



November 18, 1998
Technical Publications
© 1998 Apple Computer, Inc.



I N S I D E M A C I N T O S H

Mac OS 8
Control Manager Reference

Updated for Appearance 1.0.2

11/18/98



 Apple Computer, Inc.



Apple Computer, Inc.
© 1997, 1998 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures, Tables, and Listings 5

Chapter 1 Control Manager Reference 7

Control Manager Functions 11
Creating and Removing Controls 12
Embedding Controls 17
Manipulating Controls 27
Displaying Controls 32
Handling Events in Controls 34
Handling Keyboard Focus 41
Accessing and Changing Control Settings and Data 46
Defining Your Own Control Definition Function 56
Defining Your Own Action Functions 78
Defining Your Own Key Filter Function 80
Defining Your Own User Pane Functions 83

Control Manager Data Types 94
Control Manager Constants 106

Control Definition IDs 106
Settings Values for Standard Controls 113
Control Data Tag Constants 118
Control Font Style Flag Constants 126
Checkbox Value Constants 127
Radio Button Value Constants 128
Bevel Button Behavior Constants 128
Bevel Button Menu Constants 129
Bevel Button and Image Well Content Type Constants 130
Bevel Button Graphic Alignment Constants 132
Bevel Button Text Alignment Constants 133
Bevel Button Text Placement Constants 134
Clock Value Flag Constants 135
Control Part Code Constants 135
Part Identifier Constants 138
3
11/18/98  Apple Computer, Inc.

Meta Font Constants 138
Control Variant Constants 139

Result Codes 140

Appendix A Version History 141

Index 143
4
11/18/98  Apple Computer, Inc.

Figures, Tables, and Listings

Chapter 1 Control Manager Reference 7

Figure 1-1 Structure of a compiled control ('CNTL') resource 101
Figure 1-2 Structure of a compiled list box description ('ldes')

resource 103
Figure 1-3 Structure of a compiled tab information ('tab#') resource 104
Figure 1-4 Structure of a tab information entry 105
Table 1-1 Control definition IDs and resource IDs for standard controls 108

Appendix A Version History 141

Table A-1 Mac OS 8 Control Manager Reference Revision History 141
5
11/18/98  Apple Computer, Inc.

6
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Contents

11/18/98



 Apple Computer, Inc.

Contents

Figure 1-0
Listing 1-0
Table 1-0
1 Control Manager Reference
Control Manager Functions 11
Creating and Removing Controls 12

GetNewControl 12
NewControl 13
DisposeControl 15
KillControls 16

Embedding Controls 17
CreateRootControl 19
GetRootControl 20
EmbedControl 21
AutoEmbedControl 22
CountSubControls 22
GetIndexedSubControl 23
GetSuperControl 24
SetControlSupervisor 25
DumpControlHierarchy 26

Manipulating Controls 27
ShowControl 27
HideControl 28
ActivateControl 29
DeactivateControl 30
IsControlActive 31
SendControlMessage 31

Displaying Controls 32
DrawOneControl 32
DrawControlInCurrentPort 33
SetUpControlBackground 34
7

C H A P T E R 1

Handling Events in Controls 34
FindControlUnderMouse 35
FindControl 36
HandleControlKey 37
IdleControls 38
HandleControlClick 38
TrackControl 41

Handling Keyboard Focus 41
SetKeyboardFocus 42
GetKeyboardFocus 43
AdvanceKeyboardFocus 43
ReverseKeyboardFocus 44
ClearKeyboardFocus 45

Accessing and Changing Control Settings and Data 46
GetBestControlRect 47
SetControlAction 48
SetControlColor 48
SetControlData 49
GetControlData 50
GetControlDataSize 52
GetControlFeatures 53
SetControlFontStyle 53
SetControlVisibility 54
IsControlVisible 55

Defining Your Own Control Definition Function 56
MyControlDefProc 57

Defining Your Own Action Functions 78
MyActionProc 78
MyIndicatorActionProc 80

Defining Your Own Key Filter Function 80
MyControlKeyFilterProc 81

Defining Your Own User Pane Functions 83
MyUserPaneDrawProc 84
MyUserPaneHitTestProc 85
MyUserPaneTrackingProc 86
MyUserPaneIdleProc 88
MyUserPaneKeyDownProc 88
MyUserPaneActivateProc 90
8 Contents

11/18/98  Apple Computer, Inc.

C H A P T E R 1

MyUserPaneFocusProc 91
MyUserPaneBackgroundProc 93

Control Manager Data Types 94
ControlFontStyleRec 95
ControlButtonContentInfo 97
ControlEditTextSelectionRec 98
ControlTabInfoRec 99
AuxCtlRec 99
PopupPrivateData 99
CtlCTab 100
'CNTL' 100
'cctb' 102
'ldes' 102
'tab#' 104

Control Manager Constants 106
Control Definition IDs 106
Settings Values for Standard Controls 113
Control Data Tag Constants 118
Control Font Style Flag Constants 126
Checkbox Value Constants 127
Radio Button Value Constants 128
Bevel Button Behavior Constants 128
Bevel Button Menu Constants 129
Bevel Button and Image Well Content Type Constants 130
Bevel Button Graphic Alignment Constants 132
Bevel Button Text Alignment Constants 133
Bevel Button Text Placement Constants 134
Clock Value Flag Constants 135
Control Part Code Constants 135
Part Identifier Constants 138
Meta Font Constants 138
Control Variant Constants 139

Result Codes 140
Contents 9
11/18/98  Apple Computer, Inc.

C H A P T E R 1

10 Contents

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference 1

Your program can use the Control Manager to create and manage controls.
Controls are onscreen objects that the user can manipulate with the mouse. By
manipulating controls, the user can take an immediate action or change settings
to modify a future action.

Portions of the Control Manager application programming interface (API) are
new, changed, or not recommended with Mac OS 8 or Appearance Manager 1.0.
See the following sections for descriptions of the changes to the Control
Manager:

■ “Control Manager Functions” (page 11)

■ “Control Manager Data Types” (page 94)

■ “Control Manager Constants” (page 106)

■ “Result Codes” (page 140)

For descriptions of the parts of the Control Manager API that are unaffected by
Appearance Manager 1.0, see Inside Macintosh: Macintosh Toolbox Essentials. For a
description of the Mac OS 8.5 Control Manager API, see Mac OS 8.5 Control
Manager Reference.

Control Manager Functions 1

Control Manager functions in the following areas have been affected by
Appearance Manager 1.0:

■ “Creating and Removing Controls” (page 12)

■ “Embedding Controls” (page 17)

■ “Manipulating Controls” (page 27)

■ “Displaying Controls” (page 32)

■ “Handling Events in Controls” (page 34)

■ “Handling Keyboard Focus” (page 41)

■ “Accessing and Changing Control Settings and Data” (page 46)

■ “Defining Your Own Control Definition Function” (page 56)

■ “Defining Your Own Action Functions” (page 78)
Control Manager Functions 11
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
■ “Defining Your Own Key Filter Function” (page 80)

■ “Defining Your Own User Pane Functions” (page 83)

Creating and Removing Controls 1
The following Control Manager functions for creating and removing controls
are new, changed, or not recommended with Appearance Manager 1.0:

■ GetNewControl (page 12) creates a control from a control resource. Changed
with Appearance Manager 1.0.

■ NewControl (page 13) creates a control based on parameter data. Changed
with Appearance Manager 1.0.

■ DisposeControl (page 15) removes a control and any of its embedded controls
from a window. Changed with Appearance Manager 1.0.

■ KillControls (page 16) removes all controls in a specified window. Changed
with Appearance Manager 1.0.

GetNewControl 1
Creates a control from a control resource.

pascal ControlHandle GetNewControl (
SInt16 resourceID,
WindowPtr owningWindow);

resourceID The resource ID of the control you wish to create; see Table 1-1
(page 108).

owningWindow A pointer to the window in which to place the control.

function result Returns a handle to the control created from the specified
control resource. If GetNewControl can’t read the control resource
from the resource file, it returns nil.

DISCUSSION

The GetNewControl function creates a control structure from the information in
the specified control resource, adds the control structure to the control list for
12 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
the specified window, and returns as its function result a handle to the control.
You use this handle when referring to the control in most other Control
Manager functions. After making a copy of the control resource, GetNewControl
releases the memory occupied by the original control resource before returning.

The control resource specifies the rectangle for the control, its initial setting, its
visibility state, its maximum and minimum settings, its control definition ID, a
reference value, and its title (if any). After you use GetNewControl to create the
control, you can change the control characteristics with other Control Manager
functions.

If the control resource specifies that the control should be visible, the Control
Manager draws the control. If the control resource specifies that the control
should initially be invisible, you can use the function ShowControl (page 27) to
make the control visible.

When an embedding hierarchy is established within a window, GetNewControl
automatically embeds the newly created control in the root control of the
owning window. See “Embedding Controls” (page 17).

If you are using standard system controls, default colors are used and the
control color table resource is ignored. To use colors other than the default
colors, you must write your own custom control definition function.

VERSION NOTES

Changed with Appearance Manager 1.0 to support embedding hierarchies.

SEE ALSO

NewControl (page 13).

NewControl 1
Creates a control based on parameter data.

pascal ControlHandle NewControl (
WindowPtr owningWindow,
const Rect *boundsRect,
ConstStr255Param controlTitle,
Boolean initiallyVisible,
SInt16 initialValue,
Control Manager Functions 13
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
SInt16 minimumValue,
SInt16 maximumValue,
SInt16 procID,
SInt32 controlReference);

owningWindow A pointer to the window in which you want to place the control.
All coordinates pertaining to the control are interpreted in this
window’s local coordinate system.

boundsRect A pointer to a rectangle, specified in the given window’s local
coordinates, that encloses the control and thus determines its
size and location. When specifying this rectangle, you should
follow the guidelines presented in “Dialog Box Layout”, in Mac
OS 8 Human Interface Guidelines, for control placement and
alignment.

controlTitle The title string, used for push buttons, checkboxes, radio
buttons, and pop-up menus. When specifying a multiple-line
title, separate the lines with the ASCII character code 0x0D
(carriage return). For controls that don’t use titles, pass an
empty string.

initiallyVisible
A Boolean value specifying the visible/invisible state for the
control. If you pass true in this parameter, NewControl draws the
control immediately, without using your window’s standard
updating mechanism. If you pass false, you must later use
ShowControl (page 27) to display the control.

initialValue The initial setting for the control; see “Settings Values for
Standard Controls” (page 113).

minimumValue The minimum setting for the control; see “Settings Values for
Standard Controls” (page 113).

maximumValue The maximum setting for the control; see “Settings Values for
Standard Controls” (page 113).

procID The control definition ID; see Table 1-1 (page 108). If the control
definition function isn’t in memory, it is read in.

controlReference
The control’s reference value, which is set and used only by
your application.
14 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
function result Returns a handle to the control described in its parameters. If
NewControl runs out of memory or fails, it returns nil.

DISCUSSION

The NewControl function creates a control structure from the information you
specify in its parameters, adds the control structure to the control list for the
specified window, and returns as its function result a handle to the control. You
can use this handle when referring to the control in most other Control Manager
functions. Generally, you should use the function GetNewControl (page 12)
instead of NewControl, because GetNewControl is a resource-based
control-creation function that allows you to localize your application without
recompiling.

When an embedding hierarchy is established within a window, NewControl
automatically embeds the newly created control in the root control of the
owning window. See “Embedding Controls” (page 17).

If you are using standard system controls, default colors are used and the
control color table resource is ignored. To use colors other than the default
colors, write your own custom control definition function.

VERSION NOTES

Changed with Appearance Manager 1.0 to support embedding hierarchies.

SEE ALSO

GetNewControl (page 12).

DisposeControl 1
Removes a control and any of its embedded controls from a window.

pascal void DisposeControl (ControlHandle theControl);

theControl A handle to the control you wish to remove.
Control Manager Functions 15
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
DISCUSSION

The DisposeControl function removes the specified control (and any embedded
controls it may possess) from the screen, deletes it from the window’s control
list, and releases the memory occupied by the control structure and any data
structures associated with the control. Passing the root control to this function is
the effectively the same as calling KillControls (page 16). If an embedding
hierarchy is present, DisposeControl disposes of the controls embedded within a
control before disposing of the container control.

You should use DisposeControl when you wish to retain the window but
dispose of one of its controls. The Window Manager functions CloseWindow and
DisposeWindow automatically dispose of all controls associated with the given
window.

VERSION NOTES

Changed with Appearance Manager 1.0 to support embedding hierarchies.

SEE ALSO

“Embedding Controls” (page 17).

KillControls 1
Removes all controls in a specified window.

pascal void KillControls (WindowPtr theWindow);

theWindow A pointer to the window whose controls you wish to remove.

DISCUSSION

The KillControls function disposes of all controls associated with the specified
window. To remove just one control, use DisposeControl (page 15). If an
embedding hierarchy is present, KillControls disposes of the controls
embedded within a control before disposing of the container control.

You should use KillControls when you wish to retain the window but dispose
of its controls. The Window Manager functions CloseWindow and DisposeWindow
automatically dispose of all controls associated with the given window.
16 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
VERSION NOTES

Changed with Appearance Manager 1.0 to support embedding hierarchies.

SEE ALSO

“Embedding Controls” (page 17).

Embedding Controls 1
This section provides functions that you can use to establish an embedding
hierarchy. This can be accomplished in two steps: creating a root control and
embedding controls within it.

To embed controls in a window, you must create a root control for that window.
The root control is the container for all other window controls. You create the
root control in one of two ways—by calling the CreateRootControl (page 19)
function or by setting the appropriate dialog flag. The root control can be
retrieved by calling GetRootControl (page 20).

The root control is implemented as a user pane control. You can attach any
application-defined user pane functions to the root control to perform actions
such as hit testing, drawing, handling keyboard focus, erasing to the correct
background, and processing idle and keyboard events. For information on how
to write these functions, see “Defining Your Own User Pane Functions”
(page 83).

Once you have created a root control, newly created controls will automatically
be embedded in the root control when you call NewControl (page 13) or
GetNewControl (page 12). You can specify that a specific control be embedded
into another by calling EmbedControl (page 21).

By acting on an embedder control, you can move, disable, or hide groups of
items. For example, you can use a blank user pane control as the embedder
control for all items in a particular “page” of a tab control. After creating as
many user panes as you have tabs, you can hide one and show the next when a
tab is clicked. All the controls embedded in the user pane will be hidden and
shown automatically when the user pane is hidden and shown.

The Dialog Manager uses AutoEmbedControl (page 22) to position dialog items
in an embedding hierarchy based on both visual containment and the item list
resource order. As items are added to a dialog box during creation, controls that
already exist in the window will be containers for new controls if they both
Control Manager Functions 17
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
visually contain the control and have set the kControlSupportsEmbedding feature
bit. For this reason, you should place the largest embedder controls at the
beginning of the item list resource. As an example, the Dialog Manager would
embed radio buttons in a tab control if they visually “fit” inside the tab control,
as long as the tab control was already created in a 'DITL' resource and
established as an embedder control.

In addition to calling CreateRootControl, you can establish an embedding
hierarchy in a dialog box by either setting the feature bit
kDialogFlagsUseControlHierarchy in the extended dialog resource or passing it
in the inFlags parameter of the Dialog Manager function NewFeaturesDialog. An
embedding hierarchy can be created in an alert box by setting the
kAlertFlagsUseControlHierarchy bit in the extended alert resource. It is
important to note that a preexisting alert or dialog item will become a control if
it is in an alert or dialog box that now uses an embedding hierarchy.

The embedding hierarchy enforces drawing order by drawing the embedding
control before its embedded controls. Using an embedding hierarchy also
enforces orderly hit-testing, since it performs an “inside-out” hit test to
determine the most deeply nested control that is hit by the mouse. An
embedding hierarchy is also necessary for controls to make use of keyboard
focus, the default focusing order for which is a linear progression that uses the
order the controls were added to the window. For more details on keyboard
focus, see “Handling Keyboard Focus” (page 41).

The following Control Manager functions for embedding controls are new with
Appearance Manager 1.0:

■ CreateRootControl (page 19) creates the root control for a specified window.
New with Appearance Manager 1.0.

■ GetRootControl (page 20) obtains a handle to a window’s root control. New
with Appearance Manager 1.0.

■ EmbedControl (page 21) embeds one control inside another. New with
Appearance Manager 1.0.

■ AutoEmbedControl (page 22) automatically embeds a control in the smallest
appropriate embedder control. New with Appearance Manager 1.0.

■ CountSubControls (page 22) obtains the number of embedded controls within
a control. New with Appearance Manager 1.0.

■ GetIndexedSubControl (page 23) obtains a handle to a specified embedded
control. New with Appearance Manager 1.0.
18 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
■ GetSuperControl (page 24) obtains a handle to the embedder control. New
with Appearance Manager 1.0.

■ SetControlSupervisor (page 25) routes mouse-down events to the embedder
control. New with Appearance Manager 1.0.

■ DumpControlHierarchy (page 26) writes a textual representation of the control
hierarchy for a specified window into a file. New with Appearance Manager
1.0.

CreateRootControl 1
Creates the root control for a specified window.

pascal OSErr CreateRootControl (
WindowPtr inWindow,
ControlHandle* outControl);

inWindow A pointer to the window in which you wish to create a root
control.

outControl Pass a pointer to a ControlHandle value. On return, the
ControlHandle value is set to a handle to the root control.

function result A result code; see “Result Codes” (page 140).

DISCUSSION

The CreateRootControl function creates the root control for a window if no
other controls are present. If there are any controls in the window prior to
calling CreateRootControl, an error is returned and the root control is not
created.

The root control acts as the top-level container for a window and is required for
embedding to occur. Once the root control is created, you can call EmbedControl
(page 21) and AutoEmbedControl (page 22) to embed controls in the root control.

Note
The minimum, maximum, and initial settings for a root
control are reserved and should not be changed.
Control Manager Functions 19
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

“Embedding Controls” (page 17).

GetRootControl 1
Obtains a handle to a window’s root control.

pascal OSErr GetRootControl (
WindowPtr inWindow,
ControlHandle* outControl);

inWindow A pointer to the window to be examined.

outControl Pass a pointer to a ControlHandle value. On return, the
ControlHandle value is set to a handle to the root control.

function result A result code; see “Result Codes” (page 140).

DISCUSSION

You can call GetRootControl to determine whether or not a root control (and
therefore an embedding hierarchy) exists within a specified window. Once you
have the root control’s handle, you can pass it to functions such as
DisposeControl (page 15), ActivateControl (page 29), and DeactivateControl
(page 30) to apply specified actions to the entire embedding hierarchy.

Note
The minimum, maximum, and initial settings for a root
control are reserved and should not be changed.

VERSION NOTES

Available with Appearance Manager 1.0 and later.
20 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
SEE ALSO

“Embedding Controls” (page 17).

EmbedControl 1
Embeds one control inside another.

pascal OSErr EmbedControl (
ControlHandle inControl,
ControlHandle inContainer);

inControl A handle to the control to be embedded.

inContainer A handle to the embedder control.

function result A result code; see “Result Codes” (page 140).

DISCUSSION

An embedding hierarchy must be established before your application calls the
EmbedControl function. If the specified control does not support embedding or
there is no root control in the owning window, an error is returned. If the
control you wish to embed is in a different window from the embedder control,
an error is returned. See “Embedding Controls” (page 17) for more details on
embedding.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

AutoEmbedControl (page 22).
Control Manager Functions 21
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
AutoEmbedControl 1
Automatically embeds a control in the smallest appropriate embedder control.

pascal OSErr AutoEmbedControl (
ControlHandle inControl,
WindowPtr inWindow);

inControl A handle to the control to be embedded.

inWindow A pointer to the window in which to embed the control.

function result A result code; see “Result Codes” (page 140).

DISCUSSION

The Dialog Manager uses AutoEmbedControl (page 22) to position dialog items
in an embedding hierarchy based on both visual containment and the item list
resource order. For information on embedding hierarchies in dialog and alert
boxes, see “Embedding Controls” (page 17).

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

EmbedControl (page 21).

CountSubControls 1
Obtains the number of embedded controls within a control.

pascal OSErr CountSubControls (
ControlHandle inControl,
SInt16* outNumChildren);

inControl A handle to a control whose embedded controls you wish to
count.
22 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
outNumChildren
Pass a pointer to a signed 16-bit integer value. On return, the
value is set to the number of embedded subcontrols.

function result A result code; see “Result Codes” (page 140).

DISCUSSION

The CountSubControls function is useful for iterating over the control hierarchy.
You can use the count produced to determine how many subcontrols there are
and then call GetIndexedSubControl (page 23) to get each.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

“Embedding Controls” (page 17).

GetIndexedSubControl 1
Obtains a handle to a specified embedded control.

pascal OSErr GetIndexedSubControl (
ControlHandle inControl,
SInt16 inIndex,
ControlHandle* outSubControl);

inControl A handle to an embedder control.

inIndex A 1-based index—an integer between 1 and the value returned
in the outNumChildren parameter of CountSubControls
(page 22)—specifying the control you wish to access.

outSubControl Pass a pointer to a ControlHandle value. On return, the
ControlHandle value is set to a handle to the embedded control.

function result A result code; see “Result Codes” (page 140). If the index passed
in is invalid, the paramErr result code is returned.
Control Manager Functions 23
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
DISCUSSION

The GetIndexedSubControl function is useful for iterating over the control
hierarchy. Also, the value of a radio group control is the index of its currently
selected embedded radio button control. So, passing the current value of a radio
group control into GetIndexedSubControl will give you a handle to the currently
selected radio button control.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

“Embedding Controls” (page 17).

GetSuperControl 1
Obtains a handle to an embedder control.

pascal OSErr GetSuperControl (
ControlHandle inControl,
ControlHandle* outParent);

inControl A handle to an embedded control.

outParent Pass a pointer to a ControlHandle value. On return, the
ControlHandle value is set to a handle to the embedder control.

function result A result code; see “Result Codes” (page 140).

DISCUSSION

The GetSuperControl function gets a handle to the parent control of the control
passed in.

VERSION NOTES

Available with Appearance Manager 1.0 and later.
24 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
SEE ALSO

“Embedding Controls” (page 17).

SetControlSupervisor 1
Routes mouse-down events to the embedder control.

pascal OSErr SetControlSupervisor (
ControlHandle inControl,
ControlHandle inBoss);

inControl A handle to an embedded control.

inBoss A handle to the embedder control to which mouse-down events
are to be routed.

function result A result code; see “Result Codes” (page 140).

DISCUSSION

The SetControlSupervisor function allows an embedder control to respond to
mouse-down events occurring in its embedded controls.

An example of a standard control that uses this function is the radio group
control. Mouse-down events in the embedded controls of a radio group are
intercepted by the group control. (The embedded controls in this case must
support radio behavior; if a mouse-down event occurs in an embedded control
within a radio group control that does not support radio behavior, the control
tracks normally and the group is not involved.) The group handles all
interactions and switches the embedded control’s value on and off. If the value
of the radio group changes, TrackControl (page 41) or HandleControlClick
(page 38) will return the kControlRadioGroupPart part code. If the user tracks off
the radio button or clicks the current radio button, kControlNoPart is returned.

VERSION NOTES

Available with Appearance Manager 1.0 and later.
Control Manager Functions 25
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
SEE ALSO

“Embedding Controls” (page 17).

DumpControlHierarchy 1
Writes a textual representation of the control hierarchy for a specified window
into a file.

pascal OSErr DumpControlHierarchy (
WindowPtr inWindow,
const FSSpec* inDumpFile);

inWindow A pointer to the window whose control hierarchy you wish to
examine.

inDumpFile A pointer to a file specification in which to place a text
description of the window’s control hierarchy.

function result A result code; see “Result Codes” (page 140).

DISCUSSION

The DumpControlHierarchy function places a text listing of the current control
hierarchy for the window specified into the specified file, overwriting any
existing file. If the specified window does not contain a control hierarchy,
DumpControlHierarchy notes this in the text file. This function is useful for
debugging embedding-related problems.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

“Embedding Controls” (page 17).
26 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
Manipulating Controls 1
When showing, hiding, activating, or deactivating groups of controls, the state
of an embedded control that is hidden or deactivated is preserved so that when
the embedder control is shown or activated, the embedded control appears in
the same state as the embedder. An embedded control is considered latent
when it is deactivated or hidden due to its embedder control being deactivated
or hidden. If you activate a latent embedded control whose embedder is
deactivated, the embedded control becomes latent until the embedder is
activated. However, if you deactivate a latent embedded control, it will not be
activated when its embedder is activated.

When activating and deactivating controls in an embedding hierarchy, call
ActivateControl (page 29) and DeactivateControl (page 30) instead of
HiliteControl to ensure that latent embedded controls are displayed correctly.

The following Control Manager functions for manipulating controls are new,
changed, or not recommended with Appearance Manager 1.0:

■ ShowControl (page 27) makes an invisible control, and any latent embedded
controls, visible. Changed with Appearance Manager 1.0.

■ HideControl (page 28) makes a visible control, and any latent embedded
controls, invisible. Changed with Appearance Manager 1.0.

■ ActivateControl (page 29) activates a control and any latent embedded
controls. New with Appearance Manager 1.0.

■ DeactivateControl (page 30) deactivates a control and any latent embedded
controls. New with Appearance Manager 1.0.

■ IsControlActive (page 31) returns whether a control is active. New with
Appearance Manager 1.0.

■ SendControlMessage (page 31) sends a message to a control definition
function. New with Appearance Manager 1.0.

ShowControl 1
Makes an invisible control, and any latent embedded controls, visible.

pascal void ShowControl (ControlHandle theControl);
Control Manager Functions 27
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
theControl A handle to the control to make visible.

