





Programming With
QuickTime VR 2.1

With Reference Sections



Apple Computer, Inc.
© 1998 Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except in the normal use of the
software or to make a backup copy
of the software or documentation.
The same proprietary and copyright
notices must be affixed to any
permitted copies as were affixed to
the original. This exception does not
allow copies to be made for others,
whether or not sold, but all of the
material purchased (with all backup
copies) may be sold, given, or loaned
to another person. Under the law,
copying includes translating into
another language or format. You
may use the software on any
computer owned by you, but extra
copies cannot be made for this
purpose.
Printed in the United States of
America.
The Apple logo is a trademark of
Apple Computer, Inc. Use of the
“keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.

Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, LaserWriter,
Mac, Macintosh, MPW, OpenDoc,
PowerBook, QuickDraw, and
QuickTime are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Balloon Help is a trademark of
Apple Computer, Inc.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.
Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, ADC
will replace the media or manual at no
charge to you provided you return the
item to be replaced with proof of
purchase to ADC.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures, Tables, and Listings ix

Preface About This Book xi

Conventions Used in This Book xii
Special Fonts xii
Types of Notes xii

Development Environment xii
For More Information xiii

Chapter 1 About QuickTime VR 17

Displaying QuickTime VR Movies 19
Movies and Nodes 21

Object Nodes 24
Panorama Nodes 28
Hot Spots 30
Viewing Limits and Constraints 30
Displaying Files While Downloading 31

Chapter 2 QuickTime VR Manager 33

About the QuickTime VR Manager 39
QuickTime VR Movie Instances 40
Buffers 40
Memory Management 41

Using the QuickTime VR Manager 42
Determining That the QuickTime VR Manager Is Available 42
Initializing the QuickTime VR Manager 43
Creating QuickTime VR Movie Instances 44
Manipulating Viewing Angles and Zooming 46
Intercepting QuickTime VR Manager Routines 48
Entering and Leaving Nodes 53
iii

Drawing in the Prescreen Buffer 55
QuickTime VR Manager Reference 56

Constants 57
Gestalt Selector and Response Values 57
Node Types 58
Node IDs 58
Angular Unit Types 59
Hot Spot Action Selectors 59
Flags Value for Imaging Completion Procedure 59
Intercept Selectors 60
Constraint Types 61
Correction Modes 62
Imaging Modes 63
Imaging Property Types 64
Quality Properties 65
Transition Type 66
Transition Properties 66
Hot Spot Types 67
Interaction Property Types 68
Viewing Constraints 70
Mouse Control Modes 71
Hot Spot Selectors 72
Animation Settings 72
Control Settings 74
View State Types 77
Back Buffer Imaging Procedure Flags 78
Nudge Mode 80
Nudge Directions 81
Cursor Types 82
Pixel Formats 82
Resolutions 83
Geometry Selectors 84
Cache Sizes 84

Data Structures 85
Intercept Structure 85
Floating-Point Point Structure 86
Cursor Record 87
Area of Interest Structure 87
iv

QuickTime VR Manager Routines 88
Initializing and Terminating QuickTime VR 88
Initializing and Managing QuickTime VR Movie Instances 89
Manipulating Viewing Angles and Zooming 91
Getting Scene and Node Information 101
Managing Hot Spots 105
Handling Events 112
Intercepting QuickTime VR Manager Routines 125
Managing Object Nodes 127
Managing Imaging Characteristics 144
Converting Angles and Points 153
Managing QuickTime VR Movie Interaction 161
Determining Viewing Limits and Constraints 166
Managing Memory 170
Accessing Image Buffers 175

Application-Defined Routines 180
Mouse Over Hot Spot Procedure 180
QuickTime VR Intercept Procedure 181
Node-Entering and Node-Leaving Procedures 183
Imaging Procedures 185

Summary of the QuickTime VR Manager 188
C Summary 188

Constants 188
Data Types 195
QuickTime VR Manager Routines 197
Application-Defined Routines 204

Result Codes 205

Chapter 3 QuickTime VR Movie Controller 207

About the QuickTime VR Movie Controller 210
Elements of the QuickTime VR Movie Controller 210
Movie Controller Actions 212

Using the QuickTime VR Movie Controller 213
Hiding and Showing the Controller Bar 213
Showing and Hiding Controller Bar Buttons 214
Sending Actions to the QuickTime VR Movie Controller 216
v

QuickTime VR Movie Controller Reference 217
Constants 217

Movie Controller Actions 217
Movie Control Flags 233

Summary of the QuickTime VR Movie Controller 235
C Summary 235

Constants 235
Data Types 237

Chapter 4 QuickTime VR Atom Containers 239

About Atom Containers 241
The String Atom and the String Encoding Atom 242

VR World Atom Container 243
VR World Header Atom Structure 245
Imaging Parent Atom 245
Panorama-Imaging Atom 246
Node Parent Atom 248
Node Location Atom Structure 248

Custom Cursor Atoms 249
Node Information Atom Container 249

Node Header Atom Structure 250
Hot Spot Parent Atom 251
Hot Spot Information Atom 252
Specific Information Atoms 254

Link Hot Spot Atom 254
URL Hot Spot Atom 256

Example: Getting the Name of a Node 256
Custom Atoms 258

Chapter 5 Creating QuickTime VR Movies 261

Components of a QuickTime VR Movie 263
Single-Node Panoramic Movies 264
Single-Node Object Movies 265
Multinode Movies 266
vi

QuickTime VR Movie Creation 267
Track References 268

The QTVR track 269
The QuickTime VR Sample Description Structure 269
Example: Adding Atom Containers 270
Panorama Tracks 271

Panorama Sample Atom Structure 271
Track Reference Entry Structure 277

Object Tracks 278
Object Sample Atom Structure 278
Track References for Object Tracks 285

Optimizing QuickTime VR Movies for Web Playback 286
The QTVR Flattener 287
Sample Atom Container for the QTVR Flattener 289
New Atom Types 290

Summary of the VR World and Node Atom Types 291
C Summary 291

Constants 291
Data Types 294

Appendix A QuickTime VR Cursors 301

Hot Spot Cursors 301
Navigation Cursors 302
Manipulation Cursors 303

Panning Interface Cursors 304
Grabber Interface Cursors 306
Spinner Interface Cursors 306
Joystick Interface Cursors 309
Pointer Interface Cursor 311

Compatibility With QuickTime VR 2.0 311

Glossary 313
vii

Index 323
viii

Figures, Tables, and Listings

Chapter 1 About QuickTime VR 17

Figure 1-1 An object in a QuickTime VR virtual world 22
Figure 1-2 A panorama in a QuickTime VR virtual world 23
Figure 1-3 Pan and tilt angles of an object 24
Figure 1-4 An object image array 26
Figure 1-5 An object image track 26
Figure 1-6 The panoramic image used to generate panoramic views 29

Listing 1-1 Opening a QuickTime VR movie 19

Chapter 2 QuickTime VR Manager 33

Figure 2-1 QuickTime VR’s internal buffers 41

Listing 2-1 Checking for the availability of the QuickTime VR Manager 43
Listing 2-2 Getting a QuickTime VR movie instance 44
Listing 2-3 Changing the viewing angle 46
Listing 2-4 Changing the field of view 48
Listing 2-5 Intercepting the QTVRSetPanAngle function (version 1) 50
Listing 2-6 Intercepting the QTVRSetPanAngle function (version 2) 51
Listing 2-7 Installing an intercept procedure 53
Listing 2-8 Informing the user of a new node’s name 54
Listing 2-9 Leaving a node 54
Listing 2-10 Overlaying images in the prescreen buffer 56

Chapter 3 QuickTime VR Movie Controller 207

Figure 3-1 The QuickTime VR movie controller 211

Listing 3-1 Hiding the controller bar 214
Listing 3-2 Showing a controller bar button 215
Listing 3-3 Hiding a controller bar button 216
ix

Chapter 4 QuickTime VR Atom Containers 239

Figure 4-1 Structure of the VR world atom container 244
Figure 4-2 Structure of the node information atom container 250

Listing 4-1 Getting a node’s name 256
Listing 4-2 Typical hot spot intercept procedure 258

Chapter 5 Creating QuickTime VR Movies 261

Figure 5-1 The structure of a single-node panoramic movie file 264
Figure 5-2 The structure of a single-node object movie file 265
Figure 5-3 The structure of a multinode movie file 267
Figure 5-4 Creating an image track for a panorama 276
Figure 5-5 The structure of an image track for an object 286

Listing 5-1 Specifying the QuickTime VR movie controller 268
Listing 5-2 Adding atom containers to a track 270
Listing 5-3 Using the flattener 287
Listing 5-4 Specifying a preview file for the flattener to use 289
Listing 5-5 Overriding the compression settings 290

Appendix A QuickTime VR Cursors 301

Table A-1 Hot spot cursors 301
Table A-2 Navigation cursors 302
Table A-3 Panning interface cursors 304
Table A-4 Grabber interface cursors 306
Table A-5 Spinner interface cursors 306
Table A-6 Joystick interface cursors 309
Table A-7 Pointer interface cursor 311
x

P R E F A C E

About This Book

This book, Programming With QuickTime VR 2.1, describes version 2.1 of
QuickTime VR, an extension of the QuickTime technology developed by Apple
Computer, Inc. that allows users to interactively explore and examine
photorealistic, three-dimensional virtual worlds.

Primarily, this book describes the QuickTime VR Manager, which is the part of
QuickTime 3 that you can use to control QuickTime VR movies from your
application. For example, you can use the QuickTime VR Manager to

■ display movies of panoramas and objects

■ perform basic orientation, positioning, and animation control

■ intercept and override QuickTime VR’s mouse-tracking and default hot spot
behaviors

■ composite flat or perspective overlays (such as QuickDraw 3D objects or
QuickTime movies)

■ specify transition effects

■ control QuickTime VR’s memory usage

■ intercept calls to some QuickTime VR Manager functions and modify their
behavior

This book also describes the QuickTime VR file format (the format of the movie
files that contain QuickTime VR movies). You need this information only if
you need to parse existing QuickTime VR movies or you want to create
QuickTime VR movies programmatically. For instance, you need this information
if you are developing QuickTime VR movie-authoring software. In general,
however, you don’t need to know about the format of atoms or atom containers
simply to use the functions provided by the QuickTime VR Manager.

Note
This book does not describe how to capture VR scenes or
author QuickTime VR movies using tools such as the
QuickTime VR Authoring Studio. See the documentation
provided with your authoring software for complete
information. ◆
xi

P R E F A C E

Conventions Used in This Book 0

This book uses special conventions to present certain types of information.
Words that require special treatment appear in specific fonts or font styles.

Special Fonts 0

All code listings, reserved words, and the names of actual data structures,
constants, fields, parameters, and routines are shown in Letter Gothic (this is
Letter Gothic).

Words that appear in boldface are key terms or concepts and are defined in the
glossary.

Types of Notes 0

There are two types of notes used in this book.

Note
A note like this contains information that is interesting but
possibly not essential to an understanding of the main
text. ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. ▲

Development Environment 0

The system software routines described in this book are available using C
interfaces. How you access these routines depends on the development
environment you are using. When showing QuickTime VR routines, this
book uses the C interfaces available with the Macintosh Programmer’s Workshop
(MPW).
xii

P R E F A C E

All code listings in this book are shown in C. They show methods of using
various routines and illustrate techniques for accomplishing particular tasks.
All code listings have been compiled and tested.

IMPORTANT

For any online updates to this book, check the QuickTime
developers’ page on the World Wide Web, at

http://www.apple.com/quicktime/developers/index.html

or you may go directly to the documentation page at

http://devworld.apple.com/techinfo/techdocs/multimedia/qtdevdocs/
index.htm ▲

For More Information 0

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For information on registering signatures, file types, and other technical
information, contact

Macintosh Developer Technical Support
Apple Computer, Inc.
1 Infinite Loop, M/S 303-2T
Cupertino, CA 95014
xiii

P R E F A C E
xiv

P R E F A C E
xv

C H A P T E R 1

Contents

Contents
Figure 1-0
Listing 1-0
Table 1-0
1 About QuickTime VR
Displaying QuickTime VR Movies 19
Movies and Nodes 21

Object Nodes 24
Panorama Nodes 28
Hot Spots 30
Viewing Limits and Constraints 30
Displaying Files While Downloading 31
17

C H A P T E R 1
18 Contents

C H A P T E R 1
About QuickTime VR 1

QuickTime VR is an extension of the QuickTime technology developed by
Apple Computer, Inc. that allows users to interactively explore and examine
photorealistic, three-dimensional virtual worlds. Unlike many other virtual
reality systems, QuickTime VR does not require the user to wear goggles or
gloves. Instead, the user navigates in a virtual world using standard input
devices (such as the mouse or keyboard) to change the image displayed by the
QuickTime VR movie controller.

The images displayed in QuickTime VR movies can be either captured
photographically or rendered on a computer using a three-dimensional (3D)
graphics package.

Displaying QuickTime VR Movies 1

QuickTime VR movies are simply a special kind of QuickTime movie, so it’s
easy to add support to your application for playing QuickTime VR movies. If
the QuickTime VR Manager (and hence the QuickTime VR movie controller) is
available, you simply open a movie using standard QuickTime functions, call
NewMovieController to associate the movie with the QuickTime VR movie
controller, and make the appropriate call to MCIsPlayerEvent in your main event
loop. These are exactly the same steps you follow to open and manage any
QuickTime movie. Listing 1-1 shows a typical way to open a QuickTime VR
movie.

Listing 1-1 Opening a QuickTime VR movie

Movie MyGetMovie (void)
{

OSErr myErr;
SFTypeList myTypes = {MovieFileType, 0, 0, 0};
StandardFileReply myReply;
Movie myMovie = nil;
short myResFile;

StandardGetFilePreview(nil, 1, myTypes, &myReply);
if (myReply.sfGood) {

myErr = OpenMovieFile(&myReply.sfFile, &myResFile, fsRdPerm);
Displaying QuickTime VR Movies 19

C H A P T E R 1

About QuickTime VR
if (myErr == noErr) {
short myResID = 0; //We want the first movie.
Str255 myName;
Boolean wasChanged;

myErr = NewMovieFromFile(&myMovie, myResFile, &myResID, myName,
newMovieActive, &wasChanged);

CloseMovieFile(myResFile);
}

}
return(myMovie);

}

It’s important to notice that Listing 1-1 does not use the QuickTime VR Manager
at all. Instead, it relies entirely on QuickTime’s Movie Toolbox and other
Macintosh system software managers.

Note
See QuickTime 3 Reference for a complete description of the
Movie Toolbox. ◆

Once you’ve opened a file containing a QuickTime VR movie, you need to call
NewMovieController to obtain the standard user interface for playing
QuickTime VR movies. It’s particularly important that you call
NewMovieController (rather than call the Component Manager directly) for
QuickTime VR movies, because QuickTime VR movies contain special
information that lets QuickTime know which movie controller to load.

In your main event loop, you should pass all events to the MCIsPlayerEvent
function, which passes user events (such as mouse movements and button
clicks) to the QuickTime VR movie controller. QuickTime VR automatically
changes the cursor’s shape when it’s inside the movie’s boundary. As a result,
your application should relinquish control of the cursor for as long as it remains
in the movie’s boundary and then reset the cursor’s shape as necessary when it
is moved outside the movie.

To allow the QuickTime VR movie controller to update the shape of the cursor
in a timely manner, your application should pass all events, even idle events, to
the MCIsPlayerEvent function. Alternatively, you can call the MCIdle function
frequently.

If you want to disable the automatic cursor tracking and shape changing
provided by the QuickTime VR movie controller, you can execute this line of
20 Displaying QuickTime VR Movies

C H A P T E R 1

About QuickTime VR
code, where myMC is an identifier for a movie controller returned by
NewMovieController:

MCDoAction(myMC, mcActionSetCursorSettingEnabled, (void*) false);

Note
The mcActionSetCursorSettingEnabled movie controller
action was introduced in QuickTime version 2.1. See the
chapter “QuickTime VR Movie Controller” in this book for
a description of how the QuickTime VR movie controller
handles this and other movie controller actions. ◆

Movies and Nodes 1

The data for a QuickTime VR virtual world is stored in a QuickTime VR movie.
A QuickTime VR movie contains a single scene, which is a collection of one or
more nodes. A node is a position in a virtual world at which an object or
panorama can be viewed. For a panoramic node, the position of the node is the
point from which the panorama is viewed. QuickTime VR scenes can contain
any number of nodes, which can be either object or panoramic nodes.

Note
QuickTime uses the term movie to emphasize the
time-based nature of QuickTime data (such as video and
audio data streams). QuickTime VR uses the same term
solely on analogy with QuickTime movies; in general,
QuickTime VR data is not time-based. ◆

An object node (or, more briefly, an object) provides a view of a single object or
a closely grouped set of objects. You can think of an object node as providing a
view of an object from the outside looking in. Figure 1-1 shows one view of an
object node. The user can use the mouse or keyboard to change the horizontal
and vertical viewing angles to move around the object. The user can also zoom
in or out to enlarge or reduce the size of the displayed object. Object nodes are
often designed to give the illusion that the user is picking up and turning an
object (in Figure 1-1, a Macintosh PowerBook computer) and viewing it from all
angles.
Movies and Nodes 21

C H A P T E R 1

About QuickTime VR
Figure 1-1 An object in a QuickTime VR virtual world

A panoramic node (or, more briefly, a panorama) provides a panoramic view of
a particular location, such as you would get by turning around on a rotating
stool. You can think of a panoramic node as providing a view of a location from
the inside looking out. Figure 1-2 shows one view of a panoramic node. As with
object nodes, the user can use the mouse (or keyboard) to navigate in the
panorama and to zoom in and out.
22 Movies and Nodes

C H A P T E R 1

About QuickTime VR
Figure 1-2 A panorama in a QuickTime VR virtual world

A node in a QuickTime VR movie is identified by a unique node ID, a long
integer that is assigned to the node at the time a VR movie is created (and that is
stored in the movie file).

When a QuickTime VR movie contains more than one node, the user can move
from one node to another if the author of the QuickTime VR movie has provided
a link (or connection) between the source and destination nodes. A link between
nodes is depicted graphically by a link hot spot, a type of hot spot that, when
clicked, moves the user from one node in a scene to another node.

Note
It’s also possible to move from node to node
programmatically, using the QuickTime VR Manager,
even between nodes that were not explicitly linked by
the movie’s author. ◆
Movies and Nodes 23

C H A P T E R 1

About QuickTime VR
Object Nodes 1

The data used to represent an object is stored in a QuickTime VR movie’s video
track as a sequence of individual frames, where each frame represents a single
view of the object. An object view is completely determined by its node ID,
field of view, view center, pan angle, tilt angle, view time, and view state.
Figure 1-3 illustrates the pan and tilt angles of an object view.

Figure 1-3 Pan and tilt angles of an object

In QuickTime VR, angles can be specified in either radians or degrees. (The
default angular unit is degrees.) A view’s pan angle typically ranges from
0 degrees to 360 degrees (that is, from 0 to 2π radians). When a user is looking
directly at the equator of a multirow object, the tilt angle is 0. Increasing the tilt
angle rotates the object down, while decreasing the tilt angle rotates the object
up. Setting the tilt angle to 90 degrees results in a view that is looking straight
down at the top of the object; setting the tilt angle to –90 degrees results in a
view that is looking straight up at the bottom of the object. In general, the
normal range for tilt angles is from –90 degrees to +90 degrees. You can,
however, set the tilt angle to a value greater than 90 degrees if the movie
contains upside-down views of the object.

+90°

–90°

180° 0° Tilt anglePan angle
24 Movies and Nodes

C H A P T E R 1

About QuickTime VR
The views that constitute an object node are stored sequentially, as a series of
frames in the movie’s video track. The authoring tools documentation currently
recommends that the first frame be captured with a pan angle of 180 degrees
and a tilt angle of 90 degrees. Subsequent frames at that tilt angle should be
captured with a +10-degree increment in the pan angle. This scheme gives 36
frames at the starting tilt angle. Then the tilt angle is reduced 10 degrees and the
panning process is repeated, resulting in another 36 frames. The tilt angle is
gradually reduced until 36 frames are captured at tilt angle –90 degrees. In all,
this process results in 684 (that is, 19 × 36) separate frames.

IMPORTANT

The number of frames captured, the starting and ending
pan and tilt angles, and the increments between frames
are completely under the control of the author of a
QuickTime VR movie. ▲

The individual frames of the object can be interpreted as a two-dimensional
object image array (or view array), shown in Figure 1-4. For a simple object
(that is, an object with no frame animation or alternate view states), the
upper-left frame is the first captured image. A row of images contains the
images captured at a particular tilt angle; a column of images contains the
images captured at a particular pan angle. Accordingly, turning an object one
step to the left is the same as moving one cell to the right in the image array,
and turning an object one step down is the same as moving one cell down in the
image array. As you’ll see later, you can programmatically set the current view
of an object either to a specific pan and tilt angle or to a view specified by its
row and column in the object image array.
Movies and Nodes 25

C H A P T E R 1

About QuickTime VR
Figure 1-4 An object image array

In the movie file, the image array is stored as a one-dimensional sequence of
frames in the movie’s video track, as illustrated in Figure 1-5.

Figure 1-5 An object image track

1,1 1,2 1,3 1,m

2,1 2,2 2,3 2,m

n,1 n,2 n,3 n,m

Row 1

Row 2

Row n–1

Row n

Column 1 Column 2 Column 3
Column

m–2
Column

m–1
Column

m

Pan angle180˚ 180˚ - ∆
Start pan End pan

Tilt angle

Start tilt

End tilt

90˚

- 90˚

1,1 1,2 1,3 1,4 1,m 2,1 2,2 2,3 n,1 n,2 n,m.....

View duration
26 Movies and Nodes

C H A P T E R 1

About QuickTime VR
Note
QuickTime VR object nodes were originally designed as a
means of showing a 3D object from different pan and tilt
angles. However, there is no restriction on the content of
the frames stored in an object image array. In other words,
the individual frames do not have to be views of the same
object from different pan and tilt angles. Some clever movie
authors have used this fact to develop intriguing object
nodes that are not simply movies of rotating objects. In
these cases, the use of pan and tilt angles to specify a view
is less meaningful than the use of row and column
numbers. Nonetheless, you can always use either pan and
tilt angles or row and column numbers to select a view. ◆

Each view of an object occupies the same amount of time in the object node’s
video track. This amount of time (the view duration) is arbitrary, but it is stored
in the movie file. When a view is associated with only one frame, the
QuickTime VR movie controller displays that frame by changing the current
time of the movie to the start time of that view.

It’s possible, however, to have more than one frame in a particular object view.
Moreover, the number of frames per view can be different from view to view.
The only restriction imposed by QuickTime VR is that the view duration be
constant throughout all views in a single object node.

Having multiple frames per view is useful in several cases. First, you might
want to display one frame if the mouse button is up but a different frame if the
mouse button is down. To support this, QuickTime VR allows the VR movie
author to include more than one view state in an object movie. A view state is
an alternate set of images that are displayed, depending on the state of the
mouse button.

Note
Alternate view states are stored as separate object image
arrays that immediately follow the preceding view state in
the object image track. Each state does not need to contain
the same number of frames. However, the total movie time
of each view state in an object node must be the same. ◆

Another reason to have multiple frames in a particular object view is to display
a frame animation when that view is the current view. When frame animation
is enabled, the QuickTime VR movie controller plays all frames, in sequence, in
the current view. You could use frame animation, for instance, to display a
Movies and Nodes 27

C H A P T E R 1

About QuickTime VR
flickering flame on a candle. The rate at which the frames are displayed
depends on the view duration and the frame rate of the movie (which is stored
in the movie file but can be changed programmatically). If the current play rate
is nonzero, then the movie controller plays all frames in the view duration. If
the current view has multiple states, then the movie controller plays all frames
in the current state (which can be set programmatically).

Note
The frames in a frame animation are stored sequentially in
each animated view of the object. Each view does not need
to contain the same number of frames (so that a view that is
not animated can contain only one frame). However, the
view duration of each view in an object node must be the
same. In some cases, it is best to duplicate the scene frame
to get the same view durations and let the compressor
remove the extra data. See the chapter “QuickTime VR
Atom Containers” for complete information on how object
nodes are stored in QuickTime VR movies. ◆

An object movie can be set to play, in order, all the views in the current row
of the object image array. This is view animation. For both view and frame
animation, an object node has a set of animation settings that specify
characteristics of the movie while it is playing. For example, if a movie’s
animate view frames flag is set and there are different frames in the current
view duration, the movie controller plays an animation at the current view of
the object. That is, the movie controller displays all frames in the appropriate
portion of the view duration and, if the kQTVRWrapPan control setting is on, it
starts over when it reaches the segment boundary. If the animate view frames
flag is not set, the movie controller stops displaying frames when it reaches the
segment boundary. See “Animation Settings” (page 72) for a complete
description of the available animation settings.

Panorama Nodes 1

The data used to represent a panorama is stored as a single panoramic image
that contains the entire panorama. The movie author creates this image by
stitching together individual overlapping digitized photographs of the scene (or
by using a 3D renderer to generate an artificial scene). Currently, these images
are cylindrical projections of the panorama. Viewed by itself, the panoramic
image appears distorted, but it is automatically corrected at runtime when it is
28 Movies and Nodes

C H A P T E R 1

About QuickTime VR
displayed by the QuickTime VR movie controller. Figure 1-6 shows a panoramic
image.

Figure 1-6 The panoramic image used to generate panoramic views

A panorama view is completely described by its node ID, field of view, pan
angle, and tilt angle. As with object nodes, a panoramic node’s pan angle can
range from 0 degrees to 360 degrees. Increasing the pan angle has the effect
of turning one’s view to the left. When the user is looking directly into the
horizon, the tilt angle is 0. Increasing the tilt angle tilts one’s view up, while
decreasing the tilt angle tilts one’s view down.

For a panorama, the pan and tilt angle correspond to a specific point in the
panoramic image. When these angles are set, the corresponding point in the
panoramic image is displayed in the center of the current viewing rectangle.

IMPORTANT

The current image-warping technology for panoramic
nodes, using cylindrical projection, does not allow looking
straight up or straight down. Future versions of
QuickTime VR, however, will provide other methods
of projection that do support looking straight up and
straight down. ▲

While a panorama is being displayed, it can be either at rest (static) or in
motion. A panorama is in motion when being panned, tilted, or zoomed.
A panorama is also in motion when a transition (that is, a movement between
two items in a movie, such as from one view in a node to another view in the
same node, or from one node to another) is occurring. At all other times, the
panorama is static. You can change the imaging properties of a panorama to
control the quality and speed of display during rest or motion states. By default,
Movies and Nodes 29

C H A P T E R 1

About QuickTime VR
QuickTime VR sacrifices quality for speed during motion but displays at
highest quality when at rest.

When a transition is occurring, you can specify that a special visual effect,
called a transition effect, be displayed. The only transitional effect currently
supported is a swing transition between two views in the same node. When the
swing transition is enabled and a new pan angle, tilt angle, or field of view is
set, the movie controller performs a smooth swing to the new view (rather than
a simple jump to the new view). In the future, other transitional effects may be
supported.

With version 2.1, QuickDraw VR is capable of using tweening control data that
affects the pan angle, tilt angle, and field of view. For information about
tweening, please see the QuickTime 3.0 Reference.

Hot Spots 1

Both panoramic nodes and object nodes support arbitrarily shaped hot spots,
regions in the movie image that permit user interaction. When the cursor is
moved over a hot spot (and perhaps when the mouse button is also clicked),
QuickTime VR changes the cursor as appropriate and performs certain actions.
Which actions are performed depends on the type of the hot spot. For instance,
clicking a link hot spot moves the user from one node in a scene to another.

Hot spots can be either enabled or disabled. When a hot spot is enabled,
QuickTime VR changes the cursor as it moves in and out of hot spots and
responds to mouse button clicks and other user actions. Your application can
install callback procedures to respond to mouse actions. When a hot spot is
disabled, however, it effectively doesn’t exist as far as the user is concerned:
QuickTime VR does not change the cursor or execute your callback procedures.

The QuickTime VR Manager provides a number of functions that you can use to
manage hot spots. See “Managing Hot Spots” (page 105), for details.

Viewing Limits and Constraints 1

The data in a panoramic image and in an object image array imposes a set of
viewing restrictions on the associated node. For example, a particular
panoramic node might be a partial panorama (a panorama that is less than
360 degrees). Similarly, the object image array for a particular object node might
include views for tilt angles only in a restricted range, say, +45 degrees to
–45 degrees (instead of the more usual +90 degrees to –90 degrees). The
30 Movies and Nodes

C H A P T E R 1

About QuickTime VR
allowable ranges of pan angles, tilt angles, and fields of view are the viewing
limits for the node. Viewing limits are determined at the time a node is
authored and are imposed by the data stored in the movie file.

It’s possible to impose additional viewing restrictions at runtime. For instance, a
game developer might want to limit the amount of a panorama visible to the
user until the user achieves some goal (such as touching all the visible hot spots
in the node). These additional restrictions are the viewing constraints for the
node. As you might expect, a viewing constraint must always lie in the range
established by the node’s viewing limits. By default (that is, if the movie file
doesn’t contain any viewing constraint atoms, and no constraints have
been imposed at runtime), a node’s viewing constraints coincide with its
viewing limits.

Each node also has a set of control settings, which determine the behavior of
the QuickTime VR movie controller when the user reaches a viewing constraint.
For example, the kQTVRWrapPan control setting determines whether the user can
wrap around from the current pan constraint maximum value to the pan
constraint minimum value (or vice versa) using the mouse or arrow keys. When
this setting is enabled, panning past the maximum or minimum pan constraint
is allowed. When this setting is disabled, the user cannot pan across the current
viewing constraints; when the user reaches a viewing constraint, further
panning in that direction is disabled.

Displaying Files While Downloading 1

Support for viewing QuickTime VR movie files that are being downloaded from
the Internet has steadily improved with each new version of QuickTime and
QuickTime VR. How a VR movie appears and behaves as it is being
downloaded with QuickTime 3 and QuickTime VR 2.1 depends on how and
when the VR movie itself was authored.

For older QuickTime VR movies authored with QuickTime 2.0, the user must
wait for the entire movie to download before seeing the movie. While the movie
is downloading, the QuickTime placeholder picture is visible.

For panoramas authored with QuickTime 2.5 or later, but not specially authored
for the Web, the user sees a background grid appear and panorama tiles show
up as they are downloaded.

For objects, the first frame of the object appears (usually the top of the object),
and subsequent frames become available as they are downloaded. The user can
Movies and Nodes 31

C H A P T E R 1

About QuickTime VR
manipulate the movie as normal while the movie is being downloaded. Hot
spots are not active while the movie is being downloaded.

When downloading QuickTime VR panoramas that have been specially
authored for the Web, a preview image of the entire panorama appears after
about ten per cent of the movie has been downloaded. The high resolution tiles
corresponding to the default view appear next, followed by the rest of the tiles.
When downloading object movies that are authored for the Web, the default
view frame appears first. The remaining frames that make up the row for the
default view are downloaded next, followed by frames for any other rows in
the object. The user can manipulate the movie as normal while the movie is
being downloaded. Hot spots are not active while the movie is being
downloaded.

See “Optimizing QuickTime VR Movies for Web Playback” (page 286) in
Chapter 5, “Creating QuickTime VR Movies.”
32 Movies and Nodes

C H A P T E R 2

Contents

Contents
Figure 2-0
Listing 2-0
Table 2-0
2 QuickTime VR Manager
About the QuickTime VR Manager 39
QuickTime VR Movie Instances 40
Buffers 40
Memory Management 41

Using the QuickTime VR Manager 42
Determining That the QuickTime VR Manager Is Available 42
Initializing the QuickTime VR Manager 43
Creating QuickTime VR Movie Instances 44
Manipulating Viewing Angles and Zooming 46
Intercepting QuickTime VR Manager Routines 48
Entering and Leaving Nodes 53
Drawing in the Prescreen Buffer 55

QuickTime VR Manager Reference 56
Constants 57

Gestalt Selector and Response Values 57
Node Types 58
Node IDs 58
Angular Unit Types 59
Hot Spot Action Selectors 59
Flags Value for Imaging Completion Procedure 59
Intercept Selectors 60
Constraint Types 61
Correction Modes 62
Imaging Modes 63
Imaging Property Types 64
Quality Properties 65
Transition Type 66
33

C H A P T E R 2
Transition Properties 66
Hot Spot Types 67
Interaction Property Types 68
Viewing Constraints 70
Mouse Control Modes 71
Hot Spot Selectors 72
Animation Settings 72
Control Settings 74
View State Types 77
Back Buffer Imaging Procedure Flags 78
Nudge Mode 80
Nudge Directions 81
Cursor Types 82
Pixel Formats 82
Resolutions 83
Geometry Selectors 84
Cache Sizes 84

Data Structures 85
Intercept Structure 85
Floating-Point Point Structure 86
Cursor Record 87
Area of Interest Structure 87

QuickTime VR Manager Routines 88
Initializing and Terminating QuickTime VR 88

InitializeQTVR 88
TerminateQTVR 89

Initializing and Managing QuickTime VR Movie Instances 89
QTVRGetQTVRTrack 89
QTVRGetQTVRInstance 90

Manipulating Viewing Angles and Zooming 91
QTVRGetPanAngle 91
QTVRSetPanAngle 92
QTVRGetTiltAngle 93
QTVRSetTiltAngle 94
QTVRGetFieldOfView 95
QTVRSetFieldOfView 95
QTVRGetViewCenter 96
QTVRSetViewCenter 97
34 Contents

C H A P T E R 2
QTVRNudge 98
QTVRInteractionNudge 99
QTVRShowDefaultView 100

Getting Scene and Node Information 101
QTVRGetVRWorld 101
QTVRGoToNodeID 102
QTVRGetCurrentNodeID 103
QTVRGetNodeType 103
QTVRGetNodeInfo 104

Managing Hot Spots 105
QTVRPtToHotSpotID 105
QTVRGetHotSpotType 106
QTVRTriggerHotSpot 107
QTVREnableHotSpot 108
QTVRSetMouseOverHotSpotProc 109
QTVRGetVisibleHotSpots 110
QTVRGetHotSpotRegion 111

Handling Events 112
QTVRGetMouseOverTracking 112
QTVRSetMouseOverTracking 113
QTVRMouseEnter 114
QTVRMouseWithin 115
QTVRMouseLeave 116
QTVRGetMouseDownTracking 117
QTVRSetMouseDownTracking 117
QTVRMouseDown 118
QTVRMouseStillDown 119
QTVRMouseUp 121
QTVRMouseStillDownExtended 122
QTVRMouseUpExtended 124

Intercepting QuickTime VR Manager Routines 125
QTVRInstallInterceptProc 125
QTVRCallInterceptedProc 126

Managing Object Nodes 127
QTVRGetCurrentMouseMode 128
QTVRGetFrameRate 129
QTVRSetFrameRate 129
QTVRGetViewRate 130
Contents 35

C H A P T E R 2
QTVRSetViewRate 131
QTVRGetCurrentViewDuration 132
QTVRGetViewCurrentTime 133
QTVRSetViewCurrentTime 133
QTVRGetViewStateCount 134
QTVRGetViewState 135
QTVRSetViewState 136
QTVRGetAnimationSetting 137
QTVRSetAnimationSetting 138
QTVRGetControlSetting 139
QTVRSetControlSetting 140
QTVRGetFrameAnimation 141
QTVREnableFrameAnimation 141
QTVRGetViewAnimation 142
QTVREnableViewAnimation 143

Managing Imaging Characteristics 144
QTVRGetVisible 144
QTVRSetVisible 144
QTVRGetImagingProperty 145
QTVRSetImagingProperty 146
QTVRUpdate 148
QTVRBeginUpdateStream 149
QTVREndUpdateStream 150
QTVRSetTransitionProperty 151
QTVREnableTransition 152

Converting Angles and Points 153
QTVRGetAngularUnits 153
QTVRSetAngularUnits 154
QTVRPtToAngles 154
QTVRCoordToAngles 155
QTVRAnglesToCoord 156
QTVRPanToColumn 157
QTVRColumnToPan 158
QTVRTiltToRow 159
QTVRRowToTilt 159
QTVRWrapAndConstrain 160

Managing QuickTime VR Movie Interaction 161
QTVRSetEnteringNodeProc 161
36 Contents

C H A P T E R 2
QTVRSetLeavingNodeProc 162
QTVRGetInteractionProperty 163
QTVRSetInteractionProperty 164
QTVRReplaceCursor 165

Determining Viewing Limits and Constraints 166
QTVRGetViewingLimits 166
QTVRGetConstraintStatus 167
QTVRGetConstraints 168
QTVRSetConstraints 169

Managing Memory 170
QTVRGetAvailableResolutions 170
QTVRGetBackBufferMemInfo 171
QTVRGetBackBufferSettings 173
QTVRSetBackBufferPrefs 174

Accessing Image Buffers 175
QTVRSetPrescreenImagingCompleteProc 176
QTVRSetBackBufferImagingProc 177
QTVRRefreshBackBuffer 179

Application-Defined Routines 180
Mouse Over Hot Spot Procedure 180

MyMouseOverHotSpotProc 180
QuickTime VR Intercept Procedure 181

MyInterceptProc 181
Node-Entering and Node-Leaving Procedures 183

MyEnteringNodeProc 183
MyLeavingNodeProc 184

Imaging Procedures 185
MyImagingCompleteProc 185
MyBackBufferImagingProc 186

Summary of the QuickTime VR Manager 188
C Summary 188

Constants 188
Data Types 195
QuickTime VR Manager Routines 197
Application-Defined Routines 204

Result Codes 205
Contents 37

C H A P T E R 2
38 Contents

C H A P T E R 2
QuickTime VR Manager 2

This chapter describes the QuickTime VR Manager, the part of QuickTime 3 that
your application can use to interact with QuickTime VR. QuickTime VR is an
imaging technology that allows users to explore and examine photorealistic,
three-dimensional virtual worlds using standard interaction devices, such as
the mouse and keyboard. You can use the QuickTime VR Manager—in
conjunction with QuickTime—to open and display QuickTime VR objects and
panoramas, change the viewing angle or zoom level, handle mouse events for
QuickTime VR movies, and perform other operations on these movies.

To use this chapter, you should already be familiar with QuickTime, as
described in Inside Macintosh: QuickTime. You need to know how to open and
display QuickTime movies, because QuickTime VR objects and panoramas are
stored as QuickTime movie tracks. If you need direct access to the movie data
stored in an atom container, you also need to be familiar with the atom routines
introduced in QuickTime version 2.1. See QuickTime 3 Reference for information
about the atom routines. See the chapter “QuickTime VR Atom Containers” in
this book for a description of the atom containers in a QuickTime VR movie file.

About the QuickTime VR Manager 2

The QuickTime VR Manager is the part of QuickTime 3 that provides an
application programming interface for controlling QuickTime VR objects and
panoramas. You can use the QuickTime VR Manager to

■ display panoramas and objects

■ perform basic orientation, positioning, and animation control

■ intercept and override QuickTime VR’s mouse tracking

■ modify the display quality

■ intercept and override QuickTime VR’s default hot spot behavior

■ composite flat or perspective overlays (such as QuickDraw 3D objects or
QuickTime movies)

■ specify transition effects

■ get the viewing limits of a node and get and set a node’s viewing constraints

■ control QuickTime VR’s memory usage
About the QuickTime VR Manager 39

C H A P T E R 2

QuickTime VR Manager
■ intercept calls to some QuickTime VR Manager functions and modify their
behavior

This section describes the main concepts with which you need to be familiar to
use the QuickTime VR Manager. See “Using the QuickTime VR Manager”
(page 42) for code examples showing how to use the QuickTime VR Manager.

IMPORTANT

You do not need to use the QuickTime VR Manager simply
to open and display a QuickTime VR movie. The
QuickTime VR movie controller automatically provides the
basic mouse-and-keyboard-driven interface and handles all
necessary memory allocation. You need to use the
QuickTime VR Manager only if you want to exercise
programmatic control over object or panoramic nodes. ▲

QuickTime VR Movie Instances 2

Almost all the QuickTime VR Manager’s functions operate on a QuickTime VR
movie instance (defined by the QTVRInstance data type). A QuickTime VR
movie instance is an identifier for a particular QuickTime VR movie. You obtain
a QuickTime VR movie instance by calling the QTVRGetQTVRInstance function.
(See “Creating QuickTime VR Movie Instances” (page 44) for an example.)

IMPORTANT

There is no need to dispose of a movie instance that you’ve
obtained by calling QTVRGetQTVRInstance. ▲

Buffers 2

For panoramic nodes, QuickTime VR maintains several buffers that it uses to
hold the panoramic image before and after the warping that is applied to
correct the cylindrical distortion of the original panoramic image. All or part of
the uncorrected panoramic image is stored in QuickTime VR’s back buffer. The
corrected image for a particular view (that is, for a particular pan angle, tilt
angle, and field of view) is stored in another buffer, the prescreen buffer (or
front buffer). During screen updates, the contents of the prescreen buffer are
copied into the graphics world associated with the panoramic node. Figure 2-1
illustrates the internal buffers maintained by QuickTime VR.
40 About the QuickTime VR Manager

C H A P T E R 2

QuickTime VR Manager
Figure 2-1 QuickTime VR’s internal buffers

The QuickTime VR Manager allows applications limited access to the contents
of the back and prescreen buffers. You can draw directly into the back buffer by
installing a back buffer imaging procedure, which is called at preestablished
times (for instance, whenever an update event occurs for the window
containing the movie). You can also draw directly into the prescreen buffer by
installing a prescreen buffer imaging completion procedure, which is called
each time QuickTime VR is finished drawing an image into the prescreen buffer.
You can use a prescreen buffer imaging completion procedure to add graphical
elements to an image before it is copied to the screen.

Memory Management 2

QuickTime VR can require large amounts of memory to store its internal
representation of the uncorrected image associated with a panoramic node,
which is stored in the back buffer. To provide flexibility when operating with
limited amounts of memory, a movie’s author can include several different
resolutions of an image, in different video tracks in the movie file. By default,
QuickTime VR selects the highest resolution image available. When memory is
limited, however, QuickTime VR selects the image with the highest resolution
that fits into the memory it can allocate for its back buffer.

The QuickTime VR Manager provides functions that you can use to determine
what resolutions are available and to get and set the current resolution of a
panoramic node. You can also use QuickTime VR Manager functions to

Back buffer

Warping

Prescreen buffer

Screen
About the QuickTime VR Manager 41

C H A P T E R 2

QuickTime VR Manager
override the default behavior for loading data into the back buffer. By default, if
enough memory is available, QuickTime VR allocates a back buffer that is large
enough to hold the entire uncorrected panoramic image.

Using the QuickTime VR Manager 2

This section illustrates basic ways of using the QuickTime VR Manager.
In particular, it provides source code examples that show how you can

■ determine whether the QuickTime VR Manager is available in the current
operating environment

■ initialize the QuickTime VR Manager

■ display a QuickTime VR movie in a window

■ create QuickTime VR movie instances

■ manipulate a node’s pan and tilt angles

■ zoom in and out

■ install an intercept procedure

■ define node-entering and node-leaving procedures

■ manage QuickTime VR’s panoramic image buffers

Note
The code examples shown in this section provide only
rudimentary error handling. ◆

Determining That the QuickTime VR Manager Is Available 2

Before calling any QuickTime VR Manager routines, you need to verify that the
QuickTime VR Manager is available in the current operating environment and
that it has the capabilities you need. For the Mac OS, you can verify that the
QuickTime VR Manager is available by calling the Gestalt function with the
gestaltQTVRMgrAttr selector. Gestalt returns, in its second parameter, a long
word whose value encodes the attributes of the QuickTime VR Manager.
Listing 2-1 illustrates how to determine whether the QuickTime VR Manager
is available.
42 Using the QuickTime VR Manager

C H A P T E R 2

QuickTime VR Manager
Listing 2-1 Checking for the availability of the QuickTime VR Manager

Boolean MyHasQTVRManager (void)
{

OSErr myErr;
long myAttrs;
Boolean myHasQTVRMgr = false;

myErr = Gestalt(gestaltQTVRMgrAttr, &myAttrs);
if (myErr == noErr)

if (myAttrs & (1 << gestaltQTVRMgrPresent))
myHasQTVRMgr = true;

return myHasQTVRMgr;
}

You can also use the Gestalt function to get information about other attributes
of the QuickTime VR Manager. See “Gestalt Selector and Response Values”
(page 57) for details on the QuickTime VR Manager attributes you can query.

Note
The Gestalt function is available with all operating
systems. On those systems that require a call to
InitializeQTML, Gestalt is available after calling
InitializeQTML. On those systems, calling InitializeQTVR is
still required after calling Gestalt, and the value returned
from InitializeQTVR must be checked even when the call to
Gestalt is successful, so the call to Gestalt is not necessary,
but it can be useful in determining the version and features
of the QuickTime VR software that is installed. ◆

Initializing the QuickTime VR Manager 2

In a Windows environment, before your application can call any QuickTime VR
Manager routines, you have to call InitializeQTVR so that QuickTime VR can
set up its internal data structures. If you make any other calls to the
QuickTime VR Manager before calling InitializeQTVR, those calls return either
a numerical value of zero or an error code of –30555 (qtvrUninitialized), which
indicates that QuickTime VR has not been initialized. Similarly, functions with
Using the QuickTime VR Manager 43

C H A P T E R 2

QuickTime VR Manager
Boolean return types return false and functions with OSType return types
return '????'.

When your application or process has finished using QuickTime VR, it should
call TerminateQTVR.

You can call InitializeQTVR and TerminateQTVR more than once; they are
reference-counted and nestable.

Note
The InitializeQTVR and TerminateQTVR routines are
required for QuickTime VR to run in a Windows
environment. They neither compile nor link in the Mac OS
environment.

Creating QuickTime VR Movie Instances 2

As mentioned earlier, most QuickTime VR Manager functions operate on a
QuickTime VR movie instance (defined by the QTVRInstance data type), which
identifies a particular QuickTime VR movie. You can get a QuickTime VR movie
instance by calling the QTVRGetQTVRInstance function, as illustrated in
Listing 2-2.

Listing 2-2 Getting a QuickTime VR movie instance

QTVRInstance MyGetQTVRInstanceFromMC (MovieController theController)
{

Track myTrack = nil;
QTVRInstance myInstance = nil;
Movie myMovie;

//Get the movie from the movie controller.
myMovie = MCGetMovie(theController);

if (myMovie) {
//Get the first QTVR track in the movie.
myTrack = QTVRGetQTVRTrack(myMovie, 1);

//Get a QTVR instance for that QTVR track.
if (myTrack) {
44 Using the QuickTime VR Manager

C H A P T E R 2

QuickTime VR Manager
QTVRGetQTVRInstance(myInstance, myTrack, theController);
//Set our units to be degrees.
if (myInstance)

QTVRSetAngularUnits(myInstance, kQTVRDegrees);
}

}

return(myInstance);
}

To get a QuickTime VR movie instance, you first need to obtain a QTVR track, a
special type of QuickTime track that maintains a list of the nodes in the scene. A
single QuickTime movie file can contain more than one QuickTime VR scene
and hence more than one QTVR track, so you need to specify which QTVR
track you want by calling the QTVRGetQTVRTrack function with the index of the
desired track. Listing 2-2 simply gets the first QTVR track in the specified movie.

Note
Movies made with QuickTime VR 1.0 do not contain a
QTVR track. When you call QTVRGetQTVRTrack with such a
movie, the function returns the appropriate QuickTime
track. ◆

After getting the desired QTVR track, the MyGetQTVRInstanceFromMC function
defined in Listing 2-2 calls the QTVRGetQTVRInstance function to obtain a
QuickTime VR movie instance. Finally, MyGetQTVRInstanceFromMC calls
QTVRSetAngularUnits to ensure that all angles passed to QuickTime VR
functions are interpreted as degrees.

Note
A QuickTime VR movie instance is essentially a pointer to a
data structure maintained privately by QuickTime VR. You
obtain a movie instance by calling QTVRGetQTVRInstance, but
you do not need to dispose of that instance. A
QuickTime VR movie instance remains valid until you
dispose of the QuickTime movie controller (by calling
DisposeMovieController). ◆
Using the QuickTime VR Manager 45

C H A P T E R 2

QuickTime VR Manager
Manipulating Viewing Angles and Zooming 2

Perhaps the simplest use of the QuickTime VR Manager is to manipulate the
current viewing characteristics of an object or panoramic node. You can use the
QTVRGetPanAngle and QTVRSetPanAngle functions to manipulate the pan angle,
and you can use the QTVRGetTiltAngle and QTVRSetTiltAngle functions to
manipulate the tilt angle. Listing 2-3 illustrates how to pan or tilt a specific
number of degrees in a specific direction.

Listing 2-3 Changing the viewing angle

#define kDirLeft 0L
#define kDirRight 1L
#define kDirUp 2L
#define kDirDown 3L

Boolean MyGoDirByDegrees (QTVRInstance theInstance, long theDir, float theAmt)
{

float theAngle;
Boolean theMoved = false; //Did calling this routine result in a movement?

switch (theDir) {
case kDirUp:

theAngle = QTVRGetTiltAngle(theInstance);
QTVRSetTiltAngle(theInstance, theAngle + theAmt);
break;

case kDirDown:
theAngle = QTVRGetTiltAngle(theInstance);
QTVRSetTiltAngle(theInstance, theAngle – theAmt);
break;

case kDirLeft:
theAngle = QTVRGetPanAngle(theInstance);
QTVRSetPanAngle(theInstance, theAngle + theAmt);
break;

case kDirRight:
theAngle = QTVRGetPanAngle(theInstance);
QTVRSetPanAngle(theInstance, theAngle – theAmt);
break;

default:
break;
46 Using the QuickTime VR Manager

C H A P T E R 2

QuickTime VR Manager
}

//Now update the image on the screen.
QTVRUpdate(theInstance, kQTVRStatic);

//Determine whether a movement actually occurred.
switch (theDir) {

case kDirUp:
case kDirDown:

theMoved = (theAngle != QTVRGetTiltAngle(theInstance));
break;

case kDirLeft:
case kDirRight:

theMoved = (theAngle != QTVRGetPanAngle(theInstance));
break;

default:
break;

}

return(theMoved);
}

MyGoDirByDegrees is relatively simple. It first determines the direction in which
to move, gets the current pan or tilt angle, and then sets a new pan or tilt angle
by adding or subtracting the desired displacement to that angle. Notice that
MyGoDirByDegrees calls the QTVRUpdate function to update the image on the
screen. This update is necessary whenever you change a viewing characteristic
programmatically.

Once the new viewing angle has been set and the new image has been displayed,
the MyGoDirByDegrees function determines whether the new pan or tilt angle
differs from the pan or tilt angle on entry and passes back a Boolean value to
indicate whether the call to MyGoDirByDegrees changed the pan or tilt angle. (The
new angle may not be different because, for example, the value was already at
some limit or constraint. This information might be useful for determining
whether to enable or disable some visual effect in the scene.)

Zooming in or out is just as simple as panning or tilting. For both objects and
panoramas, you zoom in or out by changing the field of view of the node.
Listing 2-4 defines a function that zooms in or out by a predetermined amount.
Using the QuickTime VR Manager 47

C H A P T E R 2

QuickTime VR Manager
Listing 2-4 Changing the field of view

#define kDirIn 4L
#define kDirOut 5L

void MyZoomInOrOut (QTVRInstance theInstance, long theDir)
{

float theFloat;

theFloat = QTVRGetFieldOfView(theInstance);
switch (theDir) {

case kDirIn:
theFloat = theFloat / 2.0;
break;

case kDirOut:
theFloat = theFloat * 2.0;
break;

default:
break;

}
QTVRSetFieldOfView(theInstance, theFloat);
QTVRUpdate(theInstance, kQTVRStatic);

}

The MyZoomInOrOut function defined in Listing 2-4 simply doubles or halves the
current field of view, depending on whether you’re zooming out or in.

Intercepting QuickTime VR Manager Routines 2

The QuickTime VR Manager provides support for intercepting some of its
routines. To intercept a routine, you need to define and install an intercept
procedure, a function that is executed in addition to (or instead of) the
QuickTime VR Manager function it’s intercepting.

Typically, you’ll use an intercept procedure to augment the behavior of a
QuickTime VR Manager function. For instance, you might intercept the
QTVRSetPanAngle function to play a specific sound when the user moves to a
particular pan angle. In this case, you would have the QuickTime VR Manager
execute the QTVRSetPanAngle function, and then you would play the appropriate
sound.
48 Using the QuickTime VR Manager

C H A P T E R 2

QuickTime VR Manager
Alternatively, you might want to override the intercepted function altogether.
For instance, you might intercept the QTVRTriggerHotSpot function so that when
the user clicks a custom hot spot, you can respond accordingly. In this case,
there is no need to have the QuickTime VR Manager execute the
QTVRTriggerHotSpot function.

You declare an intercept procedure like this:

pascal void MyInterceptProc (
QTVRInstance qtvr,
QTVRInterceptPtr qtvrMsg,
SInt32 refCon,
Boolean *cancel);

The qtvr parameter is the instance with which you’re concerned. The qtvrMsg
parameter is a pointer to an intercept structure, which contains information
about the routine being intercepted and its parameters. The refCon parameter is
a long integer available for use by your application. Finally, your intercept
procedure should set the cancel parameter to indicate whether the
QuickTime VR Manager should execute the intercepted function when your
intercept procedure has finished (false) or should not execute the function
(true).

Note
If you don’t set the cancel parameter before exiting your
intercept procedure, its value is by default set to false
(indicating that the intercepted function should be
executed). ◆

The intercept structure is defined by the QTVRInterceptRecord data type:

typedef struct QTVRInterceptRecord {
SInt32 reserved1;
SInt32 selector;
SInt32 reserved2;
SInt32 reserved3;
SInt32 paramCount;
void *parameter[6];

} QTVRInterceptRecord, *QTVRInterceptPtr;

As you can see, many of the fields of an intercept structure are reserved. The
interesting fields are selector, paramCount, and parameter. The selector field is
Using the QuickTime VR Manager 49

C H A P T E R 2

QuickTime VR Manager
an intercept selector, a constant that indicates which routine has triggered your
intercept procedure. You can, if you wish, install a single intercept procedure for
all intercepted functions. In that case, you can inspect the selector field of the
intercept structure passed to your intercept routine to determine how to
respond. The QuickTime VR Manager currently defines these intercept selectors:

typedef enum QTVRProcSelector {
kQTVRSetPanAngleSelector = 0x2000,
kQTVRSetTiltAngleSelector = 0x2001,
kQTVRSetFieldOfViewSelector = 0x2002,
kQTVRSetViewCenterSelector = 0x2003,
kQTVRMouseEnterSelector = 0x2004,
kQTVRMouseWithinSelector = 0x2005,
kQTVRMouseLeaveSelector = 0x2006,
kQTVRMouseDownSelector = 0x2007,
kQTVRMouseStillDownSelector = 0x2008,
kQTVRMouseUpSelector = 0x2009,
kQTVRTriggerHotSpotSelector = 0x200A,
kQTVRGetHotSpotTypeSelector = 0x200B

} QTVRProcSelector;

The parameter field of the intercept structure is an array that holds, in order, the
parameters that were passed to the intercepted function, minus the QTVR
instance parameter. For example, if you intercept the QTVRSetPanAngle function,
the parameter array contains a single member, a pointer to a floating-point value
that is the new pan angle. You can determine how many members the parameter
array contains by inspecting the paramCount field of the intercept structure.

Listing 2-5 defines a simple intercept procedure that is called whenever the
QuickTime VR Manager function QTVRSetPanAngle is called. The intercept
procedure calls an application-defined function, MyPlayPanSound, to play a
sound for the new pan angle.

