Multilingual Text Editor API
Preliminary Documentation

For Multilingual Text Editor 1.1

4

Preliminary Draft

Technical Publications
© Apple Computer, Inc. 1999

[Apple Computer, Inc.

© 1999 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.

The Apple logo is a trademark of
Apple Computer, Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.

Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Chicago,
Geneva, Mac, Macintosh, Monaco,
MPW, New York, QuickDraw, Sand,
Techno, Textile, and WorldScript are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.

Helvetica, Palatino, and Times are
registered trademarks of
Heidelberger Druckmaschinen AG,
available from Linotype Library
GmbH.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

© Apple Computer, Inc. 10/19/99

1 0To =1 o ST TSRS 5

EXECUTIVE SUMMARY ...ttt ettt ettt sttt s st st e st s s bt s s besatesaeesbesatesbessbesaessbessbesatesbessbesatssbessbesasesbessbesrnesris 5
F N (O L O 1O T 6
ASPECTS OF LONG-TERM ARCHITECTUREeitiitiitiiteesteetessessaessasssesssessssssssssesssssssssssssssssssssesssssssssssssssssssssessssssssssssssnsns 6
FITWITH APPLE SYSTEM ARCHITECTUREeiittiiitieitteiteestteessessbessssessssssssessssessssessssssssssssessssesssssssssssssessssesssessssssssessnn 6
FEATURES AND BEHAVIORSottt sttt sttt te s atssha s s besatssaessbesatssbesbesatssbessbesasssbsesbesasesresstesrnesris 6
S Sl Y= = 1= N =TT 6
TEXT FORMATTING ..eetti ittt ete st e steestssteestesaesstesbesaessbesbessessaessbesaessbesabesaessaeesbesaeesbeesbesaessbessbeeseesbeesbeenessbeenbesssesbesstesaessrs 7
SELECTION BEHAVIOR ...ccttiitiiitee ittt e stteestesebessabeesstsssbessbessabessssssssesssbessssesssseessessabessssessabessbbessbeseabessabessabesaaeessbessabessnbenas 8
TYPING AND INLINE INPUT ..cutiiutiitictecieestestesstsstesstsssassaessasssessasssssssesssesssssssssbesssssssssbessssssessbsssbesssesbssssesssssbesssssnessrnsseas 10
KEYBOARD AND FONT SYNCHRONIZATION ...cctiiutiitieiteitessiesteeesssesssesssssesssessssssssssssssessssses 10
FONT TO KEYBOARD SYNCHRONIZATION ...uviitiiuteiteesteetesseestsssesssesssessssssesssssssssssssssssssssesssssssssssssssssssssessssssssssssssessssses 11
[N I T2 N T 11
(D12 T NN N D D] =0 =S 12
SUPPORT FOR STANDARD EDITING IMENUS......cuviiitiiiitieiteeiite e stteestesebessatessatsssbesssbessasesssssessesssbessssessstssssessssessnsessssssssens 12
[0 N 1Y = O 13
ATSUI FONT VARIATIONS AND FEATURESottt it ciee st stessibessabessabe s satessbessabessabesssaessbessabessabessstesssesesbessabessnsenss 16
INTELLIGENT EDITING. ..ciutiiteitieitiitesteesteete st estssatsstesstessessaesstessesssesssssaessbesssssbessbesasssssssaeesbssaeesbessessbessbesstesbsebessessrnsssnas 16
NG AN I ET0) Ll 1 1Y T 16
(@00 Y =T =11 15 27 16
INTERNATIONALIZATION. ...utiiteiteiutesteesteeseesaeesssssssssesssssssssssssssssessssssssssssssessssssssssessssssssssssnssssssssessssssessssssssssssssessssssesssnss 16
FAULT HANDLING METHODOLOGY AND MECHANISMSveitiieiesteiteceesteestesstssaessasssesstessssssesssesssssssssssssssssssssssssesssssnes 16
APPLICATION PROGRAMMING INTERFACE (API) FOR MLTE. ..ottt 17
DATA STRUCTURES AND CONSTANTS. 1.utttiitieitieiteeitteesstseisessbessssessssssssessssessssessssssssssssssssssesssessssssssessssessssessssessssssssens 17
[0 N[0 0] 1SR 27

10/19/99 Preliminary draft. © Apple Computer, Inc. page 3

10/19/99 Preliminary draft. © Apple Computer, Inc. page 4

Important

Thisisapreliminary document. Although it has been reviewed for technical
accuracy, itisnot final. Apple Computer, Inc. is supplying this information to
help you plan for the adoption of the technologies and programming interfaces
described herein. Thisinformation is subject to change, and software
implemented according to this document should be tested with final operating
system software and final documentation.

Y ou can check

<http://devel oper.apple.com/techpubs/macos8/Sitel nfo/whatsnew.html> for
information about updates to this and other developer documents. To receive
notification of documentation updates, you can sign up for ADC's free Online
Program and receive their weekly Apple Developer Connection News e-mail
newsdletter. (See <http://devel oper.apple.com/membership/index.html> for more
details about the Online Program.)

Executive Summary

This document describes the engineering requirements for a new multilingual text editor
(MLTE). As atext-editing engine, MLTE is intended for use by applications that aren’t primarily
oriented towards word processing or page layout. MLTE provides sufficient built-in functionality
for applications with simple-to-midlevel text-editing needs.

The MLTE isintended as an alternative for TextEdit, the basic text-editing engine in the Mac
OS. All reasonable devel oper-requested enhancements to TextEdit (such as document-wide tabs,
full justification, and support for more than 32K of text) are supported by MLTE. MLTE does
not offer API compatibility with TextEdit. MLTE does offer equivalent or greater functionality
than TextEdit. MLTE provides the API to build a complete text editing user experience as
defined in Macintosh Human Interface Guidelines, the Drag and Drop Human Interface
Guidelines, and Inside Macintosh: Text.

MLTE uses Apple Type Services for Unicode Imaging (ATSUI) to measure and draw text if
ATSUl isavailable. If ATSUI isnot available, then MTLE uses QuickDraw and the Script
Manager to handle text. MLTE can run on systems back to System 7.1.

With MLTE, layout settings (i.e., tabs, justification, are margins) are document wide.

MTLE supports 32 levels of undo. In addition, the can undo and can redo functions return a key
to the type of user action that can be undone or redone. It isthe callers responsibility to map
these keys to the appropriate localized string to display to the user. Actions that can be undone
are listed below in the section in the Data Structures and Constants section.

MTLE aso supports the saving and opening of files that are:
* plain text

* plain text with commonly supported style resources

* plain Unicode text

10/19/99 Preliminary draft. © Apple Computer, Inc. page 5

» anew format that supports either text or Unicode text along with embedded graphics, sounds,
and movies.

Architecture

Aspects of Long-term Architecture

The primary goal isto provide atext-editing engine that provides alevel of basic functionality
higher than that offered by TextEdit and supports editing Unicode™ text. Thisisthe casefor
basic editing tasks and for the level of multilingual text editing. MLTE will also provide an API
that is expandable, and much more easily modified than the TextEdit API. To this end, opaque
data structures are used to encapsulate all data used by MLTE.

Fit with Apple System Architecture

MLTE requires CFM as adynamic linking mechanism. MLTE will be a step in providing world-
ready text editing with sufficient functionality to cover most devel oper needs. Thiswill further
developersin creating single code bases for delivering products to multiple international
markets.

On systems prior to system 8.6, MLTE isaclient of QuickDraw Text and the Script Manager.
Beginning with system 8.6, ATSUI replaces QuickDraw Text and the Script Manager as the low-
level means of imaging and measuring text utilized by MLTE.

Where required, MLTE fully supports the Text Service Manager for text input.

MLTE provides the last significant building block towards creating a Mac OS that uses Unicode
for al text.

Features and Behaviors

MTLE supports al languages that currently are supported on the Macintosh and supportsinline
input for Chinese, Japanese and Korean. MLTE aso supports Unicode text, and input methods
written for non-CJK scriptsif running on system 8.6 or later.

MLTE provides al of the enhancements that devel opers have requested for TextEdit. These
include support for greater than 32K of text and a document wide tab setting. Version 1.0 of
MLTE will offer only asingle tab setting, but later versions may offer multiple tab settings via
rulers.

User Experience

This section specifies the default user experience provided by MLTE. It pays particular attention
to the specifics of editing multiscript text, which may involve contextual or bidirectional text

10/19/99 Preliminary draft. © Apple Computer, Inc. page 6

layout or using inline input. It expands on specifications given in the Macintosh Human Interface
Guidelines, the Drag and Drop Human Interface Guidelines, and Inside Macintosh: Text.

Text Formatting

MLTE renders text into a single rectangular frame. Applications can choose between assuming
arbitrarily wide lines and breaking lines at a certain width. When breaking lines, MLTE uses the
simplistic line breaking model that’s usually used on the Macintosh: that is, text isflowed into a
visual line aslong asit fits, then anew lineis started with the first unbreakable unit (e.g., word)
that didn’t completely fit into the line. In scripts that use space characters to separate words, one
(and only one) space character at the logical end of the text flowed into avisual line is consumed
by the line break — it isignored for measurements and not displayed. Thislast description only
applies when using QuickDraw. It ATSUI isused, line break and display is controlled by the
ATSUI line breaking algorithms.

The interpretation of Tab charactersis based on the one-tab-per-document standard found in
most programming text editors. Each tab character mapsto an initial width. Astext is flowed
onto aline, each tab is replaced by the width value necessary to place the start of the text
following the tab at a given position on the line. As the text prior to the tab grows, the white
space appears to shrink until the preceding text becomes long enough to envelop the entire tab.
At that point, the tab will assumeits full width and the text following the tab will jump ahead.
The following illustration will help to clarify this point.

Figure 1:
<<Intial state white space between text block A and text block B represents a tab>>
text block a text block b
<<user enters text in text block a>>

text block a with more text block b
<<text in block a reaches a length that displaces the beginning of block b>>
text block a with more text text block b

The tab widths flow in the line direction for the line being formatted. If text is being
automatically wrapped and a tab width extends past the trailing margin (right on aRoman
system), aline break is generated and the next visual line will begin with the tab width.

Justification in version 1.0 of the MLTE might more appropriately be called flush. Text can be
flush against the left margin, flush against the right margin, centered or flush against both
margins (typically referred to as full justification).

Highlight regions for non-empty selections are drawn in the system highlight color, while carets
are drawn in black.

For bidirectional text, the caret location at direction run boundaries depends on the direction of
the keyboard script; split carets are not supported. Outline highlighting is used for inactive views
as required for Drag and Drop. For non-modifiable text that allows for selections, an application
can choose between one of two behaviors. Thefirst allows selection and copying of text and

10/19/99 Preliminary draft. © Apple Computer, Inc. page 7

displays ablinking caret. Thisisthe MPW model. The second type of non-modifiable behavior
isto display no caret and not allow selection. Thisisthe Simple Text model.

Selection Behavior

Selection behavior is described in Macintosh Human Interface Guidelines, pages 286-296, with
details on Arrow keysin Macintosh Human Interface Guidelines, pages 281-284. The
specification given here has been adjusted to more closely correspond to the de facto standard for
text selection found in the more popular text editors used on the Macintosh.

A user has two ways to define a selection: she can create a new one or modify the current one. A
new selection is defined by the Select All command, by mouse actions (single-, double-, or
triple-clicking or dragging), or by using the Arrow keys (potentially combined with the
Command or Option keys). A selection is modified by pressing the Shift key and performing a
mouse-based or Arrow key-based selection action.

MLTE interprets modifying selection actions based on the notions of anchor selection and active
selection, implementing what’ s called the fixed-point method in Macintosh Human Interface
Guidelines, page 290. The active selection is (with one exception — see below) identical to the
selection resulting from the non-modifying selection action that would be performed without the
Shift key. The anchor selection is the result of a previous selection action, it is updated whenever
the user creates a new selection, edits the text, deactivates the view, or when the selection is
changed through an API call. The modified selection is the smallest selection containing both the
anchor selection and the active selection.

When tracking mouse down events, MLTE automatically disambiguates between selection
operations and Drag and Drop operations. If the mouse down event occurs within the highlight
region of the current selection and the Drag Manager is available, then MLTE waits to see
whether the mouse is dragged. If itis, MLTE initiates a Drag and Drop operation. Drag and Drop
behavior is discussed below. Otherwise, the mouse event isinterpreted as a sel ection operation.

