



January 20, 1999
Technical Publications
© 1999 Apple Computer, Inc.



I N S I D E M A C I N T O S H

Programming With the Mac OS 8.5
Control Manager

1/12/99



 Apple Computer, Inc.



Apple Computer, Inc.
© 1998 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.
Adobe, the Adobe logo, Acrobat, the
Acrobat logo, Distiller, PostScript,

and the PostScript logo are
trademarks of Adobe Systems
Incorporated.
Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Chapter 1 Using the Mac OS 8.5 Control Manager 5

Creating a Proportional Scroll Box 7
Validating Editable Text 8

Chapter 2 Mac OS 8.5 Control Manager Reference 11

Gestalt Selector for the Mac OS 8.5 Control Manager 13
Functions for the Mac OS 8.5 Control Manager 14

Changing Control Settings 14
Associating Data With Controls 20
Displaying Controls 25
Validating Controls 28
Obtaining Control Part Regions 29

Application-Defined Functions for the Mac OS 8.5 Control Manager 30
Data Types for the Mac OS 8.5 Control Manager 32
Constants for the Mac OS 8.5 Control Manager 34

Control Data Tag Constants 34
Control Definition Feature Constants 38
Control Definition IDs 39
Control Definition Message Constants 42
Control Font Style Flag Constant 43
Control Key Script Behavior Constants 43
Control Part Code Constants 44

Result Codes for the Mac OS 8.5 Control Manager 45

Appendix A Document Version History 47

Index 49
3
1/12/99  Apple Computer, Inc.

4
1/12/99  Apple Computer, Inc.

1 Using the Mac OS 8.5 Control
Manager
Contents
Creating a Proportional Scroll Box 7
Validating Editable Text 8
Contents 5
1/12/99  Apple Computer, Inc.

6 Contents

1/12/99  Apple Computer, Inc.

C H A P T E R 1

Using the Mac OS 8.5 Control Manager 1

Your program can use the Control Manager to create and manage controls,
onscreen objects that the user can manipulate with the mouse. By manipulating
controls, the user can take an immediate action or change settings to modify a
future action.

This document describes the Control Manager application programming
interface (API) introduced with Mac OS 8.5 and Appearance Manager 1.1. Note
that pre-existing Control Manager functions, types, and constants are not
discussed in this document. For a description of the Mac OS 8 Control Manager
API, see Mac OS 8 Control Manager Reference. For descriptions of the
pre–Mac OS 8 Control Manager API, see Inside Macintosh: Macintosh Toolbox
Essentials.

See the following sections for discussions of some programming topics for the
Mac OS 8.5 Control Manager.

■ “Creating a Proportional Scroll Box” (page 7)

■ “Validating Editable Text” (page 8)

Creating a Proportional Scroll Box 1

Your application should call the function SetControlViewSize (page 26) to
support proportional scroll boxes. If the user selects the systemwide
Appearance preference for “Smart Scrolling” and your application doesn’t call
SetControlViewSize, your application displays the traditional square scroll
boxes.

To support a proportional scroll box, simply pass the size of the view area—in
terms of whatever units the scroll bar uses—to SetControlViewSize. The system
automatically handles resizing the scroll box, once your application supplies
this information. Listing 0-1 shows some typical code for setting a scroll bar
according to a TextEdit handle, which includes making the scroll box
proportional.
Creating a Proportional Scroll Box 7
1/20/99  Apple Computer, Inc.

C H A P T E R 1

Using the Mac OS 8.5 Control Manager

Listing 1-1 Adjusting a scroll bar to the viewable text

static pascal void AdjustScrollBarToText
(TEHandle teh, ControlHandle scrollBar)

{
// get the values needed to reflect the state of the TEHandle
short nLines = (**teh).nLines; // number of lines in doc.
long totalHeight= TEGetHeight (nLines, 1, teh); // total doc. height
Rect viewRect = (**teh).viewRect; // visible area of doc.
Rect destRect = (**teh).destRect; // total area of doc.
short viewHeight= viewRect.bottom - viewRect.top; // vis. doc. height

// set the min, max, and current value of the scroll bar
SetControl32BitMinimum (scrollBar, 1);
SetControl32BitMaximum (scrollBar, totalHeight - viewHeight);
SetControl32BitValue (scrollBar, viewRect.top - destRect.top);

// set the scroll bar view size to create a proportional scroll box
SetControlViewSize (scrollBar, viewHeight);

}

Validating Editable Text 1

Your application typically uses a MyControlEditTextValidationProc (page 30)
function in conjunction with a key filter function to ensure that editable text is
valid in cases such as a cut, paste, or clear, where a key filter cannot be called.

Note that if you are using the inline input editable text control variant, the
Control Manager will not call your MyControlEditTextValidationProc function
during inline input. Instead, you may install your own Text Services Manager
TSMTEPostUpdateUPP callback function to validate text during inline input, or
your application can validate the input itself, immediately prior to using the
text.

Listing 0-2 shows how you can use a MyControlEditTextValidationProc function
to ensure that a user-supplied file name does not contain any illegal characters.
Note that to enhance readability, no error-checking is included in this sample; a
real application would, however, check for errors.
8 Validating Editable Text

1/20/99  Apple Computer, Inc.

C H A P T E R 1

Using the Mac OS 8.5 Control Manager

Listing 1-2 Validating a file name with a MyControlEditTextValidationProc function

pascal void MyControlEditTextValidationProc (ControlHandle control)
{

Str31 text;
Size actualSize;
UInt8 i;

// Get the text to be examined from the control.
GetControlData (control, kControlNoPart, kControlEditTextTextTag,

sizeof(Str31) - 1, (Ptr)&text[1], &actualSize);

// Set the string’s length byte appropriately for the number of
// characters in the text, limited to the (current) max filename.
if (actualSize <= 31)

text[0] = actualSize;
else

text[0] = 31;

// Replace any colons with dashes.
// Note: This only works with Roman script systems!
for (i = 1; i <= text[0]; i++)
{

if (text[i] == ':')
text[0] = '-';

}

// If this were a real app, there’d be code here to check to see
// whether any text was actually replaced before bothering to redraw.

// Put the replaced text into the control and redraw.
SetControlData(control, kControlNoPart, kControlEditTextTextTag,

text[0], (Ptr)&text[1]);
DrawOneControl(control);

}

Validating Editable Text 9
1/20/99  Apple Computer, Inc.

C H A P T E R 1

Using the Mac OS 8.5 Control Manager

10 Validating Editable Text

1/20/99  Apple Computer, Inc.

2 Mac OS 8.5 Control Manager
Reference
Contents
Gestalt Selector for the Mac OS 8.5 Control Manager 13
Functions for the Mac OS 8.5 Control Manager 14

Changing Control Settings 14
GetControl32BitMaximum 15
GetControl32BitMinimum 15
GetControl32BitValue 16
SetControl32BitMaximum 17
SetControl32BitMinimum 18
SetControl32BitValue 19

Associating Data With Controls 20
GetControlProperty 21
GetControlPropertySize 22
RemoveControlProperty 23
SetControlProperty 24

Displaying Controls 25
GetControlViewSize 26
SetControlViewSize 26
SetUpControlTextColor 27

Validating Controls 28
IsValidControlHandle 28

Obtaining Control Part Regions 29
GetControlRegion 29

Application-Defined Functions for the Mac OS 8.5 Control Manager 30
MyControlEditTextValidationProc 30

Data Types for the Mac OS 8.5 Control Manager 32
ControlApplyTextColorRec 32
ControlEditTextValidationProcPtr 33
Contents 11
1/12/99  Apple Computer, Inc.

