
 



 

Technical Publications
© Apple Computer, Inc. 1999

 



 

Date and Time API Preliminary 
Documentation

 

For Mac OS 9

 

Preliminary Draft



 

© Apple Computer, Inc. 10/19/99

 



 

Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved. 
No part of this publication may be 
reproduced, stored in a retrieval 
system, or transmitted, in any form 
or by any means, mechanical, 
electronic, photocopying, recording, 
or otherwise, without prior written 
permission of Apple Computer, Inc., 
except to make a backup copy of any 
documentation provided on 
CD-ROM. 
The Apple logo is a trademark of 
Apple Computer, Inc. 
Use of the “keyboard” Apple logo 
(Option-Shift-K) for commercial 
purposes without the prior written 
consent of Apple may constitute 
trademark infringement and unfair 
competition in violation of federal 
and state laws. 
No licenses, express or implied, are 
granted with respect to any of the 
technology described in this book. 
Apple retains all intellectual 
property rights associated with the 
technology described in this book. 
This book is intended to assist 
application developers to develop 
applications only for Apple-labeled 
or Apple-licensed computers.
Every effort has been made to ensure 
that the information in this manual is 
accurate. Apple is not responsible for 
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, and 
Macintosh are trademarks of Apple 
Computer, Inc., registered in the 
United States and other countries.

Simultaneously published in the 
United States and Canada.

 

Even though Apple has reviewed this 
manual, APPLE MAKES NO 
WARRANTY OR REPRESENTATION, 
EITHER EXPRESS OR IMPLIED, WITH 
RESPECT TO THIS MANUAL, ITS 

QUALITY, ACCURACY, 
MERCHANTABILITY, OR FITNESS 
FOR A PARTICULAR PURPOSE. AS A 
RESULT, THIS MANUAL IS SOLD “AS 
IS,” AND YOU, THE PURCHASER, ARE 
ASSUMING THE ENTIRE RISK AS TO 
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE 
FOR DIRECT, INDIRECT, SPECIAL, 
INCIDENTAL, OR CONSEQUENTIAL 
DAMAGES RESULTING FROM ANY 
DEFECT OR INACCURACY IN THIS 
MANUAL, even if advised of the 
possibility of such damages.

THE WARRANTY AND REMEDIES 
SET FORTH ABOVE ARE EXCLUSIVE 
AND IN LIEU OF ALL OTHERS, ORAL 
OR WRITTEN, EXPRESS OR IMPLIED. 
No Apple dealer, agent, or employee is 
authorized to make any modification, 
extension, or addition to this warranty.

Some states do not allow the exclusion or 
limitation of implied warranties or 
liability for incidental or consequential 
damages, so the above limitation or 
exclusion may not apply to you. This 
warranty gives you specific legal rights, 
and you may also have other rights 
which vary from state to state.



Date & Time for Mac OS 9

The new Date & Time functionality for Mac OS 9 includes changes to the Date & 
Time Control Panel and the addition of functions to handle dates larger than 2040 
and for conversion between UTC and Macintosh local time.

Important
This is a preliminary document.  Although it has been reviewed 
for technical accuracy, it is not final.  Apple Computer, Inc. is 
supplying this information to help you plan for the adoption of 
the technologies and programming interfaces described herein. 
This information is subject to change, and software 
implemented according to this document should be tested with 
final operating system software and final documentation.

You can check 
<http://developer.apple.com/techpubs/macos8/SiteInfo/whatsn
ew.html> for information about updates to this and other 
developer documents. To receive notification of documentation 
updates, you can sign up for ADC's free Online Program and 
receive their weekly Apple Developer Connection News e-mail 
newsletter. (See 
<http://developer.apple.com/membership/index.html> for 
more details about the Online Program.)

User Issues

Most of the enhancements to Date & Time for Mac OS 9 deal with year 2000/2040 
issues. On the user side, with the Date & Time control panel, there have been two 
issues. First of all, as the year 2000 approaches, we want to have an unambiguous 
way of entering dates. Traditionally, dates have been entered using two digits for 
day, month, and year. Changing the way years are entered to four digits by default 
will avoid ambiguity. There will be no wondering if the user meant 1919 or 2019 
when they entered “19”, for example.

