Drag and Drop
Human Interface Guidelines

r

«.

September 14, 1993
© Apple Computer, Inc., 1993.

& Apple Computer, Inc.
© 1993, Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.
Printed in the United States of
America.

No licenses, express or implied, are
granted with respect to any of the

technology described in this manual.

Apple retains all intellectual
property rights associated with the

technology described in this manual.

This manual is intended to assist
application developers to develop
applications only for Apple
Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.

Finder and QuickDraw are

trademarks of Apple Computer, Inc.

Claris and MacPaint are registered
trademarks of Claris Corporation.

LIMITED WARRANTY ON
MEDIA AND REPLACEMENT

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR
REPRESENTATION, EITHER
EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS
MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND
REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU
OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent,
or employee is authorized to make
any modification, extension, or
addition to this warranty.

Some states do not allow the
exclusion or limitation of implied
warranties or liability for incidental
or consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty
gives you specific legal rights, and
you may also have other rights
which vary from state to state.

CHAPTETR 1

Drag and Drop
Human Interface Guidelines

Contents

Design Overview 1
Introduction 1
Interaction Model 1
Importance of Undo 6
References 6

Selection Feedback 6
Single-Gesture Selection and Dragging 6

Background Selections 7
Drag Feedback 9

Icons 9

Graphics 10

Text 11

Multiple Dragged Items 11
Destination Feedback 12
Windows 13

Icons 15
Graphics 15
Text 16

Multiple Dragged Items 16
Autoscrolling 16
Drop Feedback 17

Finder Icons 17
Graphics 18
Text 18
Transferring Selections 18
Confirmation Dialogs 19
Abort Feedback 20
When to Activate Inactive Windows 20

Clippings 21

Drag and Drop Semantics 22
Move vs. Copy 22
When to Check the Option Key 22
Consistent Semantics of the Option Key 23
Guiding Principle and Common Contexts 23
Ambiguity 23
Using the Trash as a Destination 24

CHAPTER 1

Modifier Keys 24
Checklist 25

General 25
Selections 25
Dragging 25
Destinations 26

Dropping 26
Aborting 27

Windows 27
Semantics 27

CHAPTER 1

Drag and Drop Human Interface Guidelines

Design Overview

Introduction

One of the Macintosh'’s key design characteristics is the concept of direct manipulation.
System 7 extends this concept by allowing users to directly manipulate a document icon and
“drop” it onto an application icon, which results in the document being opened with the
application. This general technique of dragging an item and dropping it on a suitable
destination is called drag and drop.

The Drag Manager from Apple Computer, Inc. extends the direct manipulation capabilities
of the Macintosh human interface even further by providing a engineering framework for
drag-and-drop sequences among windows and applications. This document specifies the
look and feel of the behaviors supported by the Drag Manager, and provides human
interface guidelines for developers who want to support drag and drop in their software.
For convenience, these guidelines take a mouse-centric view of drag and drop; you should
not overlook alternate input devices, such as pens and trackballs, as equivalent to using the
mouse.

Interaction Model

A drag-and-drop sequence has several components, as indicated by the interaction model
shown in Figure 1-1:

CHAPTER 1

Drag and Drop Human Interface Guidelines

Figure 1-1 Drag-and-Drop Interaction Model

Select Item .| User Action
Selection Feedback Key: System Action
y
Drag Item
Drag Feedback
\
Autoscroll (if needed)
Reveal Destination
Arrive at Destination Arrive at Destination
That Accepts Item <«—| That Does Not Accept Item
Destination Feedback No Destination Feedback
Drop Item Drop Item
Drop Feedback Abort Feedback

While this interaction model is not new, the Drag Manager enables a much richer set of
dragged items and useful destinations. Up until now, drag-and-drop sequences that span
windows have been limited to items characterized as containers. For example, documents
are containers of content, and these documents could be dragged only across folder
windows, disk windows, and the desktop in the Finder. Also, dragging content itself (such
as graphics) has been limited to a single window. For example, MacDraw objects can be
dragged to another location in the same window, but cannot be dragged to another
MacDraw window. The Drag Manager eliminates these limitations; ideally, users should be
able to drag any content from any window to any other window that accepts the content’s
type. This new capability leads to a generalization of the interaction model shown in Figure
1-1 on the previous page, where “items” and “destinations” take on broader meanings. For
example, the scenario shown in Figure 1-2 below is now possible:

CHAPTER 1

Drag and Drop Human Interface Guidelines

Figure 1-2 Dragging Text from One Application to Another

Step 1: Select text before dragging

E[[=—— Solicitation

Dear Resident,

Letme inroduce myself as a premisr
real estate agentwho can serve your
needs. | have over bventy years of
experience and have never hada
dissatisfied customer! IF you are
planning b sell your house in the near
fukture, please do not hesitake to contact
me at (8007 BLIT-SELL.

Advertisement

Sold by:

[

Sincerely yours,

Tour
House

Gl [e{]

<

Step 2: Drag text towards another window

E=—— solicitation =——=
Dear Resident,

Letme introduce myself as a pramisr
real estate agent who can serve your
needs. | have over beenty years of
experience and have never hada
dissatisfied customer! I you are
planning to sell vour house in the near
future, please do not hesitabs to contact
me at(800) BLIT-SELL.

Advertisement

Sold by:

[c>

Sincerely yours,

Tour
House

&l

(Figure continued on next page)

CHAPTER 1

Drag and Drop Human Interface Guidelines

Figure 1-2 (continued) Dragging Text from One Application to Another

Step 3: Arrive at destination

S((=—— Solicitation
Dear Resident,

Letme inroduce myself as a premisr
real estate agent who can serve your
needs. | have over bwenty wears of
experience and have never hada
dissatisfied customer! I you are
planning o sell your house in the near
future, please do not hesitake to contad
me ak{800) BLIY-SELL.