Listing 2-5 Intercepting the QTVRSetPanAngle function (version 1)

#define MyPi (3.1415926535898)
#define RadiansToDegrees(x) ((x) * 180.0 / MyPi)

pascal void MyInterceptProc (QTVRInstance theInstance,
QTVRInterceptPtr theMsg, SInt32 refcon, Boolean *cancel)

{

50 Using the QuickTime VR Manager

C H A P T E R 2

QuickTime VR Manager
Boolean cancelInterceptedProc = false;
float theAngle, *theAnglePtr;

switch (theMsg->selector) {
case kQTVRSetPanAngleSelector:

theAnglePtr = theMsg->parameter[0];
theAngle = *theAnglePtr;
theAngle = RadiansToDegrees(theAngle);
MyPlayPanSound(theAngle); //Play a sound for the angle.
break;

default:
break;

}

*cancel = cancelInterceptedProc;
}

IMPORTANT

Angular values in the parameter field of an intercept
structure are always returned in radians, regardless of the
current angular unit. In addition, a floating-point value is
always passed as a pointer to a floating-point value. ▲

The intercept procedure defined in Listing 2-5 returns the value false in the
cancel parameter. This indicates that the QuickTime VR Manager should call
the intercepted function after the intercept procedure exits. If the cancel
parameter is set to true, the QuickTime VR Manager does not call the
intercepted function. This is useful if you want to replace the intercepted
function altogether or if you want to call the intercepted function from within
your intercept procedure. For example, if you want to play a sound after the
new pan angle is displayed, you can define an intercept procedure like the one
in Listing 2-6.

Listing 2-6 Intercepting the QTVRSetPanAngle function (version 2)

pascal void MyInterceptProc (QTVRInstance theInstance,
QTVRInterceptPtr theMsg, SInt32 refcon, Boolean *cancel)

{
Boolean cancelInterceptedProc = false;
Using the QuickTime VR Manager 51

C H A P T E R 2

QuickTime VR Manager
switch (theMsg->selector) {
case kQTVRGetHotSpotTypeSelector:
{
OSType hsType;
QTVRCallInterceptedProc (theInstance, theMsg);
hsType = * ((UInt32 *) theMsg->parameter[1]);
// Turn all url hotspots into undefined hotspots
if (hsType == kQTVRHotSpotURLType)

* ((UInt32 *) theMsg->parameter[1]) = kQTVRHotSpotUndefinedType;
cancelInterceptedProc = true;
break;
}

default:
break;

}

*cancel = cancelInterceptedProc;
}

The intercept procedure defined in Listing 2-6 looks at the hot spot type
returned by the call to QTVRCallInterceptedProc and changes it to undefined if
it is a URL hot spot.

Notice that the new intercept procedure returns the value true in the cancel
parameter, indicating that the QuickTime VR Manager should not call the
intercepted function after the intercept procedure returns. If the intercept
procedure returns false, then the intercepted function will be called twice (once
because you call QTVRCallInterceptedProc and a second time because you
return false in the cancel parameter).

IMPORTANT

You should use the QTVRCallInterceptedProc function only
in an intercept procedure. Moreover, you should use
QTVRCallInterceptedProc instead of the function you’re
intercepting. If you called QTVRSetPanAngle directly in
Listing 2-6, your intercept procedure would be called
repeatedly until your stack overflowed. ▲

You install an intercept procedure by calling the QTVRInstallInterceptProc
function, as shown in Listing 2-7.
52 Using the QuickTime VR Manager

C H A P T E R 2

QuickTime VR Manager
Listing 2-7 Installing an intercept procedure

QTVRInterceptUPP MyInstallInterceptProcedure (QTVRInstance theInstance)
{

QTVRInterceptUPP theInterceptProc;

theInterceptProc = NewQTVRInterceptProc(MyInterceptProc);
QTVRInstallInterceptProc(theInstance, kQTVRSetPanAngleSelector,

theInterceptProc, 0, 0);
return theInterceptProc

}
. . .
myProc = MyInstallInterceptProcedure(qtvr);

QTVRInstallInterceptProc takes an intercept selector to determine which
QuickTime VR Manager function to intercept. If you wish, you can define a
single intercept procedure and use the intercept selector passed to it in the
selector field of theMsg to decide how to respond.

When you no longer need the intercept procedure you should call
QTVRInstallInterceptProc again with the same selector and a nil procedure
pointer and then call DisposeRoutineDescriptor on myProc.

Entering and Leaving Nodes 2

The QuickTime VR Manager provides a way for you to be notified whenever
the user is about to enter a new node or leave the current node. You can then
react to these notifications in whatever manner you choose. For example, when
the user is about to enter a new node, you might determine the name of that
new node and display the name or other information about the node. Similarly,
when the user is about to leave the current node, you might initiate a custom
node-to-node transition effect. Alternatively, you can cancel the move to the
other node; this might be useful in a game when the user hasn’t yet searched
the current node completely or accomplished some other predefined task in that
node.

To be informed that the user is about to enter a new node, you define and install
a node-entering procedure. Listing 2-8 illustrates a simple node-entering
procedure that determines the name of the new node and then utters that name.
Using the QuickTime VR Manager 53

C H A P T E R 2

QuickTime VR Manager
Listing 2-8 Informing the user of a new node’s name

pascal OSErr MyEnteringNodeProc (QTVRInstance theInstance,
UInt32 theNodeID, SInt32 refCon)

{
Str255 theString;
OSErr theErr;

theErr = MyGetNodeName(theInstance, theNodeID, &theString);
if (!theErr)

SpeakString(theString);

return(theErr);
}

Note
See Listing 4-1 (page 256) for the definition of the function
MyGetNodeName defined in Listing 2-8. ◆

You install a node-entering procedure by calling the QTVRSetEnteringNodeProc
function, like this:

theErr = QTVRSetEnteringNodeProc(theInstance,
NewQTVREnteringNodeProc(MyEnteringNodeProc), 0, 0);

To be informed that the user is about to leave the current node, you define and
install a node-leaving procedure. Listing 2-9 illustrates a simple node-leaving
procedure that prevents the user from leaving the current node unless all hot
spots in the node have been triggered.

Listing 2-9 Leaving a node

pascal OSErr MyLeavingNodeProc (QTVRInstance theInstance,
UInt32 fromNodeID, UInt32 toNodeID,
Boolean *cancel, MyDataPtr theDataPtr)

{
Boolean theUserCanLeave = false; //By default, user can’t leave.

if (theDataPtr->allHotSpotsTouched)
theUserCanLeave = true;
54 Using the QuickTime VR Manager

C H A P T E R 2

QuickTime VR Manager
*cancel = !theUserCanLeave;
return(noErr);

}

Before returning, your node-leaving procedure should set the Boolean value
pointed to by the cancel parameter to false to accept the move from fromNodeID
to toNodeID. Set that value to true to cancel the move and remain at the node
specified by the fromNodeID parameter. The procedure defined in Listing 2-9
simply reads some private data to determine whether to allow the user to leave
the current node.

You install a node-leaving procedure by calling the QTVRSetLeavingNodeProc
function, like this:

theErr = QTVRSetLeavingNodeProc(theInstance,
NewQTVRLeavingNodeProc(MyLeavingNodeProc), (SInt32)&theData, 0);

In a multinode movie, your node-entering procedure is not called for the first
node. This is because the user is considered to be in the first node as soon as the
VR movie is opened, before you have a chance to install your node-entering
procedure. If you need to have your node-entering procedure called for the first
node, you can execute it explicitly, either before or after you’ve installed it as a
node-entering procedure.

Drawing in the Prescreen Buffer 2

The QuickTime VR Manager allows you to define a prescreen buffer imaging
completion procedure that is called whenever QuickTime VR finishes drawing a
panorama image in the prescreen buffer. Typically, your completion procedure
adds graphical elements to the image before the buffer is copied to the screen.
For instance, a flight simulator could overlay a heads-up display containing
information about the aircraft (its altitude, velocity, and so forth).

You install a prescreen buffer imaging completion procedure by passing its
address to the QTVRSetPrescreenImagingCompleteProc function:

theErr = QTVRSetPrescreenImagingCompleteProc(theInstance,
NewQTVRImagingCompleteProc(MyImagingCompleteProc),
(SInt32)&theData, 0);
Using the QuickTime VR Manager 55

C H A P T E R 2

QuickTime VR Manager
Listing 2-10 defines a simple completion routine that overlays a picture onto the
screen image.

Listing 2-10 Overlaying images in the prescreen buffer

pascal OSErr MyImagingCompleteProc (QTVRInstance, MyDataPtr theDataPtr)
{

if (theDataPtr->hasLogoPict) {
GWorldPtr theOffscreenGWorld;
GDHandle theGD;
Rect gwRect;
Rect picRect;

// The current graphics world is set to the prescreen buffer.
GetGWorld (&theOffscreenGWorld, &theGD);
gwRect = (*(theOffscreenGWorld->portPixMap))->bounds;

picRect = (*(theDataPtr->logoPict))->picFrame;
OffsetRect (&picRect, -picRect.left, -picRect.top);
OffsetRect (&picRect, gwRect.right - (picRect.right + 8),

gwRect.bottom - (picRect.bottom + 8));
// Draw logo in lower right corner
DrawPicture (theDataPtr->logoPict, &picRect);

}
return noErr;

}

On entry to the prescreen buffer imaging completion routine, the current
graphics world is set to QuickTime VR’s prescreen buffer. The
MyImagingCompleteProc function defined in Listing 2-10 retrieves the dimensions
of that buffer and then draws a picture in the lower-right corner of that buffer.

QuickTime VR Manager Reference 2

This section describes the constants, data structures, and routines provided by
the QuickTime VR Manager.
56 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
Constants 2

This section describes the constants provided by the QuickTime VR Manager.
You use these constants to specify node types, intercepted routines, correction
and imaging modes, and other information.

Gestalt Selector and Response Values 2

You can pass the gestaltQTVRMgrVers selector to the Gestalt function to get the
version of the QuickTime VR Manager. You can pass the gestaltQTVRMgrAttr
selector to the Gestalt function to get information about the QuickTime VR
Manager. Gestalt returns information to you by setting or clearing bits in
the response parameter. The selectors and bits currently used are defined
by constants:

enum {
gestaltQTVRMgrAttr = FOUR_CHAR_CODE('qtvr'),
gestaltQTVRMgrVers = FOUR_CHAR_CODE('qtvv'),
gestaltQTVRMgrPresent = 0,
gestaltQTVRObjMoviesPresent = 1,
gestaltQTVRCylinderPanosPresent = 2

};

Constant descriptions

gestaltQTVRMgrAttr Return the attributes of the QuickTime VR Manager.
gestaltQTVRMgrVers Return the version of the QuickTime VR Manager.
gestaltQTVRMgrPresent

This bit is set if the QuickTime VR Manager is present in
the current operating environment.

gestaltQTVRObjMoviesPresent
This bit is set if the QuickTime VR Manager supports object
nodes.

gestaltQTVRCylinderPanosPresent
This bit is set if the QuickTime VR Manager supports
panoramic nodes that use cylindrical projection.
QuickTime VR Manager Reference 57

C H A P T E R 2

QuickTime VR Manager
Note
For complete information about the Gestalt function, see
the chapter “Gestalt Manager” in Inside Macintosh:
Operating System Utilities. ◆

Node Types 2

The QTVRGetNodeType function returns a value that specifies the type of a node.
Currently, these values can be returned:

enum {
kQTVRPanoramaType = FOUR_CHAR_CODE('pano'),
kQTVRObjectType = FOUR_CHAR_CODE('obje')

};

Constant descriptions

kQTVRPanoramaType The node is a panoramic node.
kQTVRObjectType The node is an object node.

Node IDs 2

The nodeID parameter to the QTVRGoToNodeID function specifies the ID of a node.
The QuickTime VR Manager defines these constants for specific nodes:

enum {
kQTVRCurrentNode = 0,
kQTVRPreviousNode = 0x80000000,
kQTVRDefaultNode = 0x80000001

};

Constant descriptions

kQTVRCurrentNode The current node. (Moving to the current node has the
effect of restoring the default view in that node.)

kQTVRPreviousNode The previous node. The QuickTime VR Manager maintains
a list (which is limited only by the available memory) of the
nodes visited.

kQTVRDefaultNode The default node in the scene.
58 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
Angular Unit Types 2

The QTVRGetAngularUnits and QTVRSetAngularUnits functions use the following
constants to indicate the type of angular unit associated with a QuickTime VR
movie instance:

typedef enum QTVRAngularUnits {
kQTVRDegrees = 0,
kQTVRRadians = 1

} QTVRAngularUnits;

Constant descriptions

kQTVRDegrees Angles are specified using degrees. This is the default type
of angle specification.

kQTVRRadians Angles are specified using radians.

Hot Spot Action Selectors 2

The flags parameter passed to an application-defined mouse over hot spot
procedure specifies a type of mouse action for a hot spot. See “Mouse Over Hot
Spot Procedure” (page 180). These constants define the available hot spot
actions:

enum {
kQTVRHotSpotEnter = 0,
kQTVRHotSpotWithin = 1,
kQTVRHotSpotLeave = 2

};

Constant descriptions

kQTVRHotSpotEnter The cursor has just entered the hot spot.
kQTVRHotSpotWithin The cursor is still in the hot spot.
kQTVRHotSpotLeave The cursor has just left the hot spot.

Flags Value for Imaging Completion Procedure 2

The kQTVRPreScreenEveryIdle value of the flags parameter passed to
QTVRSetPrescreenImagingCompleteProc causes a drawing attempt on every idle
QuickTime VR Manager Reference 59

C H A P T E R 2

QuickTime VR Manager
passed to the movie controller (MCIdle or MCIsPlayerEvent(idle)). The purpose
of the flag is to cause the software to draw as often as possible.

enum{
kQTVRPreScreenEveryIdle = 1L << 0

};

Intercept Selectors 2

The QuickTime VR Manager allows you to intercept a number of its functions
by installing an intercept procedure. You specify which function you want to
intercept by passing an intercept selector to the QTVRInstallInterceptProc
function. These are the available intercept selectors:

typedef enum QTVRProcSelector {
kQTVRSetPanAngleSelector = 0x2000,
kQTVRSetTiltAngleSelector = 0x2001,
kQTVRSetFieldOfViewSelector = 0x2002,
kQTVRSetViewCenterSelector = 0x2003,
kQTVRMouseEnterSelector = 0x2004,
kQTVRMouseWithinSelector = 0x2005,
kQTVRMouseLeaveSelector = 0x2006,
kQTVRMouseDownSelector = 0x2007,
kQTVRMouseStillDownSelector = 0x2008,
kQTVRMouseUpSelector = 0x2009,
kQTVRTriggerHotSpotSelector = 0x200A,
kQTVRGetHotSpotTypeSelector = 0x200B

} QTVRProcSelector;

Constant descriptions

kQTVRSetPanAngleSelector
Intercept the QTVRSetPanAngle function.

kQTVRSetTiltAngleSelector
Intercept the QTVRSetTiltAngle function.

kQTVRSetFieldOfViewSelector
Intercept the QTVRSetFieldOfView function.

kQTVRSetViewCenterSelector
Intercept the QTVRSetViewCenter function.
60 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
kQTVRMouseEnterSelector
Intercept the QTVRMouseEnter function.

kQTVRMouseWithinSelector
Intercept the QTVRMouseWithin function.

kQTVRMouseLeaveSelector
Intercept the QTVRMouseLeave function.

kQTVRMouseDownSelector
Intercept the QTVRMouseDown function.

kQTVRMouseStillDownSelector
Intercept the QTVRMouseStillDown function.

kQTVRMouseUpSelector
Intercept the QTVRMouseUp function.

kQTVRTriggerHotSpotSelector
Intercept the QTVRTriggerHotSpot function.

kQTVRGetHotSpotTypeSelector
Intercept the QTVRGetHotSpotType function

Constraint Types 2

The kind parameter of the QTVRGetViewingLimits, QTVRGetConstraints,
QTVRSetConstraints, and QTVRWrapAndConstrain functions specifies the type of
angle or other feature of which you want to determine or set the constraints
(that is, the limits of the current node). You can pass one of these values in
that parameter:

enum {
kQTVRPan = 0,
kQTVRTilt = 1,
kQTVRFieldOfView = 2,
kQTVRViewCenterH = 4,
kQTVRViewCenterV = 5

};

Constant descriptions

kQTVRPan The pan angle. The associated value is of type float.
kQTVRTilt The tilt angle. The associated value is of type float.
kQTVRFieldOfView The field of view. The associated value is of type float.
QuickTime VR Manager Reference 61

C H A P T E R 2

QuickTime VR Manager
kQTVRViewCenterH The horizontal view center. This value is valid only for
the QTVRWrapAndConstrain function, which returns the
horizontal view center constrained in the current field
of view. The minimum and maximum values of the
horizontal view center change for every field-of-view
setting. If the field of view of the object is the maximum
field of view, the object’s horizontal view center is
constrained to a single value that is the horizontal center of
the object image in display coordinates (rounding down
any fractional pixels).

kQTVRViewCenterV The vertical view center. This value is valid only for the
QTVRWrapAndConstrain function, which returns the vertical
view center constrained in the current field of view. The
minimum and maximum values of the vertical view center
change for every field-of-view setting. If the field of view of
the object is the maximum field of view, the object’s vertical
view center is constrained to a single value that is the
vertical center of the object image in display coordinates
(rounding down any fractional pixels).

Correction Modes 2

The correction mode of a panorama (specified by the kQTVRImagingCorrection
constant) specifies a type of image correction to be applied when imaging a
panoramic view. You can pass one of these values to specify a correction mode:

enum {
kQTVRNoCorrection = 0,
kQTVRPartialCorrection = 1,
kQTVRFullCorrection = 2

};

Constant descriptions

kQTVRNoCorrection Apply no warping. The source panorama is reproduced
directly, with no image correction.

kQTVRPartialCorrection
Apply one-dimensional (horizontal) warping. This kind of
correction is often sufficient, especially for outdoor scenes.
62 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
kQTVRFullCorrection
Apply two-dimensional warping. This correction mode
produces perspectively correct images from the source
panorama.

IMPORTANT

Future versions of QuickTime VR may employ warping
methods that interpret these correction modes differently.
You can always assume, however, that the
kQTVRNoCorrection mode performs no image correction at
all, and that the kQTVRFullCorrection mode performs more
correction than kQTVRPartialCorrection (and hence
requires more time to construct the resulting image). ▲

Imaging Modes 2

The imagingMode parameter of the functions QTVRGetImagingProperty (page 145),
QTVRSetImagingProperty (page 146), and several others specifies an imaging
mode. These constants define the available imaging modes:

typedef enum QTVRImagingMode {
kQTVRCurrentMode = 0,
kQTVRStatic = 1,
kQTVRMotion = 2,
kQTVRAllModes = 100

} QTVRImagingMode;

Constant descriptions

kQTVRCurrentMode The current imaging mode. This value is valid only for the
function QTVRUpdate (page 148).

kQTVRStatic The panorama is static.
kQTVRMotion The panorama is in motion; that is, an action such as

panning or zooming is occurring.
kQTVRAllModes All currently defined imaging modes. You can specify this

imaging mode when calling QTVRSetImagingProperty to
assign a value to a particular imaging property for all
imaging modes. You can also use this imaging mode in the
imagingMode field of a panorama-imaging atom structure to
indicate a default value for a particular imaging property
QuickTime VR Manager Reference 63

C H A P T E R 2

QuickTime VR Manager
for all imaging modes. For information about
panorama-imaging atom structures, see
“Panorama-Imaging Atom” (page 246) in Chapter 4,
“QuickTime VR Atom Containers.”

Imaging Property Types 2

The imagingProperty parameter of the functions QTVRGetImagingProperty
(page 145) and QTVRSetImagingProperty (page 146) specifies the type of imaging
property of a panoramic node whose value you want to get or set. These
constants define the available imaging properties:

enum {
kQTVRImagingCorrection = 1,
kQTVRImagingQuality = 2,
kQTVRImagingDirectDraw = 3,
kQTVRImagingCurrentMode = 100

};

#define kQTVRImagingDefaultValue 0x80000000

Constant descriptions

kQTVRImagingCorrection
The correction mode property. This property determines
the type of image correction to be applied when imaging a
panoramic view. The acceptable values for this property
type are described in “Correction Modes” (page 62).

kQTVRImagingQuality
The imaging quality property. This property determines the
quality of the output image. The acceptable values for this
property type are described in “Quality Properties”
(page 65).

kQTVRImagingDirectDraw
The direct-drawing property. This property determines the
immediate destination of an image. The value of this
property (as specified by the propertyValue parameter) is
interpreted as a Boolean value. If the value is true, then
images are computed and drawn directly to the final
destination without first being drawn in the prescreen
buffer maintained by QuickTime VR. This value provides
64 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
the fastest overall frame rate but may result in relatively
slower individual frame drawing for high-quality,
high-resolution images on lower performance systems. If
the value of this property is false, then images are
computed and drawn first into the prescreen buffer and
then to the final destination. This value provides the
shortest imaging time for each individual frame but results
in a reduced overall frame rate.

kQTVRImagingCurrentMode
The current imaging mode property. When you pass this
property selector to the QTVRGetImagingProperty function, it
returns, in the propertyValue parameter, the current
imaging mode (that is, either kQTVRStatic or kQTVRMotion).
If the kQTVRImagingDefaultValue bit is set, the default
imaging mode is returned. You can get but not set the value
of this property. You might want to determine the current
imaging mode in an imaging callback procedure if what
you draw depends on the current imaging mode.

kQTVRImagingDefaultValue
The default value specifier. You can OR this value with any
of the imaging property types to get or set the default value
of that property type.

Note
The kQTVRImagingDirectDraw property cannot always be
supported. During updates, QuickTime VR’s warping
engine might ignore a value of true and draw the image
first into the prescreen buffer and then into the final
destination. ◆

Quality Properties 2

The propertyValue parameter of the QTVRGetImagingProperty and
QTVRSetImagingProperty functions specifies the value of an imaging property of
a panoramic node. These constants define the available values of the
kQTVRImagingQuality imaging property:
QuickTime VR Manager Reference 65

C H A P T E R 2

QuickTime VR Manager
#define codecMinQuality 0x000L
#define codecLowQuality 0x100L
#define codecNormalQuality 0x200L
#define codecHighQuality 0x300L
#define codecMaxQuality 0x3FFL

The imaging quality setting is interpreted purely as a scalar value, in much the
same way as it is for any other QuickTime movie.

The use of codecMinQuality always results in the best possible performance
without regard to quality, even on systems where a negligible decrease in
performance might yield significant improvements in quality. Similarly, the use
of codecMaxQuality always results in the best possible quality, regardless of
performance. Because of the possibility for extreme degradation of performance
or quality, the scalar limits should be used only in specialized circumstances.
Values of codecLowQuality and codecHighQuality are recommended for good
performance and quality, respectively, across a range of different systems.

Transition Type 2

The transitionType parameter of the function QTVRSetTransitionProperty
(page 151) specifies a type of transition for a panoramic node. This constant
defines the available value of that parameter:

enum {
kQTVRTransitionSwing = 1

};

Constant description

kQTVRTransitionSwing
A transition between two views in a single node.

Transition Properties 2

The transitionProperty parameter of the function QTVRSetTransitionProperty
(page 151) specifies a type of property for a transition for a panoramic node.
These constants define the available values of that parameter:
66 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
enum {
kQTVRTransitionSpeed = 1,
kQTVRTransitionDirection = 2

};

Constant descriptions

kQTVRTransitionSpeed
The speed at which the transition should occur. The value
in the transitionValue parameter should be an integer
from 1 (the slowest transition speed) through 10 (the fastest
transition speed).

kQTVRTransitionDirection
The direction in which the transition should occur. The
value in the transitionValue parameter should be a
constant of type QTVRNudgeControl that indicates the
direction in which the view should swing while moving
from the current view to the new view. This direction can
be left or right, or it can have the value –1, which causes the
default direction to be used. By default, a swing transition
occurs along the shortest route between the two views.

Hot Spot Types 2

QuickTime VR recognizes three hot spot types. Only two of those have an
associated info atom: the link hot spot type and the URL hot spot type. There is
no specific info atom for the undefined hot spot type,
kQTVRHotSpotUndefinedType ('undf'). However, every undefined hot spot should
have a hot spot and hot spot info atom in the node information atom container.

QuickTime VR provides the following constants to specify the type of a
hot spot:

enum {
kQTVRHotSpotLinkType = 'link',
kQTVRHotSpotURLType = 'url ',
kQTVRHotSpotUndefinedType = 'undf'

};
QuickTime VR Manager Reference 67

C H A P T E R 2

QuickTime VR Manager
Constant descriptions

kQTVRHotSpotLinkType
A link hot spot.

kQTVRHotSpotURLType
A URL (Universal Resource Locator) hot spot.

kQTVRHotSpotUndefinedType
An undefined hot spot type.

IMPORTANT

Apple Computer reserves hot spot types that consist of all
lower-case letters. To avoid conflicts with possible future
hot spot types defined by Apple Computer, applications
that define their own hot spot types should not use all
lower-case letters. ▲

Interaction Property Types 2

The property parameter of the QTVRGetInteractionProperty and
QTVRSetInteractionProperty functions specifies a type of user interaction
property. For any specific property type, the value parameter specifies its
current or desired value. These constants define the available interaction
property types:

enum {
kQTVRInteractionMouseClickHysteresis = 1,
kQTVRInteractionMouseClickTimeout = 2,
kQTVRInteractionPanTiltSpeed = 3,
kQTVRInteractionZoomSpeed = 4,
kQTVRInteractionTranslateOnMouseDown = 101,
kQTVRInteractionMouseMotionScale = 102,
kQTVRInteractionNudgeMode = 103

};

#define kQTVRInteractionDefaultValue 0x80000000

You can get or set the default value of any of the interaction values by
performing a bitwise OR of the property constant with
kQTVRInteractionDefaultValue and pasting the result into the property
parameter.
68 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
Constant descriptions

kQTVRInteractionMouseClickHysteresis
The value parameter is interpreted as an unsigned short
integer that represents the mouse-click hysteresis, the
distance, in pixels, from the location of a mouse-down
event to the limit within which the cursor is considered not
to have moved. In other words, the cursor can move that
many pixels during a mouse click and still have the event
considered a click. The default mouse-click hysteresis value
is 2. This property is valid for panoramas only.

kQTVRInteractionMouseClickTimeout
The value parameter is interpreted as an unsigned long
integer that represents the mouse-click timeout, the
number of ticks after which a mouse click times out and is
automatically switched from a hot spot selection into a pan.
The default mouse-click timeout value is 30 ticks (one-half
second). This property is valid for panoramas only.

kQTVRInteractionPanTiltSpeed
The panning and tilting speed. The value parameter is
interpreted as an unsigned long integer that represents the
relative speed of panning and tilting. This integer should
be from 1 (the slowest speed) through 10 (the fastest
speed); the default panning and tilting speed is 5. This
property is valid only for panoramas.

kQTVRInteractionZoomSpeed
The value parameter is interpreted as an unsigned long
integer that represents the zooming speed, the relative
speed of zooming in and out. This integer should be from 1
(the slowest speed) through 10 (the fastest speed); the
default zooming speed is 5. This property is valid for both
objects and panoramas.

kQTVRInteractionTranslateOnMouseDown
The translate flag. The value parameter is interpreted as a
Boolean value that indicates whether translate mode is
enabled (true) or disabled (false). When translate mode is
enabled, the user can no longer pan or tilt using the mouse;
instead, dragging the cursor causes the object to translate.
The default translate flag value is false. This property is
valid for objects only.
QuickTime VR Manager Reference 69

C H A P T E R 2

QuickTime VR Manager
kQTVRInteractionMouseMotionScale
The value parameter is interpreted as a pointer to a
floating-point number that represents the mouse-motion
scale, the number of degrees or radians that an object or
panorama is panned or tilted when the cursor is dragged
the entire width of the object bounding box. The default
value is 180.0. This property is valid for objects only.

kQTVRInteractionNudgeMode
This parameter lets you set the QuickTime VR nudge mode
to either rotate, translate, or be the same as the current
mouse mode. See “Nudge Mode” (page 80).

Viewing Constraints 2

The constraints parameter of the QTVRGetConstraintStatus function is a pointer
to a long integer that encodes the constraints of a view. If a bit in the long
integer is set, the current view exhibits the corresponding constraint. The bits
are addressed using these constants:

enum {
kQTVRUnconstrained = 0
kQTVRCantPanLeft = 1L << 0,
kQTVRCantPanRight = 1L << 1,
kQTVRCantPanUp = 1L << 2,
kQTVRCantPanDown = 1L << 3,
kQTVRCantZoomIn = 1L << 4,
kQTVRCantZoomOut = 1L << 5,
kQTVRCantTranslateLeft = 1L << 6,
kQTVRCantTranslateRight = 1L << 7,
kQTVRCantTranslateUp = 1L << 8,
kQTVRCantTranslateDown = 1L << 9

};

Constant descriptions

kQTVRUnconstrained The view has no constraints. This is not a bit selector but a
value that indicates that none of the following bits is set.

kQTVRCantPanLeft If this bit is set, the view cannot pan left.
kQTVRCantPanRight If this bit is set, the view cannot pan right.
kQTVRCantPanUp If this bit is set, the view cannot pan up.
70 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
kQTVRCantPanDown If this bit is set, the view cannot pan down.
kQTVRCantZoomIn If this bit is set, the view cannot zoom in.
kQTVRCantZoomOut If this bit is set, the view cannot zoom out.
kQTVRCantTranslateLeft

If this bit is set, the view cannot translate to the left. This
constraint is valid only for object nodes.

kQTVRCantTranslateRight
If this bit is set, the view cannot translate to the right. This
constraint is valid only for object nodes.

kQTVRCantTranslateUp
If this bit is set, the view cannot translate up. This
constraint is valid only for object nodes.

kQTVRCantTranslateDown
If this bit is set, the view cannot translate down. This
constraint is valid only for object nodes.

Mouse Control Modes 2

The value returned by the QTVRGetCurrentMouseMode function is an unsigned
long integer that encodes the current mouse control modes. If a bit in the
integer is set, the corresponding mode is one of the current mouse modes. The
mode bits are addressed using these constants:

enum {
kQTVRPanning = 1L << 0,
kQTVRTranslating = 1L << 1,
kQTVRZooming = 1L << 2,
kQTVRScrolling = 1L << 3,
kQTVRSelecting = 1L << 4

};

Notice that several modes can be returned. That means a return value could
have both zooming and translating set, for example.

Constant descriptions

kQTVRPanning If this bit is set, the mouse controls panning of standard
objects, using objects-only controllers.
QuickTime VR Manager Reference 71

C H A P T E R 2

QuickTime VR Manager
kQTVRTranslating If this bit is set, the mouse controls translation for all
objects.

kQTVRZooming If this bit is set, the mouse controls zooming for all objects.
kQTVRScrolling If this bit is set, the mouse controls arrow scrolling for

standard objects and scrolling for joystick objects.
kQTVRSelecting If this bit is set, the mouse controls selecting of objects as an

object absolute controller.

Hot Spot Selectors 2

The enableFlag parameter passed to the function QTVREnableHotSpot (page 108)
indicates the method you want to use to select one or more hot spots for
enabling or disabling. These constants define the available hot spot selectors:

enum {
kQTVRHotSpotID = 0,
kQTVRHotSpotType = 1,
kQTVRAllHotSpots = 2

};

Constant descriptions

kQTVRHotSpotID Select a single hot spot by its hot spot ID (specified by the
hotSpotValue parameter).

kQTVRHotSpotType Select all hot spots of a hot spot type (specified by the
hotSpotValue parameter).

kQTVRAllHotSpots Select all hot spots in the current node.

Note
These hot spot selectors are not masks. So, for example, if
you want to enable only hot spots of a certain type, you
must first disable all hot spots (using the kQTVRAllHotSpots
selector) and then enable the desired type of hot spots
(using the kQTVRHotSpotType selector). ◆

Animation Settings 2

The setting parameter passed to the QTVRGetAnimationSetting and
QTVRSetAnimationSetting functions is a long integer that specifies a particular
animation setting of an object node. Animation settings specify characteristics
72 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
of the movie while it is playing. You can use these constants to specify
animation settings:

typedef enum QTVRObjectAnimationSetting {
kQTVRPalindromeViewFrames = 1,
kQTVRStartFirstViewFrames = 2,
kQTVRDontLoopViewFrames = 3,
kQTVRPlayEveryViewFrame = 4,
kQTVRSyncViewToFrameRate = 16,
kQTVRPalindromeViews = 17
kQTVRPlayStreamingViews = 18

} QTVRObjectAnimationSetting;

Constant descriptions

kQTVRPalindromeViewFrames
Play a back-and-forth animation of the frames of the
current view. The frames of the current view play with a
positive or negative frame rate; the frame rate sign is
switched each time the view end time (equal to the view
duration) or the view start time (always 0) is reached.

kQTVRStartFirstViewFrames
Play the frame animation starting with the first frame in the
view (that is, at the view start time). This setting is useful if
a sound track is associated by time with object views. Even
if the object view contains no animation, setting this flag
allows any sound authored to play with the view to play
from the beginning. When this flag is clear, each new object
view begins playing using the current view time of the
previous view.

kQTVRDontLoopViewFrames
Don’t loop the frame animation. Animation frames and
sound stop playing when the view duration is reached.

kQTVRPlayEveryViewFrame
Play every view frame. Animation plays all frames
regardless of play rate. The play rate is used to adjust the
duration in which a frame appears but no frames are
skipped so the rate is not exact. When this property is set,
sound tracks are not played.

kQTVRSyncViewToFrameRate
Synchronize the view animation to the frame animation.
QuickTime VR Manager Reference 73

C H A P T E R 2

QuickTime VR Manager
When view animation is enabled, the object views play at
the same rate and animation settings as the frame
animation rate and settings. This is useful if animation
must be synchronized precisely across multiple views or a
sound track is to be played during view animation instead
of during frame animation.

kQTVRPalindromeViews
Play a back-and-forth animation of the views of the current
node. When view animation is enabled, the object views
play with a positive or negative view rate; the view rate
sign is switched each time an object’s pan equals the
object’s minimum pan limit or the object’s maximum pan
limit (the first column in a row or the last column in a row,
respectively).

kQTVRPlayStreamingViews
When an object movie is streaming in from a network, this
flag indicates whether the frames corresponding to the row
in which the default view appears are to be played as they
are loaded.

Control Settings 2

The setting parameter passed to the QTVRGetControlSetting and
QTVRSetControlSetting functions is a long integer that specifies a particular
control setting of an object node. Control settings specify whether the object can
wrap during panning and tilting, as well as other features of the node. The
control settings are specified using these constants:

typedef enum QTVRControlSetting {
kQTVRWrapPan = 1,
kQTVRWrapTilt = 2,
kQTVRCanZoom = 3,
kQTVRReverseHControl = 4,
kQTVRReverseVControl = 5,
kQTVRSwapHVControl = 6,
kQTVRTranslation = 7

} QTVRControlSetting;
74 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
Constant descriptions

kQTVRWrapPan Set wrapping during panning. When this control setting is
enabled, the user can wrap around from the current pan
constraint maximum value to the pan constraint minimum
value (or vice versa) using the mouse or arrow keys. In
addition, calling the QTVRSetPanAngle function with a pan
angle that is either less than or greater than the current pan
constraints results in a pan angle within the current pan
constraints. Similarly, QTVRWrapAndConstrain returns a pan
angle within the current pan constraints, and QTVRNudge
wraps views after it reaches the maximum or minimum
constraint value.
When this control setting is disabled, the user cannot wrap
around from the current pan constraint maximum value to
the pan constraint minimum value (or vice versa) using the
mouse or arrow keys. In addition, the QTVRSetPanAngle
function returns the result code constraintReachedErr
when passed a pan angle that is either less than or greater
than the current pan constraints. Similarly,
QTVRWrapAndConstrain returns a pan angle that is one of the
current pan constraints, and QTVRNudge returns the result
code constraintReachedErr when it reaches the maximum
or minimum constraint value.
Note that a view animation stops when a constraint is
reached unless palindrome view animation or wrapping
during panning is enabled.

kQTVRWrapTilt Set wrapping during tilting. When this control setting is
enabled, the user can wrap around from the current tilt
constraint maximum value to the tilt constraint minimum
value (or vice versa) using the mouse or arrow keys. In
addition, calling the QTVRSetTiltAngle function with a tilt
angle that is either less than or greater than the current tilt
constraints results in a tilt angle within the current tilt
constraints. Similarly, QTVRWrapAndConstrain returns a tilt
angle within the current tilt constraints, and QTVRNudge
wraps views after it reaches the maximum or minimum
constraint value.
When this control setting is disabled, the user cannot wrap
around from the current tilt constraint maximum value to
the tilt constraint minimum value (or vice versa) using the
QuickTime VR Manager Reference 75

C H A P T E R 2

QuickTime VR Manager
mouse or arrow keys. In addition, the QTVRSetTiltAngle
function returns the result code constraintReachedErr
when passed a tilt angle that is either less than or greater
than the current tilt constraints. Similarly,
QTVRWrapAndConstrain returns a tilt angle that is one of the
current tilt constraints, and QTVRNudge returns the result
code constraintReachedErr when it reaches the maximum
or minimum constraint value.

kQTVRCanZoom Set zooming to be active. When this control setting is
enabled, the user can change the current field of view using
the zoom-in and zoom-out keys on the keyboard (or using
the VR controller buttons). In addition, you can use the
QTVRSetFieldOfView function to alter the current field of
view. Similarly, QTVRWrapAndConstrain returns a field of
view within the current field of view constraints.
When this control is disabled, the user cannot change the
current field of view using the zoom-in and zoom-out keys
on the keyboard (or using the VR controller buttons). In
addition, the QTVRSetFieldOfView function returns the result
code constraintReachedErr and doesn’t change the field of
view. Similarly, QTVRWrapAndConstrain returns the current
field of view.

kQTVRReverseHControl
Reverse the direction of the horizontal control. When this
control setting is enabled, the user can change an object’s
horizontal view using the mouse or the keyboard arrows
with reversed values for mouse horizontal motion and
keyboard left and right arrows. (In other words, the left
arrow key causes panning to the right, and moving the
mouse right causes panning to the left.) Similarly, the
QTVRNudge function nudges left when you pass the value 0
and right when you pass the value 180. This control setting
is useful when an object’s frames have been authored in
reverse order.

kQTVRReverseVControl
Reverse the direction of the vertical control. When this
control setting is enabled, the user can change an object’s
vertical view using the mouse or the keyboard arrows with
reversed values for mouse vertical motion and keyboard
up and down arrows. (In other words, the up arrow key
76 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
causes tilting down, and moving the mouse down causes
tilting up.) Similarly, the QTVRNudge function nudges up
when you pass the value 270 and down when you pass the
value 90. This control setting is useful when an object’s
frames have been authored in reverse order.

kQTVRSwapHVControl Exchange the horizontal and vertical controls. When this
setting is enabled, the user can pan left using the up arrow
key and tilt up using the left arrow key. Similarly, the
QTVRNudge function nudges up when you pass the value 180
and down when you pass the value 0. This control setting
is useful if an object is a single-row or multirow movie
containing vertically changing images. This is especially
useful when enabling view animation for an object with
animating vertical changes in view (because objects will
animate only along rows, not along columns).

kQTVRTranslation Set translation to be active. When this setting is enabled,
the user can translate using the mouse when either the
translation key is held down or the controller translation
mode button is toggled on. In addition, you can use the
QTVRSetViewCenter function to set a horizontal and vertical
position in the current display coordinate system.
When this setting is disabled, the QTVRWrapAndConstrain
function always returns the current view center, and the
QTVRSetViewCenter function returns the result code
constraintReachedErr and doesn’t change the current
view center.

View State Types 2

The viewStateType parameter to the QTVRGetViewState and QTVRSetViewState
functions specifies a view state type. The QuickTime VR Manager defines the
following constants for view state types:

typedef enum QTVRViewStateType {
kQTVRDefault = 0,
kQTVRCurrent = 2,
kQTVRMouseDown = 3

} QTVRViewStateType;
QuickTime VR Manager Reference 77

C H A P T E R 2

QuickTime VR Manager
Constant descriptions

kQTVRDefault The default view state of the current view. The default view
state is a set of object images defined by view duration,
row, and column. The default view state image for a given
view is displayed when the mouse button is not down.

kQTVRCurrent The current view state of the current view. The current
view state can be any of the view states authored in an
object movie. Setting the current view state does not change
the view state designated as the kQTVRDefault or
kQTVRMouseDown view state. The effect of changing the
current view state lasts until a transition to the
mouse-down or default view state occurs.

kQTVRMouseDown The mouse-down state of the current view. The
mouse-down view state is a set of object images defined by
view duration, row, and column. The mouse-down view
state image for a given view is displayed when the user
holds the mouse button down while the cursor is over an
object movie.

Back Buffer Imaging Procedure Flags 2

The QuickTime VR Manager defines three sets of flags for use in connection
with a back buffer imaging procedure: (1) a set of flags for the flags field in an
area of interest structure passed to the QTVRSetBackBufferImagingProc function,
(2) a set of flags for the flagsIn parameter to a back buffer imaging procedure,
and (3) a set of flags for the flagsOut parameter to a back buffer imaging
procedure.

The flags field in an area of interest structure (page 87) passed to the function
QTVRSetBackBufferImagingProc (page 177) is a long integer whose bits indicate
when to call the back buffer imaging procedure for the specified area of interest.
If a bit in the long integer is set, the back buffer imaging procedure is called at
the corresponding time. The bits are addressed using these constants:

enum {
kQTVRBackBufferEveryUpdate = 1L << 0,
kQTVRBackBufferEveryIdle = 1L << 1,
kQTVRBackBufferAlwaysRefresh = 1L << 2

};
78 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
Constant descriptions

kQTVRBackBufferEveryUpdate
If this bit is set, the back buffer imaging procedure is to be
called whenever QuickTime VR is about to update the
window containing the specified QuickTime VR movie
instance. That is, the procedure is called just before
QuickTime VR unwarps the back buffer image into the
prescreen buffer and redraws the screen image.

kQTVRBackBufferEveryIdle
If this bit is set, the back buffer imaging procedure is to be
called when either MCIsPlayerEvent(idle) or MCIdle is
called). Its purpose is to cause the software to draw as often
as possible.

kQTVRBackBufferAlwaysRefresh
If this bit is set, the back buffer is always refreshed to the
proper movie data just before your back buffer imaging
procedure is called. If your back buffer imaging procedure
completely overwrites the rectangle passed to it, you
should not set this bit.

The flagsIn parameter passed to a back buffer imaging procedure specifies the
event or operation that caused your procedure to be called, as well as other
information about the state of the back buffer when your procedure is called.
The bits in the flagsIn parameter are addressed using these constants:

enum {
kQTVRBackBufferRectVisible = 1L << 0,
kQTVRBackBufferWasRefreshed = 1L << 1

};

Constant descriptions

kQTVRBackBufferRectVisible
If this bit is set, the specified rectangle is currently visible.
Your back buffer imaging procedure is always called at
least once with this bit set, when the rectangle first becomes
visible. When the rectangle becomes no longer visible, your
back buffer imaging procedure is called with this bit clear.

kQTVRBackBufferWasRefreshed
If this bit is set, QuickTime VR refreshed the back buffer
prior to calling your back buffer imaging procedure.
QuickTime VR Manager Reference 79

C H A P T E R 2

QuickTime VR Manager
Before returning from your back buffer imaging procedure, you should set the
flagsOut parameter to indicate what actions you performed in your procedure.
You can set bits in that parameter using this constant:

enum {
kQTVRBackBufferFlagDidDraw = 1L << 0

};

Constant description

kQTVRBackBufferFlagDidDraw
Set this bit if your back buffer imaging procedure
performed any drawing in the back buffer.

Nudge Mode 2

The kQTVRInteractionNudgeMode property is used with the functions
QTVRGetInteractionProperty (page 163) and QTVRSetInteractionProperty
(page 164) and specifies the type of action to be taken by a nudge. You can use
these constants to specify the nudge mode:

typedef enum QTVRNudgeMode {
kQTVRNudgeRotate = 0UL,
kQTVRNudgeTranslate = 1UL,
kQTVRUNudgeSameAsMouse = 2UL

} QTVRNudgeMode;

Constant descriptions

kQTVRNudgeRotate Set the nudge mode to rotate the object.
kQTVRNudgeTranslate Set the nudge mode to translate the image.
kQTVRUNudgeSameAsMouse Set the nudge mode to the same as the current

mouse mode.
80 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
Nudge Directions 2

The direction parameter to the function QTVRNudge (page 98) specifies the
direction in which to nudge the current view. You can use these constants to
specify a nudge direction:

typedef enum QTVRNudgeControl {
kQTVRRight = 0,
kQTVRUpRight = 45,
kQTVRUp = 90,
kQTVRUpLeft = 135,
kQTVRLeft = 180,
kQTVRDownLeft = 225,
kQTVRDown = 270,
kQTVRDownRight = 315

} QTVRNudgeControl;

IMPORTANT

The actual direction of the nudge is affected by the
current control settings. For example, when the
kQTVRReverseVControl control setting is enabled, the
QTVRNudge function nudges up when you pass the value
kQTVRDown and down when you pass the value kQTVRUp. ▲

Constant descriptions

kQTVRRight Nudge the current view to the right.
kQTVRUpRight Nudge the current view up and to the right.
kQTVRUp Nudge the current view up.
kQTVRUpLeft Nudge the current view up and to the left.
kQTVRLeft Nudge the current view to the left.
kQTVRDownLeft Nudge the current view down and to the left.
kQTVRDown Nudge the current view down.
kQTVRDownRight Nudge the current view down and to the right.
QuickTime VR Manager Reference 81

C H A P T E R 2

QuickTime VR Manager
Cursor Types 2

The type field of a cursor record (page 87) specifies the kind of cursor you want
to replace (or restore) using the function QTVRReplaceCursor (page 165). You can
use these constants to specify a cursor type:

enum {
kQTVRUseDefaultCursor = 0,
kQTVRStdCursorType = 1,
kQTVRColorCursorType = 2

};

Constant descriptions

kQTVRUseDefaultCursor
Restore the default cursor. In this case, the handle field of
the cursor record should be nil.

kQTVRStdCursorType The cursor is a standard black-and-white cursor.
kQTVRColorCursorType

The cursor is a color cursor.

Pixel Formats 2

QuickTime VR 2.1 supports imaging to and from buffers in any of several pixel
formats, allowing for imaging directly to the screen buffer on most video cards
used in computers that support Microsoft Windows. The cachePixelFormat
parameter passed to the functions QTVRGetBackBufferMemInfo (page 171),
QTVRGetBackBufferSettings (page 173), and QTVRSetBackBufferPrefs (page 174)
specifies the pixel format.

On the Macintosh, QuickTime VR 2.1 can directly image into the standard 16-
and 32-bit big-endian formats (16BE555 and 32ARGB). On Windows systems,
QuickTime VR 2.1 supports the Macintosh formats along with 16LE555,
16LE565, 32BGRA, 32ABGR, 32RGBA, 24RGB and 24BGR.

The pixel formats are defined as follows:

#define k16LE555PixelFormat FOUR_CHAR_CODE('L555') // 16 bit LE rgb 555 (PC)
#define k16BE565PixelFormat FOUR_CHAR_CODE('B565') // 16 bit BE rgb 565
#define k16LE565PixelFormat FOUR_CHAR_CODE('L565') // 16 bit LE rgb 565
#define k24BGRPixelFormat FOUR_CHAR_CODE('24BG') // 24bit bgr
#define k32ARGBPixelFormat 0x00000020 // 32 bit argb
82 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
#define k32BGRAPixelFormat FOUR_CHAR_CODE('BGRA') // 32 bit bgra (Matrox)
#define k32ABGRPixelFormat FOUR_CHAR_CODE('ABGR') // 32 bit abgr
#define k32RGBAPixelFormat FOUR_CHAR_CODE('RGBA') // 32 bit rgba

Note
Developers should allow for the possibility that future
versions of QuickTime VR may support additional formats.
For example, an application can try the preferred format
first and then use one of the listed values if the first attempt
returns an error. ◆

You can use the pixel format constants defined above in the cachePixelFormat
parameter passed to the QTVRGetBackBufferMemInfo, QTVRGetBackBufferSettings,
and QTVRSetBackBufferPrefs functions, or you may use the following constants
to specify only the depth:

enum{
kQTVRUseMovieDepth = 0,

};

Constant descriptions

kQTVRUseMovieDepth A pixel has the same depth as the movie window.
When performing direct-to-screen drawing of panoramas, the cache format
must match the screen format. Otherwise, the panoramic image will be
generated offscreen and then copied to the screen. If the application has not set
a cache format preference, QuickTime VR 2.1 tries to match the backbuffer
format to the screen format.

If the application has installed a prescreen buffer imaging complete procedure,
the GWorld passed to it will be in the same format as the panoramic backbuffer.

Resolutions 2

The resolution parameter to the QTVRGetBackBufferMemInfo,
QTVRGetBackBufferSettings, and QTVRSetBackBufferPrefs functions specifies the
resolution of an image. You can use these constants to specify a resolution:

enum {
kQTVRDefaultRes = 0,
kQTVRFullRes = 1L << 0,
QuickTime VR Manager Reference 83

C H A P T E R 2

QuickTime VR Manager
kQTVRHalfRes = 1L << 1,
kQTVRQuarterRes = 1L << 2

};

Constant descriptions

kQTVRDefaultRes The default resolution of the image.
kQTVRFullRes The full resolution of the image.
kQTVRHalfRes One-half the full resolution of the image.
kQTVRQuarterRes One-quarter the full resolution of the image.

Geometry Selectors 2

The geometry parameter used in the procedures QTVRSetBackBufferPrefs,
QTVRGetBackBufferSettings, and QTVRGetBackBufferMemInfo specifies the type
and orientation of the panorama data. Only the vertical cylinder geometry is
used in the current version of QuickTime VR; calls to
QTVRGetBackBufferSettings and QTVRGetBackBufferMemInfo always return the
value kQTVRVerticalCylinder. The parameter is present to provide a means of
expansion to new panoramic geometries in the future.

enum {
kQTVRUseMovieGeometry = 0,
kQTVRVerticalCylinder = 'vcyl'

};

For a description of the orientation of the panorama data, see page 275 in
Chapter 5, “Creating QuickTime VR Movies.”

Cache Sizes 2

The cacheSize parameter to the QTVRGetBackBufferSettings and
QTVRSetBackBufferPrefs functions specifies the size of the panorama back
buffer. You can use these constants to specify a cache size:

enum {
kQTVRMinimumCache = –1,
kQTVRSuggestedCache = 0,
kQTVRFullCache = 1

};
84 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
Constant descriptions

kQTVRMinimumCache The minimum cache size required to display the
specified movie.

kQTVRSuggestedCache
The suggested cache size, a cache large enough to allow full
zooming out of the panorama.

kQTVRFullCache The full cache size (that is, a cache that is large enough to fit
the entire panorama in memory). This is the default cache
size.

Data Structures 2

This section describes the data structures provided by the QuickTime VR
Manager.

Intercept Structure 2

When QuickTime VR calls an intercept procedure, it passes the procedure
information about the intercepted function and the parameters for that function
in an intercept record. An intercept record is defined by the
QTVRInterceptRecord data type:

typedef UInt32 QTVRProcSelector;
struct QTVRInterceptRecord {

SInt32 reserved1;
SInt32 selector;
SInt32 reserved2;
SInt32 reserved3;

SInt32 paramCount;
void * parameter[6];

};
typedef struct QTVRInterceptRecord QTVRInterceptRecord;
typedef QTVRInterceptRecord *QTVRInterceptPtr;

Field descriptions
reserved1 Reserved for use by Apple Computer, Inc.
QuickTime VR Manager Reference 85

C H A P T E R 2

QuickTime VR Manager
selector A selector that indicates which QuickTime VR Manager
function has been intercepted. See “Intercept Selectors”
(page 60) for a description of the available intercept
selectors.

reserved2 Reserved for use by Apple Computer, Inc.
reserved3 Reserved for use by Apple Computer, Inc.
paramCount The number of parameters contained in the array pointed

to by the parameter field.
parameter An array of the parameters for the QuickTime VR function

specified by the selector field. The order of parameters in
this array matches the order of the parameters passed to
the specified function, except that the QuickTime VR
instance parameter is not included in this array.

IMPORTANT

The QuickTime VR Manager internally stores all angle
measurements in radians, and any angular parameters
returned in the parameter field of an intercept structure are
expressed in radians. In addition, a parameter of type float
(for example, the panAngle parameter to the
QTVRSetPanAngle function) is passed in the parameter field
as a value of type *float. ▲

Floating-Point Point Structure 2

Several QuickTime VR Manager functions use a floating-point point structure
to specify a point in a panorama or an object. The floating-point point structure
is defined by the QTVRFloatPoint data type:

struct QTVRFloatPoint {
float x;
float y;

};
typedef struct QTVRFloatPoint QTVRFloatPoint;

Field descriptions
x The horizontal coordinate of the point.
y The vertical coordinate of the point.
86 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
Cursor Record 2

The cursRecord parameter to the function QTVRReplaceCursor (page 165)
specifies a cursor record, which indicates the cursor to replace and its
replacement cursor. A cursor record is defined by the QTVRCursorRecord data
type:

struct QTVRCursorRecord {
UInt16 theType; /* field was previously

named "type"*/
SInt16 rsrcID;
Handle handle;

};
typedef struct QTVRCursorRecord QTVRCursorRecord;

Field descriptions
theType The type of cursor to replace. The available cursor types are

defined by constants; see “Cursor Types” (page 82).
rsrcID The resource ID of the cursor to replace. See the appendix,

“QuickTime VR Cursors,” for a list of the currently used
cursor resource IDs.

handle A handle to the cursor data that is to replace the specified
cursor. If theType is kQTVRUseDefaultCursor, then this field
should contain the value nil.

Area of Interest Structure 2

The areasOfInterest parameter to the function QTVRSetBackBufferImagingProc
(page 177) specifies an array of area of interest structures, each one of which
indicates a rectangular area in the back buffer. An area of interest structure is
defined by the QTVRAreaOfInterest data type:

struct QTVRAreaOfInterest {
float panAngle;
float tiltAngle;
float width;
float height;
UInt32 flags;

};
typedef struct QTVRAreaOfInterest QTVRAreaOfInterest;
QuickTime VR Manager Reference 87

C H A P T E R 2

QuickTime VR Manager
Field descriptions
panAngle The pan angle of the upper-left coordinate (in panorama

space) of the area of interest.
tiltAngle The tilt angle of the upper-left coordinate (in panorama

space) of the area of interest.
width The width of the area of interest.
height The height of the area of interest.
flags A set of bit flags that indicate when to call the back buffer

imaging procedure for this area of interest. See “Back
Buffer Imaging Procedure Flags” (page 78) for a description
of the available flags.

QuickTime VR Manager Routines 2

This section describes the routines provided by the QuickTime VR Manager.

Initializing and Terminating QuickTime VR 2

The QuickTime VR Manager provides routines for initializing and terminating
its operation.

Note
The InitializeQTVR and TerminateQTVR routines are
required for QuickTime VR to run in a Windows
environment. They do nothing in the Mac OS environment,
but should be included for cross-platform compatibility.

When your application calls InitializeQTVR in the Windows environment, the
code attempts to find QuickTimeVR.qtx through the normal search paths. If it
does not find QuickTimeVR.qtx, it returns an error code of 6660 and the API will
be unusable.