Single-clicking defines an insertion point. Double-clicking by default selects aword as defined
by the Script Manager or ATSUI. Triple-clicking selects avisual line from the beginning of the
line to the beginning of the next line. If the user starts selecting by dragging after a double or
triple click, dragging extends the selection by words or visua lines, respectively. Clicking in
empty space is mapped to some location that has text.

The Arrow key in page direction (down for Roman) starts at the screen location of the logical
end of the current selection and simulates successive clicks in each line moving in page direction
in as straight aline as possible. The Arrow key against page direction (up for Roman) starts at
the screen location of the logical start of the current selection and simulates successive clicksin
each line moving straight against the page direction.

Horizontal Arrow keys move in adirection dependent on the line direction of the text. The

Arrow key in line direction (right for Roman) starts at the trailing edge of the highlight region in
the last line of the selection and simulates successive clicks at each character boundary moving

10/19/99 Preliminary draft. © Apple Computer, Inc. page 8

in line direction until it hits the trailing edge of the visual line. At that point selection wraps to
the leading edge of the next visual line. The character boundaries are determined by the backing
store order and not the display order.

The Arrow key against line direction (left for Roman) starts at the leading edge of the highlight
region in the first line of the selection and simulates successive clicks at each character boundary
moving against line direction until it hits the leading edge of the visual line, then wraps to the
trailing edge of the previous visual line.

For the line direction Arrow keys, aligature that does not alow for an insertion point between its
constituting charactersis treated as one character. This may be controllable in an environment
with ATSUI. Combining the Option key with aline direction Arrow key makes it ssmulate clicks
at word boundaries instead of character boundaries. The implementation of Option-Arrow is
dightly different from that recommended on Macintosh Human Interface Guidelines, page 296.
The guidelines state that pressing option and either Left Arrow or Right Arrow should select the
entire word. The MLTE implementation is to select from the insertion point (anchor point) to
either the beginning or end of the word where the insertion point resides.

Combining the Command key with an Arrow key in or against line direction makes it ssmulate
clicks at the trailing-or-leading edge of the last-or-first line intersecting with the selection,
respectively. When reaching a direction run boundary, aclick on the last character in Arrow
direction of the direction run being left is simulated; the direction run being entered is clicked on
only after the direction run boundary has been passed.

Combining the Command key with a page direction Arrow key makesit ssmulate aclick at the
corresponding edge of the portion of the view shown in the window, paging the view first if the
active selection aready was at that edge. The start selection for page direction Arrow keysis
determined at the beginning of an uninterrupted sequence of page direction Arrow keys.

The active selection isinitially determined by an action defining a new selection and then
updated by each modifying selection action. If a modifying selection action resultsin an active
selection that is a subrange of the anchor selection, the active selection is set to the subrange. The
exception to the rule above — that the active selection of a modifying selection action is equal to
the selection that would have been created by the same action without the Shift key — are Arrow
keysin or against line direction. In that case, if the current selection is not empty and the Shift
key is not held down, they first smulate a click on the trailing-or-leading edge of the highlight
region. If the Shift key is held down, they immediately simulate a click one character apart from
that edge.

If necessary, the text is scrolled to make a modified selection visible in the view rectangle.

Selection actions never result in the system beeping at the user.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 9

Typing and I nline I nput

MLTE treats text entry using standard keyboard layouts and text entry using input methodsin an
integrated fashion. An uninterrupted sequence of keystrokes or inline input operations are treated
asasingle typing command for purposes of Undo. Events that cause a typing command to be
completed include: selection operations (except for those handled by input methods),
deactivation, filing, printing, or any undoable command other than typing. When atyping
command is completed, any unconfirmed inline input is confirmed.

MLTE assumes that the application filters out all characters it wishes to handle before passing
key-down eventsto MLTE. MLTE then interprets the characters being entered in the following
ways: (Note that the rules below are given for both Unicode (Uxxx) and Mac OS encodings
($xx)).

* Insertion: All 1- and 2-byte characters starting at ($20, U0020) except Forward Delete ($7F,
UOO07F), as well as the Tab character ($09, U0009), and the characters $10-$14 (which are
graphical charactersin some fonts, especially system fonts) are inserted into the text. Return
($0D, UO0OD) isinserted. Characters entered through inline input are always inserted.

* Select: All combinations involving the Arrow keys ($1C-$1F, U0O0O1C-UQO01F) are interpreted
as selection operations (see above). Other than as specified in Macintosh Human Interface
Guidelines, page 113, they do interrupt typing commandsin MLTE.

» Scroll: The Home ($01, U0001) and End ($04, U0004) keys are interpreted to scroll the text
block to itslogical beginning or end as specified in Macintosh Human Interface Guidelines, page
285.

* The Page Up ($0B, UO00B) and Page Down ($0C, U00OC) keys: These are interpreted to scroll
the text one up or down by the height of the currently visible portion. They are not part of typing
commands, but don’t interrupt them either.

* Clear: The Clear key (character code $1B,U001B with virtual key code $47) is a synonym for
the Clear command. It is not part of atyping sequence, but does interrupt one.

« Delete: The Backspace ($08,U0008) and Forward Delete ($7F, UOO7F) characters first delete
the currently selected text (if the selection is non-empty), then delete individual characters
logically preceding (Backspace) or following (Forward Delete) the insertion point. They are part
of typing commands.

* Ignore: All other characters are ignored. Thisincludes all key combinations involving the
Command key, but not Arrow keys. They are not part of typing commands, but do not interrupt
them.

Keyboard and Font Synchronization

In a multiscript environment, atext engine has to make sure that text is displayed in afont that
supports the character set in which the text is written. In the WorldScript environment, thisis

10/19/99 Preliminary draft. © Apple Computer, Inc. page 10

typically done by watching the current keyboard script and comparing it to the script of the font
at the current insertion point. If the two don’t match and the user starts typing, the font is
automatically replaced with one belonging to the keyboard script.

This behavior is not aways appropriate, as there is no one-to-one correspondence between fonts
and keyboards. Typically, non-Roman keyboard layouts support only the characters that are
specific to this script, not the ASCII characters which are supported by all fonts designed for the
WorldScript environment. Thus, when the user switches to a Roman keyboard, she may do so
just to type ASCII characters, and the previously used non-Roman font may have glyphs for the
ASCII characters that are carefully designed to match the style of the other glyphs in the font,
making it highly undesirable to replace them with plain Geneva. In addition, a Unicode font may
contain glyphs that apply to multiple scripts.

Despite these drawbacks, MLTE will by default attempt to synchronize the font to the keyboard
when the user changes the keyboard. To find the appropriate font, MLTE first searches backward
in the document for an appropriate font, then forward. If no appropriate font can be found, the
application font or the system font for the keyboard script is used. Font synchronization does not
interrupt typing commands.

Font to Keyboard Synchronization

Some editors also support synchronization in the opposite direction: they automatically switch
the keyboard script to the script of the font being used at the current selection under certain
circumstances; for example, when the user changes the selection. The assumption is that the user
ismost likely to type additional text in the script already being used for the current selection.
Also, the location of the caret in bidirectional text may depend on the direction of the keyboard
script, so in this context it isimportant that the direction of the keyboard script matches the
direction of text in which the user clicked.

Many users of 2-byte systems strongly dislike this feature. In 2-byte scripts, the issue of caret
placement doesn’'t exist, and 2-byte input methods often allow users to enter ASCII charactersin
a pass-through mode, so switching the keyboard is not necessary. Users of 1-byte scripts on the
other hand can enter ASCII characters only by switching to a Roman keyboard.

The current plan isto support font to keyboard synchronization by default. There will be an
option for an application to switch font to keyboard synchronization off.

Font Locking

By default, MLTE prevents a user from changing afont in one script to afont in another.
Version 1.0 will maintain this behavior. However, a user can override this by changing the font
while holding the control key down. In this case, the text will change to the selected font no
matter what charactersis selected. In addition, when a user selects non-Roman text and changes
the text to aroman font, the text is scanned for ASCII characters, and these characters are
changed to the new font.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 11

Drag and Drop

If the Drag Manager is available, MLTE provides alarge part of the Drag and Drop user
experience as specified in the Drag and Drop Human Interface Guidelines. MLTE highlights
selectionsin inactive views using outlines, so users can drag between active and inactive views.
It changes the cursor to an arrow if it is over the highlight region in an active view. It
disambiguates between selection operations and Drag and Drop operations, and provides the
complete drag user feedback. Because ML TE has no information about the context in which it’s
views are used, it cannot provide complete destination feedback, but it does highlight the
insertion point where dropped text would get inserted, performs the actual move, and selects the
dragged text in its new location.

By Default MLTE recognizes dragging as a Move operation. The user can override the move-or-
copy decision using the Option Key.

Drag-and-drop operations (both move and copy) are undoable.

Support for Standard Editing Menus

While MLTE does not handle any menus itself, it provides applications with all necessary
functionality and information to support the standard text editing menus.

MLTE supports the Undo, Redo, Cut, Copy, Paste, Clear, and Select All items in the Edit menu,
as specified in Macintosh Human Interface Guidelines, pages 109-117. MTLE does not support
Publish and Subscribe.

MLTE supports the specifications in Macintosh Human Interface Guidelines, pages 120-122 and
pages 64-67, for the Font menu. Because of the large difference in font environments on a
system with ATSUI and a QuickDraw system, there is an API that builds a Font menu and
returns that menu to the application. The application will be able to call another API to correctly
handle font menu selection via the returned font menu.

MLTE supports the specifications in Macintosh Human Interface Guidelines, pages 122-123 and
pages 64-67, for the Size menu, including the use of checkmarks and dashes, increment size,
decrement size, and an Other item.

MLTE supports the specifications in Macintosh Human Interface Guidelines, pages 124 and 64-
67, for the Style menu, including the use of checkmarks and dashes.

Cut, Copy, Paste, Clear, are undoable commands. Applying afont, size, or style to an non-empty
selection is an undoable command, while applying them to an insertion point is not. Select All is
a selection operation and is not undoable. All commands mentioned here interrupt typing
commands.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 12

Font Menu

Because ML TE supports both QuickDraw and ATSUI without requiring applications to know
which is being used, it becomes difficult to leave the responsibility for building the font menu to
the application. Certainly, there are applications who would prefer to build their own, and there
is nothing to prevent them from doing so. For applications that would prefer not to have to
bother with the issues of building afont menu, MLTE provides utility functions for creating and
handling a standard font menu (where standard is defined as what is most appropriate for the
imaging system in use.)

If the application is running MLTE on a QuickDraw-only system, the Font menu will represent
each font with asingle item. Fonts will be sorted by script, and will be drawn in the appropriate
system font based on the script system that the font belongsto. The following illustration is of
an MLTE Font menu on a QuickDraw system. The menu item names will be the font family
resource names. In other words, an MLTE Font menu on a QuickDraw-only system will look
exactly like afont created today with the AddResMenu call.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 13

msue Style Lay
v ‘Arial I

1 Arial Black
Capitals
Charcoal
Chicago
Comic Sans MS
Courier
Courier New
Gadget
Geneva
Georgia
Helvetica
Impact
Minion Web
Monaco
Monotype.com
Mew York
Palatino
Sand

Svmbol
Techno
Textile

Times

Times New Roman
Trebuchet M5
Yerdana
Webdings
Taipei

Bedjing

O=aka
Osaka— Mg
Seal|

MLTE on asystem equipped with ATSUI will build a font menu that includes hierarchical sub-
menus for ATSUI fonts that share afamily name, but have different style names. Each font
menu item will be drawn in asingle System font, because the concept of script systemsis not
entirely appropriate in aUnicode world. The following illustration is of an MLTE font menu on
asystem running ATSUI.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 14

Al Size Style

Anal 4 “Bola

Arlal Black Bold Italic
Beijing Itatic
Capitals i
Charcoal
Chicago

Comic 5ans M5
Courier
Courier New
Gadget
Geneva
Georgia
Helvetica
Impact

Minion Weh
Monaco
Monotype.com
Mew York
Osaka
Palatino

Sand

Seoul

Svymbol

Taipei

Techno
Textile

Times

Times New Roman
Trebuchet M5
Yerdana
Webdings

Lavout Media Optiol

e e .

