



August 25, 1999
Technical Publications
© 1999 Apple Computer, Inc.



I N S I D E M A C I N T O S H

Thread Manager



Apple Computer, Inc.
© 1995 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
PowerPC is a trademark of
Information Business Machines
Corporation, used under license
therefrom.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Figures, Tables, and Listings

Chapter 1 Thread Manager 5

Figure 1-1 Relationship of Thread Manager and Process Manager 9
Figure 1-2 Thread scheduling model 11
Figure 1-3 Thread Manager default and custom scheduling mechanisms 13
Figure 1-4 Custom context-switching function 15
Figure 1-5 Using a completion routine to wake up a thread making an

asynchronous I/O call 32
Figure 1-6 Using two threads to handle an asynchronous I/O call 33

Table 1-1 Registers in the 680x0 default thread context 14
Table 1-2 Registers in the PowerPC default thread context 14

Listing 1-1 Setting up the main thread 18
Listing 1-2 Creating a thread pool 20
Listing 1-3 Allocating threads 21
Listing 1-4 Using the gPhilo structure in a subroutine 23
Listing 1-5 Marking a critical section of code 24
Listing 1-6 Increasing the size of the main thread’s stack area 25
Listing 1-7 Determining and increasing the stack size of a thread 26
Listing 1-8 Creating a dialog box that yields 27
Listing 1-9 Passing data between threads 28
Listing 1-10 Making an asynchronous I/O call with two threads 34
3

4

C H A P T E R 1

Contents

Contents

Figure 1-0
Listing 1-0
Table 1-0
1 Thread Manager
Introduction to Threads 7
About the Thread Manager 8

Scheduling 9
The Main Thread 11
Custom Scheduler 12

Default Saved Thread Context 13
Custom Context-Switching Function 14

Thread Stacks 15
Creating and Disposing of Threads 16

Using the Thread Manager 16
Determining Attributes of the Thread Manager 17
Creating and Allocating a Thread 17

Creating a Pool of Threads 19
Allocating a Thread 20

Turning Scheduling Off 24
Working With Stacks 25

Creating Dialog Boxes That Yield 27
Passing Input and Output Parameters to a New Thread 28
Using Threads With I/O 31

Thread Manager Reference 38
Data Types 38

Gestalt Selector and Response Bits 38
The Thread State 39
The Thread Task Reference 39
The Thread Type 40
The Thread ID 40
Thread Options 41
5

C H A P T E R 1

The Scheduler Information Structure 41
Thread Manager Functions 42

Creating and Getting Information About Thread Pools 42
Creating and Disposing of Threads 47
Getting Information About Specific Threads 51
Scheduling Threads 54
Preventing Scheduling 58
Getting Information and Scheduling Threads During Interrupts 61
Installing Custom Scheduling, Switching, Terminating, and Debugging
Functions 65
Application-Defined Functions 71

Summary of the Thread Manager 77
6 Contents

C H A P T E R 1

Thread Manager 1

This chapter describes how you can use the Thread Manager to provide threads, or
multiple points of execution, in an application. You can think of the Thread Manager as
an enhancement to the Process Manager, which still governs how applications work
together in the Macintosh multitasking environment. Therefore, you should already be
familiar with the concepts in Inside Macintosh: Processes and Inside Macintosh: Memory
before reading this chapter.

Read this chapter if you are interested in developing an application with more than one
thread (called a threaded application in this document). If your application uses no Thread
Manager functions, the Process Manager treats it as a single-threaded application (called
a nonthreaded application in this document).The Process Manager does call the Thread
Manager at launch time to create the main thread for the application, but it does this
transparently and in no way affects the performance of your application.

This chapter begins by describing the advantages of using threads within an application
context. It describes the scheduling model that the Thread manager provides, the context
information that the Thread Manager saves when it switches one thread out and another
one in, and it describes thread stacks. It then shows how to

■ create threads and thread pools and set them up to run

■ turn scheduling on and off

■ work with stacks

■ create dialog boxes that yield control to other threads

■ pass information between threads

■ install custom scheduling and context-switching functions

■ use threads to make asynchronous I/O calls

Introduction to Threads 1

Threads, also known as lightweight tasks, are a way to develop concurrency, or multiple
points of execution, within a particular context, such as in an operating system or
application. The Thread Manager offers threads for use within an application context
only. It does not provide threads to be used on a systemwide basis.

Threads offer a new and better way to structure applications for simplicity, efficiency, and
responsiveness. With multiple points of execution, you can do things such as

■ separate the user interface from time-consuming tasks to guarantee responsiveness to
the user

■ place a modal dialog box in one thread and a function to process data or perform
calculations in a different thread so that your application can continue working rather
than sitting and waiting while a user decides which choice to make in the dialog box

■ simplify your code by placing each element of a simulation in a separate thread

■ increase the efficiency of your application by eliminating many VBL and Time
Manager tasks.
Introduction to Threads 7

C H A P T E R 1

Thread Manager

Although you can already do many of the things that threads enable you to do, the
implementation without threads can be difficult and inelegant. For example, with null
events at idle time you can write idle-processing procedures that bring a measure of
concurrency to your application. However, threads offer many advantages not available
with other methods of achieving concurrency in an application program.

A major benefit of using threads is that you can enhance the logical structure of your
program. Using threads is in many ways like adding an object layer to your program. For
example, one way to write a traffic simulation program is to create a separate thread to
control each element of the simulation—that is, the traffic signals and the individual cars.
You could think of each thread as an object with particular capabilities. In any case,
programs with threads are easier to write and much easier to understand than programs
that achieve concurrency in a roundabout fashion, such as using idle-processing
procedures or state machines.

A thread consists of application code and the processor state or context to execute it. The
thread context consists of a register set, a program counter, and a stack. Each thread
shares the address space, file access paths, and other system resources of the application
process in which it runs. Therefore, when the Thread Manager switches control from one
thread to another, the amount of context information it must save is relatively small and
the switch is much faster than that between application processes.

About the Thread Manager 1

The Thread Manager manages threads within an application context. It provides routines
to create, get information about, schedule, and dispose of threads. The Process Manager,
on the other hand, is responsible for switching the context between various application
processes within the Macintosh multitasking environment. Figure 1-1 illustrates the
relationship between the Thread Manager and the Process Manager.
8 About the Thread Manager

C H A P T E R 1

Thread Manager

Figure 1-1 Relationship of Thread Manager and Process Manager

Threads in an application are available to run only when the Process Manager schedules
the application to run. For example, when the Process Managers switches in application
A, its threads can run. The Thread Manager saves the thread context information each
time it switches out one thread and schedules a different one to run. When the Process
Manager switches in application B, the threads in application A are no longer available to
run and the Thread Manager now manages the threads in application B.

Scheduling 1
The Thread Manager provides a single, cooperative method of scheduling threads. In
cooperative scheduling, a thread must explicitly yield control to give other threads an
opportunity to run.

Previously, the Thread Manager supported preemptive scheduling as well as cooperative
scheduling but currently only cooperative scheduling is supported.

The situation for threads within an application is similar to that of applications in a
multitasking environment. Every application must have periodic yielding calls that allow

Process
Manager

Thread
Manager

Application A Application B

Threads in
application A

Threads in
application B
About the Thread Manager 9

C H A P T E R 1

Thread Manager

the Process Manager to schedule other applications as necessary—for example, when a
user presses the mouse button to select another application to run. Likewise, every thread
within an application must make regular yield calls to allow other threads to run. The
Thread Manager provides the following functions to yield control to other threads:

■ YieldToAnyThread , which yields control to the next thread available to run

■ YieldToThread , which yields control to a specific thread.

■ SetThreadState , which you can use to change the state of the current thread from
running to ready or stopped. When you do so, you either specify a new thread to run
or let the Thread Manager schedule the next available thread.

As you can see from the three calls that yield control from the current thread, there are
two ways to determine the next thread to run. One way is for you to specify a particular
thread to run next; the other way is to allow the Thread Manager to choose the next
available thread to run. (An available thread is one that is marked ready to run—an
unavailable thread is one that is marked stopped.) The Thread Manager queues up all of
the threads that are ready to run, and, when a nonspecific yield occurs, it executes the
next available thread. When a thread finishes executing, it moves to the back of the queue
if it is still ready to run, or, if it is marked as stopped, the Thread Manager removes it
from the queue of available threads.

Note
The previous paragraph describes the default Thread Manager
scheduling mechanism. You can also define a custom scheduler for your
application that works in conjunction with the default scheduling
mechanism to determine the next thread to run. See “Custom Scheduler”
on page 1-12 for more information about creating a custom scheduler for
your application.

Figure 1-2 shows the default Thread Manager scheduling model.
10 About the Thread Manager

C H A P T E R 1

Thread Manager

Figure 1-2 Thread scheduling model

Because threads yield control under explicit conditions, they have access to all Toolbox
and Operating System routines. They allow you do anything that you can currently do in
an application without threads, such as allocate memory, perform file I/O, perform
QuickDraw operations, and so on.

For situations in which you are concerned about the integrity of your data, the Thread
Manager provides a pair of functions, ThreadBeginCritical and
ThreadEndCritical , that enable you to mark a section of code as critical, turning
scheduling off. With scheduling off, the Thread Manager does not allow any threads to be
scheduled until scheduling is turned back on; that is, all yield and other scheduling
functions are ignored until the code exits the critical section. See “Turning Scheduling
Off” beginning on page 1-24 for information on how and when to mark sections of code
as critical.

The Main Thread 1

When the Process Manager launches your application, it creates and runs a special
thread, called the main thread or application thread. The main function is the entry point
to this thread and to the application. The main thread has some characteristics that
distinguish it from other threads. It is the only thread that has a preallocated stack—the

Thread A
Yield

Yield

Yield
Thread B

Thread C

Time

Running/executingKey:

Ready to run
About the Thread Manager 11

C H A P T E R 1

Thread Manager

stacks for threads that your application creates reside in separate areas of the heap. The
main thread is the only thread from which you properly can extend the application heap.
Therefore you should call MaxApplZone from the main thread immediately after your
application launches, or at least before any other threads run.

Another characteristic of the main thread is that the Thread Manager assumes the main
thread handles event processing. Therefore, whenever an operating-system event occurs,
the Thread Manager schedules the main thread at the next scheduling opportunity, no
matter where the main thread happens to be in the scheduling queue.

Note
After an operating-system event, the Thread Manager schedules the
main thread at the next opportunity unless you have specified a
particular thread to run. In other words, if you call a function such as
YieldToAnyThread to cause the rescheduling, the Thread Manager
runs the main thread. If, however, you call a function such as
YieldToThread and specify a particular thread to run, the Thread
Manager schedules that thread rather than the main thread even after the
occurrence of an operating-system event. ◆

To guarantee responsiveness to users, you should put all your event handling in the main
thread. For the same reason, it is highly recommended that you never put the main
thread in the stopped state.

Custom Scheduler 1

The Thread Manager allows you to install a custom scheduling function that works in
conjunction with the Thread Manager default scheduling mechanism. You install the
custom scheduling function with the SetThreadScheduler function. Figure 1-3 shows
how the custom scheduler works with the default Thread Manager scheduling
mechanism.
12 About the Thread Manager

C H A P T E R 1

Thread Manager

Figure 1-3 Thread Manager default and custom scheduling mechanisms

When a yield or other Thread Manager call triggers a reschedule, the Thread Manager
calls the custom scheduling function and passes it a scheduler information structure. This
structure has four fields; the first contains the size of the structure and allows for
expansion in the future. The next two fields are thread IDs that identify the current
thread and the thread that the application has selected to run next. The final field was to
identify a cooperative thread that was interrupted by a preemptive thread. However,
because it no longer supports preemptive threads, the Thread Manager always passes the
kNoThreadID constant for this field.

The custom scheduling function can use this information to determine which thread to
schedule next. It returns to the default scheduling mechanism the thread ID of the next
thread to schedule and the Thread Manager does the actual scheduling.

Default Saved Thread Context 1
When the Thread Manager switches the context between one thread and another, it saves
a default context, which consists of the CPU registers, the floating-point (FPU) registers
(if any), and the location of the context information.

The thread context resides on a thread’s stack and the Thread Manager saves the location
of this context when it switches contexts between threads. The A5 register (GPR1 on the

Custom
scheduler

Default
scheduler

Thread A

Thread C Thread DThread B

Thread ID
to schedule

Scheduler
information
structure

Yield
About the Thread Manager 13

C H A P T E R 1

Thread Manager

PowerPC) for each thread contains a pointer to the application’s global data world. When
it switches contexts, the Thread Manager initially sets A5 (GPR1) and the MMU mode to
the same values as those in the main thread. In this way all threads can share in the
application’s global data world.

Table 1-1 shows the registers that the Thread Manager saves for a 680x0 application.

Table 1-1 Registers in the 680x0 default thread context

For 680x0 applications, when you create or allocate a thread with the NewThread
function, the Thread Manager provides an option that allows you to create a thread
whose FPU registers are not to be saved. This allows faster context switches for threads
that don’t use the FPU registers.

For PowerPC applications, the Thread Manager always saves the FPU registers,
regardless of any options you set because the PowerPC processor can use the FPU
registers for optimizations.

Table 1-2 shows the registers that the Thread manager saves for a PowerPC application.

Table 1-2 Registers in the PowerPC default thread context

Custom Context-Switching Function 1

The Thread Manager allows you to install a custom context-switching function to
supplement the context information that the Thread Manager saves when it switches
control between one thread and another. This section describes how to install a custom
context-switching function and use it in conjunction with the default context-switching
mechanism.

You install a custom context-switching function with the SetThreadSwitcher function.
You assign a custom switching function separately to each thread. However, because you
also pass a parameter containing thread specific information, you can define a single
switching function to assign to all threads and use this parameter to pass specific
information to each thread.

The Thread Manager calls the custom context-switching function,
MyThreadSwitchProc , whenever the thread it is assigned to is scheduled. Because it is

CPU registers FPU registers
D0–D7 FPCR, FPSR, FPIAR

A0–A7 FP0–FP7

SR (including CCR) FPU frame

CPU registers FPU registers
Machine
registers

R0–R31 FP0–FP31 CTR, LR, PC

FPSCR CR, XER
14 About the Thread Manager

C H A P T E R 1

Thread Manager
a ‘switcher inner’ it is called just before the code starts executing. The Thread Manager
calls a ‘switcher outer’ custom switching function just after the code in the thread stops
executing. Figure 1-4 shows when the Thread Manager calls each type of custom
context-switching function.

Figure 1-4 Custom context-switching function

Thread Stacks 1
When the Process Manager launches a threaded application, it creates the main thread
and sets up the stack for it just like it would for a nonthreaded application. You can
expand this stack by calling the Memory Manager SetApplLimit function at the
beginning of your application. See “Working With Stacks” on page 1-25 for an example of
how to use this function.

For each subsequent thread that you create, the Thread Manager maintains a separate
stack in your application heap area.

Note
Because the Thread Manager does not move stacks during a thread
context switch, you can pass function parameters on the stack. ◆

You specify the stack size when you create a new thread with the CreateThreadPool
or NewThread function. The stack must be large enough to handle saved thread context,

A’s custom outer

B’s custom inner

SwitchContext
switchers

Yield

Yield

B’s custom outer

A’s custom inner

SwitchContext
switchers

Thread A Thread B
About the Thread Manager 15

C H A P T E R 1

Thread Manager
normal application stack usage, interrupt handling routines, and CPU exceptions. You
can specify a particular size in bytes or use the default size that the Thread Manager
supplies for a thread. The default size is more than adequate for most threads.

Creating and Disposing of Threads 1
There are two ways to create threads with calls to the Thread Manager. One is to use the
NewThread function to create a single thread. The other way is to call the
CreateThreadPool function to create a pool of threads that you later allocate with the
NewThread function. The advantage of the latter method is that you handle memory
allocation up front before fragmentation occurs.

When you create or allocate a thread with the NewThread function, you specify, among
other things, the stack size. You also identify the function that is the entry point to the
thread and can pass it data if you wish. You can also allocate storage that you can use to
store the thread result.

When a thread finishes executing its code, the Thread Manager automatically calls the
DisposeThread function to clean up after the thread. The DisposeThread function
either removes the thread entirely (the default for cooperative threads) or recycles the
thread into the thread pool. You can call DisposeThread yourself if you want to recycle
a cooperative thread into the thread pool.

The DisposeThread function passes a parameter back to the NewThread function that
initially created and launched the thread. It places the information from this parameter in
the storage that the NewThread function allocated when it first created the thread. You
can use this parameter to pass the thread result back to the calling thread, if you wish.
For example, if you call a function to perform a calculation or process data, you can use
the DisposeThread function to pass the result back.

See “Passing Input and Output Parameters to a New Thread” beginning on page 1-28 for
information on how to return data from a thread to the thread that launched it.

