute a completion routine. This field is useful only
for asynchronous play.

Sound Manager Reference

DESCRIPTION

CHAPTER 2

Sound Manager

async A Boolean value that indicates whether the sound should be played
asynchronously (TRUE) or synchronously (FALSE). You can play sound
asynchronously only if you allocate your own sound channel (using
SndNewChannel). If you pass NI L in the chan parameter and TRUE for
this parameter, the SndSt ar t Fi | ePl ay function returns the
badChannel result code.

The SndSt ar t Fi | ePl ay function begins a continuous play from disk on a sound
channel. The chan parameter is a pointer to the sound channel. If chan isnot NI L, it is
used as a valid channel. If chan is NI L, an internally allocated sound channel is used for
play from disk. This internally allocated sound channel is not passed back to you.
Because SndPauseFi | ePl ay and SndSt opFi | ePl ay require a sound-channel pointer,
you must allocate your own channel if you wish to use those routines.

The sounds you wish to play can be stored either inafileorinan’ snd ’ resource. If
you are playing a file, then f Ref Numshould be the file reference number of the file to be
played and the parameter r esNumshould be set to 0. If you are playingan’ snd ’
resource, then f Ref Numshould be set to 0 and r esNumshould be the resource 1D
number (not the file reference number) of the resource to play.

WARNING
The SndSt art Fi | ePl ay function might not play’ snd ’ resources
from disk correctly. In particular, the function will not execute correctly if
any resource in the resource file containing the’ snd ' resource you
wish to play has been changed through a call to the Wi t eResour ce
procedure and you have not updated the resource file using the

Updat eResFi | e procedure. To avoid this and other problems, you
should use the SndSt art Fi | ePl ay function to play only sound files. a

SPECIAL CONSIDERATIONS

Because the SndSt ar t Fi | ePl ay function moves memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for the SndSt art Fi | ePl ay function are

Trap macro Selector
_SoundDi spat ch $0D000008

noEr r 0 No error

not EnoughHar dwar eEr r -201 Insufficient hardware available
queueFul | -203 No room in the queue
badChannel -205 Channel is corrupt or unusable

Sound Manager Reference 179

Jabeuey punos -

CHAPTER 2

Sound Manager

badFor mat -206 Resource is corrupt or unusable

not EnoughBuf f er Space =207 Insufficient memory available

badFi | eFor mat -208 File is corrupt or unusable, or not AIFF or
AIFF-C

channel Busy -209 Channel is busy

buf f er sTooSmal | -210 Buffer is too small

si I nval i dConpr essi on -223 Invalid compression type

SEE ALSO

For an example of how to play a sound file, see the chapter “Introduction to Sound on the
Macintosh” in this book.

For information on the format of a completion routine, see “Completion Routines” on
page 206.

SndPauseFilePlay

You can use the SndPauseFi | ePl ay function to toggle the state of a play from disk in
progress, just as you might use the pause button on an audiocassette tape player to
temporarily pause and then resume play.

FUNCTI ON SndPauseFi |l ePl ay (chan: SndChannel Ptr): OSErr;

chan A pointer to a valid sound channel currently processing a play from disk
initiated by a call to the SndSt art Fi | ePl ay function.

DESCRIPTION

The SndPauseFi | ePl ay function suspends the play from disk on the channel specified
by the chan parameter if that play from disk is not already paused; the function resumes
play if the play from disk is already paused.

The SndPauseFi | ePl ay function is used in conjunction with SndSt opFi | ePl ay to
control play from disk on a sound channel. Note that this call can be made only if your
application has already called SndSt ar t Fi | ePl ay with a valid sound channel. You
cannot use this function with a synchronous call to SndSt art Fi | ePl ay because, in that
case, program control does not return to the caller until after the sound has completely
finished playing.

If the channel specified by the chan parameter is not being used for play from disk, then
SndPauseFi | ePl ay returns the result code channel Not Busy. If the channel is busy
and paused, then play from disk is resumed. If the channel is busy and the channel is not
paused, then play from disk is suspended.

SPECIAL CONSIDERATIONS
You can call the SndPauseFi | ePl ay function at interrupt time.

180 Sound Manager Reference

CHAPTER 2

Sound Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SndStopFilePlay

The trap macro and routine selector for the SndPauseFi | ePl ay function are

Trap macro Selector
_SoundDi spat ch $02040008

nokErr 0 No error

queueFul | -203 No room in the queue
badChannel -205 Channel is corrupt or unusable
channel Not Busy =211 Channel not currently used

Jabeuey punos -

DESCRIPTION

You can use SndSt opFi | ePl ay to stop an asynchronous play from disk.

FUNCTI ON SndSt opFi | ePl ay (chan: SndChannel Ptr;
qui et Now. Bool ean): OSErr;

chan A pointer to a valid sound channel currently processing a play from disk
initiated by a call to the SndSt art Fi | ePl ay function.

qgui et Now A Boolean value that indicates whether the play from disk should be
stopped immediately (TRUE) or when it completes execution (FALSE).

The SndSt opFi | ePl ay function either can stop an asynchronous play from disk
immediately or can take control of the CPU until a play from disk finishes. The

SndSt opFi | ePl ay function does not return until all asynchronous file 170 calls have
completed and any internally allocated memory has been released. If async is FALSE,
then SndSt opFi | ePl ay lets the sound complete normally and returns only after the
sound has completed, all asynchronous file 1/0 calls have completed, and any internal
allocated memory has been released.

For example, you might use the function to stop the playing of a sound file if the user
selects an option that turns off sound output while the file is already playing. In that case,
you would pass TRUE to qui et Now. Alternatively, you might have started a sound
playing asynchronously so that you could perform other tasks while the sound plays. But
you might then finish those other tasks and want to convert the play from disk into a
synchronous play. By passing FALSE to qui et Now, you effectively achieve that.

SPECIAL CONSIDERATIONS

Because the SndSt opFi | ePl ay function might move memory, you should not call it at
interrupt time.

Sound Manager Reference 181

CHAPTER 2

Sound Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for the SndSt opFi | ePl ay function are

Trap macro Selector
_SoundDi spat ch $03080008

nokErr 0 No error
badChannel -205 Channel is corrupt or unusable

Allocating and Releasing Sound Channels

If you use a high-level Sound Manager routine to play sounds, you might be able to let
the Sound Manager internally allocate a sound channel. However, to use low-level sound
commands or to take full advantage of the Sound Manager’s high-level routines, you
must allocate your own sound channels. The SndNewChannel function allows your
application to allocate a new sound channel, and the SndDi sposeChannel function
allows your application to dispose of it.

SndNewChannel

182

You can use the SndNewChannel function to allocate a new sound channel.

FUNCTI ON SndNewChannel (VAR chan: SndChannel Ptr; synth: Integer;
init: Longlnt; userRoutine: ProcPtr):

CSErr;
chan A pointer to a sound channel record. You can pass a pointer whose value
is NI L to force the Sound Manager to allocate the sound channel record
internally.
synth The sound data type you intend to play on this channel. If you do not

want to specify a specific data type, pass 0 in this parameter. You might do
this if you plan to use the channel to play a single sound resource that
itself specifies the sound’s data type.

init The desired initialization parameters for the channel. If you cannot
determine what types of sounds you will be playing on the channel, pass 0
in this parameter. Only sounds defined by wave-table data and
sampled-sound data currently use the i ni t options. You can use the
Gest al t function to determine if a sound feature (such as stereo output)
is supported by a particular computer.

Sound Manager Reference

DESCRIPTION

CHAPTER 2

Sound Manager

user Rout i ne
A pointer to a callback procedure that the Sound Manager executes
whenever it receives a cal | BackCnd command. If you pass NI L as the
user Rout i ne parameter, then any cal | BackCnd commands sent to this
channel are ignored.

The SndNewChannel function internally allocates memory to store a queue of sound
commands. If you pass a pointer to NI L as the chan parameter, the function also
allocates a sound channel record in your application’s heap and returns a pointer to that
record. If you do not pass a pointer to NI L as the chan parameter, then that parameter
must contain a pointer to a sound channel record.

If you pass a pointer to NI L as the chan parameter, then the amount of memory the
SndNewChannel function allocates to store the sound commands is enough to store

128 sound commands. However, if you pass a pointer to the sound channel record rather
than a pointer to NI L, the amount of memory allocated is determined by the qLengt h
field of the sound channel record. Thus, if you wish to control the size of the sound
gueue, you must allocate your own sound channel record. Regardless of whether you
allocate your own sound channel record, the Sound Manager allocates memory for the
sound command queue internally.

Jabeuey punos -

The synt h parameter specifies the sound data type you intend to play on this channel.
You can use these constants to specify the data type:

CONST
squar e\aveSynt h = 1; {squar e-wave dat a}
waveTabl eSynt h = 3; {wave-t abl e dat a}
sanpl edSynt h = 5; {sanpl ed- sound dat a}

In Sound Manager versions earlier than version 3.0, only one data type can be produced
at any one time. As a result, SndNewChannel may fail if you attempt to open a channel
specifying a data type other than the one currently being played.

To specify a sound output device other than the current sound output device, pass the
value kUseOpt i onal Qut put Devi ce in the synt h parameter and the signature of the
desired sound output device component in thei ni t parameter.

CONST
kUseOpt i onal Qut put Devi ce = -1;

The ability to redirect output away from the current sound output device is intended for
use by specialized applications that need to use a specific sound output device. In
general, your application should always send sound to the current sound output device
selected by the user.

Sound Manager Reference 183

CHAPTER 2

Sound Manager

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

Because the SndNewChannel function allocates memory, you should not call it at
interrupt time.

noEr r 0 No error
resProblem -204 Problem loading the resource
badChannel -205 Channel is corrupt or unusable

For an example of a routine that uses the SndNewChannel function, see Listing 2-1 on
page 75.

For information on the format of a callback procedure, see “Callback Procedures” on
page 207.

SndDisposeChannel

DESCRIPTION

184

If you allocate a sound channel by calling the SndNewChannel function, you must
release the memory it occupies by calling the SndDi sposeChannel function.

FUNCTI ON SndDi sposeChannel (chan: SndChannel Ptr;
qgui et Now. Bool ean): OSErr;

chan A pointer to a valid sound channel record.

qgui et Now A Boolean value that indicates whether the channel should be disposed
immediately (TRUE) or after sound stops playing (FALSE).

The SndDi sposeChannel function disposes of the queue of sound commands
associated with the sound channel specified in the chan parameter. If your application
created its own sound channel record in memory or installed a sound as a voice in a
channel, the Sound Manager does not dispose of that memory. The Sound Manager also
does not release memory associated with a sound resource that you have played on

a channel. You might use the user | nf o field of the sound channel record to store

the address of a sound handle you wish to release before disposing of the sound
channel itself.

The SndDi sposeChannel function can dispose of a channel immediately or wait
until the queued commands are processed. If qui et Nowis set to TRUE, a f | ushCnd
command and then a qui et Cnd command are sent to the channel bypassing

the command queue. This removes all commands, stops any sound in progress, and
closes the channel. If qui et Nowis set to FALSE, then the Sound Manager issues a

Sound Manager Reference

CHAPTER 2

Sound Manager

gui et Cmd command only; it does not bypass the command queue, and it waits until
the qui et Cnd command is processed before disposing of the channel.

SPECIAL CONSIDERATIONS

RESULT CODES

Sending Commands to a Sound Channel

Because the SndDi sposeChannel function might dispose of memory, you should not
call it at interrupt time.

nokErr 0 No error
badChannel -205 Channel is corrupt or unusable

Jabeuey punos -

Once a sound channel is opened, you can send commands to that channel by issuing
requests with the SndDoCommand and SndDol mredi at e functions.

The section “Sound Command Numbers” beginning on page 147 lists the sound
commands that you can send using SndDoConmand, SndDol rmedi at e, or (in several
cases) SndCont r ol .

SndDoCommand

DESCRIPTION

You can queue a command in a sound channel by calling the SndDoConmrand function.

FUNCTI ON SndDoCommand (chan: SndChannel Ptr; cnd: SndConmand;
noWai t: Bool ean): OSErr;

chan A pointer to a valid sound channel.

cmd A sound command to be sent to the channel specified in the chan
parameter.

noWai t A flag indicating whether the Sound Manager should wait for a free space

in a full queue (FALSE) or whether it should return immediately with a
gueueFul | result code if the queue is full (TRUE).

The SndDoComrand function sends the sound command specified in the cnd parameter
to the end of the command queue of the channel specified in the chan parameter.

The noWai t parameter has meaning only if a sound channel’s queue of sound
commands is full. If the noWai t parameter is set to FALSE and the queue is full, the
Sound Manager waits until there is space to add the command, thus preventing your
application from doing other processing. If noWai t is set to TRUE and the queue is full,
the Sound Manager does not send the command and returns the queueFul | result code.

Sound Manager Reference 185

CHAPTER 2

Sound Manager

SPECIAL CONSIDERATIONS

Whether SndDoConmmand moves memory depends on the particular sound command
you’re sending it. Most of the available sound commands do not cause SndDoComand
to move memory and can therefore be issued at interrupt time. Moreover, you can
sometimes safely send commands at interrupt time that would otherwise cause memory
to move if you’ve previously issued the soundCnd sound command to preconfigure the
channel at noninterrupt time.

RESULT CODES
nokErr 0 No error
queueFul | -203 No room in the queue
badChannel -205 Channel is corrupt or unusable
SEE ALSO

For an example of a routine that uses the SndDoCormand function, see Listing 2-15 on
page 97.

SndDolmmediate

You can use the SndDol mredi at e function to place a sound command in front of a
sound channel’s command queue.

FUNCTI ON SndDol mredi at e (chan: SndChannel Ptr; cnd: SndCommand):

CSErr;
chan A pointer to a sound channel.
cmd A sound command to be sent to the channel specified in the

chan parameter.

DESCRIPTION

The SndDol nmedi at e function operates much like SndDoCormand, except that it
bypasses the existing command queue of the sound channel and sends the specified
command directly to the Sound Manager for immediate processing. This routine also
overrides any wai t Cd, pauseCnd, or syncCrd commands that might have already
been processed. However, other commands already received by the Sound Manager will
not be interrupted by the SndDol medi at e function (although a qui et Cnd command
sent via SndDol mredi at e will quiet a sound already playing).

SPECIAL CONSIDERATIONS

Whether SndDol medi at e moves memory depends on the particular sound command
you’re sending it. Most of the available sound commands do not cause

186 Sound Manager Reference

CHAPTER 2

Sound Manager

SndDol medi at e to move memory and can therefore be issued at interrupt time.
Moreover, you can sometimes safely send commands at interrupt time that would
otherwise cause memory to move if you’ve previously issued the soundCrrd sound
command to preconfigure the channel at noninterrupt time.

RESULT CODES

noEr r 0 No error
badChannel -205 Channel is corrupt or unusable

SEE ALSO

For an example of a routine that uses the SndDol nmredi at e function, see Listing 2-4 on
page 81.

Obtaining Information

To obtain information about whether a computer supports certain sound features, you
should use the Gest al t function, documented in Inside Macintosh: Operating System
Utilities. Sometimes, however, you might need information the Gest al t function is not
able to provide. The Sound Manager provides a number of routines that you can use to
obtain additional sound-related information.

You can obtain the version numbers of the Sound Manager and the MACE tools by
calling the SndSoundManager Ver si on and MACEVer si on functions, respectively. You
can obtain information about a sound channel and about all sound channels by calling
the SndCont r ol , SndChannel St at us, and SndManager St at us functions,
respectively.

The Sound Manager includes two routines—SndCet SysBeepSt at e and
SndSet SysBeepSt at e—that allow you to determine and alter the status of the
system alert sound.

To play a sound resource using low-level Sound Manager routines, you need the address
of the sound header stored in the sound resource. Sound Manager versions 3.0 and

later provide the Get SoundHeader O f set function that you can use to obtain

that information.

SndSoundManagerVersion

You can use SndSoundManager Ver si on to determine the version of the Sound
Manager tools available on a computer.

FUNCTI ON SndSoundManager Ver si on: NumVer si on;

Sound Manager Reference 187

Jabeuey punos -

DESCRIPTION

CHAPTER 2

Sound Manager

The SndSoundManager Ver si on function returns a version number that contains the
same information as in the first 4 bytes of a’ ver s’ resource. You might use the
SndSoundManager Ver si on function to determine if a computer has the enhanced
Sound Manager, which is necessary for multichannel sound and for continuous plays
from disk.

SPECIAL CONSIDERATIONS

You can call the SndSoundManager Ver si on function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The trap macro and routine selector for the SndSoundManager Ver si on function are

Trap macro Selector
_SoundDi spat ch $000C0008

For information on how to use the SndSoundManager Ver si on function to determine
whether the enhanced Sound Manager is available, see “Obtaining Version Information”
on page 89.

MACEVersion

DESCRIPTION

You can use MACEVer si on to determine the version of the MACE tools available on a
machine.

FUNCTI ON MACEVer si on: NunVer si on;

The MACEVer si on function returns a version number that contains the same information
as in the first 4 bytes of a’ ver s’ resource.

SPECIAL CONSIDERATIONS

188

You can call the MACEVer si on function at interrupt time.

Sound Manager Reference

CHAPTER 2

Sound Manager

ASSEMBLY-LANGUAGE INFORMATION

SndControl

The trap macro and routine selector for the MACEVer si on function are

Trap macro Selector
_SoundDi spat ch $00000010

DESCRIPTION

You can obtain information about a sound data type by using the SndCont r ol function.
In Sound Manager version 3.0 and later, however, you virtually never need to call
SndCont r ol . The capabilities that SndCont r ol provides are either provided by the
Gest al t function or are no longer supported. The SndCont r ol function is documented
here for completeness only.

Jabeuey punos -

FUNCTI ON SndControl (id: Integer; VAR cnd: SndCommand): OSErr;

id The sound data type you want to get information about.
cnd A sound command.

The SndCont r ol function sends a control command directly to the Sound Manager to
get information about a specific data type. The available data types are specified by
constants:

CONST
squar e\aveSynt h = 1; {squar e-wave dat a}
waveTabl eSynt h = 3; {wave-t abl e dat a}
sanpl edSynt h = b; {sanpl ed- sound dat a}

You can call SndCont r ol even if no channel has been created for the type of data you
want to get information about. SndCont r ol can be used with the avai | abl eCnd or
ver si onCnd sound commands to request information. The requested information is

returned in the sound command record specified by the crd parameter.

IMPORTANT

The SndCont r ol function can indicate only whether a particular data
format supports some feature (for example, stereo output), not whether
the available sound hardware also supports that feature. In general, you
should use the Gest al t function to determine whether the sound
features you need are available in the current operating environment. a

In Sound Manager version 2.0, you can also use thet ot al LoadCnd and | oadCnd
commands to get information about the amount of CPU time consumed by sound-related
processing. However, these commands are not very accurate and are not supported by
version 3.0 and later.

Sound Manager Reference 189

CHAPTER 2

Sound Manager

SPECIAL CONSIDERATIONS
You should not call the SndCont r ol function at interrupt time.

RESULT CODES
noErr 0 No error

SEE ALSO

See the list of sound commands in “Sound Command Numbers” beginning on page 147
for a complete description of the sound commands supported by SndCont r ol .

SndChannelStatus

You can use the SndChannel St at us function to determine the status of a sound
channel.

FUNCTI ON SndChannel Status (chan: SndChannel Ptr;
t heLengt h: I nteger;
theStatus: SCStatusPtr): OSErr;

chan A pointer to a valid sound channel.

t heLengt h The size in bytes of the sound channel status record. You should set this
field to Si zeOF (SCSt at us) .

t heSt at us A pointer to a sound channel status record.

DESCRIPTION

If the SndChannel St at us function executes successfully, the fields of the record
specified by t heSt at us accurately describe the sound channel specified by chan.

SPECIAL CONSIDERATIONS
You can call the SndChannel St at us function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SndChannel St at us function are

Trap macro Selector
_SoundDi spat ch $00100008

190 Sound Manager Reference

RESULT CODES

SEE ALSO

CHAPTER 2

Sound Manager

nokErr 0 No error
par anerr -50 A parameter is incorrect
badChannel -205 Channel is corrupt or unusable

For information on the structure of a sound channel status record, see “Sound Channel
Status Records” on page 156.

SndManagerStatus

DESCRIPTION

You can use the SndManager St at us function to determine information about all sound
channels currently allocated.

FUNCTI ON SndManager St at us (thelLength: |nteger;
t heStatus: SMstatusPtr): OSErr;

t heLengt h The size in bytes of the Sound Manager status record. You should set this
field to Si zeOF (SMSt at us) .

t heSt at us A pointer to a Sound Manager status record.

The SndManager St at us function determines information about all currently allocated
sound channels. If the SndManager St at us function executes successfully, the fields

of the record specified by t heSt at us accurately describe the current status of the
Sound Manager.

SPECIAL CONSIDERATIONS

You can call the SndManager St at us function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndManager St at us function are

Trap macro Selector
_SoundDi spat ch $00140008

Sound Manager Reference 191

Jabeuey punos -

CHAPTER 2

Sound Manager

RESULT CODES
noErr 0 No error

SndGetSysBeepState

You can use the SndGet SysBeepSt at e procedure to determine if the system alert
sound is enabled.

PROCEDURE SndGet SysBeepSt at e (VAR sysBeepState: |nteger);
sysBeepStat e

On exit, the state of the system alert sound.

DESCRIPTION

The SndGet SysBeepSt at e procedure returns one of two states in the sysBeepSt at e
parameter, either the sysBeepDi sabl e or the sysBeepEnabl e constant.

CONST
sysBeepDi sabl e = $0000; {system al ert sound di sabl ed}
sysBeepEnabl e = $0001; {system al ert sound enabl ed}

SPECIAL CONSIDERATIONS
You can call the SndGet SysBeepSt at e procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SndGet SysBeepSt at e procedure are

Trap macro Selector
_SoundDi spat ch $00180008

SndSetSysBeepState

You can use the SndSet SysBeepSt at e function to set the state of the system alert
sound.

FUNCTI ON SndSet SysBeepState (sysBeepState: Integer): OSErr;

sysBeepState
The desired state of the system alert sound.

192 Sound Manager Reference

CHAPTER 2

Sound Manager

DESCRIPTION

You can use the SndSet SysBeepSt at e function to temporarily disable the system alert
sound while you play a sound and then enable the alert sound when you are done.

The sysBeepSt at e parameter should be set to either sysBeepDi sabl e or
sysBeepEnabl e.

If your application disables the system alert sound, be sure to enable it when your
application gets a suspend event.

SPECIAL CONSIDERATIONS
You can call the SndSet SysBeepSt at e function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SndSet SysBeepSt at e function are

Jabeuey punos -

Trap macro Selector
_SoundDi spat ch $001C0008

RESULT CODES
noErr 0 No error
par anerr -50 A parameter is incorrect
GetSoundHeaderOffset

You can use the Get SoundHeader O f set function to get the offset from the beginning
of a sound resource to the embedded sound header.

FUNCTI ON Get SoundHeader O f set (sndHdl : Handl e;
VAR of fset: Longlint): OSErr;

sndHdl A handle to a sound resource.

of f set On exit, the offset from the beginning of the sound resource specified by
the sndHdl parameter to the beginning of the sound header within that
sound resource.

DESCRIPTION
The Get SoundHeader O f set function returns, in the of f set parameter, the number
of bytes from the beginning of the sound resource specified by the sndHdl parameter to
the sound header that is contained within that resource. You might need this information
if you want to use the address of that sound header in a sound command (such as the
soundCnd or buf f er Crd sound command).

The handle passed to Get SoundHeader O f set does not have to be locked.

Sound Manager Reference 193

CHAPTER 2

Sound Manager

SPECIAL CONSIDERATIONS

The Get SoundHeader O f set function is available only in version 3.0 and later of the
Sound Manager. See “Obtaining a Pointer to a Sound Header” beginning on page 112 for
a function you can call in earlier versions of the Sound Manager to obtain the same
information.

You can call the Get SoundHeader O f set function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Get SoundHeader O f set function are

Trap macro Selector
_SoundDi spat ch $04040024

RESULT CODES

nokErr 0 No error
badFor mat -206 Resource is corrupt or unusable

SEE ALSO
See Listing 2-27 on page 112 for an example of calling Get SoundHeader O f set .

Controlling Volume Levels

You can use the Get SysBeepVol une and Set SysBeepVol une functions to get and set
the volume level of the system alert sound. You can use Get Def aul t Qut put Vol une
and Set Def aul t Qut put Vol une to get and set the default output volume for a
particular output device.

IMPORTANT

These four functions are available only in Sound Manager version 3.0
and later. a

With all of these functions, you specify a volume with a 16-bit value, where 0 represents
no volume (that is, silence) and 256 (hexadecimal $0100) represents full volume. The right
and left volumes of a stereo sound are encoded as the high word and the low word,
respectively, of a 32-bit value. Moreover, it’s possible to overdrive a particular volume
level if you need to amplify a low signal. For example, the long word $02000200 specifies
a volume level of twice full volume on both the left and right channels of a stereo sound.

In addition to the four functions described in this section, Sound Manager version 3.0
introduces two new sound commands, get Vol uneCnd and vol uneCnd, that you can
use to get and set the volume of a particular sound channel. See page 151 for details on
these two sound commands; see “Managing Sound Volumes” beginning on page 86 for a
code listing that uses the vol umeCrd command.

194 Sound Manager Reference

CHAPTER 2

Sound Manager

GetSysBeepVolume

You can use the Get SysBeepVol une function to determine the current volume of the
system alert sound.

FUNCTI ON CGet SysBeepVol une (VAR | evel: Longlnt): OSErr;

| evel On exit, the current volume level of the system alert sound.

DESCRIPTION

The Get SysBeepVol une function returns, in the | evel parameter, the current volume
level of the system alert sound. The values returned in the high and low words of the
| evel parameter range from 0 (silence) to $0100 (full volume).

SPECIAL CONSIDERATIONS

The Get SysBeepVol une function is available only in versions 3.0 and later of the Sound
Manager. You can call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Get SysBeepVol une function are

Trap macro Selector
_SoundDi spat ch $02240024

RESULT CODES
noErr 0 No error

SetSysBeepVolume

You can use the Set SysBeepVol une function to set the current volume of the system
alert sound.

FUNCTI ON Set SysBeepVol une (Il evel: Longlnt): OSErr;

| evel The desired volume level of the system alert sound.

DESCRIPTION

The Set SysBeepVol une function sets the current volume level of the system alert
sound. The values you can specify in the high and low words of the | evel parameter

Sound Manager Reference 195

Jabeuey punos -

CHAPTER 2

Sound Manager

range from 0 (silence) to $0100 (full volume). Any calls to the SysBeep procedure use the
volume set by the most recent call to Set SysBeepVol une.

SPECIAL CONSIDERATIONS

The Set SysBeepVol une function is available only in versions 3.0 and later of the Sound
Manager. You can call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Set SysBeepVol une function are

Trap macro Selector
_SoundDi spat ch $02280024

RESULT CODES
noErr 0 No error

GetDefaultOutputVolume

You can use the Get Def aul t Qut put Vol ume function to determine the default volume
of a sound output device.

FUNCTI ON Get Def aul t Qut put Vol ume (VAR | evel : Longlnt): OSErr;

| evel On exit, the default volume level of a sound output device.

DESCRIPTION

The Get Def aul t Qut put Vol urre function returns, in the | evel parameter, the default
volume of a sound output device. The values returned in the high and low words of the
| evel parameter range from 0 (silence) to $0100 (full volume).

SPECIAL CONSIDERATIONS

The Get Def aul t Qut put Vol urre function is available only in versions 3.0 and later of
the Sound Manager. You can call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Get Def aul t Qut put Vol une function are

Trap macro Selector
_SoundDi spat ch $022C0024

196 Sound Manager Reference

CHAPTER 2

Sound Manager

RESULT CODES
noErr 0 No error

SetDefaultOutputVolume

You can use the Set Def aul t Qut put Vol unme function to set the default volume of a
sound output device.

FUNCTI ON Set Def aul t Qut put Vol une (Il evel: Longint): OSErr;

| evel The desired default volume level of a sound output device.

DESCRIPTION

The Set Def aul t Qut put Vol une function sets the default volume of a sound output
device. The values you can specify in the high and low words of the | evel parameter
range from O (silence) to $0100 (full volume).

SPECIAL CONSIDERATIONS

The Set Def aul t Qut put Vol une function is available only in versions 3.0 and later of
the Sound Manager. You can call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Set Def aul t Qut put Vol urme function are

Trap macro Selector
_SoundDi spat ch $02300024

RESULT CODES
noErr 0 No error

Compressing and Expanding Audio Data

You can use the procedures Conp3t 01 and Conp6t 01 to compress sound data. You can
use the procedures Exp1t 03 and Exp1t 06 to expand compressed audio data.

Sound Manager Reference 197

Jabeuey punos -

Comp3tol

CHAPTER 2

Sound Manager

DESCRIPTION

198

You can use the Conp3t 01 procedure to compress sound data at a ratio of 3:1.

PROCEDURE Comp3tol (inBuffer: Ptr; outBuffer: Ptr; cnt: Longlnt;
inState: Ptr; outState: Ptr;
nuntChannel s: Longl nt; whi chChannel: Longlnt);

i nBuf fer A pointer to a buffer of samples to be compressed.
out Buf fer A pointer to a buffer where the samples are to be written.
cnt The number of samples to compress.

i nState A pointer to a 128-byte buffer from which the input state of the algorithm
is read, or NI L. To initialize the algorithm, this buffer should be filled with
zeros.

out State A pointer to a 128-byte buffer to which the output state of the algorithm is
written, or NI L. This buffer might be the same as that specified by the
i nSt at e parameter.

nunmChannel s
The number of channels in the buffer pointed to by the i nBuf f er
parameter.

whi chChannel
The channel to compress, when nuntChannel s is greater than 1. This
parameter must be in the range of 1 to nuntChannel s.

The Conp3t 01 procedure compresses cnt samples of sound stored in the buffer
specified by i nBuf f er and places the result in the buffer specified by out Buf f er,
which must be at least cnt / 3 bytes in size. The original samples can be monophonic or
include multiple channels of sound, but they must be in 8-bit offset binary format. Also, if
nunthannel s is greater than 1, then the noncompressed sound must be stored in
interleaved format on a sample basis.

If you compress polyphonic sound, you retain only one channel of sound, which you
specify in the whi chChannel parameter. Thus, if you use the Conp3t 01 procedure

to compress three-channel sound, you will have effectively compressed the sound to
one-ninth its original size in bytes. To retain multiple channels of sound after
compression, you must call the Conp3t 01 procedure for each channel to be compressed
and then interleave the compressed sound data on a packet basis.

The Conp3t 01 procedure compresses every 48 bytes of sound data to exactly 16 bytes of
compressed sound data and compresses remaining bytes to no more than one-third the
original size.

You can use the i nSt at e and out St at e parameters to allow the MACE compression
routines to preserve information about algorithms across calls. Alternatively, you may
pass NI L state buffers and let the Sound Manager allocate the buffers internally.

Sound Manager Reference

CHAPTER 2

Sound Manager

SPECIAL CONSIDERATIONS

Because the Conp3t 01 procedure might allocate and dispose of memory, you should not
call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the Conp3t 01 procedure are

Trap macro Selector
_SoundDi spat ch $00040010

Jabeuey punos -

Compé6tol
You can use the Conp6t 01 procedure to compress sound data at a ratio of 6:1.
PROCEDURE Conp6tol (inBuffer: Ptr; outBuffer: Ptr; cnt: Longlnt;
inState: Ptr; outState: Ptr;
nunChannel s: Longl nt; whi chChannel : Longlnt);

i nBuf fer A pointer to a buffer of samples to be compressed.

out Buf fer A pointer to a buffer where the samples are to be written.

cnt The number of samples to compress.

i nState A pointer to a 128-byte buffer from which the input state of the algorithm
is read, or NI L. To initialize the algorithm, this buffer should be filled with
zeros.

out State A pointer to a 128-byte buffer to which the output state of the algorithm is
written, or NI L. This buffer might be the same as that specified by the
i nSt at e parameter.

numChannel s
The number of channels in the buffer pointed to by the i nBuf f er
parameter.

whi chChannel
The channel to compress, when nunChannel s is greater than 1. This
parameter must be in the range of 1 to nunmChannel s.

DESCRIPTION

The Conp6t 01 procedure compresses cnt samples of sound stored in the buffer
specified by i nBuf f er and places the result in the buffer specified by out Buf f er,
which must be at least cnt / 6 bytes in size. The Conp6t 01 procedure works much like
the Conp3t 01 procedure, but compresses every 48 bytes of sound data to exactly 8 bytes
of compressed sound data and compresses remaining bytes to no more than one-sixth the
original size.

Sound Manager Reference 199

CHAPTER 2

Sound Manager

SPECIAL CONSIDERATIONS

Because the Conp6t 01 procedure might allocate and dispose of memory, you should not
call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the Conp6t 01 procedure are

Trap macro Selector
_SoundDi spat ch $000C0010

Explto3

You can use the Exp1t 03 procedure to expand a buffer of sound samples you previously

have compressed with the Conp3t 01 procedure.

PROCEDURE Explto3 (inBuffer: Ptr; outBuffer: Ptr; cnt: Longlnt;

inState: Ptr; outState: Ptr;
nunmChannel s: Longl nt; whi chChannel: Longlnt);

i nBuf fer A pointer to a buffer of packets to be expanded.

out Buf f er A pointer to a buffer where the expanded samples will be written.

cnt The number of packets to expand.

i nState A pointer to a 128-byte buffer from which the input state of the algorithm
is read, or NI L. To initialize the algorithm, this buffer should be filled with
zeros.

out State A pointer to a 128-byte buffer to which the output state of the algorithm is
written, or NI L. This buffer might be the same as that specified by the
i nSt at e parameter.

numChannel s
The number of channels in the buffer pointed to by the i nBuf f er
parameter.

whi chChannel
The channel to expand, when nuntChannel s is greater than 1. This
parameter must be in the range of 1 to nunChannel s.

DESCRIPTION

The Explt 03 procedure expands cnt packets of sound stored in the buffer specified by

i nBuf f er and places the result in the buffer specified by out Buf f er , whose size must

be at least cnt packets * 2 bytes per packet * 3, or cnt * 6 bytes. If numChannel s is

greater than 1, then the compressed sound must be stored in interleaved format on a

packet basis.

200 Sound Manager Reference

SPECIAL CONSIDERATIONS

CHAPTER 2

Sound Manager

If you expand compressed sound data that includes multiple sound channels, you retain
only one channel of sound, which you specify in the whi chChannel parameter. Thus, if
you use the Expl1t 03 procedure to expand three-channel sound, the output buffer will be
the same size as the input buffer since only one channel is retained. To retain multiple
channels of sound after expansion, you must call the Exp1t 03 procedure for each
channel to be expanded and then interleave the expanded sound data on a sample basis.

The Explt 03 procedure expands every packet of sampled-sound data to exactly 6 bytes.

You can use the i nSt at e and out St at e parameters to allow the MACE compression
routines to preserve information about algorithms across calls. Alternatively, you may
pass NI L state buffers and let the Sound Manager allocate the buffers internally.

Jabeuey punos -

Because the Explt 03 procedure might allocate memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

Expl1to6

The trap macro and routine selector for the Explt 03 procedure are

Trap macro Selector
_SoundDi spat ch $00080010

You can use the Explt 06 procedure to expand a buffer of sound samples you previously
have compressed with the Conp6t 01 procedure.

PROCEDURE Explto6 (inBuffer: Ptr; outBuffer: Ptr; cnt: Longlnt;
inState: Ptr; outState: Ptr;
nuntChannel s: Longl nt; whi chChannel : Longlnt);

i nBuf fer A pointer to a buffer of packets to be expanded.
out Buf fer A pointer to a buffer where the expanded samples will be written.
cnt The number of packets to expand.

inState A pointer to a 128-byte buffer from which the input state of the algorithm
is read, or NI L. To initialize the algorithm, this buffer should be filled with
Zeros.

out State A pointer to a 128-byte buffer to which the output state of the algorithm is
written, or NI L. This buffer might be the same as that specified by the
i nSt at e parameter.

nunChannel s
The number of channels in the buffer pointed to by the i nBuf f er
parameter.

Sound Manager Reference 201

CHAPTER 2

Sound Manager

whi chChannel
The channel to expand, when nunChannel s is greater than 1. This
parameter must be in the range of 1 to nuntChannel s.

DESCRIPTION

The Explt 06 procedure expands cnt packets of sound stored in the buffer specified by
i nBuf f er and places the result in the buffer specified by out Buf f er , whose size must
be at least cnt packets * 1 byte per packet * 6, orcnt * 6 bytes. If nunChannel s is
greater than 1, then the compressed sound must be stored in interleaved format on a
packet basis. The Exp1t 06 procedure works just like the Exp1t 03 procedure, but
expands 1-byte packets rather than 2-byte packets.

SPECIAL CONSIDERATIONS

Because the Explt 06 procedure might allocate memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Explt 06 procedure are

Trap macro Selector
_SoundDi spat ch $00100010

Managing Double Buffers

If you wish to customize the double buffering algorithm that the Sound Manager uses to
manage a play from disk, you can use the SndPI ayDoubl eBuf f er function. The Sound
Manager’s high-level play-from-disk routines make extensive use of this function.

SndPlayDoubleBuffer

The SndPI ayDoubl eBuf f er function is a low-level routine that gives you maximum
efficiency and control over double buffering while still maintaining compatibility with
the Sound Manager.

FUNCTI ON SndPI ayDoubl eBuf fer (chan: SndChannel Ptr;
t hePar ans: SndDoubl eBuf f er HeaderPtr): OSErr;

chan A pointer to a valid sound channel.
t heParanms A pointer to a sound double buffer header record.

202 Sound Manager Reference

CHAPTER 2

Sound Manager

DESCRIPTION

The SndPIl ayDoubl eBuf f er function launches a low-level sound play using the
information in the double buffer header record specified by t hePar ans. After your
application calls this function, the Sound Manager repeatedly calls the doubleback
procedure you specify in the double buffer header record. The doubleback procedure
then manages the filling of buffers of sound data from disk whenever one of the two
buffers specified in the double buffer header record becomes exhausted.

SPECIAL CONSIDERATIONS
Because the SndPl ayDoubl eBuf f er function might move memory, you should not call
it at interrupt time.

You can use the SndPl ayDoubl eBuf f er function only on a Macintosh computer that
supports the play-from-disk routines. For information on how to determine whether a
computer supports these routines, see “Testing for Multichannel Sound and
Play-From-Disk Capabilities” on page 90.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SndPl ayDoubl eBuf f er function are

Trap macro Selector
_SoundDi spat ch $00200008

RESULT CODES

nokErr 0 No error
badChannel -205 Channel is corrupt or unusable

SEE ALSO
For information on the format of a doubleback procedure, see “Doubleback Procedures”
on page 208.

Performing Unsigned Fixed-Point Arithmetic

This section describes the Unsi gnedFi xMul Di v function provided by the Sound
Manager that you can use to perform multiplication and division on unsigned
fixed-point numbers.

Sound Manager Reference 203

Jabeuey punos -

CHAPTER 2

Sound Manager

UnsignedFixMulDiv

DESCRIPTION

You can use the Unsi gnedFi xMul Di v function to perform multiplications and divisions
on unsigned fixed-point numbers. You’ll typically use it to calculate sample rates.

FUNCTI ON Unsi gnedFi xMul Di v (val ue: Unsi gnedFi xed;
mul tiplier: UnsignedFi xed;
di vi sor: Unsi gnedFi xed) :
Unsi gnedFi xed,;

val ue The value to be multiplied and divided.

nmul tiplier
The multiplier to be applied to the value in the val ue parameter.

di vi sor The divisor to be applied to the value in the val ue parameter.

The Unsi gnedFi xMul Di v function returns the fixed-point number that is the value of
the val ue parameter, multiplied by the value in the mul ti pl i er parameter and
divided by the value in the di vi sor parameter. Note that Unsi gnedFi xMul Di v
performs both operations before returning. If you want to perform only a multiplication
or only a division, pass the value $00010000 for whichever parameter you want to ignore.
For example, to determine the sample rate that is twice that of the 22 kHz rate, you can
use Unsi gnedFi xMul D v as follows:

nyNewRat e : = Unsi gnedFi xMul Di v(rat e22kHz, $00020000, $00010000);

Similarly, to determine the sample rate that is half that of the 44 kHz rate, you can use
Unsi gnedFi xMul Di v as follows:

nyNewRat e : = Unsi gnedFi xMul Di v(rat e44kHz, $00010000, $00020000);

SPECIAL CONSIDERATIONS

The Unsi gnedFi xMul Di v function is available only in versions 3.0 and later of the
Sound Manager.

Linking Modifiers to Sound Channels

204

Early versions of the Sound Manager allowed application developers to use modifiers
to alter sound commands before being processed by the Sound Manager. The Sound
Manager no longer supports this capability. SndAddModi f i er is documented here for
completeness only.

Sound Manager Reference

CHAPTER 2

Sound Manager

SndAddModifier

DESCRIPTION

The Sound Manager previously used the SndAddMbdi fi er function to link modifiers to
sound channels.

FUNCTI ON SndAddMbdi fi er (chan: SndChannel Ptr; nodifier: ProcPkPtr;
id: Integer; init: Longlnt): OSErr;

chan A pointer to a valid sound channel.

nodi fi er A pointer to a modifier function to be added to the sound channel
specified by chan. This field is obsolete.

id The resource ID of the modifier to be linked to the sound channel.
init The initialization parameters for the sound channel specified by chan.

The SndAddModi f i er function installs a modifier into an open channel specified in the
chan parameter. The nodi f i er parameter should be NI L, and the i d parameter is the
resource ID of the modifier to be linked to the sound channel. SndAddModi fi er causes
the Sound Manager to load the specified ' snt h’ resource, lock it in memory, and link it
to the channel specified.

IMPORTANT
The SndAddModi f i er function is for internal Sound Manager use only.
You should not call it in your application. a

The only supported use of the SndAddModi fi er function is to change the data

type associated with a sound channel. For example, you can pass the constant

sanpl edSynt h in the i d parameter to reconfigure a sound channel for sampled-sound
data. You should, however, set a sound channel’s data type when you call
SndNewChannel , not by calling SndAddModi fi er.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

You should not use the SndAddMbdi fi er function.

noErr 0 No error
resProblem -204 Problem loading the resource
badChannel -205 Channel is corrupt or unusable

To modify sampled-sound data immediately before the Sound Manager plays it, you can
customize double buffering routines so that your application can modify sampled-sound

Sound Manager Reference 205

Jabeuey punos -

CHAPTER 2

Sound Manager

data when it fills a buffer of sound data for the Sound Manager to play. For more
information, see “Using Double Buffers” on page 123.

To change the initialization options for a sound channel, you can use the r el ni t Cnd
command. For a description of that command, see “Sound Command Numbers”
beginning on page 147.

Application-Defined Routines

The Sound Manager allows you to define a completion routine that execute when a
play from disk finishes executing, a callback procedure that executes whenever your
application issues the cal | BackCnd command, and a doubleback procedure that
you must define if you wish to customize the double buffering of data during a play
from disk.

Completion Routines

You can specify a completion routine as the seventh parameter to the
SndSt art Fi | ePl ay function. The completion routine executes when the sound file
finishes playing (unless sound play was stopped by the SndSt opFi | ePl ay function).

