



Technical Publications
© Apple Computer, Inc. 1999



FontSync API Preliminary
Documentation

For FontSync 1.0

Preliminary Draft

© Apple Computer, Inc. 10/15/99



Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, AppleScript,
Mac, Macintosh, QuickDraw,
TrueType, and WorldScript are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
PostScript is atrademark of Adobe
Systems Incorporated or its
subsidiaries and may be registered in
certain jurisdictions.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

FontSync API Preliminary Documentation

Important
This is a preliminary document. Although it has been reviewed for technical
accuracy, it is not final. Apple Computer, Inc. is supplying this information
to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and
software implemented according to this document should be tested with final
operating system software and final documentation.

You can check
<http://developer.apple.com/techpubs/macos8/SiteInfo/whatsnew.html> for
information about updates to this and other developer documents. To receive
notification of documentation updates, you can sign up for ADC's free
Online Program and receive their weekly Apple Developer Connection
News e-mail newsletter. (See
<http://developer.apple.com/membership/index.html> for more details about
the Online Program.)

0.0 Introduction
This document describes the features delivered in FontSync 1.0 from an external engineering
perspective. The deliverables include a new API and associated shared library and a control panel.
This document describes the API and control panel functionality.

1.0 Overview of the Problem
FontSync is a self-contained subsystem intended to address font management issues of great
importance among Apple’s high-end publishing customers.

Our publishing customers have long had to endure a host of font-related problems when using Mac
OS systems. It is a tribute to their patience and inventiveness that they’ve been so successful at
coping with these problems, but their complaints have been heard loud and clear at Customer
Advisory Board meetings, and this proposal is a first step at alleviating them.

What are some of the problems faced by printing customers in using fonts?

Prepress customers face many font-related issues, including dealing with huge numbers of fonts
and the problems the Mac OS has with a large font folder. However, the number one problem such
customers face is output errors caused by font mismatches. The content creator sees one thing on
their screen and proof output, sends the document for prepress, and the prepress company gets
different results because the same font isn’t used or the font doesn’t work when RIPed.

Some of the reasons that fonts don’t match include:

• Use of TrueType fonts. There is nothing intrinsically wrong with TrueType, but most
high-end RIPs cannot render them properly (a problem with the RIP, not Mac OS or
applications). Also, there is no way to distinguish between the TrueType and Type 1
versions of a font if they have the same name (e.g., “Times”). Though they have the same
name, the metrics are often different, causing reflow. Installers may replace one version
with another.

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 3

• Different versions of fonts. Even if both the content creator and the prepress company use
the same type technology, and think they are using the same font, the fonts may not contain
the same data. Metrics, kerning, and appearance can differ, causing reflows. Fonts can be
corrupted or changed by users.

• Silent failures to access the font. If the LaserWriter driver cannot access the requested font
(for example, if the limit on the number of open files in Mac OS is exceeded) it will silently
substitute a bitmap version. This results in expensive, wasted output. This can also happen
for other reasons.

Most prepress customers deal with these issues every single day. Comments like “We spend $10-
$12 a page dealing with font problems” are typical. The worst example I have heard so far
occurred in an issue of the magazine “Woman’s Day.” One of the designers at the magazine got
tired of manually tweaking kerning in Quark XPress, and changed the kerning table in their fonts
so that it happened automatically. Of course, when the magazine was sent to prepress, the prepress
company had the unmodified version of the font. As a result, the text reflowed, and the last line of
every article in the magazine was cut off. The error wasn’t caught in proofs, and in fact wasn’t
caught until the magazine was on the press and many of the subscriptions had already been mailed.
An employee at the printing plant pulled a copy to read, and noticed the last line of the article she
was reading wasn’t there. The mailed copies had to be recalled and the press run redone, and the
prepress company had to eat the total cost, which was about $1 million.

This is an extreme example, but prepress customers at Apple Customer Advisory Boards report
dropping hundreds of thousands of dollars on similar problems routinely. They are eager for Apple
to solve this problem and say it would be a major reason to stay with Mac OS instead of migrating
to Windows.

2.0 FontSync Concepts
To solve problems like the ones just described, a mechanism needs to exist to guarantee that the
fonts the user uses in a document on one machine are exactly the same as the fonts that will be used
on another (or meet less stringent, user-defined criteria for matching). FontSync is an API which
applications can adopt in order to solve such customer font problems.

FontSync comprises several parts:

• FontSync Font References, which are an unambiguous way of referring to a specific font,
including what kind it is (TrueType, Type 1, etc.), which version it is, checksums of the
data, and so on. These FontSync font references can be stored in documents, sent over a
network, and turned into references to actual fonts on a host system.

• FontSync Profiles, which are collections of FontSync font references. These profiles can
be generated by print shops and given to users to control the set of fonts the user may use.

• An API for iterating, identifying and matching fonts on a host system. This API is used for
constructing and matching FontSync font references. It is based on and extends the font
matching proposal which is part of the CSS2 Web specification. This API is also used to
convert between FontSync font references and actual fonts on a host, of any kind
(TrueType, Type 1, bitmap, OpenType, and so on).

• An API for applications to build font menus and other font selection human interface parts.
Using a FontSync profile (described above), an application could build a menu containing
only the fonts a particular prepress company supports.

In addition to the parts described here, there are other facets which, while not part of FontSync

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 4

itself, are nevertheless needed for the FontSync proposal to be able to solve real problems. These
include:

• Printer driver changes. On the Mac OS, the LaserWriter driver and Download Manager will
have to be modified to embed FontSync font references into a PostScript stream and
interpret them as they come by.

• Evangelizing application developers to adopt the FontSync model. We have a strong
commitment on the part of the major publishing customers to heavily evangelize the
application developers to adopt FontSync.

• Working with other font technology houses on getting FontSync accepted as a standard.

2.1 FontSync Font References

A FontSync font reference is an unambiguous way of specifying a particular font. It contains
enough information to precisely describe a font in as little space as possible. To do this, it uses data
in the font itself (names from the ‘name’ table, for instance), checksums of the font’s pieces (the
‘FOND’ and ‘sfnt’ or ‘LWFN’ resources, for instance). The fact that the data in a reference is
algorithmically derived from the font data is what distinguishes FontSync from the approach taken
in PANOSE specifications: PANOSE numbers are subjectively assigned by the font designer.

Font references are always derived from a particular, concrete font, and contain all the
characterizing information which FontSync knows about. Inexact font comparison is handled by
optionally ignoring some of this information at the matching stage.

The internals of a FontSync font reference are private to the implementation; accessor functions as
well as constructors and destructors are part of the API. A typical version 1.0 FontSync font
reference will be about 2K – 3K bytes long.

2.2 FontSync Profiles

A FontSync profile is a file that is basically a collection of FontSync font references. The profile
defines a set of fonts. It is, however not organized as a simple array of FontSync font references.
Instead, the data is “inverted” to improve the efficiency of matching against the FontSync Profile.
The details of the file structure are private to the implementation.