Using the Thread Manager 1

This section describes how you can take advantage of the Thread Manager to create
threaded applications. It describes how to

■ use the Gestalt Manager to determine if the Thread Manager is available and which
features are supported

■ create a thread pool and allocate and run threads

■ turn off scheduling in critical sections of code

■ create dialog boxes that leave an application free to do other work

■ pass parameters between threads

■ use threads with asynchronous I/O routines
16 Using the Thread Manager

C H A P T E R 1

Thread Manager
Determining Attributes of the Thread Manager 1
To determine if the Thread Manager is available and which features are supported, call
the Gestalt function with the selector gestaltThreadMgrAttr . The Gestalt
function returns information by setting or clearing bits in the response parameter. The
following constants define the bits currently used.

enum { /* Gestalt selectors */

#define gestaltThreadMgrAttr 'thds' /* Thread Manager attributes */

gestaltThreadMgrPresent = 0,

gestaltSpecificMatchSupport = 1,

gestaltThreadsLibraryPresent = 2

};

gestaltThreadMgrPresent
This bit is set if the Thread Manager is present.

gestaltSpecificMatchSupport
This bit is set if the Thread Manager supports the allocation of
threads based on an exact match with the requested stack size. If this
bit is not set, the Thread Manager allocates threads based on the
closest match to the requested stack size.

gestaltThreadsLibraryPresent
This bit is set if the native version of the threads library has been
loaded.

Creating and Allocating a Thread 1
This section shows you how to create a pool of threads, allocate a thread from that pool,
and get this thread to run. The code samples in this section are adapted from a sample
application that addresses the classic computer science dining philosophers problem.
This application uses a separate thread to control the display and movement of each
philosopher icon as the philosophers move, one by one, into a dining room, pick up a
fork eat, and then leave the room.

When your application launches, the Process Manager automatically creates the main, or
application, thread. You are responsible for creating any additional threads. The main
function is the entry point to the main thread. One of the features of the main thread is
that it is the only thread from which you can properly call the Memory Manager
MaxApplZone function to expand your application heap to its limit. You must call
MaxApplZone before any other threads run.

Listing 1-1 shows the main function for an application, which calls subroutines that
perform initializations and create and allocate threads. It also shows the application’s
event loop.
Using the Thread Manager 17

C H A P T E R 1

Thread Manager
Listing 1-1 Setting up the main thread

void main()

{

WindowPtr appWindow;

MaxApplZone(); /* Expand application heap */

DoInitMac(); /* Standard Macintosh

application initialization */

DoCreateTPool(); /* Create a pool of threads */

appWindow = DoInitRooms(); /* Drawing initialization */

DoInitPhilos(appWindow); /* Initialize philosophers */

DoSpawnThreads(); /* Allocate new threads */

MyEventLoop(); /* Event handlers

}

...

void MyEventLoop()

{

EventRecord my_evt;

short got_evt = 0;

OSErr anError;

WindowPtr win;

while(!gDone)

{

got_evt = WaitNextEvent(everyEvent, &my_evt,

kSleepTicks, nil);

if (got_evt)

{

switch(my_evt.what)

{

/* Case statements for each event */

}

}

else

{

/* Draw window */

}

anError = YieldToAnyThread();
18 Using the Thread Manager

C H A P T E R 1

Thread Manager
if (anError)

DoHandlerError ("\pError in yielding from the main

 thread",

 anError, kFatal);

}

/* Shutdown routines */

...

}

In Listing 1-1, the first thing the main function does, after declaring a window pointer
variable, is to call the MaxApplZone function to extend the application heap. To be safe,
this call comes before any of the initialization calls. It must come before any other thread
runs in the application.

The main function calls two functions (DoInitMac , and DoInitPhilos) to perform
various Macintosh and application-specific initializations. These functions are not of
particular interest here, other than to show the order in which main calls them in
relationship to MaxApplZone , so the code they contain is not shown here. The
DoCreateTPool and DoSpawnThreads functions create a pool of threads and allocate
threads from the pool, respectively. The next two sections show and describe the code for
these functions.

Note that the main function contains the event loop for the application. While it is not
required that the main thread handle all events, it is highly recommended that it do so. A
characteristic of the main thread is that whenever an operating-system event is pending,
the Thread Manager schedules the main thread at the next generic scheduling
opportunity (that is, when a yield or other call causes a reschedule but does not specify a
particular thread to schedule next), no matter where the main thread is in the scheduling
queue. This characteristic of the main thread guarantees responsiveness to users if, as in
the sample code, the main thread handles event-processing.

Listing 1-1 shows a skeletal view of MyEventLoop . It is a standard event loop, with a
while loop and various case statements to handle the various possible Macintosh
events. The main thread should make a yield call often enough to allow other threads an
opportunity to run. Therefore, it calls the Thread Manager YieldToAnyThread function
each time through the event loop.

Creating a Pool of Threads 1

The DoCreateTPool function in Listing 1-1 creates a pool of threads. While it isn’t
strictly necessary to create a pool of threads—you can create and allocate threads in one
step with the NewThread function—there are advantages to doing so. For example, you
can allocate all the memory for your threads up front before memory is used or
fragmented. Listing 1-2 shows the code in DoCreateTPool , which creates a pool of
threads.
Using the Thread Manager 19

C H A P T E R 1

Thread Manager
Listing 1-2 Creating a thread pool

#define kNumOfPhilos 5 /* Number of philosopher icons*/

#define kDefaultStackSize 0 /* System determines stack size */

void DoCreateTPool()

{

OSErr anError;

/* Make a pool of threads for the philosophers */

anError = CreateThreadPool(kCooperativeThread,

 kNumOfPhilos, kDefaultStackSize);

if (anError)

DoHandlerError ("\pProblem creating thread pool",

anError, kFatal);

}

The code in DoCreateTPool passes three parameters to the CreateThreadPool
function. The first, kCooperativeThread , is a constant defined by the Thread Manager
specifying that the threads to create are cooperative threads.

Note
Historically, the Thread Manager supported two types of threads,
cooperative and preemptive but now only cooperative threads are
supported. The CreateThreadPool function (and the NewThread
function) still require that you specify the type of the thread, even
though only one type is available.

The next parameter, kNumOfPhilos , is an application-defined constant that specifies the
number of threads to create—in this case, five. The last parameter,
kDefaultStackSize , specifies that Thread Manager use the default stack size for the
five threads that it creates. You can specify the size in bytes if you don’t wish to use the
default size. The Thread Manager defines a default size that is probably larger than the
minimum size that is required.

If there is a problem creating the threads, DoCreateTPool calls the error handling
function and passes it the result code returned by CreateThreadPool . Note that if
there is not enough memory to create all the specified threads, CreateThreadPool
creates none and returns the memFullErr result code.

Allocating a Thread 1

Once an application has created a pool of threads, it can allocate them by calling the
NewThread function. You specify to the NewThread function the type of thread and
stack size to use, whether to use an existing thread or create a new one, the entry point
function for the thread, data to pass to this function, and storage that the thread can use
to return data, if any, when it terminates. The NewThread function allocates a thread
20 Using the Thread Manager

C H A P T E R 1

Thread Manager
from the pool (or creates a new one, depending on the options you choose) and returns
the thread ID.

In Listing 1-1, the main function calls DoSpawnThreads to allocate threads from the
thread pool. Listing 1-3 shows the code in DoSpawnThreads that creates a thread, the
code for the thread entry point function, DoPhiloActions , and the data structure,
gPhilo , for passing information to the entry point function.

Listing 1-3 Allocating threads

#define kNumOfPhilos 5 /* Number of philopher icons*/

#define kDefaultStackSize 0 /* System determines stack size */

/* Spawn each thread from the pool of newly created threads */

void DoSpawnThreads()

{

OSErr anError;

short index;

for (index = 0; index < kNumOfPhilos; index++)

{

anError = NewThread(kCooperativeThread,

 DoPhiloActions,

 (void *)&(gPhilo[index]),

 kDefaultStackSize,

 kUsePremadeThread,

 nil,

 &(gPhilo[index].theThread));

if (anError)

DoHandlerError("\pError in creating the New Thread

(DoSpawnThreads)", anError, kFatal);

}

}

/* Global declarations */

#define kNumberOfIterations 1000 /*Number of iterations*/

...

typedef struct { /* Resource handles where it is and whether it

has a fork */

Rect thinking_location, waiting_location, dining_location;

Rect current_location;

short left_fork, fork_state;

ThreadID theThread;
Using the Thread Manager 21

C H A P T E R 1

Thread Manager
} philoRecord, *philoPtr;

philoRecord gPhilo[kNumOfPhilos]; /* global declaration */

...

/* Thread entry function */

pascal void *DoPhiloActions(void *thisPhilo)

{

short index;

for (index = 0; index < kNumberOfIterations; index++)

{

DoThinkForAwhile();

DoGoToEat(thisPhilo);

DoPickUpLeftFork(thisPhilo);

DoPickUpRightFork(thisPhilo);

DoEatForAwhile(thisPhilo);

DoPutDownRightFork(thisPhilo);

DoPutDownLeftFork(thisPhilo);

GoToThink(thisPhilo);

}

}

As just mentioned, the NewThread function can either create a new thread or allocate an
existing one from the thread pool. If you scan the parameter list for NewThread in
Listing 1-3, you see that kUsePremade is passed as the fifth parameter. This is one of five
possible options you can pass in this parameter (you sum them together if you want to
use more than one) and it indicates to allocate an existing thread from the thread pool.
For a description of the other four options, see “Thread Options” on page 1-41.

The first parameter to the NewThread function specifies that NewThread allocate a
cooperative thread, and the fourth parameter (the stack size parameter) contains
kDefaultStackSize , which specifies the default stack size. The thread pool that
DoCreateTPool created in Listing 1-2 contains five threads and each of these uses the
Thread Manager default stack size.

As you can see, the DoSpawnThreads function calls the NewThread function in a loop
to allocate a number of threads. In this case, the index for the for loop is the constant
kNumOfPhilos , which is set to 5. So DoSpawnThreads calls the NewThread function
until it has allocated all five threads from the existing pool of threads. If there is a
problem allocating the threads, DoSpawnThreads calls the error handling function and
passes it the result code returned by NewThrea d.

The NewThread function uses the very last parameter to store the thread IDs of the
newly created threads. At each iteration of the loop, it places the thread ID of the newly
created thread in a field of the gPhilo structure. Actually, since this structure is indexed,
each thread ID is stored in a separate index of the gPhilo structure.

The remaining three parameters set up the entry point to the thread. The second
parameter points to DoPhiloActions as the entry point function. Since the loop in
22 Using the Thread Manager

C H A P T E R 1

Thread Manager
DoSpawnThreads creates five threads, DoPhiloActions is the entry point to each
thread.

With the next parameter, NewThread points to a structure, gPhilo , that it passes to
DoPhiloActions . This structure contains location information that is used for screen
drawing and updates for each of the philosopher icons. It also contains the thread ID of
each of the threads.

The NewThread function uses the second to last parameter to allocate storage for the
function result from the new thread. Here it passes nil to indicate that there is no need
to retrieve information from the newly created threads. See “Passing Input and Output
Parameters to a New Thread” on page 1-28 for information on how to set up storage to
return data from a thread that you create.

By default, NewThread marks each thread that it creates as ready to run. As soon as the
application executes the YieldToAnyThread function in MyEventLoop , the Thread
Manager begins executing the first of the new threads and the application executes the
code in DoPhiloActions .

In DoPhiloActions you can see that NewThread passes in the gPhilo structure as the
thisPhilo pointer, which DoPhiloActions passes on to each of its subroutines,
beginning with DoGoToEat . These subroutines use this structure to move the onscreen
window icons from place to place and to “eat”. For example, Listing 1-4 shows the code
for one of the subroutines, DoEatForAwhile .

Listing 1-4 Using the gPhilo structure in a subroutine

void DoEatForAwhile(philoPtr thisPhilo)

{

short counter, timeToEat = Random() % kEatingTimeLimit;

thisPhilo->current_location = thisPhilo->dining_location;

for (counter = 0; counter < timeToEat; counter++)

YieldToAnyThread()

;

}

The code for DoEatForAwhile , places the icon in the dining room for a random amount
of time, then yields control to another thread. The code for the other subroutines called
by DoPhiloActions in Listing 1-3 is not shown here but it is similar: it either moves the
icon into a different room, makes it stay put for awhile, or performs an action, such as
lifting a fork.

When control moves to the next thread with the yield call, the same subroutines are
executed as in the first thread, but they affect a different icon because the indexed data
structure referenced by thisPhilo specifies five different icons in turn.

When control returns to the first thread in this sequence, it comes back to the statement in
the DoEatForAwhile function after YieldToAnyThread , which was the last statement
Using the Thread Manager 23

C H A P T E R 1

Thread Manager
executed. Since this is the end of this subroutine, control goes back to DoPhiloActions ,
which then executes the next subroutine. This subroutine performs an action and then,
since it also has a yield call, it yields to the next thread—the various threads continue to
perform actions on the icon that they control while yielding to each thread in turn.

As you can see, the design of this application is such that the actions are controlled by
one function, DoPhiloActions , and the icons are controlled by separate threads. The
yield calls in each subroutine of DoPhiloActions produce the appearance of
simultaneous movement of the different icons.

Turning Scheduling Off 1
In cases where you need to ensure data coherency, The Thread Manager provides a pair
of functions, ThreadBeginCritical and ThreadEndCritical that disable
scheduling temporarily by marking a section of code as critical. While the critical section
of code is executing, no other threads can be scheduled; that is, the Thread Manager
ignores all yield and other scheduling functions until the code exits the critical section.

Listing 1-5 shows a situation in which ThreadBeginCritical and
ThreadEndCritical mark a section of code as critical.

Listing 1-5 Marking a critical section of code

Boolean batch = true

#define kNumOfPhilos 5 /* Number of icons to create*/

#define kNoCreationOptions 0 /* Use default options*/

#define kDefaultStackSize 0 /* System determines stack size */

...

void DoCreateThreads()

{

OSErr anError;

short index;

if batch ThreadBeginCritical();

for (index = 0; index < kNumOfPhilos; index++)

{

anError = NewThread(kCooperativeThread,

 DoPhiloActions,

 (void *)&(gPhilo[index]),

 kDefaultStackSize,

 kNoCreationOptions,

 nil,

 &(gPhilo[index].theThread);

if (anError)
24 Using the Thread Manager

C H A P T E R 1

Thread Manager
DoHandlerError("\pError in creating the New Thread

(DoSpawnThreads)", anError, kFatal);

YieldToAnyThread

}

if batch ThreadEndCritical();

}

As you can see, the DoCreateThreads function calls the NewThread function in a loop
to allocate a number of threads. In this case, the index for the for loop is the constant
kNumOfPhilos , which is set to 5. So DoCreateThreads calls the NewThread function
until it has created five new threads. If there is a problem allocating the threads,
DoCreateThreads calls the error handling function and passes it the result code
returned by NewThrea d.

In some cases you might want each newly created thread to run before the rest of the
threads are created. However, in other cases, you might want DoCreateThreads to
create all the threads before any of them runs. The Boolean variable batch and the
ThreadBeginCritical and ThreadEndCritical functions enable you to control
whether the threads begin running individually or together.

When batch is true, the code in the loop is marked as critical, so the Thread Manager
ignores the YieldToAnyThread function. All the threads are created before any of them
can run.

On the other hand, if batch is false, the loop is not marked as a critical section of code.
The current thread yields control at the end of the loop, and since threads are created in
the ready state, each newly created thread runs immediately after creation.

Working With Stacks 1

The main thread, which is created by the Process Manager when it launches an
application, is the only thread whose stack resides in the application stack area—the
stacks for threads that you create reside in the application heap area. The main thread’s
stack in a threaded application is identical to the stack in a nonthreaded application.
Therefore, to increase the size of the main thread’s stack in a threaded application, you
can use the same Memory Manager commands that you would use in a nonthreaded
application. Listing 1-6 shows how to do this.

Listing 1-6 Increasing the size of the main thread’s stack area

OSErr IncreaseApplicationStack(Size incrementSize)

{

OSErr retCode;

SetApplLimit((Ptr) ((unsigned long) GetApplLimit()

incremmentSize));

retCode=MemError();

if(retCode==noErr)
Using the Thread Manager 25

C H A P T E R 1

Thread Manager
MaxApplZone();

return retCode;

}

IMPORTANT

You call the function in Listing 1-6 only once at the beginning of your
application. You must call it before any other threads in the application
allocate memory. To be safe you should call it before any other threads
run, because running another thread could trigger a call to the LoadSeg
function (on a 680x0 machine only), which allocates memory and could
grow the heap. ▲

For threads that you create in your application, the Thread Manager maintains a separate
stack in the application heap area. You specify the stack size when you create a new
thread with the CreateThreadPool or NewThread function. The stack must be large
enough to handle saved thread context, normal application stack usage, interrupt
handling routines, and CPU exceptions. You can specify a particular size in bytes or use
the default size that the Thread Manager supplies for a thread. The default size, in most
cases, is more than adequate for your needs.