MyCompletionRoutine

DESCRIPTION

A Sound Manager completion routine has the following syntax:
PROCEDURE MyFi | ePl ayConpl eti onRouti ne (chan: SndChannel Ptr);

chan A pointer to the sound channel on which a play from disk has completed.

The Sound Manager executes your completion routine when a play from disk on the
channel specified by the chan parameter finishes. You might use the completion routine
to set a global flag that alerts the application that it must dispose of the sound channel.

SPECIAL CONSIDERATIONS

206

A completion routine is called at interrupt time. It must not make any calls to the
Memory Manager, either directly or indirectly. If your completion routine needs to access
your application’s global variables, you must ensure that register A5 contains your
application’s A5. (You can use the user | nf o field of the sound channel pointed to by the
chan parameter to pass that value to your completion routine.)

Sound Manager Reference

CHAPTER 2

Sound Manager

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

Because this routine is called at interrupt time, it must preserve all registers other than
A0-Al and D0-D2.

For information on how you can use completion routines to help manage an
asynchronous play from disk, see “Managing an Asynchronous Play From Disk” on
page 107.

Callback Procedures

You can specify a callback procedure as the fourth parameter to the SndNewChannel
function. The callback procedure executes whenever the Sound Manager processes a
cal | BackCrd command for the channel.

MyCallbackProcedure

DESCRIPTION

A callback procedure has the following syntax:

PROCEDURE MyCal | backProcedure (theChan: SndChannel Ptr;
t heCnd: SndCommand) ;

t heChan A pointer to the sound channel on which a cal | BackCnd command
was issued.

t heCnd The sound command record in which a cal | BackCnd command was
issued.

The Sound Manager executes the callback procedure associated with a sound channel
whenever it processes a cal | BackCnd command for the channel. You can use a callback
procedure to set a global flag that alerts the application that it must dispose of the sound
channel. Or, you can use a callback procedure so that your application can synchronize a
series of sound commands with other actions.

SPECIAL CONSIDERATIONS

A callback procedure is called at interrupt time. It must not make any calls to the
Memory Manager, either directly or indirectly. If your callback procedure needs to access
your application’s global variables, you must ensure that register A5 contains your
application’s A5. (You can use the user | nf o field of the sound channel pointed to by the
t heChan parameter or the par an® field of the sound command specified in the t heCnd
parameter to pass that value to your callback procedure.)

Sound Manager Reference 207

Jabeuey punos -

CHAPTER 2

Sound Manager

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

Because a callback procedure is called at interrupt time, it must preserve all registers
other than A0-Al and D0-D2.

For information on how you can use callback procedures when playing sound
asynchronously, see “Using Callback Procedures” on page 102.

Doubleback Procedures

If you wish to customize the double buffering of sound during a play from disk, you
must use the SndPI ayDoubl eBuf f er function and define a doubleback procedure.
Doubleback procedures also give you the power to modify sampled-sound data
immediately before the Sound Manager plays it.

MyDoubleBackProc

DESCRIPTION

208

A doubleback procedure has the following syntax:

PROCEDURE MyDoubl eBackProc (chan: SndChannel Ptr;
exhaust edBuf f er: SndDoubl eBufferPtr);

chan A pointer to a sound channel on which a play from disk is executing.

exhaust edBuf f er
A pointer to a sound double buffer record

The Sound Manager calls the doubleback procedure associated with a play from disk
whenever the Sound Manager has exhausted the buffer. As the doubleback procedure
refills the buffer, the Sound Manager plays the other buffer. Your application might also
call the doubleback procedure twice to fill both buffers before the initial call to

SndPl ayDoubl eBuf f er function.

When your doubleback procedure is called, it must

= fill the buffer specified in the exhaust edBuf f er parameter with the next set of
sound frames that the Sound Manager must play

= set the dbNunfr ames field of the sound double buffer record to the number of frames
in the buffer

= setthe dbBuf f er Ready bit of the dbFI ags field of the sound double buffer record

If your doubleback procedure fills the buffer with the last frames of sound that need to be
played, then your procedure should set the dbLast Buf f er bit of the dbFI ags field of
the sound double buffer record.

Sound Manager Reference

CHAPTER 2

Sound Manager

Your doubleback procedure might fill the buffer with data from any of several sources.
For example, the doubleback procedure might compute the data, copy it from elsewhere
in RAM, or read it from disk. A doubleback procedure can also read data from disk and
then modify the data. This might be useful, for example, if you would like the Sound
Manager to be able to play sampled-sound data stored in 16-bit binary offset format. Your
doubleback procedure could translate the data to the 8-bit binary offset format that the
Sound Manager can read before placing it in the buffer.

SPECIAL CONSIDERATIONS
A doubleback procedure is called at interrupt time. It must not make any calls to the
Memory Manager, either directly or indirectly. If your callback procedure needs to access
your application’s global variables, you must ensure that register A5 contains your
application’s A5. (You can use one of the two long integers in the dbUser | nf o field of
the sound double buffer record specified by the exhaust edBuf f er parameter to pass
that value to your callback procedure.)

ASSEMBLY-LANGUAGE INFORMATION

Because a doubleback procedure is called at interrupt time, it must preserve all registers
other than A0-Al and D0-D2.

SEE ALSO

For an example of how you might use doubleback procedures, see “Using Double
Buffers” on page 123.

Resources

This section describes the structure of format 1 and format 2 sound resources. For a more
complete discussion of the structure of sound resources, see “Sound Resources” on
page 129.

The Sound Resource

You can store sound commands and sound data as a resource with the resource type
"snd ' . Resource IDs from 0 to 8191 are reserved by Apple Computer, Inc. You may use
all other resource IDs for your’ snd ' resources.

You can use the Get Resour ce function to search all open resource files for the first
"snd ' resource type with the given ID. The’ snd ' resource type defines a sound
resource. Figure 2-8 shows the structure of a sound resource.

Sound Manager Reference 209

Jabeuey punos -

CHAPTER 2

Sound Manager

210

Figure 2-8 The’ snd ' resource type
'snd ' resource type Bytes
} Sound resource header } Variable
Number of sound commands 2
Z First sound command /8
Z Last sound command /8
Optional Sampled-sound data Variable
or wave-table data

Often, you can create a sound resource simply by using the SndRecor d function,
documented in the chapter “Introduction to Sound on the Macintosh” in this book.
However, you can also define a sound resource manually. This is especially useful for
sound resources that are simply series of sound commands and contain no
sampled-sound data. Also, you might construct a sound resource that contains
wave-table data manually. A sound resource contains the following elements:

The format of the sound resource header differs depending on whether the’ snd

Sound resource header. The gives information about the format of a sound resource, as
explained below.

Number of sound commands. Following the sound resource header is a word
indicating the number of sound commands contained in the resource.

Sound commands. Each sound command is 8 bytes, which includes 2 bytes that
identify the command, 2 bytes for the command’s first parameter, and 4 bytes for the
command’s second parameter. When a sound command contained inan’ snd ’
resource has associated sound data, the high bit (defined by the dat aOf f set Fl ag
constant) should be set. This tells the Sound Manager that the value in the second
parameter is an offset from the beginning of the resource and not a pointer to a
memory location.

Sound data. For a format 1’ snd ' resource, this field might contain wave-table data
or a sampled sound header that includes sampled-sound data. For a format2’ snd ’
resource, this field should contain a sampled sound header that includes
sampled-sound data.

resource is format 1 or format 2. Figure 2-9 illustrates the formats of the two types of

Sound Manager Reference

CHAPTER 2

Sound Manager

sound resource header. Both sound headers begin with a format field, which defines the
format of the sound resource as either $0001 or $0002.

Figure 2-9 The sound resource header

'snd ' resource header

0001

Number of data formats

First data format ID

Init option for channel

Sound resource header el

“*. 'snd ' resource header

0002

Reference count

= Format 1 sound resource header. For format 1’ snd ' resources, the sound resource
header includes a word that indicates the number of data types to be sent to the sound
channel. Because a sound channel cannot play more than one type of sound data, you
should typically specify either $00 or $01 in this field. If you specify $01 or more, then
the sound resource header contains both a word specifying the data type and a long
word specifying the initialization options for each data type.

= Format 2 sound resource header. For format 2’ snd ' resources, the sound resource
header next includes a single word that the Sound Manager ignores. This word is
known as the reference count field. Your application can use this field as it pleases.

Sound Manager Reference 211

Jabeuey punos -

CHAPTER 2

Sound Manager

212 Sound Manager Reference

CHAPTER 3

Sound Input Manager

This chapter describes the Sound Input Manager, the part of the Macintosh system
software that controls the recording of sound through sound input devices. You can use
the Sound Input Manager to display and manage the sound recording dialog box. This
ensures that the user is presented with a consistent and standard user interface for sound
recording. You can, however, also use Sound Input Manager routines to record sound
without the sound recording dialog box or to interact directly with a sound input

device driver.

To use this chapter, you should already be familiar with the information in the chapter
“Introduction to Sound on the Macintosh” earlier in this book, and in particular with the
portions of that chapter that concern sound recording. That chapter explains how your
application can record either a sound resource or a sound file using the standard sound
recording dialog box. You need to read this chapter only if you need to interact with the
Sound Input Manager at a lower level than is allowed by the high-level functions
SndRecor d and SndRecor dToFi | e. For example, you need to read this chapter to learn
how to

= record sound without using the sound recording dialog box
= interact with a sound input device driver

= write a sound input device driver

To use this chapter, you should also be familiar with the chapter “Sound Manager” in this
book, especially the portions of that chapter that describe

= the format of sampled-sound data
= the Macintosh Audio Compression and Expansion (MACE) routines
= the structure of sound resources and sound files

= the use of the Gest al t function to determine whether certain sound-related facilities
are available.

If you are writing a sound input device driver, you should already be familiar with
writing device drivers in general, as described in the book Inside Macintosh: Devices.

CHAPTER 3

Sound Input Manager

About the Sound Input Manager

214

The Sound Input Manager uses sound input device drivers to allow applications to
access sound input hardware in a device-independent way. A sound input device driver
is a standard Macintosh device driver used to interface to an audio digitizer or other
recording hardware. If you use the Sound Input Manager’s high-level routines, the
Sound Input Manager handles all communication with a sound input device driver for
you. If, however, you need to use the Sound Input Manager’s low-level routines, you
must open a sound input device driver yourself. You might also need to get information
about certain attributes of a sound input device. Sound input device drivers allow your
application to query a device about such attributes.

Sound Recording Without the Standard Interface

The Sound Input Manager provides your application with the ability to record and
digitally store sounds in a device-independent manner even if your application does not
use the standard sound recording interface. In cases where you need very fine control
over the recording process, you can call various low-level sound input routines.

Your application can obtain control over sound recording in two different ways. First, if
your application uses the sound recording dialog box, you can modify the dialog box’s
features by defining a custom filter procedure, as explained in detail in the chapter
“Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials. Second, if your
application needs to fine tune the sound recording process itself (or if your application
does not use the standard sound recording dialog box), then the application must use the
Sound Input Manager’s low-level routines.

In instances where you need to gain greater control over the recording process, you can
use a set of routines that manipulate the incoming sound data by using sound parameter
blocks. The parameter blocks contain information about the current recording device, the
length recorded, a routine to call on completion of the recording, and so forth. You can
call the SPBRecor d function (or the SPBRecor dToFi | e function) to begin a recording.
Then you can use the functions SPBPauseRecor di ng, SPBResuneRecor di ng, and
SPBSt opRecor di ng to control the recording. Note that you need to open a device
(using the SPBOpenDevi ce function) before you can record from it. On completion of
the recording, you should close the device (using the SPBCl oseDevi ce function).

If you do record sounds using the Sound Input Manager’s low-level routines, you also
need to set up your own sound resource headers or sound files, because the Sound Input
Manager’s low-level routines return raw sampled-sound data to your application.

The Sound Input Manager provides two functions, Set upSndHeader and

Set upAl FFHeader , that allow you to set up your own sound resource headers or sound
files.

About the Sound Input Manager

CHAPTER 3

Sound Input Manager

Interaction With Sound Input Devices

The Sound Input Manager provides routines that allow your application to request
information about a sound input device or to change a sound input device’s settings. The
types of information you can obtain about a sound input device include

= the name, icon, and icon mask of the device driver
» whether the device driver supports asynchronous recording

= the device’s settings, such as the number of channels the device is to record, the
compression type, the number of bytes per sample at the current compression setting,
and the sample rate to be produced by the device

= the range of compression types, sample rates, and sample sizes that the device
supports

You can also use the Sound Input Manager to change some of a sound input device’s
settings and to turn features on and off. For example, you can turn on and off automatic
gain control on some device drivers. Automatic gain control moderates sound recording
to give a consistent signal level. Second, you can turn on and off the playthrough feature,
which allows the user to hear through the Macintosh speaker the sound being recorded.
Third, you can turn on and off VOX recording, or voice-activated recording, which
allows your application to record only when the amplitude of sound input exceeds a
certain level. You can use VOX recording either to prevent recording from starting until
sound is at least a certain amplitude or to automatically stop recording when sound falls
below a certain amplitude. This latter capability is called VOX stopping.

An important feature of sound input devices is continuous recording. All sound input
devices that support asynchronous recording should support continuous recording as
well. Continuous recording allows your application to make several consecutive calls to
the SPBRecor d function without losing data between calls. For example, you might need
to record a lengthy sound to disk but not be able to fit the entire sound into RAM. Thus,
it’s important to be able to save a buffer of data to disk while the sound input device
driver continues to collect recorded data. The Sound Input Manager’s

SndRecor dToFi | e function relies on continuous recording.

To get information about a device or to turn features on and off, you can use the

SPBCet Devi cel nf o and SPBSet Devi cel nf o functions. These functions allow you to
use sound input device information selectors to specify what type of information you
need to know about the device or what settings you wish to change.

Sound Input Device Drivers

The Sound Input Manager also provides several routines intended for use only by sound
input device drivers. Sound input device drivers need to register themselves with the
Sound Input Manager by calling the SPBSi gnl nDevi ce function. This makes that
device visible in the Sound In control panel for possible selection as the current input
device. You can remove a device from that panel by calling the SPBSi gnQut Devi ce
function.

About the Sound Input Manager 215

Jabeuey 1ndu| punos -

CHAPTER 3

Sound Input Manager

For Macintosh computers with built-in sound recording hardware, the system software
includes a sound input device driver. This driver automatically calls SPBSi gnl nDevi ce
when the computer starts up. If you are creating a sound input device driver for some
other sound recording hardware, your device driver must register itself at startup time.
Once your driver is registered, it must respond to Status, Control, and Read calls issued
by the Sound Input Manager. The Sound Input Manager issues Status calls to get
information about a device, Control calls to set device settings, and Read calls to

initiate recording.

Using the Sound Input Manager

You can use the Sound Input Manager to record sounds with the sound recording dialog
box, to record sounds directly from a device, to get and set information about a sound
input device, and to register your sound input device driver so that it can respond to
Read, Status, and Control calls. This section does not explain how to record sounds using
the sound recording dialog box; for information on that, see the chapter “Introduction to
Sound on the Macintosh” in this book.

Recording Sounds Directly From a Device

The Sound Input Manager provides a number of routines that you can use for low-level
control over the recording process (such as the ability to intercept sound input data at
interrupt time). You can open a sound input device and read data from it by calling these
low-level Sound Input Manager routines. Several of those routines access information
through a sound input parameter block, which is defined by the SPB data type:

TYPE SPB =
RECORD
i nRef Num Longl nt; {reference nunber of input device}
count : Longl nt; {nunber of bytes to record}
mlliseconds: Longl nt ; {nunmber of mlliseconds to record}
buf f er Lengt h: Longl nt; {length of buffer to record into}
bufferPtr: Ptr; {pointer to buffer to record into}
conpl eti onRout i ne: ProcPtr; {pointer to a conpletion routine}
i nterrupt Routi ne: ProcPtr; {pointer to an interrupt routine}
user Long: Longl nt; {for application’s use}
error: OSErr; {error returned after recording}
unusedl: Longl nt; {reserved}
END;
The i nRef Numfield indicates the reference number of the sound input device from
which the recording is to occur. You can obtain the reference number of the default sound
input device by using the SPBOpenDevi ce function.
216 Using the Sound Input Manager

CHAPTER 3

Sound Input Manager

Thecount, m | |i seconds, and buf f er Lengt h fields jointly determine the length of
recording. The count field indicates the number of bytes to record; themi | | i seconds
field indicates the number of milliseconds to record; and the buf f er Lengt h field
indicates the length in bytes of the buffer into which the recorded sound data is to be
placed. If the count and i | | i seconds fields are not equivalent, then the field which
specifies the longer recording time is used. If the buffer specified by the buf f er Lengt h
field is shorter than this recording time, then the recording time is truncated so that the
recorded data can fit into the buffer specified by the buf f er Pt r field. The Sound

Input Manager provides two functions, SPBM | | i SecondsToByt es and

SPBByt esToM | | i Seconds, that allow you to convert between byte and

millisecond values.

After recording finishes, the count and ni | | i seconds fields indicate the number of
bytes and milliseconds actually recorded.

The conpl et i onRout i ne andi nt er r upt Rout i ne fields allow your application
to define a sound input completion routine and a sound input interrupt routine,
respectively. More information on these routines is provided later in this section.

The user Long field contains a long integer that is provided for your application’s own
use. You can use this field, for instance, to pass a handle to an application-defined
structure to the sound input completion or interrupt routine. Or, you can use this field
to store the value of your application’s A5 register, so that your sound input completion
or interrupt routine can access your application’s global variables. For more information
on preserving the value of the A5 register, see the discussion of the Set A5 and

Set Cur r ent A5 functions in the chapter “Memory Management Utilities” in

Inside Macintosh: Memory.

Jabeuey 1ndu| punos -

The er r or field describes any errors that occur during the recording. This field contains
a value greater than 0 while recording unless an error occurs, in which case it contains a
value less than 0 that indicates an operating system error. Your application can poll this
field to check on the status of an asynchronous recording. If recording terminates without
an error, this field contains 0.

Listing 3-1 shows how to set up a sound parameter block and record synchronously
using the SPBRecor d function. This procedure takes one parameter, a handle to a block
of memory in which the recorded sound data is to be stored. It is assumed that the
block of memory is large enough to hold the sound to be recorded.

Listing 3-1 Recording directly from a sound input device

PROCEDURE MyRecor dSnd (nySndH: Handl e) ;
CONST
kAsync = TRUE;
kM ddl eC = 60;
VAR
nmy SPB: SPB; {a sound input paraneter bl ock}
ny |l nRef Num Longl nt; {devi ce reference nunber}

Using the Sound Input Manager 217

CHAPTER 3

Sound Input Manager

nyBuf f Si ze: Longl nt; {size of buffer to record into}
myHeadr Len: I nt eger; {l ength of sound header}
nyNuntChans: I nt eger; {nunmber of channel s}
ny SanmpSi ze: I nt eger; {size of a sanple}
my SanpRat e: Fi xed; {sampl e rate}
nmyConmpType: OSType; {conpression type}
myErr: OSErr;
BEG N

{Open the default input device for reading and witing.}
nyErr := SPBOpenDevice(’'’', siWitePerm ssion, mnmylnRefNunj;

I F nyErr = noErr THEN
BEG N
{Get current settings of sound input device.}
My CGet Devi ceSet ti ngs(nyl nRef Num nyNuntChans, nySanpRate
nySanmpSi ze, nmyConpType) ;

{Set up handle to contain the 'snd ' resource header.}

nyErr := SetupSndHeader (nmySndH, mnyNunthans, nySanpRate, mySanpSi ze,
myConmpType, kM ddl eC, 0, myHeadrLen);

{Leave roomin buffer for the sound resource header.}
myBuf f Si ze : = Get Handl eSi ze(nySndH) - nyHeadr Len

{Lock down the sound handle until the recording is over.}
HLockHi (nySndH)

{Set up the sound input paraneter bl ock.}
W TH nySPB do

BEG N
i nRef Num : = nyl nRef Num {i nput device reference nunber}
count := myBuffSi ze; {nunber of bytes to record}
mlliseconds := O; {no mlliseconds}
buf ferLength : = nyBuff Si ze; {length of buffer}

bufferPtr := Ptr(ORD4(nmySndH*) + myHeadrLen);
{put data after ’snd’

conpl eti onRoutine := NL; {no conpl etion routine}

interruptRoutine := NL; {no interrupt routine}

userlLong := O; {no user data}

error := noErr; {clear error field}

unusedl : = 0; {cl ear reserved field}
END;

218 Using the Sound Input Manager

CHAPTER 3

Sound Input Manager

{Record synchronously through the open sound input device.}
myErr := SPBRecord(@ySPB, NOT kAsync);

HUnI ock(mySndH) ; {unl ock the handl e}

{Indicate the nunmber of bytes actually recorded.}

nyErr := SetupSndHeader (nmySndH, myNunthans, nySanpRate, mySanpSi ze,
myConmpType, kM ddl eC, nySPB. count,
nmyHeadr Len) ;

{C ose the input device.}
nyErr : = SPBC oseDevi ce(mnyl nRef Num ;

END;

END;

The MyRecor dSnd procedure defined in Listing 3-1 opens the default sound input
device by using the SPBOpenDevi ce function. You can specify one of two values for the
per m ssi on parameter of SPBOpenDevi ce:

CONST
si ReadPermi ssion = 0; {open device for reading}
si WitePerm ssion 1; {open device for reading/witing}

You must open a device for both reading and writing if you intend to use the

SPBSet Devi cel nf o function or the SPBRecor d function. If SPBOpenDevi ce
successfully opens the specified device for reading and writing, M/Recor dSnd calls

the MyGet Devi ceSet t i ngs procedure (defined in Listing 3-3 on page 222). That
procedure calls the Sound Input Manager function SPBGet Devi cel nf o (explained in
“Getting and Setting Sound Input Device Information” on page 220) to determine the
current number of channels, sample rate, sample size, and compression type in use by the
device.

This information is then passed to the Set upSndHeader function, which sets up the
handle my SndH with a sound header describing the current device settings. After doing
this, MyRecor dSnd sets up a sound input parameter block and calls the SPBRecor d
function to record a sound. Note that the handle must be locked during the recording
because the parameter block contains a pointer to the input buffer. After the recording is
done, MyRecor dSnd once again calls the Set upSndHeader function to fill in the actual
number of bytes recorded.

If the MyRecor dSnd procedure defined in Listing 3-1 executes successfully, the handle
nmy SndH points to a resource of type ' snd ’ . Your application can then synchronously
play the recorded sound, for example, by executing the following line of code:

nyErr := SndPlay(N L, mySndH, FALSE);
For more information on playing sounds your application has recorded, see the chapter

“Sound Manager” in this book.

Using the Sound Input Manager 219

Jabeuey 1ndu| punos -

220

CHAPTER 3

Sound Input Manager

Defining a Sound Input Completion Routine

The conpl eti onRout i ne field of the sound parameter block record contains the
address of a completion routine that is executed when the recording terminates normally,
either by reaching its prescribed time or size limits or by the application calling the
SPBSt opRecor di ng function. A completion routine should have the following format:

PROCEDURE MySI Conpl et i onRoutine (inParanPtr: SPBPtr);

The completion routine is passed the address of the sound input parameter block that
was passed to the SPBRecor d function. You can gain access to other data structures in
your application by passing an address in the user Long field of the parameter block.
After the completion routine executes, your application should check the er r or field of
the sound input parameter block to see if an error code was returned.

Your sound input interrupt routine is always called at interrupt time, so it should not call
routines that might allocate or move memory or assume that A5 is set up. For more
information on sound input interrupt routines, see “Sound Input Interrupt Routines”
beginning on page 265.

Defining a Sound Input Interrupt Routine

Thei nt errupt Rout i ne field of the sound input parameter block contains the address
of a routine that executes when the internal buffers of an asynchronous recording device
are filled. The internal buffers contain raw sound samples taken directly from the input
device. The interrupt routine can modify the samples in the buffer in any way it requires.
The processed samples are then written to the application buffer. If compression is
enabled, the modified data is compressed after your interrupt routine operates on the
samples and before the samples are written to the application buffer.

Your sound input interrupt routine is always called at interrupt time, so it should not call
routines that might allocate or move memory or assume that A5 is set up. For more
information on sound input interrupt routines, see “Sound Input Interrupt Routines”
beginning on page 265.

Getting and Setting Sound Input Device Information

You can get information about a specific sound input device and alter a sound

input device’s settings by calling the functions SPBGet Devi cel nf o and

SPBSet Devi cel nf 0. These functions accept sound input device information selectors
that determine which information you need or want to change. The selectors currently
available are defined by constants of type OSType.

Here is a list of the selectors that all sound input device drivers must support. For
complete details on all the selectors described in this section, see “Sound Input Device
Information Selectors” beginning on page 229.

Using the Sound Input Manager

CHAPTER 3

Sound Input Manager

CONST
si Async = 'asyn’; {asynchronous capability}
si Channel Avai | abl e = 'chav’; {nunber of channel s avail abl e}
si Conpressi onAvailable = 'cmav’; {conpression types avail abl e}
si Conpr essi onFact or =’'cnfa’; {current conpression factor}
si Conpr essi onType = 'conp’; {conmpression type}
si Cont i nuous = 'cont’; {continuous recordi ng}
si Devi ceBufferlnfo = "dbin’; {size of interrupt buffer}
si Devi ceConnect ed "dcon’; {input device connection status}
si Devi cel con = 'icon'; {i nput device icon}
si Devi ceNane "nane’ ; {i nput device nane}
si Level Met er ONOF f ="'lnet’; {level meter state}
si Nunber Channel s = 'chan’; {current nunber of channel s}
si Recordi ngQual ity = 'qual ’; {recording quality}
si Sanpl eRat e = 'srat’; {current sanple rate}
si Sanpl eRat eAvai | abl e "srav’; {sanpl e rates avail abl e}
si Sanpl eSi zeAvai | abl e = 'ssav’; {sanpl e sizes avail abl e}
si Sanpl eSi ze 'ssiz’; {current sanple size}
si TwosConpl enent OnCOf f = "twos’; {two’ s conpl enent st ate}

The Sound Input Manager defines several selectors that specifically help it interact with
sound input device drivers. Your application should not use any of these selectors, but if
you are implementing a sound input device driver, you need to support these selectors.
They are:

CONST
si Cl oseDri ver = 'clos’; {rel ease driver}
silnitializeDriver ='init’; {initialize driver}
si PauseRecor di ng = ’'paus’; {pause recordi ng}
si User I nterruptProc = 'user’; {set sound input interrupt routine}

Finally, there are a number of sound input device information selectors that sound input
device drivers can optionally support. If you are writing an application, you can use
these selectors to interact with a sound input device driver, but you should be aware that
some drivers might not support all of them. To determine if a driver supports one of
these selectors, you can use the SPBGet Devi cel nf o function. If no errors are returned,
then the selector is supported when using the SPBGet Devi cel nf o and the

SPBSet Devi cel nf o functions.

CONST
si Acti veChannel s = 'chac’; {channel s active}
si ActivelLevel s "l mac’; {level s active}
si AGCOnOf f = 'agc ’; {automatic gain control state}
si Conpr essi onHeader = 'cnhd’; {get conpression header}
si Conpr essi onNanes = ’'cnam ; {return conpression type nanes}

Using the Sound Input Manager 221

Jabeuey 1ndu| punos -

CHAPTER 3

Sound Input Manager

si | nput Gai n ='gain'; {input gain |evel}

si I nput Sour ce = 'sour’; {i nput source selector}

si | nput Sour ceNanes = 'snam ; {i nput source nanes}

si OptionsDi al og = 'optd'; {di splay options dial og box}
si PlayThruOnOr f ='plth; {pl ay-t hrough st ate}

si St er eol nput Gai n = 'sgai’; {stereo input gain |level}

si VoxRecordl nfo = "voxr'; {VOX record paraneters}

si VoxSt opl nfo

"VOXs’; {VOX stop paraneters}

The format of the relevant data (either returned by the Sound Input Manager or provided
by you) depends on the selector you provide. For example, if you want to determine the
name of some sound input device, you can pass to the SPBGet Devi cel nf o function the
si Devi ceNare selector and a pointer to a 256-byte buffer. If the SPBGet Devi cel nf o
function can get the information, it fills that buffer with the name of the specified sound
input device. Listing 3-2 illustrates one way you can determine the name of a particular
sound input device.

Listing 3-2 Determining the name of a sound input device

FUNCTI ON MyGet Devi ceNane (nyRef Num Longlnt; VAR dNane: Str255): OSErr;

BEG N

MyGet Devi ceNane : = SPBCet Devi cel nf o(nyRef Num si Devi ceName, Ptr(@Nane));

END;

Note

You can get the name and icon of all connected sound input devices
without using sound input information selectors by using the

SPBGet | ndexedDevi ce function, which is described on page 259. O

Some selectors cause the SPBGet Devi cel nf o function to return data of other types.
Listing 3-3 illustrates how to determine the number of channels, the sample rate, the
sample size, and the compression type currently in use by a given sound input device.
(The procedure defined in Listing 3-3 is called in the procedure defined in Listing 3-1.)

Listing 3-3 Determining some sound input device settings

PROCEDURE My Get Devi ceSettings (nyRef Num Longlnt;

VAR

nmyErr:
BEG N

VAR nuntChannel s: | nt eger;

VAR sanpl eRate: Fi xed;

VAR sanpl eSi ze: | nteger;

VAR conpressi onType: OSType);

CSErr;

{CGet nunmber of active channels.}

222

Using the Sound Input Manager

CHAPTER 3

Sound Input Manager

nyErr := SPBGet Devi cel nfo (myRef Num si Nunber Channel s, Ptr(@untChannel s));

{Get sanple rate.}

nmyErr : = SPBCet Devi cel nf o(nyRef Num si Sanpl eRate, Ptr(@anpl eRate));

{Get sanple size.}

myErr : = SPBCet Devi cel nfo(nyRef Num si Sanpl eSi ze, Ptr(@anpl eSi ze)) ;

{CGet conpression type.}

nyErr : = SPBGet Devi cel nf o(nyRef Num si Conpr essi onType,

Ptr(@onpressi onType));

END;

All of the selectors that return a handle allocate the memory for that handle in the current
heap zone; you are responsible for disposing of that handle when you are done with it,
and you should verify that there is enough memory for such a handle before calling the
selector.

Writing a Sound Input Device Driver

This section describes what you need to do when you do write a sound input device
driver. If you write a sound input device driver, you should set the dr vr Fl ags field of
the sound input device driver’s header to indicate that the driver can handle Status,
Control, and Read requests. The driver header should also indicate that the driver needs
to be locked.

Jabeuey 1ndu| punos -

IMPORTANT

You don’t need to write a device driver to use sound input
capabilities. a

After you create a device driver, you must write an extension that installs it. Before
your extension installs the driver, it should pass the Gest al t function the

gest al t SoundAt t r attribute selector and inspect the gest al t Soundl OMgr Pr esent
bit to determine if the sound input routines are available. If so, the extension should
install the sound input device driver into the unit table just as any other driver must

be installed.

After installing the driver, the extension must then make an Open request to the driver,
so that the driver can perform any necessary initialization. In particular, the driver might
set the dCt | St or age field of the device control entry to a pointer or a handle to a block
in the system heap containing all of the variables that it might need. Finally, the device
driver signs into the Sound Input Manager by calling the SPBSi gnl nDevi ce function.

Once signed in, a driver can receive Status, Control, and Read requests from the
Sound Input Manager. On entry, the A0 register contains a pointer to a standard
Device Manager parameter block, and the Al register contains a pointer to the
device control entry. For more information on using registers in a device driver,
see Inside Macintosh: Devices.

Using the Sound Input Manager 223

CHAPTER 3

Sound Input Manager

Responding to Status and Control Requests

The Sound Input Manager supports sound input device information selectors by sending
your device driver Status and Control requests. It uses Status requests to get information
about your device; it uses Control requests to change settings of your sound input device.

The behavior of your sound input device driver in response to Status and Control
requests depends on the value of the csCode field of the Device Manager control
parameter block. If the csCode field contains 2, then the sound input information
selector is passed in the first 4 bytes of the csPar amfield of the Device Manager control
parameter block. For Status requests, the next 18 bytes can be used for your device driver
to pass information back to an application. For Control requests, these 18 bytes are used
by an application to pass data to your sound input device driver.

Figure 3-1 shows the contents of the csPar amfield of the Device Manager control
parameter block for a sample Status request. The first four bytes of the csPar amfield
contain the input selector’ srav’ , which is a request for the available sample rates. The
next four bytes of the field contain a pointer to an application-supplied buffer in which to
return the data (the number of rates available) from the Status request.

224

Figure 3-1 An example of the csPar amfield for a Status request
csPar am field Bytes
‘srav' 4

Pointer to application-supplied buffer 4

On exit from the Status request, your sound input device driver can respond in one of
two ways. If you are returning fewer than 18 bytes of data, your device driver should
specify in the first 4 bytes of the csPar amfield of the Device Manager control parameter
block the number of bytes of data being returned and place the data in the following 18
bytes. In this case, the Sound Input Manager copies the data to the application-supplied
buffer identified in Figure 3-1. If you are returning more than 18 bytes of data, your
device driver should copy the data to the application-supplied buffer. In this case,

your device driver needs to place a zero in the first 4 bytes of the csPar amfield to
indicate to the Sound Input Manager that the data has already been copied to the
application-supplied buffer.

Figure 3-2 shows the contents of the csPar amfield of the Device Manager control
parameter block for a sample Control request. The first four bytes of the csPar amfield
contain the input selector * srat’ which determines the sample rate for the sound input

Using the Sound Input Manager

CHAPTER 3

Sound Input Manager

device. The next eighteen bytes contain the data, which in this example is the sample rate
to set for your sound input device. This is a Fi xed value of four bytes in length.

Figure 3-2 An example of the csPar amfield for a Control request
csPar am field Bytes
"srat’ 4
Ox56EE8BA3 4
Note

Some sound input information selectors require your sound input device
driver to allocate a handle in which to store information. In this case,
your driver should attempt to allocate an appropriately sized handle in
the current heap zone. If allocation fails, your driver should return the
appropriate Memory Manager result code. O

Your sound input device driver must respond to a core set of selectors, but the remaining
selectors defined by Apple are optional. Your device driver might also define private
selectors to support proprietary features. (Selectors containing all lowercase letters,
however, are reserved by Apple.) The section “Getting and Setting Sound Input Device
Information” beginning on page 220 lists the core selectors and other selectors that have
been defined.

If the csCode field contains 1 (which can occur only for Control requests), the Sound
Input Manager is attempting to stop asynchronous recording; that is, it is issuing a
Ki | | I Orequest. In response to this, the driver should stop copying data to the
application buffer, update the i oAct Count field of the request parameter block, and
return via an RTS instruction.

Before exiting after a Status and Control request, your sound input device driver should
fill the DO register with the appropriate result code or noEr r . To exit, your sound input
device driver should check whether the Status and Control request was executed
immediately or was queued.

Note

In current versions of system software, the Sound Input Manager always
issues Status and Control requests immediately. This might change in
future versions of system software. 0O

Your sound input device driver can determine whether a request is issued immediately
by checking the noQueueBi t inthei oTr ap field of the Device Manager control
parameter block. If the request was made immediately, the Control routine should return

Using the Sound Input Manager 225

Jabeuey 1ndu| punos -

226

CHAPTER 3

Sound Input Manager

via an RTS instruction; if the request was queued, the Control routine should jump to the
Device Manager’s | ODone function via the global jump vector JI GDone. You need to
make sure that the A0 and Al registers are set the same as they are on entry to the device
driver or J1 ODone will fail.

Responding to Read Requests

When a sound input device receives a Read request, it must start recording and saving
recorded data into the buffer specified by the i oBuf f er field of the request parameter
block. If that field is NI L, the driver should record but not save the data. During a Read
request, your sound input device driver can access the sound parameter block that
initiated recording through the i oM sc field of the request parameter block.

If a previous Control request has assigned a sound input interrupt routine to the device
driver and your driver records asynchronously, then the driver must call the routine each
time its internal buffer becomes filled, setting up registers as described in “Defining a
Sound Input Interrupt Routine” on page 220. The buffer size that your device driver
specifies in the D1 register should indicate how much your device records during every
interrupt. For example, a sound input device driver that uses the serial port might use a
buffer as small as 3 bytes. For the built-in sound input port on the Macintosh LC and
other Macintosh models, the buffer is 512 bytes long.

Your device driver should update the i oAct Count field of the request parameter block
with the actual number of bytes of sampled-sound data recorded. This allows the Sound
Input Manager to monitor the activity of your device driver. Whether your device driver
operates synchronously or asynchronously, it should complete recording by jumping to
the Device Manager’s | ODone function via the global jump vector J| ODone. You need to
set the DO register to the appropriate result code before jumping to the Device Manager’s
| ODone function.

Supporting Stereo Recording

Many sound input devices support recording stereo sounds (that is, sounds from two or
more channels). If you are writing a device driver for a stereo device, you need to make
sure that you support the si Nunber Channel s, si Acti veChannel s, and

si Acti velLevel s selectors.

The si Nurmber Channel s selector controls the number of sound input channels and
thereby determines the format of the data stream your device driver produces. If the
number of channels is 1, the driver should produce monophonic data in response to a
Read request. If the number of channels is 2, the driver should produce interleaved stereo
data in response to a Read request.

The si Act i veChannel s selector controls which of the available input channels are
used for recording. The active channels are specified using a bitmap value. For example,
the value $01 indicates that the first channel (the left channel) is to be used. The value $02
indicates that the second channel (the right channel) is to be used.

The si Nunber Channel s and si Act i veChannel s selectors together determine the
exact format of the output data stream. If the current number of channels is 1 and the

Using the Sound Input Manager

CHAPTER 3

Sound Input Manager

current active channel bitmap is $01, the driver should produce a stream of monophonic
data containing samples only from the left input channel. If the current number of
channels is 1 and the current active channel bitmap is $02, the driver should produce a
stream of monophonic data containing samples only from the right input channel. If the
current number of channels is 1 and the current active channel bitmap is $03, the driver
should mix the right and left channels to produce a stream of monophonic data. If the
current number of channels is 2 and the current active channel bitmap is $03, the driver
should produce a stream of interleaved samples from the left and right input channels.

Note

If the si Act i veChannel s selector is never passed to a sound input
device driver, it’'s recommended that the active channel default bitmap
for both monophonic and stereo recording should be $03. When the
active channel bitmap conflicts with the number of channels (for
example, there are two channels but the active channel bitmap is $01),
you should use the default value of $03. O

Supporting Continuous Recording

If your sound input device driver supports continuous recording, it must do more than
respond to Status, Control, and Read requests. It must also, if continuous recording is on,
begin recording into an internal ring buffer as soon as a Read request completes. The
buffer should be made large enough so that the sound input device driver can support
successive requests to the SPBRecor d function in most circumstances; however, if your
driver exhausts the internal buffer, your driver should begin recording again at the start
of the buffer.

Jabeuey 1ndu| punos -

When the sound input device driver receives a subsequent Read request, it should record
to the application’s buffer first all of the data in the internal ring buffer and then as much
fresh data as it can record during one interrupt.

If a Read terminates due to a Ki | | | Orequest, your sound input device driver does not
need to continue recording samples to the internal ring buffer until after the next
uninterrupted Read request.

Sound Input Manager Reference

This section describes the constants, data structure, and the routines provided by the
Sound Input Manager.

Constants

This section describes the constants you can use with the SPBSet Devi cel nf o and
SPBGet Devi cel nf o functions to set or get device information. It also lists the Gest al t
function sound attributes selector and the returned bit numbers that are relevant to the
Sound Input Manager. All other constants defined by the Sound Input Manager are

Sound Input Manager Reference 227

CHAPTER 3

Sound Input Manager

described at the appropriate location in this chapter. (For example, the constants that you
can use to specify sound recording qualities are described in connection with the
SndRecor d function beginning on page 238.)

Gestalt Selector and Response Bits

You can pass the gest al t SoundAt t r selector to the Gest al t function to determine
information about the sound input capabilities of a Macintosh computer.

CONST
gestal t SoundAt tr ='snd ’; {sound attributes sel ector}
The Gest al t function returns information by setting or clearing bits in the r esponse
parameter. The bits relevant to the Sound Input Manager are defined by constants:
CONST

gest al t Soundl Ovgr Pr esent
gestal t Bui | t I nSoundl nput
gest al t HasSoundl nput Devi ce
gest al t Pl ayAndRecord =
gestal t 16Bi t Soundl O

gest al t St er eol nput =
gest al tLi neLevel I nput

228

{sound i nput routines avail abl e}
{built-in input hw avail abl e}

{sound i nput device avail abl e}
{built-in hw can play while recordi ng}
{built-in hw can handl e 16-bit data}
{built-in hw can record stereo sounds}
{built-in input hw needs line |evel}

COoNo O R W

Constant descriptions

gest al t Soundl OMgr Pr esent
Set if the Sound Input Manager is available.

gestal t Bui |l t I nSoundl nput
Set if a built-in sound input device is available.

gest al t HasSoundl nput Devi ce
Set if a sound input device is available. This device can be either
built-in or external.

gest al t Pl ayAndRecord
Set if the built-in sound hardware is able to play and record sounds
simultaneously. If this bit is clear, the built-in sound hardware can
either play or record, but not do both at once. This bit is valid only if
the gest al t Bui | t | nSoundl nput bit is set, and it applies only to
any built-in sound input and output hardware.

gestal t 16Bi t Soundl O
Set if the built-in sound hardware is able to play and record 16-bit
samples. This indicates that built-in hardware necessary to handle
16-bit data is available.

gest al t St er eol nput
Set if the built-in sound hardware can record stereo sounds.

gestal tLi neLevel | nput
Set if the built-in sound input port requires line level input.

Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

Note

For complete information about the Gest al t function, see the chapter
“Gestalt Manager” in Inside Macintosh: Operating System Utilities. O

Sound Input Device Information Selectors

You can call the SPBSet Devi cel nf o and SPBGet Devi cel nf o functions to set or
get information about a sound input device. You pass each of those functions a sound
input device information selector in the i nf 0oType parameter to specify the type

of information you need. The available device information selectors are defined

by constants.

