



April 21, 1999
Technical Publications
© 1999 Apple Computer, Inc.



I N S I D E M A C I N T O S H

Transferring Data With the URL
Access Manager



 Apple Computer, Inc. 4/2/99



Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
QuickView™ is licensed from Altura
Software, Inc.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Chapter 1 About the URL Access Manager 7

High-level URL Manager Functions 8
Low-level URL Manager Functions 9

Chapter 2 Using the URL Access Manager 11

Using the HTTP Post Method to Obtain Data to Download 12
Downloading Data from Multiple URLs 18
Displaying a URL’s Properties 21
Using the URL Access Manager with AppleScript 23
Creating New URL Access Manager Properties 24

Chapter 3 URL Access Manager Reference 25

URL Access Manager Functions 25
Getting Information About the URL Access Manager 25
Downloading From and Uploading to a URL Synchronously 26
Controlling an Asynchronous URL Upload or Download 36
Getting and Setting URL Properties 43
URL Access Manager Utility Functions 46
URL Access Manager Application-Defined Routines 51

URL Access Manager Structures and Other Data Types 54
URL Access Manager Constants 56

Open Flag Constants 56
State Constants 58
Event Constants 60
Event Mask Constants 61
Property Name Constants 64

Universal Properties 65
HTTP and HTTPS Properties 66

Authentication Flag Constant 67
Result Codes 68
iii

Index 69
iv

Figures, Tables, and Listings

Chapter 2 Using the URL Access Manager 11

Listing 2-1 The SamplePost application’s SamplePost.h file 12
Listing 2-2 The SamplePost application’s main routine 13
Listing 2-3 Verifying the availability of the URL Access Manager 13
Listing 2-4 Allocating memory and creating the URL reference 14
Listing 2-5 Setting URL Access HTTP properties 15
Listing 2-6 Setting the URLDownload parameters 15
Listing 2-7 Calling the URLDownload function 16
Listing 2-8 Displaying the downloaded data 17
Listing 2-9 The SamplePost application’s system event callback routine 17
Listing 2-10 The Downloader application’s main routine 18
Listing 2-11 The Downloader application’s DoDownload routine 19
Listing 2-12 The Downloader application’s system event callback routine 20
Listing 2-13 Displaying the value of each URL property 21
v
 Apple Computer, Inc. 4/21/99

vi
 Apple Computer, Inc. 4/21/99

P R E F A C E

About This Manual

This manual describes the URL Access Manager, which you can use to transfer
data between your application and Hypertext Transfer Protocol (HTTP) and File
Transfer Protocol (FTP) Universal Resource Locators (URLs). You can download
data from a URL to a file, a directory, or a location in memory. You can upload
data from a file or directory to an FTP URL using an anonymous FTP session or
an authenticated FTP session. For the purpose of testing your application on a
computer that does not have access to a HTTP or FTP server, you can also
upload data from or download data to a URL that begins with file:///.

Conventions Used in This Manual 0

The Courier font is used to indicate text that you type or see displayed. This
manual includes special text elements to highlight important or supplemental
information:

Note
Text set off in this manner presents sidelights or interesting
points of information. ◆

IMPORTANT

Text set off in this manner—with the word Important—
presents important information or instructions. ▲

▲ W AR N I N G

Text set off in this manner—with the word Warning—
indicates potentially serious problems. ▲
xi
 Apple Computer, Inc. 4/21/99

P R E F A C E

For more information 0

The following sources provide additional information that may be of interest to
developers who use URL Access:

■ Network Services Location Manager SDK , which describes a technology for
locating URLs.

■ HTML The Definitive Guide by Chuck Musciano and Bill Kennedy, O’Reilly &
Associates, Inc. 1996.
xii

 Apple Computer, Inc. 4/21/99

C H A P T E R 1

Figure 1-0
Listing 1-0
Table 1-0

About the URL Access Manager 1
The URL Access Manager provides routines that allow your application to
download data from or upload data to a Universal Resource Locator (URL)
using four protocols:

■ Hypertext Transfer Protocol (HTTP) and secure Hypertext Transfer Protocol
(HTTPS). These protocols allow you to

■ download data with optional 40-bit RSA encryption
■ send HTML form information to a URL using the POST and the GET

methods
■ obtain information about URLs; this information is known as URL

properties
■ set certain URL properties

■ File Transfer Protocol (FTP). Using FTP, you can

■ download files and directories
■ upload files and directories
■ obtain URL properties
■ set certain URL properties
The URL Access Manager supports passive FTP connections (in which the
client opens the data cconnection to the server) and active FTP connections
(in which the server opens the data connection to the client).

■ A file protocol. With the file:/// protocol, you can download files and URL
properties from the local host. URLs for the file protocol begin with file:///.
The file protocol is useful for testing code on a computer that is not
connected to a network.

In addition, the URL Access Manager provides firewall support, with support
for HTTP proxy servers and for SOCKS gateways.
7
 Apple Computer, Inc. 4/21/99

C H A P T E R 1

About the URL Access Manager

The high-level URL Access Manager functions for downloading and uploading
data include options that allow you to specify the display of a progress
indicator and the display of an authentication dialog box if authentication is
required.

The URL Access Manager includes support for automatic decompression of
compressed files. If version 4.0 of the Stuffit Engine is installed, the URL Access
Manager also automatically extracts files from Stuffit archives.

The URL Access Manager defines a set of URL properties. Extensions can define
additional properties and set their values.

High-level URL Manager Functions 1

The URL Access Manager provides two high-level functions for downloading
data from HTTP, HTTPS, FTP, and file:/// URLs:

■ URLSimpleDownload allows you to download data synchronously from a URL
into a file, a directory, or into memory.

■ URLDownload allows you to download data synchronously from a URL
reference into a file, a directory, or into memory. Using a URL reference to
identify the URL allows you to obtain and set information about the URL,
such its file type and creator, an associated user name and password, and the
HTTP method, header, body, and user agent.

Both functions allow you to specify an application-defined system event
callback routine that the URL Access Manager calls in order to convey system
events to your application during the download process. You can control
whether an existing file is replaced, whether a progress indicator is displayed
during the transfer, and whether an authentication dialog is displayed if the
URL requires authentication. You can also specify that encoded files are to be
decoded and expanded if the Stuffit Engine™ is installed, indicate that the URL
is a directory, or specify that you want to download a directory listing instead of
the contents of a file or directory.

The URL Access Manager provides two high-level functions for uploading data
to an FTP URL:

■ URLSimpleUpload allows you to upload data synchronously from a file or a
directory.
8 High-level URL Manager Functions

 Apple Computer, Inc. 4/21/99

C H A P T E R 1

About the URL Access Manager

■ URLUpload allows you to upload data synchronously from a file or directory
to a URL reference. As with URLDownload, specifying a URL reference allows
you to obtain and set information about the URL before you call URLUpload.

Both functions allow you to specify that the data is to be encoded in BinHex
format, that a progress indicator is to be displayed, and that an authentication
dialog box is to be displayed if the URL requires authentication.

Low-level URL Manager Functions 1

The low-level URL Access Manager function, URLOpen, allows you to
asynchronously download data from or upload data to a URL. The URLOpen
function gives you more control over the data transfer than provided by the
synchronous URL Access Manager functions.

For download operations, if you do not specify a file in which to store the data,
you repeatedly call URLGetBuffer which retrieves the next buffer of data from
the URL Access Manager’s buffers so that you can manipulate the data or write
it to the destination of your choice. When you call URLOpen in this way, you can
define an event notification routine and the events for which you want to
receive notification. The URL Access Manager includes definitions for
URL-specific events, such as when data becomes available for downloading,
when a transfer is complete, and when a certain percentage of data has been
transferred.

When you call URLOpen, you can specify whether existing files are to be replaced,
whether to encode or decode files in BinHex format, whether to display an
authentication dialog box if the URL requires authentication, and whether to
display a progress indicator.
Low-level URL Manager Functions 9
 Apple Computer, Inc. 4/21/99

C H A P T E R 1

About the URL Access Manager

10 Low-level URL Manager Functions

 Apple Computer, Inc. 4/21/99

C H A P T E R 2

Figure 2-0
Listing 2-0
Table 2-0

Using the URL Access Manager 2
You use the URL Access Manager to transfer data to and from a Universal
Resource Locator (URL).

For download operations, the URL can be a File Transfer Protocol (FTP) URL
(beginning with ftp://), a Hypertext Transfer Protocol (HTTP) URL (beginning
with http://), a secure HTTP URL (beginning with https://), or a URL that
represents a local file (beginning with file:///).

For upload operations, the URL must be an FTP URL.

The URL Access Manager provides high-level and low-level functions for
downloading and uploading data. The high-level functions include
URLSimpleDownload and URLSimpleUpload for downloading and uploading data
synchronously. To use these functions, specify the URL as a character string.
These functions are easy to use because they allow you to start a download or
upload operation with a minimal amount of preparation or intervention.

The URLDownload and URLUpload functions also allow you to download and
upload data synchronously. These functions differ from URLSimpleDownload and
URLSimpleUpload in that you use a URL reference to specify the URL. Using a
URL reference allows you to get and set information associated with a URL by
calling the URLGetProperty and URLSetProperty functions.

The URLOpen function is the low-level URL Access Manager function. It allows
you to download data from and upload data to a URL asynchronously. When
you call URLOpen to download data, you must call URLGetBuffer to transfer data
to your own buffers.

This chapter presents the following examples of using the URL Access
Manager:

■ “Using the HTTP Post Method to Obtain Data to Download” (page 12). The
sample application shows you how to use the URL Access Manager to post
information to an HTTP URL and download the URL’s response.
11
 Apple Computer, Inc. 4/21/99

C H A P T E R 2

Using the URL Access Manager
■ “Downloading Data from Multiple URLs” (page 18). The sample application
shows you how to call URLDownload to download data from a series of URLs.

■ “Displaying a URL’s Properties” (page 21). The sample routine shows you
how to obtain and display the URL Access Manager properties of a URL.

This chapter ends with a section on using AppleScript to call the URL Access
Manager and a section on creating new URL Access Manager properties for a
URL.

Using the HTTP Post Method to Obtain Data to Download 2

The SamplePost application calls URLDownload to download information from the
InterNIC’s whois database. The file SamplePost.h, shown in Listing 2-1, defines
the URL (kSampleURL) from which data is to be downloaded and the structure
urlDownInfo, which contains all of the information needed to download data
from the sample URL.

The SamplePost.h file also includes a declaration of the routine DoSamplePost,
which does the actual download, and a system event callback routine,
MyURLCallbackProc, which is a place holder for code that handles system events
that occur during the download.

Listing 2-1 The SamplePost application’s SamplePost.h file

#define kSampleURL "http://www.internic.net/cgi-bin/itts/whois"

typedef struct urlDownInfo *URLDownInfoPtr;

typedef struct urlDownInfo {
URLReference urlRef;
FSSpec * destination;
Handle destinationHandle;
URLOpenFlags openFlags;
URLSystemEventProcPtr eventProc;
void * userContext;
Boolean done;
OSStatus errorCode;

} URLDownloadInfo;
12 Using the HTTP Post Method to Obtain Data to Download

 Apple Computer, Inc. 4/21/99

C H A P T E R 2

Using the URL Access Manager
static void DoSamplePost ();

pascal OSStatus MyURLCallbackProc(void*, EventRecord*);

The SamplePost application is multi-threaded, so it calls MaxApplZone and
MoreMasters in its main routine, as shown in Listing 2-2.

Listing 2-2 The SamplePost application’s main routine

#include <stdio.h>
#include <Events.h>
#include <Threads.h>
#include <Processes.h>
#include <Files.h>
#include "URLAccess.h"
#include "SamplePost.h"

int main (void)
{

OSStatus err = noErr;

// Call MaxAppleZone() when using the Thread Manager.
MaxApplZone();

for (i = 0; i < 20; i++) {
MoreMasters();

}

In Listing 2-3, the SamplePost application verifies that the URL Access Manager
is available. If the URL Access Manager is available, DoSamplePost, which calls
URLDownload, is called.