DISCUSSION

If the specified control is invisible, the ShowControl function makes it visible and
immediately draws the control within its window without using your
window’s standard updating mechanism. If the specified control has embedded
controls, ShowControl makes the embedded controls visible as well. If the
control is already visible, ShowControl has no effect.

If you call ShowControl on a latent embedded control whose embedder is
disabled, the embedded control will be invisible until its embedder control is
enabled. For a discussion of latency, see “Manipulating Controls” (page 27).

You can make a control invisible in several ways:

■ Specifying its invisibility in the control resource.

■ Passing a value of false in the visible parameter of NewControl (page 13).

■ Calling HideControl (page 28).

■ Calling SetControlVisibility (page 54). The setting takes effect the next time
the control is drawn.

SPECIAL CONSIDERATIONS

The ShowControl function draws the control in its window, but the control can
still be completely or partially obscured by overlapping windows or other
objects.

VERSION NOTES

Changed with Appearance Manager 1.0 to support embedding hierarchies.

HideControl 1
Makes a visible control, and any latent embedded controls, invisible.

pascal void HideControl (ControlHandle theControl);

theControl A handle to the control to hide.
28 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
DISCUSSION

The HideControl function makes the specified control invisible. This can be
useful, for example, before adjusting a control’s size and location. It also adds
the control’s rectangle to the window’s update region, so that anything else that
was previously obscured by the control will reappear on the screen. If the
specified control has embedded controls, HideControl makes the embedded
controls invisible as well. If the control is already invisible, HideControl has no
effect.

If you call HideControl on a latent embedded control, it would not be displayed
the next time ShowControl was called on its embedder control. For a discussion
of latency, see “Manipulating Controls” (page 27).

To make the control visible again, you can use the functions ShowControl
(page 27) or SetControlVisibility (page 54).

VERSION NOTES

Changed with Appearance Manager 1.0 to support embedding hierarchies.

ActivateControl 1
Activates a control and any latent embedded controls.

pascal OSErr ActivateControl (ControlHandle inControl);

inControl A handle to the control to activate. Passing a window’s root
control activates all controls in that window.

function result A result code; see “Result Codes” (page 140).

DISCUSSION

The ActivateControl function should be called instead of HiliteControl to
activate a specified control and its latent embedded controls. For a discussion of
latency, see “Manipulating Controls” (page 27).

You can use ActivateControl to activate all controls in a window by passing the
window’s root control in the inControl parameter.

If a control definition function supports activate events, it will receive a
kControlMsgActivate message before redrawing itself in its active state.
Control Manager Functions 29
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

DeactivateControl (page 30).

“Embedding Controls” (page 17).

DeactivateControl 1
Deactivates a control and any latent embedded controls.

pascal OSErr DeactivateControl (ControlHandle inControl);

inControl A handle to the control to deactivate. Passing a window’s root
control deactivates all controls in that window.

function result A result code; see “Result Codes” (page 140).

DISCUSSION

The DeactivateControl function should be called instead of HiliteControl to
deactivate a specified control and its latent embedded controls. For a discussion
of latency, see “Manipulating Controls” (page 27).

You can use DeactivateControl to deactivate all controls in a window by
passing the window’s root control in the inControl parameter.

If a control definition function supports activate events, it will receive a
kControlMsgActivate message before redrawing itself in its inactive state.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

ActivateControl (page 29).

“Embedding Controls” (page 17).
30 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
IsControlActive 1
Returns whether a control is active.

pascal Boolean IsControlActive (ControlHandle inControl);

inControl A handle to the control to be examined.

function result Returns a Boolean value. If true, the control is active. If false,
the control is inactive.

DISCUSSION

If you wish to determine whether a control is active, you should call
IsControlActive instead of testing the contrlHilite field of the control
structure.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SendControlMessage 1
Sends a message to a control definition function.

pascal SInt32 SendControlMessage (
ControlHandle inControl,
SInt16 inMessage,
SInt32 inParam);

inControl A handle to the control that is to receive a low-level message.

inMessage A bit field representing the message(s) you wish to send; see
“Messages” (page 58).

inParam The message-dependent data passed in the param parameter of
the control definition function.

function result Returns a signed 32-bit integer which contains varying data
depending upon the message sent; see “Messages” (page 58).
Control Manager Functions 31
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
DISCUSSION

Your application does not normally need to call the SendControlMessage
function. If you have a special need to call a control definition function directly,
call SendControlMessage to access and manipulate the control’s attributes.

Before calling SendControlMessage, you should determine whether the control
supports the specific message you wish to send by calling GetControlFeatures
(page 53) and examining the feature bit field returned. If there are no feature
bits returned that correspond to the message you wish to send (for messages 0
through 12), you can assume that all system controls support that message.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

MyControlDefProc (page 57).

Displaying Controls 1
The following Control Manager functions for displaying controls are new,
changed, or not recommended with Appearance Manager 1.0:

■ DrawOneControl (page 32) draws a control and any embedded controls that
are currently visible in the specified window. Changed with Appearance
Manager 1.0.

■ DrawControlInCurrentPort (page 33) draws a control in the current graphics
port. New with Appearance Manager 1.0.

■ SetUpControlBackground (page 34) sets the background for a control. New
with Appearance Manager 1.0.

DrawOneControl 1
Draws a control and any embedded controls that are currently visible in the
specified window.

pascal void DrawOneControl (ControlHandle theControl);
32 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
theControl A handle to the control to draw.

DISCUSSION

Although you should generally use the function UpdateControls to update
controls, you can use the DrawOneControl function to update a single control. If
an embedding hierarchy exists and the control passed in has embedded
controls, DrawOneControl draws the control and embedded controls. If the root
control for a window is passed in, the result is the same as if DrawControls was
called.

VERSION NOTES

Changed with Appearance Manager 1.0 to support embedding hierarchies.

SEE ALSO

“Embedding Controls” (page 17).

DrawControlInCurrentPort 1
Draws a control in the current graphics port.

pascal void DrawControlInCurrentPort (ControlHandle inControl);

inControl A handle to the control to draw.

DISCUSSION

Typically, controls are automatically drawn in their owner’s graphics port with
DrawControls, DrawOneControl (page 32), and UpdateControls.
DrawControlInCurrentPort permits easy offscreen control drawing and printing.
All standard system controls support this function.

VERSION NOTES

Available with Appearance Manager 1.0 and later.
Control Manager Functions 33
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
SetUpControlBackground 1
Sets the background for a control.

pascal OSErr SetUpControlBackground (
ControlHandle inControl,
SInt16 inDepth,
Boolean inIsColorDevice);

inControl A handle to the control whose background is to be set.

inDepth The bit depth (in pixels) of the current graphics port.

inIsColorDevice
A Boolean value. Set to true to indicate that you are drawing on
a color device; set to false for a monochrome device.

function result A result code; see “Result Codes” (page 140).

DISCUSSION

The SetUpControlBackground function allows you to set the background of a
control. This function is typically called by control definition functions that are
embedded in other controls. You might call SetUpControlBackground in response
to an application-defined function installed in a user pane control; see
“Defining Your Own User Pane Functions” (page 83). SetUpControlBackground
ensures that the background color is always correct when calling EraseRect and
EraseRgn. If your control spans multiple monitors, SetUpControlBackground
should be called for each device that your control is drawing on; see “Graphics
Devices” in Imaging With QuickDraw for more details on handling device loops.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

Handling Events in Controls 1
The following Control Manager functions for handling events in controls are
new, changed, or not recommended with Appearance Manager 1.0:

■ FindControlUnderMouse (page 35) obtains the location of a mouse-down event
in a control. New with Appearance Manager 1.0.
34 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
■ FindControl (page 36) obtains the location of a mouse-down event in a
control. Not recommended with Appearance Manager 1.0.

■ HandleControlKey (page 37) sends a keyboard event to a control with
keyboard focus. New with Appearance Manager 1.0.

■ IdleControls (page 38) performs idle event processing. New with
Appearance Manager 1.0.

■ HandleControlClick (page 38) responds to cursor movements in a control
while the mouse button is down and returns the location of the next
mouse-up event. New with Appearance Manager 1.0.

■ TrackControl (page 41) responds to cursor movements in a control while the
mouse button is down. Not recommended with Appearance Manager 1.0.

FindControlUnderMouse 1
Obtains the location of a mouse-down event in a control.

pascal ControlHandle FindControlUnderMouse (
Point inWhere,
WindowPtr inWindow,
SInt16 *outPart);

inWhere A point, specified in coordinates local to the window, where the
mouse-down event occurred. Before calling
FindControlUnderMouse, use the QuickDraw GlobalToLocal
function to convert the point stored in the where field of the
event structure (which describes the location of the
mouse-down event) to coordinates local to the window.

inWindow A pointer to the window in which the mouse-down event
occurred.

outPart Pass a pointer to a signed 16-bit integer value. On return, the
value is set to the part code of the control part that was selected;
see “Control Part Code Constants” (page 135).

function result Returns a handle to the control that was selected. If the
mouse-down event did not occur over a control part,
FindControlUnderMouse returns nil.
Control Manager Functions 35
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
DISCUSSION

You should call the FindControlUnderMouse function instead of FindControl
(page 36) to determine whether a mouse-down event occurred in a control,
particularly if an embedding hierarchy is present. FindControlUnderMouse will
return a handle to the control even if no part was hit and can determine
whether a mouse-down event has occurred even if the control is deactivated,
while FindControl does not.

When a mouse-down event occurs, your application should call
FindControlUnderMouse after using the Window Manager function FindWindow to
ascertain that a mouse-down event has occurred in the content region of a
window containing controls.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

“Embedding Controls” (page 17).

FindControl 1
Obtains the location of a mouse-down event in a control.

When the Appearance Manager is available, you should call
FindControlUnderMouse (page 35) to determine the location of a mouse-down
event in a control. FindControlUnderMouse will return a handle to the control
even if no part was hit and can determine whether a mouse-down event has
occurred even if the control is deactivated, while FindControl does not.

VERSION NOTES

Not recommended with Appearance Manager 1.0 and later.
36 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
HandleControlKey 1
Sends a keyboard event to a control with keyboard focus.

pascal SInt16 HandleControlKey (
ControlHandle inControl,
SInt16 inKeyCode,
SInt16 inCharCode,
SInt16 inModifiers);

inControl A handle to the control that currently has keyboard focus.

inKeyCode The virtual key code, derived from the event structure. This
value represents the key pressed or released by the user. It is
always the same for a specific physical key on a particular
keyboard regardless of which modifier keys were also pressed.

inCharCode A character, derived from the event structure. The value that is
generated depends on the virtual key code, the state of the
modifier keys, and the current 'KCHR' resource.

inModifiers Information from the modifiers field of the event structure
specifying the state of the modifier keys and the mouse button
at the time the event was posted.

function result Returns the part code that was hit during the keyboard event;
see “Control Part Code Constants” (page 135).

DISCUSSION

If you have determined that a keyboard event has occurred in a given window,
before calling the HandleControlKey function, call GetKeyboardFocus (page 43) to
get the handle to the control that currently has keyboard focus. The
HandleControlKey function passes the values specified in its inKeyCode,
inCharCode, and inModifiers parameters to control definition functions that set
the kControlSupportsFocus feature bit.

VERSION NOTES

Available with Appearance Manager 1.0 and later.
Control Manager Functions 37
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
IdleControls 1
Performs idle event processing.

pascal void IdleControls (WindowPtr inWindow);

inWindow A pointer to a window containing controls that support idle
events.

DISCUSSION

Your application should call the IdleControls function to give idle time to any
controls that want the kControlMsgIdle message. IdleControls calls the control
with an idle event so the control can do idle-time processing. You should call
IdleControls at least once in your event loop. See “Performing Idle Processing”
(page 74) for more details on how a control definition function should handle
idle processing.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

HandleControlClick 1
Responds to cursor movements in a control while the mouse button is down
and returns the location of the next mouse-up event.

pascal ControlPartCode HandleControlClick (
ControlHandle inControl,
Point inWhere,
SInt16 inModifiers,
ControlActionUPP inAction);

inControl A handle to the control in which the mouse-down event
occurred. Pass the control handle returned by FindControl or
FindControlUnderMouse.

inWhere A point, specified in local coordinates, where the mouse-down
event occurred. Supply the same point you passed to
FindControl or FindControlUnderMouse.
38 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
inModifiers Information from the modifiers field of the event structure
specifying the state of the modifier keys and the mouse button
at the time the event was posted.

inAction A universal procedure pointer to an action function defining
what action your application takes while the user holds down
the mouse button. The value of the inAction parameter can be a
valid procPtr, nil, or -1. A value of -1 indicates that the control
should either perform auto tracking, or if it is incapable of doing
so, do nothing (like nil). For custom controls, what you pass in
this parameter depends on how you define the control. If the
part index is greater than 128, the pointer must be of type
DragGrayRegionUPP unless the control supports live feedback, in
which case it should be a ControlActionUPP.

function result Returns a value of type ControlPartCode identifying the
control’s part; see “Control Part Code Constants” (page 135).

DISCUSSION

Call the HandleControlClick function after a call to FindControl or
FindControlUnderMouse. The HandleControlClick function should be called
instead of TrackControl (page 41) to follow the user’s cursor movements in a
control and provide visual feedback until the user releases the mouse button.
Unlike TrackControl, HandleControlClick allows modifier keys to be passed in
so that the control may use these if the control (such as a list box or editable text
field) is set up to handle its own tracking.

The visual feedback given by HandleControlClick depends on the control part in
which the mouse-down event occurs. When highlighting is appropriate, for
example, HandleControlClick highlights the control part (and removes the
highlighting when the user releases the mouse button). When the user holds
down the mouse button while the cursor is in an indicator (such as the scroll
box of a scroll bar) and moves the mouse, HandleControlClick responds by
dragging a dotted outline or a ghost image of the indicator. If the user releases
the mouse button when the cursor is in an indicator such as the scroll box,
HandleControlClick calls the control definition function to reposition the
indicator.

While the user holds down the mouse button with the cursor in one of the
standard controls, HandleControlClick performs the following actions,
depending on the value you pass in the parameter inAction.
Control Manager Functions 39
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
■ If you pass nil in the inAction parameter, HandleControlClick uses no action
function and therefore performs no additional actions beyond highlighting
the control or dragging the indicator. This is appropriate for push buttons,
checkboxes, radio buttons, and the scroll box of a scroll bar.

■ If you pass a pointer to an action function in the inAction parameter, it must
define some action that your application repeats as long as the user holds
down the mouse button. This is appropriate for the scroll arrows and gray
areas of a scroll bar.

■ If you pass (ControlActionUPP)-1L in the inAction parameter,
HandleControlClick looks in the contrlAction field of the control structure for
a pointer to the control’s action function. This is appropriate when you are
tracking the cursor in a pop-up menu. You can call GetControlAction to
determine the value of this field, and you can call SetControlAction (page 48)
to change this value. If the contrlAction field of the control structure contains
a function pointer, HandleControlClick uses the action function it points to; if
the field of the control structure also contains the value
(ControlActionUPP)-1L, HandleControlClick calls the control definition
function to perform the necessary action; you may wish to do this if you
define your own control definition function for a custom control. If the field
of the control structure contains the value nil, HandleControlClick performs
no action.

Note
For 'CDEF' resources that implement custom dragging, you
usually call HandleControlClick, which returns 0 regardless
of the user’s changes of the control setting. To avoid this,
you should use another method to determine whether the
user has changed the control setting, for instance,
comparing the control’s value before and after your call to
HandleControlClick.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

MyActionProc (page 78).
40 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
TrackControl 1
Responds to cursor movements in a control while the mouse button is down.

When the Appearance Manager is available, call HandleControlClick (page 38)
instead of TrackControl to follow the user’s cursor movements in a control and
provide visual feedback until the user releases the mouse button. Unlike the
TrackControl function, HandleControlClick also accepts modifier key
information so that the control may take into account the current modifier key
state if the control is set up to handle its own tracking.

VERSION NOTES

Not recommended with Appearance Manager 1.0 and later.

Handling Keyboard Focus 1
A control with keyboard focus receives keyboard events. The Dialog Manager
tests to see which control has keyboard focus when a keyboard event is
processed and sends the event to that control. If no control has keyboard focus,
the keyboard event is discarded. Currently, the list box, clock, and editable text
controls are the only standard system controls that support keyboard focus. A
control retains keyboard focus if it is hidden or deactivated.

A focus ring is drawn around the control with keyboard focus. When creating
your own controls, allow space for the focus ring. For more details on designing
with focus rings, see Mac OS 8 Human Interface Guidelines.

Keyboard focus is only available if an embedding hierarchy has been
established in the focusable control’s window. The default focusing order is
based on the order in which controls are added to the window. For more details
on embedding hierarchies, see “Embedding Controls” (page 17).

The following Control Manager functions for handling keyboard focus are new
with Appearance Manager 1.0:

■ SetKeyboardFocus (page 42) sets the current keyboard focus to a specified
control part for a window. New with Appearance Manager 1.0.

■ GetKeyboardFocus (page 43) obtains a handle to the control with the current
keyboard focus for a specified window. New with Appearance Manager 1.0.

■ AdvanceKeyboardFocus (page 43) advances the keyboard focus to the next
focusable control in a window. New with Appearance Manager 1.0.
Control Manager Functions 41
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
■ ReverseKeyboardFocus (page 44) returns keyboard focus to the prior focusable
control in a window. New with Appearance Manager 1.0.

■ ClearKeyboardFocus (page 45) removes the keyboard focus for the currently
focused control in a window. New with Appearance Manager 1.0.

SetKeyboardFocus 1
Sets the current keyboard focus to a specified control part for a window.

pascal OSErr SetKeyboardFocus (
WindowPtr inWindow,
ControlHandle inControl,
ControlFocusPart inPart);

inWindow A pointer to the window containing the control that is to receive
keyboard focus.

inControl A handle to the control that is to receive keyboard focus.

inPart A part code specifying the part of a control to receive keyboard
focus. To clear a control’s keyboard focus, pass
kControlFocusNoPart. See “Handling Keyboard Focus”
(page 72).

function result A result code; see “Result Codes” (page 140).

DISCUSSION

The SetKeyboardFocus function sets the keyboard focus to a specified control
part. The control to receive keyboard focus can be deactivated or invisible. This
permits you to set the focus for an item in a dialog box before the dialog box is
displayed.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

GetKeyboardFocus (page 43).
42 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
“Handling Keyboard Focus” (page 41).

GetKeyboardFocus 1
Obtains a handle to the control with the current keyboard focus for a specified
window.

pascal OSErr GetKeyboardFocus (
WindowPtr inWindow,
ControlHandle* outControl);

inWindow A pointer to the window for which to obtain keyboard focus.

outControl Pass a pointer to a ControlHandle value. On return, the
ControlHandle value is set to a handle to the control that
currently has keyboard focus. Produces nil if no control has
focus.

function result A result code; see “Result Codes” (page 140).

DISCUSSION

The GetKeyboardFocus function returns the handle of the control with current
keyboard focus within a specified window.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

SetKeyboardFocus (page 42).

“Handling Keyboard Focus” (page 41).

AdvanceKeyboardFocus 1
Advances the keyboard focus to the next focusable control in a window.

pascal OSErr AdvanceKeyboardFocus (WindowPtr inWindow);
Control Manager Functions 43
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
inWindow A pointer to the window for which to advance keyboard focus.

function result A result code; see “Result Codes” (page 140).

DISCUSSION

The AdvanceKeyboardFocus function skips over deactivated and hidden controls
until it finds the next focusable control in the window. If it does not find a
focusable item, it simply returns.

When AdvanceKeyboardFocus is called, the Control Manager calls your control
definition function and passes kControlMsgFocus in its message parameter and
kControlFocusNextPart in its param parameter. In response to this message, your
control definition function should change keyboard focus to its next part, the
entire control, or remove keyboard focus from the control, depending upon the
circumstances. See “Handling Keyboard Focus” (page 72) for a discussion of
possible responses to this message.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

ReverseKeyboardFocus (page 44).

“Handling Keyboard Focus” (page 41).

ReverseKeyboardFocus 1
Returns keyboard focus to the prior focusable control in a window.

pascal OSErr ReverseKeyboardFocus (WindowPtr inWindow);

inWindow A pointer to the window for which to reverse keyboard focus.

function result A result code; see “Result Codes” (page 140).
44 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
DISCUSSION

The ReverseKeyboardFocus function reverses the progression of keyboard focus,
skipping over deactivated and hidden controls until it finds the previous
control to receive keyboard focus in the window.

When ReverseKeyboardFocus is called, the Control Manager calls your control
definition function and passes kControlMsgFocus in its message parameter and
kControlFocusPrevPart in its param parameter. In response to this message, your
control definition function should change keyboard focus to its previous part,
the entire control, or remove keyboard focus from the control, depending upon
the circumstances. See “Handling Keyboard Focus” (page 72) for a discussion of
possible responses to this message.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

AdvanceKeyboardFocus (page 43).

“Handling Keyboard Focus” (page 41).

ClearKeyboardFocus 1
Removes the keyboard focus for the currently focused control in a window.

pascal OSErr ClearKeyboardFocus (WindowPtr inWindow);

inWindow A pointer to the window in which to clear keyboard focus.

function result A result code; see “Result Codes” (page 140).

DISCUSSION

When the ClearKeyboardFocus function is called, the Control Manager calls your
control definition function and passes kControlMsgFocus in its message
parameter and kControlFocusNoPart in its param parameter. See “Handling
Keyboard Focus” (page 72) for a discussion of possible responses to this
message.
Control Manager Functions 45
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

“Handling Keyboard Focus” (page 41).

Accessing and Changing Control Settings and Data 1
The following Control Manager functions for accessing and changing control
settings and data are new, changed, or not recommended with Appearance
Manager 1.0:

■ GetBestControlRect (page 47) obtains a control’s optimal size and text
placement. New with Appearance Manager 1.0.

■ SetControlAction (page 48) sets or changes the action function for a control.
Changed with Appearance Manager 1.0.

■ SetControlColor (page 48) customizes the color table for a control. Not
recommended with Appearance Manager 1.0.

■ SetControlData (page 49) sets control-specific data. New with Appearance
Manager 1.0.

■ GetControlData (page 50) obtains control-specific data. New with Appearance
Manager 1.0.

■ GetControlDataSize (page 52) obtains the size of a control’s tagged data. New
with Appearance Manager 1.0.

■ GetControlFeatures (page 53) obtains the features a control supports. New
with Appearance Manager 1.0.

■ SetControlFontStyle (page 53) sets the font style for a control. New with
Appearance Manager 1.0.

■ SetControlVisibility (page 54) sets the visibility of a control, and any
embedded controls, and specifies whether it should be drawn. New with
Appearance Manager 1.0.

■ IsControlVisible (page 55) returns whether a control is visible. New with
Appearance Manager 1.0.
46 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
GetBestControlRect 1
Obtains a control’s optimal size and text placement.

pascal OSErr GetBestControlRect (
ControlHandle inControl,
Rect *outRect,
SInt16 *outBaseLineOffset);

inControl A handle to the control to be examined.

outRect Pass a pointer to an empty rectangle (0, 0, 0, 0). On return, the
rectangle is set to the optimal size for the control. If the control
doesn’t support getting an optimal size rectangle, the control’s
bounding rectangle is passed back.

outBaseLineOffset
Pass a pointer to a signed 16-bit integer value. On return, the
value is set to the offset from the bottom of control to the base of
the text (usually a negative value). If the control doesn’t support
optimal sizing or has no text, 0 is passed back.

function result A result code; see “Result Codes” (page 140).

DISCUSSION

You can call the GetBestControlRect function to automatically position and size
controls in accordance with human interface guidelines. This function is
particularly helpful in determining the correct placement of control text whose
length is not known until run-time. For example, the StandardAlert function
uses GetBestControlRect to automatically size and position buttons in a newly
created alert box.

VERSION NOTES

Available with Appearance Manager 1.0 and later.
Control Manager Functions 47
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
SetControlAction 1
Sets or changes the action function for a control.

pascal void SetControlAction (
ControlHandle theControl,
ControlActionUPP actionProc);

theControl A handle to the control whose action function is to be changed.

actionProc A universal procedure pointer to an action function defining
what action your application takes while the user holds down
the mouse button.

DISCUSSION

The SetControlAction function changes the contrlAction field of the control
structure to point to the action function specified in the actionProc parameter. If
the cursor is in the specified control, HandleControlClick (page 38) or
TrackControl (page 41) call this action function when the user holds down the
mouse button. You must provide the action function, and it must define some
action to perform repeatedly as long as the user holds down the mouse button.
HandleControlUnderClick and TrackControl always highlight and drag the
control as appropriate.

Note
SetControlAction should be used to set the
application-defined action function for providing live
feedback for standard system scroll bar controls.

VERSION NOTES

Changed with Appearance Manager 1.0 to support live feedback.

SEE ALSO

MyActionProc (page 78).

SetControlColor 1
Customizes the color table for a control.
48 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
When the Appearance Manager is available and you are using standard
controls, colors are determined by the current theme. If you are creating your
own control definition function, you can still set your own colors with the
SetControlColor function.

VERSION NOTES

Not recommended with Appearance Manager 1.0 and later.

SetControlData 1
Sets control-specific data.

pascal OSErr SetControlData (
ControlHandle inControl,
ControlPartCode inPart,
ResType inTagName,
Size inSize,
Ptr inData);

inControl A handle to the control for which data is to be set.

inPart The part code of the control part for which data is to be set; see
“Control Part Code Constants” (page 135). Passing
kControlEntireControl indicates that either the control has no
parts or the data is not tied to any specific part of the control.

inTagName A constant representing the control-specific data you wish to set;
see “Control Data Tag Constants” (page 118).

inSize The size (in bytes) of the data pointed to by the inData
parameter. For variable-length control data, pass the value
returned in the outMaxSize parameter of GetControlDataSize
(page 52) in the inSize parameter. The number of bytes must
match the actual data size.

inData A pointer to a buffer allocated by your application. This buffer
contains the data that you are sending to the control. After
calling SetControlData, your application is responsible for
disposing of this buffer, if necessary, as information is copied by
control.
Control Manager Functions 49
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
function result A result code; see “Result Codes” (page 140). The result code
errDataNotSupported indicates that the inTagName parameter is
not valid.