ControlGetRegionRec 33
Constants for the Mac OS 8.5 Control Manager 34

Control Data Tag Constants 34
Control Definition Feature Constants 38
Control Definition IDs 39
Control Definition Message Constants 42
Control Font Style Flag Constant 43
Control Key Script Behavior Constants 43
Control Part Code Constants 44

Result Codes for the Mac OS 8.5 Control Manager 45
12 Contents

1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference 2

This chapter describes the Control Manager application programming interface
(API) introduced with Mac OS 8.5 and Appearance Manager 1.1, as follows:

■ “Gestalt Selector for the Mac OS 8.5 Control Manager” (page 13)

■ “Functions for the Mac OS 8.5 Control Manager” (page 14)

■ “Application-Defined Functions for the Mac OS 8.5 Control Manager”
(page 30)

■ “Data Types for the Mac OS 8.5 Control Manager” (page 32)

■ “Constants for the Mac OS 8.5 Control Manager” (page 34)

■ “Result Codes for the Mac OS 8.5 Control Manager” (page 45)

Note that pre-existing Control Manager functions, types, and constants are not
discussed in this document. For a description of the Mac OS 8 Control Manager
API, see Mac OS 8 Control Manager Reference. For descriptions of the
pre–Mac OS 8 Control Manager API, see Inside Macintosh: Macintosh Toolbox
Essentials.

Gestalt Selector for the Mac OS 8.5 Control Manager 2

Before calling any functions dependent upon the Control Manager, your
application should pass the selector gestaltControlMgrAttr to the Gestalt
function to determine which Control Manager functions are available.

enum {
gestaltControlMgrAttr = 'cntl',
gestaltControlMgrPresent= (1L << 0)

};

Constant descriptions

gestaltControlMgrAttr
The Gestalt selector passed to determine what features of
the Control Manager are present. This selector is available
with Mac OS 8.5 and later. The Gestalt function produces a
32-bit value whose bits you should test to determine what
Control Manager functionality is available.
Gestalt Selector for the Mac OS 8.5 Control Manager 13
1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference

gestaltControlMgrPresent
If the bit specified by this mask is set, the Control Manager
functionality for Appearance Manager 1.1 is available. This
bit is set for Mac OS 8.5 and later.

Functions for the Mac OS 8.5 Control Manager 2

The Mac OS 8.5 Control Manager provides new functions in the following
areas:

■ “Changing Control Settings” (page 14)

■ “Associating Data With Controls” (page 20)

■ “Displaying Controls” (page 25)

■ “Validating Controls” (page 28)

■ “Obtaining Control Part Regions” (page 29)

Changing Control Settings 2
The Mac OS 8.5 Control Manager provides the following functions for changing
control settings:

■ SetControl32BitValue (page 19) changes the current setting of a control and
redraws it accordingly.

■ GetControl32BitValue (page 16) obtains the current setting of a control.

■ SetControl32BitMinimum (page 18) changes the minimum setting of a control
and, if appropriate, redraws it accordingly.

■ GetControl32BitMinimum (page 15) obtains the minimum setting of a control.

■ SetControl32BitMaximum (page 17) changes the maximum setting of a control
and, if appropriate, redraws it accordingly.

■ GetControl32BitMaximum (page 15) obtains the maximum setting of a control.
14 Functions for the Mac OS 8.5 Control Manager

1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference

GetControl32BitMaximum 2
Obtains the maximum setting of a control.

pascal SInt32 GetControl32BitMaximum (
ControlHandle theControl);

theControl A value of type ControlHandle. Pass a handle to the control
whose maximum setting you wish to obtain.

function result A signed 32-bit integer equal to the maximum setting of the
control.

DISCUSSION

Your application may use the GetControl32BitMaximum function to obtain a 32-bit
value previously set with the function SetControl32BitMaximum (page 17).

SPECIAL CONSIDERATIONS

If your application uses a 32-bit control maximum value, it should not attempt
to obtain this value by calling the pre–Mac OS 8.5 function GetControlMaximum or
by accessing the contrlMax field of the ControlRecord structure, because the
stored 16-bit value will not accurately reflect the current 32-bit control value.

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

“Settings Values for Standard Controls” in Mac OS 8 Control Manager Reference.

GetControl32BitMinimum 2
Obtains the minimum setting of a control.

pascal SInt32 GetControl32BitMinimum (
ControlHandle theControl);
Functions for the Mac OS 8.5 Control Manager 15
1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference

theControl A value of type ControlHandle. Pass a handle to the control
whose minimum setting you wish to obtain.

function result A signed 32-bit integer equal to the minimum setting of the
control.

DISCUSSION

Your application may use the GetControl32BitMinimum function to obtain a 32-bit
value previously set with the function SetControl32BitMinimum (page 18).

SPECIAL CONSIDERATIONS

If your application uses a 32-bit control minimum value, it should not attempt
to obtain this value by calling the pre–Mac OS 8.5 function GetControlMinimum or
by accessing the contrlMin field of the ControlRecord structure, because the
stored 16-bit value will not accurately reflect the current 32-bit control value.

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

“Settings Values for Standard Controls” in Mac OS 8 Control Manager Reference.

GetControl32BitValue 2
Obtains the current setting of a control.

pascal SInt32 GetControl32BitValue (
ControlHandle theControl);

theControl A value of type ControlHandle. Pass a handle to the control
whose current setting you wish to obtain.

function result A signed 32-bit integer equal to the current setting of the
control.
16 Functions for the Mac OS 8.5 Control Manager

1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
DISCUSSION

Your application may use the GetControl32BitValue function to obtain a 32-bit
value previously set with the function SetControl32BitValue (page 19).

SPECIAL CONSIDERATIONS

If your application uses a 32-bit control value, it should not attempt to obtain
this value by calling the pre–Mac OS 8.5 function GetControlValue or by
accessing the contrlValue field of the ControlRecord structure, because the
stored 16-bit value will not accurately reflect the current 32-bit control value.

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

“Settings Values for Standard Controls” in Mac OS 8 Control Manager Reference.

SetControl32BitMaximum 2
Changes the maximum setting of a control and, if appropriate, redraws it
accordingly.

pascal void SetControl32BitMaximum (
ControlHandle theControl,
SInt32 newMaximum);

theControl A value of type ControlHandle. Pass a handle to the control
whose maximum setting you wish to change.

newMaximum A signed 32-bit integer. Pass a value specifying the new
maximum setting of the control. In general, to avoid
unpredictable behavior, do not set the maximum control value
lower than the current minimum value.
Functions for the Mac OS 8.5 Control Manager 17
1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
DISCUSSION

Your application may use the SetControl32BitMaximum function to set a 32-bit
value as the maximum setting for a control.

SPECIAL CONSIDERATIONS

If your application uses a 32-bit control maximum value, it should not attempt
to obtain this value by calling the pre–Mac OS 8.5 function GetControlMaximum or
by accessing the contrlMax field of the ControlRecord structure, because the
stored 16-bit value will not accurately reflect the current 32-bit control value.
Instead, use the function GetControl32BitMaximum (page 15).

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

“Settings Values for Standard Controls” in Mac OS 8 Control Manager Reference.