InitializeQTVR 2

You must use the InitializeQTVR function before calling other functions of
QuickTime VR. The InitializeQTVR function tries to load the QuickTimeVR.qtx
88 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
file, first from the application directory and then from the system directory. If
the InitializeQTVR function is unable to load the QuickTimeVR.qtx file, it returns
error code qtvrLibraryLoadErr (–30554).

If you call any other function of QuickTime VR before calling the
InitializeQTVR function or after the InitializeQTVR function has failed to load
the QuickTimeVR.qtx file, QuickTime VR returns error code qtvrUninitialized
(–30555).

TerminateQTVR 2

You must use the TerminateQTVR function when you have finished using the
functions of QuickTime VR.

Multiple calls to InitializeQTVR and TerminateQTVR can be either nested or
sequential, but there must be at least one call to TerminateQTVR corresponding
to each call to InitializeQTVR.

Initializing and Managing QuickTime VR Movie Instances 2

The QuickTime VR Manager provides routines for obtaining a QTVR track and
a new movie instance.

QTVRGetQTVRTrack 2

You can use the QTVRGetQTVRTrack function to get a QTVR track contained in a
QuickTime movie to use in the QTVRGetQTVRInstance call.

Track QTVRGetQTVRTrack (Movie theMovie, SInt32 index);

theMovie A QuickTime movie.

index The index of the desired QTVR track.

function result A track identifier for the QTVR track having the specified index
in the specified QuickTime movie.
QuickTime VR Manager Reference 89

C H A P T E R 2

QuickTime VR Manager
DESCRIPTION

The QTVRGetQTVRTrack function returns, as its function result, a track identifier
for the QTVR track that has the index specified by the index parameter in the
QuickTime movie specified by the theMovie parameter. If there is no such track,
QTVRGetQTVRTrack returns the value nil.

SPECIAL CONSIDERATIONS

QuickTime VR 2.1 supports files with at most one QTVR track, hence the value
for the index parameter should always be one. Future versions may support
multiple QTVR tracks per file.

Panorama and object movies made with QuickTime VR version 1.0 have no
QTVR track. The QTVRGetQTVRTrack function returns the track ID of the
panorama track for version 1.0 panorama movies and the track ID of the image
video track for version 1.0 object movies. For non-QTVR movies, the
QTVRGetQTVRTrack function returns nil.

SEE ALSO

Use QTVRGetQTVRInstance (next) to get a QuickTime VR movie instance from the
track identifier returned by QTVRGetQTVRTrack.

QTVRGetQTVRInstance 2

You can use the QTVRGetQTVRInstance function to get an instance of a
QuickTime VR movie.

OSErr QTVRGetQTVRInstance (
QTVRInstance *qtvr,
Track qtvrTrack,
MovieController mc);

qtvr On exit, an instance of the specified QuickTime VR movie.

qtvrTrack A QTVR track contained in a QuickTime movie. You can obtain
a reference to this track by calling QTVRGetQTVRTrack (page 89).
90 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
mc An identifier for the movie controller to be associated with the
new QuickTime VR movie instance. You can get a movie
controller identifier by calling the NewMovieController function.

function result A result code.

DESCRIPTION

The QTVRGetQTVRInstance function returns, in the qtvr parameter, an instance of
the QuickTime VR movie specified by the qtvrTrack parameter. If qtvrTrack
does not specify a QTVR track, QTVRGetQTVRInstance returns nil in the qtvr
parameter and an error code as its function result. You need a QuickTime VR
movie instance to call most other QuickTime VR functions.

SPECIAL CONSIDERATIONS

It’s not necessary to dispose of a QuickTime VR movie instance.

Manipulating Viewing Angles and Zooming 2

The QuickTime VR Manager provides functions that you can use to manipulate
the viewing angles and zooming characteristics of a QuickTime VR movie. Note
that the parameters to these functions that specify angles are always interpreted
in the current angular unit (degrees or radians) set by a previous call to the
QTVRSetAngularUnits function. The default angular unit is degrees.

QTVRGetPanAngle 2

You can use the QTVRGetPanAngle function to get the pan angle of a
QuickTime VR movie.

float QTVRGetPanAngle (QTVRInstance qtvr);

qtvr An instance of a QuickTime VR movie.

function result A floating-point value that represents the current pan angle of
the specified movie.
QuickTime VR Manager Reference 91

C H A P T E R 2

QuickTime VR Manager
DESCRIPTION

The QTVRGetPanAngle function returns, as its function result, a floating-point
value that represents the current pan angle of the QuickTime VR movie
specified by the qtvr parameter.

SEE ALSO

Use QTVRSetPanAngle (next) to set the pan angle of a movie. Listing 2-3 (page 46)
illustrates the use of QTVRGetPanAngle.

QTVRSetPanAngle 2

You can use the QTVRSetPanAngle function to set the pan angle of a
QuickTime VR movie.

OSErr QTVRSetPanAngle (QTVRInstance qtvr, float panAngle);

qtvr An instance of a QuickTime VR movie.

panAngle The desired pan angle of the specified movie.

function result A result code.

DESCRIPTION

The QTVRSetPanAngle function sets the pan angle of the QuickTime VR movie
specified by the qtvr parameter to the value specified by the panAngle
parameter. That value is constrained by the maximum and minimum pan
angles of the movie. If the angle falls outside of those constraints and the
control setting kQTVRWrapPan is disabled, the angle is set to the minimum or
maximum, whichever is closer. If wrapping is enabled, the pan angle is clipped
to fall within the constraints. Pan angle values are also clipped if the requested
pan angle, when combined with the current tilt angle and field of view, would
cause an image to lie outside the current constraints.

QTVRSetPanAngle returns the result code constraintReachedErr if wrapping is off
and the angle is set to the minimum or maximum constraint value.
92 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
SPECIAL CONSIDERATIONS

The pan and tilt angles are subject to the current pan and tilt range constraints,
as imposed by the viewing limits and the current field of view. Accordingly, if
you want to change the field of view, you should do so before adjusting the pan
or tilt angles. Otherwise, the pan and tilt angles are clipped against the current
field of view, which may result in an incorrect view when you alter the field
of view.

SEE ALSO

Use QTVRGetPanAngle (page 91) to get the pan angle of a movie. Use
QTVRGetViewingLimits (page 166) to get the current viewing limits of a movie.
Listing 2-3 (page 46) illustrates the use of QTVRSetPanAngle. Use
QTVRSetControlSetting (page 140) to control the setting of kQTVRWrapPan.

QTVRGetTiltAngle 2

You can use the QTVRGetTiltAngle function to get the tilt angle of a
QuickTime VR movie.

float QTVRGetTiltAngle (QTVRInstance qtvr);

qtvr An instance of a QuickTime VR movie.

function result A floating-point value that represents the current tilt angle of
the specified movie.

DESCRIPTION

The QTVRGetTiltAngle function returns, as its function result, a floating-point
value that represents the current tilt angle of the QuickTime VR movie specified
by the qtvr parameter.

SEE ALSO

Use QTVRSetTiltAngle (next) to set the tilt angle of a movie. Listing 2-3 (page 46)
illustrates the use of QTVRGetTiltAngle.
QuickTime VR Manager Reference 93

C H A P T E R 2

QuickTime VR Manager
QTVRSetTiltAngle 2

You can use the QTVRSetTiltAngle function to set the tilt angle of a
QuickTime VR movie.

OSErr QTVRSetTiltAngle (QTVRInstance qtvr, float tiltAngle);

qtvr An instance of a QuickTime VR movie.

tiltAngle The desired tilt angle of the specified movie.

function result A result code.

DESCRIPTION

The QTVRSetTiltAngle function sets the tilt angle of the QuickTime VR movie
specified by the qtvr parameter to the value specified by the tiltAngle
parameter. That value is constrained by the maximum and minimum tilt angles
of the movie. If the angle falls outside of those constraints and the control
setting kQTVRWrapTilt is disabled, the angle is set to the minimum or maximum,
whichever is closer. If wrapping is enabled, the tilt angle is clipped to fall within
the constraints. Tilt angle values are also clipped if the requested tilt angle,
when combined with the current pan angle and field of view, would cause an
image to lie outside the current constraints.

QTVRSetTiltAngle returns the result code constraintReachedErr if wrapping is
off and the angle is set to the minimum or maximum constraint value.

SPECIAL CONSIDERATIONS

The pan and tilt angles are subject to the current pan and tilt range constraints,
as imposed by the viewing limits and the current field of view. Accordingly, if
you want to change the field of view, you should do so before adjusting the pan
or tilt angles. Otherwise, the pan and tilt angles are clipped against the current
field of view, which may result in an incorrect view when you alter the field
of view.

SEE ALSO

Use QTVRGetTiltAngle (page 93) to get the tilt angle of a movie. Use
QTVRGetViewingLimits (page 166) to get the current viewing limits of a movie.
94 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
Listing 2-3 (page 46) illustrates the use of QTVRSetTiltAngle. Use
QTVRSetControlSetting (page 140) to control the setting of kQTVRWrapTilt.

QTVRGetFieldOfView 2

You can use the QTVRGetFieldOfView function to get the vertical field of view of a
QuickTime VR movie.

float QTVRGetFieldOfView (QTVRInstance qtvr);

qtvr An instance of a QuickTime VR movie.

function result The current vertical field of view of the specified movie.

DESCRIPTION

The QTVRGetFieldOfView function returns, as its function result, the current
vertical field of view of the QuickTime VR movie specified by the qtvr
parameter. The vertical field of view is a floating-point value that specifies the
angle created by the two lines that connect the viewpoint to the top and bottom
of the image.

SEE ALSO

Use QTVRSetFieldOfView (next) to set the vertical field of view of a
QuickTime VR movie. Listing 2-4 (page 48) illustrates the use of
QTVRGetFieldOfView.

QTVRSetFieldOfView 2

You can use the QTVRSetFieldOfView function to set the vertical field of view of a
QuickTime VR movie.

OSErr QTVRSetFieldOfView (QTVRInstance qtvr, float fieldOfView);

qtvr An instance of a QuickTime VR movie.
QuickTime VR Manager Reference 95

C H A P T E R 2

QuickTime VR Manager
fieldOfView The desired vertical field of view for the specified movie.

function result A result code.

DESCRIPTION

The QTVRSetFieldOfView function sets the vertical field of view of the
QuickTime VR movie specified by the qtvr parameter to the value specified by
the fieldOfView parameter. That value is constrained by the maximum field of
view of the movie. Values that lie outside that limit are clipped to the maximum.
Pan and tilt angle values are also clipped if, when combined with the current
field of view, they would cause an image to lie outside the current constraints.

If the control setting kQTVRCanZoom is disabled, the field of view is unchanged
and QTVRSetFieldOfView returns the result code constraintReachedErr.

SPECIAL CONSIDERATIONS

The pan and tilt angles are subject to the current pan and tilt range constraints,
as imposed by the viewing limits and the current field of view. Accordingly, if
you want to change the field of view, you should do so before adjusting the pan
or tilt angles. Otherwise, the pan and tilt angles are clipped against the current
field of view, which may result in an incorrect view when you alter the field
of view.

SEE ALSO

Use QTVRGetFieldOfView (page 95) to get the vertical field of view of a
QuickTime VR movie. Listing 2-4 (page 48) illustrates the use of
QTVRSetFieldOfView. Use QTVRSetControlSetting (page 140) to control the setting
of kQTVRCanZoom.

QTVRGetViewCenter 2

You can use the QTVRGetViewCenter function to get the view center of a
QuickTime VR movie.

OSErr QTVRGetViewCenter (QTVRInstance qtvr, QTVRFloatPoint *viewCenter);
96 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
qtvr An instance of a QuickTime VR movie.

viewCenter On entry, a pointer to a QTVRFloatPoint structure. On exit, that
structure contains the current view center of the specified
movie.

function result A result code.

DESCRIPTION

The QTVRGetViewCenter function returns, in the QTVRFloatPoint structure pointed
to by the viewCenter parameter, the x and y coordinates of the current view
center of the QuickTime VR movie specified by the qtvr parameter.

SPECIAL CONSIDERATIONS

QTVRGetViewCenter is valid only for object nodes.

SEE ALSO

Use QTVRSetViewCenter (next) to set the view center of a movie.

QTVRSetViewCenter 2

You can use the QTVRSetViewCenter function to set the view center of a
QuickTime VR movie.

OSErr QTVRSetViewCenter (
QTVRInstance qtvr,
const QTVRFloatPoint *viewCenter);

qtvr An instance of a QuickTime VR movie.

viewCenter A pointer to a QTVRFloatPoint structure that contains the desired
view center of the specified movie.

function result A result code.
QuickTime VR Manager Reference 97

C H A P T E R 2

QuickTime VR Manager
DESCRIPTION

The QTVRSetViewCenter function sets the view center of the QuickTime VR
movie specified by the qtvr parameter to the fixed point specified by the
viewCenter parameter. That point is constrained by the current field of view of
the movie. The values you pass in the QTVRFloatPoint structure are adjusted so
that the magnified area does not show anything outside the view.

If the kQTVRTranslation control setting is disabled, the QTVRSetViewCenter
function returns the result code constraintReachedErr and doesn’t change the
current view center.

SPECIAL CONSIDERATIONS

QTVRSetViewCenter is valid only for object nodes.

SEE ALSO

Use QTVRGetViewCenter (page 96) to get the view center of a movie. Use
QTVRSetControlSetting (page 140) to control the setting of kQTVRTranslation.

QTVRNudge 2

You can use the QTVRNudge function to turn one step in a particular direction and
display the new view.

OSErr QTVRNudge (QTVRInstance qtvr, QTVRNudgeControl direction);

qtvr An instance of a QuickTime VR movie.

direction The direction of the nudge. See “Nudge Directions” (page 81) for
a description of the values you can pass in this parameter.

function result A result code.

DESCRIPTION

The QTVRNudge function adjusts the current view of the movie specified by the
qtvr parameter as indicated by the direction parameter. In particular, QTVRNudge
turns one step in the indicated direction and displays the new view.
98 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
For example, to move to the next view that is right and up from the current
view, set the direction parameter to kQTVRUpRight (that is, π/4 radians, or
45 degrees). Any value of the direction parameter that is not predefined is
mapped to the closest defined value. For objects, if no view is located at the
adjacent object view defined by the nudge direction and wrapping is off in the
desired direction, then QTVRNudge remains at the current view and returns the
result code constraintReachedErr.

For objects, QTVRNudge is useful for changing to an adjacent view without having
to know the new pan and tilt angles.

The direction of the nudge is affected by the current control settings. See
“Control Settings” (page 74) for more information.

SEE ALSO

Use QTVRSetPanAngle (page 92) and QTVRSetTiltAngle (page 94) to move to a
new view specified using pan and tilt angles.

QTVRInteractionNudge 2

You can use the QTVRInteractionNudge function either to translate the image and
display the new view or to rotate the object in a particular direction and display
its new appearance. The current setting of the interaction property for
kQTVRInteractionNudgeMode determines whether the nudge action translates the
image or rotates the object.

OSErr QTVRInteractionNudge (QTVRInstance qtvr, QTVRNudgeControl
direction);

qtvr An instance of a QuickTime VR movie.

direction The direction of the nudge. See “Nudge Directions” (page 81) for
a description of the values you can pass in this parameter. See
“Nudge Mode” (page 80) for a description of the way you set
the nudge mode.

function result A result code.
QuickTime VR Manager Reference 99

C H A P T E R 2

QuickTime VR Manager
DESCRIPTION

The QTVRInteractionNudge function adjusts the current view of the movie
specified by the qtvr parameter as indicated by the direction parameter. The
type of adjustment depends on the property setting for nudge interaction mode.
If the nudge interaction mode is kQTVRNudgeRotate, the action of the
QTVRInteractionNudge function is to rotate the object in the specified direction.
If the nudge interaction mode is kQTVRNudgeTranslate, the action of the
QTVRInteractionNudge function is to translate the image in the specified
direction.

If the nudge interaction mode is kQTVRUNudgeSameAsMouse, the action of the
QTVRInteractionNudge function is determined by the current mouse mode.

SPECIAL CONSIDERATIONS

The QTVRInteractionNudge function is valid only for object nodes.

SEE ALSO

Use the functions QTVRGetInteractionProperty (page 163) and
QTVRSetInteractionProperty (page 164) to set the nudge mode and direction
properties.

QTVRShowDefaultView 2

You can use the QTVRShowDefaultView function to display the default view of
a node.

OSErr QTVRShowDefaultView (QTVRInstance qtvr);

qtvr An instance of a QuickTime VR movie.

function result A result code.

DISCUSSION

The QTVRShowDefaultView function sets the default values of the pan angle, tilt
angle, field of view, view center (for object nodes), default state, mouse-down
100 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
state, and all applicable animation and control settings for the node specified by
the qtvr parameter. A node’s default values are stored in the movie file.

Getting Scene and Node Information 2

The QuickTime VR Manager provides functions that you can use to get the
VR world scene description atom container and to get and set a scene’s
current node.

QTVRGetVRWorld 2

You can use the QTVRGetVRWorld function to get the VR world atom container for
a movie.

OSErr QTVRGetVRWorld (QTVRInstance qtvr, QTAtomContainer *vrWorld);

qtvr An instance of a QuickTime VR movie.

vrWorld On exit, a pointer to an atom container that contains information
about the specified movie.

function result A result code.

DESCRIPTION

The QTVRGetVRWorld function returns, in the vrWorld parameter, a pointer to an
atom container that contains general scene information about the
QuickTime VR movie specified by the qtvr parameter, as well as a list of all the
nodes in that movie. You can use the QuickTime atom functions (introduced in
QuickTime version 2.1) to extract atoms from that container.

Note
See the chapter “QuickTime VR Atom Containers” in this
book for a description of the format of a VR world atom
container and its associated atoms for a QuickTime VR
movie. ◆
QuickTime VR Manager Reference 101

C H A P T E R 2

QuickTime VR Manager
SPECIAL CONSIDERATIONS

The VR world atom container returned by QTVRGetVRWorld is a copy of the atom
container maintained internally by the QuickTime VR Manager. You should
dispose of the VR world atom container (by calling the QuickTime function
QTDisposeAtomContainer) when you’re finished using it.

QTVRGoToNodeID 2

You can use the QTVRGoToNodeID function to set the current node of a movie.

OSErr QTVRGoToNodeID (QTVRInstance qtvr, UInt32 nodeID);

qtvr An instance of a QuickTime VR movie.

nodeID The ID of the node you want to be the current node.

function result A result code.

DESCRIPTION

The QTVRGoToNodeID function sets the current node in the QuickTime VR movie
specified by the qtvr parameter to be the node that has the ID specified by the
nodeID parameter.

The QuickTime VR Manager defines several constants for specific nodes. For
example, you can set nodeID to kQTVRDefaultNode to set the current node to the
default node in the scene. Similarly, you can set nodeID to kQTVRPreviousNode to
return to the previous node. See “Node IDs” (page 58) for a description of the
available node ID constants.

SPECIAL CONSIDERATIONS

Setting the current node also sets the pan, tilt, and field of view of the new
current node to their default values. As a result, if you wish to set non-default
angles, you should call QTVRGoToNodeID before you call QTVRSetPanAngle,
QTVRSetTiltAngle, or QTVRSetFieldOfView.

SEE ALSO

Use QTVRGetCurrentNodeID (next) to get the current node ID.
102 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
QTVRGetCurrentNodeID 2

You can use the QTVRGetCurrentNodeID function to get the current node of
a movie.

UInt32 QTVRGetCurrentNodeID (QTVRInstance qtvr);

qtvr An instance of a QuickTime VR movie.

function result The ID of the current node of the specified movie.

DESCRIPTION

The QTVRGetCurrentNodeID function returns, as its function result, the ID of the
current node of the QuickTime VR movie specified by the qtvr parameter.

SEE ALSO

Use QTVRGoToNodeID (page 102) to set the current node ID.

QTVRGetNodeType 2

You can use the QTVRGetNodeType function to get the type of a movie node.

OSType QTVRGetNodeType (QTVRInstance qtvr, UInt32 nodeID);

qtvr An instance of a QuickTime VR movie.

nodeID A node ID. Pass kQTVRCurrentNode for the current node.

function result The type of the specified node.

DESCRIPTION

The QTVRGetNodeType function returns, as its function result, the type of the node
specified by the nodeID parameter in the QuickTime VR movie specified by the
qtvr parameter. See “Node Types” (page 58) for a description of the values that
QTVRGetNodeType can return.
QuickTime VR Manager Reference 103

C H A P T E R 2

QuickTime VR Manager
QTVRGetNodeInfo 2

You can use the QTVRGetNodeInfo function to get the node information atom
container that describes a node and all the hot spots in the node.

OSErr QTVRGetNodeInfo (
QTVRInstance qtvr,
UInt32 nodeID,
QTAtomContainer *nodeInfo);

qtvr An instance of a QuickTime VR movie.

nodeID A node ID. Set this parameter to kQTVRCurrentNode to receive
information about the current node.

nodeInfo On exit, a pointer to an atom container that contains information
about the specified node.

function result A result code.

DESCRIPTION

The QTVRGetNodeInfo function returns, in the nodeInfo parameter, a pointer to an
atom container that contains information about the node specified by the nodeID
parameter in the movie specified by the qtvr parameter. The atom container
includes information about all the hot spots contained in that node. You can use
the QuickTime atom functions (introduced in QuickTime version 2.1) to extract
atoms from that container. You can also use those functions to access the hot
spot atom list. All hot spot atoms are contained in the hot spot parent atom.

Note
See the chapter “QuickTime VR Atom Containers” in this
book for a description of the format of a node information
atom container and its associated atoms for a node. ◆

SPECIAL CONSIDERATIONS

The node information atom container returned by QTVRGetNodeInfo is a copy of
the atom container maintained internally by the QuickTime VR Manager. You
should dispose of the node information atom container (by calling the
QuickTime function QTDisposeAtomContainer) when you’re finished using it.
104 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
SEE ALSO

Listing 4-1 (page 256) illustrates how to call the QTVRGetNodeInfo function.

Managing Hot Spots 2

The QuickTime VR Manager provides functions that you can use to manage the
hot spots of a node.

QTVRPtToHotSpotID 2

You can use the QTVRPtToHotSpotID function to get the ID of the hot spot, if any,
that lies beneath a point.

OSErr QTVRPtToHotSpotID (QTVRInstance qtvr, Point pt, UInt32 *hotSpotID);

qtvr An instance of a QuickTime VR movie.

pt A point, in the local coordinates of the graphics world of the
specified movie.

hotSpotID On entry, a pointer to a long integer. On exit, that long integer
contains the ID of the hot spot that lies beneath the specified
point, or the value 0 if no hot spot lies beneath that point.

function result A result code.

DESCRIPTION

The QTVRPtToHotSpotID function returns, in the long integer pointed to by the
hotSpotID parameter, the ID of the hot spot in the QuickTime VR movie
specified by the qtvr parameter that lies directly under the point specified by
the pt parameter. If no hot spot lies under that point, the long integer is set to 0.
QuickTime VR Manager Reference 105

C H A P T E R 2

QuickTime VR Manager
QTVRGetHotSpotType 2

You can use the QTVRGetHotSpotType function to get the type of a hot spot.

OSErr QTVRGetHotSpotType (
QTVRInstance qtvr,
UInt32 hotSpotID,
OSType *hotSpotType);

qtvr An instance of a QuickTime VR movie.

hotSpotID A hot spot ID.

hotSpotType On entry, a pointer to a long integer. On exit, that long integer
contains the type of the hot spot specified by the hot spot ID.

function result A result code.

DESCRIPTION

The QTVRGetHotSpotType function gets the type of a hot spot whose ID you
specify. In combination with the kQTVRGetHotSpotTypeSelector intercept selector,
this allows an application to change a hot spot’s type dynamically.

For example, an application can take an existing movie and cause VR to display
the cursors for a type of hotspot different from the one the movie was originally
authored with. In combination with intercepting kQTVRTriggerHotSpotSelector,
this would allow an Internet plugin to override undefined or link hotspots in
movies to make them appear and act as though they are URL links instead. If
kQTVRTriggerHotSpotSelector is not intercepted, VR will attempt to act on the
hotspot in the normal way; by storing both link and URL data in a file, the exact
behavior can be determined at runtime by an application to allow linking to
either another node locally or a remote URL link, depending on system
configuration or other arbitrary considerations.

SEE ALSO

Use kQTVRGetHotSpotTypeSelector to set the selector for the intercept procedure.
106 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
QTVRTriggerHotSpot 2

You can use the QTVRTriggerHotSpot function to trigger a hot spot.

OSErr QTVRTriggerHotSpot (
QTVRInstance qtvr,
UInt32 hotSpotID,
QTAtomContainer nodeInfo,
QTAtom selectedAtom);

qtvr An instance of a QuickTime VR movie.

hotSpotID A hot spot ID.

nodeInfo A node information atom container (obtained from a previous
call to QTVRGetNodeInfo). You can pass the value 0 in this
parameter to have the QuickTime VR Manager determine the
appropriate node information atom container.

selectedAtom The atom of the hot spot to trigger. You can pass the value 0 in
this parameter to have the QuickTime VR Manager determine
the appropriate hot spot atom.

function result A result code.

DESCRIPTION

One way you can use the QTVRTriggerHotSpot function is to execute any hot spot
without the user's having clicked the hot spot. Usually, you need only specify
the qtvr instance and the hot spot ID. You can pass zero for the nodeInfo and
selectedAtom parameters.

The more common use of the QTVRTriggerHotSpot function is not in calling it
directly, but in setting up an intercept procedure on it. The QTVRTriggerHotSpot
function is called internally by the QuickTime VR Manager whenever a user
clicks a hot spot. You can intercept calls to trigger your custom hot spots, which
allows you to perform any custom actions you desire.

When the QTVRTriggerHotSpot function is called internally (and then intercepted
by your intercept procedure), the nodeInfo and selectedAtom parameters have
been properly set by the QuickTime VR Manager and are available for your use.
For undefined hot spots that do not have an associated hot spot atom in the
node info atom container, the selectedAtom parameter will be set to zero.
QuickTime VR Manager Reference 107

C H A P T E R 2

QuickTime VR Manager
SPECIAL CONSIDERATIONS

You can call QTVRTriggerHotSpot even on hot spots that are currently disabled.

SEE ALSO

Use QTVRInstallInterceptProc (page 125) to install an intercept procedure.
Listing 4-2 in Chapter 4, “QuickTime VR Atom Containers,” shows an example
of using an intercept procedure on the QTVRTriggerHotSpot function.

QTVREnableHotSpot 2

You can use the QTVREnableHotSpot function to enable or disable one or more hot
spots.

OSErr QTVREnableHotSpot (
QTVRInstance qtvr,
UInt32 enableFlag,
UInt32 hotSpotValue,
Boolean enable);

qtvr An instance of a QuickTime VR movie.

enableFlag The kind of hot spot or hot spots to enable or disable. See “Hot
Spot Selectors” (page 72) for a description of the constants you
can pass in this parameter.

hotSpotValue The desired hot spot or spots, relative to the specified enabled
flag. If enableFlag is kQTVRHotSpotID, this parameter specifies a
hot spot ID. If enableFlag is kQTVRHotSpotType, this parameter
specifies a hot spot type. If enableFlag is kQTVRAllHotSpots, this
parameter should be set to zero.

enable A Boolean value that indicates whether the specified hot spots
are to be enabled (true) or disabled (false).

function result A result code.
108 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
DESCRIPTION

The QTVREnableHotSpot function either enables or disables the hot spot or spots
specified by the enableFlag and hotSpotValue parameters, according to the
value of the enable parameter. The hot spots are always selected from among
the hot spots in the current node of the QuickTime VR movie specified by the
qtvr parameter.

Normally, all hot spots in a node are enabled (that is, the cursor automatically
changes shape when it is moved over a hot spot, and the QTVRTriggerHotSpot
function is called internally when the user clicks a hot spot). When a hot spot is
disabled, QuickTime VR behaves as if the hot spot were not present.

QTVRSetMouseOverHotSpotProc 2

You can use the QTVRSetMouseOverHotSpotProc function to install or remove a
mouse over hot spot procedure.

OSErr
QTVRSetMouseOverHotSpotProc (

QTVRInstance qtvr,
 QTVRMouseOverHotSpotUPP mouseOverHotSpotProc,
 SInt32 refCon,
 UInt32 flags);

qtvr An instance of a QuickTime VR movie.

mouseOverHotSpotProc
A universal procedure pointer for a mouse over hot spot
procedure. See “Mouse Over Hot Spot Procedure” (page 180) for
information about mouse over hot spot procedures.

refCon A reference constant. This value is passed to the specified mouse
over hot spot procedure.

flags Unused. Set this parameter to 0.

function result A result code.
QuickTime VR Manager Reference 109

C H A P T E R 2

QuickTime VR Manager
DESCRIPTION

The QTVRSetMouseOverHotSpotProc function installs the routine specified by the
mouseOverHotSpotProc parameter as a mouse over hot spot procedure for the
QuickTime VR movie specified by the qtvr parameter. Subsequent user actions
(such as moving the cursor over an enabled hot spot in that movie) cause the
callback routine to be executed. The reference constant specified by the refCon
parameter is passed unchanged to your callback routine.

To remove a previously installed callback routine, set mouseOverHotSpotProc
to nil.

IMPORTANT

Your mouse over hot spot procedure is called only for
enabled hot spots. ▲

QTVRGetVisibleHotSpots 2

You can use the QTVRGetVisibleHotSpots function to get a list of the currently
visible hot spots in a QuickTime VR movie.

UInt32 QTVRGetVisibleHotSpots (QTVRInstance qtvr, Handle hotSpots);

qtvr An instance of a QuickTime VR movie.

hotSpots On entry, a handle to a block of memory. On exit, that block of
memory is filled with a list of the IDs of the visible hot spots in
the specified QuickTime VR movie. If necessary, the handle is
resized to hold all the hot spot IDs. Accordingly, the handle
must be unlocked at the time you call QTVRGetVisibleHotSpots.

function result The number of hot spots whose IDs are returned though the
hotSpots parameter.

DESCRIPTION

The QTVRGetVisibleHotSpots function returns, in the block of memory specified
by the hotSpots parameter, a list of IDs of all the hot spots in the QuickTime VR
movie specified by the qtvr parameter that are currently visible.
QTVRGetVisibleHotSpots also returns, as its function result, the number of hot
spot IDs returned though the hotSpots parameter.
110 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
The handle specified by the hotSpots parameter must be a valid handle created
by the Memory Manager.

QTVRGetHotSpotRegion 2

You can use the QTVRGetHotSpotRegion function to get the region occupied by a
hot spot.

OSErr QTVRGetHotSpotRegion (
QTVRInstance qtvr,
UInt32 hotSpotID,
RgnHandle hotSpotRegion);

qtvr An instance of a QuickTime VR movie.

hotSpotID A hot spot ID.

hotSpotRegion On entry, an initialized handle to a region (obtained by calling
NewRgn). On exit, this region is rewritten with the region
occupied by the hot spot having the specified ID.

function result A result code.

DESCRIPTION

The QTVRGetHotSpotRegion function returns, in the hotSpotRegion parameter, a
handle to the region occupied by the hot spot, in the QuickTime VR movie
specified by the qtvr parameter, whose ID is specified by the hotSpotID
parameter. The region is clipped to the bounds of the movie’s graphics world.

You can obtain the regions of all visible hot spots by calling the
QTVRGetVisibleHotSpots function and then calling QTVRGetHotSpotRegion for
each hot spot ID in the list.

SPECIAL CONSIDERATIONS

The first time you call QTVRGetHotSpotRegion, a significant amount of memory
might need to be allocated. Accordingly, you should always check for Memory
Manager errors returned by QTVRGetHotSpotRegion.
QuickTime VR Manager Reference 111

C H A P T E R 2

QuickTime VR Manager
Your application is responsible for disposing of the memory occupied by the
returned region.

Handling Events 2

The QuickTime VR Manager provides a number of routines that you can use to
handle user actions such as moving the mouse or clicking the mouse button.
Normally, QuickTime VR handles all user interaction internally if your
application calls the MCIsPlayerEvent function in its main event loop. For code
that does not have a main event loop (such as an OpenDoc part), you might
need to override QuickTime VR’s mouse event handling.

Note
Most applications do not need to use the functions
described in this section. ◆

QTVRGetMouseOverTracking 2

You can use the QTVRGetMouseOverTracking function to get the current state of
mouse-over tracking.

Boolean QTVRGetMouseOverTracking (QTVRInstance qtvr);

qtvr An instance of a QuickTime VR movie.

function result A Boolean value that indicates whether QuickTime VR is
currently handling mouse-over tracking for the specified movie
(true) or not (false).

DESCRIPTION

The QTVRGetMouseOverTracking function returns, as its function result, a Boolean
value that indicates whether QuickTime VR is currently handling mouse-over
tracking for the QuickTime VR movie specified by the qtvr parameter (true) or
not (false). By default, QuickTime VR tracks mouse movements in a
QuickTime VR movie and changes the shape of the cursor as appropriate.
112 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
SEE ALSO

Use QTVRSetMouseOverTracking (next) to change the mouse-over tracking state of
a QuickTime VR movie.

QTVRSetMouseOverTracking 2

You can use the QTVRSetMouseOverTracking function to set the state of
mouse-over tracking.

OSErr QTVRSetMouseOverTracking (QTVRInstance qtvr, Boolean enable);

qtvr An instance of a QuickTime VR movie.

enable A Boolean value that indicates whether QuickTime VR should
handle mouse-over tracking for the specified movie (true) or not
(false).

function result A result code.

DESCRIPTION

The QTVRSetMouseOverTracking function sets the mouse-over tracking state of
the QuickTime VR movie specified by the qtvr parameter to the state specified
by the enable parameter. By default, QuickTime VR tracks mouse movements in
a QuickTime VR movie and changes the shape of the cursor as appropriate. If
you disable mouse-over tracking (by passing false in the enable parameter),
you must call the QTVRMouseEnter, QTVRMouseWithin, and QTVRMouseLeave
functions at the appropriate times to handle user actions.

SEE ALSO

Use QTVRGetMouseOverTracking (page 112) to get the current mouse-over
tracking state of a QuickTime VR movie.
QuickTime VR Manager Reference 113

C H A P T E R 2

QuickTime VR Manager
QTVRMouseEnter 2

You can use the QTVRMouseEnter function to handle the user’s moving the cursor
into a QuickTime VR movie for which mouse-over tracking is disabled.

OSErr QTVRMouseEnter (
QTVRInstance qtvr,
Point pt,
UInt32 *hotSpotID,
WindowPtr w);

qtvr An instance of a QuickTime VR movie.

pt The current location of the cursor, in the local coordinates of the
graphics world specified by the w parameter.

hotSpotID On entry, a pointer to a long integer. On exit, that long integer
contains the ID of the hot spot that lies beneath the specified
point, or the value 0 if no hot spot lies beneath that point.

w A pointer to a graphics world.

function result A result code.

DESCRIPTION

The QTVRMouseEnter function returns, in the long integer pointed to by the
hotSpotID parameter, the ID of the hot spot in the QuickTime VR movie
specified by the qtvr parameter that lies directly under the point specified by
the pt parameter. If no hot spot lies under that point, the long integer is set to 0.
QTVRMouseEnter also performs any other tasks that are typically performed when
the user first moves the cursor into a QuickTime VR movie.

SPECIAL CONSIDERATIONS

You need to call QTVRMouseEnter only if you have disabled mouse-over tracking
for the specified QuickTime VR movie.

SEE ALSO

Use QTVRSetMouseOverTracking (page 113) to change the mouse-over
tracking state of a QuickTime VR movie. Use QTVRMouseWithin (next) and
114 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
QTVRMouseLeave (page 116) to handle the cursor’s remaining in and leaving
a QuickTime VR movie.

QTVRMouseWithin 2

You can use the QTVRMouseWithin function to handle the user’s leaving the
cursor in a QuickTime VR movie for which mouse-over tracking is disabled.

OSErr QTVRMouseWithin (QTVRInstance qtvr, Point pt, UInt32 *hotSpotID,
WindowPtr w);

qtvr An instance of a QuickTime VR movie.

pt The current location of the cursor, in the local coordinates of the
graphics world specified by the w parameter.

hotSpotID On entry, a pointer to a long integer. On exit, that long integer
contains the ID of the hot spot that lies beneath the specified
point, or the value 0 if no hot spot lies beneath that point.

w A pointer to a graphics world.

function result A result code.

DESCRIPTION

The QTVRMouseWithin function returns, in the long integer pointed to by the
hotSpotID parameter, the ID of the hot spot in the QuickTime VR movie
specified by the qtvr parameter that lies directly under the point specified by
the pt parameter. If no hot spot lies under that point, the long integer is set to 0.
QTVRMouseWithin also performs any other tasks that are typically performed
when the user leaves the cursor in a QuickTime VR movie.

You should call QTVRMouseWithin repeatedly for as long as the cursor remains in
the specified QuickTime VR movie.

SPECIAL CONSIDERATIONS

You need to call QTVRMouseWithin only if you have disabled mouse-over tracking
for the specified QuickTime VR movie.
QuickTime VR Manager Reference 115

C H A P T E R 2

QuickTime VR Manager
SEE ALSO

Use QTVRSetMouseOverTracking (page 113) to change the mouse-over tracking
state of a QuickTime VR movie. Use QTVRMouseEnter (page 114) and
QTVRMouseLeave (next) to handle the cursor’s entering and leaving a
QuickTime VR movie.

QTVRMouseLeave 2

You can use the QTVRMouseLeave function to handle the user’s moving the cursor
out of a QuickTime VR movie for which mouse-over tracking is disabled.

OSErr QTVRMouseLeave (QTVRInstance qtvr, Point pt, WindowPtr w);

qtvr An instance of a QuickTime VR movie.

pt The current location of the cursor, in the local coordinates of the
graphics world specified by the w parameter.

w A pointer to a graphics world.

function result A result code.

DESCRIPTION

The QTVRMouseLeave function performs any tasks that are typically performed
when the user moves the cursor out of a QuickTime VR movie.

SPECIAL CONSIDERATIONS

You need to call QTVRMouseLeave only if you have disabled mouse-over tracking
for the specified QuickTime VR movie.

SEE ALSO

Use QTVRSetMouseOverTracking (page 113) to change the mouse-over tracking
state of a QuickTime VR movie. Use QTVRMouseEnter (page 114) and
QTVRMouseWithin (page 115) to handle the cursor’s entering and remaining in a
QuickTime VR movie.
116 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
QTVRGetMouseDownTracking 2

You can use the QTVRGetMouseDownTracking function to get the current state of
mouse-down tracking.

Boolean QTVRGetMouseDownTracking (QTVRInstance qtvr);

qtvr An instance of a QuickTime VR movie.

function result A Boolean value that indicates whether QuickTime VR is
currently handling mouse-down tracking for the specified
movie (true) or not (false).

DESCRIPTION

The QTVRGetMouseDownTracking function returns, as its function result, a Boolean
value that indicates whether QuickTime VR is currently handling mouse-down
tracking for the QuickTime VR movie specified by the qtvr parameter (true) or
not (false). By default, QuickTime VR tracks mouse clicks in a QuickTime VR
movie and triggers hot spots as necessary.

SEE ALSO

Use QTVRSetMouseDownTracking (next) to change the mouse-down tracking state
of a QuickTime VR movie.

QTVRSetMouseDownTracking 2

You can use the QTVRSetMouseDownTracking function to set the state of
mouse-down tracking.

OSErr QTVRSetMouseDownTracking (QTVRInstance qtvr, Boolean enable);

qtvr An instance of a QuickTime VR movie.

enable A Boolean value that indicates whether QuickTime VR should
handle mouse-down tracking for the specified movie (true) or
not (false).
QuickTime VR Manager Reference 117

C H A P T E R 2

QuickTime VR Manager
function result A result code.

DESCRIPTION

The QTVRSetMouseDownTracking function sets the mouse-down tracking state of
the QuickTime VR movie specified by the qtvr parameter to the state specified
by the enable parameter. By default, QuickTime VR tracks mouse clicks in a
QuickTime VR movie and triggers hot spots as appropriate. If you disable
mouse-down tracking (by passing false in the enable parameter), you must call
the QTVRMouseDown, QTVRMouseStillDown, and QTVRMouseUp functions at the
appropriate times to handle user actions.

SEE ALSO

Use QTVRGetMouseDownTracking (page 117) to get the current mouse-down
tracking state of a QuickTime VR movie.

QTVRMouseDown 2

You can use the QTVRMouseDown function to handle the user’s clicking the mouse
button when the cursor is in a QuickTime VR movie for which mouse-down
tracking is disabled.

OSErr QTVRMouseDown (QTVRInstance qtvr,
Point pt,
UInt32 when,
UInt16 modifiers,
UInt32 *hotSpotID,
WindowPtr w);

qtvr An instance of a QuickTime VR movie.

pt The current location of the cursor, in the local coordinates of the
graphics world specified by the w parameter.

when The time, in the number of ticks since system startup, when the
mouse-down event was posted.
118 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
modifiers A short integer that contains information about the state of the
modifier keys and the mouse button at the time the event was
posted. See the chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for a description of the information
encoded in this parameter.

hotSpotID On entry, a pointer to a long integer. On exit, that long integer
contains the ID of the hot spot that lies beneath the specified
point, or the value 0 if no hot spot lies beneath that point.

w A pointer to a graphics world.

function result A result code.

DESCRIPTION

The QTVRMouseDown function returns, in the long integer pointed to by the
hotSpotID parameter, the ID of the hot spot in the QuickTime VR movie
specified by the qtvr parameter that lies directly under the point specified by
the pt parameter. If no hot spot lies under that point, the long integer is set to 0.
QTVRMouseDown also performs any other tasks that are typically performed when
the user clicks the mouse button when the cursor is in a QuickTime VR movie.

SPECIAL CONSIDERATIONS

You need to call QTVRMouseDown only if you have disabled mouse-down tracking
for the specified QuickTime VR movie.

SEE ALSO

Use QTVRSetMouseDownTracking (page 117) to change the mouse-down tracking
state of a QuickTime VR movie. Use QTVRMouseUp (page 121) and
QTVRMouseStillDown (next) to handle the mouse button’s being held down and
released.

QTVRMouseStillDown 2

You can use the QTVRMouseStillDown function to handle the user’s holding down
the mouse button while the cursor is in a QuickTime VR movie for which
mouse-down tracking is disabled.
QuickTime VR Manager Reference 119

C H A P T E R 2

QuickTime VR Manager
IMPORTANT

Applications running on operating systems other than Mac
OS should use the extended form of this function: see
“QTVRMouseStillDownExtended” (page 122). ▲

OSErr QTVRMouseStillDown (
QTVRInstance qtvr,
Point pt,
UInt32 *hotSpotID,
WindowPtr w);

qtvr An instance of a QuickTime VR movie.

pt The current location of the cursor, in the local coordinates of the
graphics world specified by the w parameter.

hotSpotID On entry, a pointer to a long integer. On exit, that long integer
contains the ID of the hot spot that lies beneath the specified
point, or the value 0 if no hot spot lies beneath that point.

w A pointer to a graphics world.

function result A result code.

DESCRIPTION

The QTVRMouseStillDown function returns, in the long integer pointed to by the
hotSpotID parameter, the ID of the hot spot in the QuickTime VR movie
specified by the qtvr parameter that lies directly under the point specified by
the pt parameter. If no hot spot lies under that point, the long integer is set to 0.
QTVRMouseStillDown also performs any other tasks that are typically performed
when the user holds down the mouse button when the cursor is in a
QuickTime VR movie.

You should call QTVRMouseStillDown repeatedly for as long as the user holds
down the mouse button while the cursor is in the specified QuickTime VR movie.

SPECIAL CONSIDERATIONS

You need to call QTVRMouseStillDown only if you have disabled mouse-down
tracking for the specified QuickTime VR movie.
120 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
SEE ALSO

Use QTVRSetMouseDownTracking (page 117) to change the mouse-down tracking
state of a QuickTime VR movie. Use QTVRMouseDown (page 118) and QTVRMouseUp
(next) to handle the mouse button’s being clicked and released.

QTVRMouseUp 2

You can use the QTVRMouseUp function to handle the user’s releasing the mouse
button while the cursor is in a QuickTime VR movie for which mouse-down
tracking is disabled.

IMPORTANT

Applications running on operating systems other than Mac
OS should use the extended form of this function: see
“QTVRMouseUpExtended” (page 124). ▲

OSErr QTVRMouseUp (QTVRInstance qtvr, Point pt, UInt32 *hotSpotID,
WindowPtr w);

qtvr An instance of a QuickTime VR movie.

pt The current location of the cursor, in the local coordinates of the
graphics world specified by the w parameter.

hotSpotID On entry, a pointer to a long integer. On exit, that long integer
contains the ID of the hot spot that lies beneath the specified
point, or the value 0 if no hot spot lies beneath that point.

w A pointer to a graphics world.

function result A result code.

DESCRIPTION

The QTVRMouseUp function returns, in the long integer pointed to by the
hotSpotID parameter, the ID of the hot spot in the QuickTime VR movie
specified by the qtvr parameter that lies directly under the point specified by
the pt parameter. If no hot spot lies under that point, the long integer is set to 0.
QTVRMouseUp also performs any other tasks that are typically performed when
the user releases the mouse button after clicking it when the cursor is in a
QuickTime VR movie.
QuickTime VR Manager Reference 121

C H A P T E R 2

QuickTime VR Manager
SPECIAL CONSIDERATIONS

You need to call QTVRMouseUp only if you have disabled mouse-down tracking
for the specified QuickTime VR movie.

SEE ALSO

Use QTVRSetMouseDownTracking (page 117) to change the mouse-down tracking
state of a QuickTime VR movie. Use QTVRMouseDown (page 118) and
QTVRMouseStillDown (page 119) to handle the mouse button’s being clicked and
held down.

QTVRMouseStillDownExtended 2

You can use the QTVRMouseStillDownExtended function the same way you use the
QTVRMouseStillDown function, to handle the user’s holding down the mouse
button while the cursor is in a QuickTime VR movie for which mouse-down
tracking is disabled.

The QTVRMouseStillDownExtended function uses the same intercept as the
QTVRMouseStillDown function but has two additional parameters. Applications
that intercept kQTVRMouseStillDownExtended should always check the
paramCount field to make sure it is 5 before using the last two fields.

Internally, QuickTime VR always uses the QTVRMouseStillDownExtended function
instead of QTVRMouseStillDown. Developers implementing their own mouse
down tracking don’t need to use the extended version unless they also intercept
the procedure and need the added parameters.

OSErr QTVRMouseStillDownExtended (
QTVRInstance qtvr,
Point pt,
UInt32 *hotSpotID,
WindowPtr w,
UInt32 when,
UInt16 modifiers);

qtvr An instance of a QuickTime VR movie.

pt The current location of the cursor, in the local coordinates of the
graphics world specified by the w parameter.
122 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
hotSpotID On entry, a pointer to a long integer. On exit, that long integer
contains the ID of the hot spot that lies beneath the specified
point, or the value 0 if no hot spot lies beneath that point.

w A pointer to a graphics world.

when The current time, in the number of ticks since system startup,
obtained by a call to TickCount().

modifiers A short integer that contains information about the state of the
modifier keys and the mouse button at the current time. See the
chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox
Essentials for a description of the information encoded in this
parameter.

function result A result code.

DESCRIPTION

The QTVRMouseStillDownExtended function returns, in the long integer pointed to
by the hotSpotID parameter, the ID of the hot spot in the QuickTime VR movie
specified by the qtvr parameter that lies directly under the point specified by
the pt parameter. If no hot spot lies under that point, the long integer is set to 0.
QTVRMouseStillDownExtended also performs any other tasks that are typically
performed when the user holds down the mouse button when the cursor is in a
QuickTime VR movie.

You should call QTVRMouseStillDownExtended repeatedly for as long as the user
holds down the mouse button while the cursor is in the specified QuickTime VR
movie.

SPECIAL CONSIDERATIONS

You need to call QTVRMouseStillDownExtended only if you have disabled
mouse-down tracking for the specified QuickTime VR movie.

SEE ALSO

Use QTVRSetMouseDownTracking (page 117) to change the mouse-down tracking
state of a QuickTime VR movie. Use QTVRMouseDown (page 118) and
QTVRMouseUpExtended (next) to handle the mouse button’s being clicked and
released.
QuickTime VR Manager Reference 123

C H A P T E R 2

QuickTime VR Manager
QTVRMouseUpExtended 2

You can use the QTVRMouseUpExtended function the same way you use the
QTVRMouseUp function, to handle the user’s releasing the mouse button while the
cursor is in a QuickTime VR movie for which mouse-down tracking is disabled.

The QTVRMouseUpExtended function uses the same intercept as the QTVRMouseUp
function but has two additional parameters. Applications that intercept
QTVRMouseUpExtended should always check the paramCount field to make sure it
is 5 before using the last two fields.

Internally, QuickTime VR always uses the QTVRMouseUpExtended function instead
of QTVRMouseUp. Developers implementing their own mouse down tracking
don’t need to use the extended version unless they also intercept the procedure
and need the added parameters.

OSErr QTVRMouseUpExtended (
QTVRInstance qtvr,
Point pt,
UInt32 *hotSpotID,
WindowPtr w,
UInt32 when,
UInt16 modifiers);

qtvr An instance of a QuickTime VR movie.

pt The current location of the cursor, in the local coordinates of the
graphics world specified by the w parameter.

hotSpotID On entry, a pointer to a long integer. On exit, that long integer
contains the ID of the hot spot that lies beneath the specified
point, or the value 0 if no hot spot lies beneath that point.

w A pointer to a graphics world.

when The time, in the number of ticks since system startup, when the
mouse-up event was posted.

modifiers A short integer that contains information about the state of the
modifier keys and the mouse button at the time the event was
posted. See the chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for a description of the information
encoded in this parameter.

function result A result code.
124 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
DESCRIPTION

The QTVRMouseUpExtended function returns, in the long integer pointed to by the
hotSpotID parameter, the ID of the hot spot in the QuickTime VR movie
specified by the qtvr parameter that lies directly under the point specified by
the pt parameter. If no hot spot lies under that point, the long integer is set to 0.
QTVRMouseUpExtended also performs any other tasks that are typically performed
when the user releases the mouse button after clicking it when the cursor is in a
QuickTime VR movie.

SPECIAL CONSIDERATIONS

You need to call QTVRMouseUp or QTVRMouseUpExtended only if you have disabled
mouse-down tracking for the specified QuickTime VR movie.

Intercepting QuickTime VR Manager Routines 2

The QuickTime VR Manager provides a function that you can use to install an
intercept procedure. Your intercept procedure can provide either alternative or
additional functionality to that provided by the intercepted procedure.

QTVRInstallInterceptProc 2

You can use the QTVRInstallInterceptProc function to install or remove an
intercept procedure for a QuickTime VR Manager function.

OSErr QTVRInstallInterceptProc (
QTVRInstance qtvr,
QTVRProcSelector selector,
QTVRInterceptUPP interceptProc,
SInt32 refCon,
UInt32 flags);

qtvr An instance of a QuickTime VR movie.

selector A selector that indicates which QuickTime VR function to
intercept. See “Intercept Selectors” (page 60) for a description of
the available intercept selectors.
QuickTime VR Manager Reference 125

C H A P T E R 2

QuickTime VR Manager
interceptProc A universal procedure pointer for an intercept procedure. See
“QuickTime VR Intercept Procedure” (page 181) for information
about intercept procedures. Set this parameter to nil to remove
a previously installed intercept procedure.

refCon A reference constant. This value is passed to the specified
intercept routine.

flags Unused. Set this parameter to 0.

function result A result code.

DESCRIPTION

The QTVRInstallInterceptProc function installs the procedure specified by the
interceptProc parameter as an intercept procedure for the QuickTime VR
function specified by the selector parameter for the QuickTime VR movie
specified by the qtvr parameter. Your intercept procedure is called whenever
QuickTime VR is about to execute the function you are intercepting. Your
procedure can simply replace the intercepted function (by returning the value
true in its cancel parameter); it can call through to the intercepted function (by
calling the QTVRCallInterceptedProc function); or it can allow the intercepted
function to execute when the intercept procedure returns (by returning the
value false in its cancel parameter).

SEE ALSO

For examples of the use of the QTVRInstallInterceptProc function, see
Listing 2-7 (page 53) and Listing 4-2 in Chapter 4, “QuickTime VR Atom
Containers.”

QTVRCallInterceptedProc 2

You can use the QTVRCallInterceptedProc function to call an intercepted
QuickTime VR function from within an intercept procedure.

OSErr QTVRCallInterceptedProc (
QTVRInstance qtvr,
QTVRInterceptRecord *qtvrMsg);
126 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
qtvr An instance of a QuickTime VR movie.

qtvrMsg An intercept record (page 85) that specifies the function that
your procedure is intercepting and the parameters for that
function. This should be the same intercept record passed to
your intercept procedure.

function result A result code.

DESCRIPTION

The QTVRCallInterceptedProc function executes the QuickTime VR Manager
function indicated by the selector field of the qtvrMsg intercept record. The
parameters passed to that function are the QuickTime VR movie specified by
the qtvr parameter and any other parameters contained in the parameter field of
the qtvrMsg record. You can, if you wish, change the parameters in that field
before calling QTVRCallInterceptedProc.

You can call QTVRCallInterceptedProc more than once in your intercept
procedure. In addition, the QuickTime VR Manager will call the intercepted
function again unless your intercept procedure returns true in its cancel
parameter.

SPECIAL CONSIDERATIONS

You should call QTVRCallInterceptedProc only in an intercept procedure.

SEE ALSO

See “QuickTime VR Intercept Procedure” (page 181) for information
about intercept procedures. Listing 2-6 (page 51) illustrates the use of
QTVRCallInterceptedProc.

Managing Object Nodes 2

The QuickTime VR Manager provides functions that you can use to manage
object nodes.
QuickTime VR Manager Reference 127

C H A P T E R 2

QuickTime VR Manager
QTVRGetCurrentMouseMode 2

You can use the QTVRGetCurrentMouseMode function to obtain the current mouse
control modes.

The value returned by the QTVRGetCurrentMouseMode function is an unsigned
long integer that encodes the current mouse control modes. If a bit in the
integer is set, the corresponding mode is one of the current mouse modes. The
mode bits are addressed using these constants:

enum {
kQTVRPanning = 1L << 0,
kQTVRTranslating = 1L << 1,
kQTVRZooming = 1L << 2,
kQTVRScrolling = 1L << 3,
kQTVRSelecting = 1L << 4

};

Notice that several modes can be returned. That means a return value could
have both zooming and translating set, for example.

Constant descriptions

kQTVRPanning If this bit is set, the mouse controls panning of standard
objects, using objects-only controllers.

kQTVRTranslating If this bit is set, the mouse controls translation for all
objects.

kQTVRZooming If this bit is set, the mouse controls zooming for all objects.
kQTVRScrolling If this bit is set, the mouse controls arrow scrolling for

standard objects and scrolling for joystick objects.
kQTVRSelecting If this bit is set, the mouse controls selecting of objects as an

object absolute controller.
128 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
QTVRGetFrameRate 2

You can use the QTVRGetFrameRate function to get the current frame rate of an
object node.

float QTVRGetFrameRate (QTVRInstance qtvr);

qtvr An instance of a QuickTime VR movie.

function result A floating-point value that represents the current frame rate of
the specified movie.

DESCRIPTION

The QTVRGetFrameRate function returns, as its function result, the current frame
rate of the object node specified by the qtvr parameter. A frame rate is a
floating-point value in the range from –100.0 to +100.0. An object node’s default
frame rate is stored in the movie file.

SPECIAL CONSIDERATIONS

QTVRGetFrameRate is valid only for object nodes.

SEE ALSO

Use QTVRSetFrameRate (next) to set the frame rate of an object node.