You can call GetDefaultThreadStackSize to determine the default amount of space
that the system allocates for threads.

If during testing you find that the stack size is inadequate for an individual thread, you
can increase the amount of space for it when you create the thread with the
CreateThreadPool or NewThread function. Listing 1-7 shows how to determine the
current stack space for a particular thread and how to increase it.

Listing 1-7 Determining and increasing the stack size of a thread

OSErr IncreaseThreadStack(ThreadID testThread)

{

anError = ThreadCurrentStackSpace(testThread, currentStackSize);

anError = DisposeThread(testThread, 0, 0)

anError = NewThread(kCooperativeThread,

 DoSomething,

 nil,

 (currentStackSize) + 1000,

 kNoCreationOptions,

 nil,

 testThread);

}

The ThreadCurrentStackSpace function returns, in the currentStackSize
parameter, the amount of space available to the thread named testThread . Since you
have already determined that this size is inadequate, you dispose of the thread by calling
26 Using the Thread Manager

C H A P T E R 1

Thread Manager
DisposeThread . Then NewThread creates a new thread. The third parameter specifies
the stack space to allocate for this thread. In this case, the original amount is increased by
a thousand bytes.

Creating Dialog Boxes That Yield 1
An easy thing to do with the Thread Manager is to free your application to do useful
work in the background while waiting for a user to respond to a dialog box that is
displayed on the screen. The way to do this is to handle the dialog box in the main thread
and to put a call in the dialog’s event filter function that yields control to other threads
that can do useful work while the dialog box is displayed. Listing 1-8 shows the code to
implement such a dialog box.

Listing 1-8 Creating a dialog box that yields

pascal boolean DoYieldFilter (DialogPtr theDialogPtr, EventRecord *theEvent,

 short *theItemHit)

 {

 /* Yield to whomever wants to run. */

 YieldToAnyThread();

 /* Call the standard filter procedure defined in Dialogs.h. */

 return (MyStdFilterProc(theDialogPtr, theEvent, theItemHit));

 }

 /* The DoOKDialog function just handles a simple OK dialog box. */

 void DoOKDialog (short dialogID)

 {

 DialogPtr theDialog;

 short itemHit;

 GrafPtr savePort;

 OSErr theError;

 GetPort(&savePort);

 if ((theDialog = GetNewDialog(dialogID, NULL, (Ptr)-1)) != NULL)

 {

 SetPort(theDialog);

 ShowWindow(theDialog);

 do

 {

 ModalDialog(DoYieldFilter, &itemHit);

 } while (itemHit != okButton);

 DisposDialog(theDialog);

 } else
Using the Thread Manager 27

C H A P T E R 1

Thread Manager
 DebugStr("\pCould not find dialog");

 SetPort(savePort);

 }

In Listing 1-8, DoOKDialog is a function that handles an OK dialog box. It calls the
Dialog Manager ModalDialog function to display the dialog box. The ModalDialog
function calls an event filter procedure, DoYieldFilter . This procedure makes two
calls; one to YieldToAnyThread and the other to MyStdFilterProc . The call to
YieldToAnyThread enables your application to keep working while the dialog box is
displayed. It yields control to any threads that are waiting to execute. Each waiting
thread that executes in turn, of course, also has a yield call in it, so control eventually
returns to DoYieldFilter .

When control returns, DoYieldFilter calls another event filter procedure,
MyStdFilterProc . If no events have occurred, it simply returns to the ModalDialog
function, which loops through again and calls the DoYieldFilter function, enabling
the working threads to gain control again. If an event does occur, MyStdFilterProc
handles it and returns the result to ModalDialog . When a user chooses the OK or
Cancel button, ModalDialog exits the loop.

Keep in mind that when an operating-system event occurs, the Thread Manager always
returns control to the main thread at the first scheduling opportunity. This means that if
there are several threads in your application doing background work while the dialog
box is being displayed, at the first scheduling opportunity after an operating-system
event occurs (and if the yield or other call causing the reschedule does not specify a
particular thread to schedule next), the Thread Manager schedules the main thread no
matter which threads are ahead of it in the scheduling queue. For this reason it is best to
put event handling functions in the main thread.

Passing Input and Output Parameters to a New Thread 1
When you create a new thread, you can pass data to it by passing a parameter to the
thread entry function. You can also retrieve data from the thread when it terminates. You
set up the storage for this data when you create the thread.

Listing 1-9 shows how to pass data to a newly created thread and create the storage to
hold the data returned by the new thread when it terminates.

Listing 1-9 Passing data between threads

#define kNoCreationOptions 0 /* Use the standard default

creation options */

#define kDefaultThreadStackSize 0 /* Use the default value*/

/* Define a structure */

struct ExampleRecord {

long someLongValue;
28 Using the Thread Manager

C H A P T E R 1

Thread Manager
short someShortValue;

};

typedef struct ExampleRecord ExampleRecord;

typedef ExampleRecord *ExampleRecordPtr;

void MyParametersExample (void)

{

ThreadID tempThreadID;

OSErr err;

long myLong;

short myShort;

Boolean notDone = true;

ExampleRecordPtr recordOutResult = nil;/* Declare a variable to

 store new thread’s output */

ExampleRecord recordInParam; /* Declare a variable to pass

 data to a new thread */

/* Assign values to pass to a new thread */

recordInParam.someLongValue = 0x1FFF2EEE;

recordInParam.someShortValue = 0xABCD;

/* Create a new thread */

err = NewThread(kCooperativeThread,

(ThreadEntryProcPtr)(MyExampleFunc),

(void*)&recordInParam,

kDefaultThreadStackSize,

kNoCreationOptionss,

(void**)&recordOutResult,

&tempThreadID);

if (err)

DebugStr("\p Could not make coop thread 2");

while (notDone)

{

YieldToAnyThread();/* Other threads run. */

if (recordOutResult != nil)

{

myLong = recordOutResult->someLongValue; /* Store thread output */

myShort = recordOutResult->someShortValue;/* Store thread output */

DoStuffWithParams(myLong, myShort); /* Use thread output */

DisposePtr((Ptr)recordOutResult); /* Remove storage */

recordOutResult = nil; /* Neutralize variable */
Using the Thread Manager 29

C H A P T E R 1

Thread Manager
}

/* Handle user events until quit time */

GoHandleEvents(¬Done);

}

return; /* Done. */

}

/* Thread entry function */

pascal ExampleRecordPtr MyExampleFunc (ExampleRecordPtr inputRecordParam)

{

ExampleRecordPtr myRecordPtr;

myRecordPtr = NewPtr(sizeof(ExampleRecord));

myRecordPtr->someLongValue = inputRecordParam->someLongValue;

myRecordPtr->someShortValue = inputRecordParam->someShortValue;

/* Do some calculations on the data and put the result in myRecordPtr */

...

return (myRecordPtr);/* Must be the size of a void*. */

}

The first thing the code in Listing 1-9 does is to define some symbolic variables to make
the code easier to read. When you create a thread with the NewThread function, you can
specify some options that define the behavior of the thread, and you must specify a stack
size for the thread. The two #define statements define variables that specify to use the
default options and to use the default stack size.

The ExampleRecord structure defines a type of structure that later is used to pass a long
and a short value to a new thread and then back again. The code creates the
ExampleRecord type and also a pointer to it.

The MyParametersExample function performs the major work in this example. It first
declares some variables, including recordInParam and recordOutResult . Note that
recordInParam , which is used to pass data to a newly created thread, is declared as an
ExampleRecord structure, and recordOutResult , which is used to store data
returned from the new thread, is declared as a pointer to an ExampleRecord structure.

Next, MyParametersExample assigns hex values to the someShortValue and
someLongValue fields of the recordInParam structure. It then uses the NewThread
function to create a new thread. It specifies MyExampleFunc as the thread’s entry
function and passes it the recordInParam structure. It also specifies
recordOutResult as the storage for any data returned from the new thread. Note that
NewThread passes recordInParam as a pointer to a value and recordOutResult as
a pointer to an address. As you recall, recordInParam is defined as an
ExampleRecord structure and recordOutResult as a pointer to an ExampleRecord
structure.

The MyParametersExample function then sets up a while loop to see if the newly
created thread has returned any data yet. The YieldToAnyThread function guarantees
30 Using the Thread Manager

C H A P T E R 1

Thread Manager
that the newly created thread—and any other thread in the application—gets time to run.
The variables myLong and myShort hold the data that the new thread returns. The
DoStuffWithParams function, whose code is not shown here, passes in these variables
and does some additional work on the data. The Memory Manager DisposePtr
function frees the memory used by the recordOutResult structure. Note that the
while loop also contains a function to handle user events.

The MyExampleFunc function is the entry point to the thread that the
MyParametersExample function created with the NewThread function. It declares
myRecordPtr as an ExampleRecordPtr and then uses the Memory Manager NewPtr
function to allocate a block of memory for it that is the size of an ExampleRecord
structure. It then passes the hex values from the NewThread function to the
someLongValue and someshortValue fields of the structure pointed to by
myRecordPtr .

After doing some calculations on the hex values, MyExampleFunc returns the data to the
storage allocated in the MyParametersExample function.

Using Threads With I/O 1
This section shows you one way to make an asynchronous I/O call from a threaded
application. The straightforward way to do this is to create a separate thread that makes
the I/O call and then puts itself to sleep so that other threads in the application can
continue to work while the I/O request is being handled. You would also provide a
completion routine that wakes up the stopped thread when the I/O task is complete.

Figure 1-5 shows the problem with this approach. It is possible for the completion routine
to execute before the thread puts itself in the stopped state. If this happens, the
completion routine returns without doing anything because the thread is still running
when the completion routine attempts to wake it up. Then the thread puts itself in the
stopped state and stays there forever waiting for a completion routine that has already
finished executing.
Using the Thread Manager 31

C H A P T E R 1

Thread Manager
Figure 1-5 Using a completion routine to wake up a thread making an asynchronous I/O call

One solution to this problem is to create two threads, one to make the I/O call and the
other to wake up the first thread. Figure 1-6 illustrates this process.

Main thread

I/O thread

Completion routine

Time

Running/executingKey:

Ready to run

Stopped

Start
Async

I/O

Sleep

Yield

Start ExitMark wake-up
thread ready
32 Using the Thread Manager

C H A P T E R 1

Thread Manager
Figure 1-6 Using two threads to handle an asynchronous I/O call

As you can see in the figure, the thread making the I/O call creates a second thread (the
wake-up thread) that is in the stopped state. The purpose of the completion routine is to
start the wake-up thread. It doesn’t actually make the thread ready to run but marks it as
available to be ready to run. At the next scheduling opportunity, the wake-up thread is
set to the ready-to-run state. At the following scheduling opportunity, if it is at the top of
the queue, it begins to run and can wake up the I/O thread.

This scheme is guaranteed to work because there is no way that the I/O thread can still
be awake when the completion routine attempts to wake it up. The wake-up thread can
run only after the I/O thread has put itself to sleep. Listing 1-10 shows the code to
implement this process.

Main thread

I/O thread

Wake-up thread

Time

Running/executingKey:

Ready to run

Available to be
made ready at next schedule

Stopped

Start
Create

wake-up thread
Async

I/O

Start Wake-up
I/O thread

Exit

Yeild

Completion routine Start Exit
Mark wake-up
thread available
to be ready

Sleep
Using the Thread Manager 33

C H A P T E R 1

Thread Manager
Listing 1-10 Making an asynchronous I/O call with two threads

/* Set up parameter block */

struct ExtendedParamBlk {

/* PB must be first so that the file system can get the data. */

ParamBlockRec pb;

ThreadTaskRef theAppTask;

ThreadID theThread;

};

typedef struct ExtendedParamBlk ExtendedParamBlk;

typedef ExtendedParamBlk *ExtendedParamBlkPtr;

/* Routine prototypes. */

pascal void MyIOExampleThread (void);

pascal void DoWakeUpThread (ThreadID threadToWake);

void MyCompletionRoutine (void);

/* Completion routines are called with register A0 pointing to */

/* the parameter block. */

pascal ExtendedParamBlkPtr GetPBPtr(void) = {0x2E88};

/* move.l a0, (sp) */

/* A routine in the main thread that creates a thread to make an I/O call */

void DoKickOffAnIOThread (void)

{

ThreadID newCoopID;

OSErr theError;

theError = NewThread(kCooperativeThread,

 (ThreadEntryProcPtr)MyIOExampleThread,

 nil,

 kDefaultThreadStackSize,

 kNoCreationOptions,

 nil,

 &newCoopID);

if (theError)

DebugStr("\p Could not make cooperative I/O thread");

/* Return and let the I/O thread do its thing! */

}

/* The entry point for the code to make the I/O call */

pascal void MyIOExampleThread (void)

{

ThreadID wakeupThreadID, meThreadID;

ThreadTaskRef theAppRef;
34 Using the Thread Manager

C H A P T E R 1

Thread Manager
ExtendedParamBlk myAsyncPB;

OSErr theError, theIOResult;

/* Get the ID of MyIOExampleThread. */

theError = MacGetCurrentThread(&meThreadID);

if (theError != noErr)

DebugStr("\pFailed to get the current thread ID");

/* Get the application's task reference. */

theError = GetThreadCurrentTaskRef(&theAppRef);

if (theError != noErr)

DebugStr("\Could not get our task ref");

/* Create a wake-up thread. */

theError = NewThread(kCooperativeThread,

 (ThreadEntryProcPtr)DoWakeUpThread,

 (void*)meThreadID,

 kDefaultThreadStackSize,

 kNewSuspend,

 nil,

 &wakeupThreadID);

if (theError != noErr)

DebugStr("\pFailed to create a cooperative thread");

/* Prepare for and make the I/O call */

myAsyncPB.pb.ioParam.ioCompletion = (ProcPtr)MyCompletionRoutine;

myAsyncPB.pb.ioParam.ioResult = 0;/* Initialize the result. */

myAsyncPB.pb.ioParam.ioNamePtr = nil; /* No name used here. */

myAsyncPB.pb.ioParam.ioVRefNum = -1;/* The boot drive. */

myAsyncPB.theThread = wakeupThreadID;

myAsyncPB.theAppTask = theAppRef;

PBFlushVol((ParmBlkPtr)&myAsyncPB, async);

/* Put I/O thread to sleep */

theError = SetThreadState(kCurrentThreadID, kStoppedThreadState,

 kNoThreadID);

if (theError != noErr)

DebugStr ("\pFailed to put current thread to sleep");

/* Get the result of the I/O operation */

theIOResult = myAsyncPB.pb.ioParam.ioResult;

. . .

}

void MyCompletionRoutine (void)

{

Using the Thread Manager 35

C H A P T E R 1

Thread Manager
ExtendedParamBlkPtr myAsyncPBPtr;

ThreadTaskRef theAppTaskRef;

ThreadID theThreadID;

ThreadState theThreadState;

OSErr theError;

/* Get the parameter block. */

myAsyncPBPtr = GetPBPtr();

/* Get the data. */

theAppTaskRef = myAsyncPBPtr->theAppTask;

theThreadID = myAsyncPBPtr->theThread;

/* See if the thread is stopped yet - just to be sure. */

theError = GetThreadStateGivenTaskRef(theAppTaskRef, theThreadID,

 &theThreadState);

/* If we can get the thread state, go for it! */

if (theError == noErr)

{

/* If it's not stopped, something is wrong. */

if (theThreadState != kStoppedThreadState)

DebugStr("\pWake-up thread is in the wrong state!");

/* Should be sleeping, mark it for wake up! */

else

SetThreadReadyGivenTaskRef(theAppTaskRef, theThreadID);

}

}

/* The wake up thread wakes up the I/O thread */

pascal void DoWakeUpThread (ThreadID threadToWake)

{

OSErr theError;

theError = SetThreadState(threadToWake, kReadyThreadState,

 kNoThreadID);

if (theError != noErr)

DebugStr("\pFailed to wake our thread");

/* We've done our deed, so just return quietly and let it run. */

}

The code in Listing 1-10 is long but can be broken up into discreet parts. The first thing it
does is to set up the parameter block. The extended parameter block holds the parameter
block for use by the file system and has fields to hold the thread task reference and thread
ID of the wake-up thread for use by the completion routine. After the parameter block
declaration are prototypes for the entry functions to the I/O thread and the wake-up
thread, and for the completion routine that marks the wake-up thread as ready. The inline
36 Using the Thread Manager

C H A P T E R 1

Thread Manager
routine GetPBPtr retrieves the address of the parameter block for the completion
routine from register A0.

The DoKickOffThread function uses the NewThread function to create the cooperative
wake-up thread. The entry point to this thread is the MyIOExampleThread function.

