



Technical Publications
© Apple Computer, Inc. 1999



File Manager for Mac OS 9
Preliminary Documentation

Preliminary Draft

© Apple Computer, Inc. 10/15/99



Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleShare,
AppleTalk, A/UX, Mac, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Finder is a trademark of Apple
Computer, Inc.
PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 3

IMPORTANT

This is a preliminary document. Although it has been reviewed for
technical accuracy, it is not final. Apple Computer, Inc. is supplying this
information to help you plan for the adoption of the technologies and
programming interfaces described herein. This information is subject to
change, and software implemented according to this document should
be tested with final operating system software and final documentation.

You can check <http://developer.apple.com/techpubs/macos8/
SiteInfo/whatsnew.html> for information about updates to this and
other developer documents. To receive notification of documentation
updates, you can sign up for ADC's free Online Program and receive
their weekly Apple Developer Connection News e-mail newsletter. (See
<http://developer.apple.com/membership/index.html> for more
details about the Online Program.)

1. Summary

The goal for HFS Plus in Mac OS 9 is to add basic API support for the volume format
features not supported in the Mac OS 8.1 release. This includes support for large files
(forks over 2GB), long Unicode names, and named forks.

There are also a few fields in the HFS Plus catalog records that are not found in HFS
catalog records. These fields exist primarily to ease support for Mac OS X. These fields
include the

contentModDate

 and

modifyDate

, permissions, and text encoding hint.

Note

HFS Plus APIs in Mac OS 9 does not include implementing
named forks on HFS Plus volumes. The API parameters will
remain flexible enough to allow the complete
implementation of named forks at a later date.

�

2. Feature Set

The primary purpose for HFS Plus in Mac OS 9 is to finish support for the volume
format features found in HFS Plus, particularly large (>2GB) files, long Unicode
filenames, and named forks.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 4

3. Compatibility Requirements

3.1 Hardware Requirements

HFS Plus for Mac OS 9 will have the same hardware requirements as Mac OS 8.5. It
requires PowerPC because it loads some shared libraries very early in boot (long before
CFM-68K is initialized). The statically-linked 68K version of the Text Encoding
Converter is no longer used.

3.2 Software Requirements

There are no planned changes to the behavior of existing APIs; there are new APIs for
Mac OS 9. Any program that wants to take advantage of the new features (large files,
long Unicode names, named forks) introduced in Mac OS 9 will have to be revised to
use the new APIs.

4. Architectural Requirements

4.1 Aspects of Long-term Architecture

In order to take advantage of preemptive multitasking, applications need to be able to
make File Manager calls that execute asynchronously with respect to the application.
In the past, the solution has been asynchronous parameter block-based calls that return
control to the caller before the call completes, and cause the caller’s completion routine
to execute after the call completes.

But asynchronous calls (especially a series of them) are cumbersome and error prone to
implement. A more convenient programming model is to allow the caller’s thread of
execution to be suspended while the call is completing. Further, the parameters to the
call should be able to be passed as function arguments, rather than as fields of a
parameter block structure.

This implies that the high-level functions should support the full functionality of the
API. This is not the case in the original File Manager, where the high-level calls are
often simplified versions of the low-level parameter block calls. In the HFS Plus API,
however, the high-level calls provide complete functionality.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 5

5. Software Architecture and Design

The API descriptions presented here are preliminary. They are intended primarily to
give you an understanding of the kind of functionality that is available.

5.1 Component Description

The APIs described here provide access to three major features introduced in the HFS
Plus volume format: long Unicode filenames, forks larger than 2GB, and named forks.
There are also new informational APIs that combine all three new features.

While these APIs were added because of the HFS Plus volume format, they are
intended to be suitable for other volume formats with corresponding features, such as
UDF and NTFS. To simplify and encourage adoption of the Unicode and large file
APIs, the APIs can be used with all volumes, even if the volume format’s
implementation has not yet added explicit support for these APIs. If the volume
format’s implementation does not explicitly support these APIs, then the functionality
is limited to the functionality available through the older APIs.

For example, let’s assume that the ISO 9660 implementation is not updated to support
the new APIs. You will still be able to use the new APIs to access files on ISO 9660
volumes, but you will not be able to grow files beyond 2GB in size, and will not be able
to create or rename files with names longer than 31 characters. You will only be able to
create data and resource forks, for files only; you will not be able to create additional
named forks.

Only programs that have been revised to use these APIs will be able to open files larger
than 2GB (or be able to grow a file to be larger than 2GB). Eventually, programs that
have not been revised will attempt to access these large files. This will cause the
programs to receive an error code (

fsDataTooBigErr

 or

fileBoundsErr

) at the time they
try to open a large file or extend the file beyond 2GB.

It is anticipated that named forks will be used (in part) to enhance the UI of other
applications such as the Finder by letting them store out-of-band information with files
and directories.

5.2 Programmer Feature Set

These new APIs introduce three general new concepts: long Unicode filenames, large
files (access to forks larger than 2GB), and named forks. To support these new
concepts, several new data structures are introduced.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 6

Long Unicode filenames and large files are really just modern variations on concepts
already present in the File Manager API. The new APIs present functionality that is
quite similar to older APIs, but using different data structures. To ease developer
adoption and usage of the new APIs, the long Unicode filename and large file APIs can
be used (limited to the functionality available through the old APIs) on all volume
formats, even if the filesystem code handling that volume format has not been updated
to directly support the new APIs. For those volume formats, the File Manager will
automatically emulate the new APIs in terms of the existing APIs. This is called the
compatibility layer.

For example, the

FSOpenFork

 call allows you to open a file and access forks larger than
2GB. If a particular volume does not support the

FSOpenFork

 call directly, the File
Manager will automatically pass a

PBHOpenDF

 or

PBHOpenRF

 call to the volume’s
filesystem code and translate the inputs and outputs appropriately. An application
need only test for the presence of the

FSOpenFork

 call itself, not whether a particular
volume supports it. (Note: if the volume does not support the

FSOpenFork

 directly,
forks will still be limited to 2GB in size and only data and resource forks may be
created—for files only.)

Most of the new APIs are available in two forms: as a high-level API or as a low-level
API. A low-level API uses a single structure called a parameter block to contain all of
the input and output parameters for the call; a pointer to the parameter block is passed
to the actual API function. A call to a low-level API may be synchronous or
asynchronous. It is typical for several related low-level APIs to share a single
parameter block structure; some of the fields will be unused for some of those APIs.
All of the new API functionality is available via low-level APIs.

A high-level API gets all of its input and output parameters as separate parameters to
the API function. A call to a high-level API is always synchronous. A high-level API is
implemented internally using calls to the equivalent low-level API. The high-level API
provides all of the functionality available via the low-level API (not true of the old
APIs). The use of the high-level API is greatly encouraged; the low-level API should
only be needed for async calls.

Many outputs in the new APIs are optional. This means that a client does not have to
allocate space for an output value they will never use. It also means that the File
Manager can avoid doing the work of computing or returning that output, which can
make some operations faster. See the descriptions of individual APIs to determine
which outputs are optional.

Several new error codes are introduced. The older File Manager APIs overloaded

paramErr

 to mean both “some parameter was invalid” and “unrecognized call/
selector”. The intent with these new APIs is to introduce separate error codes for each
kind of parameter that might be invalid. This is very helpful during initial debugging
of code that uses the new APIs. If a call takes multiple fields of the same kind (for

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 7

example, source and destination

FSRef

), the error code does not tell you which one was
invalid.

The following subsections describe the new concepts and data structures specific to
individual APIs. They also describe new or changed data structures and utility
routines for implementing these new APIs in third-party filesystems.

5.2.1 Unicode

The HFS Plus volume format stores filenames as strings of up to 255 Unicode
characters. In Mac OS 8.1, a name that is not representable in the text encoding used by
the Finder (because it is too long, or contains characters not in that text encoding) is
translated into a name that is representable, including the catalog node ID embedded
within the name. This allows all files to be accessed by Mac OS 8.1, but does not allow
clients to determine or change the original Unicode name.

The

FSCreateFileUnicode

 and

FSCreateDirectoryUnicode

 calls create a file or
directory using a long Unicode name. The

FSGetCatalogInfo

 call can return the long
Unicode name of a file or directory (and other information as well). The

FSRenameUnicode

 call is used to change the name of an existing file or directory; the
new name is a long Unicode string. The

FSCatalogSearch

 call can be used to find files
and directories based on long Unicode names.

The new APIs do not explicitly pass file or directory names to identify objects. They
use an opaque type,

FSRef

. This means that you must make an API call to determine
an object’s name; it cannot be copied out of the

FSRef

. See Section 5.2.4, "Identifying
Files and Directories" for more information.

A large number of pre-existing interfaces in the File Manager and many other system
software components take a filename as input or produce a filename as output. It
would be impractical to provide new versions of each of these entry points to allow
long Unicode names to be passed. For interchange with existing APIs, routines are
provided to convert between an

FSSpec

 and an

FSRef

.

When a client passes a Unicode name in a call to a volume that does not directly
support Unicode, the name is converted to a PString in order to call the equivalent
PString-based API. The inverse is true for APIs that return a Unicode name; the
compatibility layer converts the returned PString into a Unicode string. The strings are
converted using the File Manager’s current text encoding.

If for some reason a Unicode name cannot be converted to a PString, the compatibility
layer will return a

badNamErr

 error from the call. Such a failure is generally caused
when the Unicode name contains characters that are not representable in the desired
text encoding. This could happen if the text encoding was incorrect, or if the Unicode

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 8

string contained characters from more than one Mac OS encoding (or from non-Mac
OS encodings).

� WARNING

Programs using the new APIs must check for and properly
handle the

badNamErr

 error.

�

5.2.2 Named Forks

Prior to this release, the Mac OS File Manager has had a very limited notion of what
constitutes a file or directory. Files have two well-known forks called the data fork and
the resource fork. Directories do not have a data fork, nor a resource fork. Both files
and directories contain certain metadata managed by the File Manager (such as
creation and modification dates, and file and directory IDs). Files and directories also
contain a small amount of metadata stored but not interpreted by the File Manager
(such as Finder info or the backup date). These two types of metadata are collectively
known as catalog information or catalog info.

Modern volume formats, including NTFS, UDF and HFS Plus, are capable of storing
additional user data besides the data and resource forks and catalog info. While the
details vary by volume format, they are generally able to store multiple, named pieces;
they are often stored in the same way as a data or resource fork. These new APIs
provide access to this extra user data, as well as unifying it with the data and resource
forks, through a concept of named forks.

With the exception of catalog info, all other user data is stored in a fork. Forks have
names composed of up to 255 Unicode characters. There are two fork names reserved
for the data and resource forks: the empty string (i.e. length equals zero) and “Resource
Fork”. This allows the same APIs to easily access the traditional data and resource
forks as well as other named forks.

The contents of a fork are a sequence of zero or more bytes.

5.2.3 Large Files

The HFS Plus volume format uses 64-bit numbers for the size of a fork. The

IOParam

parameter block uses a signed 32-bit field for offsets and other parameter blocks use
signed 32-bit fields for fork physical and logical sizes. This means that the existing
APIs are only able to represent forks up to 2GB. In fact, in Mac OS 8.1, the File
Manager will return an error when attempting to open any fork that is 2GB or larger.

It is assumed that applications would get confused and possibly crash or corrupt data
if they were allowed to open large files with the existing Open calls. Similarly, they
should not be allowed to extend an open file beyond 2GB if they use the existing APIs.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 9

Therefore a new Open call is required so that the File Manager knows that it is safe to
open a large file or let the file be extended beyond 2GB. The other calls that use file
refnums would need to change; even though they could potentially use

XIOParam

 to
pass their parameters, there would be no way to make sure they were really using

XIOParam

 instead of

IOParam

.

The new file I/O APIs in this section are a replacement for the existing (old) file I/O
calls.

When a fork is opened for I/O, an

access path

 is created. This access path contains
state information, including the

current position

 (or

mark

), and the

permissions

. Both
the old and new APIs identify an access path using a 16-bit

file reference number

.
Note that a file reference number obtained from the large file APIs cannot be passed to
the older file I/O APIs; you’ll get an error if you try.

5.2.4 Identifying Files and Directories

Files and directories are identified using an opaque type, the

FSRef

. In concept, it is
similar to an

FSSpec

. Unlike an

FSSpec

, the fields within an

FSRef

 are not publicly
defined; in fact, they may vary from version to version, between volumes, and even
between files or directories on a single volume.

An

FSRef

 is intended to identify the same file or directory, even if it is moved or
renamed (like a FileID reference). Clearly some volume formats will not be able to
identify an object after it has moved or been renamed; in this case, an

FSRef

 will
identify the object at least as reliably as an

FSSpec

. Since HFS Plus volumes always
have file and directory thread records, they fully support the desired behavior. HFS
volumes will also fully support this behavior, but possibly with a slight performance
degradation if the volume is locked and the file has no thread record (since the File
Manager will attempt to find the file first by FileID, and then by parent directory ID
and name).

Since the contents of an

FSRef

 are opaque, clients must use APIs (such as

FSMakeFSRefUnicode

) to create them or to get information about the file or directory
they identify. Since an

FSRef

 may contain information about an object’s name or
location, the

FSMoveObject

 and

FSRenameUnicode

 calls return an updated

FSRef

 that
may differ from the one passed as input.

A client may not compare two

FSRef

s for equality by comparing the bytes of the

FSRef

.
This allows volume format implementations to cache data in the

FSRef

 to speed up
future resolution. It also lets volume format implementations store text (such as a
filename) in the

FSRef

, and lets them use whatever text comparison is appropriate for
their volume format.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 10

5.2.5 File Reference Numbers

The file refnum is an opaque 16-bit quantity. The value zero (0) is never a valid file
refnum. You should not assume that file refnums fit any particular pattern. In
particular, they are not byte offsets into a global FCB table. The only way to use or get
information about a fork refnum is to use the APIs.

The same fork may in fact be opened simultaneously by both the new and old APIs (as
long as the permissions allow). This results in two distinct access paths, just like using

PBHOpen

 twice on the same fork.