QTVRSetFrameRate 2

You can use the QTVRSetFrameRate function to set the frame rate of an
object node.

OSErr QTVRSetFrameRate (QTVRInstance qtvr, float rate);

qtvr An instance of a QuickTime VR movie.
QuickTime VR Manager Reference 129

C H A P T E R 2

QuickTime VR Manager
rate The desired frame rate of the specified movie. A frame rate is a
floating-point value in the range from –100.0 to +100.0. Positive
values indicate forward rates, and negative values indicate
reverse rates. Set this parameter to 0 to stop the movie.

function result A result code.

DESCRIPTION

The QTVRSetFrameRate function sets the frame rate of the object node specified
by the qtvr parameter to the rate specified by the rate parameter. This function
is most useful when an object is being viewed with a looping animation. (The
current view of the object may contain frames that are played in a loop, as
specified by the file format.) You can use QTVRSetFrameRate to change the frame
rate of the loop.

If the value specified in the rate parameter lies outside the valid range,
QTVRSetFrameRate returns the result code constraintReachedErr and sets the
frame rate to the nearest constraint.

SPECIAL CONSIDERATIONS

QTVRSetFrameRate is valid only for object nodes.

SEE ALSO

Use QTVRGetFrameRate (page 129) to get the frame rate of an object node.

QTVRGetViewRate 2

You can use the QTVRGetViewRate function to get the current view rate of an
object node.

float QTVRGetViewRate (QTVRInstance qtvr);

qtvr An instance of a QuickTime VR movie.

function result A floating-point value that represents the current view rate of
the specified movie.
130 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
DESCRIPTION

The QTVRGetViewRate function returns, as its function result, the current view
rate of the object node specified by the qtvr parameter. A view rate is a
floating-point value in the range from –100.0 to +100.0. An object node’s default
view rate is stored in the movie file.

SPECIAL CONSIDERATIONS

QTVRGetViewRate is valid only for object nodes.

SEE ALSO

Use QTVRSetViewRate (next) to set the view rate of an object node.

QTVRSetViewRate 2

You can use the QTVRSetViewRate function to set the view rate of an object node.

OSErr QTVRSetViewRate (QTVRInstance qtvr, float rate);

qtvr An instance of a QuickTime VR movie.

rate The desired view rate of the specified movie. A view rate is a
floating-point value in the range from –100.0 to +100.0. Positive
values indicate forward rates, and negative values indicate
reverse rates. Set this parameter to 0 to stop the movie.

function result A result code.

DESCRIPTION

The QTVRSetViewRate function sets the view rate of the object node specified by
the qtvr parameter to the rate specified by the rate parameter. A node’s view
rate might be modified by the current animation settings.

If the value specified in the rate parameter lies outside the valid range,
QTVRSetViewRate returns the result code constraintReachedErr and sets the view
rate to the nearest constraint.
QuickTime VR Manager Reference 131

C H A P T E R 2

QuickTime VR Manager
SPECIAL CONSIDERATIONS

QTVRSetViewRate is valid only for object nodes.

SEE ALSO

Use QTVRGetViewRate (page 130) to get the current view rate of an object node.

QTVRGetCurrentViewDuration 2

You can use the QTVRGetCurrentViewDuration function to get the duration of the
current view of an object node.

TimeValue QTVRGetCurrentViewDuration (QTVRInstance qtvr);

qtvr An instance of a QuickTime VR movie.

function result The interval of time from the beginning to the end of the current
view.

DESCRIPTION

The QTVRGetCurrentViewDuration function returns, as its function result, the
duration of the current view of the object node specified by the qtvr parameter.

SPECIAL CONSIDERATIONS

QTVRGetCurrentViewDuration is valid only for object nodes.

You cannot change a node’s view duration.
132 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
QTVRGetViewCurrentTime 2

You can use the QTVRGetViewCurrentTime function to get the current time in the
current view.

TimeValue QTVRGetViewCurrentTime (QTVRInstance qtvr);

qtvr An instance of a QuickTime VR movie.

function result The current time in the current view.

DESCRIPTION

The QTVRGetViewCurrentTime function returns, as its function result, the current
time in the current view of the object node specified by the qtvr parameter. The
returned value is always greater than or equal to 0 and less than or equal to the
value returned by the QTVRGetCurrentViewDuration function.

SPECIAL CONSIDERATIONS

QTVRGetViewCurrentTime is valid only for object nodes.

SEE ALSO

Use QTVRSetViewCurrentTime (next) to set the current time of an object node.

QTVRSetViewCurrentTime 2

You can use the QTVRSetViewCurrentTime function to set the time in the
current view.

OSErr QTVRSetViewCurrentTime (QTVRInstance qtvr, TimeValue time);

qtvr An instance of a QuickTime VR movie.

time The desired time in the current view.

function result A result code.
QuickTime VR Manager Reference 133

C H A P T E R 2

QuickTime VR Manager
DESCRIPTION

The QTVRSetViewCurrentTime function sets the current time in the current view
of the object node specified by the qtvr parameter to the value specified by the
time parameter. That value should be greater than or equal to 0 and less than or
equal to the value returned by the QTVRGetCurrentViewDuration function.

QTVRSetViewCurrentTime returns the result code timeNotInViewErr if the specified
time value is greater than or equal to the view duration of the specified object
node; in addition, QTVRSetViewCurrentTime sets the current view time to 1 less
than the view duration. Similarly, QTVRSetViewCurrentTime returns the result
code timeNotInViewErr if the specified time value is less than 0; in that case,
QTVRSetViewCurrentTime sets the current view time to 0.

SPECIAL CONSIDERATIONS

QTVRSetViewCurrentTime is valid only for object nodes.

SEE ALSO

Use QTVRGetViewCurrentTime (page 133) to get the current time of an object node.

QTVRGetViewStateCount 2

You can use the QTVRGetViewStateCount function to get the number of view
states of an object node.

UInt16 QTVRGetViewStateCount (QTVRInstance qtvr);

qtvr An instance of a QuickTime VR movie.

function result The number of view states associated with the specified
object node.

DESCRIPTION

The QTVRGetViewStateCount function returns, as its function result, the number
of view states associated with the object node specified by the qtvr parameter.
The number of view states in an object movie is defined by the movie file.
134 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
SPECIAL CONSIDERATIONS

QTVRGetViewStateCount is valid only for object nodes.

QTVRGetViewState 2

You can use the QTVRGetViewState function to get the value of a view state.

OSErr QTVRGetViewState (
QTVRInstance qtvr,
QTVRViewStateType viewStateType,
UInt16 *state);

qtvr An instance of a QuickTime VR movie.

viewStateType A view state type. See “View State Types” (page 77) for a
description of the available view state types.

state On entry, a pointer to a short integer. On exit, that integer is set
to the current value of the specified type of view state.

function result A result code.

DESCRIPTION

The QTVRGetViewState function returns, in the state parameter, the current
value of the view state of the object node specified by the qtvr parameter that
has the type specified by the viewStateType parameter.

SPECIAL CONSIDERATIONS

QTVRGetViewState is valid only for object nodes.

SEE ALSO

Use QTVRSetViewState (next) to set the value of a view state.
QuickTime VR Manager Reference 135

C H A P T E R 2

QuickTime VR Manager
QTVRSetViewState 2

You can use the QTVRSetViewState function to set the value of a view state.

OSErr QTVRSetViewState (
QTVRInstance qtvr,
QTVRViewStateType viewStateType,
UInt16 state);

qtvr An instance of a QuickTime VR movie.

viewStateType
A view state type. See “View State Types” (page 77) for a
description of the available view state types.

state The desired value of the specified type of view state.

function result A result code.

DESCRIPTION

The QTVRSetViewState function sets the value of the view state of the object node
specified by the qtvr parameter that has the type specified by the viewStateType
parameter to the value specified by the state parameter.

SPECIAL CONSIDERATIONS

QTVRSetViewState is valid only for object nodes.

SEE ALSO

Use QTVRGetViewState (page 135) to get the value of a view state.
136 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
QTVRGetAnimationSetting 2

You can use the QTVRGetAnimationSetting function to get the current state of an
animation setting for an object node.

OSErr QTVRGetAnimationSetting (
QTVRInstance qtvr,
QTVRObjectAnimationSetting setting,
Boolean *enable);

qtvr An instance of a QuickTime VR movie.

setting An animation setting. See “Animation Settings” (page 72) for a
description of the available animation settings.

enable On entry, a pointer to a Boolean value. On exit, that value is set
to true if the specified animation setting is currently enabled for
the specified object node or to false otherwise.

function result A result code.

DESCRIPTION

The QTVRGetAnimationSetting function returns, through the enable parameter,
the current state of the animation setting specified by the setting parameter for
the object node specified by the qtvr parameter. If enable is true, the specified
setting is currently enabled; otherwise, that setting is disabled.

SPECIAL CONSIDERATIONS

QTVRGetAnimationSetting is valid only for object nodes.

SEE ALSO

Use QTVRSetAnimationSetting (next) to set the state of an animation setting for
an object node.
QuickTime VR Manager Reference 137

C H A P T E R 2

QuickTime VR Manager
QTVRSetAnimationSetting 2

You can use the QTVRSetAnimationSetting function to set the state of an
animation setting for an object node.

OSErr QTVRSetAnimationSetting (
QTVRInstance qtvr,
QTVRObjectAnimationSetting setting,
Boolean enable);

qtvr An instance of a QuickTime VR movie.

setting An animation setting. See “Animation Settings” (page 72) for a
description of the available animation settings.

enable A Boolean value that indicates whether the specified animation
setting is to be enabled for the specified object node (true) or
disabled (false).

function result A result code.

DESCRIPTION

The QTVRSetAnimationSetting function sets the state of the animation setting
specified by the setting parameter for the object node specified by the qtvr
parameter to the state specified by the enable parameter.

SPECIAL CONSIDERATIONS

QTVRSetAnimationSetting is valid only for object nodes.

SEE ALSO

Use QTVRGetAnimationSetting (page 137) to get the current state of an animation
setting for an object node.
138 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
QTVRGetControlSetting 2

You can use the QTVRGetControlSetting function to get the current state of a
control setting for an object node.

OSErr QTVRGetControlSetting (
QTVRInstance qtvr,
QTVRControlSetting setting,
Boolean *enable);

qtvr An instance of a QuickTime VR movie.

setting A control setting. See “Control Settings” (page 74) for a
description of the available control settings.

enable On entry, a pointer to a Boolean value. On exit, that value is set
to true if the specified control setting is currently enabled for the
specified object node or to false otherwise.

function result A result code.

DESCRIPTION

The QTVRGetControlSetting function returns, through the enable parameter, the
current state of the control setting specified by the setting parameter for the
object node specified by the qtvr parameter. If enable is true, the specified
setting is currently enabled; otherwise, that setting is disabled.

SPECIAL CONSIDERATIONS

QTVRGetControlSetting is valid only for object nodes.

SEE ALSO

Use QTVRSetControlSetting (next) to set the state of a control setting for an
object node.
QuickTime VR Manager Reference 139

C H A P T E R 2

QuickTime VR Manager
QTVRSetControlSetting 2

You can use the QTVRSetControlSetting function to set the state of a control
setting for an object node.

OSErr QTVRSetControlSetting (
QTVRInstance qtvr,
QTVRControlSetting setting,
Boolean enable);

qtvr An instance of a QuickTime VR movie.

setting A control setting. See “Control Settings” (page 74) for a
description of the available control settings.

enable A Boolean value that indicates whether the specified control
setting is to be enabled for the specified object node (true) or
disabled (false).

function result A result code.

DESCRIPTION

The QTVRSetControlSetting function sets the state of the control setting specified
by the setting parameter for the object node specified by the qtvr parameter to
the state specified by the enable parameter.

SPECIAL CONSIDERATIONS

QTVRSetControlSetting is valid only for object nodes.

SEE ALSO

Use QTVRGetControlSetting (page 139) to get the current state of a control
setting for an object node.
140 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
QTVRGetFrameAnimation 2

You can use the QTVRGetFrameAnimation function to get the current state of frame
animation for an object node.

Boolean QTVRGetFrameAnimation (QTVRInstance qtvr);

qtvr An instance of a QuickTime VR movie.

function result A Boolean value that indicates whether frame animation is
enabled for the specified object node (true) or not (false).

DESCRIPTION

The QTVRGetFrameAnimation function returns, as its function result, a Boolean
value that indicates the current state of frame animation for the object node
specified by the qtvr parameter.

SPECIAL CONSIDERATIONS

QTVRGetFrameAnimation is valid only for object nodes.

SEE ALSO

Use QTVREnableFrameAnimation (next) to set the state of frame animation for an
object node.

QTVREnableFrameAnimation 2

You can use the QTVREnableFrameAnimation function to enable or disable frame
animation for an object node.

OSErr QTVREnableFrameAnimation (QTVRInstance qtvr, Boolean enable);

qtvr An instance of a QuickTime VR movie.

enable A Boolean value that indicates whether to enable (true) or
disable (false) frame animation for the specified object node.

function result A result code.
QuickTime VR Manager Reference 141

C H A P T E R 2

QuickTime VR Manager
DESCRIPTION

The QTVREnableFrameAnimation function enables or disables the frame animation
state for the object node specified by the qtvr parameter, according to the value
of the enable parameter.

The current frame rate (as set by the function QTVRSetFrameRate) is unaffected by
the state of frame animation of an object node.

SPECIAL CONSIDERATIONS

QTVREnableFrameAnimation is valid only for object nodes.

You should use QTVREnableFrameAnimation instead of standard QuickTime
functions to control object animation.

SEE ALSO

Use QTVRGetFrameAnimation (page 141) to get the current state of frame
animation for an object node.

QTVRGetViewAnimation 2

You can use the QTVRGetViewAnimation function to get the current state of view
animation for an object node.

Boolean QTVRGetViewAnimation (QTVRInstance qtvr);

qtvr An instance of a QuickTime VR movie.

function result A Boolean value that indicates whether view animation is
enabled for the specified object node (true) or not (false).

DESCRIPTION

The QTVRGetViewAnimation function returns, as its function result, a Boolean
value that indicates the current state of view animation for the object node
specified by the qtvr parameter.
142 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
SPECIAL CONSIDERATIONS

QTVRGetViewAnimation is valid only for object nodes.

SEE ALSO

Use QTVREnableViewAnimation (next) to set the state of view animation for an
object node.

QTVREnableViewAnimation 2

You can use the QTVREnableViewAnimation function to enable or disable view
animation for an object node.

OSErr QTVREnableViewAnimation (QTVRInstance qtvr, Boolean enable);

qtvr An instance of a QuickTime VR movie.

enable A Boolean value that indicates whether to enable (true) or
disable (false) view animation for the specified object node.

function result A result code.

DESCRIPTION

The QTVREnableViewAnimation function enables or disables the view animation
state for the object node specified by the qtvr parameter, according to the value
of the enable parameter.

SPECIAL CONSIDERATIONS

QTVREnableViewAnimation is valid only for object nodes.

You should use QTVREnableViewAnimation instead of standard QuickTime
functions to control object animation.

SEE ALSO

Use QTVRGetViewAnimation (page 142) to get the current state of view animation
for an object node.
QuickTime VR Manager Reference 143

C H A P T E R 2

QuickTime VR Manager
Managing Imaging Characteristics 2

The QuickTime VR Manager provides functions that you can use to get and set
imaging characteristics of a QuickTime VR movie.

QTVRGetVisible 2

You can use the QTVRGetVisible function to get a movie’s visibility state.

Boolean QTVRGetVisible (QTVRInstance qtvr);

qtvr An instance of a QuickTime VR movie.

function result A Boolean value that indicates whether the specified movie is
visible (true) or not (false).

DESCRIPTION

The QTVRGetVisible function returns, as its function result, a Boolean value that
indicates whether the QuickTime VR movie specified by the qtvr parameter is
visible (true) or not (false).

SPECIAL CONSIDERATIONS

QTVRGetVisible is valid only for panoramic nodes.

SEE ALSO

Use QTVRSetVisible (next) to set the visibility state of a movie.

QTVRSetVisible 2

You can use the QTVRSetVisible function to set a movie’s visibility state.

OSErr QTVRSetVisible (QTVRInstance qtvr, Boolean visible);
144 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
qtvr An instance of a QuickTime VR movie.

visible A Boolean value that indicates whether the specified movie is to
be visible (true) or not (false).

function result A result code.

DESCRIPTION

The QTVRSetVisible function sets the visibility state of the QuickTime VR movie
specified by the qtvr parameter to the state specified by the visible parameter.
Setting the visibility state to false is useful if you want to turn off imaging a
QuickTime VR movie without purging the associated data from memory. When
a panoramic node’s visibility state is false, the corrected image is still drawn to
the prescreen buffer. You can access the data in that buffer by calling
QTVRSetPrescreenImagingCompleteProc.

SPECIAL CONSIDERATIONS

QTVRSetVisible is valid only for panoramic nodes.

SEE ALSO

Use QTVRGetVisible (page 144) to get the visibility state of a movie.

QTVRGetImagingProperty 2

You can use the QTVRGetImagingProperty function to get the current value of an
imaging property of a movie.

OSErr QTVRGetImagingProperty (
QTVRInstance qtvr,
QTVRImagingMode imagingMode,
UInt32 imagingProperty,
SInt32 *propertyValue);

qtvr An instance of a QuickTime VR movie.

imagingMode An imaging mode. See “Imaging Modes” (page 63) for a
description of the available imaging modes.
QuickTime VR Manager Reference 145

C H A P T E R 2

QuickTime VR Manager
imagingProperty
An imaging property. See “Imaging Property Types” (page 64)
for a description of the available imaging properties.

propertyValue On entry, a pointer to a long integer. On exit, that long integer
contains the current value of the specified imaging property for
the specified mode.

function result A result code.

DESCRIPTION

The QTVRGetImagingProperty function returns, in the long integer pointed to by
the propertyValue parameter, the current value of the property specified by the
imagingProperty parameter when the QuickTime VR movie specified by the
qtvr parameter is in the mode specified by the imagingMode parameter.

SPECIAL CONSIDERATIONS

QTVRGetImagingProperty is valid only for panoramic nodes.

SEE ALSO

Use QTVRSetImagingProperty (next) to set an imaging property.

QTVRSetImagingProperty 2

You can use the QTVRSetImagingProperty function to set the value of an imaging
property of a movie.

OSErr QTVRSetImagingProperty (
QTVRInstance qtvr,
QTVRImagingMode imagingMode,
UInt32 imagingProperty,
SInt32 propertyValue);

qtvr An instance of a QuickTime VR movie.
146 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
imagingMode An imaging mode. See “Imaging Modes” (page 63) for a
description of the available imaging modes.

imagingProperty
An imaging property. See “Imaging Property Types” (page 64)
for a description of the available imaging properties.

propertyValue The desired value for the specified imaging property for the
specified mode.

function result A result code.

DESCRIPTION

The QTVRSetImagingProperty function sets the value of the imaging property
specified by the imagingProperty parameter for the imaging mode specified by
the imagingMode parameter and the QuickTime VR movie specified by the qtvr
parameter to the value passed in the propertyValue parameter.

Note that default values for all imaging properties can be contained in a
QuickTime VR movie file. If no defaults are specified in a movie file, the
QuickTime VR Manager uses these values: for static mode, the
kQTVRImagingQuality property is codecHighQuality and kQTVRImagingDirectDraw
is true; for motion mode, the kQTVRImagingQuality property is codecLowQuality
and kQTVRImagingDirectDraw is true. The default correction mode is
kQTVRFullCorrection for both static and motion imaging modes.

IMPORTANT

It would look strange to have one correction mode for static
imaging and a different correction mode for motion
imaging. As a result, you should typically set the
imagingMode parameter to kQTVRAllModes when setting a
property of type kQTVRImagingCorrection. ▲

SPECIAL CONSIDERATIONS

QTVRSetImagingProperty is valid only for panoramic nodes.

SEE ALSO

Use QTVRGetImagingProperty (page 145) to get an imaging property.
QuickTime VR Manager Reference 147

C H A P T E R 2

QuickTime VR Manager
QTVRUpdate 2

You can use the QTVRUpdate function to force an immediate update of a
QuickTime VR movie image.

OSErr QTVRUpdate (QTVRInstance qtvr, QTVRImagingMode imagingMode);

qtvr An instance of a QuickTime VR movie.

imagingMode An imaging mode. See “Imaging Modes” (page 63) for a
description of the available imaging modes. You can specify
the kQTVRCurrentMode imaging mode to use the current
imaging mode.

function result A result code.

DESCRIPTION

The QTVRUpdate function immediately updates the image for the QuickTime VR
movie specified by the qtvr parameter, without waiting for the next call to
MoviesTask in your application’s main event loop.

If you plan to call QTVRUpdate repeatedly for a movie instance, then for
improved performance you should bracket those calls with calls to the
QTVRBeginUpdateStream and QTVREndUpdateStream functions (described next).

SPECIAL CONSIDERATIONS

If you call QTVRUpdate after calling QTVRBeginUpdateStream but before calling
QTVREndUpdateStream, the imagingMode parameter passed to QTVRUpdate must be
the same as the imagingMode parameter passed to QTVRBeginUpdateStream. If
you do not specify the same imaging mode to those two functions, an error
will result.

SEE ALSO

Listing 2-3 (page 46) illustrates the use of QTVRUpdate.
148 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
QTVRBeginUpdateStream 2

You can use the QTVRBeginUpdateStream function to begin a stream of immediate
updates to a QuickTime VR movie.

OSErr QTVRBeginUpdateStream (
QTVRInstance qtvr,
QTVRImagingMode imagingMode);

qtvr An instance of a QuickTime VR movie.

imagingMode An imaging mode. See “Imaging Modes” (page 63) for a
description of the available imaging modes.

function result A result code.

DESCRIPTION

The QTVRBeginUpdateStream function configures the QuickTime VR movie
specified by the qtvr parameter for a stream of immediate updates to its movie
image. After calling QTVRBeginUpdateStream, you perform the updates by calling
QTVRUpdate. When you are finished performing the updates, call
QTVREndUpdateStream. Issuing a stream of image updates in this manner is
significantly faster than simply calling QTVRUpdate repeatedly (that is, not within
a begin/end update sequence).

Each call to QTVRBeginUpdateStream must be balanced by a call to
QTVREndUpdateStream, but you can nest these calls.

SPECIAL CONSIDERATIONS

After you call QTVRBeginUpdateStream and before you call QTVREndUpdateStream,
you must not change any of the QuickTime VR movie’s imaging properties.

Calling QTVRBeginUpdateStream locks down large blocks of memory. As a result,
you should minimize the amount of time before calling QTVREndUpdateStream.

QTVRBeginUpdateStream is valid only for panoramic nodes.

SEE ALSO

Use QTVREndUpdateStream (next) to end a stream of immediate updates to a
QuickTime VR movie.
QuickTime VR Manager Reference 149

C H A P T E R 2

QuickTime VR Manager
QTVREndUpdateStream 2

You can use the QTVREndUpdateStream function to end a stream of immediate
updates to a QuickTime VR movie.

OSErr QTVREndUpdateStream (QTVRInstance qtvr);

qtvr An instance of a QuickTime VR movie.

function result A result code.

DESCRIPTION

The QTVREndUpdateStream function unlocks the memory locked by the matching
call to QTVRBeginUpdateStream for the QuickTime VR movie specified by the qtvr
parameter and reverses any other actions performed by that call.

Each call to QTVRBeginUpdateStream must be balanced by a call to
QTVREndUpdateStream, but you can nest these calls. For nested calls, only the final
call to QTVREndUpdateStream unlocks the memory locked by the first call to
QTVRBeginUpdateStream.

SPECIAL CONSIDERATIONS

QTVREndUpdateStream is valid only for panoramic nodes.

SEE ALSO

Use QTVRBeginUpdateStream (page 149) to begin a stream of immediate updates
to a QuickTime VR movie.
150 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
QTVRSetTransitionProperty 2

You can use the QTVRSetTransitionProperty function to set the value of a
transition property.

OSErr QTVRSetTransitionProperty (
QTVRInstance qtvr,
UInt32 transitionType,
UInt32 transitionProperty,
SInt32 transitionValue);

qtvr An instance of a QuickTime VR movie.

transitionType
A type of transition. See “Transition Type” (page 66) for a
description of the available transition type.

transitionProperty
A type of transition property. See “Transition Properties”
(page 66) for a description of the available transition property
types.

transitionValue
The desired value for the specified transition property.

function result A result code.

DESCRIPTION

The QTVRSetTransitionProperty function sets the value of the transition
property whose type is specified by the transitionType and transitionProperty
parameters for the movie specified by the qtvr parameter to the value specified
by the transitionValue parameter.

Note that calling QTVRSetTransitionProperty simply sets a transition property’s
value; you must still call QTVREnableTransition to enable that transition effect.

SPECIAL CONSIDERATIONS

QTVRSetTransitionProperty is valid only for panoramic nodes.

SEE ALSO

Use QTVREnableTransition (next) to enable a transition effect.
QuickTime VR Manager Reference 151

C H A P T E R 2

QuickTime VR Manager
QTVREnableTransition 2

You can use the QTVREnableTransition function to enable or disable a
transition effect.

OSErr QTVREnableTransition (
QTVRInstance qtvr,
UInt32 transitionType,
Boolean enable);

qtvr An instance of a QuickTime VR movie.

transitionType
A type of transition property. See “Transition Type” (page 66)
for a description of the available transition type.

enable A Boolean value that indicates whether the specified transition
property is to be enabled (true) or disabled (false).

function result A result code.

DESCRIPTION

The QTVREnableTransition function enables or disables the transition property
specified by the transitionType parameter for the movie specified by the qtvr
parameter, as indicated by the value of the enable parameter. Once a transition
effect is enabled, it is used at the appropriate time until it is disabled by a
subsequent call to QTVREnableTransition.

SPECIAL CONSIDERATIONS

QTVREnableTransition is valid only for panoramic nodes.

SEE ALSO

Use QTVRSetTransitionProperty (page 151) to set the value of a transition
property.
152 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
Converting Angles and Points 2

The QuickTime VR Manager provides routines that you can use to convert
mathematical entities and perform other utility operations.

QTVRGetAngularUnits 2

You can use the QTVRGetAngularUnits function to get the type of unit currently
used when specifying angles.

QTVRAngularUnits QTVRGetAngularUnits (QTVRInstance qtvr);

qtvr An instance of a QuickTime VR movie.

function result A constant that indicates the type of angular units currently in
use. See “Angular Unit Types” (page 59) for a description of the
available angular unit types.

DESCRIPTION

The QTVRGetAngularUnits function returns, as its function result, a constant that
indicates the type of angular unit currently used by the movie instance specified
by the qtvr parameter. Angular values you pass to other QuickTime VR functions
(for example, QTVRSetPanAngle) are interpreted in those units.

SEE ALSO

Use QTVRSetAngularUnits (next) to set the type of angular unit used by a
QuickTime VR movie.
QuickTime VR Manager Reference 153

C H A P T E R 2

QuickTime VR Manager
QTVRSetAngularUnits 2

You can use the QTVRSetAngularUnits function to set the type of unit used when
specifying angles.

OSErr QTVRSetAngularUnits (QTVRInstance qtvr, QTVRAngularUnits units);

qtvr An instance of a QuickTime VR movie.

units A constant that indicates the type of angular units to use. See
“Angular Unit Types” (page 59) for a description of the available
angular unit types.

function result A result code.

DESCRIPTION

The QTVRSetAngularUnits function sets the type of angular units to be used in all
subsequent QuickTime VR Manager calls for the QuickTime VR movie specified
by the qtvr parameter to the unit type specified by the units parameter.

SEE ALSO

Use QTVRGetAngularUnits (page 153) to get the type of angular unit used
by a QuickTime VR movie. Listing 2-2 (page 44) illustrates the use of
QTVRSetAngularUnits.

QTVRPtToAngles 2

You can use the QTVRPtToAngles function to get the pan and tilt angles of a point.

OSErr QTVRPtToAngles (
QTVRInstance qtvr,
Point pt,
float *panAngle,
float *tiltAngle);

qtvr An instance of a QuickTime VR movie.
154 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
pt A point, in the local coordinates of the graphics world of the
specified movie.

panAngle On entry, a pointer to a floating-point value. On exit, that value
contains the pan angle of the specified point.

tiltAngle On entry, a pointer to a floating-point value. On exit, that value
contains the tilt angle of the specified point.

function result A result code.

DESCRIPTION

For a panorama, each point in the current view corresponds to a particular pan
and tilt angle, with the point at the center of the view corresponding to the
panorama's current pan and tilt angle. The QTVRPtToAngles function returns, in
the floating-point values pointed to by the panAngle and tiltAngle parameters,
the pan and tilt angles of the point specified by the pt parameter.

SPECIAL CONSIDERATIONS

QTVRPtToAngles is valid only for panoramic nodes.

QTVRCoordToAngles 2

You can use the QTVRCoordToAngles function to get the pan and tilt angles of a
floating-point coordinate in a panorama.

OSErr QTVRCoordToAngles (
QTVRInstance qtvr,
QTVRFloatPoint *coord,
float *panAngle,
float *tiltAngle);

qtvr An instance of a QuickTime VR movie.

coord On entry, a pointer to a QTVRFloatPoint structure that specifies a
coordinate in the full panorama.

panAngle On entry, a pointer to a floating-point value. On exit, that value
contains the pan angle of the specified coordinate.
QuickTime VR Manager Reference 155

C H A P T E R 2

QuickTime VR Manager
tiltAngle On entry, a pointer to a floating-point value. On exit, that value
contains the tilt angle of the specified coordinate.

function result A result code.

DESCRIPTION

The QTVRCoordToAngles function returns, in the floating-point values pointed to
by the panAngle and tiltAngle parameters, the pan and tilt angles of the point
specified by the coord parameter. This function is useful for setting up angles in
a back buffer imaging procedure; if you know a coordinate in the back buffer,
you can call QTVRCoordToAngles to get the corresponding angles.

SPECIAL CONSIDERATIONS

QTVRCoordToAngles is valid only for panoramic nodes.

SEE ALSO

Use QTVRAnglesToCoord (next) to get a floating-point coordinate from a pair of
pan and tilt angles.

QTVRAnglesToCoord 2

You can use the QTVRAnglesToCoord function to get a floating-point coordinate
determined by a pair of pan and tilt angles.

OSErr QTVRAnglesToCoord (
QTVRInstance qtvr,
float panAngle,
float tiltAngle,
QTVRFloatPoint *coord);

qtvr An instance of a QuickTime VR movie.

panAngle A pan angle.

tiltAngle A tilt angle.
156 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
coord On entry, a pointer to a QTVRFloatPoint structure. On exit, that
structure is set to the coordinate of the specified movie that
corresponds to the specified pan and tilt angles.

function result A result code.

DESCRIPTION

The QTVRAnglesToCoord function returns, in the QTVRFloatPoint structure pointed
to by the coord parameter, the coordinates of the point in the full panorama of
the movie specified by the qtvr parameter that corresponds to the pan and tilt
angles specified by the panAngle and tiltAngle parameters.

SPECIAL CONSIDERATIONS

QTVRAnglesToCoord is valid only for panoramic nodes.

SEE ALSO

Use QTVRCoordToAngles (page 155) to get a pair of pan and tilt angles from a
floating-point coordinate.

QTVRPanToColumn 2

You can use the QTVRPanToColumn function to get the column number in the
object image array that corresponds to a pan angle.

short QTVRPanToColumn (QTVRInstance qtvr, float panAngle);

qtvr An instance of a QuickTime VR movie.

panAngle A pan angle.

function result The column number in the object image array that corresponds
to the specified pan angle.
QuickTime VR Manager Reference 157

C H A P T E R 2

QuickTime VR Manager
DESCRIPTION

The QTVRPanToColumn function returns, as its function result, the zero-based
column number in the current object image array that corresponds to the pan
angle specified by the panAngle parameter.

SPECIAL CONSIDERATIONS

QTVRPanToColumn is valid only for object nodes.

QTVRColumnToPan 2

You can use the QTVRColumnToPan function to get the pan angle that corresponds
to a column number in the object image array.

float QTVRColumnToPan (QTVRInstance qtvr, short column);

qtvr An instance of a QuickTime VR movie.

column A column number.

function result The pan angle that corresponds to the specified column number
in the object image array.

DESCRIPTION

The QTVRColumnToPan function returns, as its function result, the pan angle that
corresponds to the zero-based column number in the object image array
specified by the column parameter.

SPECIAL CONSIDERATIONS

QTVRColumnToPan is valid only for object nodes.
158 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
QTVRTiltToRow 2

You can use the QTVRTiltToRow function to get the row number in the object
image array that corresponds to a tilt angle.

short QTVRTiltToRow (QTVRInstance qtvr, float tiltAngle);

qtvr An instance of a QuickTime VR movie.

tiltAngle A tilt angle.

function result The row number in the object image array that corresponds to
the specified tilt angle.

DESCRIPTION

The QTVRTiltToRow function returns, as its function result, the zero-based row
number in the current object image array that corresponds to the tilt angle
specified by the tiltAngle parameter.

SPECIAL CONSIDERATIONS

QTVRTiltToRow is valid only for object nodes.

QTVRRowToTilt 2

You can use the QTVRRowToTilt function to get the tilt angle that corresponds to a
row number in the object image array.

float QTVRRowToTilt (QTVRInstance qtvr, short row);

qtvr An instance of a QuickTime VR movie.

row A row number.

function result The tilt angle that corresponds to the specified row number in
the object image array.
QuickTime VR Manager Reference 159

C H A P T E R 2

QuickTime VR Manager
DESCRIPTION

The QTVRRowToTilt function returns, as its function result, the tilt angle that
corresponds to the zero-based row number in the object image array specified
by the row parameter.

SPECIAL CONSIDERATIONS

QTVRRowToTilt is valid only for object nodes.

QTVRWrapAndConstrain 2

You can use the QTVRWrapAndConstrain function to preflight a change in the
viewing or control characteristics of an object or panoramic node.

OSErr QTVRWrapAndConstrain (
QTVRInstance qtvr,
short kind,
float value,
float *result);

qtvr An instance of a QuickTime VR movie.

kind A constraint type. See “Constraint Types” (page 61) for a
description of the available constraint types.

value The desired value of the specified viewing characteristic.

result On exit, the value to which the specified viewing characteristic
would be set if it were changed.

function result A result code.

DESCRIPTION

The QTVRWrapAndConstrain function returns, in the result parameter, the
constrained or wrapped value that would result from setting the viewing or
control characteristic specified by the kind parameter to the value specified by
the value parameter. For example, if the kind parameter is set to kQTVRPan, then
QTVRWrapAndConstrain returns the value that would result from calling the
160 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
QTVRSetPanAngle function with its panAngle parameter set to value. Similarly,
you can use QTVRWrapAndConstrain to find the current bounds of the view center.
QTVRWrapAndConstrain takes into account the current constraints and wrapping
modes of the node specified by the qtvr parameter.

QTVRWrapAndConstrain does not change the current view or other settings of the
specified object or panorama.

Managing QuickTime VR Movie Interaction 2

The QuickTime VR Manager provides functions that you can use to augment
the normal user interaction handling provided by a QuickTime movie
controller. For example, you can install an action filter function to handle movie
controller actions; see QuickTime 3 Reference for details.

QTVRSetEnteringNodeProc 2

You can use the QTVRSetEnteringNodeProc function to install or remove a
node-entering procedure.

OSErr QTVRSetEnteringNodeProc (
QTVRInstance qtvr,
QTVREnteringNodeUPP enteringNodeProc,
SInt32 refCon,
UInt32 flags);

qtvr An instance of a QuickTime VR movie.

enteringNodeProc
A universal procedure pointer for a node-entering procedure.
See “MyEnteringNodeProc” (page 183) for information about
node-entering procedures.

refCon A reference constant. This value is passed to the specified
node-entering procedure.

flags Unused. Set this parameter to 0.

function result A result code.
QuickTime VR Manager Reference 161

C H A P T E R 2

QuickTime VR Manager
DESCRIPTION

The QTVRSetEnteringNodeProc function installs the procedure specified by the
enteringNodeProc parameter as a node-entering procedure for the QuickTime VR
movie specified by the qtvr parameter. Your procedure is called whenever a
node is entered (either in response to user actions or in response to QuickTime VR
Manager functions that change nodes). The reference constant specified by the
refCon parameter is passed unchanged to that node-entering procedure.

To remove a previously installed node-entering procedure, set enteringNodeProc
to nil.

SEE ALSO

Use QTVRSetLeavingNodeProc (next) to install or remove a node-leaving
procedure.

QTVRSetLeavingNodeProc 2

You can use the QTVRSetLeavingNodeProc function to install or remove a
node-leaving procedure.

OSErr QTVRSetLeavingNodeProc (
QTVRInstance qtvr,
QTVRLeavingNodeUPP leavingNodeProc,
SInt32 refCon,
UInt32 flags);

qtvr An instance of a QuickTime VR movie.

leavingNodeProc
A universal procedure pointer for a node-leaving procedure. See
“MyLeavingNodeProc” (page 184) for information about
node-leaving procedures.

refCon A reference constant. This value is passed to the specified
node-leaving procedure.

flags Unused. Set this parameter to 0.

function result A result code.
162 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
DESCRIPTION

The QTVRSetLeavingNodeProc function installs the procedure specified by the
leavingNodeProc parameter as a node-leaving procedure for the QuickTime VR
movie specified by the qtvr parameter. Your procedure is called whenever a
node is left (either in response to user actions or in response to QuickTime VR
Manager functions that change nodes). The reference constant specified by the
refCon parameter is passed unchanged to that node-leaving procedure.

To remove a previously installed node-leaving procedure, set leavingNodeProc
to nil.

SEE ALSO

Use QTVRSetEnteringNodeProc (page 161) to install or remove a node-entering
procedure.

QTVRGetInteractionProperty 2

You can use the QTVRGetInteractionProperty function to get the value of an
interaction property.

OSErr QTVRGetInteractionProperty (
QTVRInstance qtvr,
UInt32 property,
void *value);

qtvr An instance of a QuickTime VR movie.

property An interaction property type. See “Interaction Property Types”
(page 68) for a description of the available types of interaction
properties.

value On entry, a pointer to a block of memory. On exit, that memory
contains the current value of the specified interaction property.

function result A result code.
QuickTime VR Manager Reference 163

C H A P T E R 2

QuickTime VR Manager
DESCRIPTION

The QTVRGetInteractionProperty function returns, in the block of memory
pointed to by the value parameter, the current value of the property specified
by the property parameter for the QuickTime VR movie specified by the
qtvr parameter. That block of memory must be large enough to hold
the returned value.

SEE ALSO

Use QTVRSetInteractionProperty (next) to set an interaction property.

QTVRSetInteractionProperty 2

You can use the QTVRSetInteractionProperty function to set the value of an
interaction property.

OSErr QTVRSetInteractionProperty (
QTVRInstance qtvr,
UInt32 property,
void *value);

qtvr An instance of a QuickTime VR movie.

property An interaction property type. See “Interaction Property Types”
(page 68) for a description of the available types of interaction
properties.

value The desired value of the specified interaction property.

function result A result code.

DESCRIPTION

The QTVRSetInteractionProperty function sets the value of the interaction
property of the type specified by the property parameter for the movie specified
by the qtvr parameter to the value specified by the value parameter. For types
that occupy 32 or fewer bits of memory, you pass the desired value itself (cast to
a void *) in the value parameter. For structures and floating-point values, you
must pass a pointer to the desired value in the value parameter.
164 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
Note
Floating-point values are usually stored as 32-bit values,
but compilers differ in how they pass floating-point values
as parameters; as a result, QTVRSetInteractionProperty
demands that floating-point values always be passed by
reference. ◆

SEE ALSO

Use QTVRGetInteractionProperty (page 163) to get an interaction property.

QTVRReplaceCursor 2

You can use the QTVRReplaceCursor function to replace any of the standard
QuickTime VR cursors with your own custom cursors.

OSErr QTVRReplaceCursor (QTVRInstance qtvr, CursorRecord *cursRecord);

qtvr An instance of a QuickTime VR movie.

cursRecord A pointer to a cursor record. See “Cursor Record” (page 87) for a
description of the cursor record.

function result A result code.

DESCRIPTION

The QTVRReplaceCursor function replaces one or more of the standard
QuickTime VR cursors associated with the instance specified by the qtvr
parameter with the cursors specified in the cursor record pointed to by the
cursRecord parameter. If the type field of the specified cursor record is
kQTVRUseDefaultCursor, the default cursor for the given resource ID is reloaded;
in this case, the handle field of that record should be set to nil.

QTVRReplaceCursor replaces the standard cursors only for the specified
QuickTime VR movie instance. To replace the standard cursors for
all QuickTime VR movie instances you create, you need to call
QTVRReplaceCursor for each such instance.
QuickTime VR Manager Reference 165

C H A P T E R 2

QuickTime VR Manager
Note
QuickTime VR 2.1 makes a copy of the cursor handle
specified in the cursor record. The application is
responsible for disposing of its own cursor handle.

Determining Viewing Limits and Constraints 2

The QuickTime VR Manager provides functions that you can use to get the
physical viewing limits of a movie and to get and set a movie’s constraints.

QTVRGetViewingLimits 2

You can use the QTVRGetViewingLimits function to get the current viewing limits
of a QuickTime VR movie.

OSErr QTVRGetViewingLimits (
QTVRInstance qtvr,
UInt16 kind,
float *minValue,
float *maxValue);

qtvr An instance of a QuickTime VR movie.

kind The type of viewing limits to be returned. See “Constraint
Types” (page 61) for a description of the available types of
viewing limits.

minValue On entry, a pointer to a floating-point value. On exit, the
minimum viewing limit of the specified type is copied into
that value.

maxValue On entry, a pointer to a floating-point value. On exit, the
maximum viewing limit of the specified type is copied into
that value.

function result A result code.
166 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
DESCRIPTION

The QTVRGetViewingLimits function returns, in the floating-point values pointed
to by the minValue and maxValue parameters, the current minimum and
maximum values for angles whose type is specified by the kind parameter.

The maximum field of view of a panoramic node can be limited by the size of
the back buffer and the current aspect ratio of the movie’s graphics world.

The values returned by QTVRGetViewingLimits are unaffected by the current
control settings.

QTVRGetViewingLimits returns information about the physical viewing limits of a
panorama or object. To get information about the current viewing constraints,
use QTVRGetConstraints (page 168).

QTVRGetConstraintStatus 2

You can use the QTVRGetConstraintStatus function to get the set of constraints
active for the current view.

UInt32 QTVRGetConstraintStatus (QTVRInstance qtvr);

qtvr An instance of a QuickTime VR movie.

function result A long integer whose bits are set or cleared to represent the
currently active constraints of the specified QuickTime VR
movie.

DESCRIPTION

The QTVRGetConstraintStatus function returns, as its function result, a long
integer whose bits encode the constraints currently active for the QuickTime VR
movie specified by the qtvr parameter. See “Viewing Constraints” (page 70) for
a description of the available constraints.

The values returned by QTVRGetConstraintStatus are unaffected by the current
control settings.
QuickTime VR Manager Reference 167

C H A P T E R 2

QuickTime VR Manager
QTVRGetConstraints 2

You can use the QTVRGetConstraints function to get the current constraints of
a movie.

OSErr QTVRGetConstraints (
QTVRInstance qtvr,
UInt16 kind,
float *minValue,
float *maxValue);

qtvr An instance of a QuickTime VR movie.

kind The type of constraints to be returned. See “Constraint Types”
(page 61) for a description of the available types of constraints.

minValue On entry, a pointer to a floating-point value. On exit, the current
minimum constraint of the specified type is copied into that value.

maxValue On entry, a pointer to a floating-point value. On exit, the
current maximum constraint of the specified type is copied
into that value.

function result A result code.

DESCRIPTION

The QTVRGetConstraints function returns, in the floating-point values pointed to
by the minValue and maxValue parameters, the current minimum and maximum
constraints of the type specified by the kind parameter.

The values returned by QTVRGetConstraints are unaffected by the current
control settings.

SEE ALSO

Use QTVRSetConstraints (next) to set a movie’s minimum and maximum
constraints.
168 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
QTVRSetConstraints 2

You can use the QTVRSetConstraints function to set the constraints of a movie.

OSErr QTVRSetConstraints (
QTVRInstance qtvr,
UInt16 kind,
float minValue,
float maxValue);

qtvr An instance of a QuickTime VR movie.

kind The type of constraint to set. See “Constraint Types” (page 61)
for a description of the available types of constraints.

minValue A floating-point value that contains the desired minimum
constraint of the specified type.

maxValue A floating-point value that contains the desired maximum
constraint of the specified type.

function result A result code.

DESCRIPTION

The QTVRSetConstraints function sets the minimum and maximum constraints
of the type specified by the kind parameter to the values specified by the
minValue and maxValue parameters. Note that when you want to specify a pan
angle constraint, the minValue and maxValue parameters should be specified so
that a clockwise sweep from minValue to maxValue selects the desired angular
expanse. For example, to constrain panning in the 90-degree expanse that
spreads out 45 degrees on each side of the pan angle 0 degrees, you should set
the minValue parameter to 315 degrees and the maxValue parameter to 45 degrees.
Similarly, to constrain panning in the remaining 270-degree expanse, you
should set the minValue parameter to 45 degrees and the maxValue parameter to
315 degrees.

The values passed to QTVRSetConstraints are unaffected by the current control
settings.

SEE ALSO

Use QTVRGetConstraints (page 168) to get a movie’s minimum and maximum
constraints.
QuickTime VR Manager Reference 169

C H A P T E R 2

QuickTime VR Manager
Managing Memory 2

The QuickTime VR Manager provides functions that you can use to help
manage the memory used by QuickTime VR.

QTVRGetAvailableResolutions 2

You can use the QTVRGetAvailableResolutions function to get the image
resolutions present in the current node.

OSErr QTVRGetAvailableResolutions (
QTVRInstance qtvr,
UInt16 *resolutionsMask);

qtvr An instance of a QuickTime VR movie.

resolutionsMask
On entry, a pointer to an unsigned short integer. On exit, that
integer is set to a bitmask that encodes the image resolutions
available at the current node.

function result A result code.

DESCRIPTION

The QTVRGetAvailableResolutions function returns, in the unsigned short
integer pointed to by the resolutionsMask parameter, a bitmask that encodes the
image resolutions available at the current node of the QuickTime VR movie
specified by the qtvr parameter.

A single node can contain multiple resolutions of a panorama or an object. The
lowest order bit is always set and corresponds to the base resolution of the
node. Each succeeding bit corresponds to a resolution that is half that (both
horizontally and vertically) of the preceding bit. If an image with a resolution is
present in the current node, the corresponding bit is set.
170 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
QTVRGetBackBufferMemInfo 2

QuickTime VR maintains an internal back buffer for caching panoramic images.
You can use the QTVRGetBackBufferMemInfo function to get information about the
size of the back buffer that would be required for caching a panoramic image of
a specified pixel format, geometry, and resolution. See “Pixel Formats”
(page 82) for more information.

OSErr QTVRGetBackBufferMemInfo (
QTVRInstance qtvr,
UInt16 geometry,
UInt16 resolution,
UInt32 cachePixelFormat,
SInt32 *minCacheBytes,
SInt32 *suggestedCacheBytes,
SInt32 *fullCacheBytes);

qtvr An instance of a QuickTime VR movie.

geometry The geometry selector specifies the type and orientation of the
panorama data. Only the vertical cylinder geometry is used in
the current version of QuickTime VR; see “Geometry Selectors”
(page 84).

resolution The resolution for which the information is desired; see
“Resolutions” (page 83).

cachePixelFormat
The desired pixel format for the back buffer. This value should
be one of the defined pixel formats. See “Pixel Formats” (page 82)
for more information.

minCacheBytes On entry, a pointer to a long integer. On exit, that long integer is
set to the minimum size, in bytes, of the back buffer required to
display the specified panorama with a severely limited
maximum field of view. Set this parameter to nil to prevent this
information from being returned.

suggestedCacheBytes
On entry, a pointer to a long integer. On exit, that long integer is
set to the minimum size, in bytes, of the back buffer required to
QuickTime VR Manager Reference 171

C H A P T E R 2

QuickTime VR Manager
display the specified panorama with full wide-angle zooming.
Set this parameter to nil to prevent this information from being
returned.

fullCacheBytes
On entry, a pointer to a long integer. On exit, that long integer is
set to the minimum size, in bytes, of the back buffer required to
have the entire panorama in memory at once. That is the default
size of the panorama back buffer. Set this parameter to nil to
prevent this information from being returned.

function result A result code.

DESCRIPTION

The QTVRGetBackBufferMemInfo function returns information about the size of
the back buffer that would be required to hold some or all of the panoramic
image associated with the movie specified by the qtvr parameter. This is a
“what-if” function: you specify a resolution and a pixel format, and
QTVRGetBackBufferMemInfo returns several buffer sizes. You can use this
information, in conjunction with the QTVRSetBackBufferPrefs function, to
exercise some control over the size of the back buffer.

The resolution at which an image is to be displayed is specified by the
resolution parameter. You can use a resolution that is not in the movie file.
Relative to that resolution and the pixel depth determined by the
cachePixelFormat parameter, the QTVRGetBackBufferMemInfo function returns,
through the minCacheBytes parameter, the minimum size of the buffer needed to
display the movie. Using a buffer of that size, however, may result in a severely
limited maximum field of view. You can call the QTVRGetViewingLimits function to
determine the actual maximum field of view.

To allow full wide-angle zooming, you should use a buffer whose size is
specified by either the suggestedCacheBytes parameter or the fullCacheBytes
parameter.

SPECIAL CONSIDERATIONS

QTVRGetBackBufferMemInfo is valid only for panoramic nodes.
172 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
QTVRGetBackBufferSettings 2

You can use the QTVRGetBackBufferSettings function to get information about
the resolution, pixel format, and size of the back buffer maintained internally by
QuickTime VR for caching a panoramic image in a particular pixel format.

OSErr QTVRGetBackBufferSettings (
QTVRInstance qtvr,
UInt16 *geometry,
UInt16 *resolution,
UInt32 *cachePixelFormat,
SInt16 *cacheSize);

qtvr An instance of a QuickTime VR movie.

geometry The geometry selector specifies the type and orientation of the
panorama data. Only the vertical cylinder geometry is used in
the current version of QuickTime VR; see “Geometry Selectors”
(page 84).

resolution On entry, a pointer to an unsigned short integer. On exit, that
integer is set to the index of the current image resolution. See
“Resolutions” (page 83) for a description of the available
resolutions.

cachePixelFormat On entry, a pointer to a long integer. On exit, that long integer
is set to the pixel format of the current panorama back buffer.
See “Pixel Formats” (page 82) for more information.

cacheSize On entry, a pointer to a short integer. On exit, that integer is set
to a value that describes the size of the current panorama back
buffer. See “Cache Sizes” (page 84).

function result A result code.

DESCRIPTION

The QTVRGetBackBufferSettings function returns, through the resolution
parameter, the index of the current resolution for the QuickTime VR movie
specified by the qtvr parameter. The index indicates which bit in the mask value
returned by QTVRGetAvailableResolutions specifies the current resolution. For
example, if the returned index is 1, the base resolution is being used. If the
returned index is 2, then a resolution of half the base resolution is being used.
QuickTime VR Manager Reference 173

C H A P T E R 2

QuickTime VR Manager
QTVRGetBackBufferSettings also returns the pixel format and the cache size in
the cachePixelFormat and cacheSize parameters, respectively.

The QuickTime VR file might not contain an image track corresponding to the
resolution indicated by the resolution value returned. The QuickTime VR
Manager may have set a lower resolution because memory is low, or the
resolution may have been set by a call to the QTVRSetBackBufferPrefs function.

SPECIAL CONSIDERATIONS

QTVRGetBackBufferSettings is valid only for panoramic nodes.

SEE ALSO

Use QTVRSetBackBufferPrefs (next) to set the resolution, cache depth, and cache
size of the panorama back buffer maintained internally by QuickTime VR for
caching an image. Use QTVRGetAvailableResolutions (page 170) to determine
which resolutions are supported by a node. Use QTVRGetBackBufferMemInfo
(page 171) to determine the memory requirements for the preferred settings.

QTVRSetBackBufferPrefs 2

You can use the QTVRSetBackBufferPrefs function to set the resolution, pixel
format, and size of the back buffer maintained internally by QuickTime VR for
caching a panoramic image in a particular pixel format.

OSErr QTVRSetBackBufferPrefs (
QTVRInstance qtvr,
UInt16 geometry,
UInt16 resolution,
UInt32 cachePixelFormat,
SInt16 cacheSize);

qtvr An instance of a QuickTime VR movie.

geometry The geometry selector specifies the type and orientation of the
panorama data. Only the vertical cylinder geometry is used in
the current version of QuickTime VR; see “Geometry Selectors”
(page 84).
174 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
resolution The desired image resolution; see “Resolutions” (page 83).

cachePixelFormat The desired pixel format for the back buffer. This value should
be one of the defined pixel formats. See “Pixel Formats” (page 82)
for more information.

cacheSize The desired size for the panorama back buffer. See “Cache
Sizes” (page 84) for constants you can use to specify a
cache size.

function result A result code.

DESCRIPTION

The QTVRSetBackBufferPrefs function sets the resolution, pixel format, and size
of the panorama back buffer for the movie specified by the qtvr parameter to
the values specified by the resolution, cachePixelFormat, and cacheSize
parameters. You can specify a resolution that isn’t contained in the movie file; if
you do so, QuickTime VR takes the highest resolution image in the file and
reduces it to fit into the specified buffer size.

If you specify an unsupported pixel format, the QTVRSetBackBufferPrefs
function may return an error. See “Pixel Formats” (page 82) for more
information.

SPECIAL CONSIDERATIONS

QTVRSetBackBufferPrefs is valid only for panoramic nodes.

SEE ALSO

Use QTVRGetAvailableResolutions (page 170) to determine which resolutions are
supported by a node. Use QTVRGetBackBufferMemInfo (page 171) to determine
the memory requirements for the preferred settings.

Accessing Image Buffers 2

The QuickTime VR Manager provides functions that you can use to access the
two internal buffers used by QuickTime VR when it’s imaging a panorama.
QuickTime VR Manager Reference 175

C H A P T E R 2

QuickTime VR Manager
QTVRSetPrescreenImagingCompleteProc 2

You can use the QTVRSetPrescreenImagingCompleteProc function to install or
remove a prescreen buffer imaging completion procedure.

OSErr QTVRSetPrescreenImagingCompleteProc (
QTVRInstance qtvr,
ImagingCompleteUPP imagingCompleteProc,
SInt32 refCon,
UInt32 flags);

qtvr An instance of a QuickTime VR movie.

imagingCompleteProc
A universal procedure pointer for a prescreen buffer imaging
completion procedure. See “MyImagingCompleteProc”
(page 185) for information about prescreen buffer imaging
completion procedures.

refCon A reference constant. This value is passed to the specified
prescreen buffer imaging completion procedure.

flags You can use kQTVRPreScreenEveryIdle to cause a draw attempt
on every idle passed to the movie controller. See “Flags Value
for Imaging Completion Procedure” (page 59).

function result A result code.

DESCRIPTION

The QTVRSetPrescreenImagingCompleteProc function installs the procedure
specified by the imagingCompleteProc parameter as a prescreen buffer imaging
completion procedure for the QuickTime VR movie specified by the qtvr
parameter. Your procedure is called whenever QuickTime VR finishes drawing
an image into the prescreen buffer. The reference constant specified by the
refCon parameter is passed unchanged to that prescreen buffer imaging
completion procedure.

To remove a previously installed prescreen buffer imaging completion
procedure, set imagingCompleteProc to nil.
176 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
SPECIAL CONSIDERATIONS

QTVRSetPrescreenImagingCompleteProc is valid only for panoramic nodes.