Listing 2-3 Verifying the availability of the URL Access Manager

// Make sure the URL Access Manager is available.
if (URLAccessAvailable()) {

DoSamplePost();
}

Using the HTTP Post Method to Obtain Data to Download 13
 Apple Computer, Inc. 4/21/99

C H A P T E R 2

Using the URL Access Manager
else {
// Call error handling routine.

}
}

In Listing 2-4, the DoSamplePost routine defines a URLDownloadInfo structure
named myRef that is uses to store information for calling URLDownload. The
DoSamplePost routine calls NewHandle to allocate the memory in which the
downloaded information will be stored. Then DoSamplePost creates a URL
reference and stores it in myRef.urlRef, which will be used as a parameter when
DoSamplePost calls URLDownload.

Listing 2-4 Allocating memory and creating the URL reference

static void DoSamplePost (void)
{

OSStatus err = noErr;
ThreadID threadID = 0;
URLDownloadInfo myRef;
Handle downloadHandle = nil;
long downloadSize = 0;

printf("<•>DoSamplePost() Enter\n");
downloadHandle = NewHandle(0);
if (downloadHandle == nil) {

// Call error handling routine.
}

// Create a URLReference
err = URLNewReference(kSampleURL, &myRef.urlRef);

if (err != noErr) {
// Call error handling routine.

}

Next, DoSamplePost completes the preparation of the URL reference by calling
URLSetProperty to set the value of the URL reference’s HTTP Request Method
property to POST (a 4-byte string) and the value of the URL reference’s HTTP
Request Body property to whois_nic=apple.com (a 19-byte string), as shown in
Listing 2-5.
14 Using the HTTP Post Method to Obtain Data to Download

 Apple Computer, Inc. 4/21/99

C H A P T E R 2

Using the URL Access Manager
Listing 2-5 Setting URL Access HTTP properties

URLSetProperty(myRef.urlRef, kURLHTTPRequestMethod, "POST", 4);
URLSetProperty(myRef.urlRef, kURLHTTPRequestBody, "whois_nic=apple.com", 19);

Note
When you set the HTTP Request Body property, the URL
Access Manager automatically adds the length of the HTTP
Request Header to the request, so you do not need to set
the HTTP Request Header property explicitly. ◆

Listing 2-6, DoSamplePost uses the remaining fields of the myRef structure to store
values that will be used as parameters for calling URLDownload.

Listing 2-6 Setting the URLDownload parameters

myRef.destination = nil;
myRef.destinationHandle = downloadHandle;
myRef.openFlags = kURLDisplayProgressFlag;
myRef.eventProc = &MyURLCallbackProc;
myRef.userContext = "1";
myRef.errorCode = 0;

Specifically, DoSamplePost does the following in Listing 2-6:

■ Sets myRef.destination to nil. When nil is provided as the destination
parameter to the URLDownload function, the calling application indicates that
the downloaded data is not going to be written to a file on disk.

■ Sets myRef.destinationHandle to the value of downloadHandle, which is the
location in memory at which the downloaded data is to be stored.

■ Sets myRef.OpenFlags to kURLDisplayProgressFlag. When the value of the
openFlags parameter to URLDownload is kURLDisplayProgressFlag, the
URLDownload function displays a progress indicator during the download
process.

■ Sets myRef.eventProc to the address of the SamplePost application’s system
event callback routine. When DoSamplePost calls URLDownload, it will specify
myRef.eventProc as the eventProc parameter. If a system event occurs while
Using the HTTP Post Method to Obtain Data to Download 15
 Apple Computer, Inc. 4/21/99

C H A P T E R 2

Using the URL Access Manager
the progress indicator is displayed, the URL Access Manager will call the
routine specified by the eventProc parameter and will pass to it the value of
the userContext parameter, which is described next.

■ Sets myRef.userContext to 1. When DoSamplePost calls URLDownload, it will
specify myRef.userContext as the userContext parameter. Your application
can use the user context to associate any particular call of URLDownload with
any particular call of the system event callback routine.

With the URL reference created, its properties set, and the URLDownload
parameters prepared, the DoSamplePost routine is ready to call URLDownload, as
shown in Listing 2-7.

Listing 2-7 Calling the URLDownload function

err = URLDownload(myRef.urlRef,
myRef.destination,
myRef.destinationHandle,
myRef.openFlags,
myRef.eventProc,
myRef.userContext);

myRef.errorCode = err;

if (myRef.errorCode != noErr) {
// Call error handling routine.

}
else {
// Successful download. Get the size of the downloaded data.
err = URLGetProperty(myRef.urlRef,

kURLResourceSize, &downloadSize, 4);
if (err != noErr) {

// Call error handling routine.
}

In Listing 2-7, if the download is successful, the DoSamplePost routine calls
URLGetProperty to obtain the size of the downloaded data using the
downloadSize parameter, which is 4 bytes long.

In Listing 2-8, DoSamplePost calls SetHandleSize to set the size of downloadHandle
to downloadSize + 1 and sets the value of the last byte of downloaded data to
16 Using the HTTP Post Method to Obtain Data to Download

 Apple Computer, Inc. 4/21/99

C H A P T E R 2

Using the URL Access Manager
NIL. Now that data can be displayed by calling printf. The DoDownload routine
concludes by disposing of the URL reference.

Listing 2-8 Displaying the downloaded data

downloadSize = GetHandleSize(downloadHandle);
SetHandleSize(downloadHandle, (downloadSize+1));
(*myRef.destinationHandle)[downloadSize] = nil;

printf("<•>==================== Downloaded Data ==================\n");
printf("%s", *myRef.destinationHandle);
DisposeHandle(downloadHandle);
URLDisposeReference(myref.urlRef);

}
}

Listing 2-9 shows the SamplePost application’s system event callback routine.

Listing 2-9 The SamplePost application’s system event callback routine

pascal OSStatus MyURLCallbackProc(void *userContext, EventRecord *event
)
{

printf("<•>System callback thread fired! Thread: %u\n", userContext
);

return 0;
}

The system event callback routine receives in userContext the value of the
userContext parameter that was passed when the application called
URLDownload.

Your application’s system event callback routine should process the event
record passed by the event parameter and return 0.
Using the HTTP Post Method to Obtain Data to Download 17
 Apple Computer, Inc. 4/21/99

C H A P T E R 2

Using the URL Access Manager
Note
The only restriction that the URL Access Manager imposes
on the functionality of your application’s system event
callback routine is that it should not call
URLDisposeReference. ◆

Downloading Data from Multiple URLs 2

The Downloader application downloads data from multiple URLs in a
predetermined order, and stores the data in multiple files. The application
obtains the URLs that it downloads by reading a text file in which the URLs
have been stored.

The Downloader application’s main routine sets up the application’s main event
loop. It calls the getURL routine to read obtain a URL from a file of URLs and is
ready to start downloading data.

Listing 2-10 The Downloader application’s main routine

#include <Events.h>
#include <stdio.h>
#include "URLAccess.h"
#include "string.h"
#include "Memory.h"

void main (void)
{

OSStatus err = noErr;
char url[255];
int count, fileCount = 0;
EventRecord ev;
// Call MaxApplZone, MoreMasters.
// Initialize graph port, fonts, menus, cursor, and dialogs.
// Clear the screen.

while (url != nil) {
// Handle Events through each loop
WaitNextEvent(everyEvent, &ev, 0, nil);
18 Downloading Data from Multiple URLs

 Apple Computer, Inc. 4/21/99

C H A P T E R 2

Using the URL Access Manager
eventHandler(nil, &ev);

// Obtain a URL from the file of URLs.
result = getURL(url); // (Routine not shown.)
if (result == eofErr) { // Handle error condition. }

// Call Download routine.
result = DoDownload(url);
if (result != noErr) { // Handle error condition. }

}
printf("\n All of the URLs have been downloaded.\n");

}

The DoDownload routine shown in Listing 2-11 does the actual work of
downloading data from the URL. It creates a file specification for the data that is
to be downloaded and a URL reference. It sets the open flags to replace an
existing file (if any) with the downloaded data and to display a progress
indicator during the download. Then the DoDownload routine calls URLDownload
to download the data.

Listing 2-11 The Downloader application’s DoDownload routine

void DoDownload (void)
{

URLReference urlRef;
FSSpec dest, *destPtr = nil;
destPtr = &dest;
Handle destHandle = nil;
int openFlags = kURLReplaceExistingFlag + kURLDisplayProgressFlag;
Str255 newFile;

// Create the file specification for the download.
sprintf((char*)newFile, "File %d", fileCount);
c2pstr((char*)newFile);
fileCount++;
err = FSMakeFSSpec(0, 0, newFile, &dest);

// Create the URLReference.
err = URLNewReference(theURL, &urlRef);
if (err != noErr) printf("URLNewReference failed\n");
Downloading Data from Multiple URLs 19
 Apple Computer, Inc. 4/21/99

C H A P T E R 2

Using the URL Access Manager
// Download the data.
err = URLDownload(urlRef, destPtr, destHandle, openFlags,
&eventHandler, (void*)&fileCount);

if (err != noErr) printf("URLDownload failed\n");

// Clean up.
err = URLDisposeReference(urlRef);
if (err != noErr) printf("URLDisposeReference failed\n");
return err;

}

The Downloader application uses the eventHandler routine as a general purpose
event handling routine. In this example, the user context (context) is an integer
value.

Listing 2-12 The Downloader application’s system event callback routine

pascal long eventHandler(void * userContext, EventRecord* eventPtr)
{

EventRecord* ev;
int what = 0;
int context = 0;
int* intPtr = nil;

// Convert the event pointer into an event record.
ev = (EventRecord*)eventPtr;
what = ev->what;

// Convert the void* to an integer.
intPtr = (int*)userContext;
context = *intPtr;
if (context < 0 || context > 99)

context = -1; // Unknown context
switch (what) {

case 0 : // Null Event
break;

case mouseDown:
printf("Handler Called: mouseDown User Context: %d\n", context);
// Call routine to handle event.
break;
20 Downloading Data from Multiple URLs

 Apple Computer, Inc. 4/21/99

C H A P T E R 2

Using the URL Access Manager
case updateEvt:
printf("Handler Called: updateEvt User Context: %d\n", context);
// Call routine to handle event.
break;

case activateEvt:
printf("Handler Called: activateEvt User Context: %d\n",

context);
// Call routine to handle event.
break;

case keyDown:
printf("Handler Called: keyDown User Context: %d\n", context);
// Call routine to handle event.
break;

default:
printf("Handler Called: Default User Context: %d\n", context);
break;

}
return nil;

}

Displaying a URL’s Properties 2

Given a URL reference, the displayProperties routine creates a propertyList
array with one element for each of the twenty-one URL Access properties
defined by Apple Computer. Then the routine gets the size of each property by
calling URLGetPropertySize, gets the value of each property by calling
URLGetProperty. and displays each property value.

Listing 2-13 Displaying the value of each URL property

void displayProperties(URLReference urlRef)
{

OSErr err = noErr;
int propCount = 0;
const char* propertyList[21];
Size propertySize = 0;
Handle theProperty = nil;
Displaying a URL’s Properties 21
 Apple Computer, Inc. 4/21/99

C H A P T E R 2

Using the URL Access Manager
propertyList[0] = kURLURL;
propertyList[1] = kURLResourceSize;
propertyList[2] = kURLLastModifiedTime;
propertyList[3] = kURLMIMEType;
propertyList[4] = kURLFileType;
propertyList[5] = kURLFileCreator;
propertyList[6] = kURLCharacterSet;
propertyList[7] = kURLResourceName;
propertyList[8] = kURLHost;
propertyList[9] = kURLAuthType;
propertyList[10] = kURLUserName;
propertyList[11] = kURLPassword;
propertyList[12] = kURLStatusString;
propertyList[13] = kURLIsSecure;
propertyList[14] = kURLCertificate;
propertyList[15] = kURLTotalItems;
propertyList[16] = kURLHTTPRequestMethod;
propertyList[17] = kURLHTTPRequestHeader;
propertyList[18] = kURLHTTPRequestBody;
propertyList[19] = kURLHTTPRespHeader;
propertyList[20] = kURLHTTPUserAgent;

// Get the size of each property, allocate a handle to store the
// property’s value, get the property value, and display it.
for(propCount = 0; propCount < 21; propCount++)
{

// Get the size of the property’s value.
err = URLGetPropertySize(urlRef, propertyList[propCount], &propertySize);
if(err != noErr)

printf("Error %d getting property size %s. Size returned
was: %d\n", err, propertyList[propCount], propertySize);

else
printf("Property size is %d: %s\n", propertySize);

// Now get a handle for the property value.
theProperty = NewHandleClear(propertySize + 1);
err = MemError();
if(err != noErr)

printf("Error %d getting property handle %s\n", err,
22 Displaying a URL’s Properties

 Apple Computer, Inc. 4/21/99

C H A P T E R 2

Using the URL Access Manager
propertyList[propCount]);
else

printf("Got handle for %s: %s\n", propertyList[propCount]);

// Now get the property’s value.
err = URLGetProperty(urlRef, propertyList[propCount],

*theProperty, propertySize);
if(err != noErr)

printf("Error %d getting property %s\n", err, propertyList[propCount]);
else

printf("Property %s: %s\n", propertyList[propCount], *theProperty);

// Clean up.
DisposeHandle(theProperty);
printf("\n");

}
return;

}

Using the URL Access Manager with AppleScript 2

You can use AppleScript to call URL Access Manager functions.