.

v v

e . .

Font menu item names will be names obtained by calling the ATSUI function
ATSUGetFontName.

MLTE provides an opague structure called TXNFontMenuObject that can be used to handle user
interaction with the font menu.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 15

ATSUI Font Variations and Features

ATSUI aso introduces the concept of font variations and font features. An application can pass
these through the MLTE API, and have them applied to aselection. This, like building the font
menu, requires that an application be aware of the fact that it’s running on an ATSUI system, and
further requires that the application use some of the moderately complicated ATSUI API. If an
application wishes to do this, it is entirely appropriate, but applications who want to provide
basic editing may not be interested in interacting directly with the system’s lower-level text
imaging software. At the same time such applications may want to offer users at least some of
the advanced capabilitiesin software like ATSUI.

Version 1.0 of the MLTE does not provide a human interface for allowing a user to view and
select font variations and features on a per font basis. Unfortunately, this capability is left to the
application or enhancements to the system software.

I ntelligent Editing

Version 1.0 will not support Intelligent Editing. Intelligent Editing means applying text-
modifying commands so that separate words are kept separate and duplicate space characters are
avoided.

Key Algorithms

MLTE text handling is based on the layout algorithms found in the Script Manager and the text
imaging provided by QuickDraw Text. When ATSUI isavailable, text handling is based on on
the layout algorithmsin ATSUI. Text and style runs are accessed and stored as arrays.

Compatibility
MLTE isfully compatible with all Script systems, encodings, and languages currently supported

by the Script Manager. It is compatible with all systemssince 7.1 and all PPC CPUs. It isaso
compatible with the Unicode encoding as supported by ATSUI.

MLTE is not compatible with 68K systems. (Additionally, ATSUI is not compatible with 68K
systems.)

| nternationalization

MLTE is dependent on the Script Manager, ATSUI and WorldScript | and |1 for laying out text.
It isinternational to the extent that these components are international .

Fault Handling Methodology and Mechanisms

The primary failure encountered by MLTE is lack of memory for adding or formatting data.
When this occurs, the operation is not performed and an error is returned to the application.

To alarge degree, preflighting is used to prevent error conditions that cannot be backed out
again. Since errors are eventually bubbled up to the application, it is the application’s

10/19/99 Preliminary draft. © Apple Computer, Inc. page 16

responsibility to aert the user to the problem. If the user continues to try and add data, MLTE
will just continue to not perform the requested addition and return the same error.

Application Programming Interface (API) for MLTE

Data Structures and Constants.

typedef struct COpaqueTXNObj ect * TXNObj ect ;

An opague structure that encapsulates an object containing private variables and functions
necessary to handle text formatting at a document level. For each document, a new TXNObject
is allocated and returned by the TXNNewObject function.

typedef struct OpaqueTXNFont MenuQhj ect* TXNFont MenuQbj ect;
An opague structure that contains information needed work with afont menu.

typedef U nt32 TXNFranel D;

A TXNFramelD is used to identify the text frame to which actions should be applied. At the
basic level thereisonly one framel D per document. Inversion 1.0 of MLTE, TXNFramelD
serves as a placeholder to permit multiple frame capability to be added in afuture version.

t ypedef Ul nt 32 TXNVer si onVal ue;
typedef OptionBits TXNFeat ureBit s;
enum {

KTXNW | | Def aul t TOATSUI Bi t =0
H
enum {

KTXNWi I IDefaultToATSUIMask = 1L<<kTXNWillIDefaultToATSUIBit
}:

These type definitions and constants are used by the function TXNVersionlnformation (see
below).

typedef OptionBits TXNI ni t Opti ons;

enum {
kTXNWant Movi esBi t
kTXNWant SoundBi t
kTXNWant Gr aphi csBi t
KTXNAl waysUseQui ckDr awBi t
kTXNUseTenpor ar yMenor yBi t

I mnnu
~AWONPERO

enum {
kTXNWAnt Movi esMask

1L << KTXNWant Mbvi esBi t,

10/19/99 Preliminary draft. © Apple Computer, Inc. page 17

kTXNWant SoundMask

kTXNWant Gr aphi csMask

KTXNAl waysUseQui ckDr awvask
kTXNUseTenpor ar yMenor yMask

1L << KTXNwWant SoundBi t,

1L << kTXNWant Graphi csBit,

1L << KTXNAl waysUseQui ckDrawBi t,
1L << kTXNUseTenpor ar yMenor yBi t

1

TXNInitOptions are passed to the function TXNInitTextension. They specify data types other
than text that the application wishes to support for future TXNODbjects that are allocated within
this context. Additionally, an application can request that ML TE always use QuickDraw even if
ATSUI isavailable. For applications whose biggest concern is speed and efficient memory
usage, thisis often the best choice. Finaly, an application can request that all memory
alocations required inside the ML TE text engine should use memory from temporary memory.

typedef OptionBits TXNFrameOpt i ons;
enum {
kK TXNDr awGr ow conBi t =0,
k TXNShowwW ndowBi t =1,
kTXNWant HScr ol | Bar Bi t = 2,
kTXNWant VScr ol | Bar Bi t = 3,
KTXNNoTSMEver Bi t = 4,
KTXNReadOnl yBi t = b5,
kTXNNoKeyboar dSyncBi t = 6,
kTXNNoSel ecti onBi t =7,
kTXNSaveSt yl esAsSTYLResourceBit = 8,
kQut put Text | nUni codeEncodi ngBit = 9,
kKTXNDoNot | nstal | DragProcsBit = 10,
KTXNAI waysW apAt Vi ewedgeBi t =11
1
enum {
kK TXNDr awGr oM conMask = 1L << KTXNDrawG ow conBit,
k TXNShowwW ndowivask = 1L << KTXNShoww ndowBi t ,
kTXNWant HScr ol | Bar Mask = 1L << KTXNwWantHScrol I BarBit,
kTXNWant VScr ol | Bar Mask = 1L << KTXNwantVScrol I BarBit,
kKTXNNoTSMEver Mask = 1L << KTXNNoTSMEverBit,
KTXNReadOnl yMask = 1L << kTXNReadOnl yBit,
kTXNNoKeyboar dSyncMask = 1L << kTXNNoKeyboardSyncBit,
kTXNNoSel ect i onMask = 1L << kTXNNoSel ectionBit,
kTXNSaveSt yl esAsSTYLResour ceMask = 1L <<kTXNSaveStyl esAsSTYLResourceBit,
kQut put Text | nUni codeEncodi ngMask = 1L << kQut put Text | nUni codeEncodi ngBi t,
kTXNDoNot | nst al | DragProcsMask = 1L << kTXNDoNot I nst al | DragProcsBit,
KTXNAI waysW apAt Vi ewEdgeMask = 1L << kTXNAl waysW apAt Vi ewEdgeBi t
1

TXNFrameOptions are used to specify per TXNODbject features (i.e. per document features). The
available options are:

kTXNDr awG om conMask: Draw agrown icon at the bottom right corner of the frame.

kK TXNShowwW ndowivask: Display the window before returning from TXNNewObject.

kTXNWant HScr ol | Bar Mask: Include and manage a horizontal scroll bar inside the
frame.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 18

kTXNWant HScr ol | Bar Mask: Include and manage avertical scroll bar inside the frame.

KTXNNoTSMEver Mask: This TXNObject should never be TSM aware. This option is not
allowed when the text being used is Unicode text since TSM is
required for inputting any Unicode character.

kTXNReadOnl yMask: Date inside this TXNObject is read-only.

kTXNNoKeyboar dSyncMask: Do not synchronize the keyboard with the font (see above

in User Interface section for further discussion of keyboard synchronization).

kTXNNoSel ect i onMask: Do not display the insertion point.

kTXNSaveSt yl esAsSTYLResour ceMask: When saving data has text save style

information as ‘styl’ resources (SimpleText) compatibility.

kQut put Text | nUni codeEncodi ngMask: When saving plain text save it as Unicode.

KTXNAI waysW apAt Vi ewedgeMask: Alwaysword-wrap at the edge of the TXNObject’'s

view rectangle.

typedef OptionBits TXNCont i nuousFIl ags;

enum {
kTXNFont Cont i nuousBi t
kTXNSi zeCont i nuousBi t
KTXNSt yl eCont i nuousBi t
kTXNCol or Cont i nuousBi t

wN RO

enum {
kTXNFont Cont i nuousMask
kTXNSi zeCont i nuousMask
KTXNSt yl eCont i nuousMask
kTXNCol or Cont i nuousMask

1L << kTXNFont Conti nuousBi t,
1L << KTXNSi zeConti nuousBi t,
1L << KTXNStyl eConti nuousBit,
1L << kTXNCol or Conti nuousBi t

}s

TXNContinuousFlags are passed to the function TXNGetContinuousTypeAttributes. They
indicate the type of continuous style information the application is interested in. For the more
uncommon style attributes offered by ATSUI, there is another function,
TXNGetContinuousTypeTags, which can be used to obtain continuous run information.

typedef OptionBits TXNMat chOpt i ons;
enum {

KTXNI gnor eCaseBi t =0,

KTXNENnt i r eWor dBi t =1,

kTXNUseEncodi ngWor dRul esBi t = 31

enum {
KTXNI gnor eCaseMask 1L << KTXNI gnoreCaseBit,
KTXNENnt i r eWor divask 1L << KTXNEntireWrdBit,
kTXNUseEncodi ngWor dRul esMask = 1L << kTXNUseEncodi ngWr dRul esBi t

}s

10/19/99 Preliminary draft. © Apple Computer, Inc. page 19

TXNMatchOptions are passed to the function TXNFind, and specify the matching rules that
should be used in the find operation.

t ypedef CSType TXNFi | eType;

enum {
kTXNText ensi onFi | e
kTXNText Fi |l e
KTXNPi ctureFil e
kTXNMovi eFi | e
kTXNSoundFi | e
kTXNAI FFFi | e

FOUR_CHAR CODE('txtn'),
FOUR_CHAR _CODE("' TEXT'),
FOUR_CHAR _CODE(' PI CT'),
Movi eFi | eType,
FOUR_CHAR _CODE("' sfil'),
FOUR_CHAR_CODE("' Al FF')

}

The TXNFileType defines the possible file types that can be passed to the function
TXNNewODbject.

t ypedef CSType TXNDat aType;

enum {
kTXNText Dat a
kKTXNPi ct ur eDat a
kTXNMovi eDat a
kTXNSoundDat a
kTXNUni codeText Dat a

FOUR_CHAR_CODE(' TEXT")
FOUR_CHAR_CCDE(' PI CT")
FOUR_CHAR_CODE(' nmoov')
FOUR_CHAR_CODE(' snd ')
FOUR_CHAR_CODE(' ut xt')

}s

TXNDataTypeisused in multiple MLTE functions. It is used to specify the type of data being
requested or returned.

t ypedef Four Char Code TXNCont r ol Tag;
enum {
KTXNLi neDi recti onTag = "I ndr',
KTXNJustifi cationTag = "just',
KTXNI OPri vi | egesTag = "iopv',
KTXNSel ecti onSt at eTag = "slst',
KTXNI nl i neSt at eTag = "inst',
KTXNWor dW apSt at eTag = wwrs',
kTXNKeyboar dSyncSt at eTag = "kbsy',
kKTXNAut ol ndent St at eTag = "auin',
kTXNTabSet t i ngsTag = 'tabs',
kTXNRef ConTag = "rfen',
kTXNMar gi nsTag = ‘marg’, /lset the top &
[11eft margins
kTXNNoUser | OTag = ‘nui o’ //do not allow
//typing, but do
/1allow
TXNSet Dat a
/1to work
b

10/19/99 Preliminary draft. © Apple Computer, Inc. page 20

The type TXNControl Tag and its following enumerated constants is used to specify the type of
information you are setting or getting when the functions TXNSetTXNObjectControls or
TXNGetTXNODbjectControls are called.