SEE ALSO

Use QTVRSetBackBufferImagingProc (next) to install or remove a back buffer
imaging procedure.

QTVRSetBackBufferImagingProc 2

You can use the QTVRSetBackBufferImagingProc function to install or remove a
back buffer imaging procedure.

OSErr QTVRSetBackBufferImagingProc (
QTVRInstance qtvr,
BackBufferImagingUPP backBufferImagingProc,
UInt16 numAreas,
AreaOfInterest *areasOfInterest,
SInt32 refCon);

qtvr An instance of a QuickTime VR movie.

backBufferImagingProc
A universal procedure pointer for a back buffer imaging
procedure. See “MyBackBufferImagingProc” (page 186) for
information about back buffer imaging procedures.

numAreas The number of area of interest structures in the array pointed to
by the areasOfInterest parameter.

areasOfInterest
A pointer to an array of area of interest structures. See “Area of
Interest Structure” (page 87).

refCon A reference constant. This value is passed to the specified back
buffer imaging procedure.

function result A result code.
QuickTime VR Manager Reference 177

C H A P T E R 2

QuickTime VR Manager
DESCRIPTION

The QTVRSetBackBufferImagingProc function installs the procedure specified by
the backBufferImagingProc parameter as a back buffer imaging procedure for
the panoramic node specified by the qtvr parameter. You can use that
procedure to draw directly into the back buffer.

The areasOfInterest parameter is a pointer to an array of area of interest
structures that define the rectangular areas about which you want your back
buffer imaging procedure to be notified. Your procedure is called for each area
of interest as it becomes visible or not visible. You indicate when you want your
procedure to be called for a particular area of interest by setting flags in the
flags field in the corresponding area of interest structure.

IMPORTANT

The QuickTime VR Manager version 2.1 supports only one
area of interest in this array. Future versions will support
multiple areas of interest. ▲

Note that coordinates in the back buffer are dependent on the current correction
mode; as a result, you need to indicate the area you’re interested in drawing
into by specifying a pan angle and tilt angle to determine the upper-left corner
of the area and a height and width relative to that corner. (Specifying a height
and width instead of a second pair of pan and tilt angles for the bottom-right
coordinate allows the rectangle to wrap around the edge of the panorama.)

The width of the area of interest is limited by the size of the back buffer. If the
back buffer is less than the full cache size, then the area of interest can be no
wider than half the size of the back buffer. (For vertical cylinder geometries,
limiting factor would be the height of the buffer.) For a full cache back buffer,
the width of the area of interest can be the full size of the buffer. If the width
limit is exceeded, QTVRSetBackBufferImagingProc will return
constraintReachedErr.

To remove a previously installed back buffer imaging procedure, set
backBufferImagingProc to nil.

SPECIAL CONSIDERATIONS

QTVRSetBackBufferImagingProc is valid only for panoramic nodes.
178 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
SEE ALSO

Use QTVRSetPrescreenImagingCompleteProc (page 176) to install or remove a
prescreen buffer imaging completion procedure.

QTVRRefreshBackBuffer 2

You can use the QTVRRefreshBackBuffer function to refresh the back buffer.

OSErr QTVRRefreshBackBuffer (QTVRInstance qtvr, UInt32 flags);

qtvr An instance of a QuickTime VR movie.

flags Unused. Set this parameter to 0.

function result A result code.

DESCRIPTION

The QTVRRefreshBackBuffer function refreshes some or all of the back buffer
associated with the QuickTime VR movie specified by the qtvr parameter
by reloading the appropriate data from the diced frames in the panorama
image track.

You can call QTVRRefreshBackBuffer either in a back buffer imaging procedure or
elsewhere in your application. If you call QTVRRefreshBackBuffer in a back
buffer imaging procedure, only the current rectangle (that is, the rectangle
specified by the procedure’s drawRect parameter) is refreshed. If you call
QTVRRefreshBackBuffer outside of a back buffer imaging procedure, all areas
of interest specified in the most recent call to QTVRSetBackBufferImagingProc
are refreshed.

SPECIAL CONSIDERATIONS

QTVRRefreshBackBuffer is valid only for panoramic nodes.

SEE ALSO

See “MyBackBufferImagingProc” (page 186) for information about back buffer
imaging procedures.
QuickTime VR Manager Reference 179

C H A P T E R 2

QuickTime VR Manager
Application-Defined Routines 2

This section describes the routines your application or other software
component might need to define when using the QuickTime VR Manager.

Mouse Over Hot Spot Procedure 2

Your application can define a mouse over hot spot procedure that is called
when the cursor is over a hot spot.

MyMouseOverHotSpotProc 2

The mouseOverHotSpotProc parameter to the QTVRSetMouseOverHotSpotProc
function specifies an application-defined mouse over hot spot procedure.

pascal OSErr MyMouseOverHotSpotProc (
QTVRInstance qtvr,
UInt32 hotSpotID,
UInt32 flags,
SInt32 refCon);

qtvr An instance of a QuickTime VR movie.

hotSpotID The ID of the hot spot over which the cursor has been moved.

flags A hot spot action selector. See “Hot Spot Action Selectors”
(page 59) for a description of the available selectors.

refCon A reference constant. This is the same value that your
application passed in the refCon parameter when it called
QTVRSetMouseOverHotSpotProc to install this callback routine.

function result A result code that indicates whether QuickTime VR should
perform the actions it normally performs when the cursor is
over a hot spot (noErr) or not (any nonzero value).
180 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
DESCRIPTION

Your MyMouseOverHotSpotProc routine is called whenever the user moves the
cursor over a hot spot, keeps it over a hot spot, or moves it out of a hot spot.
The user action that caused your routine to be called is specified by the hot spot
action selector passed in the flags parameter. For instance, when the cursor is
first moved over a hot spot, your routine is called with flags set to
kQTVRHotSpotEnter. Similarly, until the cursor is moved back off that hot spot,
your routine is called repeatedly with flags set to kQTVRHotSpotWithin. Your
routine should perform whatever actions it likes and return the value noErr if
you want QuickTime VR to perform whatever actions it normally performs in
that circumstance. Your routine should return any nonzero value to suppress
those actions.

IMPORTANT

Your mouse over hot spot procedure is called only for
enabled hot spots. ▲

SEE ALSO

Use QTVRSetMouseOverHotSpotProc (page 109) to install or remove a mouse over
hot spot procedure. Use QTVREnableHotSpot (page 108) to enable or disable a hot
spot.

QuickTime VR Intercept Procedure 2

You can install an intercept procedure that is executed immediately before the
QuickTime VR Manager function it is intercepting.

MyInterceptProc 2

You can define a routine to intercept various QuickTime VR Manager functions.

pascal void MyInterceptProc (
QTVRInstance qtvr,
QTVRInterceptPtr qtvrMsg,
SInt32 refCon,
Boolean *cancel);
QuickTime VR Manager Reference 181

C H A P T E R 2

QuickTime VR Manager
qtvr An instance of a QuickTime VR movie.

qtvrMsg A pointer to an intercept record that specifies the function that
your procedure is intercepting and the parameters for that
function. See “Intercept Structure” (page 85).

refCon The reference constant specified in the call to
QTVRInstallInterceptProc that installed this intercept
procedure.

cancel On exit, a Boolean value that indicates whether the
QuickTime VR Manager should not call the intercepted function
when your intercept procedure returns (true) or should call the
intercepted function (false).

DESCRIPTION

Your MyInterceptProc procedure is called whenever the QuickTime VR
Manager is about to call the function it is intercepting (which is specified by the
selector field of the intercept record pointed to by the qtvrMsg parameter). Your
procedure can do any processing it deems necessary before returning.

Your intercept procedure should return, in the cancel parameter, a Boolean
value that indicates whether your procedure performed the intercepted
function (true) or not (false). The QuickTime VR Manager inspects that value
to determine whether it should call the intercepted function after your
procedure returns. Your intercept procedure can also call the
QTVRCallInterceptedProc function to call the intercepted function. If your
procedure does call QTVRCallInterceptedProc, then it should return the value
true, unless you want the QuickTime VR Manager to call the intercepted
function again.

SEE ALSO

Use QTVRInstallInterceptProc (page 125) to install an intercept procedure. See
Listing 2-5 (page 50) and Listing 2-6 (page 51) for sample intercept procedures.
182 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
Node-Entering and Node-Leaving Procedures 2

Your application can define node-entering and node-leaving procedures that are
called each time a node is entered or left.

MyEnteringNodeProc 2

You can define a routine to respond to a node’s being entered.

pascal OSErr MyEnteringNodeProc (
QTVRInstance qtvr,
UInt32 nodeID,
SInt32 refCon);

qtvr An instance of a QuickTime VR movie.

nodeID The ID of the node being entered.

refCon The reference constant specified in the call to
QTVRSetEnteringNodeProc that installed this procedure.

function result A result code.

DESCRIPTION

Your MyEnteringNodeProc procedure is called whenever a node is entered, either
in response to user actions or in response to QuickTime VR Manager functions
that change nodes (such as QTVRGoToNodeID). Your procedure can do any
processing it deems necessary.

SEE ALSO

Use QTVRSetEnteringNodeProc (page 161) to install a node-entering procedure.
See Listing 2-8 (page 54) for a sample node-entering procedure.
QuickTime VR Manager Reference 183

C H A P T E R 2

QuickTime VR Manager
MyLeavingNodeProc 2

You can define a routine to respond to a node’s being left.

pascal OSErr MyLeavingNodeProc (
QTVRInstance qtvr,
UInt32 fromNodeID,
UInt32 toNodeID,
Boolean *cancel,
SInt32 refCon);

qtvr An instance of a QuickTime VR movie.

fromNodeID The ID of the node being left.

toNodeID The ID of the node to be entered, or 0 if no node is being entered
(because the movie is being closed).

cancel On entry, a pointer to a Boolean value. Set that value to true to
cancel the move from fromNodeID to toNodeID; otherwise, set that
value to false.

refCon The reference constant specified in the call to
QTVRSetLeavingNodeProc that installed this procedure.

function result A result code.

DESCRIPTION

Your MyLeavingNodeProc procedure is called whenever a node is left, either in
response to user actions or in response to QuickTime VR Manager functions
that change nodes (such as QTVRGoToNodeID). Your procedure can do any
processing it deems necessary.

Before returning, your procedure should set the Boolean value pointed to by the
cancel parameter to false to accept the move from fromNodeID to toNodeID. Set
that value to true to cancel the move and to remain at the node specified by the
fromNodeID parameter.

SEE ALSO

Use QTVRSetLeavingNodeProc (page 162) to install a node-leaving procedure. See
Listing 2-9 (page 54) for a sample node-leaving procedure.
184 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
Imaging Procedures 2

Your application can define prescreen and back buffer imaging procedures that
are called when an image is done being drawn to the prescreen buffer used by
QuickTime VR or at certain established times for a back buffer.

MyImagingCompleteProc 2

You can define a procedure to access QuickTime VR’s prescreen buffer.

pascal OSErr MyImagingCompleteProc (QTVRInstance qtvr, SInt32 refCon);

qtvr An instance of a QuickTime VR movie.

refCon The reference constant specified in the call to
QTVRSetPrescreenImagingCompleteProc that installed this
procedure.

function result A result code.

DESCRIPTION

Your MyImagingCompleteProc function is called whenever QuickTime VR is
finished drawing an image into the prescreen buffer associated with the movie
specified by the qtvr parameter. When your function is called, the drawing
environment is set up so that you can draw directly into the current graphics
world. Once your function returns, QuickTime VR copies the prescreen buffer
to the final destination.

SPECIAL CONSIDERATIONS

If the value of the kQTVRImagingDirectDraw imaging property of the specified
movie is true, then images are computed and drawn directly to the final
destination without first being drawn into the prescreen buffer maintained by
QuickTime VR. If your application has installed a prescreen buffer imaging
completion procedure, QuickTime VR temporarily overrides the setting of the
kQTVRImagingDirectDraw property and calls your MyImagingCompleteProc
function after drawing into the prescreen buffer.
QuickTime VR Manager Reference 185

C H A P T E R 2

QuickTime VR Manager
SEE ALSO

Use QTVRSetPrescreenImagingCompleteProc (page 176) to install a prescreen
buffer imaging completion procedure. See Listing 2-10 (page 56) for a sample
prescreen buffer imaging completion procedure.

MyBackBufferImagingProc 2

You can define a procedure to access QuickTime VR’s back buffer.

pascal OSErr MyBackBufferImagingProc (
QTVRInstance qtvr,
Rect *drawRect,
UInt16 areaIndex,
UInt32 flagsIn,
UInt32 *flagsOut,
SInt32 refCon);

qtvr An instance of a QuickTime VR movie.

drawRect The rectangle, in local coordinates of the graphics world, of the
area of interest.

areaIndex The index, in the array of area of interest structures whose
address was passed to QTVRSetBackBufferImagingProc, of the
area of interest.

flagsIn On entry, a set of bit flags that specify the event or operation
that caused your procedure to be called, as well as other
information about the state of the back buffer when your
procedure is called. See “Back Buffer Imaging Procedure Flags”
(page 78) for a description of the available flags.

flagsOut On exit, a set of bit flags that indicate what actions you
performed in your procedure. See “Back Buffer Imaging
Procedure Flags” (page 78) for a description of the
available flags.

refCon The reference constant specified in the call to
QTVRSetBackBufferImagingProc that installed this procedure.

function result A result code.
186 QuickTime VR Manager Reference

C H A P T E R 2

QuickTime VR Manager
DESCRIPTION

Your MyBackBufferImagingProc function is called at the times specified by the
flags parameter to the call to QTVRSetBackBufferImagingProc that installed that
function as a back buffer imaging procedure. When your function is called, the
drawing environment is set up so that you can draw directly into the current
graphics world.

IMPORTANT

If the area of interest wraps around the end of the back
buffer, the rectangle specified by the drawRect parameter is
in the coordinates of an intermediate buffer that is copied
into the actual back buffer when your procedure returns. ▲

You can call QTVRRefreshBackBuffer (page 179) in your back buffer imaging
procedure to refresh the current rectangle (that is, the rectangle specified by the
drawRect parameter).

SEE ALSO

Use QTVRSetBackBufferImagingProc (page 177) to install a back buffer imaging
procedure.
QuickTime VR Manager Reference 187

C H A P T E R 2

QuickTime VR Manager
Summary of the QuickTime VR Manager 2

C Summary 2

Constants 2

Version Numbers of Released APIs

#define kQTVRAPIMajorVersion02 (0x02)
#define kQTVRAPIMinorVersion00 (0x00)
#define kQTVRAPIMinorVersion01 (0x01)
#define kQTVRAPIMinorVersion10 (0x10)

Version Numbers for This API

#define kQTVRAPIMajorVersion kQTVRAPIMajorVersion02
#define kQTVRAPIMinorVersion kQTVRAPIMinorVersion10

Gestalt Selector and Response Values

enum {
gestaltQTVRMgrAttr = FOUR_CHAR_CODE('qtvr'),
gestaltQTVRMgrVers = FOUR_CHAR_CODE('qtvv'),
gestaltQTVRMgrPresent = 0,
gestaltQTVRObjMoviesPresent = 1,
gestaltQTVRCylinderPanosPresent = 2

};

Node Types

enum {
kQTVRPanoramaType = FOUR_CHAR_CODE('pano'),
kQTVRObjectType = FOUR_CHAR_CODE('obje')

};
188 Summary of the QuickTime VR Manager

C H A P T E R 2

QuickTime VR Manager
Node IDs

enum {
kQTVRCurrentNode = 0,
kQTVRPreviousNode = 0x80000000,
kQTVRDefaultNode = 0x80000001

};

Angular Unit Types

enum {
kQTVRDegrees = 0,
kQTVRRadians = 1

};
typedef UInt32 QTVRAngularUnits;

Value for flags parameter in QTVRSetPrescreenImagingCompleteProc

enum {
kQTVRPreScreenEveryIdle = 1L << 0

};

Hot Spot Action Selectors

enum {
kQTVRHotSpotEnter = 0,
kQTVRHotSpotWithin = 1,
kQTVRHotSpotLeave = 2

};

Intercept Selectors

enum {
kQTVRSetPanAngleSelector = 0x2000,
kQTVRSetTiltAngleSelector = 0x2001,
kQTVRSetFieldOfViewSelector = 0x2002,
kQTVRSetViewCenterSelector = 0x2003,
kQTVRMouseEnterSelector = 0x2004,
kQTVRMouseWithinSelector = 0x2005,
kQTVRMouseLeaveSelector = 0x2006,
Summary of the QuickTime VR Manager 189

C H A P T E R 2

QuickTime VR Manager
kQTVRMouseDownSelector = 0x2007,
kQTVRMouseStillDownSelector = 0x2008,
kQTVRMouseUpSelector = 0x2009,
kQTVRTriggerHotSpotSelector = 0x200A,
kQTVRGetHotSpotTypeSelector = 0x200B

};
typedef UInt32 QTVRProcSelector;

Constraint Types

enum {
kQTVRPan = 0,
kQTVRTilt = 1,
kQTVRFieldOfView = 2,
kQTVRViewCenterH = 4,
kQTVRViewCenterV = 5

};

Correction Modes

enum {
kQTVRNoCorrection = 0,
kQTVRPartialCorrection = 1,
kQTVRFullCorrection = 2

};

Imaging Modes

enum {
kQTVRCurrentMode = 0,
kQTVRStatic = 1,
kQTVRMotion = 2,
kQTVRAllModes = 100

};
typedef UInt32 QTVRImagingMode;

Imaging Property Types

enum {
kQTVRImagingCorrection = 1,
kQTVRImagingQuality = 2,
190 Summary of the QuickTime VR Manager

C H A P T E R 2

QuickTime VR Manager
kQTVRImagingDirectDraw = 3,
kQTVRImagingCurrentMode = 100

};

#define kQTVRImagingDefaultValue 0x80000000

Quality Properties

#define codecMinQuality 0x000L
#define codecNormalQuality 0x200L
#define codecMaxQuality 0x3FFL

Transition Type

enum {
kQTVRTransitionSwing = 1

};

Transition Properties

enum {
kQTVRTransitionSpeed = 1,
kQTVRTransitionDirection = 2

};

Hot Spot Types

enum {
kQTVRHotSpotLinkType = FOUR_CHAR_CODE('link'),
kQTVRHotSpotURLType = FOUR_CHAR_CODE('url '),
kQTVRHotSpotUndefinedType = FOUR_CHAR_CODE('undf')

};

Interaction Property Types

enum {
kQTVRInteractionMouseClickHysteresis = 1,
kQTVRInteractionMouseClickTimeout = 2,
kQTVRInteractionPanTiltSpeed = 3,
kQTVRInteractionZoomSpeed = 4,
kQTVRInteractionTranslateOnMouseDown = 101,
Summary of the QuickTime VR Manager 191

C H A P T E R 2

QuickTime VR Manager
kQTVRInteractionMouseMotionScale = 102,
kQTVRInteractionNudgeMode = 103

};

#define kQTVRInteractionDefaultValue 0x80000000

Viewing Constraints

enum {
kQTVRUnconstrained = 0
kQTVRCantPanLeft = 1L << 0,
kQTVRCantPanRight = 1L << 1,
kQTVRCantPanUp = 1L << 2,
kQTVRCantPanDown = 1L << 3,
kQTVRCantZoomIn = 1L << 4,
kQTVRCantZoomOut = 1L << 5,
kQTVRCantTranslateLeft = 1L << 6,
kQTVRCantTranslateRight = 1L << 7,
kQTVRCantTranslateUp = 1L << 8,
kQTVRCantTranslateDown = 1L << 9

};

Mouse Mode Values

enum {
kQTVRPanning = 1L << 0,
kQTVRTranslating = 1L << 1,
kQTVRZooming = 1L << 2,
kQTVRScrolling = 1L << 3,
kQTVRSelecting = 1L << 4

};

Hot Spot Selectors

enum {
kQTVRHotSpotID = 0,
kQTVRHotSpotType = 1,
kQTVRAllHotSpots = 2

};
192 Summary of the QuickTime VR Manager

C H A P T E R 2

QuickTime VR Manager
Animation Settings

enum {
kQTVRPalindromeViewFrames = 1,
kQTVRStartFirstViewFrames = 2,
kQTVRDontLoopViewFrames = 3,
kQTVRPlayEveryViewFrame = 4,
kQTVRSyncViewToFrameRate = 16,
kQTVRPalindromeViews = 17

};
typedef UInt32 QTVRObjectAnimationSetting;

Control Settings

enum {
kQTVRWrapPan = 1,
kQTVRWrapTilt = 2,
kQTVRCanZoom = 3,
kQTVRReverseHControl = 4,
kQTVRReverseVControl = 5,
kQTVRSwapHVControl = 6,
kQTVRTranslation = 7

};
typedef UInt32 QTVRControlSetting;

View State Types

enum {
kQTVRDefault = 0,
kQTVRCurrent = 2,
kQTVRMouseDown = 3

};
typedef UInt32 QTVRViewStateType;

Back Buffer Imaging Procedure Flags

enum {
kQTVRBackBufferEveryUpdate = 1L << 0,
kQTVRBackBufferEveryIdle = 1L << 1,
kQTVRBackBufferAlwaysRefresh = 1L << 2

};
Summary of the QuickTime VR Manager 193

C H A P T E R 2

QuickTime VR Manager
enum {
kQTVRBackBufferRectVisible = 1L << 0,
kQTVRBackBufferWasRefreshed = 1L << 1

};

enum {
kQTVRBackBufferFlagDidDraw = 1L << 0

};

Nudge Directions

enum {
kQTVRRight = 0,
kQTVRUpRight = 45,
kQTVRUp = 90,
kQTVRUpLeft = 135,
kQTVRLeft = 180,
kQTVRDownLeft = 225,
kQTVRDown = 270,
kQTVRDownRight = 315

};
typedef UInt32 QTVRNudgeControl;

Nudge Control Modes

enum QTVRNudgeMode {
kQTVRNudgeRotate = 0,
kQTVRNudgeTranslate = 1,
kQTVRNudgeSameAsMouse = 2

};
typedef enum QTVRNudgeMode QTVRNudgeMode;

Cursor Types

enum {
kQTVRUseDefaultCursor = 0,
kQTVRStdCursorType = 1,
kQTVRColorCursorType = 2

};
194 Summary of the QuickTime VR Manager

C H A P T E R 2

QuickTime VR Manager
Pixel Sizes

enum {
kQTVRUseMovieDepth = 0,
kQTVRDepth16 = 16,
kQTVRDepth32 = 32

};

Resolutions

enum {
kQTVRDefaultRes = 0,
kQTVRFullRes = 1L << 0,
kQTVRHalfRes = 1L << 1,
kQTVRQuarterRes = 1L << 2

};

Geometry Constants

enum {
kQTVRUseMovieGeometry = 0,
kQTVRVerticalCylinder = 'vcyl'

};

Cache Sizes

enum {
kQTVRMinimumCache = –1,
kQTVRSuggestedCache = 0,
kQTVRFullCache = 1

};

Data Types 2

QuickTime VR Movie Instances

typedef struct QTVRRecord *QTVRInstance;
Summary of the QuickTime VR Manager 195

C H A P T E R 2

QuickTime VR Manager
Intercept Structure

typedef struct QTVRInterceptRecord {
SInt32 reserved1;
SInt32 selector;
SInt32 reserved2;
SInt32 reserved3;
SInt32 paramCount;
void *parameter[6];

} QTVRInterceptRecord, *QTVRInterceptPtr;

Floating-Point Point Structure

struct QTVRFloatPoint {
float x;
float y;

};
typedef struct QTVRFloatPoint QTVRFloatPoint;

Cursor Record

struct QTVRCursorRecord {
UInt16 theType; /* field was previously named

"type"*/
SInt16 rsrcID;
Handle handle;

};
typedef struct QTVRCursorRecord QTVRCursorRecord;

Area of Interest Structure

struct QTVRAreaOfInterest {
float panAngle;
float tiltAngle;
float width;
float height;
UInt32 flags;

};
typedef struct QTVRAreaOfInterest QTVRAreaOfInterest;
196 Summary of the QuickTime VR Manager

C H A P T E R 2

QuickTime VR Manager
QuickTime VR Manager Routines 2

Initializing and Terminating QuickTime VR
OSErr InitializeQTVR (void);

OSErr TerminateQTVR (void);

Initializing and Managing QuickTime VR Movie Instances
Track QTVRGetQTVRTrack (Movie theMovie, SInt32 index);

OSErr QTVRGetQTVRInstance (QTVRInstance *qtvr,
Track qtvrTrack,
MovieController mc);

Manipulating Viewing Angles and Zooming
float QTVRGetPanAngle (QTVRInstance qtvr);

OSErr QTVRSetPanAngle (QTVRInstance qtvr, float panAngle);

float QTVRGetTiltAngle (QTVRInstance qtvr);

OSErr QTVRSetTiltAngle (QTVRInstance qtvr, float tiltAngle);

float QTVRGetFieldOfView (QTVRInstance qtvr);

OSErr QTVRSetFieldOfView (QTVRInstance qtvr, float fieldOfView);

OSErr QTVRGetViewCenter (QTVRInstance qtvr, QTVRFloatPoint *viewCenter);

OSErr QTVRSetViewCenter (QTVRInstance qtvr, const QTVRFloatPoint
*viewCenter);

OSErr QTVRNudge (QTVRInstance qtvr, QTVRNudgeControl direction);

OSErr QTVRInteractionNudge (QTVRInstance qtvr, QTVRNudgeControl direction);

OSErr QTVRShowDefaultView (QTVRInstance qtvr);

Getting Scene and Node Information
OSErr QTVRGetVRWorld (QTVRInstance qtvr, QTAtomContainer *VRWorld);

OSErr QTVRGoToNodeID (QTVRInstance qtvr, UInt32 nodeID);

UInt32 QTVRGetCurrentNodeID (QTVRInstance qtvr);
Summary of the QuickTime VR Manager 197

C H A P T E R 2

QuickTime VR Manager
OSType QTVRGetNodeType (QTVRInstance qtvr, UInt32 nodeID);

OSErr QTVRGetNodeInfo (QTVRInstance qtvr,
UInt32 nodeID,
QTAtomContainer *nodeInfo);

Managing Hot Spots
OSErr QTVRPtToHotSpotID (QTVRInstance qtvr, Point pt, UInt32 *hotSpotID);

OSErr QTVRGetHotSpotType (QTVRInstance qtvr,
UInt32 hotSpotID,
OSType *hotSpotType);

OSErr QTVRTriggerHotSpot (QTVRInstance qtvr,
UInt32 hotSpotID,
QTAtomContainer nodeInfo,
QTAtom selectedAtom);

OSErr QTVREnableHotSpot (QTVRInstance qtvr,
UInt32 enableFlag,
UInt32 hotSpotValue,
Boolean enable);

OSErr QTVRSetMouseOverHotSpotProc (QTVRInstance qtvr,
QTVRMouseOverHotSpotUPP mouseOverHotSpotProc,
SInt32 refCon,
UInt32 flags);

UInt32 QTVRGetVisibleHotSpots (QTVRInstance qtvr, Handle hotSpots);

OSErr QTVRGetHotSpotRegion (QTVRInstance qtvr,
UInt32 hotSpotID,
RgnHandle hotSpotRegion);

Handling Events
Boolean QTVRGetMouseOverTracking (QTVRInstance qtvr);

OSErr QTVRSetMouseOverTracking (QTVRInstance qtvr, Boolean enable);

OSErr QTVRMouseEnter (QTVRInstance qtvr, Point pt, UInt32 *hotSpotID);

OSErr QTVRMouseWithin (QTVRInstance qtvr, Point pt, UInt32 *hotSpotID);

OSErr QTVRMouseLeave (QTVRInstance qtvr, Point pt);

Boolean QTVRGetMouseDownTracking (QTVRInstance qtvr);
198 Summary of the QuickTime VR Manager

C H A P T E R 2

QuickTime VR Manager
OSErr QTVRSetMouseDownTracking (QTVRInstance qtvr, Boolean enable);

OSErr QTVRMouseDown (QTVRInstance qtvr,
Point pt,
UInt32 when,
UInt16 modifiers,
UInt32 *hotSpotID);

OSErr QTVRMouseStillDown (QTVRInstance qtvr, Point pt, UInt32 *hotSpotID);

OSErr QTVRMouseStillDownExtended (QTVRInstance qtvr,
Point pt,
UInt32 *hotSpotID,
WindowPtr w,
UInt32 when,
UInt16 modifiers);

OSErr QTVRMouseUp (QTVRInstance qtvr, Point pt, UInt32 *hotSpotID);

OSErr QTVRMouseUpExtended (QTVRInstance qtvr,
Point pt,
UInt32 *hotSpotID,
WindowPtr w,
UInt32 when,
UInt16 modifiers);

Intercepting QuickTime VR Manager Routines
OSErr QTVRInstallInterceptProc (QTVRInstance qtvr,

QTVRProcSelector selector,
QTVRInterceptUPP interceptProc,
SInt32 refCon,
UInt32 flags);

OSErr QTVRCallInterceptedProc (QTVRInstance qtvr, QTVRInterceptRecord *qtvrMsg);

Managing Object Nodes
UInt32 QTVRGetCurrentMouseMode (QTVRInstance qtvr);

float QTVRGetFrameRate (QTVRInstance qtvr);

OSErr QTVRSetFrameRate (QTVRInstance qtvr, float rate);

float QTVRGetViewRate (QTVRInstance qtvr);

OSErr QTVRSetViewRate (QTVRInstance qtvr, float rate);
Summary of the QuickTime VR Manager 199

C H A P T E R 2

QuickTime VR Manager
TimeValue QTVRGetCurrentViewDuration (
QTVRInstance qtvr);

TimeValue QTVRGetViewCurrentTime (QTVRInstance qtvr);

OSErr QTVRSetViewCurrentTime (QTVRInstance qtvr, TimeValue time);

UInt16 QTVRGetViewStateCount (QTVRInstance qtvr);

OSErr QTVRGetViewState (QTVRInstance qtvr,
QTVRViewStateType viewStateType,
UInt16 *state);

OSErr QTVRSetViewState (QTVRInstance qtvr,
QTVRViewStateType viewStateType,
UInt16 state);

OSErr QTVRGetAnimationSetting (QTVRInstance qtvr,
QTVRObjectAnimationSetting setting,
Boolean *enable);

OSErr QTVRSetAnimationSetting (QTVRInstance qtvr,
QTVRObjectAnimationSetting setting,
Boolean enable);

OSErr QTVRGetControlSetting (QTVRInstance qtvr,
QTVRControlSetting setting,
Boolean *enable);

OSErr QTVRSetControlSetting (QTVRInstance qtvr,
QTVRControlSetting setting,
Boolean enable);

Boolean QTVRGetFrameAnimation (QTVRInstance qtvr);

OSErr QTVREnableFrameAnimation (QTVRInstance qtvr, Boolean enable);

Boolean QTVRGetViewAnimation (QTVRInstance qtvr);

OSErr QTVREnableViewAnimation (QTVRInstance qtvr, Boolean enable);

Managing Imaging Characteristics
Boolean QTVRGetVisible (QTVRInstance qtvr);

OSErr QTVRSetVisible (QTVRInstance qtvr, Boolean visible);
200 Summary of the QuickTime VR Manager

C H A P T E R 2

QuickTime VR Manager
OSErr QTVRGetImagingProperty (QTVRInstance qtvr,
QTVRImagingMode imagingMode,
UInt32 imagingProperty,
SInt32 *propertyValue);

OSErr QTVRSetImagingProperty (QTVRInstance qtvr,
QTVRImagingMode imagingMode,
UInt32 imagingProperty,
SInt32 propertyValue);

OSErr QTVRUpdate (QTVRInstance qtvr, QTVRImagingMode imagingMode);

OSErr QTVRBeginUpdateStream (QTVRInstance qtvr, QTVRImagingMode imagingMode);

OSErr QTVREndUpdateStream (QTVRInstance qtvr);

OSErr QTVRSetTransitionProperty (QTVRInstance qtvr,
UInt32 transitionType,
UInt32 transitionProperty,
SInt32 transitionValue);

OSErr QTVREnableTransition (QTVRInstance qtvr,
UInt32 transitionType,
Boolean enable);

Converting Angles and Points
QTVRAngularUnits QTVRGetAngularUnits (

QTVRInstance qtvr);

OSErr QTVRSetAngularUnits (QTVRInstance qtvr, QTVRAngularUnits units);

OSErr QTVRPtToAngles (QTVRInstance qtvr,
Point pt,
float *panAngle,
float *tiltAngle);

OSErr QTVRCoordToAngles (QTVRInstance qtvr,
QTVRFloatPoint *coord,
float *panAngle,
float *tiltAngle);

OSErr QTVRAnglesToCoord (QTVRInstance qtvr,
float panAngle,
float tiltAngle,
QTVRFloatPoint *coord);

short QTVRPanToColumn (QTVRInstance qtvr, float panAngle);
Summary of the QuickTime VR Manager 201

C H A P T E R 2

QuickTime VR Manager
float QTVRColumnToPan (QTVRInstance qtvr, short column);

short QTVRTiltToRow (QTVRInstance qtvr, float tiltAngle);

float QTVRRowToTilt (QTVRInstance qtvr, short row);

OSErr QTVRWrapAndConstrain (QTVRInstance qtvr,
short kind,
float value,
float *result);

Managing QuickTime VR Movie Interaction
OSErr QTVRSetEnteringNodeProc (QTVRInstance qtvr,

QTVREnteringNodeUPP enteringNodeProc,
SInt32 refCon,
UInt32 flags);

OSErr QTVRSetLeavingNodeProc (QTVRInstance qtvr,
QTVRLeavingNodeUPP leavingNodeProc,
SInt32 refCon,
UInt32 flags);

OSErr QTVRGetInteractionProperty (QTVRInstance qtvr,
UInt32 property,
void *value);

OSErr QTVRSetInteractionProperty (QTVRInstance qtvr,
UInt32 property,
void *value);

OSErr QTVRReplaceCursor (QTVRInstance qtvr, QTVRCursorRecord *cursRecord);

Determining Viewing Limits and Constraints
OSErr QTVRGetViewingLimits (QTVRInstance qtvr,

UInt16 kind,
float *minValue,
float *maxValue);

UInt32 QTVRGetConstraintStatus (QTVRInstance qtvr);

OSErr QTVRGetConstraints (QTVRInstance qtvr,
UInt16 kind,
float *minValue,
float *maxValue);
202 Summary of the QuickTime VR Manager

C H A P T E R 2

QuickTime VR Manager
OSErr QTVRSetConstraints (QTVRInstance qtvr,
UInt16 kind,
float minValue,
float maxValue);

Managing Memory
OSErr QTVRGetAvailableResolutions (QTVRInstance qtvr, UInt16 *resolutionsMask);

OSErr QTVRGetBackBufferMemInfo (QTVRInstance qtvr,
UInt16 geometry,
UInt16 resolution,
UInt32 cachePixelFormat,
SInt32 *minCacheBytes,
SInt32 *suggestedCacheBytes,
SInt32 *fullCacheBytes);

OSErr QTVRGetBackBufferSettings (QTVRInstance qtvr,
UInt16 *geometry,
UInt16 *resolution,
UInt32 *cachePixelFormat,
SInt16 *cacheSize);

OSErr QTVRSetBackBufferPrefs (QTVRInstance qtvr,
UInt16 geometry,
UInt16 resolution,
UInt32 cachePixelFormat,
SInt16 cacheSize);

Accessing Image Buffers
OSErr QTVRSetPrescreenImagingCompleteProc (

QTVRInstance qtvr,
ImagingCompleteUPP imagingCompleteProc,
SInt32 refCon,
UInt32 flags);

OSErr QTVRSetBackBufferImagingProc(QTVRInstance qtvr,
BackBufferImagingUPP backBufferImagingProc,
UInt16 numAreas,
QTVRAreaOfInterest *areasOfInterest,
SInt32 refCon);

OSErr QTVRRefreshBackBuffer (QTVRInstance qtvr, UInt32 flags);
Summary of the QuickTime VR Manager 203

C H A P T E R 2

QuickTime VR Manager
Application-Defined Routines 2

Mouse Over Hot Spot Procedure
pascal OSErr MyMouseOverHotSpotProc (

QTVRInstance qtvr,
UInt32 hotSpotID,
UInt32 flags,
SInt32 refCon);

QuickTime VR Intercept Routine
pascal void MyInterceptProc (QTVRInstance qtvr,

QTVRInterceptPtr qtvrMsg,
SInt32 refCon,
Boolean *cancel);

Node-Entering and Node-Leaving Procedures
pascal OSErr MyEnteringNodeProc (QTVRInstance qtvr, UInt32 nodeID, SInt32 refCon);

pascal OSErr MyLeavingNodeProc (QTVRInstance qtvr,
UInt32 fromNodeID,
UInt32 toNodeID,
Boolean *cancel,
SInt32 refCon);

Imaging Procedures
pascal OSErr MyImagingCompleteProc(QTVRInstance qtvr, SInt32 refCon);

pascal OSErr MyBackBufferImagingProc (
QTVRInstance qtvr,
Rect *drawRect,
UInt16 areaIndex,
UInt32 flagsIn,
UInt32 *flagsOut,
SInt32 refCon);
204 Summary of the QuickTime VR Manager

C H A P T E R 2

QuickTime VR Manager
Result Codes 2

notAQTVRMovieErr –30540 The specified movie isn’t a
QuickTime VR movie

constraintReachedErr –30541 A view constraint has been reached
callNotSupportedByNodeErr –30542 The specified function isn’t supported by this

node
selectorNotSupportedByNodeErr –30543 The specified selector isn’t supported by

this node
invalidNodeIDErr –30544 The specified node ID is invalid
invalidViewStateErr –30545 The specified view state is invalid
timeNotInViewErr –30546 The specified time is not in the view
propertyNotSupportedByNodeErr –30547 The specified property is not supported by

this node
settingNotSupportedByNodeErr –30548 The specified setting is not supported by

this node
qtvrLibraryLoadErr –30554 Unable to find or load QTVR library
qtvrUninitialized –30555 QuickTime VR Manager has not been

initialized
Summary of the QuickTime VR Manager 205

C H A P T E R 2

QuickTime VR Manager
206 Summary of the QuickTime VR Manager

C H A P T E R 3

Contents

Contents
Figure 3-0
Listing 3-0
Table 3-0
3 QuickTime VR Movie Controller
About the QuickTime VR Movie Controller 210
Elements of the QuickTime VR Movie Controller 210
Movie Controller Actions 212

Using the QuickTime VR Movie Controller 213
Hiding and Showing the Controller Bar 213
Showing and Hiding Controller Bar Buttons 214
Sending Actions to the QuickTime VR Movie Controller 216

QuickTime VR Movie Controller Reference 217
Constants 217

Movie Controller Actions 217
Movie Control Flags 233

Summary of the QuickTime VR Movie Controller 235
C Summary 235

Constants 235
Data Types 237
207

C H A P T E R 3
208 Contents

C H A P T E R 3
QuickTime VR Movie Controller 3

This chapter describes the QuickTime VR movie controller, a movie controller
component that manages the interface for presenting QuickTime VR movies to
users and allowing them to navigate and explore in those movies. You can use
standard QuickTime movie controller functions to configure and manipulate
the QuickTime VR movie controller.

You need to read this chapter if you want to customize the interface presented
by the QuickTime VR movie controller (for example, to hide the controller bar).
You might also need to read this chapter to learn how the QuickTime VR movie
controller handles movie controller actions. Your application can issue actions
to access certain movie controller capabilities; your application can also install
an action filter function to intercept and possibly also override movie controller
actions.

This chapter begins by describing the appearance and behavior of the
QuickTime VR movie controller. Then it describes the movie controller actions
and the ways in which your application might need to issue or respond to them.
The section “Using the QuickTime VR Movie Controller,” beginning on
page 213, briefly illustrates how to issue a movie controller action and perform
other operations on the QuickTime VR movie controller.

The section “QuickTime VR Movie Controller Reference” (page 217), provides a
complete reference of the ways in which the QuickTime VR movie controller
handles movie controller actions. The section “Summary of the QuickTime VR
Movie Controller” (page 235), summarizes the currently defined movie
controller actions and movie control flags that are defined in the header file
Movies.h, which is part of QuickTime. The summary also lists the movie
controller actions that are specific to QuickTime VR (and that are defined in the
header file QuickTimeVR.h).

Note
For complete information on movie controllers, see the
chapter “Movie Controller Components” in the book Inside
Macintosh: QuickTime Components. You need to be familiar
with the information in that chapter in order to use this
chapter. ◆
209

C H A P T E R 3

QuickTime VR Movie Controller
About the QuickTime VR Movie Controller 3

The QuickTime VR movie controller is a movie controller component that
manages the interface for presenting QuickTime VR movies to users and
allowing them to navigate and explore in those movies. This component is
stored in the QuickTime VR extension and is loaded automatically whenever an
application calls NewMovieController with a QuickTime VR movie. A special
piece of user data in a QuickTime VR movie file indicates the movie controller
to use; see “QuickTime VR Movie Creation” (page 267) for instructions on
including that user data in a QuickTime VR file.

Elements of the QuickTime VR Movie Controller 3

The QuickTime VR movie controller provides control elements for zooming in
and out and several other navigational controls. Figure 3-1 shows the elements
supported by the QuickTime VR movie controller component.
210 About the QuickTime VR Movie Controller

C H A P T E R 3

QuickTime VR Movie Controller
Figure 3-1 The QuickTime VR movie controller

The user can navigate in a movie by holding the mouse button down and
dragging inside the picture. The user can also use the controller bar to
perform several other operations. The controller bar contains the following
controls:

■ A go-back button. This control allows the user to return to the previous
node. Clicking this button restores the previous static pan angle, tilt angle,
and field of view. This button is enabled only for multinode movies.

■ A zoom-out button. This control allows the user to zoom out. Holding down
the mouse button while the cursor is over this control causes the field of view
of the displayed node to increase, thereby making the object or panorama
appear to move away from the viewer.

■ A zoom-in button. This control allows the user to zoom in. Holding down
the mouse button while the cursor is over this control causes the field of view
of the displayed node to decrease, thereby making the object or panorama
appear to move toward the viewer.
About the QuickTime VR Movie Controller 211

C H A P T E R 3

QuickTime VR Movie Controller
■ A hot spot display button. This control allows the user to highlight the
visible hot spots. Holding down the mouse button while the cursor is over
this control causes any hot spots in the currently visible portion of the
panorama or object to be highlighted (a border is drawn around each hot
spot, and the enclosed region is filled in a distinctive color). Releasing the
mouse button restores the image to its unhighlighted state.
Double-clicking the mouse button causes the hot spot display to latch in the
on state so that the hot spots remain displayed during manipulation of the
VR movie. In that state, a single mouse click turns the hot spot display off.
This button is disabled for movies that do not have hot spots.

■ A translate mode button. This control allows the user to enable or disable
translate mode. When translate mode is enabled, dragging the mouse causes
an object to be translated instead of panned or tilted. This control is enabled
only for object nodes.

In addition to these buttons, the controller bar also contains a label display area
in which helpful information is displayed. For instance, when the cursor is over
one of the buttons, the button’s name appears in the label display area.
Similarly, when the cursor is over a hot spot, the hot spot’s name (if it has one)
appears in the label display area.

You can programmatically change which of these buttons are displayed by
issuing the appropriate movie controller actions; see “Movie Control Flags”
(page 233) for details. In addition, you can hide the controller bar entirely; see
“Hiding and Showing the Controller Bar” (page 213) for details.

Movie Controller Actions 3

A movie controller action is a constant that you can pass to a movie controller
to request that the movie controller perform some action (such as modify
certain movie characteristics or respond to user events). For example, you can
pass the mcActionSetCursorSettingEnabled action to enable or disable the
automatic cursor tracking and shape changing provided by the QuickTime VR
movie controller.

There are two ways in which you might be concerned with these actions: your
application can invoke these actions directly by calling the MCDoAction function;
or your application can install an action filter function, which can receive any
of these actions; your action filter can then either intercept the action or send it
back to the movie controller for processing.
212 About the QuickTime VR Movie Controller

C H A P T E R 3

QuickTime VR Movie Controller
A movie controller action is usually accompanied by some parameter data. For
instance, the mcActionSetCursorSettingEnabled action must be accompanied by
a Boolean value that indicates whether to enable or disable cursor tracking and
shape changing. When calling MCDoAction, you get or set data through the
params parameter. Similarly, an action filter function exchanges data with a
movie controller through its params parameter. The type and meaning of this
additional parameter data are described in the individual descriptions of each
movie controller action. See “Movie Controller Actions” (page 217).

Note
For complete information on handling movie controller
actions, see the chapter “Movie Controller Components” in
the book Inside Macintosh: QuickTime Components. ◆

Using the QuickTime VR Movie Controller 3

This section illustrates basic ways of interacting with the QuickTime VR movie
controller. In particular, it provides source code examples that show how you can

■ hide the controller bar

■ hide and show buttons in the controller bar

■ disable the automatic cursor tracking and shape changing provided by the
QuickTime VR movie controller

Note
The code examples shown in this section provide only very
rudimentary error handling. ◆

Hiding and Showing the Controller Bar 3

You can use standard QuickTime movie component routines to hide and show
the controller bar associated with a QuickTime VR movie. To hide the controller
bar, you can call the MCSetVisible function, as illustrated in Listing 3-1.
Using the QuickTime VR Movie Controller 213

C H A P T E R 3

QuickTime VR Movie Controller
Listing 3-1 Hiding the controller bar

componentResult myResult;
Boolean isVisible;

isVisible = false;
myResult = MCSetVisible(myMC, isVisible);

Showing and Hiding Controller Bar Buttons 3

You can use standard QuickTime movie controller routines to hide and show
specific buttons in the controller bar associated with a QuickTime VR movie.
The QuickTime VR movie controller automatically shows and hides some
buttons, and it automatically disables some buttons that might not be
appropriate for a specific movie or node. You can, however, override these
automatic behaviors using the QuickTime VR Manager.

For instance, the QuickTime VR movie controller displays the speaker button
(used for adjusting a movie’s volume) whenever a movie contains a sound
track. It’s possible, however, that only a single node in a large multinode movie
has a sound track. In that case, you might want to hide the speaker button in all
nodes that do not have a sound track. Conversely, the QuickTime VR movie
controller hides the speaker button if a movie does not contain a sound track.
You might, however, play a sound loaded from a sound resource or from
another QuickTime file. In that case, you might want to show the speaker
button and have it control the sound you’re playing. In both these cases, you
need to override the default behavior of the QuickTime VR movie controller.

Note first that every VR movie has two sets of movie controller flags: a set of
control flags and a set of explicit flags. The control flags work as described in
“Movie Control Flags” and documented in Inside Macintosh: QuickTime
Components: If a bit in the set of control flags is set (that is, equal to 1), then the
associated action or property is enabled. For instance, bit 17
(mcFlagQTVRSuppressZoomBtns) means to suppress the zoom buttons. So, if that
bit is set in a VR movie’s control flags, the zoom buttons are not displayed. If
that bit is clear, the zoom buttons are displayed.

However, the QuickTime VR movie controller sometimes suppresses buttons
even when those buttons have not been explicitly suppressed in the control
flags. As already mentioned, if a particular VR movie does not contain a sound
track, then the movie controller automatically suppresses the speaker button. If
214 Using the QuickTime VR Movie Controller

C H A P T E R 3

QuickTime VR Movie Controller
a movie does contain a sound track, then the speaker button is displayed only if
the suppress speaker bit is off.

This might not be what you’d like to happen. For instance, if your application is
playing a sound that it loaded from a sound resource, you might want the user
to be able to adjust the sound’s volume using the volume control. To do that,
you need a way to force the speaker button to appear. For this reason, the
explicit flags were introduced.

The explicit flags indicate which bits in the control flags are to be used explicitly
(that is, taken at face value). If a certain bit is set in a movie’s explicit flags, then
the corresponding bit in the control flags is interpreted as the desired setting for
the feature (and the movie controller does not attempt to do anything clever). In
other words, if bit 17 is set in a movie’s explicit flags and bit 17 is clear in that
movie’s control flags, then the zoom buttons are always displayed. Similarly, if
bit 2 is set in a movie’s explicit flags and bit 2 is clear in that movie’s control
flags, then the speaker button is displayed, whether or not the movie contains a
sound track.

To get or set a bit in a movie’s explicit flags, you must set the flag
mcFlagQTVRExplicitFlagSet in your call to mcActionGetFlags or
mcActionSetFlags. To get or set a bit in a movie’s control flags, you must clear
the flag mcFlagQTVRExplicitFlagSet in your call to mcActionGetFlags or
mcActionSetFlags. Note that when you use the defined constants to set values in
the explicit flags, the constant names might be confusing. For instance, setting
the bit mcFlagSuppressSpeakerButton in a movie’s explicit flags doesn’t cause the
speaker to be suppressed; it just means: “use the actual value of the
mcFlagSuppressSpeakerButton bit in the control flags.”

Now you can see how to hide or show a button in the controller bar: set the
appropriate explicit flag to 1 and set the corresponding control flag to the
desired value. Listing 3-2 shows how to force a specific button in the controller
bar to be displayed.

Listing 3-2 Showing a controller bar button

void ShowControllerButton (MovieController theMC, long theButton)
{

long myControllerFlags;

// Get the current explicit flags
// and set the explicit flag for the specified button.
Using the QuickTime VR Movie Controller 215

C H A P T E R 3

QuickTime VR Movie Controller
myControllerFlags = mcFlagQTVRExplicitFlagSet;
MCDoAction(theMC, mcActionGetFlags, &myControllerFlags);
MCDoAction(theMC, mcActionSetFlags,

(void *)((myControllerFlags | theButton) | mcFlagQTVRExplicitFlagSet));

// Get the current control flags
// and clear the suppress flag for the specified button.
myControllerFlags = 0;
MCDoAction(theMC, mcActionGetFlags, &myControllerFlags);
MCDoAction(theMC, mcActionSetFlags,

(void *)(myControllerFlags & ~theButton));
}

Listing 3-3 shows how to force a specific button in the controller bar to be
hidden. Because the suppress flag overrides the setting of the explicit flag, this
routine sets only the suppress flag and doesn’t bother with the explicit flag.

Listing 3-3 Hiding a controller bar button

void HideControllerButton (MovieController theMC, long theButton)
{

long myControllerFlags;

// Get the current control flags
// and set the suppress flag for the specified button.
myControllerFlags = 0;
MCDoAction(theMC, mcActionGetFlags, &myControllerFlags);
MCDoAction(theMC, mcActionSetFlags,

(void *)((myControllerFlags | theButton));
}

Sending Actions to the QuickTime VR Movie Controller 3

You can use the MCDoAction function to send a movie controller action to a
movie controller. For example, you can execute this line of code to disable the
automatic cursor tracking and shape changing provided by the QuickTime VR
movie controller:

MCDoAction(myMC, mcActionSetCursorSettingEnabled, (void*) false);
216 Using the QuickTime VR Movie Controller

C H A P T E R 3

QuickTime VR Movie Controller
In this example, the myMC parameter is an identifier for the QuickTime VR movie
controller, returned by a previous call to NewMovieController.

QuickTime VR Movie Controller Reference 3

This section provides a complete reference for the QuickTime VR movie
controller. It describes how the QuickTime VR movie controller handles the
currently defined movie controller actions. It also describes the meanings of the
movie control flags that can be retrieved from or passed to the QuickTime VR
movie controller using the mcActionGetFlags and mcActionSetFlags movie
controller actions.

Constants 3

This section describes the constants associated with the QuickTime VR movie
controller.

Movie Controller Actions 3

Movie controller actions are defined by these constants:

enum {
mcActionIdle = 1,
mcActionDraw = 2,
mcActionActivate = 3,
mcActionDeactivate = 4,
mcActionMouseDown = 5,
mcActionKey = 6,
mcActionPlay = 8,
mcActionGoToTime = 12,
mcActionSetVolume = 14,
mcActionGetVolume = 15,
mcActionStep = 18,
mcActionSetLooping = 21,
mcActionGetLooping = 22,
mcActionSetLoopIsPalindrome = 23,
mcActionGetLoopIsPalindrome = 24,
QuickTime VR Movie Controller Reference 217

C H A P T E R 3

QuickTime VR Movie Controller
mcActionSetGrowBoxBounds = 25,
mcActionControllerSizeChanged = 26,
mcActionSetSelectionBegin = 29,
mcActionSetSelectionDuration = 30,
mcActionSetKeysEnabled = 32,
mcActionGetKeysEnabled = 33,
mcActionSetPlaySelection = 34,
mcActionGetPlaySelection = 35,
mcActionSetUseBadge = 36,
mcActionGetUseBadge = 37,
mcActionSetFlags = 38,
mcActionGetFlags = 39,
mcActionSetPlayEveryFrame = 40,
mcActionGetPlayEveryFrame = 41,
mcActionGetPlayRate = 42,
mcActionShowBalloon = 43,
mcActionBadgeClick = 44,
mcActionMovieClick = 45,
mcActionSuspend = 46,
mcActionResume = 47,
mcActionSetControllerKeysEnabled = 48,
mcActionGetTimeSliderRect = 49,
mcActionMovieEdited = 50,
mcActionGetDragEnabled = 51,
mcActionSetDragEnabled = 52,
mcActionGetSelectionBegin = 53,
mcActionGetSelectionDuration = 54,
mcActionPrerollAndPlay = 55,
mcActionGetCursorSettingEnabled = 56,
mcActionSetCursorSettingEnabled = 57,
mcActionSetColorTable = 58,
mcActionLinkToURL = 59,
mcActionCustomButtonClick = 60,
mcActionForceTimeTableUpdate = 61,
mcActionSetControllerTimeLimits = 62,
mcActionExecuteAllActionsForQTEvent = 63,
mcActionExecuteOneActionForQTEvent = 64,
mcActionAdjustCursor = 65,
mcActionUseTrackForTimeTable = 66,
mcActionClickAndHoldPoint = 67,
218 QuickTime VR Movie Controller Reference

C H A P T E R 3

QuickTime VR Movie Controller
mcActionShowMessageString = 68
/* param is a StringPtr*/

};

The action descriptions that follow are divided into those that can be used by
your application and those that can be received by your action filter function.
Many actions fall into both categories.