FontSync profiles are never mandatory; applications are permitted to deal only with FontSync font
references, if they so choose.

2.3 Matching Fidelity

FontSync specifies the degree of matching required via a bit mask which specifies which aspects of
the font need to match. Among the aspects which might be selected are:

Metric data

Glyph outline data

“Advanced layout” data (e.g., AAT tables)

Font names (from name table)

Postscript data (font Postscript name and glyph Postscript names)

Font appearance (e.g., Panose?)

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 5

3.0 Goals and Requirements
It is possible to do some rather sophisticated things when matching fonts. For example, a newer
version of a font often contains more glyphs than the previous one. However, if the glyphs carried
over from the previous version of the font have not changed (outlines and metrics are identical), it
would be reasonable to consider the newer font as matching the older one. One can easily imagine
even more interesting font substitutions that could be performed by FontSync. For the customers
we are initially targeting, however, the primary requirement is that fonts not be misidentified.
Sophisticated font substitution is not a requirement at this stage. To put it another way, false
negatives are OK, but false positives are anathema.

Another consideration is the size of a FontSync font reference. To do the sort of detailed matching
described in the preceding paragraph, a font reference will have to carry more and more data along.
Eventually, it starts approaching the size of a font. At that point, one may as well send the font
along with the document and not bother with FontSync references. We must try to keep references
as small as possible while still providing a high confidence in the match results. Note that without
carrying the original font data instead of a reduced form of it, it is impossible to guarantee that a
font reference really does match a given font when a match is reported. The best we can hope for is
a very low probability of a false positive.

In FontSync 1.0 we will consider any difference in any particular piece of font data to trigger a
mismatch. This will let us use keep a font reference fairly small while still maintaining a high
degree of confidence in any match. There will be some spurious mismatches, for instance when
glyphs simply got renumbered in a font, but we will not attempt to detect such changes. Matching
fonts of different technologies is a particular case of this: it is not a goal of version 1.0. We must
be careful, though, to define an API and select data structures that will not preclude adding such
sophistication in later versions of FontSync.

A font reference should contain enough information in it so that it can be described to a user in
such a way that it can be related to a font the user may have. In particular, it should be possible to
recover a (QuickDraw) font family name and some ATSUI-visible font name from a font reference.

FontSync 1.0 must work on Mac OS 9 or later and does not need to run on 68K hardware.
Moreover, it must not run on earlier versions of Mac OS. It will eventually be introduced into Mac
OS X, so any platform dependencies must be kept isolated as much as possible to minimize the
porting effort. It must be usable both by traditional QuickDraw Text-using applications as well as
newer ATSUI-based ones.

There needs to be a way for users to create FontSync profiles and to compare them to their existing
fonts. There must be a way to set match criteria in the absence of app-specific user interfaces for
doing so. We leave the provision of standard canned UI elements to later versions of FontSync.

It must be possible to drive FontSync from AppleScript. This will pose some difficulties because
runtime font IDs—font family IDs and font object numbers—are context-dependent. An ID that is
valid in the context that receives an Apple Event may not be valid in the context that sent it.

FontSync 1.0 will only work with active fonts. In addition, font references can only be created for
fonts that OFA and the font objects system can interpret. That is, fonts for which there is a scaler.
This is mainly due to implementation considerations and schedule constraints. Future versions of
FontSync can provide a way to do this if required.

Third-party font management utilities can fill in some of the gaps in the total solution to the font
problem which FontSync doesn’t cover. A few are even starting to provide similar functionality.
For example, when no matching active fonts are found, it would be very nice to query a font-
management utility to see if it knows of any matching fonts, which it could then auto-activate. One

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 6

could even imagine such a utility downloading the font from a remote server. FontSync 1.0 will
support an Apple Event-based hook for such utilities. This may need to change for Mac OS X, but
all of the developers we’ve talked to so far didn’t see that as a big problem.

4.0 Deliverables
FontSync 1.0 will consist of the following components: A shared library that implements the API
described in §5, a faceless background application that implements the scripting support described
in §7 and a control panel as described in §6. The shared library and faceless background
application will be packaged into a single ‘appe’ file, so it will also need an ‘INIT’ resource that
registers the shared library with CFM. This file will also contain bundle information for FontSync
profiles, including the icons for them. This application should not, however, be launched when a
user double-clicks on a profile.

In addition, a set of illustrative sample Apple Scripts will be provided: one that creates a profile,
one that compares a profile either to another profile or the the active fonts, and one that changes
some of the CP settings.

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 7

5.0 FontSync API
The API description uses the C-like syntax of the ‘.i’ files used by the Interfacer tool.

5.1 Types and Constants
5.1.1 Object Types

FontSync font references and profiles are represented by pointers to opaque objects.

struct opaque FNSFontReference;
struct opaque FNSFontProfile;

5.1.2 Matching Options

Matching options are specified by a bit mask. A mask with all bits off directs FontSync to use a
global default option mask (see below).

enum unsigned long FNSMatchOptions {
kFNSMatchNames = 0x00000001,
kFNSMatchTechnology = 0x00000002,
kFNSMatchGlyphs = 0x00000004,
kFNSMatchEncodings = 0x00000008,
kFNSMatchQDMetrics = 0x00000010,
kFNSMatchATSUMetrics = 0x00000020,
kFNSMatchKerning = 0x00000040,
kFNSMatchWSLayout = 0x00000080,
kFNSMatchAATLayout = 0x00000100,
kFNSMatchPrintEncoding = 0x00000200,

kFNSMissingDataNoMatch = 0x80000000,

kFNSMatchAll = 0xFFFFFFFF,
kFNSMatchDefaults = 0

};

kFNSMatchNames

All significant names recorded in the font reference must match. This incudes the QuickDraw Text
family name, unique name, full name, foundry, manufacturer, version and others. Note that the
PostScript names are also examined as part of the kFNSMatchPrintEncoding option.

kFNSMatchTechnology

Scaler technologies must match. In principle, it is possible to match other parts of the font across
different technologies, but this is not a goal of FontSync 1.0, so even if
kFNSMatchTechnology is not asserted, fonts of different technologies will probably not match
under any other criteria, either.

kFNSMatchGlyphs

Glyph repertoires and outline/bitmap data must match.

kFNSMatchEncodings

All cmaps in the font must match. Cmap reordering is also flagged as a mismatch because this can
cause QuickDraw Text to use a different one.