Advertisement

e

Sincersly yours,

Tour
House

<l

Step 4: Drop text at destination

E[[=—— Solicitation

Dear Resident,

Letme inroduce myself as a premisr
real estate agentwho can serve your
needs. | have over bventy years of
experience and have never hada
dissatisfied customer! IF you are
planning b sell your house in the near
future, please do not hesitakbe to contad
me at (8007 BLIT-SELL.

Advertisement

Sold by:
| 1y Best

[

Sincerely yours,

Tour
House

<

Figure 1-3 on the next page shows a situation where the source and destination may not be
visible at the same time. Here, the user can create clippings in the Finder that store the
dragged data for later use. Such clippings are created when a piece of data is dragged to a
Finder window, folder, disk, or desktop. These clippings can then be dragged into another
application window at a later time. See the section “Clippings” on page 18 for more details.

Although the Drag Manager enables easier ways of working with data, drag and drop
should be considered only as an accelerator and ease-of-use technique. For every given
drag-and-drop sequence, there should be another method of accomplishing the same task,
such as copy-and-paste, menu items, and dialogs. Of course, there are situations where drag
and drop is so intrinsic to an application that no suitable alternative methods exist. For
example, dragging icons in the Finder is such a basic operation that there are no other
methods of accomplishing the same task.

CHAPTER 1

Drag and Drop Human Interface Guidelines

Figure 1-3 Dragging graphics to the Finder desktop to create clippings

Step 1: Select graphics before dragging

Step 2: Drag graphics towards desktop

Advertisement

Sold by:
|1 Best

Step 3: Drop graphics on desktop

duertisement

Sold by:
|.M1.Best

Note how the major steps of the drag-and-drop interaction model parallels a copy-and-
paste sequence, where you select an item, choose the “Copy” menu command, then specify
a destination, and finally choose the “Paste” menu command. However, drag and drop is a
distinct technique in itself, and the Drag Manager does not use the Clipboard. Users can

5

CHAPTER 1

Drag and Drop Human Interface Guidelines

take advantage of both the Clipboard and drag and drop without side effects from each
other.

The user-visible elements specified by these guidelines are motivated by a single human
interface principle: provide immediate feedback at the significant points during a drag-and-
drop operation, as shown in the interaction model in Figure 1-1 on page 1. The guidelines
are organized into sections corresponding with the following types of feedback: selection
feedback, drag feedback, destination feedback, and drop feedback.

In this document, an item is defined to be anything that can be selected by the user, such as

text, graphics, bitmaps, and icons. As the Macintosh interface uses a noun-verb paradigm,
this document assumes that all items are selected before they are dragged.

Importance of Undo

As drag and drop becomes more pervasive on the Macintosh, recoverability becomes even
more important. Since effecting large changes in a document is easier with drag and drop,
you should extend Undo to the drag-and-drop sequences you enable in your applications.

References

The following references provide background information:
Drag Manager Programmer’s Guide, by Apple Computer, September 1993.

Macintosh Human Interface Guidelines, by Apple Computer, 1992.

Selection Feedback

Since selection feedback is well-defined by the Macintosh Human Interface Guidelines, it is not
discussed in detail here. However, there are two issues that deserve special mention: single-
gesture selection and dragging, and background selections.

Single-Gesture Selection and Dragging

Since dragging is defined as moving the mouse while the mouse button is held down, a
mouse-down event must take place before dragging can take place. A selection may be
made as a result of this mouse-down event, just before the user starts dragging. For
example, the user can select and drag a folder icon in a single gesture; the user does not
have to click on the folder icon first, release the mouse button, and then click again to begin
dragging the selected folder icon. Your application should ensure that implicit selection
occurs (if appropriate) when the user starts dragging.

CHAPTER 1

Drag and Drop Human Interface Guidelines

This single-gesture selection and dragging is possible only when the process of selecting an
item does not require dragging. A range-selection operation, such as selecting text, a series
of spreadsheet cells, or “rubber-banding” around a group of graphical objects with a
marquee, do not lend to single-gesture selection and dragging because the range-selection
operation itself requires dragging.

Background Selections

Traditionally, when a window containing a highlighted selection becomes inactive, the
highlighting is removed, to avoid visual competition with a possible selection in the
frontmost window.! Thus, a selection in an inactive window could only be identified by
making an inactive window active. Your application can save the user from this onerous
task by providing and maintaining visible background selections, which enable dragging
of data from inactive windows to the active window.

Figure 2-1 shows an example of a background selection; note that the Solicitation window is
inactive, but it contains a background selection of “I.M. Best” that can be dragged in step 2.
Other examples can be found in the MPW Shell, where selections in inactive windows are
identified by a single-pixel outline, and in TextEdit, which supports outline highlighting of
text when the TextEdit field becomes inactive.

Figure 2-1 Dragging a Background Selection to Frontmost Window

Step 1: Identify background selection

Solicitation
SINCerely yours,

Advertisement

El

House for Sale

[

Charming and in quiek neighborhood, near
schools and public libraries.

House has 4 bedrooms, 2 baths, formal
dining room, all-electric kichen, byo-car
garage, ahd is situated on a Z-acre lotk.

For informaltion, contack: |

<] [2

el

L' See Macintosh Human Interface Guidelines, pages 139-140 for more information on active windows.

7

CHAPTER 1

Drag and Drop Human Interface Guidelines

Figure 2-1 (continued) Dragging a Background Selection to Frontmost Window

Step 2: Drag background selection

Solicitation
SINCerely yours,

144 Best

Advertisement

House for Sale

Charming and in quiek neighborhood, near
schools and public libraries.