The MyIOExampleThread function does several things. It uses
MacGetCurrentThread to get and store its thread ID. Next it gets the thread task
reference for the application. The completion routine needs the thread task reference to
make any Thread Manager calls to a thread in this application context because during
execution of the completion routine, there is no guarantee as to which application is the
current context. Then the MyIOExampleThread function creates the wake-up thread
with the NewThread function. It specifies the DoWakeUp function as the entry point to
the routine and passes its own thread ID as a parameter to this function. Note that the
kNewSuspend option creates the new thread in the stopped state.

Next, the MyIOExampleThread function prepares for the I/O call by setting up the
address of the completion routine and the extended data the completion routine requires,
including the thread ID of the wake-up thread and the thread task reference for the
current application. The actual I/O call is an asynchronous file system command.

The last thing MyIOExampleThread does is to call SetThreadState to put itself in the
stopped state. It passes the kNoThreadID constant as the last parameter to indicate that
the Thread Manager should schedule the next available thread, rather than any particular
thread.

IMPORTANT

It is always important to keep the main thread in the ready or running
state, and the current example shows one of the reasons why. If the main
thread has stopped itself, there may be no threads running at all after the
current thread stops itself. The completion routine will return and mark
the wake-up thread as available, but without a rescheduling call from the
main thread or some other thread, the wake-up thread will remain
marked as available but never ready or running. ▲

When the asynchronous I/O call completes, it calls the completion routine to indicate
that it has finished. The completion routine retrieves the parameter block and gets the
thread task reference for the application and the thread ID of the wake-up thread. For
good measure, it uses the GetThreadStateGivenTaskRef function to verify that the
wake-up thread is indeed stopped. It passes the thread task reference and the thread ID
of the wake-up thread to this function. It then marks the wake-up thread as ready at the
next reschedule with the SetThreadReadyGivenTaskRef . Again, it passes the thread
task reference and the thread ID of the wake-up thread to this function.

At the next reschedule, the wake-up thread is made ready to run and eventually it begins
executing. The entry point to this thread is the DoWakeUpThread function, which is
passed the thread ID of the thread to wake—in this case, the thread ID of the I/O thread.
The DoWakeUpThread function calls SetThreadState to change the state of the I/O
thread from stopped to ready.
Using the Thread Manager 37

C H A P T E R 1

Thread Manager
Thread Manager Reference 1

This section describes the data types and functions that are specific to the Thread
Manager.

Data Types 1
This section describes the data types that the Thread Manager uses. These include data
types to

■ determine if the Thread Manager is available and which features are supported

■ identify the state of a thread

■ identify the application context from an interrupt or completion routine when your
application is not guaranteed to be the current context

■ specify the type of thread

■ specify the ID of a thread

■ specify options for the creation of a thread

■ pass information to a custom scheduling function

Gestalt Selector and Response Bits 1

To determine if the Thread Manager is available and which features are supported, call
the Gestalt function with the selector gestaltThreadMgrAttr . The Gestalt
function returns information by setting or clearing bits in the response parameter. The
following constants define the bits currently used.

enum { /* Gestalt selectors */

#define gestaltThreadMgrAttr 'thds' /* Thread Manager attributes */

gestaltThreadMgrPresent = 0,

gestaltSpecificMatchSupport = 1,

gestaltThreadsLibraryPresent = 2

};

Constant Descriptions

gestaltThreadMgrPresent
This bit is set if the Thread Manager is present.

gestaltSpecificMatchSupport
This bit is set if the Thread Manager supports the allocation of
threads based on an exact match with the requested stack size. If this
bit is not set, the Thread Manager allocates threads based on the
closest match to the requested stack size.
38 Thread Manager Reference

C H A P T E R 1

Thread Manager
gestaltThreadsLibraryPresent
This bit is set if the native version of the threads library has been
loaded.

The Thread State 1

The Thread Manager provides various functions, such as GetThreadState and
SetThreadState , to get and set information about the state of a thread. These functions
use the ThreadState data type to get and set thread state information.

typedef unsigned short ThreadState;

There are three possible values for the thread state:

#define kReadyThreadState ((ThreadState) 0)

#define kStoppedThreadState((ThreadState) 1)

#define kRunningThreadState((ThreadState) 2)

Constant descriptions

kReadyThreadState
The thread is ready to run.

kStoppedThreadState
The thread is stopped and not ready to run.

kRunningThreadState
The thread is running.

The Thread Task Reference 1

In certain cases, such as during execution of an interrupt routine, your application is not
guaranteed to be the current process. Since threads are defined within an application
context, it follows that in cases such as these, you cannot get or set information about any
particular threads in your application unless you have a way of identifying the
application context. The thread task reference gives you a way of doing this.

You can obtain the thread task reference by calling GetCurrentThreadTaskRef at a
time when you know your application is the current context. Later, during execution of
an interrupt routine, you can use the thread task reference to identify your application.
For example, you can pass the thread task reference to functions such as
GetThreadStateGivenTaskRef and SetThreadReadyGivenTaskRef in an
interrupt routine to get and set information about the state of particular threads in your
application.

The ThreadTaskRef data type defines the thread task reference.

typdef void* ThreadTaskRef;
Thread Manager Reference 39

C H A P T E R 1

Thread Manager
The Thread Type 1

Historically, the Thread Manager defined two types of threads to run in an application
context: cooperative and preemptive, but now it supports only cooperative threads.

Although the Thread Manager only supports a single type of thread, many Thread
Manager functions (for historical reasons) require you to use the thread type to specify
the type of the thread.

The ThreadStyle data type specifies the type of a thread.

typedef unsigned long ThreadStyle;

Because there is only one type of thread (cooperative) the thread type accepts a single
value:

#define kCooperativeThread (1<<0)

The Thread ID 1

The Thread Manager assigns a thread ID to each thread that you create or allocate with
the NewThread function. The thread ID uniquely identifies a thread within an
application context. You can use the thread ID in functions that schedule execution of a
particular thread, dispose of a thread, and get and set information about a thread; for
example, you pass the thread ID to functions such as YieldToThread ,
DisposeThread , and GetThreadState .

The ThreadID data type defines the thread ID.

typedef unsigned long ThreadID;

The Thread Manager defines the following three constants that you can use in addition to
the specific thread IDs that the NewThread function returns:

#define kNoThreadID ((ThreadID) 0)

#define kCurrentThreadID ((ThreadID) 1)

#define kApplicationThreadID((ThreadID) 2)

Constant descriptions

kNoThreadID Indicates no thread; for example, you can use a function such as
SetThreadState to put the current thread in the stopped state and
pass kNoThreadID to indicate that you don’t care which thread
runs next.

kCurrentThreadID
Identifies the currently executing thread.

kApplicationThreadID
Identifies the main application thread; this is the cooperative thread
that the Thread Manager creates at launch time. You cannot dispose
of this thread. All applications—even those that are not aware of the
Thread Manager—have one main application thread. The Thread
40 Thread Manager Reference

C H A P T E R 1

Thread Manager
Manager assumes that the main application thread is responsible for
event gathering; when operating-system event occurs, the Thread
Manager schedules the main application thread as the next thread to
execute.

Thread Options 1

When you create or allocate a new thread with the NewThread function, you can specify
thread options that define certain characteristics of the thread. The ThreadOptions data
type defines the thread options.

typedef unsigned long ThreadOptions;

To specify more than one option, you sum them together and pass them as a single
parameter to the NewThread function.

#define kNewSuspend (1<<0)

#define kUsePremadeThread (1<<1)

#define kCreateIfNeeded (1<<2)

#define kFPUNotNeeded (1<<3)

#define kExactMatchThread (1<<4)

Constant descriptions

kNewSuspend Begin a new thread in the stopped state.
kUsePremadeThread

Use a thread from the existing supply.
kCreateIfNeeded

Create a new thread if one with the proper style and stack size
requirements does not exist.

kFPUNotNeeded Do not save the FPU context. This saves time when switching
contexts. Note, however, that for PowerPC threads, the Thread
Manager always saves the FPU registers regardless of how you set
this option. Because the PowerPC microprocessor uses the FPU
registers for optimizations, they could contain necessary
information.

kExactMatchThread
Allocate a thread from the pool only if it exactly matches the
stack-size request. Without this option, a thread is allocated that best
fits the request—that is, a thread whose stack is greater than or equal
to the requested size.

The Scheduler Information Structure 1

You can, if you wish, use the SetThreadScheduler function to install a custom
scheduling function to work in conjunction with the default Thread Manager scheduling
mechanism. The Thread Manager uses the scheduler information structure to pass
Thread Manager Reference 41

C H A P T E R 1

Thread Manager
information to the custom scheduling function that allows it to decide which thread, if
any, to schedule next.

struct SchedulerInfoRec {

unsigned long InfoRecSize;

ThreadID CurrentThreadID;

ThreadID SuggestedThreadID;

ThreadID InterruptedCoopThreadID;

};

typedef struct SchedulerInfoRec SchedulerInfoRec;

typedef SchedulerInfoRec *SchedulerInfoRecPtr;

Field descriptions

InfoRecSize The size of the structure.
CurrentThreadID

The thread ID of the current thread.
SuggestedThreadID

The thread ID of the thread that the application has suggested to
run.

InterruptedCoopThreadID
Historically, the thread ID of a preempted cooperative thread if a
cooperative thread has been interrupted and has not yet resumed
execution. Because it no longer supports preemptive threads, the
Thread Manager always passes the constant kNoThreadID to
indicate that there is no thread that has been interrupted.

Thread Manager Functions 1
You can use Thread Manager functions to perform the following tasks:

■ create and get information about pools of threads

■ create and delete individual threads

■ get information about individual threads

■ schedule threads

■ disable scheduling

■ get information about and schedule threads from interrupt code

■ install custom scheduler, context switcher, termination, and debugging functions

Creating and Getting Information About Thread Pools 1

This section describes functions that allow you to create a pool of threads and to get
information about the threads, such as the number of threads of a particular stack size
that are available or the default stack requirement for a thread.
42 Thread Manager Reference

C H A P T E R 1

Thread Manager
CreateThreadPool 1

You can use the CreateThreadPool function to create a pool of threads for your
application.

pascal OSErr CreateThreadPool(ThreadStyle threadStyle,

 short numToCreate, Size stackSize);

threadStyle The type of thread to create for this set of threads in the pool. Cooperative
is the only type that you can specify. Historically, the Thread Manger
supported two types of threads, preemptive and cooperative. However,
due to severe limitations on their use, the Thread Manager no longer
supports preemptive threads.

numToCreate The number of threads to create for the pool.

stackSize The stack size for this set of threads in the pool. This stack must be large
enough to handle saved thread context, normal application stack usage,
interrupt handling routines, and CPU exceptions. Specify a stack size of 0
to request the Thread Manager’s default stack size for the specified type of
thread.

DESCRIPTION

The CreateThreadPool function creates the specified number of threads with the
specified stack requirements. It places the threads that it creates into a pool for use by
your application.

When you call CreateThreadPool , if the Thread Manager is unable to create all the
threads that you specify, it doesn’t create any at all and returns the memFullErr result
code.

The threads in the pool are indistinguishable except by stack size. That is, you cannot
refer to them individually. When you want to use a thread to execute some code in your
application, you allocate a thread of a specific size from the pool using the NewThread
function. The NewThread function assigns a thread ID to the thread and specifies the
function that is the entry point to the thread.

Note that it is not strictly necessary to create a pool of threads before allocating a thread.
If you wish, you can use the NewThread function to create and allocate a thread in one
step. The advantage of using CreateThreadPool is that you can allocate memory for
threads early in your application’s execution before memory is used or fragmented.

IMPORTANT

Before making any calls to CreateThreadPool , be certain that you first
have called the Memory Manager function MaxApplZone to extend the
application heap to its limit. You must call MaxApplZone from the main
application thread before any other threads in your application run. ▲
Thread Manager Reference 43

C H A P T E R 1

Thread Manager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To allocate a thread from the pool created with CreateThreadPool , use the
NewThread function described on page 1-47.

To determine how many threads in the pool are available for allocation, use the
GetFreeThreadCount function described on page 1-44. To determine how many
threads of a particular stack size are available, use the GetSpecificFreeThreadCount
function described on page 1-45.

GetFreeThreadCount 1

You can use the GetFreeThreadCount function to determine how many threads are
available to be allocated in a thread pool.

pascal OSErr GetFreeThreadCount(ThreadStyle threadStyle,

short *freeCount);

threadStyle
The type of thread to get information about. Cooperative is the only type
that you can specify. Historically, the Thread Manger supported two types
of threads, preemptive and cooperative, but the Thread Manager no
longer supports preemptive threads.

freeCount A pointer to the number of threads available to be allocated.

DESCRIPTION

The GetFreeThreadCount function determines how many threads are available to be
allocated. The number of threads in the pool varies throughout execution of your
application. Calls to CreateThreadPool add threads to the pool and calls to
NewThread , when an existing thread is allocated, reduce the number of threads. You also
add threads to the pool when you dispose of a thread with the DisposeThread function
and specify that the thread be recycled.

Trap macro
Selecto
r

_ThreadDispatch $0501

noErr 0 Specified threads were created and are available
paramErr –50 Unknown thread type; or specified a

preemptive thread without architecture support
memFullErr –108 Insufficient memory to create the thread

structures
44 Thread Manager Reference

C H A P T E R 1

Thread Manager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the GetSpecificFreeThreadCount function (described next) to determine how
many threads of a particular stack size are available.

GetSpecificFreeThreadCount 1

You can use the GetSpecificFreeThreadCount function to determine how many
threads of a specified stack size are available to be allocated in a thread pool.

pascal OSErr GetSpecificFreeThreadCount

(ThreadStyle threadStyle,

Size stackSize, short *freeCount);

threadStyle
The type of thread to get information about. Cooperative is the only type
that you can specify. Historically, the Thread Manger supported two types
of threads, preemptive and cooperative, but the Thread Manager no
longer supports preemptive threads.

stackSize The stack size of the threads to get information about.

freeCount A pointer to the number of threads of the specified stack size available to
be allocated.

DESCRIPTION

The GetSpecificFreeThreadCount function determines how many threads with a
stack size equal to or greater than the specified size are available to be allocated. Use this
function instead of GetFreeThreadCount when you are interested not simply in the
total number of available threads but when you want to know the number of available
threads of a specified stack size as well.

The number of threads in the pool varies throughout execution of your application. Calls
to CreateThreadPool add threads to the pool and calls to NewThread , when an
existing thread is allocated, reduce the number of threads. You also add threads to the

Trap macro
Selecto
r

_ThreadDispatch $0402

noErr 0 The number of available threads was returned
paramErr –50 Unknown thread type; or specified a

preemptive thread without architecture support
Thread Manager Reference 45

C H A P T E R 1

Thread Manager
pool when you dispose of a thread with the DisposeThread function and specify that
the thread be recycled.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To determine how many threads of any stack size are available, use the
GetFreeThreadCount function (page 1-44).

GetDefaultThreadStackSize 1

You can use the GetDefaultThreadStackSize function to determine the default stack
size required by a thread.

pascal OSErr GetDefaultThreadStackSize(ThreadStyle threadStyle,

 Size *stackSize);

threadStyle The type of thread to get information about. Cooperative is the only type
that you can specify. Historically, the Thread Manger supported two types
of threads, preemptive and cooperative, but the Thread Manager no
longer supports preemptive threads.

stackSize A pointer to the default stack size (in bytes) returned by the Thread
Manager. The GetDefaultThreadStackSize function places this value
in the variable that you pass to it. When you create a thread pool or an
individual thread, this is the stack size that the Thread Manager allocates
when you specify the default size.

DESCRIPTION

The GetDefaultThreadStackSize function returns, in the stackSize parameter, the
default stack size required by a thread in your application. The Thread Manager
determines the default stack size.

Trap macro
Selecto
r

_ThreadDispatch $0615

noErr 0 The number of available threads of the specified
style and stack size was returned

paramErr –50 Unknown thread type; or specified a
preemptive thread without architecture support
46 Thread Manager Reference

C H A P T E R 1

Thread Manager
Keep in mind that the default stack size is not an absolute value that you must use but is
a rough estimate.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To determine how much stack space is available for a particular thread, use the
ThreadCurrentStackSpace function described on page 1-51.

Creating and Disposing of Threads 1

This section describes functions that allow you to create or allocate threads and to
dispose of them when the code they contain has finished executing.

NewThread 1

You can use the NewThread function to create or allocate a thread with particular
characteristics.

pascal OSErr NewThread(ThreadStyle threadStyle,

 ThreadEntryProcPtr threadEntry,

 void *threadParam,

 Size stackSize,

 ThreadOptions options,

 void **threadResult,

 ThreadID *threadMade);

threadStyle
The type of thread to create. Cooperative is the only type that you can
specify. Historically, the Thread Manger supported two types of threads,
preemptive and cooperative, but the Thread Manager no longer supports
preemptive threads.

threadEntry A pointer to the thread entry function.