SetControl32BitMinimum 2
Changes the minimum setting of a control and, if appropriate, redraws it
accordingly.

pascal void SetControl32BitMinimum (
ControlHandle theControl,
SInt32 newMinimum);

theControl A value of type ControlHandle. Pass a handle to the control
whose minimum setting you wish to change.

newMinimum A signed 32-bit integer. Pass a value specifying the new
minimum setting of the control. In general, to avoid
unpredictable behavior, do not set the minimum control value
higher than the current maximum value.
18 Functions for the Mac OS 8.5 Control Manager

1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
DISCUSSION

Your application may use the SetControl32BitMinimum function to set a 32-bit
value as the minimum setting for a control.

SPECIAL CONSIDERATIONS

If your application uses a 32-bit control minimum value, it should not attempt
to obtain this value by calling the pre–Mac OS 8.5 function GetControlMinimum or
by accessing the contrlMin field of the ControlRecord structure, because the
stored 16-bit value will not accurately reflect the current 32-bit control value.
Instead, use the function GetControl32BitMinimum (page 15).

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

“Settings Values for Standard Controls” in Mac OS 8 Control Manager Reference.

SetControl32BitValue 2
Changes the current setting of a control and redraws it accordingly.

pascal void SetControl32BitValue (
ControlHandle theControl,
SInt32 newValue);

theControl A value of type ControlHandle. Pass a handle to the control
whose current setting you wish to change.

newValue A signed 32-bit integer. Pass a value specifying the new setting
of the control. If the specified value is less than the minimum
setting for the control, SetControl32BitValue sets the current
setting of the control to its minimum setting. If the specified
value is greater than the maximum setting,
SetControl32BitValue sets the control to its maximum.
Functions for the Mac OS 8.5 Control Manager 19
1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
DISCUSSION

Your application may use the SetControl32BitValue function to set a 32-bit
value as the current setting for a control.

SPECIAL CONSIDERATIONS

If your application uses a 32-bit control value, it should not attempt to obtain
this value by calling the pre–Mac OS 8.5 function GetControlValue or by
accessing the contrlValue field of the ControlRecord structure, because the
stored 16-bit value will not accurately reflect the current 32-bit control value.
Instead, use the function GetControl32BitValue (page 16).

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

“Settings Values for Standard Controls” in Mac OS 8 Control Manager Reference.

Associating Data With Controls 2
The Mac OS 8.5 Control Manager provides the following functions for
associating data with controls:

■ SetControlProperty (page 24) associates data with a control.

■ GetControlProperty (page 21) obtains a piece of data that has been previously
associated with a control.

■ GetControlPropertySize (page 22) obtains the size of a piece of data that has
previously been associated with a control.

■ RemoveControlProperty (page 23) removes a piece of data that has been
previously associated with a control.
20 Functions for the Mac OS 8.5 Control Manager

1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
GetControlProperty 2
Obtains a piece of data that has been previously associated with a control.

pascal OSStatus GetControlProperty (
ControlHandle control,
OSType propertyCreator,
OSType propertyTag,
UInt32 bufferSize,
UInt32 *actualSize,
void *propertyBuffer);

control A value of type ControlHandle. Pass a handle to the control
whose associated data you wish to obtain.

propertyCreator
A four-character code. Pass your program’s signature, as
registered through Apple Developer Technical Support. If your
program is of a type that would not normally have a signature
(for example, a plug-in), you should still register and use a
signature in this case, even though your program’s file may not
have the same creator code as the signature that you register.
The 'macs' property signature is reserved for the system and
should not be used.

propertyTag A four-character code. Pass the application-defined code
identifying the data.

bufferSize An unsigned 32-bit integer. Pass a value specifying the size of
the data to be obtained. If the size of the data is unknown, use
the function GetControlPropertySize (page 22) to get the data’s
size. If the size specified in the bufferSize parameter does not
match the actual size of the property, GetControlProperty only
retrieves data up to the size specified or up to the actual size of
the property, whichever is smaller, and an error is returned.

actualSize A pointer to an unsigned 32-bit integer. On return, this value is
set to the actual size of the associated data. You may pass nil for
the actualSize parameter if you are not interested in this
information.

propertyBuffer
A pointer to a buffer. On return, this buffer contains a copy of
the data that is associated with the specified control.
Functions for the Mac OS 8.5 Control Manager 21
1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
function result A result code. See “Result Codes for the Mac OS 8.5 Control
Manager” (page 45).

DISCUSSION

You may use the function GetControlProperty to obtain a copy of data
previously set by your application with the function SetControlProperty
(page 24).

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

The function RemoveControlProperty (page 23).

GetControlPropertySize 2
Obtains the size of a piece of data that has previously been associated with a
control.

pascal OSStatus GetControlPropertySize (
ControlHandle control,
OSType propertyCreator,
OSType propertyTag,
UInt32 *size);

control A value of type ControlHandle. Pass a handle to the control
whose associated data you wish to examine.

propertyCreator
A four-character code. Pass your program’s signature, as
registered through Apple Developer Technical Support. If your
program is of a type that would not normally have a signature
(for example, a plug-in), you should still register and use a
signature in this case, even though your program’s file may not
have the same creator code as the signature that you register.
The 'macs' property signature is reserved for the system and
should not be used.
22 Functions for the Mac OS 8.5 Control Manager

1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
propertyTag A four-character code. Pass the application-defined code
identifying the data.

size A pointer to an unsigned 32-bit integer. On return, this value is
set to the actual size of the data.

function result A result code. See “Result Codes for the Mac OS 8.5 Control
Manager” (page 45).

DISCUSSION

If you want to retrieve a piece of associated data with the function
GetControlProperty (page 21), you will typically need to use the
GetControlPropertySize function beforehand to determine the size of the
associated data.

VERSION NOTES

Available with Mac OS 8.5 and later.

RemoveControlProperty 2
Removes a piece of data that has been previously associated with a control.

pascal OSStatus RemoveControlProperty (
ControlHandle control,
OSType propertyCreator,
OSType propertyTag);

control A value of type ControlHandle. Pass a handle to the control
whose associated data you wish to remove.

propertyCreator
A four-character code. Pass your program’s signature, as
registered through Apple Developer Technical Support. If your
program is of a type that would not normally have a signature
(for example, a plug-in), you should still register and use a
signature in this case, even though your program’s file may not
have the same creator code as the signature that you register.
The 'macs' property signature is reserved for the system and
should not be used.
Functions for the Mac OS 8.5 Control Manager 23
1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
propertyTag A four-character code. Pass the application-defined code
identifying the associated data.

function result A result code. See “Result Codes for the Mac OS 8.5 Control
Manager” (page 45).

DISCUSSION

Your application may dissociate data it has previously set with the
SetControlProperty (page 24) function by calling the RemoveControlProperty
function.

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

The function GetControlProperty (page 21).

SetControlProperty 2
Associates data with a control.

pascal OSStatus SetControlProperty (
ControlHandle control,
OSType propertyCreator,
OSType propertyTag,
UInt32 propertySize,
void *propertyData);

control A value of type ControlHandle. Pass a handle to the control with
which you wish to associate data.

propertyCreator
A four-character code. Pass your program’s signature, as
registered through Apple Developer Technical Support. If your
program is of a type that would not normally have a signature
(for example, a plug-in), you should still register and use a
signature in this case, even though your program’s file may not
24 Functions for the Mac OS 8.5 Control Manager

1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
have the same creator code as the signature that you register.
The 'macs' property signature is reserved for the system and
should not be used.

propertyTag A four-character code. Pass a value identifying the data. You
define the tag your application uses to identify the data.

propertySize An unsigned 32-bit integer. Pass a value specifying the size of
the data.

propertyData A pointer to data of any type. Pass a pointer to a buffer
containing the data to be associated; this buffer should be at
least as large as the value specified in the propertySize
parameter.

function result A result code. See “Result Codes for the Mac OS 8.5 Control
Manager” (page 45).