House has 4 bedrooms, 2 baths, formal
dining room, all-electric kichen, byo-car
garage, ahd is situated on a Z-acre lotk.

For informaltion, contack: |

<] [2

el

Step 3: Arrive at destination in frontmost window

Solicitation
SINCErely youlrs,

114 Bt

Advertisement

House for Sale

Charming and in quisk neighborhood, near
schools and public libraries.

House has 4 bedrooms, 2 baths, formal
dining room, all-electric kichen, byvo-car
garage, and is situated ona 2-acre lok.

For infonmation, oo

<] =

<l

Step 4: Drop text into desired location

Solicitation
SINCErely YOI,

114 Biest

Advertisement

=

House for Sale

Charming and in quisk neighborhood, near
schools and public libraries.

House has 4 bedrooms, 2 baths, formal
dining room, all-electric kichen, byvo-car
garage, and is situated ona Z-acre lok.

For inforrmation, contact: NS

<] [2

el

Background selections are not required if the dragged item is discrete, such as an icon or
graphical object, because implicit selection can occur when an item is dragged. However,

CHAPTER 1

Drag and Drop Human Interface Guidelines

items selected only by range-selection operations such as text or a group of icons must have
a background selection, to allow the user to drag these items out of inactive windows.
Whenever an inactive window is made active, the background selection, if any, becomes
highlighted as a normal selection.

Drag Feedback

Your application provides drag feedback as soon as the user drags an item at least three
pixels, which can be checked by calling a Drag Manager routine. When this occurs, your
application specifies a drag region to the Drag Manager, which then displays the drag
region at the current mouse position and tracks the mouse until the user releases the mouse
button. Some drag feedback guidelines for particular types of dragged items are given in
this section; these guidelines can also help in designing drag feedback for new, yet-to-be-
developed types of dragged items.

In general, the drag feedback should include one or more dotted outlines, and be distinct
from selection feedback. The Drag Manager generates the dotted outlines by drawing a one-
pixel thick outline of the drag region with a 50% gray dithered pattern, regardless of
monitor bit depth and color capability.

Icons

When an icon is dragged, the drag feedback should be a dotted outline that is composed of
a region enclosing the icon’s shape and the text label’s rectangle (if there is one), shown in
Figure 3-1.

Figure 3-1 Drag Feedback for a single icon

Generic dpplication

If more than one icon is dragged, the drag feedback should be a set of dotted outlines, one
for each icon and text label combination. The spatial arrangement of these outlines should
match that of the actual icons, as shown by the two examples in Figure 3-2. Note how each
outline matches its corresponding icon’s shape and text label.

CHAPTER 1

Drag and Drop Human Interface Guidelines

Figure 3-2 Drag Feedback for two different set of icons

9
1264 MBindisk 27.7 MB ar. 5 iterns 126.5 ME in disk

About Drag and Drop

When the selection of icons is extremely large, the specification of the dotted outlines for all
icons can be complex, and dragging the outline will be unwieldy. In these cases, your
application can specify simplified outlines. For example, a large dotted rectangle
representing the visible portion of the selection, accompanied by a full outline of the icon at
the mouse position, can be used, as shown in Figure 3-3 on the next page.

Graphics

In general, when a graphical object is dragged, the drag feedback should be a dotted outline
of the graphical object, as shown in Figure 3-4 on the next page. Note that the selection
feedback is left undisturbed when the user drags the graphical object.

Figure 3-3 Simplified icon outlines?

Drag and Drop
126.4 ME indisk 27.7 MB av

10

2 Don’t take this figure too literally. The Finder does not exhibit this behavior in this particular

situation; however, this behavior does occur when the window is very large and the number of
selected icons inside the window is very large.

CHAPTER 1

Drag and Drop Human Interface Guidelines

Figure 3-4 Drag Feedback for a graphical object

For a compound graphical object (such as a group of simple graphical objects), your
application can draw a dotted outline that reflects the actual compound object as much as
possible. The additional coding effort and a reasonable performance cost incurred in
producing a sophisticated dotted outline is offset by a better user experience of dragging the
compound object. This is especially important when a user is trying to position several
compound objects with respect to one another by dragging. Figure 3-5 illustrates a simple
dotted outline and a more complex one.

Figure 3-5 Comparison of dotted outlines for graphical objects

Some graphics programs, such as MacDraw II, apply a “marching ants” animated effect to
the dotted outline. While this effect is not appropriate for all applications, it is useful in
eliminating ambiguity when there may be graphical objects that have dotted lines.

There are some exceptions where the drag feedback for graphical objects is not a dotted
outline. Notable cases are MacPaint and HyperCard; when the user drags a bitmap
selection, the actual bitmap is dragged. This is called live dragging, and there is no drop
feedback. Object-oriented graphics programs, on the other hand, move the actual object as
the drop feedback, after the outline is dragged.

Text

When a piece of selected text is dragged, the drag feedback should be a dotted outline of the
selection, as shown in Figure 3-6.

11

CHAPTER 1

Drag and Drop Human Interface Guidelines

Figure 3-6 Drag Feedback for text

[J=—— sample Text

Once upon a timesd G far from here, a
king summoned b 6F Rz advisors for a
test. FITERREGY He showed them both a
shiny metal box with bvo slots inthe top, a
control knob, and a lever. "What do you

=
&l [o]en

Even when the text selection spans several lines, the dotted outline is based on the
boundaries of the selection, as shown in Figure 3-7.