IMPORTANT

Some of these selectors are intended for use only by the Sound Input
Manager and other parts of the system software that need to interact
directly with sound input device drivers. (For example, the Sound Input
Manager sends the si Cl oseDri ver selector to a sound input device
driver when it is closing the device.) In general, applications should not
use these reserved selectors. a

CONST
si Acti veChannel s = ’'chac’; {channel s active}
si ActivelLevel s ="'l mc’; {level s active}
si AGCONOf f = 'agc '; {automatic gain control state}
si Async = 'asyn’; {asynchronous capability}
si Channel Avai |l abl e = 'chav’; {nunber of channel s avail abl e}
si O oseDri ver = '"clos’; {reserved for internal use only}
si Conpressi onAvai lable = 'cmav’; {conpression types avail abl e}
si Conpr essi onFact or = 'cnfa'; {current conpression factor}

si Conpr essi onHeader
si Conpr essi onNanes
si Conpr essi onType
si Cont i nuous

si Devi ceBufferlnfo
si Devi ceConnect ed
si Devi cel con

si Devi ceNane

"cmhd’
cnam ;

conp

cont’;
dbin’;
dcon’;
icon’;

{return conpression header}
{return conpression type nanes}
{current conpression type}
{continuous recordi ng}

{size of interrupt buffer}

{i nput device connection status}
{i nput device icon}

= ' nane’; {i nput device nane}
silnitializeDriver init’; {reserved for internal use only}
si | nput Gai n = 'gain'; {input gain |level}
si | nput Sour ce ‘sour’; {i nput source selector}
si | nput Sour ceNanes = 'snam ; {i nput source nanes}
si Level Met er OnOF f ="lnet’; {level neter state}
si Nunber Channel s = 'chan’; {current nunber of channel s}
si OptionsDi al og = 'optd; {di splay options dial og box}
si PauseRecor di ng = ' paus’; {reserved for internal use only}

Sound Input Manager Reference

229

Jabeuey 1ndu| punos -

CHAPTER 3

Sound Input Manager

si Pl ayThruOnOf f ='plth; {pl ay-t hrough state}

si Recordi ngQual ity = 'qual ’; {recording quality}

si Sanpl eRat e = 'srat’; {current sanple rate}

si Sanpl eRat eAvai | abl e = 'srav’; {sanpl e rates avail abl e}
si Sanpl eSi ze = 'ssiz; {current sanple size}

si Sanpl eSi zeAvai | abl e = 'ssav’; {sanmpl e sizes avail abl e}
si Stereol nput Gai n = 'sgai’; {stereo input gain |evel}
si TwosConpl enent OnOF f = 'twos’; {two’ s conpl enrent st at e}
si User I nterrupt Proc = 'user’; {reserved for internal use only}
si VoxRecordl nfo = "voxr'; {VOX record paraneters}
si VoxSt opl nfo = 'voxs’; {VOX stop paraneters}

Constant descriptions

si Acti veChannel s
Get or set the channels to record from. When setting the active
channels, the data passed in is a long integer that is interpreted as a
bitmap describing the channels to record from. For example, if bit 0
is set, then the first channel is made active. The samples for each
active channel are interleaved in the application’s buffer. When
reading the active channels, the data returned is a bitmap of the
active channels.

si ActivelLevel s
Get the current signal level for each active channel. The i nf oDat a
parameter points to an array of integers, the size of which depends
on the number of active channels. You can determine how many
channels are active by calling SPBGet Devi cel nf o with the
si Nunber Channel s selector.

si AGCONOf f Get or set the current state of the automatic gain control feature. The
i nf oDat a parameter points to an integer, which is 0 if gain control
isoffand 1 if itis on.

si Async Determine whether the driver supports asynchronous recording
functions. The i nf oDat a parameter points to an integer, which is
0 if the driver supports synchronous calls only and 1 otherwise.
Some sound input drivers do not support asynchronous recording at
all, and some might support asynchronous recording only on certain
hardware configurations.

si Channel Avai | abl e
Get the maximum number of channels this device can record. The
i nf oDat a parameter points to an integer, which is the number of
available channels.

si Cl oseDriver The Sound Input Manager sends this selector when it closes a device
previously opened with write permission. The sound input device
driver should stop any recording in progress, deallocate the input
hardware, and initialize local variables to default settings. Your
application should never issue this selector directly. The i nf oDat a
parameter is unused with this selector.

230 Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

si Conpr essi onAvai | abl e
Get the number and list of compression types this device can
produce. The i nf oDat a parameter points to an integer, which is the
number of compression types, followed by a handle. The handle
references a list of compression types, each of type OSType.

si Conpr essi onFact or
Get the compression factor of the current compression type. For
example, the compression factor for MACE 3:1 compression is 3. If a
sound input device driver supports only compression type’ NONE' ,
the returned compression type is 1. The i nf oDat a parameter points
to an integer, which is the compression factor.

si Conpr essi onHeader
Get a compressed sound header for the current recording settings.
Your application passes in a pointer to a compressed sound header
and the driver fills it in. Before calling SPBGet Devi cel nf o with
this selector, you should set the nuntr anes field of the compressed
sound header to the number of bytes in the sound. When
SPBCet Devi cel nf o returns successfully, that field contains the
number of sample frames in the sound. This selector is needed
only by drivers that use compression types that are not directly
supported by Apple. If you call this selector after recording a sound,
your application can get enough information about the sound to
play it or save it in a file. The i nf oDat a parameter points to a
compressed sound header.

si Conpr essi onNanes
Get a list of names of the compression types supported by the sound
input device. In response to a Status call, a sound input device
driver returns, in the location specified by the i nf oDat a parameter,
a handle to a block of memory that contains the names of all
compression types supported by the driver. It is the driver’s
responsibility to allocate that block of memory, but it should not
release it. The software issuing this selector is responsible for
disposing of the handle. As a result, a device driver must detach any
resource handles (by calling Det achResour ce) before returning
them to the caller. The data in the handle has the same format as an
" STR#' resource: a two-byte count of the strings in the resource,
followed by the strings themselves. The strings should occur in the
same order as the compression types returned by the
si Conpr essi onAvai | abl e selector. If the driver does not support
compression, it returns si Unknownl nf oType. If the driver
supports compression but for some reason not all compression types
are currently selectable, it returns a list of all available compression
types.

si Conpr essi onType
Get or set the compression type. Some devices allow the incoming
samples to be compressed before being placed in your application’s
input buffer. The i nf oDat a parameter points to a buffer of type
OSType, which is the compression type.

Sound Input Manager Reference 231

Jabeuey 1ndu| punos -

232

CHAPTER 3

Sound Input Manager

si Cont i nuous

si Devi ceBufferl

si Devi ceConnect

si Devi cel con

si Devi ceNane

Get or set the state of continuous recording from this device. If
recording is being turned off, the driver stops recording samples to
its internal buffer. Only sound input device drivers that support
asynchronous recording support continuous recording. The

i nf oDat a parameter points to an integer, which is the state of
continuous recording (0 is off, 1 is on).

nf o

Get the size of the device’s internal buffer. This information can be
useful when you want to modify sound input data at interrupt time.
Note, however, that if a driver is recording continuously, then the
size of the buffer passed to your sound input interrupt routine might
be greater than the size this selector returns because data recorded
between calls to SPBRecor d as well as recorded during calls to
SPBRecor d will be sent to your interrupt routine. The i nf oDat a
parameter points to a long integer, which is the size of the device’s
internal buffer.

ed

Get the state of the device connection. The i nf oDat a parameter
points to an integer, which is one of the following constants:

CONST
si Devi cel sConnect ed = 1;
si Devi ceNot Connect ed = 0;
si Dont Knowl f Connect ed = -1;

The si Devi cel sConnect ed constant indicates that the device is
connected and ready. The si Devi ceNot Connect ed constant
indicates that the device is not connected. The

si Dont Knowl f Connect ed constant indicates that the Sound Input
Manager cannot determine whether the device is connected.

Get the device’s icon and icon mask. In response to a Status call, a
sound input device driver should return, in the location specified by
the i nf oDat a parameter, a handle to a block of memory that
contains the icon and its mask in the format of an’ | CN#’ resource.
It is the driver’s responsibility to allocate that block of memory, but
it should not releasee it. The software issuing this selector is
responsible for disposing of the handle. As a result, a device driver
should detach any resource handles (by calling Det achResour ce)
before returning them to the caller.

Get the name of the sound input device. Your application must pass
a pointer to a buffer that will be filled in with the device’s name. The
buffer needs to be large enough to hold a St r 255 data type.

silnitializeDriver

The Sound Input Manager sends this selector when it opens a sound
input device with write permission. The sound input device driver
initializes local variables and prepares to start recording. If possible,
the driver initializes the device to a sampling rate of 22 kHz, a
sample size of 8 bits, mono recording, no compression, automatic
gain control on, and all other features off. Your application should

Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

si | nput Gai n

si | nput Sour ce

never issue this selector directly. The i nf oDat a parameter is
unused with this selector.

Get and set the current sound input gain. If the available hardware
allows adjustment of the recording gain, this selector lets you get
and set the gain. In response to a Status call, a sound input driver
returns the current gain setting. In response to a Control call, a
sound input driver sets the gain level used for all subsequent
recording to the specified value. The i nf oDat a parameter points to
a 4-byte value of type Fi xed ranging from 0.5 to 1.5, where 1.5
specifies maximum gain.

Get and set the current sound input source. If the available
hardware allows recording from more than one source, this selector
lets you get and set the source. In response to a Status call, a sound
input driver returns the current source value; if the driver supports
only one source, it returns si Unknownl nf oType. In response to a
Control call, a sound input driver sets the source of all subsequent
recording to the value passed in. If the value is less than 1 or greater
than the number of input sources, the driver returns par aner r ; if
the driver supports only one source, it returns

si Unknownl nf oType. The i nf oDat a parameter points to an
integer, which is the index of the current sound input source.

si | nput Sour ceNanes

Get a list of the names of all the sound input sources supported by
the sound input device. In response to a Status call, a sound input
device driver returns, in the location specified by the i nf oDat a
parameter, a handle to a block of memory that contains the names of
all sound sources supported by the driver. It is the driver’s
responsibility to allocate that block of memory, but it should not
release it. The software issuing this selector is responsible for
disposing of the handle. As a result, a device driver must detach any
resource handles (by calling Det achResour ce) before returning
them to the caller. The data in the handle has the same format as an

" STR#' resource: a two-byte count of the strings in the resource,
followed by the strings themselves. The strings should occur in the
same order as the input sources returned by the si | nput Sour ce
selector. If the driver supports only one source, it returns

si Unknownl nf oType. If the driver supports more than one source
but for some reason not all of them are currently selectable, it returns
a list of all available input sources.

si Level Met er ONOF f

Get or set the current state of the level meter. For calls to set the level
meter, the i nf oDat a parameter points to an integer that indicates
whether the level meter is off (0) or on (1). To get the level meter
setting, the i nf oDat a parameter points to two integers; the first
integer indicates the state of the level meter, and the second integer
contains the level value of the meter. The level meter setting is an
integer that ranges from 0 (no volume) to 255 (full volume).

si Nunber Channel s

Get or set the number of channels this device is to record. The

Sound Input Manager Reference 233

Jabeuey 1ndu| punos -

CHAPTER 3

Sound Input Manager

i nf oDat a parameter points to an integer, which indicates the
number of channels. Note that this selector determines the format of
the data stream output by the driver. If the number of channels is 1,
the driver should output monophonic data in response to a Read
call. If the number of channels is 2, the driver should output
interleaved stereo data.

si OptionsDi al og
Determine whether the driver supports an Options dialog box
(SPBGet Devi cel nf 0) or cause the driver to display the Options
dialog box (SPBSet Devi cel nf 0). This dialog box is designed to
allow the user to configure device-specific features of the sound
input hardware. With SPBGet Devi cel nf o, the i nf oDat a
parameter points to an integer, which indicates whether the driver
supports an Options dialog box (1 if it supports it, 0 otherwise).
With SPBSet Devi cel nf o, the i nf oDat a parameter is unused.

si PauseRecor di ng
The Sound Input Manager uses this selector to get or set the current
pause state. The sound input device driver continues recording but
does not store the sampled data in a buffer. Your application should
never issue this selector directly. The i nf oDat a parameter points to
an integer, which indicates the state of pausing (0 is off, 1 is on).

si Pl ayThruOnOf f
Get or set the current play-through state and volume. The
i nf oDat a parameter points to an integer, which indicates the
current play-through volume (1 to 7). If that integer is 0, then
play-through is off.

si Recordi ngQual ity
Get or set the current quality of recorded sound. The i nf oDat a
parameter points to a buffer of type OSType, which is the recording
quality. Currently three qualities are supported, defined by these

constants:

CONST
siBestQual ity = 'best’;
siBetterQuality = 'betr’;
si GoodQual ity = 'good’;

These qualities are defined by the sound input device driver.
Usually best means monaural, 8-bit, 22 kHz, sound with no
compression.

si Sanpl eRat e Get or set the sample rate to be produced by this device. The sample
rate must be in the range 0 to 65535.65535 Hz. The sample rate is
declared as a Fi xed data type. In order to accommodate sample
rates greater than 32 kHz, the most significant bit is not treated as a
sign bit; instead, that bit is interpreted as having the value 32,768.
The i nf oDat a parameter points to a buffer of type Fi xed, which is
the sample rate.

si Sanpl eRat eAvai | abl e
Get the range of sample rates this device can produce. The

234 Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

si Sanpl eSi ze

si Sanpl eSi zeAvai | abl e

si St er eol nput Gai n

i nf oDat a parameter points to an integer, which is the number of
sample rates the device supports, followed by a handle. The handle
references a list of sample rates, each of type Fi xed. If the device
can record a range of sample rates, the number of sample rates is set
to 0 and the handle contains two rates, the minimum and the
maximum of the range of sample rates. Otherwise, a list is returned
that contains the sample rates supported. In order to accommodate
sample rates greater than 32 kHz, the most significant bit is not
treated as a sign bit; instead, that bit is interpreted as having the
value 32,768.

Get or set the sample size to be produced by this device. Because
some compression formats require specific sample sizes, this selector
might return an error when compression is used. The i nf oDat a
parameter points to an integer, which is the sample size.

Get the range of sample sizes this device can produce. The

i nf oDat a parameter points to an integer, which is the number of
sample sizes the device supports, followed by a handle. The handle
references a list of sample sizes, each of type | nt eger .

Get and set the current stereo sound input gain. If the available
hardware allows adjustment of the recording gain, this selector lets
you get and set the gain for each of two channels (left or right). In
response to a Status call, a sound input driver should return the
current gain setting for the specified channel. In response to a
Control call, a sound input driver should set the gain level used for
all subsequent recording to the specified value. The i nf oDat a
parameter points to two 4-byte values of type Fi xed ranging from
0.5 to 1.5, where 1.5 specifies maximum gain. The first of these
values is equivalent to the gain for the left channel and the second
value is equivalent to the gain for the right channel.

Jabeuey 1ndu| punos -

si TwosConpl enment OnCOf f

Get or set the current state of the two’s complement feature. This
selector only applies to 8-bit data. (16-bit samples are always stored
in two’s complement format.) If on, the driver stores all samples in
the application buffer as two’s complement values (that is, =128 to
127). Otherwise, the driver stores the samples as offset binary values
(that is, 0 to 255). The i nf oDat a parameter points to an integer,
which is the current state of the two’s complement feature (1 if two’s
complement output is desired, 0 otherwise).

si UserInterruptProc

si VoxRecordl nfo

The Sound Input Manager sends this selector to specify the sound
input interrupt routine that the sound input device driver should
call. Your application should never issue this selector directly. The
i nf oDat a parameter points to a procedure pointer, which is the
address of the sound input interrupt routine.

Get or set the current VOX recording parameters. The i nf oDat a
parameter points to two integers. The first integer indicates whether

Sound Input Manager Reference 235

CHAPTER 3

Sound Input Manager

si VoxSt opl nfo

Data Structures

VOX recording is on or off (0 if off, 1 if on). The second integer
indicates the VOX record trigger value. Trigger values range from
0 to 255 (0 is trigger immediately, 255 is trigger only on full volume).

Get or set the current VOX stopping parameters. The i nf oDat a
parameter points to three integers. The first integer indicates
whether VOX stopping is on or off (0 if off, 1 if on). The second
integer indicates the VOX stop trigger value. Trigger values range
from 0 to 255 (255 is stop immediately, 0 is stop only on total
silence). The third integer indicates how many milliseconds the
trigger value must be continuously valid for recording to be
stopped. Delay values range from 0 to 65,535.

This section describes the sound input parameter block.

Sound Input Parameter Blocks

The SPBRecor d and SPBRecor dToFi | e functions require a pointer to a sound input
parameter block that defines characteristics of the recording. If you define a sound input
completion routine or a sound input interrupt routine, your routine receives a pointer
to a sound input parameter block. If you are using only the Sound Input Manager’s
high-level SndRecor d and SndRecor dToFi | e functions, the operation of sound input
parameter blocks is transparent to your application. A sound input parameter block is
defined by the SPB data type.

TYPE SPB =

RECORD
i nRef Num Longl nt; {reference nunber of input device}
count : Longl nt; {nunber of bytes to record}
mlliseconds: Longl nt ; {nunber of mlliseconds to record}
buf f er Lengt h: Longl nt; {length of buffer to record into}
bufferPtr: Ptr; {pointer to buffer to record into}
conpl eti onRout i ne: ProcPtr; {pointer to a conpletion routine}
i nterrupt Routi ne: ProcPtr; {pointer to an interrupt routine}
user Long: Longl nt; {for application’s use}
error: OSErr; {error returned after recording}
unusedl: Longl nt; {reserved}

END;

236

Field descriptions
i nRef Num

count

The reference number of the sound input device (as received from
the SPBOpenDevi ce function) from which the recording is to occur.

On input, the number of bytes to record. On output, the number of
bytes actually recorded. If this field specifies a longer recording time

Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

thanthenm | | i seconds field, thentheni | | i seconds field is
ignored on input.

mlliseconds On input, the number of milliseconds to record. On output, the
number of milliseconds actually recorded. If this field specifies a
longer recording time than the count field, then the count field is
ignored on input.

buf f er Lengt h The length of the buffer into which recorded sound data is placed.
The recording time specified by the count orni | | i seconds field
is truncated to fit into this length, if necessary.

bufferPtr A pointer to the buffer into which recorded data is placed. If this
field is NI L, then the count , mi | | i seconds, and buf f er Lengt h
fields are ignored and the recording will continue indefinitely until
the SPBSt opRecor di ng function is called. However, the data is not
stored anywhere, so setting this field to NI L is useful only if you
want to do something in a sound input interrupt routine but do not
want to save the recorded sound.

conpl eti onRouti ne
A pointer to a completion routine that is called when the recording
terminates as a result of your calling the SPBSt opRecor di ng
function or when the limit specified by the count or
m | | i seconds field is reached. The completion routine executes
only if SPBRecor d is called asynchronously and therefore is called
at interrupt time.

i nterrupt Routine
A pointer to a routine that is called by asynchronous recording
devices when their internal buffers are full. You can define a sound
input interrupt routine to modify uncompressed sound samples
before they are placed into the buffer specified in the buf f er Pt r
parameter. The interrupt routine executes only if SPBRecor d is
called asynchronously and therefore is called at interrupt time.

user Long A long integer available for the application’s own use. You can use
this field, for instance, to pass a handle to an application-defined
structure to the completion routine or to the interrupt routine.

error On exit, the error that occurred during recording. This field contains
a value greater than 0 while recording unless an error occurs, in
which case it contains a value less than 0 that indicates an operating
system error. Your application can poll this field to check on the
status of an asynchronous recording. If recording terminates without
an error, this field contains 0.

unusedl Reserved for use by Apple. You should always initialize this
field to 0.

Jabeuey 1ndu| punos -

Sound Input Manager Routines

This section describes the routines provided by the Sound Input Manager. You can use
these routines to

= record sounds using the sound recording dialog box

Sound Input Manager Reference 237

CHAPTER 3

Sound Input Manager

= open and close sound input devices

= record sounds directly from sound input devices

= get information about sound input devices and change device settings

= construct sound resource and file headers

= register sound input devices with the Sound Input Manager

= convert recording times between millisecond and byte values

= obtain information about the version of the Sound Input Manager that is running

The section “Application-Defined Routines” on page 263 describes the format of sound
input completion routines and sound input interrupt routines.

Recording Sounds

SndRecord

The Sound Input Manager provides two high-level sound input functions, SndRecor d
and SndRecor dToFi | e, for recording sound. These input routines are analogous to the
two Sound Manager functions SndPl ay and SndSt art Fi | ePl ay. By using these
high-level routines, you can be assured that your application presents a user interface
that is consistent with that displayed by other applications doing sound input. Both
SndRecor d and SndRecor dToFi | e attempt to record sound data from the sound input
hardware currently selected in the Sound In control panel.

238

You can use the SndRecor d function to record sound resources into memory.

FUNCTI ON SndRecord (filterProc: ProcPtr; corner: Point;
quality: OSType; VAR sndHandl e: Handl e):
CSErr;

filterProc
A pointer to an event filter function that determines how user actions in
the sound recording dialog box are filtered (similar tothefi | t er Proc
parameter specified in a call to the Mbdal Di al og procedure). By
specifying your own filter function, you can override or add to the
default actions of the items in the dialog box. Iffi | t er Proc isn’t NI L,
SndRecor d filters events by calling the function thatfi | t er Proc
points to.

cor ner The horizontal and vertical coordinates of the upper-left corner of the
sound recording dialog box (in global coordinates).

quality The desired quality of the recorded sound.

sndHandl e On entry, a handle to some storage space or NI L. On exit, a handle to a
valid sound resource (or unchanged, if the call did not execute
successfully).

Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

DESCRIPTION

The SndRecor d function records sound into memory. The recorded data has the
structure of aformat 1’ snd ’ resource and can later be played using the SndPl ay
function or can be stored as a resource. SndRecor d displays a sound recording dialog
box and is always called synchronously. Controls in the dialog box allow the user to start,
stop, pause, and resume sound recording, as well as to play back the recorded sound. The
dialog box also lists the remaining recording time and the current microphone sound
level.

The qual i t y parameter defines the desired quality of the recorded sound. Currently,
three values are recognized for the qual i t y parameter:

CONST
siBestQual ity = 'best’; {the best quality avail abl e}
siBetterQuality = "betr’; {a quality better than good}
si GoodQual ity = 'good’; {a good quality}

The precise meanings of these parameters are defined by the sound input device driver.
For Apple-supplied drivers, this parameter determines whether the recorded sound is to
be compressed, and if so, whether at a 6:1 or a 3:1 ratio. The quality si Best Qual ity
does not compress the sound and provides the best quality output, but at the expense of
increased memory use. The quality si Bet t er Qual i t y is suitable for most nonvoice
recording, and si GoodQual i ty is suitable for voice recording.

The sndHandl e parameter is a handle to some storage space. If the handle is NI L, the
Sound Input Manager allocates a handle of the largest amount of space that it can find in
your application’s heap and returns this handle in the sndHandl e parameter. The Sound
Input Manager resizes the handle when the user clicks the Save button in the sound
recording dialog box. If the sndHandl e parameter passed to SndRecor d is not NI L, the
Sound Input Manager simply stores the recorded data in the location specified by that
handle.

SPECIAL CONSIDERATIONS
Because the SndRecor d function moves memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SndRecor d function are

Trap macro Selector
_SoundDi spat ch $08040014

Sound Input Manager Reference 239

Jabeuey 1ndu| punos -

CHAPTER 3

Sound Input Manager

RESULT CODES
nokErr 0 No error
user Cancel edErr -128 User canceled the operation
si BadSoundl nDevi ce -221 Invalid sound input device
si UnknownQual ity -232 Unknown quality

SEE ALSO

See the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials for a
complete description of event filter functions.

SndRecordToFile

You can use SndRecor dToFi | e to record sound data into a file.

FUNCTI ON SndRecordToFile (filterProc: ProcPtr; corner: Point;
quality: OSType;
fRef Num Integer): OSErr;

filterProc
A pointer to a function that determines how user actions in the sound
recording dialog box are filtered.

cor ner The horizontal and vertical coordinates of the upper-left corner of the
sound recording dialog box (in global coordinates).

quality The desired quality of the recorded sound, as described on page 239.
f Ref Num The file reference number of an open file to save the audio data in.

DESCRIPTION

The SndRecor dToFi | e function works just like SndRecor d except that it stores the
sound input data into a file. The resulting file is in either AIFF or AIFF-C format and
contains the information necessary to play the file by using the Sound Manager’s
SndSt art Fi | ePl ay function. The SndRecor dToFi | e function is always called
synchronously.

Your application must open the file specified in the f Ref Numparameter before calling the
SndRecor dToFi | e function. Your application must close the file sometime after calling
SndRecor dToFi | e.

SPECIAL CONSIDERATIONS

Because the SndRecor dToFi | e function moves memory, you should not call it at
interrupt time.

240 Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for the SndRecor dToFi | e function are

Trap macro Selector
_SoundDi spat ch $07080014

nokErr 0 No error

user Cancel edErr -128 User canceled the operation
si BadSoundl nDevi ce =221 Invalid sound input device
si UnknownQual ity -232 Unknown quality

Opening and Closing Sound Input Devices

You can use the SPBOpenDevi ce function to open the default sound input device that
the user has selected in the Sound In control panel or to open a specific sound input
device. You must open a device before you can record from it by using SPBRecor d, but
the Sound Input Manager’s high-level routines automatically open the default sound
input device. You can close a sound input device by calling the SPBCl oseDevi ce
function.

SPBOpenDevice

DESCRIPTION

You can use the SPBOpenDevi ce function to open a sound input device.

FUNCTI ON SPBOpenDevi ce (devi ceName: Str255; perm ssion: |nteger;
VAR i nRef Num Longlint): OSErr;

devi ceName
The name of the sound input device to open, or the empty string if the
default sound input device is to be opened.

per m ssi on
A flag that indicates whether subsequent operations with that device are
to be read/write or read-only.

i nRef Num On exit, if the function is successful, a device reference number for the
open sound input device.

The SPBOpenDevi ce function attempts to open a sound input device having the name
indicated by the devi ceNane parameter. If SPBOpenDevi ce succeeds, it returns a
device reference number in the i nRef Numparameter. The per ni ssi on parameter
indicates whether subsequent operations with that device are to be read/write or
read-only. If the device is not already in use, read/write permission is granted; otherwise,

Sound Input Manager Reference 241

Jabeuey 1ndu| punos -

CHAPTER 3

Sound Input Manager

only read-only operations are allowed. To make any recording requests or to call the
SPBSet Devi cel nf o function, read/write permission must be available. Use these
constants to request the appropriate permission:

CONST
si ReadPer nm ssi on = 0; {open device for reading}
si Wi tePern ssion = 1, {open device for reading/witing}

You can request that the current default sound input device be opened by passing either
a zero-length string or a NI L string as the devi ceNamne parameter. If only one sound
input device is installed, that device is used. Generally you should open the default
device unless you specifically want to use some other device. You can get a list of the
available devices by calling the SPBGet | ndexedDevi ce function.

SPECIAL CONSIDERATIONS

Because the SPBOpenDevi ce function allocates memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for the SPBOpenDevi ce function are

Trap macro Selector
_SoundDi spat ch $05180014

noErr 0 No error
per nErr -54 Device already open for writing
si BadDevi ceNane -228 Invalid device name

SPBCloseDevice

DESCRIPTION

242

You can use the SPBCl oseDevi ce function to close a sound input device.
FUNCTI ON SPBCI oseDevi ce (i nRefNum Longlint): OSErr;

i nRef Num The device reference number of the sound input device to close.

The SPBC oseDevi ce function closes a device that was previously opened by
SPBOpenDevi ce and whose device reference number is specified in the
i nRef Numparameter.

Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

SPECIAL CONSIDERATIONS

Because the SPBC oseDevi ce function moves or purges memory, you should not call it
at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBCl oseDevi ce function are

Trap macro Selector
_SoundDi spat ch $021C0014

RESULT CODES

noErr 0 No error
si BadRef Num -229 Invalid reference number

Recording Sounds Directly From Sound Input Devices

The Sound Input Manager provides a number of routines that allow you to begin, pause,
resume, and stop recording directly from a sound input device. These low-level routines
do not display the sound recording dialog box to the user.

SPBRecord

You can use the SPBRecor d function to record audio data into memory, either
synchronously or asynchronously.

FUNCTI ON SPBRecord (inParanPtr: SPBPtr; asynchFlag: Bool ean):
OSErr;

i nPar anPt r
A pointer to a sound input parameter block.

asynchFl ag
A Boolean value that specifies whether the recording occurs
asynchronously (TRUE) or synchronously (FALSE).

You specify values and receive return values in the sound input parameter block.

Parameter block

- i nRef Num Longl nt A reference number of a sound input
device.

o count Longl nt The number of bytes of recording.

- mlliseconds Longl nt The number of milliseconds of
recording.

- buf f er Lengt h Longl nt The length of the buffer beginning at
bufferPtr.

Sound Input Manager Reference 243

Jabeuey 1ndu| punos -

244

CHAPTER 3

Sound Input Manager

N bufferPtr

- user Long
- error

Ptr A pointer to a buffer for sampled-sound
data.
- conpl eti onRout i ne ProcPtr A pointer to a completion routine.
- i nterrupt Routine ProcPtr A pointer to an interrupt routine.
Longl nt Free for application’s use.
CSEr r The error value returned after recording.
Longl nt Reserved.

5 unusedl

Field descriptions
i nRef Num

count

mlliseconds

buf fer Length

bufferPtr

The device reference number of the sound input device, as obtained
from the SPBOpenDevi ce function.

On input, the number of bytes to record. If this field indicates a
longer recording time than the m | | i seconds field, then the

m | | i seconds field is ignored. On output, this field indicates the
number of bytes actually recorded.

On input, the number of milliseconds to record. If this field indicates
a longer recording time than the count field, then the count field is
ignored. On output, this field indicates the number of milliseconds
actually recorded.

The number of bytes in the buffer specified by the buf fer Pt r
parameter. If this buffer length is too small to contain the amount of
sampled-sound data specified in the count and m | | i seconds
fields, then recording time is truncated so that the sampled-sound
data fits in the buffer.

A pointer to the buffer for the sampled-sound data, or NI L if you
wish to record sampled-sound data without saving it. On exit, this
buffer contains the sampled-sound data, which is interleaved for
stereo sound on a sample basis (or on a packet basis if the data is
compressed). This buffer contains only sampled-sound data, so if
you need a sampled sound header, you should set that up in a buffer
before calling SPBRecor d and then record into the buffer following
the sound header.

conpl eti onRout i ne

A pointer to a completion routine. This routine is called when the
recording terminates (either after you call the SPBSt opRecor di ng
function or when the prescribed limit is reached). The completion
routine is called only for asynchronous recording.

i nterrupt Routi ne

user Long

error

A pointer to an interrupt routine. The interrupt routine specified in
thei nt errupt Rout i ne field is called by asynchronous recording
devices when their internal buffers are full.

A long integer that your application can use to pass data to your
application’s completion or interrupt routines.

On exit, a value greater than 0 while recording unless an error
occurs, in which case it contains a value less than 0 that indicates an
operating system error. Your application can poll this field to check
on the status of an asynchronous recording. If recording terminates
without an error, this field contains 0.

Sound Input Manager Reference

DESCRIPTION

CHAPTER 3

Sound Input Manager

unusedl Reserved. You should set this field to 0 before calling SPBRecor d.

The SPBRecor d function starts recording into memory from a device specified in a
sound input parameter block. The sound data recorded is stored in the buffer specified
by the buf f er Pt r and buf f er Lengt h fields of the parameter block. Recording lasts the
longer of the times specified by the count and ni | | i seconds fields of the parameter
block, or until the buffer is filled. Recording is asynchronous if the asynchFl ag
parameter is TRUE and the specified sound input device supports asynchronous
recording.

If the buf f er Pt r field of the parameter block contains NI L, then the count ,

m | | i seconds, and buf f er Lengt h fields are ignored, and the recording continues
indefinitely until you call the SPBSt opRecor di ng function. In this case, the audio data
is not saved anywhere; this feature is useful only if you want to do something in your
interrupt routine and do not want to save the audio data. However, if the recording is
synchronous and buf f er Pt r is NI L, SPBRecor d returns the result code

si NoBuf f er Speci fi ed.

The SPBRecor d function returns the value that the er r or field of the parameter block
contains when recording finishes.

SPECIAL CONSIDERATIONS

You can call the SPBRecor d function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the SPBRecor d function are

Trap macro Selector
_SoundDi spat ch $03200014

nokErr 0 No error

si NoSoundl nHar dwar e -220 No sound input hardware available
si BadSoundl nDevi ce -221 Invalid sound input device

si NoBuf f er Speci fi ed -222 No buffer specified

si Devi ceBusyErr =227 Sound input device is busy

For an example of the use of the SPBRecor d function, see Listing 3-1.

Sound Input Manager Reference 245

Jabeuey 1ndu| punos -

CHAPTER 3

Sound Input Manager

SPBRecordToFile

246

You can use the SPBRecor dToFi | e function to record audio data into a file, either
synchronously or asynchronously.

FUNCTI ON SPBRecor dToFil e (fRef Num |Integer; inParanPtr: SPBPtr;
asynchFl ag: Bool ean): OSErr;

f Ref Num The file reference number of an open file in which to place the recorded
sound data.

i nPar anPt r
A pointer to a sound input parameter block.

asynchFl ag
A Boolean value that specifies whether the recording occurs
asynchronously (TRUE) or synchronously (FALSE).

Parameter block

> i nRef Num Longl nt A reference number of a sound input
device.

o count Longl nt The number of bytes of recording.

- mlliseconds Longl nt The number of milliseconds of
recording.

- compl eti onRout i ne ProcPtr A pointer to a completion routine.

- i nterrupt Routine ProcPtr Unused.

- user Long Longl nt Free for application’s use.

- error OSEr r The error value returned after recording.

- unusedl Longl nt Reserved.

Field descriptions

i nRef Num The device reference number of the sound input device, as obtained
from the SPBOpenDevi ce function.
count On input, the number of bytes to record. If this field indicates a

longer recording time than the mi | | i seconds field, then the
m | | i seconds field is ignored. On output, the number of bytes
actually recorded.

mlliseconds On input, the number of milliseconds to record. If this field indicates
a longer recording time than the count field, then the count field is
ignored. On output, the number of milliseconds actually recorded.

conpl eti onRouti ne
A pointer to a completion routine. This routine is called when the
recording terminates (after you call the SPBSt opRecor di ng
function, when the prescribed limit is reached, or after an error
occurs). The completion routine is called only for asynchronous
recording.

i nterrupt Routine
Unused. You should set this field to NI L before calling
SPBRecor dToFi | e.

Sound Input Manager Reference

DESCRIPTION

CHAPTER 3

Sound Input Manager

user Long A long integer that your application can use to pass data to your
application’s completion or interrupt routines.
error On exit, the error that occurred during recording. This field contains

the number 1 while recording unless an error occurs, in which case it
contains a value less than 0 that indicates an operating system error.
Your application can poll this field to check on the status of an
asynchronous recording. If recording terminates without an error,
this field contains 0.

unusedl Reserved. You should set this field to 0 before calling the
SPBRecor dToFi | e function.

The SPBRecor dToFi | e function starts recording from the specified device into a file.
The sound data recorded is simply stored in the file, so it is up to your application to
insert whatever headers are needed to play the sound with the Sound Manager. Your
application must open the file specified by the f Ref Numparameter with write access
before calling SPBRecor dToFi | e, and it must eventually close that file.

The fields in the parameter block specified by the i nPar anPt r parameter are identical to
the fields in the parameter block passed to the SPBRecor d function, except that the

buf f er Lengt h and buf f er Pt r fields are not used. The i nt er r upt Rout i ne field is
ignored by SPBRecor dToFi | e because SPBRecor dToFi | e copies data returned by the
sound input device driver to disk during the sound input interrupt routine, but you
should initialize this field to NI L.

The SPBRecor dToFi | e function writes samples to disk in the same format that they are
read in from the sound input device. If compression is enabled, then the samples written
to the file are compressed. Multiple channels of sound are interleaved on a sample basis
(or, for compressed sound data, on a packet basis). When you are recording 8-bit audio
data to an Al FF file, you must set the si TwosConpl emrent OnOf f flag to so that the data
is stored on disk in the two’s-complement format. If you don’t store the data in this
format, it sounds distorted when you play it back.

If any errors occur during the file writing process, recording is suspended. All File
Manager errors are returned through the function’s return value if the routine is called
synchronously. If the routine is called asynchronously and the completion routine is not
NI L, the completion routine is called and is passed a single parameter on the stack that
points to the sound input parameter block; any errors are returned in the er r or field of
the sound input parameter block.

The SPBRecor dToFi | e function returns the value that the er r or field of the parameter
block contains when recording finishes.

SPECIAL CONSIDERATIONS

Because the SPBRecor dToFi | e function moves or purges memory, you should not call
it at interrupt time.

Sound Input Manager Reference 247

Jabeuey 1ndu| punos -

CHAPTER 3

Sound Input Manager

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBRecor dToFi | e function are

Trap macro Selector
_SoundDi spat ch $04240014
RESULT CODES

noErr 0
per mkrr -54
si NoSoundl nHar dwar e -220
si BadSoundl nDevi ce -221
si HardDr i veTooS| ow -224

SPBPauseRecording

No error

Attempt to open locked file for writing
No sound input hardware available
Invalid sound input device

Hard drive too slow to record

You can use the SPBPauseRecor di ng function to pause recording from a sound input

device.

FUNCTI ON SPBPauseRecordi ng (i nRef Num Longlnt):

i NRef Num

CSErr;

The device reference number of the sound input device, as obtained from

the SPBOpenDevi ce function.

DESCRIPTION

The SPBPauseRecor di ng function pauses recording from the device specified by
the i nRef Numparameter. The recording must be asynchronous for this call to have

any effect.

SPECIAL CONSIDERATIONS

You can call the SPBPauseRecor di ng function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBPauseRecor di ng function are

Trap macro Selector

_SoundDi spat ch $02280014
RESULT CODES

noErr 0

si BadSoundl nDevi ce =221

248 Sound Input Manager Reference

No error
Invalid sound input device

CHAPTER 3

Sound Input Manager

SPBResumeRecording

You can use the SPBResuneRecor di ng function to resume recording from a sound
input device.

FUNCTI ON SPBResuneRecordi ng (i nRef Num Longlnt): OSErr;

i nRef Num The device reference number of the sound input device, as obtained from
the SPBOpenDevi ce function.

DESCRIPTION

The SPBResuneRecor di ng function resumes recording from the device specified by the
i nRef Numparameter. Recording on that device must previously have been paused by a
call to the SPBPauseRecor di ng function for SPBResunmeRecor di ng to have any effect.

SPECIAL CONSIDERATIONS
You can call the SPBResuneRecor di ng function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBResuneRecor di ng function are
Trap macro Selector
_SoundDi spat ch $022C0014

RESULT CODES

noErr 0 No error
si BadSoundl nDevi ce -221 Invalid sound input device

SPBStopRecording

You can use the SPBSt opRecor di ng function to end a recording from a sound input
device.

FUNCTI ON SPBSt opRecordi ng (i nRef Num Longlint): OSErr;

i nRef Num The device reference number of the sound input device, as obtained from
the SPBOpenDevi ce function.

DESCRIPTION

The SPBSt opRecor di ng function stops recording from the device specified by the
i nRef Numparameter. The recording must be asynchronous for SPBSt opRecor di ng

Sound Input Manager Reference 249

Jabeuey 1ndu| punos -

CHAPTER 3

Sound Input Manager

to have any effect. When you call SPBSt opRecor di ng, the sound input completion
routine specified in the conpl et i onRout i ne field of the sound input parameter block
is called and the er r or field of that parameter block is set to abort Er r . If you are
writing a device driver, you will receive aKi | | | OSt at us call. See the section “Writing
a Sound Input Device Driver” beginning on page 223 for more information.

SPECIAL CONSIDERATIONS
You can call the SPBSt opRecor di ng function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBSt opRecor di ng function are

Trap macro Selector
_SoundDi spat ch $02300014

RESULT CODES

nokErr 0 No error
si BadSoundl nDevi ce -221 Invalid sound input device

SPBGetRecordingStatus

You can use SPBGet Recor di ngSt at us to obtain recording status information about a
sound input device.

FUNCTI ON SPBCet Recor di ngSt at us (i nRef Num Longl nt;
VAR recordi ngSt atus: |nteger;
VAR neterLevel : Integer;
VAR t ot al Sanpl esToRecord: Longlnt;
VAR nunber Of Sanpl esRecor ded: Longl nt;
VAR t ot al MsecsToRecord: Longlnt;
VAR nunber OF MsecsRecorded: Longlnt):
CSErr;

i nRef Num The device reference number of the sound input device, as obtained from
the SPBOpenDevi ce function.

recor di ngSt at us
The status of the recording. While the input device is recording, this
parameter is set to a number greater than 0. When a recording terminates
without an error, this parameter is set to 0. When an error occurs during
recording or the recording has been terminated by a call to the
SPBSt opRecor di ng function, this parameter is less than 0 and contains
an error code.

250 Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

net er Level
The current input signal level. This level ranges from 0 to 255.

t ot al Sanpl esToRecord
The total number of samples to record, including those samples
already recorded.

nunber O Sanpl esRecor ded
The number of samples already recorded.

t ot al MsecsToRecor d
The total duration of recording time, including recording time
already elapsed.

nunber Of MsecsRecor ded
The amount of recording time that has elapsed.

DESCRIPTION

The SPBGet Recor di ngSt at us function returns, in its second through seventh
parameters, information about the recording on the device specified by the i nRef Num
parameter.

SPECIAL CONSIDERATIONS
You can call the SPBGet Recor di ngSt at us function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBGet Recor di ngSt at us function are

Trap macro Selector
_SoundDi spat ch $0E340014

RESULT CODES

noEr r 0 No error
si BadSoundl nDevi ce -221 Invalid sound input device

Manipulating Device Settings

You can use the two functions SPBGet Devi cel nf o and SPBSet Devi cel nf o to read
and change the settings of a sound input device.

Sound Input Manager Reference 251

Jabeuey 1ndu| punos -

CHAPTER 3

Sound Input Manager

SPBGetDevicelnfo

You can use the SPBGet Devi cel nf o function to get information about the settings of a
sound input device.

FUNCTI ON SPBCet Devi cel nfo (i nRef Num Longlnt; infoType: OSType;
i nfoData: Ptr): OSErr;

i nRef Num The device reference number of the sound input device, as obtained from
the SPBOpenDevi ce function.

i nfoType A sound input device information selector that specifies the type of
information you need.

i nfoData A pointer to a buffer in which information should be returned. This buffer
must be large enough for the type of information specified in the
i nf oType parameter.

DESCRIPTION

The SPBGet Devi cel nf o function returns information about the sound input device
specified by the i nRef Numparameter. The type of information you want is specified in
the i nf oType parameter. The available sound input device information selectors are
listed in “Sound Input Device Information Selectors” beginning on page 229. The
information is copied into the buffer specified by the i nf oDat a parameter.

SPECIAL CONSIDERATIONS

Because the SPBGet Devi cel nf o function might move memory, you should not call it at
interrupt time. Check the selector description of the selector you want to use to see if it
moves memory before calling the SPBGet Devi cel nf o function. Most of the selectors do
not move memory and are therefore safe to use at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBGet Devi cel nf o function are

Trap macro Selector
_SoundDi spat ch $06380014

RESULT CODES
nokErr 0 No error
si BadSoundl nDevi ce -221 Invalid sound input device
si Unknownl nf oType -231 Unknown type of information

252 Sound Input Manager Reference

SEE ALSO

CHAPTER 3

Sound Input Manager

Listing 3-2 on page 222 shows an example that uses the SPBGet Devi cel nf o function to
get the name of a sound input device driver.

SPBSetDevicelnfo

DESCRIPTION

You can use the SPBSet Devi cel nf o function to set information in a sound input
device.

FUNCTI ON SPBSet Devi cel nfo (i nRef Num Longlnt; infoType: OSType;
infoData: Ptr): OSErr;

i nRef Num The device reference number of the sound input device, as obtained from
the SPBOpenDevi ce function.

i nfoType Asound input device information selector that specifies the type of
information you need.

i nfoData A pointer to a buffer. This buffer can contain information on entry, and
information might be returned on exit. This buffer must be large enough
for the type of information specified in the i nf oType parameter, and the
data in the buffer must be set to appropriate values if information needs to
be passed in to the SPBSet Devi cel nf o function.