1

5.2.6 Fork Sizes and Offsets

The new file I/O APIs use a signed 64-bit value for fork sizes and offsets. Because this
value is signed, fork sizes are limited to 2

63

 bytes, or 8 billion terabytes. Note that the
existing Mac OS 8 driver and disk cache model imposes a maximum volume size limit
of 2

41

 bytes, or 2 terabytes, for local volumes.

5.2.7 Informational Calls

The

FSGetCatalogInfo

 call is an enhanced version of

PBGetCatInfo

 that returns 64-bit
fork sizes, Unicode filename strings, and more catalog information (including both the

contentModDate

 and

attributeModDate

, permissions, etc.). There is a corresponding
enhancement of

SetCatInfo

, called

FSSetCatalogInfo

.

FSCatalogSearch

, a new version of

PBCatSearch

, allows additional search criteria. It
can also return the same kind of file information as

FSGetCatalogInfo

 for the matching
files or folders. There is a

FSGetCatalogInfoBulk

 call which can return information
about multiple items in a single directory via a single call.

These new calls use a new structure,

FSCatalogInfo

, that encapsulates the fixed-length
catalog information about a file or folder. Other information (such as names and

FSRef

) are returned as separate parameters.

5.2.8 Catalog Iterators

The calls that iterate over a directory or volume’s contents (such as

FSGetCatalogInfoBulk

 and

FSCatalogSearch

) may require several calls to return all of
the items. Some state information must be stored across the sequence of operations.
The HFS Plus APIs introduce catalog iterators to maintain this state.

1. However, the File Manager will prevent the case where a fork is opened for writing via the large file APIs,
and simultaneously opened for reading or writing by the older APIs. If the large file APIs are used to grow
the fork beyond 2GB, the programs accessing the fork via the old APIs might behave badly.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 11

The current

PBGetCatInfo

 and

PBCatSearch

 calls require the caller to maintain all state
information. For

PBGetCatInfo

, the state is a simple numerical index of the item within
the directory. For

PBCatSearch

, the state is a mostly opaque structure of 16 bytes,
which requires the caller to initialize the first 4 bytes before the first call.

In the HFS Plus APIs, this state information is stored by the File Manager. The client
must explicitly create this state with FSOpenIterator and dispose the state with
FSCloseIterator. A reference to this state, of type FSIterator, is returned by
FSOpenIterator and passed as input to the other calls.

Conceptually, a catalog iterator is like an open fork. Iterating over the contents of a
directory or volume is like reading from a fork, except that you are “reading” catalog
entries. The catalog iterator maintains its position within the catalog just like an open
fork maintains its current position within the fork.

When a catalog iterator is created, you supply an FSRef for a directory and some flags.
Currently, there is only one defined flag. It determines whether the iterator iterates
over just the contents of that directory (“flat”) or the entire subtree rooted at that
directory.

5.2.9 Gestalt Bits

Two new bits have been defined for the gestaltFSAttr selector:

enum {
 gestaltHasHFSPlusAPIs = 12, /* file system supports HFS Plus APIs */
 gestaltMustUseFCBAccessors = 13 /* FCBSPtr and FSFCBLen are invalid - must
 use FSM FCB accessor functions*/
};

If the gestaltHasHFSPlusAPIs bit is set, then the File Manager supports the HFS Plus
APIs. Individual file systems may or may not implement the HFS Plus APIs; however,
the File Manager provides compatibilty support (emulation) for file systems that do
not implement the HFS Plus APIs. Applications can call PBHGetVolParms to see which
HFS Plus API features are supported on a particular volume.

The gestaltMustUseFCBAccessors bit indicates that the File Manager no longer
supports the private low memory globals FCBSPtr and FSFCBLen, and that all access to
File or Fork Control Blocks must be made with the File System Manager’s utility
functions.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 12

5.3 Data Structures and File Formats

5.3.1 FSVolumeRefNum

typedef SInt16 FSVolumeRefNum;

The FSVolumeRefNum type is used to identify a particular mounted volume. This is the
same as the 16-bit volume refnum previously passed in the ioVRefNum fields of a
parameter block; we’ve simply introduced a new type name for the old data type.

5.3.2 FSRef

struct FSRef {
 UInt8 hidden[80]; /* private to File Manager */
};
typedef struct FSRef FSRef;
typedef FSRef *FSRefPtr;

The FSRef type is used to identify a directory or file (including a volume’s root
directory). It’s purpose is similar to an FSSpec except that an FSRef is completely
opaque. An FSRef contains whatever information is needed to find the given object;
the internal structure of an FSRef is likely to vary based on the volume format, and may
vary based on the particular object being identified.

The client of the File Manager cannot examine the contents of an FSRef to extract
information about the parent directory or the object’s name. Similarly, an FSRef cannot
be constructed directly by the client; the FSRef must be constructed and returned via
the File Manager. There is no need to call the File Manager to dispose an FSRef.

To determine the volume, parent directory and name associated with an FSRef, or to
get an equivalent FSSpec, use the FSGetCatalogInfo call.

5.3.3 FSAllocationFlags

typedef UInt16 FSAllocationFlags;

enum {
kFSAllocDefaultFlags = 0x0000, /* as much as possible, not contiguous */
kFSAllocAllOrNothingMask= 0x0001, /* allocate all of the space, or none */
kFSAllocContiguousMask = 0x0002, /* allocate a single contiguous piece */
kFSAllocNoRoundUpMask = 0x0004, /* don't round up to clump size */
kFSAllocReservedMask = 0xFFF8 /* reserved; set to zero */

};

The FSAllocationFlags type is a set of bit flags. It is passed to the FSAllocateFork call
to control how the space is allocated.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 13

The kAllocContiguousMask is set when an allocation should allocate one contiguous
range of space on the volume. If this bit is clear, multiple discontiguous extents may be
allocated to fulfill the request.

The kAllocAllOrNothingMask is set when an allocation must allocate the total
requested amount, or else fail with nothing allocated; when this bit is not set, the
allocation may complete successfully but allocate less than requested.

If kFSAllocNoRoundUpMask is clear, then additional space beyond the amount requested
may be allocated; this is done by some volume formats (including HFS and HFS Plus)
to avoid many small allocation requests. If the bit is set, no additional allocation is
done (except where required by the volume format, such as rounding up to a multiple
of the allocation block size).

5.3.4 FSPositionMode

typedef UInt32 FSPositionMode;

enum {
 kFSAtMark = 0, /* At current position; offset ignored */
 kFSFromStart = 1, /* Offset from start of fork */
 kFSFromEnd = 2, /* Offset from end of fork */
 kFSFromMark = 3 /* Offset from current position */

 pleaseCacheBit = 4, /* please cache this request */
 pleaseCacheMask = 0x0010,
 noCacheBit = 5, /* please don't cache this request */
 noCacheMask = 0x0020,
 forceReadBit = 6, /* force read from disk, bypassing all caches */
 forceReadMask = 0x0040,
};

The FSPositionMode type is used in conjunction with an offset parameter (of type
SInt64) to specify a position within a fork. Use one of kFSAtMark, kFSFromStart,
kFSFromEnd, kFSFromMark.

For the FSReadFork and FSWriteFork calls, you may also add either of the
pleaseCacheMask or noCacheMask constants to hint whether the data should be cached
or not. Adding the pleaseCacheMask constant tells the disk cache that you think that
data will be accessed again soon; the data is more likely to be placed in the disk cache.

kFSAtMark Starting point is the access path’s current position. The offset is ignored.

kFSFromStart Starting point is offset bytes from the start of the fork. The offset must be non-
negative.

kFSFromEnd The starting point is offset bytes from the logical end of the fork. The offset
must be non-positive.

kFSFromMark The starting point is offset bytes from the access path’s current position. The
offset may be positive or negative.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 14

Adding the noCacheMask tells the disk cache that you think the data will not be
accessed again soon; whole sectors in the middle of the I/O are less likely to be placed
in the disk cache.

Setting the forceReadBit will force reads directly from disk, bypassing any data in the
cache. Clients can use this to verify that data is stored correctly on the media (eg., to
verify after writing) by reading the data into a different buffer while setting the bit, and
then comparing the newly read data with the previously written data.

Note

The forceReadBit is the same as the rdVerifyBit used in the
older APIs. The actual implementation of the rdVerifyBit in
the older APIs actually caused the “force read” behavior, and
only compared the data in partial sectors. FSReadFork cleans
up this behavior by always letting the client do all of the
compares. �

New-line mode is not supported by FSReadFork.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 15

5.3.5 FSCatalogInfoBitmap

typedef UInt32 FSCatalogInfoBitmap;

enum {
 kFSCatInfoNone = 0x00000000,
 kFSCatInfoTextEncoding = 0x00000001,
 kFSCatInfoNodeFlags = 0x00000002, /* Locked (bit 0) and */

 /* directory (bit 4) only */
 kFSCatInfoVolume = 0x00000004,
 kFSCatInfoParentDirID = 0x00000008,
 kFSCatInfoNodeID = 0x00000010,
 kFSCatInfoCreateDate = 0x00000020,
 kFSCatInfoContentMod = 0x00000040,
 kFSCatInfoAttrMod = 0x00000080,
 kFSCatInfoAccessDate = 0x00000100,
 kFSCatInfoBackupDate = 0x00000200,
 kFSCatInfoPermissions = 0x00000400,
 kFSCatInfoFinderInfo = 0x00000800,
 kFSCatInfoFinderXInfo = 0x00001000,
 kFSCatInfoValence = 0x00002000, /* Folders only, zero for files */
 kFSCatInfoDataSizes = 0x00004000, /* Data logical & physical size */
 kFSCatInfoRsrcSizes = 0x00008000, /* Resource logical and */

 /* physical size */
 kFSCatInfoSharingFlags = 0x00010000, /* sharingFlags */
 kFSCatInfoUserPrivs = 0x00020000, /* userPrivileges */
 kFSCatInfoAllDates = 0x000003E0,
 kFSCatInfoGettableInfo = 0x0003FFFF,
 kFSCatInfoSettableInfo = 0x00001FE3, /* flags, dates, permissions, */

 /* Finder info, text encoding */
 kFSCatInfoReserved = (long)0xFFFF0000 /* reserved */
};

5.3.6 FSCatalogInfo

/* Constants for nodeFlags field of FSCatalogInfo */
enum {
 kFSNodeLockedBit = 0,
 kFSNodeLockedMask = 0x0001,
 kFSNodeIsDirectoryBit = 4,
 kFSNodeIsDirectoryMask = 0x0010
};

struct FSCatalogInfo {
 UInt16 nodeFlags; /* node flags */
 FSVolumeRefNum volume; /* object's volume ref */
 UInt32 parentDirID; /* parent directory's ID */
 UInt32 nodeID; /* file/directory ID */
 UInt8 sharingFlags; /* kioFlAttribMountedBit and */

 /* kioFlAttribSharePointBit */
 UInt8 userPrivileges; /* user's effective AFP privileges */

 /* (same as ioACUser) */

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 16

 UInt8 reserved1;
 UInt8 reserved2;
 UTCDateTime createDate; /* date and time of creation */
 UTCDateTime contentModDate; /* date/time of fork modification */
 UTCDateTime attributeModDate; /* attribute modification date/time*/
 UTCDateTime accessDate; /* date and time of last access */

 /* (for Mac OS X) */
 UTCDateTime backupDate; /* date and time of last backup */

 UInt32 permissions[4]; /* permissions (for Mac OS X) */

 UInt8 finderInfo[16]; /* Finder information part 1 */
 UInt8 extFinderInfo[16];/* Finder information part 2 */

 UInt64 dataLogicalSize; /* files only */
 UInt64 dataPhysicalSize; /* files only */
 UInt64 rsrcLogicalSize; /* files only */
 UInt64 rsrcPhysicalSize; /* files only */

 UInt32 valence; /* folders only */
 UInt32 textEncodingHint;
};
typedef struct FSCatalogInfo FSCatalogInfo;
typedef FSCatalogInfo * FSCatalogInfoPtr;

The FSCatalogInfoBitmap type is used to indicate which fields of the FSCatalogInfo
should be set or retrieved. If the bit corresponding to a particular field is not set, then
that field is not changed if the FSCatalogInfo is an output parameter, and that field is
ignored if the FSCatalogInfo is an input parameter.

The FSCatalogInfo structure holds basic information about a file or directory. The
nodeFlags field contains has two defined bits that indicate whether an object is a file or
folder, and whether a file is locked (constants kFSNodeIsDirectoryMask and
kFSNodeLockedMask).

There are several date fields that describe when the object was created (createDate),
when the data or resource fork was last modified (contentModDate), when any other
fork was last modified (attributeModDate), when the object was last accessed
(accessDate), and when the object was last backed up (backupDate).

The Mac OS 8 File Manager does not automatically update the accessDate field; it
exists primarily for use by other operating systems. The backupDate field is not
updated by the File Manager; a backup utility may use this field if it wishes.

The permissions field contains user and group permission information. The Mac OS 8
File Manager does not use or enforce this permission information. It could be used by
a file server program or other operating system.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 17

The finderInfo and extFinderInfo fields contain basic Finder information and
extended Finder information for the object. This information is available in the catalog
info, instead of a named fork, for historical reasons. The File Manager does not
interpret the contents of these fields.

The valence field is used for directories. It is the number of items (files plus
directories) contained within the directory. For files, it is set to zero.

� WARNING

Many volume formats do not store a field containing a
directory’s valence. For those volume formats, this field is
very expensive to compute. Think carefully before you ask
the File Manager to return this field. �

The dataLogicalSize is the size of the data fork in bytes. The rsrcLogicalSize is the
size of the resource fork. The dataPhysicalSize is the amount of disk space (in bytes)
occupied by the data fork. The rsrcPhysicalSize is the amount of disk space occupied
by the resource fork.

The parentDirID field contains the ID of the directory that contains the given object.
The root directory of a volume always has ID fsRtDirID (2); the parent of the root
directory is ID fsRtParID (1). Note: there is no object with ID fsRtParID; this is merely
used when the File Manager is asked for the parent of the root directory.