Figure 3-7 Drag Feedback of text spanning several lines

Sample Texr

nce Upon atime, 1 kingdom & not far from

5 advisors

intl
“What do vou think this

Dragging text represents a significant new capability enabled by the Drag Manager, which
leads to a subtle change in how the mouse cursor behaves in text areas. Since selected text
may now be dragged, the I-beam cursor cannot always appear whenever the mouse
position is in a text area. If the mouse position is over a text selection that can be dragged,
the arrow pointer should be shown instead. However, the insertion caret can still be set at a
particular point in the selected text if the mouse-down event is immediately followed by a
mouse-up event without an intervening drag gesture. In this case, the insertion caret is
placed at the time of the mouse-up event, as the selection is replaced by an insertion point.
Your application should support this new behavior.

Multiple Dragged Items

When several items are selected, some of these items may be outside a window’s visible
region. In such cases, the set of drag outlines should be limited to only those items that are
visible or partly visible. When a partly-visible item is dragged, the drag outline should be
generated for the entire item, to provide a cue to the user on the actual dimensions of the
item.

Destination Feedback

If the user drags an item to a destination in your application, your application provides
feedback that indicates whether it can accept that item as input. Destination feedback
should not occur simply because your application is “drag-aware”; rather, it should depend

12

CHAPTER 1

Drag and Drop Human Interface Guidelines

on the destination’s ability to accept the type of data contained in the dragged item. For
example, an editable text box that only accepts text is highlighted only when the dragged
item consists of text (i.e., as opposed to a picture).

The actual appearance of destination feedback depends on the type of destination. For
example, destination windows and destination folders are highlighted, but in different
ways. Several windows may even have different highlighting appearances due to
differences in their structures, such as Finder windows and text document windows. The
Drag Manager provides some utilities for simple highlighting, while more complex
highlighting must be handled by your application.

Windows

Since it does not make sense for the entire structure region of a window to be a valid
destination, we use the concept of a destination region for windows. For example, the
destination region of a document window is usually the window’s content region minus the
regions used for controls (such as scroll bars, size boxes, tool palettes, pattern palettes, and
rulers) or informational areas. As explained later in this section, the destination region may
cover a more specific area of a window, or multiple destination regions may be available in
a single window. Note that window title bars or window controls are not valid destinations,
thus providing “escape hatches” for the user while dragging. See Figure 4-1 for an example.

Figure 4-1 Destination Region Highlighting

E0I Drag and Drop =g
2 itemnsz 126 ME in disk 28.2 MB awailable|
it

=pe ¥

Applications Documents |

Systern Folder §—]
i

] [e=

When the user drags an item from one destination region into another destination region
(which may be in another window) that can accept the dragged item as input, your
application highlights the destination region. The mouse pointer must be inside the
destination region for it to be highlighted. As soon as the mouse pointer leaves a desti-
nation region, the highlighting for that region is removed. You can use the Drag Manager to
specify your destination regions; the feedback drawn by the Drag Manager consists of a
two-pixel rectangular frame that matches the size of the destination region. On black-and-
white monitors, this frame is drawn using a 50% gray pattern, and on color monitors, the
Drag Manager draws this frame in a color based on the window color specified in the
Colors control panel. In the case of color, the frame is drawn in Color QuickDraw’s hi l i t e
mode.

If a drag-and-drop sequence takes place wholly within a single destination region (such as

moving a document icon to a different location in the same folder window), your
application should not highlight that destination region, to avoid distracting the user.

13

CHAPTER 1

Drag and Drop Human Interface Guidelines

However, if the user drags an item completely outside of a destination region, and decides
to drop the same item back in the same destination region, the destination region should be
highlighted, providing positive feedback that the dragged item can be released inside the
destination region where it came from.

Destination region highlighting can be supplemented by additional feedback. An example is
insertion point feedback when dragging text from one window to another text window, as
shown in Figure 4-2, and explained in more detail later in this section. Note that insertion
point feedback is provided even though the window is inactive.

Figure 4-2 Destination Region Highlighting and Insertion Point Feedback

14

Onece upon a time, ina kingdom a notfar
fromm here, a king summaoned bwo of his |
advisors for a test. He showed them both a

here, a king summaoned twa of his advisors
for a best. He showed them both a shiny
top, a control knob, and
u think this is?"

There are situations where highlighting a more narrowly-defined area of a window is more
appropriate than highlighting the entire content region; examples are spreadsheets, text
boxes, fill-in forms, and panes. In these cases, the destination region must be tailored to
more precisely indicate the specific destination. Figures 4-3a-c on the next page show
several examples of customized destination regions and highlighting. Figure 4-3a is an
example of a mailer application window with two text boxes; Figure 4-3b is an example of a
spreadsheet that uses the “current cell” frame to indicate the destination cell; and Figure 4-
3c is an example of a list that uses a two-pixel solid black line between cells to indicate the
destination. In the first two examples, there are multiple destination regions, but only one
destination region is highlighted at a time.

Note how the insertion point in the “To:” text box in Figure 4-3a is also a part of the
destination feedback. Also, the two-pixel solid black line between cells in Figure 4-3c makes
sense when the user can control the ordering of the items in the list. If your application
imposes an ordering (such as alphabetic order) on a list, the two-pixel solid black line
should appear at the location where the dropped item would be inserted, if that location is
visible. If that location is not visible, only the destination region highlighting is applied to
the list box.

CHAPTER 1

Drag and Drop Human Interface Guidelines

Figure 4-3 Special Types of Destination Region Highlighting

4-3a: Text Box Highlighting 4-3b: Spreadsheet Cell Highlighting

Drag and Drop Mailer

Send Memo

To:, ECl=— Worksheetl

A B C

2 Jan Feb
3 |Rent i

4 |Food

5 [Utilities

6 |Auto
Entertainment

Subject:

4-3c: List Highlighting

Fruits

Hpple
Orange
Banana
Grapefruit
Strawberry
Avocado
Kiwi

E

Icons

When the user drags an item to an icon, such as one representing a folder, application, and
hard disk, the icon is highlighted. On black-and-white monitors, the icon’s bitmap and its
text label (if there is one) are inverted, as in Figure 4-4. On gray-scale and color monitors,
icons are highlighted by darkening the color of the bitmap and inverting its text label, as
exhibited by the Finder in versions 7.0 and later.