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 8

kFNSMatchQDMetrics

Metrics used by QuickDraw Text must match. This includes the effect of fractEnable and any
metric information in the FOND. The effect of hints at different sizes are taken into account by
capturing the hint data itself.

kFNSMatchATSUMetrics

Metrics used by ATSUI must match. This includes both horizontal and vertical metrics. The effect
of hints at different sizes are taken into account by capturing the hint data itself.

kFNSMatchKerning

Kerning data must match. This includes an sfnt’s ‘kern’ table, the optional kerning data in a
FOND, and any kerning data in a PostScript font’s AFM file.

kFNSMatchWSLayout

Layout information given by an itl5, whether attached directly to the font or the one provided in the
script bundle, must match.

kFNSMatchAATLayout

Advanced layout information, such as that used by ATSUI, must match. This includes such things
as ligature and morph tables. In FontSync 1.0, we include OpenType-style layout information in
this option.

kFNSMatchPrintEncoding

PostScript names and FOND re-encoding vectors must match. Note that it is an error for a font’s
internal PostScript name to be different from the one in the FOND, but FontSync will record both
and consider them separately.

kFNSMissingDataNoMatch

If both references being compared do not have sufficient data to determine if they match, consider
this a mismatch. This sense of the bit is chosen to make kFNSMatchAll specify the most
stringent possible match criteria.

kFNSMatchAll

All attributes which FontSync considers must match. This also asserts
kFNSMissingDataNoMatch , above.

At least one of the above options must be specified. Having all of these flags clear is tantamount to
saying “don’t look at anything,” so any font will match. Because of this, zero has a special
meaning described below under kFNSMatchDefaults . Setting undefined bits, on the other
hand, will not generate an error. It does no immediate harm and allows some degree of backward
compatibility.

kFNSMatchDefaults

Use the global default match criteria established by the API below (or set by the user via the control
panel). Since having all flags clear is nonsensical as, 0 was chosen to represent this option.

5.1.3 Profile Type and Creator
enum {

kFNSCreatorDefault = 0,

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 9

kFNSProfileFileType = 'fnsp'
};

kFNSCreatorDefault

This is the file creator code to be used with FNSProfileCreate (§5.4.1) if you want to let
FontSync assign a creator code instead of using one of your own. The actual creator code used in
1.0 will be ‘fns ’ (the appe’s signature).

kFNSProfileFileType

This is the file type of a FontSync profile. It is not used directly in the API, but is provided for
convenience, e.g., for putting up a Nav Services dialog to select a profile.

5.1.4 Versioning
enum unsigned long FNSObjectVersion {

kFNSVersionDontCare = 0,

kFNSCurSysInfoVersion = 1,
};

kFNSVersionDontCare

There will almost certainly be changes made in the future to either the profile file format or the
nature of the “fingerprints” in a font reference. Future versions of FontSync must of course be
compatible with older data, but it may also be necessary to produce old versions of the data for use
with older systems. To this end, all object creation functions take an explicit object version
parameter. If an application wants the most recent version supported by the library regardless of its
version number, it should pass in kFNSVersionDontCare . In FontSync 1.0, both font
references and profiles are version 1.

kFNSCurSysInfoVersion

FNSGetSysInfo() uses a parameter block (described below) to return various version information
about the currently-running FontSync to an application. To allow for future expansion of the
information without introducing new API, this parameter block has a version number as its first
field. The structure used by FontSync 1.0 is version 1.

struct FNSSysInfo {
FNSObjectVersion iSysInfoVersion;
FNSFeatureFlags oFeatures;
FNSObjectVersion oCurRefVersion;
FNSObjectVersion oMinRefVersion;
FNSObjectVersion oCurProfileVersion;
FNSObjectVersion oMinProfileVersion;
UInt16 oFontSyncVersion;

};

FNSSysInfo

This is the parameter block used by FNSSysInfoGet (§5.7.1). The first field is an input to
FontSync which tells it which version of the parameter block structure the caller is using (currently
1). The rest of the fields are outputs: oFeatures gives the feature flags (none are defined in
FontSync 1.0); oCurRefVersion and oMinRefVersion give the current font reference
structure version and the oldest one supported by the library, respectively;
oCurProfileVersion and oMinProfileVersion give the same information for profiles;

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 10

oFontSyncVersion is a binary-coded decimal value. The high-order 8 bits give the major
version, the next four give the minor version, and the last four give the revision. Version 1.0
would be encoded as 0x0100 . If this structure changes in the future, the changes will consist of
additional fields added to the end of the structure. The version number
(kFNSCurSysInfoVersion) will change accordingly.

5.1.5 Status Codes
enum {

kFNSInvalidReferenceErr = -29580,
kFNSBadReferenceVersionErr = -29581,
kFNSInvalidProfileErr = -29582,
kFNSBadProfileVersionErr = -29583,
kFNSDuplicateReferenceErr = -29584,
kFNSMismatchErr = -29585,
kFNSInsufficientDataErr = -29586,
kFNSBadFlattenedSizeErr = -29587,
kFNSNameNotFoundErr = -29589,

};

kFNSInvalidReferenceErr

The font reference passed into the function was somehow invalid. This can also be returned by
FNSReferenceUnflatten (§5.3.7) if the reconstructed reference is bad.

kFNSBadReferenceVersionErr

The font reference has an unsupported version number. This will generally happen if a reference
created by a later version of FontSync is presented to an older one. It may also simply mean that
the reference is invalid. A font reference’s version number will always be found in the same place
no matter what version it is. The validation code gives up as soon as it finds a bad version number.
This error will also be returned from the font reference creation functions (§5.3.1 ff) if an
unsupported reference version was requested.

kFNSInvalidProfileErr

The profile does not have a valid structure.

kFNSBadProfileVersionErr

The profile has an unsupported version number. Just as with a bad font reference version number,
this may indicate that the profile is valid, but created by a later version of FontSync, or that the
profile is truly invalid.

kFNSDuplicateReferenceErr

This status code is returned by FNSProfileAddReference (§5.4.7) when the reference being
added already exists in the profile.

kFNSMismatchErr

The general-purpose status code used by FontSync to indicate that a reference didn’t match.

kFNSInsufficientDataErr

This status code will be returned by a match operation if kFNSMissingDataNoMatch has been
requested and both references being compared are missing the same data.

kFNSBadFlattenedSizeErr

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 11

Returned by FNSReferenceUnflatten (§5.3.7) if the passed-in size doesn’t match the size
recorded in the flattened reference or if the size was not large enough for a flattened reference.

kFNSNameNotFoundErr

There was no name in the font reference that matched the given parameters.

5.2 Default Match Criteria
Note that there is no API for setting the default match criteria.If desired, this may be accomplished
by sending an appropriate Apple Event to the FontSync control panel (see §6).

5.2.1 FNSMatchDefaultsGet

FNSMatchOptions FNSMatchDefaultsGet(void);

This function gets the bit mask used when kFNSMatchDefaults is passed to functions which
perform matching. This value is read from a preferences file maintained by the FontSync library. If
there is no preferences file, or it is unreadable, an implementation-defined fallback value will be
returned. In FontSync 1.0, it has all defined options turned on.

