



10/4/99
Technical Publications
© Apple Computer, Inc. 1997–1999



Programming With the Text
Encoding Conversion Manager

For Version 1.5 of the Text Encoding Conversion Manager



Apple Computer, Inc.
© 1997–1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Mac and QuickDraw are trademarks
of Apple Computer, Inc.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures, Tables, and Listings 7

Chapter 1 About Text Encodings and Conversions 9

Why You Need to Convert Text From One Encoding
to Another 12

Deciding Which Encoding Converter to Use 13
The Text Encoding Converter 14
The Unicode Converter 16

Character Encoding and Other Concepts Fundamental to Text Encoding
Conversion 17

Characters 17
Coded Character Sets 18
Presentation Forms 18
Character Encoding Schemes 19

Text Encoding Specifications 20
About Unicode and the Complexities of Conversion 21

About Unicode 21
ISO/IEC 10646 22

Round-Trip Fidelity 22
Multiple Semantics and Multiple Representations 23
Strict and Loose Mapping 24
Fallback Mappings 25
Corporate Use Zone 25

About the Text Encoding Manager Package 25
About Earlier Releases 26
Checking the Version 26
Unicode Converter 68K Static Libraries 27
3

Chapter 2 Basic Text Types Reference 29

Basic Text Constants 31
Text Encoding Base 31
Text Encoding Variant 36
Text Encoding Format 43
Text Encoding Name Selector 44
Script Manager Derivation Specifiers 45
Unicode Character Properties 46
Text Encoding Conversion Manager Result Codes 48

Basic Text Structures and Other Types 51
Unicode Character and String Pointer Data Types 56

Basic Text Functions 57
Creating a Text Encoding Specification 57
Obtaining Information From a Text Encoding Specification 58
Obtaining Converter Information 62
Converting Between Script Manager Values and Text Encodings 63
Finding Mac OS Encodings that Match Other Encodings 67
Obtaining Unicode Character Properties 68

Chapter 3 Text Encoding Converter Reference 71

Chapter Overview 73
Text Encoding Converter Constants 74

Text Encoding Converter Result Codes 74
Text Encoding Converter Structures and Other Types 74
Text Encoding Converter Functions 76

Obtaining Information About Available Text Encodings 76
Identifying Direct Encoding Conversions 80
Identifying Possible Destination Encodings 83
Internet and Regional Text Encoding Names 85
Investigating Encodings 93
Creating and Deleting Converter objects 100
Setting Conversion Options 105
Converting Text Between Encodings 106
Multiple Encoding Run Conversions 109
4

Chapter 4 Unicode Converter Reference 119

Unicode Converter Constants 121
Unicode Mapping Versions 121
Conversion Control Flags 122
Fallback-Handler Control Flags 128
Filter Control Flags 129
Unicode Converter Result Codes 131

Unicode Converter Structures and Other Types 131
Unicode Converter Functions 136

Using a Static Library 137
Converting to Unicode 138
Converting From Unicode 147
Converting From Unicode to Multiple Encodings 157
Truncating Strings Before Converting Them 174
Converting Between Unicode and Pascal Strings 177
Obtaining Mapping Information 181
Setting the Fallback Handler 185

Application-Defined Function 191

Appendix A Writing Custom Plug-Ins 197

Appendix B Character Encodings Concepts 233

Terminology 233
Character Sets and Encoding Schemes 233
Characters, Glyphs, and Related Terms 234

Non-Unicode Character Encodings 237
General Character Set Structure 237
Simple Coded Character Sets 238

Packing Schemes for Multiple Character Sets 241
Code-Switching Schemes for Multiple Character Sets 243
Unicode 243
Character Set Features 246

Repertoire and Semantics 246
Combining and Conjoining Characters 247
5

Ordering Issues 250
Character Data in Programming Languages 252

Appendix C Some Character Encodings and Their Common
Internet Names 255

Identifying Character Encodings on the Internet 255
Character Encodings Masquerading as Related Encodings 256
Character Encodings and Their Internet Names 256

Appendix D Mac OS Encoding Variants 265

Appendix E Conventions for Unicode Text in the Mac OS 269

File Requirements 269
File Types 269
File Content 269
Creating Content 270
Reading Content 270

