QuickTime 3
for Windows Programmers

[]

Apple Technical Publications
© Apple Computer, Inc. 1998

[0 Apple Computer, Inc.

© 1998 Apple Computer, Inc.
All rights reserved.

No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM. Printed in the United
States of America.

The Apple logo is a trademark of
Apple Computer, Inc. Use of the
“keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, LaserWriter,
Finder, QuickTime, and Macintosh

are trademarks of Apple Computer,
Inc., registered in the United States
and other countries.

Windows, Windows NT, and
Windows 95 are trademarks and
Win32 is a registered trademark of
Microsoft Corporation.

Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manuals distributed with an Apple
product, Apple will replace the manuals
at no charge to you, provided you return
the item to be replaced with proof of
purchase to Apple or an authorized
Apple dealer during the 90-day period
after you purchased the software. In
addition, Apple will replace damaged
manuals for as long as the software is
included in Apple’s Media Exchange
program. See your authorized Apple
dealer for program coverage and details.
In some countries the replacement
period may be different; check with your
authorized Apple dealer.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
I1S,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS

MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Chapter 1

Contents

Tables and Listings 5

What Is QuickTime 3 for Windows? 7

Chapter 2

QuickTime 3 for Windows: A Quick Start

11

Chapter 3

Using QuickTime 3 for Windows 17

Chapter 4

Initializing and Terminating QTML and QuickTime
Graphics Ports 20

Window Records 21

Graphics Worlds 25

File Selection Dialogs 30

Movies and Movie Files 32

Movie Controllers 35

Resources 38

Windows Utility Functions 41

17

Access to Windows Data Structures 41
Data Conversion 48
QTML Compatibility 55

Chapter 5 Redefined APl Names 65

Chapter 6 Conversion From Earlier Versions 69

Chapter 7 Example Program 71

Index 105

Chapter 1

Chapter 2

Chapter 3

Chapter 5

Chapter 7

Tables and Listings

What Is QuickTime 3 for Windows? 7

Table 1-1 Windows and QTML concepts compared 8

QuickTime 3 for Windows: A Quick Start 11

Listing 2-1 Skeleton of a Windows program using QuickTime 12

Using QuickTime 3 for Windows 17

Listing 3-1 Main routine of a Windows program using QuickTime 18
Listing 3-2 Creating a port association 22

Listing 3-3 Destroying a port association 24

Listing 3-4 Using an offscreen graphics world 28

Listing 3-5 File-system specification record 30

Listing 3-6 Opening a user-selected movie file 31

Listing 3-7 Reading a movie from a file 34

Listing 3-8 Event record 36

Listing 3-9 Displaying a movie 37

Redefined APl Names 65

Table 5-1 Redefined APl names 65

Example Program 71

Listing 7-1 Simple movie player 71

CHAPTER 1

What Is QuickTime 3
for Windows?

This manual is a programmer’s introduction to QuickTime, version 3, for the
Windows platform. QuickTime is Apple Computer, Inc.’s industry-standard
software architecture for creating, editing, and presenting digital media on
personal computers. Originally developed for the Mac OS platform,QuickTime
is now available to developers for the 32-bit Windows 95 and Windows NT 4.0
platforms as well, via the QuickTime 3 Software Development Kit (SDK) for
Windows.

If you are a Windows developer, the SDK allows you to incorporate QuickTime
capabilities into your applications developed directly for the Windows
platform. If you are a Macintosh developer, the SDK provides you with the
tools you need to port the QuickTime-based functionality of your application to
Windows.

The core of the QuickTime 3 SDK for Windows is a Windows dynamic link
library (DLL) that implements the behavior of QuickTime and a few Macintosh
Toolbox routines on the Windows platform. The Macintosh Toolbox routines it
supports are listed and described in Mac OS for QuickTime Programmers.

This DLL is intended only for QuickTime cross-platform support, not as a
general tool for porting Macintosh code to Windows. For a complete list of
QuickTime and Mac OS functions supported for Windows code, see the
functions index in the QuickTime 3 online documentation.

Because the QuickTime routines were originally designed for the Mac OS, they
operate on Mac OS data structures and assume certain features of the Mac OS
operating environment. For example, QuickTime routines are driven by Mac
OS-style events rather than Windows-style messages, and do their drawing in a
Mac OS graphics port instead of a Windows device context. To use them in the
Windows environment, you have to do a little extra work to mediate between
the two platforms.

The purpose of this manual is to help you through that process. If your primary
development background is on Windows, the book will introduce you to some

CHAPTER 1

What Is QuickTime 3 for Windows?

of the basic Mac OS concepts that you’ll need to understand in order to use
QuickTime effectively. There are just a few of these, and they correspond pretty
closely to ideas that you’re already familiar with from Windows programming.
Table 1-1 lists these basic QTML concepts and their Windows counterparts.

Table 1-1 Windows and QTML concepts compared

Windows concept QTML equivalent

Message (MSG) Event (EventRecord)
Graphics Device Interface (GDI) QuickDraw

Device context (DC) Graphics port (CGrafPort)
Window handle (HWND) Window pointer (CWindowPtr)
Common Dialog Box Library Standard File Package

Please note, though, that this manual does not attempt to teach you all there is

to know about QuickTime itself. That information is presented in the following
books, all of which are included in both online and Adobe Acrobat (PDF) form
with the QuickTime 3 Software Development Kit:

» Inside Macintosh: QuickTime

= Inside Macintosh: QuickTime Components

= QuickTime 3 Reference

= Programming With QuickTime Sprites

= QuickTime Music Architecture

= Mac OS For QuickTime Programmers

= Mac OS Sound

= Programming With QiuickTime VR 2.1

= 3D Graphics Programming With QuickDraw 3D 1.5.4

The goal here is simply to show how QuickTime fits into the structure of a
typical Windows application and to provide Windows developers with the
minimum conceptual foundation needed to read and understand the existing
QuickTime documentation.

CHAPTER 1

What Is QuickTime 3 for Windows?

With those objectives in mind, the programming examples in this book have
deliberately been kept simple and straightforward. The code samples are
limited to the most basic QuickTime functionality: presenting a movie and
allowing the user to manipulate and control its presentation through a standard
QuickTime movie controller. Once you’ve seen how to do that much, you can
consult the Inside Macintosh volumes and the QuickTime 3 Reference to learn how
to accomplish more advanced operations such as creating and editing movies or
developing new QuickTime components.

When you have mastered the basics of QuickTime programming, the other
books listed above will help you explore the worlds of sprites, music and
sound, virtual reality environments, and 3D graphics modeling, all of which are
part of QuickTime for Windows.

CHAPTER 2

QuickTime 3 for Windows:
A Quick Start

Incorporating the QuickTime routines into the structure of a Windows
application program is relatively straightforward. You need to follow the basic
steps outlined here to build a simple QuickTime capability into your Windows
program. Names in parentheses are those of the relevant QTML routines.

1. Initialize the QuickTime Media Layer (InitializeQTML) and QuickTime
(EnterMovies) at the start of your program.

2. Associate a QuickDraw graphics port with your movie window
(CreatePortAssociation).

3. Open a movie file (OpenMovieFile) and extract the movie from it
(NewMovieFromFile).

4. Create a movie controller for displaying the movie on the screen
(NewMovieContraoller).

5. In your window procedure, convert incoming messages to QTML events
(WinEventToMacEvent) and pass them to the movie controller for processing
(MCIsPlayerEvent).

6. Dispose of the movie (DisposeMovie) and its controller
(DisposeMovieController) when they’re no longer needed.

7. Dispose of your movie window’s graphics port when the window is
destroyed (DestroyPortAssociation).

8. Terminate QuickTime (ExitMovies) and the QuickTime Media Layer
(TerminateQTML) at the end of your program.

Listing 2-1 illustrates, in skeletal form, how these steps fit into the structure of a
typical Windows application program. In the next chapter, we’ll discuss each of
these steps in turn, along with the related QTML concepts that you need to
understand in order to use QuickTime effectively.

11

CHAPTER 2

QuickTime 3 for Windows: A Quick Start

Listing 2-1 Skeleton of a Windows program using QuickTime

// Resource identifiers

jfdefine IDM_OPEN 101

// Global variables

char movieFile[255]; // Name of movie file
Movie theMovie; // Movie object
MovieController theMC; // Movie controller

NNy,

int CALLBACK WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR TpCmdLine, int nCmdShow)

InitializeQTML(0); // Initialize QTML
EnterMovies(); // Initialize QuickTime

N NNy
// Main message loop

//
NNy,

ExitMovies(); // Terminate QuickTime
TerminateQTML(); // Terminate QTML

} /* end WinMain */

NNy,

12

CHAPTER 2

QuickTime 3 for Windows: A Quick Start

LRESULT CALLBACK WndProc (HWND hWnd, UINT message, WPARAM wParam, LPARAM 1Param)

MSG winMsg;
EventRecord gtmlEvent;
int wmEvent, wmld;

// Fill 1in contents of MSG structure

NativeEventToMacEvent (&winMsg, >mlEvent);// Convert message to a QTML event

MCIsPlayerEvent (theMC, (const EventRecord *) >mlEvent);
// Pass event to movie controller
switch (message)
{
case WM_CREATE:
CreatePortAssociation (hWnd, NULL); // Register window with QTML
break;

case WM_COMMAND:
wmEvent = HIWORD(wParam); // Parse menu selection
wmld = LOWORD(wParam);

switch (wmId)
{
case IDM_OPEN:
CloseMovie (); // Close previous movie, if any

if (GetFile (movieFile)) // Get file name from user
OpenMovie (hWnd, movieFile); // Open the movie
break;

default:
return DefWindowProc (hWnd, message,
wParam, TParam);

13

CHAPTER 2

QuickTime 3 for Windows: A Quick Start

} o /* end switch (wmId) */
break;
case WM_CLOSE:

DestroyPortAssociation (hWnd); // Unregister window with QTML
break;

default:
return DefWindowProc (hWnd, message, wParam, 1Param);

} /* end switch (message) */
return 0;
} /* end WndProc */
NNy,

BOOL GetFile (char *movieFile)

OPENFILENAME ofn;

// Fi1l in contents of OPENFILENAME structure

if (GetOpenFileName(&ofn)) // Let user select file
return TRUE;

else
return FALSE;

b /* end GetFile */

NNy,

14

CHAPTER 2

QuickTime 3 for Windows: A Quick Start

void OpenMovie (HWND hwnd, char fileName[255])

short theFile = 0;
FSSpec sfFile;
char fullPath[2557;

SetGWorld ((CGrafPtr)GetNativeWindowPort(hwnd), nil); // Set graphics port

strcpy (fullPath, fileName); // Copy full pathname
cZpstr (fullPath); // Convert to Pascal string
FSMakeFSSpec (0, OL, fullPath, &sfFile); // Make file-system

// specification record
OpenMovieFile (&sfFile, &theFile, fsRdPerm); // Open movie file
NewMovieFromFile (&theMovie, theFile, nil, // Get movie from file
nil, newMovieActive, nil);

CloseMovieFile (theFile); // Close movie file

theMC = NewMovieController (theMovie, ...); // Make movie controller

}/* end OpenMovie */

NNy,

void CloseMovie (void)

if (theMC) // Destroy movie controller, if any

DisposeMovieController (theMC);

if (theMovie) // Destroy movie object, if any
DisposeMovie (theMovie);

}/* end CloseMovie */

15

CHAPTER 3

Using QuickTime 3
for Windows

This chapter introduces the basic QTML routines for building QuickTime
capabilities into your Windows application, along with the underlying QTML
concepts they’re based on. See the relevant volumes of Inside Macintosh:
QuickTime and QuickTime Components and QuickTime 3 Reference to learn more
about QuickTime and its more advanced capabilities.

Initializing and Terminating QTML and QuickTime

Before your program can perform any QuickTime operations, you must
initialize the QuickTime Media Layer and then QuickTime itself. The first is
accomplished by calling a routine named InitializeQTML, the second with
EnterMovies.

InitializeQTML must be called at the very beginning of your program, before
any other QuickTime call. The recommended place to call it is in your WinMain
function, before creating your main window. The function is defined as follows:

0SErr InitializeQTML (long flag);

The f1ag parameter allows you to specify certain options for the way
QuickTime will behave:

kInitQTMLUseDefault Use standard behavior.

kInitQTMLUseGDIFlag Use the Windows Graphics Device Interface (GDI) for
all drawing.

kInitQTMLNoSoundFlag Don’t initialize the Sound Manager; disable sound for
all movies.

Initializing and Terminating QTML and QuickTime 17

CHAPTER 3

Using QuickTime 3 for Windows

In most cases, you’ll just want to set this parameter to kInitQTMLUseDefault, but
other options are also available for unusual cases, either singly or in
combination.

The function returns an error code indicating success (zero) or failure (nonzero).
You can test this result and take appropriate action in case of failure, such as
displaying a message box to inform the user that QuickTime is not available.
Depending on the nature of your program, you might then choose either to
terminate the program or to continue with QuickTime-related features disabled.

The EnterMovies function allocates space for QuickTime’s internal data
structures and initializes their contents. Your program should call this function
immediately after calling InitializeQTML. The function takes no parameters and
returns an error code:

0SErr EnterMovies (void);

Again, you can test the result and do whatever is appropriate in case of failure.

At the end of the program, your initialization calls to InitializeQTML and
EnterMovies should be balanced by corresponding calls to the termination
routines ExitMovies and TerminateQTML. Both of these functions take no
parameters and return no result:

void ExitMovies (void)
void TerminateQTML (void)

Listing 3-1 shows how these initialization and termination calls fit into the
structure of a typical WinMain routine.

Listing 3-1 Main routine of a Windows program using QuickTime

int CALLBACK WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,

18

LPSTR TpCmdLine, int nCmdShow)

MSG msg;
HANDLE hAccelTable;

if (!hPrevInstance) // 1Is there a previous instance?
if (!(InitApplication(hInstance))) // Register window class
return (FALSE); // Report failure

Initializing and Terminating QTML and QuickTime

CHAPTER 3

Using QuickTime 3 for Windows

if (InitializeQTML(O) != nokrr) // Initialize QTML
{
MessageBox (hWnd, "QuickTime not available", // Notify user
"M, MB_OK);
return (FALSE); // Report failure

}/* end if (InitializeQTML(0) != noErr) */
if (EnterMovies() != nokErr) // Initialize QuickTime

{
MessageBox (hWnd, "QuickTime not available", // Notify user

", MB_OK);
return (FALSE); // Report failure
}/* end if (EnterMovies() != nokrr) */
if (!(InitInstance(hInstance, nCmdShow))) // Create main window
return (FALSE); // Report failure
hAccelTable = LoadAccelerators(hInstance, // Load accelerator table

MAKEINTRESOURCE(IDR_ACCELSIMPLESDI));

[I0TTTTI007 000000 r 00707 r i irririiirririrnry
// Main message loop

[I0TTTTI007 0000l r 0070770 r i rriiiirririiirririrnly
while (GetMessage(&msg, NULL, 0, 0)) // Retrieve next message

if (!TranslateAccelerator (msg.hwnd, // Check for keyboard accelerator
hAccelTable, &msg))

TranslateMessage(&msg); // Convert virtual key to character
DispatchMessage(&msg); // Send message to window procedure

} /* end if (!TranslateAccelerator (msg.hwnd, hAccelTable, &msg)) */

N NNy,

Initializing and Terminating QTML and QuickTime 19

CHAPTER 3

Using QuickTime 3 for Windows

ExitMovies(); // Terminate QuickTime
TerminateQTML(); // Terminate QTML

return (msg.wParam);

o /* end WinMain */

Graphics Ports

20

Because of its Mac OS origins, QuickTime uses the QuickDraw graphics
routines—the Macintosh counterpart to the Windows Graphics Device
Interface, or GDI—to draw to the screen. Even when running under Windows,
the QuickTime Media Layer compatibility interface allows the QuickTime
routines to use QuickDraw calls internally for their drawing operations. So in
order to use QuickTime properly, you have to understand a little about
QuickDraw.