MLTE returns optional action key codes (i.e. if the caller is not interested aNULL can be
passed) in TXNCanUndo and TXNCanRedo. These numeric codes identify the action that can be
undone or redone. No strings are involved so MLTE is not concerned with localizing anything.
The client is responsible for mapping the key code to an appropriate localized string for user

display.
The currently defined action keys are:

t ypedef Ul nt 32 KTXNAct i onKey;
enum
{
KTXNTypi ngActi on
KTXNCut Acti on
kTXNPast eAct i on
kKTXNCl ear Acti on
kTXNChangeFont Acti on
kTXNChangeFont Col or Acti on
kTXNChangeFont Si zeAct i on
kTXNChangeSt yl eActi on
KTXNAI i gnLeft Acti on
KTXNAI i gnCent er Acti on
KTXNAI i gnRi ght Acti on
KTXNDr opActi on
kTXNMoveAct i on
kTXNFont Feat ur eAct i on
kTXNFont Vari ati onActi on
kTXNUndoLast Act i oon

Co~NoUuh,~,wNEFO

}

enum {
kTXNC ear Thi sCont r ol
kTXNC ear TheseFont Feat ur es

| ong) OxFFFFFFFF,
| ong) 0x80000000

—~~ e~

1
This constants can be used to clear ATSUI control or font feature settings.

The following constant values are used to set the value of a TXNControl Data structure before
passing that structure to the TXNSetTXNObjectControls or TXNGetTXNODbjectControls
function.

enum {

KTXNLef t TOR ght =0,
KTXNRi ght ToLeft =1
1
enum {

kKTXNFl ushDef aul t
KTXNFI ushLef t

0,/* according to the line direction */
11

10/19/99 Preliminary draft. © Apple Computer, Inc. page 21

KTXNFI ushRi ght
kTXNCent er
KTXNFul | Just
kTXNFor ceFul | Just

1

enum {
kTXNReadWite
KTXNReadOnl y

1

enum {
kTXNSel ecti onOn
kKTXNSel ecti onCOF f

1

enum {
kTXNUsel nl i ne
kTXNUseBot t oml i ne

1

enum {
kTXNAut oW ap
kTXNNoAut oW ap

1

enum {
KTXNSyncKeyboard
KTXNNoSyncKeyboard

1

enum {
kTXNAut ol ndent O f
kTXNAut ol ndent On

1

t ypedef Bool ean

enum {
kScrol | Bar sAl waysActi ve
kScrol | Bar sSyncW t hFocus

fal se,
true

true,
fal se

fal se,
true

fal se,
true

fal se,
true

fal se,
true

true,
fal se

TXNScr ol | Bar St at e;

The TXNTabType, its enumerated values, and the TXNTab structure are used when calling the
TXNSetTXNODbjectControls or TXNGetTXNObjectControls function to get tab information for
agiven TXNODbject. Notethat in version 1.0 of MLTE only right tabs are supported the other
constants are place holders for future enhancements.

typedef SInt8

enum {
KTXNRi ght Tab
KTXNLef t Tab
KTXNCent er Tab

}s

10/19/99 Preliminary draft. © Apple Computer, Inc.

TXNTabType;

page 22

struct TXNTab {

SInt16 val ue;
TXNTabType t abType;
U nt8 filler;
1
typedef struct TXNTab TXNTab;

The TXNTab structure specifies tab information. In the future, three types of tabs may be
supported (right, left and center). MLTE 1.0 supports only one left tab per.

struct TXNWMargins {

SInt16 t opMar gi n;
SInt16 | ef t Mar gi n;
SInt16 bot t onmVar gi n;
SInt16 ri ght Margi n;
1
typedef struct TXNMargins TXNMar gi ns;

This structure is used to specify the margin value. Inversion 1.0 of MLTE only the topMargin
and leftMargin can be set. BottomMargin and rightMargin are placeholders for future
enhancements.

uni on TXNControl Data {

Ul nt 32 uVal ue;

Sl nt 32 sVal ue;
TXNTab t abVal ue;
TXNMar gi ns * mar gi nsPtr;

t ypedef uni on TXNContr ol Dat a TXNCont r ol Dat a;

The TXNControl Data structure is used to provide or get values from the
TXNGetTXNODbjectControls and TXNSetTXNObjectControls functions. These functions
provide information about any globally set attribute of a TXNObject.

The following constants are convenience definitions used to specify defaults when calling the
function TXNSetFontDefaults or to specify that the current type size should decrement or
increment by one point when calling the function TXNSetTypeAttributes.

enum {
kTXNDont Car eTypeSi ze
kTXNDont Car eTypeStyl e
KTXNI ncr erent TypeSi ze
kTXNDecr errent TypeSi ze

(1 ong) OXFFFFFFFF,
OxFF,

0x00000001,

(1 ong) 0x80000000

}s
t ypedef Ul nt 32 TXNO f set ;
enum {

kTXNUseCur r ent Sel ecti on = OxFFFFFFFFUL,

KTXNSt art O f set = OuL,

10/19/99 Preliminary draft. © Apple Computer, Inc. page 23

KTXNEndOf f set Ox7FFFFFFFUL

}s

TXNOffset isused to specify offsetsin a TXNODbject’sdata. kTXNStartOffset and
kTXNENdOffset are convenience constants that can be used to specify the start and end of the
datain a TXNODbject. KTXNUseCurrentSelection can be used to specify that ML TE should just
use the current selection.

typedef void * TXNObj ect Ref con;

TXNODbjectRefcon is areference set by MLTE and passed to the filter.

enum {
kTXNShowSt ar t = fal se,
kTXNShowEnd = true
}s

These constants are passed to TXNShowSelection. They specify whether the application wants
the end of the current selection to scroll to be shown or the beginning.

t ypedef Four Char Code TXNTypeRunAttri but es;
enum {

KTXNQDFont NanmeAt tri but e = FOUR_CHAR CODE(' fntn'),

KTXNQDFont Fami | yl DAt tri bute = FOUR_CHAR CODE(' font'),

KTXNQDFont Si zeAttri bute
KTXNQDFont Styl eAttri bute
KTXNQDFont Col or Attri bute
KTXNText Encodi ngAttri bute

FOUR_CHAR_CODE(' si ze'),
FOUR_CHAR CODE(' face'),
FOUR_CHAR _CODE(' kl or'),
FOUR_CHAR _CODE(' encd')

}s

t ypedef Byt eCount
TXNTypeRunAt tri but eSi zes;

enum {
KTXNQDFont NaneAt tri but eSi ze = si zeof (Str255),
KTXNQDFont Fam | yl DAt tri buteSi ze = sizeof(SIntl6),

KTXNQDFont Si zeAttri but eSi ze
KTXNQDFont Styl eAttri but eSi ze
KTXNQDFont Col or Attri but eSi ze
KTXNText Encodi ngAttri but eSi ze

si zeof (SInt 16),

si zeof (Style),

si zeof (R@BCol or),

si zeof (Text Encodi ng)

}s

The above types and constants are used to set type attributes when calling the function
TXNSetTypeAttributes, TXNGetContinuousTypeTags or TXNGetContinuousTypeAttributes.
These are supplemented by the style attributes defined for ATSUI.

t ypedef Ul nt 32 TXNPer manent Text Encodi ngType;

enum {
KTXNSyst enDef aul t Encoding = 0,

10/19/99 Preliminary draft. © Apple Computer, Inc. page 24

kTXNVac OSEncodi ng
kKTXNUni codeEncodi ng

}s

TXNPermanentTextEncodingType and the accompanying constants are used to specify how the
application wants to see text. Specifying one of the specific encodings
(KTXNSystemDefaultEncoding, kTXNUnicodeEncoding) means that MLTE will treat all
offsets, incoming, and outgoing text as that encoding. Thisistrue evenif MLTE isinternally
dealing with text in another format. If that isthe situation MLTE will utilize the Text Encoding
Convertor (TEC) to convert text and offsets to match the applications preference. If
KTXNSystemDefaultEncoding is specified MLTE will return offsets and text data in the format

used internally.

t ypedef Four Char Code

union TXNAttributeData {
void *
Ul nt 32

typedef union TXNAttri buteData

struct TXNTypeAttributes {
TXTNTag
Byt eCount
TXNAttri but eDat a

}s

typedef struct TXNTypeAttributes

TXTNTag;

dat aPtr;

dat aVal ue;

TXNAt tri but eDat a;
tag;
si ze;
dat a;

TXNTypeAttri butes;

The data structures TXTNTag and TXNTypeAttributes are used to request or receive

information about the text in a TXNObject.

struct TXNATSUI Feat ures {
I t emCount
ATSUFont Feat ur eType *
ATSUFont Feat ur eSel ect or *

H

t ypedef struct TXNATSUI Feat ures

struct TXNATSU Vari ations {
I t enCount
ATSUFont Vari ati onAxi s *
ATSUFont Vari ati onVal ue *

H
t ypedef struct TXNATSUI Vari ati ons

uni on TXNAttributeData {
void *
Ul nt 32
TXNATSUI Feat ures *
TXNATSU Vari ations *
H
typedef uni on TXNAttri buteData

struct TXNTypeAttributes {

10/19/99 Preliminary draft. © Apple Computer, Inc.

f eat ur eCount ;
f eat ur eTypes;
f eat ur eSel ect or s;

TXNATSUI Feat ur es;

vari ati onCount ;
vari ati onAxi s;
vari ati onVal ues;

TXNATSUI Vari ati ons;
dat aPtr;
dat aVal ue;

at suFeat ur es;

at suVari ati ons;

TXNAt tri but eDat a;

page 25

TXTNTag tag;
Byt eCount si ze;
TXNAt tri but eDat a dat a;

}s

typedef struct TXNTypeAttributes TXNTypeAttri butes;

The structures TXNATSUIFeatures, TXNATSUIVariations are used to specify ATSUI font
feature or variation setttings when calling the function TXNSetTypeAttributes.

struct TXNMacOSPr ef erredFont Descri ption {

Ul nt 32 fontl D

Fi xed poi nt Si ze;
Text Encodi ng encodi ng;

Style font Styl e;

1
typedef struct TXNMacOSPref erredFont Descri ption
TXNMac CSPr ef er r edFont Descri pti on;

TXNMacOSPreferredFontDescription is used to specify the preferred font for a given text
encoding. An array of these structuresis passed to TXNInitTextension to specify font defaults

for each script.

t ypedef Ul nt 32

enum {
kTXNBackgr oundTypeRGB
1

uni on TXNBackgr oundDat a {
RGBCol or
H

t ypedef uni on TXNBackgroundDat a

struct TXNBackground {

TXNBackgr oundType;

col or;

TXNBackgr oundDat a;

TXNBackgr oundType bgType;
TXNBackgr oundDat a bg;

1

t ypedef struct TXNBackground TXNBackgr ound;

A TXNBackground structure is passed to TXNSetBackground to specify the background for text
and datain agiven TXNObject. At thistime only colors are supported.

t ypedef GCSStat us
enum {

TXNErrors;

kKTXNEndl t erati onErr = -22000,
kTXNCannot AddFr anmeEr r = -22001,
kTXNI nval i dFr anel DErr = -22002,
KTXNI | | egal ToCr ossDat aBoundari esErr = -22003,
kTXNUser Cancel edOper ati onErr = -22004,
kTXNBadDef aul t Fi | eTypeWar ni ng = -22005,
kTXNCannot Set Aut ol ndent Err = -22006,

kTXNRunl ndexQut of BoundsErr = -22007,

10/19/99 Preliminary draft. © Apple Computer, Inc.

page 26

kTXNNoMat chEr r = -22008,

KTXNAt t ri but eTagl nval i dFor RunErr = -22009,
/*dataValue is set to this per invalid tag*/
KTXNSonmeOr Al | Tags! nval i dFor RunErr = -22010,

kKTXNI nval i dRunl ndex = -22011,

KTXNAl readylnitializederr = -22012,

KTXNCannot Tur nTSMX f WhenUsi ngUni codeErr = -22013,
kTXNCopyNot Al | owedl nEchoMbdeErr = -22014

1
These errors can be returned by ML TE functions along with memory or file operations.

Functions

EXTERN APl (GSSt atus)

TXNNewObj ect
(const FSSpec * i Fil eSpec, /* can be NULL */
W ndowPt r i W ndow,
Rect * i Frame, /* can be NULL */
TXNFr ameOpt i ons i FrameOpti ons,
TXNFr ameType i FrameType,
TXNFi | eType i Fil eType,
TXNPer manent Text Encodi ngType i Per manent Encodi ng,
TXNOhj ect * oTXNvj ect ,
TXNFramel D * OTXNFr anel D,
TXNOhj ect Ref con i Ref Con) ;

Allocates anew TXNODbject (i.e. the C++ operator new is called to allocate a TXNObject) and
returns a pointer to the object in the newDoc parameter.