Appendix F Document Version History 271

Glossary 277

Index 281
6

Figures, Tables, and Listings

Chapter 1 About Text Encodings and Conversions 9

Figure 1-1 A possible conversion path used by the Text Encoding
Converter 15

Chapter 3 Text Encoding Converter Reference 71

Table 3-1 Sample Sniffer Output 98

Chapter 4 Unicode Converter Reference 119

Listing 4-1 Installing an Application-Defined Fallback Handler 188

Appendix B Character Encodings Concepts 233

Figure B-1 Some glyph images for representing characters 235
Figure B-2 Presentation forms 236
Figure B-3 Comparison of 7-bit and 8-bit character set structures 238
Figure B-4 Shift-JIS byte sequence 241
Figure B-5 Unicode sequence expressed in UTF-16, UTF-8, and UTF-7 245
Figure B-6 Some combining marks present in Unicode 248
Figure B-7 Fraction slash and conjoining jamos 249
Figure B-8 Implicit ordering 250
Figure B-9 Character sequence and resulting display 252

Appendix C Some Character Encodings and Their Common Internet Names 255

Table C-1 Character encoding Internet names and availability in Mac
OS 257

Appendix D Mac OS Encoding Variants 265

Table D-1 Mac OS Encoding Variants 265
7

Appendix F Document Version History 271

Table A-1 Text Encodng Converter Managerrevision history 271
8

C H A P T E R 1

Contents



 Apple Computer, Inc. 10/4/99

Contents

Figure 1-0
Listing 1-0
Table 1-0
1 About Text Encodings and
Conversions
Why You Need to Convert Text From One Encoding
to Another 12
Deciding Which Encoding Converter to Use 13

The Text Encoding Converter 14
The Unicode Converter 16

Character Encoding and Other Concepts Fundamental to Text Encoding
Conversion 17

Characters 17
Coded Character Sets 18
Presentation Forms 18
Character Encoding Schemes 19

Text Encoding Specifications 20
About Unicode and the Complexities of Conversion 21

About Unicode 21
ISO/IEC 10646 22

Round-Trip Fidelity 22
Multiple Semantics and Multiple Representations 23
Strict and Loose Mapping 24
Fallback Mappings 24
Corporate Use Zone 25

About the Text Encoding Manager Package 25
About Earlier Releases 26
Checking the Version 26
Unicode Converter 68K Static Libraries 26
9

C H A P T E R 1

About Text Encodings and Conversions 1

This chapter introduces the Text Encoding Conversion Manager. As a prelude, it
explains why text encoding conversion is necessary. Then it describes the Text
Encoding Conversion Manager’s two main components—the Text Encoding
Converter and the Unicode Converter—suggesting why you should choose one
over the other for your conversion processes. The remainder of the chapter
explores some of the terms and concepts that pervade text encoding and the
process of converting from one encoding to another, including

� Characters, codes, coded character sets, and character encoding schemes

� Text representation and text elements

� Text encoding specifications

� Unicode, in the context of its emergence as a solution to text encoding
complexities

� Round-trip fidelity, strict and loose mapping, Corporate Use Zone mappings,
and fallback mappings

Finally, the chapter highlights the Text Encoding Conversion Manager package
contents and gives a terse history of its past releases.

You should read this chapter if you are developing

� Internet-savvy applications, such as web browsers or e-mail applications.

� Applications that transfer text across platforms.

� Applications based in Unicode, such as a word processor or file system that
operates in Unicode.

After reading this chapter, you should read the reference chapters that describe
basic text types for specifying text encodings and other aspects of conversion,
the Text Encoding Converter, and the Unicode Converter. The reference
chapters are meant to be used as you develop your applications. Although this
book doesn’t include tutorial chapters, you can consult its descriptions of data
structures and functions to gain a high-level understanding of how to use the
converters.

For general information about how the Mac OS handles text, consult Inside
Macintosh: Text.

The Text Encoding Conversion Manager software can run on Mac OS System
7.1 or later. The converter libraries and associated files are installed by default
as part of Mac OS 8 and as part of Mac OS Runtime for Java.
11
 Apple Computer, Inc. 10/4/99

C H A P T E R 1

About Text Encodings and Conversions

Why You Need to Convert Text From One Encoding
to Another 1

This section explains in broad terms why you need to convert text from one
encoding used to represent the text to another. Like the following sections that
introduce the two Text Encoding Conversion Manager converters, this section
uses terminology fundamental to the text encoding conversion process. These
terms and the concepts they represent are explored in depth later in “Character
Encoding and Other Concepts Fundamental to Text Encoding Conversion”
(page 17) and in Appendix B.