The fundamental QuickDraw data structure is the graphics port (analogous to a
Windows device context). This is a complete drawing environment that
specifies all of the parameters needed to control QuickDraw’s drawing
operations. The port includes such things as the size and location of the
line-drawing pen; colors and patterns (like brushes in Windows) for drawing,
area fill, and background; the font, size, and style for text display; clipping
boundaries; and so forth. All of this information is held in a data structure of
type CGrafPort, pointed to by a pointer of type cGrafPtr. See Mac OS For
QuickTime Programmers for a complete description of this data structure and its
contents.

Note

The c in cGrafPort and cGrafPtr stands for “color,” to
distinguish these from the “classic” black-and-white
versions of these structures (GrafPort and GrafPtr), which
are now obsolete. Any QTML routine that nominally
expects a GrafPort or GrafPtr will accepta CGrafPort or
CGrafPtrinstead. O

The main purpose of a graphics port is to serve as the environment in which to
perform QuickDraw graphics operations. Unlike the Windows GDI routines,

Graphics Ports

CHAPTER 3

Using QuickTime 3 for Windows

which always accept a device context as an explicit parameter, most QTML
QuickDraw routines operate implicitly on the current port. At any given time,
exactly one graphics port is current. The QTML routine GetPort

void
GetPort
(GrafPtr *port)

returns a pointer to the current port, and MacSetPort

void
MacSetPort
(GrafPtr port)

changes it.

Note

The original Mac OS name of this routine, SetPort, conflicts
with an existing name in the Windows API and had to be
changed to MacSetPort. See Chapter 5, “Redefined API
Names,” for a complete list of such name conflicts. 0O

As we’ll see, graphics ports are intimately associated with windows on the
screen; the current port for QuickDraw drawing operations is typically a
window. When running in the Windows environment, you have to associate a
Mac OS-style graphics port with your movie window for the QuickTime
routines to use in displaying a movie. We’ll see how to do this in the next
section.

Window Records

Because most drawing on the screen takes place in a window, graphics ports are
also the basis of the QTML window record (CWindowRecord). The contents of this
structure are fully described in Mac OS For QuickTime Programmers.

The only point to notice here is that its first field (port) holds not a pointer to a
graphics port, but actually a complete graphics port structure embedded
directly in the window record. At the machine level, this means that the
window record is simply an extended graphics port with some additional,

Window Records 21

CHAPTER 3

Using QuickTime 3 for Windows

window-specific information appended at the end. In fact, the pointer to a color
window (CWindowPtr) is directly equated to the corresponding graphics port
pointer (CGrafPtr):

typedef CGrafPtr CWindowPtr;

This allows a window to be used in place of a graphics port in any context in
which a port would be valid. Any QuickDraw routine that expects a pointer to a
graphics port as a parameter will accept a window pointer in its place, since the
two pointers are really the same data type. In particular, the QuickTime routines
can pass your window pointer to the MacSetPort function discussed in the
preceding section, making the window the current port in which to display the
contents of a movie.

On the Windows platform, however, your window is normally designated by a
Windows-style handle (HWND) rather than a QTML pointer (CWindowPtr). To allow
QuickTime to draw into the window, you must first register it with QTML by
calling the QTML routine CreatePortAssociation:

void
CreatePortAssociation
(void *thelnd,
Ptr storage
long flags);

This creates a graphics port and associates it with this window in an internal
data structure maintained by QTML. The first parameter (thewWnd) is your
Windows-style window handle, of type HWND. The second parameter (storage)
allows you to supply your own storage for the CGrafPort record, if you wish.
Generally, you will always pass ni1, allowing the call to allocate memory. (If
you leave this parameter null, QTML will allocate the space for you.)

Typically, you’ll want to register your movie window at the time it is created by
calling CreatePortAssociation from your window procedure in response to the
WM_CREATE message, as shown in Listing 3-2.

Listing 3-2 Creating a port association
LRESULT
CALLBACK WinProc
(HWND thisWindow, // Handle to window

22 Window Records

}

CHAPTER 3

Using QuickTime 3 for Windows

UINT msgType, // Message type
WPARAM wParam, // Message-dependent parameter
LPARAM 1Param) // Message-dependent parameter

switch (msgType)

{

}

case WM_CREATE:
CreatePortAssociation (thisWindow, NULL);
// Register window with QTML

break;

/* end switch (msgType) */

/* end WinProc */

Once you’ve registered your window, you can use the conversion routine
GetHWNDPort to obtain a QTML-style window pointer for it:

WindowPtr
GetNativeWindowPort
(void *h)

There’s also a reverse conversion function for recovering the window handle
associated with a given window pointer:

void*
GetPortNativeWindow
(WindowPtr wptr)

When you’re through with a particular window, you can deregister it and
dispose of its graphics port with DestroyPortAssociation:

Window Records

CHAPTER 3
Using QuickTime 3 for Windows
void

DestroyPortAssociation
(CGrafPtr cgp)

A good place to do this is in your window procedure’s response to the WM_CLOSE
or WM_DESTROY message. Listing 3-3 shows an example.

Listing 3-3 Destroying a port association
LRESULT
CALLBACK WinProc
(HWND thisWindow, // Handle to window
UINT msgType, // Message type
WPARAM wParam, // Message-dependent parameter
LPARAM 1Param) // Message-dependent parameter

switch (msgType)
{
case WM_CLOSE:
CWindowPtr qtmiPtr; // Macintosh window pointer

gtmiPtr = GetHWNDPort(thisWindow); // Convert to window pointer
DestroyPortAssociation (qtmlPtr); // Deregister window
break;

} o /* end switch (msgType) */

}/* end WinProc */

24 Window Records

CHAPTER 3

Using QuickTime 3 for Windows

Graphics Worlds

Another aspect of the graphics environment that affects the way QuickTime
displays images on the screen is the characteristics of the graphics device on
which they’re being presented. These include such things as the device’s pixel
resolution, its color depth, and the capacity of its color table. The device’s
characteristics are summarized in a graphics device record (described in detail
in Mac OS For QuickTime Programmers.

Ordinarily, the results of a program’s drawing operations depend on the
graphical capabilities of the display device that happens to be connected to the
user’s computer at run time. There can even be more than one such device
attached to the same system: QTML will figure out which screen is being drawn
to and will display all results correctly according to the characteristics of each
device. All of this normally happens automatically, and is transparent to the
running program.

Sometimes, however, a program may need to take a more active role in
controlling the graphics environment for its drawing operations. If you’re
creating a QuickTime movie, for instance, you probably don’t want to define the
movie’s appearance in terms of the display characteristics of a particular
graphics device. Rather, you want the movie’s content to be
device-independent, with its own inherent dimensions, pixel depth, colors, and
so on. Then, when the movie is displayed on a user’s computer, QuickTime
will automatically adapt its graphical characteristics to those of the available
display device, and will present the movie as faithfully as it can on the given
device.

The way to accomplish this is to define the movie with respect to a
device-independent graphics world. This combines a graphics port and a
device record, which together completely determine the graphics environment
in which QuickTime does its drawing. Like the window record we discussed in
the preceding section, the data structure representing a graphics world is an
extended graphics port with some additional fields appended at the end. The
exact details are private to QTML,; the graphics world is always referred to by
means of an opaque pointer of type GWor1dPtr. Because the underlying structure
is based on a graphics port, however, this pointer is equated to a graphics port
pointer:

typedef CGrafPtr GWorldPtr;

Graphics Worlds 25

26

CHAPTER 3

Using QuickTime 3 for Windows

This means that (again like a window record), a graphics world can be used
anywhere a graphics port would be expected: for instance, as an argument to
the MacSetPort function that sets the current port for subsequent drawing
operations.

A graphics world’s device record can represent an existing physical graphics
device, but it need not: it can also describe a fictitious “offscreen” device with
any graphical characteristics you choose. You create such an offscreen graphics
world by specifying the desired characteristics as parameters to the QTML
function NewGWorld:

QDErr
NewGWor1d

(GWorldPtr *offscreenGWorld, // Returns pointer to GWorld
short pixelDepth, // Color depth in bits per pixel
const Rect *boundsRect, // Boundary rectangle
CTabHandle cTable, // Handle to color table
GDHandle aGDevice, // Set to null for offscreen
GWorldFlags flags); // Option flags

You can read all about this function and its parameters in Mac OS For QuickTime
Programmers. What’s relevant here is that if the noNewDevice flag in the flags
parameter is clear, the function will ignore the parameter aGDevice and create a
new, device-independent device record with the specified characteristics. It will
then combine this device record with a graphics port for drawing into a
memory-based image buffer (rather than directly to the screen), and will return
a pointer to the resulting graphics world via the offscreenGhor1d parameter.

Note, however, that when you use NewGWor1d to create your graphics world, it
will be set up to draw into a Macintosh-style bitmap as its image buffer. If you
want to work with a Windows-style bitmap instead, you can use an alternate
function available only in the Windows version of the QuickTime API:

QDErr
NewGWor1dFromHBITMAP
(GWorldPtr *offscreenGWorld, // Returns pointer to GWorld
CTabHandle cTable, // Handle to color table
GDHandle aGDevice, // Set to null for offscreen
GWorldFlags flags, // Option flags
void *newHBITMAP, // Handle to bitmap

Graphics Worlds

CHAPTER 3

Using QuickTime 3 for Windows

void *newHDC) // Handle to device context
long rowBytes) // number of bytes in a
scanline

The parameters newHBITMAP and newHDC must either both be null or handles to a
Windows bitmap and device context, respectively. If they’re null, the function
will allocate a complete graphics world for you; otherwise, it will simply wrap
one around the specified structures. This allows you to use the native Windows
drawing environment as the source for QuickTime operations such as image
compression or CopyBits. If you do supply a Windows bitmap, it must be a
device-independent bitmap (DIB) created with the Windows function
CreateDIBSection. All other parameters are as described in Mac OS For
QuickTime Programmers, with the exception of the pixelFormat parameter that
replaces pixelDepth in the original NewGWor1d function. Valid settings for this
parameter are as follows:

0 // Default
k1MonochromePixelFormat
k2IndexedPixelFormat
k4dIndexedPixelFormat
k8IndexedPixelFormat
kl1IndexedGrayPixelFormat
k2IndexedGrayPixelFormat
k4dIndexedGrayPixelFormat
k8IndexedGrayPixelFormat
k16BES55PixelFormat
k32ARGBPixelFormat

k16LES55PixelFormat
k16LES65PixelFormat
k?24BGRPixelFormat
k?24RGBPixelFormat
k32BGRAPixelFormat
k32ABGRPixelFormat
k32RGBAPixelFormat

Once you’ve created a graphics world to your specifications, you can use it to
set the current graphics port and device, then you can proceed to create your
movie. The QTML function SetGWorld

Graphics Worlds 27

CHAPTER 3

Using QuickTime 3 for Windows

void
SetGWorld
(CGrafPtr port, // Port or graphics world to make current
GDHandle gdh) // Device to make current

nominally accepts a graphics port and device record and makes them the
current port and current device. However, if the port parameter actually points
to a graphics world (remember that data types GWor1dPtr and CGrafPtr are
equivalent), then the function ignores parameter gdh and uses the port and
device from the given graphics world instead. A companion function, GetGWorld

void
GetGWorld
(CGrafPtr “*port, // Returns current port
GDHandle *gdh) // Returns current device

returns a pointer to the current port and a handle to the current device record.
You can use this function, for example, to save the previous current port and
device and restore them again after you're finished creating your movie.
Listing 3-4 shows an example.

CGrafPtr
GDHandle
GWorldPtr
Rect
O0SErr

errCode =

if (errCode

28

Listing 3-4 Using an offscreen graphics world
oldPort; // Previous current port
oldDevice; // Previous current device
movieGWorld = nil; // Movie’s graphics world
movieFrame; // Boundary rectangle for movie images
errCode; // Result code
NewGWorld (&movieGWorld, // Return result in movieGWorld
16, // Pixel depth
&movieFrame, // Boundary rectangle
nitl, // Use default color table
nitl, // No preexisting device record
0); // No flags to pass
I= nokrr) // Was there an error?

Graphics Worlds

else

CHAPTER 3

Using QuickTime 3 for Windows

MessageBox (hWnd, "Error creating graphics world", "", MB_OK); // Notify user

{

}

GetGWorld (&oldPort, &oldDevice); // Save previous graphics world
SetGWorld (movieGWorld, nil); // Set movie’s graphics world

/* Here...you would draw images */
SetGWorld (oldPort, oldDevice); // Restore previous graphics world
DisposeGWorld (movieGWorld); // Dispose of movie’s graphics world
/* end else */
Besides the general SetGWor1d and GetGWor1d functions, the QuickTime Movie

Toolbox also provides a pair of functions for setting and retrieving a movie’s
graphics world directly:

void
SetMovieGWorld
(Movie theMovie,
CGrafPtr port,
GDHandTle gdh)
void
GetMovieGWorld
(Movie theMovie,
CGrafPtr “*port,
GDHandle *gdh)
Note

This is useful for drawing offscreen because you can create
GWorlds and then direct the movie to draw them there. 0

Like SetGWor1d, SetMovieGWor1d will accept a graphics world as its first
parameter in place of a graphics port; it will then ignore the second parameter
and use the device record from the graphics world instead.

Graphics Worlds 29

CHAPTER 3

Using QuickTime 3 for Windows

File Selection Dialogs

When the user chooses the Open command from your File menu, you’ll want
to present a dialog box that allows the user to select the file to be opened. In
Windows, this is normally done with the function GetOpenfileName, part of the
Common Dialog Box Library. This function displays the standard Windows
Open File dialog box on the screen, handles all interactions with the mouse and
keyboard until the dialog is dismissed, and then returns a data structure of type
OPENFILENAME identifying the file the user has selected. One of the members of
this structure, 1pstrFile, points to a string buffer in which to return the
pathname of the file the user has selected. Ordinarily, a Windows program
would simply pass this string to the appropriate Windows function, such as
Createfile, to open the designated file.

As we’ll see in the next section, however, the QuickTime function OpenMovieFile
instead expects to receive an analogous data structure from the Macintosh
Standard File dialog package, a file-system specification record (Listing 3-5).