Input:

iFileSpec: If not NULL, thefileisread to obtain the document contents after the object is
successfully allocated. If NULL you start with an empty document. Data
embedding in not supported by TXNNewObject. If the caller wants to include
datathat is embedded inside private data they should create the TXNObject by
calling TXNNewObject withaNULL iFileSpec. After the TXNObject is created
the data can be read in using TXNSetDataFromFile.

iWindow: The window in which the document is going to be displayed. This parameter can
asobeNULL. If itisNULL, you must eventually attach aWindow or Grafport
to the TXNODbject.

iFrame: If the text-area does not fill the entire window, this specifiesthe areato fill. If
you pass NULL, the window’ s portRect is used as the frame.

iFrameOptions. Specify the optionsto be supported by thisframe. See the enumerated
type TXNFrameOptions for the supported options.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 27

iFileType: Specify the primary filetype. If you use kTextensionTextFile, fileswill be
saved in aprivate format (see xxx). If you want saved filesto be plain text files,
you should specify TEXT' here. If you specify ' TEXT' here, you can use the
frameOptions parameter to specify whether the TEXT files should be saved
with '"MPSR' resources or 'styl' resources. These are resources that contain style
information for a file, and they both have there own limitations. If you use'styl’
resources to save style info, your documents can have as many styles asyou like
however tabs will not be saved. If you use 'MPSR' resources, only the first style
in the document will be saved. (Y our application is expected to apply al style
changes to the entire document.) If you want media-rich documents that can
contain graphics and sound, you should specify kTextensionTextFileOutput. If
you want aplain text editor with capabilities similar to SimpleText, specify that
style information by saved as ‘styl’ resources. If you want files similar to those
output by CW IDE, BBEdit, and MPW, specify that style information be saved in
a‘MPSR’ resource.

iPermanentEncoding: The genera encoding(s) that the application considers text to bein.
There are three options.
kKTXNSystemDefaultEncoding—use the encoding that is preferred by MLTE and
the system. Thiswill be Unicode on a system that includes ATSUI.
KTXNMacOSEncoding—incoming and outgoing text should be in traditional
MacOS Script system encodings.
kTXNUnicodeEncoding, incoming and outgoing text should be in Unicode even
on systems that do not include ATSUI.

Output:

OSStatus: function result. If anything goes wrong, the error isreturned. Success must be
complete. That is, if everything works, but thereis afailure reading a specified
file, the object isfreed.

oTXNODbject: Pointer to the opagque data structure allocated by the function. Most of the
subsequent functions require that such a pointer be passed in.

oTXNFramelD: Unique ID for the frame. Although some functions require a
TXNFramelD it isfor now a placeholder.

EXTERN_API (void)
TXNDel et eChj ect (TXNObj ect i TXNObj ect) ;

Delete a previously allocated TXNObject and all associated data structures.

I nput:
i TXNObj ect : opague structure to free.

EXTERN_API (void)

10/19/99 Preliminary draft. © Apple Computer, Inc. page 28

TXNResi zeFranme(TXNObj ect i TXNObj ect,

Ul nt 32 i Wdt h,
Ul nt 32 i Hei ght,
TXNFr anel D i TXNFranel D) ;

Changes the frame's size to match the new width and height.
I nput:

i TXNObj ect : opaque MLTE structure.
i W dt h: New width in pixels.
i Hei ght : New height in pixels.

ITXNFramelD: FramelD that specifies the frame to move.

EXTERN_API (void)

TXNSet Fr aneBounds(TXNCbj ect i TXNObj ect
Sl nt 32 i Top,
Sl nt 32 i Left,
Sl nt 32 i Bottom
Sl nt 32 i Ri ght,
TXNFr anel D i TXNFranel D) ;

Changes the frame's viewrect to have the new width and height.
I nput:
ITXNObject: opague MLTE structure.

iTop, iLeft, iBottom, iRight: Rect of the view

ITXNFramelD: FramelD that specifies the frame to move.

EXTERN _API (GSSt atus)

TXNI ni t Text ensi on(const TXNMVacGSPr ef err edFont Descri ption i Defaul t Fonts[],
| t emCount i Count Def aul t Font s,
TXNI nit Opti ons i UsageFl ags) ;

Initialize MLT. Should be called as soon as possible after the Macintosh toolbox isinitialized.
This function should only be called once per context. If it is called more than once, this function
returns aresult code of -22012. If thisisreturned, you can still call other MLTE functions, but
any TXNI ni t Opt i ons and TXNMacOSPr ef er r edFont Descri ption specified will not be

applied.

I nput:

10/19/99 Preliminary draft. © Apple Computer, Inc. page 29

TXTMacOSPreferredFontDescription: A table of font information including fontFamily
ID, point size, style, and script code. The table can be NULL or can have an entry
for any script for which you would like to to designate a default font. Only a
valid script number isrequired. Y ou can designate that MLTE should use the
default for agive script by setting the field to -1.

For example, if you wanted to specify New Y ork as the default font to use for
Roman scripts, but were happy with the default style and size, you would call the
function like this:

TXNMac OSPr ef er r edFont Descri pti on defaul ts;
Get FNun{ "\ pNew York", &defaults.fontFanmilylD);
defaul ts. pointSize = -1;

defaults.fontStyle = -1,
defaul ts. script = snRoman;
status = TXNI ni t Textensi on(&defaults, 1, 0);

usageFlags. Specify whether sound and movies should be supported.

Output:
OSStatus: Function result. NoErr isreturned if everything initialized correctly. Variety
of possible MacOS errorsif something goes wrong.

EXTERN_API (void)
TXNTer m nat eText ensi on(voi d);

Closethe MLTE library. It isnecessary to call thisfunction sothat MLTE can correctly close
down any TSM connections and and do other clean up.

EXTERN_API (void)
TXNKey Down(TXNObj ect i TXNObj ect
const EventRecord * iEvent);

Process a keydown event. Note that if the CIK script isinstalled and the current font is CIK
inline, input will take place. Thisis aways the case unless the application has requested the
bottomline window or has turned off TSM (see initialization options above).

I nput:
iITXNObject: opague struct to apply keydown to.

iEvent: the keydown event.

EXTERN_API (void)
TXNAd]j ust Cur sor (TXNCbj ect i TXNObj ect,
RgnHandl e i oCursor Rgn);

10/19/99 Preliminary draft. © Apple Computer, Inc. page 30

Handle switching the cursor. If the mouse is over atext area, set the cursor to the i-beam. If the
cursor is over graphics, asound, amovie, ascroll bar, or outside of window, set the cursor to the
arrow Cursor.

I nput:
iITXNObject: Opague struct obtained from TXNNewObject.
ioCursorRgn: Region to be passed to WaitNextEvent. Resized accordingly by
TXNAdjustCursor.

EXTERN_API (void)
TXNG i ck(TXNObj ect i TXNObj ect
const EventRecord * i Event);

Processes a mouse-down event in the window’ s content region. This function takes care of
scrolling, selecting text, playing sound and movies, handling drag—and-drop operations, and
responding to double-clicks.

I nput:
i TXNObj ect : Opague struct obtained from TXNNewODbject.
i Event : the mouse-down event

EXTERN_API (Bool ean)
TXNTSMCheck(TXNCObj ect i TXNObj ect, /* can be NULL */
Event Record * i Event);

Call thiswhen WaitNextEvent returns false or there is no active TSNObject . The TXNODbject
parameter can be NULL, allowing an application to call thisfunction at any time. Thisis
necessary to ensure input methods enough time to be reasonably responsive.

Input:
i TXNObj ect : The currently active TXNObject or NULL.
i Event: Theevent record.

Output:
Boolean: Trueif TSM handled this event. Falseif TSM did not handle this event.

EXTERN_API (void)
TXNSel ect Al 'l (TXNObj ect i TXNObj ect) ;

Selects all data belonging to the TXNObject.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 31

I nput:
I TXNObject: opague TXNObject

EXTERN_API (void)
TXNFocus(TXNObj ect i TXNObj ect
Bool ean i Becom ngFocused) ;

Focuses the TXNObject. By default, scroll bars and the insertion caret are made active if
iBecomingFocused istrue, and inactive if false. However, in conjunction with TXNActivate
scroll bars can remain active even though text input is not focussed. Thisis handy for windows
containing multiple text areas that are scrollable.

I nput:
i TXNObj ect : opague TXNObject
i Beconi ngFocused: true if becoming active. false otherwise.

EXTERN_API (void)
TXNUpdat e(TXNObj ect i TXNObj ect) ;

Handles an update event (i.e. draw everything in aframe.) This function calls the Toolbox
BeginUpdate - EndUpdate functions for the window that was passed to TXNNewObject. This
makes it inappropriate for windows that contain something el se besides the TXNODbject. In that
case, applications should use TXNDraw to update TXNODbjects (see below.)

I nput:
i TXNObj ect : opaque TXNODbject

EXTERN_API (void)
TXNDr aw(TXNObj ect i TXNObj ect
Gworl dptr i DrawPort);

Redraw the TXNODbject including any scroll bars associated with the text frame. Call this
function in response to an update event for awindow that contains multiple TXNODbjects or some
other graphic elements. If it isnecessary, the application is responsible for calling
BeginUpdate/EndUpdate in response to the update event.

I nput:
ITXNObject: opague TXNObject to draw
iDrawPort: This parameter can be NULL. If it isNULL drawing takes place in the port
currently attached to theiTXNObject. If not NULL drawing goes to the
iDrawPort. This capability can be used to image a TXNObject to aprinter asis(i.e
without re-layout to a page the printer page size.)

10/19/99 Preliminary draft. © Apple Computer, Inc. page 32

EXTERN_API (void)
TXNFor ceUpdat e(TXNObj ect i TXNObj ect) ;

Force aframe to be updated. Thisfunction isof course very much like the toolbox calls
InvalRect or InvalRgn.

I nput:
ITXNObject: opague TXNObject

EXTERN_API (Ui nt32)
TXNGet Sl eepTi cks(TXNObj ect i TXNObj ect) ;

Depending on state of window, get the appropriate sleep time to be passed to WaitNextEvent.

Input:
ITXNObject: opague TXNODbject obtained from TXNNewObject

Output:
UInt32: function result. The appropriate sleep time.

EXTERN_API (void)
TXNI dl e(TXNObj ect i TXNObj ect) ;

Do any necessary Idletime processing. Typically flash the cursor. If a TSMDocument is active,
pass aNULL event to the Text Service Manager.

I nput:
ITXNObject: opague TXNODbject obtained from TXNNewObject

EXTERN_API (void)
TXNG owW ndow(TXNCbj ect i TXNObj ect
const EventRecord * i Event);

If the application has requested a grow region, and if the TXNODbject is contained in a window
and not a subframe of that window track, then the cursor and grow the TXNODbjects view
rectangle.

I nput:

I TXNObject: opague TXNODbject obtained from TXNNewObject
event: The mouse-down event

10/19/99 Preliminary draft. © Apple Computer, Inc. page 33

EXTERN_API (void)
TXNZoomW ndow(TXNCbj ect i TXNObj ect
short i Part);

Handle mouse-down events in the zoom box. This function should only be called for
TXNODbject’ swhose view rect occupies the entire window (e.g., awindow is passed to
TXNNewODbject withaNULL FrameRect.)

Input:
i TXNObj ect : opague TXNODbject obtained
from TXNNewObject
i Part: Valuereturned by FindWindow

EXTERN_API (Bool ean)
TXNCanUndo(TXNChj ect i TXNObj ect,
TXNAct i onKey* 0Act i onKey) ;

Use thisto determineif the Undo item in the Edit menu should be highlighted or not. The result
istrueif the last command was undoable, and falseif it was not undoable.

I nput:
iITXNODbject: opague TXNObject obtained from TXNNewODbject
Output:

Boolean Function result. If true, the last command is undoable and the undo item in the
menu should be active. If false, the last command cannot be undone and undo
should be grayed in the menu.

OActionKey: The numeric key which identifies the action that can be undone. The caller of
TXNCanUndo is responsible for mapping the key to the appropriate localized
string to be displayed to the user.