If your AppleScript application uses the URL Access Manager for operations
that may take a substantial amount of time, such as transferring large amounts
of data over a low-speed connection, be sure to set the timeout to large value.
Setting the timeout to a large value , such as 60,000 seconds, will avoid
unnecessary AppleEvent errors.

For information about the standard scripting addition commands distributed
with AppleScript, see the AppleScript section of the Mac OS Help Center, or
visit the following web site: http://www.apple.com/applescript/
Using the URL Access Manager with AppleScript 23
 Apple Computer, Inc. 4/21/99

C H A P T E R 2

Using the URL Access Manager
Creating New URL Access Manager Properties 2

In addition to the default properties described in “Property Name Constants”
(page 64), extensions can create additional properties by calling URLSetProperty
and specifying the name of a new property in the propertyBuffer parameter.

To prevent name collisions with properties created by other applications, the
name of any property that you create should begin with a sequence of
characters that reflect the name of your company, such as “MyCompany:
Version 1.”
24 Creating New URL Access Manager Properties

 Apple Computer, Inc. 4/21/99

C H A P T E R 3

Figure 3-0
Listing 3-0
Table 3-0
URL Access Manager Reference 3
This chapter describes the functions, structures, and data types that you can use
to call the URL Access Manager in your application.

URL Access Manager Functions 3

The URL Access Manager functions are described in these sections:

■ “Getting Information About the URL Access Manager” (page 25)

■ “Downloading From and Uploading to a URL Synchronously” (page 26)

■ “Controlling an Asynchronous URL Upload or Download” (page 36)

■ “Getting and Setting URL Properties” (page 43)

■ “URL Access Manager Utility Functions” (page 46)

■ “URL Access Manager Application-Defined Routines” (page 51)

Getting Information About the URL Access Manager 3

Before attempting to call the URL Access Manager functions, you must make
sure that the URL Access Manager is installed and that its version is compatible
with your application.
URL Access Manager Functions 25
 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
URLGetURLAccessAvailable 3

Determines whether the URL Access Manager is available.

Boolean URLAccessAvailable ();

function result The URLAccessAvailable function returns TRUE if the URL Access
Manager is available; otherwise, it returns FALSE.

URLGetURLAccessVersion 3

Determines the version of the URL Access Manager.

OSStatus URLGetURLAccessVersion (UInt32* returnVers);

returnVers A pointer to an unsigned 32-bit integer value. On return, this
value contains the version number of the URL Access Manager.

function result A result code. For a list of possible result codes, see “Result
Codes” (page 67).

Downloading From and Uploading to a URL Synchronously 3

You can use the following synchronous functions to download and upload
information from a URL:

■ URLSimpleDownload (page 27) downloads data from a URL into a file or
directory.

■ URLSimpleUpload (page 29) uploads data from a file or directory to a URL.

■ URLDownload (page 31) downloads data from a URL reference.

■ URLUpload (page 34) uploads data to a URL reference.
26 URL Access Manager Functions

 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
URLSimpleDownload 3

Downloads data synchronously from a URL.

OSStatus URLSimpleDownload (
const char* url,
FSSpec* destination,
Handle destinationHandle,
URLOpenFlags openFlags,
URLSystemEventProcPtr eventProc,
void* userContext);

url A pointer to the URL from which data is to be downloaded.

destination A pointer to a structure of type FSSpec that describes the file or
directory into which data is to be downloaded, or NULL, in which
case you must supply a value for destinationHandle that is a
valid handle.

If destination is of type FSSpec, but it does not specify the name
of a file or directory, the name of the file or directory specified
by the URL is used. If that file or directory already exists and
you do not specify kURLReplaceExistingFlag in the openFlags
parameter, URLSimpleDownload creates a new file or directory
whose name has a number appended before the extension. For
example, if the URL specifies a file named file.txt,
URLSimpleDownload changes the filename to file1.txt.

For more information about the FSSpec structure, see Inside
Macintosh: Files.

destinationHandle
A handle for downloading data into memory, or NULL, in which
case you must specify a value for destination that is a valid file
specification. Before calling URLSimpleDownload, create a handle
of zero size.

openFlags A value of type URLOpenFlags that specifies download options,
such as expanding a file or replacing a file if its filename is
already in use. The following constants can be used to specify
download options:
URL Access Manager Functions 27
 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
kURLReplaceExistingFlag
kURLExpandFile Flag
kURLDisplayProgressFlag
kURLDisplayAuthFlag
kURLIsDirectoryHintFlag
kURLDoNotTryAnonymousFlag
kURLDirectoryListingFlag

See “Open Flag Constants” (page 56) for descriptions of these
constants.

eventProc A value of type URLSystemEventProcPtr that points to an
application-defined system event callback routine (page 3-53)
that the URL Access Manager calls to communicate system
events to your application during the download process. If your
application requests the display of a progress indicator or
authentication dialog box, these items appear in a movable
modal dialog box.

The value of eventProc can be NULL, in which case your
application will not be informed of system events. If your
application requests the display of a progress indicator or
authentication dialog box,these items appear in a non-movable
modal dialog box.

userContext An untyped pointer to arbitrary data that the URL Access
Manager passes to the application-defined system event
callback routine specified by eventProc. Your application can use
userContext to associate a callback with a particular call to
URLSimpleDownload.

function result A result code. For a list of possible result codes, see “Result
Codes” (page 67).

DISCUSSION

The URLSimpleDownload function downloads data synchronously from a
specified URL to a specified file or directory and does not return until the
download is complete. The URLSimpleDownload function yields time to other
threads. Your application should call URLSimpleDownload from a thread other
than the main thread so that other processes have time to run.
28 URL Access Manager Functions

 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
If you want a progress indicator to be displayed during the download, specify
kURLDisplayProgressFlag in the openFlags parameter. The URL Access Manager
uses a modal dialog box to display the progress indicator.

If your application has multiple threads, it can call URLSimpleDownload multiple
times, but if it calls URLSimpleDownload with kURLDisplayProgressFlag set in
openFlags when the URL Access Manager is already displaying a modal dialog
box, URLSimpleDownload returns the error kURLProgessAlreadyDisplayedError.

If the url parameter specifies a file, the file is downloadedregardless of whether
kURLDirectoryListingFlag or KURLIsDirectoryHintFlag is set in the openFlags
parameter.

When URLSimpleDownload downloads data from a file:/// URL, the data fork is
downloaded but the resource fork is not downloaded.

Call URLDownload (page 31) if you need to set properties or URLOpen (page 37) if
you need to control the download process.

URLSimpleUpload 3

Uploads a file or directory synchronously to an FTP URL.

OSStatus URLSimpleUpload (
char* url,
FSSpec* source,
URLOpenFlags openFlags,
URLSystemEventProcPtr eventProc,
void* userContext);

url A pointer to the FTP URL to which a file or directory is to be
uploaded. To specify the name of the resulting file or directory,
set url to a fully specified URL that does not end with a slash
(/) character. If the file or directory exists and you want to
replace it, specify the path to the destination directory, terminate
the path with a slash (/), and specify kURLReplaceExistingFlag
in the openFlags parameter. If you specify a name that already
exists on the server and you do not specify
kURLReplaceExistingFlag in the openFlags parameter,
URLSimpleUpload returns the error kURLDestinationExistsError. If
you do not specify a name, do not specify
URL Access Manager Functions 29
 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
kURLReplaceExistingFlag, and the name already exists on the
server, the URL Access Manager creates a unique name by
appending a number to the original name before the extension,
if any.

source A pointer to a structure of type FSSpec. Before calling
URLSimpleUpload, set the structure to specify the file or directory
you want to upload. See Inside Macintosh: Files for more
information about the FSSpec structure.

openFlags A value of type URLOpenFlags that specifies upload options. The
following constants can be used to specify upload options:

kURLReplaceExistingFlag
kURLBinHexFileFlag
kURLDisplayProgressFlag
kURLDisplayAuthFlag
kURLDoNotTryAnonymousFlag

See “Open Flag Constants” (page 56) for descriptions of these
constants.

eventProc A value of type URLSystemEventProcPtr that points to an
application-defined system event callback routine (page 3-53)
that the URL Access Manager calls to communicate system
events to your application during the upload process. If your
application requests the display of a progress indicator or
authentication dialog box, these items appear in a movable
modal dialog box.

The value of eventProc can be NULL, in which case your
application will not be informed of system events. If your
application requests the display of a progress indicator or
authentication dialog box, these items appear in a nonmovable
modal dialog box.

userContext An untyped pointer to arbitrary data that the URL Access
Manager passes to the application-defined system event
callback routine specified by eventProc. Your application can use
userContext to associate a callback with a particular call to
URLSimpleUpload.

function result A result code. For a list of possible result codes, see “Result
Codes” (page 67).
30 URL Access Manager Functions

 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
DISCUSSION

The URLSimpleUpload function uploads data synchronously to the specified FTP
URL from the specified file or directory and does not return until the upload is
complete. The URLSimpleUpload function yields time to other threads. Your
application should call URLSimpleUpload from a thread other than the main
thread so that other processes have time to run.

If you want a progress indicator to be displayed during the upload, specify
kURLDisplayProgressFlag in the openFlags parameter. The URL Access Manager
uses a modal dialog box to display the progress indicator.

If your application has multiple threads, it can call URLSimpleUpload multiple
times, but if it calls URLSimpleUpload with kURLDisplayProgressFlag set in
openFlags when the URL Access Manager is already displaying a modal dialog
box, URLSimpleUpload returns the error kURLProgessAlreadyDisplayedError.

Call URLUpload (page 34) if you need to set properties or URLOpen (page 37) if you
need to control the upload process.

URLDownload 3

Downloads data synchronously from a URL into a file, a directory, or memory
using a URL reference.

OSStatus URLDownload (
URLReference urlRef,
FSSpec* destination,
Handle destinationHandle,
URLOpenFlags openFlags,
URLSystemEventProcPtr eventProc,
void* userContext);

urlRef A reference of type URLReference (page 54) that specifies the
URL to be downloaded. Call URLNewReference (page 47) to create
the reference.

destination A pointer to a structure of type FSSpec that describes the file or
directory into which data is to be downloaded, or NULL, in which
case you must supply a value for destinationHandle that is a
valid handle.
URL Access Manager Functions 31
 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
If destination is of type FSSpec, but it does not specify the name
of a file or directory, the name of the file or directory specified
by the URL is used. If that file or directory already exists and
you do not specify kURLReplaceExistingFlag in the openFlags
parameter, URLDownload creates a new file or directory whose
name has a number appended before the extension. For
example, if the URL specifies a file named file.txt, URLDownload
changes the filename to file1.txt.