Listing 3-5 File-system specification record
struct FSSpec
{
short vRefNum; // Volume reference number
long parlD; // Directory ID of parent directory
Str2s5 name; // File name

30

/* end FSSpec */

So before calling openMovieFile from a Windows program, you have to create a
specification record to pass to it. The QTML function FSMakeFSSpec does the job:

0SErr
FSMakeFSSpec
(short vRefNum, // Volume reference number
long dirlD, // 1D of parent directory
ConstStr255Param fileName, // File name
FSSpec *spec) // Returns a specification record

File Selection Dialogs

CHAPTER 3

Using QuickTime 3 for Windows

On the Macintosh, files are normally identified by giving a directory ID and a
local file name within the directory. In Windows code, you set the directory ID
and volume reference number to 0 and supply a full pathname instead;
FSMakeFSSpec will interpret this correctly and initialize the specification record
accordingly. Listing 3-6 shows how to use this function to mediate between the
Windows common dialog box and the QTML 0OpenMovieFile function.

Note

Another point to keep in mind is that the Windows
GetOpenFileName function returns the file’s pathname as a
C-style string (terminated by a null character), whereas
FSMakeFSSpec, like all QTML routines, expects it in Pascal
form (preceded by a 1-byte length count). O

A WMARNING

QTML provides a pair of utility functions, c2pstr and

p2cstr, for converting strings from one format to the other

in place. You don’t want to pass a string constant; the

buffer needs to be modifiable. a

Listing 3-6 Opening a user-selected movie file
OPENFILENAME ofn; // Parameters to Common Dialog Box
char pathName[2557; // Buffer for pathname
BOOL confirmed; // Did user confirm file selection?
FSSpec fileSpec; // File-system specification record
short theFile; // Reference number of movie file
HWND hwnd; // Handle to movie window
CGrafPtr windowPort; // Window’s graphics port
O0SErr errCode; // Result code
memset (&ofn, 0, sizeof (OPENFILENAME); // Clear to zero
fileName[0] = “\0"; // No default file name
ofn.1StructSize = sizeof (OPENFILENAME) ; // Size of structure
ofn.hwndOwner = GetActiveWindow(); // Active window owns dialog
ofn.TpstrFile = LPSTR(pathName); // Point to pathname buffer

File Selection Dialogs 31

CHAPTER 3

Using QuickTime 3 for Windows

255; // Size of buffer
"QuickTime Movies (*.mov;*.avi) \0 *.mov;*.avi\0";
// Filter string

ofn.nMaxFile
ofn.lpstrFilter

ofn.nFilterIndex =1; // Index of default filter
ofn.IpstrinitialDir = NULL; // Use current directory
confirmed = GetOpenFileName (&ofn); // Let user select file
if (confirmed) // Did user confirm selection?
{
c2pstr (pathName); // Convert to Pascal string

FSMakeFSSpec (0, OL, pathName, &fileSpec); // Make specification record

windowPort = GetNativeWindowPort(hwnd); // Get window’s graphics port
SetGWorld (windowPort, nil); // Make it the graphics world

errCode = OpenMovieFile (&fileSpec, &theFile, fsRdPerm); // Open the movie file

} /* end if (confirmed) */

Movies and Movie Files

QuickTime movies reside in movie files. On the Mac OS platform, such files
carry the file type 'Moov' (defined in the QuickTime interface as a constant
named MovieFileType); on the Windows platform, they are identified by the
file-name extension .mov.

Before reading a movie in from its movie file, you must first open the file with
the QuickTime function OpenMovieFile:

0SErr
OpenMovieFile
(const FSSpec *fileSpec, // Identifies file to be opened
short *resRefNum, // Returns file reference number
SInt8 permission) // Requested permission level

The fileSpec parameter points to a file-system specification record (described
in Listing 3-5) telling which movie file to open. The OpenMovieFile function

32 Movies and Movie Files

CHAPTER 3

Using QuickTime 3 for Windows

returns a file reference number, via the resRefNum parameter, that uniquely
identifies this movie file. You’ll use this reference number to refer to the file
when calling other QuickTime routines, such as CloseMovieFile and
NewMovieFromFile. The permission parameter specifies the level of access
permission requested for the file, such as fsrRdPerm (read-only), fsWrPerm
(write-only), or fsRdWrPerm (read-write).

After opening the movie file, you can read the movie’s contents into a movie
record, an opaque data structure in which QuickTime reads some information
into memory about the movie’s contents. The movie record is referred to by a
movie identifier of type Movie:

typedef MovieRecord* Movie;

The QuickTime function NewMovieFromFile creates movie record in memory for
the specified file:

O0SErr
NewMovieFromFile

(Movie *theMovie, // Returns movie identifier
short resRefNum, // File reference number
short *reslD, // Unused in Windows; set to nil
StringPtr resName, // Unused in Windows; set to nil
short newMovieFlags, // Option flags
Boolean *dataRefWasChanged) // Unused in Windows; set to nil

You identify the movie file by supplying the file reference number (resRefNum)
that you got back from your call to OpenMovieFile. Parameter theMovie returns a
movie identifier for the movie retrieved from the file. Of the possible option
flags that you can set in the newMovieFTags parameter, the only one of interest on
the Windows platform is newMovieActive, which controls whether the movie
will initially be active or inactive when you read it in; you can later control this
setting dynamically with the QuickTime function SetMovieActive. The
remaining parameters refer to Macintosh-style resources, and are not relevant in
the Windows context.

Once you’ve read a movie in from its file to a movie record and obtained a
movie identifier for it, there’s no need to keep the movie file open any longer. In
the movie record, there are pointers to the file and QuickTime will
automatically reopen it to retrieve data, if needed. It’s considered good practice
to close the file immediately, using the QuickTime function CloseMovieFile:

Movies and Movie Files 33

CHAPTER 3

Using QuickTime 3 for Windows

OSErr
CloseMovieFile
(short resRefNum) // File reference number

Once again, you identify the file by using the file reference number you
received when you first opened it. After closing the file, the file reference
number is invalid. Therefore, passing the reference to another file manager call
is not a good idea and should be avoided.

Listing 3-7 illustrates how to combine these QuickTime calls to read a movie in
from its movie file.

Listing 3-7 Reading a movie from a file
FSSpec fileSpec; // Descriptive information on file to open
short theFile; // Reference number of movie file
Movie theMovie; // Movie identifier
HWND hWnd; // Handle to window
0SErr errCode; // Result code
errCode = OpenMovieFile (&fileSpec, &theFile, fsRdPerm); // Open the movie file
if (errCode != nokrr) // Was there an error?
{
MessageBox (hWnd, "Error opening movie file", // Notify user
"', MB_OK);
return (FALSE); // Report failure
} /* end if (errCode != nokErr) */
errCode = NewMovieFromFile (&theMovie, theFile, // Get movie from file

nil, nil,
newMovieActive, nil);

CloseMovieFile (theFile); // Close the file
if (errCode != nokrr) // Was there an error?
{
MessageBox (hWnd, "Error reading movie from file", // Notify user
"', MB_OK);

34 Movies and Movie Files

CHAPTER 3

Using QuickTime 3 for Windows

return (FALSE); // Report failure

b} /* end if (errCode != noErr) */

Movie Controllers

The preferred way to present a movie is with a movie controller. This is a
QuickTime component that presents the user with a standard set of controls for
running the movie and controlling its direction, speed, and so on. Movie
controllers and the functions available for working with them are discussed
fully in Inside Macintosh: QuickTime Components and QuickTime 3 Reference.

You create a movie controller with the QuickTime function NewMovieController:

MovieController
NewMovieController

(Movie theMovie, // Movie to be displayed
const Rect *movieRect, // Rectangle to display it in
long somefFlags) // Option flags

Parameter theMovie is the movie identifier you received when you read the
movie in with NewMovieFromFile (as shown in the section “Movies and Movie
Files”). The second parameter, movieRect, specifies the rectangle in which to
display the movie on the screen. The parameter someFlags specifies various
options, such as whether to display the movie with a frame around it, how to
position it within the specified rectangle, and whether to scale it to fit the
rectangle. (If you want it to fit the rectangle exactly, you can get the dimensions
of the movie’s boundary rectangle with the QuickTime function GetMovieBox.)

Because of its Mac OS origins, a movie controller is driven by events rather than
messages. Events are similar in concept to Windows-style messages, though
different in detail. As you can see in Listing 3-8, the QTML event record closely
resembles the Windows message structure (MSG) and contains essentially the
same information. (One difference is that unlike a Windows message, the event
doesn’t identify a particular window to which it applies; this is because all
Macintosh events are addressed globally to the program itself, rather than to an
individual window.)

Movie Controllers 35

CHAPTER 3

Using QuickTime 3 for Windows

Listing 3-8 Event record

struct EventRecord

36

{

EventKind what; // Event type

UInt32 message; // Additional parametric information
UInt32 when; // Time event occurred

Point where; // Mouse position at time of event
EventModifiers modifiers; // State of keyboard modifier keys

The QTML utility function NativeEventToMacEvent converts a Windows message
into an equivalent QTML event:;

int
NativeEventToMacEvent
(void *winMsg, // Windows message to be converted
EventRecord *macEvent) // Equivalent Macintosh event

The first parameter points to a Windows MSG structure describing the message
received by your window procedure; the second points to a QTML event record
for the function to fill in to represent an equivalent event, if any. (A nonzero
function result indicates that the conversion took place successfully; if the given
message doesn’t correspond to a Mac OS-style event, the function simply
converts it to a null event and returns a zero result.)

The QuickTime function MCIsPlayerEvent

ComponentResult
MCIsPlayerEvent
(MovieController mc, // Movie controller
const EventRecord *e) // Event to be processed

accepts a movie controller and an event record as parameters, determines
whether the event is directed to the controller, and processes it as appropriate.
This allows the movie controller to “run itself,” handling all mouse and
keyboard interactions with the user and displaying its movie on the screen
accordingly. Even if the movie controller has no interest in the given event (for
instance, if it’s a null event), the controller receives some processing time to
advance the presentation of the movie itself.

Movie Controllers

CHAPTER 3

Using QuickTime 3 for Windows

Although the function returns a result of type ComponentResult (equivalent to a
long integer) to indicate whether the movie controller has processed the event,
you should normally ignore this result and simply pass all messages through
both MCIsPTayerEvent and your window procedure’s normal message dispatch.
Listing 3-9 shows how to use the NativeEventToMacEvent and MCIsPlayerEvent
functions to convert each message you receive to an event, then pass it to the
window controller for action.

Listing 3-9 Displaying a movie
MovieController theController; // Movie controller for movie
LRESULT
CALLBACK WinProc

(HWND thisWindow, // Handle to window

UINT msgType, // Message type

WPARAM wParam, // Message-dependent parameter

LPARAM 1Param) // Message-dependent parameter

{

MSG winMsg; // Windows message structure
EventRecord qtmlEvt; // Macintosh event record
DWORD msgPos; // Mouse coordinates of message
winMsg.hwnd = thisWindow; // Window handle
winMsg.message = msgType; // Message type
winMsg.wParam = wParam; // Word-length parameter
winMsg.1Param = 1Param; // Long-word parameter
winMsg.time = GetMessageTime(); // Get time of message
msgPos = GetMessagePos(); // Get mouse position
winMsg.pt.x = LOWORD(msgPos); // Extract x coordinate
winMsg.pt.y = HIWORD(msgPos); // Extract y coordinate

NativeEventToMacEvent (&winMsg, >mlEvt); // Convert to event

MCIsPlayerEvent (theController, &qtmlEvt); // Pass event to QuickTime

Movie Controllers 37

CHAPTER 3

Using QuickTime 3 for Windows

switch (msgType) // Dispatch on message type

{

// Handle message according to type

} o /* end switch (msgType) */

/* end WinProc */

Resources

38

Mac OS resources are items of structured data that reside in files and can be
read in on demand to help determine a program’s behavior. Although Windows
has the concept of resources as well, they’re far less central to the system’s
software architecture than they are on the Mac OS platform.

Every Mac OS file consists of two separate forks, stored independently but
logically joined under a single file name. The data fork consists of a single
stream of data bytes intended to be read sequentially, and corresponds to
what’s generally considered a file on most other platforms. The resource fork,
by contrast, contains a collection of individual resources that are accessed via a
four-character resource type and an integer resource ID. For example, an icon
to be displayed on the screen might be identified by resource type '1cON' and
resource ID 1; the contents of a menu by type 'MENU', ID 128; the layout of a
dialog box by type 'bL0G", ID 1000; and so forth.

Note

Four-character codes like the ones that represent resource
types are used on the Mac OS platform for a wide variety
of other purposes as well. For example, every file is
stamped with a four-character file type and a
four-character creator signature identifying the application
program to which the file belongs; these play an analogous
role on the Mac OS platform to the three-character
file-name extension in the DOS/Windows file system.

Resources

CHAPTER 3

Using QuickTime 3 for Windows

QuickTime uses four-character codes to identify such
things as track types, media types, and component types.
Internally, such codes are simply 32-bit long integers; at the
source-language level, they are typically represented by a
string of four characters enclosed in single quotation
marks, such as 'abcd'. O

Because DOS/Windows files don’t have a counterpart to the Macintosh
resource fork, other mechanisms have to be adopted to accommodate resource
information. For example, although QuickTime movie files use both forks on
the Mac OS platform, those on Windows have only the equivalent of the data
fork. One approach is to store only the contents of the data fork from the Mac
OS movie file into the corresponding Windows movie file (extension .mov),
while storing the resource fork into a companion file with extension .qtr
(“QuickTime resources”). If a needed resource cannot be found in the .mov file,
the QTML resource-handling routines will automatically look for a matching
.qtr file and will attempt to locate the resource there. The drawback to this
approach is that the user, when moving or copying a movie file from one place
to another, must remember to move the matching resource file along with it.
This is a nuisance to the user and is likely to lead to dissatisfaction with your
application.

Fortunately, QuickTime supports another solution to the cross-platform
resource problem. The QuickTime function FlattenMovie (described in Inside
Macintosh: QuickTime and QuickTime 3 Reference) allows you to create a
single-fork movie file with an empty resource fork and all of the resource data
stored in the data fork instead. The resulting file can then be transported to
Windows (or other platforms) without losing any of the movie’s data. This is
generally a better solution for cross-platform compatibility, since it requires the
user to move one file instead of two.

In porting existing QuickTime applications from the Mac OS platform to
Windows, the problem also arises of how to transport resources belonging to
the application program itself. On the Mac OS platform, such resources
normally reside in the resource fork of the application (' AppL") file. A utility
named RezWack, provided as part of the QuickTime 3 Software Development
Kit for Windows, incorporates these resources from the resource fork of the Mac
OS version into the executable (.exe) file of the Windows version. The QTML
resource-management routines will correctly locate and read in the resources
from the application’s .exe file.

Resources 39

CHAPTER 4

Windows Utility Functions

The utility functions described in this chapter constitute a set of routines,
specific to Windows, that will help you with QuickTime programming on the
Windows 95 and Windows NT platform.

The interfaces to these routines are through the header files Quickbraw.h and
QTML.h.

Access to Windows Data Structures

The utility functions described in this section provide access to Windows data
structures that QuickTime uses as part of its implementation.

CreatePortAssociation

CreatePortAssociation associates a graphics port (a data structure of type
GrafPort) with an onscreen native window.