The SPBSet Devi cel nf o function sets information about the sound input device
specified by the i nRef Numparameter, based on the data in the buffer specified by the
i nf oDat a parameter.

The type of setting you wish to change is specified in the i nf oType parameter. The
sound input device information selectors are listed in “Sound Input Device Information
Selectors” beginning on page 229.

SPECIAL CONSIDERATIONS

Because the SPBSet Devi cel nf o function might move memory, you should not call it at
interrupt time. Check the selector description of the selector you want to use to see if it
moves memory before calling the SPBGet Devi cel nf o function. Most of the selectors do
not move memory and are therefore safe to use at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBSet Devi cel nf o function are

Trap macro Selector
_SoundDi spat ch $063C0014

Sound Input Manager Reference 253

Jabeuey 1ndu| punos -

CHAPTER 3

Sound Input Manager

RESULT CODES
nokErr 0 No error
per nerr 54 Attempt to open locked file for writing
si BadSoundl nDevi ce -221 Invalid sound input device
si Devi ceBusyErr =227 Sound input device is busy
si Unknownl nf oType -231 Unknown type of information

Constructing Sound Resource and File Headers

The Sound Input Manager provides two functions, Set upSndHeader and
Set upAl FFHeader , to help you set up headers for sound resources and sound files.

SetupSndHeader

You can use the Set upSndHeader function to construct a sound resource containing
sampled sound that can be passed to the SndPl ay function.

FUNCTI ON Set upSndHeader (sndHandl e: Handl e;
nuntChannel s: | nteger;
sanpl eRat e: Fi xed,;
sampl eSi ze: I nteger;
conpressi onType: OSType;
baseFrequency: | nteger;
nunByt es: Longl nt;
VAR headerLen: Integer): OSErr;

sndHandl e A handle to a block of memory that is at least large enough to store the
sound resource header information. The handle is not resized in any way
upon successful completion of Set upSndHeader . The Set upSndHeader
function simply fills the relocatable block specified by this parameter with
the header information needed for a format 1’ snd ' resource, including
the sound resource header, the list of sound commands, and a sampled
sound header. It is your application’s responsibility to append the desired
sampled-sound data.

nunmChannel s
The number of channels for the sound; one channel is equivalent to
monaural sound and two channels are equivalent to stereo sound.

sanpl eRat e
The rate at which the sound was recorded. The sample rate is declared as a
Fi xed data type. In order to accommodate sample rates greater than
32 kHz, the most significant bit is not treated as a sign bit; instead, that bit
is interpreted as having the value 32,768.

sanpl eSi ze
The sample size for the original sound (that is, bits per sample).

254 Sound Input Manager Reference

DESCRIPTION

CHAPTER 3

Sound Input Manager

conpressi onType
The compression type for the sound (" NONE' ,’ MAC3’' ,’ MACE’ , or other
third-party types).

baseFr equency
The base frequency for the sound, expressed as a MIDI note value.

nunByt es The number of bytes of audio data that are to be stored in the handle.
(This value is not necessarily the same as the number of samples in
the sound.)

header Len On exit, the size (in bytes) of the’ snd ' resource header that is created.
In no case will this length exceed 100 bytes. This field allows you to put
the audio data right after the header in the relocatable block specified by
the sndHandl| e parameter. The value returned depends on the type of
sound header created.

The Set upSndHeader function creates a format1’ snd ' resource for a sampled
sound. The resource contains a sound resource header that links the sound to the
sampled synthesizer, a single sound command (a buf f er Cmd command to play the
accompanying data), and a sampled sound header. You can use Set upSndHeader to
construct a sampled sound header that can be passed to the Sound Manager’s SndPl ay
function or stored asan’ snd ’ resource. After calling the Set upSndHeader function,
your application should place the sampled-sound data directly after the sampled sound
header so that, in essence, the sampled sound header’s final field contains the

sound data.

The sampled sound is in one of three formats depending on several of the parameters
passed. Table 3-1 shows how Set upSndHeader determines what kind of sound header
to create.

Table 3-1 The sampled sound header format used by Set upSndHeader

compressionType numChannels sampleSize Sampled sound header format
" NONE 1 8 SoundHeader

" NONE 1 16 Ext SoundHeader

" NONE’ 2 any Ext SoundHeader

not’ NONE' any any CnpSoundHeader

A good way to use this function is to create a handle in which you want to store a
sampled sound, then call Set upSndHeader with the nunByt es parameter set to O to
see how much room the header for that sound will occupy and hence where to append
the audio data. Then record the data into the handle and call Set upSndHeader again
with nunByt es set to the correct amount of sound data recorded. The handle filled out
in this way can be passed to SndPI ay to play the sound.

Sound Input Manager Reference 255

Jabeuey 1ndu| punos -

CHAPTER 3

Sound Input Manager

SPECIAL CONSIDERATIONS
You cannot call the Set upSndHeader function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Set upSndHeader function are
Trap macro Selector
_SoundDi spat ch $0D480014

RESULT CODES

nokErr 0 No error
si I nval i dConpr essi on -223 Invalid compression type

SEE ALSO

For an example that uses the Set upSndHeader function to set up a sound header before
recording, see Listing 3-1 on page 217.

SetupAlFFHeader

You can use the Set upAl FFHeader function to set up a file that can subsequently be
played by SndSt art Fi | ePl ay.

FUNCTI ON Set upAl FFHeader (fRefNum | nteger;
nuntChannel s: | nteger;
sanpl eRat e: Fi xed,;
sanpl eSi ze: |nteger;
conpressi onType: OSType;
nunByt es: Longlnt;
nunfranes: Longlint): OSErr;

f Ref Num Afile reference number of a file that is open for writing.

nuntChannel s
The number of channels for the sound; one channel is equivalent to
monaural sound and two channels are equivalent to stereo sound.

sanpl eRat e
The rate at which the sound was recorded. The sample rate is declared as a
Fi xed data type. In order to accommodate sample rates greater than 32
kHz, the most significant bit is not treated as a sign bit; instead, that bit is
interpreted as having the value 32,768.

sanpl eSi ze
The sample size for the original sound (that is, bits per sample).

256 Sound Input Manager Reference

DESCRIPTION

CHAPTER 3

Sound Input Manager

conpressi onType
The compression type for the sound (" NONE' ,’ MAC3’' ,’ MACE’ , or other
third-party types).

nunByt es The number of bytes of audio data that are to be stored in the Common
Chunk of the AIFF or AIFF-C file.

nunFrames The number of sample frames for the sample sound. If you are using a
compression type defined by Apple, you can pass 0 in this field and the
appropriate value for this field will be computed automatically.

The Set upAl FFHeader function creates an AIFF or AIFF-C file header, depending on
the parameters passed to it:

= Uncompressed sounds of any type are stored in AIFF format (that is, the
conpr essi onType parameter is’ NONE').

= Compressed sounds of any type are stored in AIFF-C format (that is, the
conpr essi onType parameter is different from’ NONE').

Note

The Set upAl FFHeader function might format a sound file as an AIFF
file even if the File Manager file type of a file is” Al FC . The Sound
Manager will still play such files correctly. O

Jabeuey 1ndu| punos -

The AIFF header information is written starting at the current file position of the file
specified by the f Ref Numparameter, and the file position is left at the end of the header
upon completion. The Set upAl FFHeader function creates a Form Chunk, a Format
Version Chunk, a Common Chunk, and a Sound Data chunk, but it does not put any
sound data at the end of the Sound Data Chunk.

A good way to use this routine is to create a file that you want to store a sound in, then
call Set upAl FFHeader with nunByt es set to 0 to position the file to be ready to write
the audio data. Then record the data to the file, set the file position to the beginning of the
file, and call Set upAl FFHeader again with nunByt es set to the correct amount of
sound data recorded. The file created in this way can be passed to the

SndSt art Fi | ePl ay function to play the sound.

SPECIAL CONSIDERATIONS

If recording produces an odd number of bytes of sound data, you must add a pad byte to
make the total number of bytes even.

Because the Set upAl FFHeader function moves memory, you should not call it at
interrupt time.

Sound Input Manager Reference 257

CHAPTER 3

Sound Input Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for the Set upAl FFHeader function are

Trap macro Selector
_SoundDi spat ch $0B4C0014

nokErr 0 No error
si I nval i dConpr essi on -223 Invalid compression type

Registering Sound Input Devices

Sound input device drivers must call the SPBSi gnl nDevi ce function to register with
the Sound Input Manager before they can use its sound input services. You might call this
routine at system startup time from within an extension to install a sound input device
driver. Your application can generate a list of registered sound input devices by using the
SPBGet | ndexedDevi ce function. You can cancel the registration of your driver, thus
removing it from the Sound control panel and making it inaccessible, by calling the
SPBSi gnQut Devi ce function.

SPBSigninDevice

DESCRIPTION

258

You can register a sound input device by calling the SPBSi gnl nDevi ce function.

FUNCTI ON SPBSi gnl nDevi ce (devi ceRef Num | nt eger;
devi ceNane: Str255): OSErr;

devi ceRef Num
The device driver reference number of the sound input device to register
with the Sound Input Manager.

devi ceNane

The device’s name as it is to appear to the user in the Sound In control
panel (which is not the name of the driver used by the Device Manager).

The SPBSi gnl nDevi ce function registers with the Sound Input Manager the device
whose driver reference number is devi ceRef Num

The devi ceNane parameter specifies this device’s name as it is to appear to the user in
the Sound In control panel (which is not the name of the driver itself). Accordingly, the
name should be as descriptive as possible. You should call SPBSi gnl nDevi ce after you
have already opened your driver by calling normal Device Manager routines.

Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

SPECIAL CONSIDERATIONS

Because the SPBSi gnl nDevi ce function moves or purges memory, you should not call
it at interrupt time. You can, however, call it at system startup time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBSi gnl nDevi ce function are

Trap macro Selector
_SoundDi spat ch $030C0014

RESULT CODES

nokErr 0 No error
si BadSoundl nDevi ce =221 Invalid sound input device

SPBGetIndexedDevice

You can use the SPBGet | ndexedDevi ce function to help generate a list of sound input
devices.

FUNCTI ON SPBCet | ndexedDevi ce (count: |nteger;
VAR devi ceNane: Str255;
VAR devi cel conHandl e: Handl e) :
OSErr;

count The index number of the sound input device you wish to obtain
information about.

devi ceName
On exit, the name of the sound input device specified by the count
parameter.

devi cel conHandl e
On exit, a handle to the icon of the sound input device specified by the
count parameter. The memory for this icon is allocated automatically, but
your application must dispose of it.

DESCRIPTION

The SPBGet | ndexedDevi ce function returns the name and icon of the device whose
index is specified in the count parameter. Your application can create a list of sound
input devices by calling this function with a count starting at 1 and incrementing it by
1 until the function returns si BadSoundI nDevi ce.

Because the Sound In control panel allows the user to select a sound input device, most
applications should not use this function. Your application might need to use this
function if it allows the user to record from more than one sound input device at once.

Sound Input Manager Reference 259

Jabeuey 1ndu| punos -

CHAPTER 3

Sound Input Manager

SPECIAL CONSIDERATIONS

Because the SPBGet | ndexedDevi ce function allocates memory, you should not call it
at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBGet | ndexedDevi ce function are

Trap macro Selector
_SoundDi spat ch $05140014

RESULT CODES

nokErr 0 No error
si BadSoundl nDevi ce =221 Invalid sound input device

SPBSignOutDevice

You can use the SPBSi gnQut Devi ce function to cancel the registration of a device you
have previously registered with the SPBSi gnl nDevi ce function.

FUNCTI ON SPBSi gnQut Devi ce (devi ceRef Num Integer): OSErr;

devi ceRef Num
The driver reference number of the device you wish to sign out.

DESCRIPTION

The SPBSi gnQut Devi ce function cancels the registration of the device whose driver
reference number is devi ceRef Num the device is unregistered from the Sound Input
Manager’s list of available sound input devices and no longer appears in the Sound In
control panel.

Ordinarily, you should not need to use the SPBSi gnCut Devi ce function. You might use
it if your device driver detects that a sound input device is not functioning correctly or
has been disconnected.

SPECIAL CONSIDERATIONS

Because the SPBSi gnQut Devi ce function moves or purges memory, you should not call
it at interrupt time.

260 Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBSi gnQut Devi ce function are

Trap macro Selector
_SoundDi spat ch $01100014

RESULT CODES
nokErr 0 No error
si BadSoundl nDevi ce -221 Invalid sound input device
si Devi ceBusyErr =227 Sound input device is busy

Converting Between Milliseconds and Bytes

The Sound Input Manager provides two routines that allow you to convert between
millisecond and byte recording values.

SPBMilliSecondsToBytes

You can use the SPBM | | i SecondsToByt es function to determine how many bytes a
recording of a certain duration will use.

FUNCTI ON SPBM I | i SecondsToBytes (i nRef Num Longlnt;
VAR m | liseconds: Longlnt): OSErr;

i nRef Num The device reference number of the sound input device, as obtained from
the SPBOpenDevi ce function.

mlliseconds
On entry, the duration of the recording in milliseconds. On exit, the
number of bytes that sampled-sound data would occupy for a recording
of the specified duration on the device specified by the i nRef Num
parameter.

DESCRIPTION

The SPBM | | i SecondsToByt es function reports how many bytes are required to store
a recording of duration ni | | i seconds, given the input device’s current sample rate,
sample size, number of channels, and compression factor.

SPECIAL CONSIDERATIONS
You can call the SPBM | | i SecondsToByt es function at interrupt time.

Sound Input Manager Reference 261

Jabeuey 1ndu| punos -

CHAPTER 3

Sound Input Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBM | | i SecondsToByt es function are

Trap macro Selector
_SoundDi spat ch $04400014

RESULT CODES

nokErr 0 No error
si BadSoundl nDevi ce -221 Invalid sound input device

SPBBytesToMilliSeconds

You can use the SPBByt esToM | | i Seconds function to determine the maximum
duration of a recording that can fit in a buffer of a certain size.

FUNCTI ON SPBByt esToM I |i Seconds (i nRef Num Longl nt;
VAR byt eCount: Longlnt): OSErr;

i nRef Num The device reference number of the sound input device, as obtained from
the SPBOpenDevi ce function.

byt eCount On entry, a value in bytes. On exit, the number of milliseconds of
recording on the device specified by the i nRef Numparameter that would
be necessary to fill a buffer of such a size.

DESCRIPTION

The SPBByt esToM | | i Seconds function reports how many milliseconds of audio data
can be recorded in a buffer that is byt eCount bytes long, given the input device’s
current sample rate, sample size, number of channels, and compression factor.

SPECIAL CONSIDERATIONS
You can call the SPBByt esToM | | i Seconds function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBByt esToM | | i Seconds function are

Trap macro Selector
_SoundDi spat ch $04440014

RESULT CODES

noErr 0 No error
si BadSoundl nDevi ce -221 Invalid sound input device

262 Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

Obtaining Information

The SPBVer si on function allows you to determine the version of the Sound
Input Manager.

SPBVersion

You can use the SPBVer si on function to determine the version of the sound input tools
available on a machine.

FUNCTI ON SPBVer si on: NumVer si on;

DESCRIPTION

The SPBVer si on function returns a version number that contains the same information
as in the first 4 bytes of a’ ver s’ resource or a NumVer si on data type. For a description
of the version record, see the chapter “Sound Manager” in this book.

SPECIAL CONSIDERATIONS
You can call the SPBVer si on function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBVer si on function are

Trap macro Selector
_SoundDi spat ch $00000014

SEE ALSO

For a complete discussion of ' ver s’ resources, see the chapter “Finder Interface” in
Inside Macintosh: Macintosh Toolbox Essentials.

Application-Defined Routines

This section describes the routines that your application or device driver might need to
define. Your application can define a sound input completion routine to perform an
action when recording finishes, and your application can define a sound input interrupt
routine to manipulate sound data during recording.

Sound Input Manager Reference 263

Jabeuey 1ndu| punos -

CHAPTER 3

Sound Input Manager

Sound Input Completion Routines

You can specify a sound input completion routine in the conpl et i onRout i ne field of a
sound input parameter block that your application uses to initiate asynchronous
recording directly from a device.

MySICompletionRoutine

DESCRIPTION

A sound input completion routine has the following syntax:
PROCEDURE MySI Conpl eti onRoutine (inParanPtr: SPBPtr);

i nPar anPt r
A pointer to the sound input parameter block that was used to initiate an
asynchronous recording.

The Sound Input Manager executes your sound input completion routine after recording
terminates either because your application has called the SPBSt opRecor di ng function
or because the prescribed limit is reached. The completion routine is called only for
asynchronous recording.

A common use of a sound input completion routine is to set a global variable that alerts
the application that it should dispose of a sound input parameter block that it had
allocated for an asynchronous sound recording.

SPECIAL CONSIDERATIONS

264

Because a sound input completion routine is executed at interrupt time, it should not
allocate, move, or purge memory (either directly or indirectly) and should not depend on
the validity of handles to unlocked blocks.

If your sound input completion routine accesses your application’s global variables, it
must ensure that the A5 register contains the address of the boundary between the
application global variables and the application parameters. Your application can pass
the value of the A5 register to the sound input completion routine in the user Long field
of the sound input parameter block. For more information on ensuring the validity of the
Ab register, see the chapter “Memory Management Utilities” in Inside Macintosh: Memory:.

Your sound input completion routine can determine whether an error occurred during
recording by examining the er r or field of the sound input parameter block specified by
i nPar anPt r . Your sound input completion routine can change the value of that field to
alert the application that some other error has occurred.

Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Because a sound input completion routine is called at interrupt time, it must preserve all
registers other than A0O-A1 and D0-D2.

noErr 0 No error

abort Err =27 Asynchronous recording was cancelled
si NoSoundI nHar dwar e -220 No sound input hardware available

si BadSoundl nDevi ce -221 Invalid sound input device

si NoBuf f er Speci fi ed —222 No buffer specified

si Devi ceBusyErr =227 Sound input device is busy

Sound Input Interrupt Routines

You can specify a sound input interrupt routine in the i nt er r upt Rout i ne field of
the sound input parameter block that your application uses to initiate asynchronous
recording directly from a device. Because the SPBRecor dToFi | e function uses sound
input interrupt routines to enable it to record sound data to disk during recording, you
can use sound input interrupt routines only with the SPBRecor d function.

MysSlInterruptRoutine

DESCRIPTION

A sound input interrupt routine has the following syntax:

PROCEDURE MySI | nt er r upt Rout i ne;

A sound input device driver executes the sound input interrupt routine associated with
an asynchronous sound recording whenever the driver’s internal buffers are full. The
internal buffers contain raw samples taken directly from the input device. The interrupt
routine can thus modify the samples in the buffer in any way it requires. After your
sound input interrupt routine finishes processing the data, the sound input device
driver compresses the data (if compression is enabled) and copies the data into your
application’s buffer.

SPECIAL CONSIDERATIONS

If your sound input interrupt routine accesses your application’s global variables, it must
ensure that the A5 register contains the address of the boundary between the application
global variables and the application parameters. Your application can pass the value of
the A5 register to the sound input interrupt routine in the user Long field of the sound
input parameter block. For more information on ensuring the validity of the A5 register,
see the chapter “Memory Management Utilities” in Inside Macintosh: Memory.

Sound Input Manager Reference 265

Jabeuey 1ndu| punos -

CHAPTER 3

Sound Input Manager

ASSEMBLY-LANGUAGE INFORMATION

266

Sound input interrupt routines are sometimes written in assembly language to maximize
real-time performance in recording sound. On entry, registers are set up as follows:

Registers on entry

A0 Address of the sound parameter block passed to SPBRecor d
Al Address of the start of the sample buffer

DO Peak amplitude for sample buffer if metering is on

D1 Size of the sample buffer in bytes

If you write a sound input interrupt routine in a high-level language like Pascal or C, you
might need to write inline code to copy variables from the registers into local variables
that your application defines.

Because a sound input interrupt routine is called at interrupt time, it must preserve
all registers.

Sound Input Manager Reference

CHAPTER 4

Sound Components

This chapter describes sound components, which are code modules used by the

Sound Manager to manipulate audio data or to communicate with sound output devices.
Current versions of the Sound Manager allow you to write two kinds of

sound components:

= compression and decompression components (codecs), which allow you to implement
audio data compression and decompression algorithms different from those provided
by the Sound Manager’s MACE (Macintosh Audio Compression and Expansion)
capabilities

= sound output device components, which send audio data directly to sound output
devices

You need to read this chapter only if you are developing a sound output device or if you
want to implement a custom compression and decompression scheme for audio data. For
example, you might write a codec to handle 16-bit audio data compression and
decompression. (The MACE algorithms currently compress and expand only 8-bit data at
ratios of 3:1 and 6:1.)

IMPORTANT

Sound components are loaded and managed by the Sound Manager
and operate transparently to applications. Applications that want to
create sounds must use Sound Manager routines to do so. The routines
described in this chapter are intended for use exclusively by sound
components. a

To use this chapter, you should already be familiar with the general operation of the
Sound Manager, as described in the chapter “Introduction to Sound on the Macintosh” in
this book. Because sound components are components, you also need to be familiar with
the Component Manager, described in Inside Macintosh: More Macintosh Toolbox. If you are
developing a sound output device component, you need to be familiar with the process
of installing a driver and handling interrupts created by your hardware device. See Inside
Macintosh: Devices for complete information on devices and device drivers.

If you're developing a sound output device, you might also need to write a control panel
extension that installs a custom subpanel into the Sound control panel. For example, your

CHAPTER 4

Sound Components

subpanel could allow the user to set various characteristics of the sound your output
device is creating. For complete information on writing control panel subpanels, see the
chapter “Control Panel Extensions” in Inside Macintosh: Operating System Utilities.

This chapter begins with a general description of sound components and how they are
managed by the Sound Manager. Then it provides instructions on how to write a sound
component. The section “Sound Components Reference” beginning on page 286
describes the sound component selectors your component might need to handle and the
component-defined routines that your sound component should call in response to those
the sound component selectors. It also describes a small number of Sound Manager
utility routines that your sound component can use.

Note
This chapter provides all source code examples and reference materials
inC. O

About Sound Components

268

A sound component is a component that works with the Sound Manager to manipulate
audio data or to communicate with a sound output device. Sound components provide
the foundation for the modular, device-independent sound architecture introduced with
Sound Manager version 3.0. This section provides a description of sound components
and shows how they are managed by the Sound Manager. For specific information on
creating a sound component, see “Writing a Sound Component” beginning on page 273.

Sound Component Chains

Prior to version 3.0, the Sound Manager performed all audio data processing internally,
using its own filters to decompress audio data, convert sample rates, mix separate sound
channels, and so forth. This effectively rendered it difficult, if not impossible, to add other
data modification filters to process the audio data. (The now-obsolete method of
installing a sound modifier with the SndAddModi f i er routine did not work reliably.)
More importantly, the Sound Manager was responsible for managing the entire stream of
audio data, from the application to the available sound-producing audio hardware. This
made it very difficult to support new sound output devices.

In versions 3.0 and later, the Sound Manager provides a new audio data processing
architecture based on components, illustrated in Figure 4-1. The fundamental idea is that
the process of playing a sound can be divided into a number of specific steps, each of
which has well-defined inputs and outputs. Figure 4-1 shows the steps involved in
playing an 11 kHz compressed sampled sound resource on a Macintosh Il computer.

An application sends the compressed sound data to the Sound Manager, which
constructs an appropriate sound component chain that links the unprocessed audio
data to the sound components required to modify the data into a form that can be sent to
the current sound output device. As you can see in Figure 4-1, the Sound Manager links

About Sound Components

CHAPTER 4

Sound Components

together sound components that, in sequence, expand the compressed sound data into
audio samples, convert the sample rate from 11 kHz to 22 kHz, mix those samples with
samples from any other sound channels that might be playing, and then write the
samples to the available audio hardware (in this case, the FIFO buffer in the Apple Sound
Chip).

IMPORTANT
The Sound Manager itself converts both wave-table data and
square-wave data into sampled-sound data before sending the data
into a chain of sound components. As a result, sound components need
to be concerned only with sampled-sound data. a

Figure 4-1 The component-based sound architecture

o=

Sound :> :> Output device >>
Source component >|<])
Manager (ASC driver)

component

'

Expansion Rate Apple
)| ||conversion || ||\ ier =

[

component
- Audio
Application hardware
il Al ol
11 kHz Decompressed 22 kHz 22 kHz
compressed audio samples audio samples decompressed
sound sound

'snd ' resource

The components in a component chain may vary, depending both on the format of the
audio data sent to the Sound Manager by an application and on the capabilities of

the current sound output device. The chain shown in Figure 4-1 is necessary to handle
the compressed 11 kHz sound because the Apple Sound Chip can handle only 22 kHz
noncompressed sampled-sound data. Other sound output devices may be able to do
more processing internally, thereby reducing the amount of processing required by the
sound component chain. For instance, a DSP-based sound card might be capable of
converting sample rates itself. In that case, the Sound Manager would not install the rate
conversion component into the sound component chain. The resulting sound component
chain is shown in Figure 4-2.

About Sound Components 269

sjuauodwo) punos -

CHAPTER 4

Sound Components

Figure 4-2 A component chain for audio hardware that can convert sample rates

Application

: Output device
Expansion Apple
|:> Sound |:> Source |:> . pponent |::>(Mixer |:> component |:>

Manager (DSP driver)

Audio
hardware

270

The principal function of a sound component is to transfer data from the source down the
chain of sound components while performing some specific modification on the data. It
does this by getting a block of data from its source component (the component that
immediately precedes it in the chain). The sound component then processes that data and
stores it in the component’s own private buffers. The next component can then get that
processed data, perform its own modifications, and pass the data to the next component
in the chain. Eventually, the audio data flows through the Apple Mixer (described in the
next section) to the sound output device component, which sends the data to the current
sound output device.

Notice that only the sound output device component communicates directly with the
sound output hardware. This insulates all other sound components from having to know
anything about the current sound output device. Rather, those components (sometimes
called utility components) can simply operate on a stream of bytes.

The Sound Manager provides sound output device components for all sound output
devices built into Macintosh computers. It also provides utility components for many
typical kinds of audio data manipulation, including

= sample rate conversion

= audio data expansion

= sample size conversion

= format conversion (for example, converting offset binary data to two’s complement)

Currently, you can write sound output device components to handle communication
with your own sound output devices. You can also write utility components to handle
custom compression and expansion schemes. You cannot currently write any other kind
of utility component.

The Apple Mixer

As you’ve seen, most sound components take a single source of audio data and modify
it in some way, thereby producing a single output stream of audio data. There is one
special sound component, known as the Apple Mixer component (or, more briefly, the
Apple Mixer), that is able to handle more than one input data stream. Its function is
precisely to mix together all open channels of sound data into a single output stream,
as shown in Figure 4-3.

About Sound Components

CHAPTER 4

Sound Components

Figure 4-3 Mixing multiple channels of sound

. Rate @ Output device
N Sound Expansion g Apple

Application 1 Manager | Source |:>(component = gg:ﬁ‘ﬁ;ﬁg’rﬂ %(Mixer §|:> (;Osnépgﬂ\?grt)

Rate H

—)| Source | >| || conversion ||/
component I<])
Application 2
Audio
hardware

Expansion
>| Source
I:> component ‘

The Apple Mixer has a more general function also, namely to construct the sound
component chain required to process audio data from a given sound source into a format
that can be handled by a particular sound output device. The Apple Mixer always feeds
its output directly to the sound output device component, which sends the data to its
associated audio hardware. After creating the component chain, the Apple Mixer assigns
it a source 1D, a 4-byte token that provides a unique reference to the component chain.
The Apple Mixer is actually created by the sound output device component, when that
component calls the Sound Manager’s OpenM xer SoundConponent function.

In addition to creating sound component chains and mixing their data, the Apple Mixer
can control the volume and stereo panning of a particular sound channel. Some sound
output devices might be able to provide these capabilities as well. Indeed, some sound
output devices might even be able to mix the data in multiple sound channels. In those
cases, the sound output device component can call the OpenM xer SoundConponent
function once for each sound source it wants to manage. The result is a separate instance
of the Apple Mixer for each sound source, as shown in Figure 4-4,

About Sound Components 271

sjuauodwo) punos -

CHAPTER 4

Sound Components

Figure 4-4 A sound output device component that can mix sound channels

Application 2

Application 1

— [>|Source|—>

[>|Source |l > ':‘A?fé? N

Output device
sound i[5 oyrce | >(Apple component

Manager Mixer

(DSP driver)

Audio
(hardware

Rate

conversion ||

component

Apple —)

Mixer

< >

272

The sound output device component can instruct each instance of the Apple Mixer to
pass all the sound data through unprocessed, thereby allowing the output device to
perform the necessary processing and mixing. In this case, the Apple Mixer consumes
virtually no processing time. The Apple Mixer must, however, still be present to set up
the sound component chain and to assign a source 1D to each sound source.

The Data Stream

A sound component is a standalone code resource that performs some signal processing
function or communicates with a sound output device. All sound components have a
standard programming interface and local storage that allows them to be connected
together in series to perform a wide range of audio data processing tasks. As previously
indicated, all sound components (except for mixer components and some sound output
device components) accept a single stream of input data and produce a single stream of
output data.

The Sound Manager sends your sound component information about its input stream by
passing it the address of a sound component data record, defined by the
SoundConponent Dat a data type.

typedef struct {
| ong fl ags; /*sound conponent flags*/
OSType format; /*data format*/
short nunthannel s; /*nunber of channels in data*/
short sanpl eSi ze; /*size of a sample*/
Unsi gnedFi xed sanpl eRat e; /*sanpl e rate*/
| ong sampl eCount ; /*nunber of samples in buffer*/

About Sound Components

CHAPTER 4

Sound Components

Byt e *puf fer; /*1 ocation of data*/
| ong reserved; /*reserved*/
} SoundConponent Dat a, *SoundConponent Dat aPtr;

The buf f er field points to the buffer of input data. The other fields define the format of
that data. For example, the sample size and rate are passed in the sanpl eSi ze and
sanpl eRat e fields, respectively. A utility component should modify the data in that
buffer and then write the processed data into an internal buffer. Then it should fill out

a sound component data record and pass its address back to the Sound Manager, which
will then pass it on to the next sound component in the chain. Eventually, the audio data
passes through all utility components in the chain, through the Apple Mixer and the
sound output device component, down to the audio hardware.

Writing a Sound Component

A sound component is a component that works with the Sound Manager to manipulate
audio data or to communicate with a sound output device. Because a sound component
is a component, it must be able to respond to standard selectors sent by the Component
Manager. In addition, a sound component must handle other selectors specific to sound
components. This section describes how to write a sound component.

Creating a Sound Component

A sound component is a component. It contains a number of resources, including icons,
strings, and the standard component resource (a resource of type’ t hng’) required of
any Component Manager component. In addition, a sound component must contain code
to handle required selectors passed to it by the Component Manager as well as selectors
specific to the sound component.

Note

For complete details on components and their structure, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox. This

section provides specific information about sound components. O

The component resource binds together all the relevant resources contained in a
component; its structure is defined by the Conponent Resour ce data type.

struct Conponent Resource {
Conponent Descri ption cd;

Resour ceSpec component ;

Resour ceSpec conponent Nane
Resour ceSpec conponent | nf o;
Resour ceSpec component | con;

Writing a Sound Component 273

sjuauodwo) punos -

CHAPTER 4

Sound Components

The conponent field specifies the resource type and resource ID of the component’s
executable code. By convention, this field should be set to the value
kSoundConponent CodeType:

#def i ne kSoundConponent CodeType "sift’ /*sound conponent code type*/

#defi ne
#def i ne
#defi ne
#defi ne
#def i ne

274

(You can, however, specify some other resource type if you wish.) The resource ID can be
any integer greater than or equal to 128. See the following section for further information

about this code resource. The Resour ceSpec data type has this structure:

typedef struct {
OSType
short

} Resour ceSpec;

resType;
resl b,

The conponent Name field specifies the resource type and resource ID of the resource
that contains the component’s name. Usually the name is contained in a resource of type
" STR ' . This string should be as short as possible.

The conponent | nf o field specifies the resource type and resource ID of the resource
that contains a description of the component. Usually the description is contained in a

resource of type’' STR ' .

The conponent | con field specifies the resource type and resource ID of the resource
that contains an icon for the component. Usually the icon is contained in a resource of

type’ | CON .

The cd field of the Conponent Resour ce structure is a component description record,
which contains additional information about the component. A component description
record is defined by the Conponent Descri pt i on data type.

typedef struct {

OSType conponent Type;
OSType conponent SubType;
OSType conponent Manuf act ur er;

unsi gned | ong
unsi gned | ong

} Conmponent Descri pti on;

conponent Fl ags;
conponent Fl agsMask;

For sound components, the conponent Type field must be set to a value recognized
by the Sound Manager. Currently, there are five available component types for

sound components:

kSoundConponent Type "sift’ /[*utility conponent*/

kM xer Type "mxr’ /*m xer conponent */

kSoundHar dwar eType " sdev’ /*sound out put devi ce conponent */
kSoundConpr essor "scom / *conpr essi on conponent */
kSoundDeconpr essor " sdec’ / *deconpressi on conponent */

Writing a Sound Component

CHAPTER 4

Sound Components

In addition, the conponent SubType field must be set to a value that indicates the type
of audio services your component provides. For example, the Apple-supplied sound
output device components have these subtypes:

#defi ne kd assi cSubType "¢l as’ /*Cl assi ¢ har dwar e*/

#defi ne KASCSubType "asc ’ [* ASC devi ce*/

#def i ne kDSPSubType "dsp '’ /*DSP devi ce*/
If you add your own sound output device component, you should define some other
subtype.
Note

Apple Computer, Inc., reserves for its own use all types and subtypes
composed solely of lowercase letters. O

You can assign any value you like to the conponent Manuf act ur er field; typically you
put the signature of your sound component in this field.

The conponent Fl ags field of the component description for a sound component
contains bit flags that encode information about the component. You can use this field
to specify that the Component Manager should send your component the
kConponent Regi st er Sel ect selector.

enum {
cnpWant sRegi st er Message = 1L<<31 /*send regi ster request*/

b

This bit is most useful for sound output device components, which might need to test for
the presence of the appropriate hardware to determine whether to register with the
Component Manager. When your component gets the kConponent Regi st er Sel ect
selector at system startup time, it should make sure that all the necessary hardware is
available. If it isn’t available, your component shouldn’t register. See “Registering and
Opening a Sound Component” beginning on page 281 for more information on opening
and registering your sound component.

You also use the conponent Fl ags field of the component description to define the
characteristics of your component. For example, you can set a bit in that field to indicate
that your sound component can accept stereo sound data. See “Specifying Sound
Component Capabilities” on page 276 for more details on specifying the features of your
sound component.

You should set the comrponent Fl agsMask field to 0.

Listing 4-1 shows, in Rez format, a component resource for a sample sound output device
component named SurfBoard.

Writing a Sound Component 275

sjuauodwo) punos -

CHAPTER 4

Sound Components

276

Listing 4-1 Rez input for a component resource

#def i ne kSurf Boardl D 128

#def i ne kSurf Boar dSubType " SURF’

resource 'thng (kSurfBoardl D, purgeable) {
"sdev’, / *conponent type*/
kSur f Boar dSubType, / *conmponent subtype*/
"appl ', / *conmponent manuf act urer*/
cnpWant sRegi st er Message, /*conponent fl ags*/
0, /*component fl ags mask*/
"sift’, / *conponent code resource type*/
kSur f Boar dI D, / *conponent code resource | D*/
"STR ', / *component name resource type*/
kSur f Boar dI D, / *conponent nane resource | D*/
"STR 7, /*conponent info resource type*/
kSur f Boar dI D+1, /*conmponent info resource |D*/
"1 CON', /*conponent icon resource type*/
kSur f Boar dl D / *conponent icon resource | D*/

1

Your sound component is contained in a resource file. You can assign any type you wish
to be the file creator, but the type of the file must be’ t hng’ . If the sound component
containsa’ BNDL’ resource, then the file’s bundle bit must be set.

Specifying Sound Component Capabilities

As mentioned in the previous section, the conponent FI ags field of a component
description for a sound component contains bit flags that encode information about the
component. The high-order 8 bits of that field are reserved for use by the Component
Manager. In those 8 bits, you can set the cnpWant sRegi st er Message bit to indicate
that the Component Manger should call your component during registration.

The low-order 24 bits of the conponent Fl ags field of a component description are used
by the Sound Manager. You’ll set some of these bits to define the capabilities of your
sound component. You can use the following constants to set specific bits in the
conponent Fl ags field.

#define k8Bit Rawl n (1 << 0) /*data flags*/
#defi ne k8Bit Twosln (1 << 1)

#defi ne k16Bitln (1 << 2)

#define kStereoln (1 << 3)

#def i ne k8Bi t RawQut (1 << 8)

#def i ne k8Bit TwosQut (1 << 9)

#defi ne k16Bit Qut (1 << 10)

#defi ne kSt ereoCut (1 << 11)

#def i ne kReverse (1 << 16) /*action flags*/

Writing a Sound Component

CHAPTER 4

Sound Components

#def i ne kRat eConvert (1 << 17)
#defi ne kCreat eSoundSource (1 << 18)
#def i ne kH ghQual ity (1 << 22) / *performance flags*/
#def i ne kReal Ti ne (1 << 23)

These constants define four types of information about your sound component: the kind
of audio data it can accept as input, the kind of audio data it can produce as output, the
actions it can perform on the audio data it’s passed, and the performance of your sound
component. For example, a utility component that accepts only monaural 8-bit, offset
binary data as input and converts it to 16-bit two’s complement data might have the
value 0x00000801 (that is, k8Bi t Rawi n | k16Bit Qut) in the conponent Fl ags field.

The Sound Manager also defines a number of masks that you can use to select ranges of
bits within the conponent Fl ags field. See “Sound Component Features Flags” on
page 291 for complete information on the defined bit constants and masks.

Dispatching to Sound Component-Defined Routines

As explained earlier, the code stored in the sound component should be contained in a
resource of type kSoundConponent CodeType. The Component Manager expects the
entry point in this resource to be a function with this format:

pascal Component Result MSurf D spat ch (Conponent Paraneters *parans,
SoundConponent d obal sPtr gl obal s);

The Component Manager calls your sound component by passing MySur f Di spat ch a
selector in the par ans- >what field; MySur f Di spat ch must interpret the selector and
possibly dispatch to some other routine in the resource. Your sound component must be

able to handle the required selectors, defined by these constants:

SN
#def i ne kConponent OpenSel ect -1 .
#def i ne kConponent O oseSel ect -2 %
#defi ne kConponent CanDoSel ect -3 C§L
#def i ne kConponent Ver si onSel ect -4 0
#defi ne kConponent Regi st er Sel ect -5 3
#def i ne kConponent Tar get Sel ect -6 %
#defi ne kConponent Unr egi st er Sel ect -7 2
Note

For complete details on required component selectors, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox. O

In addition, your sound component must be able to respond to component-specific
selectors. Some of these selectors must be handled by your component; if your
component doesn’t implement one of these selectors, it should return the
badConponent Sel ect or result code. Other selectors should be delegated up the
component chain. This allows the Sound Manager to query a particular component
chain by passing a selector to the first component in the chain. If your component does

Writing a Sound Component 277

CHAPTER 4

Sound Components

not implement a delegable selector, it should call the Component Manager routine

Del egat eConponent Cal | to delegate the selector to its source component. If your
sound component does implement a particular delegable selector, it should perform the
operation associated with it. The Sound Manager defines a constant to designate the
delegable selectors.

/[*first selector that can be del egated up the chain*/
#def i ne kDel egat edSoundConponent Sel ect or s 0x0100

The Sound Manager can pass these selectors to your sound component:

enum {

/*the follow ng calls cannot be del egat ed*/
kSoundComponent | ni t Qut put Devi ceSel ect =1,
kSoundConponent Set Sour ceSel ect
kSoundConponent Get Sour ceSel ect
kSoundConmponent Get Sour ceDat aSel ect,
kSoundConponent Set Qut put Sel ect

/*the followi ng calls can be del egat ed*/
kSoundConmponent AddSour ceSel ect = kDel egat edSoundConponent Sel ectors + 1,
kSoundConponent RenmoveSour ceSel ect
kSoundConponent Get | nf 0Sel ect,

kSoundComnponent Set | nf 0Sel ect,

kSoundConponent St art Sour ceSel ect
kSoundConponent St opSour ceSel ect
kSoundConponent PauseSour ceSel ect,
kSoundConponent Pl aySour ceBuf f er Sel ect

You can respond to these selectors by calling the Component Manager routine

Cal | Conmponent Functi onW t hSt or age or by delegating the selector to your
component’s source component. Listing 4-2 illustrates how to define a sound component
entry point routine.

Listing 4-2 Handling Component Manager selectors

pascal Component Result MSurfDi spatch (Conponent Paraneters *parans,

278

SoundConponent d obal sPtr gl obal s)

Conponent Rout i ne nmyRout i ne;
Component Resul t myResul t;

/*CGet address of conponent-defined routine.*/
myRout i ne = MyGet Conponent Rout i ne(par ans- >what) ;

Writing a Sound Component

CHAPTER 4

Sound Components

if (myRoutine == nil) /*sel ector not inplenmented*/
myResul t = badConponent Sel ect or;
else if (nmyRoutine == kDel egateCall) /*sel ector should be del egat ed*/

nmyResul t = Del egat eConponent Cal | (parans, gl obal s->sour ceConponent);
el se
nmyResul t = Cal | Component Functi onWt hSt or age((Handl e) gl obal s, parans,
(Conmponent Rout i ne) myRouti ne);
return (myResult);

As you can see, the MySur f Di spat ch function defined in Listing 4-2 simply retrieves
the address of the appropriate component-defined routine, as determined by the

par anms- >what field. If the routine MyGet Conponent Rout i ne returns ni | , then
MySur f Di spat ch itself returns the badConponent Sel ect or result code. Otherwise, if
the selector should be delegated, MySur f Di spat ch calls Del egat eConponent Cal | to
do so. Finally, if the selector hasn’t yet been handled, the appropriate component-defined
routine is executed via Cal | Conponent Functi onW t hSt or age.

Listing 4-3 defines the function MyGet Conponent Rout i ne.