For more information about the FSSpec structure, see Inside
Macintosh: Files.

destinationHandle
A handle for downloading data into memory, or NULL, in which
case you must specify a value for destination that is a valid file
specification. Before calling URLDownload, create a handle of zero
size.

openFlags A value of type URLOpenFlags that specifies download options,
such as expanding a file or replacing a file if its filename is
already in use. The following constants can be used to specify
download options:

kURLReplaceExistingFlag
kURLExpandFileFlag
kURLDisplayProgressFlag
kURLDisplayAuthFlag
kURLIsDirectoryHintFlag
kURLDoNotTryAnonymousFlag
kURLDirectoryListingFlag

See “Open Flag Constants” (page 56) for descriptions of these
constants.

eventProc A value of type URLSystemEventProcPtr that points to an
application-defined system event callback routine (page 3-53)
that the URL Access Manager calls to communicate system
events to your application during the download process. If your
application requests the display of a progress indicator or
authentication dialog box, the these items appear in a movable
modal dialog box.
32 URL Access Manager Functions

 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
The value of eventProc can be NULL, in which case your
application will not be informed of system events. If your
application requests the display of a progress indicator or
authentication dialog box, these items appear in a nonmovable
modal dialog box.

userContext An untyped pointer to arbitrary data that the URL Access
Manager passes to the application-defined system event
callback routine specified by eventProc. Your application can use
userContext to associate a callback with a particular call to
URLDownload.

function result A result code. For a list of possible result codes, see “Result
Codes” (page 67).

DISCUSSION

The URLDownload function downloads data synchronously from a specified URL
to a specified file or directory and does not return until the download is
complete. The URLDownload function yields time to other threads. Your
application should call URLDownload from a thread other than the main thread so
that other processes have time to run.

If you want a progress indicator to be displayed during the download, specify
kURLDisplayProgressFlag in the openFlags parameter. The URL Access Manager
uses a modal dialog box to display the progress indicator. If your application
has multiple threads, it can call URLDownload multiple times, but if it calls
URLDownload with kURLDisplayProgressFlag set in openFlags when the URL
Access Manager is already displaying a modal dialog box, URLDownload returns
the error kURLProgessAlreadyDisplayedError.

If the URL reference specifies a file, the file is downloadedregardless of whether
kURLDirectoryListingFlag or KURLIsDirectoryHintFlag is set in the openFlags
parameter.

When URLDownload downloads data from a file:/// URL, the data fork is
downloaded but the resource fork is not downloaded.
URL Access Manager Functions 33
 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
▲ W AR N I N G

Once you call URLDownload with urlRef, you cannot use the
same urlRef to call URLDownload again, or to call URLUpload
or URLOpen. If you need to call URLDownload, URLUpload, or
URLOpen with a urlRef that has already been used for one of
these calls, you need to create a new URL reference by
calling URLNewReference (page 47).

Call URLOpen (page 37) if you need to control the download process.

URLUpload 3

Uploads a file or directory synchronously to an FTP URL using a URL
reference.

OSStatus URLUpload (
URLReference urlRef,
const FSSpec* source,
URLOpenFlags openFlags,
URLSystemEventProcPtr eventProc,
void* userContext);

urlref A reference of type URLReference (page 54) that specifies the
URL to which this file or directory is to be uploaded. Call
URLNewReference (page 47) to create the reference.

source A pointer to a structure of type FSSpec. Before calling URLUpload,
set the structure to specify the file you want to upload. See Inside
Macintosh: Files for more information about the FSSpec structure.

openFlags A value of type URLOpenFlags that specifies upload options. The
following constants can be used to specify upload options:

kURLReplaceExistingFlag
kURLBinHexFileFlag
kURLDisplayProgressFlag
kURLDisplayAuthFlag
kURLDoNotTryAnonymousFlag

See “Open Flag Constants” (page 56) for descriptions of these
constants.
34 URL Access Manager Functions

 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
eventProc A value of type URLSystemEventProcPtr which points to an
application-defined system event callback routine (page 3-53)
that the URL Access Manager calls to communicate system
events to your application during the upload process. If your
application requests the display of a progress indicator or
authentication dialog blox, these items appear in a movable
modal dialog box.

The value of eventProc can be NULL, in which case your
application will not be informed of system events. If your
application requests the display of a progress indicator or
authentication dialog box, these items appear in a non-movable
modal dialog box.

userContext An untyped pointer to arbitrary data that the URL Access
Manager passes to the application-defined system event
callback routine specified by eventProc. Your application can use
userContext to associate a callback with a particular call to
URLUpload.

function result A result code. For a list of possible result codes, see “Result
Codes” (page 67).

DISCUSSION

The URLUpload function uploads data synchronously to the specified FTP URL
from the specified file or directory and does not return until the upload is
complete. The URLUpload function yields time to other threads. Your application
should call URLUpload from a thread other than the main thread so that other
processes have time to run.

If you want a progress indicator to be displayed during the upload, specify
kURLDisplayProgressFlag in the openFlags parameter. The URL Access Manager
uses a modal dialog box to display the progress indicator. If your application
has multiple threads, it can call URLUpload multiple times, but if it calls
URLUpload with kURLDisplayProgressFlag set in openFlags when the URL Access
Manager is already displaying a modal dialog box, URLUpload returns the error
kURLProgessAlreadyDisplayedError.

If the URL identified by the urlRef parameter is a file, the file is uploaded
regardless of whether kURLDirectoryListingFlag or KURLIsDirectoryHintFlag is
set in the openFlags parameter.
URL Access Manager Functions 35
 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
▲ W AR N I N G

Once you call URLUpload with urlRef, you cannot use the
same urlRef to call URLUpload again, or to call URLDownlload
or URLOpen. If you need to call URLUpload, URLDownload, or
URLOpen with a urlRef that has already been used for one of
these calls, you need to create a new URL reference by
calling URLNewReference (page 47).

Call URLOpen (page 37) if you need to control the upload process.

Controlling an Asynchronous URL Upload or Download 3

You can use the functions in this section to control the progress of a file upload
or download. The functions described in this section are more flexible than
URLSimpleDownload (page 27) and URLSimpleUpload (page 29) and they are
asynchronous, returning control to your application immediately.

Your application can use the following functions regardless of whether it is
uploading or downloading data:

■ URLOpen (page 37) to start the process of downloading data from a URL to a
file or uploading data from file to a URL. Your application may then call the
other functions described in this section to control the download or upload
process.

■ URLAbort (page 39) terminates an upload or download process that was
started by calling URLOpen.

Your application may use the following functions when it is downloading data:

■ URLGetDataAvailable (page 40) determines the amount of data that your
application can retrieve from buffers.

■ URLGetBuffer (page 41) retrieves the next buffer of data in a download
operation.

■ URLReleaseBuffer (page 42) releases the buffer obtained by a call to
URLGetBuffer.
36 URL Access Manager Functions

 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
URLOpen 3

Opens a URL and starts an asynchronous download or upload operation.

OSStatus URLOpen (
URLReference urlRef,
FSSpec* fileSpec,
URLOpenFlags openFlags,
URLNotifyProcPtr notifyProc,
URLEventMask eventRegister,
void* userContext);

urlRef A reference of type URLReference (page 54) that specifies the
URL you want to open. Call URLNewReference (page 47) to create
urlRef.

fileSpec A pointer to a structure of type FSSpec that identifies the file to
which data is to be downloaded or from which data is to be
uploaded, or NULL. The fileSpec parameter must be a file
specification for upload operations.

When fileSpec is a file specification, URLOpen automatically
starts and completes the transfer of data between the URL
specified by the urlRef parameter and the specified file. Your
application will not receive data-related events, will not have
access to buffer state information, and cannot call URLGetBuffer,
URLGetDataAvailable, or URLReleaseBuffer.

If you specify NULL for a download operation, your application
must call URLGetBuffer (page 41) to retrieve the data as it is
downloaded.

When fileSpec is a file specification that specifies a file that
exists and you want to replace it, specify the path to the
destination file, terminate the path with a slash (/), and specify
kURLReplaceExistingFlag in the openFlags parameter. If you
specify a name that already exists on the server and you do not
specify kURLReplaceExistingFlag in the openFlags parameter,
URLOpen returns the error kURLDestinationExistsError. If you do
not specify a name, you do not specify kURLReplaceExistingFlag,
and the name already exists on the server, the URL Access
Manager creates a unique name by appending a number to the
original name before the extension, if any.
URL Access Manager Functions 37
 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
For more information about the FSSpec structure, see Inside
Macintosh: Files.

openFlags A value of type URLOpenFlags (page 3-56) that specifies data
transfer options. The following constants can be used to specify
download options:

kURLReplaceExistingFlag
kURLExpandFile Flag
kURLDisplayAuthFlag
kURLDoNotTryAnonymousFlag

To specify an upload operation, set kURLUploadFlag in openFlags.
You may also want to set one or more of the following constants
to specify upload options:

kURLReplaceExistingFlag
kURLBinHexFile Flag
kURLDisplayAuthFlag
kURLDoNotTryAnonymousFlag

See “Open Flag Constants” (page 56) for descriptions of these
constants.

notifyProc A pointer to an application-defined event notification routine as
described in “Notification Callback Routine” (page 51) or NULL.
If you provide this parameter, your event notification routine is
called each time one of the events specified in the eventRegister
parameter occurs.

If your application does not provide an event notification
routine, set notifyProc to NULL. To get status information you
can periodically call URLGetCurrentState (page 48) to monitor
the data transfer.

eventRegister A value of type URLEventMask that specifies the events for which
your application-defined notification routine should be called.
See “Event Constants” (page 59) for a description of the possible
values.

userContext An untyped pointer to arbitrary data that the URL Access
Manager will pass to your notification callback routine when it
is called.

function result A result code. For a list of possible result codes, see “Result
Codes” (page 67).
38 URL Access Manager Functions

 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
DISCUSSION

The URLOpen function starts an asynchronous download or upload operation
and returns immediately. If the fileSpec parameter is a valid file specification,
the URL Access Manager continues to transfer data until the transfer is
complete.

To upload data, the fileSpec parameter must be an FSSpec structure.

To download data, the fileSpec parameter can be an FSSpec structure or NULL. If
fileSpec is NULL, URLOpen starts the data transfer, but your application must call
URLGetBuffer (page 3-41) to complete the data transfer.

When URLOpen downloads data from a file:/// URL, the data fork is
downloaded but the resource fork is not downloaded.

▲ W AR N I N G

Once you call URLOpen with urlRef, you cannot use the
same urlRef to call URLOpen again, or to call URLDownload or
URLUpload. If you need to call URLOpen, URLDownload, or
URLUpload with a urlRef that has already been used for one
of these calls, you need to create a new URL reference by
calling URLNewReference (page 47).

URLAbort 3

Terminates a data transfer.

OSStatus URLAbort (URLReference urlRef);

urlRef A reference of type URLReference (page 54) that identifies the
URL for which you want to terminate a data transfer.

function result A result code. For a list of possible result codes, see “Result
Codes” (page 67).

DISCUSSION

The URLAbort function terminates a data transfer that was started by URLOpen.
When your application calls URLAbort, the URL Access Manager changes the
state returned by URLGetCurrentState (page 3-48) to kURLAbortingState. If you
URL Access Manager Functions 39
 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
provided an event notification routine, the URL Access Manager calls it and
passes kURLAbortInitiatedEvent to it.

When the data transfer is terminated, the URL Access Manager changes the
state returned by URLGetCurrentState (page 3-48) to kURLCompletedState. If you
provided an event notification routine, the URL Access Manager calls it and
passes kURLCompletedEvent to it.

URLGetDataAvailable 3

Obtains the amount of data available for retrieval in a download operation.

OSStatus URLGetDataAvailable (
URLReference urlRef,
Size *dataSize);

urlRef A reference of type URLReference (page 54) that identifies the
URL whose buffer size you want. Call URLNewReference (page 47)
to create the reference.

dataSize A pointer to a value of type Size. On return, dataSize is set to
the number of bytes that can be retrieved. For more information
on the Size type, see Inside Macintosh: Memory.

function result A result code. For a list of possible result codes, see “Result
Codes” (page 67).

DISCUSSION

The URLGetDataAvailable function obtains the amount of data in bytes that is
available for your application to retrieve. This function returns meaningful data
only if you have initiated a download process.

