



Technical Publications
© Apple Computer, Inc. 1999



Multilingual Text Editor API
Preliminary Documentation

For Multilingual Text Editor 1.1

Preliminary Draft

© Apple Computer, Inc. 10/19/99



Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Chicago,
Geneva, Mac, Macintosh, Monaco,
MPW, New York, QuickDraw, Sand,
Techno, Textile, and WorldScript are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
Helvetica, Palatino, and Times are
registered trademarks of
Heidelberger Druckmaschinen AG,
available from Linotype Library
GmbH.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 3

Important..5

EXECUTIVE SUMMARY...5

ARCHITECTURE...6

ASPECTS OF LONG-TERM ARCHITECTURE..6
FIT WITH APPLE SYSTEM ARCHITECTURE..6

FEATURES AND BEHAVIORS ...6

USER EXPERIENCE ..6
TEXT FORMATTING ...7
SELECTION BEHAVIOR ..8
TYPING AND INLINE INPUT..10
KEYBOARD AND FONT SYNCHRONIZATION ...10
FONT TO KEYBOARD SYNCHRONIZATION ..11
FONT LOCKING..11
DRAG AND DROP...12
SUPPORT FOR STANDARD EDITING MENUS..12
FONT MENU...13
ATSUI FONT VARIATIONS AND FEATURES ...16
INTELLIGENT EDITING...16
KEY ALGORITHMS...16
COMPATIBILITY...16
INTERNATIONALIZATION...16
FAULT HANDLING METHODOLOGY AND MECHANISMS ..16

APPLICATION PROGRAMMING INTERFACE (API) FOR MLTE..17

DATA STRUCTURES AND CONSTANTS. ...17
FUNCTIONS ..27

10/19/99 Preliminary draft. © Apple Computer, Inc. page 4

10/19/99 Preliminary draft. © Apple Computer, Inc. page 5

Important
This is a preliminary document. Although it has been reviewed for technical
accuracy, it is not final. Apple Computer, Inc. is supplying this information to
help you plan for the adoption of the technologies and programming interfaces
described herein. This information is subject to change, and software
implemented according to this document should be tested with final operating
system software and final documentation.

You can check
<http://developer.apple.com/techpubs/macos8/SiteInfo/whatsnew.html> for
information about updates to this and other developer documents. To receive
notification of documentation updates, you can sign up for ADC's free Online
Program and receive their weekly Apple Developer Connection News e-mail
newsletter. (See <http://developer.apple.com/membership/index.html> for more
details about the Online Program.)

Executive Summary
This document describes the engineering requirements for a new multilingual text editor
(MLTE). As a text-editing engine, MLTE is intended for use by applications that aren’t primarily
oriented towards word processing or page layout. MLTE provides sufficient built-in functionality
for applications with simple-to-midlevel text-editing needs.

The MLTE is intended as an alternative for TextEdit, the basic text-editing engine in the Mac
OS. All reasonable developer-requested enhancements to TextEdit (such as document-wide tabs,
full justification, and support for more than 32K of text) are supported by MLTE. MLTE does
not offer API compatibility with TextEdit. MLTE does offer equivalent or greater functionality
than TextEdit. MLTE provides the API to build a complete text editing user experience as
defined in Macintosh Human Interface Guidelines, the Drag and Drop Human Interface
Guidelines, and Inside Macintosh: Text.

MLTE uses Apple Type Services for Unicode Imaging (ATSUI) to measure and draw text if
ATSUI is available. If ATSUI is not available, then MTLE uses QuickDraw and the Script
Manager to handle text. MLTE can run on systems back to System 7.1.

With MLTE, layout settings (i.e., tabs, justification, are margins) are document wide.

MTLE supports 32 levels of undo. In addition, the can undo and can redo functions return a key
to the type of user action that can be undone or redone. It is the callers responsibility to map
these keys to the appropriate localized string to display to the user. Actions that can be undone
are listed below in the section in the Data Structures and Constants section.

MTLE also supports the saving and opening of files that are:
• plain text
• plain text with commonly supported style resources
• plain Unicode text

10/19/99 Preliminary draft. © Apple Computer, Inc. page 6

• a new format that supports either text or Unicode text along with embedded graphics, sounds,
and movies.

Architecture

Aspects of Long-term Architecture
The primary goal is to provide a text-editing engine that provides a level of basic functionality
higher than that offered by TextEdit and supports editing Unicode™ text. This is the case for
basic editing tasks and for the level of multilingual text editing. MLTE will also provide an API
that is expandable, and much more easily modified than the TextEdit API. To this end, opaque
data structures are used to encapsulate all data used by MLTE.

Fit with Apple System Architecture
MLTE requires CFM as a dynamic linking mechanism. MLTE will be a step in providing world-
ready text editing with sufficient functionality to cover most developer needs. This will further
developers in creating single code bases for delivering products to multiple international
markets.

On systems prior to system 8.6, MLTE is a client of QuickDraw Text and the Script Manager.
Beginning with system 8.6, ATSUI replaces QuickDraw Text and the Script Manager as the low-
level means of imaging and measuring text utilized by MLTE.

Where required, MLTE fully supports the Text Service Manager for text input.

MLTE provides the last significant building block towards creating a Mac OS that uses Unicode
for all text.

Features and Behaviors

MTLE supports all languages that currently are supported on the Macintosh and supports inline
input for Chinese, Japanese and Korean. MLTE also supports Unicode text, and input methods
written for non-CJK scripts if running on system 8.6 or later.

MLTE provides all of the enhancements that developers have requested for TextEdit. These
include support for greater than 32K of text and a document wide tab setting. Version 1.0 of
MLTE will offer only a single tab setting, but later versions may offer multiple tab settings via
rulers.

User Experience
This section specifies the default user experience provided by MLTE. It pays particular attention
to the specifics of editing multiscript text, which may involve contextual or bidirectional text

10/19/99 Preliminary draft. © Apple Computer, Inc. page 7

layout or using inline input. It expands on specifications given in the Macintosh Human Interface
Guidelines, the Drag and Drop Human Interface Guidelines, and Inside Macintosh: Text.

Text Formatting
MLTE renders text into a single rectangular frame. Applications can choose between assuming
arbitrarily wide lines and breaking lines at a certain width. When breaking lines, MLTE uses the
simplistic line breaking model that’s usually used on the Macintosh: that is, text is flowed into a
visual line as long as it fits, then a new line is started with the first unbreakable unit (e.g., word)
that didn’t completely fit into the line. In scripts that use space characters to separate words, one
(and only one) space character at the logical end of the text flowed into a visual line is consumed
by the line break – it is ignored for measurements and not displayed. This last description only
applies when using QuickDraw. It ATSUI is used, line break and display is controlled by the
ATSUI line breaking algorithms.

The interpretation of Tab characters is based on the one-tab-per-document standard found in
most programming text editors. Each tab character maps to an initial width. As text is flowed
onto a line, each tab is replaced by the width value necessary to place the start of the text
following the tab at a given position on the line. As the text prior to the tab grows, the white
space appears to shrink until the preceding text becomes long enough to envelop the entire tab.
At that point, the tab will assume its full width and the text following the tab will jump ahead.
The following illustration will help to clarify this point.

Figure 1:
<<Intial state white space between text block A and text block B represents a tab>>

text block a text block b
<<user enters text in text block a>>

text block a with more text block b
<<text in block a reaches a length that displaces the beginning of block b>>
text block a with more text text block b

The tab widths flow in the line direction for the line being formatted. If text is being
automatically wrapped and a tab width extends past the trailing margin (right on a Roman
system), a line break is generated and the next visual line will begin with the tab width.

Justification in version 1.0 of the MLTE might more appropriately be called flush. Text can be
flush against the left margin, flush against the right margin, centered or flush against both
margins (typically referred to as full justification).

Highlight regions for non-empty selections are drawn in the system highlight color, while carets
are drawn in black.

For bidirectional text, the caret location at direction run boundaries depends on the direction of
the keyboard script; split carets are not supported. Outline highlighting is used for inactive views
as required for Drag and Drop. For non-modifiable text that allows for selections, an application
can choose between one of two behaviors. The first allows selection and copying of text and

10/19/99 Preliminary draft. © Apple Computer, Inc. page 8

displays a blinking caret. This is the MPW model. The second type of non-modifiable behavior
is to display no caret and not allow selection. This is the Simple Text model.

Selection Behavior
Selection behavior is described in Macintosh Human Interface Guidelines, pages 286-296, with
details on Arrow keys in Macintosh Human Interface Guidelines, pages 281-284. The
specification given here has been adjusted to more closely correspond to the de facto standard for
text selection found in the more popular text editors used on the Macintosh.

A user has two ways to define a selection: she can create a new one or modify the current one. A
new selection is defined by the Select All command, by mouse actions (single-, double-, or
triple-clicking or dragging), or by using the Arrow keys (potentially combined with the
Command or Option keys). A selection is modified by pressing the Shift key and performing a
mouse-based or Arrow key-based selection action.

MLTE interprets modifying selection actions based on the notions of anchor selection and active
selection, implementing what’s called the fixed-point method in Macintosh Human Interface
Guidelines, page 290. The active selection is (with one exception – see below) identical to the
selection resulting from the non-modifying selection action that would be performed without the
Shift key. The anchor selection is the result of a previous selection action, it is updated whenever
the user creates a new selection, edits the text, deactivates the view, or when the selection is
changed through an API call. The modified selection is the smallest selection containing both the
anchor selection and the active selection.

When tracking mouse down events, MLTE automatically disambiguates between selection
operations and Drag and Drop operations. If the mouse down event occurs within the highlight
region of the current selection and the Drag Manager is available, then MLTE waits to see
whether the mouse is dragged. If it is, MLTE initiates a Drag and Drop operation. Drag and Drop
behavior is discussed below. Otherwise, the mouse event is interpreted as a selection operation.

Single-clicking defines an insertion point. Double-clicking by default selects a word as defined
by the Script Manager or ATSUI. Triple-clicking selects a visual line from the beginning of the
line to the beginning of the next line. If the user starts selecting by dragging after a double or
triple click, dragging extends the selection by words or visual lines, respectively. Clicking in
empty space is mapped to some location that has text.

The Arrow key in page direction (down for Roman) starts at the screen location of the logical
end of the current selection and simulates successive clicks in each line moving in page direction
in as straight a line as possible. The Arrow key against page direction (up for Roman) starts at
the screen location of the logical start of the current selection and simulates successive clicks in
each line moving straight against the page direction.

Horizontal Arrow keys move in a direction dependent on the line direction of the text. The
Arrow key in line direction (right for Roman) starts at the trailing edge of the highlight region in
the last line of the selection and simulates successive clicks at each character boundary moving

10/19/99 Preliminary draft. © Apple Computer, Inc. page 9

in line direction until it hits the trailing edge of the visual line. At that point selection wraps to
the leading edge of the next visual line. The character boundaries are determined by the backing
store order and not the display order.