Trap macro
Selecto
r

_ThreadDispatch $0413

noErr 0 The proper default stack size was returned for
the specified style of thread

paramErr –50 Unknown thread type; or specified a
preemptive thread without architecture support
Thread Manager Reference 47

C H A P T E R 1

Thread Manager
threadParam
A pointer to a value that the Thread Manager passes as a parameter to the
thread entry function. Specify nil if you are passing no information.

stackSize The stack size (in bytes) to allocate for this thread. This stack must be large
enough to handle saved thread context, normal application stack usage,
interrupt handling routines, and CPU exceptions. Specify a stack size of 0
(zero) to request the Thread Manager’s default stack size.

options Options that define characteristics of the new thread. See the
ThreadOptions data type (page 1-41) for details on the options. You sum
the options together to create a single options parameter.

threadResult
A pointer to the address of a location to hold the function result that is
returned by the DisposeThread function when the thread terminates.
Specify nil for this parameter if you are not interested in the function
result.

threadMade A pointer to the thread ID of the newly created or allocated thread that the
NewThread function returns through this parameter. If there is an error,
NewThread sets the value of threadMade to kNoThreadID .

DESCRIPTION

The NewThread function creates a new thread or allocates one from the existing pool of
threads. It returns a thread ID that you can use in other Thread Manager functions to
identify the thread. If you want to allocate a thread from the pool of threads, specify the
kUsePremadeThread option of the options parameter. Otherwise, NewThread creates
a new thread.

When you request a thread from the existing pool, the Thread Manager allocates one that
best fits your specified stack size. If you specify the kExactMatchThread option of the
options parameter, the Thread Manager allocates a thread whose stack exactly matches
your stack-size requirement or, if it can’t allocate one because no such thread exists, it
returns the threadTooManyReqsErr result code.

IMPORTANT

Before making any calls to NewThread , be certain that you first have
called the Memory Manager function MaxApplZone to extend the
application heap to its limit. You must call MaxApplZone from the main
application thread before any other threads in your application run. ▲

When you call the NewThread function, you pass, as the threadEntry parameter, a
pointer to the name of the entry function to the thread. When the newly created thread
runs initially, it begins by executing this function.

You can use the threadParam parameter to pass thread-specific information to a newly
created or allocated thread. In the data structure pointed to by this parameter, you could
place something like A5 information or the address of a window to update. You could
also use this parameter to specify a place for a thread’s local storage.
48 Thread Manager Reference

C H A P T E R 1

Thread Manager
IMPORTANT

Be sure to create the storage for the threadResult parameter in a place
that is guaranteed to be available when the thread terminates—for
example, in an application global variable or in a local variable of the
application’s main function (the main thread, by definition, cannot be
disposed of so it is always available). Do not create the storage in a local
variable of a subroutine that completes before the thread terminates or
the storage will become invalid. ▲

SPECIAL CONSIDERATIONS

Do not pass a routine descriptor as the threadEntry parameter to the NewThread
function. For all Thread Manager functions that pass a procedure pointer, such as this
one, you must pass the address of the routine, not the address of a routine descriptor. You
are required to use routine descriptors when you write code in the PowerPC instruction
set that passes a routine’s address to code that might be in the 680x0 instruction set.
However, the threads in your application must all be in the same instruction set— 680x0
or PowerPC. Therefore, the routine identified by the threadEntry parameter is by
definition in the same instruction set as the NewThread function and a routine descriptor
is not required.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To dispose of a thread, use the DisposeThread function described next.

See the description of the ThreadOptions data type on page 1-41 for details on the
characteristics you can specify in the options parameter.

For more information about the thread entry function, see the myThreadEntry function
described on page 1-71.

Trap macro
Selecto
r

_ThreadDispatch $0E03

noErr 0 Specified thread was made or allocated
paramErr –50 Unknown thread type; or specified a

preemptive thread without architecture
support

memFullErr –108 Insufficient memory to create the thread
structures

threadTooManyReqsErr –617 No matching thread structures available
Thread Manager Reference 49

C H A P T E R 1

Thread Manager
DisposeThread 1

You can use the DisposeThread function to delete a thread when it finishes executing.

pascal OSErr DisposeThread(ThreadID threadToDump,

 void *threadResult,

 Boolean recycleThread);

threadToDump
The thread ID of the thread to delete.

threadResult
A pointer to the thread’s result. The DisposeThread function returns
this result to an address which you originally specify with the
threadResult parameter of the NewThread function when you create
or allocate the thread. Pass a value of nil (0) if you are not interested in
returning a function result.

recycleThread
A Boolean value that specifies whether to return the thread to the
allocation pool or to remove it entirely. Specify False (0) to dispose of
the thread entirely and True (1) to return it to the thread pool.

DESCRIPTION

When a thread finishes executing, the Thread Manager automatically calls
DisposeThread to delete it. Therefore, the only reason for you to explicitly call
DisposeThread is to recycle a terminating thread. To do so, set the recycleThread
parameter to True (1). The Thread Manager clears out the thread’s internal data
structure, resets it, and puts the thread in the thread pool where it can be used again as
necessary.

The DisposeThread function returns the thread’s function result in the threadResult
parameter. You allocate the storage for the thread result when you create or allocate a
thread with the NewThread function. See “Passing Input and Output Parameters to a
New Thread” beginning on page 1-28 for an example of how to set up storage for the
thread result when you create a new thread.

IMPORTANT

You cannot explicitly dispose of the main application thread. If you
attempt to do so, DisposeThread returns the threadProtocolErr
result code. ▲

When your application terminates, the Thread Manager calls DisposeThread to
terminate any active threads. It terminates stopped and ready threads first but in no
special order. It terminates the currently running thread last. This thread should always
be the main application thread.
50 Thread Manager Reference

C H A P T E R 1

Thread Manager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To install a callback function to do special cleanup when a thread terminates, use the
SetThreadTerminator function described on page 1-68.

Getting Information About Specific Threads 1

This section describes functions that allow you to get information about a specific thread.

ThreadCurrentStackSpace 1

You can use the ThreadCurrentStackSpace function to determine the amount of
stack space that is available for any thread in your application.

pascal OSErr ThreadCurrentStackSpace(ThreadID thread,

unsigned long *freeStack);

thread The thread ID of the thread about which you want information.

freeStack A pointer to the amount of stack space (in bytes) that is available to the
specified thread. The ThreadCurrentStackSpace function returns this
information.

DESCRIPTION

The ThreadCurrentStackSpace function returns the amount of stack space (in bytes)
that is available for a specified thread.

This function is primarily useful during debugging since you determine the maximum
amount of stack space you need for any particular thread before you ship your
application. However, if your application calls a recursive function that could call itself

Trap macro
Selecto
r

_ThreadDispatch $0504

noErr 0 Specified thread was disposed of
threadNotFoundErr –618 No thread with the specified thread

ID
threadProtocolErr –619 The thread specified in

threadToDump was the application
thread
Thread Manager Reference 51

C H A P T E R 1

Thread Manager
many times, you might want to use ThreadCurrentStackSpace to keep track of the
stack space and take appropriate action if it becomes too low.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To determine the default size that the Thread Manager assigns to threads use the
GetDefaultThreadStackSize function described on page 1-46.

For information on how to optimize memory use in a threaded application, see the
section “Thread Stacks” on page 1-15.

MacGetCurrentThread 1

You can use the GetCurrentThread function to obtain the thread ID of the currently
executing thread.

pascal OSErr MacGetCurrentThread (ThreadID *currentThreadID);

currentThreadID
A pointer to the thread ID of the current thread. The
MacGetCurrentThread function returns this information.

DESCRIPTION

The MacGetCurrentThread function retrieves the thread ID of the currently
executing thread and places it in the currentThreadID parameter. You can use the
thread ID in functions such as GetThreadState and SetThreadState to get and set
the state of a thread.

Trap macro
Selecto
r

_ThreadDispatch $0414

noErr 0 Amount of stack space available in
the thread was returned

threadNotFoundErr –618 No thread with the specified thread
ID
52 Thread Manager Reference

C H A P T E R 1

Thread Manager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The ThreadID data type is described on page 1-40.

GetThreadState 1

You can use the GetThreadState function to obtain the state of any thread.

pascal OSErr GetThreadState(ThreadID threadToGet,

ThreadState *threadState);

threadToGet
The thread ID of the thread about which you want information.

threadState
A pointer to a ThreadState data structure in which GetThreadState
places the information about the state of the specified thread.

DESCRIPTION

The GetThreadState function returns the state of the specified thread. A thread can be
in one of three states: ready to execute (kThreadReadyState), stopped
(kStoppedThreadState), or executing (kRunningThreadState).

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Trap macro
Selecto
r

_ThreadDispatch $0206

noErr 0 ID of the current thread was returned
threadNotFoundErr –618 No current thread

Trap macro
Selecto
r

_ThreadDispatch $0407

noErr 0 State of the specified thread was
returned

threadNotFoundErr –619 No thread with the specified thread
ID
Thread Manager Reference 53

C H A P T E R 1

Thread Manager
SEE ALSO

To change the state of a specified thread, use SetThreadState described on page 1-56.

The ThreadState data type is described on page 1-39.

Scheduling Threads 1

This section describes functions that allow you to control the execution of threads.

YieldToAnyThread 1

You can use the YieldToAnyThread function to relinquish the current thread’s control.

pascal OSErr YieldToAnyThread(void);

DESCRIPTION

The YieldToAnyThread function invokes the Thread Manager’s scheduling
mechanism. The current thread relinquishes control and the Thread Manager schedules
the next available thread.

The current thread is suspended in the ready state and awaits rescheduling when the
CPU is available. When the suspended thread is scheduled again, YieldToAnyThread
regains control and returns to the function that called it.

If you have installed a custom scheduler, the Thread Manager passes it the thread ID of
the suspended thread.

In each thread you must make one or more strategically placed calls to relinquish control
to another thread. You can either make this yield call or another yield call such as
YieldToThread ; or you can make a call such as SetThreadState to explicitly change
the state of the thread.

SPECIAL CONSIDERATIONS

Threads must yield in the CPU addressing mode (24-bit or 32-bit) in which the
application was launched.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_ThreadDispatch $303C
54 Thread Manager Reference

C H A P T E R 1

Thread Manager
RESULT CODES

SEE ALSO

To relinquish control to a specific thread, use the YieldToThread function described
next.

To change the state of a specified thread, use the SetThreadState function described
on page 1-56.

For more information on how the Thread Manager schedules threads, see “Scheduling”
beginning on page 1-9.

YieldToThread 1

You can use the YieldToThread function to relinquish the current thread’s control to a
particular thread.

pascal OSErr YieldToThread(ThreadID suggestedThread);

suggestedThread
The ID of the thread to yield control to.

DESCRIPTION

The YieldToThread function invokes the Thread Manager’s scheduling mechanism.
The current thread relinquishes control and passes the thread ID of a thread for the
Thread Manager to schedule. The Thread Manager schedules this thread if it is available.
Otherwise, the Thread Manager schedules the next available thread.

The current thread is suspended in the ready state and awaits rescheduling when the
CPU is available. When the suspended thread is scheduled again, YieldToThread
regains control and returns to the function that called it.

If you have installed a custom scheduler, the Thread Manager passes it the thread ID of
the suspended thread.

In each thread you must make one or more strategically placed calls to relinquish control
to another thread. You can either make this yield call or another yield call such as
YieldToAnyThread ; or you can make a call such as SetThreadState to explicitly
change the state of the thread.

SPECIAL CONSIDERATIONS

Threads must yield in the CPU addressing mode (24-bit or 32-bit) in which the
application was launched.

noErr 0 Current thread has yielded
threadProtocolErr –619 Current thread is in a critical section
Thread Manager Reference 55

C H A P T E R 1

Thread Manager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To relinquish control without naming a specific thread, use the YieldToAnyThread
function described on page 1-54.

To change the state of a specified thread, use the SetThreadState function described
on next.

For more information on how the Thread Manager schedules threads, see “Scheduling”
beginning on page 1-9.

SetThreadState 1

You can use the SetThreadState function to change the state of any thread.

pascal OSErr SetThreadState(ThreadID threadToSet,

 ThreadState newState,

 ThreadID suggestedThread);

threadToSet
The thread ID of the thread whose state is to be changed.

newState The new state for the thread. You can specify ready to execute
(kThreadReadyState), stopped (kStoppedThreadState), or
executing (kRunningThreadState).

suggestedThread
The thread ID of the next thread to run. You specify this thread if you are
changing the state of the currently executing thread to stopped or ready to
run. Pass kNoThreadID if you do not want to specify a particular thread
to run next. In this case, the Thread Manager schedules the next available
thread to run.

DESCRIPTION

Trap macro
Selecto
r

_ThreadDispatch $0205

noErr 0 Current thread has yielded and is
now running again

threadNotFoundErr –618 No thread with the specified thread
ID or the suggested thread is not in a
ready state

threadProtocolErr –619 Current thread is in a critical section
56 Thread Manager Reference

C H A P T E R 1

Thread Manager
The SetThreadState function changes the state of the specified thread. The effect of
SetThreadState depends on whether the thread you specify for changing is the
currently executing thread or another thread. If you specify the current thread and thus
change the state to stopped or ready, SetThreadState invokes the Thread Manager
scheduling mechanism. The current thread relinquishes control (it is put in the state you
specify, stopped or ready) and the Thread Manager schedules the thread that you specify
with the suggestedThread parameter. If this thread is unavailable for running, or if
you passed kNoThreadID , the Thread Manager schedules the next available thread.

If you change the state of the current thread to ready, the Thread Manager suspends it
awaiting availability of the CPU. When it is rescheduled, SetThreadState regains
control and returns to the function that called it.

If you have installed a custom scheduler, the Thread Manager passes it the thread ID of
the suspended thread.

If you specify a thread other than the currently executing thread, no rescheduling occurs.
If you change the state from ready to stopped, the thread is removed from the scheduling
queue. The Thread Manager does not schedule this thread for execution again until you
change its state to ready. On the other hand, if you change the state from stopped to
ready, you have in effect put the thread in the scheduling queue, and the Thread Manager
gives it CPU time as soon as it reaches the top of the scheduling queue.

SPECIAL CONSIDERATIONS

Threads must yield in the CPU addressing mode (24-bit or 32-bit) in which the
application was launched.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To obtain the state of any thread, use the GetThreadState function described on
page 1-53.

Trap macro
Selecto
r

_ThreadDispatch $0508

noErr 0 Thread was put in the specified state;
if this was the current thread, it is
now running again

threadNotFoundErr –618 No thread with the specified thread
ID, or the suggested thread is not in a
ready state

threadProtocolErr –619 Specified thread is in a critical section,
or the new state that was specified is
an invalid state
Thread Manager Reference 57

C H A P T E R 1

Thread Manager
To relinquish control to the next available thread, use the YieldToAnyThread function
described on page 1-54. To relinquish control to a specific thread, use the
YieldToThread function described on page 1-55.

The ThreadState data structure is described on page 1-39.

For more information on how the Thread Manager schedules threads, see “Scheduling”
beginning on page 1-9.

To set the state of the current thread before it exits a critical section of code, use the
SetThreadStateEndCritical function described on page 1-60.

Preventing Scheduling 1

This section describes functions that allow you to turn scheduling off and back on again.

ThreadBeginCritical 1

You can use the ThreadBeginCritical function to indicate that the thread is entering
a critical code section.

pascal OSErr ThreadBeginCritical(void);

DESCRIPTION

The ThreadBeginCritical function disables scheduling by marking the beginning of
a section of critical code. That is, no other threads in the current application can run—
even if the current thread yields control—until the current thread exits the critical section
(by calling the ThreadEndCritical function). Disabling scheduling allows the
currently executing function to look at or change shared or global data safely. You can
nest critical sections within a thread.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro
Selecto
r

_ThreadDispatch $000B

noErr 0 Current thread can now execute
critical section
58 Thread Manager Reference

C H A P T E R 1

Thread Manager
To mark the end of a critical code section and turn scheduling back on, use the
ThreadEndCritical function (described next). If you also need to set the state of the
current thread before scheduling is turned back on, use the
SetThreadStateEndCritical function (described on page 1-60).

ThreadEndCritical 1

You can use the ThreadEndCritical function to indicate that the thread is leaving a
critical code section.

pascal OSErr ThreadEndCritical(void);

DESCRIPTION

The ThreadEndCritical function turns scheduling back on by indicating that the
thread is exiting a critical section of code. All scheduling operations are now available to
the application.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the ThreadBeginCritical function (described on page 1-58) to mark the
beginning of a critical code section and turn scheduling off.

If you need to set the state of the current thread before scheduling is turned back on, use
the SetThreadStateEndCritical function described next.