The textEncodingHint field is used in conjunction with the Unicode filename. It is an
optional hint that can be used by the volume format when converting the Unicode to
some other encoding. For example, HFS Plus stores this value and uses it when
converting the name to a Mac OS encoding, such as when the name is returned by
PBGetCatInfo. As another example, HFS volumes use this value to convert the
Unicode name to a Mac OS encoded name stored on disk. If the entire Unicode name
can be converted to a single Mac OS encoding, then that encoding should be used as
the textEncodingHint; otherwise, a text encoding corresponding to the first characters
of the name will probably provide the best user experience.

Note

If a textEncodingHint is not supplied when a file or
directory is created or renamed, the volume format will use a
default value. This default value may not be the best
possible choice for the given filename. Whenever possible, a
client should supply a textEncodingHint. �

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 18

5.3.7 FSVolumeInfoBitmap

typedef UInt32 VolumeInfoBitmap;

enum {
 kFSVolInfoNone = 0x0000,
 kFSVolInfoCreateDate = 0x0001,
 kFSVolInfoModDate = 0x0002,
 kFSVolInfoBackupDate = 0x0004,
 kFSVolInfoCheckedDate = 0x0008,
 kFSVolInfoFileCount = 0x0010,
 kFSVolInfoDirCount = 0x0020,
 kFSVolInfoSizes = 0x0040, /* totalBytes and freeBytes */
 kFSVolInfoBlocks = 0x0080, /* blockSize, totalBlocks, freeBlocks*/
 kFSVolInfoNextAlloc = 0x0100,
 kFSVolInfoRsrcClump = 0x0200,
 kFSVolInfoDataClump = 0x0400,
 kFSVolInfoNextID = 0x0800,
 kFSVolInfoFinderInfo = 0x1000,
 kFSVolInfoFlags = 0x2000,
 kFSVolInfoFSInfo = 0x4000, /* filesystemID, signature */
 kFSVolInfoDriveInfo = 0x8000, /* driveNumber, driverRefNum */
 kFSVolInfoGettableInfo = 0xFFFF,
 kFSVolInfoSettableInfo = 0x3004 /* backup date, Finder info, flags */
};

5.3.8 FSVolumeInfo

struct FSVolumeInfo {
 /* Dates -- zero means "never" or "unknown" */
 UTCDateTime createDate;
 UTCDateTime modifyDate;
 UTCDateTime backupDate;
 UTCDateTime checkedDate;

 /* File/Folder counts -- return zero if unknown */
 UInt32 fileCount; /* total files on volume */
 UInt32 folderCount; /* total folders on volume */

 /* Note: no root directory counts */
 UInt64 totalBytes; /* total number of bytes on volume */
 UInt64 freeBytes; /* number of free bytes on volume */

 /* HFS and HFS Plus specific. Set fields to zero if not appropriate */
 UInt32 blockSize; /* size (in bytes) of allocation blocks */
 UInt32 totalBlocks; /* number of allocation blocks in volume */
 UInt32 freeBlocks; /* number of unused allocation blocks */
 UInt32 nextAllocation; /* start of next allocation search */
 UInt32 rsrcClumpSize; /* default resource fork clump size */
 UInt32 dataClumpSize; /* default data fork clump size */
 UInt32 nextCatalogID; /* next unused catalog node ID */
 UInt8 finderInfo[32]; /* information used by Finder */

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 19

 /* Identifying information */
 UInt16 flags; /* ioVAtrb */
 UInt16 filesystemID; /* ioVFSID */
 UInt16 signature; /* ioVSigWord, unique within an FSID */
 UInt16 driveNumber; /* ioVDrvInfo */
 short driverRefNum; /* ioVDRefNum */
};
typedef struct FSVolumeInfo FSVolumeInfo;

The FSVolumeInfo structure is used when getting or setting information about a
volume (as a whole; information about a volume’s root directory would use the
FSCatalogInfo type).

The createDate is the date/time when the volume was created. The modifyDate is the
last time when the volume was modified in any way. The backupDate is for use by
backup utilities to indicate when the volume was last backed up. The checkedDate is
the last date/time that the volume was checked for consistency.

The fileCount and folderCount fields are the total number of files and folders on the
volume, respectively.

The totalBytes is the the size of the volume in bytes. The number of bytes of free
space on the volume is freeBytes.

The blockSize is the size of an allocation block. There are totalBlocks allocation
blocks on the volume. There are freeBlocks unused allocation blocks on the volume.
The nextAllocation is a hint for where to start searching for free space during an
allocation. These four fields are only appropriate for volume formats (such as HFS and
HFS Plus) that allocate space in fixed-size pieces; other volume formats may not have a
similar concept, and will set some or all of these fields to zero.

The rsrcClumpSize and dataClumpSize are the clump sizes for the resource and data
forks. When a fork is automatically grown as it is written, the File Manager attempts to
allocate space that is a multiple of the clump size. These fields are zero for volume
formats that don’t support the notion of a clump size.

Some volume formats (such as HFS and HFS Plus) use a monotonically increasing
number for the catalog node ID (i.e. File ID or Directory ID) of newly created files and
directories. For those volume formats, the nextCatalogID is the next file/directory ID
that will be assigned. For other volume formats, this field will be zero.

The finderInfo is information used by the Finder, such as the Directory ID of the
System Folder. Some volume formats do not support Finder info for a volume and will
set this field to all zeroes.

The flags field contains bit flags about the volume .

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 20

The fileSystemID identifies the filesystem implementation that is handling the
volume; this is zero for HFS and HFS Plus volumes. The signature is used to
distinguish between volume formats supported by a single filesystem implementation.

The driveNumber and driverRefNum fields contain the drive number and driver
reference number for the drive (drive queue element) associated with the volume.

5.3.9 FSIterator

typedef struct OpaqueFSIterator* FSIterator;

An FSIterator refers to a position within the catalog, used when iterating over files
and folders in a directory. It is like a file reference number because it maintains state
internally to the File Manager and must be explicitly opened and closed.

An FSIterator is returned by FSOpenIterator and passed as input to
FSGetCatalogInfoBulk, FSCatalogSearch and FSCloseIterator.

5.3.10 HFSUniStr255

struct HFSUniStr255 {
 UInt16 length; /* number of unicode characters */
 UniChar unicode[255]; /* unicode characters */
};
typedef struct HFSUniStr255 HFSUniStr255;
typedef const HFSUniStr255 * ConstHFSUniStr255Param;

The HFSUniStr255 type is used by the File Manager to return Unicode strings. It is a
string of up to 255 16-bit Unicode characters, with a preceding 16-bit length (number of
characters). Note that only the first length characters have meaningful values; the
remaining characters may be set to arbitrary values. A caller should always assume
that the entire structure will be modified, even if the actual string length is less than
255.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 21

5.4 New Error Codes

enum {
 errFSBadFSRef = -1401, /* FSRef parameter is bad */
 errFSBadForkName = -1402, /* Fork name parameter is bad */
 errFSBadBuffer = -1403, /* A buffer parameter was bad */
 errFSBadForkRef = -1404, /* A ForkRefNum parameter was bad */
 errFSBadInfoBitmap = -1405, /* A CatalogInfoBitmap or */

 /* VolumeInfoBitmap has reserved */
 /* or invalid bits set */

 errFSMissingCatInfo = -1406, /* A CatalogInfo parameter was NULL */
 errFSNotAFolder = -1407, /* Expected a folder, got a file */
 errFSForkNotFound = -1409, /* Named fork does not exist */
 errFSNameTooLong = -1410, /* File or fork name is too long */

 /* to create or rename */
 errFSMissingName = -1411, /* A Unicode name parameter was NULL */
 errFSBadPosMode = -1412, /* Newline bits set in positionMode */
 errFSBadAllocFlags = -1413, /* Reserved or invalid bits set in */

 /* an FSAllocationFlags parameter */
 errFSNoMoreItems = -1417, /* Iteration done; no more items */
 errFSBadItemCount = -1418, /* maximumItems was zero */
 errFSBadSearchParams = -1419, /* Search criteria passed to */

 /* CatalogSearch is invalid */
 errFSRefsDifferent = -1420, /* Refs are for different objects */
 errFSForkExists = -1421, /* Named fork already exists. */
 errFSBadIteratorFlags = -1422, /* Flags passed to FSOpenIterator */

 /* are bad */
 errFSIteratorNotFound = -1423, /* Passed FSIterator is not an open */

 /* iterator */
 errFSIteratorNotSupported= -1424 /* The iterator's flags or container */

 /* are not supported by this call */
};

The following are new error codes that may be returned by the new APIs.

Note

During the development process, the constants assigned to
these error codes may change. �

5.4.1 errFSBadFSRef

An FSRef parameter was invalid. There are several possible causes:

• The parameter was not optional, but the pointer was NULL.
• The volume refnum contained within the FSRef does not match a currently

mounted volume. This can happen if the volume was unmounted after the
FSRef was created.

• Some other private field inside the FSRef contains a value that could never be
valid. If the field value could be valid, but doesn’t happen to match the existing

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 22

volume or in-memory structures, a “not found” error would be returned
instead.

5.4.2 errFSBadForkName

A supplied fork name was invalid (syntactically illegal for the given volume). For
example, the fork name might contain characters that cannot be stored on the given
volume (such as a colon on HFS volumes).

Some volume formats do not store fork names in Unicode. Those volume formats will
attempt to convert the Unicode name to the kind of encoding used by the volume
format. If the name could not be converted, errFSBadForkName is returned.

Some volume formats only support a limited set of forks (such as the data and resource
forks on HFS volumes). For those volumes, if any other fork name is passed,
errFSBadForkName is returned.

5.4.3 errFSBadBuffer

A non-optional buffer pointer was NULL, or its size was invalid for the type of data it
was expected to contain. In a protected memory system, this could also mean the
buffer space is not part of the address space for the calling process.

5.4.4 errFSBadForkRef

A file reference number does not correspond to a fork opened with FSOpenFork. This
could be because that fork has already been closed. Or, you may have passed a refnum
created with the older APIs (eg., by PBHOpenDF). A value of zero is never a valid file
reference number.

5.4.5 errFSBadInfoBitmap

A FSCatalogInfoBitmap (see Section 5.3.6, "FSCatalogInfo") or FSVolumeInfoBitmap
(see Section 5.3.8, "FSVolumeInfo") has one or more reserved/undefined bits set. Can
also be returned if a defined bit is set, but the corresponding FSCatalogInfo or
FSVolumeInfo field cannot be operated on with that call (for example, trying to use
FSSetCatalogInfo to set the valence of a directory).

5.4.6 errFSMissingCatInfo

A FSCatalogInfo pointer is NULL, but is not optional. Or, if the FSCatalogInfo is
optional and NULL, but the corresponding CatalogInfoBitmap is not zero (that is, the

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 23

bitmap says that one or more of the FSCatalogInfo fields is being passed, but the
supplied pointer was NULL).

5.4.7 errFSNotAFolder

A parameter was expected to identify a folder, but it identified some other kind of
object (eg., a file) instead. This implies that the specified object exists, but is of the
wrong type. For example, one of the parameters to FSCreateFileUnicode is an FSRef of
the directory where the file will be created; if the FSRef actually refers to a file, this
error is returned.

5.4.8 errFSForkNotFound

An attempt to specify a fork of a given file or directory, but that particular fork does not
exist.

5.4.9 errFSNameTooLong

A file or fork name was too long. This means that the given name could never exist;
this is different from a “file not found” or errFSForkNotFound error.

5.4.10 errFSMissingName

A required file or fork name parameter was a NULL pointer, or the length of a filename
was zero.

5.4.11 errFSBadPosMode

Reserved or invalid bits in a positionMode field were set. For example, the FSReadFork
call does not support newline mode, so setting the newline bit or a newline character in
the positionMode would cause this error.

5.4.12 errFSBadAllocFlags

Reserved or invalid bits were set in an FSAllocationFlags parameter.

5.4.13 errFSNoMoreItems

There are no more items to return when enumerating a directory or searching a
volume. (Note that FSCatalogSearch returns errFSNoMoreItems whereas PBCatSearch
would return eofErr.)

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 24

5.4.14 errFSBadItemCount

The maximumObjects parameter to FSGetCatalogInfoBulk or FSCatalogSearch was
zero.

5.4.15 errFSBadSearchParams

The search criteria to FSCatalogSearch are invalid or inconsistent.

5.4.16 errFSRefsDifferent

The two FSRefs passed to FSCompareFSRefs are for different files or directories. Note
that a volume format may be able to compare the FSRefs without searching for the files
or directories, so this error may be returned even if one or both of the FSRefs refers to
non-existant objects.

5.4.17 errFSForkExists

An attempt to create a fork (see Section 5.6.11, "FSCreateFork"), but that fork already
exists.

5.4.18 errFSBadIteratorFlags

The flags passed to FSOpenIterator are invalid, such as setting a bit that is currently
reserved.

5.4.19 errFSIteratorNotFound

The value of an FSIterator parameter does not correspond to any currently open
iterator.