Actions for use by applications

mcActionIdle Your application can use this action to grant
event-processing time to a movie controller. There is no
parameter for this action.

mcActionDraw Your application can use this action to send an update
event to a movie controller.
The parameter for this action is a pointer to a window.

mcActionActivate Your application can use this action to activate a movie
controller. There is no parameter for this action.

mcActionDeactivate Your application can use this action to deactivate a movie
controller. There is no parameter for this action.

mcActionMouseDown Your application can use this action to pass a mouse-down
event to a movie controller.
The parameter data must contain a pointer to an event
structure (of type EventRecord); the message field in the
event structure must specify the window in which the
user clicked.

mcActionKey Your application can use this action to pass a key-down or
auto-key event to a movie controller.
The parameter data must contain a pointer to an event
structure that describes the key event.

mcActionPlay Your application can use this action to start or stop playing
a frame animation. For objects with no frame animation or
for panoramas, this action is ignored.
The parameter data must contain a floating-point value
that indicates the frame rate. Values greater than 0.0
correspond to forward rates; values less than 0.0 play the
animation backward. A value of 0.0 stops the animation.
QuickTime VR Movie Controller Reference 219

C H A P T E R 3

QuickTime VR Movie Controller
mcActionGoToTime Your application can use this action to move to a specific
view time in an animated object movie. For objects with no
frame animation or for panoramas, this action is ignored.
The parameter data must contain a pointer to a time
structure that specifies the target position in the movie.

mcActionSetVolume Your application can use this action to set a movie’s volume.
The parameter data must contain a pointer to a 16-bit
fixed-point number that indicates the relative volume of the
movie. Volume values range from –1.0 to 1.0. Negative
values play no sound but preserve the absolute value of the
volume setting.

mcActionGetVolume Your application can use this action to determine a movie’s
volume.
The parameter data must contain a pointer to a 16-bit
fixed-point number that indicates the relative volume of the
movie. Volume values range from –1.0 to 1.0. Negative
values play no sound but preserve the absolute value of the
volume setting.

mcActionStep This action is not supported by the QuickTime VR movie
controller.

mcActionSetLooping Your application can use this action to enable or disable
frame animation looping for a movie. For objects with no
frame animation or for panoramas, this action is ignored.
The parameter data must contain a Boolean value; a value
of true indicates that looping is to be enabled.

mcActionGetLooping Your application can use this action to determine whether
frame animation for an object movie is looping.
The parameter data must contain a pointer to a Boolean
value. The movie controller sets this value to true if frame
animation looping is enabled for the object movie that is
assigned to this controller. Otherwise, it sets the value
to false.

mcActionSetLoopIsPalindrome
Your application can use this action to enable palindrome
frame animation looping. Looping must also be enabled for
palindrome looping to take effect.
The parameter data must contain a Boolean value; a value
of true indicates that palindrome looping is to be enabled.
220 QuickTime VR Movie Controller Reference

C H A P T E R 3

QuickTime VR Movie Controller
mcActionGetLoopIsPalindrome
Your application can use this action to determine whether
palindrome frame animation looping is enabled for a
movie. Looping must also be enabled for palindrome
looping to take effect.
The parameter data must contain a pointer to a Boolean
value. The movie controller sets this value to true if
palindrome looping is enabled for the movie that is
assigned to this controller. Otherwise, it sets the value
to false.

mcActionSetGrowBoxBounds
Your application can use this action to set the limits for
resizing a movie.
The parameter data must contain a pointer to a rectangle;
set the rectangle to the boundary coordinates for the movie.
If you want to prevent the movie from being resized,
supply an empty rectangle (note that enabling or disabling
the size box may change the appearance of some movie
controllers). By default, movie controllers do not have size
boxes. You must use this action to establish a size box for a
movie controller.
If the movie controller’s boundary rectangle intersects the
lower-right corner of your window, your window cannot
have a size box.

mcActionSetSelectionBegin
This action is not supported by the QuickTime VR movie
controller.

mcActionSetSelectionDuration
This action is not supported by the QuickTime VR movie
controller.

mcActionSetKeysEnabled
Your application can use this action to enable or disable
keystrokes for a movie.
The parameter data must contain a Boolean value; a value
of true indicates that keystrokes are to be enabled. By
default, this value is set to false.

mcActionGetKeysEnabled
Your application can use this action to determine whether
keystrokes are enabled for a movie controller.
QuickTime VR Movie Controller Reference 221

C H A P T E R 3

QuickTime VR Movie Controller
The parameter data must contain a pointer to a Boolean
value. The movie controller sets this value to true if
keystrokes are enabled for the movie that is assigned to this
controller. Otherwise, it sets the value to false.

mcActionSetPlaySelection
This action is not supported by the QuickTime VR movie
controller.

mcActionGetPlaySelection
This action is not supported by the QuickTime VR movie
controller.

mcActionSetUseBadge
This action is not supported by the QuickTime VR movie
controller.

mcActionGetUseBadge
This action is not supported by the QuickTime VR movie
controller.

mcActionSetFlags Your application can use this action to set a movie’s
control flags.
The parameter data must contain a long integer that
contains the new control flag values. See “Movie Control
Flags” (page 233) for a description of the available flags.

mcActionGetFlags Your application can use this action to retrieve a movie’s
control flags.
The parameter data must contain a pointer to a long
integer. The movie controller places the movie’s control
flags into that long integer. See “Movie Control Flags”
(page 233) for a description of the available flags.

mcActionSetPlayEveryFrame
This action is not supported by the QuickTime VR movie
controller.

mcActionGetPlayEveryFrame
This action is not supported by the QuickTime VR movie
controller.

mcActionGetPlayRate
Your application can use this action to determine an object
movie’s frame rate. You set the frame rate by using the
mcActionPlay action.
222 QuickTime VR Movie Controller Reference

C H A P T E R 3

QuickTime VR Movie Controller
The parameter data must contain a pointer to a
floating-point value. The movie controller returns the
movie’s frame rate in that value. Values greater than 0.0
correspond to forward rates; values less than 0.0 play the
movie backward. A value of 0.0 indicates that the frame
animation is stopped.

mcActionBadgeClick Your application can use this action to indicate that the
badge was clicked. The parameter is a pointer to a Boolean
value. On entry, the Boolean value is set to true. Set the
Boolean value to false if you want the controller to ignore
the click in the badge.

mcActionMovieClick Your application can use this action to indicate that the
movie was clicked. The parameter is a pointer to an event
structure containing the mouse-down event. If you want
the controller to ignore the mouse-down event, change the
what field of the event structure to a null event.

mcActionSuspend Your application can use this action to indicate that a
suspend event has been received. There is no parameter for
this action.

mcActionResume Your application can use this action to indicate that a
resume event has been received. There is no parameter for
this action.

mcActionSetControllerKeysEnabled
Your application can use this action to control whether the
controller bar keys are enabled or disabled.
The parameter data must contain a Boolean value; a value
of true indicates that the controller bar keys are to be
enabled. By default, this value is set to true.

mcActionGetTimeSliderRect
This action is not supported by the QuickTime VR movie
controller.

mcActionMovieEdited
This action is not supported by the QuickTime VR movie
controller.

mcActionGetDragEnabled
Your application can use this action to determine whether
dragging and dropping is enabled.
QuickTime VR Movie Controller Reference 223

C H A P T E R 3

QuickTime VR Movie Controller
The parameter data must contain a pointer to a Boolean
value. The QuickTime VR movie controller always sets this
value to false.

mcActionSetDragEnabled
This action is not supported by the QuickTime VR movie
controller.

mcActionGetSelectionBegin
This action is not supported by the QuickTime VR movie
controller.

mcActionGetSelectionDuration
This action is not supported by the QuickTime VR movie
controller.

mcActionPrerollAndPlay
Your application can use this action to preroll a movie and
then immediately play it using view animation.
The parameter data must contain a floating-point value
that indicates the view rate. Values greater than 0.0
correspond to forward rates; values less than 0.0 play the
movie backward. A value of 0.0 indicates that the view
animation is stopped.

mcActionGetCursorSettingEnabled
Your application can use this action to get the current state
of cursor tracking and shape changing.
The parameter data must contain a pointer to a Boolean
value; the movie controller sets this value to true if the
controller has been instructed to track the cursor and
change its shape as appropriate. Otherwise, the controller
sets the value to false.

mcActionSetCursorSettingEnabled
Your application can use this action to enable or disable the
automatic cursor tracking and shape changing provided by
the QuickTime VR movie controller.
The parameter data must contain a Boolean value; a value
of true indicates that the cursor tracking and shape
changing are to be enabled.

mcActionSetColorTable
This action is not supported by the QuickTime VR movie
controller.
224 QuickTime VR Movie Controller Reference

C H A P T E R 3

QuickTime VR Movie Controller
mcActionLinkToURL
The parameter is a handle to URL; it can be sent to the
controller or intercepted when generated by a 'url '
hotspot.

mcActionAdjustCursor
The parameter is a pointer to EventRecord (WindowPtr is in
message parameter). The action is not supported in
QuickTime VR 2.1, but will be supported in future versions.

mcActionClickAndHoldPoint
The parameter is a point (local coordinates). The action
returns true if the point has click and hold action (for
example, a QuickTime VR object movie autorotate spot).

mcActionShowMessageString
The parameter is a StringPtr. The action is not supported
by the QuickTime VR movie controller at this time, but will
likely be used in future versions to allow the application to
set the string shown in the control bar.

Actions for use by action filter functions

mcActionIdle Your action filter function receives this action when the
application has granted null event-processing time to the
movie controller. There is no parameter for this action.

mcActionDraw Your filter function receives this action when the controller
has received an update event.
The parameter for this action is a pointer to a window.

mcActionActivate Your filter function receives this action when the controller
has received an activate or resume event. There is no
parameter for this action.

mcActionDeactivate Your filter function receives this action when the controller
has received a deactivate or suspend event. There is no
parameter for this action.

mcActionMouseDown Your action filter function receives this action when the
movie controller has received a mouse-down event.
The parameter data must contain a pointer to an event
structure; the message field in the event structure must
specify the window in which the user clicked.

mcActionKey Your action filter function receives this action when the
movie controller has received a key-down or auto-key event.
QuickTime VR Movie Controller Reference 225

C H A P T E R 3

QuickTime VR Movie Controller
The parameter data must contain a pointer to an event
structure that describes the key event.

mcActionPlay Your action filter function receives this action when the
movie controller has received a request to start or stop
playing a frame animation.
The parameter data must contain a floating-point value
that indicates the frame rate. Values greater than 0.0
correspond to forward rates; values less than 0.0 play the
animation backward. A value of 0.0 stops the animation.

mcActionGoToTime Your action filter function receives this action when the
movie controller has received a request to go to a specified
view time in an animated object movie.
The parameter data must contain a pointer to a time
structure that specifies the target position in the movie.

mcActionSetVolume Your action filter function receives this action when the
movie controller has received a request to set the movie’s
volume.
The parameter data must contain a pointer to a 16-bit
fixed-point number that indicates the relative volume of the
movie. Volume values range from –1.0 to 1.0. Negative
values play no sound but preserve the absolute value of the
volume setting.

mcActionGetVolume Your action filter function receives this action when the
movie controller has received a request to retrieve the
movie’s volume.
The parameter data must contain a pointer to a 16-bit
fixed-point number that indicates the relative volume of the
movie. Volume values range from –1.0 to 1.0. Negative
values play no sound but preserve the absolute value of the
volume setting.

mcActionStep This action is not supported by the QuickTime VR movie
controller.

mcActionSetLooping Your action filter function receives this action when the
movie controller has received a request to turn frame
animation looping on or off.
The parameter data must contain a Boolean value; a value
of true indicates that looping is to be enabled.
226 QuickTime VR Movie Controller Reference

C H A P T E R 3

QuickTime VR Movie Controller
mcActionGetLooping Your action filter function receives this action when the
controller has received a request to indicate whether frame
animation looping is enabled for its movie.
The parameter data must contain a pointer to a Boolean
value. The movie controller sets this value to true if frame
animation looping is enabled for the object movie that is
assigned to this controller. Otherwise, it sets the value
to false.

mcActionSetLoopIsPalindrome
Your action filter function receives this action when the
movie controller has received a request to turn palindrome
frame animation looping on or off. Looping must also be
enabled for palindrome looping to take effect.
The parameter data must contain a Boolean value; a value
of true indicates that palindrome looping is to be enabled.

mcActionGetLoopIsPalindrome
Your action filter function receives this action when the
controller has received a request to indicate whether
palindrome frame animation looping is enabled for
its movie.
The parameter data must contain a pointer to a Boolean
value. The movie controller sets this value to true if
palindrome looping is enabled for the movie that is
assigned to this controller. Otherwise, it sets the value
to false.

mcActionSetGrowBoxBounds
Your action filter function receives this action when the
movie controller has received a request to set the limits for
resizing the movie.
The parameter data contains a pointer to a rectangle; the
rectangle defines the boundary coordinates for the movie.
If the rectangle is empty, the application wants to disable
the size box. You may change the appearance of your
controller in response to such a request.

mcActionControllerSizeChanged
Your filter function receives this action when the user has
resized the movie controller; the controller component
issues this action before it updates the screen, allowing
QuickTime VR Movie Controller Reference 227

C H A P T E R 3

QuickTime VR Movie Controller
your application to change the controller’s location or
appearance before the user sees the resized controller.
There is no parameter for this action.
An application should never use this action.

mcActionSetSelectionBegin
This action is not supported by the QuickTime VR movie
controller.

mcActionSetSelectionDuration
This action is not supported by the QuickTime VR movie
controller.
The parameter data must contain a pointer to a time
structure specifying the ending time of the movie’s current
selection.

mcActionSetKeysEnabled
Your action filter function receives this action when the
movie controller has received a request to enable or disable
keystrokes.
The parameter data must contain a Boolean value; a value
of true indicates that keystrokes are to be enabled. By
default, this value is set to false.

mcActionGetKeysEnabled
Your filter function receives this action when the controller
has received a request to indicate whether keystrokes are
enabled for its movie.
The parameter data must contain a pointer to a Boolean
value. The movie controller sets this value to true if
keystrokes are enabled for the movie that is assigned to this
controller. Otherwise, it sets the value to false.

mcActionSetPlaySelection
This action is not supported by the QuickTime VR movie
controller.

mcActionGetPlaySelection
This action is not supported by the QuickTime VR movie
controller.

mcActionSetUseBadge
Your action filter function receives this action when the
movie controller has received a request to turn the badge
on or off.
228 QuickTime VR Movie Controller Reference

C H A P T E R 3

QuickTime VR Movie Controller
The parameter data must contain a Boolean value; a value
of true indicates that the badge is to be enabled.

mcActionGetUseBadge
Your action filter function receives this action when the
controller has received a request to indicate whether it is
using a badge.
The parameter data must contain a pointer to a Boolean
value. The movie controller sets this value to true if the
controller is using a badge. Otherwise, it sets the value
to false.

mcActionSetFlags Your action filter function receives this action when the
movie controller has received a request to set the movie’s
control flags.
The parameter data must contain a long integer that
contains the new control flag values. See “Movie Control
Flags” (page 233) for a description of the available flags.

mcActionGetFlags Your action filter function receives this action when the
movie controller has received a request to retrieve the
movie’s control flags.
The parameter data must contain a pointer to a long
integer. The movie controller places the movie’s control
flags into that long integer. See “Movie Control Flags”
(page 233) for a description of the available flags.

mcActionSetPlayEveryFrame
This action is not supported by the QuickTime VR movie
controller.

mcActionGetPlayEveryFrame
This action is not supported by the QuickTime VR movie
controller.

mcActionShowBalloon
Your action filter function receives this action when the
controller wants to display Balloon Help. Your filter
function instructs the controller whether to display the
Balloon Help. This action allows you to override the movie
controller’s default Balloon Help behavior.
The parameter data contains a pointer to a Boolean value.
Set the value to true to display the appropriate Balloon
Help. Otherwise, set the value to false.
QuickTime VR Movie Controller Reference 229

C H A P T E R 3

QuickTime VR Movie Controller
An application should never use this action.
mcActionBadgeClick Your action filter function receives this action when the

badge is clicked. The parameter is a pointer to a Boolean
value. On entry, the Boolean value is set to true. Set the
Boolean value to false if you want the controller to ignore
the click in the badge.

mcActionMovieClick Your action filter function receives this action when the
movie is clicked. The parameter is a pointer to an event
structure containing the mouse-down event. If you want
the controller to ignore the mouse-down event, change the
what field of the event structure to a null event.

mcActionSuspend Your action filter function receives this action when a
suspend event has been received. There is no parameter for
this action.

mcActionResume Your action filter function receives this action when a
resume event has been received. There is no parameter for
this action.

mcActionSetControllerKeysEnabled
Your action filter function receives this action when the
movie controller has received a request to enable or disable
the controller bar keys.
The parameter data must contain a Boolean value; a value
of true indicates that the controller bar keys are to be
enabled. By default, this value is set to true.

mcActionGetTimeSliderRect
This action is not supported by the QuickTime VR movie
controller.

mcActionMovieEdited
This action is not supported by the QuickTime VR movie
controller.

mcActionGetDragEnabled
Your action filter function receives this action when the
controller has received a request to indicate whether
dragging and dropping is enabled.
The parameter data must contain a pointer to a Boolean
value. The QuickTime VR movie controller always sets this
value to false.
230 QuickTime VR Movie Controller Reference

C H A P T E R 3

QuickTime VR Movie Controller
mcActionSetDragEnabled
This action is not supported by the QuickTime VR movie
controller.

mcActionGetSelectionBegin
This action is not supported by the QuickTime VR movie
controller.

mcActionGetSelectionDuration
This action is not supported by the QuickTime VR movie
controller.

mcActionPrerollAndPlay
Your action filter function receives this action when the
movie controller has received a request to preroll a movie
and then immediately play it using view animation.
The parameter data must contain a floating-point value
that indicates the view rate. Values greater than 0.0
correspond to forward rates; values less than 0.0 play the
movie backward. A value of 0.0 indicates that the view
animation is stopped.

mcActionGetCursorSettingEnabled
Your action filter function receives this action when the
movie controller has received a request to get the current
state of cursor tracking and shape changing.
The parameter data must contain a pointer to a Boolean
value; the movie controller sets this value to true if the
controller has been instructed to track the cursor and
change its shape as appropriate. Otherwise, the controller
sets the value to false.

mcActionSetCursorSettingEnabled
Your action filter function receives this action when the
movie controller has received a request to enable or disable
the automatic cursor tracking and shape changing
provided by the QuickTime VR movie controller.
The parameter data must contain a Boolean value; a value
of true indicates that the cursor tracking and shape
changing are to be enabled.

mcActionSetColorTable
This action is not supported by the QuickTime VR movie
controller.
QuickTime VR Movie Controller Reference 231

C H A P T E R 3

QuickTime VR Movie Controller
mcActionLinkToURL
The parameter is a Handle to URL; it can be sent to the
controller or intercepted when generated by a 'url '
hotspot.

mcActionCustomButtonClick
The parameter is a pointer to EventRecord, where in local
coordinates. Generated (intercept only) when the custom
button is clicked; see mcFlagsUseCustomButton (page 234).

mcActionForceTimeTableUpdate
This action is not supported by the QuickTime VR movie
controller.

mcActionSetControllerTimeLimits
Not for use by application.

mcActionExecuteAllActionsForQTEvent
This action is not supported by the QuickTime VR movie
controller.

mcActionExecuteOneActionForQTEvent
This action is not supported by the QuickTime VR movie
controller.

mcActionAdjustCursor
The parameter is a pointer to EventRecord (WindowPtr is in
message parameter). Not supported in QuickTime VR 2.1,
but will be supported in future versions.

mcActionUseTrackForTimeTable
Not for use by application.

mcActionClickAndHoldPoint
The parameter is a point (local coordinates). The action
returns true if the point has click and hold action (for
example, a QuickTime VR object movie autorotate spot).

mcActionShowMessageString
The parameter is a StringPtr. Not supported by the
QuickTime VR movie controller at this time, but will likely
be used in future versions to allow the application to set the
string shown in the control bar.
232 QuickTime VR Movie Controller Reference

C H A P T E R 3

QuickTime VR Movie Controller
Movie Control Flags 3

The mcActionGetFlags and mcActionSetFlags movie controller actions instruct a
movie controller to get and set the movie’s control flags, which are encoded into
a long integer. You can use these constants to read or write the bits in that long
integer:

enum {
mcFlagSuppressMovieFrame = 1 << 0,
mcFlagSuppressStepButtons = 1 << 1,
mcFlagSuppressSpeakerButton = 1 << 2,
mcFlagsUseWindowPalette = 1 << 3,
mcFlagsDontInvalidate = 1 << 4,
mcFlagsUseCustomButton = 1 << 5,
mcFlagQTVRSuppressBackBtn = 1 << 16,
mcFlagQTVRSuppressZoomBtns = 1 << 17,
mcFlagQTVRSuppressHotSpotBtn = 1 << 18,
mcFlagQTVRSuppressTranslateBtn = 1 << 19,
mcFlagQTVRSuppressHelpText = 1 << 20,
mcFlagQTVRSuppressHotSpotNames = 1 << 21

};

Constant descriptions

mcFlagSuppressMovieFrame
This flag is not supported by the QuickTime VR movie
controller.

mcFlagSuppressStepButtons
This flag is not supported by the QuickTime VR movie
controller.

mcFlagSuppressSpeakerButton
Controls whether the controller displays the speaker
button. If this flag is set to 1, the controller does not display
the speaker button. By default, this flag is set to 0.

mcFlagsUseWindowPalette
Controls whether the controller manages the palette for the
window containing the movie. This ensures that a movie’s
colors are reproduced as accurately as possible. This flag is
particularly useful for movies with custom color tables. If
this flag is set to 1, the movie controller does not manage
the window palette. By default, this flag is set to 0.
QuickTime VR Movie Controller Reference 233

mcFlagsDontInvalidate
Controls whether the controller boundary rectangle is
invalidated (and hence updated when an update event
occurs). If this flag is set to 1, the controller does not
invalidate the controller boundary rectangle. By default,
this flag is set to 0.

mcFlagsUseCustomButton
Causes a button to be displayed for application-specific
use. A click on this button generates an
mcActionCustomButtonClick.

mcFlagQTVRSuppressBackBtn
Controls whether the controller displays the go-back
button. If this flag is set to 1, the controller does not display
the go-back button. By default, this flag is set to 0.

mcFlagQTVRSuppressZoomBtns
Controls whether the controller displays the zoom-in and
zoom-out buttons. If this flag is set to 1, the controller does
not display the zoom buttons. By default, this flag is set
to 0.

mcFlagQTVRSuppressHotSpotBtn
Controls whether the controller displays the hot spot
display button. If this flag is set to 1, the controller does not
display the hot spot display button. By default, this flag is
set to 0.

mcFlagQTVRSuppressTranslateBtn
Controls whether the controller displays the translate mode
button. If this flag is set to 1, the controller does not display
the translate mode button. By default, this flag is set to 0.

mcFlagQTVRSuppressHelpText
Controls whether the controller displays help text in the
label display area. If this flag is set to 1, the controller does
not display help text. By default, this flag is set to 0.

mcFlagQTVRSuppressHotSpotNames
Controls whether the controller displays hot spot names in
the label display area. If this flag is set to 1, the controller
does not display hot spot names. By default, this flag is set
to 0.

C H A P T E R 3

QuickTime VR Movie Controller
Summary of the QuickTime VR Movie Controller 3

C Summary 3

Constants 3

Movie Controller Actions

enum {
mcActionIdle = 1,
mcActionDraw = 2,
mcActionActivate = 3,
mcActionDeactivate = 4,
mcActionMouseDown = 5,
mcActionKey = 6,
mcActionPlay = 8,
mcActionGoToTime = 12,
mcActionSetVolume = 14,
mcActionGetVolume = 15,
mcActionStep = 18,
mcActionSetLooping = 21,
mcActionGetLooping = 22,
mcActionSetLoopIsPalindrome = 23,
mcActionGetLoopIsPalindrome = 24,
mcActionSetGrowBoxBounds = 25,
mcActionControllerSizeChanged = 26,
mcActionSetSelectionBegin = 29,
mcActionSetSelectionDuration = 30,
mcActionSetKeysEnabled = 32,
mcActionGetKeysEnabled = 33,
mcActionSetPlaySelection = 34,
mcActionGetPlaySelection = 35,
mcActionSetUseBadge = 36,
mcActionGetUseBadge = 37,
Summary of the QuickTime VR Movie Controller 235

C H A P T E R 3

QuickTime VR Movie Controller
mcActionSetFlags = 38,
mcActionGetFlags = 39,
mcActionSetPlayEveryFrame = 40,
mcActionGetPlayEveryFrame = 41,
mcActionGetPlayRate = 42,
mcActionShowBalloon = 43,
mcActionBadgeClick = 44,
mcActionMovieClick = 45,
mcActionSuspend = 46,
mcActionResume = 47,
mcActionSetControllerKeysEnabled = 48,
mcActionGetTimeSliderRect = 49,
mcActionMovieEdited = 50,
mcActionGetDragEnabled = 51,
mcActionSetDragEnabled = 52,
mcActionGetSelectionBegin = 53,
mcActionGetSelectionDuration = 54,
mcActionPrerollAndPlay = 55,
mcActionGetCursorSettingEnabled = 56,
mcActionSetCursorSettingEnabled = 57,
mcActionSetColorTable = 58

};

Movie Control Flags

enum {
mcFlagSuppressMovieFrame = 1 << 0,
mcFlagSuppressStepButtons = 1 << 1,
mcFlagSuppressSpeakerButton = 1 << 2,
mcFlagsUseWindowPalette = 1 << 3,
mcFlagsDontInvalidate = 1 << 4,
mcFlagQTVRSuppressBackBtn = 1 << 16,
mcFlagQTVRSuppressZoomBtns = 1 << 17,
mcFlagQTVRSuppressHotSpotBtn = 1 << 18,
mcFlagQTVRSuppressTranslateBtn = 1 << 19,
mcFlagQTVRSuppressHelpText = 1 << 20,
mcFlagQTVRSuppressHotSpotNames = 1 << 21

};
236 Summary of the QuickTime VR Movie Controller

C H A P T E R 3

QuickTime VR Movie Controller
Data Types 3

typedef short mcAction;

typedef unsigned long MCFlags;
Summary of the QuickTime VR Movie Controller 237

C H A P T E R 3

QuickTime VR Movie Controller
238 Summary of the QuickTime VR Movie Controller

C H A P T E R 4

Contents

Contents
Figure 4-0
Listing 4-0
Table 4-0
4 QuickTime VR Atom Containers
About Atom Containers 241
The String Atom and the String Encoding Atom 242

VR World Atom Container 243
VR World Header Atom Structure 245
Imaging Parent Atom 245
Panorama-Imaging Atom 246
Node Parent Atom 248
Node Location Atom Structure 248

Custom Cursor Atoms 249
Node Information Atom Container 249

Node Header Atom Structure 250
Hot Spot Parent Atom 251
Hot Spot Information Atom 252
Specific Information Atoms 254

Link Hot Spot Atom 254
URL Hot Spot Atom 256

Example: Getting the Name of a Node 256
Custom Atoms 258
239

C H A P T E R 4
240 Contents

C H A P T E R 4
QuickTime VR Atom Containers 4

This chapter describes in detail the VR world and node information atom
containers. These two atom containers can be obtained by calling the
QuickTime VR Manager routines QTVRGetVRWorld and QTVRGetNodeInfo. Those
routines are described in Chapter 2, “QuickTime VR Manager.”.

You need to know about the various atoms contained in the VR world and node
information atom containers if you want to extract information from a
QuickTime VR file that cannot be obtained using VR Manager functions. For
instance, there is no QuickTime VR Manager function that returns the name of a
given node; however, you can easily get a node’s name by reading the
information in the atoms in the atom container returned by the QTVRGetNodeInfo
function.

In addition, if you want your application to be able to create QuickTime VR
movies, you to need to know about these atom containers as well as the
information contained in Chapter 5, “Creating QuickTime VR Movies.”

Note
In general, you don’t need to know about the format of
atoms or atom containers simply to use the functions
provided by the QuickTime VR Manager. ◆

About Atom Containers 4

A QuickTime atom container is a basic structure for storing information in
QuickTime files. An atom container is a tree structured hierarchy of QT atoms.
By definition, only the leaf atoms in the hierarchy contain data. Intermediate
atoms serve as parent atoms that contain any number of child atoms, which
may in turn be either leaf atoms or more parent atoms. Each parent’s child atom
is uniquely identified by its atom type and atom ID. The atom container itself is
considered the parent of the highest level atoms.

Many of the atom types contained in the VR world and node information atom
containers are unique within their container. For example, each has a single
header atom. Most of the parent atoms within an atom container are unique as
well, such as the node parent atom in the VR world atom container or the hot
spot parent atom in the node information atom container. For these one time
only atoms, the atom ID is always set to 1. Unless otherwise mentioned in the
descriptions of the atoms that follow, assume that the atom ID is 1.
About Atom Containers 241

C H A P T E R 4

QuickTime VR Atom Containers
Many of the atom structures contain two version fields, majorVersion and
minorVersion. The values of these fields correspond to the constants
kQTVRMajorVersion and kQTVRMinorVersion found in the header file
QuickTimeVRFormat.h. For QuickTime 2.0 files, these values are 2 and 0.

QuickTime provides many routines for creating and accessing atom containers.
Those are described in QuickTime 3 Reference .

The String Atom and the String Encoding Atom 4

Some of the leaf atoms within the VR world and node information atom
containers contain fields that specify the ID of string atoms that are siblings of
the leaf atom. For example, the VR world header atom contains a field for the
name of the scene. The string atom is a leaf atom whose atom type is
kQTVRStringAtomType ('vrsg'). Its atom ID is that specified by the referring leaf
atom.

A string atom contains a string. The structure of a string atom is defined by the
VRStringAtom data type:

typedef struct VRStringAtom {
UInt16 stringUsage;
UInt16 stringLength;
unsigned char theString[4];

} VRStringAtom, *VRStringAtomPtr;

Field descriptions
stringUsage The string usage. Currently, this field is unused.
stringLength The length, in bytes, of the string.
theString The string. The string atom structure is extended to hold

this string.
Each string atom may also have a sibling leaf atom called the string encoding
atom. The string encoding atom’s atom type is kQTVRStringEncodingAtomType
('vrse'). Its atom ID is the same as that of the corresponding string atom. The
string encoding atom contains a single variable, TextEncoding, a UInt32, as
defined in the header file TextCommon.h. The value of TextEncoding is handed,
along with the string, to the routine QTTextToNativeText for conversion for
display on the current machine. The routine QTTextToNativeText is found in the
header file Movies.h.
242 About Atom Containers

C H A P T E R 4

QuickTime VR Atom Containers
Note
The header file TextCommon.h contains constants and
routines for generating and handling text encodings. ◆

VR World Atom Container 4

The VR world atom container (VR world for short) includes such information
as the name for the entire scene, the default node ID, and default imaging
properties, as well as a list of the nodes contained in the QTVR track.

A VR world can also contain custom scene information. QuickTime VR ignores
any atom types that it doesn’t recognize, but you can extract those atoms from
the VR world using standard QuickTime atom functions.

The structure of the VR world atom container is shown in Figure 4-1. The
component atoms are defined and their structures are shown in the sections that
follow.
VR World Atom Container 243

C H A P T E R 4

QuickTime VR Atom Containers
Figure 4-1 Structure of the VR world atom container

The following sections describe the atom types found in a VR world atom
container:

■ “VR World Header Atom Structure”

■ “Imaging Parent Atom”

■ “Panorama-Imaging Atom”

■ “Node Parent Atom”

■ “Node Location Atom Structure”

■ “Custom Cursor Atoms”

VR world

VR world header

Name string

Imaging parent

Panorama imaging

Panorama imaging

Node parent

Node ID

Node ID

Node location

Node location

Cursor parent

Cursor

Color cursor
244 VR World Atom Container

C H A P T E R 4

QuickTime VR Atom Containers
VR World Header Atom Structure 4

The VR world header atom is a leaf atom. Its atom type is
kQTVRWorldHeaderAtomType ('vrsc'). It contains the name of the scene and the
default node ID to be used when the file is first opened as well as fields
reserved for future use.

The structure of a VR world header atom is defined by the VRWorldHeaderAtom
data type:

typedef struct VRWorldHeaderAtom {
UInt16 majorVersion;
UInt16 minorVersion;
QTAtomID nameAtomID;
UInt32 defaultNodeID;
UInt32 vrWorldFlags;
UInt32 reserved1;
UInt32 reserved2;

} VRWorldHeaderAtom, *VRWorldHeaderAtomPtr;

Field descriptions
majorVersion The major version number of the file format.
minorVersion The minor version number of the file format.
nameAtomID The ID of the string atom that contains the name of the

scene. That atom should be a sibling of the VR world
header atom. The value of this field is 0 if no name string
atom exists.

defaultNodeID The ID of the default node (that is, the node to be displayed
when the file is first opened).

vrWorldFlags A set of flags for the VR world. Currently, this field
is unused.

reserved1 Reserved. This field must be 0.
reserved2 Reserved. This field must be 0.

Imaging Parent Atom 4

The imaging parent atom is the parent atom of one or more node-specific
imaging atoms. Its atom type is kQTVRImagingParentAtomType ('imgp').
Currently only panoramas have an imaging atom defined.
VR World Atom Container 245

C H A P T E R 4

QuickTime VR Atom Containers
Panorama-Imaging Atom 4

A panorama-imaging atom describes the default imaging characteristics for all
the panoramic nodes in a scene. This atom overrides QuickTime VR’s own
defaults. Those defaults are described in the section
“QTVRSetImagingProperty” (page 146).

The panorama-imaging atom has an atom type of kQTVRPanoImagingAtomType
('impn'). Generally, there is one panorama-imaging atom for each imaging
mode (see below), so the atom ID, while it must be unique for each atom, is
ignored. QuickTime VR iterates through all the panorama-imaging atoms.

The structure of a panorama-imaging atom is defined by the VRPanoImagingAtom
data type:

typedef struct VRPanoImagingAtom {
UInt16 majorVersion;
UInt16 minorVersion;
UInt32 imagingMode;
UInt32 imagingValidFlags;
UInt32 correction;
UInt32 quality;
UInt32 directDraw;
UInt32 imagingProperties[6];
UInt32 reserved1;
UInt32 reserved2;

} VRPanoImagingAtom, *VRPanoImagingAtomPtr;

Field descriptions
majorVersion The major version number of the file format.
minorVersion The minor version number of the file format.
imagingMode The imaging mode to which the default values apply. Only

kQTVRStatic and kQTVRMotion are allowed here. See
“Imaging Modes” (page 63) for a description of the
available imaging modes.

imagingValidFlags A set of flags that indicate which imaging property fields in
this structure are valid. See “Imaging Property Valid Flags”
(page 247) for a description.

correction The default correction mode for panoramic nodes. This can
be either kQTVRNoCorrection, kQTVRPartialCorrection, or
kQTVRFullCorrection. See “Correction Modes” (page 62) for
a description.
246 VR World Atom Container

C H A P T E R 4

QuickTime VR Atom Containers
quality The default imaging quality for panoramic nodes. See
“Quality Properties” (page 65) for a description of the
imaging qualities.

directDraw The default direct-drawing property for panoramic nodes.
This can be true or false. See “Imaging Property Types”
(page 64) for a description of the direct-drawing property
values.

imagingProperties Reserved for future panorama-imaging properties.
reserved1 Reserved. This field must be 0.
reserved2 Reserved. This field must be 0.

Imaging Property Valid Flags

The imagingValidFlags field in the panorama-imaging atom structure specifies
which imaging property fields in that structure are valid. You can use these bit
flags to specify a value for that field:

enum {
kQTVRValidCorrection = 1 << 0,
kQTVRValidQuality = 1 << 1,
kQTVRValidDirectDraw = 1 << 2,
kQTVRValidFirstExtraProperty = 1 << 3

};

Constant descriptions

kQTVRValidCorrection
If this bit is set, the correction field holds a default
correction mode.

kQTVRValidQuality If this bit is set, the quality field holds a default imaging
quality.

kQTVRValidDirectDraw
If this bit is set, the directDraw field holds a default
direct-drawing property.

kQTVRValidFirstExtraProperty
If this bit is set, the first element in the array in the
imagingProperties field holds a default imaging property.
VR World Atom Container 247

C H A P T E R 4

QuickTime VR Atom Containers
Node Parent Atom 4

The node parent atom is the parent of one or more node ID atoms. The atom
type of the node parent atom is kQTVRNodeParentAtomType ('vrnp') and the atom
type of the each node ID atom is kQTVRNodeIDAtomType ('vrni'). There is one
node ID atom for each node in the file. The atom ID of the node ID atom is the
node ID of the node. The node ID atom is the parent of the node location atom.
Currently the node location atom is the only child atom defined for the node ID
atom. Its atom type is kQTVRNodeLocationAtomType ('nloc').

Node Location Atom Structure 4

Currently the node location atom is the only child atom defined for the node ID
atom. Its atom type is kQTVRNodeLocationAtomType ('nloc'). A node location
atom describes the type of a node and its location.

The structure of a node location atom is defined by the VRNodeLocationAtom data
type:

typedef struct VRNodeLocationAtom {
UInt16 majorVersion;
UInt16 minorVersion;
OSType nodeType;
UInt32 locationFlags;
UInt32 locationData;
UInt32 reserved1;
UInt32 reserved2;

} VRNodeLocationAtom, *VRNodeLocationAtomPtr;

Field descriptions
majorVersion The major version number of the file format.
minorVersion The minor version number of the file format.
nodeType The node type. See “Node Types” (page 58) for a

description of the available node types. Currently, this field
should contain either kQTVRPanoramaType or
kQTVRObjectType.

locationFlags The location flags. Currently, this field must contain the
value kQTVRSameFile, indicating that the node is to be found
in the current file. In future, these flags may indicate that
the node is in a different file or at some URL location.
248 VR World Atom Container

C H A P T E R 4

QuickTime VR Atom Containers
locationData The location of the node data. When the locationFlags field
is kQTVRSameFile, this field should be 0. The nodes are
found in the file in the same order that they are found in
the node list.

reserved1 Reserved. This field must be 0.
reserved2 Reserved. This field must be 0.

Custom Cursor Atoms 4

As described in section “Hot Spot Information Atom” (page 252), the hot spot
information atom allows you to indicate custom cursor IDs for particular hot
spots that replace the default cursors used by QuickTime VR. QuickTime VR
allows you to store your custom cursors in the VR world of the movie file.

Note
If you’re using the Mac OS, you could store your custom
cursors in the resource fork of the movie file. However, this
would not work on any other platform (such as
Windows 95), so storing cursors in the resource fork of the
movie file is not recommended. ◆

The cursor parent atom is the parent of all of the custom cursor atoms stored in
the VR world. Its atom type is kQTVRCursorParentAtomType ('vrcp'). The child
atoms of the cursor parent are either cursor atoms or color cursor atoms. Their
atom types are kQTVRCursorAtomType ('CURS') and kQTVRColorCursorAtomType
('crsr'). These atoms are stored exactly as cursors or color cursors would be
stored as a resource. See the Cursor Utilities chapter of Inside Macintosh: Imaging
With QuickDraw for details.

Node Information Atom Container 4

The node information atom container includes general information about the
node such as the node’s type, ID, and name. The node information atom
container also contains the list of hot spot atoms for the node. A QuickTime VR
movie contains one node information atom container for each node in the file.
The routine QTVRGetNodeInfo allows you to obtain the node information atom
container for the current node or for any other node in the movie.
Node Information Atom Container 249

C H A P T E R 4

QuickTime VR Atom Containers
Figure 4-2 shows the structure of the node information atom container.

Figure 4-2 Structure of the node information atom container

Node Header Atom Structure 4

A node header atom is a leaf atom that describes the type and ID of a node, as
well as other information about the node. Its atom type is
kQTVRNodeHeaderAtomType ('ndhd').

The structure of a node header atom is defined by the VRNodeHeaderAtom data
type:

e Information

Node header

Name string

Comment string

Hot spot parent

Hot spot information

Name string

Comment string

Link hot spot information

Hot spot

Hot spot information

Name string

Comment string

URL hot spot information

Hot spot
250 Node Information Atom Container

C H A P T E R 4

QuickTime VR Atom Containers
typedef struct VRNodeHeaderAtom {
UInt16 majorVersion;
UInt16 minorVersion;
OSType nodeType;
QTAtomID nodeID;
QTAtomID nameAtomID;
QTAtomID commentAtomID;
UInt32 reserved1;
UInt32 reserved2;

} VRNodeHeaderAtom, *VRNodeHeaderAtomPtr;

Field descriptions
majorVersion The major version number of the file format.
minorVersion The minor version number of the file format.
nodeType The node type. See “Node Types” (page 58) for a

description of the available node types. Currently, this field
should contain either kQTVRPanoramaType or kQTVRObjectType.

nodeID The node ID.
nameAtomID The ID of the string atom that contains the name of the

node. This atom should be a sibling of the node header
atom. The value of this field is 0 if no name string atom
exists.

commentAtomID The ID of the string atom that contains a comment for the
node. This atom should be a sibling of the node header
atom. The value of this field is 0 if no comment string atom
exists.

reserved1 Reserved. This field must be 0.
reserved2 Reserved. This field must be 0.

Hot Spot Parent Atom 4

The hot spot parent atom is the parent for all hot spot atoms for the node. The
atom type of the hot spot parent atom is kQTVRHotSpotParentAtomType ('hspa')
and the atom type of the each hot spot atom is kQTVRHotSpotAtomType ('hots').
The atom ID of each hot spot atom is the hot spot ID for the corresponding hot
spot. The hot spot ID is determined by its color index value as it is stored in the
hot spot image track. (See Chapter 5, “Creating QuickTime VR Movies.”)
Node Information Atom Container 251

C H A P T E R 4

QuickTime VR Atom Containers
Each hot spot atom is the parent of a number of atoms that contain information
about each hot spot.

Hot Spot Information Atom 4

The hot spot information atom contains general information about a hot spot.
Its atom type is kQTVRHotSpotInfoAtomType ('hsin'). Every hot spot atom should
have a hot spot information atom as a child.

The structure of a hot spot information atom is defined by the VRHotSpotInfoAtom
data type:

typedef struct VRHotSpotInfoAtom {
UInt16 majorVersion;
UInt16 minorVersion;
OSType hotSpotType;
QTAtomID nameAtomID;
QTAtomID commentAtomID;
SInt32 cursorID[3];
Float32 bestPan;
Float32 bestTilt;
Float32 bestFOV;
FloatPoint bestViewCenter;
Rect hotSpotRect;
UInt32 flags;
UInt32 reserved1;
UInt32 reserved2;

} VRHotSpotInfoAtom, *VRHotSpotInfoAtomPtr;

Field descriptions
majorVersion The major version number of the file format.
minorVersion The minor version number of the file format.
hotSpotType The hot spot type. This type specifies which other

information atoms—if any—are siblings to this one.
QuickTime VR recognizes three types:
kQTVRHotSpotLinkType, kQTVRHotSpotURLType, and
kQTVRHotSpotUndefinedType.

nameAtomID The ID of the string atom that contains the name of the hot
spot. This atom should be a sibling of the hot spot
252 Node Information Atom Container

C H A P T E R 4

QuickTime VR Atom Containers
information atom. This string is displayed in the
QuickTime VR controller bar when the mouse is moved
over the hot spot.

commentAtomID The ID of the string atom that contains a comment for the
hot spot. This atom should be a sibling of the hot spot
information atom. The value of this field is 0 if no comment
string atom exists.

cursorID An array of three IDs for custom hot spot cursors (that is,
cursors that override the default hot spot cursors provided
by QuickTime VR). The first ID (cursorID[0]) specifies the
cursor that is displayed when it is in the hot spot. The
second ID (cursorID[1]) specifies the cursor that is
displayed when it is in the hot spot and the mouse button
is down. The third ID (cursorID[2]) specifies the cursor that
is displayed when it is in the hot spot and the mouse
button is released. To retain the default cursor for any of
these operations, set the corresponding cursor ID to 0.
Custom cursors should be stored in the VR world atom
container, as described in “VR World Atom Container”
(page 243).

bestPan The best pan angle for viewing this hot spot.
bestTilt The best tilt angle for viewing this hot spot.
bestFOV The best field of view for viewing this hot spot.
bestViewCenter The best view center for viewing this hot spot; applies only

to object nodes.
hotSpotRect The boundary box for this hot spot, specified as the number

of pixels in full panoramic space. This field is valid only for
panoramic nodes.

flags A set of hot spot flags. Currently, this field is unused.
reserved1 Reserved. This field must be 0.
reserved2 Reserved. This field must be 0.

Note
In QuickTime VR movie files, all angular values are stored
as 32-bit floating-point values that specify degrees. In
addition, all floating-point values conform to the
IEEE Standard 754 for binary floating-point arithmetic, in
big-endian format. ◆
Node Information Atom Container 253

C H A P T E R 4

QuickTime VR Atom Containers
Specific Information Atoms 4

Depending on the value of the hotSpotType field in the hot spot info atom there
may also be a type specific information atom. The atom type of the type specific
atom is the hot spot type. For information, please see “Hot Spot Types”
(page 67) in Chapter 2, “QuickTime VR Manager.”

Link Hot Spot Atom 4

The link hot spot atom specifies information for hot spots of type
kQTVRHotSpotLinkType ('link'). Its atom type is thus 'link'. The link hot spot
atom contains specific information about a link hot spot.

The structure of a link hot spot atom is defined by the VRLinkHotSpotAtom data
type:

typedef struct VRLinkHotSpotAtom {
UInt16 majorVersion;
UInt16 minorVersion;
UInt32 toNodeID;
UInt32 fromValidFlags;
Float32 fromPan;
Float32 fromTilt;
Float32 fromFOV;
FloatPoint fromViewCenter;
UInt32 toValidFlags;
Float32 toPan;
Float32 toTilt;
Float32 toFOV;
FloatPoint toViewCenter;
Float32 distance;
UInt32 flags;
UInt32 reserved1;
UInt32 reserved2;

} VRLinkHotSpotAtom, *VRLinkHotSpotAtomPtr;

Field descriptions
majorVersion The major version number of the file format.
minorVersion The minor version number of the file format.
254 Node Information Atom Container

C H A P T E R 4

QuickTime VR Atom Containers
toNodeID The ID of the destination node (that is, the node to which
this hot spot is linked).

fromValidFlags A set of flags that indicate which source node view settings
are valid. See “Link Hot Spot Valid Flags” (page 255) for a
description of the available flags.

fromPan The preferred from-pan angle at the source node (that is,
the node containing the hot spot).

fromTilt The preferred from-tilt angle at the source node.
fromFOV The preferred from-field of view at the source node.
fromViewCenter The preferred from-view center at the source node.
toValidFlags A set of flags that indicate which destination node view

settings are valid. See “Link Hot Spot Valid Flags”
(page 255) for a description of the available flags.

toPan The pan angle to use when displaying the destination node.
toTilt The tilt angle to use when displaying the destination node.
toFOV The field of view to use when displaying the destination

node.
toViewCenter The view center to use when displaying the destination

node.
distance The distance between the source node and the destination

node.
flags A set of link hot spot flags. Currently, this field is unused

and should be set to 0.
reserved1 Reserved. This field must be 0.
reserved2 Reserved. This field must be 0.
Certain fields in the link hot spot atom are not currently used by QuickTime VR.
The fromValidFlags field is generally set to zero and the from fields are not used.
However, these fields could be quite useful if you have created a transition
movie from one node to another. The from angles can be used to swing the
current view of the source node to align with the first frame of the transition
movie. The distance field is intended for use with 3D applications, but is also
not currently used by QuickTime VR.

Link Hot Spot Valid Flags

The toValidFlags field in the link hot spot atom structure specifies which view
settings are to be used when moving to a destination node from a hot spot. You
can use these bit flags to specify a value for that field:
Node Information Atom Container 255

C H A P T E R 4

QuickTime VR Atom Containers
enum {
kQTVRValidPan = 1 << 0,
kQTVRValidTilt = 1 << 1,
kQTVRValidFOV = 1 << 2,
kQTVRValidViewCenter = 1 << 3

};

Constant descriptions

kQTVRValidPan If this bit is set, the destination pan angle is used.
kQTVRValidTilt If this bit is set, the destination tilt angle is used.
kQTVRValidFOV If this bit is set, the destination field of view is used.
kQTVRValidViewCenter

If this bit is set, the destination view center is used.

URL Hot Spot Atom 4

The URL hot spot atom has an atom type of kQTVRHotSpotURLType ('url '). The
URL hot spot atom contains a URL string for a particular World Wide Web
location (for example, “http://quicktimevr.apple.com”). QuickTime VR
automatically links to this URL when the hot spot is clicked. To find out more
about exactly what this means see the description of mcActionLinkToURL in
QuickTime 3 Reference.

Example: Getting the Name of a Node 4

You can use standard QuickTime atom container functions to retrieve the
information in a node header atom. For example, the MyGetNodeName function
defined in Listing 4-1 returns the name of a node, given its node ID.

Listing 4-1 Getting a node’s name

OSErr MyGetNodeName (QTVRInstance theInstance, UInt32 theNodeID,
StringPtr theStringPtr)

{
OSErr theErr = noErr;
QTAtomContainer theNodeInfo;
VRNodeHeaderAtomPtr theNodeHeader;
256 Node Information Atom Container

C H A P T E R 4

QuickTime VR Atom Containers
QTAtom theNodeHeaderAtom = 0;

//Get the node information atom container.
theErr = QTVRGetNodeInfo(theInstance, theNodeID, &theNodeInfo);

//Get the node header atom.
if (!theErr)

theNodeHeaderAtom = QTFindChildByID(theNodeInfo, kParentAtomIsContainer,
kQTVRNodeHeaderAtomType, 1, nil);

if (theNodeHeaderAtom != 0) {
QTLockContainer(theNodeInfo);

//Get a pointer to the node header atom data.
theErr = QTGetAtomDataPtr(theNodeInfo, theNodeHeaderAtom, nil,

(Ptr *)&theNodeHeader);
//See if there is a name atom.
if (!theErr && theNodeHeader->nameAtomID != 0) {

QTAtom theNameAtom;
theNameAtom = QTFindChildByID(theNodeInfo, kParentAtomIsContainer,

kQTVRStringAtomType, theNodeHeader->nameAtomID, nil);
if (theNameAtom != 0) {

VRStringAtomPtr theStringAtomPtr;

//Get a pointer to the name atom data; copy it into the string.
theErr = QTGetAtomDataPtr(theNodeInfo, theNameAtom, nil,

(Ptr *)&theStringAtomPtr);
if (!theErr) {

short theLen = theStringAtomPtr->stringLength;
if (theLen > 255)

theLen = 255;
BlockMove(theStringAtomPtr->string, &theStringPtr[1], theLen);
theStringPtr[0] = theLen;

}
}

}
QTUnlockContainer(theNodeInfo);

}

QTDisposeAtomContainer(theNodeInfo);
return(theErr);

}

Node Information Atom Container 257

C H A P T E R 4

QuickTime VR Atom Containers
The MyGetNodeName function defined in Listing 4-1 retrieves the node
information atom container (by calling QTVRGetNodeInfo) and then looks inside
that container for the node header atom with atom ID 1. If it finds one, it locks
the container and then gets a pointer to the node header atom data. The desired
information, the node name, is contained in the string atom whose atom ID is
specified by the nameAtomID field of the node header structure. Accordingly, the
MyGetNodeName function then calls QTFindChildByID once again to find that
string atom. If the string atom is found, MyGetNodeName calls QTGetAtomDataPtr
to get a pointer to the string atom data. Finally, MyGetNodeName copies the string
data into the appropriate location and cleans up after itself before returning.

Custom Atoms 4

The author of a QuickTime VR movie may choose to add custom atoms to
either the VR world or node information atom containers. Those atoms can be
extracted within an application to provide additional information that the
application may use.

Information that pertains to the entire scene might be stored in a custom atom
within the VR world atom container. Node-specific information could be stored
in the individual node information atom containers or as sibling atoms to the
node location atoms within the VR world.

Custom hot spot atoms should be stored as siblings to the hot spot information
atoms in the node information atom container. Generally, its atom type is the
same as the custom hot spot type. You can set up an intercept procedure in your
application in order to process clicks on the custom hot spots.

If you use custom atoms, you should install your hot spot intercept procedure
when you open the movie. Listing 4-2 is an example of such an intercept
procedure.

Listing 4-2 Typical hot spot intercept procedure

QTVRInterceptProc MyProc = NewQTVRInterceptProc (MyHotSpot);
QTVRInstallInterceptProc (qtvr, kQTVRTriggerHotSpotSelector, myProc, 0, 0);

pascal void MyHotSpot (QTVRInstance qtvr, QTVRInterceptPtr qtvrMsg,
SInt32 refCon, Boolean *cancel)

{

258 Node Information Atom Container

C H A P T E R 4

QuickTime VR Atom Containers
UInt32 hotSpotID = (UInt32) qtvrMsg->parameter[0];
QTAtomContainer nodeInfo =

(QTAtomContainer) qtvrMsg->parameter[1];
QTAtom hotSpotAtom = (QTAtom) qtvrMsg->parameter[2];
OSType hotSpotType;
CustomData myCustomData;
QTAtom myAtom;

QTVRGetHotSpotType (qtvr, hotSpotID, &hotSpotType);
if (hotSpotType != kMyAtomType) return;

// It's our type of hot spot - don't let anyone else handle it
*cancel = true;

// Find our custom atom
myAtom = QTFindChildByID (nodeInfo, hotSpotAtom, kMyAtomType, 1, nil);
if (myAtom != 0) {

OSErr err;
// Copy the custom data into our structure
err = QTCopyAtomDataToPtr (nodeInfo, myAtom, false,

sizeof(CustomData), &myCustomData, nil);
if (err == noErr)

// Do something with it
DoMyHotSpotStuff (hotSpotID, &myCustomData);

}
}

Your intercept procedure is called for clicks on any hot spot. You should check
to see if it is your type of hot spot and if so, extract the custom hot spot atom
and do whatever is appropriate for your hot spot type (DoMyHotSpotStuff).

When you no longer need the intercept procedure you should call
QTVRInstallInterceptProc again with the same selector and a nil procedure
pointer and then call DisposeRoutineDescriptor on myProc.

Note
Apple reserves all hot spot and atom types with lowercase
letters. Your custom hot spot type should contain all
uppercase letters. ◆
Node Information Atom Container 259

C H A P T E R 4

QuickTime VR Atom Containers
260 Node Information Atom Container

C H A P T E R 5

Contents

Contents
Figure 5-0
Listing 5-0
Table 5-0
5 Creating QuickTime VR Movies
Components of a QuickTime VR Movie 263
Single-Node Panoramic Movies 264
Single-Node Object Movies 265
Multinode Movies 266
QuickTime VR Movie Creation 267
Track References 268

The QTVR track 269
The QuickTime VR Sample Description Structure 269
Example: Adding Atom Containers 270
Panorama Tracks 271

Panorama Sample Atom Structure 271
Track Reference Entry Structure 277

Object Tracks 278
Object Sample Atom Structure 278
Track References for Object Tracks 285

Optimizing QuickTime VR Movies for Web Playback 286
The QTVR Flattener 287
Sample Atom Container for the QTVR Flattener 289
New Atom Types 290

Summary of the VR World and Node Atom Types 291
C Summary 291

Constants 291
Data Types 294
261

C H A P T E R 5
262 Contents

C H A P T E R 5
Creating QuickTime VR Movies 5

This chapter describes the format of the tracks that make up a QuickTime VR
movie file. The information in this chapter, combined with the information in
Chapter 4, “QuickTime VR Atom Containers,” and the overview from Chapter
1, “About QuickTime VR,” will enable you to add to your application the ability
to create QuickTime VR movies. This chapter uses the term QuickTime VR file
format, even though this is a bit of a misnomer, because the chapter does not
describe the details of exactly where data is stored in the file nor does it describe
the format of the standard QuickTime movie atoms. That information is
available in Inside Macintosh: QuickTime. However, you do not need to know
that level of detail to create QuickTime VR movies, because QuickTime
provides several routines for creating QuickTime movies. You do need to be
familiar with the sections of that book that describe how to create movies and
how to work with media samples. You should also be familiar with track
references as described in QuickTime 3 Reference .

IMPORTANT

This chapter describes the file format supported by
version 2.1 of the QuickTime VR Manager. For information
on the file format supported by earlier versions of
QuickTime VR, see Macintosh Technotes numbers 1035 and
1036. The Macintosh Technotes are available electronically
on the Developer CD Series and on the Technote Web site at
http://devworld.apple.com/dev/technotes.shtml ▲

Components of a QuickTime VR Movie 5

A QuickTime VR movie is stored on disk in a format known as the
QuickTime VR file format. Beginning in QuickTime VR 2.0, a QuickTime VR
movie can contain one or more nodes. Each node is either a panorama or an
object. In addition, a QuickTime VR movie can contain various types of hot
spots including links between any two types of nodes.