Return Values

Match options bit mask.

5.3 Working with Font References
5.3.1 FNSReferenceCreate

OSStatus FNSReferenceCreate(FMFont iFont,
FNSObjectVersion iDesiredVersion,
FNSFontReference *oReference);

This function creates in the current heap a font reference for the given font object. This is the
function an ATSUI application would use to create font references. If the given font object is
associated with some font family, it will also include the QuickDraw Text-specific information
from that associated family. NB: This definition assumes that a font object can only belong to
one family. FontSync will use whatever family is returned by
FMGetFontFamilyInstanceFromFont. The desired reference format version is specified by the
parameter iDesiredVersion . It must be a version supported by the library, i.e., in the range
reported by FNSSysInfoGet (§5.7.1). If no particular version is required, the caller should pass
kFNSVersionDontCare .

Return Values

noErr , paramErr , kFMInvalidFontErr , kFNSBadReferenceVersionErr ,
Memory Manager errors.

5.3.2 FNSReferenceCreateFromFamily

OSStatus FNSReferenceCreateFromFamily(FNFontFamily iFamily,
Style iStyle,
FNSObjectVersion iDesiredVersion,
FNSFontReference *oReference,
Style *oActualStyle);

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 12

This function creates in the current heap a font reference based on the given font family and style.
This is the function a classic QuickDraw Text application would use to create font references. Note
that a particular QuickDraw style request is not necessarily fully satisfied by a “real” font. There are
often left-over style bits. For example, a family may not have a real italic strike, so any italicization
is handled by skewing the glyphs. The “real” style that the returned font reference corresponds to
is returned in oActualStyle . The same information may be retrieved from the reference itself,
but making it a function parameter helps to remind callers that the reference they’re getting may not
be for the exact combination of style bits passed into this function. This parameter may be NULL.
The desired reference format version is specified by the parameter iDesiredVersion . It must
be a version supported by the library, i.e., in the range reported by FNSSysInfoGet (§5.7.1). If
no particular version is required, the caller should pass kFNSVersionDontCare .

Return Values

noErr , paramErr , kFNSBadReferenceVersionErr ,
kFMInvalidFontFamilyErr , Memory Manager errors.

5.3.3 FNSReferenceDispose

OSStatus FNSReferenceDispose(FNSFontReference iReference);

Disposes of the storage used by the given font reference. The reference should not be used any
more after this call.

Return Values

noErr , kFNSInvalidReferenceErr , kFNSBadReferenceVersionErr , Memory
Manager errors.

5.3.4 FNSReferenceMatch

OSStatus FNSReferenceMatch(FNSFontReference iReference1,
FNSFontReference iReference2,
FNSMatchOptions iOptions,
FNSMatchOptions *oFailedMatchOptions);

Compares the specified font references against each other using the specified options. If the match
fails, oFailedMatchOptions which elements failed to match. This parameter may be NULL if
details of the mismatch are not desired.

Return Values

noErr , kFNSInvalidReferenceErr , kFNSBadReferenceVersionErr ,
kFNSMismatchErr , kFNSInsufficientDataErr , Memory Manager errors.

5.3.5 FNSReferenceFlattenedSize

OSStatus FNSReferenceFlattenedSize(FNSFontReference iReference,
ByteCount *oFlattenedSize);

Computes the space required for the flattened form of the font reference. This can also be
computed by passing a NULL iFlatReference pointer to FNSReferenceFlatten , below.
We include an explicit call to emphasize that both steps are usually required when flattening a font
reference.

Return Values

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 13

noErr , paramErr , kFNSInvalidReferenceErr ,
kFNSBadReferenceVersionErr

5.3.6 FNSReferenceFlatten

OSStatus FNSReferenceFlatten(FNSFontReference iReference,
void *iFlatReference,
ByteCount *oFlattenedSize);

Flattens the specified font reference into a form which can be stored externally. It returns the size
of the flattened reference in oFlattenedSize . Unlike many similar APIs, this function will not
do “partial writes.” It assumes that the storage pointed to by iFlatReference is large enough
to hold the data and will always out a full flattened reference. This function can be called with
iFlatReference set to NULL to just get the size of the flattened reference without creating one.
Alteratively, FNSReferenceFlattenedSize can also be called to get this information.

Return Values

noErr , paramErr , kFNSInvalidReferenceErr ,
kFNSBadReferenceVersionErr

5.3.7 FNSReferenceUnflatten

OSStatus FNSReferenceUnflatten(void *iFlatReference,
ByteCount iFlattenedSize,
FNSFontReference *oReference);

Reconstitutes a font reference from its external form. The size parameter is redundant since a
flattened reference contains its own size, but allows a useful check to be made.

Return Values

noErr , paramErr , kFNSBadFlattenedSizeErr , kFNSInvalidReferenceErr ,
kFNSBadReferenceVersionErr , Memory Manager errors.

5.3.8 FNSReferenceGetVersion

OSStatus FNSReferenceGetVersion(FNSFontReference iReference,
FNSObjectVersion *oVersion);

Returns the format version number of the given font reference.

Return Values

noErr , paramErr , kFNSInvalidReferenceErr .

5.4 Working With Font Profiles
Important: FontSync profiles are always housed in a file. FontSync attempts to moderate access to
this file. Ideally, it tries to either allow many readers or exactly one writer but not both.
Unfortunately, the Mac OS File Manager does not allow this kind of exclusion on local volumes,
so it may still be possible for someone to get write access to a profile when there are active readers.
Rather than complicating the implementation to work around this limitation, we choose to treat
FontSync profile files as most any other document file. That is, we make it the caller’s problem. If
you are going to modify a profile, the safest way to do it is to first make a copy of the file, make
the modifications to the copy, and swap file names when done. This method has the added benefit

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 14

of preserving the original profile in the case of a catastrophic error that leaves the new profile
invalid.

5.4.1 FNSProfileCreate

OSStatus FNSProfileCreate(const FSSpec *iFile,
FourCharCode iCreator,
ItemCount iEstNumRefs,
FNSObjectVersion iDesiredVersion,
FNSFontProfile *oProfile);

This function creates and opens (with read/write access) the given file and initializes it to an empty
FontSync profile. The file’s creator will be iCreator. If you don’t want to specify a creator code of
your own, pass in 0 (kFNSCreatorDefault). The new profile will usually immediately have
font references added to it, so to minimize the number of times the file needs to be grown, the
estimated number of references that it will contain can be provided in iEstNumRefs . This
parameter can be zero. The desired profile format version is specified by the parameter
iDesiredVersion . It must be a version supported by the library, i.e., in the range reported by
FNSSysInfoGet (§5.7.1). If no particular version is required, the caller should pass
kFNSVersionDontCare . The returned FNSFontProfile is a “cookie” that identifies that
profile to FontSync.