5.4.20 errFSIteratorNotSupported

The iterator flags or container of an FSIterator are not supported by that call. For
example, in the initial release, the FSCatalogSearch call only supports an iterator
whose container is the volume’s root directory and whose flags are kFSIterateSubtree
(i.e. an iterator for the entire volume’s contents). Similarly, in the initial release,
FSGetCatalogInfoBulk only supports an iterator whose flags are kFSIterateFlat.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 25

5.5 Parameter Blocks

The following sections list the parameter blocks used by the low-level (parameter block
based) APIs. The Interfaces sections describe which fields are actually used for
individual calls.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 26

5.5.1 FSRefParam

struct FSRefParam {
 QElemPtr qLink; /*queue link in header*/
 short qType; /*type byte for safety check*/
 short ioTrap; /*FS: the Trap*/
 Ptr ioCmdAddr; /*FS: address to dispatch to*/
 IOCompletionUPP ioCompletion; /*completion routine addr */
 volatile OSErr ioResult; /*result code*/
 ConstStringPtr ioNamePtr; /*ptr to Vol:FileName string*/
 short ioVRefNum; /*volume refnum */

 SInt16 reserved1; /* was ioRefNum */
 UInt8 reserved2; /* was ioVersNum */
 UInt8 reserved3; /* was ioPermssn */

 const FSRef * ref; /* Input ref; */
 /* the target of the call */

 FSCatalogInfoBitmap whichInfo;
 FSCatalogInfo * catInfo;
 UniCharCount nameLength; /* input name length */

 /* for create/rename */
 const UniChar * name; /* input name */

 /* for create/rename */
 long ioDirID;
 FSSpec * spec; /* target (source) FSRef */
 FSRef * parentRef; /* secondary (dest) FSRef */
 FSRef * newRef; /* output ref */
 TextEncoding textEncodingHint; /* for Rename

 /* and MakeFSRefUnicode */
 HFSUniStr255 * outName; /* Output name

 /* for GetCatalogInfo */
};
typedef struct FSRefParam FSRefParam;
typedef FSRefParam * FSRefParamPtr;

5.5.2 FSForkIOParam

struct FSForkIOParam {
 QElemPtr qLink; /*queue link in header*/
 short qType; /*type byte for safety check*/
 short ioTrap; /*FS: the Trap*/
 Ptr ioCmdAddr; /*FS: address to dispatch to*/
 IOCompletionUPP ioCompletion; /*completion routine addr */
 volatile OSErr ioResult; /*result code*/
 void * reserved1; /* was ioNamePtr */
 SInt16 reserved2; /* was ioVRefNum */
 SInt16 forkRefNum; /* same as ioRefNum */
 UInt8 reserved3; /* was ioVersNum */
 SInt8 permissions; /* DO NOT MOVE THIS FIELD */
 const FSRef * ref; /* which object to open */

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 27

 Ptr buffer; /*data buffer Ptr*/
 UInt32 requestCount; /*requested byte count*/
 UInt32 actualCount; /*actual byte count completed*/
 UInt16 positionMode; /*initial file positioning*/
 SInt64 positionOffset; /*file position offset*/

 FSAllocationFlags allocationFlags;
 UInt64 allocationAmount;

 UniCharCount forkNameLength; /* input; fork name length */
 UniChar * forkName; /* input; fork name */

 CatPositionRec forkIterator;
 HFSUniStr255 * outForkName; /* output; fork name */
};
typedef struct FSForkIOParam FSForkIOParam;
typedef FSForkIOParam * FSForkIOParamPtr;

5.5.3 FSCatalogBulkParam

struct FSCatalogBulkParam {
 QElemPtr qLink; /* queue link in header */
 short qType; /* type byte for safety check */
 short ioTrap; /* FS: the Trap*/
 Ptr ioCmdAddr; /* FS: address to dispatch to */
 IOCompletionUPP ioCompletion; /* completion routine addr */
 volatile OSErr ioResult; /* result code */
 Boolean containerChanged; /* true if container changed */
 /* since last iteration */
 UInt8 reserved; /* align following fields */
 FSIteratorFlags iteratorFlags;
 FSIterator iterator;
 const FSRef * container; /* directory/volume to iterate */
 ItemCount maximumItems;
 ItemCount actualItems;
 FSCatalogInfoBitmap whichInfo;
 FSCatalogInfo * catalogInfo; /* returns an array */
 FSRef * refs; /* returns an array */
 FSSpec * specs; /* returns an array */
 HFSUniStr255 * names; /* returns an array */
 const FSSearchParams * searchParams;
};
typedef struct FSCatalogBulkParam FSCatalogBulkParam;
typedef FSCatalogBulkParam * FSCatalogBulkParamPtr;

5.5.4 FSForkCBInfoParam

struct FSForkCBInfoParam {
 QElemPtr qLink;‘ /* queue link in header */
 short qType; /* type byte for safety check */
 short ioTrap; /* FS: the Trap */
 Ptr ioCmdAddr; /* FS: address to dispatch to */

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 28

 IOCompletionUPP ioCompletion; /* completion routine addr */
 volatile OSErr ioResult; /* result code */
 SInt16 desiredRefNum; /* 0 to iterate, non-0 for */

 /* specific refnum */
 SInt16 volumeRefNum; /* volume to match, */

 /* or 0 for all */
 SInt16 iterator; /* 0 to start iteration */
 SInt16 actualRefNum; /* actual refnum found */

 FSRef * ref;
 FSForkInfo * forkInfo;
 HFSUniStr255 * forkName;
};
typedef struct FSForkCBInfoParam FSForkCBInfoParam;
typedef FSForkCBInfoParam * FSForkCBInfoParamPtr;

5.5.5 FSVolumeInfoParam

struct FSVolumeInfoParam {
 QElemPtr qLink; /* queue link in header */
 short qType; /* type byte for safety check */
 short ioTrap; /* FS: the Trap */
 Ptr ioCmdAddr; /* FS: address to dispatch to */
 IOCompletionUPP ioCompletion; /* completion routine addr */
 volatile OSErr ioResult; /* result code */
 StringPtr ioNamePtr; /* unused */
 FSVolumeRefNum ioVRefNum; /* volume refnum */

 UInt32 volumeIndex; /* index, or 0 to use ioVRefNum */
 FSVolumeInfoBitmap whichInfo; /* which volumeInfo to get/set */
 FSVolumeInfo * volumeInfo; /* information about the volume */
 HFSUniStr255 * volumeName; /* output; ptr to volume name */
 FSRef * ref; /* volume's FSRef */
};
typedef struct FSVolumeInfoParam FSVolumeInfoParam;
typedef FSVolumeInfoParam * FSVolumeInfoParamPtr;

5.6 Interfaces

The calls listed here are the high-level variants. Each call has two corresponding
parameter block-based calls (one sync, one async). The parameter block-based calls
take the same parameters, but they are fields in a larger parameter block instead of
separate function arguments. In many cases, a single parameter block type is shared
by multiple calls; some fields are unused by some calls. Some of the parameter block
fields are input/output, so a single field is used where there would be separate input
and output parameters for the corresponding high-level call.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 29

5.6.1 PBHGetVolParms

OSErr PBHGetVolParms (HParmBlkPtr paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> ioNamePtr A pointer to the volume’s name
 -> ioVRefNum A volume specification
 -> ioBuffer A pointer to the GetVolParmsInfoBuffer record
 -> ioReqCount The size of the bufffer area, in bytes
 <- ioActCount The size of the data actually returned

The PBHGetVolParms function returns information about the characteristics of a
volume. You specify a volume (either by name or by volume reference number) and a
buffer size, and PBHGetVolParms fills in the volume attributes buffer, as described in
this section.

You can use a name (pointed to by the ioNamePtr field) or a volume specification
(contained in the ioVRefNum field) to specify the volume. A volume specification can be
a volume reference number, drive number, or working directory reference number. If
you use a volume specification to specify the volume, you should set the ioNamePtr
field to NULL.

You must allocate memory to hold the returned attributes and put a pointer to the
buffer in the ioBuffer field. Specify the size of the buffer in the ioReqCount field. The
PBHGetVolParms function places the attributes information in the buffer pointed to by
the ioBuffer field and specifies the actual length of the data in the ioActCount field.

struct GetVolParmsInfoBuffer {
 short vMVersion; /*version number*/
 long vMAttrib; /*bit vector of attributes (see constants below)*/
 Handle vMLocalHand; /*handle to private data*/
 long vMServerAdr; /*AppleTalk server address or zero*/

 /* vMVersion 1 GetVolParmsInfoBuffer ends here */

 long vMVolumeGrade; /*approx. speed rating or zero if unrated*/
 short vMForeignPrivID; /*foreign privilege model supported, zero if none*/

 /* vMVersion 2 GetVolParmsInfoBuffer ends here */

 long vMExtendedAttributes; /*extended attribute bits (see below)*/

 /* vMVersion 3 GetVolParmsInfoBuffer ends here */
};
typedef struct GetVolParmsInfoBuffer GetVolParmsInfoBuffer;

The vMVersion is the version of the attributes buffer structure, as returned by the
volume format’s implementation. Currently, this field returns 1, 2, or 3. Version 3 was
introduced to support the HFS Plus APIs.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 30

The vMAttrib field consists of many bits that describe the volume’s attributes. For
details on these bits, see Inside Macintosh: Files and its errata (available on the Apple
Developer web site).

The vMLocalHand field contains a handle to private data for shared volumes. On
creation of the VCB (just after mounting), this field is a handle to a 2-byte block of
memory. The Finder uses this for its local window list storage, allocating and
deallocating memory as needed. It is disposed of when the volume is unmounted.
Your application should treat this field as reserved.

For AppleShare server volumes, the vMServer field contains the network address of an
AppleTalk server volume. Your application can inspect this field to tell which volumes
belong to which server; the value of this field is 0 if the volume does not have a server.

The vMVolumeGrade is the relative speed rating of the volume. The scale used to
determine these values is currently uncalibrated. In general, lower values indicate
faster speeds. A value of 0 indicates the volume’s speed is unrated. The buffer version
returned in vMVersion must be greater than 1 for this field to be meaningful.

The vMForeignPrivID is ain integer representing the privilege model supported by the
volume. Currently two values are defined for this field: 0 represents a standard HFS or
HFS Plus volume that might or might not support the AFP privilege model;
fsUnixPriv represents a volume that supports the A/UX privilege model. The buffer
version returned in vMVersion must be greater than 1 for this field to be meaningful.

The vMExtendedAttributes field, like the vMAttrib field, contains bits that describe a
volume’s attributes. For this field to be meaningful, the vMVersion must be greater
than 2. The bits currently defined in vMExtendedAttributes are:

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 31

enum {
 bIsEjectable = 0, /* volume is in an ejectable disk drive */
 bSupportsHFSPlusAPIs = 1, /* volume supports HFS Plus APIs directly
 (not through compatibility layer) */
 bSupportsFSCatalogSearch = 2, /* volume supports FSCatalogSearch */
 bSupportsFSExchangeObjects = 3, /* volume supports FSExchangeObjects */
 bSupports2TBFiles = 4, /* volume supports 2 terabyte files */
 bSupportsLongNames = 5, /* volume supports file/directory/volume
 names longer than 31 characters */
 bSupportsMultiScriptNames = 6, /* volume supports file/directory/volume
 names with characters from multiple
 script systems */
 bSupportsNamedForks = 7, /* volume supports forks beyond the data
 and resource forks */
 bSupportsSubtreeIterators = 8, /* volume supports recursive iterators
 not at the volume root */
 bL2PCanMapFileBlocks = 9 /* volume supports Lg2Phys SPI correctly */
};

Volumes that implement the HFS Plus APIs must version 3 (or newer) of the
GetVolParmsInfoBuffer. Volumes that don’t implement the HFS Plus APIs may still
implement version 3 of the GetVolParmsInfoBuffer. If the version of the
GetVolParmsInfoBuffer is 2 or less, or the bSupportsHFSPlusAPIs bit is clear (zero),
then the volume does not implement the HFS Plus APIs, and they are being emulated
for that volume by the File Manager itself.

If a volume does not implement the HFS Plus APIs, and supports version 2 or earlier
version of the GetVolParmsInfoBuffer, it cannot itself describe whether it supports the
FSCatalogSearch or FSExchangeObjects calls. The compatibility layer will implement
the FSCatalogSearch call if the volume supports the PBCatSearch call (i.e. the
bHasCatSearch bit of vMAttrib is set). The compatibility layer will implement the
FSExchangeObjects call if the volume supports PBExchangeFiles (i.e. the bHasFileIDs
bit of vMAttrib is set).

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 32

5.6.2 FSMakeFSRefUnicode

OSErr FSMakeFSRefUnicode (const FSRef * parentRef,
 UniCharCount nameLength,
 const UniChar * name,
 TextEncoding textEncodingHint,
 FSRef * newRef);

OSErr PBMakeFSRefUnicodeSync (FSRefParam * paramBlock);
OSErr PBMakeFSRefUnicodeAsync (FSRefParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> ref A pointer to the parent directory FSRef
 -> nameLength The length of the Unicode Name
 -> name A pointer to Unicde name
 -> textEncodingHint A suggested text encoding to use for the name
 <- newRef A pointer to an FSRef

The FSMakeFSRefUnicode call lets you construct an FSRef given an FSRef for the parent
directory, and Unicode name. The Unicode name must be a leaf name; partial or full
pathnames are not allowed.2

An FSRef for the directory containing the object is passed in parentDirectory. The
name of the object is specified with Unicode; the length (in Unicode characters) is
passed in nameLength; name points to the Unicode characters. A text encoding hint for
the name is passed in textEncodingHint; if you pass kTextEncodingUnknown, the File
Manager will use a default value.

If the result is noErr, an FSRef for the object is returned in ref.

5.6.3 FSpMakeFSRef

OSErr FSpMakeFSRef (const FSSpec * source,
 FSRef * newRef);

OSErr PBMakeFSRefSync (FSRefParam * paramBlock);
OSErr PBMakeFSRefAsync (FSRefParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> ioNamePtr A pointer to a pathname
 -> ioVRefNum A volume specification
 -> ioDirID A directory ID
 <- newRef A pointer to an FSRef

The FSpMakeFSRef call lets you convert an FSSpec to an FSRef. (To obtain an FSSpec
from an FSRef, use the FSGetCatalogInfo call.)

2. If you have a partial or full pathname in Unicode, you will have to parse it yourself and make multiple
FSMakeFSRef calls.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 33

The fsSpec parameter must contain a valid FSSpec for an existing file or directory; if
not, the call will return fnfErr. The File Manager will contstruct and return, in the ref
parameter, an FSRef for the same file or directory.