DISCUSSION

The SetControlData function sets control-specific data represented by the value
in the inTagName parameter to the data pointed to by the inData parameter.
SetControlData could be used, for example, to switch a progress indicator from
a determinate to indeterminate state. For a list of the control attributes that can
be set, see “Control Data Tag Constants” (page 118).

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

GetControlData (page 50).

GetControlData 1
Obtains control-specific data.

pascal OSErr GetControlData (
ControlHandle inControl,
ControlPartCode inPart,
ResType inTagName,
Size inBufferSize,
Ptr inBuffer,
Size *outActualSize);

inControl A handle to the control to be examined.

inPart The part code of the control part from which data is to be
obtained; see “Control Part Code Constants” (page 135). Passing
kControlEntireControl indicates that either the control has no
parts or the data is not tied to any specific part of the control.
50 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
inTagName A constant representing the control-specific data you wish to
obtain; see “Control Data Tag Constants” (page 118).

inBufferSize The size (in bytes) of the data pointed to by the inBuffer
parameter. For variable-length control data, pass the value
returned in the outMaxSize parameter of GetControlDataSize
(page 52) in the inBufferSize parameter. The number of bytes
must match the actual data size.

inBuffer Pass a pointer to a buffer allocated by your application. On
return, the buffer contains a copy of the control-specific data. If
you pass nil on input, it is equivalent to calling
GetControlDataSize (page 52). The actual size of the
control-specific data will be returned in the outActualSize
parameter. For variable-length data, the number of bytes must
match the actual data size.

outActualSize Pass a pointer to a Size value. On return, the value is set to the
actual size of the data.

function result A result code; see “Result Codes” (page 140). The result code
errDataNotSupported indicates that the inTagName parameter is
not valid.

DISCUSSION

The GetControlData function will only copy the amount of data specified in the
inBufferSize parameter, but will tell you the actual size of the buffer so you will
know if the data was truncated.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

SetControlData (page 49).
Control Manager Functions 51
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
GetControlDataSize 1
Obtains the size of a control’s tagged data.

pascal OSErr GetControlDataSize (
ControlHandle inControl,
ControlPartCode inPart,
ResType inTagName,
Size *outMaxSize);

inControl A handle to the control to be examined.

inPart The part code of the control part with which the data is
associated; see “Control Part Code Constants” (page 135).
Passing kControlEntireControl indicates that either the control
has no parts or the data is not tied to any specific part of the
control.

inTagName A constant representing the control-specific data whose size is to
be obtained; see “Control Data Tag Constants” (page 118).

outMaxSize Pass a pointer to a Size value. On return, the value is set to the
size (in bytes) of the control’s tagged data. This value should be
passed to SetControlData (page 49) and GetControlData
(page 50) to allocate a sufficiently large buffer for
variable-length data.

function result A result code; see “Result Codes” (page 140). The result code
errDataNotSupported indicates that the inTagName parameter is
not valid.

DISCUSSION

Pass the value returned in the outMaxSize parameter of GetControlDataSize in
the inBufferSize parameter of SetControlData (page 49) and GetControlData
(page 50) to allocate an adequate buffer for variable-length data.

VERSION NOTES

Available with Appearance Manager 1.0 and later.
52 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
GetControlFeatures 1
Obtains the features a control supports.

pascal OSErr GetControlFeatures (
ControlHandle inControl,
UInt32 *outFeatures);

inControl A handle to the control to be examined.

outFeatures Pass a pointer to an unsigned 32-bit integer value. On return,
the value contains a bit field specifying the features the control
supports. For a list of the features a control may support, see
“Specifying Which Appearance-Compliant Messages Are
Supported” (page 68).

function result A result code; see “Result Codes” (page 140). The result code
errMsgNotSupported indicates that the control does not support
Appearance-compliant features.

DISCUSSION

The GetControlFeatures function obtains the Appearance-compliant features a
control definition function supports, in response to a kControlMsgGetFeatures
message.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SetControlFontStyle 1
Sets the font style for a control.

pascal OSErr SetControlFontStyle (
ControlHandle inControl,
const ControlFontStyleRec *inStyle);

inControl A handle to the control whose font style is to be set.
Control Manager Functions 53
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
inStyle Pass a pointer to a ControlFontStyleRec (page 95) structure. If
the flags field is cleared, the control uses the system font unless
the control variant kControlUsesOwningWindowsFontVariant has
been specified (control uses window font).

function result A result code; see “Result Codes” (page 140).

DISCUSSION

The SetControlFontStyle function sets the font style for a given control. To
specify the font for controls in a dialog box, it is generally easier to use the
dialog font table resource. SetControlFontStyle allows you to override a
control’s default font (system or window font, depending upon whether the
control variant kControlUsesOwningWindowsFontVariant has been specified).
Once you have set a control’s font with this function, you can cause the control
to revert to its default font by passing a control font style structure with a
cleared flags field in the inStyle parameter.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SetControlVisibility 1
Sets the visibility of a control, and any embedded controls, and specifies
whether it should be drawn.

pascal OSErr SetControlVisibility (
ControlHandle inControl,
Boolean inIsVisible,
Boolean inDoDraw);

inControl A handle to the control whose visibility is to be set.

inIsVisible A Boolean value indicating whether the control is visible or
invisible. If you set this value to true, the control will be visible.
If false, the control will be invisible. If you wish to show a
control (and latent embedded subcontrols) but do not want to
cause screen drawing, pass true for this parameter and false in
the inDoDraw parameter.
54 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
inDoDraw A Boolean value indicating whether the control should be
drawn or erased. If true, the control’s display on the screen
should be updated (drawn or erased) based on the value passed
in the inIsVisible parameter. If false, the display will not be
updated.

function result A result code; see “Result Codes” (page 140).

DISCUSSION

You should call the SetControlVisibility function instead of setting the
contrlVis field of the control structure to set the visibility of a control and
specify whether it will be drawn. If the control has embedded controls,
SetControlVisibility allows you to set their visibility and specify whether or
not they will be drawn. If you wish to show a control but do not want it to be
drawn onscreen, pass true in the inIsVisible parameter and false in the
inDoDraw parameter.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

IsControlVisible 1
Returns whether a control is visible.

pascal Boolean IsControlVisible (ControlHandle inControl);

inControl A handle to the control to be examined.

function result Returns a Boolean value. If true, the control is visible. If false,
the control is hidden.

DISCUSSION

If you wish to determine whether a control is visible, call IsControlVisible
instead of testing the contrlVis field of the control structure.
Control Manager Functions 55
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
VERSION NOTES

Available with Appearance Manager 1.0 and later.

Defining Your Own Control Definition Function 1
A control definition function determines how a control generally looks and
behaves. Various Control Manager functions call a control definition function
whenever they need to perform a control-dependent action, such as drawing
the control on the screen. In addition to standard control definition functions,
defined by the system, you can make your own custom control definition
functions.

The Control Manager calls the Resource Manager to access a control definition
function with the given resource ID; for a description of how to derive a control
definition function ID, see “Control Definition IDs” (page 106). The Resource
Manager reads a control definition function into memory and returns a handle
to it. The Control Manager stores this handle in the contrlDefProc field of the
control structure.

When various Control Manager functions need to perform a type-dependent
action on the control, they call the control definition function and pass it the
variation code for its type as a parameter. You can define your own variation
codes; this allows you to use one 'CDEF' resource to handle several variations of
the same general control. See 'CNTL' (page 100) for further discussion of
controls, their resources, and their IDs.

If you choose to provide your own control definition functions, these functions
should apply the user’s desktop color choices the same way the standard
control definition functions do. You can use control color tables of any desired
size and define their contents in any way you wish, except that part indices and
messages 0 through 127 are reserved for system definition.

The following Control Manager function for defining your own control
definition function is changed with Appearance Manager 1.0:

■ MyControlDefProc (page 57) defines a custom control. Changed with
Appearance Manager 1.0.
56 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
MyControlDefProc 1
If you wish to define new, nonstandard controls for your application, you must
write a control definition function and store it in a resource file as a resource of
type 'CDEF'.

The Control Manager declares the type for an application-defined control
definition function as follows:

typedef pascal SInt32 (*ControlDefProcPtr)(
SInt16 varCode,
ControlHandle theControl,
ControlDefProcMessage message,
SInt32 param);

The Control Manager defines the data type ControlDefUPP to identify the
universal procedure pointer for this application-defined function:

typedef UniversalProcPtr ControlDefUPP;

You typically use the NewControlDefProc macro like this:

ControlDefUPP myControlDefUPP;
myControlDefUPP = NewControlDefProc (MyControl);

You typically use the CallControlDefProc macro like this:

CallControlDefProc(myControlDefUPP, varCode, theControl, message, param);

Here’s how to declare the function MyControlDefProc:

pascal SInt32 MyControlDefProc (
SInt16 varCode,
ControlHandle theControl,
ControlDefProcMessage message,
SInt32 param);

varCode The control’s variation code.

theControl A handle to the control that the operation will affect.

message A code for the task to be performed. The message parameter
contains one of the task codes defined in “Messages” (page 58).
The subsections that follow explain each of these tasks in detail.
Control Manager Functions 57
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
param Data associated with the task specified by the message
parameter. If the task requires no data, this parameter is
ignored.

function result The function results that your control definition function returns
depend on the value that the Control Manager passes in the
message parameter.

DISCUSSION

The Control Manager calls your control definition function under various
circumstances; the Control Manager uses the message parameter to inform your
control definition function what action it must perform. The data that the
Control Manager passes in the param parameter, the action that your control
definition function must undertake, and the function results that your control
definition function returns all depend on the value that the Control Manager
passes in the message parameter. The rest of this section describes how to
respond to the various values that the Control Manager passes in the message
parameter.

VERSION NOTES

Changed with Appearance Manager 1.0 to support new control definition
messages.

Messages 1

The Control Manager passes constants of type ControlDefProcMessage to
indicate the action your control definition function must perform.

enum {
drawCntl = 0,
testCntl = 1,
calcCRgns = 2,
initCntl = 3,
dispCntl = 4,
posCntl = 5,
thumbCntl = 6,
dragCntl = 7,
autoTrack = 8,
calcCntlRgn = 10,
58 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
calcThumbRgn = 11,
kControlMsgDrawGhost = 13,
kControlMsgCalcBestRect = 14,
kControlMsgHandleTracking = 15,
kControlMsgFocus = 16,
kControlMsgKeyDown = 17,
kControlMsgIdle = 18,
kControlMsgGetFeatures = 19,
kControlMsgSetData = 20,
kControlMsgGetData = 21,
kControlMsgActivate = 22,
kControlMsgSetUpBackground = 23,
kControlMsgSubValueChanged = 25,
kControlMsgCalcValueFromPos = 26,
kControlMsgTestNewMsgSupport= 27,
kControlMsgSubControlAdded = 28,
kControlMsgSubControlRemoved= 29

};
typedef SInt16 ControlDefProcMessage;

Constant descriptions

drawCntl Draw the entire control or part of a control.
testCntl Test where the mouse has been pressed.
calcCRgns Calculate the region for the control or the indicator in 24-bit

systems. This message is obsolete in Mac OS 7.6 and later.
initCntl Perform additional control initialization.
dispCntl Perform additional control disposal actions.
posCntl Move and update the indicator setting.
thumbCntl Calculate the parameters for dragging the indicator.
dragCntl Perform customized dragging (of the control or its

indicator).
autoTrack Execute the specified action function.
calcCntlRgn Calculate the control region in 32-bit systems.
calcThumbRgn Calculate the indicator region in 32-bit systems.
kControlMsgDrawGhost

Draw a ghost image of the indicator. Available with
Appearance Manager 1.0 and later.
Control Manager Functions 59
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlMsgCalcBestRect
Calculate the optimal control rectangle. Available with
Appearance Manager 1.0 and later.

kControlMsgHandleTracking
Perform custom tracking. Available with Appearance
Manager 1.0 and later.

kControlMsgFocus Handle keyboard focus. Available with Appearance
Manager 1.0 and later.

kControlMsgKeyDown Handle keyboard events. Available with Appearance
Manager 1.0 and later.

kControlMsgIdle Perform idle processing. Available with Appearance
Manager 1.0 and later.

kControlMsgGetFeatures
Specify which Appearance-compliant messages are
supported. Available with Appearance Manager 1.0 and
later.

kControlMsgSetData
Set control-specific data. Available with Appearance
Manager 1.0 and later.

kControlMsgGetData
Get control-specific data. Available with Appearance
Manager 1.0 and later.

kControlMsgActivate
Handle activate and deactivate events. Available with
Appearance Manager 1.0 and later.

kControlMsgSetUpBackground
Set the control’s background color or pattern (only
available if the control supports embedding). Available
with Appearance Manager 1.0 and later.

kControlMsgSubValueChanged
Be informed that the value of a subcontrol embedded in the
control has changed; this message is useful for radio
groups. Available with Appearance 1.0.1 and later.

kControlMsgCalcValueFromPos
Support live feedback while dragging the indicator and
calculate the control value based on the new indicator
region. Available with Appearance Manager 1.0 and later.
60 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlMsgTestNewMsgSupport
Specify whether Appearance-compliant messages are
supported. Available with Appearance Manager 1.0 and
later.

kControlMsgSubControlAdded
Be informed that a subcontrol has been embedded in the
control. Available with Appearance 1.0.1 and later.

kControlMsgSubControlRemoved
Be informed that a subcontrol is about to be removed from
the control. Available with Appearance 1.0.1 and later.

Drawing the Control or Its Part 1

When the Control Manager passes the value drawCntl in the message parameter,
your control definition function should respond by drawing the indicator or the
entire control.

The Control Manager passes one of the following drawing constants in the low
word of the param parameter to specify whether the user is drawing an indicator
or the whole control. The high-order word of the param parameter may contain
undefined data; therefore, evaluate only the low-order word of this parameter.

enum {
kDrawControlEntireControl = 0,
kDrawControlIndicatorOnly = 129

};

Constant descriptions

kDrawControlEntireControl
Draw the entire control.

kDrawControlIndicatorOnly
Draw the indicator only.

With the exception of part code 128, which is reserved for future use and should
not be used, any other value indicates a part code for the control.

If the specified control is visible, your control definition function should draw
the control (or the part specified in the param parameter) within the control’s
rectangle. If the control is invisible (that is, if its contrlVis field is set to 0), your
control definition function does nothing.
Control Manager Functions 61
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
When drawing the control or its part, take into account the current values of its
contrlHilite and contrlValue fields in the control structure.

If the part code for your control’s indicator is passed in param, assume that the
indicator hasn’t moved; the Control Manager, for example, may be calling your
control definition function so that you may simply highlight the indicator.
However, when your application calls SetControlValue, SetControlMinimum, and
SetControlMaximum, they in turn may call your control definition function with
the drawCntl message to redraw the indicator. Since these functions have no
way of determining what part code you chose for your indicator, they all pass
129 in param, meaning that you should move your indicator. Your control
definition function must detect this part code as a special case and remove the
indicator from its former location before drawing it. If your control has more
than one indicator, you should interpret 129 to mean all indicators.

When sent the message drawCntl, your control definition function should return
0 as its function result.

Testing Where the Mouse-Down Event Occurs 1

When the Control Manager passes the value for the testCntl constant in the
message parameter, your control definition function should respond by
determining whether a specified point is in a visible control.

The Control Manager passes a point (in local coordinates) in the param
parameter. The point’s vertical coordinate is contained in the high-order word
of the long integer, and horizontal coordinate is contained in the low-order
word.

Your control definition function should return the part code of the part that
contains the specified point; it should return 0 if the point is outside the control
or if the control is inactive.

Calculating the Control and Indicator Regions on 24-Bit Systems 1

When the Control Manager passes the value for the calcCRgns constant in the
message parameter, your control definition function should calculate the region
passed in the param parameter for the specified control or its indicator.

The Control Manager passes a QuickDraw region handle in the param
parameter. If the high-order bit of param is set, the region requested is that of the
control’s indicator; otherwise, the region requested is that of the entire control.
Your control definition function should clear the high bit of the region handle
before calculating the region.
62 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
When passed this message, your control definition function should always
return 0, and it should express the region in the local coordinate system of the
control’s window.

IMPORTANT

The calcCRgns message will never be sent to any system
running on 32-bit mode and is therefore obsolete in Mac OS
7.6 and later. The calcCntlRgn and calcThumbRgn messages
will be sent instead.

Calculating the Control and Indicator Regions on 32-Bit Systems 1

When the Control Manager passes the values for the calcCntlRgn or
calcThumbRgn constants in the message parameter, your control definition
function should calculate the region for the specified control or its indicator
using the QuickDraw region handle passed in the param parameter .

If the Control Manager passes the value for the calcThumbRgn constant in the
message parameter, calculate the region occupied by the indicator. If the Control
Manager passes the value for the calcCntlRgn constant in the message
parameter, calculate the region for the entire control.

When passed this message, your control definition function should always
return 0, and it should express the region in the local coordinate system of the
control’s window.

Performing Additional Control Initialization 1

After initializing fields of a control structure as appropriate when creating a
new control, the Control Manager passes initCntl in the message parameter to
give your control definition function the opportunity to perform any
type-specific initialization you may require. For example, the standard control
definition function for scroll bars allocates space for a region to hold the scroll
box and stores the region handle in the contrlData field of the new control
structure.

When passed the value for the initCntl constant in the message parameter, your
control definition function should ignore the param parameter and return 0 as a
function result.
Control Manager Functions 63
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
Performing Additional Control Disposal Actions 1

The function DisposeControl (page 15) passes dispCntl in the message parameter
to give your control definition function the opportunity to carry out any
additional actions when disposing of a control. For example, the standard
definition function for scroll bars releases the memory occupied by the scroll
box region, whose handle is kept in the contrlData field of the control structure.

When passed the value for the dispCntl constant in the message parameter, your
control definition function should ignore the param parameter and return 0 as a
function result.

Dragging the Control or Its Indicator 1

When a mouse-up event occurs in the indicator of a control, the
HandleControlClick (page 38) or TrackControl (page 41) functions call your
control definition function and pass posCntl in the message parameter. In this
case, the Control Manager passes a point (in coordinates local to the control’s
window) in the param parameter that specifies the vertical and horizontal offset,
in pixels, by which your control definition function should move the indicator
from its current position. Typically, this is the offset between the points where
the cursor was when the user pressed and released the mouse button while
dragging the indicator. The point’s vertical offset is contained in the high-order
word of the param parameter, and its horizontal offset is contained in the
low-order word.

Your definition function should calculate the control’s new setting based on the
given offset and then, to reflect the new setting, redraw the control and update
the contrlValue field in the control structure. Your control definition function
should ignore the param parameter and return 0 as a function result.

Calculating Parameters for Dragging the Indicator 1

When the Control Manager passes the value for thumbCntl in the message
parameter, your control definition function should respond by calculating
values analogous to the limitRect, slopRect, and axis parameters of
DragControl that constrain how the indicator is dragged. On entry, the fields
param->limitRect.top and param->limitRect.left contain the point where the
mouse-down event first occurred.

The Control Manager passes a pointer to a structure of type
IndicatorDragConstraint in the param parameter:
64 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
struct IndicatorDragConstraint {
Rect limitRect;
Rect slopRect;
DragConstraint axis;

};
typedef struct IndicatorDragConstraint IndicatorDragConstraint;
typedef IndicatorDragConstraint *IndicatorDragConstraintPtr;
typedef IndicatorDragConstraintPtr *IndicatorDragConstraintHandle;

Field descriptions
limitRect A pointer to a rectangle—whose coordinates should

normally coincide with or be contained in the window’s
content region—delimiting the area in which the user can
drag the control’s outline.

slopRect A pointer to a rectangle that allows some extra space for
the user to move the mouse while still constraining the
control within the rectangle specified in the limitRect
parameter.

axis The axis along which the user may drag the control’s
outline.

Your definition function should store the appropriate values into the fields of
the structure pointed to by the param parameter; they’re analogous to the
similarly named parameters of the Window Manager function DragGrayRgn .

Your control definition function should return 0 as function result.

Performing Custom Dragging 1

When the Control Manager passes the value for the dragCntl constant in the
message parameter, the param parameter typically contains a custom dragging
constant with one of the following values to specify whether the user is
dragging an indicator or the whole control:

enum {
kDragControlEntireControl = 0,
kDragControlIndicator = 1

};
Control Manager Functions 65
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
Constant descriptions

kDragControlEntireControl
Dragging the entire control.

kDragControlIndicator
Dragging the indicator.

Note
When the Appearance Manager is present, the message
kControlMsgHandleTracking should be sent instead of
dragCntl to handle any custom tracking; see “Performing
Custom Tracking” (page 71).

If you want to use the Control Manager’s default method of dragging, which is
to call DragControl to drag the control or the Window Manager function
DragGrayRgn to drag its indicator, return 0 as the function result for your control
definition function.

If your control definition function returns a nonzero value, your control
definition function (not the Control Manager) must drag the specified control
(or its indicator) to follow the cursor until the user releases the mouse button. If
the user drags the entire control, your definition function should use the
function MoveControl to reposition the control to its new location after the user
releases the mouse button. If the user drags the indicator, your definition
function must calculate the control’s new setting (based on the pixel offset
between the points where the cursor was when the user pressed and released
the mouse button while dragging the indicator) and then, to reflect the new
setting, redraw the control and update the contrlValue field in the control
structure. Note that, in this case, the functions HandleControlClick (page 38) and
TrackControl (page 41) return 0 whether or not the user changes the indicator’s
position. Thus, you must determine whether the user has changed the control’s
setting by another method, for instance, by comparing the control’s value before
and after the call to HandleControlClick.

Executing an Action Function 1

The only way to specify actions in response to all mouse-down events in a
control or its indicator is to define your own control definition function that
specifies an action function. When you create the control, your control
definition function must first respond to the initCntl message by storing
(ControlDefUPP)-1L in the contrlAction field of the control structure. (The
Control Manager sends the initCntl message to your control definition
function after initializing the fields of a new control structure.) Then, when your
66 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
application passes (ControlActionUPP)-1L in the actionProc parameter of
HandleControlClick (page 38) or TrackControl (page 41), HandleControlClick
calls your control definition function with the autoTrack message. The Control
Manager passes the part code of the part where the mouse-down event occurs
in the param parameter. Your control definition function should then use this
information to respond as an action function would.

Note
For the autoTrack message, the high-order word of the
param parameter may contain undefined data; therefore,
evaluate only the low-order word of this parameter.

If the mouse-down event occurs in an indicator of a control that supports live
feedback, your action function should take two parameters (a handle to the
control and the part code of the control where the mouse-down event first
occurred). This action function is the same one you would use to define actions
to be performed in control part codes in response to a mouse-down event; see
MyActionProc (page 78).

If the mouse-down event occurs in an indicator of a control that does not
support live feedback, your action function should take no parameters, because
the user may move the cursor outside the indicator while dragging it; see
MyIndicatorActionProc (page 80).

Specifying Whether Appearance-Compliant Messages Are Supported 1

If your control definition function supports Appearance-compliant messages, it
should return kControlSupportsNewMessages as a function result when the
Control Manager passes kControlMsgTestNewMsgSupport in the message
parameter.

enum{
kControlSupportsNewMessages = ' ok '

};

Constant description

kControlSupportsNewMessages
The control definition function supports new messages
introduced with Mac OS 8 and the Appearance Manager.
Control Manager Functions 67
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
Specifying Which Appearance-Compliant Messages Are Supported 1

If your control definition function supports Appearance-compliant messages, it
should return a bit field of the features it supports in response to the
kControlMsgGetFeatures message. Your control definition function should
ignore the param parameter.

The bit field returned by your control definition function should be composed
of one or more of the following bits:

enum{
kControlSupportsGhosting = 1 << 0,
kControlSupportsEmbedding = 1 << 1,
kControlSupportsFocus = 1 << 2,
kControlWantsIdle = 1 << 3,
kControlWantsActivate = 1 << 4,
kControlHandlesTracking = 1 << 5,
kControlSupportsDataAccess = 1 << 6,
kControlHasSpecialBackground= 1 << 7,
kControlGetsFocusOnClick = 1 << 8,
kControlSupportsCalcBestRect= 1 << 9,
kControlSupportsLiveFeedback= 1 << 10,
kControlHasRadioBehavior = 1 << 11

};

Constant descriptions

kControlSupportsGhosting
If this bit (bit 0) is set, the control definition function
supports the kControlMsgDrawGhost message.

kControlSupportsEmbedding
If this bit (bit 1) is set, the control definition function
supports the kControlMsgSubControlAdded and
kControlMsgSubControlRemoved messages.

kControlSupportsFocus
If this bit (bit 2) is set, the control definition function
supports the kControlMsgKeyDown message. If this bit and
the kControlGetsFocusOnClick bit are set, the control
definition function supports the kControlMsgFocus message.

kControlWantsIdle
If this bit (bit 3) is set, the control definition function
supports the kControlMsgIdle message.
68 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlWantsActivate
If this bit (bit 4) is set, the control definition function
supports the kControlMsgActivate message.

kControlHandlesTracking
If this bit (bit 5) is set, the control definition function
supports the kControlMsgHandleTracking message.

kControlSupportsDataAccess
If this bit (bit 6) is set, the control definition function
supports the kControlMsgGetData and kControlMsgSetData
messages.

kControlHasSpecialBackground
If this bit (bit 7) is set, the control definition function
supports the kControlMsgSetUpBackground message.

kControlGetsFocusOnClick
If this bit (bit 8) and the kControlSupportsFocus bit are set,
the control definition function supports the
kControlMsgFocus message.

kControlSupportsCalcBestRect
If this bit (bit 9) is set, the control definition function
supports the kControlMsgCalcBestRect message.

kControlSupportsLiveFeedback
If this bit (bit 10) is set, the control definition function
supports the kControlMsgCalcValueFromPos message.

kControlHasRadioBehavior
If this bit (bit 11) is set, the control definition function
supports radio button behavior and can be embedded in a
radio group control. This constant is available with
Appearance 1.0.1 and later.