Return Values

noErr , paramErr , kFNSBadProfileVersionErr , File Manager errors, Memory
Manager errors.

5.4.2 FNSProfileOpen

OSStatus FNSProfileOpen(const FSSpec *iFile,
Boolean iOpenForWrite,
FNSFontProfile *oProfile);

This function returns a profile “cookie” for an existing FontSync profile file. If the profile is going
to be edited it should be opened for read/write access by setting iOpenForWrite to true .

Return Values

noErr , paramErr , kFNSInvalidProfileErr , kFNSBadProfileVersionErr ,
File Manager errors, Memory Manager errors.

5.4.3 FNSProfileClose

OSStatus FNSProfileClose(FNSFontProfile oProfile);

Closes the file associated with the given profile “cookie” and marks the cookie as invalid. Any
memory associated with the open profile is released. Note that closing a profile does not
automatically compact it. An explicit call to FNSProfileCompact must be made (before closing
the profile, of course) to do so.

Return Values

noErr , kFNSInvalidProfileErr , kFNSBadProfileVersionErr , File Manager
errors.

5.4.4 FNSProfileCompact

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 15

OSStatus FNSProfileCompact(FNSFontProfile oProfile);

While a profile is being constructed it will contain “excess capacity” to reduce the number of times
that the file must be grown and data moved around. This function will eliminate that excess space
and minimize the size of the file. This will typically be called just before closing a profile that has
been edited. If called on a profile that has not been opened for write, the function will simply return
without doing anything.

Return Values

noErr , kFNSInvalidProfileErr , kFNSBadProfileVersionErr , File Manager
errors, Memory Manager errors.

5.4.5 FNSProfileClear

OSStatus FNSProfileClear(FNSFontProfile oProfile);

Removes all references from the profile. The profile must be writable. The file remains the same
size after this operation.

Return Values

noErr , kFNSInvalidProfileErr , kFNSBadProfileVersionErr , permErr , File
Manager errors, Memory Manager errors.

5.4.5 FNSProfileCountReferences

OSStatus FNSProfileCountReferences(FNSFontProfile iProfile,
ItemCount *oFontCount);

Returns the number of references in the profile.

Return Values

noErr , paramErr , kFNSInvalidProfileErr , kFNSBadProfileVersionErr .

5.4.6 FNSProfileGetIndReference

OSStatus FNSProfileGetIndReference(FNSFontProfile iProfile,
UInt32 iWhichReference,
FNSFontReference *oReference);

Returns a font reference indexed by iWhichReference ; the range is from 0 to one less than the
number of references (given by FNSProfileCountReferences) in the profile.

Return Values

noErr , paramErr , inputOutOfBounds , kFNSInvalidProfileErr ,
kFNSBadProfileVersionErr , File Manager errors, Memory Manager errors.

5.4.7 FNSProfileAddReference

OSStatus FNSProfileAddReference(FNSFontProfile iProfile,
FNSFontReference iReference);

Adds the specified font reference to the profile. The profile must be writable. If an identical (not
just matching) reference already exists in the profile, a new one will not be added and
kFNSDuplicateReferenceErr will be returned. NB: In FontSync 1.0, we expect that new

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 16

profiles will simply overwrite old ones wholesale. If the capability for incremental updates is
required (e.g. to add data to a particular reference) it will be provided in a future version.

Return Values

noErr , kFNSInvalidProfileErr , kFNSBadProfileVersionErr ,
kFNSInvalidReferenceErr , kFNSBadReferenceVersionErr ,
kFNSDuplicateReferenceErr , permErr , other File Manager errors, Memory Manager
errors.

5.4.8 FNSProfileRemoveReference

OSStatus FNSProfileRemoveReference(FNSFontProfile iProfile,
FNSFontReference iReference);

Deletes the specified font reference from the profile. This will delete only an identical reference, not
one that simply matches the given reference. The profile must be writable.

Return Values

noErr , kFNSInvalidProfileErr , kFNSBadProfileVersionErr ,
kFNSInvalidReferenceErr , kFNSBadReferenceVersionErr ,
kFNSMismatchErr , permErr , other File Manager errors, Memory Manager errors.

5.4.9 FNSProfileRemoveIndReference

OSStatus FNSProfileRemoveIndReference(FNSFontProfile iProfile,
UInt32 iIndex);

Deletes the iIndex th font reference from the profile; the range is from 0 to one less than the
number of references (given by FNSProfileCount) in the profile. Note that this will change the
indices of all succeeding references. The profile must be writable.

Return Values

noErr , kFNSInvalidProfileErr , kFNSBadProfileVersionErr ,
kFNSInvalidReferenceErr , kFNSBadReferenceVersionErr ,
inputOutOfBounds , permErr , other File Manager errors, Memory Manager errors.

5.4.10 FNSProfileGetVersion

OSStatus FNSProfileGetVersion(FNSFontProfile iProfile,
FNSObjectVersion *oVersion);

Returns the format version number of the given open font profile.

Return Values

noErr , paramErr , kFNSInvalidProfileErr .

5.5 Searching by Font Reference
5.5.1 FNSProfileMatchReference

OSStatus FNSProfileMatchReference(FNSFontProfile iProfile,
FNSFontReference iReference,

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 17

FNSMatchOptions iMatchOptions,
ItemCount iOutputSize,
UInt32 oIndices[],
ItemCount *oNumMatches);

This function returns a list of font references in the given profile which match the specified
reference. The list will contain indices that can be used with FNSProfileIterate to retrieve
the actual matching font references. To simply count the number of matches, call this function with
iOutputSize set to zero. This function will fill in as many elements of oIndices as it can, but
never more than iOutputSize . The total number of matches will always be returned in
oNumMatches regardless of how many entries it made in oIndices . To simply determine if
there is a match at all, call this function with both iOutputSize set to zero and oNumMatches
NULL and test for a status of noErr (matches found) or kFNSMismatchErr (no matches). We
use a bulk operator like this instead of some other style of iterator because we expect the
number of matches to be small.

Return Values

noErr , paramErr , kFNSInvalidProfileErr , kFNSBadProfileVersionErr ,
kFNSInvalidReferenceErr , kFNSBadReferenceVersionErr ,
kFNSMismatchErr , File Manager errors, Memory Manager errors.

5.5.2 FNSReferenceMatchFonts

OSStatus FNSReferenceMatchFonts(FNSFontReference iReference,
FNSMatchOptions iMatchOptions,
ItemCount iOutputSize,
FMFont oFonts[],
ItemCount *oNumMatches);

This function returns a list of active fonts which match the specified reference. It is the function to
be used to map a font reference to an actual font. There may be more than one such font, so a list is
returned. To simply count the number of matches, call this function with iOutputSize set to
zero. This function will fill in as many elements of oFonts as it can, but never more than
iOuputSize . The total number of matches will always be returned in oNumMatches regardless
of how many entries it made in oIndices . If FontSync finds no matching fonts it may query a
third party to find matches. See §8 for details. We use a bulk operator like this instead of some
other style of iterator because we expect the number of matches to be small.