The Arrow key against line direction (left for Roman) starts at the leading edge of the highlight
region in the first line of the selection and simulates successive clicks at each character boundary
moving against line direction until it hits the leading edge of the visual line, then wraps to the
trailing edge of the previous visual line.

For the line direction Arrow keys, a ligature that does not allow for an insertion point between its
constituting characters is treated as one character. This may be controllable in an environment
with ATSUI. Combining the Option key with a line direction Arrow key makes it simulate clicks
at word boundaries instead of character boundaries. The implementation of Option-Arrow is
slightly different from that recommended on Macintosh Human Interface Guidelines, page 296.
The guidelines state that pressing option and either Left Arrow or Right Arrow should select the
entire word. The MLTE implementation is to select from the insertion point (anchor point) to
either the beginning or end of the word where the insertion point resides.

Combining the Command key with an Arrow key in or against line direction makes it simulate
clicks at the trailing-or-leading edge of the last-or-first line intersecting with the selection,
respectively. When reaching a direction run boundary, a click on the last character in Arrow
direction of the direction run being left is simulated; the direction run being entered is clicked on
only after the direction run boundary has been passed.

Combining the Command key with a page direction Arrow key makes it simulate a click at the
corresponding edge of the portion of the view shown in the window, paging the view first if the
active selection already was at that edge. The start selection for page direction Arrow keys is
determined at the beginning of an uninterrupted sequence of page direction Arrow keys.

The active selection is initially determined by an action defining a new selection and then
updated by each modifying selection action. If a modifying selection action results in an active
selection that is a subrange of the anchor selection, the active selection is set to the subrange. The
exception to the rule above – that the active selection of a modifying selection action is equal to
the selection that would have been created by the same action without the Shift key – are Arrow
keys in or against line direction. In that case, if the current selection is not empty and the Shift
key is not held down, they first simulate a click on the trailing-or-leading edge of the highlight
region. If the Shift key is held down, they immediately simulate a click one character apart from
that edge.

If necessary, the text is scrolled to make a modified selection visible in the view rectangle.

Selection actions never result in the system beeping at the user.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 10

Typing and Inline Input
MLTE treats text entry using standard keyboard layouts and text entry using input methods in an
integrated fashion. An uninterrupted sequence of keystrokes or inline input operations are treated
as a single typing command for purposes of Undo. Events that cause a typing command to be
completed include: selection operations (except for those handled by input methods),
deactivation, filing, printing, or any undoable command other than typing. When a typing
command is completed, any unconfirmed inline input is confirmed.

MLTE assumes that the application filters out all characters it wishes to handle before passing
key-down events to MLTE. MLTE then interprets the characters being entered in the following
ways: (Note that the rules below are given for both Unicode (Uxxx) and Mac OS encodings
($xx)).

• Insertion: All 1- and 2-byte characters starting at ($20, U0020) except Forward Delete ($7F,
U007F), as well as the Tab character ($09, U0009), and the characters $10-$14 (which are
graphical characters in some fonts, especially system fonts) are inserted into the text. Return
($0D, U000D) is inserted. Characters entered through inline input are always inserted.

• Select: All combinations involving the Arrow keys ($1C-$1F, U001C-U001F) are interpreted
as selection operations (see above). Other than as specified in Macintosh Human Interface
Guidelines, page 113, they do interrupt typing commands in MLTE.

• Scroll: The Home ($01, U0001) and End ($04, U0004) keys are interpreted to scroll the text
block to its logical beginning or end as specified in Macintosh Human Interface Guidelines, page
285.

• The Page Up ($0B, U000B) and Page Down ($0C, U000C) keys: These are interpreted to scroll
the text one up or down by the height of the currently visible portion. They are not part of typing
commands, but don’t interrupt them either.

• Clear: The Clear key (character code $1B,U001B with virtual key code $47) is a synonym for
the Clear command. It is not part of a typing sequence, but does interrupt one.

• Delete: The Backspace ($08,U0008) and Forward Delete ($7F, U007F) characters first delete
the currently selected text (if the selection is non-empty), then delete individual characters
logically preceding (Backspace) or following (Forward Delete) the insertion point. They are part
of typing commands.

• Ignore: All other characters are ignored. This includes all key combinations involving the
Command key, but not Arrow keys. They are not part of typing commands, but do not interrupt
them.

Keyboard and Font Synchronization
In a multiscript environment, a text engine has to make sure that text is displayed in a font that
supports the character set in which the text is written. In the WorldScript environment, this is

10/19/99 Preliminary draft. © Apple Computer, Inc. page 11

typically done by watching the current keyboard script and comparing it to the script of the font
at the current insertion point. If the two don’t match and the user starts typing, the font is
automatically replaced with one belonging to the keyboard script.

This behavior is not always appropriate, as there is no one-to-one correspondence between fonts
and keyboards. Typically, non-Roman keyboard layouts support only the characters that are
specific to this script, not the ASCII characters which are supported by all fonts designed for the
WorldScript environment. Thus, when the user switches to a Roman keyboard, she may do so
just to type ASCII characters, and the previously used non-Roman font may have glyphs for the
ASCII characters that are carefully designed to match the style of the other glyphs in the font,
making it highly undesirable to replace them with plain Geneva. In addition, a Unicode font may
contain glyphs that apply to multiple scripts.

Despite these drawbacks, MLTE will by default attempt to synchronize the font to the keyboard
when the user changes the keyboard. To find the appropriate font, MLTE first searches backward
in the document for an appropriate font, then forward. If no appropriate font can be found, the
application font or the system font for the keyboard script is used. Font synchronization does not
interrupt typing commands.

 Font to Keyboard Synchronization
Some editors also support synchronization in the opposite direction: they automatically switch
the keyboard script to the script of the font being used at the current selection under certain
circumstances; for example, when the user changes the selection. The assumption is that the user
is most likely to type additional text in the script already being used for the current selection.
Also, the location of the caret in bidirectional text may depend on the direction of the keyboard
script, so in this context it is important that the direction of the keyboard script matches the
direction of text in which the user clicked.

Many users of 2-byte systems strongly dislike this feature. In 2-byte scripts, the issue of caret
placement doesn’t exist, and 2-byte input methods often allow users to enter ASCII characters in
a pass-through mode, so switching the keyboard is not necessary. Users of 1-byte scripts on the
other hand can enter ASCII characters only by switching to a Roman keyboard.

The current plan is to support font to keyboard synchronization by default. There will be an
option for an application to switch font to keyboard synchronization off.

 Font Locking
By default, MLTE prevents a user from changing a font in one script to a font in another.
Version 1.0 will maintain this behavior. However, a user can override this by changing the font
while holding the control key down. In this case, the text will change to the selected font no
matter what characters is selected. In addition, when a user selects non-Roman text and changes
the text to a roman font, the text is scanned for ASCII characters, and these characters are
changed to the new font.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 12

Drag and Drop
If the Drag Manager is available, MLTE provides a large part of the Drag and Drop user
experience as specified in the Drag and Drop Human Interface Guidelines. MLTE highlights
selections in inactive views using outlines, so users can drag between active and inactive views.
It changes the cursor to an arrow if it is over the highlight region in an active view. It
disambiguates between selection operations and Drag and Drop operations, and provides the
complete drag user feedback. Because MLTE has no information about the context in which it’s
views are used, it cannot provide complete destination feedback, but it does highlight the
insertion point where dropped text would get inserted, performs the actual move, and selects the
dragged text in its new location.

By Default MLTE recognizes dragging as a Move operation. The user can override the move-or-
copy decision using the Option Key.

Drag-and-drop operations (both move and copy) are undoable.

Support for Standard Editing Menus
While MLTE does not handle any menus itself, it provides applications with all necessary
functionality and information to support the standard text editing menus.

MLTE supports the Undo, Redo, Cut, Copy, Paste, Clear, and Select All items in the Edit menu,
as specified in Macintosh Human Interface Guidelines, pages 109-117. MTLE does not support
Publish and Subscribe.

MLTE supports the specifications in Macintosh Human Interface Guidelines, pages 120-122 and
pages 64-67, for the Font menu. Because of the large difference in font environments on a
system with ATSUI and a QuickDraw system, there is an API that builds a Font menu and
returns that menu to the application. The application will be able to call another API to correctly
handle font menu selection via the returned font menu.

MLTE supports the specifications in Macintosh Human Interface Guidelines, pages 122-123 and
pages 64-67, for the Size menu, including the use of checkmarks and dashes, increment size,
decrement size, and an Other item.

MLTE supports the specifications in Macintosh Human Interface Guidelines, pages 124 and 64-
67, for the Style menu, including the use of checkmarks and dashes.

Cut, Copy, Paste, Clear, are undoable commands. Applying a font, size, or style to an non-empty
selection is an undoable command, while applying them to an insertion point is not. Select All is
a selection operation and is not undoable. All commands mentioned here interrupt typing
commands.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 13

Font Menu
Because MLTE supports both QuickDraw and ATSUI without requiring applications to know
which is being used, it becomes difficult to leave the responsibility for building the font menu to
the application. Certainly, there are applications who would prefer to build their own, and there
is nothing to prevent them from doing so. For applications that would prefer not to have to
bother with the issues of building a font menu, MLTE provides utility functions for creating and
handling a standard font menu (where standard is defined as what is most appropriate for the
imaging system in use.)

If the application is running MLTE on a QuickDraw-only system, the Font menu will represent
each font with a single item. Fonts will be sorted by script, and will be drawn in the appropriate
system font based on the script system that the font belongs to. The following illustration is of
an MLTE Font menu on a QuickDraw system. The menu item names will be the font family
resource names. In other words, an MLTE Font menu on a QuickDraw-only system will look
exactly like a font created today with the AddResMenu call.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 14

MLTE on a system equipped with ATSUI will build a font menu that includes hierarchical sub-
menus for ATSUI fonts that share a family name, but have different style names. Each font
menu item will be drawn in a single System font, because the concept of script systems is not
entirely appropriate in a Unicode world. The following illustration is of an MLTE font menu on
a system running ATSUI.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 15

Font menu item names will be names obtained by calling the ATSUI function
ATSUGetFontName.

MLTE provides an opaque structure called TXNFontMenuObject that can be used to handle user
interaction with the font menu.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 16

ATSUI Font Variations and Features
ATSUI also introduces the concept of font variations and font features. An application can pass
these through the MLTE API, and have them applied to a selection. This, like building the font
menu, requires that an application be aware of the fact that it’s running on an ATSUI system, and
further requires that the application use some of the moderately complicated ATSUI API. If an
application wishes to do this, it is entirely appropriate, but applications who want to provide
basic editing may not be interested in interacting directly with the system’s lower-level text
imaging software. At the same time such applications may want to offer users at least some of
the advanced capabilities in software like ATSUI.

Version 1.0 of the MLTE does not provide a human interface for allowing a user to view and
select font variations and features on a per font basis. Unfortunately, this capability is left to the
application or enhancements to the system software.

Intelligent Editing
Version 1.0 will not support Intelligent Editing. Intelligent Editing means applying text-
modifying commands so that separate words are kept separate and duplicate space characters are
avoided.