IMPORTANT

The URLGetDataAvailable function returns only the number
of bytes in buffers that remain after you have already
copied data from buffers by calling URLGetBuffer (page 41).
The number returned does not include the number of bytes
in transit to a buffer, nor does it include the amount of data
not yet transferred from the URL. ▲
40 URL Access Manager Functions

 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
This function returns the amount of data remaining in buffers, so do not use it
to calculate the amount of remaining data to be downloaded. To determine the
amount of data remaining to be downloaded, call URLGetProperty (page 44) and
specify the kURLResourceSize property in URLCallbackInfo (page 55). You can
then subtract the amount of data copied by URLGetBuffer (page 41) to determine
the amount of data remaining to be transferred to your application.

URLGetBuffer 3

Gets the next buffer of data in a download operation.

OSStatus URLGetBuffer (
URLReference urlRef,
void** buffer,
Size *bufferSize);

urlRef A reference of type URLReference (page 54) that identifies the
URL whose data is being downloaded.

buffer An untyped pointer to a pointer to a buffer. On return, the
buffer contains the downloaded data.

bufferSize A pointer to a value of type Size. On return, bufferSize contains
the number of bytes of data in the buffer. For more information
on type Size see Inside Macintosh: Memory.

function result A result code. For a list of possible result codes, see “Result
Codes” (page 67).

DISCUSSION

The URLGetBuffer function obtains the next buffer of data in a download
operation. The URLGetBuffer function is used by applications that call URLOpen
with a fileSpec parameter that is NULL and that do not need to retain or modify
the transferred data.

Each buffer returned by URLGetBuffer is provided by the URL Access Manager,
so your application should call URLReleaseBuffer (page 3-42) as soon as possible
to prevent the URL Access Manager from running out of buffers.
URL Access Manager Functions 41
 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
You should call URLGetBuffer repeatedly until your notification callback routine
returns kURLCompletedEvent or kURLAbortInitiatedEvent, or until URLGetStatus
returns kURLTransactionComplete or kURLAbortingState. Between calls to
URLGetBuffer, you should call URLIdle to allow time for the URL Access
Manager to refill its buffers.

▲ W AR N I N G

The data in the buffer returned by URLGetBuffer cannot be
modified or retained for a long period of time. You should
release the buffer as soon as possible by calling
URLReleaseBuffer (page 3-42). ▲

URLReleaseBuffer 3

Releases a buffer that belongs to the URL Access Manager.

OSStatus URLReleaseBuffer (
URLReference urlRef,
void* buffer);

urlRef A reference of type URLReference (page 54) that identifies the
URL for which you want to release a buffer.

buffer An untyped pointer to the buffer you want to release.

function result A result code. For a list of possible result codes, see “Result
Codes” (page 67).

DISCUSSION

The URLReleaseBuffer function releases a buffer obtained by calling
URLGetBuffer (page 41). To prevent the URL Access Manager from running out
of buffers, you should call URLReleaseBuffer as soon as possible after calling
URLGetBuffer (page 41).
42 URL Access Manager Functions

 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
Getting and Setting URL Properties 3

You can use these utility functions to set or retrieve information about a URL or
the resource the URL points to:

■ URLGetPropertySize (page 43) gets the size of a property that can be retrieved
by URLGetProperty.

■ URLGetProperty (page 44) retrieves a property associated with a URL.

■ URLSetProperty (page 45) sets a property value in a URL.

The value of a property may change during an upload or download. When a
change occurs during a data transfer, the URL Access Manager calls your
notification callback routine with an event code of kURLPropertyChangedEvent.

For a list of the universal properties that are defined and reserved by Apple
Computer, Inc., see “Universal Properties” (page 64). For a list of HTTP-specific
properties that are defined and reserved by Apple Computer, Inc., see “HTTP
and HTTPS Properties” (page 65).

URLGetPropertySize 3

Gets the size of a property.

OSStatus URLGetPropertySize (
URLReference urlRef,
const char* property,
Size *propertySize);

urlRef A reference of type URLReference that identifies the URL that has
a property whose size you want to obtain.

property A pointer to a null-terminated array of characters that specifies
the name of the property whose size you want to obtain.

propertySize A pointer to a value of type Size. On return, propertySize
contains the size of the property you want to obtain or -1 if the
size is not available. For more information on the Size type, see
Inside Macintosh: Memory.

function result A result code. For a list of possible result codes, see “Result
Codes” (page 67).
URL Access Manager Functions 43
 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
DISCUSSION

The URLGetPropertySize function obtains the size of a property in bytes. You
should call URLGetPropertySize before calling URLGetProperty (page 3-44) to
make sure the buffer you use when you call URLGetProperty is big enough to
hold the property value. Pass the value returned in propertySize as a parameter
to the URLGetProperty function.

URLGetProperty 3

Gets the value of a property.

OSStatus URLGetProperty (
URLReference urlRef,
const char* property,
void* propertyBuffer,
Size bufferSize);

urlRef A reference of type URLReference that identifies the URL that has
a property whose value you want to obtain.

property An untyped pointer to a null-terminated array of characters that
specifies the name of the property whose value you want to
obtain.

propertyBuffer
A pointer to a buffer. On return, buffer contains the value of the
specified property.

bufferSize A value of type Size that specifies the length of propertyBuffer
in bytes. Before calling URLGetProperty, call URLGetPropertySize
to make sure that propertyBuffer is big enough to hold the
value that will be returned by URLGetProperty. For more
information on the Size type, see Inside Macintosh: Memory.

function result A result code. If URLGetProperty returns
kURLPropertyBufferTooSmallError, your application should
allocate a new buffer of the length returned by
URLGetPropertySize calling URLGetProperty again. For a list of
other possible result codes, see “Result Codes” (page 67).
44 URL Access Manager Functions

 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
DISCUSSION

Before calling URLGetProperty, call URLGetPropertySize (page 43) to make sure
that your buffer is big enough to hold the property value. Then specify the size
of the buffer required for that property value in the bufferSize parameter.

SEE ALSO

The function URLSetProperty (page 45).

URLSetProperty 3

Sets the value of a property.

OSStatus URLSetProperty (
URLReference urlRef,
const char* property,
void* propertyBuffer,
Size bufferSize);

urlRef A reference of type URLReference that identifies the URL that has
a property whose value you want to set.

property An untyped pointer to a null-terminated array of characters that
specifies the name of the property you want to set. See
“Property Name Constants” (page 64) for the list of properties
you can set.

propertyBuffer
A pointer to a buffer containing the value you want to set.

bufferSize A value of type Size that specifies the size of the buffer pointed
to by propertyBuffer. For more information on the Size type, see
Inside Macintosh: Memory.

function result A result code. For a list of possible result codes, see “Result
Codes” (page 67).
URL Access Manager Functions 45
 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
DISCUSSION

The URLSetProperty function sets the value of a property that is associated with
a URL. To clear the value of a property, set it with an empty character array.

The following properties, defined by Apple Computer, Inc., can be set:

kURLFileType
kURLFileCreator,
kURLUserName
kURLPassword
kURLHTTPRequestMethod
kURLHTTPRequestHeader
kURLHTTPRequestBody
kURLHTTPUserAgent

URL Access Manager Utility Functions 3

You can use these utility functions to create and dispose of URL references,
retrieve the state of a URL that has been opened by URLOpen, determine an error
condition, yield time so that the URL Access Manager can refill its buffers, or
get information about a file.

■ URLNewReference (page 47) creates a reference to a URL.

■ URLDisposeReference (page 47) disposes of memory used by a URL reference.

■ URLGetCurrentState (page 48) returns the state of the specified URL.

■ URLGetError (page 49) retrieves the error that caused a download or upload
operation to fail.

■ URLIdle (page 50) gives the URL Access Manager time to refill its buffers.

■ URLGetFileInfo (page 50) returns a Macintosh file type and creator as
specified by the Internet configuration mapping table.
46 URL Access Manager Functions

 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
URLNewReference 3

Creates a URL reference.

SStatus URLNewReference (
const char* url,
URLReference *urlRef);

url A pointer to an array of characters that specify the URL you
want to reference.

urlRef A pointer to a reference of type URLReference (page 54). On
return, urlRef points to a valid URL reference that you can use
as a parameter to many URL Access Manager functions.

function result A result code. For a list of possible result codes, see “Result
Codes” (page 67).

DISCUSSION

The function URLNewReference creates a reference to a URL that you can use in
subsequent calls to the URL Access Manager.

When you no longer need a URL reference, you should reclaim memory by
calling URLDisposeReference (page 47).

URLDisposeReference 3

Releases memory used by a URL reference.

OSStatus URLDisposeReference (URLReference urlRef);

urlRef A reference of type URLReference (page 54) that identifies the
URL reference you want to dispose of.

function result A result code. For a list of possible result codes, see “Result
Codes” (page 67).
URL Access Manager Functions 47
 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
DISCUSSION

The URLDisposeReference function releases memory occupied by a URL
reference. You should call URLDisposeReference when you no longer need a URL
reference.

▲ W AR N I N G

Do not call URLDisposeReference from your system event
callback routine or from your notification callback routine.
Doing so may cause your application to stop working.

SEE ALSO

The function URLNewReference (page 47).

URLGetCurrentState 3

Gets the current state of a URL.

OSStatus URLGetCurrentState (
URLReference urlRef,
URLState* state);

urlRef A reference of type URLReference that identifies the URL whose
state information you want to obtain.

state A pointer to a value of type URLState. On return, state contains
the current state of the URL.

function result A result code. For a list of possible result codes, see “Result
Codes” (page 67).

DISCUSSION

The URLGetCurrentState function obtains the current state of a data transfer
with respect to the specified URL.

The following state constants can be returned at any time:
48 URL Access Manager Functions

 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
kURLNullState
kURLInitiatedState
kURLResourceFoundState
kURLDownloadingState
kURLAbortingState
kURLTransactionCompleteState
kURLErrorOccurredState
kURLUploadingState

The following state constants can be returned if the fileSpec parameter was
NULL when your application called URLOpen (page 37):

kURLDataAvailableState,
kURLTransactionCompleteState

For a description of these constants, see “State Constants” (page 57).

URLGetError 3

Gets the error code that caused a download or upload operation to fail.

OSStatus URLGetError (
URLReference urlRef,
OSStatus* urlError);

urlRef A reference of type URLReference that identifies the URL for
which the error code is to be obtained.

urlError A pointer to a value of type OSStatus. On return, urlError
contains the first nontrivial error the URL encountered. A
nontrivial error is an error that cannot be recovered from and
that caused the download or upload to fail.

function result A result code or a protocol-specific error code. For a list of
possible result codes, see “Result Codes” (page 67).

DISCUSSION

The URLGetError function obtains the error code that caused a download or
upload operation to fail. The error code may be a system error code, a
URL Access Manager Functions 49
 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
protocol-specific error code, or one of the error codes listed in “Result Codes”
(page 67).

URLIdle 3

Gives the URL Access Manager time to refill its buffers.

OSStatus URLIdle (void);

function result A result code. For a list of possible result codes, see“Result
Codes” (page 67).

DISCUSSION

The URLIdle function gives the URL Access Manager time to refill its buffers
during download operations. Your application must call URLIdle from its main
event loop if it calls URLOpen (page 37) and URLGetBuffer (page 41) to download
data from a URL.

URLGetFileInfo 3

Obtains the file type and creator for a file name.

OSStatus URLGetFileInfo (
StringPtr name,
OSType* type,
OSType* creator);

name A pointer to a Pascal string. Before calling URLGetFileInfo, set
the string to the name of the file for which you want
information.

type A pointer to a value of type OSType. On return, this parameter
contains the file’s type code.

creator A pointer to a value of type OSType. On return, this parameter
contains the file’s creator code.
50 URL Access Manager Functions

 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
function result A result code. For a list of possible result codes, see “Result
Codes” (page 67).

DISCUSSION

The URLGetFileInfo function obtains a file’s type and creator codes. The type
and creator returned in type and creator are determined by the Internet
configuration mapping table and are based on the filename extension. For
example, if you pass the file name jane.txt, URLGetFileInfo will return ‘TEXT’
in the type parameter and ‘ttxt’ in the creator parameter.