Drawing a Ghost Image of the Indicator 1

If your control definition function supports indicator ghosting, it should return
kControlSupportsGhosting as one of the feature bits in response to a
kControlMsgGetFeatures message. If this bit is set and the control indicator is
being tracked, the Control Manager calls your control definition function and
passes kControlMsgDrawGhost in the message parameter. A handle to the region
where the ghost should be drawn will be passed in the param parameter.
Control Manager Functions 69
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
Your control definition function should respond by redrawing the control with
the ghosted indicator at the specified location and should return 0 as its
function result.

Note
The ghost indicator should always be drawn before the
actual indicator so that it appears underneath the actual
indicator.

Calculating the Optimal Control Rectangle 1

If your control definition function supports calculating the optimal dimensions
of the control rectangle, it should return kControlSupportsCalcBestRect as one
of the feature bits in response to the kControlMsgGetFeatures message. If this bit
is set and GetBestControlRect (page 47) is called, the Control Manager will call
your control definition function and pass kControlMsgCalcBestRect in the
message parameter. The Control Manager passes a pointer to a control size
calculation structure in the param parameter.

Your control definition function should respond by calculating the width and
height of the optimal control rectangle and adjusting the rectangle by setting the
height and width fields of the control size calculation structure to the
appropriate values. If your control definition function displays text, it should
pass in the offset from the bottom of control to the base of the text in the
baseLine field of the structure. Your control definition function should return
the offset value stored in the structure’s baseLine field.

The control size calculation structure is a structure of type ControlCalcSizeRec:

struct ControlCalcSizeRec {
SInt16 height;
SInt16 width;
SInt16 baseLine;

};
typedef struct ControlCalcSizeRec ControlCalcSizeRec;
typedef ControlCalcSizeRec *ControlCalcSizePtr;

Field descriptions
height The optimal height (in pixels) of the control’s bounding

rectangle.
width The optimal width (in pixels) of the control’s bounding

rectangle.
70 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
baseLine The offset from the bottom of the control to the base of the
text. This value is generally negative.

Performing Custom Tracking 1

If your control definition function supports custom tracking, it should return
kControlHandlesTracking as one of the feature bits in response to a
kControlMsgGetFeatures message. If this bit is set and a mouse-down event
occurs in your control, TrackControl (page 41) or HandleControlClick (page 38)
calls your control definition function and passes kControlMsgHandlesTracking in
the message parameter. The Control Manager passes a pointer to a control
tracking structure in the param parameter. Your control definition function
should respond appropriately and return the part code that was hit, or
kControlNoPart if the mouse-down event occurred outside the control; see
“Control Part Code Constants” (page 135).

The control tracking structure is a structure of type ControlTrackingRec:

struct ControlTrackingRec {
Point startPt;
SInt16 modifiers;
ControlActionUPP action;

};
typedef struct ControlTrackingRec ControlTrackingRec;
typedef ControlTrackingRec *ControlTrackingPtr;

Field descriptions
startPt The location of the cursor at the time the mouse button was

first pressed, in local coordinates. Your application retrieves
this point from the where field of the event structure.

modifiers The constant in the modifiers field of the event structure
specifying the state of the modifier keys and the mouse
button at the time the event was posted.

action A pointer to an action function defining what action your
application takes while the user holds down the mouse
button. The value of the actionProc parameter can be a
valid procPtr, nil, or -1. A value of -1 indicates that the
control should either perform auto tracking, or if it is
incapable of doing so, do nothing (like nil).
Control Manager Functions 71
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
Handling Keyboard Focus 1

If your control definition function can change its keyboard focus, it should set
kControlSupportsFocus and kControlGetsFocusOnClick as feature bits in
response to a kControlMsgGetFeatures message. If these bits are set and the
AdvanceKeyboardFocus (page 43), ReverseKeyboardFocus (page 44),
ClearKeyboardFocus (page 45), or SetKeyboardFocus (page 42) function is called,
the Control Manager calls your control definition function and passes
kControlMsgFocus in the message parameter.

The Control Manager passes one of the control focus part code constants
described below or a valid part code in the param parameter. Your control
definition function should respond by adjusting the focus accordingly.

Your control definition function should return the control focus part code or
actual control part that was focused on. Return kControlFocusNoPart if your
control does not accept focus or has just relinquished it. Return a nonzero part
code to indicate that your control received keyboard focus. Your control
definition function is responsible for maintaining which part is focused.

enum {
kControlFocusNoPart = 0,
kControlFocusNextPart = -1,
kControlFocusPrevPart = -2

};
typedef SInt16 ControlFocusPart;

Constant descriptions

kControlFocusNoPart
Your control definition function should relinquish its focus
and return kControlFocusNoPart. It might respond by
deactivating its text edit handle and erasing its focus ring.
If the control is at the end of its subparts, it should return
kControlFocusNoPart. This tells the focusing mechanism to
jump to the next control that supports focus.

kControlFocusNextPart
Your control definition function should change keyboard
focus to its next part, the entire control, or remove
keyboard focus from the control, depending upon the
circumstances.
For multiple part controls that already had keyboard focus,
the next part of the control would receive keyboard focus
72 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
when kControlFocusNextPart was passed in the param
parameter. For example, a clock control with keyboard
focus would change its focus to the left-most element of the
control (the month field).
For single-part controls that did not have keyboard focus
and are now receiving it, the entire control would receive
keyboard focus when kControlFocusNextPart was passed in
the param parameter.
For single-part controls that already had keyboard focus
and are now losing it, the entire control would lose
keyboard focus.
If you are passed kControlFocusNextPart and have run out
of parts, return kControlFocusNoPart to indicate that the
user tabbed past the control.

kControlFocusPrevPart
Your control definition function should change keyboard
focus to its previous part, the entire control, or remove
keyboard focus from the control, depending upon the
circumstances.
For multiple part controls that already had keyboard focus,
the previous part of the control would receive keyboard
focus when kControlFocusPrevPart was passed in the param
parameter. For example, a clock control with keyboard
focus would change its focus to the right-most element of
the control (the year field).
For single-part controls that did not have keyboard focus
and are now receiving it, the entire control would receive
keyboard focus when kControlFocusNextPart was passed in
the param parameter.
For single-part controls that already had keyboard focus
and are now losing it, the entire control would lose
keyboard focus.
If you are passed kControlFocusPrevPart and have run out
of parts, return kControlFocusNoPart to indicate that the
user tabbed past the control.

<part code> Your control definition function should focus on the
specified part code. Your function can interpret this in any
way it wishes.
Control Manager Functions 73
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
Handling Keyboard Events 1

If your control definition function can handle keyboard events, it should return
kControlSupportsFocus—every control that supports keyboard focus must also
be able to handle keyboard events—as one of the feature bits in response to a
kControlMsgGetFeatures message. If this bit is set, the Control Manager will pass
kControlMsgKeyDown in the message parameter. The Control Manager passes a
pointer to a control key down structure in the param parameter. Your control
definition function should respond by processing the keyboard event as
appropriate and return 0 as the function result.

The control key down structure is a structure of type ControlKeyDownRec:

struct ControlKeyDownRec {
SInt16 modifiers;
SInt16 keyCode;
SInt16 charCode;

};
typedef struct ControlKeyDownRec ControlKeyDownRec;
typedef ControlKeyDownRec *ControlKeyDownPtr;

Field descriptions
modifiers The constant in the modifiers field of the event structure

specifying the state of the modifier keys and the mouse
button at the time the event was posted.

keyCode The virtual key code derived from the event structure. This
value represents the key pressed or released by the user. It
is always the same for a specific physical key on a
particular keyboard regardless of which modifier keys were
also pressed.

charCode A particular character derived from the event structure.
This value depends on the virtual key code, the state of the
modifier keys, and the current 'KCHR' resource.

Performing Idle Processing 1

If your control definition function can perform idle processing, it should return
kControlWantsIdle as one of the feature bits in response to a
kControlMsgGetFeatures message. If this bit is set and IdleControls (page 38) is
called for the window your control is in, the Control Manager will pass
kControlMsgIdle in the message parameter. Your control definition function
should ignore the param parameter and respond appropriately. For example,
74 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
indeterminate progress indicators and asynchronous arrows use idle time to
perform their animation.

Your control definition function should return 0 as the function result.

Getting and Setting Control-Specific Data 1

If your control definition function supports getting and setting control-specific
data, it should return kControlSupportsDataAccess as one of its features bits in
response to the kControlMsgGetFeatures message. If this bit is set, the Control
Manager will call your control definition function and pass kControlMsgSetData
in the message parameter when SetControlData (page 49) is called, and will pass
kControlMsgGetData in the message parameter when GetControlData (page 50)
and GetControlDataSize (page 52) are called. The Control Manager passes a
pointer to a control data access structure in the param parameter. Your definition
function should respond by filling out the structure and returning an operating
system status message as the function result.

The control data access structure is a structure of type ControlDataAccessRec:

struct ControlDataAccessRec{
ResType tag;
ResType part;
Size size;
Ptr dataPtr;

};
typedef struct ControlDataAccessRec ControlDataAccessRec;
typedef ControlDataAccessRec *ControlDataAccessPtr;

Field descriptions
tag A constant representing a piece of data that is passed in (in

response to a kControlMsgSetData message) or returned (in
response to a kControlMsgGetData message); see “Control
Data Tag Constants” (page 118) for a description of these
constants. The control definition function should return
errDataNotSupported if the value in the tag parameter is
unknown or invalid.

part The part of the control that this data should be applied to.
If the information is not tied to a specific part of the control
or the control has no parts, pass 0.
Control Manager Functions 75
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
size On entry, the size of the buffer pointed to by the dataPtr
field. In response to a kControlMsgGetData message, this
field should be adjusted to reflect the actual size of the data
that the control is maintaining. If the size of the buffer
being passed in is smaller than the actual size of the data,
the control definition function should return
errDataSizeMismatch.

dataPtr A pointer to a buffer to read or write the information
requested. In response to a kControlMsgGetData message,
this field could be nil, indicating that you wish to return
the size of the data in the size field.

Handling Activate and Deactivate Events 1

If your control definition function wants to be informed whenever it is being
activated or deactivated, it should return kControlWantsActivate as one of the
feature bits in response to the kControlMsgGetFeatures message. If this bit is set
and your control definition function is being activated or deactivated, the
Control Manager calls it and passes kControlMsgActivate in the message
parameter. The Control Manager passes a 0 or 1 in the param parameter. A value
of 0 indicates that the control is being deactivated; 1 indicates that it is being
activated.

Your control definition function should respond by performing any special
processing before the user pane becomes activated or deactivated, such as
deactivating its TEHandle or ListHandle if it is about to be deactivated.

Your control definition function should return 0 as the function result.

Setting a Control’s Background Color or Pattern 1

If your control definition function supports embedding and draws its own
background, it should return kControlHasSpecialBackground as one of the
feature bits in response to the kControlMsgGetFeatures message. If this bit is set
and an embedding hierarchy of controls is being drawn in your control, the
Control Manager passes kControlMsgSetUpBackground in the message parameter
of your control definition function. The Control Manager passes a pointer to a
filled-in control background structure in the param parameter. Your control
definition function should respond by setting its background color or pattern to
whatever is appropriate given the bit depth and device type passed in. Your
control definition function should return 0 as the function result.
76 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
The control background structure is a structure of type ControlBackgroundRec:

struct ControlBackgroundRec {
SInt16 depth;
Boolean colorDevice;

};
typedef struct ControlBackgroundRec ControlBackgroundRec;
typedef ControlBackgroundRec *ControlBackgroundPtr;

Field descriptions
depth A signed 16-bit integer indicating the bit depth (in pixels)

of the current graphics port.
colorDevice A Boolean value. If true, you are drawing on a color

device. If false, you are drawing on a monochrome device.

Supporting Live Feedback 1

If your control definition function supports live feedback while tracking the
indicator, it should return kControlSupportsLiveFeedback as one of the feature
bits in response to the kControlMsgGetFeatures message. If this bit is set, the
Control Manager will call your control definition function when it tracks the
indicator and pass kControlMsgCalcValueFromPos in the message parameter. The
Control Manager passes a handle to the indicator region being dragged in the
param parameter.

Your control definition function should respond by calculating its value and
drawing the control based on the new indicator region passed in. Your control
definition function should not recalculate its indicator position. After the user is
done dragging the indicator, your control definition function will be called with
a posCntl message at which time you can recalculate the position of the
indicator. Not recalculating the indicator position each time your control
definition function is called creates a smooth dragging experience for the user.

Your control definition function should return 0 as the function result.

Being Informed When Subcontrols Are Added or Removed 1

If your control definition function wishes to be informed when subcontrols are
added or removed, it should return kControlSupportsEmbedding as one of the
feature bits in response to the kControlMsgGetFeatures message. If this bit is set,
the Control Manager passes ControlMsgSubControlAdded in the message
parameter immediately after a subcontrol is added, or it passes
Control Manager Functions 77
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlMsgSubControlRemoved just before a subcontrol is removed from your
embedder control. A handle to the control being added or removed from the
embedding hierarchy is passed in the param parameter. Your control definition
function should respond appropriately and return 0 as the function result.

Typically, a control definition function only supports this message if it wants to
do extra processing in response to changes in its embedded controls. Radio
groups use these messages to perform necessary processing for handling
embedded controls. For example, if a currently selected radio button is deleted,
the group can adjust itself accordingly.

Defining Your Own Action Functions 1
When your action function is called for a control part, your action function is
passed a handle to the control and the control’s part code. Your action function
should then respond as is appropriate. For an example of such an action
function, see MyActionProc (page 78). The only exception to this is for indicators
that don’t support live feedback.

If the mouse-down event occurs in an indicator of a control that does not
support live feedback, your action function should take no parameters, because
the user may move the cursor outside the indicator while dragging it. For an
example of such an action function, see MyIndicatorActionProc (page 80).

The following Control Manager functions for defining your own control action
functions are new, changed, or not recommended with Appearance Manager
1.0:

■ MyActionProc (page 78) defines actions to be performed repeatedly in
response to a mouse-down event in a control part. Changed with
Appearance Manager 1.0.

■ MyIndicatorActionProc (page 80) defines actions to be performed while the
user holds down the mouse button when the cursor is over a control’s
indicator part. Not recommended with Appearance Manager 1.0.

MyActionProc 1
Defines actions to be performed repeatedly in response to a mouse-down event
in a control part.
78 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
The Control Manager declares the type for an application-defined action
function as follows:

typedef pascal void (*ControlActionProcPtr)(
ControlHandle theControl,
ControlPartCode partCode);

The Control Manager defines the data type ControlActionUPP to identify the
universal procedure pointer for this application-defined function:

typedef UniversalProcPtr ControlActionUPP;

You typically use the NewControlActionProc macro like this:

ControlActionUPP myActionUPP;
myActionUPP = NewControlActionProc(MyAction);

You typically use the CallControlActionProc macro like this:

CallControlActionProc(MyActionUPP, theControl, partCode);

Here’s how to declare an action function for a control part if you were to name
the function MyActionProc:

pascal void MyActionProc (
ControlHandle theControl,
ControlPartCode partCode);

theControl A handle to the control in which the mouse-down event
occurred.

partCode A control part code; see “Control Part Code Constants”
(page 135). When the cursor is still in the control part where the
mouse-down event first occurred, this parameter contains that
control’s part code. When the user drags the cursor outside the
original control part, this parameter contains 0.

DISCUSSION

When a mouse-down event occurs in a control, HandleControlClick (page 38)
and TrackControl (page 41) respond as is appropriate by highlighting the
control or dragging the indicator as long as the user holds down the mouse
button. You can define other actions to be performed repeatedly during this
interval. To do so, define your own action function and point to it in the
Control Manager Functions 79
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
actionProc parameter of the TrackControl function or the inAction parameter of
HandleControlClick. This is the only way to specify actions in response to all
mouse-down events in a control or indicator.

IMPORTANT

You should use the MyIndicatorActionProc function while
tracking indicators of controls that don’t support live
feedback.

VERSION NOTES

Changed with Appearance Manager 1.0 to support live feedback.

SEE ALSO

SetControlAction (page 48).

MyIndicatorActionProc 1
Defines actions to be performed while the user holds down the mouse button
when the cursor is over a control’s indicator.

When the Appearance Manager is available, you should use MyActionProc
(page 78) to define actions to be performed in response to a mouse-down event
in an indicator of a control that supports live feedback. You should only use
MyIndicatorActionProc if the control does not support live feedback.

VERSION NOTES

Not recommended with Appearance Manager 1.0 and later.

Defining Your Own Key Filter Function 1
The following Control Manager function for defining your own key filter
function is new with Appearance Manager 1.0:

■ MyControlKeyFilterProc (page 81) allows for the interception and possible
changing of keystrokes destined for a control. New with Appearance
Manager 1.0.
80 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
MyControlKeyFilterProc 1
The key filter function allows for the interception and possible changing of
keystrokes destined for a control.

Controls that support text input (such as editable text and list box controls) can
attach a key filter function to filter key strokes and modify them on return.

The Control Manager declares the type for an application-defined key filter
function as follows:

typedef pascal KeyFilterResult (*ControlKeyFilterProcPtr)(
ControlHandle theControl,
SInt16* keyCode,
SInt16* charCode,
SInt16* modifiers);

The Control Manager defines the data type ControlKeyFilterUPP to identify the
universal procedure pointer for this application-defined function:

typedef UniversalProcPtr ControlKeyFilterUPP;

You typically use the NewControlKeyFilterProc macro like this:

ControlKeyFilterUPP myControlKeyFilterUPP;
myControlKeyFilterUPP = NewControlKeyFilterProc(MyKeyFilter);

You typically use the CallControlKeyFilterProc macro like this:

CallControlKeyFilterProc(myControlKeyFilterUPP, theControl, keyCode,
charCode, modifiers);

Here’s how to declare a key filter function if you were to name the function
MyControlKeyFilterProc:

pascal ControlKeyFilterResult MyControlKeyFilterProc (
ControlHandle theControl,
SInt16* keyCode,
SInt16* charCode,
SInt16* modifiers);

theControl A handle to the control in which the mouse-down event
occurred.
Control Manager Functions 81
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
keyCode The virtual key code derived from the event structure. This
value represents the key pressed or released by the user. It is
always the same for a specific physical key on a particular
keyboard regardless of which modifier keys were also pressed.

charCode A particular character derived from the event structure. This
value depends on the virtual key code, the state of the modifier
keys, and the current 'KCHR' resource.

modifiers The constant in the modifiers field of the event structure
specifying the state of the modifier keys and the mouse button
at the time the event was posted.

function result Returns a value indicating whether or not it allowed or blocked
keystrokes; see “Key Filter Result Codes” (page 82).

DISCUSSION

Your key filter function can intercept and change keystrokes destined for a
control. Your key filter function can change the keystroke, leave it alone, or
block your control definition function from receiving it. For example, an
editable text control can use a key filter function to allow only numeric values
to be input in its field.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

Key Filter Result Codes 1

Your key filter function returns these constants to specify whether or not a
keystroke is filtered or blocked.

enum {
kControlKeyFilterBlockKey = 0,
kControlKeyFilterPassKey = 1

};
typedef SInt16 ControlKeyFilterResult;

Constant descriptions

kControlKeyFilterBlockKey
The keystroke is blocked and not received by the control.
82 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlKeyFilterPassKey
The keystroke is filtered and received by the control.

Defining Your Own User Pane Functions 1
This section describes the application-defined user pane functions that provide
you with the ability to create a custom Appearance-compliant control without
writing your own control definition function. A user pane is a general purpose
stub control; it can be used as the root control for a window, as well as
providing a way to hook in application-defined functions such as those
described below. When Appearance is available, user panes should be used in
dialog boxes instead of user items.

Once you have provided a user pane application-defined function, pass the tag
constant representing the user pane function you wish to get or set in the
tagName parameter of SetControlData (page 49). For a description of the tag
constants, see “Control Data Tag Constants” (page 118). For example, to set a
user pane draw function, pass the constant kControlUserPaneDrawProcTag of
type ControlUserPaneDrawingUPP in the tagName parameter of SetControlData
(page 49).The Control Manager then draws the control using a universal
procedure pointer to your user pane draw function.

The following Control Manager functions for defining your own user pane
functions are new with Appearance Manager 1.0:

■ MyUserPaneDrawProc (page 84) draws the content of your user pane control in
the rectangle of user pane control. New with Appearance Manager 1.0.

■ MyUserPaneHitTestProc (page 85) returns the part code of the control that the
point was in when the mouse-down event occurred. New with Appearance
Manager 1.0.

■ MyUserPaneTrackingProc (page 86) tracks a control while the user holds down
the mouse button. New with Appearance Manager 1.0.

■ MyUserPaneIdleProc (page 88) performs idle processing. New with
Appearance Manager 1.0.

■ MyUserPaneKeyDownProc (page 88) handles keyboard event processing. New
with Appearance Manager 1.0.

■ MyUserPaneActivateProc (page 90) handles activate and deactivate event
processing. New with Appearance Manager 1.0.
Control Manager Functions 83
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
■ MyUserPaneFocusProc (page 91) handles keyboard focus. New with
Appearance Manager 1.0.

■ MyUserPaneBackgroundProc (page 93) sets the background color or pattern for
user panes that support embedding. New with Appearance Manager 1.0.

MyUserPaneDrawProc 1
Draws the content of your user pane control in the rectangle of user pane
control.

The Control Manager declares the type for an application-defined user pane
draw function as follows:

typedef pascal void (*ControlUserPaneDrawProc)(
ControlHandle control,
SInt16 part);

The Control Manager defines the data type ControlUserPaneDrawUPP to identify
the universal procedure pointer for this application-defined function:

typedef UniversalProcPtr ControlUserPaneDrawUPP;

You typically use the NewControlUserPaneDrawProc macro like this:

ControlUserPaneDrawUPP myControlUserPaneDrawUPP;
myControlUserPaneDrawUPP = NewControlUserPaneDrawProc(MyUserPaneDraw);

You typically use the CallControlUserPaneDrawProc macro like this:

CallControlUserPaneDrawProc(myControlUserPaneDrawUPP, control, part);

Here’s how to declare the function MyUserPaneDrawProc:

pascal void MyUserPaneDrawProc (
ControlHandle control,
SInt16 part);

control A handle to the user pane control in which you wish drawing to
occur.

part The part code of the control you should draw. If 0, draw the
entire control.
84 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
DISCUSSION

Once you have created the function MyUserPaneDrawProc, pass
kControlUserPaneDrawProcTag in the tagName parameter of SetControlData
(page 49).The Control Manager will draw the user pane control with a
universal procedure pointer to MyUserPaneDrawProc.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

MyUserPaneHitTestProc 1
Returns the part code of the control that the point was in when the
mouse-down event occurred.

The Control Manager declares the type for an application-defined user pane hit
test function as follows:

typedef pascal ControlPartCode (*ControlUserPaneHitTestProc) (
ControlHandle control,
Point where);

The Control Manager defines the data type ControlUserPaneHitTestUPP to
identify the universal procedure pointer for this application-defined function:

typedef UniversalProcPtr ControlUserPaneHitTestUPP;

You typically use the NewControlUserPaneHitTestProc macro like this:

ControlUserPaneHitTestUPP myControlUserPaneHitTestUPP;
myControlUserPaneHitTestUPP = NewControlUserPaneHitTestProc
(MyUserPaneHitTest);

You typically use the CallControlUserPaneHitTestProc macro like this:

CallControlUserPaneHitTestProc(myControlUserPaneHitTestUPP, control,
where);

Here’s how to declare the function MyUserPaneHitTestProc:

pascal ControlPartCode MyUserPaneHitTestProc (
ControlHandle control,
Point where);
Control Manager Functions 85
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
control A handle to the control in which the mouse-down event
occurred.

where The point, in a window’s local coordinates, where the
mouse-down event occurred.

function result Returns the part code of the control where the mouse-down
event occurred. If the point was not over a control, your
function should return kControlNoPart.

DISCUSSION

Once you have created the function MyUserPaneHitTestProc, pass
kControlUserPaneHitTestProcTag in the tagName parameter of SetControlData
(page 49).

VERSION NOTES

Available with Appearance Manager 1.0 and later.

MyUserPaneTrackingProc 1
Tracks a control while the user holds down the mouse button.