Central to any discussion of text encoding and text encoding conversion is the
concept of a character, which is an abstract unit of text context. Characters are
often identified with or confused with one or more of the following concepts,
but it is important to keep the notion of an abstract character separate from
these concepts:

� A graphic representation corresponding to a character (this graphic
representation is what most people think of as the character)

� A key or key sequence used to input a character

� A number or number sequence used in a computer system to represent a
character

In this book we are concerned primarily with abstract characters and with their
numeric representation in a computer system. In order to represent textual
characters in a file or in a computer’s memory, some sort of mapping must be
used to assign numeric values to the textual characters. The mapping can vary
depending on the character set, which may depend on the language being used
and other factors.

For example, in the ASCII character set, the character A is represented by the
value 65, B is represented by 66, and so on. Because ASCII has 128 characters, 7
bits is enough to represent any member of the set (7-bit ASCII characters are
usually stored in 8-bit bytes). Each integer value represented by a bit
combination is called a code point. (The terms bit combination and code point
are further explained in “Character Encoding and Other Concepts Fundamental
to Text Encoding Conversion” (page 17).) Larger character sets, such as the
Japanese Kanji set, must use more bytes to represent each of their members.
12 Why You Need to Convert Text From One Encoding to Another

 Apple Computer, Inc. 10/4/99

C H A P T E R 1

About Text Encodings and Conversions

Interpretive problems can occur if a computer attempts to read data that was
encoded using a mapping different from what it expects. The other mapping
might contain similar characters mapped in a different order, different
characters altogether, or the characters may be specially encoded for data
transmission. To handle text correctly in these and other similar cases, some
method of identifying the various mappings and converting between them is
necessary. Text encoding conversion addresses these problems and
requirements.

Here are two examples of the many cases for which text conversion is
necessary:

� A Mac OS computer receives text in asynchronous packets over the Internet
from a remote server. The Mac OS expects text to use the Mac OS Arabic
character set, while the server uses the ISO 8859-6 standard.

� A Mac OS application attempts to read a text file created on a Windows 95
computer. The Mac OS application expects text to use the Mac OS Roman
character set, while the Windows 95 file uses the Windows Latin-1 character
set.

Deciding Which Encoding Converter to Use 1

The Text Encoding Conversion Manager provides two converters—the Text
Encoding Converter and the Unicode Converter—that you can use to handle
text encoding conversion on the Mac OS.

The Text Encoding Converter is the primary converter for converting between
different text encodings. It was designed to address most of your conversion
requirements, and you should use it for most cases. You can use it to convert
from one supported encoding to another. When you use the Text Encoding
Converter, neither the source encoding nor the destination one must be
Unicode, although they can be.

When you use the Unicode Converter, you always convert to or from Unicode;
that is, either the source or the destination encoding must be Unicode. You
should use the Unicode Converter if you are writing applications based in
Unicode, such as a word processor or file system that operates in Unicode. Even
when your application is not Unicode based, you might want to use the
Unicode Converter for special cases where you want to control the conversion
behavior more closely. The Unicode Converter is also the better choice if you
Deciding Which Encoding Converter to Use 13
 Apple Computer, Inc. 10/4/99

C H A P T E R 1

About Text Encodings and Conversions

want to map offsets for style run boundaries for styled text; the Text Encoding
Converter does not offer this service.

The Text Encoding Converter 1

The Text Encoding Converter uses plug-ins, which are code fragments
containing the information required to perform a conversion. A plug-in can
handle one or more types of conversions. Plug-ins are the true conversion
engines. The Text Encoding Converter provides a uniform conversion protocol,
but includes no implementation for any specific kind of conversion. In other
words, it supplies a generic framework for conversion but does none of the
conversion work itself; rather, the plug-ins perform the actual conversions.

This section looks briefly at plug-ins, Appendix A describes them in greater
detail, and Mac OS Runtime Architectures gives general information about
CFM-based plug-ins.

When you launch your application, the Text Encoding Converter scans the Text
Encodings folder in the System Folder in search of available plug-ins. The Text
Encoding Converter includes many predefined plug-ins—the Unicode
converter is one of them—but you can also write and provide your own.

The Text Encoding Converter examines available plug-ins to determine which
one or more to use to establish the most direct conversion path. Plug-ins can
handle algorithmic conversions such as conversion from JIS to Shift-JIS.
(Algorithmic conversions are different from conversion processes that use
mapping tables. Mapping tables, which the Unicode Converter uses exclusively,
are explained later.) Plug-ins can also handle code-switching schemes such as
ISO 2022.