Note

For the parameter block based calls, the fields of the source
FSSpec are passed as separate parameters. This allows the
call to be dispatched to external filesystems the same way as
other FSp calls are. �

5.6.4 FSCompareFSRefs

OSErr FSCompareFSRefs (const FSRef * ref1,
 const FSRef * ref2);

OSErr PBCompareFSRefsSync (FSRefParam * paramBlock);
OSErr PBCompareFSRefsAsync (FSRefParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> ref A pointer to the first FSRef (ref1)
 -> parentRef A pointer to the second FSRef (ref2)

The FSCompareFSRefs call lets you determine whether two FSRefs refer to the same
file or directory. It is not possible to compare the FSRef structures directly since some
bytes may be uninitialized, case-insensitive text, or contain hint information.

If the two FSRefs refer to the same file or directory, then noErr is returned. If they refer
to objects on different volumes, then diffVolErr is returned. If they refer to different
files or directories on the same volume, then errFSRefsDifferent is returned. This call
may return other errors, including nsvErr, fnfErr, dirNFErr, and volOffLinErr.

Note: some volume formats may be able to tell that two FSRefs would refer to two
different files or directories, without having to actually find those objects. In this case,
the volume format may return errFSRefsDifferent even if one or both objects no
longer exist. Similarly, if the refs are for objects on different volumes, the File Manager
will return diffVolErr even if one or both volumes are no longer mounted.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 34

5.6.5 FSCreateFileUnicode

OSErr FSCreateFileUnicode (const FSRef * parentRef,
UniCharCount nameLength,
const UniChar * name,
FSCatalogInfoBitmap whichInfo,
const FSCatalogInfo * catalogInfo, /*can be NULL*/
FSRef * newRef, /*can be NULL*/
FSSpec * newSpec); /*can be NULL*/

OSErr PBCreateFileUnicodeSync (FSRefParam * paramBlock);
OSErr PBCreateFileUnicodeAsync(FSRefParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> ref The directory where the file is to be created

(parentRef)
 -> nameLength Number of Unicode characters in the file's name
 -> name A pointer to the Unicode name
 -> whichInfo Which catalog info fields to set; may be NULL
 -> catInfo The values for catalog info fields to set; may be NULL
 <- newRef A pointer to the FSRef for the new file; may be NULL
 <- spec A pointer to the FSSpec for the new file; may be NULL

The FSCreateFileUnicode call will create a new file in the directory specified by
parentRef. The file’s new name is passed in name; the length of the name (in Unicode
characters) is passed in nameLength. You may optionally set catalog information for the
file using the whichInfo and catalogInfo parameters; this is equivalent to calling
FSSetCatalogInfo after creating the file. If possible, you should set the
textEncodingHint in the catalogInfo.

An FSRef for the new file is (optionally) returned in newRef. An FSSpec for the new file
is (optionally) returned in newSpec.

5.6.6 FSCreateDirectoryUnicode

OSErr FSCreateDirectoryUnicode

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 35

 (const FSRef * parentRef,
 UniCharCount nameLength,
 const UniChar * name,
 FSCatalogInfoBitmap whichInfo,
 const FSCatalogInfo * catalogInfo, /* can be NULL */
 FSRef * newRef, /* can be NULL */
 FSSpec * newSpec, /* can be NULL */
 UInt32 * newDirID); /* can be NULL */

OSErr PBCreateDirectoryUnicodeSync (FSRefParam * paramBlock);
OSErr PBCreateDirectoryUnicodeAsync (FSRefParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> ref The parent directory where the new directory
 is to be created
 -> nameLength Number of Unicode characters in the directory's name
 -> name A pointer to the Unicode name
 -> whichInfo Which catalog info fields to set; may be NULL
 -> catInfo The values for catalog info fields to set; may be NULL
 <- newRef A pointer to the FSRef for the directory; may be NULL
 <- spec A pointer to the FSSpec for the directory; may be NULL
 <- ioDirID The directory ID of the directory

The FSCreateDirectoryUnicode call will create a directory (folder) inside the directory
specified by the parentRef parameter. The new directory’s new name is passed in
name; the length of the name (in Unicode characters) is passed in nameLength. You may
optionally set catalog information for the new directory using the whichInfo and
catalogInfo parameters; this is equivalent to calling FSSetCatalogInfo after creating
the directory. If possible, you should set the textEncodingHint in the catalogInfo.

An FSRef for the new directory is (optionally) returned in newRef. An FSSpec for the
directory is optionally returned in newSpec. The directory’s ID is optionally returned in
newDirID (but always returned in the parameter block form of the call).

5.6.7 FSDeleteObject

OSErr FSDeleteObject (const FSRef * ref);

OSErr PBDeleteObjectSync (FSRefParam * paramBlock);
OSErr PBDeleteObjectAsync (FSRefParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> ref The file or directory to be deleted

The FSDeleteObject call will delete a file or an empty directory (one that contains no
files or folders). The object is specified by the ref parameter.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 36

5.6.8 FSMoveObject

OSErr FSMoveObject (const FSRef * ref,
 const FSRef * destDirectory,
 FSRef * newRef); /* can be NULL */

OSErr PBMoveObjectSync (FSRefParam * paramBlock);
OSErr PBMoveObjectAsync (FSRefParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> ref The file or directory to be moved
 -> parentRef The file or directory will be moved into
 this directory
 <- newRef A new FSRef for the file or directory in its
 new location; optional, may be NULL

The FSMoveObject call moves the file or directory specified by ref into the directory
specified by destDirectory. The new FSRef for the file or directory is (optionally)
returned in newRef.

If destDirectory specifies a non-existent object, dirNFErr is returned. If destDirectory
refers to a file, then errFSNotAFolder is returned. If destDirectory is on a different
volume than ref, diffVolErr is returned.

5.6.9 FSRenameUnicode

OSErr FSRenameUnicode (const FSRef * ref,
 UniCharCount nameLength,
 const UniChar * name,
 TextEncoding textEncodingHint,
 FSRef * newRef); /*can be NULL*/

OSErr PBRenameUnicodeSync (FSRefParam * paramBlock);
OSErr PBRenameUnicodeAsync (FSRefParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> ref The file or directory to be moved
 -> nameLength Number of Unicode characters in the new name
 -> name A pointer to the new Unicode name
 -> textEncodingHint A suggested text encoding to use for the name
 <- newRef A new FSRef for the file or directory; may be NULL

The FSRenameUnicode call allows you to rename a file or folder. The object to rename is
specified by the oldRef parameter. The new name is specified by the name and
nameLength parameters. The text encoding hint for the new name is passed in
textEncodingHint; pass kTextEncodingUnknown to use a default value.

A new FSRef for the renamed object is (optionally) returned in newRef.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 37

5.6.10 FSExchangeObjects

OSErr FSExchangeObjects (const FSRef * ref,
 const FSRef * destRef);

OSErr PBExchangeObjectsSync (FSRefParam * paramBlock);
OSErr PBExchangeObjectsAsync (FSRefParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> ref The first file
 -> parentRef The second file (destRef)

The FSExchangeObjects call allows programs to implement a “safe save” operation by
creating and writing a complete new file and swapping their contents (which means
that an alias, FSSpec or FSRef that refers to the old file will now access the new data).

The corresponding information in in-memory data structures are also exchanged.
Either or both files may have open access paths. After the exchange, the access path
will refer to the opposite file’s data (that is, to the same data it originally referred,
which is now part of the other file).

5.6.11 FSCreateFork

OSErr FSCreateFork (const FSRef * ref,
 UniCharCount forkNameLength,
 const UniChar * forkName); /* can be NULL */

OSErr PBCreateForkSync (FSForkIOParam * paramBlock);
OSErr PBCreateForkAsync (FSForkIOParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> ref The file or directory
 -> forkNameLength The length of the fork name (in Unicode characters)
 -> forkName The name of the fork to open (in Unicode)

The FSCreateFork call lets a program create a named fork for a file or directory. The file
or directory is specified by the ref. The name of the fork is specified by
forkNameLength and forkName. A newly created fork has zero length (i.e. its logical
end-of-file is zero).

If the named fork already exists, errFSForkExists is returned. If the fork name is
syntactically invalid or otherwise unsupported for the given volume,
errFSBadForkName or errFSNameTooLong is returned.

The data and resource forks of a file are automatically created and deleted as needed
(for compatibility with older APIs, and because they’re often handled specially). If a
given fork always exists for a given volume format (such as data and resource forks for
HFS and HFS Plus, or data forks for most other volume formats), an attempt to create

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 38

that fork when a zero-length fork already exists should return noErr; if a non-empty
fork already exists then errFSForkExists should be returned.

5.6.12 FSDeleteFork

OSErr FSDeleteFork (const FSRef * ref,
 UniCharCount forkNameLength,
 const UniChar * forkName); /* can be NULL */

OSErr PBDeleteForkSync (FSForkIOParam * paramBlock);
OSErr PBDeleteForkAsync (FSForkIOParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> ref The file or directory
 -> forkNameLength The length of the fork name (in Unicode characters)
 -> forkName The name of the fork to open (in Unicode)
 -- permissions Field may be modified
 -- forkRefNum Field may be modified
 -- positionMode Field may be modified
 -- positionOffset Field may be modified

The FSDeleteFork call allows a program to delete a named fork of a file or directory.
Any storage allocated to that fork is released. The file or directory is specified by ref.
The name of the fork is specified by forkNameLength and forkName. If the named fork
does not exist, errFSForkNotFound is returned.

If a given fork always exists for a given volume format (such as data and resource forks
for HFS and HFS Plus, or data forks for most other volume formats), this is equivalent
to setting the logical size of the fork to zero.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 39

5.6.13 FSIterateForks

OSErr FSIterateForks (const FSRef * ref,
 CatPositionRec * forkIterator,
 HFSUniStr255 * forkName, /* can be NULL */
 UInt64 * forkSize, /* can be NULL */
 UInt64 * forkPhysicalSize); /* can be NULL */

OSErr PBIterateForksSync (FSForkIOParam * paramBlock);
OSErr PBIterateForksAsync (FSForkIOParam * paramBlock);
 -> ioCompletion A pointer to a completion routine.
 <- ioResult The result code of the function.
 -> ref The file or directory containing the forks.
 <> forkIterator Maintains state between calls for a given FSRef.
 Before the first call, set the initialize field to 0.
 <- outForkName The name of the fork in Unicode.
 <- positionOffset The length of the fork, in bytes (forkSize).
 <- allocationAmount The space allocated to the fork (forkPhysicalSize).

The FSIterateForks call allows a program to determine the name and size of every
named fork belonging to a file or directory. The file or directory is specified by ref.
Since information is returned about one fork at a time, several calls may be required to
iterate through all the forks. The forkIterator field maintains state between a series of
calls; set the initialize field to zero before the first call. The forkIterator will be
updated after the call completes; the updated iterator should be passed into the next
call.

The name of the fork is (optionally) returned in the structure pointed to by forkName.

The fork’s logical size in bytes is returned in forkSize. The fork’s physical size (i.e. the
amount of space allocated on disk, in bytes) is returned in forkPhysicalSize. Both of
these outputs are optional; if you don’t want the value, set the pointer to NULL.

There is no guarantee about the order in which forks are returned. The order may vary
between iterations.

5.6.14 FSGetDataForkName

OSErr FSGetDataForkName (HFSUniStr255 * dataForkName);

Returns a Unicode string constant for the name of the data fork (currently an empty
string) in the structure pointed to by dataForkName.

Note

There is no parameter block-based form of this call since it is
not dispatched to individual volume formats, and does not
require any I/O. �

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 40

5.6.15 FSGetResourceForkName

OSErr FSGetResourceForkName (HFSUniStr255 * resourceForkName);

Returns a Unicode string constant for the name of the resource fork (currently
“RESOURCE_FORK”) in the structure pointed to by resourceForkName.

Note

There is no parameter block-based form of this call since it is
not dispatched to individual volume formats, and does not
require any I/O. �

5.6.16 FSOpenFork

OSErr FSOpenFork (const FSRef * ref,
 UniCharCount forkNameLength,
 const UniChar * forkName, /* can be NULL */
 SInt8 permissions,
 SInt16 * forkRefNum);

OSErr PBOpenForkSync (FSForkIOParam * paramBlock);
OSErr PBOpenForkAsync (FSForkIOParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> ref The file or directory containing the fork to open
 -> forkNameLength The length of the fork name (in Unicode characters)
 -> forkName The name of the fork to open (in Unicode)
 -> permissions The access (read and/or write) you want
 <- forkRefNum The reference number for accessing the open fork

The FSOpenFork call is used to open any fork of a file or directory for streaming access
(using the FSReadFork, FSWriteFork, FSCloseFork and related calls). The fork may be
larger than 2GB, and is allowed to grow to 2GB or larger.

The file or directory is specified by the ref parameter. The fork to open is specified by
forkName and forkNameLength. You can obtain the string constants for the data fork
and resource fork using the FSGetDataForkName and FSGetResourceForkName calls.

The permission parameter controls the way the file can be accessed via the returned
fork reference (read-only or read/write). It is the same as the permission parameter
passed to FSpOpenDF and FSpOpenRF.

A fork reference number is returned in forkRef.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 41

5.6.17 FSReadFork

OSErr FSReadFork (SInt16 forkRefNum,
 UInt16 positionMode,
 SInt64 positionOffset,
 ByteCount requestCount,
 void * buffer,
 ByteCount * actualCount); /* can be NULL */

OSErr PBReadForkSync (FSForkIOParam * paramBlock);
OSErr PBReadForkAsync (FSForkIOParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> forkRefNum The reference number of the fork to read from
 -> positionMode The base location for start of read
 -> positionOffset The offset from base location for start of read
 -> requestCount The number of bytes to read
 <- buffer Pointer to buffer where data will be returned
 <- actualCount The number of bytes actually read

The FSReadFork call is used to read data from a fork opened using the FSOpenFork call.
Data is read starting at the position specified by positionMode and positionOffset.
Up to requestCount bytes will be read into the buffer pointed at by the buffer
parameter. The actual number of bytes read is (optionally) returned in actualCount.