Listing 4-3 Finding the address of a component-defined routine

Conponent Rout i ne MyGet Conrponent Routi ne (short sel ector)
{

voi d *nyRout i ne;

if (selector < 0)
switch (sel ector) /*required conponent sel ectors*/
{
case kComponent Regi st er Sel ect :
nmyRout i ne = MyRegi st er SoundConponent ;
br eak;
case kComponent Ver si onSel ect :
nmyRout i ne = MySoundConponent Ver si on;
br eak;
case kComponent CanDoSel ect :
nmyRout i ne = MySoundConponent CanDo;
br eak;
case kConponent Cl oseSel ect :
nmyRout i ne = Myd oseSoundConponent ;
br eak;
case kComponent OpensSel ect :
nmyRout i ne = MyQpenSoundConponent ;
br eak;

Writing a Sound Component 279

sjuauodwo) punos -

CHAPTER 4

Sound Components

def aul t:
myRoutine = nil; / *unknown sel ector, so fail*/
br eak;
}
else if (selector < kDel egat edSoundConponent Sel ect or s)
/*sel ectors that can’t be del egat ed*/
switch (selector)
{
case kSoundComponent | nit Qut put Devi ceSel ect :
nmyRout i ne = MySoundConponent | ni t Qut put Devi ce;
br eak;

case kSoundConponent Set Sour ceSel ect :
case kSoundConponent Get Sour ceSel ect :
case kSoundConponent Get Sour ceDat aSel ect :
case kSoundConponent Set Qut put Sel ect :
defaul t:
nyRoutine = nil; [/ *unknown sel ector, so fail*/
br eak;
}
el se /*sel ectors that can be del egat ed*/
switch (selector)
{
case kSoundComponent St art Sour ceSel ect :
nmyRout i ne = MySoundConponent St art Sour ce;
br eak;
case kSoundComponent Pl aySour ceBuf f er Sel ect :
nmyRout i ne = MySoundConponent Pl aySour ceBuf f er;
br eak;
case kSoundComponent Get | nf oSel ect :
nmyRout i ne = MySoundConponent Get | nf o;
br eak;
case kSoundComponent Set | nf oSel ect :
nmyRout i ne = MySoundConponent Set | nf o;
br eak;
case kSoundConmponent AddSour ceSel ect :
case kSoundConponent RenmobveSour ceSel ect :
case kSoundConponent St opSour ceSel ect :
case kSoundComponent PauseSour ceSel ect :
def aul t:
myRout i ne = kDel egat eCal | ; /*del egate it*/
br eak;

280 Writing a Sound Component

CHAPTER 4

Sound Components

return (myRouti ne);

}

In all likelihood, your component is loaded into the system heap, although it might be
loaded into an application heap if memory is low in the system heap. You can call the
Component Manager function Get Conponent | nst anceA5 to determine the A5 value
of the current application. If this function returns 0, your component is in the system
heap; otherwise, your component is in an application’s heap. Its location might affect
how you allocate memory. For example, calling the MoveHHi routine on handles in the
system heap has no result. Thus, you should either call the Reser veMentys routine
before calling NewHandl eSys (so that the handle is allocated as low in the system heap
as possible) or else just allocate a nonrelocatable block by calling the NewPt r Sys routine.

If you need to access resources that are stored in your sound component, you can use
OpenConponent ResFi | e and Cl oseConponent ResFi | e. OpenConponent ResFi | e
requires the Conponent | nst ance parameter supplied to your routine. You should not
call Resource Manager routines such as OpenResFi | e or Cl oseResFi | e.

WARNING

Do not leave any resource files open when your sound component is
closed. Their maps will be left in the subheap when the subheap is freed,
causing the Resource Manager to crash. a

The following sections illustrate how to define some of the sound component functions.

Registering and Opening a Sound Component

The Component Manager sends your component the kConponent Regi st er Sel ect
selector, usually at system startup time, to allow your component to determine whether it
wants to register itself with the Component Manager. Utility components should always
register themselves, so that the capabilities they provide will be available when needed.
Sound output device components, however, should first check to see whether any
necessary hardware is available before registering themselves. If the hardware they drive
isn’t available, there is no point in registering with the Component Manager.

The Component Manager sends your component the kConponent OpenSel ect selector
whenever the Sound Manager wants to open a connection to your component. In general,
a sound output device component has only one connection made to it. A utility
component, however, might have several instances, if the capabilities it provides are
needed by more than one sound component chain. Your component should do as little as
possible when opening up. It should allocate whatever global storage it needs to manage
the connection and call Set Conponent | nst anceSt or age so that the Component
Manager can remember the location of that storage and pass it to all other
component-defined routines.

sjuauodwo) punos -

As noted in the previous section, your component is probably loaded into the system
heap. If so, you should also allocate any global storage in the system heap. If memory
is tight, however, your component might be loaded into an application’s heap (namely,

Writing a Sound Component 281

CHAPTER 4

Sound Components

the heap of the first application that plays sound). In that case, you should allocate any
global variables you need in that heap. The Sound Manager ensures that other
applications will not try to play sound while the component is in this application heap.

IMPORTANT

Your component is always sent the kConmponent OpenSel ect
component selector before it is sent the kConponent Regi st er Sel ect
selector. As a result, you should not attempt to initialize or configure any
associated hardware in response to kConmponent QpenSel ect. a

The Sound Manager sends the kSoundConponent | ni t Qut put Devi ceSel ect selector
specifically to allow a sound output device component to perform any hardware-related
operations. Your component should initialize the hardware to some reasonable default
values, create the Apple Mixer, and allocate any other memory that might be needed.
Listing 4-4 shows one way to respond to the

kSoundComnponent | ni t Qut put Devi ceSel ect selector.

Listing 4-4 Initializing an output device

282

static pascal Conponent Result MySoundConponent | nit Qut put Devi ce
(SoundConponent d obal sPtr gl obals, |ong actions)

{
#pragnma unused (actions)
Conponent Resul t nyResul t;
/*Make sure we got our globals.*/
if (globals->hwd obals == nil)
return (not EnoughHar dwar eErr);
/*Set up the hardware.*/
nmyResul t = MySet upHar dwar e(gl obal s);
if (nyResult != noErr)
return (nyResult);
/*Create an Apple M xer.*/
nyResult = OQpenM xer SoundConponent (&gl obal s- >t hi sConp, 0,
&gl obal s- >sour ceConponent) ;
return (nyResult);
}

The MySoundConponent | ni t Qut put Devi ce function defined in Listing 4-4 simply
retrieves the location of its global variables, configures the hardware by calling the

My Set upHar dwar e function, and then calls OpenM xer SoundConponent to create an
instance of the Apple Mixer.

Writing a Sound Component

CHAPTER 4

Sound Components

Finding and Changing Component Capabilities

All sound components take a stream of input data and produce a (usually different)
stream of output data. The Sound Manager needs to know what operations your
component can perform, so that it knows what other sound components might need to be
linked together to play a particular sound on the available sound output device. It calls
your component’s SoundConponent Get | nf o and SoundConponent Set | nf o
functions to get and set information about the capabilities and current settings of your
sound component.

To specify the kind of information it wants to get or set, the Sound Manager passes your
component a sound component information selector. If your component does not
support a particular selector, if should pass the selector to the specified sound source.

If your component does support the selector, it should either return the desired
information directly or alter its settings as requested.

The sound component information selectors can specify any of a large number of audio
capabilities or component settings. For example, the selector si Rat eMul ti pli er is
passed to get or set the current output sample rate multiplier value.

Note

The Sound Manager uses many of the sound input device information
selectors defined by the Sound Input Manager for communicating with
sound input devices. See “Sound Input Manager” in this book for a
description of the sound input device information selectors. A complete
list of all sound component information selectors is provided in “Sound
Component Information Selectors™ beginning on page 287. O

Your component’s SoundConponent Get | nf o function has the following declaration:

Conponent Resul t SoundConponent CGet | nfo (Conponent | nst ance ti,

SoundSour ce sourcel D, OSType sel ector,
void *infoPtr);

The sound component information selector is passed in the sel ect or parameter.
The sound source is identified by the source ID passed in the sour cel D parameter.
The i nf oPt r parameter specifies the location in memory of the information returned
by SoundConponent Get | nf o. If the information to be returned occupies four bytes
or fewer, you can simply return the information in the location pointed to by that
parameter. Otherwise, you should pass back in the i nf oPt r parameter a pointer to a
record of type Soundl nf oLi st , which contains an integer and a handle to an array of
data items. In the second case, you’ll need to allocate memory to hold the information
you need to pass back. Listing 4-5 defines a component’s SoundConponent Get | nf o
routine. It returns information to the Sound Manager about its capabilities and
current settings.

sjuauodwo) punos -

Writing a Sound Component 283

CHAPTER 4

Sound Components

Listing 4-5 Getting sound component information

static pascal Conponent Result MySoundConponent Get | nfo
(SoundConponent @ obal sPtr gl obal s, SoundSour ce sourcel D,
OSType sel ector, void *infoPtr)

{
Handl eLi st Pt r listPtr;
short *sp, i;
Unsi gnedFi xed *| p;
Handl e h;
Har dwar ed obal sPtr hwd obal s = gl obal s- >hwd obal s;
Component Resul t result = noErr;

/*Make sure we got our global variables.*/
if (hwdobals == nil)
return (not EnoughHar dwar eErr);

switch (selector)

{
case si Sanpl eSi ze: /*return current sanple size*/
*((short *) infoPtr) = hwd obal s->sanpl eSi ze;
br eak;
case si Sanpl eSi zeAvai | abl e: /*return sanpl e sizes avail abl e*/
h = NewHandl e(si zeof (short) * kSanpl eSi zesCount);
if (h==mnil)

return (MenError());

listPtr = (Handl eListPtr) infoPtr;

listPtr->count = O; /*num sanpl e sizes in handl e*/
[istPtr->handl e = h; /*handl e to be returned*/
sp = (short *) *h; /*store sanpl e sizes in handle*/

for (i = 0; i < kSanpl eSi zesCount; ++i)
i f (hwd obal s->sanpl eSi zesActive[i])

{
i stPtr->count ++;
*sp++ = hwd obal s- >sanpl eSi zes[i];
}
br eak;
case si Sanpl eRat e: /*return current sanple rate*/

*((Fixed *) infoPtr) = hwd obal s- >sanpl eRat e;

284 Writing a Sound Component

CHAPTER 4

Sound Components

br eak;

case si Sanpl eRat eAvai | abl e: /*return sanple rates avail abl e*/
h = NewHandl e(si zeof (Unsi gnedFi xed) * kSanpl eRat esCount);
if (h==nil)

return (MenError());

listPtr = (Handl eListPtr) infoPtr;
listPtr->count = O; /*num sanple rates in handl e*/
listPtr->handle = h; /*handl e to be returned*/

I p = (UnsignedFi xed *) *h;

/*1f the hardware can support a range of sanple rate val ues,
the Iist count should be set to 0 and the m ni mum and maxi num
sanpl e rate val ues should be stored in the handle.*/

i f (hwd obal s->support sRat eRange)

{

*| p++ hwd obal s- >sanpl eRat eM n;
hwd@ obal s- >sanpl eRat eMax;

*| p++

/*1f the hardware supports a limted set of sanple rates,
the Iist count should be set to the nunber of sanple rates
and this list of rates should be stored in the handle.*/

el se

{
for (i = 0; i < kSanpl eRat esCount; ++i)

i f (hwd obal s->sanpl eRat esActive[i])

{
listPtr->count ++;
*| p++ = hwd obal s- >sanpl eRates[i];
}
}
br eak;
case si Nunber Channel s: /*return current num channel s*/
*((short *) infoPtr) = hwd obal s->nuntChannel s;
br eak;
case si Channel Avai | abl e: /*return channel s avail abl e*/
h = NewHandl e(si zeof (short) * kChannel sCount);
if (h==nil)

Writing a Sound Component

sjuauodwo) punos -

CHAPTER 4

Sound Components

return (MenError());

listPtr = (Handl eListPtr) infoPtr;

listPtr->count = O; /*num channel s i n handl e*/
listPtr->handle = h; /*handl e to be returned*/
sp = (short *) *h; /*store channel s in handl e*/
for (i = 0; i < kChannel sCount; ++i)

i f (hwd obal s->channel sActive[i])

{

listPtr->count ++;
*sp++ = hwd obal s- >channel s[i];

}

br eak;

case si Har dwar eVol une:
*((long *)infoPtr) = hwd obal s->vol une;
br eak;

/*1f you do not handle a selector, delegate it up the chain.*/
defaul t:

result = SoundConponent Get | nf o(gl obal s- >sour ceConponent, sourcel D,

sel ector, infoPtr);
br eak;

}

return (result);

You can define your MySoundConponent Set | nf o routine in an exactly similar fashion.

Sound Components Reference

This section describes the constants, data structures, and routines you can use to write a
sound component. It also describes the routines that your sound component should call
in response to a sound component selector. See “Writing a Sound Component” on

page 273 for information on creating a component that contains these component-defined
routines.

286 Sound Components Reference

CHAPTER 4

Sound Components

Constants

This section provides details on the constants defined by the Sound Manager for use with
sound components. You’ll use these constants to

= determine the kind of information the Sound Manager wants your sound component
to return to it or settings it wants your sound component to change

= define the format of the audio data your sound component is currently producing

= specify the action flags for the SoundConponent Pl aySour ceBuf f er function

= specify the format of the data your sound output device component expects to receive

Sound Component Information Selectors

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

The Sound Manager calls your sound component’s SoundConponent Get | nf o and
SoundConponent Set | nf o functions to determine the capabilities of your component
and to change those capabilities. It passes those functions a sound component
information selector in the function’s sel ect or parameter to specify the type of
information it wants to get or set. The available sound component information selectors

are defined by constants.

Note

Most of these selectors can be passed to both
SoundConponent CGet | nf o and SoundConponent Set | nf o.
Some of them, however, can be sent to only one or the other. O

si Channel Avai | abl e

si Conpr essi onAvai | abl e
si Conpr essi onFact or

si Conpr essi onType

si Har dwar eMut e

si Har dwar eVol une

si Har dwar eVol uneSt eps
si HeadphoneMut e

si HeadphoneVol une

si HeadphoneVol unesSt eps
si Nunber Channel s
siQuality

si RateMul tiplier

si Sanpl eRat e

si Sanpl eRat eAvai | abl e
si Sanpl eSi ze

si Sanpl eSi zeAvai | abl e
si Speaker Mut e

si Speaker Vol une

si Vol une

Sound Components Reference

chav’
cmav’
cnfa’
conp’
hmut’
hvol ’
hst p’
prmut’
pvol’
hdst’
chan’
qual ’
rmul’
srat’
srav’
ssi z’
ssav’
smut’
svol’
vol u’

/*nunber of channel s avail abl e*/
/*conpressi on types avail abl e*/
/*current conpression factor*/
/*current conpression type*/
/*current hardware mute state*/
/*current hardware vol ume*/
/*nunber of hardware vol une steps*/
/*current headphone mute state*/
/*current headphone vol une*/
/*num of headphone vol une steps*/
/*current nunmber of channel s*/
/*current quality*/

/*current rate multiplier*/
/*current sanple rate*/

/*sanpl e rates avail abl e*/
/*current sanple size*/

/*sanpl e sizes avail abl e*/
/*current speaker nute*/

/*current speaker vol une*/
/*current volume setting*/

287

sjuauodwo) punos -

288

CHAPTER 4

Sound Components

Constant descriptions

si Channel Avai | abl e

Get the maximum number of channels this sound component can
manage, as well as the channels themselves. The i nf oPt r
parameter points to a record of type SoundI nf oLi st , which
contains an integer (the number of available channels) and a

handle to an array of integers (which represent the channel numbers
themselves).

si Conpr essi onAvai | abl e

Get the number and list of compression types this sound component
can manage. The i nf oPt r parameter points to a record of type
Soundl nf oLi st , which contains the number of compression types,
followed by a handle that references a list of compression types,
each of type OSType.

si Conpr essi onFact or

Get information about the current compression type. The i nf oDat a
parameter points to a compression information record (see
page 297).

si Conpr essi onType

si Har dwar eMut e

Get or set the current compression type. The i nf oPt r parameter
points to a buffer of type OSType, which is the compression type.

Get or set the current mute state of the audio hardware. A value of 0
indicates that the hardware is not muted, and a value of 1 indicates
that the hardware is muted. Not all sound components need to
support this selector; it’s intended for sound output device
components whose associated hardware can be muted.

si Har dwar eVol ume

Get or set the current volume level of all sounds produced on the
sound output device. The i nf oPt r parameter points to a long
integer, where the high-order word represents the right volume level
and the low-order word represents the left volume level. A volume
level is specified by an unsigned 16-bit number: 0x0000 represents
silence and 0x0100 represents full volume. (You can use the constant
kFul | Vol ure for full volume.) You can specify values larger than
0x0100 to overdrive the volume, although doing so might result in
clipping. This selector applies to the volume of the output device,
whereas the si Vol ume selector applies to the volume of a specific
sound channel and its component chain. If a sound output device
supports more than one output port (for example, both headphones
and speakers), the si Har dwar eVol une selector applies to all those
ports.

si Har dwar eVol uneSt eps

Get the number of audible volume levels supported by the audio
hardware. If the device supports a range of volume levels (for
example, 0x000 to 0x1000), you should return only the number of
levels that are audible. The Sound Manager uses this information
to handle the volume slider in the Alert Sounds control panel.

Sound Components Reference

CHAPTER 4

Sound Components

si HeadphoneMut e

Get or set the current mute state of the headphone. A value of 0
indicates that the headphone is not muted, and a value of 1 indicates
that the headphone is muted. Not all sound components need to
support this selector; it’s intended for sound output device
components whose associated headphone can be muted.

si HeadphoneVol ume

Get or set the current volume level of all sounds produced on the
headphone. The i nf oPt r parameter points to a long integer, where
the high-order word represents the right volume level and the
low-order word represents the left volume level. A volume level is
specified by an unsigned 16-bit number: 0x0000 represents silence
and 0x0100 represents full volume. (You can use the constant

kFul | Vol ure for full volume.) You can specify values larger than
0x0100 to overdrive the volume, although doing so might result in
clipping. This selector applies to the volume of the headphones.

si HeadphoneVol unest eps

Get the number of audible volume levels supported by the
headphones. If the headphones support a range of volume levels
(for example, 0x000 to 0x1000), you should return only the number
of levels that are audible.

si Nunber Channel s

siQality

siRateMul tiplier

si Sanpl eRat e

Get or set the current number of audio channels currently being
managed by the sound component. The i nf oPt r parameter points
to an integer, which is the number of channels. For example, for
stereo sounds, this integer should be 2.

Get or set the current quality setting for the sound component.
The i nf oPt r parameter points to a 32-bit value, which typically
determines how much processing should be applied to the audio
data stream.

Get or set the current rate multiplier for the sound component. The
i nf oPt r parameter points to a buffer of type Unsi gnedFi xed,
which is the multiplier to be applied to the playback rate of the
sound, independent of the base sample rate of the sound. For
example, if the current rate multiplier is 2.0, the sound is played
back at twice the speed specified in the sanpl eRat e field of the
sound component data record.

Get or set the current sample rate of the data being output by the
sound component. The i nf oPt r parameter points to a buffer of
type Unsi gnedFi xed, which is the sample rate.

sjuauodwo) punos -

si Sanpl eRat eAvai | abl e

Get the range of sample rates this sound component can handle. The
i nf oPt r parameter points to a record of type Soundl nf oLi st ,
which is the number of sample rates the component supports,
followed by a handle to a list of sample rates, each of type

Unsi gnedFi xed. The sample rates can be in the range 0 to
65535.65535. If the number of sample rates is 0, then the first two

Sound Components Reference 289

CHAPTER 4

Sound Components

si Sanpl eSi ze

sample rates in the list define the lowest and highest values in
a continuous range of sample rates.

Get or set the current sample size of the audio data being output by
the sound component. The i nf oPt r parameter points to an integer,
which is the sample size in bits.

si Sanpl eSi zeAvai | abl e

si Speaker Mut e

si Speaker Vol une

si Vol une

Audio Data Types

Get the range of sample sizes this sound component can handle. The
i nf oPt r parameter points to a record of type Soundl nf oLi st ,
which is the number of sample sizes the sound component supports,
followed by a handle. The handle references a list of sample sizes,
each of type | nt eger . Sample sizes are specified in bits.

Get or set the current mute state of the speakers. A value of 0
indicates that the speakers are not muted, and a value of 1 indicates
that the speakers are muted. Not all sound components need to
support this selector; it’s intended for sound output device
components whose associated speakers can be muted.

Get or set the current volume level of all sounds produced on the
speakers. The i nf oPt r parameter points to a long integer, where
the high-order word represents the right volume level and the
low-order word represents the left volume level. A volume level is
specified by an unsigned 16-bit number: 0x0000 represents silence
and 0x0100 represents full volume. (You can use the constant

kFul | Vol une for full volume.) You can specify values larger than
0x0100 to overdrive the volume, although doing so might result in
clipping. This selector applies to the volume of the speakers.

Get or set the current volume level of the sound component. The

i nf oPt r parameter points to a long integer, where the high-order
word represents the right volume level and the low-order word
represents the left volume level. A volume level is specified by an
unsigned 16-bit number: 0x0000 represents silence and 0x0100
represents full volume. (You can use the constant kFul | Vol ume for
full volume.) You can specify values larger than 0x0100 to overdrive
the volume, although doing so might result in clipping. This selector
applies to the volume of a specific sound channel and its component
chain, while the si Har dwar eVol ume selector applies to the volume
of the output device.

You can use the following constants to define the format of the audio data your sound
component is currently producing. You can also define additional data types to denote
your own compression schemes. You pass these constants in the f or mat field of a sound
component data record.

290 Sound Components Reference

CHAPTER 4

Sound Components

#defi ne kOf fset Bi nary "raw ’
#defi ne kTwosConpl enent "t wos’
#defi ne KMACE3Conpr essi on " MAC3’
#def i ne KMACE6Conpr essi on " MACE’

Constant descriptions
kOf f set Bi nary The data is noncompressed samples in offset binary format (that is,
values range from 0 to 255).

kTwosConpl enent
The data is noncompressed samples in two’s complement format
(that is, values range from —128 to 128).

kMACE3Conpr essi on
The data is compressed using MACE 3:1 compression.

kMACE6Conpr essi on
The data is compressed using MACE 6:1 compression.

Sound Component Features Flags

You can use the following constants to define features of your sound component. You use
some combination of these constants to set bits in the conponent FI ags field of a
component description record, which is contained ina’ t hng’ resource. These bits
represent the kind of data your component can receive as input, the kind of data your
component can produce as output, the operations your component can perform, and the
performance of your component.

#def i ne k8Bi t Rawl n (1 << 0) /*data fl ags*/

#def i ne k8Bit Twosl n (1 << 1)

#define k16Bitln (1 << 2)

#define kStereoln (1 << 3)
#def i ne k8Bi t RawQut (1 << 8) "
#defi ne k8Bit TwosQut (1 << 9) o
#define k16Bit Qut (1 << 10) 2
#def i ne kSt ereoCut (1 << 11) §
#def i ne kReverse (1 << 16) /*action flags*/ 3
#def i ne kRat eConvert (1 << 17) §
#def i ne kCreat eSoundSour ce (1 << 18) @
#defi ne kH ghQuality (1 << 22) / *performance flags*/

#defi ne kReal Ti ne (1 << 23)

Constant descriptions

k8Bi t Rawl n The component can accept 8 bit offset binary data as input.

k8Bi t Twosl n The component can accept 8 bit two’s complement data as input.

k16Bitln The component can accept 16 bit data as input. 16 bit data is always
in two’s complement format.

kStereoln The component can accept stereo data as input.

Sound Components Reference 291

CHAPTER 4

Sound Components

k8Bi t RawCut
k8Bi t TwosQut
k16Bi t Qut

kSt er eoQut
kRever se
kRat eConvert

The component can produce 8 bit offset binary data as output.
The component can produce 8 bit two’s complement data as output.

The component can produce 16 bit data as output. 16 bit data is
always in two’s complement format.

The component can produce stereo data as output.
The component can accept reversed audio data.
The component can convert sample rates.

kCr eat eSoundSour ce

kHi ghQual ity
kReal Ti ne

Action Flags

The component can create sound sources.
The component can produce high quality output.
The component can operate in real time.

You can use constants to specify the action flags in the act i ons parameter of the
SoundConponent Pl aySour ceBuf f er function. See page 314 for information about

this function.

#def i ne kSour cePaused (1 << 0)
#def i ne kPassThrough (1 << 16)
#def i ne kNoSoundConponent Chai n (1 << 17)

Constant descriptions
kSour cePaused

kPassThr ough

If this bit is set, the component chain is configured to play the
specified sound but the playback is initially paused. In this case,
your SoundConponent St ar t Sour ce function must be called to
begin playback. If this bit is clear, the playback begins immediately
once the component chain is set up and configured.

If this bit is set, the Sound Manager passes all data through to the
sound output device component unmodified. A sound output
device component that can handle any sample rate and sound
format described in a sound parameter block should set this bit.

kNoSoundConponent Chai n

Data Format Flags

If this bit is set, the Sound Manager does not construct a component
chain for processing the sound data.

292

You can use constants to set or clear flag bits in the out put Fl ags parameter passed to
the OpenM xer SoundConponent routine. These flags specify the format of the data
your sound output device component expects to receive. See page 298 for information
about the OQpenM xer SoundConponent function.

Sound Components Reference

#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i

ne
ne
ne
ne

ne
ne
ne
ne

CHAPTER 4

Sound Components

IMPORTANT

Most of these flags are ignored unless the kNoM xi ng flag is set, because
a sound output device component cannot perform data modifications
such as sample rate conversion or sample size conversion unless it is also
able to mix sound sources. a

kNoM xi ng (1 << 0) /*don’t m x sources*/
kNoSanpl eRat eConversion (1 << 1) /*don’t convert sanple rate*/
kNoSanpl eSi zeConversion (1 << 2) /*don’t convert sanple size*/
kNoSanpl eFor mat Conver si on \

(1 << 3) /*don’t convert sanple format*/
kNoChannel Conver si on (1 << 4) /*don’t convert stereo/ mono*/
kNoDeconpr essi on (1 << 5) /*don’t deconpress*/
kNoVol uneConver si on (1 << 6) /*don’t apply vol une*/
kNoReal ti meProcessi ng (1 << 7) /*don’t run at interrupt time*/

Constant descriptions
kNoM xi ng If this bit is set, the Apple Mixer does not mix audio data sources.

kNoSanpl eRat eConver si on
If this bit is set, the sound component chain does not perform
sample rate conversion (for example, converting 11 kHz data to
22 kHz data).

kNoSanpl eSi zeConver si on
If this bit is set, the sound component chain does not perform
sample size conversion (for example, converting 8-bit data to
16-bit data).

kNoSanpl eFor mat Conver si on
If this bit is set, the sound component chain does not convert
between sample formats (for example, converting from two’s
complement data to offset binary data). Most sound output devices
on Macintosh computers accept only 8-bit offset binary data, which
is therefore the default type of data produced by the Apple Mixer.
If your output device can handle either offset binary or two’s
complement data, you should set this flag. Note that 16-bit data
is always in two’s complement format.

kNoChannel Conver si on
If this bit is set, the sound component chain does not convert
channels (for example, converting monophonic channels to stereo or
stereo channels to monophonic).

kNoDeconpr essi on
If this bit is set, the sound component chain does not decompress
audio data. If your output device can decompress data, you should
set this flag.

kNoVol uneConver si on
If this bit is set, the sound component chain does not convert
volumes.

Sound Components Reference 293

sjuauodwo) punos -

CHAPTER 4

Sound Components

kNoReal ti meProcessi ng
If this bit is set, the sound component chain does not do any
processing at interrupt time.

Data Structures

This section describes the data structures you need to use when writing a sound
component.

Sound Component Data Records

The flow of data from one sound component to another is managed using a sound
component data record. This record indicates to other sound components the format of
the data that a particular component is generating, together with the location and length
of the buffer containing that data. This allows other sound components to access data
from that component as needed. A sound component data record is defined by the
SoundConponent Dat a data type.

typedef struct {

| ong fl ags; /*sound conponent flags*/
OSType format ; /*data format*/

short nunthannel s; /*nunber of channels in data*/
short sanpl eSi ze; /*size of a sanple*/

Unsi gnedFi xed sanpl eRat e; /*sanpl e rate*/

| ong sanpl eCount ; [*nunber of sanples in buffer*/
Byt e *puf fer; /*l ocation of data*/

| ong reserved; /*reserved*/

} SoundConponent Dat a, * SoundConponent Dat aPtr;

294

Field descriptions

flags A set of bit flags whose meanings are specific to a particular sound
component.
f or mat The format of the data a sound component is producing. The

following formats are defined by Apple:

#defi ne kO fsetBi nary "raw ’
#def i ne kTwosConpl enent "t wos’
#defi ne KMACE3Conpr essi on " MAC3’
#def i ne KMACE6Conpr essi on " MACE’

See “Audio Data Types” on page 290 for a description of these
formats. You can define additional format types, which are currently
assumed to be the types of proprietary compression algorithms.

nunChannel s The number of channels of sound in the output data stream. If this
field contains the value 1, the data is monophonic. If this field

Sound Components Reference

CHAPTER 4

Sound Components

sanpl eSi ze

sanpl eRat e

sanmpl eCount

buf f er
reserved

Sound Parameter Blocks

contains 2, the data is stereophonic. Stereo data is stored as
interleaved samples, in a left-to-right ordering.

The size, in bits, of each sample in the output data stream. Typically
this field contains the values 8 or 16. For compressed sound data,
this field indicates the size of the samples after the data has been
expanded.

The sample rate for the audio data. The sample rate is expressed as
an unsigned, fixed-point number in the range 0 to 65536.0 samples
per second.

The number of samples in the buffer pointed to by the buf f er field.
For compressed sounds, this field indicates the number of
compressed samples in the sound, not the size of the buffer.

The location of the buffer that contains the sound data.
Reserved for future use. You should set this field to 0.

The Sound Manager passes a component’s SoundConponent Pl aySour ceBuf f er
function a sound parameter block that describes the source data to be modified or sent to
a sound output device. A sound parameter block is defined by the SoundPar anBl ock

data type.

struct SoundPar anBl ock {

| ong recordSi ze; /*size of this record in bytes*/

SoundConponent Data desc; /*description of sound buffer*/

Fi xed rateMul tiplier;/*rate multiplier*/

short | ef t Vol une; /*volume on | eft channel */

short ri ght Vol une; /*vol ume on right channel */

| ong quality; /[*quality*/

Component | nst ance filter; [*filter*/

SoundPar anPr ocPt r nor eRt n; /*routine to call to get nore data*/ (gn

SoundPar anPr ocPt r conpletionRtn; /*buffer conplete routine*/ =1

| ong r ef Con; /*user refcon*/ g

short result; [*resul t*/ g
}; §

1%}

typedef struct SoundPar anmBl ock SoundPar anBl ock;

t ypedef SoundParanBl ock *SoundParanmBl ockPtr;

Field descriptions
recordSi ze

desc

rateMul tiplier

The length, in bytes, of the sound parameter block.

A sound component data record that describes the format, size, and
location of the sound data. See “Sound Component Data Records”
on page 294 for a description of the sound component data record.

A multiplier to be applied to the playback rate of the sound. This
field contains an unsigned fixed-point number. If, for example, this

Sound Components Reference 295

CHAPTER 4

Sound Components

field has the value 2.0, the sound is played back at twice the rate
specified in the sanpl eRat e field of the sound component data
record contained in the desc field.

| ef t Vol une The playback volume for the left channel. You specify a volume with
16-bit value, where 0 (hexadecimal 0x0000) represents no volume
and 256 (hexadecimal 0x0100) represents full volume. You can
overdrive a channel’s volume by passing volume levels greater than
0x0100.

ri ght Vol une The playback volume for the right channel. You specify a volume
with 16-bit value, where 0 (hexadecimal 0x0000) represents no
volume and 256 (hexadecimal 0x0100) represents full volume. You
can overdrive a channel’s volume by passing volume levels greater
than 0x0100.

quality The level of quality for the sound. This value usually determines
how much processing should be applied during audio data
processing (such as rate conversion and decompression) to increase
the output quality of the sound.

filter Reserved for future use. You should set this field to ni | .

nor eRt n A pointer to a callback routine that is called to retrieve another
buffer of audio data. This field is used internally by the Sound
Manager.

conpl eti onRtn A pointer to a callback routine that is called when the sound has
finished playing. This field is used internally by the Sound Manager.

ref Con A value that is to be passed to the callback routines specified in the
nmor eRt n and conpl et i onRt n fields. You can use this field to pass
information (for example, the address of a structure) to a callback
routine.

result The status of the sound that is playing. The value 1 indicates that the
sound is currently playing. The value 0 indicates that the sound has
finished playing. Any negative value indicates that some error has
occurred.

Sound Information Lists

296

The SoundConponent Get | nf 0 and SoundConponent Set | nf o functions access
information about a sound component using a sound information list, which is defined
by the SoundI nf oLi st data type.

typedef struct {
short count;
Handl e handl e;
} Soundl nfoLi st, *SoundlnfoListPtr;

Field descriptions
count The number of elements in the array referenced by the handl e field.

handl e A handle to an array of data elements. The type of these data
elements depends on the kind of information requested, which

Sound Components Reference

CHAPTER 4

Sound Components

is determined by the sel ect or parameter passed to
SoundConponent Get | nf o or SoundConponent Set | nf 0. See
“Sound Component Information Selectors” beginning on page 287
for information about the available information selectors.

Compression Information Records

When the Sound Manager calls your SoundConponent Get | nf o routine with the
si Conpr essi onFact or selector, you need to return a pointer to a compression
information record, which is defined by the Conpr essi onl nf o data type.

typedef struct {

| ong recordSi ze;
OSType format;

short conpr essi onl D,
short sanpl esPer Packet ;
short byt esPer Packet ;
short byt esPer Fr ane;
short byt esPer Sanpl e;
short futureUsel,;

} Conpressionlnfo, *ConpressionlnfoPtr, **ConpressionlnfoHandl e;

Field descriptions

recordSi ze The size of this compression information record.
f or mat The compression format.

conpressi onl D The compression ID.

sanpl esPer Packet
The number of samples in each packet.

byt esPer Packet
The number of bytes in each packet.

byt esPer Fr ane
The number of bytes in each frame.

byt esPer Sanpl e
The number of bytes in each sample.

futureUsel Reserved for use by Apple Computer, Inc. You should set this
field to 0.

Sound Manager Utilities

This section describes several utility routines provided by the Sound Manager that are
intended for use only by sound components. You can use these routines to

= open and close the Apple Mixer component

= save and restore a user’s preference settings for a sound component

Sound Components Reference 297

sjuauodwo) punos -

CHAPTER 4

Sound Components

Note
For a description of the routines that a sound component must
implement, see “Sound Component-Defined Routines” on page 301. O

Opening and Closing the Apple Mixer Component

A sound output device component needs to open and close one or more instances of the
Apple Mixer component.

OpenMixerSoundComponent

DESCRIPTION

298

A sound output device component can use the OpenM xer SoundConponent function
to open and connect itself to the Apple Mixer component.

pascal OSErr OpenM xer SoundConponent
(SoundConponent Dat aPtr out put Descri pti on,
| ong out put Fl ags,
Conponent | nst ance *ni xer Conponent) ;

out put Descri ption
A description of the data format your sound output device is expecting to
receive.

out put Fl ags
A set of 32 bit flags that provide additional information about the data
format your output device is expecting to receive. See “Data Format
Flags” beginning on page 292 for a description of the constants you
can use to select bits in this parameter.

m xer Conponent
The component instance of the Apple Mixer component. You need
this instance to call the SoundConponent Get Sour ceDat a and
Cl oseM xer SoundConponent functions.

The OpenM xer SoundConponent function opens the standard Apple Mixer component
and creates a connection between your sound output device component and the Apple
Mixer. If your output device can perform specific operations on the stream of audio data,
such as channel mixing and rate conversion, it should call OpenM xer SoundConponent
as many times as are necessary to create a unigue component chain for each sound
source. If, on the other hand, your output device does not perform channel mixing, it
should call OpenM xer SoundConponent only once, from its

SoundConponent | ni t Qut put Devi ce function. This opens a single instance of the
Apple Mixer component, which in turn manages all the available sound sources.

Sound Components Reference

CHAPTER 4

Sound Components

Your component specifies the format of the data it can handle by filling in a sound
component data record and passing its address in the out put Descri pti on parameter.
The sound component data record specifies the data format as well as the sample rate
and sample size expected by the output device component. If these specifications are
sufficient to determine the kind of data your component can handle, you should pass
the value 0 in the out put Fl ags parameter. Otherwise, you can set flags in the

out put FI ags parameter to select certain kinds of input data. For example, you can set
the kNoChannel Conver si on flag to prevent the component chain from converting
monophonic sound to stereo sound, or stereo sound to monophonic sound. See “Data
Format Flags” beginning on page 292 for a description of the constants you can use to
select bits in the out put Fl ags parameter.

SPECIAL CONSIDERATIONS

The OpenM xer SoundConponent function is available only in versions 3.0 and later of
the Sound Manager. It should be called only by sound output device components.

CloseMixerSoundComponent

DESCRIPTION

SPECIAL CONSIDERATIONS

RESULT CODES

A sound output device component can use the C oseM xer SoundConponent function
to close the Apple Mixer.

pascal OSErr C oseM xer SoundComponent (Conponent| nstance ci);

ci The component instance of the Apple Mixer component.

The Cl oseM xer SoundConponent function closes the Apple Mixer component
instance specified by the ci parameter. Your output device component should call
this function when it is being closed.

sjuauodwo) punos -

The d oseM xer SoundConponent function is available only in versions 3.0 and later of
the Sound Manager. It should be called only by sound output device components.

noErr 0 No error
i nval i dComrponent | D -3000 Invalid component ID

Sound Components Reference 299

CHAPTER 4

Sound Components

Saving and Restoring Sound Component Preferences

A sound component can use the Set SoundPr ef er ence and Get SoundPr ef er ence
functions to save and restore a user’s preference settings.

SetSoundPreference

A sound component can use the Set SoundPr ef er ence function to have the Sound
Manager store a block of preferences data in a resource file. You’re most likely to use
this function in a sound output device component, although other types of sound
components can use it also.

pascal OSErr Set SoundPreference (OSType type, Str255 nane,
Handl e settings);

type The resource type to be used to create the preferences resource.
nane The resource name to be used to create the preferences resource.
settings A handle to the data to be stored in the preferences resource.

DESCRIPTION

The Set SoundPr ef er ence function causes the Sound Manager to attempt to create

a new resource that contains preferences data for your sound component. You can use
this function to maintain a structure of any format across subsequent startups of the
machine. You'll retrieve the preferences data by calling the Get SoundPr ef er ence
function. The data is stored in a resource with the specified type and name in a resource
file in the Preferences folder in the System Folder. In general, the resource type and name
should be the same as the sound component subtype and name.

The set ti ngs parameter is a handle to the preferences data you want to store. It is the
responsibility of your component to allocate and initialize the block of data referenced by
that handle. The Sound Manager copies the handle’s data into a resource in the
appropriate location. Your sound component should dispose of the handle when

Set SoundPr ef er ence returns.

The format of the block of preferences data referenced by the set t i ngs parameter

is defined by your sound component. It is recommended that you include a field
specifying the version of the data format; this allows you to modify the format of the
block of data while remaining compatible with previous formats you might have defined.

SPECIAL CONSIDERATIONS

The Set SoundPr ef er ence function is available only in versions 3.0 and later of the
Sound Manager.

300 Sound Components Reference

CHAPTER 4

Sound Components

GetSoundPreference

DESCRIPTION

A sound component can use the Get SoundPr ef er ence function to have the Sound
Manager read a block of preferences data from a resource file. You’ll use it to retrieve a
block of preferences data you previously saved by calling Set SoundPr ef er ence.

pascal OSErr Get SoundPreference (OSType type, Str255 nane,
Handl e settings);

type The resource type of the preferences resource.
nane The resource name of the preferences resource.
settings A handle to the data in the preferences resource.

The Get SoundPr ef er ence function retrieves the block of preferences data you
previously stored in a resource by calling the Set SoundPr ef er ence function. It is

the responsibility of your component to allocate the block of data referenced by the

set ti ngs handle. The Sound Manager resizes the handle (if necessary) and fills it with
data from the resource with the specified type and name. Your sound component should
dispose of the handle once it’s finished reading the data from it. You can determine the
size of the handle returned by the Sound Manager by calling the Memory Manager’s
Get Handl eSi ze function.

SPECIAL CONSIDERATIONS

Sound Component-Defined Routines

The Get SoundPr ef er ence function is available only in versions 3.0 and later of the
Sound Manager.

This section describes the routines you need to define in order to write a sound
component. You need to write routines to

= load, configure, and unload your sound component

sjuauodwo) punos -

= add and remove audio sources
= read and set component settings
= control and process audio data

Some of these routines are optional for some types of sound components. All routines
return result codes. If they succeed, they should return noEr r . To simplify dispatching,
the Component Manager requires these routines to return a value of type

Conponent Resul t .

See “Writing a Sound Component” beginning on page 273 for a description of how
you call these routines from within a sound component. See “Sound Manager Utilities”

Sound Components Reference 301

CHAPTER 4

Sound Components

beginning on page 297 for a description of some Sound Manager utility routines you can
use in a sound component.

Managing Sound Components

To write a sound component, you might need to define routines that manage the loading,
configuration, and unloading of your sound component:

= SoundConponent | ni t Qut put Devi ce
= SoundConponent Set Sour ce

= SoundConponent Get Sour ce

= SoundConponent Get Sour ceDat a

= SoundConponent Set Qut put

After the Sound Manager opens your sound component, it attempts to add your sound
component to a sound component chain. Thereafter, the Sound Manager calls your
component’s SoundConponent | ni t Qut put Devi ce function to give you an
opportunity to set default values for any associated hardware and to perform any
hardware-specific operations.

SoundComponentinitOutputDevice

DESCRIPTION

302

A sound output device component must implement the
SoundConponent | ni t Qut put Devi ce function. The Sound Manager calls this function
to allow a sound output device component to configure any associated hardware devices.

pascal Component Result SoundConponent | nit Qut put Devi ce

(Conponent I nstance ti, |long actions);
ti A component instance that identifies your sound component.
actions A set of flags. This parameter is currently unused.

Your SoundComnponent | ni t Qut put Devi ce function is called by the Sound Manager at
noninterrupt time to allow your sound output device component to perform any
hardware-specific initialization. You should perform any necessary initialization that was
not already performed in your OpenConponent function. Note that your
OpenConponent function cannot assume that the appropriate hardware is available. As
a result, the Sound Manager calls your SoundConponent | ni t Qut put Devi ce function
when it is safe to communicate with your audio hardware. You can call the

OpenM xer SoundConponent function to create a single sound component chain.

Sound Components Reference

CHAPTER 4

Sound Components

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

Your SoundConponent | ni t Qut put Devi ce function is always called at noninterrupt
time. All other component-defined routines might be called at interrupt time.
Accordingly, your SoundConponent | ni t Qut put Devi ce function should handle any
remaining memory allocation needed by your component and it should lock down

any relocatable blocks your component will access.

Your SoundConponent | ni t Qut put Devi ce function should return noEr r if successful
or an appropriate result code otherwise.

See Listing 4-4 on page 282 for a sample SoundConponent | ni t Qut put Devi ce
function.

SoundComponentSetSource

DESCRIPTION

A sound component can implement the SoundConponent Set Sour ce function. The
Sound Manager calls this function to identify your component’s source component.

pascal Component Result SoundConponent Set Sour ce
(Component I nst ance ti,
SoundSour ce sour cel D,
Conponent | nst ance source);

ti A component instance that identifies your sound component.
sourcel D Asource ID for the source component chain created by the Apple Mixer.
source A component instance that identifies your source component.

sjuauodwo) punos -

Your SoundConponent Set Sour ce function is called by the Sound Manager to identify
to your sound component the sound component that is its source. The source component
is identified by the sour ce parameter. Your component uses that information when it
needs to obtain more data from its source (usually, by calling its

SoundConponent Get Sour ceDat a function).

Because a sound output device component is always connected directly to one or
more instances of the Apple Mixer, the SoundConponent Set Sour ce function needs
to be implemented only by utility components (that is, components that perform
modifications on sound data). Utility components are linked together into a chain of
sound components, each link of which has only one input source. As a result, a utility
component can usually ignore the sour cel D parameter passed to it.