The Control Manager declares the type for an application-defined user pane
tracking function as follows:

typedef pascal ControlPartCode (*ControlUserPaneTrackingProc)(
ControlHandle control,
Point startPt,
ControlActionUPP actionProc);

The Control Manager defines the data type ControlUserPaneTrackingUPP to
identify the universal procedure pointer for this application-defined function:

typedef UniversalProcPtr ControlUserPaneTrackingUPP;

You typically use the NewControlUserPaneTrackingingProc macro like this:

ControlUserPaneTrackingUPP myControlUserPaneTrackingUPP;
myControlUserPaneTrackingUPP = NewControlUserPaneTrackingProc
(MyUserPaneTracking);
86 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
You typically use the CallControlUserPaneTrackingingProc macro like this:

CallControlUserPaneTrackingProc(myControlUserPaneTrackingUPP, control,
startPt, actionProc);

Here’s how to declare the function MyUserPaneTrackingProc:

pascal ControlPartCode MyUserPaneTrackingProc (
ControlHandle control,
Point startPt,
ControlActionUPP actionProc);

control A handle to the control in which the mouse-down event
occurred.

startPt The location of the cursor at the time the mouse button was first
pressed, in local coordinates. Your application retrieves this
point from the where field of the event structure.

actionProc A pointer to an action function defining what action your
application takes while the user holds down the mouse button.
The value of the actionProc parameter can be a valid procPtr,
nil, or -1. A value of -1 indicates that the control should either
perform auto tracking, or if it is incapable of doing so, do
nothing (like nil).

function result Returns the part code of the control part that was tracked. If
tracking was unsuccessful, kControlNoPartCode is returned.

DISCUSSION

Your MyUserPaneTrackingProc function should track the control by repeatedly
calling the action function specified in the actionProc parameter until the
mouse button is released. When the mouse button is released, your function
should return the part code of the control part that was tracked.

This function will only get called if you’ve set the kControlHandlesTracking
feature bit on creation of the user pane control. Once you have created the
function MyUserPaneTrackingProc, pass kControlUserPaneTrackingProcTag in the
tagName parameter of SetControlData (page 49).

VERSION NOTES

Available with Appearance Manager 1.0 and later.
Control Manager Functions 87
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
MyUserPaneIdleProc 1
Performs idle processing.

The Control Manager declares the type for an application-defined user pane
idle function as follows:

typedef pascal void (*ControlUserPaneIdleProc)(ControlHandle control);

The Control Manager defines the data type ControlUserPaneIdleUPP to identify
the universal procedure pointer for this application-defined function:

typedef UniversalProcPtr ControlUserPaneIdleUPP;

You typically use the NewControlUserPaneIdleProc macro like this:

ControlUserPaneIdleUPP myControlUserPaneIdleUPP;
myControlUserPaneIdleUPP = NewControlUserPaneIdleProc(MyUserPaneIdle);

You typically use the CallControlUserPaneIdleProc macro like this:

CallControlUserPaneIdleProc(myControlUserPaneIdleUPP, control);

Here’s how to declare the function MyUserPaneIdleProc:

pascal void MyUserPaneIdleProc (ControlHandle control);

control A handle to the control for which you wish to perform idle
processing.

DISCUSSION

This function will only get called if you’ve set the kControlWantsIdle feature bit
on creation of the user pane control. Once you have created the function
MyUserPaneIdleProc, pass kControlUserPaneIdleProcTag in the tagName
parameter of SetControlData (page 49).

VERSION NOTES

Available with Appearance Manager 1.0 and later.

MyUserPaneKeyDownProc 1
Handles keyboard event processing.
88 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
The Control Manager declares the type for an application-defined user pane key
down function as follows:

typedef pascalControlPartCode(*ControlUserPaneKeyDownProc)(
ControlHandle control
SInt16 keyCode,
SInt16 charCode,
SInt16 modifiers);

The Control Manager defines the data type UserPaneKeyDownUPP to identify the
universal procedure pointer for this application-defined function:

typedef UniversalProcPtr ControlUserPaneKeyDownUPP;

You typically use the NewControlUserPaneKeyDownProc macro like this:

ControlUserPaneKeyDownUPP myControlUserPaneKeyDownUPP;
myControlUserPaneKeyDownUPP = NewControlUserPaneKeyDownProc
(MyUserPaneKeyDown);

You typically use the CallControlUserPaneKeyDownProc macro like this:

CallControlUserPaneKeyDownProc(myControlUserPaneKeyDownUPP, control,
keyCode, charCode, modifiers);

Here’s how to declare the function MyUserPaneKeyDownProc:

pascal ControlPartCode MyUserPaneKeyDownProc (
ControlHandle control,
SInt16 keyCode,
SInt16 charCode,
SInt16 modifiers);

control A handle to the control in which the keyboard event occurred.

keyCode The virtual key code derived from event structure. This value
represents the key pressed or released by the user. It is always
the same for a specific physical key on a particular keyboard
regardless of which modifier keys were also pressed.

charCode A particular character derived from the event structure. This
value depends on the virtual key code, the state of the modifier
keys, and the current 'KCHR' resource.
Control Manager Functions 89
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
modifiers The constant in the modifiers field of the event structure
specifying the state of the modifier keys and the mouse button
at the time the event was posted.

function result Returns the part code of the control where the keyboard event
occurred. If the keyboard event did not occur in a control, your
function should return kControlNoPart.

DISCUSSION

Your MyUserPaneKeyDownProc function should handle the key pressed or released
by the user and return the part code of the control where the keyboard event
occurred. This function will only get called if you’ve set the
kControlSupportsFocus feature bit on creation of the user pane control. Once
you have created the function MyUserPaneKeyDownProc, pass
kControlUserPaneKeyDownProcTag in the tagName parameter of SetControlData
(page 49).

VERSION NOTES

Available with Appearance Manager 1.0 and later.

MyUserPaneActivateProc 1
Handles activate and deactivate event processing.

The Control Manager declares the type for an application-defined user pane
activate function as follows:

typedef pascal void (*ControlUserPaneActivateProc)(
ControlHandle control,
Boolean activating);

The Control Manager defines the data type UserPaneActivateUPP to identify the
universal procedure pointer for this application-defined function:

typedef UniversalProcPtr ControlUserPaneActivateUPP;

You typically use the NewControlUserPaneActivateProc macro like this:
90 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
ControlUserPaneActivateUPP myControlUserPaneActivateUPP;
myControlUserPaneActivateUPP = NewControlUserPaneActivateProc
(MyUserPaneActivate);

You typically use the CallControlUserPaneActivateProc macro like this:

CallControlUserPaneActivateProc(myControlUserPaneActivateUPP, control,
activating);

Here’s how to declare the function MyUserPaneActivateProc:

pascal void MyUserPaneActivateProc (
ControlHandle control
Boolean activating);

control A handle to the control in which the activate event occurred.

activating A Boolean value indicating whether or not the control is being
activated. If true, the control is being activated. If false, the
control is being deactivated.

DISCUSSION

Your MyUserPaneActivateProc function should perform any special processing
before the user pane becomes activated or deactivated. For example, it should
deactivate its TEHandle or ListHandle if the user pane is about to be deactivated.

This function will only get called if you’ve set the kControlWantsActivate
feature bit on creation of the user pane control. Once you have created the
function MyUserPaneActivateProc, pass kControlUserPaneActivateProcTag in the
tagName parameter of SetControlData (page 49).

VERSION NOTES

Available with Appearance Manager 1.0 and later.

MyUserPaneFocusProc 1
Handles keyboard focus.
Control Manager Functions 91
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
The Control Manager declares the type for an application-defined user pane
focus function as follows:

typedef pascal ControlPartCode (*ControlUserPaneFocusProc)(
ControlHandle control,
ControlFocusPart action);

The Control Manager defines the data type ControlUserPaneFocusUPP to identify
the universal procedure pointer for this application-defined function:

typedef UniversalProcPtr ControlUserPaneFocusUPP;

You typically use the NewControlUserPaneFocusProc macro like this:

ControlUserPaneFocusUPP myControlUserPaneFocusUPP;
myControlUserPaneFocusUPP = NewControlUserPaneFocusProc
(MyUsePaneFocus);

You typically use the CallControlUserPaneFocusProc macro like this:

CallControlUserPaneFocusProc(myControlUserPaneFocusUPP, control, action);

Here’s how to declare the function MyUserPaneFocusProc:

pascal ControlPartCode MyUserPaneFocusProc (
ControlHandle control
ControlFocusPart action);

control A handle to the control that is to adjust its focus.

action The part code of the user pane to receive keyboard focus; see
“Handling Keyboard Focus” (page 72).

function result Returns the part of the user pane actually focused.
kControlFocusNoPart is returned if the user pane has lost the
focus or cannot be focused.

DISCUSSION

Your MyUserPaneFocusProc function is called in response to a change in keyboard
focus. It should respond by changing keyboard focus based on the part code
passed in the action parameter.
92 Control Manager Functions

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
This function will only get called if you’ve set the kControlSupportsFocus
feature bit on creation of the user pane control. Once you have created the
function MyUserPaneFocusProc, pass kControlUserPaneFocusProcTag in the
tagName parameter of SetControlData (page 49).

VERSION NOTES

Available with Appearance Manager 1.0 and later.

MyUserPaneBackgroundProc 1
Sets the background color or pattern for user panes that support embedding.

The Control Manager declares the type for an application-defined user pane
background color function as follows:

typedef pascal (*ControlUserPaneBackgroundProcPtr)(
ControlHandle control,
ControlBackgroundPtr info);

The Control Manager defines the data type ControlUserPaneBackgroundUPP to
identify the universal procedure pointer for this application-defined function:

typedef UniversalProcPtr ControlUserPaneBackgroundUPP;

You typically use the NewControlUserPaneBackgroundProc macro like this:

ControlUserPaneBackgroundUPP myControlUserPaneBackgroundUPP;
myControlUserPaneBackgroundUPP = NewControlUserPaneBackgroundProc
(MyUsePaneBackground);

You typically use the CallControlUserPaneBackgroundProc macro like this:

CallControlUserPaneBackgroundProc(myControlUserPaneBackgroundUPP,
control, info);
Control Manager Functions 93
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
Here’s how to declare the function MyUserPaneBackgroundProc:

pascal void MyUserPaneBackgroundProc (
ControlHandle control
ControlBackgroundPtr info);

control A handle to the control for which the background color or
pattern is to be set.

info A pointer to information such as the depth and type of the
drawing device.

DISCUSSION

Your MyUserPaneBackgroundProc function should set the user pane background
color or pattern to whatever is appropriate given the bit depth and device type
passed in. Your MyUserPaneBackgroundProc function is called to set up the
background color. This ensures that when an embedded control calls EraseRgn
or EraseRect, the background is erased to the correct color or pattern.

This function will only get called if there is a control embedded in the user pane
and if you’ve set the kControlHasSpecialBackground and
kControlSupportsEmbedding feature bits on creation of the user pane control.
Once you have created the function MyUserPaneBackgroundProc, pass
kControlUserPaneBackgroundProcTag in the tagName parameter of SetControlData
(page 49).

VERSION NOTES

Available with Appearance Manager 1.0 and later.

Control Manager Data Types 1

The following Control Manager data types are new, changed, or not
recommended with Appearance Manager 1.0:

■ ControlFontStyleRec (page 95)

■ ControlButtonContentInfo (page 97)

■ ControlEditTextSelectionRec (page 98)
94 Control Manager Data Types

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
■ ControlTabInfoRec (page 99)

■ AuxCtlRec (page 99)

■ PopupPrivateData (page 99)

■ CtlCTab (page 100)

■ 'CNTL' (page 100)

■ 'cctb' (page 102)

■ 'ldes' (page 102)

■ 'tab#' (page 104)

ControlFontStyleRec 1
You can use the ControlFontStyleRec type to specify a control’s font. You pass a
pointer to the control font style structure in the inStyle parameter of
SetControlFontStyle (page 53) to specify a control’s font. If none of the flags in
the flags field of the structure are set, the control uses the system font unless
the control variant kControlUsesOwningWindowsFontVariant has been specified, in
which case the control uses the window font. The ControlFontStyleRec type is
available with Appearance Manager 1.0 and later.

Note that if you wish to specify the font for controls in a dialog box, you should
use a dialog font table resource, which is automatically read in by the Dialog
Manager.

struct ControlFontStyleRec {
SInt16 flags;
SInt16 font;
SInt16 size;
SInt16 style;
SInt16 mode;
SInt16 just;
RGBColor foreColor;
RGBColor backColor;
};
typedef struct ControlFontStyleRec ControlFontStyleRec;
typedef ControlFontStyleRec *ControlFontStylePtr;
Control Manager Data Types 95
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
Field descriptions

flags A signed 16-bit integer specifying which fields of the
structure should be applied to the control; see “Control
Font Style Flag Constants” (page 126). If none of the flags in
the flags field of the structure are set, the control uses the
system font unless the control variant
kControlUsesOwningWindowsFontVariant has been specified,
in which case the control uses the window font.

font If the kControlUseFontMask bit is set, then this field contains
a value specifying the ID of the font family to use. If this bit
is not set, then the system default font is used. A meta font
constant can be specified instead; see “Meta Font
Constants” (page 138).

size If the kControlUseSizeMask bit is set, then this field contains
a value specifying the point size of the text. If the
kControlAddSizeMask bit is set, this value will represent the
size to add to the current point size of the text. A meta font
constant can be specified instead; see “Meta Font
Constants” (page 138).

style If the kControlUseFaceMask bit is set, then this field contains
a value specifying which styles to apply to the text. If all
bits are clear, the plain font style is used. The bit numbers
and the styles they represent are

mode If the kControlUseModeMask bit is set, then this field contains
a value specifying how characters are drawn in the bit
image. See Inside Macintosh: Imaging With QuickDraw for a
discussion of transfer modes.

just If the kControlUseJustMask bit is set, then this field contains
a value specifying text justification. Possible values are
teFlushDefault (0), teCenter (1), teFlushRight (-1), and
teFlushLeft (-2).

Bit
value Style
0 Bold
1 Italic
2 Underline
3 Outline
4 Shadow
5 Condensed
6 Extended
96 Control Manager Data Types

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
foreColor If the kControlUseForeColorMask bit is set, then this field
contains an RGB color value to use when drawing the text.

backColor If the kControlUseBackColorMask bit is set, then this field
contains an RGB color value to use when drawing the
background behind the text. In certain text modes,
background color is ignored.

ControlButtonContentInfo 1
You can use the ControlButtonContentInfo structure to specify the content for a
bevel button or image well. Values of type ControlButtonContentInfo are set via
SetControlData (page 49) and obtained from GetControlData (page 50), in
conjunction with the kControlBevelButtonContentTag and
kControlImageWellContentTag constants; see “Control Data Tag Constants”
(page 118). The ControlButtonContentInfo type is available with Appearance
Manager 1.0 and later.

struct ControlButtonContentInfo {
ControlContentType contentType;
union {

SInt16 resID;
CIconHandle cIconHandle;
Handle iconSuite;
Handle iconRef;
PicHandle picture;

} u;
};
typedef struct ControlButtonContentInfo ControlButtonContentInfo;
typedef ControlButtonContentInfo *ControlButtonContentInfoPtr;

Field descriptions
contentType Specifies the bevel button or image well content type and

whether the content is text-only, resource-based, or
handle-based; see “Bevel Button and Image Well Content
Type Constants” (page 130). The value specified in the
contentType field determines which of the other fields in
the structure are used.

resID If the content type specified in the contentType field is
kControlContentIconSuiteRes, kControlContentCIconRes, or
Control Manager Data Types 97
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlContentPictRes, this field contains the resource ID
of a picture, color icon, or icon suite resource.

cIconHandle If the content type specified in the contentType field is
kControlContentCIconHandle, this field contains a handle to
a color icon.

iconSuite If the content type specified in the contentType field is
kControlContentIconSuiteHandle, this field contains a
handle to an icon suite.

iconRef If the content type specified in the contentType field is
kControlContentIconRef, this field contains an IconRef
value. IconRef values are supported under Mac OS 8.5 and
later.

picture If the content type specified in the contentType field is
kControlContentPictHandle, this field contains a handle to a
picture.

ControlEditTextSelectionRec 1
You can use the ControlEditTextSelectionRec type to specify a selection range
in an editable text control. You pass a pointer to the editable text selection
structure to GetControlData (page 50) and SetControlData (page 49) to access
and set the current selection range in an editable text control. The
ControlEditTextSelectionRec type is available with Appearance Manager 1.0
and later.

struct ControlEditTextSelectionRec {
SInt16 selStart;
SInt16 selEnd;

};
typedef struct ControlEditTextSelectionRec ControlEditTextSelectionRec;
typedef ControlEditTextSelectionRec *ControlEditTextSelectionPtr;

Field descriptions
selStart A signed 16-bit integer indicating the beginning of the

editable text selection.
selEnd A signed 16-bit integer indicating the end of the editable

text selection.
98 Control Manager Data Types

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
ControlTabInfoRec 1
You can use the ControlTabInfoRec type to specify the icon and title for a tab
control. If you are not creating a tab control with a 'tab#' resource, you can call
SetControlMaximum to set the number of tabs in a tab control. Then use the
functions SetControlData (page 49) and GetControlData (page 50) with the
ControlTabInfoRec structure to access information for an individual tab in a tab
control. The ControlTabInfoRec type is available with Appearance Manager
1.0.1 and later.

struct ControlTabInfoRec {
SInt16 version;
SInt16 iconSuiteID;
Str255 name;

};

Field descriptions
version A signed 16-bit integer indicating the version of the tab

information structure. The only currently available version
value is 0.

iconSuiteID A signed 16-bit integer indicating the ID of an icon suite to
use for the tab label. If the specified ID is not found, no icon
is displayed for the tab label. Pass 0 for no icon.

name A string specifying the title to be used for the tab label.

AuxCtlRec 1
The auxiliary control structure is not recommend with the Appearance
Manager. When the Appearance Manager is available and you are using
standard controls, most of the fields of the auxiliary control structure are
ignored except the acCTable and acFlags fields. If you are creating your own
control definition function, the entire auxiliary control structure can be used.

PopupPrivateData 1
The pop-up menu private structure is not recommend with the Appearance
Manager. When the Appearance Manager is available, you should not access
the pop-up menu private data structure. Instead, you should pass the value
kControlBevelButtonMenuHandleTag in the tagName parameter of GetControlData
Control Manager Data Types 99
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
(page 50) to get the menu handle of a bevel button, and the menu handle and
the menu ID of the menu associated with a pop-up menu.

CtlCTab 1
The control color table structure is not recommend with the Appearance
Manager. When the Appearance Manager is available and you are using
standard controls, the control color table structure is ignored and the colors are
determined by the current theme. If you are creating your own control
definition function, you can use the control color table structure to draw a
control using colors other than the system default.

'CNTL' 1
The control resource is changed with the Appearance Manager to support the
additional standard controls that are available with the Appearance Manager.
You can use a control ('CNTL') resource to define a standard control. All control
resources must have resource ID numbers greater than 127. Use GetNewControl
(page 12) to create a control defined in a control resource. The Control Manager
uses the information you specify to create a control structure in memory.
Figure 1-1 shows the structure of this resource.
100 Control Manager Data Types

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
Figure 1-1 Structure of a compiled control ('CNTL') resource

The compiled version of a control resource contains the following elements:

■ The rectangle, specified in coordinates local to the window, that encloses the
control and thus determines its size and location.

■ The initial setting for the control; see “Settings Values for Standard Controls”
(page 113).

■ The visibility of the control. If this element contains the value true,
GetNewControl draws the control immediately, without using the
application’s standard updating mechanism for windows. If this element
contains the value false, the application must use ShowControl (page 27)
when it’s prepared to display the control.

■ Fill. Set to 0.

■ The maximum setting for the control; see “Settings Values for Standard
Controls” (page 113).

Rectangle

Initial setting

Visibility

Minimum setting

Control definition ID

Reference value

Title

Maximum setting

8

2

1

2

2

2

4

Variable

'CNTL' resource type Bytes

Fill 1
Control Manager Data Types 101
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
■ The minimum setting for the control; see “Settings Values for Standard
Controls” (page 113).

■ The control definition ID, which the Control Manager uses to determine the
control definition function for this control; see “Control Definition IDs”
(page 106).

■ The control’s reference value, which is set and used only by the application—
except when the application adds the kControlPopupUseAddResMenuVariant
variation code to the kControlPopupButtonProc control definition ID.

■ For controls that need a title, the string for that title; for controls that don’t
use titles, an empty string.

Note
The titles of all Appearance-compliant standard system
controls appear in the system font. You should generally
use the system font or small system font in your controls;
see Mac OS 8 Human Interface Guidelines for more details.

'cctb' 1
The control color table resource is not recommend with the Appearance
Manager. When the Appearance Manager is available and you are using
standard controls, the control color table ('cctb') resource is ignored and the
colors are determined by the current theme. If you are creating your own
control definition function, you can still use the control color table structure to
draw a control using colors other than the system default.

'ldes' 1
You can use a list box description resource to specify information in a list box. A
list box description resource is a resource of type 'ldes'. All list box description
resources must have resource ID numbers greater than 127. The Control
Manager uses the information you specify to provide additional information to
the corresponding list box control. The list box description resource is available
with Appearance Manager 1.0 and later.

Figure 1-2 shows the structure of this resource.
102 Control Manager Data Types

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
Figure 1-2 Structure of a compiled list box description ('ldes') resource

You define a list box description resource by specifying these elements:

■ Version number. An integer specifying the version of the resource format.

■ Number of rows. An integer specifying the number of rows in the list box.

■ Number of columns. An integer specifying the number of columns in the list
box.

■ Cell height. An integer specifying the height of a list item. If 0 is specified, the
list item height is automatically calculated.

■ Cell width. An integer specifying the width of a list item. If 0 is specified, the
list item width is automatically calculated.

■ Has vertical scroll bar. A Boolean value that indicates whether the list box
should contain a vertical scroll bar. If true, the list box contains a vertical
scroll bar; if false, no vertical scroll bar.

■ Reserved. Set to 0.

■ Has horizontal scroll bar. A Boolean value that indicates whether the list
should contain a horizontal scroll bar. Specify true if your list requires a
horizontal scroll bar; specify false otherwise.

Number of columns

Number of rows

Cell width

Cell height

Has vertical scroll
Reserved

Reserved
Has horizontal scroll

List definition resource ID

Has size box
Reserved

'ldes' resource type

2

2Version number

2

2

2

1
1
1

1
1

1

2

Bytes
Control Manager Data Types 103
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
■ Reserved. Set to 0.

■ Resource ID. This is the resource ID of the list definition procedure to use for
the list. To use the default list definition procedure, which supports the
display of unstyled text, specify a resource ID of 0.

■ Has size box. A Boolean value that indicates whether the List Manager
should leave room for a size box. If true, a size box will be drawn; if false, a
size box will not be drawn.

■ Reserved. Set to 0.

'tab#' 1
You can use a tab information resource to specify the icon suite ID and name of
each tab in a tab control. A tab information resource is a resource of type 'tab#'.
All tab information resources must have resource ID numbers greater than 127.
The Control Manager uses the information you specify to provide additional
information to the corresponding tab control. The tab information resource is
available with Appearance Manager 1.0 and later.

Figure 1-3 shows the structure of this resource.

Figure 1-3 Structure of a compiled tab information ('tab#') resource

Number of entries

First tab information entry

Last tab information entry

'tab#' resource type

2

Variable

Variable

Bytes

Version number 2
104 Control Manager Data Types

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
A compiled version of a tab information resource contains the following
elements:

■ Version number. An integer specifying the version of the resource.

■ An integer that specifies the number of entries in the resource (that is, the
number of tab information structures).

■ A series of tab information structures, each of which consists of a 2-byte icon
suite identifier and a variable-length string indicating the tab name.

Figure 1-4 shows the format of a compiled entry in a 'tab#' resource. A tab
information entry specifies the icon suite ID and the name of a tab control.

Figure 1-4 Structure of a tab information entry

Each entry in a 'tab#' resource contains the following:

■ Icon suite ID. A value of 0 indicates no icon.

■ Tab name. The title of the tab control.

■ Reserved. Set to 0.

■ Reserved. Set to 0.

Icon suite ID

Tab name

Reserved

Reserved

Tab information entry

2

1 to 256

4

2

Bytes
Control Manager Data Types 105
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
Control Manager Constants 1

The following Control Manager constants are new, changed, or not
recommended with Appearance Manager 1.0:

■ “Control Definition IDs” (page 106)

■ “Settings Values for Standard Controls” (page 113)

■ “Control Data Tag Constants” (page 118)

■ “Control Font Style Flag Constants” (page 126)

■ “Checkbox Value Constants” (page 127)

■ “Radio Button Value Constants” (page 128)

■ “Bevel Button Behavior Constants” (page 128)

■ “Bevel Button Menu Constants” (page 129)

■ “Bevel Button and Image Well Content Type Constants” (page 130)

■ “Bevel Button Graphic Alignment Constants” (page 132)

■ “Bevel Button Text Alignment Constants” (page 133)

■ “Bevel Button Text Placement Constants” (page 134)

■ “Clock Value Flag Constants” (page 135)

■ “Control Part Code Constants” (page 135)

■ “Part Identifier Constants” (page 138)

■ “Meta Font Constants” (page 138)

■ “Control Variant Constants” (page 139)

Control Definition IDs 1
When creating a control, your application supplies a control definition ID to one
of the Control Manager control-creation functions or to the control resource; see
'CNTL' (page 100). The control definition ID indicates the type of control to
create. A control definition ID is an integer that contains the resource ID of a
106 Control Manager Constants

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
control definition function in its upper 12 bits and a variation code in its lower 4
bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and
behaves. Control definition functions are stored as resources of type 'CDEF'.
Various Control Manager functions call a control definition function whenever
they need to perform some control-dependent action, such as drawing the
control on the screen. For more information on how to create a control
definition function, see “Defining Your Own Control Definition Function”
(page 56).

A control definition function, in turn, can use a variation code to describe
variations of the same basic control. For example, all pop-up arrows share the
same basic control definition function, which is stored in a resource of type
'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and
points to the right; it has a control definition ID of 192. A variation of this is a
large, left-pointing arrow, which has a control definition ID of 193. Still another
variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed in Table 1-1 in place of control
definition IDs. Most of these constants, and their associated IDs, are new with
the Appearance Manager and are not supported unless the Appearance
Manager is available. A control definition ID that is new is identified with an
asterisk (*) in its description in Table 1-1. For illustrations of these new controls,
see “Control Guidelines” in Mac OS 8 Human Interface Guidelines.