The actualCount will be equal to requestCount unless there was an error during the
read operation. If there are fewer than requestCount bytes from the specified position
to the logical end-of-file, then all of those bytes are read, and eofErr is returned. The
actualCount output is optional; if you don’t want it, set actualCount to NULL.

The fork’s current position is set to point immediately after the last byte read (that is,
the initial position plus actualCount).

The caller can hint to the File Manager whether the data being read should or should
not be cached. Set the appropriate bits in positionMode. (This is the same behavior as
PBReadSync.) See Section 5.3.4, "FSPositionMode" for more information.

You may also add forceReadMask to positionMode. This tells the File Manager to force
the data to be read directly from the disk. This is different from noCacheMask since
forceReadMask will flush the appropriate part of the cache first, then ignore any data
already in the cache. However, data that is read may be placed in the cache for future
reads. The forceReadMask is also passed to the device driver, indicating that it should
avoid reading from any device caches.

To verify that data previously written has been correctly transferred to disk, read it
back in using forceReadMask and compare it with the data you previously wrote.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 42

5.6.18 FSWriteFork

OSErr FSWriteFork (SInt16 forkRefNum,
 UInt16 positionMode,
 SInt64 positionOffset,
 ByteCount requestCount,
 void * buffer,
 ByteCount * actualCount); /* can be NULL */

OSErr PBWriteForkSync (FSForkIOParam * paramBlock);
OSErr PBWriteForkAsync (FSForkIOParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> forkRefNum The reference number of the fork to write to
 -> positionMode The base location for start of write
 -> positionOffset The offset from base location for start of write
 -> requestCount The number of bytes to write
 -> buffer Pointer to data to write
 <- actualCount The number of bytes actually written

The FSWriteFork call is used to write data to a fork opened using the FSOpenFork call.
Data is written starting at the position specified by positionMode and positionOffset.
The call will attempt to write requestCount bytes from the buffer pointed at by the
buffer parameter. The actual number of bytes written is (optionally) returned in
actualCount.

The actualCount will be equal to requestCount unless there was an error during the
write operation. If there is not enough space on the volume to write requestCount
bytes, then dskFulErr is returned and actualCount contains the number of bytes
actually written to the fork. The actualCount output is optional; if you don’t want it,
set actualCount to NULL.

The caller can hint to the File Manager whether the data being written should or
should not be cached. Set the appropriate bits in positionMode. See Section 5.3.4,
"FSPositionMode" for more information.

The fork’s current position is set to point immediately after the last byte written (that
is, the initial position plus actualCount).

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 43

5.6.19 FSGetForkPosition

OSErr FSGetForkPosition (SInt16 forkRefNum,
 UInt64 * position);

OSErr PBGetForkPositionSync (FSForkIOParam * paramBlock);
OSErr PBGetForkPositionAsync (FSForkIOParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> forkRefNum The reference number of the fork
 <- positionOffset The current position of the fork (position)

The FSGetForkPosition call returns the current position of the open fork specified by
forkRef in the forkPosition parameter. The returned fork position is relative to the
start of the fork (that is, is an absolute offset in bytes).

5.6.20 FSSetForkPosition

OSErr FSSetForkPosition (SInt16 forkRefNum,
 UInt16 positionMode,
 SInt64 positionOffset); /* can be NULL */

OSErr PBSetForkPositionSync (FSForkIOParam * paramBlock);
OSErr PBSetForkPositionAsync (FSForkIOParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> forkRefNum The reference number of the fork
 -> positionMode The base location for the new position
 -> positionOffset The offset of the new position from the base

The FSSetForkPosition call sets the current position of the open fork specified by
forkRef to the position indicated by positionMode and positionOffset. If
positionMode is equal to fsAtMark, then the positionOffset parameter is ignored. See
Section 5.3.4, "FSPositionMode" for a description of the constants that may be used in
positionMode.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 44

5.6.21 FSGetForkSize

OSErr FSGetForkSize (SInt16 forkRefNum,
 UInt64 * forkSize);

OSErr PBGetForkSizeSync (FSForkIOParam * paramBlock);
OSErr PBGetForkSizeAsync (FSForkIOParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> forkRefNum The reference number of the fork
 <- positionOffset The logical size of the fork, in bytes (forkSize)

The FSGetForkSize call returns the size (logical end-of-file) of the open fork specified
by forkRef in the forkSize parameter. The size returned is the logical size (that is, the
total number of bytes that can be read from the fork); the amount of space actually
allocated on the volume (the physcial size) will probably be larger.

5.6.22 FSSetForkSize

OSErr FSSetForkSize (SInt16 forkRefNum,
 UInt16 positionMode,
 SInt64 positionOffset);

OSErr PBSetForkSizeSync (FSForkIOParam * paramBlock);
OSErr PBSetForkSizeAsync (FSForkIOParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> forkRefNum The reference number of the fork
 -> positionMode The base location for the new size
 -> positionOffset The offset of the new size from the base

The FSSetForkSize call changes the size of the open fork specified by forkRef. The
logical end-of-file will be set to the position indicated by the positionMode and
positionOffset parameters.

The fork’s new size may be less than, equal to, or greater than the fork’s current size. If
the fork’s new size is greater than the fork’s current size, then the additional bytes
(between the old and new size) will have an undetermined value.

If there is not enough space on the volume to extend the fork, then dskFulErr is
returned and the fork’s size is unchanged.

If the fork’s current position is larger than the fork’s new size, then the current position
will be set to the new fork size. That is, the current position will be equal to the logical
end of file.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 45

5.6.23 FSAllocateFork

OSErr FSAllocateFork (SInt16 forkRefNum,
 FSAllocationFlags flags,
 UInt16 positionMode,
 SInt64 positionOffset,
 UInt64 requestCount,
 UInt64 * actualCount); /* can be NULL */

OSErr PBAllocateForkSync (FSForkIOParam * paramBlock);
OSErr PBAllocateForkAsync (FSForkIOParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> forkRefNum The reference number of the fork
 -> allocationFlags Controls how new space is allocated
 -> positionMode The base location for start of allocation
 -> positionOffset The offset of the start of allocation
 <> allocationAmount The number of bytes to allocate (requestCount)
 On output, the number of bytes actually added
 (actualCount)

The FSAllocateFork call is a hint to reserve space on a volume for use by the open fork
specified by forkRef. This call will attempt to allocate requestCount bytes of physical
storage starting at the offset specified by positionMode and positionOffset. For
volume formats that support preallocated space, you can later write to this range of
bytes (including extending the size of the fork) without requiring an implicit
allocation.

The flags parameter controls how the space is allocated. If the kAllocContiguousMask
is set, then then any newly allocated space must be in one contiguous extent
(preferably contiguous with any space already allocated). If kAllocAllOrNothingMask
is set, then the entire requestCount bytes must be allocated for the call to succeed; if not
set, as many bytes as possible will be allocated (without error). If
kFSAllocNoRoundUpMask is set, then no additional space is allocated (such as rounding
up to a multiple of a clump size); if clear, the volume format may allocate more space
than requested as an attempt to reduce fragmentation. See Section 5.3.3,
"FSAllocationFlags".

The actual number of bytes allocated to the file (starting at the given starting position)
is returned in actualCount. The actualCount may be smaller than requestCount if
some of the space was already allocated. The actualCount output is optional; if you
don’t want it, set actualCount to NULL.

Note

The value returned in actualCount does not reflect any
additional bytes that may have been allocated because space
is allocated in terms of fixed units such as allocation blocks,
or the use of a clump size to reduce fragmentation. �

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 46

Any extra space allocated but not used will be deallocated when the fork is closed (via
FSCloseFork) or flushed (via FSFlushFork).

5.6.24 FSFlushFork

OSErr FSFlushFork (SInt16 forkRefNum);

OSErr PBFlushForkSync (FSForkIOParam * paramBlock);
OSErr PBFlushForkAsync (FSForkIOParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> forkRefNum The reference number of the fork to close

The FSFlushFork call causes all data written to the open fork specified by forkRef to be
written to disk. The actual fork contents are written, as well as any other volume
structures needed to access the fork.3

Note

On volumes that do not support FSFlushFork directly, the
entire volume is flushed to be sure all volume structures
associated with the fork are written to disk. �

5.6.25 FSCloseFork

OSErr FSCloseFork (SInt16 forkRefNum);

OSErr PBCloseForkSync (FSForkIOParam * paramBlock);
OSErr PBCloseForkAsync (FSForkIOParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> forkRefNum The reference number of the fork to close

The FSCloseFork call causes all data written to the open fork specified by forkRef to be
written to disk (the same as FSFlushFork), and then closes the open fork (making
forkRef invalid).

3. On HFS and HFS Plus, this includes the catalog, extents, and attribute B-trees; the volume bitmap; and
volume header and alternate volume header (MDB, alterhate MDB), as needed.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 47

5.6.26 FSGetForkCBInfo

struct FSForkInfo {
 SInt8 flags; /* copy of FCB flags */
 SInt8 permissions;
 UInt16 reserved1;
 UInt32 reserved2;
 UInt32 nodeID; /* file or directory ID */
 UInt32 forkID; /* fork ID */
 UInt64 currentPosition;
 UInt64 logicalEOF;
 UInt64 physicalEOF;
 UInt64 process; /* should be ProcessSerialNumber */
};
typedef struct FSForkInfo FSForkInfo;
typedef FSForkInfo * FSForkInfoPtr;

OSErr FSGetForkCBInfo (SInt16 desiredRefNum,
 FSVolumeRefNum volume,
 SInt16 * iterator,
 SInt16 * actualRefNum,
 FSForkInfo * forkInfo, /* can be NULL */
 FSRef * ref, /* can be NULL */
 HFSUniStr255 * outForkName); /* can be NULL */

OSErr PBGetForkCBInfoSync (FSForkCBInfoParam * paramBlock);
OSErr PBGetForkCBInfoAsync (FSForkCBInfoParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> desiredRefNum If non-zero on input, then get information for
 this refnum; unchanged on output. If zero on input,
 iterate over all open forks (possibly limited to a
 single volume); on output, contains the fork's refnum.
 -> volumeRefNum Used when desiredRefNum is zero on input. Set to 0 to
 iterate over all volumes, or set to a FSVolumeRefNum
 to limit iteration to that volume.
 <> iterator Used when desiredRefNum is zero on input. Set to 0
 before iterating. Pass the iterator returned by the
 previous call to continue iterating.
 <- actualRefNum The refnum of the open fork.
 <- ref The FSRef for the file or directory that contains
 the fork.
 <- forkInfo Various information about the open fork.
 <- outForkName The name of the fork.

The FSGetForkCBInfo call returns information about a specified open fork, or for all
open forks (optionally limited to a given volume). If you want information on a
specific refnum, set desiredRefNum to that value, and pass NULL for iterator.

If you want to iterate over all open forks (or all open forks for a specific volume), set
volume to the desired volume refnum, or kFSInvalidVolumeRefNum for all volumes. Set
iterator to 0 before the first call. Set desiredRefNum to zero. Upon completion of the

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 48

call, iterator will be updated and that updated value should be passed into the next
call. The call returns errFSNoMoreItems if there are no more open forks to return.

The actualRefNum is not NULL, the refnum of the fork will be returned. If forkInfo is
not NULL, the FSForkInfo for the open fork will be returned. If ref is not NULL, an FSRef
for the file or directory containing the fork will be returned. If outForkName is not NULL,
then the fork name will be returned.

The well-known data fork (i.e. the fork whose name is the empty string, returned by
FSGetDataForkName) will always have a forkID of zero. You should not make any
assumption about the forkID of the well-known resource fork (whose name is returned
by FSGetResourceForkName).

5.6.27 FSGetCatalogInfo

OSErr FSGetCatalogInfo (const FSRef * ref,
 FSCatalogInfoBitmap whichInfo,
 FSCatalogInfo * catalogInfo, /* can be NULL */
 HFSUniStr255 * outName, /* can be NULL */
 FSSpec * fsSpec, /* can be NULL */
 FSRef * parentRef); /* can be NULL */

OSErr PBGetCatalogInfoSync (FSRefParam * paramBlock);
OSErr PBGetCatalogInfoAsync (FSRefParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> ref The file or directory whose information is to
 be returned
 -> whichInfo Which catalog info fields to get; may be NULL
 <- catInfo The returned values of catalog info fields;
 may be NULL
 <- spec A pointer to the FSSpec for the object; may be NULL
 <- parentRef A pointer to the FSRef for the object's parent
 directory; may be NULL
 <- outName The Unicode name is returned here; may be NULL.

The FSGetCatalogInfo call returns general information about the file or directory
specified by ref.

General information about the file or directory is optionally returned in catalogInfo.
Only the information specified by whichInfo is returned. If you don’t want any catalog
info, set whichInfo to kFSCatInfoNone and set catalogInfo to NULL.

If spec is not NULL, an FSSpec for the file or directory is returned. If parentRef is not
NULL, an FSRef for the object’s parent directory is returned. If outName is not NULL, the
file or directory name is returned.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 49

If the object specified by ref is a volume’s root directory, then the ref returned in
parentRef will not be a valid FSRef (since the root directory has no parent object).

5.6.28 FSSetCatalogInfo

OSErr FSSetCatalogInfo (const FSRef * ref,
 FSCatalogInfoBitmap whichInfo,
 const FSCatalogInfo * catalogInfo);

OSErr PBSetCatalogInfoSync (FSRefParam * paramBlock);
OSErr PBSetCatalogInfoAsync (FSRefParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> ref The file or directory whose information is to
 be changed
 -> whichInfo Which catalog info fields to set
 -> catInfo The new values of catalog info fields

The FSSetCatalogInfo call sets the general information about the file or directory
specified by ref.