URL Access Manager Application-Defined Routines 3

This section describes two types of application-defined routines that your
application can provide:

■ A notification callback routine that receives events when you transfer data
asynchronously by calling URLOpen (page 37).

■ A system event callback routine that receives system events when you
transfer data synchronously by calling URLSimpleDownload (page 27),
URLSimpleUpload (page 29), URLDownload (page 31), or URLUpload (page 34).

Notification Callback Routine 3

When you call URLOpen (page 37), you may want to specify a notification
callback routine to receive information about events that occur during an
asynchronous download or upload. This is how you would declare the callback
function if you were to name the function MyURLNotifyProc:

OSStatus *MyURLNotifyProcPtr (
void* userContext,
URLEvent event,
URLCallbackInfo *callbackInfo);
URL Access Manager Functions 51
 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
userContext An application-defined value that your application previously
passed as a parameter when it called URLOpen (page 37). When
an event occurs, the URL Access Manager passes userContext
back to you.

event A value of type URLEvent specifying the event that triggered the
callback. The type of event that can trigger a callback depends
on whether you called URLOpen with a fileSpec that is a valid file
specificiation. See the discussion section for details.

callbackInfo A pointer to a structure of type URLCallbackInfo (page 55). On
return, this structure contains information relevant to the event
that has occurred.

result Your notification callback routine should always return noErr.

DISCUSSION

The URL Access Manager will call your notification callback routine when
events for which your application has registered occur during the asynchronous
download or upload of data to a URL. Use the eventRegister parameter to the
URLOpen (page 37) function to specify the events for which you want to receive
notification.

If you call URLOpen with a fileSpec parameter that is a valid file specification,
the following events can cause the URL Access Manager to call your
application’s notification callback routine:

kURLPercentEvent
kURLPeriodicEvent
kURLPropertyChangedEvent
kURLSystemEvent
kURLInitiatedEvent
kURLResourceFoundEvent
kURLDownloadingEvent
kURLUploadingEvent
kURLAbortInitiatedEvent
kURLCompletedEvent
kURLErrorOccurredEvent

If you call URLOpen with a fileSpec parameter that is NULL and you are
downloading from a URL, the following events can cause the URL Access
Manager to call your application’s notification callback routine:

kURLDataAvailableEvent
kURLTransactionCompleteEvent
52 URL Access Manager Functions

 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
See “Event Constants” (page 59) for a description of each constant.

▲ W AR N I N G

Do not call URLDisposeReference from your notification
callback routine. Doing so may cause your application to
stop working. Other than this restriction, your application
can make any call. For example, your notification callback
routine can update its human interface, allocate and
deallocate memory, or call NewThread..

System Event Callback Routine 3

If your application calls URLSimpleDownload (page 27), URLSimpleUpload
(page 29), URLDownload (page 31), or URLUpload (page 34), you may want to
provide a routine that receives system events that may occur while the URL
Access Manager displays a dialog box with a progress indicator or an
authentication dialog box. A typical system event callback routine might look
like this:

void MyURLSystemEventCBProc(
void* userContext,
EventRecord *event);

userContext An untyped pointer to arbitrary data that your application
previously passed to URLSimpleDownload (page 27) or
URLSimpleUpload (page 29).

event A pointer to a structure of type eventRecord that describes
the event that triggered the callback. For more information on
the EventRecord structure see Inside Macintosh: Overview.

result Your system event callback routine should process the system
event and return noErr.

DISCUSSION

If your application asks the URL Access Manager to display a progress
indicator or an authentication dialog box during a call to URLSimpleDownload
(page 27), URLSimpleUpload (page 29), URLDownload (page 31), or URLUpload
URL Access Manager Functions 53
 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
(page 34), your application should provide a system event callback routine to
handle events that occur while the progress indicator or authentication dialog
box is being displayed.

If your application does not provide a system event callback routine, the URL
Access Manager uses a non-movable modal dialog box to display the progress
indicator or authentication dialog box.

When your system event callback routine is called, it should process the event
immediately.

▲ W AR N I N G

Do not call URLDisposeReference from your system event
callback routine. Doing so may cause your application to
stop working.

URL Access Manager Structures and Other Data Types 3

The following structures and other data types supply the information you need
to use URL Access Manager functions:

■ The data type URLReference (page 54) is a reference to a Universal Resource
Locator (URL).

■ The structure URLCallbackInfo (page 55) returns information required by
your notification callback routine (page 3-51).

URLReference 3

The URLReference data type is an opaque data structure that refers to a URL.
Most URL Access Manager functions require a URLReference, which is defined
as follows:

typedef struct OpaqueURLReference* URLReference;

You call URLNewReference (page 47) to create a URL reference. You call
URLDisposeReference (page 47) to dispose of the reference when you no longer
need it.
54 URL Access Manager Structures and Other Data Types

 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
URLCallbackInfo 3

If your application defines a notification routine, the URL Access Manager
returns event information to your application in a data structure of type
URLCallbackInfo.

struct URLCallbackInfo{
UInt32 version;
URLReference urlRef;
const char* property;
UInt32 currentSize;
EventRecord* systemEvent;

};
typedef struct URLCallbackInfo URLCallbackInfo;

Field descriptions
version The version of the URLCallbackInfo structure.
urlRef A reference to the URL associated with the event.
property A pointer to a character constant that specifies predefined

properties. See “Property Name Constants” (page 64) for
detailed description of these constants.

currentSize The size of the buffer containing the property value.
systemEvent A pointer to the system event record (used for system

events only).

URL Access Manager Constants 3

The following sections describe the URL Access Manager constants:

■ “Open Flag Constants” (page 56)

■ “State Constants” (page 57)

■ “Event Constants” (page 59)

■ “Event Mask Constants” (page 61)

■ “Property Name Constants” (page 64)

■ “Authentication Flag Constant” (page 67)
URL Access Manager Constants 55
 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
Open Flag Constants 3

The URL Access Manager defines constants that you can use to specify options
for downloading data from a URL or for uploading data to a URL. The
constants for specifying these options are defined in the URLOpenFlags
enumeration.

enum
{

kURLReplaceExistingFlag = 1 << 0,
URLRBinHexFileFlag = 1 << 1,
kURLExpandFileFlag = 1 << 2,
kURLDisplayProgressFlag = 1 << 3,
kURLDisplayAuthFlag = 1 << 4,
KURLUploadFlag = 1 << 5,
kURLIsDirectoryHintFlag = 1 << 6,
kURLDoNotTryAnonymousFlag = 1 << 7,
kURLDirectoryListingFlag = 1 << 8
};

typedef UInt32 URLOpenFlags;

Constant Descriptions

kURLReplaceExistingFileFlag
If the bit accessed by this flag is set and the specified file or
directory already exists, the contents of the specified file or
directory are replaced by the newly downloaded or
uploaded data. If this bit is not set, the name of the file or
directory isn’t specified, and the file or directory already
exists, a number is appended to the name before any
extension until a unique name is created, and the data is
downloaded or uploaded to the new file or directory name
without notifying the calling application that the name has
changed. In the case of a download operation, your
application can check the file specification to obtain the
new file name.

kURLBinHexFileFlag If the bit accessed by this flag is set, the URL Access
Manager converts the file to BinHex format before it
uploads a file that is not of type ‘TEXT’ and that has a
resource fork.
56 URL Access Manager Constants

 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
kURLExpandFileFlag
If the bit accessed by this flag is set, files in BinHex format
are decoded. If the Stuffit Engine is installed in the System
Folder, it is used to expand the file in any way supported
by Stuffit.

kURLDisplayProgressFlag
If the bit accessed by this flag is set, URLSimpleDownload
(page 27), URLSimpleUpload (page 29), URLDownload (page 31),
and URLUpload (page 34) display a progress indicator in a
modal dialog box during the download or upload
operation.

kURLDisplayAuthFlag
If the bit accessed by this flag is set, a modal authentication
dialog box is displayed if authentication is required.

kURLUploadFlag If the bit accessed by this flag is set, URLOpen uploads data to
the specified URL.

kURLIsDirectoryHintFlag
If the bit accessed by this flag is set, the URL Access
Manager assumes that the URL points to a directory (for
download operations only).

kURLDoNotTryAnonymousFlag
If the bit accessed by this flag is set and if kURLDisplayAuth
is set, URLDownload, URLUpload, URLSimpleDownload and
URLSimpleUpload do not try to log on to FTP servers
anonymously. Instead, they immediately display an
authentication dialog box. If this bit is not set, URLDownload,
URLUpload, URLSimpleDownload and URLSimpleUpload first
attempt to log on to FTP servers anonymously.

kURLDirectoryListingFlag
If the bit accessed by this flag is set, a listing of the
directory is downloaded instead of the entire directory. If
the URL points to a file instead of a directory, the file is
downloaded.

State Constants 3

URL state constants are returned by URLGetCurrentState (page 48). The
constants are defined in the URLState enumeration.
URL Access Manager Constants 57
 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
enum
{

kURLNullState = 0,
kURLInitiatedState = 1,
reserved1 = 2,
reserved2 = 3,
kURLResourceFoundState = 4,
kURLDownloadingState = 5,
kURLDataAvailableState = 0x10 + kURLDownloadingState,
kURLTransactionCompleteState= 6,
kURLErrorOccurredState = 7,
kURLAbortingState = 8,
kURLCompletedState = 9,
kURLUploadingState = 10
};

typedef UInt32 URLState;

Constant Descriptions

kURLNullState The function URLOpen (page 37) has not yet been called.
kURLInitiatingState

The function URLOpen (page 37) has been called; however,
the location specified by the URL reference has not yet been
accessed. The stream enters this state from the
kURLNullState state.

reserved1 Reserved.
reserved2 Reserved.
kURLResourceFoundState

The location specified by the URL reference has been
accessed and is valid. The stream enters this state from the
kURLInitiatingState state.

kURLDownloadingState
The download operation is in progress but there is
currently no data in the buffers. The stream enters this state
initially from the kURLResourceFoundState state. During a
download operation, the stream’s state may alternate
between the kURLDownloadingState and the
kURLDataAvailableState states.

kURLDataAvailableState
The download operation is in progress and data is available
58 URL Access Manager Constants

 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
in the buffers. The stream initially enters this state from the
kURLDownloadingState state. During a download operation,
the stream’s state may alternate between the
kURLDownloadingState and the kURLDataAvailableState
states.

kURLTransactionCompleteState
The download or upload operation is complete. The stream
can enter this state from the kURLDownloadingState state.

kURLErrorOccurredState
An error occurred while transferring data. The stream can
enter this state from any state except the kURLAbortingState
state.

kURLAbortingState The download or upload operation is aborting. The stream
enters this state from the kURLErrorOccurredState state or as
a result of calling URLAbort (page 39) when the stream is in
any other state.

kURLCompletedState There is no more activity to be performed on this stream.
The transferred has completed successfully, the transfer has
been aborted, or an error has occurred. The stream enters
this state from the kURLTransactionCompleteState or the
kURLAbortingState state.

kURLUploadingState The upload operation is in progress.

Event Constants 3

URL event constants are passed to your notification callback routine (page 3-51)
to receive the type of event that occurred. The URL event constants are defined
in the URLEvent enumerator.

enum
{

kURLInitiatedEvent = kURLInitiatingState,
kURLResourceFoundEvent = kURLResourceFoundState,
kURLDownloadingEvent = kURLDownloadingState,
kURLAbortInitiatedEvent = kURLAbortingState,
kURLCompletedEvent = kURLCompletedState,
kURLErrorOccurredEvent = kURLErrorOccurredState,
kURLDataAvailableEvent = kURLDataAvailableState,
kURLTransactionCompleteEvent = kURLTransactionCompleteState,
URL Access Manager Constants 59
 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
kURLUploadingEvent = kURLUploadingState,
kURLSystemEvent = 29,
kURLPercentEvent = 30,
kURLPeriodicEvent = 31,
kURLPropertyChangedEvent = 32,
};

typedef UInt32 URLEvent;

Constant Descriptions

kURLInitiatedEvent
The function URLOpen (page 37) has been called but the
location specified by the URL reference has not yet been
accessed.

kURLResourceFoundEvent
The location specified by the URL reference has been
accessed and is valid.

kURLDownloadingEvent
A download operation is in progress.

kURLAbortInitiatedEvent
A download or upload operation has been aborted.

kURLCompletedEvent All operations associated with calling URLOpen (page 37)
have been completed. This event indicates the successful
completion of a download or upload operation or the
completion of cleanup work after aborting a download or
upload operation.

kURLErrorOccurredEvent
An error occurred.

kURLDataAvailableEvent
Data is available in buffers.

kURLTransactionCompleteEvent
A download operation is complete because there is no
more data to retrieve from buffers.

kURLUploadingEvent An upload operation is in progress.
kURLSystemEvent A system event occurred.
kURLPercentEvent An increment of one percent of the data was transferred

into buffers. This event occurs only when the size of the
data being downloaded is known.
60 URL Access Manager Constants

 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
kURLPeriodicEvent A time interval of approximately one quarter of a second
has passed.

kURLPropertyChangedEvent
A property, such as a filename or a user name, has become
known or changed. For information about the properties
that may cause this event to occur, see “Property Name
Constants” (page 64).