If a plug-in exists for the exact conversion required, then the Text Encoding
Converter calls that plug-in’s conversion function to convert the text. Such a
one-step conversion is called a direct conversion. Otherwise, the Text Encoding
Converter attempts an indirect conversion by finding two or more plug-ins
that can be used in succession to perform the required translation. In such cases,
the Unicode Converter might be treated as a plug-in.

For example, Figure 1-1 shows a conversion path from encoding X to encoding
Y that uses both the Unicode Converter and another plug-in. The Unicode
Converter converts encoding X to Unicode, then it converts the Unicode text to
text in encoding Z. The other plug-in converts the text from encoding Z to
encoding Y.
14 Deciding Which Encoding Converter to Use

 Apple Computer, Inc. 10/4/99

C H A P T E R 1

About Text Encodings and Conversions

Figure 1-1 A possible conversion path used by the Text Encoding Converter

In general, you do not need to be concerned about the conversion path taken by
the Text Encoding Converter; it is resolved automatically. However, if you want
to explicitly specify the conversion path, there are functions you can call to do
so.

When you use the Text Encoding Converter, you specify the source and
destination encodings for the text. To convert text, you must create a converter
object. This object describes the conversion path required to perform the text
conversion. You can also create a converter object to handle multiple encoding
runs. If the requisite plug-ins are available, the Text Encoding Converter can
convert text from any encoding to runs of any other encodings.

When handling code-switching schemes, the Text Encoding Converter
automatically maintains state information that identifies the current encoding in
the converter object. Any escape sequences, control characters, and other
information pertaining to state changes in the converter object are also detected
and generated as necessary.

Because each converter object can maintain state information, you can use the
same converter object to convert multiple segments of a single text stream. For
example, suppose you receive text containing 2-byte characters in packets over
a network. If the end of a packet transmission splits a character—that is, only 1
of the 2 bytes is received—the converter object does not attempt to convert the
character until it receives the second byte.

Encoding X
Text Encoding Converter

Encoding Y

Unicode Converter

X
to

Unicode

Unicode
to
Z

Z
to
Y

Plug-in
Deciding Which Encoding Converter to Use 15
 Apple Computer, Inc. 10/4/99

C H A P T E R 1

About Text Encodings and Conversions

In some cases, you may not be able to determine the encoding used to express
text you receive from an unknown source, such as text delivered over the
Internet. To minimize the amount of guesswork required to successfully convert
such text, the Text Encoding Converter allows the use of sniffers. Sniffers are to
text encodings what protocol analyzers are to networking protocols. They
analyze the text and provide a list of the most probable encodings used to
express it. Several sniffers are provided; you can also write your own sniffers
when creating text conversion plug-ins.

The Unicode Converter 1

This section describes the Unicode Converter, which you can use to convert
between any available non-Unicode text encoding and the various, supported
implementations of Unicode. For background information on Unicode, the
problems it addresses, and the standards bodies responsible for its emergence,
see “About Unicode” (page 21) and Appendix B. For definition of some of the
terms used in this section, see “Character Encoding and Other Concepts
Fundamental to Text Encoding Conversion” (page 17).

The Unicode Converter does not itself incorporate any knowledge of the
specifics of any text encoding. Instead, it uses loadable, replaceable mapping
tables that provide the information about any text encoding required to perform
the conversion.

All information about a particular coded character set used in a text encoding is
incorporated in a mapping table. A mapping table associates coded
representations of characters belonging to one coded character set with their
equivalent representations in another and accounts for the various conditions
that arise when coded representations of characters cannot be directly mapped
to each other.

The Unicode Converter can also handle conversions between Unicode and text
encodings that use a packing scheme.

To convert text using the Unicode Converter, you must create a Unicode
converter object, which references the necessary mapping tables and maintains
state information. Because each Unicode converter object is discrete, you can
retain several objects concurrently within your application, one for each type of
conversion you need to make.

The Unicode Converter supports multiple encoding runs. An encoding run is a
continuous sequence of text all of which is expressed in the same text encoding;
a given string might contain multiple encoding runs, such as a sequence of text
16 Deciding Which Encoding Converter to Use

 Apple Computer, Inc. 10/4/99

C H A P T E R 1

About Text Encodings and Conversions

in Mac OS Roman encoding followed by a sequence in Mac OS Arabic. The
Unicode Converter allows you to convert a single block of Unicode text to
multiple runs in other text encodings. For example, you could convert a
Unicode string into one that contains both Mac OS Arabic and Mac OS Roman
encodings. You might find this useful when preparing text to display using the
Script Manager.