Sound Components Reference 303

RESULT CODES

CHAPTER 4

Sound Components

Your SoundConponent Set Sour ce function should return noEr r if successful or an
appropriate result code otherwise.

SoundComponentGetSource

DESCRIPTION

RESULT CODES

304

A sound component can implement the SoundConponent Get Sour ce function. The
Sound Manager calls this function to determine your component’s source component.

pascal Component Result SoundConponent Get Source
(Conponent I nst ance ti,
SoundSour ce sourcel D,
Conponent | nst ance *source);

ti A component instance that identifies your sound component.
sourcel D Asource ID for the source component chain created by the Apple Mixer.
source A component instance that identifies your source component.

Your SoundConponent Get Sour ce function is called by the Sound Manager to retrieve
your component’s source component instance. Your component should return, in the
sour ce parameter, the component instance of your component’s source. This should be
the source component instance your component was passed when the Sound Manager
called your SoundConponent Set Sour ce function.

In general, all sound components have sources, except for the source at the beginning

of the source component chain. In the unlikely event that your component does not have
a source, you should return ni | in the sour ce parameter. A sound output device
component is always connected directly to an instance of the Apple Mixer. Accordingly, a
sound output device component should return a component instance of the Apple Mixer
in the sour ce parameter and a source ID in the sour cel D parameter. A utility
component can ignore the sour cel D parameter.

Your SoundConponent Get Sour ce function should return noEr r if successful or an
appropriate result code otherwise.

Sound Components Reference

CHAPTER 4

Sound Components

SoundComponentGetSourceData

DESCRIPTION

RESULT CODES

A utility component must implement the SoundConponent Get Sour ceDat a function.
A sound output device component calls this function on its source component when it
needs more data.

pascal Component Result SoundConponent Get Sour ceDat a
(Component I nst ance ti,
SoundConponent Dat aPtr *sour ceDat a) ;

ti A component instance that identifies your sound component.

sour ceDat a
On output, a pointer to a sound component data record that specifies the
type and location of the data your component has processed.

Your SoundConponent Get Sour ceDat a function is called when the sound component
immediately following your sound component in the sound component chain needs
more data. Your function should generate a new block of audio data, fill out a sound
component data record describing the format and location of that data, and then return
the address of that record in the sour ceDat a parameter.

Your SoundConponent Get Sour ceDat a function might itself need to get more data
from its source component. To do this, call through to the source component’s
SoundConponent Get Sour ceDat a function. If your component cannot generate any
more data, it should set the sanpl eCount field of the sound component data record
to 0 and return noErr.

IMPORTANT

Sound output device components do not need to implement this
function, but all utility components must implement it. a

Your SoundConponent Get Sour ceDat a function should return noEr r if successful or
an appropriate result code otherwise.

sjuauodwo) punos -

Sound Components Reference 305

CHAPTER 4

Sound Components

SoundComponentSetOutput

DESCRIPTION

306

A sound output device component can call the SoundConponent Set Qut put function
of the Apple Mixer to indicate the type of data it expects to receive.

pascal Component Result SoundComponent Set Qut put
(Component I nst ance ti,
SoundConponent Dat aPtr request ed,
SoundConponent Dat aPtr *actual);

ti A component instance that identifies your sound component.

request ed
A pointer to a sound component data record that specifies the type of the
data your component expects to receive.

act ual
This parameter is currently unused.

The Apple Mixer’s SoundConponent Set Qut put function can be called by a sound
output device component to specify the kind of audio data the output device component
wants to receive. The Apple Mixer uses that information to determine the type of sound
component chain it needs to construct in order to deliver that kind of audio data to your
sound output device component. For example, if your sound output device is able to
accept 16-bit samples, the Sound Manager doesn’t need to convert 16-bit audio data into
8-bit data.

The following lines of code illustrate how the sound output device component for the
Apple Sound Chip might call Apple Mixer’s SoundConponent Set Qut put function:

nyDat aRec. f1 ags = O; /*ignored here*/
nmyDat aRec. format = kOf f set Bi nary; /*ASC needs of fset binary*/
nyDat aRec. sanpl eRat e = rat e22khz; /*ASC needs 22 kHz sanpl es*/

nyDat aRec. sanpl eSi ze = 8§; /*ASC needs 8-bit data*/
nmyDat aRec. nuntChannel s = 2; /*ASC can do stereo*/
nyDat aRec. sanpl eCount = 1024; /*ASC uses a 1K FI FO*/

nyErr = SoundConponent Set Cut put (mySour ce, &mryDat aRec, &nyActual);

In general, however, a sound output device component shouldn’t need to call the Apple
Mixer’s SoundConponent Set Qut put function. Instead, it can indicate the type of data
it expects to receive when it calls the OQpenM xer SoundConponent function. The
SoundConponent Set Qut put function is intended for sophisticated sound output
device components that might want to reinitialize the Apple Mixer.

IMPORTANT
Only the Apple Mixer component needs to implement this function. a

Sound Components Reference

RESULT CODES

CHAPTER 4

Sound Components

The Apple Mixer’s SoundConponent Set Qut put function returns noEr r if successful
or an appropriate result code otherwise.

Creating and Removing Audio Sources

To write a sound output device component, you might need to define two routines that
create and remove audio sources:

= SoundConponent AddSour ce

= SoundConponent RenpoveSour ce

Your component needs to contain these functions only if, like the Apple Mixer, it can mix
two or more audio channels into a single output stream. Sound components that operate
on a single input stream only do not need to include these functions.

SoundComponentAddSource

DESCRIPTION

A sound output device component that can mix multiple channel of audio data must
implement the SoundConponent AddSour ce function to add a new sound source.

pascal Component Result SoundConponent AddSource
(Component I nstance ti, SoundSource *sourcel D);

ti A component instance that identifies your sound component.
sourcel D On exit, a source ID for the newly created source component chain.

The SoundConponent AddSour ce function is called by the Sound Manager to create a
new sound source. If your sound output device component can mix multiple channels

of sound, it needs to define this function. Your SoundConponent AddSour ce function
should call the Sound Manager function OpenM xer SoundConponent to create an new
instance of the Apple Mixer component. The Apple Mixer component then creates a
sound component chain capable of generating the type of data your sound output device
component wants to receive.

The Apple Mixer also assigns a unique 4-byte source ID that identifies the new sound
source and component chain. You can retrieve that source ID by calling the Apple Mixer’s
SoundConponent AddSour ce function. Your SoundConponent AddSour ce function
should then pass that source ID back to the Sound Manager in the sour cel D parameter.

IMPORTANT

Most sound components do not need to implement the
SoundConponent AddSour ce function. Only sound components that
can handle more than one source of input need to define it. a

Sound Components Reference 307

sjuauodwo) punos -

CHAPTER 4

Sound Components

SPECIAL CONSIDERATIONS
The SoundConponent AddSour ce function is called at noninterrupt time.

RESULT CODES

Your SoundConponent AddSour ce function should return noEr r if successful or an
appropriate result code otherwise.

SEE ALSO
See page 298 for a description of OpenM xer SoundConponent .

SoundComponentRemoveSource

A sound output device component that implements the SoundConponent AddSour ce
function must also implement the SoundConponent RemmoveSour ce function to remove
sound sources.

pascal Conponent Result SoundConponent RenbveSource
(Component I nstance ti, SoundSource sourcel D);

ti A component instance that identifies your sound component.
sourcel D Asource ID for the source component chain to be removed.

DESCRIPTION

Your SoundConponent RenmoveSour ce function is called by the Sound Manager
to remove the existing sound source specified by the sour cel D parameter. Your
SoundConponent RenoveSour ce function should do whatever is necessary to
invalidate that source and then call through to the Apple Mixer’s
SoundConponent RermoveSour ce function.

IMPORTANT

Most sound components do not need to implement the
SoundConponent RenmoveSour ce function. Only sound components
that can handle more than one source of input need to define it. a

SPECIAL CONSIDERATIONS
Your SoundConponent RenpveSour ce function is always called at noninterrupt time.

RESULT CODES

Your SoundConponent RenmoveSour ce function should return noEr r if successful or an
appropriate result code otherwise.

308 Sound Components Reference

CHAPTER 4

Sound Components

Getting and Setting Sound Component Information

To write a sound component, you need to define two routines that determine the
capabilities of your component or to change those capabilities:

= SoundConponent Get | nf o
= SoundConponent Set | nf o

SoundComponentGetinfo

DESCRIPTION

A sound component must implement the SoundConponent Get | nf o function. The
Sound Manager calls this function to get information about the capabilities of your
component.

pascal Component Result SoundConponent Get | nfo
(Component I nst ance ti,
SoundSour ce sourcel D,
CSType sel ector, void *infoPtr);

ti A component instance that identifies your sound component.
sourcel D Asource ID for a source component chain.

sel ect or A sound component information selector. See “Sound Component
Information Selectors” beginning on page 287 for a description of the
available selectors.

i nfoPtr On output, a pointer to the information requested by the caller.

Your SoundConponent Get | nf o function returns information about your sound
component. The sour cel D parameter specifies the sound source to return information
about, and the sel ect or parameter specifies the kind of information to be returned. If
the information occupies 4 or fewer bytes, it should be returned in the location pointed to
by the i nf oPt r parameter. If the information is larger than 4 bytes, the i nf oPt r
parameter is a pointer to a component information list, a 6-byte structure of type

Soundl! nf oLi st :

sjuauodwo) punos -

typedef struct {
short count ;
Handl e handl e;
} Soundl nfoLi st, *Soundl nfoListPtr;

This structure consists of a count and a handle to a variable-sized array. The count field
specifies the number of elements in the array to which handl e is a handle. It is your
component’s responsibility to allocate the block of data referenced by that handle, but it
is the caller’s responsibility to dispose of that handle once it is finished with it.

Sound Components Reference 309

CHAPTER 4

Sound Components

The data type of the array elements depends on the kind of information being returned.
For example, the selector si Sanpl eSi zeAvai | abl e indicates that you should return
a list of the sample sizes your component can support. You return the information by
passing back, in the i nf oPt r parameter, a pointer to an integer followed by a handle to
an array of integers.

If your component cannot provide the information specified by the sel ect or parameter,
it should pass the selector to its source component.

SPECIAL CONSIDERATIONS

Your SoundConponent Get | nf o function is not called at interrupt time if it is passed
a selector that might cause it to allocate memory for the handle in the component
information list.

RESULT CODES

Your SoundConponent Get | nf o function should return noEr r if successful or an
appropriate result code otherwise.

SEE ALSO

See “Finding and Changing Component Capabilities” on page 283 for a sample
SoundConponent Get I nf o function.

SoundComponentSetinfo

A sound component must implement the SoundConponent Set | nf o function. The
Sound Manager calls this function to modify settings of your component.

pascal Component Result SoundConponent Set | nf o
(Conponent I nst ance ti,
SoundSour ce sourcel D,
OSType sel ector, void *infoPtr);

ti A component instance that identifies your sound component.
sourcel D Asource ID for a source component chain.

sel ect or A sound component information selector. See “Sound Component
Information Selectors” beginning on page 287 for a description of the
available selectors.

i nfoPtr A pointer to the information your component is to use to modify its
settings. If the information occupies 4 or fewer bytes, however, this
parameter contains the information itself, not the address of the
information.

310 Sound Components Reference

CHAPTER 4

Sound Components

DESCRIPTION

Your SoundConponent Set | nf o function is called by the Sound Manager to set one

of the settings for your component, as specified by the sel ect or parameter. If the
information associated with that selector occupies 4 or fewer bytes, it is passed on

the stack, in the i nf oPt r parameter itself. Otherwise, the i nf oPt r parameter

is a pointer to a structure of type Soundl nf oLi st . See the description of
SoundConponent Get | nf o for more information about the SoundI nf oLi st structure.

If your component cannot modify the settings specified by the sel ect or parameter, it
should pass the selector to its source component.

RESULT CODES

Your SoundConponent Set | nf o function should return noEr r if successful or an
appropriate result code otherwise.

Managing Source Data

To write a sound output device component, you might need to define routines that
manage the flow of data in a sound channel:

= SoundConponent St art Sour ce
= SoundConponent St opSour ce
= SoundConponent PauseSour ce

= SoundConponent Pl aySour ceBuf f er

SoundComponentStartSource

A sound output device component must implement the
SoundConponent St ar t Sour ce function. The Sound Manager calls this function to
start playing sounds in one or more sound channels.

pascal Component Result SoundConponent St art Sour ce
(Component I nst ance ti,
short count, SoundSource *sources);

ti A component instance that identifies your sound component.

count The number of source IDs in the array pointed to by the sour ce
parameter.

sources An array of source IDs.

Sound Components Reference 311

sjuauodwo) punos -

DESCRIPTION

CHAPTER 4

Sound Components

Your SoundConponent St art Sour ce function is called by the Sound Manager to begin
playing the sounds originating from the sound sources specified by the sour ces
parameter. Your function should start (or resume) sending data from those sources to the
associated sound output device. If your component supports only one sound source, you
can ignore the sour ces parameter.

SPECIAL CONSIDERATIONS

RESULT CODES

Your SoundConponent St ar t Sour ce function can be called at interrupt time.

Your SoundConponent St ar t Sour ce function should return noEr r if successful or
an appropriate result code otherwise. You should return noEr r even if no sounds are
playing in the specified channels.

SoundComponentStopSource

DESCRIPTION

312

A sound output device component must implement the SoundConponent St opSour ce
function. The Sound Manager calls this function to stop playing sounds in one or more
sound channels.

pascal Component Result SoundConponent St opSour ce
(Component I nstance ti, short count,
SoundSour ce *sources);

ti A component instance that identifies your sound component.

count The number of source IDs in the array pointed to by the sour ce
parameter.

sources An array of source IDs.

Your SoundConponent St opSour ce function is called by the Sound Manager to stop
the sounds originating from the sound sources specified by the sour ces parameter. Your
function should stop sending data from those sources to the associated sound output
device. In addition, your SoundConponent St opSour ce function should flush any data
from the specified sound sources that it’s caching. If your component supports only one
sound source, you can ignore the sour ces parameter.

Sound Components Reference

RESULT CODES

CHAPTER 4

Sound Components

Your SoundConponent St opSour ce function should return noEr r if successful or an
appropriate result code otherwise. You should return noEr r even if no sounds are
playing in the specified channels.

SoundComponentPauseSource

DESCRIPTION

RESULT CODES

A sound output device component must implement the
SoundConponent PauseSour ce function. The Sound Manager calls this function to
stop pause the playing of sounds in one or more sound channels.

pascal Component Result SoundComponent PauseSour ce
(Component I nst ance ti,
short count, SoundSource *sources);

ti A component instance that identifies your sound component.

count The number of source IDs in the array pointed to by the sour ce
parameter.

sources An array of source IDs.

Your SoundConponent PauseSour ce function is called by the Sound Manager to pause
the playing of the sounds originating from the sound sources specified by the sour ces
parameter. Your function should stop sending data from those sources to the associated
sound output device. Because your SoundConponent St ar t Sour ce function might be
called to resume playing sounds, you should not flush any data. If your component
supports only one sound source, you can ignore the sour ces parameter.

Your SoundConponent PauseSour ce function should return noEr r if successful or
an appropriate result code otherwise. You should return noEr r even if no sounds are
playing in the specified channels.

Sound Components Reference 313

sjuauodwo) punos -

CHAPTER 4

Sound Components

SoundComponentPlaySourceBuffer

DESCRIPTION

RESULT CODES

314

A sound component must implement the SoundConponent Pl ay Sour ceBuf f er
function. The Sound Manager calls this function to start a new sound playing.

pascal Component Result SoundConponent Pl aySour ceBuf f er
(Component I nst ance ti,
SoundSour ce sourcel D,
SoundPar anBl ockPtr pb,
| ong actions);

ti A component instance that identifies your sound component.

sourcel D Asource ID for a source component chain.

pb A pointer to a sound parameter block.

actions A set of 32 bit flags that describe the actions to be taken when preparing to

play the source data. See “Action Flags” on page 292 for a description of
the constants you can use to select bits in this parameter.

Your SoundComnponent Pl ay Sour ceBuf f er function is called by the Sound Manager to
start a new sound playing. The sound parameter block pointed to by the pb parameter
specifies the sound to be played. That parameter block should be passed successively to
all sound components in the chain specified by the sour cel D parameter. This allows the
components to determine their output formats and playback settings and to prepare for a
subsequent call to their SoundConponent Get Sour ceDat a function. It also allows a
sound output device component to prepare for starting up its associated hardware.

Your SoundConponent Pl aySour ceBuf f er function should return noEr r if successful
or an appropriate result code otherwise.

Sound Components Reference

CHAPTER 5

Sound Manager 3.3 Features

This chapter discusses new features of the Sound Manager that are available
since the release of Sound Manager 3.0. The Sound Manager is described in
Chapter 2, “Sound Manager.” You need to read this chapter if you are writing
an application and want to add sound to it.

This chapter expands on the release notes that accompany the Sound Manager
3.3 software. For example, Sound Manager 3.3 now supports scheduling of
sounds, both in the past and in the future. In addition, Sound Manager sources
are now multi-platform, which means that the same manager is available for
each platform, i.e., Mac OS, Windows 95 and NT, and contains the same API
and features.

Notably, in Sound Manager 3.3, the contents of both SoundInput.h and
SoundComponents.h interface files have been merged into a single Sound.h file.

In addition to documenting the changes in the current release, this chapter also
discusses some of the features available in Sound Manager 3.2.1 and 3.1,
including two new audio codecs, performance enhancements, and
asynchronous alert sounds.

Read this chapter if you want to use the Sound Manager to
= determine the currently installed version
= convert between sound formats using the SoundConverterOpen function

= use the sound conversion architecture to convert a buffer of silence to IMA
4:1, changing the sampling rate in the process.

These are described in the section “Using the Sound Manager” (page 323).

Chapter 6, “Sound Manager 3.3 Reference,” explains the new sound commands,
sound informational selectors and Sound Manager routines added since the
release of Sound Manager 3.0 (as documented in the rest of this book).

315

CHAPTER 5

Sound Manager 3.3 Features

Features of Sound Manager 3.2.1

316

This section describes some of the features that are only available with Sound
Manager version 3.2.1 or later. Check for this by calling the
SndSoundManagerVersion routine for the installed version.

Sound Manager 3.1 added two new audio codecs, significant performance
increases on the Power Macintosh line of computers, and asynchronous alert
sounds. It is completely backwards compatible with previous versions of the
Sound Manager.

Pre-mixer Effects

The siPreMixerSoundComponent has been added for installing a pre-mixer sound
component to provide specialized audio effects, such as the Sound Sprockets
sound localizer. Refer to the new Sprockets Games documentation for use with
this new sound effect.

Native PowerPC Code

All of the critical sound components are native PowerPC code. This includes the
mixer, sample rate converter, format converters, MACE 3:1 and 6:1 compression
and decompressers. The sound input interrupt handler also uses native
PowerPC code to boost performance during recording. These enhancements on
Power Macintosh will let games and QuickTime movies play more smoothly
and provide higher capture rates when recording digital video.

Three New Audio Codecs Added

The IMA 4:1 audio compression format is based on a standard proposed by the
Interactive Multimedia Association, and is used to compress 16-bit sound with
aratio of 4:1. It is particularly good at compressing CD-quality music and is
fully integrated into QuickTime.

The pLaw 2:1 format (pronounced “mu-law”) is an international standard for
compressing voice-quality audio (typically 16-bit, 8 kHz speech) with a ratio of

Features of Sound Manager 3.2.1

CHAPTER 5

Sound Manager 3.3 Features

2:1. Itis often used in telephony applications, and also on the Internet as the
encoding format for *“.au” sound files.

The 16-bit “little-endian” codec provides support for the byte-ordering used on
Intel-standard personal computers. This codec lets QuickTime directly play
16-bit sound files encoded in the popular “.wav” file format.

Playing Alert Sounds Asynchronously

Previous versions of the Sound Manager would hang your Macintosh computer
while playing an alert sound, forcing you to wait until the sound was done
playing before you could continue. Sound Manager 3.1 removed this limitation
by playing alert sounds asynchronously, so alert dialogs and other interface
elements can continue processing while the alert sound is playing.

New sounds are queued within the same process and additional sounds from
other processes are mixed together. This gives the user a perceived performance
increase. You'll probably feel that the machine is running faster when a system
alert sound doesn’t lock up your computer anymore. You can disable this by
setting the sysBeepSynchronous flag when calling SndSetSysBeepState.

New Features of Sound Manager 3.3

The new features of the Sound Manager 3.3 are described in the following
section.

General

= Better optimization of PowerPC code.

= Unlimited output sources in mixer now available. This means you can open
as many sound channels as memory will allow. The CPU load is determined
by which ones are actively playing sound. If the load is beyond the
capabilities of the computer, the sound will glitch or have gaps in it.

= Sound, 'snd ', resources defined to be native endian format. Calling
GetResource(soundListRsrc, 1) under QuickTime will perform endian
swapping of all values in the resource. The Sound Manager API assumes any
"snd ' used (for example, the sndP1ay function) will be in the native endian

New Features of Sound Manager 3.3 317

318

CHAPTER 5

Sound Manager 3.3 Features

format. The SetupSndHeader function will create a header in native endian
format as well.

= The sample rate converter does not round sloppy rates to the nearest real
rate.

= Sound Manager built-in sound codecs support the siCompressionFactor
selector for the functions SndSetInfo and SndGetInfo. This allows the codec to
support different settings, such as a different frame size.

= The Sound Manager issues the siCompressionFactor selector on the sound
channel before calling the GetCompressionInfo routine. The
GetCompressionInfo iS a generic call to a codec that is not attached to a
channel. Using siCompressionFactor allows a channel to have compression or
decompression settings which are specific to that channel’s decompressor.

The Ability to Schedule Sounds

A major new feature of Sound Manager 3.3 is the ability to schedule a sound.
The mixer supports scheduling sounds, both in the past and future. If the start
time is in the past, the mixer will fast forward through the source at
non-interrupt time, attempting to catch up with the current time. Once there,
the sounds are included into the mix. If the sound is in the future or the past,
the mixer will begin mixing the source into the output stream at the specified
time within a sample of accuracy.

New Sound Commands

There are two new sound commands that support the sound clock:
clockComponentCmd and getClockComponentCmd. These commands are used by
QuickTime to obtain the sound clock which is used as the main time base. For
more information about these new sound commands, see Chapter 6, “Sound
Manager 3.3 Reference.”

The Sound Manager sound clock is only available when QuickTime is installed.
This allows QuickTime’s video to be synchronized with the audio stream, and
can be used to synchronize multiple audio sources as well. There is one sound
clock per source (for example, sound channel) which is updated with each
hardware buffer. The sound clock counts samples being consumed by the
hardware device as it is passed from the Mixer.

New Features of Sound Manager 3.3

CHAPTER 5

Sound Manager 3.3 Features

Once the clock Componentinstance has been obtained, any and all of the
QuickTime clock component calls (for example, ClockGetTime) can be used.

Multi-platform Support

The Sound Manager sources are now multi-platform, i.e., built for the Mac OS,
Windows 95 and NT. This means the same Sound Manager is available for each
platform, and contains the same API and features.

The Issue of “Endianness”

Multi-platform support raises the issue of “endianness.” Basically, endian
conversion is treated exactly as a compression conversion. Any non-native
endian format will be required to be “decompressed” into the native format.
There are three distinct groups to be considered here:

= aprogram playing audio
= asound component manipulating the audio
= the output device sending the audio to a hardware device

For applications playing audio for any non-native endian formats, you use the
CmpSoundHeader, SndDoubleBufferHeader?2, Oor SoundComponentData with the format
setto k16BitLittleEndianFormat. This causes the Sound Manager to install the
16 Bit Little Endian codec into the sound channel. (Note that the SoundHeader,
ExtSoundHeader, and SndDoubleBufferHeader Sstructures do not have a format
field.)

Note

If you don’t want to figure whether it’s native or not, just
alert use of these headers and fill in the format field. The
Sound Manager will do the right thing. O

For sound component developers, there are two cases to consider: compressor
and decompressor components. The uncompressed formats are assumed to be
in native format of the platform. In other words, the input to a compressor is in
native format and all output from a decompressor is in native format.

For sound output devices, the Mixer is generating audio in the platform’s
native format. If the hardware requires non-native format, it is the responsibility
of the output device to convert from the native format.

New Features of Sound Manager 3.3 319

320

CHAPTER 5

Sound Manager 3.3 Features

Sound Formats

The new extended precision formats (24- and 32-bit integers and 32- and 64-bit
floats) supported by Apple Computer will also support both big and little
endian format. The Apple sound components will assume big endian format,
unless otherwise configured using the siDecompressionParams Or
siCompressionParams selector. Decompression components should always
output native format, and default to big endian for their input. Compression
components should default to big endian format for output, and consume
native endian for input.

A New Sound Codec Included: a-Law Compression

A new sound codec has been included with the standard set of built-in
compression format: the aLaw compression. The pLaw format is used in North
America and Japan, while the aLaw format is used in Europe and the rest of the
world.

New Sample Sizes Supported: 24 and 32 Bit Integer

Two new sample sizes are supported, integer 24 and 32 bit, and named
k24BitFormat and k32BitFormat, respectively. For this release, these samples are
converted into 8 or 16 bit depending on the hardware.

New Codecs to Import & Export Samples

Two new codecs have been added to import and export samples. These are in 32
bit and 64 bit floating point formats, and named kFloat32Format and
kFloat64Format, respectively. This allows more accurate conversion to other
sample sizes or the application of effects—for example, 3D sound localization.
These two floating point codecs also support a new selector
siSlopeAndIntercept Which points to a SoundSlopeAndInterceptRecord structure
which can control the conversion process of floating point samples into integer
samples. This structure is included in the Sound.h interface file and shown as
follows:

struct SoundSlopeAndInterceptRecord {

Float64d slope;
Float64d intercept;

New Features of Sound Manager 3.3

CHAPTER 5

Sound Manager 3.3 Features

Float64 minClip;
Float64 maxClip;

New Functions Added to the SoundConverter Suite

Two new function calls have been added to the SoundConverter suite:
SoundConverterGetInfo and SoundConverterSetInfo. This allows any of the
sound info selectors and their parameters to be used when calling the
SoundConverter.

New Sound Info Selectors Created

Two new sound info selectors have been created: siDecompressionParams and
siCompressionParams. These selectors are used to pass an atom list to the sound
component. Atoms are always in big-endian format. The content of the new
audio atom list can consist of many atoms, and always ends with the
AudioTerminatorAtom. The first atom in the list should be the
AudioFormatAtom, which specifies which sound component is responsible for
the atoms contained within the list.

If your application calls the sndGetInfo function with these two selectors, it will
return a handle to an atom list. This handle is the responsibility of the caller to
be disposed of. The SndSetInfo function requres a pointer to an atom list, and is
the responsiblity of the caller to be disposed. For example, to change a
decompression sound component from its default of big endian to little endian
input, you use the AudioEndianAtom with the “littleEndian” field set to TRUE.
Listing 1 shows an example of changing the 32- bit floating point codec to
consume little endian format.

Listing 5-1 Changing the 32 bit floating point codec to consume little endian format

void *atoms;

err = CreateAudioAtomsList(&atoms, k32BitFormat, false);
if (err != nokrr) return (err);

err = SndSetInfo(chan, siDecompressionParams, atoms);

New Features of Sound Manager 3.3 321

CHAPTER 5

Sound Manager 3.3 Features

Using the siOptionsDialog Selector

Certain sound compression components can show a dialog of options. To
determine if the codec supports a dialog, use the SoundComponentGetInfo
function with the sioptionsbialog selector. It will return a 16 bit value, with any
non-zero value meaning TRUE.

If you use the SoundComponentSetInfo function, the codec will show the dialog
and change its settings accordingly, as shown in Listing 2. For example, the two
floating point and the two new 24 and 32 bit integer codecs can show a dialog
that allows the user to specify big or little endian. You can also change a
compressor’s setting using the siCompressionParams selector.

Listing 5-2 Using the SoundComponentSetinfo function to show the dailog of
options

322

short hasDialog;

err = SoundComponentGetInfo(compressor, nil, siOptionsDialog,
&hasDialog);
if (err != nokrr) return (err);

if (hasDialog)

{
err = SoundComponentSetInfo(compressor, nil, siOptionsDialog, nil);
if (err != nokrr) return (err);

Interface Changes

In Sound Manager 3.3, SoundInput.h and SoundComponents.h have been
merged into Sound.h. The contents of the two former interface files are now
empty; all sound interfaces have been moved to Sound.h.

Previously defined in SoundComponents.h were a set of component sub-types
used in the 'thng' resource of an audio codec. This 0SType was matched with a
given sound’s format, which determined the codec necessary to support the
given sound.

Unfortunately, the usage of these constants was not obvious to many and are
required as the value set in the format parameter of the functions

New Features of Sound Manager 3.3

CHAPTER 5

Sound Manager 3.3 Features

GetCompressionInfo, GetCompressionName , SetupSndHeader, and SetupAIFFHeader,
and in the CmpSoundHeader, SndDoubleBufferHeader?2, CompressionInfo and
SoundComponentData structures. A new set of constants has been created to
replace these, along with the addition of the recently supported formats. These
are shown in Table 1.

Table 5-1 A new set of constants, replacing old constants
New Constants Old Constants
kSoundNotCompressed

k8BitOffsetBinaryFormat kOffsetBinary
kMACE3Compression kMace3SubType
kMACE6Compression kMace6bSubType
kIMACompression kIMA4SubType
kULawCompression kULawSubType

kALawCompression
kFloat32Format
kFloat64Format

k24BitFormat

k32BitFormat

k16BitBigEndianFormat kTwosComplement
kl6BitLittleEndianFormat kLittleEndianSubType

kMicrosoftADPCMFormat
kDVIIntelIMAFormat
kDVAudioFormat

Using the Sound Manager

The following section discusses some of the ways that you can use the Sound
Manager.

Using the Sound Manager 323

CHAPTER 5

Sound Manager 3.3 Features

Determining the Sound Manager Version

The Sound Manager provides a routine, SndSoundManagerVersion, which returns
the currently installed version.

Listing 3 shows the simplest method you can use to check for Sound Manager
3.1 or later. Note that the NumversionVariant structure is being used from the
lastest version of the MacTypes interface file. This is a union of the old
NumVersion structure with its various parts, and a 32 bit long value which allows
for easy comparisons.

Listing 5-3 The simplest method for determing the Sound Manager version

324

Boolean HasSoundManager3_1(void)
{
NumVersionVariant version;

version.parts = SndSoundManagerVersion();

return (version.whole >= 0x03100000) // version 3.1
}

Converting Between Sound Formats

With the release of Sound Manager 3.2, you can easily convert between sound
formats. Typically, some of the operations that can be performed include

= compression

= decompression

= channel conversion

= sample rate conversion

= sample format conversion

You begin a conversion session by calling the SoundConverter0Open function, to
which you pass the format of the sound to be converted and the desired output
format. A SoundConverter identifier is returned that must be passed to all
further routines in this session. SoundConverterClose is used to close the session.

Using the Sound Manager

CHAPTER 5

Sound Manager 3.3 Features

The SoundConverterGetBufferSizes routine allows you to determine input and
output buffer sizes based on a target buffer size. This lets you allocate buffers to
fit the conversion established with SoundConverterOpen.

The Process of Converting a Sound

The process of Converting a sound involves the following steps:

1. You call SoundConverterBeginConversion to initiate the conversion and reset
the SoundConverter to default settings.

2. SoundConverterConvertBuffer is called one or more times to convert
sequential buffers of the input data to the output format.

3. Finally, when all input data has been converted,
SoundConverterEndConversion flushes out any data left in the converter.

pascal OSErr SoundConverterOpen(const SoundComponentData *inputFormat,
const SoundComponentData *outputFormat, SoundConverter *sc)

SoundConverterOpen Sets up the conversion session and returns a SoundConverter
identifier to be passed to all further routines. The inputFormat parameter
specifies the format of the sound data to be converted using a
SoundComponentData structure. The following fields must be set up to describe
the sound correctly:

Field Descriptions of SoundComponentData

flags Setto 0

format The sound format (i.e., 'raw’, 'twos', 'MAC3', etc.)
numChannels The number of channels (i.e., 1 = mono, 2 = stereo)
sampleSize The sample size (i.e., 8 = 8-bit, 16 = 16-bit)
sampleRate The sampling rate (in samples/second)
sampleCount Setto 0

buffer Setto 0

reserved Setto 0

The outputFormat parameter specifies the output format, and must be passed
fields similar to inputFormat. Output fields that are different from input fields
will cause a conversion. For example, if the input sound format is 'raw ' and
the output format is 'MAC3 ', the data resulting from the conversion will be
compressed with MACE 3:1. This allows any combination of compression,

Using the Sound Manager 325

CHAPTER 5

Sound Manager 3.3 Features

decompression, channel conversion, sample size conversion and sampling rate
conversion. A SoundConverter identifier is returned to manage the session,
which must be passed to all further routines.

SoundConverterClose terminates the session and frees up all memory and
services associated with this session.

pascal O0SErr SoundConverterClose(SoundConverter sc)

An Example of Converting a Buffer of Silence to IMA 4:1

The following is an example of how to use the sound conversion architecture to
convert a buffer of silence to IMA 4:1, changing the sampling rate in the
process.

enum {
kTargetBytes = 20 * 1024

void main(void)

{
SoundConverter sc;
SoundComponentData inputFormat, outputFormat;
unsigned long inputFrames, inputBytes;
unsigned long outputfFrames, outputBytes;
Ptr inputPtr, outputPtr;
0SErr err;

inputFormat.flags = 0;
inputFormat.format = kOffsetBinary;
inputFormat.numChannels = 1;
inputFormat.sampleSize = 8;
inputFormat.sampleRate = rate22050hz;
inputFormat.sampleCount = 0;
inputFormat.buffer = nil;
inputFormat.reserved = 0;

outputFormat.flags = 0;
outputFormat.format = kIMA4SubType;
outputFormat.numChannels = 1;
outputFormat.sampleSize = 16;

326 Using the Sound Manager

CHAPTER 5

Sound Manager 3.3 Features

outputFormat.sampleRate = rate44100hz;
outputFormat.sampleCount = 0;
outputFormat.buffer = nil;
outputFormat.reserved = 0;

err = SoundConverterOpen(&inputFormat, &outputFormat, &sc);
if (err != nokrr)
DebugStr("\pOpen failed");

err = SoundConverterGetBufferSizes(sc, kTargetBytes,
&inputFrames, &inputBytes, &outputBytes);
if (err != nokrr)
DebugStr("\pGetBufferSizes failed");

inputPtr = NewPtrClear(inputBytes);
outputPtr = NewPtrClear(outputBytes);

// fill dinput buffer with 8-bit silence

{

int i;
Ptr dp = inputPtr;

for (i = 0; i < inputBytes; i++)
*dp++ = 0x80;

err = SoundConverterBeginConversion(sc);
if (err != nokrr)
DebugStr("\pBegin Conversion failed");

err = SoundConverterConvertBuffer(sc, inputPtr, inputFrames,
outputPtr, &outputFrames, &outputBytes);
if (err != nokrr)
DebugStr("\pConversion failed");

err = SoundConverterkEndConversion(sc,
outputPtr,&outputFrames, &outputBytes);
if (err != nokrr)
DebugStr("\pEnd Conversion failed");

Using the Sound Manager 327

CHAPTER 5

Sound Manager 3.3 Features

err = SoundConverterClose(sc);
if (err != nokrr)
DebugStr("\pClose failed");

Scheduling Two Sounds with the Sound Clock

Listing 4 shows an example of scheduling two sounds with the sound clock. It
assumes that the SoundHeader of the ScheduledSoundHeader structure has already
been established. Note that although each channel has its own clock, both are
synchronized with the Mixer. Therefore, obtaining the current time from one
channel will result in the same time for the second. This allows both channels to
use the same start time.

Listing 5-4 An example of scheduling two sounds with the sound clock

328

// turn on the sound clock for two channels

cmd.cmd = clockComponentCmd;
cmd.paraml = true;

err = SndDoImmediate(gChanl, &cmd);
if (err != nokrr) return (err)

err = SndDoImmediate(gChan2, &cmd);
if (err != nokErr) return (err)

// get the sound clock component from one channel

cmd.cmd = getClockComponentCmd;
cmd.param?2 = (long)&clock;

err = SndDoImmediate(gChanl, &cmd);

if (err != nokrr) return (err)

// get the current time from one channel

scheduledSoundl.startTime.base = nil;
err = ClockGetTime(clock, &scheduledSoundl.startTime);

if (err != nokErr) return (err)

// add 1/2 second to the current time

Using the Sound Manager

CHAPTER 5

Sound Manager 3.3 Features

deltaTime.value.hi
deltaTime.value.lo
deltaTime.scale = 2;

AddTime(&scheduledSoundl.startTime, &deltaTime);

Il
= O

// schedule two sounds to play at the same starting time

scheduledSoundl.flags = kScheduledSoundDoScheduled;
scheduledSound2.flags = kScheduledSoundDoScheduled;
scheduledSound?2.startTime = scheduledSoundl.startTime;

cmd.cmd = scheduledSoundCmd;
cmd.param?2 = (long)&scheduledSoundl;
err = SndDoImmediate(gChanl, &cmd);
if (err != nokrr) return (err);

cmd.param?2 = (long)&scheduledSound?;
err = SndDoImmediate(gChan2, &cmd);
if (err != nokErr) return (err);

Note

A sound channel can only have one scheduled sound at
any given time. The Mixer does not queue up additional
scheduled sounds. You can stream a sound continuously by
starting the first buffer with the scheduledSoundCmd, then
use the bufferCmd and cal1BackCmd sequence with the
SndDoCommand function to stream additional samples. This
has been the techniqued used in the past. By replacing the
first bufferCmd with the new scheduledSoundCmd, you can
cause the samples to start playing at a specific point in
time. O

Converting to 32-bit Little Endian Data

A code example for converting to 32 bit little endian data is shown in Listing 5.

Using the Sound Manager

329

CHAPTER 5

Sound Manager 3.3 Features

Listing 5-5 Converting to Little Endian

0SErr ConvertToLittleEndian(Ptr inputPtr, Ptr outputPtr)

{

SoundConverte
SoundComponen
unsigned Tong
unsigned Tong
void

0SErr

inputFormat.f
inputFormat.f
inputFormat.n
inputFormat.s
inputFormat.s
inputFormat.s
inputFormat.b
inputFormat.r

outputFormat.
outputFormat.
outputFormat.
outputFormat.
outputFormat.
outputFormat.
outputFormat.
outputFormat.

r SC;

tData inputFormat, outputFormat;
inputFrames, inputBytes;
outputFrames, outputBytes;
*1ittleEndianAtomsList;
err;

lags = 0;

ormat = kl6BitBigEndianFormat;
umChannels = 1;

ampleSize = 16;

ampleRate = rate22050hz;
ampleCount = 0;

uffer = nil;

eserved = 0;

flags = 0;

format = k32BitFormat;
numChannels = 1;
sampleSize = 16;
sampleRate = rate22050hz;
sampleCount = 0;

buffer = nil;

reserved = 0;

err = SoundConverterOpen(&inputFormat, &outputFormat, &sc);
if (err != nokrr) return (err);

err = SoundConverterGetBufferSizes(sc, kOurInputBytesTarget,
&inputFrames,&inputBytes, &outputBytes);
if (err != nokrr) return (err);

err = CreateAudioAtomsList(k32BitFormat, true,

&littleEndianAtomsList);
if (err != noktrr) return (err);

330 Using the Sound Manager

CHAPTER 5

Sound Manager 3.3 Features

err = SoundConverterSetInfo(sc, siCompressionParams,
littleEndianAtomslList);
if (err != nokrr) return (err);

err = SoundConverterBeginConversion(sc);
if (err != nokErr) return (err);

err = SoundConverterConvertBuffer(sc, inputPtr, inputFrames,

outputPtr,&outputFrames, &outputBytes);
if (err != nokrr) return (err);

err = SoundConverterEndConversion(sc, outputPtr, &outputFrames,

&outputBytes);
if (err != nokrr) return (err);

err = SoundConverterClose(sc);
if (err != nokErr) return (err);

A List of Audio Atoms

This section is applicable to codec component developers.

Audio atoms are aways in big endian format. The atoms contained in this list
can be in any order, ending with the AudioTerminatorAtom. No assumptions
should be made about reading an audio atom list, other than the last atom is the
AudioTerminatorAtom. Using the SndGetInfo function and the
siDecompressionParams selector will return a list of atoms of any possible
ordering, as shown in Listing 5-6.

Listing 5-6 A list of audio atoms of any possible ordering

0SErr CreateAudioAtomslList(0SType format, Boolean littleEndian,
void **TittleEndianAtomsList)

{

typedef struct ({

AudioFormatAtom formatData;
AudioEndianAtom endianData;
AudioTerminatorAtom terminatorData;

} AudioDecompressionAtoms, *AudioDecompressionAtomsPtr;

Using the Sound Manager 331

CHAPTER 5

Sound Manager 3.3 Features

atoms =
(AudioDecompressionAtomsPtr)NewPtr(sizeof(AudioDecompressionAtoms));
if (atoms == nil)

return (MemError());

atoms->formatData.size = EndianU32_NtoB(sizeof(AudioFormatAtom));
atoms->formatData.atomType = EndianU32_NtoB(kAudioFormatAtomType);
atoms->formatData.format = EndianU32_NtoB(format);

atoms->endianData.size = EndianU32_NtoB(sizeof(AudioEndianAtom));
atoms->endianData.atomType = EndianU32_NtoB(kAudiokEndianAtomType);
atoms->endianData.littlekEndian = EndianUl6_NtoB(TittleEndian);
atoms->terminatorData.size = EndianU32_NtoB(sizeof(AudioTerminatorAtom));
atoms->terminatorData.atomType =
EndianU32_NtoB(kAudioTerminatorAtomType);

*1ittleEndianAtomsList = atoms;

return (nokErr);
}

Listing 5-7 How to read a list of audio atoms

Boolean GetFormatAndEndianFromAtomsList(UserDataAtom *atom, 0SType
*format, Boolean *1ittleEndian)

Boolean moreAtoms;

moreAtoms = true;
do
{
if (EndianS32_BtoN(atom->size) < 8)
return (false);// bad atom size
switch (EndianU32_BtoN(atom->atomType))
{
case kAudioFormatAtomType:
*format = EndianU32_BtoN(((AudioFormatAtom *)atom)->format);
break;

332 Using the Sound Manager

CHAPTER 5

Sound Manager 3.3 Features

case kAudioEndianAtomType:
*1ittleEndian = EndianU16_BtoN(((AudioEndianAtom
*)atom)->TittleEndian);
break;

case kAudioTerminatorAtomType:
moreAtoms = false;

break;
default: // unknown atom type
break;
}
atom = (UserDataAtom *)((long)atom + EndianS32_BtoN(atom->size));

} while (moreAtoms);

Using the SoundLib Shared library (PowerPC Only)

If you are developing a PowerPC-native application and wish to call some of
the new routines in Sound Manager 3.0 and later, you need to link to the
SoundLib shared library. This is because not all of the Sound Manager routine
definitions are included in the InterfaceLib library currently built into Power
Macintosh systems. The Sound Manager 3.1 extension installs a shared library
with these missing routine definitions, and you use SoundL.ib to reference this
library.