Event Mask Constants 3

The URL Access Manager defines masks you can use to specify the events for
which your notification callback routine should be called. You pass these
constants in the eventRegister parameter when you call URLOpen (page 37). The
URLEventMask enumerator defines these mask constants.

enum
{

kURLInitiatedEventMask = 1 << (kURLInitiatedEvent – 1),
kURLResourceFoundEventMask = 1 << (kURLResourceFoundEvent – 1),
kURLDownloadingMask = 1 << (kURLDownloadingEvent – 1),
kURLUploadingMask = 1 << (kURLUploadingEvent – l),
kURLAbortInitiatedMask = 1 << (kURLAbortInitiatedEvent – 1),
kURLCompletedEventMask = 1 << (kURLCompletedEvent – 1),
kURLErrorOccurredEventMask = 1 << (kURLErrorOccurredEvent – 1),
kURLDataAvailableEventMask = 1 << (kURLDataAvailableEvent – 1),
kURLTransactionCompleteEventMask

= 1 << (kURLTransactionCompleteEvent –1),
kURLSystemEventMask = 1 << (kURLSystemEvent - 1),
kURLPercentEventMask = 1 << (kURLPercentEventMask –1),
kURLPeriodicEventMask = 1 << (kURLPeriodicEvent –1),
kURLPropertyChangedEventMask

= 1 << (kURLPropertyChangedEvent –1),
kURLAllBufferEventsMask = kURLDataAvailableEventMask

+ kURLTransactionCompleteMask,
kURLAllNonBufferEventsMask = kURLinitiatedEventMask

+ kURLDownloadingMask
+ KURLUploadingMask
+ kURLAbortInitiatedMask
+ kURLCompletedEventMask
+ kURLErrorOccurredEventMask
URL Access Manager Constants 61
 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
+ kURLPercentEventMask
+ kURLPeriodicEventMask
+ kURLPropertyChangedEventMask,

kURLAllEventsMask = OxFFFFFFFF
};
typedef UInt32 URLEventMask;

Constant Descriptions

kURLInitiatedEventMask
Set the bit specified by this mask if you want to be notified
when URLOpen (page 37) has been called but the location
specified by the URL reference has not yet been accessed.

kURLResourceFoundEventMask
Set the bit specified by this mask if you want to be notified
when the location specified by a URL reference has been
accessed and is valid.

kURLDownloadingMask
Set the bit specified by this mask when you want to be
notified that a download operation is in progress.

kURLUploadingMask Set the bit specified by this mask when you want to be
notified that an upload operation is in progress.

kURLAbortInitiatedMask
Set the bit specified by this mask when you want to be
notified that a download or upload operation has been
aborted.

kURLCompletedEventMask
Set the bit specified by this mask when you want to be
notified that all operations associated with a call to URLOpen
(page 37) have been completed. This event indicates either
the successful completion of an operation or the completion
of cleanup work after aborting the operation.

kURLErrorOccurredEventMask
Set the bit specified by this mask when you want to be
notified that an error has occurred.

kURLDataAvailableEventMask
Set the bit specified by this mask when you want to be
notified that data is available in buffers. If you include a file
specification when you call URLOpen (page 37), your
notification callback routine is not called.
62 URL Access Manager Constants

 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
kURLTransactionCompleteEventMask
Set the bit specified by this mask when you want to be
notified that the operation is complete because there is no
more data to retrieve from buffers. If you specify a file
specification when you call the URLOpen (page 37), your
notification callback routine is not called.

kURLPercentEventMask
Set the bit specified by this mask when you want to be
notified that an increment of one percent of the data has
been transferred into buffers. This information is useful if
your application displays a progress indictor. This event
occurs only when the size of the data being transferred is
known.

kURLPeriodicEventMask
Set the bit specified by this mask when you want to be
notified that a time interval of approximately one quarter
of a second has passed. You can use this event to report the
progress of the download operation when the size of the
data is unknown or for other processing that you want to
do at a regular interval.

kURLPropertyChangedEventMask
Set the bit specified by this mask when you want to be
notified that a property, such as a filename or user name,
has become known or changes. For information about the
properties that may cause this event to occur, see Property
Name Constants (page 64).

kURLAllBufferEventsMask
Set the bit specified by this mask when you want to be
notified that a buffer-related event occurred, specifically the
kURLDataAvailableEvent event and
kURLTransactionCompleteEvent event. If you include a file
specification when you call URLOpen (page 37), your
notification callback routine is not called for buffer-related
events.

kURLAllNonBufferEventsMask
Set the bit specified by this mask when you want to be
notified that an event unrelated to a buffer occurred; these
events include all events except the kURLDataAvailableEvent
event and kURLTransactionCompleteEvent event.
URL Access Manager Constants 63
 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
kURLAllEventsMask The bit accessed by this mask indicates that an event of any
kind occurs. If you include a file specification when you
call URLOpen (page 37), your notification callback function
will not be called for the kURLDataAvailableEvent event and
kURLTransactionCompleteEvent event.

Property Name Constants 3

These constants define properties that are used by the functions URLGetProperty
(page 44), URLGetPropertySize (page 43), and URLSetProperty (page 45). Before
you call URLGetProperty (page 44) to get the value of a property, you must call
URLGetPropertySize (page 43) to obtain the size of the property.

All of the property name constants are defined as character constants.

There are three types of property name constants: universal properties, HTTP
and HTTPS properties, and authentication type flags.

Universal Properties 3

The universal properties are defined by the following constants. You can call
URLSetProperty (page 45) to set the value of some of these properties. The
properties that can be set are indicated in the description that follows.

const char* kURLURL = “URLString”;
const char* kURLResourceSize = “URLResourceSize”;
const char* kURLLastModifiedTime = “URLLastModifiedTime”;
const char* kURLMIMEType = “URLMIMEType”;
const char* kURLFileType = “URLFileType”;
const char* kURLFileCreator = “URLFileCreator”;
const char* kURLCharacterSet = “URLCharacterSet”;
const char* kURLResourceName = “URLResourceName”;
const char* kURLHost = “URLHost”;
const char* kURLAuthType = “URLAuthType”;
const char* kURLUserName = “URLUserName”;
const char* kURLPassword = “URLPassword”;
const char* kURLStatusString = “URLStatusString”;
const char* kURLIsSecure = “URLIsSecure”;
const char* kURLCertificate = “URLCertificate”;
const char* kURLTotalITems = “URLTotalItems”;
64 URL Access Manager Constants

 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
Constant Descriptions

kURLURL The URL name string.
kURLResourceSize The total size of the data at the location specified by the

URL.
kURLLastModifiedTime

The last time the data was modified.
kURLMIMEType The MIME type of the data.
kURLFileType The file type as specified in a call to URLOpen (page 37). If a

call to URLOpen (page 37) does not specify a file,
kURLFileType returns a file type compatible with the MIME
type.

kURLFileCreator The file creator as specified in a call to URLOpen (page 37). If
a call to URLOpen does not specify a file, kURLFileCreator
returns a creator that is compatible with the MIME type.

kURLCharacterSet The character set the URL uses, as returned by the HTTP
server.

kURLResourceName The name associated with the data to be downloaded.
kURLHost The host on which the data is located.
kURLAuthType The type of authentication that the download operation

requires. The default authentication type is
kUserNameAndPasswordFlag.

kURLUserName The user name used for authentication. You can set this
property.

kURLPassword The password used for authentication. You can set this
property.

kURLStatusString The string that contains the stream’s current status. You can
use this property to display the status.

kURLIsSecure A Boolean variable that specifies whether the download
operation is secure.

kURLCertificate The certificate provided by a remote server.
kURLTotalItems The total number of items being uploaded or downloaded.

HTTP and HTTPS Properties 3

If you are working with an HTTP or HTTPS URL, you can use the following
constants to specify HTTP-specific properties:
URL Access Manager Constants 65
 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
const char* kURLHTTPRequestMethod = “URLHTTPRequestMethod”;
const char* kURLHTTPRequestHeader = “URLHTTPRequestHeader”;
const char* kURLHTTPRequestBody = “URLHTTPRequestBody”;
const char* kURLHTTPRespHeader = “URLHTTPRespHeader”;
const char* kURLHTTPUserAgent = “URLHTTPUserAgent”;

Constant Descriptions

kURLHTTPRequestMethod
The HTTP method to be used in the request. You should
call URLGetPropertySize (page 43) to retrieve the size of the
request method before you retrieve the property itself. If
you are posting a form, you must set this property.

kURLHTTPRequestHeader
The HTTP request header. You should call
URLGetPropertySize (page 43) to retrieve the size of the
request header before you retrieve the property itself. You
may set this property to contain all headers needed for the
request. If you are posting a form and have set the
kURLHTTPRequestMethod and kURLHTTPRequestBody
properties, you do not need to set this property.

kURLHTTPRequestBody
The HTTP request body to be provided in the request. You
should call URLGetPropertySize (page 43) to retrieve the size
of the request body before you retrieve the property itself.
If you set this property but not the kURLHTTPHeader
property, a body-length header is automatically added to
the request. If you are posting a form, you must set this
property.

kURLHTTPRespHeader The HTTP response header. You should call
URLGetPropertySize (page 43) to retrieve the size of the
response header before you retrieve the property itself.

kURLHTTPUserAgent The HTTP user agent string that is embedded in HTTP
requests. By default, the URL Access Manager sets the user
agent string to “URL Access 1.0 (Macintosh ; PPC)”. You
can set this property.
66 URL Access Manager Constants

 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
Authentication Flag Constant 3

The kUserNameAndPasswordFlag authentication flag specifies that both the user
name and password are used for authentication.

enum
{

kUserNameAndPasswordFlag = 0x00000001
};

Result Codes 3

The result codes specific to the URL Access Manager are listed here. Note that
some errors, such as system error codes and HTTP error codes, do not appear in
this list.

kURLNoErr 0 No error
kURLInvalidURLReferenceError –30770 Invalid URL reference
kURLProgressAlreadyDisplayedError –30771 A dialog box with a

progress indicatoris
already displayed

kURLDestinationExistsError –30772 Destination file already
exists

kURLInvalidURLError –30773 Invalid URL format
kURLUnsupportedSchemeError –30774 Transfer protocol is not

supported
kURLServerBusyError –30775 Server is busy
kURLAuthenticationError –30776 Server identification has

failed
kURLPropertyNotYetKnownError –30777 The value of the property

is not yet available
kURLUnknownPropertyError –30778 Invalid or undefined

property
kURLPropertyBufferTooSmallError –30779 The buffer is too small to

receive the requested
property

kURLUnsettablePropertyError –30780 The property cannot be set
kURLInvalidCallError –30781 Invalid call
kURLFileEmptyError –30782 Resource file empty
Result Codes 67
 Apple Computer, Inc. 4/21/99