GrafPtr CreatePortAssociation(void *theWnd, Ptr wStorage, long flags);

theWnd Native window to associate the GrafPort with. In Windows, this
parameter represents the movie HWND.

wStorage A pointer to a window record used for window storage. If you
specify NIL, this function will allocate storage for you.

flags Option flags:

Access to Windows Data Structures 41

DISCUSSION

CHAPTER 4

Windows Utility Functions

kQTMLNoIdTeEvents
If you set this flag, QuickTime will not pass
periodic idle messages to the WndProc associated
with this window. In this case it is your
responsibility to task any movies playing in this
window. When this flag is not set, QuickTime
makes sure the WndProc associated with the
onscreen window gets periodic idle messages so
your code can in turn idle any movie controllers
contained within that window.

The CreatePortAssociation function associates a QuickDraw graphics port with
an onscreen window. The graphics port provides a drawing context for
QuickTime and QuickDraw. In addition, QuickTime hooks the native window,
so that any window state changes are reflected in the associated graphics port.
Before you dispose of the native window, call DestroyPortAssociation.

DestroyPortAssociation

DISCUSSION

42

DestroyPortAssociation removes the graphics port associated with an onscreen
window.

void DestroyPortAssociation(CGrafPtr cgp);

cgp A pointer to the QuickDraw graphics port associated with a
native window.

The destroyPortAssociation function removes the graphics port associated with
an onscreen native window. This association was established previously via the
CreatePortAssociation call. The DestroyPortAssociation function unhooks the
native window WndProc and deallocates and window storage. Call this function
before you destroy the native window.

Access to Windows Data Structures

CHAPTER 4

Windows Utility Functions

UpdatePort

The UpdatePort function forces the update of the port.

0SErr UpdatePort(GrafPtr port);

port A Mac OS graphics port.

DISCUSSION

This routine updates the various fields of a graphics port from the current HWND
settings. The port’s visRgn, strucRgn, and bounds are updated.

GetHWNDPort

The GetHWNDPort function gets a Mac OS graphics port pointer for a Windows
HWND window handle.

GrafPtr GetHWNDPort(void *theHWND);

theHWND A window handle

function result A pointer to a Mac OS GrafPort data structure.

GetPortHDC

The GetPortHDC function returns a Windows HDC.

void *GetPortHDC(GrafPtr port);

port A Mac OS graphics port.
function result A Windows HDC.

Access to Windows Data Structures 43

CHAPTER 4

Windows Utility Functions

GetPortHBITMAP

DISCUSSION

The GetPortHBITMAP function returns a HBITMAP.
void *GetPortHBITMAP(GrafPtr port);

port A Mac OS graphics port.

function result A Windows HBITMAP.

Use this routine to get the HBITMAP object associated with an offscreen graphics
world. This HBITMAP will be a DIBSECTION. Do not dispose of this HBITMAP.

GetPortHPALETTE

The GetPortHPALETTE function returns a HPALETTE.
void *GetPortHPALETTE(GrafPtr port);

port A Mac OS graphics port.

function result A Windows HPALETTE.

GetPortHFONT

44

The GetPortHFONT function returns a handle to the currently-selected Windows
font.

void *GetPortHFONT(GrafPtr port);

port A Mac OS graphics port.

function result A Windows font.

Access to Windows Data Structures

CHAPTER 4

Windows Utility Functions

QTGetDDObject

DISCUSSION

The aTGetDDObject function returns the Direct Draw object currently in use by
QuickTime.

0SErr QTGetDDObject(void **1pDD0Object);

1pDDObject Specifies the DirectDraw object.

This function is useful for developers who want to call Directdraw methods
directly.

QTSetDDODbiject

The aTsetDDObject function sets the DirectDraw object currently in use by
QuickTime.

0SErr QTSetDDObject(void *1pNewDDObject);
1pNewDDObject Specifies the DirectDraw object.

This function is useful for developers who want to call Directdraw methods
directly.

QTSetDDPrimarySurface

The aTSetDDPrimarySurface function allows you to set the primary DirectDraw
surface used by QuickTime.

0SErr QTSetDDPrimarySurface(void *1pNewDDSurface, unsigned long flags);

1pNewDDSurface

Contains a pointer to a DirectDraw surface.

Access to Windows Data Structures 45

CHAPTER 4

Windows Utility Functions

flags Contains flags that control the set operation. The following flags
are valid:

kDDSurfacelocked
If set, QuickTime won’t attempt to lock the
graphics device when blitting to the PixMap.

kDDSurfaceStatic
If set, QuickTime assumes Windows on this
device do not move.

DISCUSSION
This function is useful for multimedia developers who want to wrap
QuickTime around surfaces they have already created.

InitializeQHdr
InitializeQHdr initializes a Windows QHdr data structure for use by the Toolbox.
void InitializeQHdr(QHdr *ghdr);
ghdr A pointer to a QHdr record.

DISCUSSION

46

The InitializeQHdr function initializes the various fields of the Windows queue
header to startup values and associates a mutex with the queue to provide safe
access via the Toolbox Enqueue and Dequeue routines. The mutex identifier is
stored in the Mutex1D field of the qHdr. Your application or component is not
required to manage this mutex; the Toolbox functions Enqueue and Dequeue will
handle this for you. A QHdr structure is typically used by QuickTime image
decompressor components to manage frame queues. Once you are done with
the queue, call TerminateQHdr to free the mutex.

Access to Windows Data Structures

CHAPTER 4

Windows Utility Functions

TerminateQHdr

InitializeQHdr terminates a Windows QHdr data structure.
void TerminateQHdr (QHdr *ghdr);

ghdr A pointer to a QHdr record.

DISCUSSION
The TerminateQHdr function deallocates the data structures created by
InitializeQHdr.

IsTaskBarVisible

The IsTaskBarVisible routine returns the current visibility state of the taskbar.
Boolean IsTaskBarVisible(void);

function result If the taskbar is visible, the function returns true.

ShowHideTaskBar

The ShowHideTaskBar routine shows or hides the Windows taskbar.
void ShowHideTaskBar(Boolean showlt);

showIt If true, show the taskbar. Otherwise, hide the taskbar.

This call can be used to hide the taskbar during full-screen movie playback.

Access to Windows Data Structures 47

CHAPTER 4

Windows Utility Functions

QTMLAcquireWindowList

The aTMLAcquireWindowList function acquires exclusive access to the global list
of (Macintosh-style) windows, so that the list will not change until you call
QTMLReleaseWindowlist

void QTMLAcquireWindowlList(void);

DISCUSSION
If you want to call the LMGetWindowList function or the FrontWindow function and
then proceed to walk down the next pointers, you need to protect yourself
against another thread modifying the list while you walk. Call the
QTMLAcquireWindowlList function before and the QTMLReleaseWindowlList routine
after.

QTMLReleaseWindowList

The QTMLReTeaseWindowlList function allows other threads to modify the global
list of (Macintosh-style) windows again.

void QTMLReleaseWindowlList(void);

Data Conversion

The utility functions described in this section map between data formats used
by Windows and those used by QuickTime.

48 Data Conversion

CHAPTER 4

Windows Utility Functions

NativeEventToMacEvent

DISCUSSION

NativeFventToMacEvent converts Win32 messages to Macintosh events.
long NativeEventToMacEvent(void *nativekEvent, EventRecord *macEvent);

macEvent A pointer to Macintosh EventRecord structure to be filled in.

Use this function from a WndProc to convert a message structure to an equivalent
Macintosh event record. NativeFventToMacFEvent translates Win32 message types
into Macintosh event types and fills in the various other EventRecord fields
based on the source Win32 usG. Typically, when your application hosts a movie
controller, it should call NativeEventToMacEvent to translate a Win32 MSG to an
EventRecord, and then pass the resulting EventRecord to MCIsPlayerEvent for
processing. This function returns notrr if the translation succeeded. You should
never call this function and then exit early from your WndProc without calling
DefWindowProc or returning an appropriate result code from your WndProc.

GetPictFromDIB

DESCRIPTION

You use the GetPictFromDIB function to create a QuickDraw PicHandle from a
handle to a D1B.

PicHandle GetPictFromDIB (void *h);

h AhandletoanIB

The GetPictFromDIB function returns a PicHandle when passed a handle to a DIB.
The caller is responsible for releasing the memory of the picHandle. You call the
function Ki11Picture to release the memory of PicHandle.

Note that this function does not work for HBITMAP.

The format of the 18 handle is the same as returned by GetC1ipboardData with
CF_DIB.

Data Conversion 49

CHAPTER 4

Windows Utility Functions

GetDIBFromPict

DESCRIPTION

You use the GetDIBFromPict function to create a handle to a DIB from a
QuickDraw PicHandle.

void *GetDIBFromPict (PicHandle hPict);

hPict Specifies a handle to a Mac OS-style PICT.
function result A handle toa pIB.

The GetDIBFrompPict function returns a global handle to a D18 when passed a
PicHandle. The caller is responsible for releasing the memory of the p18 handle.
You call the function G1obalFree to release the memory of the 18 handle.

Note that the 1B handle is not the same as HBITMAP.

NativeRegionToMacRegion

DISCUSSION

50

The NativeRegionToMacRegion function converts a Windows HRGN to a Macintosh
region handle.

RgnHandle NativeRegionToMacRegion(void *nativeRegion)

nativeRegion A Windows HRGN.

function result A Macintosh region handle.

The RgnHand1e should be disposed of by the caller.

Data Conversion

CHAPTER 4

Windows Utility Functions

MacRegionToNativeRegion

The MacRegionToNativeRegion function converts a Macintosh region handle to a
Windows HRGN.

void *MacRegionToNativeRegion(RgnHandle macRegion);

macRegion A Macintosh region handle.

function result A Windows HRGN.

FSSpecToNativePathName

The FSSpecToNativePathName function extracts the native pathname from an
FSSpec.

0SErr FSSpecToNativePathName(FSSpec *inFile, char *outName,
unsigned long outlen, long flags);

inFile Contains a pointer to a FSSpec.

outName Contains a pointer to a buffer to hold a C string.

outlen Specifies the maximum size of the buffer in bytes, including
thestring terminator.

flags Contains flags that control the conversion. The following flags
are valid:

kFulTNativePath

This indicates that the full pathname should be
returned.

kFileNameOnly
Only the part of the pathname corresponding to
the file should be returned. This might be useful
to return a string for a window’s title.

kDirectoryPathOnly
The full pathname up to and including the
enclosing directory but not the filename should

Data Conversion 51

DISCUSSION

CHAPTER 4

Windows Utility Functions

be returned. This can be useful to get a path for
the enclosing directory that might be used to find
related files in the same directory.

As an example, consider the following Windows full path:

D:\Media\My Movies\Really Cool Movies\Tasty Fish.mov

If you have an Fsspec for this path, you can extract either the whole path or
portions of the path using one of the above flags. For the above path and each
flag, the resulting strings are:

Using kFullNativePath gives

D:\Media\My Movies\Really Cool Movies\Tasty Fish.mov

Using kFileNameOnly gives

Tasty Fish.mov

Using kDirectoryPathOnly gives

D:\Media\My Movies\Really Cool Movies

Sometimes, developers may need to convert a FSSpec returned by QuickTime
APIs to a native pathname to be passed into the current operating system. The
FSSpecToNativePathName function accepts an FsSpec and fills in the buffer
pathname whose size is pathnameMaxBufferSize with the equivalent pathname
string. This size must also include the size necessary to hold the string
terminator.

NativePathNameToFSSpec

52

The NativePathNameToFSSpec function, given a native pathname, returns an
FSSpec for that file.

0SErr NativePathNameToFSSpec(char *inName, FSSpec *outFile, Tong flags);

Data Conversion

DISCUSSION

CHAPTER 4

Windows Utility Functions

inName Contains a pointer to the native pathname.
outFile Contains a pointer to FSSpec.
flags Contains flags that control the conversion.

Given a C string pathname from the operating system, this routine updates the
FSSpec of outFile to describe the same file. There are no flags currently defined,
so you should pass 0. If the file does not currently exist, the error fnfErr is
returned, but the resulting rFsspec is still valid for creating the file.

QTMLGetCanonicalPathName

DISCUSSION

The QTMLGetCanonicalPathName routine takes a native file path and returns the
one canonical path to that file.

0SErr QTMLGetCanonicalPathName(char *inName, char *outName,
unsigned long outlen);

inName Specifies the input path.
outName Specifies where the routine puts the canonical path.
outlen Specifies the length of the outName buffer, so that the routine

knows not to write past the end of your buffer.

This routine takes a native file path and returns the one canonical path to that
file.

Some of the tasks performed by this routine include:

= removing all ".."s from the path

= converting all short (8.3) names back to their long name
= restoring the correct capitalization

For example, if you have a file with the following path

Data Conversion 53

CHAPTER 4

Windows Utility Functions

c:\Program Files\Some Product\test.mov

and the 8.3 path happens to be:

c:\PROGRA~1\SOMEPR~I\test.mov

you can pass any of the following paths to QTMLGetCanonicalPathName

c:\Some other folder\..\program FILES\another
program\..\somepr~1\TeSt.MoV

C:\proGra~1\Some product\..\SOMEPR~I\..\..\program files\some
product\test.mov

C:\PROGRA~1\SOMEPR~1\TEST.MOV
and it will always return

c:\Program Files\Some Product\test.mov

DISCUSSION

There is a one-to-one mapping between canonical pathnames and files. In other
words, you can determine if two paths point to the same file by canonicalizing
both paths, and then doing a string compatre.

This routine also works for universal naming convention (UNC) paths. These
paths are of the form:

\\my_server\shared_folder\another folder\test.mov

QTMLGetVolumeRootPath

The QTMLGetVolumeRootPath routine takes a Windows path and returns that
portion of it which points to the volume root.

0SErr QTMLGetVolumeRootPath(char *fullPath, char * volumeRootPath,
unsigned long volumeRootlen);

fullPath Specifies the path being passed in.

54 Data Conversion

DISCUSSION

CHAPTER 4

Windows Utility Functions

volumeRootPath
Specifies where this routine writes the volume root path.

volumeRootlLen
Specifies the length of the volumeRootPath buffer, so the routine
knows not to write past the end of your buffer.

This routine works in the following way. If you pass in

c:\some folder\test.mov

it will return c:\

and if you pass in
\\my_server\shared_folder\mystuff\test.mov
it will return

\\my_server\shared_folder\

This is useful when you need to call Windows routines, such as
GetVolumeInformation, which take a volume root path as an argument.

QTML Compatibility

The utility functions described in this section implement the QuickTime Media
Layer (QTML) and perform miscellaneous tasks to make Windows programs
compatible with QuickTime.

InitializeQTML

InitializeQTML initializes the QuickTime Media Layer.

0SErr InitializeQTML(Tong flags);

QTML Compatibility 55

CHAPTER 4

Windows Utility Functions

flags Option flags:

kInitializeQTMLNoSoundFlag
If this flag is set, the Sound Manager is not
initialized and therefore no sound APIs will be
supported during the session. Use this flag only
if no sound support is needed.

kInitializeQTMLUseGDIFTag
If this flag is set, neither Directdraw nor DCI
services will be used for onscreen graphics
support. When this flag is not set, QuickTime
will try to use DirectDraw and then DCI to
support direct-to-surface graphics support as
well as take advantage of any hardware
acceleration provided by these services. You
should normally not set this flag.

DISCUSSION
Use InitializeQTML to initialize a QTML session, before calling EnterMovies.
You should not make this call from a QuickTime component such as an image
decompressor; it is provided only for host applications.