DISCUSSION

Your application may use the SetControlProperty function to associate any type
of data with a control.

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

The function GetControlProperty (page 21).

The function RemoveControlProperty (page 23).

Displaying Controls 2
The Mac OS 8.5 Control Manager provides the following functions for
displaying controls:

■ GetControlViewSize (page 26) obtains the size of the content to which a
control’s size is proportioned.

■ SetControlViewSize (page 26) informs the Control Manager of the size of the
content to which a control’s size is proportioned.
Functions for the Mac OS 8.5 Control Manager 25
1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
■ SetUpControlTextColor (page 27) prepares a control to be drawn with a text
color consistent with that of any controls in which it is embedded and with
the current theme.

GetControlViewSize 2
Obtains the size of the content to which a control’s size is proportioned.

pascal SInt32 GetControlViewSize (
ControlHandle theControl);

theControl A value of type ControlHandle. Pass a handle to the control
whose view size you wish to obtain.

function result A signed 32-bit integer. The GetControlViewSize function returns
a value equal to the current size of the content being displayed,
expressed in terms of the same units of measurement as are
used for the minimum, maximum, and current settings of the
control.

DISCUSSION

Your application should call the GetControlViewSize function to obtain the
current view size of a control. This value is used by the function
SetControlViewSize (page 26) to support proportional scroll boxes.

VERSION NOTES

Available with Mac OS 8.5 and later.

SetControlViewSize 2
Informs the Control Manager of the size of the content to which a control’s size
is proportioned.

pascal void SetControlViewSize (
ControlHandle theControl,
SInt32 newViewSize);
26 Functions for the Mac OS 8.5 Control Manager

1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
theControl A value of type ControlHandle. Pass a handle to the control
whose view size is to be set.

newViewSize A signed 32-bit integer. Pass a value specifying the size of the
content being displayed. This value should be expressed in
terms of the same units of measurement as are used for the
minimum, maximum, and current settings of the control.

DISCUSSION

Your application should call the SetControlViewSize function to support
proportional scroll boxes. If the user selects the systemwide Appearance
preference for proportional scroll boxes and your application doesn’t call
SetControlViewSize, it will still have the traditional square scroll boxes.

To support a proportional scroll box, simply pass the size of the view area—in
terms of whatever units the scroll bar uses—to SetControlViewSize. The system
automatically handles resizing the scroll box, once your application supplies
this information. Listing 0-1 in “Creating a Proportional Scroll Box” (page 7)
shows some typical code for setting a scroll bar according to a TextEdit handle,
which includes making the scroll box proportional.

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

The function GetControlViewSize (page 26).

SetUpControlTextColor 2
Prepares a control to be drawn with a text color consistent with that of any
controls in which it is embedded and with the current theme.

pascal OSErr SetUpControlTextColor (
ControlHandle inControl,
SInt16 inDepth,
Boolean inIsColorDevice);
Functions for the Mac OS 8.5 Control Manager 27
1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
inControl A value of type ControlHandle. Pass a handle to the control
whose text color is to be set.

inDepth A signed 16-bit integer. Pass a value specifying the bit depth (in
pixels) of the current graphics port.

inIsColorDevice
A value of type Boolean. Set to true to indicate that you are
drawing on a color device. Set to false for a monochrome
device.

function result A result code. See “Result Codes for the Mac OS 8.5 Control
Manager” (page 45).

DISCUSSION

Your control definition function may use the SetUpControlTextColor function
inside a DeviceLoop drawing procedure to set a control’s text color to coordinate
with the current theme. Applications do not typically need to use this function.

VERSION NOTES

Available with Mac OS 8.5 and later.

Validating Controls 2
The Mac OS 8.5 Control Manager provides the following function for
confirming the validity of a control handle:

■ IsValidControlHandle (page 28) reports whether a given handle is a control
handle.

IsValidControlHandle 2
Reports whether a given handle is a control handle.

pascal Boolean IsValidControlHandle (
ControlHandle theControl);

theControl A value of type ControlHandle. Pass the handle to be examined.
28 Functions for the Mac OS 8.5 Control Manager

1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
function result A value of type Boolean. The IsValidControlHandle function
returns true if the specified handle is a valid control handle;
otherwise, false.

DISCUSSION

The IsValidControlHandle function confirms whether a given handle is a valid
control handle, but it does not check the validity of the data contained in the
control itself.

VERSION NOTES

Available with Mac OS 8.5 and later.

Obtaining Control Part Regions 2
The Mac OS 8.5 Control Manager provides the following function for obtaining
the region corresponding to a control part:

■ GetControlRegion (page 29) obtains the region corresponding to a given
control part.

GetControlRegion 2
Obtains the region corresponding to a given control part.

pascal OSStatus GetControlRegion (
ControlHandle inControl,
ControlPartCode inPart,
RgnHandle outRegion);

inControl A value of type ControlHandle. Pass a handle to the control
containing the part for which a region is to be obtained.

inPart A value of type ControlPartCode. Pass a constant identifying the
control part for which a region is to obtained; you may specify
the kControlStructureMetaPart and kControlContentMetaPart
control part codes, as well as the standard control part codes.
See “Control Part Code Constants” (page 44) for descriptions of
possible values.
Functions for the Mac OS 8.5 Control Manager 29
1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
outRegion Pass a value of type RgnHandle. On return, GetControlRegion sets
the region to contain the actual dimensions and position of the
control part, in local coordinates.

function result A result code. See “Result Codes for the Mac OS 8.5 Control
Manager” (page 45).

VERSION NOTES

Available with Mac OS 8.5 and later.

Application-Defined Functions for the Mac OS 8.5 Control
Manager 2

The Mac OS 8.5 Control Manager provides the following function for validating
the content of an editable text control:

■ MyControlEditTextValidationProc (page 30) validates editable text.

MyControlEditTextValidationProc 2
Ensures that the content of an editable text control is valid.

This is how you would declare an editable text validation function, if you were
to name the function MyControlEditTextValidationProc:

pascal void MyControlEditTextValidationProc (
ControlHandle control);

control A value of type ControlHandle. You are passed a handle to the
control containing the editable text to be validated.

DISCUSSION

Your application typically uses a MyControlEditTextValidationProc function in
conjunction with a key filter function to ensure that editable text is valid in
cases such as a cut, paste, or clear, where a key filter cannot be called. Use the
kControlEditTextValidationProcTag control data tag constant, described in
30 Application-Defined Functions for the Mac OS 8.5 Control Manager

1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
“Control Data Tag Constants” (page 34), with the functions SetControlData and
GetControlData to set or retrieve a MyControlEditTextValidationProc function.

Note that if you are using the inline input editable text control variant, the
Control Manager will not call your MyControlEditTextValidationProc function
during inline input. Instead, you may install your own Text Services Manager
TSMTEPostUpdateUPP callback function to validate text during inline input, or
your application can validate the input itself, immediately prior to using the
text.