Trap macro
Selecto
r

_ThreadDispatch $000C

noErr 0 Current thread is now out of most
nested critical section

threadProtocolErr –619 Current thread is not in a critical
section
Thread Manager Reference 59

C H A P T E R 1

Thread Manager
SetThreadStateEndCritical 1

You can use the SetThreadStateEndCritical function to change the state of the
current thread and exit that thread’s critical section at the same time.

pascal OSErr SetThreadStateEndCritical(ThreadID threadToSet,

 ThreadState newState,

 ThreadID suggestedThread);

threadToSet
The thread ID of the thread whose state is to be changed.

newState The new state for the thread. You can specify ready to execute
(kThreadReadyState), stopped (kStoppedThreadState) or executing
(kRunningThreadState).

suggestedThread
The thread ID of the next thread to run. You specify this thread if you are
changing the state of the currently executing thread to stopped or ready to
run. Pass kNoThreadID if you do not want to specify a particular thread
to run next. In this case, the Thread Manager schedules the next available
thread to run.

DESCRIPTION

The SetThreadStateEndCritical function does in one step the same thing that
ThreadEndCritical and SetThreadState function do in two steps; that is, change the state
of the thread and exit the thread’s critical section.

Note
Historically, the primary purpose of the
SetThreadStateEndCritical function was to close the scheduling
window at the end of a critical section. A preemptive thread that was
waiting while the critical section of code was executing could begin
executing before you changed the state of the current thread to stopped
with the SetThreadState function. Obviously, because the Thread
Manager no longer supports preemptive threads, this function is no
longer necessary to close the scheduling window, but you can still use it
to change the state of a thread and exit a critical section in one step
instead of two.

When you change the state of the currently executing thread, the Thread Manager
schedules the thread you specify with the suggestedThread parameter. If this thread is
unavailable or if you pass kNoThreadID , the Thread Manager schedules the next
available thread.
60 Thread Manager Reference

C H A P T E R 1

Thread Manager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To mark a section of code as critical, use the ThreadBeginCritical described on
page 1-58 and the ThreadEndCritical function described on page 1-59.

To change the state of any thread, use the SetThreadState function described on
page 1-56.

For more information on how the Thread Manager schedules threads, see “Scheduling”
beginning on page 1-9.

Getting Information and Scheduling Threads During Interrupts 1

This section describes functions that allow you to get information about threads and to
schedule threads at times when your application is not necessarily the current process,
such as during the execution of interrupt code.

GetThreadCurrentTaskRef 1

You can use the GetThreadCurrentTaskRef function to obtain a thread task reference.

pascal OSErr GetThreadCurrentTaskRef (ThreadTaskRef *threadTRef);

threadTRef A pointer to a thread task reference, which the
GetThreadCurrentTaskRef function returns.

DESCRIPTION

The GetThreadCurrentTaskRef function returns a thread task reference. The thread
task reference is somewhat of a misnomer because it identifies your application context,

Trap macro
Selecto
r

_ThreadDispatch $0512

noErr 0 Thread was put in the specified state;
if this was the current thread, it is
now running again

threadNotFoundErr –618 No thread with the specified thread
ID, or the suggested thread is not in a
ready state

threadProtocolErr –619 Current thread is not in a critical
section, or the new state that was
specified is an invalid state
Thread Manager Reference 61

C H A P T E R 1

Thread Manager
not a particular thread. Identifying your application context is necessary in situations
where you aren’t guaranteed that your application is the current context—such as during
the execution of an interrupt routine. In such cases, you need both the thread ID to
identify the thread and the thread task reference to identify the application context.

After you obtain the thread task reference, you can use it in the
GetThreadStateGivenTaskRef and SetThreadReadyGivenTaskRef functions to
get and set information about specific threads in your application at times when you are
not guaranteed that your application is the current context.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To get information about a thread when your application is not the current process, use
the GetThreadStateGivenTaskRef function described next.

To change the state of a thread from stopped to ready when your application is not the
current process, use the SetThreadReadyGivenTaskRef function described on
page 1-63.

The ThreadTaskRef data type is described on page 1-39.

GetThreadStateGivenTaskRef 1

You can use the GetThreadStateGivenTaskRef function to obtain the state of a
thread when your application is not necessarily the current process—for example, during
execution of an interrupt routine.

pascal OSErr GetThreadStateGivenTaskRef(ThreadTaskRef threadTRef,

 ThreadID threadToGet,

 ThreadState *threadState);

threadTRef The thread task reference of the application containing the thread whose
state you want to determine.

threadToGet
The thread ID of the thread whose state you want to determine.

Trap macro
Selecto
r

_ThreadDispatch $020E

noErr 0 Thread task reference was returned
62 Thread Manager Reference

C H A P T E R 1

Thread Manager
threadState
 A pointer to a thread state variable in which the function places the state
of the specified thread.

DESCRIPTION

The GetThreadStateGivenTaskRef function returns the state of the specified thread.
You can use GetThreadStateGivenTaskRef at times when you aren’t guaranteed that
your application is the current context, such as during execution of an interrupt routine.
In such cases you must identify the thread task reference (the application context) as well
as the thread ID.

You obtain the thread task reference for your application with the
GetThreadCurrentTaskRef function.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To determine the thread task reference (application context) for your application, use the
GetThreadCurrentTaskRef function described on page 1-61.

To change the state of a thread from stopped to ready when your application is not the
current process, use the SetThreadReadyGivenTaskRef function described next.

The ThreadTaskRef data type is described on page 1-39.

SetThreadReadyGivenTaskRef 1

You can use the SetThreadReadyGivenTaskRef function to change the state of a
thread from stopped to ready when your application is not the current process.

pascal OSErr SetThreadReadyGivenTaskRef(ThreadTaskRef threadTRef,

ThreadID threadToSet);

Trap macro
Selecto
r

_ThreadDispatch $060F

noErr 0 State of the specified thread was
returned

threadNotFoundErr –618 No thread with the specified thread
ID and thread task reference

threadProtocolErr –619 Specified thread task reference is
invalid
Thread Manager Reference 63

C H A P T E R 1

Thread Manager
threadTRef The thread task reference of the application containing the thread whose
state you want to change.

threadToSet
The thread ID of the thread whose state you want to change.

DESCRIPTION

The SetThreadReadyGivenTaskRef function changes the state of a thread from
stopped to ready to execute. In other words, when you mark a thread as ready to run
with this function, the Thread Manager does not put it immediately into the scheduling
queue but does so the next time it reschedules threads.

You can use SetThreadStateGivenTaskRef at times when you aren’t guaranteed that
your application is the current context, such as during execution of an interrupt routine.
In such cases you must identify the thread task reference (the application context) as well
as the thread ID.

You obtain the thread task reference for your application with the
GetThreadCurrentTaskRef function.

IMPORTANT

The SetThreadReadyGivenTaskRef function allows you to do one
thing only—change a thread from stopped to ready to execute. You
cannot change the state of an executing thread to ready or stopped, nor
can you change the state of a ready thread to executing or stopped with
this call. ▲

.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To obtain the thread task reference of your application, use the
GetThreadCurrentTaskRef function described on page 1-61.

Trap macro
Selecto
r

_ThreadDispatch $0410

noErr 0 Specified thread was marked as ready
threadNotFoundErr –618 No thread with the specified thread

ID and thread task reference
threadProtocolErr –619 Caller attempted to mark a thread

ready that is not in the stopped state,
or the specified thread task reference
is invalid
64 Thread Manager Reference

C H A P T E R 1

Thread Manager
To determine the state of a thread when your application is not the current process, use
the GetThreadStateGivenTaskRef function described on page 1-62.

See “Using Threads With I/O” beginning on page 1-31 for an example of using the
SetThreadReadyGivenTaskRef function to wake up a thread from a completion
routine.

Installing Custom Scheduling, Switching, Terminating, and Debugging Functions 1

This section describes functions that enable you to install custom functions that are called
whenever a thread is scheduled or terminates or when the context switches. There is also
a function for installing debugging functions that the Thread Manager calls whenever it
creates, schedules, or disposes of a thread.

SetThreadScheduler 1

You can use the SetThreadScheduler function to install a custom scheduling function
(custom scheduler).

pascal OSErr SetThreadScheduler

(ThreadSchedulerProcPtr threadScheduler);

threadScheduler
A pointer to a custom scheduler. Specify nil if you want to remove an
installed custom scheduler and use the default Thread Manager
scheduling mechanism.

DESCRIPTION

The SetThreadScheduler function installs a custom scheduler that runs in
conjunction with the default Thread Manager scheduling mechanism. The Thread
Manager uses a scheduler information structure (page 1-41) to pass the custom scheduler
the ID of the current thread and the ID of the thread that the Thread Manager has
scheduled to run next.

A custom scheduler should return to the Thread Manager the ID of the thread that it
determines to schedule. If it does not determine a particular thread to schedule, it should
return the constant kNoThreadID and the Thread Manager default scheduling
mechanism schedules the next thread.

If you already have a custom scheduler installed when you call SetThreadScheduler ,
it replaces the old one with a new one. If you want to remove your custom scheduler and
return to using the default Thread Manager scheduling mechanism, call
SetThreadScheduler and specify a value of nil for the parameter.
Thread Manager Reference 65

C H A P T E R 1

Thread Manager
IMPORTANT

The SetThreadScheduler function automatically disables scheduling
to avoid any reentrancy problems with the custom scheduling function.
Therefore, in your custom scheduling function, you should make no
yield calls or other calls that would cause scheduling to occur. ▲

SPECIAL CONSIDERATIONS

Do not pass a routine descriptor as the threadScheduler parameter to the
SetThreadScheduler function. As with all Thread Manager functions that pass a
procedure pointer, you must pass the address of the routine, not the address of a routine
descriptor. You are required to use routine descriptors when you write code in the
PowerPC instruction set that passes a routine’s address to code that might be in the 680x0
instruction set. However, the threads in your application must all be in the same
instruction set—680x0 or PowerPC. Therefore, the routine identified by the
threadScheduler parameter is by definition in the same instruction set as the
SetThreadScheduler function and a routine descriptor is not required.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

For more information on the custom scheduling function, see the MyThreadScheduler
function on page 1-72 and “Custom Scheduler” on page 1-12.

For more information on how the Thread Manager schedules threads, see “Scheduling”
beginning on page 1-9.

SetThreadSwitcher 1

You can use the SetThreadSwitcher function to install a custom context-switching
function for any thread.

pascal OSErr SetThreadSwitcher (ThreadID thread,

 ThreadSwitchProcPtr threadSwitcher,

void *switchProcParam, Boolean inOrOut);

thread The thread ID of the thread to associate with a context-switching function.

Trap macro
Selecto
r

_ThreadDispatch $0209

noErr 0 Specified scheduler was installed
66 Thread Manager Reference

C H A P T E R 1

Thread Manager
threadSwitcher
A pointer to the context-switching function.

switchProcParam
A pointer to a thread-specific parameter that you pass to the
context-switching function.

inOrOut A Boolean value that indicates whether the Thread Manager calls the
context-switching function when the specified thread switches in (True)
or when it is switched out by another thread (False).

DESCRIPTION

The SetThreadSwitcher function installs a custom context-switching function that is
associated with a specified thread. The custom switching function allows you to save
context information in addition to the default context information that the Thread
Manager automatically saves when it switches contexts. The default context information
consists of the CPU registers, the FPU registers (if any), and the location of the thread’s
context.

You must actually define two context-switching functions, one for leaving a thread and
another for entering a thread. When leaving a thread, you call the outer
context-switching function to save additional context information. When reentering a
thread, you call the inner context-switching function to restore the extra information that
was saved on exit. Use the inOrOut parameter of the SetThreadSwitcher function to
specify which type of context-switching function is being installed.

You can pass a different switchProcParam parameter to each thread, which allows you
to write a single, application-wide custom switching function and then pass any
thread-specific information when the Thread Manager calls the switching function for
that thread.

IMPORTANT

The SetThreadSwitcher function automatically disables scheduling
to avoid any reentrancy problems with the custom switching function.
Therefore, in the custom switching function, you should make no yield
calls or other calls that would cause scheduling to occur. ▲

SPECIAL CONSIDERATIONS

Do not pass a routine descriptor as the threadSwitcher parameter to the
SetThreadSwitcher function. As with all Thread Manager functions that pass a
procedure pointer, you must pass the address of the routine, not the address of a routine
descriptor. You are required to use routine descriptors when you write code in the
PowerPC instruction set that passes a routine’s address to code that might be in the 680x0
instruction set. However, the threads in your application must all be in the same
instruction set—680x0 or PowerPC. Therefore, the routine identified by the
threadSwitcher parameter is by definition in the same instruction set as the
SetThreadSwitcher function and a routine descriptor is not required.
Thread Manager Reference 67

C H A P T E R 1

Thread Manager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

For more information on the custom context-switching function, see the
MyThreadSwitch function on page 1-73 and “Custom Context-Switching Function” on
page 1-14.

For information about the default context that the Thread Manager saves, see “Default
Saved Thread Context” on page 1-13.

SetThreadTerminator 1

You can use the SetThreadTerminator function to install a custom thread-termination
function for any thread.

pascal OSErr SetThreadTerminator (ThreadID thread,

ThreadTerminationProcPtr threadTerminator,

void *terminationProcParam);

thread The thread ID of the thread to associate with the thread-termination
function.

threadTerminator
A pointer to the thread-termination function.

terminationProcParam
A pointer to a thread-specific parameter that you pass to the
thread-termination function.

DESCRIPTION

The Thread Manager calls the custom termination function whenever the specified thread
completes execution of its code or when you manually dispose of the thread with the
DisposeThread function.

You can pass a different terminationProcParam parameter to each thread, which
allows you to write a single, application-wide custom thread-termination function and

Trap macro
Selecto
r

_ThreadDispatch $070A

noErr 0 Specified thread switcher was
installed

threadNotFoundErr –618 No thread with the specified thread
ID
68 Thread Manager Reference

C H A P T E R 1

Thread Manager
then pass any thread-specific information when the Thread Manager calls the termination
function for that thread.

SPECIAL CONSIDERATIONS

Do not pass a routine descriptor as the threadTerminator parameter to the
SetThreadTerminator function. As with all Thread Manager functions that pass a
procedure pointer, you must pass the address of the routine, not the address of a routine
descriptor. You are required to use routine descriptors when you write code in the
PowerPC instruction set that passes a routine’s address to code that might be in the 680x0
instruction set. However, the threads in your application must all be in the same
instruction set—680x0 or PowerPC. Therefore, the routine identified by the
threadTerminator parameter is by definition in the same instruction set as the
SetThreadTerminator function and a routine descriptor is not required.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To manually dispose of a thread, use the DisposeThread function described on
page 1-50.

For more information on the custom thread-termination function, see the
MyThreadTermination function on page 1-74.

For more information on what the Thread Manager does when a thread terminates, see
“Creating and Disposing of Threads” on page 1-16.

Trap macro
Selecto
r

_ThreadDispatch $0611

noErr 0 Specified thread terminator was
installed

threadNotFoundErr –618 No thread with the specified thread
ID
Thread Manager Reference 69

C H A P T E R 1

Thread Manager
SetDebuggerNotificationProcs 1

You can use the SetDebuggerNotificationProcs function to install functions that
notify the debugger when a thread is created, disposed of, or scheduled. You generally
use this function only during development of an application.

pascal OSErr SetDebuggerNotificationProcs

(DebuggerNewThreadProcPtr notifyNewThread,

DebuggerDisposeThreadProcPtr notifyDisposeThread,

DebuggerThreadSchedulerProcPtr notifyThreadScheduler);

notifyNewThread
A pointer to the callback function that notifies the debugger when a thread
is created.

notifyDisposeThread
A pointer to the callback function that notifies the debugger when a thread
is disposed of. This function is called whether you manually dispose of a
thread with the DisposeThread function or if a thread disposes of itself
automatically when it returns from its highest level of code.

notifyThreadScheduler
A pointer to the callback function that notifies the debugger when a thread
is scheduled.

DESCRIPTION

The SetDebuggerNotificationProcs function provides debugging support in a
threaded application by letting you know when any thread is created, disposed of, or
scheduled. The SetDebuggerNotificationProcs function installs three separate
callback functions that return the thread ID of a newly created thread, the thread ID of a
newly disposed of thread, and the thread ID of a newly scheduled thread.

Note
The SetDebuggerNotificationProcs function always installs all
three of the debugging functions. You cannot set only one or two of these
functions, nor can you chain them together. These restrictions ensure that
the function that calls SetDebuggerNotificationProcs owns all
three of the debugging functions. If you want to prevent one or two of
these debugging functions from being called, you can do so by setting
them to nil . ◆

The Thread Manager calls the disposing-notification callback function whether you
manually dispose of a thread with the DisposeThread function or if a thread disposes
of itself automatically when it returns from its highest level of code.