EXTERN_API (Bool ean)
TXNCanRedo(TXNCbj ect i TXNObj ect,
TXNAct i onKey* 0Act i onKey) ;

Use thisto determine if the Redo item in the Edit menu should be highlighted or not. The result
istrueif the last command was redoable, and false if it was not redoable. TheiActionKey
identifies the action to be redone. The caller of TXNCanRedo can map the action key to a
localized string if the caller wishes to display to the user exactly what can be redone. For
example, if the value of iActionKey was KTXNTyping the client could then map that valueto a
string that read “Redo Typing” on a system localized for U.S. English. Note that ML TE does not
supply any mechanisms for doing such a mapping. MLTE simply returns akey that can be used
to map to a user readable string that describes the action. All issues of text localization are |eft to
the client of MLTE.

I nput:

10/19/99 Preliminary draft. © Apple Computer, Inc. page 34

iITXNODbject: opague TXNObject obtained from TXNNewODbject
Output:

Boolean Function result. If true, the last command is redoable and the redo item in the
menu should be active. If false, the last command cannot be redone and redo
should be grayed in the menu.

OActionKey: The numeric key which identifies the action that can be redone. The caller of
TXNCanRedo is responsible for mapping the key to the appropriate localized
string to be displayed to the user(See above for a more complete discussion of how
the key might be used).

EXTERN_API (void)
TXNUndo (TXNCbj ect i TXNObj ect) ;

Undo the last command. The undo level in MLTE 1.0is 32 levels deep. That is Undoable actions
are collected until the total count is 32. If a user undoes two actions she will need to do redo
twice to get back to the original state. |f more than 32 actions are performed the oldest actions
are forgotten as each new action takes place.

Finally, performing a new action when the last action done was a redo removes any actions
currently in aredo state from the stack. For example, say a user performs the following actions:
type some text, cut some text, paste some text, type some text; undo the last typing action, and
undo the paste operation; redo the paste; type some new text. After the new text has been typed
the undo stack will contain: the first text that was typed, the cut action, and the new text that was
just typed. The paste action and the second block of typed text will no longer be available for
undo, and the new text will be the only action that is undable.

Input:

I TXNObject: An opague TXNObject obtained from TXNNewODbject

EXTERN_API (void)
TXNRedo (TXNCObj ect i TXNObj ect) ;

Redo the last command. Theundo level in MLTE 1.0is 1 level deep. That is, if the user undoes
an action and then undoes it again, the second undo will be the same as aredo.

I nput:
I TXNObject: An opague TXNObject obtained from TXNNewODbject

EXTERN _API (GSSt atus)
TXNCut (TXNObj ect i TXNObj ect) ;

Cut the current selection to the MLTE private clipboard. See below for description of clipboard
formats.

I nput:

ITXNObject: opague TXNODbject obtained from TXNNewObject
Output:

OSStatus: function result. Variety of memory or scrap MacOS errors.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 35

EXTERN APl (GSSt atus)
TXNCopy (TXNObj ect i TXNObj ect) ;

Copy the current selection to the MLTE private clipboard.

I nput:
ITXNObject: opague TXNObject obtained from TXNNewODbject
Output:
OSStatus: function result. Memory or parameter errors.

EXTERN _API (GSStatus)
TXNPast e (TXNObj ect i TXNObj ect) ;

Paste the clipboard into the TXNODbject.

I nput:

ITXNObject: opague TXNODbject obtained from TXNNewObject
Output:

OSStatus: function result. Memory or parameter errors.

EXTERN _API (GSSt atus)
TXNC ear (TXNObj ect i TXNOoject);

Clear the current selection from the TXNODbject. Equivalent to selecting something and typing
the delete key.

Input:

ITXNObject: opague TXNODbject obtained from TXNNewObject
Output:

OSStatus: function result. Memory or parameter errors.

EXTERN_API (void)

TXNGet Sel ection (TXNObj ect i TXNObj ect,
TXNO f set * oStart O f set ,
TXNO f set * oEndOr f set) ;

Get the absolute offsets of the current selection. Embedded graphics, sound, etc. each count as
one character. Offsetsin MLTE are aways character offsets.

I nput:

10/19/99 Preliminary draft. © Apple Computer, Inc. page 36

ITXNObject: opague TXNODbject obtained from TXNNewObject
Output:
oStartOffset: absolute beginning of the current selection.
oENndOffset: end of current selection.

EXTERN_API (void)
TXNShowSel ecti on (TXNCbj ect i TXNObj ect,
Bool ean i ShowEnd) ;

Scroll the current selection into view.

I nput:
ITXNObject: opague TXNObject obtained from TXNNewODbject
iShowEnd: If true, the end of the selection is scrolled into view. If false, the beginning of
selection is scrolled into view.

EXTERN_API (Bool ean)
TXNI sSel ecti onEnpty (TXNOoj ect i TXNObj ect) ;

Call thisfunction to find out if the current selection is empty. Use thisto determine if Cut, Copy,
and Clear should be highlighted in Edit menu.

I nput:
I TXNODbject: opague TXNODbject obtained from TXNNewObject
Output:
Boolean: function result. Trueif current selection is empty (i.e. start offset == end offset).
Falseif selection is not empty.

EXTERN APl (GSStatus)

TXNSet Sel ection (TXNObj ect i TXNObj ect,
TXNO f set i Start O f set,
TXNC f set i EndCF fset);

Set the current selection. Offset values are character offsets.

I nput:
I TXNObject: opague TXNODbject obtained from TXNNewObject
i StartOff set: The new start offset.
IEndOffset: The new end offset.

EXTERN _API (GSSt atus)
TXNGet Cont i nuousTypeAttri butes (TXNObject i TxnObject,

10/19/99 Preliminary draft. © Apple Computer, Inc. page 37

TXNCont i nuousFl ags * oCont i nuousFl ags,
| t emCount i oCount ,
TXNTypeAttri butes i oTypeAttributes[]);

Test the current selection to seeif the font, style, color, and/or size of the font is continuous. The
flag bits will be set to indicate which of these attributes are continuous. Addtionaly, an
application can pass in an array for TXNTypeAttributes with the tags set to the continuous
attribute that she would like returned. On ATSUI system there is a much larger number of type
attributes that might be continuous. TXNGetContinuousTypeAttributes is designed to make it
easier for an application to add check marksto the Font, Style, and Size menus. |If an application
isinterested in the other less traditional type attributes available in ATSUI, the call
TXNGetContinuousTypeTags should be used instead of TXNGetContinuousTypeAttributes.
However, whether MLTE is using QuickDraw or ATSUI to draw text, this function supports
size, font, color, and style in either case.

I nput:
I TXNObject: opague TXNODbject obtained from TXNNewObject
continuouskl ags: Bits which can be examined to see which if any of the font attributes are
continuous. If aparticular bit isset and if the application has passed a
TXNTypeAttribute in the array that corresponds to the bit, then the informationin
the TXNTypeAttribute can be used to to do something like check off the
continuous size in the size menu.

For example:
TXNTypeAttri butes si zeAttr;

sizeAttr.tag = KTXNQDFont Si zeAttri bute;
sizeAttr.size = kTXNQDFont Si zeAttri but eSi ze;
si zeAttr. dat a. dat aVal ue = 0;

TXNAr eFont At tri but esConti nuous(txnQbj ect, & lags, 1, &sizeAttr);

if (flags & kSi zeConti nuousMask)
CheckSi zeMenu(si zeAttr. data. dataVal ue);

ioCount: Count of TXNTypeAttributes records in the ioTypeAttributes array.

ioTypeAttributes:. Array of TXNTypeAttributes. The tag valuesin this array indicate the
type attributes the application isinterested in.

EXTERN _API (GSSt atus)

TXNSet TypeAttri but es(TXNOoj ect i TXNObj ect,
| t emCount i AttrCount,
TXNTypeAttributes i Attributes[],
TXNO f set i Start O f set,
TXNC f set i EndCF fset);

Set the current ranges font information. Values are passed in the attributes array. Vaues <=
sizeof (UINt32) are passed by value. > sizeof (UInt32) are passed as a pointer. That is, the
TXNTypeAttributes 3rd field is a union that serves as either a 32-bit integer or a 32-bit pointer.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 38

I nput:
ITXNObject: opague TXNObject obtained from TXNNewODbject

iAttrCount: Count of type attributes in the TXNTypeAttributes array.

iAttributeq[]: An array of attributes that application would like to set.

iStartOffset: The starting offset where the application would like to begin setting these
attributes. If the goal isto change the current selection, the value of i StartOffset
should be set to KTXNUseCurrentSel ection (OxFFFFFFF).

IEndOffset: The offset where the style changes should stop. Thisisignored if
iStartOffset is equal to KTXNUseCurrentSelection

Output:
OSStatus: various MacOS errs. Notably memory manager and paramErrs.

EXTERN APl (GSSt atus)

TXNSet TXNCbj ect Control s(TXNObj ect i TXNObj ect
Bool ean i ClearAll,
| t emCount i Cont r ol Count,
TXNCont r ol Tag i Control Tags[],
TXNCont r ol Dat a i Control Dat a[]

)

Set things that apply to the entire TXNObject (i.e. the entire document). Thisincludesline
direction, justification, tab values, read-only status, whether the caret is on or off, whether the
bottom-line window is used, text auto-wrap, keyboard synchronization, auto-indent, and
application refcon. See the enum following the typedef for TXNControl Tag for the list of
constants that name what can be set. In addition, on systems which include ATSUI, al the
ATSUI Line Control Attribute Tags can be passed to this function asa TXNControl Tag. Thisis
the case for all the ATSUI tags except KATSULineRotationTag. ATSUI Tags are applied to the
entire TXNODbject.

I nput:
iITXNObject: opague TXNObject obtained from TXNNewODbject
iClearAll: reset al controlsto the default

justification = LM TESysJust
line direction = GetSysDirection()
etc.
iControlCount: The number of TXNControlInfo recordsin the array.
iControlTags: An array[iControlCount] of TXNObject control tags.
iControlinfo: ~ An array of TXNControl Data structures which specify the type of
information being set.

I nputOutput:
OSStatus: paramErr or nokrr.

EXTERN _API (GSSt atus)

10/19/99 Preliminary draft. © Apple Computer, Inc. page 39

TXNGet TXNCbj ect Control s(TXNObj ect
I t enCount
TXNCont r ol Tag

TXNCont r ol Dat a

i TXNObj ect

i Contr ol Count,

i Control Tags[],
oControl Data[]);

Get the current TXNControls for the TXNObject. Specify tagsin theiControlTags array. The
values are returned in the oControl Data array.

Input:
iITXNObject: opague TXNObject obtained from TXNNewODbject
iControlCount: The number of TXNControlInfo recordsin the array.
iControlTags: An array[iControlCount] of TXNObject control tags.
Input/Output:
OSStatus: paramErr or nokrr.

oControlData: An array of TXNControl Data structures which are filled out with
the information that was requested viathe iControl Tags array. The

application must alocate the array.

EXTERN APl (GSSt atus)

TXNCount Runs| nRange(TXNObj ect i TXNObj ect,
Ul nt 32 i Start O f set,
Ul nt 32 i EndOr f set
It enCount * oRunCount) ;

Given arange specified by the starting and ending offset return a count of the runsin that range.
Run in this case means changes in TextSyles or agraphic or sound.

I nput:
I TXNObject The TXNODbject you are interested in.
i StartOffset start of range
IEndOffset end of range
Output:
oRunCount count of runsin the range
OSStatus: paramerr

EXTERN APl (GSSt atus)

TXNGet | ndexedRunl nf oFr omRange(TXNCbj ect i TXNObj ect
| t enCount i | ndex,
Ul nt 32 i Start O f set,
Ul nt 32 i EndOf f set
U nt32 * oRunStart O f set,
U nt32 * ORUNENdCf f set ,

Coll ection * oCol | ecti on)

10/19/99 Preliminary draft. © Apple Computer, Inc. page 40

Get information about the Nth runin arange. Should call TXNCountRunsinRange to get the
count. The TXNTypeAttributes array must specify the type that the application isinterested in.
In other words, thetag field must be set. oTypeAttributes can be NULL.