C H A P T E R 3

URL Access Manager Reference
kURLExtensionFailureError –30783 Extension fails to load
kURLInvalidConfigurationError –30784 Invalid configuration
kURLAccessNotAvailableError –30785 The URL Access Manager

is not available
68 Result Codes

 Apple Computer, Inc. 4/21/99

Index
A

anonymous FTP 58
AppleScript 23
application-defined routines

notification callback 51–53
system event callback 53–54

asynchronous uploads and downloads 37
authentication dialog box
kURLDisplayAuthFlag constant 57
kURLDoNotTryAnonymousFlag constant 58
system event callback routine 53, 54
URLDownload function 32
URLSimpleDownload function 28
URLSimpleUpload function 30
URLUpload function 35

availability of URL Access Manager,
determining 26

B

BinHex format 30, 34, 38, 57
buffers

getting 41–42
refilling 50
releasing 42–43

C

callback routines
notification 43, 48, 51–53
system event

parameters 53–54
URLDisposeReference function 48
URLDownload function 32

URLSimpleDownload function 28
URLSimpleUpload function 30
URLUpload function 35

codes, result 68
constants

authentication
kURLAuthType 66
kURLDisplayAuthFlag 57
kURLDoNotTryAnonymousFlag 58
kURLPassword 66
kURLUserName 66
kUserNameAndPasswordFlag 67

event
kURLAbortInitiatedEvent 61
kURLCompletedEvent 61
kURLDataAvailableEvent 61
kURLDownloadingEvent 60
kURLErrorOccurredEvent 61
kURLInitiatedEvent 60
kURLPercentEvent 61
kURLPeriodicEvent 61
kURLPropertyChangedEvent 61
kURLResourceFoundEvent 60
kURLSystemEvent 61
kURLTransactionCompleteEvent 61
kURLUploadingEvent 61

event mask
kURLAbortInitiatedEventMask 63
kURLAllBufferEventsMask 64
kURLAllEventsMask 64
kURLAllNonBufferEventsMask 64
kURLCompletedEventMask 63
kURLDataAvailableEventsMask 63
kURLDownloadingMask 62
kURLErrorOccurredEventMask 63
kURLInitiatedEventMask 62
kURLPercentEventMask 63
kURLPeriodicEventMask 63
kURLPropertyChangedEventMask 64
69
 Apple Computer, Inc. 4/21/99

I N D E X
kURLResourceFoundEventMask 62
kURLTransactionCompleteEventsMask 63
kURLUploadingMask 63

HTTP property
kURLHTTPRequestBody 67
kURLHTTPRequestHeader 66
kURLHTTPRequestMethod 66
kURLHTTPRespHeader 67
kURLHTTPUserAgent 67

open flag
kURLBinHexFileFlag 57
kURLDirectoryListingFlag 58
kURLDisplayAuthFlag 57
kURLDisplayProgressFlagFlag 57
kURLDoNotTryAnonymousFlag 58
kURLExpandFileFlag 57
kURLIsDirectoryHintFlag 57
kURLReplaceExistingFileFlag 57
kURLUploadFlag 57

property name
kURLAuthType 66
kURLCertificate 66
kURLCharacterSet 65
kURLFileCreator 65
kURLFileType 65
kURLHost 66
kURLIsSecure 66
kURLLastModifiedTime 65
kURLMIMEType 65
kURLPassword 66
kURLResourceName 66
kURLResourceSize 65
kURLStatusString 66
kURLTotalItems 66
kURLURLs 65
kURLUserName 66

state
kURLAbortingState 59
kURLCompletedState 59
kURLDataAvailableState 59
kURLDownloadingState 59
kURLErrorOccurredState 59
kURLResourceFoundState 59
kURLTransactionCompleteState 59
kURLUploadingState 60

converting BinHex format 57
creating properties 24
creator code, getting 50–51

D

data types
URLCallbackInfo 55
URLReference 55

directories
downloading to 27, 31
hint for 57
listings, controlling 58
replacing 57
uploading to 29, 34

displaying
authentication dialog boxes 28, 30, 32, 35, 57
progress indicators 28, 30, 32, 35, 57
properties 21–23

Downloader application 18–21
downloading data

buffer, getting next 41–42
getting amount 40–41
memory 27, 32
options for 56–58
terminating 39–40
URLDownLoad 31–34
URLDownload 12–18, 18–21
URLOpen 37–39
URLSimpleDownLoad 27–29

E

encryption 7
error codes, getting 49–50
examples

properties
getting 21–23
setting 15

URLDownload function 12–18, 18–21
URLNewReference function 14
70
 Apple Computer, Inc. 4/21/99

I N D E X
expanding files 57

F

files
downloading to 27, 37
expanding 57
replacing 57
uploading from 29, 34, 37

firewall support 7
FTP URLs 29, 34
functions
URLAbort 39–40
URLAccessAvailable 26
URLDisposeReference 47–48
URLDownload 12–18, 18–21, 31–34
URLGetCurrentState 48–49
URLGetData 41–42
URLGetDataAvailable 40–41
URLGetError 49–50
URLGetFileInfo 50–51
URLGetProperty 44–45
URLGetPropertySize 43–44
URLGetURLAccessVersion 26
URLIdle 50
URLNewReference 47
URLOpen 37–39
URLReleaseBuffer 42–43
URLSetProperty 45–46
URLSimpleDownload 27–29
URLSimpleUpload 29–31
URLUpload 34–36

G

gateways, SOCKS 7
GET method 7
getting URL properties 44–45

H

HTTP and HTTPS properties
Request Body 15, 67
Request Header 15, 66
Request Method 66
Response Header 67
User Agent 67

Hypertext Transfer Protocol 7

I, J

idle time 50

K

kURLAbortingState constant 59
kURLAbortInitiatedEvent constant 61
kURLAbortInitiatedEventMask constant 63
kURLAllBufferEventsMask constant 64
kURLAllEventsMask constant 64
kURLAllNonBufferEventsMask constant 64
kURLAuthType constant 66
kURLBinHexFileFlag constant 57
kURLCertificate constant 66
kURLCharacterSet constant 65
kURLCompletedEvent constant 61
kURLCompletedEventMask constant 63
kURLCompletedState constant 59
kURLDataAvailableEvent constant 61
kURLDataAvailableEventsMask constant 63
kURLDataAvailableState constant 59
kURLDirectoryListingFlag constant 58
kURLDislayAuthFlag constant 57
kURLDisplayProgressFlag constant 57
kURLDoNotTryAnonymousFlag constant 58
kURLDownloadingEvent constant 60
kURLDownloadingMask constant 62
kURLDownloadingState constant 59
kURLErrorOccurredEvent constant 61
kURLErrorOccurredEventMask constant 63
71
 Apple Computer, Inc. 4/21/99

I N D E X
kURLErrorOccurredState constant 59
kURLExpandFileFlag constant 57
kURLFileCreator constant 65
kURLFileType constant 65
kURLHost constant 66
kURLHTTPRequestBody constant 67
kURLHTTPRequestHeader constant 66
kURLHTTPRequestMethod constant 66
kURLHTTPRespHeader constant 67
kURLHTTPUserAgent constant 67
kURLInitiatedEvent constant 60
kURLInitiatedEventMask constant 62
kURLIsDirectoryHintFlag constant 57
kURLIsSecure constant 66
kURLLastModifiedTime constant 65
kURLMIMEType constant 65
kURLPassword constant 66
kURLPercentEvent constant 61
kURLPercentEventMask constants 63
kURLPeriodicEvent constant 61
kURLPeriodicEventMask constant 63
kURLPropertyChangedEvent constant 61
kURLPropertyChangedEventMask constant 64
kURLReplaceExistingFileFlag constant 57
kURLResourceFoundEvent constant 60
kURLResourceFoundEventMask constant 62
kURLResourceFoundState constant 59
kURLResourceName constant 66
kURLResourceSize constant 65
kURLStatusString constant 66
kURLSystemEvent constant 61
kURLTotalItems constant 66
kURLTransactionCompleteEvent 61
kURLTransactionCompleteEventsMask

constant 63
kURLTransactionCompleteState constant 59
kURLUploadFlag constant 57
kURLUploadingEvent constant 61
kURLUploadingMask constant 63
kURLUploadingState constant 60
kURLURL constant 65
kURLUserName constant 66
kUserNameAndPasswordFlag constant 67

L

listings, controlling 58

M

memory
downloading to 27, 32
releasing 47

multiple threads 29, 31, 33, 35

N, O

notification callback routine 43, 48, 51–53

P, Q

POST method 7, 15
progress indicator, displaying 28, 30, 32, 35, 57
properties

creating 24
HTTP and HTTPS 66–67
size, getting 43–44
universal 65–66
value

getting 21–23, 44–45
setting 15, 45–46

proxy servers, HTTP 7

R

reference, URL
creating 47
disposing of 47–48

result codes 68
72
 Apple Computer, Inc. 4/21/99

I N D E X
S

SamplePost application 12–18
secure HyperText Transfer Protocol 7
setting URL properties 45–46
SOCKS gateways 7
structures, URLCallbackInfo 55
Stuffit Engine 57
synchronous

downloads 27, 31
uploads 29, 34

system event callback routine
parameters for 53–54
URLDisposeReference function 48
URLDownload function 32
URLSimpleDownload function 28
URLSimpleUpload function 30
URLUpload function 35

T

threads
multiple 29, 31, 33, 35
yielding time to 28, 31, 33, 35

type code, getting 50–51

U

universal properties 65–66
uploading data
kURLUploadFlag constant 57
options for 56–58
terminating 39–40
URLOpen 37–39
URLSimpleUpLoad 29–31
URLUpLoad 34–36

URL
getting state of 48–49
properties 7, 65–67
reference

creating 47

disposing of 47–48
URLAbort function 39–40
URLAccessAvailable function 26
URLCallbackInfo structure 55
URLDisposeReference function 47–48
URLDownload function 31–34
URLDownload function 12–18, 18–21
URLDownload function 27, 31
URLGetBuffer function 41
URLGetCurrentState function 48–49
URLGetCurrentState function 48
URLGetDataAvailable function 40–41
URLGetDataAvailable function 40
URLGetData function 41–42
URLGetError function 49–50
URLGetFileInfo function 50–51
URLGetProperty function 44–45
URLGetProperty function 44
URLGetPropertySize function 43–44
URLGetURLAccessVersion function 26
URLIdle function 50
URLNewReference function 14, 47
URLOpen function 37–39
URLOpen function 37
URLReference data type 55
URLReleaseBuffer function 42–43
URLReleaseBuffer function 42
URLSetProperty function 45–46
URLSimpleDownload function 27–29
URLSimpleUpload function 29–31
URLUpload function 34–36

V, W

version, determining 26

Y, Z

yielding time 28, 31, 33, 35, 50
73
 Apple Computer, Inc. 4/21/99

	Transferring Data With the URL Access Manager
	Contents
	Figures, Tables, and Listings
	About This Manual
	Conventions Used in This Manual
	For more information

	About the URL Access Manager
	High-level URL Manager Functions
	Low-level URL Manager Functions

	Using the URL Access Manager
	Using the HTTP Post Method to Obtain Data to Download
	Downloading Data from Multiple URLs
	Displaying a URL’s Properties
	Using the URL Access Manager with AppleScript
	Creating New URL Access Manager Properties

	URL Access Manager Reference
	URL Access Manager Functions
	Getting Information About the URL Access Manager
	URLGetURLAccessAvailable
	URLGetURLAccessVersion

	Downloading From and Uploading to a URL Synchronously
	URLSimpleDownload
	URLSimpleUpload
	URLDownload
	URLUpload

	Controlling an Asynchronous URL Upload or Download
	URLOpen
	URLAbort
	URLGetDataAvailable
	URLGetBuffer
	URLReleaseBuffer

	Getting and Setting URL Properties
	URLGetPropertySize
	URLGetProperty
	URLSetProperty

	URL Access Manager Utility Functions
	URLNewReference
	URLDisposeReference
	URLGetCurrentState
	URLGetError
	URLIdle
	URLGetFileInfo

	URL Access Manager Application-Defined Routines
	Notification Callback Routine
	System Event Callback Routine

	URL Access Manager Structures and Other Data Types
	URLReference
	URLCallbackInfo

	URL Access Manager Constants
	Open Flag Constants
	State Constants
	Event Constants
	Event Mask Constants
	Property Name Constants
	Authentication Flag Constant

	Result Codes

	Index