Return Values

noErr , paramErr , kFNSInvalidReferenceErr ,
kFNSBadReferenceVersionErr , kFNSMismatchErr , Memory Manager errors.

5.5.3 FNSReferenceMatchFamilies

OSStatus FNSReferenceMatchFamilies(FNSFontReference iReference,
FNSMatchOptions iMatchOptions,
ItemCount iOutputSize,
FMFontSpecification oFonts[],
ItemCount *oNumMatches);

This function is identical to the previous one, except that it returns a list of font families instead of
font objects. This is the function to use to convert a font reference into an actual font that can be
used with QuickDraw Text.

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 18

Return Values

noErr , paramErr , kFNSInvalidReferenceErr ,
kFNSBadReferenceVersionErr , kFNSMismatchErr , Memory Manager errors.

5.6 UI Support
5.6.1 FNSReferenceGetFamilyInfo

OSStatus FNSReferenceGetFamilyInfo(FNSFontReference iReference,
Str255 oFamilyName,
ScriptCode *oFamilyNameScript,
Style *oActualStyle);

Returns information about the font family associated with the reference: oFamilyName is the
name by which the font is known to the classic Font Manager (i.e., the string to pass to
GetFNum). oFamilyNameScript is the script of the family name string. oActualStyle
gives the QuickDraw style associated with the font reference. This is the style actually represented
by the reference, not necessarily the one passed into FNSReferenceCreateFromFamily (see
§5.3.2). Any of the output pointers may be NULL, but a paramErr will result if they all are.

Return Values

noErr , paramErr , kFNSInvalidReferenceErr ,
kFNSBadReferenceVersionErr , kFNSInsufficientDataErr .

5.6.2 FNSReferenceCountNames

OSStatus FNSReferenceCountNames(FNSFontReference iReference,
ItemCount *oNameCount);

oNameCount gives a count of the (internal) font names, other than the GetFNum family name,
recorded in the given reference. These names will always include the PostScript and unique names,
if available.

Return Values

noErr , paramErr , kFNSInvalidReferenceErr ,
kFNSBadReferenceVersionErr , kFNSInsufficientDataErr .

5.6.3 FNSReferenceGetIndName

OSStatus FNSReferenceGetIndName(FNSFontReference iReference,
ItemCount iFontNameIndex,
ByteCount iMaximumNameLength,
Ptr oName,
ByteCount *oActualNameLength,
FontNameCode *oFontNameCode,
FontPlatformCode *oFontNamePlatform,
FontScriptCode *oFontNameScript,
FontLanguageCode *oFontNameLanguage);

Retrieves the iFontNameIndexth name recorded in the given font reference. The conventions
for and interpretations of the parameters are the same as for the ATSUI function
ATSUGetIndFontName .

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 19

Return Values

noErr , paramErr , kFNSInvalidReferenceErr ,
kFNSBadReferenceVersionErr , kFNSInsufficientDataErr ,
inputOutOfBounds .

5.6.4 FNSReferenceFindName

OSStatus FNSReferenceFindName(FNSFontReference iReference,
FontNameCode iFontNameCode,
FontPlatformCode iFontNamePlatform,
FontScriptCode iFontNameScript,
FontLanguageCode iFontNameLanguage,
ByteCount iMaximumNameLength,
Ptr oName,
ByteCount *oActualNameLength,
ItemCount *oFontNameIndex);

Finds the first name that matches the given specification, if any. The conventions for and
interpretations of the parameters are the same as for the ATSUI function
ATSUGetIndFontName . Any of the name code, platform, script or language parameters may be
their wildcard values, though using a wildcard for the name code rarely makes sense.

Return Values

noErr , paramErr , kFNSInvalidReferenceErr ,
kFNSBadReferenceVersionErr , kFNSInsufficientDataErr ,
kFNSNameNotFoundErr .

5.7 Miscellany
5.7.1 FNSSysInfoGet

void FNSSysInfoGet(FNSSysInfo *ioInfo);

Returns version and feature information for the version of FontSync running in the current context.
See §5.1.4 for a description of the parameter block.

5.7.2 FNSEnabled

Boolean FNSEnabled(void);

Returns a flag that indicates whether or not FontSync operations should be performed by an
application. This flag has no effect on the operation of any FontSync API, but should be checked
by applications before starting a sequence of FontSync calls. Note that there is no way in FontSync
1.0 to set this flag to anything but true. This function is left over from previous iterations of the HI
design. The ability to disable FontSync without removing the extension will probably reappear in a
future version, so we left this function in place so that applications won’t have to change when the
functionality is enabled.

Return Values

A flag indicating whether or not FontSync operations should be performed by an application.

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 20

6.0 Control Panel
There will not be a detailed HI spec for the FontSync control panel. This section of the ERS
describes what it should look like and what functionality it should have.

For most people, the out-of-the-box settings should be sufficient. For advanced users who either
need or want to change those settings, a optionally-installed control panel provides two ways of
doing so. A user can either change the setting directly in the control panel or run a script that does
so. This control panel also serves as a model UI for applications that want to give users this same
level of control directly in the application.

The control panel consists of a single dialog (illustrated below). For each defined match option,
there is a checkbox in the dialog. There are two classes of options: the bulk of them represent parts
of a font that must match. These will be grouped together visually by putting a box around them.
There are enough of these that they will probably need to be arranged in two columns to keep the
dialog from getting too tall. Since it doesn’t make sense to turn all of these off (any font would
match in that case) attempting to uncheck the last enabled option should post an alert explaning
why that is prohibited. The remaining checkbox in this dialog corresponds to the
kFNSMissingDataNoMatch flag, which is independent of the other match criteria. Its
checkbox will be outside the group box described above. All these checkboxes will have a short
label as well as a couple of descriptive sentences under that in a smaller font. These checkboxes are
“live,” that is, the changes take effect immediately. In addition to the checkboxes, this dialog
should have buttons to cancel the changes and to set them to the implementation-defined defaults.
If the prefs file could not be written, a suitable alert should be displayed.

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 21

The figure above is illustrative and should not be taken as an exact layout.

The control panel should be scriptable (see §7 for details). If the FontSync library is not available,
the control panel should fail gracefully and post an appropriate alert.

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 22

7.0 Scripting
We expect FontSync to be an important component of publishing workflow. AppleScript is used
very heavily in that environment, both directly by users and as components of cgi gateways. It is
thus imperative that FontSync be somehow accessible from scripts.