The general information to be set is passed in catInfo. The whichInfo parameter
determines which fields of the catInfo should be set. The following fields may be set:

• createDate

• contentModDate

• attributeModDate

• accessDate

• backupDate

• permissions

• finderInfo

• extFinderInfo

• textEncodingHint

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 50

5.6.29 FSOpenIterator

typedef struct OpaqueFSIterator* FSIterator;
enum {
 kFSIterateFlat = 0, /* Immediate children of container only */
 kFSIterateSubtree = 1, /* Entire subtree rooted at container */
 kFSIterateReserved = (long)0xFFFFFFFE
};
typedef OptionBits FSIteratorFlags;

OSErr FSOpenIterator (const FSRef * container,
 FSIteratorFlags iteratorFlags,
 FSIterator * iterator);

OSErr PBOpenIteratorSync (FSCatalogBulkParam * paramBlock);
OSErr PBOpenIteratorAsync (FSCatalogBulkParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 <- iterator The returned FSIterator
 -> iteratorFlags Controls whether the iterator iterates over subtrees
 or just the immediate children of the container.
 -> container An FSRef for the directory to iterate (or root of
 the subtree to iterate).

The FSOpenIterator call creates a catalog iterator that can be used to iterate over the
contents of a directory or volume. The set of items to iterate over can either be the
objects directly contained in a directory, or all items directly or indirectly contained in a
directory (i.e. recursive or subtree).

The container parameter specifies the directory to iterate over (or root of the subtree).

The iteratorFlags parameter is a set of flags. At this time, only one bit (bit 0) is
defined. If the bit is clear (i.e. kFSIterateFlat is passed), then the set of items to iterate
over is the set of files and folders directly contained by the container directory; that is,
the files and folders whose parent directory is container. If the bit is set (i.e.
kFSIterateSubtree is passed), then the set of items are all files and folders directly or
indirectly contained by container; that is, files or folders in the subtree rooted at
container.

The newly created catalog iterator is stored in the location pointed to by the iterator
parameter. The iterator is automatically initialized so that the next use of the iterator
returns the first item. The order that items are returned is volume format dependent
and may be different for two different iterators created with the same container and
flags.

Catalog iterators must be closed when you are done using them, whether or not you
have iterated over all the items. Iterators are automatically closed upon process
termination (just like open files). However, you should use the FSCloseIterator call to
close an iterator to free up any system resources allocated to the iterator.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 51

5.6.30 FSCloseIterator

OSErr FSCloseIterator (FSIterator iterator);

OSErr PBCloseIteratorSync (FSCatalogBulkParam * paramBlock);
OSErr PBCloseIteratorAsync (FSCatalogBulkParam * paramBlock);

The FSCloseIterator call closes a catalog iterator. It releases memory and other
system resources used by the iterator. The iterator becomes invalid.

5.6.31 FSGetCatalogInfoBulk

OSErr FSGetCatalogInfoBulk
 (FSIterator iterator,
 ItemCount maximumObjects,
 ItemCount * actualObjects,
 Boolean * containerChanged,/*can be NULL*/
 FSCatalogInfoBitmap whichInfo,
 FSCatalogInfo * catalogInfos, /*can be NULL*/
 FSRef * refs, /*can be NULL*/
 HFSUniStr255 * names); /*can be NULL*/

OSErr PBGetCatalogInfoBulkSync (FSCatalogBulkParam * paramBlock);
OSErr PBGetCatalogInfoBulkAsync (FSCatalogBulkParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> iterator The iterator
 -> maximumItems The maximum number of items to return
 <- actualItems The actual number of items returned
 <- containerChanged Set to true if the container’s contents changed
 -> whichInfo The catalog information fields to return for
 each item
 <- catalogInfo An array of catalog information; one for each
 returned item
 <- refs An array of FSRefs; one for each returned item
 <- names An array of filenames; one for each returned item

The FSGetCatalogInfoBulk call returns information about one or more objects from a
catalog iterator; it can return information about multiple objects in a single call.

The iterator parameter specifies the iterator to use.

The maximum number of objects to return is passed in maximumObjects. The actual
number of objects found for this call is returned in actualObjects.

The containerChanged output is set to true if the container changed since the previous
FSGetCatalogInfoBulk call. Objects may still be returned even though the container
changed. This output is optional; if you don’t want it, pass a NULL pointer. Note that if

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 52

the container has changed, then the total set of items returned may be incorrect; some
items may be returned multiple times, and some items may not be returned at all.

The rest of the parameters allow you to obtain the FSRef, Unicode name, and catalog
information for every item found. To get catalog information, set the desired bits in
whichInfo; an array of FSCatalogInfo structures with the corresponding fields are
returned, one for each item found. The catalogInfos parameter should point to an
array of maximumObjects FSCatalogInfos. (See also Section 5.3.6, "FSCatalogInfo".) If
you don’t want any catalog information, set whichInfo to kFSCatInfoNone and
catalogInfos to NULL.

If you want an FSRef for each item found, set fsRefs to point to an array of
maximumObjects FSRefs. Otherwise, set fsRefs to NULL.

If you want the Unicode filename for each item found, set names to point to an array of
maximumObjects HFSUniStr255s. Otherwise, set names to NULL.

The FSGetCatalogInfoBulk call may complete and return noErr with fewer than
maximumObjects items returned. This may be due to various reasons related to the
internal implementation. In this case, you may continue to make
FSGetCatalogInfoBulk calls using the same iterator.

When all of the iterator’s objects have been returned, the call will return
errFSNoMoreItems.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 53

5.6.32 FSCatalogSearch

enum {
 /* CatalogSearch constants */
 fsSBNodeID = 0x00008000, /* search by range of nodeID */
 fsSBAttributeModDate = 0x00010000, /* search by range of attributeModDate */
 fsSBAccessDate = 0x00020000, /* search by range of accessDate */
 fsSBPermissions = 0x00040000, /* search by value/mask of permissions */

 fsSBNodeIDBit = 15,
 fsSBAttributeModDateBit = 16,
 fsSBAccessDateBit = 17,
 fsSBPermissionsBit = 18
};

struct FSSearchParams {
 SInt32 searchTime; /* a Time Manager duration */
 OptionBits searchBits; /* which fields to search on */
 UniCharCount searchNameLength;
 UniChar * searchName;
 FSCatalogInfo * searchInfo1; /* values and lower bounds */
 FSCatalogInfo * searchInfo2; /* masks and upper bounds */
};
typedef struct FSSearchParams FSSearchParams;
typedef FSSearchParams * FSSearchParamsPtr;

OSErr FSCatalogSearch (FSIterator iterator,
 const FSSearchParams * searchCriteria,
 ItemCount maximumObjects,
 ItemCount * actualObjects,
 Boolean * containerChanged,/*can be NULL*/
 FSCatalogInfoBitmap whichInfo,
 FSCatalogInfo * catalogInfos, /* can be NULL */
 FSRef * refs, /* can be NULL */
 HFSUniStr255 * names); /* can be NULL */

OSErr PBCatalogSearchSync (FSCatalogBulkParam * paramBlock);
OSErr PBCatalogSearchAsync (FSCatalogBulkParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> iterator The iterator
 -> searchParams The criteria that controls the matching, including
 timeout, a bitmap controlling the fields to compare,
 and the (Unicode) name to compare.
 -> maximumItems The maximum number of items to return
 <- actualItems The actual number of items returned
 <- containerChanged Set to true if the container’s contents changed
 -> whichInfo The catalog information fields to return for each
 item
 <- catalogInfo An array of catalog information; one for each
 returned item
 <- refs An array of FSRefs; one for each returned item

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 54

 <- names An array of filenames; one for each returned item

The FSCatalogSearch call searches for objects from a catalog iterator that match a given
set of criteria. A single search may span more than one call to FSCatalogSearch.
Various information about each matching file or directory is returned.

The iterator parameter specifies the iterator to use. Objects traversed by that iterator
are matched against the criteria specified by searchCriteria. You can match against
the object’s name (in Unicode) and by the fields in a FSCatalogInfo. You may use the
same search bits as passed in ioSearchBits to PBCatSearch; they control the
corresponding FSCatalogInfo fields. The fsSBPartialName and fsSBFullName
constants control matching against the Unicode name specified by searchNameLength
and searchName.

There are a few new search criteria supported by FSCatalogSearch but not
PBCatSearch. The fsSBNodeID, fsSBAttributeModDate, and fsSBAccessDate bits let you
search by a range of nodeID, attributeModDate, and accessDate, respectively. The
fsSBPermissions bit lets you search by mask/value match against the permissions.

Set maximumObjects to the maximum number of objects to return. The actual number
of objects found in this call is returned in actualObjects.

If searchTime is non-zero, it is interpretted as a Time Manager duration (milliseconds if
positive, or microseconds if negative); the search may terminate after this duration
even if maximumObjects objects have not been returned and the entire catalog has not
been scanned. If searchTime is zero, there is no time limit for the search.

If you are searching by partial or full name (fsSBPartialName or fsSBFullName), then
searchName points to searchNameLength Unicode characters to match against. If you
are searching by any other criteria, you must set searchInfo1 and searchInfo2 to point
to FSCatalogInfo structures containing the values to match against. For fields that
match against a range (such as dates), the minimum matching value should be placed
in the searchInfo1 structure and the maximum matching value in the searchInfo2
structure. For fields that match by mask/value (such as permissions and Finder info),
set the bits you wish to compare in the searchInfo2 structure; set the corresponding
matching value in the searchInfo1 structure.

The call may complete with no error before scanning the entire volume. This typically
happens because the time limit (searchTime) has been reached or maximumObjects items
have been returned. When the entire volume has been searched, errFSNoMoreItems is
returned.

The containerChanged output is set to true if the container changed since the previous
FSCatalogSearch call. Objects may still be returned even though the container
changed. This output is optional; if you don’t want it, pass a NULL pointer. Note that if

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 55

the container has changed, then the total set of items returned may be incorrect; some
items may be returned multiple times, and some items may not be returned at all.

You can get various information about all the matching files or directories. The
whichInfo, catalogInfos, fsRefs, nameLengths, and names parameters are used in the
same way as for the FSGetCatalogInfoBulk call.

5.6.33 FSGetVolumeInfo

OSErr FSGetVolumeInfo (FSVolumeRefNum volume,
 ItemCount volumeIndex,
 FSVolumeRefNum * actualVolume, /* can be NULL */
 FSVolumeInfoBitmap whichInfo,
 FSVolumeInfo * info, /* can be NULL */
 HFSUniStr255 * volumeName, /* can be NULL */
 FSRef * rootDirectory); /* can be NULL */

OSErr PBGetVolumeInfoSync (FSVolumeInfoParam * paramBlock);
OSErr PBGetVolumeInfoAsync (FSVolumeInfoParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 <> ioVRefNum The volume whose information is to be returned
 (if volumeIndex is 0). On output, the volume
 reference number of the volume (actualVolume).
 -> volumeIndex The index of the desired volume, or 0 to use ioVRefNum
 -> whichInfo Which volInfo info fields to get; may be NULL
 <- volumeInfo The returned values of Volume info fields; may be NULL
 <- volumeName The Unicode name is returned here; may be NULL.
 <- ref The FSRef for the root directory; may be NULL

The FSGetVolumeInfo call returns information about a volume as a whole (as opposed
to the root directory of a volume, for which you can use FSGetCatalogInfo).

You can specify a particular volume or index through the list of mounted volumes. To
get information on a particular volume, set volume to the desired FSVolumeRefNum and
set volumeIndex to zero. To index through the list of mounted volumes, set volume to
kFSInvalidVolumeRefNum and set volumeIndex to the index (starting at 1).

The volume refnum of the volume is returned in actualVolume; this is useful when
indexing over all mounted volumes. If you don’t want this information (because you
supplied a particular volume refnum in volume, for example), set actualVolume to NULL.

Information about the volume is returned in info. If you don’t want this output, set
info to NULL and whichInfo to kFSVolInfoNone. The whichInfo parameter controls
which fields of info are returned. For more information, see Section 5.3.8,
"FSVolumeInfo".

If volumeName is not NULL, the volume’s name is returned.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 56

If rootDirectory is not NULL, an FSRef for the volume’s root directory is returned.

5.6.34 FSSetVolumeInfo

OSErr FSSetVolumeInfo (FSVolumeRefNum volume,
 FSVolumeInfoBitmap whichInfo,
 const FSVolumeInfo * info);

OSErr PBSetVolumeInfoSync (FSVolumeInfoParam * paramBlock);
OSErr PBSetVolumeInfoAsync (FSVolumeInfoParam * paramBlock);
 -> ioCompletion A pointer to a completion routine
 <- ioResult The result code of the function
 -> ioVRefNum The volume whose information is to be changed
 -> whichInfo Which catalog info fields to set
 -> volumeInfo The new values of volume info fields

The FSSetVolumeInfo call is used to set information about a volume as a whole (as
opposed to the root directory of a volume, for which you can use FSSetCatalogInfo).

Set volume to the appropriate FSVolumeRefNum.

The volume information to be set is passed in info. The particular fields to set are
specified by whichInfo. The following fields may be set:

• backupDate

• finderInfo

• flags

See Section 5.3.8, "FSVolumeInfo" for more information about these fields.

5.7 Implementing Foreign Filesystems

To allow developers to support the HFS Plus APIs in their filesystems, some internal
data structures and utility routines are enhanced.

The most significant change is for File Control Blocks. File refnums used to be byte
offsets into an array of FCBs. Since refnums are positive 16-bit values, this limits both
the size and number of FCBs. As of the Mac OS 9 release, the way FCBs are stored will
change. This makes it very important that external filesystems use the FSM accessor
functions to access an FCB. These routines must be used even if the external filesystem
doesn’t use FSM for dispatching requests.

To accommodate 64-bit file sizes and named forks, several fields will be added to the
FCB. The new FCB structure is called ForkControlBlock.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 57

To support large forks, the logical-to-physical block mapping used by the disk cache
has been extended. Forks that are opened with the new APIs should have
fcbLargeFileBit set in the fcbFlags. When this bit is set, the cache routines pass a file
offset as a number of 512-byte sectors instead of a byte offset. This allows forks and
volumes up to 2 terabytes.

To support multiple named forks, the FCB contains a forkID. When the
fcbLargeFileBit is set, the forkID is used to determine the fork number. Otherwise,
the fcbResourceBit is used: if clear, the fork number is zero; if set, the fork number is
$FFFFFFFF. If an external filesystem supports forkIDs, it must use zero for the forkID of
the data fork.