TerminateQTML
TerminateQTML terminates the QuickTime Media Layer.
void TerminateQTML(void);

DISCUSSION

Use TerminateQTML to terminate a QTML session after calling £xitMovies. You
should not make this call from a QuickTime component, such as an image
decompressor; it is provided only for host applications.

56 QTML Compatibility

CHAPTER 4

Windows Utility Functions

QTMLCreateMutex

DISCUSSION

QTMLCreateMutex creates a synchronization object to facilitate mutually exclusive
access to a Windows data structure.

QTMLMutex QTMLCreateMutex(void);

function result A mutex object.

The QTMLCreateMutex function creates a mutex object for guarded access to data
structures and routines that require mutually exclusive access. In a
multithreaded preemptive environment, such as Windows NT, you can use the
various mutex utility functions such as QTMLGrabMutex to protect a shared
resource from simultaneous access by multiple threads or processes. Mutex
objects are used throughout QTML to provide such protection.

QTMLDestroyMutex

DISCUSSION

QTMLDestroyMutex deallocates a synchronization object created by the
QTMLCreateMutex function.

void QTMLDestroyMutex(QTMLMutex theMutex);

theMutex A mutex object.

Call the aTMLDestroyMutex function to deallocate the mutex object created by
QTMLCreateMutex.

QTML Compatibility 57

CHAPTER 4

Windows Utility Functions

QTMLGrabMutex

DISCUSSION

QTMLGrabMutex confers ownership of a mutex created by the QTMLCreateMutex
function.

void QTMLGrabMutex(QTMLMutex theMutex);

theMutex A mutex object.

Call the aTMLGrabMutex function when you require exclusive ownership of the
resource guarded by the mutex. This function will return when you have
gained this ownership. In the case where another thread or process holds the
mutex, this function waits until that process or thread relinquishes control. If
you need to determine if you can grab the mutex, without actually grabbing it,
call QTMLTryGrabMutex

QTMLTryGrabMutex

DISCUSSION

58

QTMLTryGrabMutex determines if you would be able to get immediate ownership
of a mutex created by QTMLCreateMutex.

Boolean QTMLTryGrabMutex (QTMLMutex theMutex);

theMutex A mutex object.

Call the aTMLTryGrabMutex function when you need to preflight a QTMLGrabMutex
call. It returns true if you are able to immediately grab the mutex, via the
QTMLGrabMutex call, without having to wait. Under normal circumstances, you
should not need to make this call.

QTML Compatibility

CHAPTER 4

Windows Utility Functions

QTMLReturnMutex

DISCUSSION

QTMLReturnMutex releases ownership of a QTMLMutex object.
void QTMLReturnMutex (QTMLMutex theMutex);

theMutex A mutex object.

Call the aTMLReturnMutex function to balance the call to aTMLGrabMutex when you
are ready to relinquish control of the mutex and corresponding shared resource.
By making this call you allow other processes or threads waiting for the release
of this mutex to gain access.

QTMLCreateSyncVar

DISCUSSION

QTMLCreateSyncVar creates a synchronization variable, used to provide guarded
access to resources shared across threads and processes.

QTMLSyncVarPtr QTMLCreateSyncVar(void);

function result A pointer to a synchronization variable.

Call the aTMLCreateSyncVar function to create a synchronization variable that
allows for mutually-exclusive access to resources. The synchronization variable
routines use atomic tests to ensure that the portions of the routines that perform
the testing cannot be interrupted during the test.

QTML Compatibility 59

CHAPTER 4

Windows Utility Functions

QTMLDestroySyncVar

QTMLDestroySyncVar releases ownership of a synchronization variable.
void QTMLDestroySyncVar(QTMLSyncVarPtr p);

p A pointer to a synchronization variable.

DISCUSSION
Call the aTMLDestroySyncVar function to deallocate the QTMLSyncVar object
created by QTMLCreateSyncVar.
QTMLTestAndSetSyncVar
QTMLTestAndSetSyncVar performs a one-shot atomic test and set operation of a
QTMLSyncVar object.
lTong QTMLTestAndSetSyncVar(QTMLSyncVarPtr p);
p A pointer to a synchronization variable.
function result 0 if successful.
DISCUSSION

Call the aTMLTestAndSetSyncVar function to perform a single test and set
operation on the aTMLSyncVar object. The function returns 0 if you have acquired
the lock.

QTMLWaitAndSetSyncVar

QTMLWaitAndSetSyncVar acquires the lock for a QTMLSyncVar object,

void QTMLWaitAndSetSyncVar(QTMLSyncVarPtr p);

60 QTML Compatibility

CHAPTER 4

Windows Utility Functions

p A pointer to a synchronization variable.

DISCUSSION
Call the aTMLWaitAndSetSyncVar function to acquire the lock corresponding to a
QTMLSyncVar object. This function will wait, yielding CPU time to other threads,
until the lock is acquired.

QTMLResetSyncVar
QTMLResetSyncVar reset the lock for a QTMLSyncVar object.
void QTMLResetSyncVar(QTMLSyncVarPtr p);
p A pointer to a synchronization variable.

DISCUSSION

Call the qTMLResetSyncVar function to relinquish the lock obtained from a
previous call to QTMLWaitAndSetSyncVar.

QTMLRegisterInterruptSafeThread

QTMLRegisterInterruptSafeThread registers a thread of execution that is allowed
to make interrupt-safe calls.

void QTMLRegisterInterruptSafeThread(unsigned long threadID, void *info);

threadID Thread ID of the calling thread. This value is obtained by calling
the Win32 GetCurrentThreadId function.

info Thread information. This value is obtained by calling the Win32
GetCurrentThread function.

QTML Compatibility 61

DISCUSSION

CHAPTER 4

Windows Utility Functions

The QTML function dispatcher includes a mechanism that prevents not only
the Toolbox from getting reentered but also allows certain APIs to be callable at
interrupt time. On the Macintosh, these calls are listed in Inside Macintosh, and
require that the calling code not allocate, move, or purge memory. On
Windows, threads that emulate interrupt handlers need to register with QTML,
by calling the QTMLRegisterInterruptSafeThread function, so that API calls made
from this thread are not blocked. You should make this call at the top of your
thread main routine.

QTMLUnregisterinterruptSafeThread

DISCUSSION

QTMLUnregisterInterruptSafeThread unregisters a thread of execution.
void QTMLUnregisterInterruptSafeThread(unsigned long threadID);

threadID Thread ID of the calling thread. This value is obtained by calling
the Win32 GetCurrentThreadId function.

Use the QTMLRegisterInterruptSafeThread function to unregister an interrupt
safe thread previously registered by the QTMLRegisterInterruptSafeThread
function. You should make this call at the bottom of your thread main routine,
just before the exit.

QTMLYieldCPU

62

QTMLYieldCPU yields time to other threads while your code is in a tight loop.

void QTMLYieldCPU(void);

QTML Compatibility

DISCUSSION

CHAPTER 4

Windows Utility Functions

Use the QTMLYie1dCcPU function from within tight loops to yield time to other
threads. Using this function is similar to calling SystemTask from within a
Macintosh event loop.

QTMLYieldCPUTime

DISCUSSION

QTMLYieldCPUTime yields time to other threads and specifies the sleep time while
in a tight loop.

void QTMLYieldCPUTime(long milliSecsToSleep, unsigned long flags);

milliSecsToSleep
Number of milliseconds to sleep before returning to the caller.

flags Option flags:

kQTMLHandlePortEvents
If this flag is set, QTML will call the Win32
functions PeekMessage, TranslateMessage, and
DispatchMessage to process Win32 messages
while in tight spin loops.

Use the QTMLYie1dCPUTime function from within tight loops to yield time to other
threads. This function differs from QTMLYie1dCPU in that you can specify the time
to sleep as well as optionally have QTML process Win32 messages while
waiting for the yield time to expire.

QTMLSetWindowWndProc

The QTMLSetWindowWndProc routine allows you to specify an application-defined
window procedure (WNDPROC) which is called by QTML after QTML processes
the message for the HWND.

void QTMLSetWindowWndProc(WindowPtr wPtr, void *windowProc);

QTML Compatibility 63

CHAPTER 4

Windows Utility Functions

wPtr Specifies the Macintosh window to hook. This must have been
created via NewCWindow, NewWindow, Or as a result of calling
CreatePortAssociation on a native HWND.

windowProc A Windows WNDPROC procedure. For a detailed description of the
WNDPROC procedure, check your Win32 documentation.

DISCUSSION

The QTMLSetWindowWndProc routine is useful if you want to perform some special
Windows processing of the native messages that Windows sends to your
WindowPtr.

QTMLGetWindowWndProc

The aTMLGetWindowWndProc routine returns the WNDPROC previously specified in
QTMLSetWindowWndProc. It returns NULL if no application-defined WNDPROC is set.

void *QTMLGetWindowWndProc(WindowPtr);
wPtr Specifies the Macintosh window to hook. This must have been

created via NewCWindow, NewWindow, Or as a result of calling
CreatePortAssociation on a native HWND.

64 QTML Compatibility

CHAPTER

Redefined APl Names

Some names defined in the Macintosh application programming interfaces
conflict with identical names in the Windows API. In these cases, the QTML
header file aTMLMapNames . h avoids these conflicts by redefining the affected
names with the prefix Mac added. In Table 5-1, names listed in the first column
refer to the original Macintosh function or data structure name; the second
column gives the redefined or newly mapped names.

Table 5-1

Redefined APl names

Original Macintosh API name

AnimatePalette
AppendMenu
CloseDriver
CloseWindow
CompareString
CopyRgn
DeleteMenu
DrawMenuBar
DrawText
EqualRect
EqualRgn
FillRect
FiTTRgn
FindWindow
FlushInstructionCache

FrameRect

Mapped name

MacAnimatePalette
MacAppendMenu
MacCloseDriver
MacCloseWindow
MacCompareString
MacCopyRgn
MacDeleteMenu
MacDrawMenuBar
MacDrawText
MacEqualRect
MacEqualRgn
MacFillRect
MacFiTTRgn
MacFindWindow
MacFlushInstructionCache

MacFrameRect

65

66

CHAPTER 5

Redefined API Names

Original Macintosh APl name
FrameRgn
GetClassInfo
GetCurrentThread
GetCursor
GetDoubleClickTime
GetFileSize
GetItem

GetMenu
GetNextWindow
GetParent
GetPath
GetPixel
InsertMenu
InsertMenultem
InsetRect
InvertRect
InvertRgn
[sWindowVisible
LineTo
LoadResource
MoveWindow
OffsetRect
0ffsetRgn
OpenDriver
PaintRgn
Polygon
PtInRect

Region
ReplaceText
ResizePalette

SendMessage

Mapped name

MacFrameRgn
MacGetClassInfo
MacGetCurrentThread

MacGetCursor

MacGetDoubleClickTime

MacGetFileSize
MacGetItem
MacGetMenu
MacGetNextWindow
MacGetParent
MacGetPath
MacGetPixel
MacInsertMenu
MacInsertMenultem
MacInsetRect
MaclInvertRect
MacInvertRgn
MacIsWindowVisible
MaclLineTo
MacloadResource
MacMoveWindow
MacOffsetRect
MacOffsetRgn
MacOpenDriver
MacPaintRgn
MacPolygon
MacPtInRect
MacRegion
MacReplaceText
MacResizePalette

MacSendMessage

CHAPTER 5

Redefined APl Names

Original Macintosh API nhame Mapped nhame
SetCursor MacSetCursor
Setltem MacSetItem
SetPort MacSetPort
SetRect MacSetRect
SetRectRgn MacSetRectRgn
ShowCursor MacShowCursor
ShowWindow MacShowWindow
StartSound MacStartSound
StopSound MacStopSound
TokenType MacTokenType
UnionRect MacUnionRect
UnionRgn MacUnionRgn

XorRgn MacXorRgn

CHAPTER 6

Conversion From Earlier
\Versions

Converting an existing Windows program from earlier versions of QuickTime
to QuickTime 3 is relatively simple, but there are a few changes that you should
be aware of. These include:

The calls for initializing and terminating the QuickTime Media Layer are
Now InitializeQTML and TerminateQTML instead of QTInitialize and
QTTerminate, and the meaning of the initialization routine’s parameter has
changed; see “Initializing and Terminating QTML and QuickTime”

(page 3-17) for more information. Note, however, that the initialization and
termination calls for QuickTime itself, EnterMovies and ExitMovies, remain
the same as before.

QuickTime calls now use the Mac OS data types Point and Rect to represent
points and rectangles, rather than the corresponding Windows types POINT
and RECT. This is because the QuickTime routines expect the coordinates to be
specified as 16-bit integers instead of 32 bits, as they are in Windows 95 and
Windows NT. For example, the QuickTime routine GetMovieBox iS now
defined as

void
GetMovieBox

(Movie theMovie,
Rect *boxRect)

instead of

void
GetMovieBox
(Movie mMovie,
LPRECT IprcMovieRect)

as in earlier versions.

QuickTime routines that formerly accepted a Windows window handle
(HWND) as a parameter now implicitly use the current QTML graphics port

69

CHAPTER 6

Conversion From Earlier Versions

instead, as discussed under “Graphics Ports” (page 3-20). For example, the
function NewMovieController now takes only three parameters

ComponentInstance
NewMovieController
(Movie theMovie,
const Rect “*movieRect,
Tong someFlags)

instead of four. To obtain the port corresponding to a window, you must first
register the window with QTML by calling CreatePortAssociation

(page 3-22), then use GetHWNDPort (page 3-23) to get the port pointer.
Remember to deregister the window with DestroyPortAssociation

(page 3-23) before destroying the window.

= The QuickTime call for driving a movie controller is now MCIsPlayerEvent
instead of MCIsPlayerMessage; see “Movie Controllers” (page 3-35) for details.

= As discussed under “File Selection Dialogs” (page 3-30), the QuickTime
function OpenMovieFile now accepts a Mac OS file-system specification
record (FSSpec) identifying the file to be opened, instead of a string
containing the file name.

= QuickTime routines that operate on movie files, such as NewMovieFromFile,
now use a Mac OS-style file reference number to identify the file instead of a
Windowvs file reference.

= The QuickTime call DereferenceHandle is no longer necessary with
QuickTime 3.

CHAPTER 7

Example Program

Listing 7-1 shows a simple but complete application program illustrating the
use of QuickTime on the Windows platform. The program uses the Windows
single document interface (SDI) to present a movie on the screen, allowing the
user to control its display by manipulating a standard movie controller with the
mouse. The program also supports basic operations such as file saving and
simple cut-and-paste editing. The code shown here is adapted from one of the
sample programs provided as part of the QuickTime 3 Software Development
Kit for Windows.

Listing 7-1 Simple movie player

N NN
//

// SimplekEditSDI

// Written by Keith Gurganus

//

// A single-document-interface (SDI) application that plays a movie with QuickTime.

// This program is part of the QuickTime sample source code and is provided as is.

//

// Copyright:© 1997 by Apple Computer, Inc., all rights reserved.