Character Encoding and Other Concepts Fundamental to Text
Encoding Conversion 1

In considering how text is converted from one encoding to another, it is useful
to understand what constitutes coded character sets and character encoding
schemes. To do so, it is helpful to have a set of terms that describe the discrete
entities comprising a coded character set, a character encoding scheme, and
their underlying concepts.

This section explores

� characters and character repertoires

� coded character sets and code points

� presentation forms

� character encoding schemes

For a more complete treatment of these and other concepts such as packing
schemes, multiple character sets, and code-switching schemes for multiple
character sets, see Appendix B.

Characters 1

A person using a writing system thinks of a character in terms of its visual
form, its written structure and its meaning in conjunction with other characters.
A computer, on the other hand, deals with characters primarily in terms of their
numeric encodings.

A character is a unit of information used for the organization, control, or
representation of text data. Letters, ideographs, digits, and symbols in a writing
system are all examples of characters. A character is associated with a name,
and optionally, but commonly, with a representative image or rendering called a
Character Encoding and Other Concepts Fundamental to Text Encoding Conversion 17
 Apple Computer, Inc. 10/4/99

C H A P T E R 1

About Text Encodings and Conversions

glyph. Glyph images are the visual elements used to represent characters.
Aspects of text presentation such as font and style apply to glyph images, not to
characters.

A character repertoire is a collection of distinct characters. Two characters are
distinct if and only if they have distinct names in the context of an identified
character repertoire. Two characters that are distinct in name may have identical
images or renderings (for example, LATIN CAPITAL LETTER A and GREEK
CAPITAL LETTER ALPHA). Characters constituting a character repertoire can
belong to different scripts.

Coded Character Sets 1

A coded character set comprises a mapping from a set of abstract characters
(that is, the character repertoire) to a set of integers. The integers in the set are
within a range that can be expressed by a bit pattern of a particular size: 7 bits, 8
bits, 16 bits, and so on. Each of the integers in the set is called a code point. The
set of integers may be larger than the character repertoire; that is, there may be
“unassigned” code points that do not correspond to any character in the
repertoire. Examples of coded character sets include

� ASCII, a fixed-width 7-bit encoding

� ISO 8859-1 (Latin-1), a fixed-width 8-bit encoding

� JIS X0208, a Japanese standard whose code points are fixed–width 14-bit
values (normally represented as a pair of 7-bit values). Many other standards
for East Asian languages follow a similar pattern, using code points
represented as two or three 7-bit values. These standards are typically not
used directly, but are used in one of the character encoding schemes
discussed in “Character Encoding Schemes” (page 19).

Presentation Forms 1

The term presentation form is generally used to mean a kind of abstract shape
that represents a standard way to display a character or group of characters in a
particular context as specified by a particular writing system. The term glyph
by itself may refer to either presentation forms or to glyph images. Examples of
characters with multiple presentation forms include

� Arabic characters that vary in appearance depending on the characters
surrounding them
18 Character Encoding and Other Concepts Fundamental to Text Encoding Conversion

 Apple Computer, Inc. 10/4/99

C H A P T E R 1

About Text Encodings and Conversions

� Latin or Arabic ligatures, which are single forms that represent a sequence of
characters

� Japanese kana and CJK punctuation characters, which vary in appearance
depending on whether they are to be displayed horizontally or vertically

� Katakana full-width and half-width variants

A coded character set may encode presentation forms instead of or in addition
to its basic characters.

Character Encoding Schemes 1

A character encoding scheme is a mapping from a sequence of elements in one
or more coded character sets to a sequence of bytes. A character encoding
scheme can include coded character sets, but it can also include more complex
mapping schemes that combine multiple coded character sets, typically in one
of the following ways:

� Packing schemes use a sequence of 8-bit values to encode text. Because of
this, they are generally not suitable for electronic mail. In these schemes,
certain characters function as a local shift, which controls the interpretation
of the next 1 to 3 bytes. The most well known example is Shift-JIS, which
includes characters from JIS X0201, JIS X0208, and space for 2444
user-defined characters. The EUC (Extended UNIX Coding) packing schemes
were originally developed for UNIX systems; they use units of 1 to 4 bytes.
(Appendix B describes Shift-JIS, EUC, and other packing schemes, in detail.)
Packing schemes are often used for the World Wide Web, which can handle
8-bit values. Both the Text Encoding Converter and the Unicode Converter
support packing schemes.