Listing 0-2 in “Validating Editable Text” (page 8) demonstrates how you can use
a MyControlEditTextValidationProc function to ensure that a user-supplied file
name does not contain any illegal characters.

When you implement your editable text validation function, the pointer that
you pass to SetControlData must be a universal procedure pointer of the
following type:

typedef ControlEditTextValidationProcPtr ControlEditTextValidationUPP;

To create a universal procedure pointer for your application-defined editable
text validation function, you should use the NewControlEditTextValidationProc
macro as follows:

ControlEditTextValidationUPP myControlEditTextValidationUPP;
myControlEditTextValidationUPP = NewControlEditTextValidationProc
(MyControlEditTextValidationProc);

You can then pass myControlEditTextValidationUPP in the inData parameter of
SetControlData. When you no longer need the universal procedure pointer, you
should remove it using the DisposeRoutineDescriptor function.

If you need to call your application-defined function from outside your
application for some reason (for example, from a plug-in), you should use the
CallControlEditTextValidationProc macro to make the call, as follows:

ControlEditTextValidationUPP myControlEditTextValidationUPP;
CallControlEditTextValidationProc (myControlEditTextValidationUPP,
control);

Using this macro ensures that the call is made through a universal procedure
pointer.
Application-Defined Functions for the Mac OS 8.5 Control Manager 31
1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
VERSION NOTES

Available with Mac OS 8.5 and later.

Data Types for the Mac OS 8.5 Control Manager 2

The following data types are available with the Mac OS 8.5 Control Manager:

■ ControlApplyTextColorRec (page 32)

■ ControlEditTextValidationProcPtr (page 33)

■ ControlGetRegionRec (page 33)

ControlApplyTextColorRec 2
If you implement a custom control definition function, when the Control
Manager passes the message kControlMsgApplyTextColor in your control
definition function’s message parameter, it also passes a pointer to a structure of
type ControlApplyTextColorRec in the param parameter. The Control Manager
sets the ControlApplyTextColorRec structure to contain data describing the
current drawing environment, and your control definition function is
responsible for using that data to apply the proper text color to the current
graphics port.

See “Control Definition Message Constants” (page 42) for more details on the
kControlMsgApplyTextColor message.

struct ControlApplyTextColorRec
{

SInt16 depth;
Boolean colorDevice;
Boolean active;

};
typedef struct ControlApplyTextColorRec ControlApplyTextColorRec;
typedef ControlApplyTextColorRec* ControlApplyTextColorPtr;
32 Data Types for the Mac OS 8.5 Control Manager

1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
Field descriptions

depth A signed 16-bit integer. The Control Manager sets this field
to specify the bit depth (in pixels) of the current graphics
port.

colorDevice A value of type Boolean. The Control Manager passes a
value of true if you are drawing on a color device;
otherwise, false.

active A value of type Boolean. The Control Manager passes a
value of true to specify a color suitable for active text;
otherwise, false.

ControlEditTextValidationProcPtr 2
You may want to designate an application-defined function in conjunction with
a key filter function to ensure that editable text is valid in cases such as a cut,
paste, or clear, where a key filter cannot be called. Such a function has the
following type definition:

typedef pascal void (ControlEditTextValidationProcPtr) (ControlHandle
control);

See MyControlEditTextValidationProc (page 30) for more information about
how to implement the application-defined function.

ControlGetRegionRec 2
If you implement a custom control definition function, when the Control
Manager passes the message kControlMsgGetRegion in your control definition
function’s message parameter, it also passes a pointer to a structure of type
ControlGetRegionRec in the param parameter. Your control definition function is
responsible for setting the region field of the ControlGetRegionRec structure to
the region that contains the control part which the Control Manager specifies in
the part field.

See “Control Definition Message Constants” (page 42) for more details on the
kControlMsgGetRegion message.
Data Types for the Mac OS 8.5 Control Manager 33
1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
struct ControlGetRegionRec
{

RgnHandle region;
ControlPartCode part;

};
typedef struct ControlGetRegionRec ControlGetRegionRec;
typedef ControlGetRegionRec* ControlGetRegionPtr;

Field descriptions

region A value of type RgnHandle allocated by the Control
Manager. Your control definition function should set this
field to the region that contains the control part specified in
the part field.

part A value of type ControlPartCode. The Control Manager
passes a constant identifying the control part for which a
region is to be obtained. For descriptions of possible values,
see “Control Part Code Constants” (page 44).

Constants for the Mac OS 8.5 Control Manager 2

The following constants are available with the Mac OS 8.5 Control Manager:

■ “Control Data Tag Constants” (page 34)

■ “Control Definition Feature Constants” (page 38)

■ “Control Definition IDs” (page 39)

■ “Control Definition Message Constants” (page 42)

■ “Control Font Style Flag Constant” (page 43)

■ “Control Key Script Behavior Constants” (page 43)

■ “Control Part Code Constants” (page 44)

Control Data Tag Constants 2
The Mac OS 8.5 Control Manager defines the following new control data tag
constants. These constants are passed in the inTagName parameters of the
functions SetControlData and GetControlData to specify the piece of data in a
34 Constants for the Mac OS 8.5 Control Manager

1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
control that you wish to set or get. You can also pass these constants in the
inTagName parameter of the function GetControlDataSize if you wish to
determine the size of variable-length control data (for example, text in an
editable text control). These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in
response to a kControlMsgGetFeatures message.

The data that your application gets or sets can be of various types. The
descriptions below show the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the
inBuffer parameter to the GetControlData function.

For details on other control data tag constants, see Mac OS 8 Control Manager
Reference.

enum {
kControlScrollTextBoxDelayBeforeAutoScrollTag = 'stdl',
kControlScrollTextBoxDelayBetweenAutoScrollTag = 'scdl',
kControlScrollTextBoxAutoScrollAmountTag = 'samt',
kControlScrollTextBoxContentsTag = 'tres',
kControlEditTextKeyScriptBehaviorTag = 'kscr',
kControlEditTextLockedTag = 'lock',
kControlEditTextFixedTextTag = 'ftxt',
kControlEditTextValidationProcTag = 'vali',
kControlEditTextInlinePreUpdateProcTag = 'prup',
kControlEditTextInlinePostUpdateProcTag = 'poup',
kControlStaticTextTruncTag = 'trun',
kControlIconResourceIDTag = 'ires',
kControlIconContentTag = 'cont',
kControlBevelButtonScaleIconTag = 'scal',
kControlPushButtonCancelTag = 'cncl',
kControlPopupButtonExtraHeightTag = 'exht',
kControlGroupBoxTitleRectTag = 'trec'

};

Constant descriptions

kControlScrollTextBoxDelayBeforeAutoScrollTag
Gets or sets the number of ticks to delay before the initial
scrolling of an auto-scrolling text box control begins.
Data type retrieved or set: UInt32
Constants for the Mac OS 8.5 Control Manager 35
1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
kControlScrollTextBoxDelayBetweenAutoScrollTag
Gets or sets the number of ticks to delay between each unit
of scrolling, for an auto-scrolling text box control. (The unit
of scrolling for the auto-scrolling text box control is one
pixel at a time, unless your application changes this value
by calling the SetControlData function.)
Data type retrieved or set: UInt32

kControlScrollTextBoxAutoScrollAmountTag
Gets or sets the number of pixels by which an
auto-scrolling text box control scrolls; default is 1.
Data type retrieved or set: UInt16

kControlScrollTextBoxContentsTag
Sets the ID of a 'TEXT' resource—and, optionally, a 'styl'
resource—to be used as the content in a scrolling or
auto-scrolling text box control.
Data type set: SInt16

kControlEditTextKeyScriptBehaviorTag
Gets or sets the kind of behavior to be used in an editable
text control with respect to changing and locking the
keyboard menu as the field is focused.
Data type retrieved or set: ControlKeyScriptBehavior. The
default for password fields is
kControlKeyScriptBehaviorPrefersRoman. The default for
non-password fields is
kControlKeyScriptBehaviorAllowAnyScript. See “Control
Key Script Behavior Constants” (page 43) for descriptions
of possible values.