//

N NN

fHinclude <stdlib.h>
finclude <malloc.h>
f#include <memory.h>
finclude <windows.h>
#include "QTML.h"

1
1
1
1
1
f#include "Movies.h"

71

CHAPTER 7

Example Program

/ Resource identifiers

fidefine
fidefine
fidefine
fidefine
fidefine
fidefine
fidefine

fidefine
fidefine
fidefine
fidefine
fidefine
fidefine

fidefine
fidefine
fidefine
fidefine
fidefine

Jfdefine

fidefine
fidefine
fidefine
fidefine
fidefine
fidefine
fidefine
fidefine
fidefine

fidefine
fidefine
fidefine
fidefine
fidefine
fidefine

72

IDM_NEW
IDM_OPEN
IDM_SAVE
[DM_SAVEAS
[DM_PRINT
IDM_PRINTSETUP
IDM_EXIT

IDM_UNDO
IDM_CUT
IDM_COPY
[DM_PASTE
IDM_LINK
IDM_LINKS

[DM_HELPCONTENTS
IDM_HELPSEARCH
[DM_HELPHELP
IDM_ABOUT
IDM_HELPTOPICS

I[DC_STATIC

DLG_VERFIRST

IDC_COMPANY
IDC_FILEDESC
IDC_PRODVER
IDC_COPYRIGHT
IDC_OSVERSION
IDC_TRADEMARK

DLG_VERLAST

IDC_LABEL

I[DR_ACCELSIMPLESDI

I[DR_SIMPLESDI
IDR_SMALL
IDR_WIN95
IDD_ABOUTBOX
IDI_BIG

100
101
102
103
104
105
106

200
201
202
203
204
205

300
301
302
303
304

-1

400
DLG_VERFIRST
DLG_VERFIRST+1
DLG_VERFIRST+2
DLG_VERFIRST+3
DLG_VERFIRST+4
DLG_VERFIRST+5
DLG_VERFIRST+5
DLG_VERLAST+1

128
128
129
131
132
139

fidefine

CHAPTER 7

Example Program

APPNAME "Simplekd

itSDI!

// Macros to determine appropriate code paths

#if defined (WIN32)
ffdefine IS_WIN32 TRUE

ffelse

ftdefine IS_WIN32 FALSE

ffendif

fidefine
fidefine
fidefine

IS_NT IS_WIN3Z2 && (BOOL)(GetVersion() < 0x80000000)
IS_WIN32S IS_WIN3Z2 && (BOOL)(!(IS_NT) && (LOBYTE(LOWORD(GetVersion()))<4))

IS_WIN9S (BOOL)(

// Data type

typedef struct

// Globa

{
char
Movie
MovieController
Boolean
HWND

} MovieStuff;

1 variables

HINSTANCE hinst;

char
char

szAppName[]
szTitlel]

MovieStuff gMovieStuff;

// Funct

BOOL

ion prototypes

InitApplication

POISCNT) && P(IS_WIN32S)) && IS_WIN32

filename[2557;

theMovie;
theMC;
movieOpened;
theHwnd;
// Current instance
= APPNAME; // Name of this application
= APPNAME; // Title bar text

// Movie structure

(HINSTANCE hinstance);

73

74

CHAPTER 7

Example Program

ATOM
MyRegisterClass
(CONST WNDCLASS *Tpwc);

BOOL
InitInstance
(HINSTANCE hInstance,
int nCmdShow) ;

LRESULT CALLBACK

WndProc
(HWND hWnd,
UINT message,

WPARAM wParam,
LPARAM 1Param);

LRESULT CALLBACK
About
(HWND hDlg,
UINT message,
WPARAM wParam,
LPARAM 1Param);

BOOL
GetFile
(char *fileName);

static UINT APTENTRY
GenericHook
(HWND hWnd,
UINT uMsg,
WPARAM wParam,
LPARAM 1Param);

BOOL
OpenMovie
(HWND hwnd,

MovieStuff *movieStuff);

CHAPTER 7

Example Program

void
CreateNewMovieController
(HWND hwnd,
Movie theMovie,
MovieController *theMC);
Boolean
MCFilter
(MovieController mc,
short action,
void *params,
long refCon);
void
GetMaxBounds
(Rect *maxRect);
void
SetWindowTitle
(HWND hWnd,
unsigned char *theFullPath);
void

GetFileNameFromFullPath
(unsigned char *theFullPath,
unsigned char *fileName);

void
CloseMovie
(MovieStuff *movieStuff);
OSErr
SaveMovie
(MovieStuff *movieStuff);
OSErr

SaveAsMovie
(MovieStuff *movieStuff);

75

76

CHAPTER 7

Example Program

ComponentResult
EditUndo
(MovieController

ComponentResult
EditCut
(MovieController

ComponentResult
EditCopy
(MovieController

ComponentResult
EditPaste
(MovieController

ComponentResult
EditClear
(MovieController

ComponentResult
EditSelectAll
(Movie
MovieController

void
UpdateMenus

mc);

mc);

mc);

mc);

mc);

movie,
mc);

(MovieStuff movieStuff);

CHAPTER 7

Example Program

NN
//

// WinMain

//

N NN

int CALLBACK
WinMain
(HINSTANCE hInstance,
HINSTANCE hPrevInstance,

LPSTR ITpCmdLine,
int nCmdShow)
{
MSG msg;

HANDLE hAccelTable;
if (!hPrevInstance)
// Perform instance initialization.
if (!InitApplication(hInstance))

return FALSE;

// Initialize QuickTime Media Layer.
InitializeQTML(0);

// Initialize QuickTime.
EnterMovies();

// Perform application initialization.
if (!InitInstance(hInstance, nCmdShow))
return FALSE;
// Load accelerator table.
hAccelTable = LoadAccelerators (hlInstance,
MAKEINTRESOURCE(IDR_ACCELSIMPLESDI));

// Main message loop:

while (GetMessage(&msg, NULL, 0, 0))
if (!TranslateAccelerator(msg.hwnd, hAccelTable, &msg))

77

CHAPTER 7

Example Program

TranslateMessage(&msg);
DispatchMessage(&msg);

}o/* end if */

// Terminate QuickTime.
ExitMovies();

// Terminate QuickTime Media Layer.
TerminateQTML();

return msg.wParam;

// The following line is included to prevent
// ‘'unused formal parameter' warnings.
TpCmdLine;

} o /* end WinMain */

N NNy
//

// InitApplication

//

N N NNy

BOOL
InitApplication
(HINSTANCE hInstance)

WNDCLASS wc;
HWND hwnd;

// Win32 will always set hPrevInstance to NULL. We only want a single version
// of this app to run at a time, so let’s check things a little closer.
hwnd = FindWindow (szAppName, NULL);
if (hwnd)
// We found another instance of ourself. Let’s defer to it:

78

CHAPTER

7

Example Program

i

f (IsIconic(hwnd))
ShowWindow(hwnd, SW_RESTORE);

SetForegroundWindow (hwnd);
return FALSE;

}/* end if (hwnd) */

// Fill in window class structure with parameters that describe
// the main window.

wc.style

wc.IpfnWndProc =

wc.cbClsExtra
wc.cbWndExtra
wc.hInstance
wc.hlIcon
wc.hCursor

wc.hbrBackground =

wc.lpszMenuNa
wc.lpszClassN

me =
ame =

// Register the window

if (IS_WIN9S)

CS_HREDRAW | CS_VREDRAW;

(WNDPROC)WndProc;

0;

0;

hInstance;

LoadIcon (hInstance, MAKEINTRESOURCE(IDI_BIG));
LoadCursor (NULL, IDC_ARROW);

(HBRUSH) (COLOR_WINDOW + 1);
MAKEINTRESOURCE(IDR_SIMPLESDI);

szAppName;

class and return success/failure code.

return MyRegisterClass(&wc);

else

return RegisterClass(&wc);

}/* end InitApplication */

N NNy,

/7
/7
/7

MyRegisterClass

NNy,

ATOM

MyRegisterClass
(CONST WNDCLASS

*Tpwc)

79

CHAPTER 7

Example Program

HANDLE hMod ;
FARPROC proc;
WNDCLASSEX wcex;

hMod = GetModuleHandle ("USER32");
if (hMod != NULL)
{
#if defined (UNICODE)
proc = GetProcAddress (hMod, "RegisterClassExW");
ffelse
proc = GetProcAddress (hMod, "RegisterClassExA");

frendif
if (proc != NULL)
{
// Copy elements from WNDCLASS structure.

wcex.style = lpwc->style;

wcex. IpfnWndProc = lpwc->TpfnWndProc;
wcex.cbClsExtra = lpwc->cbClsExtra;
wcex.cbWndExtra = lpwc->cbWndExtra;
wcex.hInstance = lpwc->hInstance;
wcex.hlcon = lpwc->hIcon;
wcex.hCursor = lpwc->hCursor;
wcex.hbrBackground = lpwc->hbrBackground;
wcex.IpszMenuName = lpwc->1pszMenuName;

wcex.IpszClassName = lpwc->1pszClassName;

// Add extra elements for Windows 95.
wcex.cbSize sizeof (WNDCLASSEX) ;
wcex.hIconSm = LoadIcon(wcex.hInstance,
MAKETINTRESOURCE(IDR_SMALL));

// Return RegisterClassEx(&wcex).
return (*proc)(&wcex);

}/* end if (proc != NULL) */

b /* end if (hMod != NULL) */

return RegisterClass(Ipwc);
}/* end MyRegisterClass */

80

CHAPTER 7

Example Program

NNy,

/7
/7
/7

InitInstance

NNy,

BOOL

InitInstance

}

(HINSTANCE hinstance,

int nCmdShow)

HWND hind;

// Store instance handle in our global variable.

hinst = hlnstance;

// Create our window.

hWnd = CreateWindow(szAppName,

if (IhWnd)
return FALSE;

ShowWindow (hWnd,

UpdateWindow (hWnd);

return TRUE;

/* end InitlInstance */

szTitle,
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, O,
CW_USEDEFAULT, O,
NULL,

NULL,

hInstance,

NULL) ;

nCmdShow) ;

N NNy,

/7
/7

WndProc

81

CHAPTER 7

Example Program

//
NNy,

LRESULT CALLBACK

WndProc
(HWND hWnd,
UINT message,

WPARAM wParam,
LPARAM 1Param)

int wmld, wmEvent;
PAINTSTRUCT ps;
HDC hdc;

if (Hwnd2Wptr(hWnd))
{

MSG msg;

EventRecord mackvent;

LONG thePoints = GetMessagePos();
msg.hwnd = hWnd;

msg.message = message;

msg.wParam = wParam;

msg.1Param TParam;

msg.time = GetMessageTime();

msg.pt.x
msg.pt.y

LOWORD(thePoints);
HIWORD(thePoints);

// Convert the message to a QTML event.
NativeEventToMacEvent (&msg, &macEvent);

// 1f we have a movie controller, pass the QTML event.
if (gMovieStuff.theMC)
MCIsPlayerEvent (gMovieStuff.theMC,

(const EventRecord *) &macEvent);

}o/* end if (Hwnd2Wptr(hWnd)) */

82

CHAPTER 7

Example Program

switch (message)
{
case WM_CREATE:
memset (&gMovieStuff, 0, sizeof(MovieStuff));

// Register this HWND with QTML.

CreatePortAssociationEx (hWnd, NULL, kQTMLHandlePortEvents);
gMovieStuff.theHwnd = hWnd;
break;

case WM_INITMENU:
UpdateMenus (gMovieStuff);
break;

case WM_COMMAND:
wmld LOWORD(wParam) ;
wmEvent HIWORD(wParam);

//Parse the menu selections.
switch (wmId)
{
case IDM_ABOUT:

DialogBox (hInst,
MAKETINTRESOURCE(IDD_ABQUTBOX),
hind,

(DLGPROC)About);
break;

case IDM_EXIT:
CloseMovie (&gMovieStuff);
DestroyPortAssociationEx
((CGrafPtr)Hwnd2Wptr(hWnd),
kQTMLHandlePortEvents);
DestroyWindow (hWnd);
break;

case IDM_OPEN:

// Close any open movie.
CloseMovie (&gMovieStuff);

83

84

CHAPTER 7

Example Program

// Open a movie file.
if (GetFile (gMovieStuff.filename))
{
// Open the movie and size the window.
OpenMovie (hWnd, &gMovieStuff);

// Update the menus.
UpdateMenus (gMovieStuff);

} o /* end if */
break;

case IDM_SAVE:
SaveMovie (&gMovieStuff);
UpdateMenus (gMovieStuff);
break;

case IDM_SAVEAS:
SaveAsMovie (&gMovieStuff);
UpdateMenus (gMovieStuff);
break;

case IDM_UNDO:
EditUndo (gMovieStuff.theMC);
break;

case IDM_CUT:
EditCut (gMovieStuff.theMC);
break;

case IDM_COPY:
EditCopy (gMovieStuff.theMC);
break;

case IDM_PASTE:
EditPaste (gMovieStuff.theMC);
break;

case IDM_CLEAR:
EditClear (gMovieStuff.theMC);
break;

CHAPTER 7

Example Program

case IDM_SELECTALL:
EditSelectAll (gMovieStuff.theMovie,
gMovieStuff.theMC);
break;

default:
return DefWindowProc (hWnd, message,
wParam, TParam);

}/* end switch (wmId) */
break;

case WM_PAINT:
hdc = BeginPaint (hWnd, &ps);
// Add any additional drawing code here...
EndPaint (hWnd, &ps);
break;

case WM_CLOSE:

// Unregister the HWND with QTML.
DestroyPortAssociation((CGrafPtr)Hwnd2Wptr(hWnd));
break;

case WM_DESTROY:
PostQuitMessage (0);

break;

default:
return DefWindowProc (hWnd, message, wParam, 1Param);

} /* end switch (message) */
return 0;

} /* end WndProc */

CHAPTER 7

Example Program

[110700177070 077700777077 7007707777770707770777777177770777777177777711777111777711177117
//

// About

//
[110700177070077700077077700770707777717077707777771777707777771777777717777171777711177117

LRESULT CALLBACK
About
(HWND hDlg,
UINT message,
WPARAM wParam,
LPARAM 1Param)

switch (message)
{
case WM_COMMAND:
if (LOWORD(wParam) == IDOK || LOWORD(wParam) == IDCANCEL)
{
EndDialog (hDlg, TRUE);
return TRUE;

}oo/* end if */
break;
}/* end switch (message) */
return FALSE;
} o /* end About */
JI000710007 0000700000700 00700 il i iy
//
// GetFile
//
J1000711 0007000070000 700770700l
BOOL

GetFile
(char *fileName)

86

CHAPTER 7

Example Program

OPENFILENAME ofn;

memset (&ofn, 0, sizeof (OPENFILENAME));
fileName[0] = "\0"';

ofn.1StructSize = sizeof (OPENFILENAME) ;

ofn.hwndOwner = GetActiveWindow();

ofn.lpstrFile = (LPSTR)fileName;

ofn.nMaxFile = 255;

ofn.TpstrFilter = "QuickTime Movies (*.mov;*.avi)\O*.mov;*.avi\0All Files
(. F)N0*.*\0";

ofn.nFilterIndex =1;

ofn.lpstrinitialDir = NULL;

if (USEEXPLORERSTYLE)

ofn.Flags |= OFN_ENABLEHOOK | OFN_EXPLORER;
else

ofn.Flags |= OFN_ENABLEHOOK;

ofn.1pfnHook = GenericHook;

if (GetOpenFileName(&ofn))
return TRUE;

else
return FALSE;

}/* end GetFile */

NNy N
//

// GenericHook

//
NNy

static UINT APIENTRY
GenericHook
(HWND hWnd,
UINT uMsg,
WPARAM wParam,
LPARAM 1Param)