The second control panel issue has been that the range of dates has been restricted to 
1920 to 2019.  Up to now this restriction/range was needed since we were displaying 
only two digits for years, thus requiring a 100-year range to be defined. However, 
when users enter four digits for the year, this restriction is unnecessary.

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 3



Developer Issues

On the developer side, there have been three issues: breaking the 2040 barrier, 
returning a higher precision by the system clock, and being able to use UTC 
(“Coordinated Universal Time”) instead of local time.  

Breaking the 2040 Barrier

The 2040 limitation is due to the clock hardware which is limited to 32 bits worth of 
seconds and an epoch defined as beginning on January 1, 1904. We can partially 
address this problem by introducing a 64-bit API. However, having APIs that break 
the 2040 barrier aren’t of great value if we can’t have the clock support those values.

The key to solving this problem is to work under the assumption that, in the future, 
a user’s machine is more likely to run with a date set past 2040 than it is to run with 
a date set in the far past. Therefore, the epoch used when interpreting the clock chip 
value has been changed from 1904–2040 to 1972–2108. This maintains compatibility 
with current software, as dates can be set all the way back to 1972 (well beyond the 
date the Mac was born), while providing breathing room into the future.

Please note that this only affects the way the actual hardware clock value is 
interpreted. This in no way affects the way dates are manipulated or the formats that 
developers have been using. Also note that this forces limitations on the date 
element used by the control panel to reflect the dates that the clock can be set at, thus 
changing its range from 1904–2040 to 1972–2108, as well. 

Clock Value in Hex Actual Date
0x80000000 Wed, Jan 19, 1972  03:14:08 AM
0 Mon, Feb 06, 2040  06:28:16 AM
0x7FFFFFFF Sat, Feb 25, 2108  09:42:23 AM

Returning a Higher Clock Precision

The issue of higher precision is one that involves both hardware and software. 
Traditionally, the clock chip used  by the Macintosh only returned up to the second 
precision. If users wished to get higher precision, they would have to write code that 
uses other timing services to achieve this goal. However, these mechanisms have 
been imprecise and costly. With the new ROM-in-RAM (“New World”) approach, 
however, there is now support for greater clock precision.

On the software end, Date& Time for Mac OS 9 includes higher precision in data 
types and functions so that developers may access these features when available on a 
given machine.

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 4



Obtaining UTC

The last request by developers regards the interpretation and storage of the 
Macintosh clock as UTC. To address this request we are providing routines to 
quickly obtain time as UTC, as well as routines to convert between Macintosh local 
time and UTC. 

Reference

Data Types and Constants 

enum{
kUTCUnderflowErr = -8850,
kUTCOverflowErr = -8851,
kIllegalClockValueErr = -8852

};

kUTCUnderflowErr
Returned by UTC to Local time conversion routines when the conversion 
yields a value that is too low to represent. 

kUTCOverflowErr
Returned by UTC to Local time conversion routines when the conversion 
yields a value that is too high to represent. 

The underflow and overflow errors occur because there are only certain 
numbers that may be represented for UTC for any particular location.  Local 
time for any particular location is from 0 to 4294967296 seconds.  Hence, if a 
location is at +1 h GMT, like say Paris, a local time of 0 cannot be represented 
in GMT because it would be -3600 which in unsigned would mean 
4294963696.  This would be indeed a quite high UTC value.  Hence, a per 
location restriction of +-GMT offset is applied to conversions.  Values that fall 
in this range will generate any of the corresponding errors above.

kIllegalClockValueErr
Returned by clock setting APIs when attempting to set the clock to a value 
that is too large or small. 

enum{
kUTCDefaultOptions = 0

};

kUTCDefaultOptions

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 5



Default options to be used in any of the APIs that use the OptionsBit 
parameter.  In the future there may be other options that will either enhance 
or modify the behavior of the APIs.  

typedef struct UTCDateTime{
UInt16 highSeconds;
UInt32 lowSeconds;
UInt16 fraction;

}UTCDateTime, *UTCDateTimePtr;

typedef struct LocalDateTime{
UInt16 highSeconds;
UInt32 lowSeconds;
UInt16 fraction;

}LocalDateTime, *LocalDateTimePtr;

UTCDateTime and LocalDateTime are both 64 bits wide.  The first 48 bits 
represent the number of seconds since 1904. The remaining 16 bits are used to 
indicate a fractional seconds value, which has no inherent precision. Each 
unit of this 16-bit value represents 1/65535 of a second. Developers may apply 
the appropriate arithmetic to derive milliseconds or microseconds.