SoundLib is a “dummy” library, i.e., it contains just symbol references to the
real shared library in the Sound Manager 3.1 extension. The SoundLib file
should be used only for linking your PowerPC application—it should not be
installed in the System Folder and is not to be given to users, because this can
cause library conflicts. The SoundLib file simply provides the symbols that are
then resolved from the Sound Manager 3.1 extension at run time. You should
“weak” link with SoundLib and check in your application for the presence of
Sound Manager 3.1 before calling one of these new routines (see sample code
above). SoundLib is a .pef file, not a .xcoff file.

Some of the routines defined in SoundLib include GetCompressionInfo,
GetSoundPreference, SetSoundPreference, UnsignedFixedMulDiv, SndGetInfo
SndSetInfo, and all the sound component interfaces needed when developing a
native sound component.

Using the Sound Manager 333

CHAPTER 5

Sound Manager 3.3 Features

334 Using the Sound Manager

CHAPTER 6

Sound Manager 3.3 Reference

This chapter discusses the new sound commands, sound informational
selectors, and Sound Manager routines added since the release of Sound
Manager 3.0 as documented in the rest of this book.

New API Elements

The following are new sound commands, sound informational selectors, and
Sound Manager routines added since the release of Sound Manager 3.0, as
documented in the rest of this book.

Sound Commands

New sound commands have been added since the release of Sound Manager
3.0.

Use these sound commands with the SndDoImmediate and SndDoCommand
functions.

clockComponentCmd

This command turns the sound clock on or off. Use this command to turn on
the sound clock before attempting to use the getClockComponentCmd. Set the
value of paraml in this command to be true or false, where true turns on the
clock.

New API Elements 335

CHAPTER 6

Sound Manager 3.3 Reference

SndCommand cmd;

cmd.cmd = clockComponentCmd;
cmd.paraml = true; // turn the clock on
err = SndDoImmediate(chan, &clockComponentCmd);

getClockComponentCmd

This command returns the the sound clock component instance. Set the value of
param?2 to be a pointer to a ComponentInstance.

SndCommand cmd;
ComponentInstance clock;

cmd.cmd = getClockComponentCmd;
cmd.param? = (long)&clock; // get the clock component
err = SndDoImmediate (chan, &getClockComponentCmd);

scheduledSoundCmd

336

Use this command with the new ScheduledSoundHeader structure. It is similar to
the bufferCmd in that param2 contains a pointer to this structure. This command
can be used to schedule a sound and/or to install a cal1BackCmd with this one
command. The first field of this structure is a union of one of the three existing
SoundHeader types, as used in the bufferCmd. The flags field is used to specify if
there is a valid TimeRecord and/or parameters for the Cal1BackProc.

/* ScheduledSoundHeader flags*/
enum {
kScheduledSoundDoScheduled = 1 << 0,
kScheduledSoundDoCallBack = 1 << 1
b

struct ScheduledSoundHeader {
SoundHeaderUnion us;
long flags;

New API Elements

CHAPTER 6

Sound Manager 3.3 Reference

short reserved;
short callBackParaml;
long callBackParam?;

TimeRecord startTime;

linkSoundComponentsCmd

Use this command to configure the given sound channel’s components to
support your sound format. By default, a channel will be configured to play 8
bit non-compressed samples. If you wanted to play 16 bit or compressed audio,
then you had to start your sound at non-interrupt time so that the proper sound
components would be opened and installed. By using this new command you
can point to a SoundComponentData structure in param2, and the proper set of
sound components will be configured into your channel. At this point you can
start a sound playing at interrupt time.

rateMultiplierCmd

The rateMultiplierCmd uses a fixed-point value to provide a multiplier to the
playback rate of all sounds played on this channel. This allows you to vary the
sample rate of the sound being played, and thus control its pitch. The
getRateMultiplierCmd returns the current rate multiplier. For example, to play
all sounds on a channel shifted up one octave in pitch, you could use the
following code:

0SErr RaisePitchOneOctave(SndChannelPtr chan)
{

SndCommand cmd;

OSErr err;

cmd.cmd = rateMultiplierCmd;

cmd.paraml = 0;
cmd.param? = 0x00020000; // rate of 2.0

New API Elements 337

CHAPTER 6

Sound Manager 3.3 Reference

err = SndDoImmediate(chan, &cmd);
return (err);

The rateMultiplierCmd is more useful than previous
versions of rateCmd, which applied only to the sound

currently playing and was based on the sampling rate of
the hardware.

Sound Informational Selectors

The following are new sound informational selectors added since the release of
Sound Manager 3.0. These selectors are used to obtain information and control
the sound environment using the GetSoundOutputInfo, SetSoundOutputInfo,
SndGetInfo, SndSetInfo, or SPBGetDevicelnfo, and SPBSetDevicelnfo routines

siHardwareBusy

This selector is used by all input and output devices, and returns the state of the
hardware—typically, whether or not hardware interrupts are active. For input
devices, the infoData parameter points to a short word. For output devices, the
infoPtr is a short word containing the value.

A value of 0 represents that the hardware is not busy, while a value of 1

represents busy. This selector is only supported by the get calls, since it does not
make sense to “set” a device busy.

short hwBusy;
err = GetSoundOutputIinfo(nil, siHardwareBusy, &hwBusy);

siHardwareFormat

338

The siHardwareFormat selector has been added for output devices. Use this
selector with the GetSoundOutputInfo and SndGetInfo routines. It returns a
SoundComponentData Structure of the format used by the output hardware device.

New API Elements

CHAPTER 6

Sound Manager 3.3 Reference

SoundComponentData outputFormat;

err = GetSoundOutputInfo(nil, siHardwareFormat, &outputFormat);

siHardwareMute

This output selector was previously defined, but should be documented and
implemented as returning the mute state of all sources that can be heard. For
example, Power Macintosh computers have a speaker and headphone source. If
no headphones are plugged in, then return the mute state of the speakers. If
headphones are inserted, then return the mute state of both (e.g. siHardwareMute
is muted when both speakers and headphones are muted). The idea is if the
user has sources that can be heard and all are muted, then the hardware has

been muted. If any one of the sources can be heard, then the hardware is not
muted.

short hwMuted;

err = GetSoundOutputInfo(nil, siHardwareMute, &hwMuted);

siHardwareVolume

This output selector was previously defined, but should be documented and
implemented as returning the volume of the device that can be heard. For
example, Power Macintosh computers can have the speaker and the
headphones both be audible to the user.

In this case, return the loudest volume setting. If both the speaker and the
headphones are muted, then again return the loudest setting. If one is muted
and the other is audible, then return the volume of the audible source.

unsigned Tong hwVolume;

err = GetSoundOutputInfo(nil, siHardwareVolume, &hwVolume);

New API Elements 339

CHAPTER 6

Sound Manager 3.3 Reference

siPreMixerSoundComponent

This selector is used to install a given sound component into the component
chain. The given component will be installed just before the mixer component.
This sound component can access the audio stream and modify the data prior
to its being sent to the mixer. An example of its use is shown as follows by
installing the Sound Sprockets sound localizer.

SoundComponentlLink soundLink;

soundLink.description.componentType = kSoundEffectsType;
soundLink.description.componentSubType = kSSplLocalizationSubType;
soundLink.description.componentManufacturer = kAnyComponentManufacturer;
soundLink.description.componentFlags = 0;
soundLink.description.componentFlagsMask = kAnyComponentFlagsMask;
soundLink.mixerID = nil;

soundLink.1inkID = nil;

err = SndSetInfo(chan, siPreMixerSoundComponent, &soundLink);
// configure the localization settings

// and send them to the sound component

err = SndSetInfo(chan, siSSplLocalization, &localizationSettings);

siSetupCDAudio

340

This selector is only used by input devices that have special requirements in
order to hear the audio from the CD player. For example, currently the 840AV
and Power Macintosh computers require the user to open the Sound control
panel, select the Inputs panel, and then open the Options dialog. From here
they have to select the CD Input and also check the Play-Through option. The
new siSetupCDAudio avoids this troublesome operation by setting up the input
device to allow you to hear audio CDs from the audio CD player.

The infoData parameter points to a short word. A value of 1 means to set up the
hardware (for example, set input source to CD and turn on Play-Through). A
value of 0 means to return the input hardware to some initial state, either the

New API Elements

CHAPTER 6

Sound Manager 3.3 Reference

default settings or the settings prior to setting up for the CD audio. Any other
value is an error.

If the input device had no special needs for CD audio (for exmaple, the audio is
heard regardless of the input hardware settings), then the selector is not
supported and it returns an error. The SPBGetDeviceInfo routine should return a
1 or 0 value, depending on its current setting. If the input source is the CD and
Play-Through, if required, is on, then return the value of 1. This should happen
even if nothing ever requested setting up for CD audio. It should return the
state of the actual condition of the input hardware.

Sound Manager Routines

The following are new Sound Manager routines added since the release of
Sound Manager 3.0.

SndGetlInfo and SndSetinfo

extern pascal 0SErr SndGetInfo(
SndChannelPtr chan, 0SType selector,
void *infoPtr)

extern pascal 0SErr SndSetInfo(
SndChannelPtr chan, 0SType selector,
const void *infoPtr);

The two new routines SndGetInfo and SndSetInfo are used to get and set
information about the sound environment. Both routines use a selector based
interface similar to the SPBGetDeviceInfo and SPBSetDevicelnfo routines found
in the Sound Input Manager, and in fact they use the same sound information
selectors.

SndGetInfo and SndSetInfo operate on an open Sound Manager channel, and
can be used to retrieve and change information about the channel, including
hardware settings. These routines should be used instead of attempting to
communicate directly with sound components.

These new calls are only available with Sound Manager version 3.1 or later.
Check for this by calling SndSoundManagerVersion for the installed version. Note

New API Elements 341

342

CHAPTER 6

Sound Manager 3.3 Reference

that you can always open a sound channel for the hardware device that you
desire by passing kUseOptionalOutputDevice as the synth parameter and the
component reference as the init parameter.

0SErr OpenChannel (0SType myType)
{

ComponentDescription searching;
Component outputDevice;
0SErr err;

// search for a sound output device component
searching.componentType = kSoundOutputDeviceType;
searching.componentSubType = myType;
searching.componentManufacturer = kAnyComponentManufacturer;
searching.componentFlags = 0;

searching.componentFlagsMask = kAnyComponentFlagsMask;
outputDevice = nil;

outputDevice = FindNextComponent(outputDevice, &searching);

if (outputDevice == nil)

err = cantFindHandler; /*component not found*/
else
{

gChan = nil;

err = SndNewChannel(&gChan, kUseOptionalOutputDevice,
(Tong)outputDevice, nil);
}
return (err);

For example, to determine the current hardware sampling rate of the given
sound channel you may use this code:

UnsignedFixed sampleRate;

err = SndGetInfo(gChan, siSampleRate, &sampleRate);

GetSoundOutputInfo() and SetSoundOutputInfo()

pascal O0SErr GetSoundOutputInfo(Component outputDevice, 0SType selector,
void *infoPtr);

pascal O0SErr SetSoundOutputInfo(Component outputDevice, 0SType selector,
const void *infoPtr);

New API Elements

CHAPTER 6

Sound Manager 3.3 Reference

These two routines get and set information about the sound environment:
GetSoundOutputInfo and SetSoundOutputInfo. Both routines use a selector based
interface similar to the SPBGetDeviceInfo and SPBSetDevicelnfo routines found
in the Sound Input Manager, and in fact they use the same sound info selectors.

GetSoundOutputInfo and SetSoundOutputInfo operate directly on a sound output
device, and can be used to retrieve and change information about the hardware
settings. These routines should be used instead of attempting to communicate
directly with sound output components. Setting the output device parameter to
nil causes the default output device to be used. These calls are similar to
GetSndInfo and SetSndInfo but do not require an opened sound channel. For
example, to determine the sampling rate of the sound hardware on the default
output device, you could use this code:

0SErr GetCurrentSampleRate(UnsignedFixed *sampleRate)
{

OSErr err;

err = GetSoundOutputInfo(nil, siSampleRate, sampleRate);
return (err);
}

ParseAlFFHeader

pascal OSErr ParseAlFFHeader(
short fRefNum, SoundComponentData *sndInfo,
unsigned long *numFrames,
unsigned long *dataOffset);

The ParseAIFFHeader routine returns information describing the audio data in
the given AIFF file. The frRefNum parameter specifies the open AIFF file to use.
The sndInfo parameter is a SoundComponentData Structure that returns the
following information about the format of the sound in the AIFF file:

flags Always returns 0

format The sound format (i.e., 'raw’, 'twos', 'MAC3', etc.)
numChannels The number of channels (i.e., 1 = mono, 2 = stereo)
sampleSize The sample size (i.e., 8 = 8-bit, 16 = 16-bit)
sampleRate The sampling rate (in samples/second)

New API Elements 343

CHAPTER 6

Sound Manager 3.3 Reference

sampleCount The number of audio samples in the file
buffer Always returns 0
reserved Always returns 0

The numFrames parameter returns the number of frames of audio data in the file,
and the data0ffset parameter returns the byte offset of the first audio sample in
the file.

ParseSndHeader

344

pascal OSErr ParseSndHeader(
SndListHandle sndHandle,
SoundComponentData *sndInfo,
unsigned long *numFrames,
unsigned long *dataOffset);

The ParseSndHeader routine returns information describing the audio data in the
given 'snd ' resource handle. The sndHand1e parameter specifies the sound
handle to use. The sndinfo parameter is a SoundComponentData Structure that
returns the following information about the format of the sound in the handle:

flags Always returns 0

format The sound format (i.e., 'raw’, 'twos', 'MAC3', etc.)
numChannels The number of channels (i.e., 1 = mono, 2 = stereo)
sampleSize The sample size (i.e., 8 = 8-bit, 16 = 16-bit)
sampleRate The sampling rate (in samples/second)
sampleCount The number of audio samples in the file

buffer Always returns 0

reserved Always returns 0

The numFrames parameter returns the number of frames of audio data in the
handle, and the data0ffset parameter returns the byte offset of the first audio
sample in the handle.

New API Elements

CHAPTER 6

Sound Manager 3.3 Reference

GetCompressioninfo

pascal OSErr GetCompressionInfo(
short compressionID, 0SType format,
short numChannels, short sampleSize,
CompressionInfoPtr cp);

For a given AIFF file or snd resource, the information contained within it might
be used to determine basic characteristics of the sound such as its duration.

duration = numSampleFrames / sampleRate

Note that this is a valid calculation for an uncompressed sound. But this
calculation returns an incorrect result for a compressed sound. The problem
here is that each sample frame in a compressed sound is composed of one or
more packets rather than sample points (see “Sampled-Sound Data” (page 64)),
and each packet in that compressed sound can itself represent several sample
points. We therefore need a way to determine the number of samples in a
packet in order to get an accurate calculation.

The compressionlD parameter defines the compression algorithm used on the
sample. The AIFF-C Extended Common Chunk does not contain a
compressionlID field. In this case (and when using snd resources where the
0SType describing the compression format is known) you should always pass
the constant fixedCompression in this parameter and the 0SType in the format
parameter. The format field will then contain the 0SType representing the
compression format. If you set the compressionID field in a compressed sound
header to any value other than fixedCompression, then the format field is set to
zero. The format parameter is the 0SType describing the format of the
compressed sound data. If you pass the constant fixedCompression in the
compressionID parameter you will need to pass a valid compression type here.
Some of the valid format types are:

NONE - sound is not compressed
MAC3 - compression format is MACE 3:1
MAC6 - compression format is MACE 6:1

ima4 - compression format is IMA 4:1

New API Elements 345

CHAPTER 6

Sound Manager 3.3 Reference

There are some snd resources that do not store an 0SType in the format field of
the compressed sound header describing the compression format. You can still

use GetCompressionInfo in this
0 in the format parameter. The

case by passing in the compression1d and passing
correct 0SType will be returned in the format field

of the CompressionInfo structure. Using the appropriate fields from an AIFF-C
Extended Common Chunk or our snd resource compressed sound header, we
can make the call to GetCompressionInfo:

Example Extended Common Chunk

myExtendedCommonChunk.
myExtendedCommonChunk.
myExtendedCommonChunk.
myExtendedCommonChunk.
myExtendedCommonChunk.
myExtendedCommonChunk.
myExtendedCommonChunk.
myExtendedCommonChunk.

Example Compressed Sound Header

ckID =
ckSize
numChannels
numSampleFrames = 7633;
sampleSize
sampleRate
compressionType
compressionName = “MACE 3-to-17;

"COMM";
34;

1;

8;
22254 .54545;

MAC3;

myCompressedSoundHeader.
myCompressedSoundHeader.
myCompressedSoundHeader.
myCompressedSoundHeader.
myCompressedSoundHeader.
myCompressedSoundHeader.
myCompressedSoundHeader.
myCompressedSoundHeader.
myCompressedSoundHeader.
myCompressedSoundHeader.

/7 fill

0SErr err;
CompressionInfo cmpInfo;

346 New API Elements

samplePtr nil;

numChannels 1;

sampleRate rate22khz;

encode cmpSH;

numfFrames = 7633

format = 0;

compressionID = threeToOne;
packetSize threeToOnePacketSize;
snthID = 0;

sampleSize

8;

in the CompressionInfo from our Extended Common Chunk

CHAPTER 6

Sound Manager 3.3 Reference

err = GetCompressionInfo(fixedCompression,
(0SType) (myExtendedCommonChunk.compressionType),
myExtendedCommonChunk.numChannels,
myExtendedCommonChunk.sampleSize,
&cmpInfo);

// fill in the CompressionInfo from our Compressed Sound Header

OSErr err;
CompressionInfo cmpInfo;

err = GetCompressionInfo(myCmpSoundHeader->compressionlID,
myCmpSoundHeader->format,
myCmpSoundHeader->numChannels,
myCmpSoundHeader->sampleSize,
&cmpInfo);

Note that this call will work for all sound formats, compressed or
uncompressed.

Using GetCompressionInfo, the Sound Manager will do the right thing. You get
back the information you need in the CompressionInfo struct, with no special
casing needed. Upon returning from the call to GetCompressionInfo, you have a
filled CompressionInfo struct.

recordSize = 20

format = MAC3
compressionID = threeToOne
samplesPerPacket = 6
bytesPerPacket = 2
bytesPerFrame = 2
bytesPerSample = 1

Now you can use this information to determine the duration of our sound.
duration = (numSampleFrames * samplesPerPacket) / sampleRate

By substituting the data given from the example above, you get the following
results.

2.06 seconds = (7633 * 6) / 22254.54545

New API Elements 347

CHAPTER 6

Sound Manager 3.3 Reference

By including the CompressionInfo struct you should never need to special case
code for compressed vs. uncompressed sounds—and all sound data
calculations should be correct.

The following is a list of useful calculations that can be made using the data
returned in the struct, along with data from our Extended Common Chunk or
Compressed Sound Header:

seconds = (numFrames * samplesPerPacket) / sampleRate;

samples = numFrames * samplesPerPacket;

bytes = numFrames * bytesPerFrame;

compressionRatio = (samplesPerPacket * bytesPerSample) / bytesPerPacket;

GetCompressionName

pascal OSErr GetCompressionName(
0SType compressionType,
Str255 compressionName);

The GetCompressionName routine returns a string describing the given
compression format in a string that can be displayed to the user. The

compressionType parameter specifies the compression format, and the name is
returned in compressionName.

This string can be used in pop-up menus and other user interface elements to
allow the user to select a compression format.

SoundConverterGetBufferSizes

348

pascal 0SErr SoundConverterGetBufferSizes(
SoundConverter sc,
unsigned long targetBytes,
unsigned long *inputFrames,
unsigned long *inputBytes,
unsigned long *outputBytes);

New API Elements

CHAPTER 6

Sound Manager 3.3 Reference

SoundConverterGetBufferSizes isused to determine the input and output buffer
sizes for a given target size. This is so you can make sure your buffers will fit
the conversion parameters established with SoundConverterOpen.

The targetBytes parameter is the approximate number of bytes you would like
both your input and output buffers to be. The inputFrames and inputBytes
parameters return the actual size you should make your input buffer, in frames
and bytes, respectively. The outputBytes parameter returns the size in bytes for
your output buffer.

Note

The returned input and output buffer sizes can be larger
than your target size settings. This is because they are
rounded up depending on the format, but they will be very
close to the target settings. Also note that the input and
output sizes may be very different, depending on the input
and output formats given in SoundConverterOpen. The sizes
are calculated assuming you will convert all data in the
input buffer to the output buffer. 0

SoundConverterBeginConversion

pascal OSErr SoundConverterBeginConversion(SoundConverter sc);

SoundConverterBeginConversion starts a conversion. All state information is reset
to default values in preparation for a new input buffer.

This routine can be called at interrupt time.

SoundConverterConvertBuffer

pascal OSErr SoundConverterConvertBuffer(
SoundConverter sc,
const void *inputPtr, unsigned long inputFrames,
void *outputPtr, unsigned long *outputFrames,
unsigned long *outputBytes);

New API Elements 349

CHAPTER 6

Sound Manager 3.3 Reference

SoundConverterConvertBuffer converts a buffer of data from the input format to
the output format. The inputPtr parameter points to the input data, and
inputFrames gives the number of frames in that buffer. The outputPtr parameter
specifies where the output data should be placed. The outputFrames and
outputBytes parameters return the number of frames and bytes placed in the
output buffer respectively.

This routine will consume all the data in the input buffer. Depending on the
complexity of the conversion, however, not all the converted data may be put in
the output buffer right away. The SoundConverterEndConversion routine is used
to flush out all this remaining data before a conversion session is closed.

If you are using this routine in conjunction with SoundConverterGetBufferSizes,
it is very important that you do not pass in a value in inputFrames larger than
the frames value returned by SoundConverterGetBufferSizes, or you will
overflow your output buffer. The SoundConverterConvertBuffer calls converts
ALL the input data! This routine can be called at interrupt time.

SoundConverterEndConversion

350

pascal OSErr SoundConverterEndConversion(
SoundConverter sc,
void “*outputPtr,
unsigned long *outputFrames,
unsigned long *outputBytes);

SoundConverterEndConversion ends a conversion. Any data remaining in the
converters is flushed out and returned here.

This routine can be called at interrupt time.

New API Elements

Glossary

AGC See automatic gain control.
AIFF See Audio Interchange File Format.

AIFF-C See Audio Interchange File Format
Extension for Compression.

alert sound See system alert sound.

Alert Sounds control panel A subpanel of the
Sound control panel that allows the user to select
a system alert sound. See also Sound In control
panel, Sound Out control panel, Volumes
control panel.

allophone A distinct variety of a phoneme
in a particular language that is never used
contrastingly with any other allophone of
the phoneme.

amplitude A modification to the wave
amplitude of a sound to make it sound louder
or softer. See also speech volume. Compare
wave amplitude.

Apple Mixer See Apple Mixer component.

Apple Mixer component A sound component
that is responsible for mixing together the audio
data streams from all open sound channels.

Apple Sound Chip (ASC) A custom chip that,
in conjunction with other circuitry, generates a
stereo sound signal that drives the internal
speaker or an external sound jack. Compare
Enhanced Apple Sound Chip.

ASC See Apple Sound Chip.

asynchronous sound play The playing of sound
during other, non-sound related operations.
Compare synchronous sound play.

audio compression A technique of reducing the
amount of memory space required for a buffer of
sampled-sound data, usually at the expense of
audio fidelity. See also audio expansion.

audio component A component that works
with the Sound Manager to adjust volumes or
other settings of a sound output device. Compare
sound component.

audio data See sampled-sound data, sound,
square-wave data, wave-table data.

audio decompression See audio expansion.

audio expansion The decompression
of compressed sound data. See also
audio compression.

audio information record A structure you can
use to specify information about an audio
component. Defined by the Audi ol nf o data

type.

Audio Interchange File Format (AIFF) A sound
storage file format designed to allow easy
exchange of audio data among applications.

Audio Interchange File Format Extension for
Compression (AIFF-C) An extension of the
Audio Interchange File Format that allows for the
storage of compressed sound data.

audio port Any independently-controllable
sound-producing hardware connected or attached
to a sound output device. A sound output device
can have several audio ports.

audio selection record A structure you can use
to specify that only part of a sound be played.
Defined by the Audi oSel ect i on data type.

automatic gain control (AGC) A feature of
sound recording that moderates the recording
to give a consistent signal level.

base frequency The pitch at which a sampled
sound is recorded. The wave of a sampled sound
may include frequencies other than the base
frequency (and need not even include the

base frequency).

baseline pitch See speech pitch.

351

GLOSSARY

buffered expansion Audio expansion of a
sound that does not occur while the sound is
playing. Compare real-time expansion.

callback procedure An application-defined
procedure that is invoked at a specified time
or based on specified criteria.

channel A portion of sound data that can be
described by a single sound wave. Do not confuse
with sound channel or speech channel. See also
monophonic sound, stereo sound.

chunk Any distinct portion of a sound file.

chunk header The first segment of a chunk,
which defines the characteristics of the chunk.
Defined by the ChunkHeader data type.

codec See compression/decompression
component.

command See embedded speech command,
sound command.

command delimiter A sequence of one or two
characters that indicates the start or end of an
embedded speech command.

component A piece of code that provides a
defined set of services to one or more clients.
Applications, system extensions, and other
components can use the services of a component.
See also audio component, sound component.

component description record A structure
that contains information about a component.
Defined by the Conponent Descri pti on
data type.

Component Manager A collection of routines
that allows your application or other clients

to access components. The Component Manager
manages components and also provides services
to components.

compressed sound data Sampled-sound data
that has been subjected to audio compression.

compressed sound header A sound header that
can describe noncompressed and compressed
sampled-sound data, whether monophonic or
stereo. Defined by the ChpSoundHeader data
type. See also extended sound header, sampled
sound header.

352

compression See audio compression.

compression/decompression component
(codec) A component that handles data
compression and decompression.

compression information record A structure
you use to specify information about a sound
component that can decompress compressed
audio data. Defined by the Conpr essi onl nf o
data type.

computer-generated speech See synthesized
speech.

continuous play from disk See play from disk.

continuous recording A feature of a sound
input device driver that allows recording from the
device while other processing continues.

current sound input device The sound input
device that the user has chosen through the
Sound In subpanel of the Sound control panel.

current sound output device The sound output
device that the user has chosen through the
Sound Out subpanel of the Sound control panel.

DAC See digital-to-analog convertor.

decompressed sound data Sampled-sound data
that has been subjected to audio compression and
expansion.

decompression See audio expansion.

delimiter See command delimiter.

delimiter information record A structure that
defines the characters used to indicate the

beginning and end of a command embedded in
text. Defined by the Del i ni t er | nf o data type.

dictionary See pronunciation dictionary.

digital signal processor (DSP) A processor that
manipulates digital data.

digital-to-analog convertor (DAC) A device
that converts data from digital to analog form.

GLOSSARY

double buffering A technique used by the
Sound Manager to manage a play from disk.
When using this technique, the Sound Manager
plays one buffer of sampled-sound data while
filling a second with more data. When the first
buffer of sound finishes playing, the Sound
Manager plays the data in the second buffer while
filling the first with more data. See also play from
disk, sampled-sound data.

drop-sample conversion A form of sample rate
conversion that uses an existing sample as an
interpolated sample point. Compare linear
interpolation.

DSP See digital signal processor.

duration The length of time that a sound takes
to play.

EASC See Enhanced Apple Sound Chip.

embedded speech command In a buffer of
input text, a sequence of characters enclosed by
command delimiters that provides instructions to
a speech synthesizer.

ending prosody The rhythm, modulation, and
stress patterns associated with the end of a
sentence of speech.

Enhanced Apple Sound Chip (EASC) A
modified Apple Sound Chip that generates stereo
sound using pulse-code modulation. Compare
Apple Sound Chip.

enhanced Sound Manager Any version of the
Sound Manager greater than 2.0.

error callback procedure An
application-defined procedure that is executed
whenever the Speech Manager encounters an
error in an embedded speech command in a
buffer of input text.

expansion See audio expansion.

extended sound header A sound header that
can describe monophonic and stereo
sampled-sound data, but not compressed sound
data. Defined by the Ext SoundHeader data
type. See also compressed sound header,
sampled sound header.

FIFO See first-in, first-out.

Finder sound file A file of file type * sfi |’
containing a sound resource. If a user opens a
Finder sound file, the Finder plays the sound
resource contained within it. See also sound file,
sound resource.

first-in, first-out (FIFO) Characteristic of a
gueue in which the first item put into the queue
becomes the first item to be taken out of it.
Compare last-in, first out.

frequency The number of times per second
that an action occurs. An action’s frequency is
measured in cycles per second, or hertz. See
also period.

gain The ratio of the output volume to the input
volume. See also automatic gain control.

hertz (Hz) A unit of frequency, equal to one
cycle per second.

instrument A sampled sound played at varying
rates to produce a number of different pitches or
notes. See also voice.

interleaving The technique of combining two or
more channels of sound data by alternating small
pieces of the data in each channel into a single
data stream. See also sample frame.

interpolation The process of generating sample
points between two given sample points. See also
linear interpolation.

kilohertz (kHz) A unit of frequency, equal to
one thousand cycles per second.

last-in, first out (LIFO) Characteristic of a queue
in which the last item put into the queue becomes
the first item to be taken out of it. Compare
first-in, first out.

LIFO See last-in, first-out.

linear interpolation A form of interpolation
that uses the calculated mean of two sample
points as the interpolated sample point. Compare
drop-sample conversion.

MACE See Macintosh Audio Compression and
Expansion.

Macintosh Audio Compression and Expansion
(MACE) A set of Sound Manager routines that
allow your application to compress and expand
audio data.

353

GLOSSARY

megahertz (MHz) A unit of frequency, equal to
one million cycles per second.

microsecond A unit of time equal to one
millionth of a second. Abbreviated ps.

MIDI See Musical Instrument Digital
Interface.
MIDI Manager The part of the Macintosh

system software that controls the flow of MIDI
data and commands through a MIDI interface.

MIDI note value An integer that is defined to
correspond to a frequency specified in hertz that
is associated with a musical note.

millisecond A unit of time equal to one
thousandth of a second. Abbreviated ms.

modulation of speech See pitch modulation.

monophonic sound. Sound consisting of a single
channel. Compare stereo sound.

multichannel sound See stereo sound.

Musical Instrument Digital Interface (MIDI) A
standard protocol for sending audio data and
commands to digital devices.

noncompressed sound data Sampled-sound
data that has not been subjected to audio
compression or that has been decompressed.

note See frequency, MIDI note value.

offset-binary encoding A method of digitally
encoding sound that represents the range of
amplitude values as an unsigned number, with
the midpoint of the range representing silence.
For example, an 8-bit sound stored in
offset-binary format would contain sample values
ranging from 0 to 255, with a value of 128
specifying silence (no amplitude). Samples

in Macintosh sound resources are stored in
offset-binary form. See also two’s

complement encoding.

packet A unit of compressed sampled-sound
data. One or more packets make up a sample
frame of compressed sampled-sound data. See
also sample point.

period The time elapsed during one complete
cycle. See also frequency.

354

phoneme A speech sound in a language that
a speaker of the language psychologically
considers to be a single unit. A single phoneme
may have several allophones.

phoneme callback procedure An
application-defined procedure that is executed
whenever the Speech Manager is about to
pronounce a phoneme.

phoneme descriptor record A structure that
contains information about all phonemes defined
for the current synthesizer. Defined by the
PhoneneDescri pt or data type.

phoneme information record A structure that
contains information about a phoneme. Defined
by the Phonen®el nf o data type.

phonemic representation of speech The
representation of speech using a series of
phonemes.

phonetic representation of speech The
representation of speech using a series of
allophones.

pitch Alistener’s subjective interpretation of a
sound’s frequency. See also speech pitch.

pitch modulation A fixed-point value defined
on a scale from 0.000 to 100.000 that indicates the
maximum amount by which the frequency of
generated speech may deviate from that
corresponding to the speech pitch in either
direction. A value of 0.000 corresponds to a
monotone.

play from disk The ability of the Sound
Manager to play sampled sounds stored on disk
(either in a sound file or a sound resource)
continuously without audible gaps.

playthrough A feature of sound recording that
allows the user to hear, through the speaker of a
Macintosh computer, the sound being recorded.

polyphonic sound See stereo sound.

pronunciation dictionary A list of words and
their pronunciations, installed in a speech channel
to override default speech synthesizer
pronunciations of words.

pronunciation dictionary resource A
pronunciation dictionary stored in a resource of
type’' dict’.

GLOSSARY

prosody The rhythm, modulation, and stress
patterns of speech.

rate See sample rate, speech rate.

real-time expansion Audio expansion of a
sound that occurs while the sound is playing.
Compare buffered expansion.

recording The process of creating an analog or
digital representation of a sound. See also
sampling.

sample See sample point.

sampled sound Any sound defined using
sampled-sound data.

sampled-sound data Any set of values that
represent the sample points of a sampled sound.
The values can be in either offset-binary format or
two’s complement format.

sampled sound header A sound header that can
describe monophonic, noncompressed
sampled-sound data. Defined by the
SoundHeader data type. See also compressed
sound header, extended sound header.

sample frame An interleaved set of sample
points (for noncompressed sampled-sound data)
or packets (for compressed sampled-sound data).

sample point A value representing the
amplitude of sampled-sound data at a particular
instant. One or more sample points make up a
sample frame of noncompressed sampled-sound
data. See also packet.

sample rate The rate at which samples are
recorded. Sample rates are usually measured in
kilohertz or megahertz.

sampling The process of representing a sound
by measuring its amplitude at discrete points in
time. See also recording.

sifter See sound component.

sound Anything perceived by the organs of
hearing. See also frequency, pitch, stereo sound,
timbre.

sound channel A path that sound data traverses
from an application to the sound output device. A
sound channel is associated with a queue of
sound commands and with other information
about the audio characteristics of the sound data.
See also sound channel record.

sound channel record A structure that
represents a sound channel. Defined by the
SndChannel data type.

sound channel status record A structure whose
address you pass to the SndChannel St at us
function. Defined by the SCSt at us data type.

sound command An instruction to produce
sound, modify sound, or otherwise assist in the
overall process of sound production. See also
sound command record.

sound command record A structure that
describes a sound command. Defined by the
SndConmand data type.

sound component A component that works
with the Sound Manager to manipulate audio
data or to communicate with a sound output
device. See also audio component, compression/
decompression component, sound output device
component, utility component.

sound component chain A chain of sound
components that links a sound source to a sound
output device.

sound component data record A structure that
specifies information about the data stream
generated by a sound component. Defined by the
SoundConponent Dat a data type.

sound component information selector A value
of type OSType that indicates the kind

of information a sound component should return
or modify.

Sound control panel A control panel that
allows the user to specify basic sound-related
settings and preferences. See also Alert Sounds
control panel, Sound In control panel, Sound
Out control panel, Volumes control panel.

sound data See sampled-sound data, sound,
square-wave data, wave-table data.

355

GLOSSARY

sound double buffer header record A structure
that you use to manage your own
double-buffering scheme. Defined by the
SndDoubl eBuf f er Header and

SndDoubl eBuf f er Header 2 data types.

sound double buffer record A structure that
you use to manage your own double-buffering
scheme. Defined by the SndDoubl eBuf f er
data type.

Sound Driver A device driver on the original
Macintosh computers that provided sound
generation. The Sound Driver is now obsolete; it
has been replaced by the Sound Manager.

sound file Afile of file type’ Al FF' or’ Al FC
that can be used to store sampled-sound data and
information about that data. See also Audio
Interchange File Format, Audio Interchange File
Format Extension for Compression, chunk,
Finder sound file, sound resource.

sound header A data structure (usually stored
in a sound resource) that contains information
about a buffer of sampled-sound data. See also
compressed sound header, extended sound
header, sampled sound header.

Sound In control panel A subpanel of the
Sound control panel that allows the user to select
a sound input device. See also Alert Sounds
control panel, Sound Out control panel,
Volumes control panel.

sound information list A structure that
specifies the information associated with a sound
component information selector. Defined by the
Soundl nf oLi st data type.

sound input device Any hardware device (such
as a microphone or audio digitizer) that records
sound.

sound input device driver A standard
Macintosh device driver used by the Sound
Manager to manage communication between
applications and a sound input device.

sound input device information selector A
variable of type OSType that is used to specify
the type of information that an application or the
Sound Input Manager is requesting from a sound
input device driver.

356

Sound Input Manager The part of the
Macintosh system software that controls the
recording of sound from sound input devices.

sound input parameter block A parameter
block that contains information about sound
recording. Defined by the SPB data type.

Sound Manager The part of the Macintosh
system software that manages the production and
manipulation of sounds on Macintosh computers.

Sound Manager status record A structure filled
in by the SndManager St at us function, which
gives information on the current CPU loading
caused by all open channels of sound. Defined by
the SMSt at us data type.

Sound Out control panel A subpanel of the
Sound control panel that allows the user to select
a sound output device. See also Alert Sounds
control panel, Sound In control panel, Volumes
control panel.

sound output device Any hardware device
(such as a speaker or sound synthesizer) that
produces sound.

sound output device component A sound
component that communicates with a sound
output device. See also compression/
decompression component and utility
component.

sound parameter block A parameter block that
describes the source data to be modified or sent to
a sound output device. Defined by the

SoundPar anBl ock data type.

sound recording dialog box The dialog box
displayed by the Sound Input Manager when you
call SndRecor d or SndRecor dToFi | e.

sound resource A resource of resource type
"snd ' that can be use to store sound commands
and sound data. See also sound file.

sound resource header The portion of a sound
resource that describes the format of the sound
resource.

sound source The origin of a specific channel of
sound.

source See sound source.

GLOSSARY

source component The sound component that
provides input for a particular component.

source ID A unique 4-byte identifier created by
the Apple Mixer to refer to a single chain of sound
components linking a sound source to the current
sound output device. Defined by the

SoundSour ce data type.

speech The process or product of speaking. See
also sound, synthesized speech.

speech amplitude See speech volume.

speech attribute A setting defined for a voice or
a class of voices that affects the quality of speech
generated by the Speech Manager. Speech
attributes include speech pitch, speech rate, pitch
modulation, speech volume.

speech channel The data structure used by the
Speech Manager to store settings related to speech
generation. All speech must be generated through
a speech channel. Defined by the
SpeechChannel data type.

speech channel control flags Constants that
enable special Speech Manager features
associated with speech generation.

speech command See embedded speech
command.

speech-done callback procedure An
application-defined procedure that is executed
when the Speech Manager completes speaking a
buffer of input text.

speech error information record A structure
that contains information about which Speech
Manager errors occurred while processing a text
buffer on a given speech channel. Defined by the
SpeechEr r or | nf o data type.

speech extension data record A structure
passed to Get Speechl nf o or Set Speechl nfo
to get or set synthesizer information. Defined by
the SpeechXt ndDat a data type.

speech information selector A variable of type
OSType that is used to specify the type of
information that an application or the Speech
Manager is requesting from a speech synthesizer.

Speech Manager The part of the Macintosh
system software that provides a standardized
method for Macintosh applications to generate
synthesized speech.

speech modulation See pitch modulation.

speech pitch A fixed-point value on a scale from
0.000 to 100.000 that indicates the average (or
baseline) frequency a speech synthesizer should
use in generating synthesized speech. A value of
60.000 corresponds to Middle C on a conventional
piano keyboard. See also pitch modulation.

speech rate A fixed-point value specifying the
approximate number of words per minute that a
speech synthesizer should use in generating
speech.

speech status information record A structure
that contains information about the status of a
speech channel. Defined by the

SpeechsSt at usl nf o data type.

speech synthesizer The executable code that is
linked to a speech channel and manages all
communication between the Speech Manager and
the Sound Manager.

speech version information record A structure
that contains information about the speech
synthesizer currently being used. Defined by the
SpeechVer si onl nf o data type.

speech volume A fixed-point value on a scale
from 0.000 to 1.000 that indicates the average
amplitude a speech synthesizer should use in
generating synthesized speech. A value of 0.000
corresponds to the lowest possible volume, and a
value of 1.000 corresponds to the highest.

square-wave data Any set of values that
represent a sound by its frequency, amplitude,
and duration.

stereo sound Sound that simultaneously
consists of two or more channels. Also called
polyphonic sound or multichannel sound. Compare
monophonic sound.

synchronization callback procedure An
application-defined procedure that is executed
whenever the Speech Manager encounters an
embedded synchronization speech command in a
buffer of input text.

357

GLOSSARY

synchronous sound play A playing of sound by
the Sound Manager that prevents other code from
executing until the sound is done playing.
Compare asynchronous sound play.

synthesized speech The product of converting
nonaural tokens (such as written or
digitally-stored words or phonemes) into speech.
See also Speech Manager.

synthesizer See speech synthesizer.

system alert sound A sound resource stored in
the System file that is played whenever an
application or other executable code calls the
SysBeep procedure.

text The written representation of language.

text-done callback procedure An
application-defined procedure that is executed
when the Speech Manager has finished
processing (although not necessarily speaking) a
buffer of input text.

text-to-speech See synthesized speech.

tick A unit of time equal to one sixtieth of
a second.

timbre The tone of a sound, which can range
from clear to buzzing.

two’s complement encoding A system for
digitally encoding sound that stores the
amplitude values as a signed number—silence is
represented by a sample with a value of 0. For
example, with 8-bit sound samples, two’s
complement values would range from -128 to
127, with 0 meaning silence. The Audio
Interchange File Format (AIFF) used by the Sound
Manager stores samples in two’s complement
form. Compare offset-binary encoding.

uncompressed sound data See decompressed
sound data, noncompressed sound data.

utility component A sound component that
performs some modification on sound data and
does not communicate directly with any sound
output device. See also sound component, sound
output device component.

version record A structure that contains version
information. Defined by the NunVer si on data

type.

358

voice (1) The set of parameters that specify a
particular quality of synthesized speech. A voice
is designed to work with a particular speech
synthesizer. (2) A sampled sound played at
varying rates to produce a number of different
pitches or notes. See also instrument.

voice description record A structure that
contains information about a voice. Defined by
the Voi ceDescri pti on data type.

voice file information record A structure that
contains information about the file in which a
voice is stored and the resource ID of the voice
within that file. Defined by the Voi ceFi | el nfo
data type.

voice specification record A structure that
provides a unique specification that you must use
to obtain information about a voice. Defined by
the Voi ceSpec data type.

volume See amplitude, speech volume.

Volumes control panel A subpanel of the
Sound control panel that allows the user to select
volumes. See also Alert Sounds control panel,
Sound In control panel, Sound Out control
panel.

VOX recording A feature that allows sound
recording only when the sound to be recorded
exceeds a certain amplitude.

VOX stopping A feature that stops sound
recording when the sound falls below a certain
amplitude.

wave amplitude The height of a sound wave at
an instant of time. Compare amplitude.

waveform The shape of a wave (a graph of a
wave’s amplitude over time).

wavelength The extent of one complete cycle of
awave.

wave table A sequence of wave amplitudes
measured at fixed intervals.

wave-table data Any set of values that represent
a sound by a wave table.

word callback procedure An
application-defined procedure that is executed
whenever the Speech Manager is about to speak a
word.