Key Algorithms
MLTE text handling is based on the layout algorithms found in the Script Manager and the text
imaging provided by QuickDraw Text. When ATSUI is available, text handling is based on on
the layout algorithms in ATSUI. Text and style runs are accessed and stored as arrays.

Compatibility
MLTE is fully compatible with all Script systems, encodings, and languages currently supported
by the Script Manager. It is compatible with all systems since 7.1 and all PPC CPUs. It is also
compatible with the Unicode encoding as supported by ATSUI.

MLTE is not compatible with 68K systems. (Additionally, ATSUI is not compatible with 68K
systems.)

Internationalization
MLTE is dependent on the Script Manager, ATSUI and WorldScript I and II for laying out text.
It is international to the extent that these components are international.

Fault Handling Methodology and Mechanisms
The primary failure encountered by MLTE is lack of memory for adding or formatting data.
When this occurs, the operation is not performed and an error is returned to the application.

To a large degree, preflighting is used to prevent error conditions that cannot be backed out
again. Since errors are eventually bubbled up to the application, it is the application’s

10/19/99 Preliminary draft. © Apple Computer, Inc. page 17

responsibility to alert the user to the problem. If the user continues to try and add data, MLTE
will just continue to not perform the requested addition and return the same error.

Application Programming Interface (API) for MLTE

Data Structures and Constants.

typedef struct OpaqueTXNObject* TXNObject;

An opaque structure that encapsulates an object containing private variables and functions
necessary to handle text formatting at a document level. For each document, a new TXNObject
is allocated and returned by the TXNNewObject function.

typedef struct OpaqueTXNFontMenuObject* TXNFontMenuObject;

An opaque structure that contains information needed work with a font menu.

typedef UInt32 TXNFrameID;
A TXNFrameID is used to identify the text frame to which actions should be applied. At the
basic level there is only one frameID per document. In version 1.0 of MLTE, TXNFrameID
serves as a placeholder to permit multiple frame capability to be added in a future version.

typedef UInt32 TXNVersionValue;
typedef OptionBits TXNFeatureBits;
enum {

kTXNWillDefaultToATSUIBit = 0
};

enum {
kTXNWillDefaultToATSUIMask = 1L<<kTXNWillDefaultToATSUIBit

};

These type definitions and constants are used by the function TXNVersionInformation (see
below).

typedef OptionBits TXNInitOptions;

enum {
kTXNWantMoviesBit = 0,
kTXNWantSoundBit = 1,
kTXNWantGraphicsBit = 2,
kTXNAlwaysUseQuickDrawBit = 3,
kTXNUseTemporaryMemoryBit = 4

};

enum {
kTXNWantMoviesMask = 1L << kTXNWantMoviesBit,

10/19/99 Preliminary draft. © Apple Computer, Inc. page 18

kTXNWantSoundMask = 1L << kTXNWantSoundBit,
kTXNWantGraphicsMask = 1L << kTXNWantGraphicsBit,
kTXNAlwaysUseQuickDrawMask = 1L << kTXNAlwaysUseQuickDrawBit,
kTXNUseTemporaryMemoryMask = 1L << kTXNUseTemporaryMemoryBit

};

TXNInitOptions are passed to the function TXNInitTextension. They specify data types other
than text that the application wishes to support for future TXNObjects that are allocated within
this context. Additionally, an application can request that MLTE always use QuickDraw even if
ATSUI is available. For applications whose biggest concern is speed and efficient memory
usage, this is often the best choice. Finally, an application can request that all memory
allocations required inside the MLTE text engine should use memory from temporary memory.

typedef OptionBits TXNFrameOptions;

enum {
kTXNDrawGrowIconBit = 0,
kTXNShowWindowBit = 1,
kTXNWantHScrollBarBit = 2,
kTXNWantVScrollBarBit = 3,
kTXNNoTSMEverBit = 4,
kTXNReadOnlyBit = 5,
kTXNNoKeyboardSyncBit = 6,
kTXNNoSelectionBit = 7,
kTXNSaveStylesAsSTYLResourceBit = 8,
kOutputTextInUnicodeEncodingBit = 9,
kTXNDoNotInstallDragProcsBit = 10,
kTXNAlwaysWrapAtViewEdgeBit = 11

};

enum {
kTXNDrawGrowIconMask = 1L << kTXNDrawGrowIconBit,
kTXNShowWindowMask = 1L << kTXNShowWindowBit,
kTXNWantHScrollBarMask = 1L << kTXNWantHScrollBarBit,
kTXNWantVScrollBarMask = 1L << kTXNWantVScrollBarBit,
kTXNNoTSMEverMask = 1L << kTXNNoTSMEverBit,
kTXNReadOnlyMask = 1L << kTXNReadOnlyBit,
kTXNNoKeyboardSyncMask = 1L << kTXNNoKeyboardSyncBit,
kTXNNoSelectionMask = 1L << kTXNNoSelectionBit,
kTXNSaveStylesAsSTYLResourceMask = 1L <<kTXNSaveStylesAsSTYLResourceBit,
kOutputTextInUnicodeEncodingMask = 1L << kOutputTextInUnicodeEncodingBit,
kTXNDoNotInstallDragProcsMask = 1L << kTXNDoNotInstallDragProcsBit,
kTXNAlwaysWrapAtViewEdgeMask = 1L << kTXNAlwaysWrapAtViewEdgeBit

};

TXNFrameOptions are used to specify per TXNObject features (i.e. per document features). The
available options are:

kTXNDrawGrowIconMask: Draw a grown icon at the bottom right corner of the frame.
kTXNShowWindowMask: Display the window before returning from TXNNewObject.
kTXNWantHScrollBarMask: Include and manage a horizontal scroll bar inside the

frame.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 19

kTXNWantHScrollBarMask: Include and manage a vertical scroll bar inside the frame.
kTXNNoTSMEverMask: This TXNObject should never be TSM aware. This option is not

allowed when the text being used is Unicode text since TSM is
required for inputting any Unicode character.

kTXNReadOnlyMask: Date inside this TXNObject is read-only.
kTXNNoKeyboardSyncMask: Do not synchronize the keyboard with the font (see above
in User Interface section for further discussion of keyboard synchronization).
kTXNNoSelectionMask: Do not display the insertion point.
kTXNSaveStylesAsSTYLResourceMask: When saving data has text save style
information as ‘styl’ resources (SimpleText) compatibility.
kOutputTextInUnicodeEncodingMask: When saving plain text save it as Unicode.
kTXNAlwaysWrapAtViewEdgeMask: Always word-wrap at the edge of the TXNObject’s
view rectangle.

typedef OptionBits TXNContinuousFlags;

enum {
kTXNFontContinuousBit = 0,
kTXNSizeContinuousBit = 1,
kTXNStyleContinuousBit = 2,
kTXNColorContinuousBit = 3

};

enum {
kTXNFontContinuousMask = 1L << kTXNFontContinuousBit,
kTXNSizeContinuousMask = 1L << kTXNSizeContinuousBit,
kTXNStyleContinuousMask = 1L << kTXNStyleContinuousBit,
kTXNColorContinuousMask = 1L << kTXNColorContinuousBit

};

TXNContinuousFlags are passed to the function TXNGetContinuousTypeAttributes. They
indicate the type of continuous style information the application is interested in. For the more
uncommon style attributes offered by ATSUI, there is another function,
TXNGetContinuousTypeTags, which can be used to obtain continuous run information.

typedef OptionBits TXNMatchOptions;

enum {
kTXNIgnoreCaseBit = 0,
kTXNEntireWordBit = 1,
kTXNUseEncodingWordRulesBit = 31

};

enum {
kTXNIgnoreCaseMask = 1L << kTXNIgnoreCaseBit,
kTXNEntireWordMask = 1L << kTXNEntireWordBit,
kTXNUseEncodingWordRulesMask = 1L << kTXNUseEncodingWordRulesBit

};

10/19/99 Preliminary draft. © Apple Computer, Inc. page 20

TXNMatchOptions are passed to the function TXNFind, and specify the matching rules that
should be used in the find operation.

typedef OSType TXNFileType;

enum {
kTXNTextensionFile = FOUR_CHAR_CODE('txtn'),
kTXNTextFile = FOUR_CHAR_CODE('TEXT'),
kTXNPictureFile = FOUR_CHAR_CODE('PICT'),
kTXNMovieFile = MovieFileType,
kTXNSoundFile = FOUR_CHAR_CODE('sfil'),
kTXNAIFFFile = FOUR_CHAR_CODE('AIFF')

};

The TXNFileType defines the possible file types that can be passed to the function
TXNNewObject.

typedef OSType TXNDataType;

enum {
kTXNTextData = FOUR_CHAR_CODE('TEXT'),
kTXNPictureData = FOUR_CHAR_CODE('PICT'),
kTXNMovieData = FOUR_CHAR_CODE('moov'),
kTXNSoundData = FOUR_CHAR_CODE('snd '),
kTXNUnicodeTextData = FOUR_CHAR_CODE('utxt')

};

TXNDataType is used in multiple MLTE functions. It is used to specify the type of data being
requested or returned.

typedef FourCharCode TXNControlTag;
enum {

kTXNLineDirectionTag = 'lndr',
kTXNJustificationTag = 'just',
kTXNIOPrivilegesTag = 'iopv',
kTXNSelectionStateTag = 'slst',
kTXNInlineStateTag = 'inst',
kTXNWordWrapStateTag = 'wwrs',
kTXNKeyboardSyncStateTag = 'kbsy',
kTXNAutoIndentStateTag = 'auin',
kTXNTabSettingsTag = 'tabs',
kTXNRefConTag = 'rfcn',
kTXNMarginsTag = ‘marg’, //set the top &

 //left margins
kTXNNoUserIOTag = ‘nuio’ //do not allow

//typing, but do
//allow

TXNSetData
//to work

};

10/19/99 Preliminary draft. © Apple Computer, Inc. page 21

The type TXNControlTag and its following enumerated constants is used to specify the type of
information you are setting or getting when the functions TXNSetTXNObjectControls or
TXNGetTXNObjectControls are called.

MLTE returns optional action key codes (i.e. if the caller is not interested a NULL can be
passed) in TXNCanUndo and TXNCanRedo. These numeric codes identify the action that can be
undone or redone. No strings are involved so MLTE is not concerned with localizing anything.
The client is responsible for mapping the key code to an appropriate localized string for user
display.

The currently defined action keys are:

typedef UInt32 kTXNActionKey;
enum
{

kTXNTypingAction = 0,
kTXNCutAction = 1,
kTXNPasteAction = 2
kTXNClearAction = 3,
kTXNChangeFontAction = 4,
kTXNChangeFontColorAction = 5,
kTXNChangeFontSizeAction = 6,
kTXNChangeStyleAction = 7,
kTXNAlignLeftAction = 8,
kTXNAlignCenterAction = 9,
kTXNAlignRightAction = 10,
kTXNDropAction = 11,
kTXNMoveAction = 12,
kTXNFontFeatureAction = 13,
kTXNFontVariationAction = 14,
kTXNUndoLastActioon = 1024

}

enum {
kTXNClearThisControl = (long)0xFFFFFFFF,
kTXNClearTheseFontFeatures = (long)0x80000000

};

This constants can be used to clear ATSUI control or font feature settings.