All QuickTime VR movies contain a single QTVR track, a special type of
QuickTime track that maintains a list of the nodes in the movie. Each individual
sample in a QTVR track contains general information and hot spot information
for a particular node. If a QuickTime VR movie contains any panoramic nodes,
that movie also contains a single panorama track, and if it contains any object
nodes, it also contains a single object track. The panorama and object tracks
Components of a QuickTime VR Movie 263

http://devworld.apple.com/dev/technotes.shtml
http://devworld.apple.com/dev/technotes.shtml

C H A P T E R 5

Creating QuickTime VR Movies
contain information specific to the panoramas or objects in the movie. The
actual image data for both panoramas and objects is usually stored in standard
QuickTime video tracks, hereafter referred to as image tracks. (An image track
can also be any type of track that is capable of displaying an image, such as a
QuickTime 3D track.) The individual frames in the image track for a panorama
make up the diced frames of the original single panoramic image. The frames
for the image track of an object represent the many different views of the object.
Hot spot image data is stored in parallel video tracks for both panoramas and
objects.

Single-Node Panoramic Movies 5

Figure 5-1 illustrates the basic structure of a single-node panoramic movie. As
you can see, every panoramic movie contains at least three tracks: (1) a QTVR
track, (2) a panorama track, and (3) a panorama image track.

Figure 5-1 The structure of a single-node panoramic movie file

For a single-node panoramic movie, the QTVR track contains just one sample.
There is a corresponding sample in the panorama track, whose time and
duration are the same as the time and duration of the sample in the QTVR
track. The time base of the movie is used to locate the proper video samples in
the panorama image track. For a panoramic movie, the video sample for the
first diced frame of a node’s panoramic image is located at the same time as the
corresponding QTVR and panorama track samples. The total duration of all the
video samples is the same as the duration of the corresponding QTVR sample
and the panorama sample.

QTVR track

Panorama track

Panorama image track
264 Components of a QuickTime VR Movie

C H A P T E R 5

Creating QuickTime VR Movies
A panoramic movie can contain an optional hot spot image track and any
number of standard QuickTime tracks. A panoramic movie can also contain
panoramic image tracks with a lower resolution. The video samples in these
low-resolution image tracks must be located at the same time and must have
the same total duration as the QTVR track. Likewise, the video samples for a
hot spot image track, if one exists, must be located at the same time and must
have the same total duration as the QTVR track.

Single-Node Object Movies 5

Figure 5-2 illustrates the basic structure of a single-node object movie. As you
can see, every object movie contains at least three tracks: (1) a QTVR track,
(2) an object track, and (3) an object image track.

Figure 5-2 The structure of a single-node object movie file

For a single-node object movie, the QTVR track contains just one sample. There
is a corresponding sample in the object track, whose time and duration are the
same as the time and duration of the sample in the QTVR track. The time base
of the movie is used to locate the proper video samples in the object image
track.

For an object movie, the frame corresponding to the first row and column in the
object image array is located at the same time as the corresponding QTVR and
object track samples. The total duration of all the video samples is the same as
the duration of the corresponding QTVR sample and the object sample.

In addition to these three required tracks, an object movie can also contain a hot
spot image track and any number of standard QuickTime tracks (such as video,
sound, and text tracks). A hot spot image track for an object is a QuickTime

QTVR track

Object track

Object image track
Components of a QuickTime VR Movie 265

C H A P T E R 5

Creating QuickTime VR Movies
video track that contains images of colored regions delineating the hot spots; an
image in the hot spot image track must be synchronized to match the
appropriate image in the object image track. A hot spot image track should be 8
bits deep and can be compressed with any lossless compressor (including
temporal compressors).

Note
To assign a single fixed-position hot spot to all views of an
object, you should create a hot spot image track that
consists of a single video frame whose duration is the entire
node time. ◆

To play a time-based track with the object movie, you must synchronize the
sample data of that track to the start and stop times of a view in the object
image track. For example, to play a different sound with each view of an object,
you might store a sound track in the movie file with each set of sound samples
synchronized to play at the same time as the corresponding object’s view
image. (This technique also works for video samples.) Another way to add
sound or video is simply to play a sound or video track during the object’s view
animation; to do this, you need to add an active track to the object that is equal
in duration to the object’s row duration.

IMPORTANT

In a QuickTime VR movie file, the panorama image tracks
and panorama hot spot tracks must be disabled. For an
object, the object image tracks must be enabled and the
object hot spot tracks must be disabled. ▲

Multinode Movies 5

A multinode QuickTime VR movie can contain any number of object and
panoramic nodes. Figure 5-3 illustrates the structure of a QuickTime VR
movie that contains five nodes (in this case, three panoramic nodes and two
object nodes).
266 Components of a QuickTime VR Movie

C H A P T E R 5

Creating QuickTime VR Movies
Figure 5-3 The structure of a multinode movie file

IMPORTANT

Panoramic tracks and object tracks must never be located at
the same time. ▲

QuickTime VR Movie Creation 5

A QuickTime VR movie file is a QuickTime movie file. The only differences
between a QuickTime VR movie file and a typical time-based QuickTime movie
file are the type and usage of the tracks contained in the movie and the
necessary QuickTime user data attached to the movie. In particular, for the
Mac OS, the file type should be 'MooV'; for multiple platform compatibility, the
file extension should be .mov.

When you create a QuickTime VR movie, you need to add a special piece of
user data that identifies which movie controller to invoke for this movie. The
movie controller type for QuickTime VR movies is 'qtvr'. This user data is
examined by the Movie Toolbox when an application calls the
NewMovieController function for that movie. Listing 5-1 shows how to add the
appropriate user data to a new movie.

QTVR track

Panorama track

Panorama image track

Panorama low-res
image track

Panorama hot spot
image track

Object track

Object image track

Object hot spot track

1st node 2nd node 3rd node 4th node 5th node
Components of a QuickTime VR Movie 267

C H A P T E R 5

Creating QuickTime VR Movies
Listing 5-1 Specifying the QuickTime VR movie controller

UserData myUserData;
OSType controllerSubType = FOUR_CHAR_CODE('qtvr');

myUserData = GetMovieUserData(theMovie);
SetUserDataItem(myUserData, &controllerSubType,

sizeof(controllerSubType), kQTControllerType, kQTControllerID);

The constants kQTControllerType and kQTControllerID are defined by
QuickTime VR:

enum {
kQTControllerType = FOUR_CHAR_CODE('ctyp').
kQTControllerID = 1

};

Also, as with any QuickTime movie that is intended to be played on multiple
operating systems, a data fork version of the file should be created using the
FlattenMovie function with the flattenAddMovieToDataFork flag set. Note that
the resulting file is optimized for random access and might not perform well in
an environment that requires streaming access (such as Web browsing). The
section “Optimizing QuickTime VR Movies for Web Playback” (page 286)
describes an export component provided by Apple that allows you to optimize
a QuickTime VR file for the Web and includes the ability to store a small
preview of the movie in the file.

Track References 5

QuickTime VR uses track references to establish a relationship between the
various tracks in the file. The AddTrackReference routine is used to create the
reference. A reference to a particular track is identified by its reference type and
index. When you add a track reference, you supply the type and QuickTime
returns an index, which always starts at 1 for a particular type. The QTVR track
contains a reference to the panorama and object tracks in the movie. The
reference types are kQTVRPanoramaType ('pano') and kQTVRObjectType ('obje'). To
add a reference to the panorama track from the QTVR track you would use the
following line of code:
268 Components of a QuickTime VR Movie

C H A P T E R 5

Creating QuickTime VR Movies
err = AddTrackReference (qtvrTrack, panoTrack, kQTVRPanoramaType,
&index);

Because there are at most one panorama track and one object track in
QuickTime VR 2.1 movies, the index is always one and hence is not stored in
the file. The panorama and object tracks in turn contain track references to their
image and hot spot tracks. The reference types for these are
kQTVRImageTrackRefType ('imgt') and kQTVRHotSpotTrackRefType ('hott'). There
can be many image and hot spot tracks, so the track reference indexes returned
by the AddTrackReference call are stored in data structures in the panorama and
object tracks as described later in this chapter.

The QTVR Track 5

As mentioned in “Components of a QuickTime VR Movie” (page 263), the
QTVR track is a special type of QuickTime track that maintains a list of all the
nodes in a movie. The media type for a QTVR track is 'qtvr'. All the media
samples in a QTVR track share a common sample description. This sample
description contains the VR world atom container. The track contains one
media sample for each node in the movie. Each QuickTime VR media sample
contains a node information atom container, also described in Chapter 4,
“QuickTime VR Atom Containers.”

The QuickTime VR Sample Description Structure 5

Whereas the QuickTime VR media sample is simply the node information itself,
all sample descriptions are required by QuickTime to have a certain structure
for the first several bytes. The structure for the QuickTime VR sample
description is as follows.

typedef struct QTVRSampleDescription {
UInt32 size;
UInt32 type;
UInt32 reserved1;
UInt16 reserved2;
UInt16 dataRefIndex;
The QTVR Track 269

C H A P T E R 5

Creating QuickTime VR Movies
UInt32 data;
} QTVRSampleDescription, *QTVRSampleDescriptionPtr,
**QTVRSampleDescriptionHandle;

Field descriptions
size The size, in bytes, of the sample description header

structure, including the VR world atom container
contained in the data field.

type The sample description type. For QuickTime VR movies,
this type should be 'qtvr'.

reserved1 Reserved. This field must be 0.
reserved2 Reserved. This field must be 0.
dataRefIndex Reserved. This field must be 0.
data The VR world atom container. The sample description

structure is extended to hold this atom container.

Example: Adding Atom Containers 5

Assuming you have already created the VR world and node information atom
containers, Listing 5-2 shows the code (minus error checking) you would use to
add them to the QTVR track.

Listing 5-2 Adding atom containers to a track

long descSize;
QTVRSampleDescriptionHandle qtvrSampleDesc;

// Create a QTVR sample description handle
descSize = sizeof(QTVRSampleDescription) + GetHandleSize((Handle) vrWorld) -

sizeof(UInt32);
qtvrSampleDesc = (QTVRSampleDescriptionHandle) NewHandleClear (descSize);
(*qtvrSampleDesc)->size = descSize;
(*qtvrSampleDesc)->type = kQTVRQTVRType;

// Copy the vrWorld atom container data into the QTVR sample description
BlockMove (*((Handle) vrWorld), &((*qtvrSampleDesc)->data),

GetHandleSize((Handle) vrWorld));
// Now add it to the QTVR track's media
270 The QTVR Track

C H A P T E R 5

Creating QuickTime VR Movies
err = BeginMediaEdits (qtvrMedia);
err = AddMediaSample (qtvrMedia, (Handle) nodeInfo, 0,

GetHandleSize((Handle) nodeInfo), duration,
(SampleDescriptionHandle) qtvrSampleDesc, 1, 0, &sampleTime);

err = EndMediaEdits (qtvrMedia);
InsertMediaIntoTrack (qtvrTrack, trackTime, sampleTime, duration, 1L<<16);

The duration value is computed based on the duration of the corresponding
image track samples for the node. The value of trackTime is the time for the
beginning of the current node (zero for a single node movie). The values of
duration and sampleTime are in the time base of the media; the value of
trackTime is in the movie’s time base.

Panorama Tracks 5

A movie’s panorama track is a track that contains information about the
panoramic nodes in a scene. The media type of the panorama track is 'pano'.
Each sample in a panorama track corresponds to a single panoramic node. This
sample parallels the corresponding sample in the QTVR track. Panorama tracks
do not have a sample description (although QuickTime requires that you
specify a dummy sample description when you call AddMediaSample to add a
sample to a panorama track). The sample itself contains an atom container that
includes a panorama sample atom and other optional atoms.

Panorama Sample Atom Structure 5

A panorama sample atom has an atom type of kQTVRPanoSampleDataAtomType
('pdat'). It describes a single panorama, including track reference indexes of the
scene and hot spot tracks and information about the default viewing angles and
the source panoramic image.

The structure of a panorama sample atom is defined by the VRPanoSampleAtom
data type:

typedef struct VRPanoSampleAtom {
UInt16 majorVersion;
UInt16 minorVersion;
UInt32 imageRefTrackIndex;
UInt32 hotSpotRefTrackIndex;
Float32 minPan;
Float32 maxPan;
The QTVR Track 271

C H A P T E R 5

Creating QuickTime VR Movies
Float32 minTilt;
Float32 maxTilt;
Float32 minFieldOfView;
Float32 maxFieldOfView;
Float32 defaultPan;
Float32 defaultTilt;
Float32 defaultFieldOfView;
UInt32 imageSizeX;
UInt32 imageSizeY;
UInt16 imageNumFramesX;
UInt16 imageNumFramesY;
UInt32 hotSpotSizeX;
UInt32 hotSpotSizeY;
UInt16 hotSpotNumFramesX;
UInt16 hotSpotNumFramesY;
UInt32 flags;
UInt32 reserved1;
UInt32 reserved2;

} VRPanoSampleAtom, *VRPanoSampleAtomPtr;

Field descriptions
majorVersion The major version number of the file format.
minorVersion The minor version number of the file format.
imageRefTrackIndex The index of the image track reference. This is the index

returned by the AddTrackReference function when the
image track is added as a reference to the panorama track.
There can be more than one image track for a given
panorama track and hence multiple references. (A panorama
track might have multiple image tracks if the panoramas
have different characteristics, which could occur if the
panoramas were shot with different size camera lenses.)
The value in this field is 0 if there is no corresponding
image track.

hotSpotRefTrackIndex
The index of the hot spot track reference.

minPan The minimum pan angle, in degrees. For a full panorama,
the value of this field is usually 0.0.

maxPan The maximum pan angle, in degrees. For a full panorama,
the value of this field is usually 360.0.
272 The QTVR Track

C H A P T E R 5

Creating QuickTime VR Movies
minTilt The minimum tilt angle, in degrees. For a high-resolution
panorama, a typical value for this field is –42.5.

maxTilt The maximum tilt angle, in degrees. For a high-resolution
panorama, a typical value for this field is +42.5.

minFieldOfView The minimum vertical field of view, in degrees. For a
high-resolution panorama, a typical value for this field is
5.0. The value in this field is 0 for the default minimum
field of view, which is 5 percent of the maximum field of
view.

maxFieldOfView The maximum vertical field of view, in degrees. For a
high-resolution panorama, a typical value for this field is
85.0. The value in this field is 0 for the default maximum
field of view, which is maxTilt – minTilt.

defaultPan The default pan angle, in degrees.
defaultTilt The default tilt angle, in degrees.
defaultFieldOfView

The default vertical field of view, in degrees.
imageSizeX The width, in pixels, of the panorama stored in the highest

resolution image track. For a high-resolution panorama, a
typical value for this field is 768.

imageSizeY The height, in pixels, of the panorama stored in the highest
resolution image track. For a high-resolution panorama, a
typical value for this field is 2496.

imageNumFramesX The number of frames into which the panoramic image is
diced horizontally. The width of each frame (which is
imageSizeX/imageNumFramesX) should be divisible by 4. For
a high-resolution panorama, a typical value for this field
is 1.

imageNumFramesY The number of frames into which the panoramic image is
diced vertically. The height of each frame (which is
imageSizeY/imageNumFramesY) should be divisible by 4. For
a high-resolution panorama, a typical value for this field
is 24.

hotSpotSizeX The width, in pixels, of the panorama stored in the highest
resolution hot spot image track.

hotSpotSizeY The height, in pixels, of the panorama stored in the highest
resolution hot spot image track.
The QTVR Track 273

C H A P T E R 5

Creating QuickTime VR Movies
hotSpotNumFramesX The number of frames into which the panoramic image is
diced horizontally for the hot spot image track. For a
high-resolution panorama, a typical value for this field is 1.

hotSpotNumFramesY The number of frames into which the panoramic image is
diced vertically for the hot spot image track. For a
high-resolution panorama, a typical value for this field is 24.

flags A set of panorama flags. The only currently defined flag is
kQTVRPanoFlagHorizontal, which indicates that the
panorama is oriented horizontally. This orientation is not
supported in QuickTime VR 2.1.

reserved1 Reserved. This field must be 0.
reserved2 Reserved. This field must be 0.
The minimum and maximum values in the panorama sample atom describe the
physical limits of the panoramic image. QuickTime VR allows you to set further
constraints on what portion of the image a user will see by calling the
QTVRSetConstraints routine. You can also preset image constraints by adding
constraint atoms to the panorama sample atom container. The three constraint
atom types are kQTVRPanConstraintAtomType, kQTVRTiltConstraintAtomType, and
kQTVRFOVConstraintAtomType. Each of these atom types share a common
structure defined by the VRAngleRangeAtom data type:

typedef struct VRAngleRangeAtom {
Float32 minimumAngle;
Float32 maximumAngle;

} VRAngleRangeAtom, *VRAngleRangeAtomPtr;

Field descriptions
minimumAngle The minimum angle in the range, in degrees.
maximumAngle The maximum angle in the range, in degrees.
The actual panoramic image for a panoramic node is contained in a panorama
image track, which is a standard QuickTime video track. The track reference to
this track is stored in the imageRefTrackIndex field of the panorama sample
atom. The panoramic image can be created in many ways. You can use the
panorama stitcher provided by the QuickTime VR Authoring Studio to stitch
together several photographs. Alternatively, you can use a graphics rendering
application or a panoramic camera.

QuickTime VR 2.1 requires the original panoramic image to be rotated 90
degrees counterclockwise. The rotated image must then be diced into smaller
frames. Each diced frame is compressed and added to the video track as a video
274 The QTVR Track

C H A P T E R 5

Creating QuickTime VR Movies
sample. (See Figure 5-4.) Frames can be compressed using any spatial
compressor; temporal compression is not allowed for panoramic image tracks.

Note
A panorama sample atom (which contains information
about a single panorama) contains a flag that indicates
whether the diced panoramic image is oriented
horizontally or vertically. Currently, only vertical
orientation is supported. Future versions of QuickTime VR
might support horizontal panoramic images. ◆
The QTVR Track 275

C H A P T E R 5

Creating QuickTime VR Movies
Figure 5-4 Creating an image track for a panorama

Original
anorama

Rotate 90
CCW

0

Dice
the
image

Image
track

Add
samples
to image
track

1

2

3

1

2

3

24 24
276 The QTVR Track

C H A P T E R 5

Creating QuickTime VR Movies
When a panorama contains hot spots, the movie file contains a hot spot image
track, a video track that contains a parallel panorama with the hot spots
designated by colored regions. Each diced frame of the hot spot panoramic
image must be compressed with a lossless compressor (such as QuickTime’s
graphics compressor). The dimensions of the hot spot panoramic image are
usually the same as those of the image track’s panoramic image, but this is not
required. The dimensions must, however, have the same aspect ratio as the
image track’s panoramic image. A hot spot image track should be 8 bits deep.

It’s possible to store one or more low-resolution versions of a panoramic image
in a movie file; those versions are called low-resolution image tracks. If there is
not enough memory at runtime to use the normal image track, QuickTime VR
uses a lower resolution image track if one is available. A low-resolution image
track contains diced frames just like the higher resolution track, but the
reconstructed panoramic image is half the height and half the width of the
higher resolution image. The number of diced frames in the lower resolution
image track is usually half that in the normal image track.

IMPORTANT

In QuickTime VR 2.1, the panoramic images in the lower
resolution image tracks and the hot spot image tracks, if
present, must be rotated 90 degrees counterclockwise (just
like images in the panorama image track). ▲

Track Reference Entry Structure 5

Since there are no fields in the sample track atom to indicate the presence of
low-resolution image tracks, a separate sibling atom must be added to the
panorama sample atom container. The track reference array atom contains an
array of track reference entry structures that specify information about any
low-resolution image tracks contained in a movie. Its atom type is
kQTVRTrackRefArrayAtomType ('tref').

A track reference entry structure is defined by the VRTrackRefEntry data type:

typedef struct VRTrackRefEntry {
UInt32 trackRefType;
UInt16 trackResolution;
UInt32 trackRefIndex;

} VRTrackRefEntry;
The QTVR Track 277

C H A P T E R 5

Creating QuickTime VR Movies
Field descriptions
trackRefType The track reference type. See “Track References” (page 268)

for a description of the available track reference types.
trackResolution The track resolution. See “Resolutions” (page 83) for a

description of the values that can occur in this field.
trackRefIndex The index of the track reference.
The number of entries in the track reference array atom is determined by
dividing the size of the atom by sizeof (VRTrackRefEntry).

kQTVRPreviewTrackRes is a special value for the trackResolution field in the
VRTrackRefEntry structure. This is used to indicate the presence of a special
preview image track. Preview image tracks are discussed in “Optimizing
QuickTime VR Movies for Web Playback” (page 286).

Object Tracks 5

A movie’s object track is a track that contains information about the object
nodes in a scene. The media type of the object track is 'obje'. Each sample in an
object track corresponds to a single object node in the scene. The samples of the
object track contain information describing the object images stored in the
object image track. These object information samples parallel the corresponding
node samples in the QTVR track and are equal in time and duration to a
particular object node’s image samples in the object’s image track as well as the
object node’s hot spot samples in the object’s hot spot track.

Object tracks do not have a sample description (although QuickTime requires
that you specify a dummy sample description when you call AddMediaSample to
add a sample to an object track). The sample itself is an atom container that
contains a single object sample atom and other optional atoms.

Object Sample Atom Structure 5

An object sample atom describes a single object, including information about
the default viewing angles and the view settings. The structure of an object
sample atom is defined by the VRObjectSampleAtom data type:

typedef struct VRObjectSampleAtom {
UInt16 majorVersion;
UInt16 minorVersion;
UInt16 movieType;
UInt16 viewStateCount;
278 The QTVR Track

C H A P T E R 5

Creating QuickTime VR Movies
UInt16 defaultViewState;
UInt16 mouseDownViewState;
UInt32 viewDuration;
UInt32 columns;
UInt32 rows;
Float32 mouseMotionScale;
Float32 minPan;
Float32 maxPan;
Float32 defaultPan;
Float32 minTilt;
Float32 maxTilt;
Float32 defaultTilt;
Float32 minFieldOfView;
Float32 fieldOfView;
Float32 defaultFieldOfView;
Float32 defaultViewCenterH;
Float32 defaultViewCenterV;
Float32 viewRate;
Float32 frameRate;
UInt32 animationSettings;
UInt32 controlSettings;

} VRObjectSampleAtom, *VRObjectSampleAtomPtr;

Field descriptions
majorVersion The major version number of the file format.
minorVersion The minor version number of the file format.
movieType The movie controller type. See “Object Controller Types”

(page 281) for a description of the available movie
controllers for object views.

viewStateCount The number of view states of the object. A view state selects
an alternate set of images for an object’s views. The value
of this field must be positive.

defaultViewState The 1-based index of the default view state. The default
view state image for a given view is displayed when the
mouse button is not down.

mouseDownViewState The 1-based index of the mouse-down view state. The
mouse-down view state image for a given view is
displayed while the user holds the mouse button down
while the cursor is over an object movie.
The QTVR Track 279

C H A P T E R 5

Creating QuickTime VR Movies
viewDuration The total movie duration of all image frames contained in
an object’s view. In an object that uses a single frame to
represent a view, the duration is the image track’s sample
duration time.

columns The number of columns in the object image array (that is,
the number of horizontal positions or increments in the
range defined by the minimum and maximum pan values).
The value of this field must be positive.

rows The number of rows in the object image array (that is, the
number of vertical positions or increments in the range
defined by the minimum and maximum tilt values). The
value of this field must be positive.

mouseMotionScale The mouse motion scale factor (that is, the number of
degrees that an object is panned or tilted when the cursor is
dragged the entire width of the VR movie image). The
default value is 180.0.

minPan The minimum pan angle, in degrees. The value of this field
must be less than the value of the maxPan field.

maxPan The maximum pan angle, in degrees. The value of this field
must be greater than the value of the minPan field.

defaultPan The default pan angle, in degrees. This is the pan angle
used when the object is first displayed. The value of this
field must be greater than or equal to the value of
the minPan field and less than or equal to the value of the
maxPan field.

minTilt The minimum tilt angle, in degrees. The default value is
+90.0. The value of this field must be less than the value of
the maxTilt field.

maxTilt The maximum tilt angle, in degrees. The default value is
–90.0. The value of this field must be greater than the value
of the minTilt field.

defaultTilt The default tilt angle, in degrees. This is the tilt angle used
when the object is first displayed. The value of this field
must be greater than or equal to the value of the minTilt
field and less than or equal to the value of the maxTilt field.

minFieldOfView The minimum field of view to which the object can zoom.
The valid range for this field is from 1 to the value of the
fieldOfView field. The value of this field must be positive.
280 The QTVR Track

C H A P T E R 5

Creating QuickTime VR Movies
fieldOfView The image field of view, in degrees, for the entire object.
The value in this field must be greater than or equal to the
value of the minFieldOfView field.

defaultFieldOfView
The default field of view for the object. This is the field of
view used when the object is first displayed. The value in
this field must be greater than or equal to the value of the
minFieldOfView field and less than or equal to the value of
the fieldOfView field.

defaultViewCenterH
The default horizontal view center.

defaultViewCenterV
The default vertical view center.

viewRate The view rate (that is, the positive or negative rate at which
the view animation in objects plays, if view animation is
enabled). The value of this field must be from –100.0
through +100.0, inclusive.

frameRate The frame rate (that is, the positive or negative rate at which
the frame animation in a view plays, if frame animation is
enabled). The value of this field must be from –100.0
through +100.0, inclusive.

animationSettings A set of 32-bit flags that encode information about the
animation settings of the object. See “Animation Settings”
(page 282) for a description of the constants you can use to
specify a value for this field.

controlSettings A set of 32-bit flags that encode information about the
control settings of the object. See “Control Settings”
(page 283) for a description of the constants you can use to
specify a value for this field.

Object Controller Types

The movieType field of the object sample atom structure specifies an object
controller type, that is, the user interface to be used to manipulate the object.

QuickTime VR supports the following controller types:

enum ObjectUITypes {
kGrabberScrollerUI = 1,
kOldJoyStickUI = 2,
kJoystickUI = 3,
The QTVR Track 281

C H A P T E R 5

Creating QuickTime VR Movies
kGrabberUI = 4,
kAbsoluteUI = 5

};

Constant descriptions

kGrabberScrollerUI The default controller, which displays a hand for dragging
and rotation arrows when the cursor is along the edges of
the object window.

kOldJoyStickUI A joystick controller, which displays a joystick-like
interface for spinning the object. With this controller, the
direction of panning is reversed from the direction of
the grabber.

kJoystickUI A joystick controller, which displays a joystick-like
interface for spinning the object. With this controller, the
direction of panning is consistent with the direction of
the grabber.

kGrabberUI A grabber-only interface, which displays a hand for
dragging but does not display rotation arrows when the
cursor is along the edges of the object window.

kAbsoluteUI An absolute controller, which displays a finger for pointing.
The absolute controller switches views based on a
row-and-column grid mapped into the object window.

Animation Settings

The animationSettings field of the object sample atom is a long integer that
specifies a set of animation settings for an object node. Animation settings
specify characteristics of the movie while it is playing. You can use these
constants to specify animation settings:

enum QTVRAnimationSettings {
kQTVRObjectAnimateViewFramesOn = (1 << 0),
kQTVRObjectPalindromeViewFramesOn = (1 << 1),
kQTVRObjectStartFirstViewFrameOn = (1 << 2),
kQTVRObjectAnimateViewsOn = (1 << 3),
kQTVRObjectPalindromeViewsOn = (1 << 4),
kQTVRObjectSyncViewToFrameRate = (1 << 5),
kQTVRObjectDontLoopViewFramesOn = (1 << 6),
kQTVRObjectPlayEveryViewFrameOn = (1 << 7)

};
282 The QTVR Track

C H A P T E R 5

Creating QuickTime VR Movies
Constant descriptions

kQTVRObjectAnimateViewFramesOn
If this bit is set, play all frames in the current view state.

kQTVRObjectPalindromeViewFramesOn
If this bit is set, play a back-and-forth animation of the
frames of the current view state.

kQTVRObjectStartFirstViewFrameOn
If this bit is set, play the frame animation starting with the
first frame in the view (that is, at the view start time).

kQTVRObjectAnimateViewsOn
If this bit is set, play all views of the current object in the
default row of views.

kQTVRObjectPalindromeViewsOn
If this bit is set, play a back-and-forth animation of all
views of the current object in the default row of views.

kQTVRObjectSyncViewToFrameRate
If this bit is set, synchronize the view animation to the
frame animation and use the same options as for frame
animation.

kQTVRObjectDontLoopViewFramesOn
If this bit is set, stop playing the frame animation in the
current view at the end.

kQTVRObjectPlayEveryViewFrameOn
If this bit is set, play every view frame regardless of play
rate. The play rate is used to adjust the duration in which a
frame appears but no frames are skipped so the rate is not
exact.

Control Settings

The controlSettings field of the object sample atom is a long integer that
specifies a set of control settings for an object node. Control settings specify
whether the object can wrap during panning and tilting, as well as other
features of the node. The control settings are specified using these bit flags:

enum QTVRControlSettings {
kQTVRObjectWrapPanOn = (1 << 0),
kQTVRObjectWrapTiltOn = (1 << 1),
kQTVRObjectCanZoomOn = (1 << 2),
kQTVRObjectReverseHControlOn = (1 << 3),
The QTVR Track 283

C H A P T E R 5

Creating QuickTime VR Movies
kQTVRObjectReverseVControlOn = (1 << 4),
kQTVRObjectSwapHVControlOn = (1 << 5),
kQTVRObjectTranslationOn = (1 << 6)

};

IMPORTANT

See the section “Control Settings” (page 74), for a more
complete description of these control settings. ▲

Constant descriptions

kQTVRObjectWrapPanOn
If this bit is set, enable wrapping during panning. When
this control setting is enabled, the user can wrap around
from the current pan constraint maximum value to the pan
constraint minimum value (or vice versa) using the mouse
or arrow keys.

kQTVRObjectWrapTiltOn
If this bit is set, enable wrapping during tilting. When this
control setting is enabled, the user can wrap around from
the current tilt constraint maximum value to the tilt
constraint minimum value (or vice versa) using the mouse
or arrow keys.

kQTVRObjectCanZoomOn
If this bit is set, enable zooming. When this control setting
is enabled, the user can change the current field of view
using the zoom-in and zoom-out keys on the keyboard (or
using the VR controller buttons).

kQTVRObjectReverseHControlOn
If this bit is set, reverse the direction of the horizontal
control.

kQTVRObjectReverseVControlOn
If this bit is set, reverse the direction of the vertical control.

kQTVRObjectSwapHVControlOn
If this bit is set, exchange the horizontal and vertical
controls.

kQTVRObjectTranslationOn
If this bit is set, enable translation. When this setting is
enabled, the user can translate using the mouse when
284 The QTVR Track

C H A P T E R 5

Creating QuickTime VR Movies
either the translate key is held down or the controller
translation mode button is toggled on.

Track References for Object Tracks 5

The track references to an object’s image and hot spot tracks are not handled the
same way as track references to panoramas. The track reference types are the
same (kQTVRImageTrackRefType and kQTVRHotSpotTrackRefAtomType), but the
location of the reference indexes is different. There is no entry in the object
sample atom for the track reference indexes. Instead, separate atoms using the
VRTrackRefEntry structure are stored as siblings to the object sample atom. The
types of these atoms are kQTVRImageTrackRefAtomType and
kQTVRHotSpotTrackRefAtomType. If either of these atoms is not present, then the
reference index to the corresponding track is assumed to be one.

Note
The trackResolution field in the VRTrackRefEntry structure
is currently ignored for object tracks. ◆

The actual views of an object for an object node are contained in an object
image track, which is usually a standard QuickTime video track. (An object
image track can also be any type of track that is capable of displaying an image,
such as a QuickTime 3D track.) As described in the section “Object Nodes”
(page 24) in Chapter 1, “About QuickTime VR,”these views are often captured
by moving a camera around the object in a defined pattern of pan and tilt
angles. The views must then be ordered into an object image array, which is
stored as a one-dimensional sequence of frames in the movie’s video track (see
Figure 5-5).
The QTVR Track 285

C H A P T E R 5

Creating QuickTime VR Movies
Figure 5-5 The structure of an image track for an object

For object movies containing frame animation, each animated view in the object
image array consists of the animating frames. It is not necessary that each view
in the object image array contain the same number of frames, but the view
duration of all views in the object movie must be the same.

For object movies containing alternate view states, alternate view states are
stored as separate object image arrays that immediately follow the preceding
view state in the object image track. Each state does not need to contain the
same number of frames. However, the total movie time of each view state in an
object node must be the same.

Optimizing QuickTime VR Movies for Web Playback 5

All of the discussion so far is sufficient to allow you to create a valid
QuickTime VR movie. However, there are special considerations when the
movie is to be played back on the Internet. Originally, both QuickTime movies
and QuickTime VR movies had to be completely downloaded to the user’s local
hard disk before they could be viewed. Starting with QuickTime 2.5, if the
movie data is properly laid out in the file, standard linear QuickTime movies
can be viewed almost immediately. The frames that have been downloaded so
far are shown while subsequent frames continue to be downloaded.

The important change that took place to allow this to happen was for
QuickTime to place global movie information at the beginning of the file.

1,1 1,2 1,3 1,4 1,m 2,1 2,2 2,3 n,1 n,2 n,m.....

View duration
286 Optimizing QuickTime VR Movies for Web Playback

C H A P T E R 5

Creating QuickTime VR Movies
Originally it was at the end of the file. After that, the frame data simply needs to
be in order in the file. Similarly, QuickTime VR files also need to be laid out in a
certain manner in order to get some sort of quick feedback when viewing on the
Web. Roughly speaking this involves writing out all of the media samples in the
file in a particular order. Apple now provides a movie export component that
does this for you: the QTVR Flattener.

The QTVR Flattener 5

The QTVR Flattener is a movie export component that converts an existing
QuickTime VR single node movie into a new movie that is optimized for the
Web. Not only does the flattener reorder the media samples, but for panoramas
it also creates a small preview of the panorama. When viewed on the Web, this
preview appears after 5% to 10% of the movie data has been downloaded,
allowing users to see a lower resolution version of the panorama.

Using the QTVR Flattener from your application is quite easy. After you have
created the QuickTime VR movie, you simply open the QTVR Flattener
component and call the MovieExportToFile routine as shown in Listing 5-3.

Listing 5-3 Using the flattener

ComponentDescription desc;
Component flattener;
ComponentInstance qtvrExport = nil;

desc.componentType = MovieExportType;
desc.componentSubType = MovieFileType;
desc.componentManufacturer = QTVRFlattenerType;

flattener = FindNextComponent(nil, &desc);
if (flattener) qtvrExport = OpenComponent (flattener);

if (qtvrExport)
MovieExportToFile (qtvrExport, &myFileSpec, myQTVRMovie, nil, 0, 0);

The code fragment shown in Listing 5-3 creates a flattened movie file specified
by the myFileSpec parameter. If your QuickTime VR movie is a panorama, the
Optimizing QuickTime VR Movies for Web Playback 287

C H A P T E R 5

Creating QuickTime VR Movies
flattened movie file includes a quarter size, blurred JPEG, compressed preview
of the panorama image.

Note
The constants MovieExportType and MovieFileType used in
Listing 5-3 are defined in header files
QuickTimeComponents.h and Movies.h respectively and are
defined as 'spit' and 'MooV'. ◆

You can present users with the QTVR Flattener’s own dialog box to allow them
to choose options such as how to compress the preview image or to select a
separate preview image file. Use the following code to show the dialog box:

err = MovieExportDoUserDialog (qtvrExport, myQTVRMovie, nil, 0, 0,
&cancel);

If the user cancels the dialog box, then the Boolean cancel will be set to true.

If you do not want to present the user with the flattener’s dialog box, you can
communicate directly with the component by using the
MovieExportSetSettingsFromAtomContainer routine as described in the following
paragraphs.

If you want to specify a preview image other than the default, you need to
create a special atom container and then call
MovieExportSetSettingsFromAtomContainer before calling MovieExportToFile.
You can specify how to compress the image, what resolution to use, and you
can even specify your own preview image file to be used. The atom container
you pass in can have various atoms that specify certain export options. These
atoms must all be children of a flattener settings parent atom.

The preview resolution atom is a 16-bit value that allows you to specify the
resolution of the preview image. This value, which defaults to kQTVRQuarterRes,
indicates how much to reduce the preview image.

The blur preview atom is a Boolean value that indicates whether to blur the
image before compressing. Blurring usually results in a much more highly
compressed image. The default value is true.

The create preview atom is a Boolean value that indicates whether a preview
image should be created. The default value is true.

The import preview atom is a Boolean value that is used to indicate that the
preview image should be imported from an external file rather than generated
288 Optimizing QuickTime VR Movies for Web Playback

C H A P T E R 5

Creating QuickTime VR Movies
from the image in the panorama file itself. This allows you to have any image
you want as the preview for the panorama. You can specify which file to use by
also including the import specification atom, which is an FSSpec data structure
that identifies the image file. If you do not include this atom, then the flattener
presents the user with a dialog box asking the user to select a file. The default
for import preview is false. If an import file is used, the image is used at its
natural size and the resolution setting is ignored.

Sample Atom Container for the QTVR Flattener 5

The sample code in Listing 5-4 creates an atom container and adds atoms to
indicate an import preview file for the flattener to use.

Listing 5-4 Specifying a preview file for the flattener to use

Boolean yes = true;
QTAtomContainer exportData;
QTAtom parent;
err = QTNewAtomContainer(&exportData);
// create a parent for the other settings atoms
err = QTInsertChild (exportData, kParentAtomIsContainer,

QTVRFlattenerParentAtomType, 1, 0, 0, nil, &parent);
// Add child atom to indicate we want to import the preview from a file
err = QTInsertChild (exportData, parent, QTVRImportPreviewAtomType, 1, 0,

sizeof (yes), &yes, nil);
// Add child atom to tell which file to import
err = QTInsertChild (exportData, parent, QTVRImportSpecAtomType, 1, 0,

sizeof (previewSpec), &previewSpec, nil);
// Tell the export component
MovieExportSetSettingsFromAtomContainer (qtvrExport, exportData);

Overriding the compression settings is a bit more complicated. You need to
open a standard image compression dialog component and make calls to obtain
an atom container that you can then pass to the QTVR Flattener component.
Optimizing QuickTime VR Movies for Web Playback 289

C H A P T E R 5

Creating QuickTime VR Movies
Listing 5-5 Overriding the compression settings

ComponentInstance sc;
QTAtomContainer compressorData;
SCSpatialSettings ss;
sc =
OpenDefaultComponent(StandardCompressionType,StandardCompressionSubType);
ss.codecType = kCinepakCodecType;
ss.codec = nil;
ss.depth = 0;
ss.spatialQuality = codecHighQuality
err = SCSetInfo(sc, scSpatialSettingsType, &ss);
err = SCGetSettingsAsAtomContainer(sc, &compressorData);
MovieExportSetSettingsFromAtomContainer (qtvrExport, compressorData);

New Atom Types 5

The following atom types are planned for a header file that will be made
available in a future software development kit.

enum {
 QTVRFlattenerParentAtomType= FOUR_CHAR_CODE('VRWe'), // parent of settings

// atoms (other than compression)
 QTVRPreviewResAtomType= FOUR_CHAR_CODE('PRes'), // preview res Int16
 QTVRImportSpecAtomType= FOUR_CHAR_CODE('ISpe'), // import file FSSpec
 QTVRCreatePreviewAtomType= FOUR_CHAR_CODE('Prev'), // Boolean
 QTVRImportPreviewAtomType= FOUR_CHAR_CODE('IPre'), // Boolean
 QTVRBlurPreviewAtomType= FOUR_CHAR_CODE('Blur') // Boolean
};

enum {
 QTVRFlattenerType= FOUR_CHAR_CODE('vrwe') // manufacturer type for

//QTVR Flattener component
}

290 Optimizing QuickTime VR Movies for Web Playback

C H A P T E R 5

Creating QuickTime VR Movies
Summary of the VR World and Node Atom Types 5

This section includes information that pertains to both this chapter and to
Chapter 4, “QuickTime VR Atom Containers.”

C Summary 5

Constants 5

Version Numbers

#define kQTVRMajorVersion (2)
#define kQTVRMinorVersion (0)

VR World Atom Types

enum {
kQTVRWorldHeaderAtomType = FOUR_CHAR_CODE('vrsc'),
kQTVRImagingParentAtomType = FOUR_CHAR_CODE('imgp'),
kQTVRPanoImagingAtomType = FOUR_CHAR_CODE('impn'),
kQTVRObjectImagingAtomType = FOUR_CHAR_CODE('imob'),
kQTVRNodeParentAtomType = FOUR_CHAR_CODE('vrnp'),
kQTVRNodeIDAtomType = FOUR_CHAR_CODE('vrni'),
kQTVRNodeLocationAtomType = FOUR_CHAR_CODE('nloc')

};

Node Information Atom Types

enum {
kQTVRNodeHeaderAtomType = FOUR_CHAR_CODE('ndhd'),
kQTVRHotSpotParentAtomType = FOUR_CHAR_CODE('hspa'),
kQTVRHotSpotAtomType = FOUR_CHAR_CODE('hots'),
Summary of the VR World and Node Atom Types 291

C H A P T E R 5

Creating QuickTime VR Movies
kQTVRHotSpotInfoAtomType = FOUR_CHAR_CODE('hsin'),
kQTVRLinkInfoAtomType = FOUR_CHAR_CODE('link')

};

Miscellaneous Atom Types

enum {
kQTVRStringAtomType = FOUR_CHAR_CODE('vrsg'),
kQTVRPanoSampleDataAtomType = FOUR_CHAR_CODE('pdat'),
kQTVRObjectInfoAtomType = FOUR_CHAR_CODE('obji'),
kQTVRAltImageTrackRefAtomType = FOUR_CHAR_CODE('imtr'),
kQTVRAltHotSpotTrackRefAtomType = FOUR_CHAR_CODE('hstr'),
kQTVRAngleRangeAtomType = FOUR_CHAR_CODE('arng'),
kQTVRTrackRefArrayAtomType = FOUR_CHAR_CODE('tref'),
kQTVRPanConstraintAtomType = FOUR_CHAR_CODE('pcon'),
kQTVRTiltConstraintAtomType = FOUR_CHAR_CODE('tcon'),
kQTVRFOVConstraintAtomType = FOUR_CHAR_CODE('fcon')

};

Track Reference Types

enum {
kQTVRImageTrackRefType = FOUR_CHAR_CODE('imgt'),
kQTVRHotSpotTrackRefType = FOUR_CHAR_CODE('hott')

};

Imaging Property Valid Flags

enum {
kQTVRValidCorrection = 1 << 0,
kQTVRValidQuality = 1 << 1,
kQTVRValidDirectDraw = 1 << 2,
kQTVRValidFirstExtraProperty = 1 << 3

};

Link Hot Spot Valid Bits

enum {
kQTVRValidPan = 1 << 0,
kQTVRValidTilt = 1 << 1,
292 Summary of the VR World and Node Atom Types

C H A P T E R 5

Creating QuickTime VR Movies
kQTVRValidFOV = 1 << 2,
kQTVRValidViewCenter = 1 << 3

};

Animation Settings

enum QTVRAnimationSettings {
kQTVRObjectAnimateViewFramesOn = (1 << 0),
kQTVRObjectPalindromeViewFramesOn = (1 << 1),
kQTVRObjectStartFirstViewFrameOn = (1 << 2),
kQTVRObjectAnimateViewsOn = (1 << 3),
kQTVRObjectPalindromeViewsOn = (1 << 4),
kQTVRObjectSyncViewToFrameRate = (1 << 5),
kQTVRObjectDontLoopViewFramesOn = (1 << 6),
kQTVRObjectPlayEveryViewFrameOn = (1 << 7)

};

Control Settings

enum QTVRControlSettings {
kQTVRObjectWrapPanOn = (1 << 0),
kQTVRObjectWrapTiltOn = (1 << 1),
kQTVRObjectCanZoomOn = (1 << 2),
kQTVRObjectReverseHControlOn = (1 << 3),
kQTVRObjectReverseVControlOn = (1 << 4),
kQTVRObjectSwapHVControlOn = (1 << 5),
kQTVRObjectTranslationOn = (1 << 6)

};

Controller Subtype and ID

enum {
kQTControllerType = FOUR_CHAR_CODE('ctyp').
kQTControllerID = 1

};

Object Controller Types

enum ObjectUITypes {
kGrabberScrollerUI = 1,
kOldJoyStickUI = 2,
Summary of the VR World and Node Atom Types 293

C H A P T E R 5

Creating QuickTime VR Movies
kJoystickUI = 3,
kGrabberUI = 4,
kAbsoluteUI = 5

};

Node Location Flag

enum {
kQTVRSameFile = 0

};

Panorama Sample Flag

enum {
kQTVRPanoFlagHorizontal = 1 << 0

};

Data Types 5

typedef float Float32;

Sample Description Header Structure

typedef struct QTVRSampleDescription {
UInt32 size;
UInt32 type;
UInt32 reserved1;
UInt16 reserved2;
UInt16 dataRefIndex;
UInt32 data;

} QTVRSampleDescription, *QTVRSampleDescriptionPtr, **QTVRSampleDescriptionHandle;

String Atom Structure

typedef struct VRStringAtom {
UInt16 stringUsage;
UInt16 stringLength;
unsigned char string[4];

} VRStringAtom, *VRStringAtomPtr;
294 Summary of the VR World and Node Atom Types

C H A P T E R 5

Creating QuickTime VR Movies
VR World Header Atom Structure

typedef struct VRWorldHeaderAtom {
UInt16 majorVersion;
UInt16 minorVersion;
QTAtomID nameAtomID;
UInt32 defaultNodeID;
UInt32 vrWorldFlags;
UInt32 reserved1;
UInt32 reserved2;

} VRWorldHeaderAtom, *VRWorldHeaderAtomPtr;

Panorama-Imaging Atom Structure

typedef struct VRPanoImagingAtom {
UInt16 majorVersion;
UInt16 minorVersion;
UInt32 imagingMode;
UInt32 imagingValidFlags;
UInt32 correction;
UInt32 quality;
UInt32 directDraw;
UInt32 imagingProperties[6];
UInt32 reserved1;
UInt32 reserved2;

} VRPanoImagingAtom, *VRPanoImagingAtomPtr;

Node Location Atom Structure

typedef struct VRNodeLocationAtom {
UInt16 majorVersion;
UInt16 minorVersion;
OSType nodeType;
UInt32 locationFlags;
UInt32 locationData;
UInt32 reserved1;
UInt32 reserved2;

} VRNodeLocationAtom, *VRNodeLocationAtomPtr;
Summary of the VR World and Node Atom Types 295

C H A P T E R 5

Creating QuickTime VR Movies
Node Header Atom Structure

typedef struct VRNodeHeaderAtom {
UInt16 majorVersion;
UInt16 minorVersion;
OSType nodeType;
QTAtomID nodeID;
QTAtomID nameAtomID;
QTAtomID commentAtomID;
UInt32 reserved1;
UInt32 reserved2;

} VRNodeHeaderAtom, *VRNodeHeaderAtomPtr;

Hot Spot Information Atom Structure

typedef struct VRHotSpotInfoAtom {
UInt16 majorVersion;
UInt16 minorVersion;
OSType hotSpotType;
QTAtomID nameAtomID;
QTAtomID commentAtomID;
SInt32 cursorID[3];
Float32 bestPan;
Float32 bestTilt;
Float32 bestFOV;
FloatPoint bestViewCenter;
Rect hotSpotRect;
UInt32 flags;
UInt32 reserved1;
UInt32 reserved2;

} VRHotSpotInfoAtom, *VRHotSpotInfoAtomPtr;

Link Hot Spot Atom Structure

typedef struct VRLinkHotSpotAtom {
UInt16 majorVersion;
UInt16 minorVersion;
UInt32 toNodeID;
UInt32 fromValidFlags;
Float32 fromPan;
Float32 fromTilt;
296 Summary of the VR World and Node Atom Types

C H A P T E R 5

Creating QuickTime VR Movies
Float32 fromFOV;
FloatPoint fromViewCenter;
UInt32 toValidFlags;
Float32 toPan;
Float32 toTilt;
Float32 toFOV;
FloatPoint toViewCenter;
Float32 distance;
UInt32 flags;
UInt32 reserved1;
UInt32 reserved2;

} VRLinkHotSpotAtom, *VRLinkHotSpotAtomPtr;

Angle Range Atom Structure

typedef struct VRAngleRangeAtom {
Float32 minimumAngle;
Float32 maximumAngle;

} VRAngleRangeAtom, *VRAngleRangeAtomPtr;

Panorama Sample Atom Structure

typedef struct VRPanoSampleAtom {
UInt16 majorVersion;
UInt16 minorVersion;
UInt32 imageRefTrackIndex;
UInt32 hotSpotRefTrackIndex;
Float32 minPan;
Float32 maxPan;
Float32 minTilt;
Float32 maxTilt;
Float32 minFieldOfView;
Float32 maxFieldOfView;
Float32 defaultPan;
Float32 defaultTilt;
Float32 defaultFieldOfView;
UInt32 imageSizeX;
UInt32 imageSizeY;
UInt16 imageNumFramesX;
UInt16 imageNumFramesY;
UInt32 hotSpotSizeX;
Summary of the VR World and Node Atom Types 297

C H A P T E R 5

Creating QuickTime VR Movies
UInt32 hotSpotSizeY;
UInt16 hotSpotNumFramesX;
UInt16 hotSpotNumFramesY;
UInt32 flags;
UInt32 reserved1;
UInt32 reserved2;

} VRPanoSampleAtom, *VRPanoSampleAtomPtr;

Object Sample Atom Structure

typedef struct VRObjectSampleAtom {
UInt16 majorVersion;
UInt16 minorVersion;
UInt16 movieType;
UInt16 viewStateCount;
UInt16 defaultViewState;
UInt16 mouseDownViewState;
UInt32 viewDuration;
UInt32 columns;
UInt32 rows;
Float32 mouseMotionScale;
Float32 minPan;
Float32 maxPan;
Float32 defaultPan;
Float32 minTilt;
Float32 maxTilt;
Float32 defaultTilt;
Float32 minFieldOfView;
Float32 fieldOfView;
Float32 defaultFieldOfView;
Float32 defaultViewCenterH;
Float32 defaultViewCenterV;
Float32 viewRate;
Float32 frameRate;
UInt32 animationSettings;
UInt32 controlSettings;

} VRObjectSampleAtom, *VRObjectSampleAtomPtr;
298 Summary of the VR World and Node Atom Types

C H A P T E R 5

Creating QuickTime VR Movies
Track Reference Entry Structure

struct QTVRTrackRefEntry {
UInt32 trackRefType;
UInt16 trackResolution;
UInt32 trackRefIndex;

};
typedef struct QTVRTrackRefEntry QTVRTrackRefEntry;
Summary of the VR World and Node Atom Types 299

C H A P T E R 5

Creating QuickTime VR Movies
300 Summary of the VR World and Node Atom Types

A P P E N D I X A

Figure A-0
Listing A-0
Table A-0
QuickTime VR Cursors A

This appendix lists the cursors that QuickTime VR uses for interactive feedback.
The cursors are categorized according to the way they are used. The categories
are:

■ Hot spot cursors

■ Navigation cursors

■ Manipulation cursors

■ Panning interface cursors
■ Grabber interface cursors
■ Spinner interface cursors
■ Joystick interface cursors
■ Pointer interface cursor

Hot Spot Cursors A

Hot spot cursors have ID values in the range –32000 to –31501.

Table A-1 Hot spot cursors

Cursor ID Cursor icon Cursor description

–32000 Mouse over link ('link') hot spot cursor.

–32199 Mouse down on link ('link') hot spot cursor.

–32198 Mouse-up cursor while link ('link') hot spot is executing.

–32197 Mouse over undefined object, that is, any hot spot of a type
not covered by other hot spot cursors.
Hot Spot Cursors 301

A P P E N D I X A

QuickTime VR Cursors
Navigation Cursors A

Navigation cursors have ID values in the range –31500 to –31001.

–32196 Mouse down on undefined object, that is, any hot spot of a
type not covered by other hot spot cursors.

–32195 Mouse-up cursor while undefined object hot spot (that is, any
hot spot of a type not covered by other hot spot cursors) is
executing.

–32194 Mouse over URL ('url ') hot spot cursor

–32193 Mouse down on URL ('url ') hot spot cursor

–32192 Mouse-up cursor while URL ('url ') hot spot is executing

Table A-2 Navigation cursors

Cursor ID Cursor icon Cursor description

–31500 Zooming in cursor.

–31499 Zooming out cursor.

–31498 Conflicting zoom keys cursor.

–31497 Zooming in cursor, with zooming constrained.

Table A-1 Hot spot cursors (continued)

Cursor ID Cursor icon Cursor description
302 Navigation Cursors

A P P E N D I X A

QuickTime VR Cursors
Manipulation Cursors A

The manipulation cursors are listed in the following categories:

■ Panning interface cursors

■ Grabber interface cursors

■ Spinner interface cursors

■ Joystick interface cursors

■ Pointer interface cursor

–31496 Zooming out cursor, with zooming constrained.

–31495 Translate on cursor.

–31494 Translate on, but unable to translate cursor.

Table A-2 Navigation cursors (continued)

Cursor ID Cursor icon Cursor description
Manipulation Cursors 303

A P P E N D I X A

QuickTime VR Cursors
Panning Interface Cursors A

Panning interface cursors have ID values in the range –19000 to –18501.

Table A-3 Panning interface cursors

Cursor ID Cursor icon Cursor description

–19000 Panning interface mouse-up cursor.

–18999 Mouse centered, waiting to pan or tilt cursor.

–18998 Pan left cursor.

–18997 Pan left cursor, with panning constrained.

–18996 Pan right cursor.

–18995 Pan right cursor, with panning constrained.

–18994 Pan down cursor.

–18993 Pan down cursor, with panning constrained.

–18992 Pan down-left cursor.

–18991 Pan down-left cursor, with panning down constrained.

–18990 Pan down-left cursor, with panning left constrained.

–18989 Pan down-left cursor, with both panning down and panning
left constrained.

–18988 Pan down-right cursor.

–18987 Pan down-right cursor, with panning down constrained.
304 Manipulation Cursors

A P P E N D I X A

QuickTime VR Cursors
–18986 Pan down-right cursor, with panning right constrained.

–18985 Pan down-right cursor, with both panning down and panning
right constrained.

–18984 Pan up cursor.

–18983 Pan up cursor, with panning constrained.

–18982 Pan up-left cursor.

–18981 Pan up-left cursor, with panning up constrained.

–18980 Pan up-left cursor, with panning left constrained.

–18979 Pan up-left cursor, with both panning up and panning left
constrained.

–18978 Pan up-right cursor.

–18977 Pan up-right cursor, with panning up constrained.

–18976 Pan up-right cursor, with panning right constrained.

–18975 Pan up-right cursor, with both panning up and panning right
constrained.

Table A-3 Panning interface cursors (continued)

Cursor ID Cursor icon Cursor description
Manipulation Cursors 305

A P P E N D I X A

QuickTime VR Cursors
Grabber Interface Cursors A

Grabber interface cursors have ID values in the range –18500 to –18001.

Spinner Interface Cursors A

Spinner interface cursors have ID values in the range –18000 to –17501.

Table A-4 Grabber interface cursors

Cursor ID Cursor icon Cursor description

–18500 Mouse-up cursor when over the central part of the movie.

–18499 Mouse-down cursor when over the central part of the movie.

Table A-5 Spinner interface cursors

Cursor ID Cursor icon Cursor description

–18000 Inside top border cursor, both mouse up and mouse down.

–17999 Inside bottom border cursor, both mouse up and mouse
down.