Note that the decision to have the lowSeconds field divided between the high 
and low 32 bits of the 64 bit structure was intentional.  The structure above is 
perfect for performing 64 bit math and logical comparisons. Having the 
lowSeconds field in the low or high 32 bits would have been easier for the 
compilers to handle and probably execute faster, however it would have 
render the structure unusable for 64 bit math and logical comparisons. 

Functions 

OSStatus ConvertLocalTimeToUTC(UInt32 localSeconds,
UInt32* utcSeconds);

Given a local time in localSeconds  the function will place the corresponding 
UTC value in utcSeconds .  This routine returns noErr  if the conversion is 
successful.  Otherwise, it may return kUTCUnderflowErr or kUTCOverflowErr.

OSStatus ConvertUTCToLocalTime(UInt32 utcSeconds,
UInt32* localSeconds);

Given a UTC time in utcSeconds  the function will place the corresponding 
10/15/99 Preliminary draft. © Apple Computer, Inc. Page 6



local value in localSeconds .  This routine returns noErr  if the conversion is 
successful.  Otherwise, it may return kUTCUnderflowErr or kUTCOverflowErr.

OSStatus GetUTCDateTime( UTCDateTimePtr utcTime, 
OptionBits options);

This API will return the current time as UTC in utcTime .  Otherwise, it is set 
to 0.  Use kUTCDefaultOptions in the options for default behavior.  Different 
behavior may be specified through this parameter in the future.   If the 
operation is successful noErr  will be returned.  If a NULL pointer is passed in 
utcTime , paramErr  will be returned.

OSStatus SetUTCDateTime( const UTCDateTimePtr utcTime, 
OptionBits options);

Use this call to set the Macintosh clock to the time passed in utcTime .  Use 
kUTCDefaultOptions in the options for default behavior.  Different behavior 
may be specified through this parameter in the future.  If successful noErr  is 
returned.  Other errors include kIllegalClockValueErr,  kUTCUnderflowErr, 
kUTCOverflowErr, and paramErr if NULL is passed for utcTime. It may also 
return clkWrErr  due to a failed attempt to write the value to the clock chip.

OSStatus GetLocalDateTime( LocalDateTimePtr localTime, 
OptionBits options);

This API will return the current time in localTime .   Otherwise, it is set to 0.   
Use kUTCDefaultOptions in the options for default behavior.  Different 
behavior may be specified through this parameter in the future.  If the 
operation is successful noErr  will be returned.  If a NULL pointer is passed in 
localTime , paramErr  will be returned.

OSStatus SetLocalDateTime( const LocalDateTimePtr localTime, 
OptionBits options);

Use this call to set the Macintosh clock to the time passed in localTime .  Use 
kUTCDefaultOptions in the options for default behavior.  Different behavior 
may be specified through this parameter in the future.  If successful noErr  is 
returned.  Other errors include kIllegalClockValueErr, paramErr if 
localTime is NULL,  or clkWrErr  due to a failed attempt to write the value to 
the clock chip.

OSStatus ConvertLocalToUTCDateTime( const LocalDateTimePtr  localTime,
UTCDateTimePtr utcTime);

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 7



Given a local time in localTime  the function will place the corresponding 
UTC value in utcTime .  This routine returns noErr  if the conversion is 
successful.  Otherwise, it may return kUTCUnderflowErr, kUTCOverflowErr, or 
paramErr if utcTime is NULL.

OSStatus ConvertUTCToLocalDateTime( const UTCDateTimePtr  utcTime,
LocalDateTimePtr localTime);

Given a UTC time in utcTime  the function will place the corresponding local 
value in localTime .  This routine returns noErr  if the conversion is successful.  
Otherwise, it may return kUTCUnderflowErr, kUTCOverflowErr, or or 
paramErr if localTime is NULL.

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 8