The following constant values are used to set the value of a TXNControlData structure before
passing that structure to the TXNSetTXNObjectControls or TXNGetTXNObjectControls
function.

enum {
kTXNLeftToRight = 0,
kTXNRightToLeft = 1

};

enum {
kTXNFlushDefault = 0,/* according to the line direction */
kTXNFlushLeft = 1,

10/19/99 Preliminary draft. © Apple Computer, Inc. page 22

kTXNFlushRight = 2,
kTXNCenter = 4,
kTXNFullJust = 8,
kTXNForceFullJust = 16

};

enum {
kTXNReadWrite = false,
kTXNReadOnly = true

};

enum {
kTXNSelectionOn = true,
kTXNSelectionOff = false

};

enum {
kTXNUseInline = false,
kTXNUseBottomline = true

};

enum {
kTXNAutoWrap = false,
kTXNNoAutoWrap = true

};

enum {
kTXNSyncKeyboard = false,
kTXNNoSyncKeyboard = true

};

enum {
kTXNAutoIndentOff = false,
kTXNAutoIndentOn = true

};

typedef Boolean TXNScrollBarState;

enum {
kScrollBarsAlwaysActive = true,
kScrollBarsSyncWithFocus = false

};

The TXNTabType, its enumerated values, and the TXNTab structure are used when calling the
TXNSetTXNObjectControls or TXNGetTXNObjectControls function to get tab information for
a given TXNObject. Note that in version 1.0 of MLTE only right tabs are supported the other
constants are place holders for future enhancements.

typedef SInt8 TXNTabType;

enum {
kTXNRightTab = -1,
kTXNLeftTab = 0,
kTXNCenterTab = 1

};

10/19/99 Preliminary draft. © Apple Computer, Inc. page 23

struct TXNTab {
SInt16 value;
TXNTabType tabType;
UInt8 filler;

};
typedef struct TXNTab TXNTab;

The TXNTab structure specifies tab information. In the future, three types of tabs may be
supported (right, left and center). MLTE 1.0 supports only one left tab per.

struct TXNMargins {
SInt16 topMargin;
SInt16 leftMargin;
SInt16 bottomMargin;
SInt16 rightMargin;

};
typedef struct TXNMargins TXNMargins;

This structure is used to specify the margin value. In version 1.0 of MLTE only the topMargin
and leftMargin can be set. BottomMargin and rightMargin are placeholders for future
enhancements.

union TXNControlData {
UInt32 uValue;
SInt32 sValue;
TXNTab tabValue;
TXNMargins * marginsPtr;

};
typedef union TXNControlData TXNControlData;

The TXNControlData structure is used to provide or get values from the
TXNGetTXNObjectControls and TXNSetTXNObjectControls functions. These functions
provide information about any globally set attribute of a TXNObject.

The following constants are convenience definitions used to specify defaults when calling the
function TXNSetFontDefaults or to specify that the current type size should decrement or
increment by one point when calling the function TXNSetTypeAttributes.

enum {
kTXNDontCareTypeSize = (long)0xFFFFFFFF,
kTXNDontCareTypeStyle = 0xFF,
kTXNIncrementTypeSize = 0x00000001,
kTXNDecrementTypeSize = (long)0x80000000

};

typedef UInt32 TXNOffset;
enum {

kTXNUseCurrentSelection = 0xFFFFFFFFUL,
kTXNStartOffset = 0UL,

10/19/99 Preliminary draft. © Apple Computer, Inc. page 24

kTXNEndOffset = 0x7FFFFFFFUL
};

TXNOffset is used to specify offsets in a TXNObject’s data. kTXNStartOffset and
kTXNEndOffset are convenience constants that can be used to specify the start and end of the
data in a TXNObject. KTXNUseCurrentSelection can be used to specify that MLTE should just
use the current selection.

typedef void * TXNObjectRefcon;

TXNObjectRefcon is a reference set by MLTE and passed to the filter.

enum {
kTXNShowStart = false,
kTXNShowEnd = true

};

These constants are passed to TXNShowSelection. They specify whether the application wants
the end of the current selection to scroll to be shown or the beginning.

typedef FourCharCode TXNTypeRunAttributes;

enum {
kTXNQDFontNameAttribute = FOUR_CHAR_CODE('fntn'),
kTXNQDFontFamilyIDAttribute = FOUR_CHAR_CODE('font'),
kTXNQDFontSizeAttribute = FOUR_CHAR_CODE('size'),
kTXNQDFontStyleAttribute = FOUR_CHAR_CODE('face'),
kTXNQDFontColorAttribute = FOUR_CHAR_CODE('klor'),
kTXNTextEncodingAttribute = FOUR_CHAR_CODE('encd')

};

typedef ByteCount
TXNTypeRunAttributeSizes;

enum {
kTXNQDFontNameAttributeSize = sizeof(Str255),
kTXNQDFontFamilyIDAttributeSize = sizeof(SInt16),
kTXNQDFontSizeAttributeSize = sizeof(SInt16),
kTXNQDFontStyleAttributeSize = sizeof(Style),
kTXNQDFontColorAttributeSize = sizeof(RGBColor),
kTXNTextEncodingAttributeSize = sizeof(TextEncoding)

};

The above types and constants are used to set type attributes when calling the function
TXNSetTypeAttributes, TXNGetContinuousTypeTags or TXNGetContinuousTypeAttributes.
These are supplemented by the style attributes defined for ATSUI.

typedef UInt32 TXNPermanentTextEncodingType;

enum {
kTXNSystemDefaultEncoding = 0,

10/19/99 Preliminary draft. © Apple Computer, Inc. page 25

kTXNMacOSEncoding = 1,
kTXNUnicodeEncoding = 2

};

TXNPermanentTextEncodingType and the accompanying constants are used to specify how the
application wants to see text. Specifying one of the specific encodings
(kTXNSystemDefaultEncoding, kTXNUnicodeEncoding) means that MLTE will treat all
offsets, incoming, and outgoing text as that encoding. This is true even if MLTE is internally
dealing with text in another format. If that is the situation MLTE will utilize the Text Encoding
Convertor (TEC) to convert text and offsets to match the applications preference. If
kTXNSystemDefaultEncoding is specified MLTE will return offsets and text data in the format
used internally.

typedef FourCharCode TXTNTag;

union TXNAttributeData {
void * dataPtr;
UInt32 dataValue;

};
typedef union TXNAttributeData TXNAttributeData;

struct TXNTypeAttributes {
TXTNTag tag;
ByteCount size;
TXNAttributeData data;

};
typedef struct TXNTypeAttributes TXNTypeAttributes;

The data structures TXTNTag and TXNTypeAttributes are used to request or receive
information about the text in a TXNObject.

struct TXNATSUIFeatures {
ItemCount featureCount;
ATSUFontFeatureType * featureTypes;
ATSUFontFeatureSelector * featureSelectors;

};
typedef struct TXNATSUIFeatures TXNATSUIFeatures;

struct TXNATSUIVariations {
ItemCount variationCount;
ATSUFontVariationAxis * variationAxis;
ATSUFontVariationValue * variationValues;

};
typedef struct TXNATSUIVariations TXNATSUIVariations;

union TXNAttributeData {
void * dataPtr;
UInt32 dataValue;
TXNATSUIFeatures * atsuFeatures;
TXNATSUIVariations * atsuVariations;

};
typedef union TXNAttributeData TXNAttributeData;

struct TXNTypeAttributes {

10/19/99 Preliminary draft. © Apple Computer, Inc. page 26

TXTNTag tag;
ByteCount size;
TXNAttributeData data;

};
typedef struct TXNTypeAttributes TXNTypeAttributes;

The structures TXNATSUIFeatures, TXNATSUIVariations are used to specify ATSUI font
feature or variation setttings when calling the function TXNSetTypeAttributes.

struct TXNMacOSPreferredFontDescription {
UInt32 fontID;
Fixed pointSize;
TextEncoding encoding;
Style fontStyle;

};
typedef struct TXNMacOSPreferredFontDescription
TXNMacOSPreferredFontDescription;

TXNMacOSPreferredFontDescription is used to specify the preferred font for a given text
encoding. An array of these structures is passed to TXNInitTextension to specify font defaults
for each script.

typedef UInt32 TXNBackgroundType;

enum {
kTXNBackgroundTypeRGB = 1

};

union TXNBackgroundData {
RGBColor color;

};
typedef union TXNBackgroundData TXNBackgroundData;

struct TXNBackground {
TXNBackgroundType bgType;
TXNBackgroundData bg;

};
typedef struct TXNBackground TXNBackground;

A TXNBackground structure is passed to TXNSetBackground to specify the background for text
and data in a given TXNObject. At this time only colors are supported.

typedef OSStatus TXNErrors;
enum {

kTXNEndIterationErr = -22000,
kTXNCannotAddFrameErr = -22001,
kTXNInvalidFrameIDErr = -22002,
kTXNIllegalToCrossDataBoundariesErr = -22003,
kTXNUserCanceledOperationErr = -22004,
kTXNBadDefaultFileTypeWarning = -22005,
kTXNCannotSetAutoIndentErr = -22006,
kTXNRunIndexOutofBoundsErr = -22007,

10/19/99 Preliminary draft. © Apple Computer, Inc. page 27

kTXNNoMatchErr = -22008,
kTXNAttributeTagInvalidForRunErr = -22009,
/*dataValue is set to this per invalid tag*/
kTXNSomeOrAllTagsInvalidForRunErr = -22010,
kTXNInvalidRunIndex = -22011,
kTXNAlreadyInitializedErr = -22012,
kTXNCannotTurnTSMOffWhenUsingUnicodeErr = -22013,
kTXNCopyNotAllowedInEchoModeErr = -22014

};

These errors can be returned by MLTE functions along with memory or file operations.

Functions

EXTERN_API(OSStatus)
TXNNewObject

(const FSSpec * iFileSpec, /* can be NULL */
WindowPtr iWindow,
Rect * iFrame, /* can be NULL */
TXNFrameOptions iFrameOptions,
TXNFrameType iFrameType,
TXNFileType iFileType,
TXNPermanentTextEncodingType iPermanentEncoding,
TXNObject * oTXNObject,
TXNFrameID * oTXNFrameID,
TXNObjectRefcon iRefCon);

Allocates a new TXNObject (i.e. the C++ operator new is called to allocate a TXNObject) and
returns a pointer to the object in the newDoc parameter.