–17998 Inside left border cursor, both mouse up and mouse down,
when tilt angle is between 78˚ and 90˚.

–17997 Inside right border cursor, both mouse up and mouse down,
when tilt angle is between 78˚ and 90˚.

–17996 Inside left border cursor, both mouse up and mouse down,
when tilt angle is between 56˚ and 78˚.

–17995 Inside right border cursor, both mouse up and mouse down,
when tilt angle is between 56˚ and 78˚.

–17994 Inside left border cursor, both mouse up and mouse down,
when tilt angle is between 34˚ and 56˚.
306 Manipulation Cursors

A P P E N D I X A

QuickTime VR Cursors
–17993 Inside right border cursor, both mouse up and mouse down,
when tilt angle is between 34˚ and 56˚.

–17992 Inside left border cursor, both mouse up and mouse down,
when tilt angle is between 11˚ and 34˚.

–17991 Inside right border cursor, both mouse up and mouse down,
when tilt angle is between 11˚ and 34˚.

–17990 Inside left border cursor, both mouse up and mouse down,
when tilt angle is between –11˚ and 11˚.

–17989 Inside right border cursor, both mouse up and mouse down,
when tilt angle is between –11˚ and 11˚.

–17988 Inside left border cursor, both mouse up and mouse down,
when tilt angle is between –34˚ and –11˚.

–17987 Inside right border cursor, both mouse up and mouse down,
when tilt angle is between –34˚ and –11˚.

–17986 Inside left border cursor, both mouse up and mouse down,
when tilt angle is between –56˚ and –34˚.

–17985 Inside right border cursor, both mouse up and mouse down,
when tilt angle is between –56˚ and –34˚.

–17984 Inside left border cursor, both mouse up and mouse down,
when tilt angle is between –78˚ and –56˚.

–17983 Inside right border cursor, both mouse up and mouse down,
when tilt angle is between –78˚ and –56˚.

–17982 Inside left border cursor, both mouse up and mouse down,
when tilt angle is between –90˚ and –78˚.

–17981 Inside right border cursor, both mouse up and mouse down,
when tilt angle is between –90˚ and –78˚.

–17980 Inside top border cursor, both mouse up and mouse down;
object cannot turn up.

–17979 Inside bottom border cursor, both mouse up and mouse
down; object cannot turn down.

Table A-5 Spinner interface cursors (continued)

Cursor ID Cursor icon Cursor description
Manipulation Cursors 307

A P P E N D I X A

QuickTime VR Cursors
–17978 Inside left border cursor, both mouse up and mouse down,
when tilt angle is between 78˚ and 90˚; object cannot turn left.

–17977 Inside right border cursor, both mouse up and mouse down,
when tilt angle is between 78˚ and 90˚; object cannot turn
right.

–17976 Inside left border cursor, both mouse up and mouse down,
when tilt angle is between 56˚ and 78˚; object cannot turn left.

–17975 Inside right border cursor, both mouse up and mouse down,
when tilt angle is between 56˚ and 78˚; object cannot turn
right.

–17974 Inside left border cursor, both mouse up and mouse down,
when tilt angle is between 34˚ and 56˚; object cannot turn left.

–17973 Inside right border cursor, both mouse up and mouse down,
when tilt angle is between 34˚ and 56˚; object cannot turn
right.

–17972 Inside left border cursor, both mouse up and mouse down,
when tilt angle is between 11˚ and 34˚; object cannot turn left.

–17971 Inside right border cursor, both mouse up and mouse down,
when tilt angle is between 11˚ and 34˚; object cannot turn
right.

–17970 Inside left border cursor, both mouse up and mouse down,
when tilt angle is between –11˚ and 11˚; object cannot turn left.

–17969 Inside right border cursor, both mouse up and mouse down,
when tilt angle is between –11˚ and 11˚; object cannot turn
right.

–17968 Inside left border cursor, both mouse up and mouse down,
when tilt angle is between –34˚ and –11˚; object cannot turn
left.

–17967 Inside right border cursor, both mouse up and mouse down,
when tilt angle is between –34˚ and –11˚; object cannot turn
right.

Table A-5 Spinner interface cursors (continued)

Cursor ID Cursor icon Cursor description
308 Manipulation Cursors

A P P E N D I X A

QuickTime VR Cursors
Joystick Interface Cursors A

Joystick interface cursors have ID values in the range –17500 to –17001.

–17966 Inside left border cursor, both mouse up and mouse down,
when tilt angle is between –56˚ and –34˚; object cannot turn
left.

–17965 Inside right border cursor, both mouse up and mouse down,
when tilt angle is between –56˚ and –34˚; object cannot turn
right.

–17964 Inside left border cursor, both mouse up and mouse down,
when tilt angle is between –78˚ and –56˚; object cannot turn
left.

–17963 Inside right border cursor, both mouse up and mouse down,
when tilt angle is between –78˚ and –56˚; object cannot turn
right.

–17962 Inside left border cursor, both mouse up and mouse down,
when tilt angle is between –90˚ and –78˚; object cannot turn
left.

–17961 Inside right border cursor, both mouse up and mouse down,
when tilt angle is between –90˚ and –78˚; object cannot turn
right.

Table A-6 Joystick interface cursors

Cursor ID Cursor icon Cursor description

–17500 Mouse up, joystick center cursor.

–17499 Mouse up, cursor left of joystick center.

–17498 Mouse up, cursor right of joystick center.

Table A-5 Spinner interface cursors (continued)

Cursor ID Cursor icon Cursor description
Manipulation Cursors 309

A P P E N D I X A

QuickTime VR Cursors
–17497 Mouse up, cursor bottom of joystick center.

–17496 Mouse up, cursor bottom left of joystick center.

–17495 Mouse up, cursor bottom right of joystick center.

–17494 Mouse up, cursor top of joystick center.

–17493 Mouse up, cursor top left of joystick center.

–17492 Mouse up, cursor top right of joystick center.

–17491 Mouse down, joystick center cursor.

–17490 Mouse down, cursor left of joystick center.

–17489 Mouse down, cursor right of joystick center.

–17488 Mouse down, cursor bottom of joystick center.

–17487 Mouse down, cursor bottom left of joystick center.

–17486 Mouse down, cursor bottom right of joystick center.

–17485 Mouse down, cursor top of joystick center.

–17484 Mouse down, cursor top left of joystick center.

–17483 Mouse down, cursor top right of joystick center.

Table A-6 Joystick interface cursors (continued)

Cursor ID Cursor icon Cursor description
310 Manipulation Cursors

A P P E N D I X A

QuickTime VR Cursors
Pointer Interface Cursor A

Pointer interface cursors have ID values in the range –17000 to –16501.

Compatibility With QuickTime VR 2.0 A

The cursor ID values shown here are new with QuickTime VR 2.1. For cursor
IDs used with QuickTime VR 2.0, developers should refer to the old
documentation.

When you call QTVRReplaceCursor() with an old cursor ID, the ID value will be
updated in the CursorRecord structure on return, to correspond to the ID that
was actually replaced—the cursor’s new ID.

When you call QTVRReplaceCursor() with an old ID value that was never used,
the function may return a paramErr even though no error was returned by
QuickTime VR 2.0. Similarly, QuickTime VR returns a paramErr for any cursor
ID that is not used in the current movie: for example, a cursor ID used only by
object-type nodes when the current movie consists only of panoramic nodes.
From this point of view, the cursor ID values that no longer exist may be
thought of as belonging to a node type that doesn’t exist in any QuickTime VR
movie.

Table A-7 Pointer interface cursor

Cursor ID Cursor icon Cursor description

–17000 Pointer interface cursor.
Compatibility With QuickTime VR 2.0 311

A P P E N D I X A

QuickTime VR Cursors
312 Compatibility With QuickTime VR 2.0

Glossary
action See movie controller action.

action filter function An
application-defined function that is called by
a movie controller component each time the
component receives a movie controller
action. Your filter function can handle the
action itself or refer it back to the movie
controller component for processing.

angular unit A unit for measuring angles.
For the QuickTime VR Manager, the default
angular unit is degrees. Compare degree,
radian.

animation See frame animation, view
animation.

animation setting A value that specifies
characteristics of an object node while it is
playing an animation. For example, one
animation setting determines whether an
object node animation is looped. Compare
control setting.

antialiasing The smoothing of jagged
edges on a displayed shaped by modifying
the transparencies of individual pixels along
the shape’s edge.

API See application programming
interface.

application programming interface
(API) The total set of constants, data
structures, routines, and other programming
elements that allow developers to use some
part of the system software.

area of interest structure A data structure
that delineates a rectangular area in the back
buffer. Defined by the AreaOfInterest data
type.

atom The basic unit of data in a movie
resource. Defined by the QTAtom data type.
There are a number of different atom types,
including movie atoms, track atoms, and
media atoms. There are two varieties of
atoms: container atoms, which contain other
atoms, and leaf atoms, which do not contain
any other atoms.

atom container An opaque object that
contains one or more atoms. Defined by the
QTAtomContainer data type.

author (v) To create a multimedia title,
such as a QuickTime VR movie. (n) The
person or persons who creates a multimedia
title.

autoscrolling The scrolling that occurs
when the mouse button is being held down
and the user is zooming.

back buffer An image buffer maintained
by QuickTime VR for panoramic nodes that
contains an image that has not yet been
corrected. Compare prescreen buffer.

back buffer imaging procedure An
application-defined procedure that is
executed at established times; you use this
procedure to access the back buffer.
Compare prescreen buffer imaging
completion procedure.
313

G L O S S A R Y
base resolution The highest resolution
image present in a node.

cache buffer See back buffer.

constraint See viewing constraint.

container atom A QuickTime atom that
contains other atoms, possibly including
other container atoms. Examples of
container atoms are track atoms and edit
atoms. Compare leaf atom.

controller See movie controller
component, QuickTime VR movie
controller.

controller bar A rectangular region
associated with a QuickTime VR movie that
displays the movie’s controls.

controller bar key A key that, when
pressed, activates a control in the controller
bar. For example, the translation key is a
controller bar key.

control setting A value that specifies
whether an object can wrap during panning
and tilting, as well as other features of the
node. Compare animation setting.

correct To undo the cylindrical (or other)
projection of a panoramic image so that it
appears as it was originally captured or
rendered. Also called warp.

correction mode The kind of warping
correction to be applied when imaging a
panoramic view.

current node The node in a scene that is
currently being viewed on the screen.

cursor record A data structure that
indicates which cursor to replace and its
replacement cursor. Defined by the
CursorRecord data type.

custom hot spot A hot spot of a type
defined by a third-party developer.

custom hot spot cursor A custom cursor
that is displayed during interaction with a
hot spot.

cylindrical projection A method of
projecting a panorama onto the surface of a
cylinder.

default node The node in a scene that is
displayed when the scene is first opened.

degree An angular unit equal to 1/360 of a
complete circle. Indicated by the sign ˚.
Compare radian.

destination node The node to which a link
hot spot is linked.

dicing The process of transforming a
panoramic image into individual frames in a
panorama image track.

enviromapping The process of projecting
an image onto the inside of a shape, such as
a sphere or cylinder.

field of view The horizontal or vertical
angular expanse visible through a camera.

field-of-view constraint atom An atom in
a QuickTime VR file that contains
information about the initial vertical field of
view constraints for a panorama. Compare
pan constraint atom, tilt constraint atom.
314

G L O S S A R Y
floating-point point structure A data
structure used to specify a point in a
panorama or object. Defined by the
FloatPoint data type.

FOV See field of view.

frame animation An animation through
all frames of a particular view. Compare
view animation.

frame animation rate See frame rate.

frame differencing A form of temporal
compression that involves examining
redundancies between adjacent frames in a
moving image sequence.

frame rate The rate at which the frame
animation in a view is played. Compare
view rate.

front buffer See prescreen buffer.

full panorama A 360-degree panorama.
Compare partial panorama.

go-back button A button in the controller
bar for panoramas that allows the user to
return to the previous node.

horizontal field of view The horizontal
angular expanse visible through a camera.
Compare vertical field of view.

hot spot An area in a QuickTime VR
movie that permits user interaction.

hot spot action selector A value passed to
a mouse over hot spot procedure that
indicates whether the cursor has entered, is
in, or has left the hot spot.

hot spot atom An atom in a QuickTime VR
file that contains information about a hot
spot. A hot spot atom is always a child of a
hot spot parent atom.

hot spot callback routine See mouse over
hot spot procedure.

hot spot display button A button in the
controller bar that allows the user to
highlight the visible hot spots.

hot spot ID An unsigned long integer that
uniquely identifies a hot spot.

hot spot image track A video track in a
QuickTime VR file that contains colored
regions depicting the hot spots. For objects,
an image in the hot spot image track must
be synchronized in time to the corresponding
image in the object image track.

hot spot parent atom An atom in a
QuickTime VR file that contains one or more
hot spot atoms and their children.

hysteresis See mouse-click hysteresis.

image See movie image.

Image Compression Manager The part of
QuickTime that provides image compression
and decompression services.

image track See low-resolution image
track, object image track, panorama
image track.

imaging atom An atom in a QuickTime VR
file that describes the default imaging
characteristics for one type of node in a
scene. Imaging atoms are contained in an
imaging parent atom. See also
panorama-imaging atom.

imaging mode A mode or state of a
panoramic node that determines the kind of
drawing that is to be performed for the node.
315

G L O S S A R Y
imaging parent atom An atom in a
QuickTime VR file that contains one or more
imaging atoms.

imaging property A property of a node
that determines a drawing characteristic for
that node (such as the image quality).

instance See QuickTime VR movie
instance.

interaction property A property of a
QuickTime VR movie whose value
determines a specific mode of user
interaction.

intercept procedure A function, installed
by a call to QTVRInstallInterceptProc, that is
executed instead of (or in addition to) a
QuickTime VR Manager function.

intercept selector A constant that indicates
which QuickTime VR Manager function to
intercept. Defined by the QTVRProcSelector
enumerated constants.

intercept structure A data structure used
to pass information to an intercept
procedure. Defined by the
QTVRInterceptRecord data type.

key node An important node in a scene.

label display area An area in the
controller bar in which information can be
displayed. For instance, when the cursor is
over one of the buttons, the button’s name
appears in the label display area.

leaf atom A QuickTime atom that contains
no other atoms. Compare container atom.

limit See viewing limit.

link A connection between two nodes in a
QuickTime VR movie.

link hot spot A hot spot that allows a
user to navigate from one node in a scene
to another.

lossless compression A compression
scheme that preserves all of the original data.

low-resolution image track A video track
that contains a diced low-resolution version
of a panoramic image.

mouse-click hysteresis The distance, in
pixels, from the location of a mouse-down
event to the limit in which the cursor is
considered not to have moved.

mouse-click timeout The number of ticks
after which a mouse click times out and is
automatically switched from a hot spot
selection into a pan.

mouse-down tracking The process of
tracking the state of the mouse button when
it is clicked in a QuickTime VR movie.
Compare mouse-over tracking.

mouse-motion scale A value that indicates
the number of degrees or radians that an
object or panorama is panned or tilted when
the cursor is dragged the entire width of the
VR movie image.

mouse over hot spot procedure An
application-defined procedure that is
executed whenever the cursor moves over,
remains above, or leaves a hot spot.

mouse-over tracking The process of
tracking the location of the cursor when it is
in a QuickTime VR movie and changing the
shape of the cursor as appropriate. Compare
mouse-down tracking.
316

G L O S S A R Y
movie A set of time-based data that is
managed by the Movie Toolbox. A
QuickTime movie may contain sound,
video, animation, laboratory results,
financial data, or a combination of any of
these types of time-based data. A QuickTime
movie contains one or more tracks; each
track represents a single data stream in the
movie.

movie author See author.

movie controller See movie controller
component, QuickTime VR movie
controller.

movie controller action A constant (of
type mcAction) used by QuickTime movie
controller components in the MCDoAction
function. Applications that include action
filters can receive any of these actions.

movie controller component A
component that manages the user interface
for playing and editing movies.

movie image The image currently
displayed in a QuickTime VR movie.

movie instance See QuickTime VR movie
instance.

multinode movie A QuickTime VR movie
that includes more than one node. Compare
single-node movie.

navigable node See object node.

node A position in a scene at which you
view an object or a panorama.

node-entering procedure An
application-defined procedure that is
executed each time the user enters a node.
Compare node-leaving procedure.

node header atom An atom in a
QuickTime VR file that contains the type
and ID of a node, as well as the node name
and any node comments.

node ID An unsigned long integer that
uniquely identifies a node in a movie.

node ID atom An atom in a QuickTime VR
file that specifies the ID of a node in the
scene. Each node ID atom has a single child,
which is a node location atom.

node information atom container An
atom container that contains information
about a particular node in a scene (for
example, the hot spots and default
characteristics of the node).

node-leaving procedure An
application-defined procedure that is
executed each time the user leaves a node.
Compare node-entering procedure.

node location atom An atom in a
QuickTime VR file that specifies the type
and location of a node.

node parent atom An atom in a
QuickTime VR file that contains one or more
node ID atoms.

nudge To move to the next available view
in a specified direction.

nudge control A constant that indicates
the direction in which to nudge.

object (1) The real or synthetic object that
is captured photographically or rendered by
computer to create an object node. (2) See
object node.

object image array A two-dimensional
array of images that represent all possible
views of an object.
317

G L O S S A R Y
object image track A video track in a
QuickTime VR movie file that contains, in
sequential order, the views of an object.

object node A type of node that allows a
user to manipulate a photographically
captured or computer-rendered object.
Compare panoramic node.

object sample atom An atom in a
QuickTime VR file that describes a
single object.

object track A track that contains
information about the object nodes in a
scene. Compare panorama track.

object view A single set of values for the
field of view, view center, pan angle, and tilt
angle for an object node. Compare
panorama view.

palindrome looping A type of looping in
which the frames in a view duration are
played forward, then backward, then
forward, and so on.

pan To move a camera or point of view
horizontally. Compare tilt.

pan angle The angle of pan. Pan angles are
measured in radians or degrees, where
positive values pan to the left. Compare
tilt angle.

pan constraint atom An atom in a
QuickTime VR file that contains information
about the initial pan angle constraints for a
panorama. Compare field-of-view constraint
atom, tilt constraint atom.

panning speed The relative speed of
panning and tilting. This speed should be
from 1 (the slowest speed) through 10 (the

fastest speed); the default panning and
tilting speed is 5.

panorama (1) The real or synthetic
expanse that is captured photographically or
rendered by computer to create a panoramic
node. (2) See panoramic node.

panorama buffer See back buffer.

panorama data atom See panorama
sample atom.

panorama image track A video track in a
QuickTime VR movie file that contains the
diced frames of the original panoramic
image.

panorama-imaging atom An atom in a
QuickTime VR file that describes the default
imaging characteristics for the panoramic
nodes in a scene.

panorama sample atom An atom in a
QuickTime VR file that describes a single
panorama, including information about the
default viewing angles and the source
panoramic image.

panorama track A track that contains
information about the panoramic nodes in a
scene. Compare object track.

panorama view A single set of values for
the field of view, pan angle, and tilt angle for
a panoramic node. Compare object view.

panoramic image A cylindrical band of
blended photographed or rendered images.
Also called a panoramic PICT.

panoramic node A type of node that
allows a user to view a panorama. Compare
object node.
318

G L O S S A R Y
panoramic PICT See panoramic image.

partial panorama A panorama that is less
than 360 degrees. Compare full panorama.

play flag See animation setting, control
setting.

play rate The rate (and direction) at which
a movie is played.

play setting See animation setting,
control setting.

prescreen buffer An image buffer
maintained by QuickTime VR for panoramic
nodes that contains the corrected image.
Also called the front buffer. Compare
back buffer.

prescreen buffer imaging completion
procedure An application-defined
procedure that is executed each time
QuickTime VR is finished drawing an image
into the prescreen buffer. Compare back
buffer imaging procedure.

procedure selector See intercept selector.

QTVR See QuickTime VR.

QTVR instance See QuickTime VR movie
instance.

QTVR movie See QuickTime VR movie.

QTVR track A track in a QuickTime VR
movie that contains a list of the nodes in the
scene and other information about the scene.

QuickTime A part of the system software
for Macintosh and other computers that an
application can use to control time-based
data, such as video or audio data.

QuickTime atom See atom.

QuickTime movie A set of time-based
data that can be displayed and manipulated
using QuickTime.

QuickTime VR An extension of the
QuickTime technology developed by
Apple Computer, Inc. that allows users
to interactively explore and examine
photorealistic, three-dimensional
virtual worlds.

QuickTime VR file format The format of
the movie files that contain QuickTime VR
movies.

QuickTime VR Manager The part of the
system software for Macintosh and other
computers that an application can use to
control QuickTime VR movies.

QuickTime VR movie A collection of
object and panoramic nodes.

QuickTime VR movie controller The
movie controller component that manages
QuickTime VR movies. See also controller
bar.

QuickTime VR movie instance An
instance of a QuickTime VR movie. Defined
by the QTVRInstance data type.

radian An angular unit defined by the
circular angle whose radius is equal to the
subtended circular arc. Abbreviated rad.
A radian is 57.2958 degrees. Compare degree.

scale See zoom.

scene (1) A site or location at which you
want to make a QuickTime VR movie. (2) A
collection of one or more nodes.

scene header atom See VR world header
atom.
319

G L O S S A R Y
sibling atom An atom that has the same
parent as some other atom (that is, is
contained in the same container).

single-node movie A QuickTime VR
movie that includes just one node. Compare
multinode movie.

spatial compression Image compression
that is performed in the context of a single
frame. This compression technique takes
advantage of redundancy in the image to
reduce the amount of data that is required to
accurately represent the image. Compare
temporal compression.

speaker button A button in the controller
bar that allows the user to adjust the
sound volume.

string atom An atom in a QuickTime VR
file that contains a string.

swing transition A smooth motion from
one view in a node to another view in the
same node.

synthetic Not real, as for example the
objects in a computer-generated
three-dimensional model.

temporal compression Image compression
that is performed between frames in a
sequence. This compression technique takes
advantage of redundancy between adjacent
frames in a sequence to reduce the amount
of data that is required to accurately
represent each frame in the sequence.
Sequences that have been temporally
compressed typically contain key frames at
regular intervals. Compare spatial
compression.

tilt To move a camera or point of view
vertically. Compare pan.

tilt angle The angle of tilt. Tilt angles are
measured in radians or degrees, where
positive values tilt up. Compare pan angle.

tilt constraint atom An atom in a
QuickTime VR file that contains information
about the initial tilt angle constraints for a
panorama. Compare field-of-view
constraint atom, pan constraint atom.

tilting speed The relative speed of
panning and tilting. This speed should be
from 1 (the slowest speed) through 10 (the
fastest speed); the default panning and
tilting speed is 5.

timeout See mouse-click timeout.

transition The movement between two
items in a movie, such as from one view in a
node to another view in the same node, or
from one node to another.

transition effect Any special visual effect
associated with a transition.

transition property A property of a VR
movie whose value determines a specific
kind of transition effect.

translate To reposition an object by
changing the current view center.

translate mode An interaction property for
objects whose value determines whether
dragging the mouse causes an object to be
translated (true) or to be panned or tilted
(false).

translate mode button A button in the
controller bar that allows the user to enable
or disable translate mode.

translation key The key on a keyboard
that the user can hold down to enable
translate mode.
320

G L O S S A R Y
Universal Resource Locator (URL) An
address of a page on the World Wide Web.

URL See Universal Resource Locator.

URL hot spot A hot spot that is associated
with a URL.

user data Auxiliary data that your
application can store in a QuickTime movie,
track, or media structure. The user data is
stored in a user data list; items in the list are
referred to as user data items. Examples of
user data include a copyright, date of
creation, name of a movie’s director, and
special hardware and software
requirements.

user data item A single element in a user
data list.

user data list The collection of user data
for a QuickTime movie, track, or media
structure.

vertical field of view The vertical angular
expanse visible through a camera. Compare
horizontal field of view.

view See object view, panorama view.

view angle See pan angle, tilt angle.

view animation An animation through all
views in the current row of a particular
object. Compare frame animation.

view animation rate See view rate.

view array See object image array.

view center The pixel in the image of a
view that appears at the center of an object’s
bounding box.

view duration The amount of time in an
object node’s video track that is occupied by
a particular view of an object.

viewing constraint A limit on the current
viewing characteristics (pan angle, tilt angle,
or field of view) for a panorama or object. A
constraint is imposed at runtime and must
always lie in the node’s viewing limits.
Compare viewing limit.

viewing constraint atom An atom in a
QuickTime VR file that contains information
about the initial viewing constraints for a
panorama. Compare field-of-view
constraint atom, pan constraint atom, tilt
constraint atom.

viewing limit A physical limit on the
allowable viewing characteristics (pan
angle, tilt angle, or field of view) for a
panorama or object. A viewing limit is
imposed by the panoramic or object data
stored in the movie file. Compare viewing
constraint.

view rate The rate at which the view
animation in an object is played. Compare
frame rate.

view setting See control setting.

view state A state that selects an alternate
set of images for an object’s views. For
instance, holding down the mouse button
might change an object from one view state
to another, causing a different set of images
to be displayed.

virtual reality (VR) The experience of
exploring and interacting with a spatial
environment using a computer.
321

G L O S S A R Y
virtual world A spatial environment that
can by explored and interacted with using
a computer.

VR See QuickTime VR, virtual reality.

VR movie See QuickTime VR movie.

VR movie instance See QuickTime VR
movie instance.

VR object See object node.

VR panorama See panoramic node.

VR world (1) See virtual world. (2) A data
structure that contains general information
about a QuickTime VR movie. A movie’s VR
world is contained in the QTVR track’s
sample description header, defined by the
QTVRSampleDescription data type.

VR world header atom An atom in a
QuickTime VR file that contains the name of
the scene and the default node ID to be used
when the file is first opened.

warp See correct.

warping correction mode See correction
mode.

warp space buffer See back buffer.

zoom To enlarge or reduce the
magnification of an image while maintaining
the current point of interest.

zoom-in button A button in the controller
bar that allows the user to zoom in.

zooming speed The relative speed of
zooming in and out. This speed should be
from 1 (the slowest speed) through 10 (the
fastest speed); the default zooming speed
is 5.

zoom-out button A button in the
controller bar that allows the user to
zoom out.
322

Index
A

action filter functions 212, 225 to 232
actions. See movie controller actions, for

QuickTime VR.
angles, specifying 24
angular units

getting 153
setting 154
types of 59

animation. See frame animation, view animation.
animation settings 28, 72

getting 137
in files 281
setting 138

AreaOfInterest data type 87
areas of interest 87
atom containers 241

defined 241

B

back buffer imaging procedures
defined 41
defining 186
flags for 78 to 80
installing 177

back buffers
areas of interest in 87
defined 40
getting information about 171, 173
procedure flags for 78
refreshing 79, 179
setting preferences for 174
sizes of 84

C

cache buffers. See back buffers.
compression settings, overriding 289
compressors

for image tracks 266, 277
for panorama tracks 275

constraints. See viewing constraints.
controller bar 211 to 212

flags for 233 to 234
hiding and showing 213

controller bar buttons,showing and hiding 214
controllers. See movie controller components,

QuickTime VR movie controllers.
control settings 74

defined 31
getting 139
in files 281
setting 140

correction modes 62, 147
cursor parent atoms 249
CursorRecord data type 87
cursor records 87
cursors

disabling 20
ID values and icons for 301 to 311
replacing 165
types of 82

custom atoms 258

D

default views, showing 100
dicing 264
323

I N D E X
E

events, routines for handling 112 to 122

F

field of view
getting 95
in files 281
setting 95

floating-point point structure 86
FOV. See field of view.
frame animation

defined 28
enabling or disabling 141
getting state of 141
palindrome 73
stored in files 286

frame animation rates. See frame rates.
frame rates 28

getting 129
in files 281
setting 129

front buffers. See prescreen buffers.

G

Gestalt function, and QuickTime VR
Manager 42 to 43, 57 to 58

go-back button 211, 234

H

hot spot action selectors 59
hot spot callback routines. See mouse over hot

spot procedures.
hot spot display button 212, 234
hot spot ID 251
hot spot information atoms 252
hot spot parent atoms 251

hot spots 30
defined 30
enabling and disabling 108
finding visible 110
getting regions of 111
managing 105 to 112
selectors for 72
triggering 107
types of 67

hysteresis. See mouse-click hysteresis.

I, J

image tracks. See low-resolution image tracks,
object image tracks, panorama image
tracks.

imaging modes 63
imaging parent atoms 245
imaging properties

getting 145
setting 146
types of 64
valid flags for 247

imaging qualities 65
InitializeQTVR function 44, 88
instances. See QuickTime VR movie instances.
interaction properties

getting 163
setting 164
types of 68 to 70

intercepted procedures, calling 126
intercept procedures 48 to 53

defined 48
defining 181 to 182
installing 125

intercept selectors 50, 60 to 61, 86
intercept structures 49, 85 to 86

K

kQTVRGetHotSpotSelector constant 61
324

I N D E X
kQTVRPanning constant 71, 128
kQTVRScrolling constant 72, 128
kQTVRSelecting constant 72, 128
kQTVRTranslating constant 72, 128
kQTVRZooming constant 72, 128

L

label display area 212, 234
limits. See viewing limits.
link hot spot atoms 254

valid flags for 255
link hot spots 23, 68
links 23

M

mouse-click hysteresis 69
mouse-click timeout 69
mouse control modes 71, 128
mouse-down tracking

getting state of 117
setting state of 117

mouse-motion scale 70, 280
mouse over hot spot procedures

defining 180
installing and removing 109

mouse-over tracking
getting state of 112
setting state of 113

movie control flags 233 to 234
movie controller actions, for QuickTime VR 212,

217 to 232
movie controllers. See QuickTime VR movie

controller.
movie files 263 to 299
movie instances. See QuickTime VR movie

instances.
MyBackBufferImagingProc function 186
MyEnteringNodeProc function 183
MyImagingCompleteProc function 185

MyInterceptProc function 181
MyLeavingNodeProc function 184
MyMouseOverHotSpotProc function 180

N

navigable nodes. See object nodes.
node-entering procedures

defined 53
defining 183
installing 161

node header atoms 250, 256
getting information from 256

node IDs 58
defined 23
getting current 103
going to 102

node information atom containers 249 to 259
node-leaving procedures

defined 54
defining 184
installing 162

node location atoms 248
node parent atoms 248
nodes

defined 21
entering and leaving 53 to 55
getting information about 104
getting name of 256
getting type of 103
showing default view 100
types of 58

nudge directions 81
nudge interaction mode 80
nudging 98
nudging, interacting with object 99

O

object image arrays 25 to 26, 280
object nodes 24 to 28
325

I N D E X
counting view states 134
defined 21
enabling or disabling frame animation 141
enabling or disabling view animation 143
getting animation settings 137
getting control settings 139
getting frame rate 129
getting state of frame animation 141
getting state of view animation 142
getting view duration 132
getting view rate 130
getting view states 135
getting view time 133
routines for 127 to 143
setting animation settings 138
setting control settings 140
setting frame rate 129
setting view rate 131
setting view states 136
setting view time 133

object sample atoms 278
object tracks 278 to 286
object views 24

P

palindrome frame animation 73
palindrome view animation 74
pan angles

converting to and from array columns 157 to
158

getting and setting 46 to 47, 91 to 93
panning, speed of 69
panorama buffers. See back buffers.
panorama data atoms. See panorama sample

atoms.
panorama image tracks 274
panorama imaging atoms 246
panorama tracks 271 to 278

defined 271
panorama views, defined 29
panoramic images

defined 28

resolutions of 83
panoramic nodes 28 to 30

buffers for 40 to 42
defined 22
getting resolutions of 170

partial panoramas 30
pixels, formats of 82
play flags. See animation settings, control

settings.
play settings. See animation settings, control

settings.
prescreen buffer imaging completion

procedures 55 to 56
defined 41
defining 185
installing 176

prescreen buffers
defined 40
drawing into 55 to 56

procedure selectors. See intercept selectors.

Q

QTVR. See QuickTime VR.
QTVRAnglesToCoord function 156
QTVRBeginUpdateStream function 149
QTVRCallInterceptedProc function 126
QTVRColumnToPan function 158
QTVRCoordToAngles function 155
QTVREnableFrameAnimation function 141
QTVREnableHotSpot function 108
QTVREnableTransition function 152
QTVREnableViewAnimation function 143
QTVREndUpdateStream function 150
QTVRFloatPoint data type 86
QTVRGetAngularUnits function 153
QTVRGetAnimationSetting function 137
QTVRGetAvailableResolutions function 170
QTVRGetBackBufferMemInfo function 171
QTVRGetBackBufferSettings function 173
QTVRGetConstraints function 168
QTVRGetConstraintStatus function 167
QTVRGetControlSetting function 139
326

I N D E X
QTVRGetCurrentMouseMode function 71, 128
QTVRGetCurrentNodeID function 103
QTVRGetCurrentViewDuration function 132
QTVRGetFieldOfView function 95
QTVRGetFrameAnimation function 141
QTVRGetFrameRate function 129
QTVRGetHotSpotRegion function 111
QTVRGetHotSpotType function 106
QTVRGetImagingProperty function 145
QTVRGetInteractionProperty function 163
QTVRGetMouseDownTracking function 117
QTVRGetMouseOverTracking function 112
QTVRGetNodeInfo function 104
QTVRGetNodeType function 103
QTVRGetPanAngle function 91
QTVRGetQTVRInstance function 90
QTVRGetQTVRTrack function 89
QTVRGetTiltAngle function 93
QTVRGetViewAnimation function 142
QTVRGetViewCenter function 96
QTVRGetViewCurrentTime function 133
QTVRGetViewingLimits function 166
QTVRGetViewRate function 130
QTVRGetViewStateCount function 134
QTVRGetViewState function 135
QTVRGetVisible function 144
QTVRGetVisibleHotSpots function 110
QTVRGetVRWorld function 101
QTVRGoToNodeID function 102
QTVRInstallInterceptProc function 125
QTVR instances. See QuickTime VR movie

instances.
QTVRInteractionNudge function 99
QTVRInterceptRecord data type 49, 85
QTVRMouseDown function 118
QTVRMouseEnter function 114
QTVRMouseLeave function 116
QTVRMouseStillDownExtended function 122
QTVRMouseStillDown function 119
QTVRMouseUpExtended function 124
QTVRMouseUp function 121
QTVRMouseWithin function 115
QTVR movies. See QuickTime VR movies.
QTVRNudge function 98
QTVRPanToColumn function 157

QTVRPtToAngles function 154
QTVRPtToHotSpotID function 105
QTVRRefreshBackBuffer function 179
QTVRReplaceCursor function 165
QTVRRowToTilt function 159
QTVRSetAngularUnits function 154
QTVRSetAnimationSetting function 138
QTVRSetBackBufferImagingProc function 177
QTVRSetBackBufferPrefs function 174
QTVRSetConstraints function 169
QTVRSetControlSetting function 140
QTVRSetEnteringNodeProc function 161
QTVRSetFieldOfView function 95
QTVRSetFrameRate function 129
QTVRSetImagingProperty function 146
QTVRSetInteractionProperty function 164
QTVRSetLeavingNodeProc function 162
QTVRSetMouseDownTracking function 117
QTVRSetMouseOverHotSpotProc function 109
QTVRSetMouseOverTracking function 113
QTVRSetPanAngle function 92
QTVRSetPrescreenImagingCompleteProc

function 176
QTVRSetTiltAngle function 94
QTVRSetTransitionProperty function 151
QTVRSetViewCenter function 97
QTVRSetViewCurrentTime function 133
QTVRSetViewRate function 131
QTVRSetViewState function 136
QTVRSetVisible function 144
QTVRShowDefaultView function 100
QTVRTiltToRow function 159
QTVR tracks 269 to 286

defined 45, 263, 269
getting 89

QTVRTriggerHotSpot function 107
QTVRUpdate function 148
QTVRWrapAndConstrain function 160
QuickTime atoms. See atoms.
QuickTime VR

initializing 88, 89
QuickTime VR 19 to 31

defined 19
memory use. See panoramic nodes, buffers for.

QuickTime VR file format 263
327

I N D E X
QuickTime VR Manager 39 to 205
application-defined routines in 180 to 187
checking for features of 42
constants for 57 to 85
data structures for 85 to 88
defined 39
determining if available 42, 57
intercepting routines of 48 to 53, 125 to 127
result codes 205
routines in 88 to 179
sample code for 42 to 56, 213 to 217

QuickTime VR movie controller
specifying 267

QuickTime VR movie controller 209 to 237
controls for 210 to 212
defined 210

QuickTime VR movie files
opening 19 to 20

QuickTime VR movie instances
creating 44 to 45, 89 to 91
defined 40

QuickTime VR movies
defined 21
displaying 19 to 21
updating 148

R

result codes 205

S

sample routines
MyEnteringNodeProc 54
MyGetMovie 19
MyGetNodeName 256
MyGetQTVRInstanceFromMC 44
MyGoDirByDegrees 46
MyHasQTVRManager 43
MyImagingCompleteProc 56
MyInstallInterceptProcedure 53

MyInterceptProc 50
MyLeavingNodeProc 54
MyZoomInOrOut 48

scene header atoms. See VR world header atoms.
scenes 21
speaker button 233
streaming movie, playing while loading 74
string atoms 242

defined 242
string encoding atoms

defined 242
swing transitions 30, 66

T

TerminateQTVR function 89
tilt angles

converting to and from array rows 159 to 160
getting and setting 46 to 47, 93 to 95

tilting, speed of 69
timeout. See mouse-click timeout.
transition effects 30, 66
transition properties

enabling or disabling 152
setting 151
types of 66

transitions
defined 30

translate mode 69, 77
translate mode button 212, 234
translation key 77

U

undefined hot spots 68
updating QuickTime VR movies 148
URL hot spot atom 256
URL hot spots 68
user data 267
328

I N D E X
V

version fields 242
view angles. See pan angles, tilt angles.
view animation

defined 28
enabling or disabling 143
getting state of 142
palindrome 74
synchronizing with frame animation 73

view animation rates. See view rates.
view arrays. See object image arrays.
view centers

getting 96
in files 281
setting 97

view durations
defined 27
getting 132
in files 280

viewing angles
getting and setting 46 to 47
getting for a point 154
manipulating 91 to 95

viewing constraints 30 to 31
defined 31
getting 168
getting status of 167
setting 169
types of 61, 70

viewing limits 30 to 31
defined 31
getting 166

view rates
getting 130
in files 281
setting 131

views. See object views, panorama views.
view settings. See control settings.
view states

counting 134
defined 27
getting 135
setting 136
stored in files 279, 286

types of 77
view times

getting 133
setting 133

visibility states
getting 144
setting 144

VR. See QuickTime VR.
VR movie instances. See QuickTime VR movie

instances.
VR movies. See QuickTime VR movies.
VR objects. See object nodes.
VRObjectSampleAtom data type 278
VR panoramas. See panoramic nodes.
VR world atom containers 243 to 249

defined 243
VR world header atoms 245
VR worlds

getting 101

W, X, Y

warping, in image correction 62
warping correction modes. See correction modes.
warp space buffers. See back buffers.

Z

zoom-in button 211, 234
zooming 47 to 48
zooming speed 69
zoom-out button 211, 234
329

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobe™ Illustrator and
Adobe Photoshop.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITERS
Tim Monroe, Allen Watson

ILLUSTRATOR
Deb Dennis

DEVELOPMENTAL EDITORS
Donna S. Lee, Beverly McGuire

PRODUCTION EDITOR
Gerri Gray

PROJECT MANAGER
Michael Hinkson

Special thanks to Ken Doyle III and
Bryce Wolfson

	Programming With QuickTime�VR�2.1
	Figures, Tables, and Listings
	About This Book
	Conventions Used in This Book
	Special Fonts
	Types of Notes

	Development Environment
	For More Information

	About QuickTime�VR
	About QuickTime�VR
	Displaying QuickTime�VR Movies
	Listing�1-1 Opening a QuickTime�VR movie

	Movies and Nodes
	Figure�1-1 An object in a QuickTime�VR virtual world
	Figure�1-2 A panorama in a QuickTime�VR virtual world
	Object Nodes
	Figure�1-3 Pan and tilt angles of an object
	Figure�1-4 An object image array
	Figure�1-5 An object image track

	Panorama Nodes
	Figure�1-6 The panoramic image used to generate panoramic views

	Hot Spots
	Viewing Limits and Constraints
	Displaying Files While Downloading

	QuickTime�VR Manager
	QuickTime�VR Manager
	About the QuickTime�VR Manager
	QuickTime�VR Movie Instances
	Buffers
	Figure�2-1 QuickTime�VR’s internal buffers

	Memory Management

	Using the QuickTime�VR Manager
	Determining That the QuickTime�VR Manager Is Available
	Listing�2-1 Checking for the availability of the QuickTime�VR Manager

	Initializing the QuickTime�VR Manager
	Creating QuickTime�VR Movie Instances
	Listing�2-2 Getting a QuickTime�VR movie instance

	Manipulating Viewing Angles and Zooming
	Listing�2-3 Changing the viewing angle
	Listing�2-4 Changing the field of view

	Intercepting QuickTime�VR Manager Routines
	Listing�2-5 Intercepting the QTVRSetPanAngle function (version 1)
	Listing�2-6 Intercepting the QTVRSetPanAngle function (version 2)
	Listing�2-7 Installing an intercept procedure

	Entering and Leaving Nodes
	Listing�2-8 Informing the user of a new node’s name
	Listing�2-9 Leaving a node

	Drawing in the Prescreen Buffer
	Listing�2-10 Overlaying images in the prescreen buffer

	QuickTime�VR Manager Reference
	Constants
	Gestalt Selector and Response Values
	Constant descriptions

	Node Types
	Constant descriptions

	Node IDs
	Constant descriptions

	Angular Unit Types
	Constant descriptions

	Hot Spot Action Selectors
	Constant descriptions

	Flags Value for Imaging Completion Procedure
	Intercept Selectors
	Constant descriptions

	Constraint Types
	Constant descriptions

	Correction Modes
	Constant descriptions

	Imaging Modes
	Constant descriptions

	Imaging Property Types
	Constant descriptions

	Quality Properties
	Transition Type
	Constant description

	Transition Properties
	Constant descriptions

	Hot Spot Types
	Constant descriptions

	Interaction Property Types
	Constant descriptions

	Viewing Constraints
	Constant descriptions

	Mouse Control Modes
	Constant descriptions

	Hot Spot Selectors
	Constant descriptions

	Animation Settings
	Constant descriptions

	Control Settings
	Constant descriptions

	View State Types
	Constant descriptions

	Back Buffer Imaging Procedure Flags
	Constant descriptions
	Constant descriptions
	Constant description

	Nudge Mode
	Constant descriptions

	Nudge Directions
	Constant descriptions

	Cursor Types
	Constant descriptions

	Pixel Formats
	Constant descriptions

	Resolutions
	Constant descriptions

	Geometry Selectors
	Cache Sizes
	Constant descriptions

	Data Structures
	Intercept Structure
	Floating-Point Point Structure
	Cursor Record
	Area of Interest Structure

	QuickTime�VR Manager Routines
	Initializing and Terminating QuickTime�VR
	InitializeQTVR
	TerminateQTVR
	Initializing and Managing QuickTime�VR Movie Instances
	QTVRGetQTVRTrack
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRGetQTVRInstance
	DESCRIPTION
	SPECIAL CONSIDERATIONS

	Manipulating Viewing Angles and Zooming
	QTVRGetPanAngle
	DESCRIPTION
	SEE ALSO

	QTVRSetPanAngle
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRGetTiltAngle
	DESCRIPTION
	SEE ALSO

	QTVRSetTiltAngle
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRGetFieldOfView
	DESCRIPTION
	SEE ALSO

	QTVRSetFieldOfView
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRGetViewCenter
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRSetViewCenter
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRNudge
	DESCRIPTION
	SEE ALSO

	QTVRInteractionNudge
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRShowDefaultView
	DISCUSSION

	Getting Scene and Node Information
	QTVRGetVRWorld
	DESCRIPTION
	SPECIAL CONSIDERATIONS

	QTVRGoToNodeID
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRGetCurrentNodeID
	DESCRIPTION
	SEE ALSO

	QTVRGetNodeType
	DESCRIPTION

	QTVRGetNodeInfo
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	Managing Hot Spots
	QTVRPtToHotSpotID
	DESCRIPTION

	QTVRGetHotSpotType
	DESCRIPTION
	SEE ALSO

	QTVRTriggerHotSpot
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVREnableHotSpot
	DESCRIPTION

	QTVRSetMouseOverHotSpotProc
	DESCRIPTION

	QTVRGetVisibleHotSpots
	DESCRIPTION

	QTVRGetHotSpotRegion
	DESCRIPTION
	SPECIAL CONSIDERATIONS

	Handling Events
	QTVRGetMouseOverTracking
	DESCRIPTION
	SEE ALSO

	QTVRSetMouseOverTracking
	DESCRIPTION
	SEE ALSO

	QTVRMouseEnter
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRMouseWithin
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRMouseLeave
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRGetMouseDownTracking
	DESCRIPTION
	SEE ALSO

	QTVRSetMouseDownTracking
	DESCRIPTION
	SEE ALSO

	QTVRMouseDown
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRMouseStillDown
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRMouseUp
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRMouseStillDownExtended
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRMouseUpExtended
	DESCRIPTION
	SPECIAL CONSIDERATIONS

	Intercepting QuickTime�VR Manager Routines
	QTVRInstallInterceptProc
	DESCRIPTION
	SEE ALSO

	QTVRCallInterceptedProc
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	Managing Object Nodes
	QTVRGetCurrentMouseMode
	Constant descriptions

	QTVRGetFrameRate
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRSetFrameRate
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRGetViewRate
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRSetViewRate
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRGetCurrentViewDuration
	DESCRIPTION
	SPECIAL CONSIDERATIONS

	QTVRGetViewCurrentTime
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRSetViewCurrentTime
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRGetViewStateCount
	DESCRIPTION
	SPECIAL CONSIDERATIONS

	QTVRGetViewState
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRSetViewState
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRGetAnimationSetting
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRSetAnimationSetting
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRGetControlSetting
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRSetControlSetting
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRGetFrameAnimation
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVREnableFrameAnimation
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRGetViewAnimation
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVREnableViewAnimation
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	Managing Imaging Characteristics
	QTVRGetVisible
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRSetVisible
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRGetImagingProperty
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRSetImagingProperty
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRUpdate
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRBeginUpdateStream
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVREndUpdateStream
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRSetTransitionProperty
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVREnableTransition
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	Converting Angles and Points
	QTVRGetAngularUnits
	DESCRIPTION
	SEE ALSO

	QTVRSetAngularUnits
	DESCRIPTION
	SEE ALSO

	QTVRPtToAngles
	DESCRIPTION
	SPECIAL CONSIDERATIONS

	QTVRCoordToAngles
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRAnglesToCoord
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRPanToColumn
	DESCRIPTION
	SPECIAL CONSIDERATIONS

	QTVRColumnToPan
	DESCRIPTION
	SPECIAL CONSIDERATIONS

	QTVRTiltToRow
	DESCRIPTION
	SPECIAL CONSIDERATIONS

	QTVRRowToTilt
	DESCRIPTION
	SPECIAL CONSIDERATIONS

	QTVRWrapAndConstrain
	DESCRIPTION

	Managing QuickTime�VR Movie Interaction
	QTVRSetEnteringNodeProc
	DESCRIPTION
	SEE ALSO

	QTVRSetLeavingNodeProc
	DESCRIPTION
	SEE ALSO

	QTVRGetInteractionProperty
	DESCRIPTION
	SEE ALSO

	QTVRSetInteractionProperty
	DESCRIPTION
	SEE ALSO

	QTVRReplaceCursor
	DESCRIPTION

	Determining Viewing Limits and Constraints
	QTVRGetViewingLimits
	DESCRIPTION

	QTVRGetConstraintStatus
	DESCRIPTION

	QTVRGetConstraints
	DESCRIPTION
	SEE ALSO

	QTVRSetConstraints
	DESCRIPTION
	SEE ALSO

	Managing Memory
	QTVRGetAvailableResolutions
	DESCRIPTION

	QTVRGetBackBufferMemInfo
	DESCRIPTION
	SPECIAL CONSIDERATIONS

	QTVRGetBackBufferSettings
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRSetBackBufferPrefs
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	Accessing Image Buffers
	QTVRSetPrescreenImagingCompleteProc
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRSetBackBufferImagingProc
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	QTVRRefreshBackBuffer
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	Application-Defined Routines
	Mouse Over Hot Spot Procedure
	MyMouseOverHotSpotProc
	DESCRIPTION
	SEE ALSO

	QuickTime�VR Intercept Procedure
	MyInterceptProc
	DESCRIPTION
	SEE ALSO

	Node-Entering and Node-Leaving Procedures
	MyEnteringNodeProc
	DESCRIPTION
	SEE ALSO

	MyLeavingNodeProc
	DESCRIPTION
	SEE ALSO

	Imaging Procedures
	MyImagingCompleteProc
	DESCRIPTION
	SPECIAL CONSIDERATIONS
	SEE ALSO

	MyBackBufferImagingProc
	DESCRIPTION
	SEE ALSO

	Summary of the QuickTime�VR Manager
	C Summary
	Constants
	Version Numbers of Released APIs
	Version Numbers for This API
	Gestalt Selector and Response Values
	Node Types
	Node IDs
	Angular Unit Types
	Value for flags parameter in QTVRSetPrescreenImagingCompleteProc
	Hot Spot Action Selectors
	Intercept Selectors
	Constraint Types
	Correction Modes
	Imaging Modes
	Imaging Property Types
	Quality Properties
	Transition Type
	Transition Properties
	Hot Spot Types
	Interaction Property Types
	Viewing Constraints
	Mouse Mode Values
	Hot Spot Selectors
	Animation Settings
	Control Settings
	View State Types
	Back Buffer Imaging Procedure Flags
	Nudge Directions
	Nudge Control Modes
	Cursor Types
	Pixel Sizes
	Resolutions
	Geometry Constants
	Cache Sizes

	Data Types
	QuickTime�VR Movie Instances
	Intercept Structure
	Floating-Point Point Structure
	Cursor Record
	Area of Interest Structure

	QuickTime�VR Manager Routines
	Initializing and Terminating QuickTime�VR
	Initializing and Managing QuickTime�VR Movie Instances
	Manipulating Viewing Angles and Zooming
	Getting Scene and Node Information
	Managing Hot Spots
	Handling Events
	Intercepting QuickTime�VR Manager Routines
	Managing Object Nodes
	Managing Imaging Characteristics
	Converting Angles and Points
	Managing QuickTime�VR Movie Interaction
	Determining Viewing Limits and Constraints
	Managing Memory
	Accessing Image Buffers

	Application-Defined Routines
	Mouse Over Hot Spot Procedure
	QuickTime�VR Intercept Routine
	Node-Entering and Node-Leaving Procedures
	Imaging Procedures

	Result Codes

	QuickTime�VR Movie Controller
	QuickTime�VR Movie Controller
	About the QuickTime�VR Movie Controller
	Elements of the QuickTime�VR Movie Controller
	Figure�3-1 The QuickTime�VR movie controller

	Movie Controller Actions

	Using the QuickTime�VR Movie Controller
	Hiding and Showing the Controller Bar
	Listing�3-1 Hiding the controller bar

	Showing and Hiding Controller Bar Buttons
	Listing�3-2 Showing a controller bar button
	Listing�3-3 Hiding a controller bar button

	Sending Actions to the QuickTime�VR Movie Controller

	QuickTime�VR Movie Controller Reference
	Constants
	Movie Controller Actions
	Actions for use by applications
	Actions for use by action filter functions

	Movie Control Flags
	Constant descriptions

	Summary of the QuickTime�VR Movie Controller
	C Summary
	Constants
	Movie Controller Actions
	Movie Control Flags

	Data Types

	QuickTime�VR Atom Containers
	QuickTime�VR Atom Containers
	About Atom Containers
	The String Atom and the String Encoding Atom

	VR World Atom Container
	Figure�4-1 Structure of the VR world atom container
	VR World Header Atom Structure
	Imaging Parent Atom
	Panorama-Imaging Atom
	Imaging Property Valid Flags
	Constant descriptions

	Node Parent Atom
	Node Location Atom Structure
	Custom Cursor Atoms

	Node Information Atom Container
	Figure�4-2 Structure of the node information atom container
	Node Header Atom Structure
	Hot Spot Parent Atom
	Hot Spot Information Atom
	Specific Information Atoms
	Link Hot Spot Atom
	Link Hot Spot Valid Flags
	Constant descriptions

	URL Hot Spot Atom

	Example: Getting the Name of a Node
	Listing�4-1 Getting a node’s name

	Custom Atoms
	Listing�4-2 Typical hot spot intercept procedure

	Creating QuickTime�VR Movies
	Creating QuickTime�VR Movies
	Components of a QuickTime�VR Movie
	Single-Node Panoramic Movies
	Figure�5-1 The structure of a single-node panoramic movie file

	Single-Node Object Movies
	Figure�5-2 The structure of a single-node object movie file

	Multinode Movies
	Figure�5-3 The structure of a multinode movie file

	QuickTime�VR Movie Creation
	Listing�5-1 Specifying the QuickTime�VR movie controller

	Track References

	The QTVR Track
	The QuickTime�VR Sample Description Structure
	Example: Adding Atom Containers
	Listing�5-2 Adding atom containers to a track

	Panorama Tracks
	Panorama Sample Atom Structure
	Figure�5-4 Creating an image track for a panorama

	Track Reference Entry Structure

	Object Tracks
	Object Sample Atom Structure
	Object Controller Types
	Constant descriptions
	Animation Settings
	Constant descriptions
	Control Settings
	Constant descriptions

	Track References for Object Tracks
	Figure�5-5 The structure of an image track for an object

	Optimizing QuickTime�VR Movies for Web Playback
	The QTVR Flattener
	Listing�5-3 Using the flattener

	Sample Atom Container for the QTVR Flattener
	Listing�5-4 Specifying a preview file for the flattener to use
	Listing�5-5 Overriding the compression settings

	New Atom Types

	Summary of the VR World and Node Atom Types
	C Summary
	Constants
	Version Numbers
	VR World Atom Types
	Node Information Atom Types
	Miscellaneous Atom Types
	Track Reference Types
	Imaging Property Valid Flags
	Link Hot Spot Valid Bits
	Animation Settings
	Control Settings
	Controller Subtype and ID
	Object Controller Types
	Node Location Flag
	Panorama Sample Flag

	Data Types
	Sample Description Header Structure
	String Atom Structure
	VR World Header Atom Structure
	Panorama-Imaging Atom Structure
	Node Location Atom Structure
	Node Header Atom Structure
	Hot Spot Information Atom Structure
	Link Hot Spot Atom Structure
	Angle Range Atom Structure
	Panorama Sample Atom Structure
	Object Sample Atom Structure
	Track Reference Entry Structure

	QuickTime�VR Cursors
	Hot Spot Cursors
	Table A-1 Hot spot cursors (continued)

	Navigation Cursors
	Table A-2 Navigation cursors (continued)

	Manipulation Cursors
	Panning Interface Cursors
	Table A-3 Panning interface cursors (continued)

	Grabber Interface Cursors
	Table A-4 Grabber interface cursors �

	Spinner Interface Cursors
	Table A-5 Spinner interface cursors (continued)

	Joystick Interface Cursors
	Table A-6 Joystick interface cursors (continued)

	Pointer Interface Cursor
	Table A-7 Pointer interface cursor

	Compatibility With QuickTime�VR 2.0

	Glossary
	Index
	WRITERS
	ILLUSTRATOR
	DEVELOPMENTAL EDITORS
	PRODUCTION EDITOR
	PROJECT MANAGER