Figure 4-4 Icon Highlighting

= ¢

Generic Application Generic Application

Graphics

Grapbhical objects are different from icons in that they are not containers. Graphics typically
do not have a mandatory hierarchy like that of folders; they usually share a “canvas” of

15

16

CHAPTER 1

Drag and Drop Human Interface Guidelines

space (but may be grouped). Accordingly, destination feedback is limited to highlighting
the destination region of the window if it is different from the source window.

Text

While the user is dragging an item to a text area, the destination feedback should be a solid
vertical line at the point in the text where the dragged item would be inserted if the user
releases the mouse button. This vertical line is identical to the insertion caret used by
TextEdit. If the user pauses while dragging, the vertical line starts blinking, using the rate of
insertion point blinking specified in the General Controls control panel. The vertical line is
usually accompanied by other feedback such as destination region highlighting.

Multiple Dragged Items

If there are multiple dragged items, the destination feedback should occur only if it can
accept all of the dragged items. The reason for this is that a set of dragged items may be
heterogeneous, and the destination may not be able to accept all types contained in that set.
If the destination cannot accept all of the dragged items, destination feedback does not
occur, and the user’s attempt to drop the set on such a destination results in abort feedback.
An optional behavior would be to let the user know of the “offending” type in a dragged set
if the user repeatedly tries to drop the set on a destination.

In the case that the destination can accept all of the dragged items, the destination should
accept these items in the order specified by the source. The source application should
organize the dragged items in the order in which they were selected, except for two cases. If
the dragged items come from ordered views (such as View by Date, or alphabetized lists),
that view’s ordering takes precedence over the selection order. If both the source and
destination provide a spatial ordering (such as graphic applications), the spatial ordering
takes precedence over the selection order.

Autoscrolling

When an item is being dragged, your application must determine whether to autoscroll or
allow the item to “escape” the window. If your application allows items to be dragged
outside of windows, you should define an autoscrolling region, as shown in Figure 4-5.
While dragging, if the mouse position enters and remains in the autoscrolling region for at
least 10 ticks, autoscrolling takes place until the mouse position exits the autoscrolling
region. Thus, if the mouse position is completely outside the window (or in the title bar),
autoscrolling is suspended, allowing the dragged item to escape the window and be
dropped at destinations outside the window. If the mouse enters one of the four corner
blocks of the autoscrolling region, autoscrolling takes place in both horizontal and vertical
directions simultaneously.

Autoscrolling of a destination window takes place only if the window is also the source
window and is frontmost. You should not autoscroll inactive windows.

CHAPTER 1

Drag and Drop Human Interface Guidelines

Figure 4-5 Narrowly-defined Autoscrolling Region

Typical Finder Window Autoscrolling Region

EC] Drag and Drop HIE B Drag and Drop HIE
3 items 126 ME in disk 28.2 MB availablel ’

%I

PN,

ications Docurnents

P,

Applizations Docunnent:

Systern Folder

Drop Feedback

When the user releases the mouse button after dragging an item to a destination, there
should be some sort of drop feedback, informing the user of the success of the drag-and-
drop operation. While this feedback can be visual, it is primarily behavioral in nature. The
behavior comes from the semantic operation indicated by the drag-and-drop sequence.
Examples of this behavior are given below.

Finder Icons

When the user drags a document to a folder icon in the Finder, the behavior of the drop
feedback is the reorganization of the document into the folder; the visual component is the
disappearance of the document icon and the unhighlighting of the destination folder icon
(in the case of a move operation). An example is shown in Figure 5-1.

Figure 5-1 Dragging a Document to Folder

Drag to Folder Drop into Folder
E[I=—= Drag and Drop HIE EC] Drag and Drop HIE
3 iternz 126.1 MB in disk 28.1 MB availal 3 iternz 126.1 MB in disk 28.1 MB availal
[[

(&) [

applizations Docurnents

PN
f@ Systern Folder Systern Folder

[
=
|
|

&

o]

If an icon represents a system service, such as a mailbox or printer, the drop feedback
should be followed by some indication that the service is being delivered. For example, if

17

CHAPTER 1

Drag and Drop Human Interface Guidelines

the user drags a document to a printer icon, the icon might slowly “fill up” in color as the
printing job progresses towards completion. This is called progress feedback.

Graphics

When dropping graphics, the drop feedback is usually the movement of the actual item to
the location of the mouse-up event.

Text

After dropping text, the drop feedback is the movement or copying of text from the source
to the destination. If a move operation is in effect, the source text disappears. In either case,
the text inserted at the destination is selected. When moving text in the same window, a
series of “zooming rectangles” from the source text to the destination text should be
displayed after the text is rewrapped, as the destination text may end up at a different point
than the exact point where the user dropped the text (due to the rewrapping). Thus, the
zooming rectangles provide an important user cue.

Since text is being inserted at the destination, intelligent cut-and-paste rules, as explained on
pages 301-302 of the Macintosh Human Interface Guidelines, should be supported.

When text is dropped in a destination that supports styled text, the font, face, and size
attributes of the source text should be applied to the dropped text. If the destination does
not support styled text, the dropped text should take on the current font, face, and size
attributes as indicated by the insertion point at the destination.

Transferring Selections

After a successful drag-and-drop sequence involving a single window, the selection
feedback is transferred from the source to the destination. This behavior provides an
important user cue and allows the user to reposition the selection without having to make
the selection again. Figure 5-2 shows an example.