Input:

iFileSpec: If not NULL, the file is read to obtain the document contents after the object is

successfully allocated. If NULL you start with an empty document. Data
embedding in not supported by TXNNewObject. If the caller wants to include
data that is embedded inside private data they should create the TXNObject by
calling TXNNewObject with a NULL iFileSpec. After the TXNObject is created
the data can be read in using TXNSetDataFromFile.

iWindow: The window in which the document is going to be displayed. This parameter can

also be NULL. If it is NULL, you must eventually attach a Window or Grafport
to the TXNObject.

iFrame: If the text-area does not fill the entire window, this specifies the area to fill. If

you pass NULL, the window’s portRect is used as the frame.

iFrameOptions: Specify the options to be supported by this frame. See the enumerated

type TXNFrameOptions for the supported options.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 28

iFileType: Specify the primary file type. If you use kTextensionTextFile, files will be
saved in a private format (see xxx). If you want saved files to be plain text files,
you should specify 'TEXT' here. If you specify 'TEXT' here, you can use the
frameOptions parameter to specify whether the TEXT files should be saved
with 'MPSR' resources or 'styl' resources. These are resources that contain style
information for a file, and they both have there own limitations. If you use 'styl'
resources to save style info, your documents can have as many styles as you like
however tabs will not be saved. If you use 'MPSR' resources, only the first style
in the document will be saved. (Your application is expected to apply all style
changes to the entire document.) If you want media-rich documents that can
contain graphics and sound, you should specify kTextensionTextFileOutput. If
you want a plain text editor with capabilities similar to SimpleText, specify that
style information by saved as ‘styl’ resources. If you want files similar to those
output by CW IDE, BBEdit, and MPW, specify that style information be saved in
a ‘MPSR’ resource.

iPermanentEncoding: The general encoding(s) that the application considers text to be in.
There are three options:
kTXNSystemDefaultEncoding—use the encoding that is preferred by MLTE and
the system. This will be Unicode on a system that includes ATSUI.
KTXNMacOSEncoding—incoming and outgoing text should be in traditional
MacOS Script system encodings.
kTXNUnicodeEncoding, incoming and outgoing text should be in Unicode even
on systems that do not include ATSUI.

 Output:

 OSStatus: function result. If anything goes wrong, the error is returned. Success must be

complete. That is, if everything works, but there is a failure reading a specified
file, the object is freed.

 oTXNObject: Pointer to the opaque data structure allocated by the function. Most of the
subsequent functions require that such a pointer be passed in.

 oTXNFrameID: Unique ID for the frame. Although some functions require a

TXNFrameID it is for now a placeholder.

EXTERN_API(void)
TXNDeleteObject (TXNObject iTXNObject);

Delete a previously allocated TXNObject and all associated data structures.

Input:

 iTXNObject: opaque structure to free.

EXTERN_API(void)

10/19/99 Preliminary draft. © Apple Computer, Inc. page 29

TXNResizeFrame(TXNObject iTXNObject,
UInt32 iWidth,

 UInt32 iHeight,
TXNFrameID iTXNFrameID);

Changes the frame's size to match the new width and height.
 Input:

 iTXNObject: opaque MLTE structure.

 iWidth: New width in pixels.

 iHeight: New height in pixels.

 iTXNFrameID: FrameID that specifies the frame to move.

EXTERN_API(void)
TXNSetFrameBounds(TXNObject iTXNObject,

SInt32 iTop,
 SInt32 iLeft,
 SInt32 iBottom,
 SInt32 iRight,
TXNFrameID iTXNFrameID);

Changes the frame's viewrect to have the new width and height.
 Input:
 iTXNObject : opaque MLTE structure.

 iTop, iLeft, iBottom, iRight: Rect of the view

 iTXNFrameID: FrameID that specifies the frame to move.

EXTERN_API(OSStatus)
TXNInitTextension(const TXNMacOSPreferredFontDescription iDefaultFonts[],

ItemCount iCountDefaultFonts,
TXNInitOptions iUsageFlags);

Initialize MLT. Should be called as soon as possible after the Macintosh toolbox is initialized.
This function should only be called once per context. If it is called more than once, this function
returns a result code of -22012. If this is returned, you can still call other MLTE functions, but
any TXNInitOptions and TXNMacOSPreferredFontDescription specified will not be
applied.

 Input:

10/19/99 Preliminary draft. © Apple Computer, Inc. page 30

 TXTMacOSPreferredFontDescription: A table of font information including fontFamily
ID, point size, style, and script code. The table can be NULL or can have an entry
for any script for which you would like to to designate a default font. Only a
valid script number is required. You can designate that MLTE should use the
default for a give script by setting the field to -1.

For example, if you wanted to specify New York as the default font to use for
Roman scripts, but were happy with the default style and size, you would call the
function like this:

 TXNMacOSPreferredFontDescription defaults;
 GetFNum("\pNew York", &defaults.fontFamilyID);
 defaults.pointSize = -1;
 defaults.fontStyle = -1;
 defaults.script = smRoman;
 status = TXNInitTextension(&defaults, 1, 0);

 usageFlags: Specify whether sound and movies should be supported.

Output:
 OSStatus: Function result. NoErr is returned if everything initialized correctly. Variety

of possible MacOS errors if something goes wrong.

EXTERN_API(void)
TXNTerminateTextension(void);

Close the MLTE library. It is necessary to call this function so that MLTE can correctly close
down any TSM connections and and do other clean up.

EXTERN_API(void)
TXNKeyDown(TXNObject iTXNObject,

 const EventRecord * iEvent);

Process a keydown event. Note that if the CJK script is installed and the current font is CJK
inline, input will take place. This is always the case unless the application has requested the
bottomline window or has turned off TSM (see initialization options above).

 Input:
 iTXNObject: opaque struct to apply keydown to.

 iEvent: the keydown event.

EXTERN_API(void)
TXNAdjustCursor(TXNObject iTXNObject,

RgnHandle ioCursorRgn);

10/19/99 Preliminary draft. © Apple Computer, Inc. page 31

Handle switching the cursor. If the mouse is over a text area, set the cursor to the i-beam. If the
cursor is over graphics, a sound, a movie, a scroll bar, or outside of window, set the cursor to the
arrow cursor.

 Input:
 iTXNObject: Opaque struct obtained from TXNNewObject.
 ioCursorRgn: Region to be passed to WaitNextEvent. Resized accordingly by

TXNAdjustCursor.

EXTERN_API(void)
TXNClick(TXNObject iTXNObject,

const EventRecord * iEvent);

Processes a mouse-down event in the window’s content region. This function takes care of
scrolling, selecting text, playing sound and movies, handling drag–and-drop operations, and
responding to double-clicks.

Input:
 iTXNObject: Opaque struct obtained from TXNNewObject.
 iEvent: the mouse-down event

EXTERN_API(Boolean)
TXNTSMCheck(TXNObject iTXNObject, /* can be NULL */

EventRecord * iEvent);

Call this when WaitNextEvent returns false or there is no active TSNObject . The TXNObject
parameter can be NULL, allowing an application to call this function at any time. This is
necessary to ensure input methods enough time to be reasonably responsive.

Input:
iTXNObject: The currently active TXNObject or NULL.
iEvent: The event record.

 Output:
 Boolean: True if TSM handled this event. False if TSM did not handle this event.

EXTERN_API(void)
TXNSelectAll(TXNObject iTXNObject);

Selects all data belonging to the TXNObject.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 32

Input:

 iTXNObject: opaque TXNObject

EXTERN_API(void)
TXNFocus(TXNObject iTXNObject,

Boolean iBecomingFocused);

Focuses the TXNObject. By default, scroll bars and the insertion caret are made active if
iBecomingFocused is true, and inactive if false. However, in conjunction with TXNActivate
scroll bars can remain active even though text input is not focussed. This is handy for windows
containing multiple text areas that are scrollable.

Input:

 iTXNObject: opaque TXNObject
 iBecomingFocused: true if becoming active. false otherwise.

EXTERN_API(void)
TXNUpdate(TXNObject iTXNObject);

Handles an update event (i.e. draw everything in a frame.) This function calls the Toolbox
BeginUpdate - EndUpdate functions for the window that was passed to TXNNewObject. This
makes it inappropriate for windows that contain something else besides the TXNObject. In that
case, applications should use TXNDraw to update TXNObjects (see below.)

Input:
 iTXNObject: opaque TXNObject

EXTERN_API(void)
TXNDraw(TXNObject iTXNObject,

GWorldPtr iDrawPort);

Redraw the TXNObject including any scroll bars associated with the text frame. Call this
function in response to an update event for a window that contains multiple TXNObjects or some
other graphic elements. If it is necessary, the application is responsible for calling
BeginUpdate/EndUpdate in response to the update event.

Input:
 iTXNObject: opaque TXNObject to draw
 iDrawPort: This parameter can be NULL. If it is NULL drawing takes place in the port

currently attached to the iTXNObject. If not NULL drawing goes to the
iDrawPort. This capability can be used to image a TXNObject to a printer as is (i.e
without re-layout to a page the printer page size.)

10/19/99 Preliminary draft. © Apple Computer, Inc. page 33

EXTERN_API(void)
TXNForceUpdate(TXNObject iTXNObject);

Force a frame to be updated. This function is of course very much like the toolbox calls
InvalRect or InvalRgn.

 Input:
 iTXNObject: opaque TXNObject

EXTERN_API(UInt32)
TXNGetSleepTicks(TXNObject iTXNObject);

Depending on state of window, get the appropriate sleep time to be passed to WaitNextEvent.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject

Output:

 UInt32: function result. The appropriate sleep time.

EXTERN_API(void)
TXNIdle(TXNObject iTXNObject);

Do any necessary Idle time processing. Typically flash the cursor. If a TSMDocument is active,
pass a NULL event to the Text Service Manager.

 Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject

EXTERN_API(void)
TXNGrowWindow(TXNObject iTXNObject,

const EventRecord * iEvent);

If the application has requested a grow region, and if the TXNObject is contained in a window
and not a subframe of that window track, then the cursor and grow the TXNObjects view
rectangle.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject
event: The mouse-down event

10/19/99 Preliminary draft. © Apple Computer, Inc. page 34

EXTERN_API(void)
TXNZoomWindow(TXNObject iTXNObject,

short iPart);

Handle mouse-down events in the zoom box. This function should only be called for
TXNObject’s whose view rect occupies the entire window (e.g., a window is passed to
TXNNewObject with a NULL FrameRect.)

Input:
 iTXNObject: opaque TXNObject obtained

from TXNNewObject
 iPart: Value returned by FindWindow

EXTERN_API(Boolean)
TXNCanUndo(TXNObject iTXNObject,
 TXNActionKey* oActionKey);

Use this to determine if the Undo item in the Edit menu should be highlighted or not. The result
is true if the last command was undoable, and false if it was not undoable.

Input:
 iTXNObject: opaque TXNObject obtained from TXNNewObject

Output:
 Boolean Function result. If true, the last command is undoable and the undo item in the

menu should be active. If false, the last command cannot be undone and undo
should be grayed in the menu.

oActionKey: The numeric key which identifies the action that can be undone. The caller of
TXNCanUndo is responsible for mapping the key to the appropriate localized
string to be displayed to the user.