� Code-switching schemes typically use a sequence of 7-bit values to encode
text, so they are suitable for electronic mail. Escape sequences or other
special sequences are used to signal a shift among the included character
sets. Examples include the ISO 2022 family of encodings (such as ISO
2022-JP), and the HZ encoding used for Chinese. Code switching schemes are
often used for Internet mail and news, which cannot handle 8-bit values. The
Text Encoding Converter can handle code-switching schemes, but the
Unicode Converter cannot.

A character encoding scheme may also be used to convert a single coded
character set into a form that is easier for certain systems to handle. For
example, the Unicode standard defines two universal transformation formats
Character Encoding and Other Concepts Fundamental to Text Encoding Conversion 19
 Apple Computer, Inc. 10/4/99

C H A P T E R 1

About Text Encodings and Conversions

that permit the use of Unicode on systems that make assumptions about certain
byte values in text data. The two universal transformation formats are UTF-7
and UTF-8. The Text Encoding Converter can handle both formats, but the
Unicode Converter can only handle the UTF-8 format.

Many Internet protocols allow you to specify a “charset” parameter, which is
designed to indicate the character encoding scheme for text.

A transfer encoding syntax (also called “content transfer encoding”) is a
transformation applied to text encoded using a character encoding scheme to
allow it to be transmitted by a specific protocol or set of protocols. Examples
include “quoted-printable” and “base64”. Such a transformation is typically
needed to allow 8-bit values to be sent through a channel that can handle only
7-bit values, and may even handle some 7-bit values in special ways. The Text
Encoding Conversion Manager does not currently handle transfer encoding
syntax.

Text Encoding Specifications 1

One of the primary data types used by both the Text Encoding Converter and
the Unicode Converter is a text encoding specification. This section highlights
the text encoding specification. The chapter “Basic Text Types Reference”
describes it fully, including its three components, and the values you specify for
them.

A text encoding specification is a set of numeric codes used to identify a text
encoding, which may be simple coded character set or a character encoding
scheme. It contains these three parts that specify the text encoding: the text
encoding base, the text encoding variant, and the text encoding format. You use
two text encoding specifications—one for the source encoding of the text and
one for its the destination encoding—when you call the Text Encoding
Converter or the Unicode Converter to convert text.

The text encoding base value is the primary specification of the source or target
encoding. The text encoding variant specifies one among possibly several
minor variants of a particular base encoding or group of base encodings. A text
encoding format specifies a way of formatting or algorithmically transforming
a particular base encoding. (UTF-7 format is the Unicode standard formatted
for transmission through channels that can handle only 7-bit values.)
20 Text Encoding Specifications

 Apple Computer, Inc. 10/4/99

C H A P T E R 1

About Text Encodings and Conversions
Note
Text encoding specifications are similar to the Mac OS
script codes in that they identify an encoding. However,
they are more precise; they do not imply anything about
language or region; and they are not necessarily identified
with a range of font family IDs. �

About Unicode and the Complexities of Conversion 1

This section looks briefly at Unicode, its emergence in response to the problems
it addresses, and the standards bodies who sponsor it. Then it discusses some of
the complexities involved in converting text between various encodings when
conversion exceeds the simplicity of a one-to-one mapping. The section
discusses these concepts in the context of how the Unicode Converter handles
them.

About Unicode 1

Most character sets and character encoding schemes developed in the past are
limited in their coverage, usually supporting just one language or a small set of
languages. In addition, character encoding schemes are often complex, usually
involving byte values whose interpretation depends on preceding byte values.
Multilingual software has traditionally had to implement methods for
supporting and identifying multiple character encodings.

A simpler solution is to combine the characters for all commonly used
languages and symbols into a single universal coded character set. Unicode is
such a universal coded character set, and offers the simplest solution to the
problem of text representation in multilingual systems. Because Unicode also
contains a wide assortment of technical, typographic, and other symbols, it
offers advantages even to developers of applications that only handle a single
language. Unicode provides more representational power than any other single
character set or encoding scheme. However, because Unicode is a single coded
character set, it doesn’t require the use of escape sequences or other
complexities to identify transitions between coded character sets.