If your application contains code that uses the older, pre-Appearance control
definition IDs or their constants, your application can use the Appearance
Manager to map the old IDs to those for the new, updated controls introduced
by the Appearance Manager. In particular, the control definition IDs for
Control Manager Constants 107
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
pre-Appearance checkboxes, buttons, scroll bars, radio buttons, and pop-up
menus will be automatically mapped to Appearance-compliant equivalents.

Table 1-1 Control definition IDs and resource IDs for standard controls

Constant (and Value) for Control Definition ID Description
Resource
ID

pushButProc (0) Pre-Appearance push button. 0

pushButProc +
kControlUsesOwningWindowsFontVariant (8)

Pre-Appearance push button with its
text in the window font.

0

kControlPushButtonProc (368) Appearance-compliant push button.* 23

kControlPushButLeftIconProc (374) Appearance-compliant push button
with a color icon to the left of the
control title.* (This direction is reversed
when the system justification is right to
left). The contrlMax field of the control
structure for this control contains the
resource ID of the 'cicn' resource
drawn in the pushbutton.

23

kControlPushButRightIconProc (375) Appearance-compliant push button
with a color icon to right of control
title.* (This direction is reversed when
the system justification is right to left).
The contrlMax field of the control
structure for this control contains the
resource ID of the 'cicn' resource
drawn in the pushbutton.

23

checkBoxProc (1) Pre-Appearance checkbox. 0

checkBoxProc +
kControlUsesOwningWindowsFontVariant (8)

Pre-Appearance checkbox with a
control title in the window font.

0

kControlCheckBoxProc (369) Appearance-compliant checkbox.* 23

radioButProc (2) Pre-Appearance radio button. 0

radioButProc +
kControlUsesOwningWindowsFontVariant (8)

Pre-Appearance radio button with a
title in the window font.

0

kControlRadioButtonProc (370) Appearance-compliant radio button.* 23

scrollBarProc (16) Pre-Appearance scroll bar. 1
108 Control Manager Constants

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlScrollBarProc (384) Appearance-compliant scroll bar.* 24

kControlScrollBarLiveProc (386) Appearance-compliant scroll bar with
live feedback.*

24

kControlBevelButtonSmallBevelProc (32) Bevel button with a small bevel.* 2

kControlBevelButtonNormalBevelProc (33) Bevel button with a normal bevel.* 2

kControlBevelButtonLargeBevelProc (34) Bevel button with a large bevel.* 2

kControlBevelButtonSmallBevelProc +
kControlBevelButtonMenuOnRight (4)

Small bevel button with a pop-up
menu.*

2

kControlSliderProc (48) Slider.* Your application calls the
function SetControlAction (page 48) to
set the last value for the control.

3

kControlSliderProc +
kControlSliderLiveFeedback (1)

Slider with live feedback.* The value of
the control is updated automatically by
the Control Manager before your action
function is called. If no
application-defined action function is
supplied, the slider draws an outline of
the indicator as the user moves it.

3

kControlSliderProc +
kControlSliderHasTickMarks (2)

Slider with tick marks.* The control
rectangle must be large enough to
include the tick marks.

3

kControlSliderProc +
kControlSliderReverseDirection (4)

Slider with a directional indicator.* The
indicator is positioned perpendicularly
to the slider; that is, if the slider is
horizontal, the indicator points up, and
if the slider is vertical, the indicator
points left.

3

kControlSliderProc +
kControlSliderNonDirectional (8)

Slider with a rectangular,
non-directional indicator.* This variant
overrides the kSliderReverseDirection
and kSliderHasTickMarks variants.

3

kControlTriangleProc (64) Disclosure triangle.* 4

kControlTriangleLeftFacingProc (65) Left-facing disclosure triangle.* 4

Table 1-1 Control definition IDs and resource IDs for standard controls (continued)

Constant (and Value) for Control Definition ID Description
Resource
ID
Control Manager Constants 109
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlTriangleAutoToggleProc (66) Auto-tracking disclosure triangle.* 4

kControlTriangleLeftFacingAutoToggleProc (67)

Left-facing, auto-tracking disclosure
triangle.*

4

kControlProgressBarProc (80) Progress indicator.* To make the control
determinate or indeterminate, set the
kControlProgressBarIndeterminateTag
constant; see “Control Data Tag
Constants” (page 118). Progress
indicators are only horizontal in
orientation; vertical progress indicators
are not currently supported.

5

kControlLittleArrowsProc (96) Little arrows.* 6

kControlChasingArrowsProc (11) Asynchronous arrows.* 7

kControlTabLargeProc (128) Normal tab control.* 8

kControlTabSmallProc (129) Small tab control.*

kControlSeparatorLineProc (144) Separator line. 9

kControlGroupBoxTextTitleProc (160) Primary group box with text title.* 10

kControlGroupBoxCheckBoxProc (161) Primary group box with checkbox title.* 10

kControlGroupBoxPopupButtonProc (162) Primary group box with pop-up button
title.*

10

kControlGroupBoxSecondaryTextTitleProc (164)

Secondary group box with text title.* 10

kControlGroupBoxSecondaryCheckBoxProc (165)

Secondary group box with checkbox
title.*

10

kControlGroupBoxSecondaryPopupButtonProc (166)

Secondary group box with pop-up
button title.*

10

Table 1-1 Control definition IDs and resource IDs for standard controls (continued)

Constant (and Value) for Control Definition ID Description
Resource
ID
110 Control Manager Constants

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlImageWellProc (176) Image well.* This control behaves as a
palette-type object: it can be selected by
clicking, and clicking on another object
should change the keyboard focus. If
the keyboard focus is removed, your
application should then set the value to
0 to remove the checked border.

11

kControlImageWellAutoTrackProc (177) Image well with autotracking.* This
variant sets the value itself so the
control remains highlighted.

11

kControlPopupArrowEastProc (192) Large, right-facing pop-up arrow.* 12

kControlPopupArrowWestProc (193) Large, left-facing pop-up arrow.* 12

kControlPopupArrowNorthProc (194) Large, up-facing pop-up arrow.* 12

kControlPopupArrowSouthProc (195) Large, down-facing pop-up arrow.* 12

kControlPopupArrowSmallEastProc (196) Small, right-facing pop-up arrow.* 12

kControlPopupArrowSmallWestProc (197) Small, left-facing pop-up arrow.* 12

kControlPopupArrowSmallNorthProc (198) Small, up-facing pop-up arrow.* 12

kControlPopupArrowSmallSouthProc (199) Small, down-facing pop-up arrow.* 12

kControlPlacardProc (224) Placard.* 14

kControlClockTimeProc (240) Clock control displaying hour/
minutes.*

15

kControlClockTimeSecondsProc (241) Clock control displaying hours/
minutes/seconds.*

15

kControlClockDateProc (242) Clock control displaying date/month/
year.*

15

kControlClockMonthYearProc (243) Clock control displaying month/year.* 15

kControlUserPaneProc (256) User pane.* 16

kControlEditTextProc (272) Editable text field for windows.* This
control maintains its own text handle
(TEHandle).

17

Table 1-1 Control definition IDs and resource IDs for standard controls (continued)

Constant (and Value) for Control Definition ID Description
Resource
ID
Control Manager Constants 111
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlEditTextPasswordProc (274) Editable text field for passwords.* This
control is supported by the Script
Manager. Password text can be
accessed via the kEditTextPasswordTag
constant; see “Control Data Tag
Constants” (page 118).

17

kControlStaticTextProc (288) Static text field.* 18

kControlPictureProc (304) Picture control.* 19

kControlPictureNoTrackProc (305) Non-tracking picture.* Immediately
returns kControlPicturePart as the part
code hit without tracking.

19

kControlIconProc (320) Icon control.* 20

kControlIconNoTrackProc (321) Non-tracking icon.* 20

kControlIconSuiteProc (322) Icon suite.* 20

kControlIconSuiteNoTrackProc (323) Non-tracking icon suite.* 20

kControlWindowHeaderProc (336) Window header.* 21

kControlWindowListViewHeaderProc (337) Window list view header.* 21

kControlListBoxProc (352) List box.* 21

kControlListBoxAutoSizeProc (353) Autosizing list box.* 21

popupMenuProc (1008) Pre-Appearance standard pop-up
menu.

63

popupMenuProc + popupFixedWidth (1009) Pre-Appearance, fixed-width pop-up
menu.

63

popupMenuProc +
popupVariableWidth (1010)

Pre-Appearance, variable-width
pop-up menu.

63

popupMenuProc + popupUseAddResMenu
(1012)

Pre-Appearance pop-up menu with a
value of type ResType in the contrlRfCon
field of the control structure. The Menu
Manager adds resources of this type to
the menu.

63

Table 1-1 Control definition IDs and resource IDs for standard controls (continued)

Constant (and Value) for Control Definition ID Description
Resource
ID
112 Control Manager Constants

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
Settings Values for Standard Controls 1
This section lists the initial, minimum, and maximum settings for all standard
controls. You can use these values in the control resource when creating a new
control from a resource or with the function NewControl (page 13). Note that
some controls specify other information besides their range in their minimum
and maximum settings. For example, bevel buttons use the high byte of their
minimum value to indicate their behavior.

Control Values

Push button (pre-Appearance)
Initial: 0

popupMenuProc + popupUseWFont (1016) Pre-Appearance pop-up menu with a
control title in the window font.

63

kControlPopupButtonProc (400) Appearance-compliant standard
pop-up menu.*

25

kControlPopupButtonProc +
kControlPopupFixedWidthVariant (1)

Appearance-compliant fixed-width
pop-up menu.*

25

kControlPopupButtonProc +
kControlPopupVariableWidthVariant (2)

Appearance-compliant variable-width
pop-up menu.*

25

kControlPopupButtonProc +
kControlPopupUseAddResMenuVariant (4)

Appearance-compliant pop-up menu
with a value of type ResType in the
contrlRfCon field of the control
structure.* The Menu Manager adds
resources of this type to the menu.

25

kControlPopupButtonProc +
kControlPopupUseWFontVariant (8)

Appearance-compliant pop-up menu
with control title in window font.*

25

kControlRadioGroupProc (416) Radio group.* Embedder control for
controls that have set the feature bit
kControlHasRadioBehavior.

26

* This control definition is new with the Appearance Manager and is not supported unless the Appearance
Manager is available.

Table 1-1 Control definition IDs and resource IDs for standard controls (continued)

Constant (and Value) for Control Definition ID Description
Resource
ID
Control Manager Constants 113
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
Minimum: 0
Maximum: 1

Push button (Appearance-compliant)
Initial: 0
Minimum: 0
Maximum: 1

Checkbox (pre-Appearance)
Initial: kControlCheckboxUncheckedValue
Minimum: kControlCheckboxUncheckedValue
Maximum: kControlCheckboxCheckedValue

Checkbox (Appearance-compliant)
Initial: kControlCheckboxUncheckedValue
Minimum: kControlCheckboxUncheckedValue
Maximum: kControlCheckboxCheckedValue or
kControlCheckboxMixedValue

Radio button (pre-Appearance)
Initial: kControlRadioButtonUncheckedValue
Minimum: kControlRadioButtonUncheckedValue
Maximum: kControlRadioButtonCheckedValue

Radio button (Appearance-compliant)
Initial: kControlRadioButtonUncheckedValue
Minimum: kControlRadioButtonUncheckedValue
Maximum: kControlRadioButtonCheckedValue or
kControlRadioButtonMixedValue

Scroll bar (pre-Appearance and Appearance-compliant versions)
Initial: Appropriate value between –32768 and 32768.
Minimum: –32768 to 32768
Maximum: –32768 to 32768; when the maximum setting is
equal to the minimum setting, the scroll bar is inactive.

Bevel button Initial: If you wish to attach a resource-based menu, the
menu’s resource ID. If you wish to attach a
non-resource-based menu, you must pass in a non-zero
initial value, then call the SetControlData function with the
kControlBevelButtonMenuHandleTag control data tag
constant and the return value from a call to the NewMenu
function. If no menu is to be attached, 0.
Minimum: High byte specifies behavior; see “Bevel Button
Behavior Constants” (page 128) and “Bevel Button Menu
Constants” (page 129). Low byte specifies content type; see
114 Control Manager Constants

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
“Bevel Button and Image Well Content Type Constants”
(page 130).
Maximum: Resource ID of bevel button’s content if
resource-based; see “Bevel Button and Image Well Content
Type Constants” (page 130).

Slider Initial: Appropriate value between –32768 and 32768; for
tick mark variant, the number of ticks. The control
definition function resets this value to the minimum setting
once the slider is created.
Minimum: –32768 to 32768
Maximum: –32768 to 32768; when the maximum setting is
equal to the minimum setting, the slider is inactive.

Disclosure triangle Initial: 0 (collapsed) or 1 (expanded)
Minimum: 0 (collapsed)
Maximum: 1 (expanded)

Progress indicator Initial: Appropriate value between –32768 and 32768.
Minimum: –32768 to 32768
Maximum: –32768 to 32768

Little arrows Initial: Appropriate value between –32768 and 32768.
Minimum: –32768 to 32768
Maximum: –32768 to 32768

Asynchronous arrows
Initial: Reserved. Set to 0.
Minimum: Reserved. Set to 0.
Maximum: Reserved. Set to 0.

Tab control Initial: Resource ID of the 'tab#' resource you are using to
hold tab information. The control definition function resets
this value to the minimum setting once the tab control is
created. Under Appearance 1.0.1 and later, a value of 0
indicates not to read a 'tab#' resource; see
ControlTabInfoRec (page 99).
Minimum: Ignored. The control definition function resets
this value to 1 once the tab control is created.
Maximum: Under Appearance 1.0, the maximum value is
ignored. Under Appearance 1.0.1, the maximum value
specifies the number of tabs in the tab control.

Separator line Initial: Reserved. Set to 0.
Minimum: Reserved. Set to 0.
Maximum: Reserved. Set to 0.
Control Manager Constants 115
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
Primary group box and secondary group box
Initial: Ignored if group box has text title. If the group box
has a checkbox or pop-up button title, same value as the
checkbox or pop-up button.
Minimum: Ignored if group box has text title. If the group
box has a checkbox or pop-up button title, same minimum
setting as the checkbox or pop-up button.
Maximum: Ignored if group box has text title. If the group
box has a checkbox or pop-up button title, same maximum
setting as the checkbox or pop-up button.

Image well Initial: Resource ID of the image well’s content, if the
content type specified in the minimum value is
resource-based. The control definition function resets this
value to 0 once the image well is created.
Minimum: Low byte specifies content type; see “Bevel
Button and Image Well Content Type Constants”
(page 130). The control definition function resets this value
to 0 once the image well is created.
Maximum: Ignored. The control definition function resets
this value to 2 once the image well is created.

Pop-up arrow Initial: Reserved. Set to 0.
Minimum: Reserved. Set to 0.
Maximum: Reserved. Set to 0.

Placard Initial: Reserved. Set to 0.
Minimum: Reserved. Set to 0.
Maximum: Reserved. Set to 0.

Clock Initial: One or more of the clock value flags; see “Clock
Value Flag Constants” (page 135). The control definition
function resets this value to 0 once the clock is created.
Minimum: Reserved. Set to 0.
Maximum: Reserved. Set to 0.

User pane Initial: One or more of the control feature constants; see
“Specifying Which Appearance-Compliant Messages Are
Supported” (page 68). The control definition function resets
this value to 0 once the user pane is created.
Minimum: Ignored. The control definition function resets
this value to a setting between –32768 to 32768 once the
user pane is created.
Maximum: Ignored. The control definition function resets
116 Control Manager Constants

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
this value to a setting between –32768 to 32768 once the
user pane is created.

Editable text field Initial: Reserved. Set to 0.
Minimum: Reserved. Set to 0.
Maximum: Reserved. Set to 0.

Static text field Initial: Reserved. Set to 0.
Minimum: Reserved. Set to 0.
Maximum: Reserved. Set to 0.

Picture Initial: Resource ID of the 'pict' resource you wish to
display. The control definition function resets this value to
0 once the picture control is created.
Minimum: Reserved. Set to 0.
Maximum: Reserved. Set to 0.

Icon Initial: Resource ID of the 'cicn', 'ICON', or icon suite
resource you wish to display. For icon suite variant, it only
looks for an icon suite. If not, it looks for a 'cicn' or
'ICON' resource. The control definition function resets this
value to 0 once the icon control is created.
Minimum: Reserved. Set to 0.
Maximum: Reserved. Set to 0.

Window header Initial: Reserved. Set to 0.
Minimum: Reserved. Set to 0.
Maximum: Reserved. Set to 0.

List box Initial: Resource ID of the 'ldes' resource you are using to
hold list box information. The control definition function
resets this value to 0 once the list box is created. An initial
value of 0 indicates not to read an 'ldes' resource under
Appearance 1.0.1 and later.
Minimum: Reserved. Set to 0.
Maximum: Reserved. Set to 0.

Pop-up menu (pre-Appearance and Appearance-compliant versions)
Initial: One or more of the pop-up menu title constants.
Minimum: Resource ID of the 'MENU' resource.
Maximum: Width (in pixels) of the pop-up menu title.

Radio group Initial: Set to 0 on creation. The control definition function
resets this value to the index of the currently selected
embedded radio button control once the radio group is
created. If currently selected control does not support radio
behavior, value will be set to 0 and the control will be
Control Manager Constants 117
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
deselected. To deselect all controls, set to 0.
Minimum: Set to 0.
Maximum: Set to 0 on creation. The control definition
function resets this value to the number of embedded
controls as controls are added.

Control Data Tag Constants 1
You can use the control data tag constants to set or obtain data that is associated
with a control. The control data tag constants are passed in the inTagName
parameters of SetControlData (page 49) and GetControlData (page 50) to specify
the piece of data in a control that you wish to set or get. You can also pass these
constants in the inTagName parameter of GetControlDataSize (page 52) if you
wish to determine the size of variable-length control data (e.g., text in an
editable text control). These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in
response to a kControlMsgGetFeatures message. The control data tag constants
are available with Appearance Manager 1.0 and later.

The data that your application sets or obtains can be of various types,
dependent upon the control. Therefore, the descriptions of the control data tag
constants list the data types for the information that you can set in the inData
parameter to the SetControlData function and that you can get in the inBuffer
parameter to the GetControlData function.

enum {
kControlPushButtonDefaultTag = ('dflt'),
kControlBevelButtonContentTag = ('cont'),
kControlBevelButtonTransformTag = ('tran'),
kControlBevelButtonTextAlignTag = ('tali'),
kControlBevelButtonTextOffsetTag = ('toff'),
kControlBevelButtonGraphicAlignTag = ('gali'),
kControlBevelButtonGraphicOffsetTag = ('goff'),
kControlBevelButtonTextPlaceTag = ('tplc'),
kControlBevelButtonMenuValueTag = ('mval'),
kControlBevelButtonMenuHandleTag = ('mhnd'),
kControlBevelButtonCenterPopupGlyphTag = ('pglc'),
kControlTriangleLastValueTag = ('last'),
kControlProgressBarIndeterminateTag = ('inde'),
kControlTabContentRectTag = ('rect'),
kControlTabEnabledFlagTag = ('enab'),
118 Control Manager Constants

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlTabInfoTag = ('tabi'),
kControlGroupBoxMenuHandleTag = ('mhan'),
kControlImageWellContentTag = ('cont'),
kControlImageWellTransformTag = ('tran'),
kControlClockLongDateTag = ('date'),
kControlUserItemDrawProcTag = ('uidp'),
kControlUserPaneDrawProcTag = ('draw'),
kControlUserPaneHitTestProcTag = ('hitt'),
kControlUserPaneTrackingProcTag = ('trak'),
kControlUserPaneIdleProcTag = ('idle'),
kControlUserPaneKeyDownProcTag = ('keyd'),
kControlUserPaneActivateProcTag = ('acti'),
kControlUserPaneFocusProcTag = ('foci'),
kControlUserPaneBackgroundProcTag = ('back'),
kControlEditTextTextTag = ('text'),
kControlEditTextTEHandleTag = ('than'),
kControlEditTextSelectionTag = ('sele'),
kControlEditTextPasswordTag = ('pass'),
kControlStaticTextTextTag = ('text'),
kControlStaticTextTextHeightTag = ('thei'),
kControlIconTransformTag = ('trfm'),
kControlIconAlignmentTag = ('algn'),
kControlListBoxListHandleTag = ('lhan'),
kControlFontStyleTag = ('font'),
kControlKeyFilterTag = ('fltr'),
kControlBevelButtonLastMenuTag = ('lmnu'),
kControlBevelButtonMenuDelayTag = ('mdly'),
kControlPopupButtonMenuHandleTag = ('mhan'),
kControlPopupButtonMenuIDTag = ('mnid'),
kControlListBoxDoubleClickTag = ('dblc'),
kControlListBoxLDEFTag = ('ldef')

};

Constant descriptions

kControlPushButtonDefaultTag
Tells Appearance-compliant button whether to draw a
default ring, or returns whether the Appearance Manager
draws a default ring for the button.
Data type returned or set: Boolean
Control Manager Constants 119
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlBevelButtonContentTag
Gets or sets a bevel button’s content type for drawing; see
“Bevel Button and Image Well Content Type Constants”
(page 130).
Data type returned or set: ControlButtonContentInfo
structure

kControlBevelButtonTransformTag
Gets or sets a transform that is added to the standard
transform of a bevel button; see “Icon Utilities” in More
Macintosh Toolbox.
Data type returned or set: IconTransformType

kControlBevelButtonTextAlignTag
Gets or sets the alignment of text in a bevel button; see
“Bevel Button Text Alignment Constants” (page 133).
Data type returned or set: ControlButtonTextAlignment

kControlBevelButtonTextOffsetTag
Gets or sets the number of pixels that text is offset in a
bevel button from the button’s left or right edge; this is
used with left, right, or system justification, but it is
ignored when the text is center aligned.
Data type returned or set: SInt16

kControlBevelButtonGraphicAlignTag
Gets or sets the alignment of graphics in a bevel button in
relation to any text the button may contain; see “Bevel
Button Graphic Alignment Constants” (page 132).
Data type returned or set: ControlButtonGraphicAlignment

kControlBevelButtonGraphicOffsetTag
Gets or sets the horizontal and vertical amounts that a
graphic element contained in a bevel button is offset from
the button’s edges; this value is ignored when the graphic
is specified to be center aligned on the button. Note that
offset values should not be used for bevel buttons with
content of type kControlContentIconRef, because IconRef
based icons may change with a theme switch; see “Bevel
Button and Image Well Content Type Constants”
(page 130).
Data type returned or set: point

kControlBevelButtonTextPlaceTag
Gets or sets the placement of a bevel button’s text; see
120 Control Manager Constants

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
“Bevel Button Text Placement Constants” (page 134).
Data type returned or set: ControlButtonTextPlacement

kControlBevelButtonMenuValueTag
Gets the menu value for a bevel button with an attached
menu; see “Bevel Button Menu Constants” (page 129).
Data type returned: SInt16

kControlBevelButtonMenuHandleTag
Gets or sets the menu handle for a bevel button with an
attached menu. To set a non-resource-based menu for a
bevel button, you must pass in a non-zero value in the
initialValue parameter of the NewControl function, then
call the SetControlData function with the
kControlBevelButtonMenuHandleTag constant and the return
value from a call to the NewMenu function.
Data type returned: MenuHandle

kControlBevelButtonCenterPopUpGlyphTag
Gets or sets the position of the pop-up arrow in a bevel
button when a pop-up menu is attached.
Data type returned or set: Boolean; if true, glyph is
vertically centered on the right; if false, glyph is on the
bottom right.

kControlTriangleLastValueTag
Gets or sets the last value of a disclosure triangle. Used
primarily for setting up a disclosure triangle properly when
using the auto-toggle variant.
Data type returned or set: SInt16

kControlProgressBarIndeterminateTag
Gets or sets whether a progress indicator is determinate or
indeterminate.
Data type returned or set: Boolean; if true, switches to an
indeterminate progress indicator; if false, switches to an
determinate progress indicator.

kControlTabContentRectTag
Gets the content rectangle of a tab control.
Data type returned: Rect

kControlTabEnabledFlagTag
Enables or disables a single tab in a tab control.
Data type returned or set: Boolean; if true, enabled; if
false, disabled.
Control Manager Constants 121
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlTabInfoTag
Gets or sets information for a tab in a tab control; see
ControlTabInfoRec (page 99). Available with Appearance
1.0.1 and later.
Data type returned or set: ControlTabInfoRec.

kControlGroupBoxMenuHandleTag
Gets the menu handle of a group box.
Data type returned: MenuHandle

kControlImageWellContentTag
Gets or sets the content for an image well; see
ControlButtonContentInfo (page 97).
Data type returned or set: ControlButtonContentInfo
structure

kControlImageWellTransformTag
Gets or sets a transform that is added to the standard
transform of an image well; see “Icon Utilities” in More
Macintosh Toolbox.
Data type returned or set: IconTransformType

kControlClockLongDateTag
Gets or sets the clock control’s time or date.
Data type returned or set: LongDateRec structure

kControlUserItemDrawProcTag
Gets or sets an application-defined item drawing function.
If an embedding hierarchy is established, a user pane
drawing function should be used instead of an item
drawing function.
Data type returned or set: UserItemUPP

kControlUserPaneDrawProcTag
Gets or sets a user pane drawing function; see
MyUserPaneDrawProc (page 84). Indicates that the Control
Manager needs to draw a control.
Data type returned or set: ControlUserPaneDrawingUPP

kControlUserPaneHitTestProcTag
Gets or sets a user pane hit-testing function. Indicates that
the Control Manager needs to determine if a control part
was hit; see MyUserPaneHitTestProc (page 85).
Data type returned or set: ControlUserPaneHitTestUPP

kControlUserPaneTrackingProcTag
Gets or sets a user pane tracking function, which will be
122 Control Manager Constants