kControlEditTextLockedTag
Gets or sets whether the text in an editable text control is
currently editable.
Data type retrieved or set: Boolean; if true, the text is locked
and cannot be edited; if false, the text is editable.

kControlEditTextFixedTextTag
Gets or sets inline input text in an editable text control,
after confirming any text in the active input area with the
Text Services Manager function FixTSMDocument.
Data type retrieved or set: character buffer

kControlEditTextValidationProcTag
Gets or sets a universal procedure pointer to a callback
36 Constants for the Mac OS 8.5 Control Manager

1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
function such as that described in
MyControlEditTextValidationProc (page 30), which can be
used to validate editable text after an operation that
changes the text, such as inline text entry, a cut, or paste.
Data type retrieved or set: ControlEditTextValidationUPP

kControlEditTextInlinePreUpdateProcTag
Gets or sets a universal procedure pointer to a Text Services
Manager pre-update callback function. See Technote TE 27,
“Inline Input for TextEdit with TSMTE” for a description of
the TSMTEPreUpdateUPP type.
Data type retrieved or set: TSMTEPreUpdateUPP

kControlEditTextInlinePostUpdateProcTag
Gets or sets a universal procedure pointer to a Text Services
Manager post-update callback function. See Technote TE
27, “Inline Input for TextEdit with TSMTE” for a
description of the TSMTEPostUpdateUPP type.
Data type retrieved or set: TSMTEPostUpdateUPP

kControlStaticTextTruncTag
Gets or sets how text is truncated at the end of a line for a
static text control.
Data type retrieved or set: TruncCode; the value truncEnd
indicates that characters are truncated off the end of the
string; the value truncMiddle indicates that characters are
truncated from the middle of the string. Default is a value
of -1, which indicates that no truncation occurs and the text
is instead wrapped.

kControlIconResourceIDTag
Gets or sets the resource ID of the icon to use.
Data type retrieved or set: SInt16

kControlIconContentTag
Gets or sets the type of content to be used in an icon
control.
Data type retrieved or set: ControlButtonContentInfo; see
Mac OS 8 Control Manager Reference for a description of this
data type.

kControlBevelButtonScaleIconTag
Gets or sets whether, when the proper icon size is
unavailable, an icon should be scaled for use with a given
bevel button. This tag is only for use with icon suites or the
Constants for the Mac OS 8.5 Control Manager 37
1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
IconRef data type.
Data type retrieved or set: Boolean. If true, indicates that if
an icon of the ideal size isn’t available, a larger or smaller
icon should be scaled to the ideal size. If false, no scaling
should occur; instead, a smaller icon should be drawn or a
larger icon clipped. Default is false.

kControlPushButtonCancelTag
Gets or sets whether a given push button in a dialog or
alert should be drawn with the theme-specific adornments
for a Cancel button.
Data type retrieved or set: Boolean; default is false.

kControlPopupButtonExtraHeightTag
Gets or sets the amount of extra vertical white space in a
pop-up menu button.
Data type retrieved: SInt16; default is 0.

kControlGroupBoxTitleRectTag
Gets the rectangle that contains the title of a group box (and
any associated control, such as a checkbox or other button).
Data type retrieved: Rect

Control Definition Feature Constants 2
With the Mac OS 8.5 Control Manager, your control definition function may
report the following new feature flags to reflect the features that your control
supports. For other control definition feature flags, see “Defining Your Own
Control Definition Function” in Mac OS 8 Control Manager Reference.

enum {
kControlAutoToggles = 1 << 14,
kControlSupportsGetRegion = 1 << 17

};

Constant descriptions

kControlAutoToggles
If the bit specified by this mask is set, the control definition
function supports automatically changing among various
states (on, off, mixed) in response to user actions.

kControlSupportsGetRegion
If the bit specified by this mask is set, the control definition
38 Constants for the Mac OS 8.5 Control Manager

1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
function supports the kControlMsgGetRegion message,
described in “Control Definition Message Constants”
(page 42).

Control Definition IDs 2
The Mac OS 8.5 Control Manager defines the following new control definition
IDs. For details on other standard control definition IDs, see Mac OS 8 Control
Manager Reference.

enum {
kControlEditTextInlineInputProc = 276,
kControlIconRefProc = 324,
kControlIconRefNoTrackProc = 325,
kControlCheckBoxAutoToggleProc = 371,
kControlRadioButtonAutoToggleProc = 372,
kControlScrollTextBoxProc = 432,
kControlScrollTextBoxAutoScrollProc = 433

};

Constant descriptions

kControlEditTextInlineInputProc
Identifies the inline input variant of the editable text control
('CDEF' resource ID 17), which supports 2-byte script
systems. This variant cannot be combined with the
password variant of the editable text box.

kControlIconRefProc
Identifies the variant of the icon control ('CDEF' resource ID
20) that supports all standard types of icon-based content.
Note that you do not supply content for this control upon
its creation with a call to the NewControl function. Rather,
after the control’s creation you can set or change its content
at any time by passing the SetControlData function the
kControlIconContentTag control data tag constant and a
ControlButtonContentInfo structure containing any of the
allowable data types. Supported data types for this icon
control variant are specified with the following
ControlContentType values: kControlContentIconSuiteRes,
kControlContentCIconRes (uses a black-and-white 'ICON'
resource if the color resource isn’t available),
Constants for the Mac OS 8.5 Control Manager 39
1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
kControlContentIconSuiteHandle,
kControlContentCIconHandle, and kControlContentIconRef.
Note, too, that if you supply the kControlContentIconRef
value, you must first use Icon Services functions to register
your resources and generate IconRef values. See Mac OS 8
Control Manager Reference for a description of the
ControlButtonContentInfo data type and the
ControlContentType constants.

kControlIconRefNoTrackProc
Identifies the non-tracking variant of the icon control
('CDEF' resource ID 20) that supports all standard types of
icon-based content. This control immediately returns
kControlIconPart as the part code hit without tracking.
Note that you do not supply content for this control upon
its creation with a call to the NewControl function. Rather,
after the control’s creation you can set or change its content
at any time by passing the SetControlData function the
kControlIconContentTag control data tag constant and a
ControlButtonContentInfo structure containing any of the
allowable data types. Supported data types for this icon
control variant are specified with the following
ControlContentType values: kControlContentIconSuiteRes,
kControlContentCIconRes (uses a black-and-white 'ICON'
resource if the color resource isn’t available),
kControlContentIconSuiteHandle,
kControlContentCIconHandle, and kControlContentIconRef.
Note, too, that if you supply the kControlContentIconRef
value, you must first use Icon Services functions to register
your resources and generate IconRef values. See Mac OS 8
Control Manager Reference for a description of the
ControlButtonContentInfo data type and the
ControlContentType constants.