The control panel (§6) will allow setting the default match criteria both directly and through a
script. Each item that can be set is a property of the FontSync CP application. Settings can thus be
made via the standard Set Data event. Current settings can be fetched via Get Data. Since there is
no API for setting default match criteria, applications that wish to do this will also have to send
Apple Events to the control panel. Note that the optional control panel must be installed to have
access to this feature. Applications can always get the current settings directly via an API. For
convenience, there will be a “bulk” mode for these events.

In addition, FontSync 1.0 will support Apple Events that create and compare profiles. This support
will be provided by a faceless background ‘appe’ application. Two new Apple Events defined for
this: Create Profile and Compare Profile. Create Profile takes an alias to a file and creates a profile
from the currently-active fonts. The reply simply indicates success or failure. Compare Profile
takes an alias to an existing profile and compares the currently-active fonts to it. The reply is a list
of “problems.” Compare Profile can take an optional second argument which is also a profile. If
this argument is present, the second profile will be compared instead of the active fonts.

There is no way to construct a FontSync font reference via Apple Events in version 1.0. Doing so
requires solving the context ambiguity problem. There does not appear to be a need to provide such
a facility yet, though as users gain experience with FontSync we anticipate having to add such
capabilities.

There is a difficult issue around FontSync scriptability: ambiguity of context. Font family IDs (and
perhaps font object IDs) can be local to a process. Outside of that process, the ID may either be
invalid or refer to another font. For example, the ID assigned to a font embedded in an application
is only valid in that application context. In MacOS X, there may be another layer besides this (fonts
visible only to a particular user). The Apple Events described above will generally be sent to
another process. There is currently no good way to have the Apple Events always processed in the
same context as the sender. That is, there are ways to do so, but they reduce the robustness of the
system. That means that the profile creation and comparison done above will be done based on the
fonts visible from the faceless background application responding to the events. This is a relatively
rare occurence, so for the simple functionality envisioned for version 1.0, using a different context
is sufficient.

7.1 FontSync Settings Suite
The FontSync Control Panel supports a subset of the required and core suites. Specifically, the
following events are supported:

Open Application
Quit Application
Get Data
Set Data

These events are identical to the standard ones in the Apple Event Registry. Two object classes are
defined in this suite: Application and Match Options.

7.1.1 Application class

This class is a subset of the standard application class defined in the Apple Event Registry. It has

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 23

only the following properties:

name

Tag: 'fnsp'

Class: International Text

Description: the application’s name

Modifiable: no

frontmost

Tag: 'pisf'

Class: Boolean

Description: Is this the frontmost application?

Modifiable: no

version

Tag: 'vers'

Class: Version

Description: the version of the application

Modifiable: no

default match options

Tag: 'fnos'

Class: Match Options

Description: the default criteria to use when matching font references

Modifiable: yes

properties

Tag: 'pAll'

Class: Apple Event Record

Description: all of the application’s properties in a record

Modifiable: only elements which correspond to modifiable properties.

7.1.2 Match Options class

This class represents a value of type FNSMatchOptions . Its structure is similar to a Text Styles
object. That is, it is a record consisting of two lists, one of which represents the options that are
on, the other the options that are off. These lists may be incomplete, in which case the object is
interpreted as representing a delta from some fixed value. It is an error for the same option to
appear in both the on and off lists. Match Options may also be represented as long integers, which
of course fully specify the on and off options. Standard coersions are provided to convert between
these two representations.

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 24

Properties:

on options

Tag: 'onmo'

Class: List of 'fnsm' enum.

Description: the matching options that are on

Modifiable: yes

off options

Tag: 'ofmo'

Class: List of 'fnsm' enum.

Description: the matching options that are off

Modifiable: yes

The 'fnsm' enumeration has a member for each defined bit in an FNSMatchOptions value.
The value for each enumerator is a pseudo-four character code which consists of the three prefix
characters 'fno' followed by log2 of the bit value. For example, the value corresponding to
kFNSMatchNames is 0x666e6f00 , while the value corresponding to
kFNSMatchEncodings is 0x666e6f03 .

The following table lists the enum names for each of the FNSMatchOptions bits:

kFNSMatchNames font names
kFNSMatchTechnology font types
kFNSMatchGlyphs glyphs
kFNSMatchEncodings encodings
kFNSMatchQDMetrics QuickDraw metrics
kFNSMatchATSUMetrics ATSUI metrics
kFNSMatchKerning kerning
kFNSMatchWSLayout WorldScript layout
kFNSMatchAATLayout advanced layout
kFNSMatchPrintEncoding print encoding
kFNSMissingDataNoMatch missing data mismatches

7.2 FontSync Suite
The FontSync suite is implemented by a faceless background application packaged with the shared
library. It provides a small subset of the required and core suites as well as adding events for
creating and matching FontSync profiles. In the future, this suite will be expanded to allow direct
manipulation of font references and profiles.

The Open Application, Quit Application, Get Data and Set Data events are just as described in the
Apple Event Registry. In addition, the FontSync suite defines the following two events:

7.2.1 Create Font Profile

Event Class 'fns '

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 25

Event ID 'mkfp'

Parameters

---- (keyDirectObject)
Description: the file in which to save the profile
Descriptor Type: Alias
Required? yes

with creator ('fltp')
Description: the creator code of the file in which to save the profile
Descriptor Type: Type
Required? no

version ('vers')
Description: the desired profile format version number
Descriptor Type: Long Integer
Required? no

Reply Parameters

None

This event will cause a profile of the currently-active fonts to be created. (From the point of view
of the FBA — see the discussion in the introduction to this section.) If the creator code or version
is not specified, the behavior of this event will follow the default behavior of FNSProfileCreate
(§5.4.1).

7.2.2 Match Against

Event Class 'fns '

Event ID 'mtfp'

Parameters

---- (keyDirectObject)
Description: the profile file to match against
Descriptor Type: Alias
Required? yes

using fonts from ('fnff')
Description: use the fonts in this profile instead of the current active fonts
Descriptor Type: Alias
Required? no

with match options ('fnco')
Description: matching options which override system default settings
Descriptor Type: Match Options
Required? no

Reply Parameters

A list of Match Result records or an error.

This event will compare the currently active fonts (in the FBA’s context — see introduction) to the
given profile. If a second profile is provided in an optional parameter, it will be used as the source

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 26

of the fonts instead of the active fonts. The default match options may be overridden by specifying
them in the “with match options” parameter. As described in §7.1.2, a value of type Match Options
will be interpreted as a delta from the default options, while a value of type Long Integer will be
taken as an absolute specification. The reply is a list of Match Result records, described in §7.2.4,
below.