EXTERN_API(Boolean)
TXNCanRedo(TXNObject iTXNObject,
 TXNActionKey* oActionKey);

Use this to determine if the Redo item in the Edit menu should be highlighted or not. The result
is true if the last command was redoable, and false if it was not redoable. The iActionKey
identifies the action to be redone. The caller of TXNCanRedo can map the action key to a
localized string if the caller wishes to display to the user exactly what can be redone. For
example, if the value of iActionKey was kTXNTyping the client could then map that value to a
string that read “Redo Typing” on a system localized for U.S. English. Note that MLTE does not
supply any mechanisms for doing such a mapping. MLTE simply returns a key that can be used
to map to a user readable string that describes the action. All issues of text localization are left to
the client of MLTE.

Input:

10/19/99 Preliminary draft. © Apple Computer, Inc. page 35

 iTXNObject: opaque TXNObject obtained from TXNNewObject
Output:

 Boolean Function result. If true, the last command is redoable and the redo item in the
menu should be active. If false, the last command cannot be redone and redo
should be grayed in the menu.

oActionKey: The numeric key which identifies the action that can be redone. The caller of
TXNCanRedo is responsible for mapping the key to the appropriate localized
string to be displayed to the user(See above for a more complete discussion of how
the key might be used).

EXTERN_API(void)
TXNUndo (TXNObject iTXNObject);

Undo the last command. The undo level in MLTE 1.0 is 32 levels deep. That is Undoable actions
are collected until the total count is 32. If a user undoes two actions she will need to do redo
twice to get back to the original state. If more than 32 actions are performed the oldest actions
are forgotten as each new action takes place.

Finally, performing a new action when the last action done was a redo removes any actions
currently in a redo state from the stack. For example, say a user performs the following actions:
type some text, cut some text, paste some text, type some text; undo the last typing action, and
undo the paste operation; redo the paste; type some new text. After the new text has been typed
the undo stack will contain: the first text that was typed, the cut action, and the new text that was
just typed. The paste action and the second block of typed text will no longer be available for
undo, and the new text will be the only action that is undable.

Input:
iTXNObject: An opaque TXNObject obtained from TXNNewObject

EXTERN_API(void)
TXNRedo (TXNObject iTXNObject);

Redo the last command. The undo level in MLTE 1.0 is 1 level deep. That is, if the user undoes
an action and then undoes it again, the second undo will be the same as a redo.

Input:
iTXNObject: An opaque TXNObject obtained from TXNNewObject

EXTERN_API(OSStatus)
TXNCut (TXNObject iTXNObject);

Cut the current selection to the MLTE private clipboard. See below for description of clipboard
formats.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject

Output:
OSStatus: function result. Variety of memory or scrap MacOS errors.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 36

EXTERN_API(OSStatus)
TXNCopy (TXNObject iTXNObject);

Copy the current selection to the MLTE private clipboard.

 Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject

Output:
OSStatus: function result. Memory or parameter errors.

EXTERN_API(OSStatus)
TXNPaste (TXNObject iTXNObject);

Paste the clipboard into the TXNObject.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject

Output:
OSStatus: function result. Memory or parameter errors.

EXTERN_API(OSStatus)
TXNClear (TXNObject iTXNObject);

Clear the current selection from the TXNObject. Equivalent to selecting something and typing
the delete key.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject

Output:
OSStatus: function result. Memory or parameter errors.

EXTERN_API(void)
TXNGetSelection (TXNObject iTXNObject,

TXNOffset * oStartOffset,
TXNOffset * oEndOffset);

Get the absolute offsets of the current selection. Embedded graphics, sound, etc. each count as
one character. Offsets in MLTE are always character offsets.

Input:

10/19/99 Preliminary draft. © Apple Computer, Inc. page 37

iTXNObject: opaque TXNObject obtained from TXNNewObject
 Output:

 oStartOffset:absolute beginning of the current selection.
 oEndOffset: end of current selection.

EXTERN_API(void)
TXNShowSelection (TXNObject iTXNObject,

Boolean iShowEnd);

Scroll the current selection into view.

 Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject
iShowEnd: If true, the end of the selection is scrolled into view. If false, the beginning of

selection is scrolled into view.

EXTERN_API(Boolean)
TXNIsSelectionEmpty (TXNObject iTXNObject);

Call this function to find out if the current selection is empty. Use this to determine if Cut, Copy,
and Clear should be highlighted in Edit menu.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject

Output:
Boolean: function result. True if current selection is empty (i.e. start offset == end offset).

False if selection is not empty.

EXTERN_API(OSStatus)
TXNSetSelection (TXNObject iTXNObject,

TXNOffset iStartOffset,
TXNOffset iEndOffset);

Set the current selection. Offset values are character offsets.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject
 iStartOffset: The new start offset.
 iEndOffset: The new end offset.

EXTERN_API(OSStatus)
TXNGetContinuousTypeAttributes (TXNObject iTxnObject,

10/19/99 Preliminary draft. © Apple Computer, Inc. page 38

TXNContinuousFlags * oContinuousFlags,
ItemCount ioCount,
TXNTypeAttributes ioTypeAttributes[]);

Test the current selection to see if the font, style, color, and/or size of the font is continuous. The
flag bits will be set to indicate which of these attributes are continuous. Addtionally, an
application can pass in an array for TXNTypeAttributes with the tags set to the continuous
attribute that she would like returned. On ATSUI system there is a much larger number of type
attributes that might be continuous. TXNGetContinuousTypeAttributes is designed to make it
easier for an application to add check marks to the Font, Style, and Size menus. If an application
is interested in the other less traditional type attributes available in ATSUI, the call
TXNGetContinuousTypeTags should be used instead of TXNGetContinuousTypeAttributes.
However, whether MLTE is using QuickDraw or ATSUI to draw text, this function supports
size, font, color, and style in either case.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject
continuousFlags: Bits which can be examined to see which if any of the font attributes are

continuous. If a particular bit is set and if the application has passed a
TXNTypeAttribute in the array that corresponds to the bit, then the information in
the TXNTypeAttribute can be used to to do something like check off the
continuous size in the size menu.

For example:
 TXNTypeAttributes sizeAttr;

sizeAttr.tag = kTXNQDFontSizeAttribute;
sizeAttr.size = kTXNQDFontSizeAttributeSize;
sizeAttr.data.dataValue = 0;

TXNAreFontAttributesContinuous(txnObject, &flags, 1, &sizeAttr);

if (flags & kSizeContinuousMask)
CheckSizeMenu(sizeAttr.data.dataValue);

 ioCount: Count of TXNTypeAttributes records in the ioTypeAttributes array.
 ioTypeAttributes: Array of TXNTypeAttributes. The tag values in this array indicate the

type attributes the application is interested in.

EXTERN_API(OSStatus)
TXNSetTypeAttributes(TXNObject iTXNObject,

ItemCount iAttrCount,
TXNTypeAttributes iAttributes[],
TXNOffset iStartOffset,
TXNOffset iEndOffset);

Set the current ranges font information. Values are passed in the attributes array. Values <=
sizeof(UInt32) are passed by value. > sizeof(UInt32) are passed as a pointer. That is, the
TXNTypeAttributes' 3rd field is a union that serves as either a 32-bit integer or a 32-bit pointer.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 39

Input:
 iTXNObject: opaque TXNObject obtained from TXNNewObject
iAttrCount: Count of type attributes in the TXNTypeAttributes array.
iAttributes[]: An array of attributes that application would like to set.
iStartOffset: The starting offset where the application would like to begin setting these

attributes. If the goal is to change the current selection, the value of iStartOffset
should be set to kTXNUseCurrentSelection (0xFFFFFFF).

iEndOffset: The offset where the style changes should stop. This is ignored if
iStartOffset is equal to kTXNUseCurrentSelection

Output:

OSStatus: various MacOS errs. Notably memory manager and paramErrs.

EXTERN_API(OSStatus)
TXNSetTXNObjectControls(TXNObject iTXNObject,

Boolean iClearAll,
ItemCount iControlCount,
TXNControlTag iControlTags[],
TXNControlData iControlData[]
);

Set things that apply to the entire TXNObject (i.e. the entire document). This includes line
direction, justification, tab values, read-only status, whether the caret is on or off, whether the
bottom-line window is used, text auto-wrap, keyboard synchronization, auto-indent, and
application refcon. See the enum following the typedef for TXNControlTag for the list of
constants that name what can be set. In addition, on systems which include ATSUI, all the
ATSUI Line Control Attribute Tags can be passed to this function as a TXNControlTag. This is
the case for all the ATSUI tags except kATSULineRotationTag. ATSUI Tags are applied to the
entire TXNObject.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject
iClearAll: reset all controls to the default

justification = LMTESysJust
line direction = GetSysDirection()
etc.

iControlCount: The number of TXNControlInfo records in the array.
iControlTags: An array[iControlCount] of TXNObject control tags.
iControlInfo: An array of TXNControlData structures which specify the type of

information being set.

InputOutput:
OSStatus: paramErr or noErr.

EXTERN_API(OSStatus)

10/19/99 Preliminary draft. © Apple Computer, Inc. page 40

TXNGetTXNObjectControls(TXNObject iTXNObject,
ItemCount iControlCount,
TXNControlTag iControlTags[],
TXNControlData oControlData[]);

Get the current TXNControls for the TXNObject. Specify tags in the iControlTags array. The
values are returned in the oControlData array.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject
iControlCount: The number of TXNControlInfo records in the array.
iControlTags: An array[iControlCount] of TXNObject control tags.

Input/Output:
OSStatus: paramErr or noErr.
oControlData: An array of TXNControlData structures which are filled out with

the information that was requested via the iControlTags array. The
 application must allocate the array.

EXTERN_API(OSStatus)
TXNCountRunsInRange(TXNObject iTXNObject,

UInt32 iStartOffset,
UInt32 iEndOffset,
ItemCount * oRunCount);

Given a range specified by the starting and ending offset return a count of the runs in that range.
Run in this case means changes in TextSyles or a graphic or sound.

Input:
iTXNObject The TXNObject you are interested in.
iStartOffset start of range
iEndOffset end of range

Output:
oRunCount count of runs in the range
OSStatus: paramerr

EXTERN_API(OSStatus)
TXNGetIndexedRunInfoFromRange(TXNObject iTXNObject,

ItemCount iIndex,
UInt32 iStartOffset,
UInt32 iEndOffset,
UInt32 * oRunStartOffset,
UInt32 * oRunEndOffset,
Collection * oCollection) ;

10/19/99 Preliminary draft. © Apple Computer, Inc. page 41

Get information about the Nth run in a range. Should call TXNCountRunsInRange to get the
count. The TXNTypeAttributes array must specify the type that the application is interested in.
In other words, the tag field must be set. oTypeAttributes can be NULL.

Input:
iTXNObject Current TXNObject
iIndex the index is 0 based.
iStartOffset start of range
iEndOffset end of range
iTypeAttributeCount count of the number of TXNTypeAttribute strutures can be 0 if not

interested in type attributes.
Output:

OSStatus paramErr or kRunIndexOutofBoundsErr.
oRunStartOffset start of run. This is relative to the beginning of the text, not the range
oRunEndOffset end of run.
oRunDataType Type of date contained in this run (i.e. PICT, moov, snd, TEXT)

iTypeAttributeCount
oTypeAttributes Array of TXNTypeAttributes specifying the type attributes you are

interested in.