18

Figure 5-2 Transferring Selection Feedback
Before Dragging After Dropping
E[J= Drag and Drop E[J== Drag and Drop
Once Upoh a time, ina kingdom not [Once Upoh a time, ina kingdom not [
far from herg, a King summaoned bve far from herg, a King summaoned bve
of his for a kest. He showed them of his for a kest. He showed them
both SR i with bevor both with beo slots inthe top, a
slobs inthe top, a cBinfrol knob, and conrol knob, and a lever, “What do
a lever. "What do you think this is? voll think this is?" ZEE { ol
<] [<] _elm

CHAPTER 1

Drag and Drop Human Interface Guidelines

If the drag-and-drop sequence involves two windows (one active and one inactive), the
concept of background selection comes into play. If the user drags an item from an active
window to an inactive window, the dragged item becomes a background selection at the
destination; the selection in the active window remains selected. These guidelines also apply
in the reverse situation where an item is dragged from an inactive window to an active
window. Figure 5-3 on the next page shows a situation where a piece of text is dragged to
the position just before the question mark in the inactive window.

Figure 5-3 Updating Selection Feedback in Multiple Windows

Before Dragging to Inactive Window After Dropping in Inactive Window
E[J== Drag and Drop E[J== Drag and Drop
Onee upon a time, ina kingdom not [Once upon a time, ina kingdaom not [
far from here, a king summoned bvo far from here, a king summoned bvo
He showed them H:
R with bevo 0 o]
ol khob, and slots & bop, a confrol knob, and

a lever. “What do you think this is?”

<] [

WO you des
o

a lever. “What do you think this is?”

<] [

WO you desigh an &

E shiny metalboy?”

The enginesr replied, "
microconroller, | would

Bl
Bl

=t

The enginesr replied, "
microconroller, | would

Note that the inactive window does not become active as a result of the drag-and-drop
sequence; see the section “When to Activate Inactive Windows” below for more details.
Also, when content is dropped into a window, your application must be careful not to
overwrite the window’s selection. Rather, the selection should be deselected before the
content is pasted.

By the way, to make it easy for the user to add text after dropping a text selection, note that
when a block of text is selected, pressing an arrow key deselects the range. If the Left Arrow
key is pressed, the insertion point goes to the beginning of what had been the selection. If
the Right Arrow key is pressed, the insertion point goes to the end of what had been the
selection. See Macintosh Human Interface Guidelines, page 296.

Confirmation Dialogs

At drop time, a confirmation dialog may be presented to the user if the action resulting from
the drag-and-drop sequence is unrecoverable. For example, dropping an icon into a write-
only “drop box” on a shared volume is unrecoverable because the user does not have
sufficient privileges to open the drop box and undo the action. In this case, a confirmation
dialog should be presented to the user. Similarly, dropping a document on a AOCE
business card invokes a dialog asking the user to confirm a “send” action, since that action
is unrecoverable, once executed.

19

CHAPTER 1

Drag and Drop Human Interface Guidelines

Abort Feedback

Dropping outside of an acceptable destination is considered as an “abort” and should be
indicated by zooming rectangles that originate at the last position of the drag feedback and
end at the source’s location. (This is also called a “zoomback.”) For example, dragging an
item to the menu bar (which is not a valid destination) and dropping it there results in abort
feedback. Also, dropping an item on window title bars or window controls (such as scroll
bars or size boxes) results in abort feedback, as they are not valid destinations. The Drag
Manager provides this feedback when it determines that no receiver requested the sender’s
information.

If, for some reason, dropping inside a destination does not result in a successful operation
(for example, due to insufficient memory to handle the added item), zooming rectangles
should also be used. This is a form of negative drop feedback.

When to Activate Inactive Windows

20

Since many drag-and-drop sequences involve more than one window, certain rules
regarding the activation of windows must be observed for reasons of consistency and
streamlining work flow.

Historically, an inactive window becomes active upon a mouse-down event in that window.
Since the user may drag an item from an inactive window to the frontmost window, and
continue working in the frontmost window, this behavior must be slightly modified so that,
in a certain case described below, the mouse-up event serves as the window-activation
trigger, rather than the mouse-down event.

The only situation where a mouse-up event, instead of a mouse-down event, activates an
inactive window occurs when the user presses the mouse button on a draggable item (such
as a background selection, icon or graphic) in an inactive window and releases the mouse
button in the same window. In this situation, the inactive window becomes active as soon as
the mouse button is released. (Note that the user does not necessarily have to drag the
mouse between the mouse-down and mouse-up events.) If the mouse-down event does not
occur on a draggable mouse item, inactive windows become active upon that event, just as
before.

NOTE

To allow users to drag an item from an inactive window without activating that window,
your application must support click-through. Otherwise, pressing the mouse button would
activate the inactive window immediately, and the user would have to press the mouse
button again to select a draggable item. a

Because of the above rule, when the user drags from one window to another window that is
inactive, the inactive destination window is not activated at drop time. If the drag-and-drop
sequence ends at the Finder desktop, no window is brought to the front. Remember that

CHAPTER 1

Drag and Drop Human Interface Guidelines

whenever an inactive window becomes active, the background selection (if any) in that
window becomes highlighted as a normal selection.

Clippings

When an item is dragged from an application to the desktop, the Finder creates a clipping
that contains the data in the dragged item. These clippings are similar to sound, font, and
edition files in that they are not owned by any particular application. If discontinuous
selections are dragged from a source to the Finder, a separate clipping is created for each
item in the selection. The Finder icons for clippings can be either thumbnails (small pictures
that resemble the dragged data), or system-defined icons for TEXT and PICT; these icons do
not look like document icons. The system-defined icons are shown in Figure 8-1 on the next

page.