7.1.1 Application class

This class is a subset of the standard application class defined in the Apple Event Registry. It has
the following properties:

name

Tag: 'fnsp'

Class: International Text

Description: the application’s name

Modifiable: no

version

Tag: 'vers'

Class: Version

Description: the version of the application

Modifiable: no

quit delay

Tag: 'qdel'

Class: Element of the 'pDly' enumeration

Description: specifies how the application quits automatically

Modifiable: yes

quit delay

Tag: 'qdel'

Class: Long Integer

Description: the time in seconds the application will idle before quitting

Modifiable: yes

The name and version properties are standard. The two versions of the quit delay property are new
(the idea is taken from ColorSync). FontSync attempts to be a good citizen by not leaving its
faceless background application running longer than necessary. If it is left idle for some
implementation-specified length of time, it will quit automatically.

This timeout can be controlled via the “quit delay” property. Positive values are interpreted as the
number of seconds to idle before quitting. Non-positive numbers are members of the 'pDly'
enumeration. There are three such values defined:

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 27

name value meaning
immediate 0 quit immediately
default -1 reset to the default timeout
never -2 never time out

7.2.4 Match Result class

This class represents a mismatch or error when matching a particular font against a profile. It
contains enough information to identify the font to the user. The class is a record with ID 'fnmr' .
It has the following elements:

problem reported

Tag: 'stat'

Class: Member of the 'fnmp' enumeration (see below)

Description: The kind of problem reported

Modifiable: no

name

Tag: 'pnam'

Class: International text

Description: The name of the problem font

Modifiable: no

ID

Tag: 'font'

Class: Short

Description: The font family ID of the problem font. -1 if the font has no family.

Modifiable: no

style

Tag: 'txst'

Class: Short

Description: The style of the problem font. Meaningless if ID is -1.

Modifiable: no

If the font family ID is -1, the style element will not be present in the record.

The 'fnmp' enumeration, which indicates the nature of the problem, consists of the following
members:

mismatch 'fnnm' the font didn’t match
noRef 'fnnr' couldn’t create a font reference

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 28

8.0 Font Utility Hooks
As noted in §3, allowing third-party application to participate in FontSync’s matching process is
powerful. A simple and flexible way to accomplish this on Mac OS 8 is via an Apple Event-based
protocol. This may not be appropriate for Mac OS X, however, so this aspect of FontSync may
change in that environment.

The basic idea is this: When FontSync receives a request to find active fonts that match a font
reference, it will try to satisfy that request on its own. If it cannot and someone has registered
interest in this process, FontSync will send an Apple Event with the details of the request to this
party. The receiver should respond with a list of matching fonts. It should take whatever steps are
necessary to identify and activate them before replying to the event. Registration is handled by the
simple expedient of installing a handler for the appropriate Apple Event. This handler will typically
be installed in the system table, though FontSync will check for handlers both in the system and in
the context’s local handler table. The Apple Event will always be a send-to-self, which is
reasonably efficient.

The details of the hook event are as follows:

Event Class 'fns '

Event ID 'find'

Parameters

keyDirectObject
Description: the font reference to match
Descriptor Type: flattened FontSync font reference
Required? yes

'fnco'
Description: the options to be used when matching
Descriptor Type: Long Integer
Required? yes

'fnty'
Description: the desired reply type
Descriptor Type: Integer
Required? yes

Reply Parameters

List of either FMFont or FMFontFamilyInstance depending on the reply type
parameter.

No user terminology is defined for this event, since it is completely visible to a user and is not
intended for use in scripts.

The match options passed in this event are absolute, that is, meta-values have been resolved to the
actual match option bits that should be in force.

The reply type parameter specifies whether the request was for font object IDs (0) or font family
IDs (1). Other values may be defined in future versions of this hook.

The reply should be a list of matching fonts represented as either FMFont or
FMFontFamilyInstance values, depending on the value of the desired type parameter. There

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 29

are no semantics associated with the order of this list, though in many cases the application will
just take the first element, so it is a good idea to put the “best” match first.

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 30

Appendix A: References

Applebaum, FontSync 1.0 MRD, 8 Feb 1999. Marketing requirements document for FontSync.

Developer Technical Publications, Apple Event Registry: Standard Suites, Winter 1992.
Standard Apple Event descriptions.

Goldsmith and Opstad, FontSync ERS Draft 7, 20 Feb 1998. The original FontSync
specification.

Mikawa, Font Management ES, version 0.3, 5 Feb 1999. Defines font objects and font families.

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 31

Appendix B: Change History

Draft 1 (5 Feb 1999): Based on FontSync ERS Draft 7 by Goldsmith and Opstad, 20 Feb
1998.Updated API. Added (place holder) sections for scripting and control panel. Eliminated font
iterators and match options from profiles. Made profiles file-based. Added requirements and
control panel description.

Draft 2 (15 Feb 1999): Changed a few function names to match the style of the rest of the
API. Added status codes. Fixed some typos. Added creator code to FNSProfileCreate .
Changes per review: clarified some things; replaced Gestalt selectors with explicit API; added
explicit flattened size API; added permissions to FNSProfileOpen ; filled out list of match
criteria. Removed enable/disable option from CP and supporting API stuff — if people want to
disable FontSync they can just use the Extension Manager.

Draft 3 (25 Feb 1999): Added missing FNSClearProfile () description. Moved “Set Match
Options” from the CP menu to the main dialog. Noted which profile operations require the profile
to be writable.

Draft 4 (10 Mar 1999): Changed default creator code to ‘fnsc’ to make the CP’s bundle easier
to deal with. Allow multiple profiles to be selected for the CP’s “Compare Profiles” function.
Added sample screen shots of the main and “Set Match Criteria” dialogs. Clarified handling of
invalid match options. Added oActualStyle return value to
FNSReferenceCreateFromProfile .

Draft 5 (9 Apr 1999): Added status codes. Removed FNSMatchDefaultsSet . Allow
calling FNSProfileMatchReference with no outputs for a simple yes/no query. Finally
documented the split of FNSReferenceGetNameInfo into FNSReferenceCountNames
and FNSReferenceGetFamilyInfo . Changed prototype of FNSVersionInfo . Made the
version code a 16-bit BCD value. Added FNSEnabled . Added a warning regarding the lack of
access protection to profiles.

Draft 6 (19 Apr 1999): One more round of repackaging. The CP is now off by itself. Added a
new mockup of the options dialog: the text and layout are pretty close to final. Sketched out the
scripting support that will be provided. Detailed specs for the Apple Events will be in the next
draft. Added “Deliverables” section.The shlb gets packaged with an ‘appe’ that implements the
scripting support.

Draft 7 (30 Aug 1999): Filled in details of the Apple Event suite. Described third-party
matcher hook. Interface changes: kFNSMatchATSULayout became kFNSMatchAATLayout;
explicit versioning added; removed kFNSInvalidFontErr – use kFMInvalidFontErr instead;
FNSVersionInfo became FNSSysInfoGet. Default profile creator code changed. CP checkboxes
are live. Minor tweak to CP layout.

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 32

Appendix C: Sample Code
Later.

10/15/99 Preliminary draft. © Apple Computer, Inc. Page 33