Index

A

Ab register

and Sound Manager callback procedures 103
action flags 292
AGC. See automatic gain control
AIFF-C files

and AIFF files 33

creating 55

defined 32 to 34

file type of 142

and Finder sound files 33

format of 142 to 144

playing sounds in 33, 40

recording sounds to 45

sample frames in 144

sample of 143

specifications of 137 to 144

storing sounds in 54 to 55, 64, 240 to 241
AIFF files

and AIFF-C files 33

creating 55

defined 32 to 34

file type of 121, 142

and Finder sound files 33

format of 136 to 144

playing sounds in 33, 40

recording sounds to 45

sample frames in 144

specifications of 137, 144

storing sounds in 54 to 55, 64, 240 to 241
alert sounds. See system alert sounds
Alert Sounds control panel 30, 38, 288
anmpCnd command 82, 151
amplitude of sounds 62, 82
amplitude of speech. See speech volume
Annotation Chunks 137
Apple Mixer. See Apple Mixer component
Apple Mixer component

closing 299

introduced 27 to 28, 270 to 272

opening 298 to 299
Apple Sound Chip (ASC) 24,91
Application Specific Chunks 137
ASC. See Apple Sound Chip
asynchronous sound play 101 to 111, 117
audio components

See also sound components
audio compression

determining type of 288
formats for storage 32
introduced 19, 22 to 23
using MACE routines 69 to 72, 121 to 123, 197 to 200
and versions of the Sound Manager 28
audio data
See also sampled-sound data, sounds, square-wave
data, wave-table data
getting from the source component 305
mixing 270 to 272
setting the output data type 306 to 307
types of 290 to 291
audio decompression. See audio expansion
audio expansion
and audio codecs 22
introduced 19
using MACE routines 69 to 72, 121 to 123, 197 to 202
and versions of the Sound Manager 28
Audio Interchange File Format (AIFF). See AIFF files
Audio Interchange File Format for Compression
(AIFF-C). See AIFF-C files
Audio Recording Chunks 137
Audi oSel ect i on data type 108, 155
audio selection records 108, 155
Author Chunks 137
automatic gain control
defined 215
status of 230
avai | abl eCrd command 150

B

base frequencies 160, 162
baseline pitch. See speech pitch
bilingual speech 36
Bl ockMove procedure, using in doubleback
procedures 127
bufferCmd command
described 152
examples of use 112, 116 to 117
using for compressed sound samples 116, 117
buffered expansion 70
buffers. See double buffers
bundle bit 276
byte recording values, converting to milliseconds 262

359

INDEX

C

callBackCmd command

described 149

example of use 103

using to synchronize sound with other actions 106
callback procedures

installing 103

and Sound Manager 101 to 106, 207 to 208
channels. See sound channels, speech channels
ChunkHeader data type 138, 168
chunk header record 138
chunk headers 168
chunks (in AIFF and AIFF-C files)

Annotation 137

Application Specific 137

Audio Recording 137

Author 137

Comments 137

Common 137, 140 to 142, 170 to 172

Copyright 137

data types used to describe 138

defined 136

determining size of 119

Extended Common Chunks 140, 170 to 172

finding 117 to 121

Form 137, 138 to 139, 168 to 169

Format Version 137, 139 to 140, 169

IDs for 153 to 154

Instrument 137

list of types 137

local 139, 169

Marker 137

MIDI Data 137

modifying 143

Name 137

order of 143

Sound Accelerator 137

Sound Data 137, 142, 172 to 173

structure of 137 to 138
cl ockConponent Cmd function 335
Cl oseM xer SoundConponent function 299
CmpSoundHeader data type 163 to 166
codecs. See compression/decompression components
commands. See embedded speech commands, sound

commands

Comments Chunks 137
CommonChunk data type 140, 170
Common Chunks 137, 140 to 142, 170
Conp3t ol procedure 121, 198 to 199
Conp6t 01 procedure 121, 199 to 200
completion routines

and Sound Input Manager 220, 264 to 265

and Sound Manager 102, 107, 206 to 207
Conponent Descri pti on data type 274

360

Component Manager
and sound components 267
and Speech Manager 34
Conponent Resour ce data type 273 to 276
components. See audio components, sound components
component selectors 277 to 279
compressed sound header records 163 to 166
compression. See audio compression
compression/decompression components (codecs) 22,
28 10 29, 267, 270, 294
compression IDs 165
Conpr essi onl nf o data type 297
compression information records 297
compression types 141, 171,172
computer-generated speech. See Speech Manager
Cont ai ner Chunk data type 139, 169
container chunks. See Form Chunks
continuous play from disk. See play-from-disk routines
continuous recording
defined 215
supporting 227
Control calls 216, 223 to 226
Copyright Chunks 137
CPU loading values 95
cultural values, associated with sounds 38
current sound input device 30
current sound output device 25

D

DAC. See digital-to-analog convertor
data

See also audio data

sampled-sound 64 to 66

square-wave 62

wave-table 63
data format flags 292 to 294
data offset bit in sound commands 130
decompression. See audio expansion
delimiter. See command delimiter
Device Manager, and sound input device drivers 223

to 227

dictionaries. See pronunciation dictionaries
digital signal processor (DSP) 21, 23, 24, 269
digital-to-analog converter (DAC) 24
document annotations, audio 38
doubleback procedures

defined 127 to 128, 208 to 209

limitations of 127

and sound double buffer header records 167

syntax of 127

writing 127 to 128
double buffering 33

INDEX

double buffers 123 to 128
managing 202 to 203
setting up 125 to 127
drop-sample conversion 147
DSP. See digital signal processor
duration of sounds 62, 217

E

using to play frequencies 96
frequencies

as MIDI note values 97

defined 62

playing 96 to 101

playing for indefinite duration 96

G

EASC. See Enhanced Apple Sound Chip

Edit menu commands, and alert sounds list 30

enpt yCnd command 85

Enhanced Apple Sound Chip (EASC) 24

enhanced Sound Manager 28

Explt 03 procedure 121, 200 to 201

Explt 06 procedure 121, 201 to 202

expanding sounds 200 to 202

expansion. See audio expansion

Ext CommonChunk data type 140, 171

Extended Common Chunks 140, 170 to 172

extended sound header records 161 to 163

extended sound headers 161 to 163

extensions, installing sound input device drivers
from 223

Ext SoundHeader data type 161

F

file types
" Al FC . See AIFF-C files
" Al FF’ . See AIFF files
"sfil’ 33
Finder sound files 33, 37
flushCmd command
described 149
sent by SndDi sposeChannel function 79, 185
using to flush sound channels 84
format1’ snd ' resources 32,129, 130 to 135
format2’' snd ' resources 32,129, 135 to 136
For mat Ver si onChunk data type 139, 169
Format Version Chunks 137, 139 to 140, 169
Form Chunks 137, 138 to 139, 168 to 169
frames of sampled sound 65
fregqCmd command
calculating proper playback rate for 160
compared to f reqDur at i onCnrd 96
described 151
freqDurationCmd command
calculating proper playback rate for 160
compared tofreqCrd 96
described 150

gain 230

Gestalt function
and Sound Input Manager 41 to 42, 223, 228 to 229
and Sound Manager 29, 88 to 89, 90 to 92, 145 to 146
and Speech Manager 45 to 46

get AmpCnd command 83, 151

get A ockConponent Cnd function 336

Get Conpr essi onl nf o function 345

Get Conpr essi onNare function 348

Get Def aul t Qut put Vol une function 87, 196 to 197

get Rat eCrd command 81, 152

Cet SoundHeader O f set function 193 to 194

Get SoundPr ef er ence function 301

Get SysBeepVol une function 87, 195

get Vol umeCnd command 86, 151

H

hertz 71

hissing sound, eliminating during real-time
expansion 72

human interface guidelines. See user interface
guidelines

HyperCard, and format 2’ snd ' resources 129

" | CON' resource type 274
initialization parameters, for sound channels 77 to 78,
146 to 147
Instrument Chunks 137
instruments, installing into sound channels 65
interleaving of sample points or packets 65
interpolation. See linear interpolation
interrupt routines, of Sound Input Manager 220, 265 to
266
interrupt time
Sound Input Manager completion routines at 265
Sound Manager callback procedures at 104, 208
Sound Manager completion routines at 207

361

INDEX

Sound Manager doubleback procedures at 127, 209
sound recording at 226
| GDone function, and sound input device drivers 226

J, K

N

JI ODone global jump vector, and sound input device
drivers 226
kUseOpt i onal Cut put Devi ce constant 183

L

Name Chunks 137

notes. See frequencies, MIDI note values

NuBus expansion cards, for audio hardware
enhancement 24

nul I Crd command 149

NunVer si on data type 173

O

Left Over Bl ock data type 174

leftover blocks 174

linear interpolation 79, 147

I i nkSoundConponent sCnd function 337
| oadCnd command 150

local chunks 139

localization, sounds and 38

looping sounds 100 to 101

M

offset-binary encoding 66
OpenM xer SoundConponent function 271, 298 to 299
output rate 71

P

MACE 69to 72, 121
testing for version 188 to 189
MACEVer si on function 90, 188 to 189
Macintosh Audio Compression and Expansion
(MACE). See MACE
Marker Chunks 137
menu bar, blinking of 96
MIDI (Musical Instrument Digital Interface) 21
MIDI Data Chunks 137
MIDI Manager 21
MIDI note values
converting to hertz values 98
defined 62
introduced 96
table of 98
millisecond recording values, converting to bytes 261
to 262
modifiers 204 to 206
modulation of speech. See pitch modulation
" movr’ creator type 33
multichannel sound. See stereo sound
multilingual speech 36
Musical Instrument Digital Interface. See MIDI

362

packets 66, 122
pad bytes, in AIFF and AIFF-C files 142
par an® field 130
Par seAl FFHeader function 343
Par seSndHeader function 344
pauseCnd command 84, 149
pitch

changing 65

defined 62
play-from-disk routines

introduced 33

testing for availability of 90 to 92
playing frequencies 96 to 101

choosing a data type 96

of indefinite duration 96
playing sampled sounds

at arbitrary frequencies 98

with buf f er Cd 116 to 117
playing selections of sound 108
playthrough feature 215
polyphonic sound. See stereo sound
preconfiguring sound channels 186, 187
preferences

restoring 301

storing 300

Q

quietCmd command
sent by SndDi sposeChannel function 79, 185
using with freqDur ati onCnd 96

qui et Cmd command 149

INDEX

R

rate. See sample rate, speech rate
rat eCnd command 81, 152
rateMul tiplierCrd function 337
Read calls 216, 223 to 226
real-time expansion 70, 72
recording sounds 216 to 219
described 42 to 45, 52 to 55, 238 to 241
directly from device 216 to 219, 243 to 248
effect of interruption on sound input device
driver 225
in stereo 226 to 227
introduced 29 to 31
specifying duration 217
without standard interface 214
rel ni t Cd command 78, 149

Rel easeResour ce function, and sound resources 80
request parameter blocks, passed to sound input device

drivers 223
Resour ceSpec data type 274
resource types

| CON' 274
"sift’ 274
"snd ’

See’ snd ' resource type, sound resources
"STR ' 274
"thng' 27310276
"vers’ 90,173
rest Cd command 151
resumeCnd command 84, 149

S

sample. See sample point
sampled-sound data 64 to 66
computing length of 101
format of 65 to 66
modifying during recording 265 to 266
obtaining data without header information 214
packet sizes for compressed data 122
setting up header information for 214
sampled sounds
See also sounds
changing frequency of 81
compressing. See compressing sounds
disk space requirements for 69
expanding. See expanding sounds
input buffer size 217
installing as voices in channels 99
introduced 64 to 66
multiple channels of 27 to 28, 69
number of commands used in 76

output buffer size required 121 to 122
pausing 82
playing
asynchronously 101, 105, 107 to 108
continuously 100 to 101
play from disk 32 to 34, 40 to 41, 107 to 108
selections of 108
using low-level routines 116 to 117
recording 29 to 31
storing 32 to 34, 64, 254 to 256
synchronizing 86
sample frames 65
sample points 65 to 66
sample rates 71, 152, 160, 162, 164
sample routines
MyCal | back 103
MyCanPl ayMul ti Channel s 91
MyChannel | sPaused 94
MyCheckSndChan 104
Myd eanUpTr ackedChan 110 to 111
My Conpr essBy3 122
My Cr eat eSndChannel 75
MyDBSndPI ay 125 to 127
MyDi sposeSndChannel 80
MyDoLoopEnt i r eSound 100
MyDoubl eBackPr oc 128
M/Fi ndChunk 118 to 119
My Get ChunkDat a 120
My Get Conponent Rout i ne 279 to 281
My Get Devi ceName 222
My Get Devi ceSet ti ngs 223
My Get NuntChannel s 95
My Get SoundHeader 115
My Get SoundHeader Of f set 113 to 114
MyHal veFreq 81
MyHasEnhancedSoundManager 90
MyHasPl ayFr onDi sk 92
MyHas Soundl nput 41
MyHasSpeech 46
MyHasSt er eo 89
M/l nstal | Cal | back 103
M/l nst al | Sanpl edVoi ce 99
MyLowLevel Sanpl edSndPl ay 116 to 117
MyPl ayFr equencyOnce 97
MyPl ay Sanpl edSound 112
M/Pl aySndResour ce 40
M/Pl aySoundFi | e 41
MyRecor dSnd 217 to 219
MyRecor dSndResour ce 43to 44
MyRecor dSoundFi | e 45
MyRecor dThr uDi al og 42
MySet Anpl i t ude 82
My Set Tr ackChanDi spose 110
My Set Vol ume 87
MySoundConpl eti onRout i ne 107

363

INDEX

MySoundConponent Get | nf o 284 to 286

My SoundConponent | ni t Qut put Devi ce 282

MySpeakSt ri ngResour ce 46

MySpeaksSt ri ngResour ceSync 47

MySt art Pl ayi ng 105

My St opPl ayi ng 105

My St opSpeech 48

MySur f Di spat ch 277 to 279

MySync1Chan 85
schedul edSoundCnd function 336
Scrapbook, representation of sounds in 37
SCSt at us data type 93, 156
Set Def aul t Qut put Vol une function 87, 197
Set SoundPr ef er ence function 300
Set SysBeepVol une function 87, 195 to 196
Set upAl FFHeader function 256 to 258
Set upSndHeader function 219, 254 to 256
"sfil’ filetype 33
sifters. See sound components
"sift’ resource type 274
si Har dwar eBusy function 338
si Har dwar eFor mat function 338
si Har dwar eMut e function 339
si Har dwar eVol urre function 339
Simple Beep 39, 131 to 132
si PreM xer SoundConponent function 340
si Set upCDAudi o function 340
SMBt at us data type 94, 157
SndAddModi fi er function 205 to 206, 268
SndChannel datatype 68, 158 to 159
SndChannel St at us function 92, 101, 190 to 191
SndComand data type 67, 154 to 155
SndCont r ol function 189 to 190
SndDisposeChannel function

introduced 79

and qui et Crd 84
SndDi sposeChannel function 184 to 185
SndDoCommand function

introduced 67

and other low-level routines 72
SndDoConmmand function 185 to 186
SndDolmmediate function

introduced 67

issuing f I ushCnd with 84

issuing qui et Crd with 83

and other low-level routines 72
SndDol nmedi at e function 186 to 187
SndDoubl eBuf f er data type 124, 167
SndDoubl eBuf f er Header 2 data type 166
SndDoubl eBuf f er Header datatype 124, 166
SndGet I nf o and SndSet | nf o function 341
SndGet SysBeepSt at e procedure 192
SndManagerStatus function

described 191 to 192

example of use 95

364

introduced 94
SndNewChannel function

described 182 to 184

examples of use 75to 77

introduced 69

specifying an initialization parameter 77
SndPauseFi | ePl ay function 108, 180 to 181
SndPI ayDoubl eBuf f er function 123, 202 to 203
SndPlay function

described 49 to 50, 176 to 177

examples of use 39, 219

playing compressed sound resources with 70, 121

using to play Finder sound files 33
SndRecord function

described 53 to 54, 238 to 240

example use of 42 to 43

introduced 31
SndRecordToFile function

described 54 to 55, 240 to 241

introduced 31
'snd ' resource type

See also sound resources

alternatives to 64

format 1 32, 129, 130 to 135, 255

format 2 32, 129, 135 to 136

introduced 30, 31 to 32

structure of 209 to 211
SndSet SysBeepSt at e function 192 to 193
SndSoundManager Ver si on function 90, 187 to 188
SndStartFilePlay function

default buffer allocation 41

described 50 to 52, 178 to 180

using to play sound files 33, 41
SndSt opFi | ePl ay function 108, 181 to 182
Sony sound chip 24
Sound Accelerator Chunks 137
sound channel records 80, 158 to 159
sound channels

allocating 75to 77, 182

bypassing 26 to 27, 67

determining number allocated 95

executing callback procedures 149

flushing 83 to 84, 149

getting information about all channels 94 to 95, 191

to 192
getting information about a single channel 92 to 94,
190 to 191

initializing 77 to 79

installing voices into 98 to 100

introduced 25, 68 to 69

linking modifiers to 205

multiple 27 to 28, 69, 108 to 111

pausing 84 to 85, 149

playing notes in 150, 151

preconfiguring 152, 186, 187

INDEX

reducing memory requirements of 76
reinitializing 78, 149
releasing 79 to 80, 184 to 185
restarting 84 to 85, 149
resting 151
sample rate of 152
sending commands 185 to 187
setting timbre of 151
setting volume of 151
specifying length of 76
stopping 83 to 84, 149, 180 to 182
synchronizing 85 to 86, 150
testing for multichannel sound capability 90 to 92
using low-level routines 117
sound channel status records 93, 156 to 157
soundCd command 99, 152
sound command records 154 to 155
sound commands
data offset bit 130
in sound resources 210
introduced 25, 66 to 68
issuing 67, 185
list of constants for 67 to 68, 148 to 152
number per channel 76
referencing sampled-sound data 115
structure of 67
SoundConponent AddSour ce function 307 to 308
sound component chains 23 to 24, 268 to 270
SoundConponent Dat a data type 272 to 273, 294 to
295
sound component data records 272 to 273, 294 to 295
sound component features flags 291 to 292
SoundConponent Get | nf o function 283 to 286, 287 to
290, 309 to 310
SoundConponent Get Sour ceDat a function 305
SoundConponent Get Sour ce function 304
sound component information selectors 283, 287 to 290
SoundConponent | ni t Qut put Devi ce function 302
to 303
SoundConponent PauseSour ce function 313
SoundConponent Pl aySour ceBuf f er function 292,
314
SoundConponent RenmoveSour ce function 308
sound components 267
See also audio components
constants for 287 to 294
creating 273 to 276
data structures for 294 to 297
defined 22 to 24, 268
getting information about 283 to 286, 287 to 290, 296,
309 to 310
information selectors 283, 287 to 290
opening 281 to 282
opening resource files 281
registering 281 to 282

restoring preferences 301
routines defined by 301 to 314
run-time environment 281
setting information about 283, 287 to 290, 296, 310 to
311
storing preferences 300
subtypes of 275
types of 274
writing 273 to 286
SoundConponent Set | nf o function 288 to 290, 310 to
311
SoundConponent Set Qut put function 306 to 307
SoundConponent Set Sour ce function 303 to 304
SoundConponent St art Sour ce function 311 to 312
SoundConponent St opSour ce function 312 to 313
Sound control panels
effect on loudness of sounds 82
extensions to 25
and SysBeep procedure 38, 49, 176
SoundConvert er Begi nConver si on function 349
SoundConvert er Convert Buf f er function 349
SoundConvert er EndConver si on function 350
SoundConvert er Get Buf f er Si zes function 348
sound data. See sampled-sound data, sounds,
square-wave data, wave-table data
SoundDat aChunk data type 142,172
Sound Data Chunks 137, 142, 172 to 173
sound double buffer header records 124, 166 to 167
sound double buffer records 124, 167 to 168
Sound Driver 61
sound files
See also AIFF files, AIFF-C files
advantages over sound resources 32
asynchronous playing 107
and Finder sound files 33
getting information about 117 to 121
introduced 32to 34
pausing play 108
playing 40 to 41, 50 to 52, 178 to 180
playing several simultaneously 34
reading 142 to 144
recording 45, 54 to 55, 240 to 241
setting up 256 to 258
stopping play 108
structure of 136 to 144
translating between operating systems 32
writing 142 to 144
SoundHeader data type 159
sound header records 159 to 160
sound headers
accessing fields of 116
compressed 163 to 166
defined 65
extended 161 to 163
formats of 255

365

INDEX

getting pointers to 112 to 116, 193 to 194
setting up 214, 254 to 256
standard 159 to 160
types of 65, 117
Sound In control panel 29 to 30
selecting sound input device from list 259
Sound| nf oLi st data type 296 to 297
sound information lists 296 to 297
sound input completion routines
defined 220, 264 to 265
setting 217, 237
sound input device drivers 223 to 227
and continuous recording 227
getting information about 215, 251 to 254
installing and initializing 223
and Memory Manager errors 225
registering with Sound Input Manager 223, 258, 260
routines for 215
and stereo recording 226 to 227
storage for 223
types of requests drivers can handle 223
sound input device information selectors
introduced 215
list of 229 to 236
required selectors 225
reserved by Apple 225
responding to requests for more than 18 bytes of
data 224
sound input devices
changing settings of 220 to 223, 251 to 254
closing 214, 242 to 243
connection state 232
current 30
displaying Options dialog box for 234
generating list of 259 to 260
getting information about 215, 220 to 223, 229 to 236
opening 214, 219, 241 to 242
recording directly from 216 to 219, 243 to 248
registering 258 to 261
sound input interrupt routines
defined 220, 265 to 266
executing from sound input device driver 226
setting 217, 237
Sound Input Manager 213
application-defined routines 263 to 266
completion routines 220, 264 to 265
constants in 227 to 236
data structures in 236 to 237
interrupt routines 220, 265 to 266
introduced 20, 29 to 31
recording features 215
routines in 237 to 263
testing for availability 223, 228 to 229
testing for version 263
sound input parameter blocks

366

accessing from a sound input device driver 226
format of 216, 236 to 237
setting up 217 to 219
uses for 236
Sound Manager 59
application-defined routines 206 to 209
callback procedures 101 to 106, 207 to 208
completion routines 102, 206 to 207
constants in 144 to 154
data structures in 154 to 174
doubleback procedures 208 to 209
enhanced 28 to 29
features new in version 3.0 28
improving efficiency 116
introduced 19, 24 to 29
obtaining information 87 to 96
relation to audio hardware 26
routines in 174 to 206
and sound components 268 to 273
sound component utility routines 297 to 301
testing for features 88 to 89, 90 to 92, 145 to 146
testing for version 89 to 90, 187 to 188
turning off sound output 82
Sound Manager status records 94, 157
Sound Out control panel 24 to 25
sound output device components 270, 311 to 314
sound output devices
initializing 282, 302 to 303
sound output rate 71
SoundPar anBl ock data type 295 to 296
sound parameter blocks 295 to 296
sound queues
bypassing 26 to 27, 66
specifying size 76
sound recording dialog box
customizing behavior of 43, 214
filtering events in 43
introduced 31
recording sounds with 42 to 45
sound-recording equipment
checking for 41to 42
types supported 41
sound resource headers 210 to 211
sound resources
Seealso’ snd ' resource type
alternatives to 64
containing sampled-sound data 132
creating manually 210
format of 129 to 135, 209 to 210
freeing memory after playing 80
getting information about 112 to 116
introduced 31 to 32
number of commands used in 76
playing
described 39 to 40, 49 to 52, 176 to 177, 178 to 180

INDEX

example of use 112
ignoring parts of 116
large resources with a small buffer 116
recording 42 to 44, 53 to 54, 238 to 240
reserved IDs 130, 209
sounds
See also sampled sounds
amplitude 62, 82 to 83
changing output channel for 79
computed 64
determinants of loudness 82
digitally recorded 64
duration 62
frequency 62
installing into System file 33
looping 100 to 101
manipulating while playing 80 to 83
mixing 270 to 271
pitch 62
recording. See recording sounds
sample rate. See sample rates
synchronizing with other actions 106
timbre 63
volume 62
sound sources
adding 307 to 308
pausing 313
removing 308
starting 311 to 312
stopping 312 to 313
sound storage formats 129 to 144
source components 270, 303 to 304
source IDs 271
sources. See sound sources
SPBByt esToM | | i Seconds function 262
SPBClI oseDevi ce function 214, 242 to 243
SPB data type 216, 236
SPBGetDevicelnfo function
described 252
example of use 219
information selectors, list of 230 to 236
introduced 215
using in interrupt routines 220

SPBCet | ndexedDevi ce function 242, 259 to 260
SPBGet Recor di ngSt at us function 250 to 251
SPBM | | i SecondsToByt es function 261 to 262

SPBOpenDevice function

example of use 219

introduced 214

and sound input parameter blocks 236
SPBOpenDevi ce function 241 to 242
SPBPauseRecor di ng function 214, 248
SPBRecord function

example of use 219

introduced 214

and sound input completion routines 220
SPBRecor d function 243 to 245
SPBRecor dToFi | e function 214, 246 to 248
SPBResuneRecor di ng function 214, 249
SPBSet Devi cel nf o function 215, 220, 253 to 254
SPBSi gnl nDevi ce function 215, 258 to 259
SPBSi gnQut Devi ce function 215, 260 to 261
SPBStopRecording function

described 249 to 250

introduced 214

and sound input completion routines 220, 237

and sound input parameter blocks 237
SPBVer si on function 263
SpeakSt ri ng function 47 to 48, 56 to 57
speech

bilingual 36

multilingual 36

stopping 47 to 48, 56

synchronous generation 47

tonal qualities of 35
speech amplitude. See speech volume
SpeechBusy function 57
speech channels

defined 36

limitations on 36

multiple 36
speech commands. See embedded speech commands
speech components 34
speech generation process 34 to 36
Speech Manager

and Component Manager 34

future improvements in 35

introduced 20, 34 to 36

memory requirements of 36

position in speech generation process 34

testing for availability 45 to 46
speech modulation. See pitch modulation
speech synthesizers

defined 34
square-wave data 62
standard sound headers 159 to 160
St at eBl ock data type 174
state blocks 174
state buffers, used by MACE routines 122
Status calls 216, 223 to 226
stereo sounds

defined 161

expanding 70

recording 226 to 227

storage format of 65
strings, converting into speech. See speech generation
" STR ' resource type 274
syncCnd command 85 to 86, 149
synchronizing sound channels 85 to 86, 150
synchronizing sounds with other actions 106

367

INDEX

synthesizers. See speech synthesizers volume levels, controlling 86 to 87, 151 to 152, 194 to
SysBeep procedure 197

described 49, 175 to 176 VOX recording 215, 236

example use of 38 VOX stopping 215, 236

using as notification 39
system alert sounds
determining status of 95 to 96, 192

disabling 95 to 96 w

editing list of 30

enabling 95 to 96 waitCmd command

installing new sound 33 described 149

producing 38 to 39, 49, 175 to 176 example of use 84

setting status of 192 to 193 waveTabl eCnd command 99, 152

wave-table data 63
wave tables 63, 99

T

text-to-speech. See Speech Manager

"thng’ resource type 273 to 276

ticks, used to time system alert sounds 39
timbre 63, 83, 151

ti mbr eCnd command 83, 151

Time Manager, and synchronizing sounds 86
t ot al LoadCnd command 150

two’s complement encoding 66

U

uncompressed sound data. See decompressed sound
data, noncompressed sound data

unit table, installing sound input device driver into 223

unsigned fixed-point numbers, multiplying and
dividing 204

Unsi gnedFi xMul Di v function 204

user interface guidelines, for sound 37 to 38

utility components 270

\%

ver si onCnd command 150
version records 173
version resources 90, 173
"vers’ resource type 90,173
voices
installing into sound channels 65, 98 to 100
synthesized 36
volume
See also amplitude, speech volume
defined 62
vol umeCnd command 86, 151

368

INDEX

369

T HE A P PLE PUBLISHI

N G

SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobe Illustrator™ and
Adobe Photoshop™. PostScript ™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

WRITERS
Michael Abramowicz, Lori E. Kaplan,
Tom Maremaa, Tim Monroe

DEVELOPMENTAL EDITORS
Sanborn Hodgkins, Wendy Krafft,
Antonio Padial, Laurel Rezeau,
Beverly Zegarski

ILLUSTRATORS
Barbara Carey, Shawn Morningstar

ART DIRECTOR
Bruce Lee

PRODUCTION EDITOR
Gerri Gray

Special thanks to Mark Cecys, Kip Olson,
Jim Reekes, and Tim Schaaff.

Acknowledgments to Bob Aron,
Ray Chiang, Ron Dumont,
Sharon Everson, Eric “Braz” Ford,
Jim Nitchals, Guillermo Ortiz,
Kim Silverman, George Towner,
Randy Zeitman, and the entire
Inside Macintosh team.

	About This Book
	Format of a Typical Chapter
	Conventions Used in This Book
	Special Fonts
	Types of Notes
	Assembly-Language Information

	Development Environment

	Introduction to Sound on the Macintosh
	About Sound on Macintosh Computers
	Sound Capabilities
	Figure 1-1 Basic sound capabilities on Macintosh computers
	Figure 1-2 Enhanced sound capabilities on Macintosh computers
	Figure 1-3 High quality sound capabilities on Macintosh computers
	Figure 1-4 A sound component chain
	Figure 1-5 A sound component chain with a DSP board

	Sound Production
	Figure 1-6 The Sound Out control panel
	Figure 1-7 The relation of the Sound Manager to the audio hardware
	Figure 1-8 Bypassing the command queue
	Figure 1-9 Mixing multiple channels of sampled sound

	Sound Recording
	Figure 1-10 The Sound In control panel
	Figure 1-11 The Alert Sounds control panel
	Figure 1-12 The sound recording dialog box

	Sound Resources
	Sound Files
	Table 1-1 AIFF and AIFF-C capabilities

	Speech Generation
	Figure 1-13 The speech generation process
	Figure 1-14 The Speech Manager and multiple voices

	The User Interface for Sound
	Figure 1-15 An icon for a Finder sound
	Figure 1-16 A sound in the Scrapbook

	Using Sound on Macintosh Computers
	Producing an Alert Sound
	Playing a Sound Resource
	Listing 1-1 Playing a sound resource with SndPlay

	Playing a Sound File
	Listing 1-2 Playing a sound file with SndStartFilePlay

	Checking For Sound-Recording Equipment
	Listing 1-3 Determining whether sound recording equipment is available

	Recording a Sound Resource
	Listing 1-4 Recording through the sound recording dialog box
	Listing 1-5 Recording a sound resource

	Recording a Sound File
	Listing 1-6 Recording a sound file

	Checking For Speech Capabilities
	Listing 1-7 Checking for speech generation capabilities

	Generating Speech From a String
	Listing 1-8 Using SpeakString to generate speech from a string
	Listing 1-9 Generating speech synchronously
	Listing 1-10 Stopping speech generated by SpeakString

	Sound Reference
	Routines
	Playing Sounds
	SysBeep
	SndPlay
	SndStartFilePlay

	Recording Sounds
	SndRecord
	SndRecordToFile

	Generating and Stopping Speech
	SpeakString
	SpeechBusy

	Sound Manager
	About the Sound Manager
	Figure 2-1 The position of the Sound Manager
	Sound Data
	Square-Wave Data
	Wave-Table Data
	Figure 2-2 A graph of a wave table

	Sampled-Sound Data
	Figure 2-3 Interleaving stereo sample points

	Sound Commands
	Sound Channels
	Sound Compression and Expansion
	Table 2-1 Sample rates

	Using the Sound Manager
	Managing Sound Channels
	Allocating Sound Channels
	Listing 2-1 Creating a sound channel

	Initializing Sound Channels
	Listing 2-2 Reinitializing a sound channel

	Releasing Sound Channels
	Listing 2-3 Disposing of memory associated with a sound channel

	Manipulating a Sound That Is Playing
	Listing 2-4 Halving the frequency of a sampled sound
	Listing 2-5 Changing the amplitude of a sound channel
	Listing 2-6 Getting the amplitude of a sound in progress

	Stopping Sound Channels
	Pausing and Restarting Sound Channels
	Synchronizing Sound Channels
	Listing 2-7 Adding a channel to a group of channels to be synchronized

	Managing Sound Volumes
	Listing 2-8 Setting left and right volumes

	Obtaining Sound-Related Information
	Obtaining Information About Available Sound Features
	Listing 2-9 Determining if stereo capability is available

	Obtaining Version Information
	Listing 2-10 Determining if the enhanced Sound Manager is present

	Testing for Multichannel Sound and Play-From-Disk Capabilities
	Listing 2-11 Testing for multichannel play capability
	Listing 2-12 Testing for play-from-disk capability

	Obtaining Information About a Single Sound Channel
	Listing 2-13 Determining whether a sound channel is paused

	Obtaining Information About All Sound Channels
	Listing 2-14 Determining the number of allocated sound channels

	Determining and Changing the Status of the System Alert Sound

	Playing Notes
	Listing 2-15 Using the freqDurationCmd command
	Table 2-2 Frequencies expressed as MIDI note values
	Installing Voices Into Channels
	Listing 2-16 Installing a sampled sound as a voice in a channel

	Looping a Sound Indefinitely
	Listing 2-17 Looping an entire sampled sound

	Playing Sounds Asynchronously
	Using Callback Procedures
	Listing 2-18 Issuing a callback command
	Listing 2-19 Defining a callback procedure
	Listing 2-20 Checking whether a callback procedure has executed
	Listing 2-21 Stopping a sound that is playing asynchronously
	Listing 2-22 Starting an asynchronous sound play

	Synchronizing Sound With Other Actions
	Managing an Asynchronous Play From Disk
	Listing 2-23 Defining a completion routine

	Playing Selections
	Managing Multiple Sound Channels
	Listing 2-24 Defining a data structure to track many sound channels
	Listing 2-25 Marking a channel for disposal
	Listing 2-26 Disposing of channels that have been marked for disposal

	Parsing Sound Resources and Sound Files
	Obtaining a Pointer to a Sound Header
	Listing 2-27 Playing a sound resource
	Listing 2-28 Obtaining the offset in bytes to a sound header
	Listing 2-29 Converting an offset to a sound header into a pointer to a sound header

	Playing Sounds Using Low-Level Routines
	Listing 2-30 Playing a sound using the bufferCmd command

	Finding a Chunk in a Sound File
	Listing 2-31 Finding a chunk in a sound file
	Listing 2-32 Loading a chunk from a sound file

	Compressing and Expanding Sounds
	Listing 2-33 Compressing audio data

	Using Double Buffers
	Setting Up Double Buffers
	Listing 2-34 Setting up double buffers

	Writing a Doubleback Procedure
	Listing 2-35 Defining a doubleback procedure

	Sound Storage Formats
	Sound Resources
	Figure 2-4 The structure of 'snd�' resources
	Figure 2-5 The location of the data offset bit
	The Format 1 Sound Resource
	Listing 2-36 A format 1 'snd�' resource
	Listing 2-37 �A format 1 'snd�' resource containing sampled-sound data
	Listing 2-38 An 'snd�' resource containing compressed sound data
	Listing 2-39 A resource specification
	Listing 2-40 A resource specification for the Simple Beep

	The Format 2 Sound Resource
	Listing 2-41 A format 2 'snd�' resource

	Sound Files
	Chunk Organization and Data Types
	Figure 2-6 The general structure of a chunk

	The Form Chunk
	The Format Version Chunk
	The Common Chunk
	The Sound Data Chunk
	Format of Entire Sound Files
	Figure 2-7 A sample AIFF-C file

	Sound Manager Reference
	Constants
	Gestalt Selector and Response Bits
	Channel Initialization Parameters
	Sound Command Numbers
	Chunk IDs

	Data Structures
	Sound Command Records
	Audio Selection Records
	Sound Channel Status Records
	Sound Manager Status Records
	Sound Channel Records
	Sound Header Records
	Extended Sound Header Records
	Compressed Sound Header Records
	Sound Double Buffer Header Records
	Sound Double Buffer Records
	Chunk Headers
	Form Chunks
	Format Version Chunks
	Common Chunks
	Extended Common Chunks
	Sound Data Chunks
	Version Records
	Leftover Blocks
	State Blocks

	Sound Manager Routines
	Playing Sound Resources
	SysBeep
	SndPlay

	Playing From Disk
	SndStartFilePlay
	SndPauseFilePlay
	SndStopFilePlay

	Allocating and Releasing Sound Channels
	SndNewChannel
	SndDisposeChannel

	Sending Commands to a Sound Channel
	SndDoCommand
	SndDoImmediate

	Obtaining Information
	SndSoundManagerVersion
	MACEVersion
	SndControl
	SndChannelStatus
	SndManagerStatus
	SndGetSysBeepState
	SndSetSysBeepState
	GetSoundHeaderOffset

	Controlling Volume Levels
	GetSysBeepVolume
	SetSysBeepVolume
	GetDefaultOutputVolume
	SetDefaultOutputVolume

	Compressing and Expanding Audio Data
	Comp3to1
	Comp6to1
	Exp1to3
	Exp1to6

	Managing Double Buffers
	SndPlayDoubleBuffer

	Performing Unsigned Fixed-Point Arithmetic
	UnsignedFixMulDiv

	Linking Modifiers to Sound Channels
	SndAddModifier

	Application-Defined Routines
	Completion Routines
	MyCompletionRoutine

	Callback Procedures
	MyCallbackProcedure

	Doubleback Procedures
	MyDoubleBackProc

	Resources
	The Sound Resource
	Figure 2-8 The 'snd�' resource type
	Figure 2-9 The sound resource header

	Sound Input Manager
	About the Sound Input Manager
	Sound Recording Without the Standard Interface
	Interaction With Sound Input Devices
	Sound Input Device Drivers

	Using the Sound Input Manager
	Recording Sounds Directly From a Device
	Listing 3-1 Recording directly from a sound input device
	Defining a Sound Input Completion Routine
	Defining a Sound Input Interrupt Routine

	Getting and Setting Sound Input Device Information
	Listing 3-2 Determining the name of a sound input device
	Listing 3-3 Determining some sound input device settings

	Writing a Sound Input Device Driver
	Responding to Status and Control Requests
	Figure 3-1 An example of the csParam field for a Status request
	Figure 3-2 An example of the csParam field for a Control request

	Responding to Read Requests
	Supporting Stereo Recording
	Supporting Continuous Recording

	Sound Input Manager Reference
	Constants
	Gestalt Selector and Response Bits
	Sound Input Device Information Selectors

	Data Structures
	Sound Input Parameter Blocks

	Sound Input Manager Routines
	Recording Sounds
	SndRecord
	SndRecordToFile

	Opening and Closing Sound Input Devices
	SPBOpenDevice
	SPBCloseDevice

	Recording Sounds Directly From Sound Input Devices
	SPBRecord
	SPBRecordToFile
	SPBPauseRecording
	SPBResumeRecording
	SPBStopRecording
	SPBGetRecordingStatus

	Manipulating Device Settings
	SPBGetDeviceInfo
	SPBSetDeviceInfo

	Constructing Sound Resource and File Headers
	SetupSndHeader
	Table 3-1 The sampled sound header format used by SetupSndHeader
	SetupAIFFHeader

	Registering Sound Input Devices
	SPBSignInDevice
	SPBGetIndexedDevice
	SPBSignOutDevice

	Converting Between Milliseconds and Bytes
	SPBMilliSecondsToBytes
	SPBBytesToMilliSeconds

	Obtaining Information
	SPBVersion

	Application-Defined Routines
	Sound Input Completion Routines
	MySICompletionRoutine

	Sound Input Interrupt Routines
	MySIInterruptRoutine

	Sound Components
	About Sound Components
	Sound Component Chains
	Figure 4-1 The component-based sound architecture
	Figure 4-2 A component chain for audio hardware that can convert sample rates

	The Apple Mixer
	Figure 4-3 Mixing multiple channels of sound
	Figure 4-4 A sound output device component that can mix sound channels

	The Data Stream

	Writing a Sound Component
	Creating a Sound Component
	Listing 4-1 Rez input for a component resource

	Specifying Sound Component Capabilities
	Dispatching to Sound Component-Defined Routines
	Listing 4-2 Handling Component Manager selectors
	Listing 4-3 Finding the address of a component-defined routine

	Registering and Opening a Sound Component
	Listing 4-4 Initializing an output device

	Finding and Changing Component Capabilities
	Listing 4-5 Getting sound component information

	Sound Components Reference
	Constants
	Sound Component Information Selectors
	Audio Data Types
	Sound Component Features Flags
	Action Flags
	Data Format Flags

	Data Structures
	Sound Component Data Records
	Sound Parameter Blocks
	Sound Information Lists
	Compression Information Records

	Sound Manager Utilities
	Opening and Closing the Apple Mixer Component
	OpenMixerSoundComponent
	CloseMixerSoundComponent

	Saving and Restoring Sound Component Preferences
	SetSoundPreference
	GetSoundPreference

	Sound Component-Defined Routines
	Managing Sound Components
	SoundComponentInitOutputDevice
	SoundComponentSetSource
	SoundComponentGetSource
	SoundComponentGetSourceData
	SoundComponentSetOutput

	Creating and Removing Audio Sources
	SoundComponentAddSource
	SoundComponentRemoveSource

	Getting and Setting Sound Component Information
	SoundComponentGetInfo
	SoundComponentSetInfo

	Managing Source Data
	SoundComponentStartSource
	SoundComponentStopSource
	SoundComponentPauseSource
	SoundComponentPlaySourceBuffer

	Sound Manager 3.3 Features
	Features of Sound Manager 3.2.1
	Pre-mixer Effects
	Native PowerPC Code
	Three New Audio Codecs Added
	Playing Alert Sounds Asynchronously

	New Features of Sound Manager 3.3
	General
	The Ability to Schedule Sounds
	New Sound Commands
	Multi-platform Support
	The Issue of “Endianness”

	Sound Formats
	A New Sound Codec Included: a-Law Compression
	New Sample Sizes Supported: 24 and 32 Bit Integer
	New Codecs to Import & Export Samples
	New Functions Added to the SoundConverter Suite
	New Sound Info Selectors Created
	Listing 5-1 Changing the 32 bit floating point codec to consume little endian format
	Listing 5-2 Using the SoundComponentSetInfo function to show the dailog of options

	Interface Changes
	Table 5-1 A new set of constants, replacing old constants

	Using the Sound Manager
	Determining the Sound Manager Version
	Listing 5-3 The simplest method for determing the Sound Manager version

	Converting Between Sound Formats
	The Process of Converting a Sound

	An Example of Converting a Buffer of Silence to IMA 4:1
	Scheduling Two Sounds with the Sound Clock
	Listing 5-4 An example of scheduling two sounds with the sound clock

	Converting to 32-bit Little Endian Data
	Listing 5-5 Converting to Little Endian

	A List of Audio Atoms
	Listing 5-6 A list of audio atoms of any possible ordering
	Listing 5-7 How to read a list of audio atoms

	Using the SoundLib Shared library (PowerPC Only)

	Sound Manager 3.3 Reference
	New API Elements
	Sound Commands
	clockComponentCmd
	getClockComponentCmd
	scheduledSoundCmd
	linkSoundComponentsCmd
	rateMultiplierCmd

	Sound Informational Selectors
	siHardwareBusy
	siHardwareFormat
	siHardwareMute
	siHardwareVolume
	siPreMixerSoundComponent
	siSetupCDAudio

	Sound Manager Routines
	SndGetInfo and SndSetInfo
	ParseAIFFHeader
	ParseSndHeader
	GetCompressionInfo
	Example Extended Common Chunk
	Example Compressed Sound Header
	GetCompressionName
	SoundConverterGetBufferSizes
	SoundConverterBeginConversion
	SoundConverterConvertBuffer
	SoundConverterEndConversion

	Glossary
	Index