EXTERN_API(ByteCount)
TXNDataSize (TXNObject iTXNObject);

Return the size in bytes of the characters in a given TXNObject.
Input:

iTXNObject: The TXNObject
Output:

ByteCount: The bytes required to hold the characters

EXTERN_API(OSStatus)
TXNGetData(TXNObject iTXNObject,

TXNOffset iStartOffset,
TXNOffset iEndOffset,
Handle * oDataHandle);

Copy the data in the range specified by startOffset and endOffset. This function should be used
in conjunction with TXNNextDataRun. The application would call TXNNextDataRun to
determine data runs and their size. For each data run of interest (i.e., one whose data the
application wanted to look at), the application would call TXNGetData. The handle passed to
TXNGetData should not be allocated.

TXNGetData takes care of allocating the dataHandle as necessary. However, the application is
responsible for disposing the handle. No effort is made to ensure that data copies align on a
word boundary. Data is simply copied as specified in the offsets.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 42

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject.
iStartOffset: absolute offset from which data copy should begin.
iEndOffset: absolute offset at which data copy should end.

Output:
OSStatus Memory errors or TXN_IllegalToCrossDataBoundaries if offsets specify a range

that crosses a data type boundary.
oDataHandle: If noErr a new handle containing the requested data.

EXTERN_API(OSStatus)
TXNGetDataEncoded(TXNObject iTXNObject,

TXNOffset iStartOffset,
TXNOffset iEndOffset,
Handle * oDataHandle,
TXNDataType encoding);

This function is similar to TXNGetData except for the following crucial difference.
TXNGetDataEncoded only copies text. The application can specify whether text should be in
the traditional Mac OS script encodings or Unicode. If the application specifies an encoding
different from how the text is stored internally, the Text Encoding Conversion Manager will be
invoked to translate the text into the requested encoding type.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject.
iStartOffset: absolute offset from which data copy should begin.
iEndOffset: absolute offset at which data copy should end.
encoding : should be kTXNTextData or kTXNUnicodeTextData

Output:
OSStatus Memory errors or TXN_IllegalToCrossDataBoundaries if offsets specify a range

that crosses a data type boundary.
oDataHandle: If noErr a new handle containing the requested data.

EXTERN_API(OSStatus)
TXNSetDataFromFile (TXNObject iTXNObject,

SInt16 iFileRefNum,
OSType iFileType,
ByteCount iFileLength,
TXNOffset iStartOffset,
TXNOffset iEndOffset);

Replace the specified range with the contents of the specified file. The data fork of the file must
be opened by the application.

MLTE will not move the file’s marker before reading the data. The marker must be set by the
caller to the appropriate position before calling TXNSetDataFromFile. If the entire file is to be
MLTE data then the marker should be set to position 0. If the caller wants to embed MLTE data

10/19/99 Preliminary draft. © Apple Computer, Inc. page 43

within private or even other MLTE data then the file position must be set to the appropriate
location.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject
iFileRefNum: HFS file reference obtained when file is opened.
iFileType: files type.
iStartOffset: start position at which to insert the file into the document.
iEndOffset: end position of range being replaced by the file.
iFileLength Describes how much data should be read. This Parameter is

ignored if the file type is thecustom file format that MLTE
supports. This parameter is useful when a caller wishes MLTE
to read data that is embedded in the callers private file. If
you just want MLTE to deal with the whole file pass
kTXNEndOffset (0x7FFFFFFF) for the iFileLength.

Output:
OSStatus: File manager error or noErr.

EXTERN_API(OSStatus)
TXNSetData (TXNObject iTXNObject,

TXNDataType iDataType,
void * iDataPtr,
ByteCount iDataSize,
TXNOffset iStartOffset,
TXNOffset iEndOffset);

Replace the specified range with the data pointed to by dataPtr and described by dataSize and
dataType.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject.
iDataType: type of data must be one of TXNDataTypes.
iDataPtr: pointer to the new data.
iDataSize: Size of new data
iStartOffset: offset to beginning of range to replace
iEndOffset: offset to end of range to replace.

Output:
OSStatus: function result. parameter errors and Mac OS memory errors.

EXTERN_API(ItemCount)
TXNGetChangeCount(TXNObject iTXNObject);

Retrieve the number of times document has been changed. The change count is incremented for
every committed command. The count is cleared each time the TXNObject is saved. This
function is useful for deciding if the Save item in the File menu should be active.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject

10/19/99 Preliminary draft. © Apple Computer, Inc. page 44

Output:
ItemCount: count of changes. This is total changes since document was created or last

saved.

EXTERN_API(OSStatus)
TXNSave (TXNObject iTXNObject,

OSType iType,
OSType iResType,
TXNPermanentTextEncodingType iPermanentEncoding,
FSSpec* iFileSpecification,
SInt16 iDataReference,
SInt16 iResourceReference);

Save the contents of the document as the type specified. The file to save the document to must
be opened. If the file is being saved as plain text and the application has specified a resource
type in which to save style attributes, then the resource fork of the file must be open as well.

The file marker of the opened file is expected to be at the position where the caller wants the data
to be written. Typically, this is 0, but any valid file position can be used. MLTE does not move
the marker before writing the file. This allows callers to write private data, followed by data that
is written by MLTE which can subsequently be followed by more private data or even another
MLTE file.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject.
iType: The file type to which the TXNObject should be saved. The type must be ‘txtn’,

‘TEXT’, or utxt.
iResType: The type of resource that should be used to save the style information if

the file is being saved as plain TEXT. This parameter is ignored for other file
types.

iPermanentEncoding: The encoding style in which to save the document. If the internal
encoding being used by MLTE does not match the requested encoding type, the
text is translated by the Text Encoding Conversion Manager.

iFileSpecification: A pointer to an FSSpec record that specifies the files location. This
parameter is retained and used in calls to TXNRevert. It is not retained past the life
of the TXNObject.

iDataReference: A reference to the files open data fork.
iDataReference: A reference to the files open resource fork. This parameter is

ignored if the file type is not ‘TEXT’. You can save TEXT without style
information by passing -1 for this parameter.

Output:
OSStatus: Function result. NoErr if document was saved. A File Manager error is returned if

there was a failure.

EXTERN_API(OSStatus)
TXNRevert (TXNObject iTXNObject);

10/19/99 Preliminary draft. © Apple Computer, Inc. page 45

Revert to the last saved version of this document. If the file was not previously saved, the
document is reverted to an empty document.

TXNRevert does not support data embedding. To revert to data that is embedded in a private file
type the caller should call TXNSetSelection to select all of the current data and then use
TXNSetDataFromFile to read in the old data.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject

Output:
OSStatus: File manager errors, paramErr, or noErr.

EXTERN_API(OSStatus)
TXNPageSetup (TXNObject iTXNObject);

Display the Page Setup dialog box for the current default printer and react to any changes (i.e.,
reformat the text if the page layout changes.)

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject.

Output:
OSStatus:Print Manager errors, paramErr, noErr.

EXTERN_API(OSStatus)
TXNPrint (TXNObject iTXNObject);

Print the TXNObject formatted to fit the printer page size.
Input:

iTXNObject: opaque TXNObject obtained from TXNNewObject.
Output:

OSStatus:Print Manager errors, paramErr, noErr.

EXTERN_API(Boolean)
TXNIsScrapPastable (void);

Test to see if the current scrap contains data that is supported by MLTE. Used to determine if
the Paste item in Edit menu should be active or inactive.

 Output:
Boolean: function result. True if data type in Clipboard is supported. False if not a

supported data type. If result is true, the Paste item in the menu should be
highlighted.

EXTERN_API(OSStatus)
TXNConvertToPublicScrap (void);

10/19/99 Preliminary draft. © Apple Computer, Inc. page 46

Convert the MLTE private scrap to the public clipboard. This should be called on suspend
events and before the application displays a dialog box that might support cut and paste. Or
more generally, whenever someone other than MLTE needs access to the scrap data. The public
formats supported are style text and styled Unicode text.

Output:
OSStatus: Function result. Memory Manager errors, Scrap Manager errors, noErr.

EXTERN_API(OSStatus)
TXNConvertFromPublicScrap (void);

Convert the public clipboard to MLTE private scrap . This should be called on resume events
and after an application has modified the scrap.

Output:
OSStatus: Function result. Memory Manager errors, Scrap Manager errors, noErr.

EXTERN_API(void)
TXNGetViewRect (TXNObject iTXNObject,

Rect * oViewRect);

Get the rectangle describing the current view into the document. The coordinates of this
rectangle will be local to the window. If scroll bars are being managed by the TXNObject (i.e.,
the TXNNewObject flags include want vertical and horizontal scroll bars), the viewrect
describes an area that encloses the scroll bars.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject.

Output:
oViewRect: The requested view rectangle.

EXTERN_API(OSStatus)
TXNFind (TXNObject iTXNObject,

const TXNMatchTextRecord * iMatchTextDataPtr, /* can be NULL */
TXNDataType iDataType,
TXNMatchOptions iMatchOptions,
TXNOffset iStartSearchOffset,
TXNOffset iEndSearchOffset,
TXNFindUPP iFindProc,
SInt32 iRefCon,
TXNOffset * oStartMatchOffset,
TXNOffset * oEndMatchOffset);

Find a piece of text or a graphics object. Sounds are considered graphics objects in this context.
Input:

iTXNObject: opaque TXNObject obtained from TXNNewObject.
iMatchTextDataPtr:ptr to a MatchTextRecord containing the text to match, the length of that

text, and the TextEncoding the text is encoded in. This must be there if you are
looking for text, but can be NULL if you are looking for a graphics object.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 47

iDataType: the type of data to find. This can be any of the types defined in TXNDataType
enum (TEXT, PICT, moov, snd). However, if PICT, moov, or snd is passed, then
the default behavior is to match on any non-Text object. If you really want to find
a specific type, you can provide a custom find callback or ignore matches that
aren't the precise type you are interested in.

iStartSearchOffset: The offset at which a search should begin. The constant
kTXNStartOffset specifies the start of the objects data.

iEndSearchOffset: The offset at which the search should end. The constant kTXNEndOffset
specifies the end of the objects data.

iFindProc A custom callback. If will be called to match things rather than the default
matching behavior.

iRefCon This can be use for whatever the application likes. It is passed to the FindProc (if a
FindProc is provided.