Figure 8-1 System-defined icons for clippings

E ?}‘3’; [Q]j}:’é E

Your application should provide a number of representations (such as TEXT, PICT, and
native formats) to ensure flexibility with different destinations. Regardless of which
representations are stored, round-trip data integrity should be preserved; a clipping
dragged back into its source should be identical to the original item. When your application
receives a clipping, it should use the richest representation supported, and store the other
representations, if possible. Storing all the representations of a clipping inside documents
allows scenic-route data integrity; dragging the same clipping from a source through
several destinations and back to the source should result in no fidelity loss.

When clippings are created, each clipping is given a default name, which is a concatenation
of the type of data was dragged, the word “clipping”, and, if necessary, a number that
disambiguates the entire name in the destination Finder window or desktop. For example,
dragging some text from a document to the Finder would generate a clipping name of “text
clipping”. A subsequently-created clipping placed in the same destination would result in a
clipping name of “text clipping 2” to avoid a naming conflict. If the type is unknown, it is
omitted from the clipping name.

The user can open clippings in the Finder and view a representation of the datain a
modeless window, similar to the Clipboard window. The user cannot select, copy, or edit
any of the contents in these windows. If a PICT or TEXT representation is stored in the
clipping, the Finder displays that representation. Otherwise, the string “This clipping has no
text, picture, or sound.” is shown in the window.

21

CHAPTER 1

Drag and Drop Human Interface Guidelines

Drag and Drop Semantics

22

Move vs. Copy

When drag-and-drop sequences take place, your application needs to determine whether to
move or copy the dragged item after it is dropped on a destination. The actual behavior
depends on the context of the drag-and-drop operation, as described below.

In general, if the source and destination are in the same container (e.g., a window or a
volume), a drag-and-drop sequence is interpreted as a move operation (i.e., cut-and-paste).
To specify a copy operation within the same container, the Option key is used when
dragging. If two different containers are involved, a copy operation (i.e., copy-and-paste) is
executed as the default action.

You cannot assume that a window is always a container; you must consider the underlying
data structure of the contents in the window. For example, if your application allows two
windows to display the same document (i.e., provides multiple views of the same data), a
drag-and-drop sequence between these two windows should be a move operation. For
example, the Finder uses the concept of a volume as a container in determining its
semantics. If the two windows belong to the same volume, the Finder performs a move
operation, and if two different volumes are involved, a copy operation is performed.
However, a copy operation between two windows of the same volume is specified by
holding down the Option key at drop time. Also, desktop services (such as mailers, printers,
or converters) are not necessarily containers. Since a desktop service performs a
transformation or an action on the dropped item without affecting the original, dragging to
a desktop service always implies a copy operation.

There are also cases where it does not make sense to move or copy data or containers. For
example, AOCE provides directories as a type of network container. Attempting to drag the
network container to your desktop would imply copying all the subdirectories and
contents—a potentially expensive operation. Rather, AOCE makes an alias to that container
on your desktop, so that you can have ready access to a network container.

When to Check the Option Key

There are two timing rules for checking the state of the Option key in determining whether
to perform a copy operation; one rule is mandatory, and the second is optional. The first
rule is to check if the Option key is held down just before starting a drag-and-drop
sequence. In this case, the semantics of the operation (i.e., copy) are established at the
beginning and remain in effect during the entire drag-and-drop operation, even if the user
releases the Option key before dropping the dragged item. This behavior is exhibited by
many bitmap graphics programs such as Claris’ MacPaint. This rule should be supported by
all applications.

The second rule is to check if the Option key is held down at drop time only if the user did
not hold down the Option key at the beginning of the operation. If your application

CHAPTER 1

Drag and Drop Human Interface Guidelines

supports this rule, the user has the flexibility of making a move vs. copy decision at a later
point in the drag-and-drop sequence. Unlike the first case described above, pressing the
Option key during the drag-and-drop sequence does not “latch” for the remainder of the
sequence; the state of the Option key is checked only at drop time.

Consistent Semantics of the Option Key

The Option key does not act as a toggle switch; Option-dragging between containers still
means a copy operation (albeit redundantly). This guideline allows users to learn that
Option means Copy.

Guiding Principle and Common Contexts

The principle driving the above guidelines is to prevent the user from accidental data loss.
Moving data across applications may result in potential data loss because an Undo
command in the destination application does not trigger an Undo in the source application.
Moving data within the same window (or same volume, as in the case of the Finder) does
not lead to data loss because the same memory structure is involved.

Table 9-1 on the next page lists several common contexts and the semantics of each context.

Table 9-1 Common Contexts and Drag-and-Drop Semantics
Drag data in a document to a place inside the same document Move
Drag data in a document to a place in another document Copy
Drag data in a document to any location in the Finder Copy*
Drag icon from Finder to any document Copy
Drag icon from Finder to another place on same volume Move
Drag icon from Finder to any place on another volume Copy
Drag data from document to a desktop service Copy
Drag icon from Finder to a desktop service Copy

Ambiguity

You should avoid situations where more than one action is applicable for a specific drag-
and-drop sequence. This ambiguity and overloading usually leads to some user negotiation
that can be confusing and intrusive.

* In this case, a clipping is created by the Finder.

23

24

CHAPTER 1

Drag and Drop Human Interface Guidelines

Using the Trash as a Destination

As interapplication dragging becomes possible, the Trash becomes a more useful
destination. The Drag Manager makes the Trash available to applications.

Dragging items to the Trash results in moving the item from the source to the Trash. For
example, dragging a text selection from a word-processing application and dropping it on
the Trash icon (or in the Trash window) results in the text being deleted from the
application and a clipping containing that text being created inside the Trash. Note that the
item is moved, although it is dragged between two containers. This exception to the
semantics described above is appropriate because the user can undo the operation by
dragging the clipping out of the Trash back to its original source; it is consistent with the
principle of preventing accidental data loss.