Because Unicode includes the character repertoires of most common character
encodings, it facilitates data interchange with other platforms. Using Unicode,
text manipulated by your application and shared across applications and
About Unicode and the Complexities of Conversion 21
 Apple Computer, Inc. 10/4/99

C H A P T E R 1

About Text Encodings and Conversions
platforms can be encoded in a single coded character set; this text can also be
easily localized.

Unicode provides some special features, such as combining or nonspacing
marks and conjoining jamos. These features are a function of the variety of
languages that Unicode handles. If you have coded applications that handle
text for the languages these features support, they should be familiar to you. If
you have used a single coded character set such as ASCII almost exclusively,
these features will be new to you.

The following two bodies, involved in the effort to standardize the world’s
languages for use in computing, define Unicode standards:

� The Unicode Consortium, a technical committee composed of representatives
from many different companies, publishes the Unicode standard. Version 2.0
of the Unicode Standard was published in July 1996. However, the standard
is evolving constantly, and updates are posted at the Unicode Consortium
Web site <http://www.unicode.org/>.

� ISO (the International Organization for Standardization) and the IEC (the
International Electrotechnical Commission), two of the international bodies
active in character encoding standards, publish ISO/IEC 10646. This
standard specifies the Universal Multiple-Octet Coded Character Set (UCS), a
standard whose code point assignments are identical with Unicode.

ISO/IEC 10646 1

The ISO/IEC 10646 standard defines two alternative forms of encoding:

� a 32-bit encoding, which is the canonical form. The 32-bit form is referred to
as UCS-4 (Universal Character Set containing 4 bytes)

� a 16-bit form that is referred to as UCS-2

The ISO/IEC 10646 nomenclature refers to coded characters as multiples of
octets, while the Unicode nomenclature refers to coded characters as indivisible
16-bit entities. The Unicode standard does not include the UCS-4 format.

Round-Trip Fidelity 1

When the Unicode Converter is able to convert a text string expressed in one
text encoding to Unicode and back again to the original text encoding, with the
final text string matching exactly the source text string—that is, without
incurring any changes to the original—round-trip fidelity has been achieved.
22 About Unicode and the Complexities of Conversion

 Apple Computer, Inc. 10/4/99

C H A P T E R 1

About Text Encodings and Conversions
For certain national and international standards that the Unicode Consortium
used as sources for the Unicode coded character set, Unicode provides
round-trip fidelity. Because the repertoires of those coded character sets have
been effectively incorporated into the Unicode coded character set, conversion
involving them will always produce round-trip fidelity. Text in one of those
coded character sets can be mapped to Unicode and back again with no loss of
information. Coded characters that were distinct in the source encoding will be
distinct in Unicode.

However, perfect round-trip conversion is not always possible. Many character
encodings include characters that do not have distinct representations in
Unicode, or which may have no representation at all. For example, a source text
string from a vendor coded character set might contain a ligature that is not
represented in Unicode. In this case, that information may be lost during the
round trip.

The Unicode Converter uses a variety of conventional methods to attempt to
find some way to map the source coded representation of a character onto a
sequence of Unicode coded representations in such a way as to preserve its
identity and interchangeability.

Here are some of the methods used to map code representations of characters
when high fidelity achieved through an exact or strict mapping is not possible:

� loose mapping

� fallback mapping

� mapping of characters to the Corporate Use Zone

Multiple Semantics and Multiple Representations 1

In many character encodings, certain characters may have multiple semantics,
either by explicit definition, ambiguous definition, or established usage.

For example, the JIS X0208 standard specifies the JIS X0208 character 0x2142 as
having two meanings: double vertical line and parallel to. Each meaning
corresponds to a distinct Unicode code representation. The meaning “double
vertical line” corresponds to the Unicode coded representation U+2016
“DOUBLE VERTICAL LINE”. The meaning “parallel to” corresponds to the
Unicode coded representation U+2225 “PARALLEL TO”. Either one is a valid
match for the JIS character.

Multiple representation exists when an encoding provides more than one way
of representing a particular element of text. For example, in Unicode the text
About Unicode and the Complexities of Conversion 23
 Apple Computer, Inc. 10/4/99

C H A P T E R 1

About Text Encodings and Conversions
element consisting of an ‘a’ with acute accent can be represented using either
the single character LATIN SMALL LETTER A WITH ACUTE or the sequence
LATIN SMALL LETTER A plus COMBINING ACUTE ACCENT. The
presentation forms encoded in Unicode can also be represented using coded
representations for the abstract forms, and this also constitutes a condition of
multiple representation.