87

CHAPTER 7

Example Program

switch (uMsg)
{
case WM_INITDIALOG:
// Center window
{
Point ptTopLeft;
RECT rcWindow;
BOOL retValue;
HWND theWnd = hWnd;
RECT rcDesktopWindow;
Tong width;
long height;

// 1f we are using Windows 95 or NT 4.0,
// use the new Explorer style.
if (USEEXPLORERSTYLE)
theWnd = GetParent(hWnd);

GetWindowRect (theWnd, &rcWindow);
width = rcWindow.right - rcWindow.left;
height = rcWindow.bottom - rcWindow.top;

GetWindowRect (GetDesktopWindow(), &rcDesktopWindow);
ptToplLeft.h = (short)((rcDesktopWindow.right
+ rcDesktopWindow.left) / 2
- width / 2);
ptTopLeft.v = (short)((rcDesktopWindow.top
+ rcDesktopWindow.bottom) / 3
- height / 3);

retValue = SetWindowPos (thelnd,
0,
ptTopLeft.h,
ptTopLeft.v,
0,
0,
SWP_NOZORDER | SWP_NOSIZE);

return TRUE;

CHAPTER 7

Example Program

} /* end case WM_INITDIALOG */
} /* end switch (uMsg) */
return 0;

}/* end GenericHook */

NN
//

// OpenMovie

//
NN

BOOL
OpenMovie
(HWND hwnd,
MovieStuff *movieStuff)

BOOL isMovieGood = FALSE;

if (strlen((char*)movieStuff->filename) !=10)
{
OSErr err;
short theFile = 0;
long controllerFlags = 0OL;
FSSpec sfFile;
short movieResFile;
char theFullPath[255];

// Make a copy of our full pathname.
strcpy (theFullPath, movieStuff->filename);

// Convert to a Pascal string.
c2pstr((char*)theFullPath);

// Make an FSSpec.
FSMakeFSSpec (0, 0L, theFullPath, &sfFile);

89

90

CHAPTER 7

Example Program

// Set the port.
SetGWorld ((CGrafPtr)Hwnd2Wptr((void *)hwnd), nil);

// Open the movie file.
err = OpenMovieFile (&sfFile, &movieResFile, fsRdPerm);
if (err == noktrr)
{
// Get the movie from the file.
err = NewMovieFromFile (&movieStuff->theMovie,

movieResFile,
nit,
nit,
newMovieActive,
nil);

// Close the movie file.
CloseMovieFile (movieResFile);
if (err == noktrr)
{
// Create a movie controller.
CreateNewMovieController (hwnd,

movieStuff->theMovie,
&movieStuff->theMC);

// Set flags.
movieStuff->movieOpened = TRUE;
isMovieGood = TRUE;

// Convert pathname back to a C string.
pZ2cstr ((char*)theFullPath);

// Set window title.
SetWindowTitle (movieStuff->theHwnd,
theFullPath);

} /* end if (err == nokrr) */

else
theFullPath[0] = "\0";

} /* end if (err == nokrr) */

CHAPTER 7

Example Program

else
theFulTPath[0] = "\0";

} o /* end if (strlen((char*)movieStuff->filename) !=0) */
return isMovieGood;
}/* end OpenMovie */
N NN NNy
//
// CreateNewMovieController

/7
NNy,

void
CreateNewMovieController
(HWND hwnd,
Movie theMovie,

MovieController *theMC)

Rect bounds;

Rect maxBounds ;

long controllerFlags;
Rect theMovieRect;

// 0,0 movie coordinates.
GetMovieBox (theMovie, &theMovieRect);
MacOffsetRect (&theMovieRect, -theMovieRect.left, -theMovieRect.top);

// Attach a movie controller.
*theMC = NewMovieController (theMovie, &theMovieRect, mcToplLeftMovie);

// Get the controller rect.
MCGetControllerBoundsRect (*theMC, &bounds);

// Enable editing.
MCEnableEditing (*theMC, TRUE);

91

CHAPTER 7

Example Program

// Tell the controller to attach a movie's CLUT to the window as appropriate.
MCDoAction (*theMC, mcActionGetFlags, &controllerFlags);
MCDoAction (*theMC, mcActionSetFlags,
(void *)(controllerFlags | mcFlagsUseWindowPalette));

// Allow the controller to accept keyboard events.
MCDoAction (*theMC, mcActionSetKeysEnabled, (void *)TRUE);

// Set the controller action filter.
MCSetActionFilterWithRefCon (*theMC, MCFilter, (long)hwnd);

// Set the grow box amount.
GetMaxBounds (&maxBounds);
MCDoAction (*theMC, mcActionSetGrowBoxBounds, &maxBounds);

// Size our window.

SizeWindow ((WindowPtr)Hwnd2Wptr(hwnd),
bounds.right,
bounds.bottom,

FALSE);

} /* end CreateNewMovieController */

[111107 1071007170007 0 0007170707770 0777707777770 70777007777777077777110717771177177711
//

// MCFilter

//

[111107 1071007170007 0 0007170707770 0777707777770 70777007777777077777110717771177177711

Boolean
MCFilter
(MovieController mc,
short action,
void *params,
Tong refCon)

92

CHAPTER 7

Example Program

if (action == mcActionControllerSizeChanged)
{
Rect bounds;
WindowPtr W;

MCGetControllerBoundsRect (mc, &bounds);
w = Hwnd2Wptr((HWND)refCon);
SizeWindow ((WindowPtr)w, bounds.right, bounds.bottom, TRUE);

}/* end if (action == mcActionControllerSizeChanged) */
return FALSE;

}/* end MCFilter */
[T r i rrrrr
//

// GetMaxBounds

//

[T r i
void

GetMaxBounds

(Rect *maxRect)

RECT deskRect;

GetWindowRect (GetDesktopWindow(), &deskRect);
OffsetRect (&deskRect, -deskRect.left, -deskRect.top);

maxRect->top = (short)deskRect.top;
maxRect->bottom = (short)deskRect.bottom;
(
(

maxRect->Teft short)deskRect.left;
maxRect->right = (short)deskRect.right;

}/* end GetMaxBounds */

93

CHAPTER 7

Example Program

[1111071771 0071000071700 0700770077007 0 7177000 71777007177700777771177177717
//

// SetWindowTitle

//

[1111071771 0071000071700 0700770077007 0 7177000 71777007177700777771177177717

void
SetWindowTitle
(HWND hWnd,
unsigned char *theFullPath)

unsigned char titleName[2567;
titleName[0] = "\O";

GetFileNameFromFullPath (theFullPath, (unsigned char *)&titleName);
SetWindowText (hWnd, (const char *)titleName);

b /* end SetWindowTitle */

[111107 1001007100000 0 0770077700770 0077700 717700071777007177711077777117717771717
//

// GetFileNameFromFullPath

//

[171107 1070071700071 0 0070077007770 0777007177000 717777071777170717771177177711

void
GetFileNameFromFullPath
(unsigned char *theFullPath,
unsigned char *fileName)

int i = 0;
int J = -1;
int stringlen = 0;

stringlen = strlen((char *)theFullPath);
if (stringlen > 0)
{
while (i < stringlen)

94

CHAPTER 7

Example Program

if (theFullPath[i] == Ox5c || theFullPath[i] == '/')
J=1;
P+

s

} /* end while (i < stringlLen) */

if Cj>-1)

strcpy ((char *)fileName, (char *)&theFullPath[j+1]);
else

strcpy ((char *)fileName, (char *)theFullPath);

} /* end if (stringlen > 0) */

} /* end GetFileNameFromFullPath */

NN
//

// CloseMovie

//

N N NN

void
CloseMovie
(MovieStuff “*movieStuff)

if (movieStuff->movieOpened)
{
movieStuff->movieOpened = FALSE;

if (movieStuff->theMC)
DisposeMovieController (movieStuff->theMC);

if (movieStuff->theMovie)
DisposeMovie (movieStuff->theMovie);

movieStuff->theMovie = NULL;
movieStuff->theMC = NULL;

95

CHAPTER 7

Example Program

}/* end if (movieStuff->movieOpened) */

}/* end CloseMovie */

[111107 1777007100007 1700070077007 0 77007177000 71777007177700777771177177717
//

// SaveMovie

//

[111007 1771007170007 1707007007700 077007077700 71777 00 7177777071777110717771177177711

void
SaveMovie
(MovieStuff *movieStuff)

OSErr theErr = nokrr;

if (strlen(movieStuff->fileName) != 0)
{
Tong movieFlattenFlags = flattenAddMovieToDataFork;
FSSpec sfFile;
0SType creator = 0STypeConst('TVOD");
Tong createMovieFlags = createMovieFileDeleteCurFile;
char theFullPath[255];

// Make a copy of our full pathname.
strcpy (theFullPath, movieStuff->fileName);

// Convert to a Pascal string.
cZpstr((char*)theFullPath);

// Make an FSSpec.
FSMakeFSSpec (0, 0L, theFullPath, &sfFile);

// Try to delete the original movie file.
DeleteMovieFile (&sfFile);

96

CHAPTER 7

Example Program

// Flatten into a single fork.
FlattenMovie (movieStuff -> theMovie,
movieFlattenFlags,
&sfFile,
creator,
,1’
createMovieFlags,
nit,
NULL);

// Check for error.
theErr = GetMoviesError ();

) /* end if (strlen(movieStuff->fileName) != 0) */
return thekrr;

} /* end SaveMovie */

N N NN
//

// SaveAsMovie

//

N N NN

void
SaveAsMovie
(MovieStuff “*movieStuff)

unsigned char TpszPathName[2567;
OPENFILENAME ofn;
O0SErr theErr = nokrr;

memset (&ofn, 0, sizeof (OPENFILENAME));
IpszPathName[0] = "\0"';

ofn.1StructSize = sizeof (OPENFILENAME);
ofn.hwndOwner GetActiveWindow();
ofn.lpstrFile (LPSTR)1pszPathName;

97

CHAPTER 7

Example Program

ofn.nMaxFile = sizeof(lpszPathName);

ofn.lpstrFilter = "QuickTime Movies (*.mov) \0 *.mov\0";
ofn.lpstrFileTitle = NULL;

ofn.nMaxFileTitle = (unsigned long)NULL;
ofn.lpstrinitialDir = NULL;

ofn.Flags = OFN_OVERWRITEPROMPT;

if (GetSaveFileName (&ofn))

{

98

Tong movieFlattenFlags = flattenAddMovieToDataFork;
FSSpec sfFile;

0SType creator = 0STypeConst('TVOD");

Tong createMovieFlags = createMovieFileDeleteCurFile;

// Convert pathname to a Pascal string.
cZ2pstr((char*)IpszPathName);

// Make an FSSpec.
FSMakeFSSpec (0, 0L, TpszPathName, &sfFile);

// Try to delete the original movie file.
DeleteMovieFile (&sfFile);

// Flatten into a single fork.
FlattenMovie (movieStuff -> theMovie,
movieFlattenFlags,
&sfFile,
creator,
,1’
createMovieFlags,
nit,
NULL);

// Check for error.
theErr = GetMoviesError ();

// Convert pathname back to a C string.
pZ2cstr((char*)lpszPathName);

// Set window title.
SetWindowTitle (movieStuff->theHwnd, TpszPathName);

CHAPTER 7

Example Program

} /* end if (GetSaveFileName (&ofn)) */
return thekrr;

}/* end SaveAsMovie */

N N NN
//

// EditUndo

//
NN

ComponentResult
EditUndo
(MovieController mc)

ComponentResult theErr = invalidMovie;

if (mc)
theErr = MCUndo (mc);

return thekrr;

}/* end EditUndo */

NNy,
/7

// EditCut

/7
NNy,

ComponentResult

EditCut
(MovieController mc)

99

CHAPTER 7

Example Program

Movie scrapMovie;
ComponentResult theErr = invalidMovie;

if (. mc)
{
scrapMovie = MCCut (mc);
if (scrapMovie)
{
thekrr = PutMovieOnScrap (scrapMovie, 0L);
DisposeMovie (scrapMovie);

} /* end if (scrapMovie) */
} /% end if (. mc) */
return thekrr;

b /* end EditCut */

NNy,
//

// EditCopy
//

NNy,

ComponentResult
EditCopy
(MovieController mc)

Movie scrapMovie;
ComponentResult theErr = invalidMovie;

if (. mc)
{
scrapMovie = MCCopy (mc);
if (scrapMovie)
{
thekrr = PutMovieOnScrap (scrapMovie, 0L);

100

CHAPTER 7

Example Program

DisposeMovie (scrapMovie);
} /* end if (scrapMovie) */
} /% end if (mc) */
return thekrr;

}/* end EditCopy */

NN
//

// EditPaste

//
NN

ComponentResult
EditPaste
(MovieController mc)

ComponentResult theErr = invalidMovie;

if (mc)
theErr = MCPaste (mc, nil);

return thekrr;

} /* end EditPaste */

N NNy
//

// EditClear

//
NN

ComponentResult

EditClear
(MovieController mc)

101

CHAPTER 7

Example Program

ComponentResult theErr = invalidMovie;

if (mc)
theErr = MCClear (mc);

return thekrr;

} /* end EditClear */

[171007 1777007100007 0 0771007077007 7707177770 77777007177777077777110717771177177711
//

// EditSelectAll

//

[171007 1777007100007 0 0771007077007 7707177770 77777007177777077777110717771177177711

ComponentResult
EditSelectAll
(Movie movie,
MovieController mc)

TimeRecord tr;
ComponentResult thekrr = nokrr;

if (movie && mc)
{
tr.value.hi = 0;
tr.value.lo = 0;
tr.base = 0;
tr.scale = GetMovieTimeScale(movie);
MCDoAction (mc, mcActionSetSelectionBegin, &tr);

tr.value.lo = GetMovieDuration(movie);
MCDoAction (mc, mcActionSetSelectionDuration, &tr);

}/* end if (movie && mc) */
else

102

CHAPTER 7

Example Program

if (movie == NULL)
thekrr = invalidMovie;
else
thekrr = -1;

} /% end else */
return thekrr;

} /* end EditSelectAll */
NN NN NN NNy
//

// UpdateMenus

//
NN NN NNy
void

UpdateMenus
(MovieStuff movieStuff)

HMENU hMenu = GetMenu(movieStuff.theHwnd);

if (!hMenu)
return;

if (movieStuff.movieOpened)
{

EnableMenultem (hMenu, IDM_SAVE, MF_ENABLED) ;
EnableMenultem (hMenu, IDM_SAVEAS, MF_ENABLED) ;
EnableMenultem (hMenu, IDM_UNDO, MF_ENABLED);
EnableMenultem (hMenu, IDM_CUT, MF_ENABLED) ;
EnableMenultem (hMenu, IDM_COPY, MF_ENABLED) ;
EnableMenultem (hMenu, IDM_PASTE, MF_ENABLED) ;
EnableMenultem (hMenu, IDM_CLEAR, MF_ENABLED) ;
(

EnableMenultem (hMenu, IDM_SELECTALL, MF_ENABLED);