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
called when a control definition function returns the
kControlHandlesTracking feature bit in response to a
kControlMsgGetFeatures message. Indicates that a user pane
handles its own tracking; see MyUserPaneTrackingProc
(page 86).
Data type returned or set: ControlUserPaneTrackingUPP

kControlUserPaneIdleProcTag
Gets or sets a user pane idle function, which will be called
when a control definition function returns the
kControlWantsIdle feature bit in response to a
kControlMsgGetFeatures message. Indicates that a user pane
performs idle processing; see MyUserPaneIdleProc (page 88).
Data type returned or set: ControlUserPaneIdleUPP

kControlUserPaneKeyDownProcTag
Gets or sets a user pane key down function, which will be
called when a control definition function returns the
kControlSupportsFocus feature bit in response to a
kControlMsgGetFeatures message. Indicates that a user pane
performs keyboard event processing; see
MyUserPaneKeyDownProc (page 88).
Data type returned or set: ControlUserPaneKeyDownUPP

kControlUserPaneActivateProcTag
Gets or sets a user pane activate function, which will be
called when a control definition function returns the
kControlWantsActivate feature bit in response to a
kControlMsgGetFeatures message. Indicates that a user pane
wants to be informed of activate and deactivate events; see
MyUserPaneActivateProc (page 90).
Data type returned or set: ControlUserPaneActivateUPP

kControlUserPaneFocusProcTag
Gets or sets a user pane keyboard focus function, which
will be called when a control definition function returns the
kControlSupportsFocus feature bit in response to a
kControlMsgGetFeatures message. Indicates that a user pane
handles keyboard focus; see MyUserPaneFocusProc (page 91).
Data type returned or set: ControlUserPaneFocusUPP

kControlUserPaneBackgroundProcTag
Gets or sets a user pane background function, which will be
called when a control definition function returns the
kControlHasSpecialBackground and
Control Manager Constants 123
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlSupportsEmbedding feature bits in response to a
kControlMsgGetFeatures message. Indicates that a user pane
can set its background color or pattern; see
MyUserPaneBackgroundProc (page 93).
Data type returned or set: ControlUserPaneBackgroundUPP

kControlEditTextTextTag
Gets or sets text in an editable text control.
Data type returned or set: character buffer

kControlEditTextTEHandleTag
Gets a handle to a text edit structure.
Data type returned: TEHandle

kControlEditTextSelectionTag
Gets or sets the selection in an editable text control.
Data type returned or set: ControlEditTextSelectionRec
structure

kControlEditTextPasswordTag
Gets clear password text from an editable text control, that
is, the text of the actual password typed, not the bullet text.
Data type returned: character buffer

kControlStaticTextTextTag
Gets or sets text in a static text control.
Data type returned or set: character buffer

kControlStaticTextTextHeightTag
Gets the height of text in a static text control.
Data type returned or set: SInt16

kControlIconTransformTag
Gets or sets a transform that is added to the standard
transform of an icon; see “Icon Utilities” in More Macintosh
Toolbox.
Data type returned or set: IconTransformType

kControlIconAlignmentTag
Gets or sets an icon’s position (centered, left, right); see
“Icon Utilities” in More Macintosh Toolbox.
Data type returned or set: IconAlignmentType

kControlListBoxListHandleTag
Gets a handle to a list box.
Data type returned: ListHandle
124 Control Manager Constants

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlFontStyleTag
Gets or sets the font style for controls that support text
(includes list box, tab, clock, static and editable text).
Data type returned or set: kControlFontStyleTag

kControlKeyFilterTag
Gets or sets the key filter function for controls that handle
filtered input (includes editable text and list box).
Data type returned or set: ControlKeyFilterUPP

kControlBevelButtonLastMenuTag
Gets the menu ID of the last menu selected in the submenu
or main menu. Available with Appearance 1.0.1 and later.
Data type returned: SInt16

kControlBevelButtonMenuDelayTag
Gets or sets the delay (in number of ticks) before the menu
is displayed. Available with Appearance 1.0.1 and later.
Data type returned or set: SInt32

kControlPopupButtonMenuHandleTag
Gets or sets the menu handle for a pop-up menu. Available
with Appearance 1.0.1 and later.
Data type returned or set: MenuHandle

kControlPopupButtonMenuIDTag
Gets or sets the menu ID for a pop-up menu. Available with
Appearance 1.0.1 and later.
Data type returned or set: SInt16

kControlListBoxDoubleClickTag
Checks to see whether the most recent click in a list box
was a double click. Available with Appearance 1.0.1 and
later.
Data type returned: Boolean; if true, the last click was a
double click; if false, not.

kControlListBoxLDEFTag
Sets the 'LDEF' resource to be used to draw a list box’s
contents; this is useful for creating a list box without an
'ldes' resource. Available with Appearance 1.0.1 and later.
Data type set: SInt16
Control Manager Constants 125
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
Control Font Style Flag Constants 1
You can pass one or more control font style flag constants in the flags field of
the control font style structure to specify the field(s) of the structure that should
be applied to the control; see ControlFontStyleRec (page 95). If none of the flags
are set, the control uses the system font unless a control variant specifies use of
a window font. The control font style flag constants are available with
Appearance Manager 1.0 and later.

enum {
kControlUseFontMask = 0x0001,
kControlUseFaceMask = 0x0002,
kControlUseSizeMask = 0x0004,
kControlUseForeColorMask = 0x0008,
kControlUseBackColorMask = 0x0010,
kControlUseModeMask = 0x0020,
kControlUseJustMask = 0x0040,
kControlUseAllMask = 0x00FF,
kControlAddFontSizeMask = 0x0100

};

Constant descriptions

kControlUseFontMask
If the kControlUseFontMask flag is set (bit 0), the font field of
the control font style structure is applied to the control.

kControlUseFaceMask
If the kControlUseFaceMask flag is set (bit 1), the style field
of the control font style structure is applied to the control.
This flag is ignored if you specify a meta font value; see
“Meta Font Constants” (page 138).

kControlUseSizeMask
If the kControlUseSizeMask flag is set (bit 2), the size field of
the control font style structure is applied to the control.
This flag is ignored if you specify a meta font value; see
“Meta Font Constants” (page 138).

kControlUseForeColorMask
If the kControlUseForeColorMask flag is set (bit 3), the
foreColor field of the control font style structure is applied
to the control. This flag only applies to static text controls.
126 Control Manager Constants

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlUseBackColorMask
If the kControlUseBackColorMask flag is set (bit 4), the
backColor field of the control font style structure is applied
to the control. This flag only applies to static text controls.

kControlUseModeMask
If the kControlUseModeMask flag is set (bit 5), the text mode
specified in the mode field of the control font style structure
is applied to the control.

kControlUseJustMask
If the kControlUseJustMask flag is set (bit 6), the just field of
the control font style structure is applied to the control.

kControlUseAllMask
If kControlUseAllMask is used, all flags in this mask will be
set except kControlUseAddFontSizeMask.

kControlUseAddFontSizeMask
If the kControlUseAddFontSizeMask flag is set (bit 8), the
Dialog Manager will add a specified font size to the size
field of the control font style structure. This flag is ignored
if you specify a meta font value; see “Meta Font Constants”
(page 138).

Checkbox Value Constants 1
The checkbox value constants specify the value of a standard checkbox control
and are passed in the newValue parameter of SetControlValue and are returned
by GetControlValue. The checkbox value constants are changed with
Appearance Manager 1.0 to support mixed-value checkboxes.

enum {
kControlCheckboxUncheckedValue = 0,
kControlCheckboxCheckedValue = 1,
kControlCheckboxMixedValue = 2

};

Constant descriptions

kControlCheckboxUncheckedValue
The checkbox is unchecked.

kControlCheckboxCheckedValue
The checkbox is checked.
Control Manager Constants 127
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlCheckboxMixedValue
Mixed value. Indicates that a setting is on for some
elements in a selection and off for others. This state only
applies to standard Appearance-compliant checkboxes.

Radio Button Value Constants 1
These constants specify the value of a standard radio button control and are
passed in the newValue parameter of SetControlValue and are returned by
GetControlValue. The radio button value constants are changed with
Appearance Manager 1.0 to support mixed-value radio buttons.

enum {
kControlRadioButtonUncheckedValue = 0,
kControlRadioButtonCheckedValue = 1,
kControlRadioButtonMixedValue = 2

};

Constant descriptions

kControlRadioButtonUncheckedValue
The radio button is unselected.

kControlRadioButtonCheckedValue
The radio button is selected.

kControlRadioButtonMixedValue
Mixed value. Indicates that a setting is on for some
elements in a selection and off for others. This state only
applies to standard Appearance-compliant radio buttons.

Bevel Button Behavior Constants 1
You can pass the bevel button behavior constants in the high byte of the
minimumValue parameter of NewControl (page 13) to create a bevel button with a
specific behavior. The bevel button behavior constants are available with
Appearance Manager 1.0 and later.

enum {
kControlBehaviorPushbutton = 0,
kControlBehaviorToggles = 0x0100,
128 Control Manager Constants

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlBehaviorSticky = 0x0200,
kControlBehaviorOffsetContents = 0x8000

};

Constant descriptions

kControlBehaviorPushbutton
Push button (momentary) behavior. The bevel button pops
up after being clicked.

kControlBehaviorToggles
Toggle behavior. The bevel button toggles state
automatically when clicked.

kControlBehaviorSticky
Sticky behavior. Once clicked, the bevel button stays down
until your application sets the control’s value to 0. This
behavior is useful in tool palettes and radio groups.

kControlBehaviorOffsetContents
Bevel button contents are offset (one pixel down and to the
right) when button is pressed.

Bevel Button Menu Constants 1
You can pass one or more bevel button menu constants in the high byte of the
minimumValue parameter of NewControl (page 13) to create a bevel button with a
menu of a certain behavior. Bevel buttons with menus have two values: the
value of the button and the value of the menu. You can specify the direction of
the pop-up menu arrow (down or right) by using the
kControlBevelButtonMenuOnRight bevel button variant. The bevel button menu
constants are available with Appearance Manager 1.0 and later.

enum{
kControlBehaviorCommandMenu = 0x2000,
kControlBehaviorMultiValueMenu = 0x4000

};

Constant descriptions

kControlBehaviorCommandMenu
If this bit is set, the menu contains commands, not choices,
and should not be marked with a checkmark. If this bit is
set, it overrides the kControlBehaviorMultiValueMenu bit.
Control Manager Constants 129
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
This constant is only available with Appearance 1.0.1 and
later.

kControlBehaviorMultiValueMenu
If this bit is set, the menus are multi-valued. The bevel
button does not maintain the menu value as it normally
would (requiring that only one item is selected at a time).
This allows the user to toggle entries in a menu and have
multiple items checked. In this mode, the menu value
accessed with the kControlMenuLastValueTag will return the
value of the last menu item selected.

Bevel Button and Image Well Content Type Constants 1
You can use constants of type ControlContentType in the contentType field of the
ControlButtonContentInfo (page 97) structure to display various kinds of bevel
button and image well content, including text, icons, and pictures. The
ControlContentType constants are available with Appearance Manager 1.0 and
later, except as noted.

The resource IDs for icon suite, color icon, and picture resources are passed in
the maximumValue parameter of NewControl (page 13) or in a control resource; see
'CNTL' (page 100). The content type is passed in the low byte of the
minimumValue parameter of NewControl.

Note
Resource-based content is owned by the control, while
handle-based content is owned by you. The control
definition function will not dispose of handle-based
content. If you replace handle-based content with
resource-based content on the fly, you must dispose of the
handle properly to avoid a memory leak.

enum {
kControlContentTextOnly = 0,
kControlContentIconSuiteRes = 1,
kControlContentCIconRes = 2,
kControlContentPictRes = 3,
kControlContentIconSuiteHandle = 129,
kControlContentCIconHandle = 130,
kControlContentPictHandle = 131,
130 Control Manager Constants

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlContentIconRef = 132
};
typedef SInt16 ControlContentType;

Constant descriptions

kControlContentTextOnly
Content type is text. This constant is passed in the
contentType field of the ControlButtonContentInfo structure
if the content is text only. The variation code
kControlUsesOwningWindowsFontVariant applies when text
content is used.

kControlContentIconSuiteRes
Content type uses an icon suite resource ID. The resource
ID of the icon suite resource you wish to display should be
in the resID field of the ControlButtonContentInfo
structure.

kControlContentCIconRes
Content type is a color icon resource ID. The resource ID of
the color icon resource you wish to display should be in the
resID field of the ControlButtonContentInfo structure.

kControlContentPictRes
Content type is a picture resource ID. The resource ID of
the picture resource you wish to display should be in the
resID field of the ControlButtonContentInfo structure.

kControlContentIconSuiteHandle
Content type is an icon suite handle. The handle of the icon
suite you wish to display should be in the iconSuite field
of the ControlButtonContentInfo structure.

kControlContentCIconHandle
Content type uses a color icon handle. The handle of the
color icon you wish to display should be in the cIconHandle
field of the ControlButtonContentInfo structure.

kControlContentPictHandle
Content type uses a picture handle. The handle of the
picture you wish to display should be in the picture field
of the ControlButtonContentInfo structure.

kControlContentIconRef
Content type is IconRef. An IconRef value for the icon you
wish to display should be provided in the iconRef field of
Control Manager Constants 131
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
the ControlButtonContentInfo structure. Note that the
kControlBevelButtonGraphicOffsetTag control data tag
constant should not be used with IconRef based bevel
button content, because IconRef based icons may change
with a theme switch; see “Control Data Tag Constants”
(page 118). Supported with Mac OS 8.5 and later.

Bevel Button Graphic Alignment Constants 1
You can use the ControlButtonGraphicAlignment constants to specify the
alignment of icons and pictures in bevel buttons. These constants are passed in
the inData parameter of SetControlData (page 49) and returned by
GetControlData (page 50). The ControlButtonGraphicAlignment constants are
available with Appearance Manager 1.0 and later.

enum {
kControlBevelButtonAlignSysDirection = -1,
kControlBevelButtonAlignCenter = 0,
kControlBevelButtonAlignLeft = 1,
kControlBevelButtonAlignRight = 2,
kControlBevelButtonAlignTop = 3,
kControlBevelButtonAlignBottom = 4,
kControlBevelButtonAlignTopLeft = 5,
kControlBevelButtonAlignBottomLeft = 6,
kControlBevelButtonAlignTopRight = 7,
kControlBevelButtonAlignBottomRight = 8

};
typedef SInt16 ControlButtonGraphicAlignment;

Constant descriptions

kControlBevelButtonAlignSysDirection
Bevel button graphic is aligned according to the system
default script direction (only left or right).

kControlBevelButtonAlignCenter
Bevel button graphic is aligned center.

kControlBevelButtonAlignLeft
Bevel button graphic is aligned left.

kControlBevelButtonAlignRight
Bevel button graphic is aligned right.
132 Control Manager Constants

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlBevelButtonAlignTop
Bevel button graphic is aligned top.

kControlBevelButtonAlignBottom
Bevel button graphic is aligned bottom.

kControlBevelButtonAlignTopLeft
Bevel button graphic is aligned top left.

kControlBevelButtonAlignBottomLeft
Bevel button graphic is aligned bottom left.

kControlBevelButtonAlignTopRight
Bevel button graphic is aligned top right.

kControlBevelButtonAlignBottomRight
Bevel button graphic is aligned bottom right.

Bevel Button Text Alignment Constants 1
You can use the ControlButtonTextAlignment constants to specify the alignment
of text in a bevel button. These constants are passed in the inData parameter of
SetControlData (page 49) and returned by GetControlData (page 50). The
ControlButtonTextAlignment constants are available with Appearance Manager
1.0 and later.

enum {
kControlBevelButtonAlignTextSysDirection = teFlushDefault,
kControlBevelButtonAlignTextCenter = teCenter,
kControlBevelButtonAlignTextFlushRight = teFlushRight,
kControlBevelButtonAlignTextFlushLeft = teFlushLeft

};
typedef SInt16 ControlButtonTextAlignment;

Constant descriptions

kControlBevelButtonAlignTextSysDirection
Bevel button text is aligned according to the current script
direction (left or right).

kControlBevelButtonAlignTextCenter
Bevel button text is aligned center.

kControlBevelButtonAlignTextFlushRight
Bevel button text is aligned flush right.
Control Manager Constants 133
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlBevelButtonAlignTextFlushLeft
Bevel button text is aligned flush left.

Bevel Button Text Placement Constants 1
You can use the ControlButtonTextPlacement constants to specify the placement
of text in a bevel button, in relation to an icon or picture. These constants are
passed in the inData parameter of SetControlData (page 49) and returned by
GetControlData (page 50). They can be used in conjunction with bevel button
text and graphic alignment constants to create, for example, a button where the
graphic and text are left justified with the text below the graphic. The
ControlButtonTextPlacement constants are available with Appearance Manager
1.0 and later.

enum {
kControlBevelButtonPlaceSysDirection = -1,
kControlBevelButtonPlaceNormally = 0,
kControlBevelButtonPlaceToRightOfGraphic = 1,
kControlBevelButtonPlaceToLeftOfGraphic = 2,
kControlBevelButtonPlaceBelowGraphic = 3,
kControlBevelButtonPlaceAboveGraphic = 4

};
typedef SInt16 ControlButtonTextPlacement;

Constant descriptions

kControlBevelButtonPlaceSysDirection
Bevel button text is placed according to the system default
script direction.

kControlBevelButtonPlaceNormally
Bevel button text is centered.

kControlBevelButtonPlaceToRightOfGraphic
Bevel button text is placed to the right of the graphic.

kControlBevelButtonPlaceToLeftOfGraphic
Bevel button text is placed to the left of the graphic.

kControlBevelButtonPlaceBelowGraphic
Bevel button text is placed below the graphic.

kControlBevelButtonPlaceAboveGraphic
Bevel button text is placed above the graphic.
134 Control Manager Constants

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
Clock Value Flag Constants 1
You can use the clock value flag constants to specify behaviors for a clock
control. You can pass one or more of these mask constants into the control
('CNTL') resource or in the initialValue parameter of NewControl (page 13).
Note that the standard clock control is editable and supports keyboard focus.
Also, the little arrows that allow manipulation of the date and time are part of
the control, not a separate embedded little arrows control. The clock value flag
constants are available with Appearance Manager 1.0 and later.

enum {
kControlClockNoFlags = 0,
kControlClockIsDisplayOnly = 1,
kControlClockIsLive = 2

};

Constant descriptions

kControlClockNoFlags
Indicates that clock is editable but does not display the
current “live” time.

kControlClockIsDisplayOnly
When only this bit is set, the clock is not editable. When
this bit and the kControlClockIsLive bit is set, the clock
automatically updates on idle (clock will have the current
time).

kControlClockIsLive
When only this bit is set, the clock automatically updates
on idle and any changes to the clock affect the system clock.
When this bit and the kControlClockIsDisplayOnly bit is set,
the clock automatically updates on idle (clock will have the
current time), but is not editable.

Control Part Code Constants 1
Constants of type ControlPartCode identify specific parts of controls for
functions such as SetControlData (page 49), GetControlData (page 50), and
FindControlUnderMouse (page 35). The ControlPartCode constants are changed
with the Appearance Manager to support new control part codes.
Control Manager Constants 135
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
Part codes are meaningful only within the scope of a single control definition
function. For example, the standard tab control uses part codes 1...N, where N is
the number of tabs, even though those numbers do collide with part codes
defined for use with other control definition functions. Therefore, when you
wish to specify part codes for the tab control for use with the function
SetControlData, for example, you should use a part code corresponding to a
1-based index of the tab whose data you wish to set. In other words, the first tab
is part code 1, the second tab is part code 2, and so on.

Note that if you wish to create part codes for a custom control definition
function, you may assign values anywhere within the ranges 1–128 and
130–253. Note also that the function FindControl does not typically return the
kControlDisabledPart or kControlInactivePart part codes and never returns
them with standard controls.

enum {
kControlNoPart = 0,
kControlLabelPart = 1,
kControlMenuPart = 2,
kControlTrianglePart = 4,
kControlEditTextPart = 5,
kControlPicturePart = 6,
kControlIconPart = 7,
kControlClockPart = 8,
kControlButtonPart = 10,
kControlCheckBoxPart = 11,
kControlRadioButtonPart = 12,
kControlUpButtonPart = 20,
kControlDownButtonPart = 21,
kControlPageUpPart = 22,
kControlPageDownPart = 23,
kControlListBoxPart = 24,
kControlListBoxDoubleClickPart = 25,
kControlImageWellPart = 26,
kControlRadioGroupPart = 27,
kControlIndicatorPart = 129,
kControlDisabledPart = 254,
kControlInactivePart = 255

};
typedef SInt16 ControlPartCode;

Constant descriptions
136 Control Manager Constants

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlNoPart Identifies no specific control part. This value unhighlights
any highlighted part of the control when passed to the
HiliteControl function. For events in bevel buttons with an
attached menu, this part code indicates that either the
mouse was released outside the bevel button and menu or
that the button was disabled.

kControlLabelPart Identifies the label of a pop-up menu control.
kControlMenuPart Identifies the menu of a pop-up menu control. For bevel

buttons with a menu attached, this part code specifies a
menu item of the bevel button.

kControlTrianglePart
Identifies a disclosure triangle control.

kControlEditTextPart
Identifies an editable text control. Available with
Appearance Manager 1.0 and later.

kControlPicturePart
Identifies a picture control. Available with Appearance
Manager 1.0 and later.

kControlIconPart Identifies an icon control. Available with Appearance
Manager 1.0 and later.

kControlClockPart Identifies a clock control. Available with Appearance
Manager 1.0 and later.

kControlButtonPart
Identifies either a push button or bevel button control. For
bevel buttons with a menu attached, this part code specifies
the button but not the attached menu.

kControlCheckBoxPart
Identifies a checkbox control.

kControlRadioButtonPart
Identifies a radio button control.

kControlUpButtonPart
Identifies the up button of a scroll bar control (the arrow at
the top or the left).

kControlDownButtonPart
Identifies the down button of a scroll bar control (the arrow
at the right or the bottom).

kControlPageUpPart
Identifies the page-up part of a scroll bar control.
Control Manager Constants 137
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
kControlPageDownPart
Identifies the page-down part of a scroll bar control.

kControlListBoxPart
Identifies a list box control. Available with Appearance
Manager 1.0 and later.

kControlListBoxDoubleClickPart
Identifies a double-click in a list box control. Available with
Appearance Manager 1.0 and later.

kControlImageWellPart
Identifies an image well control. Available with Appearance
Manager 1.0 and later.

kControlRadioGroupPart
Identifies a radio group control. Available with Appearance
Manager 1.0.2 and later.

kControlIndicatorPart
Identifies the scroll box of a scroll bar control.

kControlDisabledPart
Used with HiliteControl to disable the control.

kControlInactivePart
Used with HiliteControl to make the control inactive.

Part Identifier Constants 1
The part identifier constants are not recommended with the Appearance
Manager. When the Appearance Manager is available and you are using
standard controls, part identifier constants are ignored and the colors are
determined by the current theme. If you are creating your own control
definition function, you can still use these constants in the partIdentifier field
of a control color table structure to draw a control using colors other than the
system default and to identify the part of a control that a color affects.

Meta Font Constants 1
You can use the meta font constants in the font field of the structure
ControlFontStyleRec (page 95) and the Font ID field of a dialog font table
resource to specify the style, size, and font family of the control font. You should
use these meta font constants whenever possible because the system font can
change, depending upon the current theme. If none of these constants are
138 Control Manager Constants

11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
specified, the control uses the system font unless directed to use a window font
by a control variant. The meta font constants are available with Appearance
Manager 1.0 and later.

enum {
kControlFontBigSystemFont = -1,
kControlFontSmallSystemFont = -2,
kControlFontSmallBoldSystemFont = -3

};

Constant descriptions
kControlFontBigSystemFont

Use the system font.
kControlFontSmallSystemFont

Use the small system font.
kControlFontSmallBoldSystemFont

Use the small emphasized system font (emphasis applied
correctly for locale).

Control Variant Constants 1
You can use the control variant constants with any of the standard control
resource IDs to specify additional features of a control. The control variant
constants are changed with Appearance Manager 1.0 to support the additional
control types available with the Appearance Manager.

typedef SInt16 ControlVariant;
enum {

kControlNoVariant = 0,
kControlUsesOwningWindowsFontVariant = 1 << 3

};

Constant descriptions
kControlNoVariant Specifies no change to the standard control resource.
kControlUsesOwningWindowsFontVariant

Specifies that the control use the window font for any
control text.
Control Manager Constants 139
11/18/98  Apple Computer, Inc.

C H A P T E R 1

Control Manager Reference
Result Codes 1

The most common result codes returned by Control Manager functions are
listed below.

noErr 0 No error
paramErr –50 Error in parameter list
memFullErr –108 Not enough memory
resNotFound –192 Unable to read resource
hmHelpManagerNotInited –855 Help menu not set up
errMessageNotSupported –30580 Message not supported
errDataNotSupported –30581 Data not supported
errControlDoesntSupportFocus –30582 Control does not support focus
errWindowDoesntSupportFocus –30583 Window does not support focus
errUnknownControl –30584 Specified control not found
errCouldntSetFocus –30585 Could not set focus
errNoRootControl –30586 No embedding hierarchy established
errRootAlreadyExists –30587 Root control already exists
errInvalidPartCode –30588 Invalid part code
errControlsAlreadyExist –30589 Control already exists
errControlIsNotEmbedder –30590 Control is not an embedder
errDataSizeMismatch –30591 Data size mismatch
errControlHiddenOrDisabled –30592 Control hidden or disabled
errWindowRegionCodeInvalid –30593 Window region code invalid
errCantEmbedIntoSelf –30594 Can’t embed control in self
errCantEmbedRoot –30595 Can’t embed root control
errItemNotControl –30596 Dialog item not a control
140 Result Codes

11/18/98  Apple Computer, Inc.