Output:
oStartMatchOffset absolute offset to start of match. Set to 0xFFFFFFFF if there is no

match.
oEndMatchOffset absolute offset to end of match. Set to 0xFFFFFFFF is no match. The

default matching behavior is pretty simple for text: a basic binary compare is done.
If the matchOptions say to ignore case, the characters to be searched are
duplicated and case neutralized. This naturally can fail due to lack of memory if
there is a large amount of text. It also slows things down. If MatchOptions say
find an entire word, then once a match is found, an effort is made to determine if
the match is a word. The default behavior is to test the character before and after to
see if it is white space. If the kTXNUseEncodingWordRulesBit is set, than the
Script Manager's FindWord function is called to make this determination. If the
text being searched is Unicode text, then ATSUI’s word determining functions are
used to determine the word. If the application is looking for a non-text type, then
each non-text type in the document is returned. The FindProc is there to provide
applications with more elaborate search engines (a regular expression processor,
etc.) in mind.

EXTERN_API(OSStatus)
TXNSetFontDefaults (TXNObject iTXNObject,

ItemCount iCount,
TXNMacOSPreferredFontDescription iFontDefaults[]);

For a given TXNObject, specify the font defaults for each script.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject.
iCount: count of FontDescriptions.
iFontDefaults: array of FontDescriptins.

Output:
OSStatus: function result (memory error, paramErr)

EXTERN_API(OSStatus)

10/19/99 Preliminary draft. © Apple Computer, Inc. page 48

TXNGetFontDefaults (TXNObject iTXNObject,
ItemCount * ioCount,
TXNMacOSPreferredFontDescription iFontDefaults[]);

For a given TXNObject, make a copy of the font defaults.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject.
iCount: count of FontDescriptions in the array.
iFontDefaults: array of FontDescriptins to be filled out.

Output:
OSStatus:function result (memory error, paramErr). To determine how many font

descriptions need to be in the array, you should call this function with a NULL for
the array. iCount will return with the number of font defaults currently stored.

EXTERN_API(OSStatus)
TXNAttachObjectToWindow (TXNObject iTXNObject,

GWorldPtr iWindow,
Boolean iIsActualWindow);

If a TXNObject was initialized with a NULL window pointer, use this function to attach a
window to that object. In version 1.0 of MLTE, attaching a TXNObject to more than one
window is not supported.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject.
iWindow: GWorldPtr that the object should be attached to
iIsActualWindow: True if the GWorldPtr was obtained by calling NewWindow or

NewCWindow. False if it is a generic port. Passing false means that MLTE will
never call window-specific Toolbox functions like InvalRect, BeginUpdate, etc. If
false is passed, it is the application’s responsibilty to handle this type of
functionality if it is required.

Output:
OSStatus: function result (kObjectAlreadyAttachedToWindowErr, paramErr)

EXTERN_API(Boolean)
TXNIsObjectAttachedToWindow (TXNObject iTXNObject);

A utility function that allows a application to check a TXNObject to see if it is attached to a
window.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject.

Output:
Boolean: function result. True if object is attached. False if TXNObject is not attached.

EXTERN_API(OSErr)
TXNDragTracker (TXNObject iTXNObject,

10/19/99 Preliminary draft. © Apple Computer, Inc. page 49

TXNFrameID iTXNFrameID,
DragTrackingMessage iMessage,
WindowPtr iWindow,
DragReference iDragReference,
Boolean iDifferentObjectSameWindow);

If you ask that drag-handling procs not be installed by passing
kTXNDoNotInstallDragProcsMask to TXNNewObject, you should call this function when your
drag tracker is called and you want MLTE to take over.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject.
iTXNFrameID TXNFrameID obtained from TXNNewObject
iMessage drag message obtained from Drag Manager
iWindow windowPtr obtained from Drag Manager
iDragReference dragReference obtained from Drag Manager
iDifferentObjectSameWindow: If your application is displaying more than one TXNObject

per window, pass true here when the drag operation moves out of one object’s view
rectangle and into another TXNObject’s view rectangle.

Output:
OSErr: function result. OSErr is used over OSStatus so that it matches the Drag Manager

definition of Tracking callback

EXTERN_API(OSErr)
TXNDragReceiver (TXNObject iTXNObject,

TXNFrameID iTXNFrameID,
WindowPtr iWindow,
DragReference iDragReference,
Boolean iDifferentObjectSameWindow);

If you are handling Drag and Drop (i.e., you passed kTXNDoNotInstallDragProcsMask to
TXNNewObject), call this when your drag receiver is called and you want MLTE to take over.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject.
iTXNFrameID TXNFrameID obtained from TXNNewObject
iWindow windowPtr obtained from Drag Manager
iDragReferencedragReference obtained from Drag Manager

Output:
OSErr: function result. OSErr is used over OSStatus so that it matches the Drag Manager

definition of Tracking callback

EXTERN_API(OSStatus)
TXNActivate (TXNObject iTXNObject,

TXNFrameID iTXNFrameID,
TXNScrollBarState iActiveState);

10/19/99 Preliminary draft. © Apple Computer, Inc. page 50

Make the TXNObject active in the sense that it can be scrolled if it has scroll bars. If the
TXNScrollBarState parameter is true, then the scroll bars will be active even when the
TXNObject is not focused (i.e., the insertion point is not active)

This function should be used if you have multiple TXNObjects in a window, and you want them
all to be scrollable even though only one at a time can have the keyboard focus.

Input:
iTXNObject: opaque TXNObject obtained from TXNNewObject.
iTXNFrameID TXNFrameID obtained from TXNNewObject
iActiveState Boolean. If true, scroll bars stay active even though TXNObject does not

have the keyboard focus. If this parameter is false, scroll bars are synced with
active state (i.e., a focused object has an active insertion point or selection and
active scroll bars. An unfocused object has inactive selection—grayed or framed
selection—and inactive scroll bars.) The latter state is the default and usually the
one you use if you have one TXNObject in a window.

Output:
OSStatus: function result. ParamErr if bad iTXNObject or frame ID.

EXTERN_API(OSStatus)
TXNSetBackground (TXNObject iTXNObject,

TXNBackground * iBackgroundInfo);

Set the type of background the TXNObject's text, etc., is drawn onto. The background can be a
color or a picture.

Input:
iTXNObject: opaque TXNObject obtained from IncomingDataFilter callback.
iBackgroundInfo: struct containing information that describes the background

Output:
OSStatus: function result. paramErrs.

EXTERN_API(OSStatus)
TXNNewFontMenuObject(MenuHandle iFontMenuHandle,

SInt16 iFontMenuID,
SInt16 iStartHierMenuID,
TXNFontMenuObject* oTXNFontMenuObject);

Get a new TXNFontMenuObject. A TXNFontMenuObject is an obaque structure that describes
and handles all aspects of user interaction with a Font menu. The menu is created dynamically.
The application provides the menu title, the menu ID, and the menu ID to use if any hierarchical
menus are created. Hierarchical menus are created on systems with ATSUI.

Input:
IFontMenuHandle An empty menu handle (well the title is there) that the caller created via

NewMenu or GetNewMenu. This menu handle should not be disposed

10/19/99 Preliminary draft. © Apple Computer, Inc. page 51

before the returned TXNFontMenuObject has been disposed via
TXNDisposeFontMenuObject /:
.

iFontMenuID: The menu ID that the font menu should have.
iStartHierMenuID: The menu ID at which hierarchical menu IDs will begin.

Output:
OSStatus: function result, Memory Error, paramError.
oTXNFontMenuObject: A new TXNFontMenuObject is returned.

EXTERN_API(OSStatus)
TXNGetFontMenuHandle(TXNFontMenuObject iTXNFontMenuObject,

MenuHandle* oFontMenuHandle);

Get the Font menu handle that belongs to a TXNFontMenuObject.

Input:
oTXNFontMenuObject: TXNFontMenuObject obtained from TXNNewFontMenuObject.

Output:
OSStatus: function result, ParamError.
oFontMenuHandle: The Font menu created when TXNNewFontMenuObject was created.

The application should NOT dispose of this Handle.

EXTERN_API(OSStatus)
TXNDoFontMenuSelection(TXNObject iTXNObject,

TXNFontMenuObject iTXNFontMenuObject,
SInt16 iMenuID,
SInt16 iMenuItem);

Pass the results of MenuSelect to this routine. If the iMenuID is the Font menu or one of its sub-
menus, the currently selected text will be changed to the font the user selected.

Input:
iTXNObject: TXNObject obtained from TXNNewObject;
iTXNFontMenuObject: TXNFontMenuObject obtained from TXNNewFontMenuObject.
iMenuID: The high 16-bits of the long word returned by MenuSelect. It is necessary to pass

the menuID because the font menu may have hierarchical sub-menus.
iMenuItem: The low 16-bits of the result of MenuSelect.

Output:
OSStatus: function result, ParamError.

EXTERN_API(OSStatus)
TXNPrepareFontMenu(TXNObject iTXNObject,

TXNFontMenuObject iTXNFontMenuObject);

10/19/99 Preliminary draft. © Apple Computer, Inc. page 52

Prepare a Font menu for display. If the TXNObject’s current selection is a single font, the item
for that font is checked. If iTXNObject is NULL, the menu is grayed out.

Input:
iTXNObject: TXNObject obtained from TXNNewObject;
iTXNFontMenuObject: TXNFontMenuObject obtained from TXNNewFontMenuObject.

Output:
OSStatus: function result, ParamError.

EXTERN_API(OSStatus)
TXNDisposeFontMenuObject(TXNFontMenuObject iTXNFontMenuObject);

Dispose a Font menu object. This function calls DisposeMenuHandle on the Font menu handle.

Input:
iTXNFontMenuObject: TXNFontMenuObject obtained from TXNNewFontMenuObject.

Output:
OSStatus: function result, ParamError.

EXTERN_API_C(OSStatus)
TXNEchoMode (TXNObject iTXNObject,

UniChar iechoCharacter,
TextEncoding iencoding,
Boolean ion);

Put the TXNObject into echo mode. When a TXNObject is in echo mode all characters in the
TXNObject have the character specified by 'echoCharacter' substituted for the actual glyph
when drawing occurs. Note that the echoCharacter is typed as a UniChar, but this is done merely
to facilitate passing any two byte character. The encoding parameter actually determines the
encoding used to locate a font and display a character. Thus if you wanted to display the
diamond found in the Shift-JIS encoding for MacOS you would pass in 0x86A6 for the character
but an encoding that was built to represent the MacOS Japanese encoding.

 Input:

 iTXNObject: opaque TXNObject obtained from IncomingDataFilter callback.
 iechoCharacter: character to use in substitution
 iencoding: encoding from which character is drawn.
 ion: TRUE if turning EchoMode on. False if turning it off.

 Output:
 OSStatus: function result. paramErrs.

10/19/99 Preliminary draft. © Apple Computer, Inc. page 53

EXTERN_API(OSStatus)
TXNVersionValue TXNVersionInformation(TXNFeatureBits* oFeatureFlags);

Get the version number and a set of feature bits. The initial version number
is And the only bit used in the oFeatureFlags is the lsb: 0x00000001

Input:
NONE

Output:
TXNVersionValue: Current version.
TXNFeatureBits*: Pointer to a bit mask. See TXNFeatureMask enum

above. If kTXNWillDefaultToATSUIBit is set it
means that by default MLTE will use ATSUI to image
and measure text and will default to using Unicode
to store characters.