To guarantee that the debugger is getting an accurate view of scheduling, the Thread
Manager doesn’t call the scheduling-notification callback function until both the generic
Thread Manager scheduler and any custom thread scheduler have decided on a thread to
schedule.
70 Thread Manager Reference

C H A P T E R 1

Thread Manager
SPECIAL CONSIDERATIONS

Do not pass a routine descriptor as any of the parameters to the
SetDebuggerNotificationProcs function. As with all Thread Manager functions
that pass a procedure pointer, you must pass the address of the routine, not the address
of a routine descriptor. You are required to use routine descriptors when you write code
in the PowerPC instruction set that passes a routine’s address to code that might be in the
680x0 instruction set. However, the threads in your application must all be in the same
instruction set—680x0 or PowerPC. Therefore, the routines identified by the parameters
in this function are by definition in the same instruction set as the
SetDebuggerNotificationProcs function and a routine descriptor is not required.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To create or allocate a new thread, use the NewThread function described on page 1-47.

To dispose of a thread, use the DisposeThread function described on page 1-50.

To schedule a thread, you can use a yield function such as YieldToAnyThread
(page 1-54) or YieldToThread (page 1-55) or a function to change the state of a thread,
such as SetThreadState (page 1-56).

Application-Defined Functions 1

This section describes the function that you must provide as the entry point for any
thread that your application creates, and it describes all the custom functions that you
can install, such as custom scheduling or context-switching functions.

MyThreadEntry 1

You must provide a MyThreadEntry function as the entry point to any thread that you
create in your application.

typedef pascal void* MyThreadEntry(void *threadParam);

Trap macro
Selecto
r

_ThreadDispatch $060D

noErr 0 Debugger procedures were installed
Thread Manager Reference 71

C H A P T E R 1

Thread Manager
threadParam
A pointer to a void data structure passed to this function by the
NewThread function.

DESCRIPTION

The MyThreadEntry function is the entry point to a new thread. When you create or
allocate a new thread with the NewThread function, you pass the name of this entry
function. You also pass a parameter that the Thread Manager passes on to the
MyThreadEntry function. You can use this parameter to pass thread-specific
information to the newly created or allocated thread. For example, you could pass
something like A5 information or the address of a window to update. Or you use this
parameter to specify local storage for a thread that other threads could access.

When the code in a thread finishes executing, the Thread Manager automatically calls the
DisposeThread function to dispose of the thread. The MyThreadEntry function
passes its function result to DisposeThread . The DisposeThread function passes this
result back to the NewThread function that called MyThreadEntry to begin with.

This mechanism allows you to spawn a thread that does some work and then continue
with your original thread. When the spawned thread is finished doing its work—for
example a calculation—it returns the result to the original thread.

SEE ALSO

See “Passing Input and Output Parameters to a New Thread” beginning on page 1-28 for
an example of passing input and output parameters between one thread and the thread
entry function in a newly created thread.

MyThreadScheduler 1

You may provide a custom scheduling function, MyThreadScheduler , to supplement
the Thread Manager default scheduling mechanism.

typedef pascal ThreadID MyThreadScheduler(SchedulerInfoRecPtr

 schedulerInfo);

schedulerInfo
A pointer to the scheduler information record that the Thread Manager
uses to pass information to MyThreadScheduler .

DESCRIPTION

You use the SetThreadScheduler function to install the MyThreadScheduler
custom scheduling function (custom scheduler). The MyThreadScheduler function
72 Thread Manager Reference

C H A P T E R 1

Thread Manager
does not supplant the Thread Manager scheduling mechanism but rather works in
conjunction with it.

Whenever scheduling occurs, the Thread Manager passes a scheduler information
structure to MyThreadScheduler . Among other information, he scheduler information
structure contains the thread ID of the current thread and the thread ID of the thread that
the application has scheduled to run next.

The MyThreadScheduler function returns to the Thread Manager the thread ID of the
thread that it has chosen to schedule and the Thread Manager does the actual scheduling.
If MyThreadScheduler decides not to schedule a thread, it returns the constant
kNoThreadID and the Thread Manager default scheduling mechanism schedules the
next thread.

IMPORTANT

When the SetThreadScheduler function installs the custom
scheduler, it automatically disables scheduling to avoid any reentrancy
problems. Therefore, in the custom scheduler, you should make no yield
calls or other calls that would cause scheduling to occur.

SEE ALSO

See “The Scheduler Information Structure” on page 1-41 for more information on how
the Thread Manager passes information to MyThreadScheduler .

For more information on how the Thread Manager schedules threads to run, see
“Scheduling” beginning on page 1-9.

MyThreadSwitch 1

You may provide a custom switching function, MyThreadSwitch , to add to the thread
context information that the Thread Manager saves and restores.

typedef pascal void MyThreadSwitch(ThreadID threadBeingSwitched,

 void *switchProcParam);

threadBeingSwitched
The thread ID of the thread whose context is being switched.

 switchProcParam
A pointer to a void that the SetThreadSwitch er function passes to
MyThreadSwitch .

DESCRIPTION

You use the SetThreadSwitcher function to install the MyThreadSwitch custom
context-switching function. The custom switching function allows you to save and
restore context information in addition to the default context information that the Thread
Thread Manager Reference 73

C H A P T E R 1

Thread Manager
Manager automatically saves and restores when it switches contexts. You must actually
define two context-switching functions, one for leaving a thread and another for entering
a thread. When leaving a thread, you call the outer context-switching function to save
additional context information. When reentering a thread, you call the inner
context-switching function to restore the extra information that was saved on exit.

The default context information consists of the CPU registers, the FPU registers (if any),
and the location of the thread’s context.

IMPORTANT

When the SetThreadSwitcher function installs the custom switching
function, it automatically disables scheduling to avoid any reentrancy
problems. Therefore, in the custom switching function, you should make
no yield calls or other calls that would cause scheduling to occur. ▲

SEE ALSO

For more information on the thread context that the Thread Manager automatically saves,
see “Default Saved Thread Context” beginning on page 1-13.

For more information about using a custom context-switching function, see “Custom
Context-Switching Function” on page 1-14.

MyThreadTermination 1

You may provide a custom termination function, MyThreadTerminat ion, to do
additional cleanup when the code in a thread finishes executing.

typedef pascal void MyThreadTermination(ThreadID threadTerminated,

 void *terminationProcParam);

threadTerminated
The thread ID of the thread being disposed of.

 terminationProcParam
A pointer to a void data structure that the SetThreadTerminator
function passes to MyThreadTermination .

DESCRIPTION

You use the SetThreadTerminator function to install the MyThreadTerminat ion
custom termination function. The custom termination function allows you to do
additional cleanup when the code in a thread finishes executing or when you call the
DisposeThread function to manually dispose of a thread.

SEE ALSO
74 Thread Manager Reference

C H A P T E R 1

Thread Manager
To dispose of a thread, use the DisposeThread function described on page 1-50.

For more information on what the Thread Manager does when a thread terminates, see
“Creating and Disposing of Threads” on page 1-16.

MyDebuggerNewThread 1

You may provide a debugging callback function, MyDebuggerNewThread , that the
Thread Manager calls whenever it creates a new thread.

typedef pascal void MyDebuggerNewThread(ThreadID threadCreated);

threadCreated
The thread ID of the thread being created.

DESCRIPTION

The MyDebuggerNewThread function is one of three debugging functions that you can
install with the SetDebuggerNotificationProcs function. The Thread Manager
calls MyDebuggerNewThread whenever an application creates or allocates a new thread
with the NewThread function. The Thread Manager does not call
MyDebuggerNewThread when an application creates a thread pool with the
CreateThreadPool function.

SEE ALSO

To create a new thread, use the NewThread function described on page 1-47.

MyDebuggerDisposeThread 1

You may provide a debugging callback function, MyDebuggerDisposeThread , that the
Thread Manager calls whenever it disposes of a thread.

typedef pascal void MyDebuggerDisposeThread(ThreadID

threadDeleted);

threadDeleted
The thread ID of the thread being disposed of.

DESCRIPTION

The MyDebuggerDisposeThread function is one of three debugging functions that you
can install with the SetDebuggerNotificationProcs function. The Thread Manager
calls MyDebuggerDisposeThread whenever an application disposes of a thread. The
Thread Manager Reference 75

C H A P T E R 1

Thread Manager
thread manager calls this debugging function whether you manually call
DisposeThread to dispose of a thread or if a thread finishes executing its code and the
Thread Manager automatically disposes of it.

SEE ALSO

To dispose of a thread, use the DisposeThread function described on page 1-50.

MyDebuggerThreadScheduler 1

You may provide a debugging callback function, MyDebuggerThreadScheduler , that
the Thread Manager calls whenever a thread is scheduled.

typedef pascal ThreadID MyDebuggerThreadScheduler

(SchedulerInfoRecPtr schedulerInfo);

schedulerInfo
A pointer to a scheduler information structure that the
SetDebuggerNotificationProcs passes to the
MyDebuggerThreadScheduler function. Among other information, the
scheduler information structure contains the ID of the current thread and
the ID of the thread that the Thread Manager has scheduled to run next.

DESCRIPTION

The MyDebuggerThreadScheduler function is one of three debugging functions that
you can install with the SetDebuggerNotificationProcs function. The Thread
Manager calls MyDebuggerThreadScheduler whenever an application schedules a
new thread to run. The MyDebuggerThreadScheduler function gets the last look at
the thread being scheduled—that is, the Thread Manager calls this function after the
Thread Manager default scheduling mechanism and a custom scheduler, if you have
installed one, decide on the next thread to schedule.

If you wish, you can use this debugging callback function to schedule a different thread
than that chosen by the Thread Manager and any custom scheduling function. The
MyDebuggerThreadScheduler returns the thread ID of the next thread to schedule.
The MyDebuggerThreadScheduler can specify kNoThreadID for the thread ID if you
do not want to change the decision of the Thread Manager default scheduler or a custom
scheduler.

SEE ALSO

To schedule a thread, use functions such as YieldToAnyThread (described on
page 1-54), YieldToThread (described on page 1-55), and SetThreadState
(described on page 1-56).
76 Thread Manager Reference

C H A P T E R 1

Thread Manager
The scheduler information structure is described on page 1-41.

Summary of the Thread Manager 1

C Summary 1

Constants and Data Types 1

enum { /* Gestalt selectors */

#define gestaltThreadMgrAttr 'thds' /* Thread Manager attributes */

gestaltThreadMgrPresent = 0, /* Thread Manager is present */

gestaltSpecificMatchSupport = 1, /* Thread Manager supports exact match

creation option */

gestaltThreadsLibraryPresent = 2 /* Threads library (native version)

 has been loaded */

};

/* Thread states */

typedef unsigned short ThreadState;

#define kReadyThreadState ((ThreadState) 0) /* thread is ready to run */

#define kStoppedThreadState ((ThreadState) 1) /* thread is stopped and

not ready to run */

#define kRunningThreadState ((ThreadState) 2) /* thread is running */

/* Thread environment characteristics */

typedef void* ThreadTaskRef;

/* Thread characteristics */

typedef unsigned long ThreadStyle;

#define kCooperativeThread (1<<0) /* cooperative thread */

/* Thread identifiers */

typedef unsigned long ThreadID;

#define kNoThreadID ((ThreadID) 0) /* no specific thread */

#define kCurrentThreadID ((ThreadID) 1) /* current thread */

#define kApplicationThreadID ((ThreadID) 2) /* main thread */

/* Options when creating a thread */

typedef unsigned long ThreadOptions;

#define kNewSuspend (1<<0) /* begin a new thread as stopped */
Summary of the Thread Manager 77

C H A P T E R 1

Thread Manager
#define kUsePremadeThread (1<<1) /* use a premade thread */

#define kCreateIfNeeded (1<<2) /* create a new thread if one with

required size doesn’t exist */

#define kFPUNotNeeded (1<<3) /* don’t save FPU context */

#define kExactMatchThread (1<<4) /* use a thread only if it exactly

matches size request */

/* Information supplied to the custom scheduler */

struct SchedulerInfoRec {

unsigned long InfoRecSize; /* size of the structure */

ThreadID CurrentThreadID; /* current thread */

ThreadID SuggestedThreadID; /* suggested thread to run next */

ThreadID InterruptedCoopThreadID;/* previously a preempted

thread; now use kNoThreadID */

};

typedef struct SchedulerInfoRec SchedulerInfoRec;

typedef SchedulerInfoRec *SchedulerInfoRecPtr;

Thread Manager functions 1

Creating and Getting Information About Thread Pools

pascal OSErr CreateThreadPool(ThreadStyle threadStyle, short numToCreate,

 Size stackSize);

pascal OSErr GetFreeThreadCount(ThreadStyle threadStyle, short *freeCount);

pascal OSErr GetSpecificFreeThreadCount(ThreadStyle threadStyle,

 Size stackSize, short *freeCount);

pascal OSErr GetDefaultThreadStackSize(ThreadStyle threadStyle,

 Size *stackSize);

Creating and Disposing of Threads

pascal OSErr NewThread(ThreadStyle threadStyle,

ThreadEntryProcPtr threadEntry,

void *threadParam,

Size stackSize,

ThreadOptions options,

void **threadResult,

ThreadID *threadMade);
78 Summary of the Thread Manager

C H A P T E R 1

Thread Manager
pascal OSErr DisposeThread(ThreadID threadToDump, void *threadResult,

 Boolean recycleThread);

Getting Information About Specific Threads

pascal OSErr ThreadCurrentStackSpace(ThreadID thread,

 unsigned long *freeStack);

pascal OSErr MacGetCurrentThread (ThreadID *currentThreadID);

pascal OSErr GetThreadState(ThreadID threadToGet, ThreadState *threadState);

Scheduling Threads

pascal OSErr YieldToAnyThread(void);

pascal OSErr YieldToThread(ThreadID suggestedThread);

pascal OSErr SetThreadState(ThreadID threadToSet, ThreadState newState,

 ThreadID suggestedThread);

Preventing Scheduling

pascal OSErr ThreadBeginCritical(void);

pascal OSErr ThreadEndCritical(void);

pascal OSErr SetThreadStateEndCritical (ThreadID threadToSet,

ThreadState newState,

ThreadID suggestedThread);

Getting Information and Scheduling Threads During Interrupts

pascal OSErr GetThreadCurrentTaskRef (ThreadTaskRef *threadTRef);

pascal OSErr GetThreadStateGivenTaskRef (ThreadTaskRef threadTRef,

 ThreadID threadToGet,

 ThreadState *threadState);

pascal OSErr SetThreadReadyGivenTaskRef(ThreadTaskRef threadTRef,

 ThreadID threadToSet);

Installing Custom Scheduling, Switching, Terminating and Debugging Functions

pascal OSErr SetThreadScheduler(ThreadSchedulerProcPtr threadScheduler);
Summary of the Thread Manager 79

C H A P T E R 1

Thread Manager
pascal OSErr SetThreadSwitcher(ThreadID thread,

 ThreadSwitchProcPtr threadSwitcher,

 void *switchProcParam, Boolean inOrOut);

pascal OSErr SetThreadTerminator(ThreadID thread,

 ThreadTerminationProcPtr threadTerminator,

 void *terminationProcParam);

pascal OSErr SetDebuggerNotificationProcs

(DebuggerNewThreadProcPtr notifyNewThread,

DebuggerDisposeThreadProcPtr notifyDisposeThread,

DebuggerThreadSchedulerProcPtr notifyThreadScheduler);

Application-Defined Routines

typedef pascal void* MyThreadEntry(void *threadParam);

typedef pascal ThreadID MyThreadScheduler(SchedulerInfoRecPtr schedulerInfo);

typedef pascal void MyThreadSwitch(ThreadID threadBeingSwitched,

void *switchProcParam);

typedef pascal void MyThreadTermination(ThreadID threadTerminated,

void *terminationProcParam);

typedef pascal void MyDebuggerNewThread(ThreadID threadCreated);

typedef pascal void MyDebuggerDisposeThread(ThreadID threadDeleted);

typedef pascal ThreadID MyDebuggerThreadScheduler

(SchedulerInfoRecPtr schedulerInfo);

Pascal Summary 1

Constants and Data Types 1

{ Gestalt selectors }

CONST

gestaltThreadMgrAttr = 'thds';{ Thread Manager attributes }

gestaltThreadMgrPresent = 0; { Thread Manager is present }
80 Summary of the Thread Manager

C H A P T E R 1

Thread Manager
gestaltSpecificMatchSupport = 1; { Thread Manager supports exact

 match creation option }

gestaltThreadsLibraryPresent = 2; { The Threads library (native version)

 has been loaded }

{ Thread states }

TYPE

ThreadState = INTEGER;

CONST

kReadyThreadState = 0; { thread is ready to run }

kStoppedThreadState = 1; { thread is stopped and not ready to run }

kRunningThreadState = 2; { thread is running }

{ Thread environment characteristics }

TYPE

ThreadTaskRef = Ptr;