}/* end if (movieStuff.movieOpened) */

103

CHAPTER 7

Example Program

else

{
EnableMenultem (hMenu, IDM_SAVE, MF_GRAYED) ;
EnableMenultem (hMenu, IDM_SAVEAS, MF_GRAYED) ;
EnableMenultem (hMenu, IDM_UNDO, MF_GRAYED) ;
EnableMenultem (hMenu, IDM_CUT, MF_GRAYED) ;
EnableMenultem (hMenu, IDM_COPY, MF_GRAYED) ;
EnableMenultem (hMenu, IDM_PASTE, MF_GRAYED) ;
EnableMenultem (hMenu, IDM_CLEAR, MF_GRAYED) ;

EnableMenultem (hMenu, IDM_SELECTALL, MF_GRAYED);

}/* end else */

} /* end UpdateMenus */

104

Index

A

access permission 33

B

bitmaps 26

C

c2pstr function 31
CGrafPort data type 8, 20, 22
CGrafPtr data type 20, 22, 25,
28
CloseMovieFile function 33
Common Dialog Box Library 8,
30
ComponentResult data type 37
components, QuickTime 9
constants
fsRdPerm 33
fsRdWrPerm 33
fsWrPerm 33
k16BE5S55PixelFormat 27
k16LE555PixelFormat 27
k16LE565PixelFormat 27
klIndexedGrayPixelFormat
27
k1MonochromePixelFormat 2
7
k24BGRPixelFormat 27
k24RGBPixelFormat 27
k2IndexedGrayPixelFormat
27
k2IndexedPixelFormat 27

k32ABGRPixelFormat 27
k32ARGBPixelFormat 27
k32BGRAPixelFormat 27
k32RGBAPixelFormat 27
k4IndexedGrayPixelFormat
27
k4IndexedPixelFormat 27
k8IndexedGrayPixelFormat
27
k8IndexedPixelFormat 27
kInitQTMLNoSoundFlag 17
kInitQTMLUseDefault 17,18
kInitQTMLUseGDIFlag 17
MovieFileType 32
newMovieActive 33
noNewDevice 26
conversion from QuickTime 2.1.2
to QuickTime 3.0 69 to 70
CopyBits function 27
CreateDIBSection function 27
CreateFile function 30
CreatePortAssociation
function 11, 22, 70
CreatePortAssociation
function 41
creator signature 38
current device 28
current port 21, 22, 26, 28, 69
saving and restoring 28
CWindowPtr datatype 8, 22
CWindowRecord data type 21

D

data fork 38
data types
CGrafPort 8,20, 22

CGrafPtr 20, 22, 25, 28
ComponentResult 37
CWindowPtr 8,22
CWindowRecord 21
DC (Windows) 8
EventRecord 8, 36
FSSpec 30, 70
GrafPort 20
GrafPtr 20
GWorldPtr 25,28
HWND (Windows) 8, 22, 69
Movie 33
MovieRecord 33
MSG (Windows) 8, 35, 36
OPENFILENAME (Windows) 30
Point 69
POINT (Windows) 69
Rect 69
RECT (Windows) 69
DC data type 8
DestroyPortAssociation
function 11, 23, 70
DestroyPortAssociation
function 42
device contexts 7, 8, 20, 27
device-independent bitmaps
(DIBs) 27
DIBs. See device-independent
bitmaps
directory ID 31
DisposeMovieController
function 11
DisposeMovie function 11
DLLs (dynamic link libraries) 7
dynamic link libraries (DLLs) 7

105

I NDEX

E DestroyPortAssociation 11, MacGetPixel 66
23,70 MacInsertMenu 66
EnterMovies function 11, 17, 18, DisposeMovie 11 MacInsertMenultem 66
69 DisposeMovieController 11 MacInsetRect 66
event 36 EnterMovies 11,17, 18, 69 MacInvertRect 66
EventRecord data type 8, 36 ExitMovies 11, 18, 69 MacInvertRgn 66
event records 35, 36 FlattenMovie 39 MacIsWindowVisible 66
events 7, 8, 35 FSMakeFSSpec 30 MacLineTo 66
converting messages to 11, 36 GetGWorld 29 MacLoadResource 66
null 36 GetHWNDPort 23,70 MacMoveWindow 66
passing to movie GetMovieBox 35,69 MacOffsetRect 66
controller 11, 36 to 37 GetMovieGWorld 29 MacOffsetRgn 66
ExitMovies function 11, 18, 69 GetOpenFileName MacOpenDriver 66
extracting movies from movie (Windows) 30, 31 MacPaintRgn 66
files 11 GetPort 21 MacPolygon 66
GetPortHWND 23 MacPtInRect 66
InitializeQTML 11,17, 18, 69 MacRegion 66
MacAnimatePalette 65 MacReplaceText 66
F MacAppendMenu 65 MacResizePalette 66
i MacCloseDriver 65 MacSendMessage 66
fﬂelﬁanms 31,70 MacCloseWindow 65 MacSetCursor 67
fﬂereﬂwepceruunber 33,34,70 MacCompareString 65 MacSetItem 67
fﬂesebcnorlduyggs.SOtOSZ MacCopyRgn 65 MacSetPort 21,22, 26, 67
file-system specification record MacDeleteMenu 65 MacSetRect 67
: (FSSpec) 30,32 MacDrawMenuBar 65 MacSetRectRgn 67
f”etyPe 38 o MacDrawText 65 MacShowCursor 67
flattening nﬁnnefﬂe§ 39 MacEqualRect 65 MacShowWindow 67
F]attenMoy1efunonn 39 MacEqualRgn 65 MacStartSound 67
forks (Macintosh file) 38 MacFillRect 65 MacStopSound 67
FSMakeFSSpec function 30 MacFillRgn 65 MacTokenType 67
fsRdPerm constant 33 MacFindWindow 65 MacUnionRect 67
fsRdWrPermconstant 33 MacFlushInstructionCache MacUnionRgn 67

FSSpec data type 30, 70 65

0 MacXorRgn 67
FSSpecToNaF1vePathName MacFrameRect 65 MCIsPlayerEvent 11, 36, 37,
function 51 MacFrameRgn 66 70
fsWr?ermconstant 33 MacGetClassInfo 66 NewGWorld 26, 27
functions MacGetCurrentThread 66 NewGWorl1dFromHBITMAP 26
cZpstr 3% . MacGetCursor 66 NewMovieController 11, 35,
CWOSEMOV1EF1WE 33 MacGetDoubleClickTime 66 70
CopyBits 27 . MacGetFileSize 66 NewMovieFromFile 11, 33, 35,
CreatepIBSect1on MacGetItem 66 70
(Windows) 27 MacGetMenu 66 OpenMovieFile 11,30, 31, 32
CreateFile (Windows) 30 MacGetNextWindow 66 33,70
CreatePortAssociation 11, MacGetParent 66 p2cstr 31
22,70 MacGetPath 66 SetGHorld 27, 28, 29

106

INDEX

SetMovieActive 33
SetMovieGWorld 29
TerminateQTML 11, 18, 69
WinEventToMacEvent 11, 36

l,J

37

G

GDI. See Graphics Device
Interface

GetDIBFromPict function 50
GetGWorld function 29
GetHWNDPort function 23, 43, 70
GetMovieBox function 35, 69
GetMovieGWorld function 29
GetOpenFileName function 30,
31
GetPictFromDIB function 49
GetPort function 21
GetPortHBITMAP function 44
GetPortHDC function 43, 47
GetPortHFONT function 44
GetPortHPALETTE function 44
GetPortHWND function 23
GrafPort data type 20
GrafPtr datatype 20
Graphics Device Interface
(GDI) 8,17,20
graphics device record 25
graphics ports 7, 8, 11, 20 to 21,
69
and graphics worlds 25
and window records 21 to 24
disposing of 11
graphics worlds 25 to 29
offscreen 26
GWor1dPtr datatype 25, 28

H

initialization
QTML 11,17
QuickTime 11, 17
InitializeQHdr function 46
InitializeQTML function 11,17,
18, 69
InitializeQTML function 55
Inside Macintosh
QuickTime 17
QuickTime Components 17,
35
Inside Macintosh 9
IsTaskBarVisible function 47

K, L

k4IndexedGrayPixelFormat
constant 27
k4IndexedPixelFormat
constant 27
k8IndexedGrayPixelFormat
constant 27
k8IndexedPixelFormat
constant 27
kInitQTMLNoSoundFTag
constant 17
kInitQTMLUseDefault
constant 17, 18
kInitQTMLUseGDIFlag
constant 17

M

HWND data type 8, 22, 69

k16BES55PixelFormat
constant 27
k16LE5S55PixelFormat
constant 27
k16LE565PixelFormat
constant 27
klIndexedGrayPixelFormat
constant 27
k1MonochromePixelFormat
constant 27
k24BGRPixelFormat constant 27
k24RGBPixelFormat constant 27
k2IndexedGrayPixelFormat
constant 27
k2IndexedPixelFormat
constant 27
k32ABGRPixelFormat
constant 27
k32ARGBPixelFormat
constant 27
k32BGRAPixelFormat
constant 27
k32RGBAPixelFormat
constant 27

MacAnimatePalette function 65
MacAppendMenu function 65
MacCloseDriver function 65
MacCloseWindow function 65
MacCompareString function 65
MacCopyRgn function 65
MacDeleteMenu function 65
MacDrawMenuBar function 65
MacDrawText function 65
MacEqualRect function 65
MacEqualRgn function 65
MacFillRect function 65
MacFi11Rgn function 65
MacFindWindow function 65
MacFlushInstructionCache
function 65
MacFrameRect function 65
MacFrameRgn function 66
MacGetClassInfo function 66
MacGetCurrentThread
function 66
MacGetCursor function 66
MacGetDoubleClickTime
function 66
MacGetFileSize function 66
MacGetItem function 66

107

I NDEX

MacGetMenu function 66
MacGetNextWindow function 66
MacGetParent function 66
MacGetPath function 66
MacGetPixel function 66
MacInsertMenu function 66
MacInsertMenultem function 66
MacInsetRect function 66
Macintosh Toolbox 7
MacInvertRect function 66
MacInvertRgn function 66
MacIsWindowVisible
function 66
MaclLineTo function 66
MaclLoadResource function 66
MacMoveWindow function 66
MacOffsetRect function 66
MacOffsetRgn function 66
MacOpenDriver function 66
MacPaintRgn function 66
MacPolygon function 66
MacPtInRect function 66
MacRegion function 66
MacRegionToNativeRegion
function 51
MacReplaceText function 66
MacResizePalette function 66
MacSendMessage function 66
MacSetCursor function 67
MacSetItem function 67
MacSetPort function 21, 22, 26,
67
MacSetRect function 67
MacSetRectRgn function 67
MacShowCursor function 67
MacShowWindow function 67
MacStartSound function 67
MacStopSound function 67
MacTokenType function 67
MacUnionRect function 67
MacUnionRgn function 67
MacXorRgn function 67
MCIsPlayerEvent function 11
36, 37, 70
messages 7, 8, 35

108

converting to events 11, 36
WM_CLOSE 24
WM_CREATE 22
WM_DESTROY 24
movie controllers 9, 35 to 38
creating 11
disposing of 11
passing events to 11, 36 to 37
Movie datatype 33
movie files 32 to 35
access permission 33
extracting movies from 11
flattening 39
opening 11
single-fork 39
MovieFileType constant 32
movie identifiers 33
MovieRecord data type 33
movie records 33
movies
disposing of 11
MSG data type 8, 35, 36

N

NativeEventToMacEvent
function 49
NativePathNameToFSSpec
function 52
NativeRegionToMacRegion
function 50
NewGWor1dFromHBITMAP
function 26
NewGWor1d function 26, 27
newMovieActive constant 33
NewMovieController
function 11, 35, 70
NewMovieFromFile function 11,
33,35,70
noNewDevice constant 26
null events 36

O

offscreen graphics worlds 26
Open File dialog 30
OPENFILENAME data type 30
opening movie files 11
OpenMovieFile function 11, 30,
31,32,33,70

P

p2cstr function 31
pathnames 31

POINT data type 69
Point data type 69

Q

QTGetDDObject function 45
QTMLAcquireWindowlist
function 48
QTMLCreateMutex function 57
QTMLCreateSyncVar function 59
QTMLDestroyMutex function 57
QTMLDestroySyncVar
function 60
QTMLGetCanonicalPathName
function 49, 53
QTMLGetVolumeRootPath
function 54
QTMLGetWindowWndProc
function 64
QTMLGrabMutex function 58
QTMLMapNames.h 65
QTMLRegisterInterruptSafeTh
read function 61
QTMLReTeaseWindowlList
function 48
QTMLResetSyncVar function 61
QTMLReturnMutex function 59

INDEX

QTMLSetWindowWndProc
function 63

QTMLTestAndSetSyncVar
function 60

QTMLTryGrabMutex function 58

QTMLUnregisterInterruptSafe
Thread function 62

QTMLWaitAndSetSyncVar
function 60

QTMLYieldCPU function 62

QTMLYieldCPUTime function 63

QTSetDDObject function 45

QTSetDDPrimarySurface
function 45

QuickDraw 8, 20

QuickTime 3.0 Software
Development Kit (SDK)
for Windows 7, 39

QuickTime Media Layer
(QTML) 20

initializing 11, 17
terminating 18

R

RECT data type 69
Rect data type 69
resource fork 38
resource ID 38
resources 38 to 39
resource type 38
RezWack 39

S

SDK. See QuickTime 3.0
Software Development
Kit for Windows
SetGWorld function 27, 28, 29
SetMovieActive function 33
SetMovieGWorld function 29

ShowHideTaskBar function 47
single-fork movie files 39
Sound Manager 17
Standard File Package 8, 30
strings
converting between Pascal
and C formats 31

T

TerminateQHdr function 47
TerminateQTML function 11, 18,
69

TerminateQTML function 56
termination

QTML 18

QuickTime 11, 18
Toolbox, Macintosh 7

U

UpdatePort function 43

Vv

volume reference number 31

w-Z

window handles 8, 22, 69

window pointers 8

window procedure 11, 24, 37

window records 21 to 24

Windows 95 7

Windows NT 7

WinEventToMacEvent
function 11, 36, 37

WinMain routine 17, 18

WM_CLOSE message 24
WM_CREATE message 22
WM_DESTROY message 24

109

T HE A P PLE P UBLISHI

N G

SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Mac OS computers
and Adobe ™ FrameMaker software.
Line art was created using

Adobe™llustrator and Adobe Photoshop.

PostScript ™, the page-description
language for the LaserWriter, was
developed by Adobe Systems
Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITERS
Stephen Chernicoff and Tom Maremaa

ACKNOWLEDGMENTS TO
Guillermo Ortiz

Keith Gurganus

Jim Batson

Brian Friedkin

Chris Flick

Greg Chapman

Jeff Mitchell

Tim Monroe

Kat Stevens

SPECIAL THANKS TO
Mitchell Gass
George Towner

	QuickTime 3 for Windows Programmers
	Contents
	Tables and Listings
	What Is QuickTime 3 for Windows?
	QuickTime 3 for Windows: A Quick Start
	Using QuickTime 3 for Windows
	Initializing and Terminating QTML and QuickTime
	Graphics Ports
	Window Records
	Graphics Worlds
	File Selection Dialogs
	Movies and Movie Files
	Movie Controllers
	Resources

	Windows Utility Functions
	Access to Windows Data Structures
	Data Conversion
	QTML Compatibility

	Redefined API Names
	Conversion From Earlier Versions
	Example Program
	Index