It is important to preserve the Trash’s container property; do not simply delete the source
without creating a clipping or other item in the Trash.

Modifier Keys

As mentioned earlier, the Option key is used for copying while dragging. The Shift-drag
and Command-drag gestures are for use by your application. The Control-drag gesture is
reserved for future use by Apple.

CHAPTER 1

Drag and Drop Human Interface Guidelines

Checklist

This checklist contains questions about the drag-and-drop interface that you can ask
yourself while reviewing your software. These questions will help bring to mind the
particulars of the guidelines.

You must be able to every question “yes” to ensure conformity with the guidelines.
However, sometimes it is necessary to make tradeoffs in your application in order to make
the most usable interface. Not all guidelines may apply to your particular application, but
remember to maintain the spirit of these guidelines.

General

® Do you provide alternative methods for accomplishing a given drag-and-drop sequence
(such as copy-and-paste or other menu items)?

Selections

B When the mouse-down event occurs at the beginning of a drag-and-drop sequence, do
you check to see if the item at the mouse position is already selected? If the item is not
already selected, does it become selected before dragging takes place? (This behavior is
identical to that of the Finder.)

® If you allow dragging from inactive windows, do you ensure that highlighted selections
in an active window become background selections when the window becomes
inactive?

B When an inactive window containing a background selection is brought to the front,

does the background selection become highlighted as a normal selection?

Dragging

® When an item is dragged, do you provide drag feedback? Does the drag feedback
contain a dotted outline reflecting the size and shape of the item?

® When more than one item is dragged, does the drag feedback contain a set of dotted
outlines (one for each visible or partly-visible item), with the same spatial organization

as the actual items?

® Are dotted outlines generated by drawing a one-pixel thick outline of the drag region
with a 50% gray dithered pattern?

25

26

CHAPTER 1

Drag and Drop Human Interface Guidelines

When the mouse pointer is over a draggable text selection, does it change into an arrow
shape to indicate that the text selection can be dragged?

When dragging an item towards the edges of a scrollable window, does your
application determine whether to autoscroll and allow the item to escape the window?

Destinations

When the user drags an item over a destination, do you provide destination feedback?

Does the destination feedback occur only when the destination can accept the type of
data contained in the dragged item? When there are multiple dragged items, does the
destination feedback occur only when the destination can accept all of the dragged
items?

When dragging an item into a text area, does the destination feedback include a solid
vertical line (identical to that of TextEdit) at the point in the text where the mouse
pointer is located? If the user pauses while dragging, does the vertical line start
blinking?

Are destination regions for windows defined appropriately? Is a destination region
highlighted only when the mouse position is inside that region? If you provide multiple
destination regions in a window, do you ensure that no more than one destination
region is highlighted at a time?

Is a destination region highlighted when the user drags an item outside of that
destination region and decides to drop the same item back in the same destination
region?

Dropping

When the user drops an item over a destination, do you provide drop feedback (which
is primarily behavioral in nature)?

When moving text in the same window as the source , are “zooming rectangles” drawn
from the source text to the destination text (after rewrapping text)? Are intelligent cut-
and-paste rules supported? Are font, size, and style attributes preserved across drags
when possible?

After a successful drag-and-drop sequence in a single window, is the selection feedback
transferred from the source to the destination? If the drag-and-drop sequence involves
an inactive window, does the dragged item become a background selection in the
destination window?

Is a confirmation dialog presented at drop time if the impending action is
unrecoverable?

CHAPTER 1

Drag and Drop Human Interface Guidelines

B When the user drops multiple items, are the items accepted in the order in which they
were selected, except when priority-ordered or spatially-ordered?

Aborting

® Jf the user drops a dragged item outside a destination (such as the menu bar, window
title bars, controls, etc.), are zooming rectangles drawn from the dragged outline back to
the source?

® Jf dropping on a destination does not result in a successful operation, are zooming
rectangles drawn from the dragged outline drawn back to the source?

Windows

B Are inactive windows activated when the source and destination of a drag-and-drop
operation are in the same window or when the user presses the mouse button in non-
draggable regions?

Semantics

® |5 a drag-and-drop sequence within the same container interpreted as a move
operation? Is a drag-and-drop sequence across two containers interpreted as a copy
operation?

B Does the Option key indicate a copy operation when dragging within the same
container or across two containers? Do you check the state of the Option key at mouse-
down time? When appropriate, do you also check the state of the Option key at mouse-
up time, which allows more flexibility during drag-and-drop sequences?

B When the user drags an item from your application to the Trash, do you provide the
item to the Trash and delete the item from the source?

]

Do you avoid situations where more than one verb is applicable for a specific drag-and-
drop sequence?

27

	Drag and Drop Human Interface Guidelines
	Contents
	Design Overview
	Introduction
	Interaction Model
	Importance of Undo
	References

	Selection Feedback
	Single- Gesture Selection and Dragging
	Background Selections

	Drag Feedback
	Icons
	Graphics
	Text
	Multiple Dragged Items

	Destination Feedback
	Windows
	Icons
	Graphics
	Text
	Multiple Dragged Items
	Autoscrolling

	Drop Feedback
	Finder Icons
	Graphics
	Text
	Transferring Selections
	Confirmation Dialogs

	Abort Feedback
	When to Activate Inactive Windows
	Clippings
	Drag and Drop Semantics
	Move vs. Copy
	When to Check the Option Key
	Consistent Semantics of the Option Key
	Guiding Principle and Common Contexts
	Ambiguity
	Using the Trash as a Destination
	Modifier Keys

	Checklist
	General
	Selections
	Dragging
	Destinations
	Dropping
	Aborting
	Windows
	Semantics