{ Thread characteristics }

TYPE

ThreadStyle = LONGINT;

CONST

kCooperativeThread = 1; { cooperative thread }

{ Thread identifiers }

TYPE

ThreadID = LONGINT;

CONST

kNoThreadID = 0; { no specific thread }

kCurrentThreadID = 1; { current thread }

kApplicationThreadID = 2; { main thread }

{ Options when creating a thread }

TYPE

ThreadOptions = LONGINT;

CONST

kNewSuspend = 1; { begin a new thread as stopped }

kUsePremadeThread = 2; { use a premade thread }

kCreateIfNeeded = 4; { create a new thread if one with

 required size doesn’t exist }

kFPUNotNeeded = 8; { don’t save FPU context }

kExactMatchThread = 16; { create a thread only if it exactly

 matches size request }

{ Information supplied to the custom scheduler }
Summary of the Thread Manager 81

C H A P T E R 1

Thread Manager
TYPE

SchedulerInfoRecPtr= ^SchedulerInfoRec;

SchedulerInfoRec= RECORD

InfoRecSize: LONGINT; { size of the structure }

CurrentThreadID: ThreadID; { current thread }

SuggestedThreadID: ThreadID; { suggested thread to run next }

InterruptedCoopThreadID: ThreadID; { previously a preempted thread;

 now use kNoThreadID }

END;

Thread Manager Functions 1

Creating and Getting Information About Thread Pools

FUNCTION CreateThreadPool(threadStyle: ThreadStyle; numToCreate: INTEGER;

stackSize: Size):OSErr;

FUNCTION GetFreeThreadCount(threadStyle: ThreadStyle;

VAR freeCount: INTEGER):OSErr;

FUNCTION GetSpecificFreeThreadCount(threadStyle: ThreadStyle;

 stackSize: Size;

 VAR freeCount: INTEGER):OSErr;

FUNCTION GetDefaultThreadStackSize(threadStyle: ThreadStyle;

 VAR stackSize: Size):OSErr;

Creating and Disposing of Threads

FUNCTION NewThread(threadStyle: ThreadStyle;

 threadEntry: ThreadEntryProcPtr;

 threadParam: LONGINT;

 stackSize: Size;

 options: ThreadOptions;

 threadResult: LongIntPtr;

 VAR threadMade: ThreadID):OSErr;

FUNCTION DisposeThread(threadToDump: ThreadID; threadResult: LONGINT;

 recycleThread: BOOLEAN):OSErr;

Getting Information About Specific Threads

FUNCTION ThreadCurrentStackSpace(thread: ThreadID;

 VAR freeStack: LONGINT):OSErr;
82 Summary of the Thread Manager

C H A P T E R 1

Thread Manager
FUNCTION MacGetCurrentThread (VAR currentThreadID: ThreadID):OSErr;

FUNCTION GetThreadState(threadToGet: ThreadID;

 VAR threadState: ThreadState):OSErr;

Scheduling Threads

FUNCTION YieldToAnyThread:OSErr;

FUNCTION YieldToThread(suggestedThread: ThreadID):OSErr;

FUNCTION SetThreadState(threadToSet: ThreadID; newState: ThreadState;

 suggestedThread: ThreadID):OSErr;

Preventing Scheduling

FUNCTION ThreadBeginCritical:OSErr;

FUNCTION ThreadEndCritical:OSErr;

FUNCTION SetThreadStateEndCritical(threadToSet: ThreadID;

newState: ThreadState;

 suggestedThread: ThreadID):OSErr;

Getting Information and Scheduling Threads During Interrupts

FUNCTION GetThreadCurrentTaskRef (VAR threadTRef: ThreadTaskRef):OSErr;

FUNCTION GetThreadStateGivenTaskRef(threadTRef: ThreadTaskRef;

 threadToGet: ThreadID;

 VAR threadState: ThreadState):OSErr;

FUNCTION SetThreadReadyGivenTaskRef(threadTRef: ThreadTaskRef;

 threadToSet: ThreadID):OSErr;

Installing Custom Scheduling, Switching, Terminating, and Debugging Functions

FUNCTION SetThreadScheduler(threadScheduler: ThreadSchedulerProcPtr):OSErr;

FUNCTION SetThreadSwitcher(thread: ThreadID;

 threadSwitcher: ThreadSwitchProcPtr;

 switchProcParam: LONGINT; inOrOut: BOOLEAN):OSErr;

FUNCTION SetThreadTerminator(thread: ThreadID;

 threadTerminator: ThreadTerminationProcPtr;

 terminationProcParam: LONGINT):OSErr;
Summary of the Thread Manager 83

C H A P T E R 1

Thread Manager
FUNCTION SetDebuggerNotificationProcs

(notifyNewThread: DebuggerNewThreadProcPtr;

notifyDisposeThread: DebuggerDisposeThreadProcPtr;

notifyThreadScheduler: DebuggerThreadSchedulerProcPtr):OSErr;

Application-Defined Functions

FUNCTION MyThreadEntry(threadParam: LONGINT): LONGINT; }

FUNCTION MyThreadScheduler(schedulerInfo: SchedulerInfoRec): ThreadID;

PROCEDURE MyThreadSwitch(threadBeingSwitched: ThreadID;

 switchProcParam: LONGINT);

PROCEDURE MyThreadTermination(threadTerminated: ThreadID;

 terminationProcParam: LONGINT);

PROCEDURE MyDebuggerNewThread(threadCreated: ThreadID);

PROCEDURE MyDebuggerDisposeThread(threadDeleted: ThreadID);

FUNCTION MyDebuggerThreadScheduler

(schedulerInfo: SchedulerInfoRec): ThreadID;

Assembly Language Information 1

Trap Macros Requiring Routine Selectors

_ThreadDispatch

Selector Routine
0x000B ThreadBeginCritical

0x000C ThreadEndCritical

0x0205 YieldToThread

0x0206 MacGetCurrentThread

0x0209 SetThreadScheduler

0x020E GetThreadCurrentTaskRef

0x303C YieldToAnyThread

0x0402 GetFreeThreadCount

0x0407 GetThreadState

0x0410 SetThreadReadyGivenTaskRef

0x0413 GetDefaultThreadStackSize
84 Summary of the Thread Manager

C H A P T E R 1

Thread Manager
Result Codes 1
Thread Manager functions can return the following errors. Functions may also return
standard Macintosh result codes such as noErr (0, no error) and memFullErr (memory
full).

0x0414 ThreadCurrentStackSpace

0x0501 CreateThreadPool

0x0504 DisposeThread

0x0508 SetThreadState

0x0512 SetThreadStateEndCritical

0x060D SetDebuggerNotificationProcs

0x060F GetThreadStateGivenTaskRef

0x0611 SetThreadTerminator

0x0615 GetSpecificFreeThreadCount

0x070A SetThreadSwitcher

0x0E03 NewThread

threadTooManyReqsErr -617 No matching thread structures available.

threadNotFoundErr -618 No thread available with the specified Thread ID.

threadProtocolErr -619 Attempted an invalid operation, such as changing
the state of a thread that is in a critical section of
code.

Selector Routine
Summary of the Thread Manager 85

C H A P T E R 1

Thread Manager
86 Summary of the Thread Manager

Glossary
application thread See main thread.

critical section of code A section of code in
which scheduling is disabled and the current
thread cannot yield control to another thread.

concurrency Having multiple, simultaneous
points of execution within an application.

context see thread context.

cooperative thread A thread that uses the
Operating System and Toolbox and hence cannot
be arbitrarily interrupted. A cooperative thread
explicitly indicates when it is giving up CPU time.
The Thread Manager supports only cooperative
threads. Compare preemptive thread.

lightweight task A synonym for thread.

main thread The entry point to the application.
It is a cooperative thread and typically handles all
event processing. It is also called the application
thread. For applications that do not explicitly use
threads, the Thread Manager defines a single main
thread.

multithreaded application See threaded
application.

nonthreaded application An application that
has a single point of execution.

preemptive thread A thread that does not use
the Operating System and Toolbox and hence can
be interrupted or gain control of the CPU at almost
any time. The Thread Manager does not support
preemptive threads. Compare cooperative thread.

ready thread A thread that is available for
scheduling.

single-threaded application See nonthreaded
application.

stopped thread A thread that is unavailable for
scheduling.

thread The smallest amount of processor context
state necessary to encapsulate a computation; a
thread consists of a register set, a program counter,

and a stack. Threads enable concurrency within an
application context. A thread is sometimes called a
lightweight task.

thread context Information the Thread Manager
maintains about a thread. It includes a register set,
program counter, and stack.

thread pool A pool of threads that you create for
later allocation.

Thread Manager The part of the Macintosh
Operating System that provides multiple points of
execution within an application context by
managing the scheduling, execution, and
termination of threads.

threaded application An application that has
multiple points of execution.

yield Give up control of the CPU to another
thread.
87

.

G L O S S A R Y
88

.

Index
Symbols

Numerals

680x0 Macintosh applications
default thread context 13

A

asynchronous I/O
using threads with 31 to 37

C

completion routines
for Thread Manager routines 37

context. See thread context
CreateThreadPool function

example of use 20
specifying stack size with 26

CreateThreadPool function 43 to 44
critical code sections

defined 11
ending 24 to 25, 59 to 61
starting 24 to 25, 58 to 59

custom context-switching function
defined 73 to 74
installing 66 to 68

custom debugging functions
defined 75 to 77
installing 70 to 71

custom scheduling function
about 12
defined 72 to 73
installing 65 to 66

custom termination function
defined 74 to 75
installing 68 to 69

D

debugger disposing function 75
debugger notification functions

defined 75
installing 70 to 71

default scheduling mechanism 12
default stack size 46 to 47
dialog boxes

yielding control from 27 to 28
DisposeThread function 50 to 51

E

entry point function. See thread entry function
events

using main thread to handle 28

F

floating-point registers. See FPU registers.
FPU registers

saving 14

G

Gestalt Manager
using to determine attributes of Thread Manager 17,

38
GetCurrentThread function See

MacGetCurrentThread function
GetDefaultThreadStackSize function 46 to 47
GetFreeThreadCount function 44 to 45
GetSpecificFreeThreadCount function 45 to 46
GetThreadCurrentTaskRef function 61 to 62
GetThreadState function 53 to 54
GetThreadStateGivenTaskRef function

using in I/O completion routine 37
GetThreadStateGivenTaskRef function 62 to 63
89

I N D E X
I

interrupt routines
referring to threads from 39, 61 to 65

I/O
using threads with 31 to 37

M

MacGetCurrentThread function 37, 52 to 53
main thread

calling MaxApplZone in 17 to 19, 43
keeping ready or running 37
using to handle events 28

MaxApplZone function
calling in threaded applications 17 to 19, 43

MyDebuggerDisposeThread function 75 to 76
MyDebuggerNewThread function 75
MyDebuggerThreadScheduler function 76 to 77
MyThreadEntry function 71 to 72
MyThreadScheduler function 72 to 73
MyThreadSwitch function 73 to 74
MyThreadTermination function 74 to 75

N

NewThread function
allocating threads from pool with 20 to 23
specifying stack size with 26

NewThread function 47 to 49

P

PowerPC applications
default thread context 14

Process Manager
relationship to Thread Manager 25

R

routine descriptors
warning about 49, 66, 67, 69, 71

S

SchedulerInfoRec 41 to 42

scheduler information structure
defined 41 to 42
using with custom scheduler 13

scheduling
See also custom scheduling function 65
changing thread state 56 to 58, 63 to 65
turning off 11, 24 to 25, 58 to 59
turning on 59, 60 to 61
yielding 54 to 55
yielding to particular thread 55 to 56

scheduling threads 9 to 16
SetDebuggerNotificationProcs function 70 to 71
SetThreadReadyGivenTaskRef function 63 to 65
SetThreadScheduler function 12, 65 to 66
SetThreadStateEndCritical function 60 to 61
SetThreadState function 37, 56 to 58
SetThreadStateGivenTaskRef function

using in I/O completion routine 37
SetThreadSwitcher function 14, 66 to 68
SetThreadTerminator function 68 to 69
680x0 Macintosh applications

default thread context 13
stacks, for threads

amount available, determining 51 to 52
default size 15, 26, 46 to 47
introduced 15
overflowing 26
size of 43
size of, specifying 15, 25
specifying 25

T

ThreadBeginCritical function 24, 58 to 59
thread context

default saved 13
defined 8
saving custom information 14, 66 to 68

ThreadCurrentStackSpace function 51 to 52
ThreadEndCritical function 24, 59
thread entry function

defined 71 to 72
how to specify 22
using 28 to 31

thread ID
defined 40 to 41
obtaining 52 to 53

ThreadID data type 40 to 41
Thread Manager 7 to 85

application-defined routines for 71 to 77
data structures for 38 to 42
determining attributes of 17, 38
functions in 42 to 71
90

I N D E X
relationship to Process Manager 25
thread options 41
ThreadOptions data type 41
thread pools

creating 16, 17 to 20, 43 to 44
threads

See also main thread
allocating 16, 17 to 24, 47 to 49
creating 16, 47 to 49
creating a pool of 16, 17 to 20, 43 to 44
defined 8
disposing of 16, 27, 50 to 51
passing data to 28 to 31
recycling 50
returning data from 16, 28 to 31, 50
scheduling 9 to 16
types of 40
uses of 7

Threads Package
difference from Thread Manager 15

thread stacks. See stacks, for threads
thread state

changing 56 to 58, 60 to 61
changing from interrupt-level code 63 to 65
defined 39
obtaining 53 to 54
obtaining from interrupt-level code 62 to 63

ThreadState data type 39
ThreadStyle data type 40
ThreadTaskRef data type 39
thread task reference

defined 39
obtaining 61 to 62

thread type 40

Y

YieldToAnyThread function 28, 54 to 55
YieldToThread function 55 to 56
91

	Thread Manager
	Figures, Tables, and Listings
	Introduction to Threads
	About the Thread Manager
	Scheduling
	The Main Thread
	Custom Scheduler

	Default Saved Thread Context
	Custom Context-Switching Function
	Thread Stacks
	Creating and Disposing of Threads

	Using the Thread Manager
	Determining Attributes of the Thread Manager
	Creating and Allocating a Thread
	Creating a Pool of Threads
	Allocating a Thread

	Turning Scheduling Off
	Working With Stacks

	Creating Dialog Boxes That Yield
	Passing Input and Output Parameters to a New Thread
	Using Threads With I/O

	Thread Manager Reference
	Data Types
	Gestalt Selector and Response Bits
	Constant Descriptions

	The Thread State
	Constant descriptions

	The Thread Task Reference
	The Thread Type
	The Thread ID
	Constant descriptions

	Thread Options
	Constant descriptions

	The Scheduler Information Structure

	Thread Manager Functions
	Creating and Getting Information About Thread Pools
	CreateThreadPool
	GetFreeThreadCount
	GetSpecificFreeThreadCount
	GetDefaultThreadStackSize
	Creating and Disposing of Threads
	NewThread
	DisposeThread
	Getting Information About Specific Threads
	ThreadCurrentStackSpace
	MacGetCurrentThread
	GetThreadState
	Scheduling Threads
	YieldToAnyThread
	YieldToThread
	SetThreadState
	Preventing Scheduling
	ThreadBeginCritical
	ThreadEndCritical
	SetThreadStateEndCritical
	Getting Information and Scheduling Threads During Interrupts
	GetThreadCurrentTaskRef
	GetThreadStateGivenTaskRef
	SetThreadReadyGivenTaskRef
	Installing Custom Scheduling, Switching, Terminating, and Debugging Functions
	SetThreadScheduler
	SetThreadSwitcher
	SetThreadTerminator
	SetDebuggerNotificationProcs
	Application-Defined Functions
	MyThreadEntry
	MyThreadScheduler
	MyThreadSwitch
	MyThreadTermination
	MyDebuggerNewThread
	MyDebuggerDisposeThread
	MyDebuggerThreadScheduler

	Summary of the Thread Manager
	C Summary
	Constants and Data Types
	Thread Manager functions
	Creating and Getting Information About Thread Pools
	Creating and Disposing of Threads
	Getting Information About Specific Threads
	Scheduling Threads
	Preventing Scheduling
	Getting Information and Scheduling Threads During Interrupts
	Installing Custom Scheduling, Switching, Terminating and Debugging Functions
	Application-Defined Routines

	Pascal Summary
	Constants and Data Types
	Thread Manager Functions
	Creating and Getting Information About Thread Pools
	Creating and Disposing of Threads
	Getting Information About Specific Threads
	Scheduling Threads
	Preventing Scheduling
	Getting Information and Scheduling Threads During Interrupts
	Installing Custom Scheduling, Switching, Terminating, and Debugging Functions
	Application-Defined Functions

	Assembly Language Information
	Trap Macros Requiring Routine Selectors

	Result Codes

	Glossary
	Index