I nput:
ITXNObject Current TXNODbject
ilndex the index is 0 based.

iStartOffset start of range

IEndOffset end of range

i TypeAttributeCount count of the number of TXNTypeAttribute strutures can be O if not

interested in type attributes.
Output:

OSStatus paramErr or KRunlndexOutofBoundsErr.

oRunStartOffset start of run. Thisisrelative to the beginning of the text, not the range

ORunENndOffset end of run.

oRunDataType Type of date contained in thisrun (i.e. PICT, moov, snd, TEXT)
i TypeAttributeCount

oTypeAttributes Array of TXNTypeAttributes specifying the type attributes you are
interested in.

EXTERN_API (Byt eCount)
TXNDat aSi ze (TXNChj ect i TXNObj ect) ;

Return the size in bytes of the charactersin a given TXNObject.

Input:
I TXNObject: The TXNODbject
Output:
ByteCount: The bytes required to hold the characters

EXTERN _API (GSStatus)

TXNGet Dat a(TXNChj ect i TXNObj ect
TXNC f set i Start O f set,
TXNC f set i EndOr f set
Handl e * oDat aHandl e) ;

Copy the datain the range specified by startOffset and endOffset. This function should be used
in conjunction with TXNNextDataRun. The application would call TXNNextDataRun to
determine dataruns and their size. For each datarun of interest (i.e., one whose data the
application wanted to look at), the application would call TXNGetData. The handle passed to
TXNGetData should not be allocated.

TXNGetData takes care of allocating the dataHandle as necessary. However, the application is

responsible for disposing the handle. No effort is made to ensure that data copies align on a
word boundary. Datais simply copied as specified in the offsets.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 41

I nput:

ITXNObject: opague TXNODbject obtained from TXNNewObject.
iStartOffset: absolute offset from which data copy should begin.
IEndOffset: absolute offset at which data copy should end.

Output:

OSStatus Memory errorsor TXN_Illegal ToCrossDataBoundaries if offsets specify arange
that crosses a data type boundary.

oDataHandle:

EXTERN APl (OSSt atus)

If noErr anew handle containing the requested data.

TXNGet Dat aEncoded(TXNCbj ect i TXNObj ect,
TXNC f set i Start O f set,
TXNC f set i EndOr f set
Handl e * oDat aHandl e,
TXNDat aType encodi ng) ;

Thisfunctionissimilar to TXNGetData except for the following crucia difference.
TXNGetDataEncoded only copiestext. The application can specify whether text should bein
the traditional Mac OS script encodings or Unicode. If the application specifies an encoding
different from how the text is stored internally, the Text Encoding Conversion Manager will be
invoked to tranglate the text into the requested encoding type.

I nput:
ITXNObject: opague TXNObject obtained from TXNNewODbject.
i StartOff set: absol ute offset from which data copy should begin.
IEndOffset: absolute offset at which data copy should end.

encoding : should be kKTXNTextData or KTXNUnicodeTextData
Output:
OSStatus Memory errorsor TXN_Illegal ToCrossDataBoundaries if offsets specify arange
that crosses a datatype boundary.
oDataHandle: If noErr anew handle containing the requested data.

EXTERN APl (GSSt atus)

TXNSet Dat aFr onFi | e (TXNObj ect i TXNObj ect,
SInt16 i Fi | eRef Num
CSType i Fil eType,
Byt eCount i Fil eLength,
TXNO f set i Start O f set,
TXNC f set i EndCF fset);

Replace the specified range with the contents of the specified file. The datafork of the file must
be opened by the application.

MLTE will not move the file's marker before reading the data. The marker must be set by the

caller to the appropriate position before calling TXNSetDataFromFile. If the entirefileisto be
MLTE data then the marker should be set to position 0. If the caller wants to embed MLTE data

10/19/99 Preliminary draft. © Apple Computer, Inc. page 42

within private or even other MLTE data then the file position must be set to the appropriate
location.
Input:

iITXNObject: opague TXNODbject obtained from TXNNewObject

iFileRefNum: HFSfile reference obtained when file is opened.

iFileType: filestype.

iStartOffset: start position at which to insert the file into the document.

IEndOffset: end position of range being replaced by thefile.

i Fil eLength Describes how much data should be read. This Paraneter is
ignored if the file type is thecustomfile format that M.TE
supports. This paraneter is useful when a caller wi shes MTE
to read data that is enbedded in the callers private file. If
you just want M.TE to deal with the whole file pass
KTXNENdOf f set (Ox7FFFFFFF) for the iFil elLength.

Output:
OSStatus: File manager error or noErr.

EXTERN _API (GSStatus)

TXNSet Dat a (TXNObj ect i TXNObj ect
TXNDat aType i Dat aType,
void * i Dat aPtr,

Byt eCount i Dat aSi ze,
TXNO f set i Start O f set,
TXNC f set i EndCF fset);

Replace the specified range with the data pointed to by dataPtr and described by dataSize and
dataType.

Input:
iITXNObject: opague TXNODbject obtained from TXNNewObject.
iDataType: type of data must be one of TXNDataTypes.
iDataPtr: pointer to the new data.
iDataSize: Size of new data
iStartOffset: offset to beginning of range to replace
IEndOffset: offset to end of range to replace.
Output:
OSStatus: function result. parameter errors and Mac OS memory errors.

EXTERN_API (| tenCount)
TXNGet ChangeCount (TXNCbj ect i TXNObj ect) ;

Retrieve the number of times document has been changed. The change count isincremented for
every committed command. The count is cleared each time the TXNObject is saved. This
function is useful for deciding if the Save item in the File menu should be active.

I nput:
iITXNObject: opague TXNODbject obtained from TXNNewObject

10/19/99 Preliminary draft. © Apple Computer, Inc. page 43

Output:
ItemCount: count of changes. Thisistotal changes since document was created or last

saved.

EXTERN _API (OSSt atus)

TXNSave (TXNObj ect i TXNObj ect,
CSType i Type,
CSType i ResType,
TXNPer manent Text Encodi ngType i Per manent Encodi ng,
FSSpec* i Fi | eSpecification,
SInt16 i Dat aRef er ence,
SInt16 i Resour ceRef erence);

Save the contents of the document as the type specified. The file to save the document to must
be opened. If thefileisbeing saved as plain text and the application has specified aresource
type in which to save style attributes, then the resource fork of the file must be open as well.

The file marker of the opened file is expected to be at the position where the caller wants the data
to be written. Typically, thisis O, but any valid file position can be used. MLTE does not move
the marker before writing the file. This allows callersto write private data, followed by data that
iswritten by MLTE which can subsequently be followed by more private data or even another
MLTE file.
I nput:
iITXNObject: opague TXNODbject obtained from TXNNewObject.
iType: Thefiletypeto which the TXNODbject should be saved. The type must be ‘txtn’,
‘TEXT’, or utxt.
iResType: The type of resource that should be used to save the style information if
thefileisbeing saved asplain TEXT. This parameter isignored for other file
types.
iPermanentEncoding: The encoding style in which to save the document. If the internal
encoding being used by MLTE does not match the requested encoding type, the
text istrandated by the Text Encoding Conversion Manager.
iFileSpecification: A pointer to an FSSpec record that specifiesthe fileslocation. This
parameter is retained and used in callsto TXNRevert. It isnot retained past the life

of the TXNObject.
iDataReference: A reference to the files open data fork.
iDataReference: A reference to the files open resource fork. This parameter is

ignored if thefiletypeisnot ‘TEXT'. You can save TEXT without style
information by passing -1 for this parameter.

Output:

OSStatus: Function result. NoErr if document was saved. A File Manager error isreturned if
there was afailure.

EXTERN _API (GSSt atus)
TXNRevert (TXNChj ect i TXNObj ect) ;

10/19/99 Preliminary draft. © Apple Computer, Inc. page 44

Revert to thelast saved version of this document. If the file was not previously saved, the
document is reverted to an empty document.

TXNRevert does not support data embedding. To revert to datathat is embedded in a private file
type the caller should call TXNSetSelection to select all of the current data and then use
TXNSetDataFromFile to read in the old data.

Input:

I TXNObject: opague TXNODbject obtained from TXNNewObject
Output:

OSStatus: File manager errors, paramErr, or noErr.

EXTERN _API (GSSt atus)
TXNPageSet up (TXNObj ect i TXNObj ect) ;

Display the Page Setup dialog box for the current default printer and react to any changes (i.e.,
reformat the text if the page layout changes.)
I nput:
i TXNObject: opague TXNObject obtained from TXNNewObject.
Output:
OSStatus: Print Manager errors, paramerr, noErr.

EXTERN APl (GSSt atus)
TXNPrint (TXNObj ect i TXNObj ect) ;

Print the TXNODbject formatted to fit the printer page size.
Input:
iITXNObject: opague TXNODject obtained from TXNNewODbject.
Output:
OSStatus: Print Manager errors, paramerr, noErr.

EXTERN_API (Bool ean)
TXNI sScr apPast abl e (void);

Test to seeif the current scrap contains data that is supported by MLTE. Used to determine if
the Paste item in Edit menu should be active or inactive.
Output:
Boolean: functionresult. Trueif datatypein Clipboard is supported. Falseif nota
supported datatype. If result istrue, the Paste item in the menu should be
highlighted.

EXTERN _API (GSSt atus)
TXNConvert ToPubl i cScrap (void);

10/19/99 Preliminary draft. © Apple Computer, Inc. page 45

Convert the MLTE private scrap to the public clipboard. This should be called on suspend
events and before the application displays a dialog box that might support cut and paste. Or
more generally, whenever someone other than ML TE needs access to the scrap data. The public
formats supported are style text and styled Unicode text.
Output:
OSStatus: Function result. Memory Manager errors, Scrap Manager errors, noErr.

EXTERN _API (GSSt atus)
TXNConvert FronmPubl i cScrap (voi d);

Convert the public clipboard to MLTE private scrap . This should be called on resume events
and after an application has modified the scrap.
Output:
OSStatus: Function result. Memory Manager errors, Scrap Manager errors, noEtrr.

EXTERN_API (void)
TXNGet Vi ewRect (TXNObj ect i TXNObj ect,
Rect * oVi ewRect) ;

Get the rectangle describing the current view into the document. The coordinates of this
rectangle will be local to the window. If scroll bars are being managed by the TXNODbject (i.e.,
the TXNNewObject flags include want vertical and horizontal scroll bars), the viewrect
describes an area that encloses the scroll bars.
I nput:
iITXNObject: opague TXNODbject obtained from TXNNewODbject.
Output:
oViewRect: Therequested view rectangle.

EXTERN _API (GSSt atus)

TXNFi nd (TXNCbj ect i TXNObj ect
const TXNWat chText Record * i MatchTextDataPtr, /* can be NULL */
TXNDat aType i Dat aType,
TXNMat chOpt i ons i Mat chOpti ons,
TXNO f set i Start SearchO f set,
TXNO f set i EndSear chOf f set ,
TXNFi ndUPP i Fi ndProc,
Sl nt 32 i Ref Con,
TXNCOf f set * oSt art Mat chOf f set
TXNO f set * oEndMvat chOf f set) ;

Find a piece of text or a graphics object. Sounds are considered graphics objectsin this context.
I nput:
ITXNObject: opague TXNObject obtained from TXNNewODbject.
iMatchTextDataPtr: ptr to a MatchTextRecord containing the text to match, the length of that
text, and the TextEncoding the text is encoded in. This must be there if you are
looking for text, but can be NULL if you are looking for a graphics object.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 46

iDataType: the type of datato find. This can be any of the types defined in TXNDataType
enum (TEXT, PICT, moov, snd). However, if PICT, moov, or snd is passed, then
the default behavior isto match on any non-Text object. If you really want to find
a specific type, you can provide a custom find callback or ignore matches that
aren't the precise type you are interested in.

i StartSearchOffset: The offset at which a search should begin. The constant
KTXNStartOffset specifies the start of the objects data.

iEndSearchOffset: The offset at which the search should end. The constant kTXNEndOffset
specifiestheend of the objects data.

iFindProc A custom callback. If will be called to match things rather than the default
matching behavior.

iRefCon This can be use for whatever the application likes. It is passed to the FindProc (if a
FindProc is provided.