kControlCheckBoxAutoToggleProc
Identifies a checkbox control ('CDEF' resource ID 23) that
automatically changes among its various states (on, off,
mixed) in response to user actions. Your application must
only call the function GetControl32BitValue (page 16) to get
the checkbox’s new state—there is no need to manually
change the control’s value after tracking successfully.
40 Constants for the Mac OS 8.5 Control Manager

1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
kControlRadioButtonAutoToggleProc
Identifies a radio button control ('CDEF' resource ID 23) that
automatically changes among its various states (on, off,
mixed) in response to user actions. Your application must
only call the function GetControl32BitValue (page 16) to get
the radio button’s new state—there is no need to manually
change the control’s value after tracking successfully.

kControlScrollTextBoxProc
Identifies the standard variant of the scrolling text box
('CDEF' resource ID 27), which contains a scroll bar. Your
application can use the kControlScrollTextBoxProc ID to
create a scrolling box of non-editable text, such as is used
for an “About” box. You must pass the NewControl function
the ID of a 'TEXT' resource—and, optionally, a 'styl'
resource—to be used for the initial value of the control. The
minimum and maximum values are reserved for the
kControlScrollTextBoxProc variant and should be set to 0.

kControlScrollTextBoxAutoScrollProc
Identifies the auto-scrolling variant of the scrolling text box
('CDEF' resource ID 27); this variant does not contain a
scroll bar. Your application can use the
kControlScrollTextBoxAutoScrollProc ID to create a
scrolling box of non-editable text, such as is used for an
“About” box. You must pass the NewControl function the ID
of a 'TEXT' resource—and, optionally, a 'styl' resource—to
be used for the initial value of the control. For the
minimum value of the control, pass a value equal to the
delay, in ticks, before the control begins scrolling; this delay
will also be used between when scrolling completes and
when it begins again. For the maximum value of the
control, pass a value equal to the delay, in ticks, between
each unit of scrolling. The unit of scrolling for the
auto-scrolling text box control is one pixel at a time, unless
your application changes this value by calling the
SetControlData function. Note that in order to advance the
content of the text box—that is, to scroll the content—you
must call the IdleControls function on a periodic basis,
such as whenever you receive a null event.
Constants for the Mac OS 8.5 Control Manager 41
1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
Control Definition Message Constants 2
The Mac OS 8.5 Control Manager may pass the following new constants in the
message parameter of your control definition function to specify the actions that
your function must perform. For other control definition message constants, see
“Defining Your Own Control Definition Function” in Mac OS 8 Control Manager
Reference.

enum {
kControlMsgApplyTextColor = 30,
kControlMsgGetRegion = 31

};

Constant descriptions

kControlMsgApplyTextColor
Set the foreground color to be consistent with the current
drawing environment and suitable for display against the
background color or pattern. To indicate that your control
definition function supports this message, set the
kControlHasSpecialBackground feature bit. When this
message is sent, the Control Manager passes a pointer to a
structure of type ControlApplyTextColorRec (page 32) in
your control definition function’s param parameter. The
Control Manager sets the ControlApplyTextColorRec
structure to contain data describing the current drawing
environment. Your control definition function is
responsible for using this data to apply a text color which is
consistent with the current theme and optimally readable
on the control’s background. Your control definition
function should return 0 as the function result.

kControlMsgGetRegion
Obtain the region occupied by the specified control part. To
indicate that your control definition function supports this
message, set the kControlSupportsGetRegion feature bit.
When this message is sent, the Control Manager passes a
pointer to a structure of type ControlGetRegionRec (page 33)
in your control definition function’s param parameter. Your
control definition function is responsible for setting the
region field of the ControlGetRegionRec structure to the
region that contains the control part which the Control
Manager specifies in the part field. Your control definition
42 Constants for the Mac OS 8.5 Control Manager

1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
function return a result code of type OSStatus as the
function result.

Control Font Style Flag Constant 2
With the Mac OS 8.5 Control Manager, you can pass the following new control
font style flag constant in the flags field of the ControlFontStyleRec structure to
specify the fields of the structure that should be applied to the control. For more
details on control font style flag constants and the ControlFontStyleRec
structure, see Mac OS 8 Control Manager Reference.

enum {
kControlAddToMetaFontMask = 0x0200

};

Constant description

kControlAddToMetaFontMask
If the bit specified by this mask is set, the control may use a
meta-font while also adding other attributes to the font. If
the bit specified by this mask is not set, but a meta-font is
specified for the control, any additional attributes set for
the font are ignored.

Control Key Script Behavior Constants 2
With the Mac OS 8.5 Control Manager, you can use the following constants of
type ControlKeyScriptBehavior to specify the kind of behavior to be used in an
editable text control with respect to changing and locking the keyboard menu
as the field is focused. The ControlKeyScriptBehavior constants are set and
retrieved with the kControlEditTextKeyScriptBehaviorTag control data tag
constant; for details on kControlEditTextKeyScriptBehaviorTag, see “Control
Data Tag Constants” (page 34).

enum {
kControlKeyScriptBehaviorAllowAnyScript = 'any ',
kControlKeyScriptBehaviorPrefersRoman = 'prmn',
kControlKeyScriptBehaviorRequiresRoman = 'rrmn'

};
typedef UInt32 ControlKeyScriptBehavior;
Constants for the Mac OS 8.5 Control Manager 43
1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
Constant descriptions

kControlKeyScriptBehaviorAllowAnyScript
Does not change the current keyboard and allows the user
to change the keyboard at will. This is the default for
non-password fields.

kControlKeyScriptBehaviorPrefersRoman
Changes the current keyboard to Roman whenever the
editable text field receives focus but allows the user to
change the keyboard at will. This is the default for
password fields.

kControlKeyScriptBehaviorRequiresRoman
Changes the current keyboard to Roman whenever the
editable text field receives focus and does not allow the
user to change the keyboard.

Control Part Code Constants 2
The Mac OS 8.5 Control Manager defines the following new control part code
constants. You can use control part codes with various functions to identify
control parts. For details on other control part code constants, see Mac OS 8
Control Manager Reference.

enum {
kControlClockHourDayPart = 9,
kControlClockMinuteMonthPart = 10,
kControlClockSecondYearPart = 11,
kControlClockAMPMPart = 12,
kControlStructureMetaPart = -1,
kControlContentMetaPart = -2

};

Constant descriptions

kControlClockHourDayPart
Identifies the part of a clock control that contains the hour
or the day.

kControlClockMinuteMonthPart
Identifies the part of a clock control that contains the
minute or the month.
44 Constants for the Mac OS 8.5 Control Manager

1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
kControlClockSecondYearPart
Identifies the part of a clock control that contains the
second or the year.

kControlClockAMPMPart
Identifies the part of a clock control that contains the AM/
PM information.

kControlStructureMetaPart
Identifies the entire region occupied by a control. The
kControlStructureMetaPart constant is for use only with
GetControlRegion (page 29).

kControlContentMetaPart
Identifies the area of a control in which other controls may
be embedded; this region is only defined for controls that
can be embedders. The kControlContentMetaPart constant is
for use only with GetControlRegion (page 29).