A P P E N D I X A
Version History A

This document has had the following releases:

Table A-1 Mac OS 8 Control Manager Reference Revision History

Version Notes

Nov. 18, 1998 Removed “Control Manager Reference” chapter from the Mac OS 8 Toolbox
Reference document. Inside Macintosh: Control Manager Reference is now
available as an independent document.

The following corrections were made:

MyControlKeyFilterProc (page 81). Corrected description of
NewControlKeyFilterProc macro—changed NewControlKeyFilterUPP to
ControlKeyFilterUPP.

MyUserPaneBackgroundProc (page 93). Corrected the function discussion in
various ways, including noting the requirements for it to be called.

ControlFontStyleRec (page 95). Noted that the bit mask relevant to the style
field is kControlUseFaceMask, not kControlUseStyleMask. Specified the actual
values that can be used in the just field.

ControlButtonContentInfo (page 97). Added description of the iconRef field.

ControlTabInfoRec (page 99). Noted that no icon is displayed for the tab
label if the specified resource ID is not found.

Control Definition Function Resource. Recategorized from “changed with
the Appearance Manager” to “unchanged” and, therefore, removed from
this delta document.

“Settings Values for Standard Controls” (page 113). Noted that the control
definition function is responsible for resetting values for some controls after
the controls are created. Discussed tab control maximum value behavior
under Appearance Manager 1.0.1. Clarified mechanism for attaching a
non-resource-based menu to a bevel button.
141
11/18/98  Apple Computer, Inc.

A P P E N D I X

Version History
Nov. 18, 1998 “Control Data Tag Constants” (page 118). Discussed use of the
kControlBevelButtonMenuHandleTag constant with the SetControlData
function to attach a non-resource-based menu to a bevel button. Noted that
the kControlBevelButtonGraphicOffsetTag constant should not be used to set
offsets for bevel buttons with IconRef based content.

“Bevel Button Menu Constants” (page 129). Noted that these values must be
passed in the minimumValue parameter of the NewControl function, not the
initialValue parameter.

“Bevel Button and Image Well Content Type Constants” (page 130). Added
description for kControlContentIconRef constant.

“Control Part Code Constants” (page 135). Added discussion of part code
scope. Noted allowable ranges for application-defined part codes for custom
control definition functions. Also noted that the kControlRadioGroupPart
constant is available with Appearance Manager 1.0.2 and later, not
Appearance Manager 1.0.1 and later.

“Control Variant Constants” (page 139). Added this section to document the
ControlVariant type.

Jan. 15, 1998 The following corrections were made:

Noted Appearance 1.0.2 where applicable.

HiliteControl. Recategorized from “not recommended with the Appearance
Manager” to “unchanged” and, therefore, removed from this delta
document.

Dec. 2, 1997 PDF formatting improved.

Nov. 3, 1997 First document release.

Table A-1 Mac OS 8 Control Manager Reference Revision History

Version Notes
142
11/18/98  Apple Computer, Inc.

Index
A

ActivateControl function 29
AdvanceKeyboardFocus function 43
asynchronous arrows 110, 115
AutoEmbedControl function 22
autoTrack constant 59
AuxCtlRec type 99
auxiliary control structure 99

B

bevel button 109, 114, 128, 129, 130
bevel button and image well content type

constants 130
bevel button behavior constants 128
bevel button graphic alignment constants 132
bevel button menu constants 129
bevel button text alignment constants 133
bevel button text placement constants 134

C

calcCntlRgn constant 59
calcCRgns constant 59
calcThumbRgn constant 59
''cctb'' resource type 102
'cctb' resource type 102
checkbox control 108, 114, 127
checkBoxProc constant 108
checkbox value constants 127
ClearKeyboardFocus function 45
clock control 111, 116, 122, 135
clock value flag constants 135
''CNTL'' resource type 100

'CNTL' resource type 100
control action functions 78
ControlActionProcPtr type 79
ControlActionUPP type 79
ControlBackgroundPtr type 77
ControlBackgroundRec type 77
ControlButtonContentInfoPtr type 97
ControlButtonContentInfo type 97
ControlButtonGraphicAlignment type 132
ControlButtonTextAlignment type 133
ControlButtonTextPlacement type 134
ControlCalcSizePtr type 70
ControlCalcSizeRec type 70
control color table resource 102
control color table structure 100
ControlContentType type 131
ControlDataAccessPtr type 75
ControlDataAccessRec type 75
control data tag constants 118
control definition function 56, 107
control definition function resource 102
control definition IDs 106
ControlDefProcMessage type 59
ControlDefProcPtr type 57
ControlDefUPP type 57
ControlEditTextSelectionPtr type 98
ControlEditTextSelectionRec type 98
ControlFocusPart type 72
control font style flag constants 126
ControlFontStylePtr type 95
ControlFontStyleRec type 95
control font style structure 95, 126, 138
ControlKeyDownPtr type 74
ControlKeyDownRec type 74
ControlKeyFilterProcPtr type 81
ControlKeyFilterResult type 82
ControlKeyFilterUPP type 81
control part code constants 135
ControlPartCode type 136
143
11/18/98  Apple Computer, Inc.

I N D E X
control resource 100
ControlTabInfoRec type 99
ControlTrackingPtr type 71
ControlTrackingRec type 71
ControlUserPaneActivateProc type 90
ControlUserPaneActivateUPP type 90
ControlUserPaneBackgroundProcPtr type 93
ControlUserPaneBackgroundUPP type 93
ControlUserPaneDrawProc type 84
ControlUserPaneDrawUPP type 84
ControlUserPaneFocusProc type 92
ControlUserPaneFocusUPP type 92
ControlUserPaneHitTestProc type 85
ControlUserPaneHitTestUPP type 85
ControlUserPaneIdleProc type 88
ControlUserPaneIdleUPP type 88
ControlUserPaneKeyDownProc type 89
ControlUserPaneKeyDownUPP type 89
ControlUserPaneTrackingProc type 86
ControlUserPaneTrackingUPP type 86
control value settings 113
control variant constants 139
ControlVariant type 139
CountSubControls function 22
CreateRootControl function 19
CtlCTab type 100

D

DeactivateControl function 30
default ring 119
dialog font table resource 138
disclosure triangle 109, 115, 121
dispCntl constant 59
DisposeControl function 15
dragCntl constant 59
drawCntl constant 59
DrawControlInCurrentPort function 33
DrawOneControl function 32
DumpControlHierarchy function 26

E

editable text control 98, 111, 112, 117, 124
editable text selection structure 98
EmbedControl function 21
embedding hierarchy 17, 27, 41
errCantEmbedIntoSelf result code 140
errCantEmbedRoot result code 140
errControlDoesntSupportFocus result

code 140
errControlHiddenOrDisabled result code 140
errControlIsNotEmbedder result code 140
errControlsAlreadyExist result code 140
errCouldntSetFocus result code 140
errDataNotSupported result code 140
errDataSizeMismatch result code 140
errInvalidPartCode result code 140
errItemNotControl result code 140
errMessageNotSupported result code 140
errNoRootControl result code 140
errRootAlreadyExists result code 140
errUnknownControl result code 140
errWindowDoesntSupportFocus result code 140
errWindowRegionCodeInvalid result code 140

F

FindControl function 36
FindControlUnderMouse function 35
focus rings 41
font 95

G

GetBestControlRect function 47
GetControlData function 50
GetControlDataSize function 52
GetControlFeatures function 53
GetIndexedSubControl function 23
GetKeyboardFocus function 43
GetNewControl function 12
144
11/18/98  Apple Computer, Inc.

I N D E X
GetRootControl function 20
GetSuperControl function 24
group box 122

H

HandleControlClick function 38
HandleControlKey function 37
HideControl function 28
hmHelpManagerNotInited result code 140

I

icon control 112, 117
icon suite 112
IdleControls function 38
image well 111, 116, 122, 130
IndicatorDragConstraint type 65
initCntl constant 59
IsControlActive function 31
IsControlVisible function 55

K

kControlBehaviorCommandMenu constant 129
kControlBehaviorCommandMenu function 129
kControlBehaviorMultiValueMenu constant 130
kControlBehaviorOffsetContents constant 129
kControlBehaviorPushbutton constant 129
kControlBehaviorSticky constant 129
kControlBehaviorToggles constant 129
kControlBevelButtonAlignBottom constant 133
kControlBevelButtonAlignBottomLeft

constant 133
kControlBevelButtonAlignBottomRight

constant 133
kControlBevelButtonAlignCenter constant 132
kControlBevelButtonAlignLeft constant 132
kControlBevelButtonAlignRight constant 132

kControlBevelButtonAlignSysDirection
constant 132

kControlBevelButtonAlignTextCenter
constant 133

kControlBevelButtonAlignTextFlushLeft
constant 134

kControlBevelButtonAlignTextFlushRight
constant 133

kControlBevelButtonAlignTextSysDirection
constant 133

kControlBevelButtonAlignTop constant 133
kControlBevelButtonAlignTopLeft

constant 133
kControlBevelButtonAlignTopRight

constant 133
kControlBevelButtonCenterPopUpGlyphTag

constant 121
kControlBevelButtonContentTag constant 120
kControlBevelButtonGraphicAlignTag

constant 120
kControlBevelButtonGraphicOffsetTag

constant 120
kControlBevelButtonLargeBevelProc

constant 109
kControlBevelButtonLastMenuTag constant 125
kControlBevelButtonMenuDelayTag

constant 125
kControlBevelButtonMenuHandleTag

constant 121
kControlBevelButtonMenuOnRight constant 109
kControlBevelButtonMenuValueTag

constant 121
kControlBevelButtonNormalBevelProc

constant 109
kControlBevelButtonPlaceAboveGraphic

constant 134
kControlBevelButtonPlaceBelowGraphic

constant 134
kControlBevelButtonPlaceNormally

constant 134
kControlBevelButtonPlaceSysDirection

constant 134
kControlBevelButtonPlaceToLeftOfGraphic

constant 134
145
11/18/98  Apple Computer, Inc.

I N D E X
kControlBevelButtonPlaceToRightOfGraphic
constant 134

kControlBevelButtonSmallBevelProc
constant 109

kControlBevelButtonTextAlignTag
constant 120

kControlBevelButtonTextOffsetTag
constant 120

kControlBevelButtonTextPlaceTag
constant 120

kControlBevelButtonTransformTag
constant 120

kControlButtonPart constant 137
kControlChasingArrowsProc constant 110
kControlCheckboxCheckedValue constant 127
kControlCheckboxMixedValue constant 128
kControlCheckBoxPart constant 137
kControlCheckboxUncheckedValue

constant 127, 128
kControlClockDateProc constant 111
kControlClockIsDisplayOnly constant 135
kControlClockLongDateTag constant 122
kControlClockMonthYearProc constant 111
kControlClockNoFlags constant 135
kControlClockPart constant 137
kControlClockTimeProc constant 111
kControlClockTimeSecondsProc constant 111,

135
kControlContentCIconHandle constant 131
kControlContentCIconRes constant 131
kControlContentIconRef constant 131
kControlContentIconSuiteHandle constant 131
kControlContentIconSuiteRes constant 131
kControlContentPictHandle constant 131
kControlContentPictRes constant 131
kControlContentTextOnly constant 131
kControlDisabledPart constant 138
kControlDownButtonPart constant 137
kControlEditTextPart constant 137
kControlEditTextPasswordProc constant 112,

124
kControlEditTextProc constant 111
kControlEditTextSelectionTag constant 124
kControlEditTextTEHandleTag constant 124
kControlEditTextTextTag constant 124

kControlFocusNextPart constant 72
kControlFocusNoPart constant 72
kControlFocusPrevPart constant 73
kControlFontBigSystemFont constant 139
kControlFontSmallBoldSystemFont

constant 139
kControlFontSmallSystemFont constant 139
kControlFontStyleTag constant 125
kControlGetsFocusOnClick constant 69
kControlGroupBoxCheckBoxProc constant 110
kControlGroupBoxMenuHandleTag constant 122
kControlGroupBoxPopupButtonProc

constant 110
kControlGroupBoxSecondaryCheckBoxProc

constant 110
kControlGroupBoxSecondaryPopupButtonProc

constant 110
kControlGroupBoxSecondaryTextTitleProc

constant 110
kControlGroupBoxTextTitleProc constant 110
kControlHandlesTracking constant 69
kControlHasRadioBehavior constant 69
kControlHasSpecialBackground constant 69
kControlIconAlignmentTag constant 124
kControlIconNoTrackProc constant 112
kControlIconPart constant 137
kControlIconProc constant 112
kControlIconSuiteNoTrackProc constant 112
kControlIconSuiteProc constant 112
kControlIconTransformTag constant 124
kControlImageWellAutoTrackProc constant 111
kControlImageWellContentTag constant 122
kControlImageWellPart constant 138
kControlImageWellProc constant 111
kControlImageWellTransformTag constant 122
kControlInactivePart constant 138
kControlIndicatorPart constant 138
kControlKeyFilterBlockKey constant 82
kControlKeyFilterPassKey constant 83
kControlKeyFilterTag constant 125
kControlLabelPart constant 137
kControlListBoxAutoSizeProc constant 112
kControlListBoxDoubleClickPart constant 138
kControlListBoxDoubleClickTag constant 125
kControlListBoxListHandleTag constant 124
146
11/18/98  Apple Computer, Inc.

I N D E X
kControlListBoxPart constant 138
kControlListBoxProc constant 112
kControlLittleArrowsProc constant 110
kControlMenuPart constant 137
kControlMsgActivate constant 60
kControlMsgCalcBestRect constant 60
kControlMsgCalcValueFromPos constant 60
kControlMsgDrawGhost constant 59
kControlMsgFocus constant 60
kControlMsgGetData constant 60
kControlMsgGetFeatures constant 60
kControlMsgHandleTracking constant 60
kControlMsgIdle constant 60
kControlMsgKeyDown constant 60
kControlMsgSetData constant 60
kControlMsgSetUpBackground constant 60
kControlMsgSubControlAdded constant 61
kControlMsgSubControlRemoved constant 61
kControlMsgSubValueChanged constant 60
kControlMsgTestNewMsgSupport constant 61
kControlNoPart constant 137
kControlNoVariant constant 139
kControlPageDownPart constant 138
kControlPageUpPart constant 137
kControlPictureNoTrackProc constant 112
kControlPicturePart constant 137
kControlPictureProc constant 112
kControlPlacardProc constant 111
kControlPopupArrowEastProc constant 111
kControlPopupArrowNorthProc constant 111
kControlPopupArrowSmallEastProc

constant 111
kControlPopupArrowSmallNorthProc

constant 111
kControlPopupArrowSmallSouthProc

constant 111
kControlPopupArrowSmallWestProc

constant 111
kControlPopupArrowSouthProc constant 111
kControlPopupArrowWestProc constant 111
kControlPopupButtonMenuHandleTag

constant 125
kControlPopupButtonMenuIDTag constant 125
kControlPopupButtonProc constant 113
kControlPopupFixedWidthVariant constant 113

kControlPopupUseAddResMenuVariant
constant 113

kControlPopupUseWFontVariant constant 113
kControlPopupVariableWidthVariant

constant 113
kControlProgressBarIndeterminateTag

constant 121
kControlProgressBarProc constant 110
kControlPushButLeftIconProc constant 108
kControlPushButRightIconProc constant 108
kControlPushButtonDefaultTag constant 119
kControlPushButtonProc constant 108
kControlRadioButtonCheckedValue

constant 128
kControlRadioButtonMixedValue constant 128
kControlRadioButtonPart constant 137
kControlRadioGroupPart constant 138
kControlRadioGroupProc constant 113
kControlScrollBarLiveProc constant 109
kControlScrollBarProc constant 109
kControlSeparatorLineProc constant 110
kControlSliderHasTickMarks constant 109
kControlSliderLiveFeedback constant 109
kControlSliderNonDirectional constant 109
kControlSliderProc constant 109
kControlSliderReverseDirection constant 109
kControlStaticTextProc constant 112
kControlStaticTextTextHeightTag

constant 124
kControlStaticTextTextTag constant 124
kControlSupportsCalcBestRect constant 69
kControlSupportsDataAccess constant 69
kControlSupportsEmbedding constant 68
kControlSupportsFocus constant 68
kControlSupportsGhosting constant 67, 68
kControlSupportsLiveFeedback constant 69
kControlTabContentRectTag constant 121
kControlTabEnabledFlagTag constant 121, 122
kControlTabLargeProc constant 110
kControlTabSmallProc constant 110
kControlTriangleAutoToggleProc constant 110
kControlTriangleLastValueTag constant 121
kControlTriangleLeftFacingAutoToggleProc

constant 110
kControlTriangleLeftFacingProc constant 109
147
11/18/98  Apple Computer, Inc.

I N D E X
kControlTrianglePart constant 137
kControlTriangleProc constant 109
kControlUpButtonPart constant 137
kControlUseAddFontSizeMask constant 127
kControlUseAllMask constant 127
kControlUseBackColorMask constant 127
kControlUseFaceMask constant 126
kControlUseFontMask constant 126
kControlUseForeColorMask constant 126
kControlUseJustMask constant 127
kControlUseModeMask constant 127
kControlUserItemDrawProcTag constant 122
kControlUserPaneActivateProcTag

constant 123
kControlUserPaneBackgroundProcTag

constant 123
kControlUserPaneDrawProcTag constant 122
kControlUserPaneFocusProcTag constant 123
kControlUserPaneHitTestProcTag constant 122
kControlUserPaneIdleProcTag constant 123
kControlUserPaneKeyDownProcTag constant 123
kControlUserPaneProc constant 111
kControlUserPaneTrackingProcTag

constant 122
kControlUseSizeMask constant 126
kControlUsesOwningWindowsFontVariant

constant 108, 139
kControlWantsActivate constant 69
kControlWantsIdle constant 68
kControlWindowHeaderProc constant 112
kControlWindowListViewHeaderProc

constant 112
kDragControlEntireControl constant 66
kDragControlIndicator constant 66
kDrawControlEntireControl constant 61
kDrawControlIndicatorOnly constant 61
keyboard focus 41
key filter function 81
KillControls function 16

L

latency, of embedded controls 27

''ldes'' resource type 102
'ldes' resource type 102
list box 112, 117, 124, 125
list box description resource 102
little arrows 110, 115

M

memFullErr result code 140
meta font constants 138
MyActionProc function 79
MyControlDefProc function 57
MyControlKeyFilterProc function 81
MyIndicatorActionProc function 80
MyUserPaneActivateProc function 91
MyUserPaneBackgroundProc function 94
MyUserPaneDrawProc function 84
MyUserPaneFocusProc function 92
MyUserPaneHitTestProc function 85
MyUserPaneIdleProc function 88
MyUserPaneKeyDownProc function 89
MyUserPaneTrackingtProc function 87

N

NewControl function 13
noErr result code 140

P

paramErr result code 140
part identifier constants 138
picture control 112, 117
placard 111, 116
pop-up arrow 111, 116
popupFixedWidth constant 112
pop-up menu 112, 113, 117
pop-up menu private structure 99
popupMenuProc constant 112
PopupPrivateData type 99
148
11/18/98  Apple Computer, Inc.

I N D E X
popupUseAddResMenu constant 112
popupUseWFont constant 113
popupVariableWidth constant 112
posCntl constant 59
primary group box 110, 116
progress indicator 110, 115, 121
pushButProc constant 108
push button 108, 113

R

radioButProc constant 108
radio buttons 108, 114, 128
radio button value constants 128
radio group 113, 117
resNotFound result code 140
ReverseKeyboardFocus function 44
root control 17

S

scroll bar 108, 114
scrollBarProc constant 108
secondary group box 110, 116
SendControlMessage function 31
separator line 110, 115
SetControlAction function 48
SetControlColor function 49
SetControlData function 49
SetControlFontStyle function 53
SetControlSupervisor function 25
SetControlVisibility function 54
SetKeyboardFocus function 42
settings values for standard controls 113
SetUpControlBackground function 34
ShowControl function 27
slider 109, 115
static text control 112, 117, 124

T

''tab#'' resource type 104
tab control 110, 115, 121, 122
tab information resource 104
'tab' resource type 104
testCntl constant 59
thumbCntl constant 59
TrackControl function 41

U

user pane 17, 83, 111, 116

V

variation codes for controls 107

W

window header 112, 117
window list view header 112
149
11/18/98  Apple Computer, Inc.

T H E A P P L E P U B L I S H I N G S Y S T E M

11/18/98  Apple Computer, Inc.

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobe™ Illustrator and
Adobe Photoshop.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITERS
Lisa Karpinski, Donna S. Lee, and
Judith Rosado

ILLUSTRATORS
David Arrigoni and Karin Stroud

PRODUCTION EDITOR
Glen Frank

PROJECT MANAGER
Tony Francis

Acknowledgments to Matt Ackeret,
Pete Gontier, Guy Fullerton,
Chris Thomas, and Ed Voas.

	Mac OS 8 Control Manager Reference
	Contents
	Figures, Tables, and Listings
	Control Manager Reference
	Control Manager Reference
	Control Manager Functions
	Creating and Removing Controls
	GetNewControl
	NewControl
	DisposeControl
	KillControls

	Embedding Controls
	CreateRootControl
	GetRootControl
	EmbedControl
	AutoEmbedControl
	CountSubControls
	GetIndexedSubControl
	GetSuperControl
	SetControlSupervisor
	DumpControlHierarchy

	Manipulating Controls
	ShowControl
	HideControl
	ActivateControl
	DeactivateControl
	IsControlActive
	SendControlMessage

	Displaying Controls
	DrawOneControl
	DrawControlInCurrentPort
	SetUpControlBackground

	Handling Events in Controls
	FindControlUnderMouse
	FindControl
	HandleControlKey
	IdleControls
	HandleControlClick
	TrackControl

	Handling Keyboard Focus
	SetKeyboardFocus
	GetKeyboardFocus
	AdvanceKeyboardFocus
	ReverseKeyboardFocus
	ClearKeyboardFocus

	Accessing and Changing Control Settings and Data
	GetBestControlRect
	SetControlAction
	SetControlColor
	SetControlData
	GetControlData
	GetControlDataSize
	GetControlFeatures
	SetControlFontStyle
	SetControlVisibility
	IsControlVisible

	Defining Your Own Control Definition Function
	MyControlDefProc
	Messages
	Drawing the Control or Its Part
	Testing Where the Mouse-Down Event Occurs
	Calculating the Control and Indicator Regions on 24-Bit Systems
	Calculating the Control and Indicator Regions on 32-Bit Systems
	Performing Additional Control Initialization
	Performing Additional Control Disposal Actions
	Dragging the Control or Its Indicator
	Calculating Parameters for Dragging the Indicator
	Performing Custom Dragging
	Executing an Action Function
	Specifying Whether Appearance-Compliant Messages Are Supported
	Specifying Which Appearance-Compliant Messages Are Supported
	Drawing a Ghost Image of the Indicator
	Calculating the Optimal Control Rectangle
	Performing Custom Tracking
	Handling Keyboard Focus
	Handling Keyboard Events
	Performing Idle Processing
	Getting and Setting Control-Specific Data
	Handling Activate and Deactivate Events
	Setting a Control’s Background Color or Pattern
	Supporting Live Feedback
	Being Informed When Subcontrols Are Added or Removed

	Defining Your Own Action Functions
	MyActionProc
	MyIndicatorActionProc

	Defining Your Own Key Filter Function
	MyControlKeyFilterProc
	Key Filter Result Codes

	Defining Your Own User Pane Functions
	MyUserPaneDrawProc
	MyUserPaneHitTestProc
	MyUserPaneTrackingProc
	MyUserPaneIdleProc
	MyUserPaneKeyDownProc
	MyUserPaneActivateProc
	MyUserPaneFocusProc
	MyUserPaneBackgroundProc

	Control Manager Data Types
	ControlFontStyleRec
	ControlButtonContentInfo
	ControlEditTextSelectionRec
	ControlTabInfoRec
	AuxCtlRec
	PopupPrivateData
	CtlCTab
	'CNTL'
	Figure�1-1 Structure of a compiled control ('CNTL') resource

	'cctb'
	'ldes'
	Figure�1-2 Structure of a compiled list box description ('ldes') resource

	'tab#'
	Figure�1-3 Structure of a compiled tab information ('tab#') resource
	Figure�1-4 Structure of a tab information entry

	Control Manager Constants
	Control Definition IDs
	Table 1-1 Control definition IDs and resource IDs for standard controls (continued)

	Settings Values for Standard Controls
	Control Data Tag Constants
	Control Font Style Flag Constants
	Checkbox Value Constants
	Radio Button Value Constants
	Bevel Button Behavior Constants
	Bevel Button Menu Constants
	Bevel Button and Image Well Content Type Constants
	Bevel Button Graphic Alignment Constants
	Bevel Button Text Alignment Constants
	Bevel Button Text Placement Constants
	Clock Value Flag Constants
	Control Part Code Constants
	Part Identifier Constants
	Meta Font Constants
	Control Variant Constants

	Result Codes

	Version History
	Table A-1 Mac OS 8 Control Manager Reference Revision History

	Index
	WRITERS
	ILLUSTRATORS
	PRODUCTION EDITOR
	PROJECT MANAGER