Output:

oStartMatchOffset absolute offset to start of match. Set to OXFFFFFFFF if thereisno
match.

oEndMatchOffset absolute offset to end of match. Set to OXFFFFFFFF is no match. The
default matching behavior is pretty ssmple for text: a basic binary compare is done.
If the matchOptions say to ignore case, the charactersto be searched are
duplicated and case neutralized. This naturally can fail dueto lack of memory if
thereisalarge amount of text. It also slowsthings down. If MatchOptions say
find an entire word, then once a match is found, an effort is made to determine if
the match isaword. The default behavior isto test the character before and after to
seeif itiswhite space. If the KTXNUseEncodingWordRulesBit is set, than the
Script Manager's FindWord function is called to make this determination. If the
text being searched is Unicode text, then ATSUI’ s word determining functions are
used to determine the word. If the application islooking for a non-text type, then
each non-text type in the document is returned. The FindProc is there to provide
applications with more elaborate search engines (aregular expression processor,
etc.) in mind.

EXTERN _API (OSSt atus)
TXNSet Font Def aul t s (TXNObj ect i TXNObj ect,
| t emCount i Count ,
TXNMacOSPr ef erredFont Description i FontDefaults[]);

For a given TXNODbject, specify the font defaults for each script.

I nput:
ITXNObject: opague TXNODbject obtained from TXNNewObject.
iCount: count of FontDescriptions.
iFontDefaults: array of FontDescriptins.
Output:
OSStatus: function result (memory error, paramerr)

EXTERN _API (GSSt atus)

10/19/99 Preliminary draft. © Apple Computer, Inc. page 47

TXNGet Font Def aul t s (TXNObj ect i TXNObj ect,
|t emCount * i oCount ,
TXNMacOSPr ef er redFont Descri ption i FontDefaults[]);

For a given TXNODbject, make a copy of the font defaults.

Input:
iITXNObject: opague TXNODbject obtained from TXNNewObject.
iCount: count of FontDescriptionsin the array.
iFontDefaults: array of FontDescriptinsto be filled out.

Output:

OSStatus: function result (memory error, paramerr). To determine how many font
descriptions need to be in the array, you should call this function witha NULL for
the array. iCount will return with the number of font defaults currently stored.

EXTERN _API (GSStatus)

TXNAt t achCbj ect ToOW ndow (TXNCbj ect i TXNObj ect,
Gnor |l dPt r i W ndow,
Bool ean i | sActual W ndow) ;

If aTXNODbject wasinitialized with aNULL window pointer, use this function to attach a
window to that object. Inversion 1.0 of MLTE, attaching a TXNObject to more than one
window is not supported.

Input:
I TXNObject: opague TXNObject obtained from TXNNewObject.
iWindow: GWorldPtr that the object should be attached to

ilsActuaWindow: Trueif the GWorldPtr was obtained by calling NewWindow or
NewCWindow. Falseif it isageneric port. Passing false means that MLTE will
never call window-specific Toolbox functions like InvalRect, BeginUpdate, etc. If
falseis passed, it isthe application’ s responsibilty to handle this type of
functionality if it isrequired.
Output:
OSStatus: function result (kObjectAlreadyAttachedToWindowErr, paramErr)

EXTERN_API (Bool ean)
TXNI sObj ect Att achedToW ndow (TXNGbj ect i TXNObj ect) ;

A utility function that allows a application to check a TXNODbject to seeif it isattached to a
window.

I nput:
ITXNObject: opague TXNObject obtained from TXNNewODbject.
Output:
Boolean: function result. Trueif object is attached. False if TXNObject is not attached.

EXTERN_API (OSErr)
TXNDr agTracker (TXNObj ect i TXNObj ect,

10/19/99 Preliminary draft. © Apple Computer, Inc. page 48

TXNFr amel D i TXNFr anel D,
DragTr acki ngMessage i Message,

W ndowPt r i W ndow,
Dr agRef er ence i DragRef erence,
Bool ean i Di fferentoject SamreW ndow) ;

If you ask that drag-handling procs not be installed by passing
KTXNDoNotInstallDragProcsMask to TXNNewObject, you should call this function when your
drag tracker is called and you want MLTE to take over.
I nput:
I TXNObject: opague TXNObject obtained from TXNNewObject.
iITXNFramelD TXNFramel D obtained from TXNNewODbject
iMessage drag message obtained from Drag Manager
iWindow windowPtr obtained from Drag Manager
iDragReference dragReference obtained from Drag Manager
iDifferentObjectSameWindow: If your application is displaying more than one TXNODbject
per window, pass true here when the drag operation moves out of one object’s view
rectangle and into another TXNODbject’s view rectangle.
Output:
OSErr: function result. OSErT isused over OSStatus so that it matches the Drag Manager
definition of Tracking callback

EXTERN_API (OSErr)

TXNDr agRecei ver (TXNObj ect i TXNObj ect,
TXNFr amel D i TXNFr anel D,
W ndowpt r i W ndow,
Dr agRef er ence i DragRef erence,
Bool ean i Di fferenthj ect SaneW ndow) ;

If you are handling Drag and Drop (i.e., you passed kTXNDoNotInstall DragProcsMask to
TXNNewODbject), call thiswhen your drag receiver is called and you want MLTE to take over.
I nput:
iITXNObject: opague TXNObject obtained from TXNNewObject.
ITXNFramelD TXNFramelD obtained from TXNNewObject
iWindow windowPtr obtained from Drag Manager
iDragReferencedragReference obtained from Drag Manager
Output:
OSErr: function result. OSErT isused over OSStatus so that it matches the Drag Manager
definition of Tracking callback

EXTERN _API (GSSt atus)

TXNActi vat e (TXNChj ect i TXNObj ect,
TXNFr amel D i TXNFr anel D,
TXNScr ol | Bar St at e i ActiveState);

10/19/99 Preliminary draft. © Apple Computer, Inc. page 49

Make the TXNODbject active in the sense that it can be scrolled if it has scroll bars. If the
TXNScrol|BarState parameter istrue, then the scroll bars will be active even when the
TXNODbject is not focused (i.e., the insertion point is not active)

This function should be used if you have multiple TXNODbjectsin a window, and you want them
al to be scrollable even though only one at atime can have the keyboard focus.
I nput:
I TXNObject: opague TXNObject obtained from TXNNewObject.
iITXNFramelD TXNFramel D obtained from TXNNewObject
iIActiveState Boolean. If true, scroll bars stay active even though TXNODbject does not
have the keyboard focus. If this parameter isfalse, scroll bars are synced with
active state (i.e., afocused object has an active insertion point or selection and
active scroll bars. An unfocused object has inactive selection—grayed or framed
selection—and inactive scroll bars.) The latter state isthe default and usually the
one you use if you have one TXNODbject in awindow.
Output:
OSStatus: function result. ParamErr if bad iTXNObject or frame ID.

EXTERN APl (GSSt atus)
TXNSet Backgr ound (TXNObj ect i TXNObj ect,
TXNBackgr ound * i Backgr oundl nf o) ;

Set the type of background the TXNObject's text, etc., isdrawn onto. The background can be a
color or apicture.

Input:
I TXNObject: opague TXNObject obtained from IncomingDataFilter callback.
iBackgroundinfo: struct containing information that describes the background
Output:
OSStatus: function result. paramEtrrs.

EXTERN _API (GSSt atus)

TXNNewFont MenuCbj ect (MenuHandl e i Font MenuHandl e,
SInt16 i Font Menul D,
SInt16 i StartHi er Menul D,

TXNFont MenuQbj ect * 0TXNFont MenuChj ect);

Get anew TXNFontMenuObject. A TXNFontMenuObject is an obague structure that describes
and handles all aspects of user interaction with a Font menu. The menu is created dynamically.
The application provides the menu title, the menu 1D, and the menu ID to useif any hierarchical
menus are created. Hierarchical menus are created on systems with ATSUI.

I nput:

IFontMenuHandle An empty menu handle (well thetitle isthere) that the caller created via
NewMenu or GetNewMenu. This menu handle should not be disposed

10/19/99 Preliminary draft. © Apple Computer, Inc. page 50

before the returned TXNFontMenuObject has been disposed via
TXNDisposeFontMenuObject /:

iFontMenul D: ;I'he menu ID that the font menu should have.
iStartHierMenulD: The menu ID at which hierarchical menu IDs will begin.

Output:
OSStatus: function result, Memory Error, paramError.
oTXNFontMenuObject: A new TXNFontMenuObject is returned.

EXTERN APl (GSSt atus)
TXNGet Font MenuHandl e(TXNFont MenuQbj ect i TXNFont MenuQbj ect,
MenuHandl e* oFont MenuHandl e);

Get the Font menu handle that belongs to a TXNFontM enuObject.

I nput:

oTXNFontMenuObject: TXNFontMenuObject obtained from TXNNewFontM enuObject.
Output:

OSStatus: function result, ParamEtrror.

oFont MenuHandl e: The Font menu created when TXNNewFontMenuObject was created.
The application should NOT dispose of this Handle.

EXTERN APl (OSStatus)

TXNDoFont MenuSel ection(TXNCObj ect i TXNObj ect
TXNFont MenuQbj ect i TXNFont MenuQbj ect,
SInt16 i Menul D,
SInt16 i Menultem);

Pass the results of MenuSelect to thisroutine. If theiMenulD is the Font menu or one of its sub-
menus, the currently selected text will be changed to the font the user selected.

Input:
I TXNObject: TXNODbject obtained from TXNNewObject;
iITXNFontMenuObject: TXNFontMenuObject obtained from TXNNewFontMenuObject.
iMenul D: The high 16-bits of the long word returned by MenuSelect. It is necessary to pass
the menulD because the font menu may have hierarchical sub-menus.
iMenultem: The low 16-bits of the result of MenuSelect.

Output:
OSStatus: function result, ParamError.

EXTERN _API (GSSt atus)
TXNPr epar eFont Menu(TXNObj ect i TXNObj ect
TXNFont MenuQbj ect i TXNFont MenuQbj ect) ;

10/19/99 Preliminary draft. © Apple Computer, Inc. page 51

Prepare a Font menu for display. If the TXNODbject’s current selection is asingle font, the item
for that font is checked. If iTXNObject isNULL, the menu is grayed out.

Input:
I TXNObject: TXNODbject obtained from TXNNewObject;
iITXNFontMenuObject: TXNFontMenuObject obtained from TXNNewFontMenuObject.
Output:
OSStatus: function result, ParamEtrror.

EXTERN _API (GSSt atus)
TXNDi sposeFont MenuQhj ect (TXNFont MenuQbj ect i TXNFont MenuQbj ect) ;

Dispose a Font menu object. This function calls DisposeMenuHandle on the Font menu handle.

I nput:

iITXNFontMenuObject: TXNFontMenuObject obtained from TXNNewFontMenuObject.
Output:

OSStatus: function result, ParamError.

EXTERN APl _C(CSStatus)

TXNEchoMbde (TXNChj ect i TXNObj ect,
Uni Char i echoChar act er,
Text Encodi ng i encodi ng,
Bool ean i on);

Put the TXNObject into echo mode. When a TXNObject isin echo mode all charactersin the
TXNODbject have the character specified by ‘echoCharacter' substituted for the actual glyph
when drawing occurs. Note that the echoCharacter is typed as a UniChar, but thisis done merely
to facilitate passing any two byte character. The encoding parameter actually determinesthe
encoding used to locate afont and display a character. Thusif you wanted to display the
diamond found in the Shift-JIS encoding for MacOS you would passin 0x86A6 for the character
but an encoding that was built to represent the MacOS Japanese encoding.

Input:
iITXNObject: opague TXNODbject obtained from IncomingDataFilter callback.
iechoCharacter: character to use in substitution

iencoding: encoding from which character is drawn.
ion: TRUE if turning EchoMode on. Falseif turning it off.
Output:

OSStatus: function result. paramEtrrs.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 52

EXTERN_API(OSStatus)
TXNVersionValue TXNVersionlnformation(TXNFeatureBits* oFeatureFlags);

Get the version number and a set of feature bits. The initial version number
is And the only bit used in the oFeatureFlags is the Isb: 0x00000001

Input:
NONE

Output:

TXNVersionValue: Current version.

TXNFeatureBits*: Pointer to a bit mask. See TXNFeatureMask enum
above. IT KTXNWillDefaultToATSUIBiIt is set it
means that by default MLTE will use ATSUI to image
and measure text and will default to using Unicode
to store characters.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 53