Result Codes for the Mac OS 8.5 Control Manager 2

The new result codes returned by the Mac OS 8.5 Control Manager are listed
below.

controlPropertyInvalid –5603 'macs' property signature not
allowed

controlPropertyNotFoundErr –5604 Specified property does not exist
controlInvalidDataVersionErr –30597 Incorrect version of data passed
controlHandleInvalidErr –30599 Invalid control handle
Result Codes for the Mac OS 8.5 Control Manager 45
1/12/99  Apple Computer, Inc.

C H A P T E R 2

Mac OS 8.5 Control Manager Reference
46 Result Codes for the Mac OS 8.5 Control Manager

1/12/99  Apple Computer, Inc.

A P P E N D I X A
Document Version History A

This document has had the following releases:

Table A-1 Programming With the Mac OS 8.5 Control Manager Revision History

Version Notes

Jan. 12, 1999 Initial public release. The following changes were made from the prior
version:

Changed “Control Manager 2.0” to “Mac OS 8.5 Control Manager”
throughout to reflect final versioning.

“Control Definition IDs” (page 39). Added descriptions of
kControlIconRefProc and kControlIconRefNoTrackProc.

“Result Codes for the Mac OS 8.5 Control Manager” (page 45). Changed the
controlPropertyInvalidErr constant to controlPropertyInvalid.

Added “Using the Mac OS 8.5 Control Manager” chapter to contain code
listings moved from “Mac OS 8.5 Control Manager Reference” chapter.

Jul. 23, 1998 First seed draft release.
47
1/12/99  Apple Computer, Inc.

A P P E N D I X

Document Version History
48
1/12/99  Apple Computer, Inc.

Index
A

associating data with controls 20

C

changing control settings 14
ControlApplyTextColorRec type 32
control data tag constants 34
control definition feature constants 38
control definition IDs 39
ControlEditTextValidationProcPtr type 33
ControlEditTextValidationUPP type 31
control font style flag constant 43
ControlGetRegionRec type 34
controlHandleInvalidErr result code 45
controlInvalidDataVersionErr result code 45
control key script behavior constants 43
ControlKeyScriptBehavior type 43
control part code constants 44
controlPropertyInvalid result code 45
controlPropertyNotFoundErr result code 45
control settings, changing 14

D

displaying controls 25

E

editable text, validating 8

G

gestaltControlMgrAttr constant 13
gestaltControlMgrPresent constant 14
GetControl32BitMaximum function 15
GetControl32BitMinimum function 15
GetControl32BitValue function 16
GetControlProperty function 21
GetControlPropertySize function 22
GetControlRegion function 29
GetControlViewSize function 26

I

IsValidControlHandle function 28

K

kControlAddToMetaFontMask constant 43
kControlAutoToggles constant 38
kControlBevelButtonScaleIconTag

constant 37
kControlCheckBoxAutoToggleProc constant 40
kControlClockAMPMPart constant 45
kControlClockHourDayPart constant 44
kControlClockMinuteMonthPart constant 44
kControlClockSecondYearPart constant 45
kControlContentMetaPart constant 45
kControlEditTextFixedTextTag constant 36
kControlEditTextInlineInputProc

constant 39
kControlEditTextInlinePostUpdateProcTag

constant 37
kControlEditTextInlinePreUpdateProcTag

constant 37
49
1/12/99  Apple Computer, Inc.

I N D E X
kControlEditTextKeyScriptBehaviorTag
constant 36

kControlEditTextLockedTag constant 36
kControlEditTextValidationProcTag

constant 36
kControlGroupBoxTitleRectTag constant 38
kControlIconContentTag constant 37
kControlIconRefNoTrackProc constant 40
kControlIconRefProc constant 39
kControlIconResourceIDTag constant 37
kControlKeyScriptBehaviorAllowAnyScript

constant 44
kControlKeyScriptBehaviorPrefersRoman

constant 44
kControlKeyScriptBehaviorRequiresRoman

constant 44
kControlMsgApplyTextColor constant 42
kControlMsgGetRegion constant 42
kControlPopupButtonExtraHeightTag

constant 38
kControlPushButtonCancelTag constant 38
kControlRadioButtonAutoToggleProc

constant 41
kControlScrollTextBoxAutoScrollAmountTag

constant 36
kControlScrollTextBoxAutoScrollProc

constant 41
kControlScrollTextBoxContentsTag

constant 36
kControlScrollTextBoxDelayBeforeAutoScrol

lTag constant 35
kControlScrollTextBoxDelayBetweenAutoScro

llTag constant 36
kControlScrollTextBoxProc constant 41
kControlStaticTextTruncTag constant 37
kControlStructureMetaPart constant 45
kControlSupportsGetRegion constant 38

M

MyControlEditTextValidationProc
function 30

O

obtaining control part regions 29

P

proportional scroll boxes 7

R

RemoveControlProperty function 23
result codes 45

S

scroll boxes, proportional 7
SetControl32BitMaximum function 17
SetControl32BitMinimum function 18
SetControl32BitValue function 19
SetControlProperty function 24
SetControlViewSize function 26
SetUpControlTextColor function 27
“Smart Scrolling” 7

V

validating controls 28
50
1/12/99  Apple Computer, Inc.

I N D E X
51
1/12/99  Apple Computer, Inc.

T H E A P P L E P U B L I S H I N G S Y S T E M

1/12/99  Apple Computer, Inc.

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobe™ Illustrator and
Adobe Photoshop.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITER
Donna S. Lee

PRODUCTION EDITOR
Glen Frank

Acknowledgments to Guy Fullerton,
Pete Gontier, and Chris Thomas.

	Programming With the Mac OS 8.5 Control Manager
	Using the Mac OS 8.5 Control Manager
	Using the Mac OS 8.5 Control Manager
	Creating a Proportional Scroll Box
	Listing�1-1 Adjusting a scroll bar to the viewable text

	Validating Editable Text
	Listing�1-2 Validating a file name with a MyControlEditTextValidationProc function

	Mac OS 8.5 Control Manager Reference
	Mac OS 8.5 Control Manager Reference
	Gestalt Selector for the Mac OS 8.5 Control Manager
	Constant descriptions

	Functions for the Mac OS 8.5 Control Manager
	Changing Control Settings
	GetControl32BitMaximum
	GetControl32BitMinimum
	GetControl32BitValue
	SetControl32BitMaximum
	SetControl32BitMinimum
	SetControl32BitValue

	Associating Data With Controls
	GetControlProperty
	GetControlPropertySize
	RemoveControlProperty
	SetControlProperty

	Displaying Controls
	GetControlViewSize
	SetControlViewSize
	SetUpControlTextColor

	Validating Controls
	IsValidControlHandle

	Obtaining Control Part Regions
	GetControlRegion

	Application-Defined Functions for the Mac OS 8.5 Control Manager
	MyControlEditTextValidationProc

	Data Types for the Mac OS 8.5 Control Manager
	ControlApplyTextColorRec
	Field descriptions

	ControlEditTextValidationProcPtr
	ControlGetRegionRec
	Field descriptions

	Constants for the Mac OS 8.5 Control Manager
	Control Data Tag Constants
	Constant descriptions

	Control Definition Feature Constants
	Constant descriptions

	Control Definition IDs
	Constant descriptions

	Control Definition Message Constants
	Constant descriptions

	Control Font Style Flag Constant
	Constant description

	Control Key Script Behavior Constants
	Constant descriptions

	Control Part Code Constants
	Constant descriptions

	Result Codes for the Mac OS 8.5 Control Manager
	Document Version History
	Table A-1 Programming With the Mac OS 8.5 Control Manager Revision History

	Index