Since external filesystems can no longer map between file refnums and FCBs
themselves, two new support routines have been added to FSM:

OSErr UTResolveFileRefNum (FCBRecPtr fileCtrlBlockPtr, short *fileRefNum);
OSErr UTCheckFCB (FCBRecPtr fileCtrlBlockPtr);

The UTResolveFileRefNum routine returns the file refnum for a given FCB pointer; it is
the inverse of UTResolveFCB. The UTCheckFCB routine lets a caller determine whether an
externally-supplied FCB pointer actually corresponds to a real FCB (whether the FCB
is currently allocated or not); it is like UTCheckFileRefNum except that it uses a FCB
pointer instead of a refnum. Both calls will return badFCBErr if the FCB pointer does
not correspond to an actual FCB.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 58

5.7.1 ForkControlBlock

struct ForkControlBlock {
 unsigned long fcbFlNm; /* FCB file number. Zero if unused */
 SignedByte fcbFlags; /* FCB flags */
 SignedByte fcbTypByt; /* File type byte */
 unsigned short fcbSBlk; /* File start block (in alloc size blks) */
 unsigned long fcbEOF; /* Logical length or EOF in bytes */
 unsigned long fcbPLen; /* Physical file length in bytes */
 unsigned long fcbCrPs; /* Current position within file */
 VCBPtr fcbVPtr; /* Pointer to the corresponding VCB */
 Ptr fcbBfAdr; /* File's buffer address */
 unsigned short fcbFlPos; /* Directory block this file is in */

 /* FCB Extensions for HFS */
 unsigned long fcbClmpSize; /* Number of bytes per clump */
 Ptr fcbBTCBPtr; /* B*-Tree control block for file */
 HFSExtentRecord fcbExtRec; /* First 3 file extents */
 OSType fcbFType; /* File's 4 Finder Type bytes */
 unsigned long fcbCatPos; /* Catalog hint for use on Close */
 unsigned long fcbDirID; /* Parent Directory ID */
 Str31 fcbCName; /* CName of open file */

 /* New fields for HFS Plus APIs */
 unsigned short moreFlags; /* more flags, align following fields*/

 /* Old ExtendedFCB fields*/
 UInt32 processID1; /* these two fields are the Process */
 /* serial number that opened the file */
 UInt32 processID2; /* (used to clean up at process death)*/

 HFSPlusExtentRecord extents; /* extents for HFS+ volumes */

 /* New fields for HFS Plus APIs*/
 UInt64 endOfFile; /* logical size of this fork */
 UInt64 physicalEOF; /* amount of space physically */
 /* allocated to this fork */
 UInt64 currentPosition; /* default offset for next */
 /* read/write */
 UInt32 forkID;
 UInt32 reserved1;
 UInt64 reserved2; /* make size a multiple of 16 bytes */
};
typedef struct ForkControlBlock ForkControlBlock;
typedef ForkControlBlock * ForkControlBlockPtr;

The File Control Block (FCB) structure has been extended to support forks larger than
2GB, and multiple named forks. The fields up through fcbCName are the same as in
previous versions of Mac OS; new fields were added at the end. A new data type,
ForkControlBlock, containing those new fields has been added; the FCBRec structure
retains its original definition, for backward compatibility (and Mac OS ROM builds).

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 59

In previous versions of Mac OS, all FCBs were stored as an array in a single block of
memory. This block of memory was pointed to by the low memory global FCBsPtr
($34E). The size of an FCB was stored in the low memory global FSFCBLen ($3F6). A file
refnum was merely a byte offset from FCBsPtr, so you could compute the address of an
FCB by adding its refnum to FCBsPtr. This severly limited the maximum number of
FCBs.

Starting with the Mac OS 9 release, FCBs are stored differently. An external filesystem
must use the FSM accessor functions (UTAllocateFCB, UTReleaseFCB, UTLocateFCB,
UTLocateNextFCB, UTIndexFCB, UTResolveFCB) to access FCBs. You can use these
functions even if you don’t dispatch calls through FSM. See “Guide to the File System
Manager” (part of the File System Manager SDK) for more descriptions of these calls.

Since several fields in the old FCB structure are too small to support forks larger than
2GB, larger replacement fields have been added. A new flag bit (fcbLargeFileBit) in
the fcbFlags field has been defined to indicate whether the old, shorter fields or new,
larger fields are being used. If the bit is set, then the endOfFile field is used instead of
fcbEOF, physicalEOF is used instead of fcbPLen, and currentPosition is used instead of
fcbCrPs. The fcbLargeFileBit should be set when a fork is opened via FSOpenFork
and cleared when opened via the older APIs (PBHOpenDF, PBHOpenRF, etc.). The bit also
implies that a fork may grow beyond 2GB (if the volume format supports it).

The moreFlags field is reserved for additional flag bits to be defined by Apple. The
processID1 and processID2 fields are used by the File Manager to store the ID of the
process that opened the fork. The extents field is used to store the first eight extents
for forks on an HFS Plus volume; your filesystem may use this field for its own
purposes.

The forkID field is used to differentiate between multiple forks for a file or directory.
In effect, it is a replacement for the fcbResourceBit in fcbFlags. If you use the Disk
Cache, you must set this field as described in the following sections; otherwise, your
filesystem may use this field for its own purposes.

6. Glossary

6.1 compatibility layer

The compatibility layer is a part of the File Manager that allows the HFS Plus APIs to
be used to access files on a volume format whose implementation does not directly
implement the HFS Plus APIs. This allows applications to adopt the HFS Plus APIs
without having to determine whether a particular volume format supports them.

When an application uses one of the HFS Plus APIs to access a volume that does not
directly implement the APIs, the File Manager provides a default implementation.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 60

This default implementation actually uses the equivalent older APIs to provide the
functionality. For example, a call to FSDeleteObject would result in a PBHDelete call
being passed to the volume format’s implementation.

Since the compatibility layer uses the older APIs to provide the implementation for the
HFS Plus APIs, it can’t actually provide any functionality beyond what the older APIs
allow. For example, the compatibility layer can’t actually allow files to grow larger
than 2GB. Similarly, it can’t cause filenames to be stored differently (though it
internally converts between Unicode and the File Manager’s default Mac OS text
encoding).

6.2 high-level API

A high-level API takes all of its parameters as separate function arguments. It is
synchronous only, which means the caller is blocked until the call completes.

For many of the older File Manager APIs, the high-level APIs were simplified versions;
they did not always provide the same variety of functionality that the low-level APIs
did. With the HFS Plus APIs, the high-level APIs provide the same level of
functionality as the low-level APIs.

6.3 low-level API

A low-level API is characterized by its use of a parameter block. The parameters to the
API are stored as fields in a structure called a parameter block. The caller then passes a
pointer to the parameter block as the only argument to the function. A low-level API
can be made synchronously or asynchronously. If the call is made synchronously, the
caller blocks until the call completes. If the call is made asynchronously, the caller may
regain control before the call completes; when the call does complete, a caller-supplied
routine (called a completion routine) is called asynchronously with respect to the
caller’s thread of execution.

6.4 parameter block

A parameter block is a data structure that is used to collect the input and output
parameters for a low-level API. It may also contain state information used during the
execution of the call.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 61

6.5 synchronous

As in “synchronous call”. Sometimes shortened to “sync”. A synchronous call
completes its work while the calling routine is blocked or suspended. Once the work is
complete, the calling routine resumes. An ordinary function call is synchronous.

6.6 asynchronous

As in “asynchronous call”. Sometimes shortened to “async”. An asynchronous call
completes its work while the calling routine continues execution. When the work is
complete, the caller is interrupted and a routine in the caller’s program (called a
completion routine) is executed; when the completion routine returns, the caller
resumes from where it was interrupted.

Note that an asynchronous call involves an ordinary function call to begin the work.
That function call may return control to the caller before the work is complete.

6.7 catalog information

Also called “metadata”. Most volume formats store some kind of information about a
file or directory, besides just their contents. For example, HFS and HFS Plus store a 4-
byte file type and 4-byte creator type for all files; this information is used by the Mac
OS Finder. Collectively, this kind of information is called “catalog information”
because it is stored in a structure known as the “catalog”.

6.8 forks

A fork is a set of bytes that are contained by a file (or possibly a directory). A fork has a
size or length (the number of bytes). It is characterized by the ability to randomly
access those bytes, or a contiguous subset of the bytes. You can also increase or
decrease the number of bytes in a fork.

Many older volume formats assume that a file contains only a single fork. This is what
we would call the data fork. In this case, the fork is usually considered synonymous
with the file itself. That is, the file’s contents are the set of bytes in the data fork.

The HFS volume format introduced a second fork for every file: the resource fork. The
set of bytes in the data fork are logically separate from the bytes in the resource fork.
Accessing, changing, increasing or decreasing the bytes of one fork does not affect the
other fork.

File Manager for Mac OS 9

10/15/99 Preliminary draft. © Apple Computer, Inc. 62

6.9 named forks

Previously known as “attributes”. Named forks are a generalization of the two forks
supported by the older File Manager APIs and the HFS volume format. With the older
APIs, the caller identified which fork they wanted to access by using a different call for
each fork (eg., PBHOpenDF and PBHOpenRF to open the data or resource fork,
respectively).

To support more than two well-known forks per file (or directory), there needs to be a
way to indicate which fork you want to access. The HFS Plus APIs use a name (a
Unicode string) to identify a fork. This is similar to the way that files in a directory
have names that identify them. And similar to file names, a fork’s name must be
unique with respect to the set of all forks of a file.

Since the data and resource forks have not previously had identifiable names, and we
would like to use the same APIs to access data and resource forks as well as other
named forks, we must pick some constants to use as the names for the data and
resource forks. An empty string (i.e. a string of zero length) is used for the data fork
since it is often considered the primary contents of a file. For the resource fork, we
have defined a constant in the APIs, kFSResourceForkName.

	File Manager for Mac OS 9
	1. Summary
	2. Feature Set
	3. Compatibility Requirements
	3.1 Hardware Requirements
	3.2 Software Requirements

	4. Architectural Requirements
	4.1 Aspects of Long-term Architecture

	5. Software Architecture and Design
	5.1 Component Description
	5.2 Programmer Feature Set
	5.2.1 Unicode
	5.2.2 Named Forks
	5.2.3 Large Files
	5.2.4 Identifying Files and Directories
	5.2.5 File Reference Numbers
	5.2.6 Fork Sizes and Offsets
	5.2.7 Informational Calls
	5.2.8 Catalog Iterators
	5.2.9 Gestalt Bits

	5.3 Data Structures and File Formats
	5.3.1 FSVolumeRefNum
	5.3.2 FSRef
	5.3.3 FSAllocationFlags
	5.3.4 FSPositionMode
	5.3.5 FSCatalogInfoBitmap
	5.3.6 FSCatalogInfo
	5.3.7 FSVolumeInfoBitmap
	5.3.8 FSVolumeInfo
	5.3.9 FSIterator
	5.3.10 HFSUniStr255

	5.4 New Error Codes
	5.4.1 errFSBadFSRef
	5.4.2 errFSBadForkName
	5.4.3 errFSBadBuffer
	5.4.4 errFSBadForkRef
	5.4.5 errFSBadInfoBitmap
	5.4.6 errFSMissingCatInfo
	5.4.7 errFSNotAFolder
	5.4.8 errFSForkNotFound
	5.4.9 errFSNameTooLong
	5.4.10 errFSMissingName
	5.4.11 errFSBadPosMode
	5.4.12 errFSBadAllocFlags
	5.4.13 errFSNoMoreItems
	5.4.14 errFSBadItemCount
	5.4.15 errFSBadSearchParams
	5.4.16 errFSRefsDifferent
	5.4.17 errFSForkExists
	5.4.18 errFSBadIteratorFlags
	5.4.19 errFSIteratorNotFound
	5.4.20 errFSIteratorNotSupported

	5.5 Parameter Blocks
	5.5.1 FSRefParam
	5.5.2 FSForkIOParam
	5.5.3 FSCatalogBulkParam
	5.5.4 FSForkCBInfoParam
	5.5.5 FSVolumeInfoParam

	5.6 Interfaces
	5.6.1 PBHGetVolParms
	5.6.2 FSMakeFSRefUnicode
	5.6.3 FSpMakeFSRef
	5.6.4 FSCompareFSRefs
	5.6.5 FSCreateFileUnicode
	5.6.6 FSCreateDirectoryUnicode
	5.6.7 FSDeleteObject
	5.6.8 FSMoveObject
	5.6.9 FSRenameUnicode
	5.6.10 FSExchangeObjects
	5.6.11 FSCreateFork
	5.6.12 FSDeleteFork
	5.6.13 FSIterateForks
	5.6.14 FSGetDataForkName
	5.6.15 FSGetResourceForkName
	5.6.16 FSOpenFork
	5.6.17 FSReadFork
	5.6.18 FSWriteFork
	5.6.19 FSGetForkPosition
	5.6.20 FSSetForkPosition
	5.6.21 FSGetForkSize
	5.6.22 FSSetForkSize
	5.6.23 FSAllocateFork
	5.6.24 FSFlushFork
	5.6.25 FSCloseFork
	5.6.26 FSGetForkCBInfo
	5.6.27 FSGetCatalogInfo
	5.6.28 FSSetCatalogInfo
	5.6.29 FSOpenIterator
	5.6.30 FSCloseIterator
	5.6.31 FSGetCatalogInfoBulk
	5.6.32 FSCatalogSearch
	5.6.33 FSGetVolumeInfo
	5.6.34 FSSetVolumeInfo

	5.7 Implementing Foreign Filesystems
	5.7.1 ForkControlBlock

	6. Glossary
	6.1 compatibility layer
	6.2 high-level API
	6.3 low-level API
	6.4 parameter block
	6.5 synchronous
	6.6 asynchronous
	6.7 catalog information
	6.8 forks
	6.9 named forks