Strict and Loose Mapping 1

A strict mapping preserves the information content of text and permits
round-trip fidelity. A loose mapping preserves the information content of text
but does not permit round-trip fidelity. A mapping table has both strict
equivalence and loose mapping sections that identify how a mapping is to
occur. Loose and strict mappings occur within the context of multiple semantics
and multiple representations.

First, an example that illustrates the difference in the case of multiple semantics.
The ASCII character at 0x2D is called HYPHEN-MINUS. Unicode includes a
HYPHEN-MINUS character at U+002D for ASCII compatibility. However,
Unicode also has separate characters HYPHEN (U+2010) and MINUS SIGN
(U+2212); each of these characters represents one aspect of the meaning of
HYPHEN-MINUS.

The ASCII character HYPHEN-MINUS is typically mapped to Unicode
HYPHEN-MINUS. All three of the Unicode characters—HYPHEN-MINUS,
HYPHEN, and MINUS SIGN—should typically be mapped to ASCII
HYPHEN-MINUS, since it includes all of their meanings. The mapping from
Unicode HYPHEN-MINUS to ASCII is strict, since mapping from ASCII back to
Unicode produces the original Unicode character. However, the mappings from
Unicode HYPHEN and MINUS SIGN to ASCII are loose, since they do not
provide round-trip fidelity. The mapping from ASCII HYPHEN-MINUS to
Unicode is, of course, strict.

Second, an example that illustrates the difference in the case of multiple
representation. The Latin-1 character LATIN SMALL LETTER A WITH ACUTE
(0xE1) is typically mapped to Unicode LATIN SMALL LETTER A WITH
ACUTE (U+00E1), so the reverse is a strict mapping. However, the Unicode
sequence LATIN SMALL LETTER A plus COMBINING ACUTE ACCENT can
also be mapped to the Latin-1 character as a loose mapping.

There are two important things to note here. First, calling a mapping from one
character set to another strict or loose depends on how the second character set
is mapped back to the first; strictness or looseness depends on the mappings in
24 About Unicode and the Complexities of Conversion

 Apple Computer, Inc. 10/4/99

C H A P T E R 1

About Text Encodings and Conversions
both directions. Second, neither strict nor loose mappings necessarily preserve
the number of characters; either can map a sequence of one or more characters
in the source encoding to one or more characters in the destination encoding.

Fallback Mappings 1

A fallback mapping is a sequence of one or more coded characters in the
destination encoding that is not exactly equivalent to a character in the source
encoding but which preserves some of the information of the original. For
example, (C) is a possible fallback mapping for ©. In general, fallback mappings
are used as a last resort in converting text between encodings because they are
not reversible and therefore do not lend themselves to round-trip fidelity
conversions.

Corporate Use Zone 1

Code space in the Unicode standard is divided into areas and zones. One area,
called the Private Use Area, includes a zone called the Corporate Use Zone.

Some characters which are in Mac OS encodings but not in Unicode are
mapped to code points in the Unicode Corporate Use Zone. This permits
round-trip fidelity for these characters. The Apple logo is an example.

Apple provides a registry of its assignments in the Unicode Corporate Use Zone
that you can check to ensure that you don’t use the same code representations.
The URL is
<ftp://ftp.unicode.org/Public/MAPPINGS/VENDORS/APPLE/CORPCHR.TXT>.

Although they allow the Unicode Converter to guarantee perfect round trips for
certain code representations, characters in the Unicode Corporate Use Zone are
not portable to other systems.

About the Text Encoding Manager Package 1

The Text Encoding Conversion Manager comprises the Text Encoding
Converter, the Unicode Converter, Basic Text Types, and the Text Encodings
folder that includes files containing mapping tables and text plug-ins. The first
three of these components are delivered as shared libraries called
UnicodeConverter (the Unicode Converter), TextEncodingConverter (the Text
Encoding Converter), and TextCommon (Basic Text Types). PowerPC and 68K
About the Text Encoding Manager Package 25
 Apple Computer, Inc. 10/4/99

C H A P T E R 1

About Text Encodings and Conversions
versions of these shared libraries, and the resources they require, are included
in the Text Encoding Converter extension. Beginning with Mac OS 8.5,
PowerPC versions of the UnicodeConverter and TextCommon shared libraries, and
the resources they require, are also in the System file.

About Earlier Releases 1

Text Encoding Conversion (TEC) Manager 1.0.x was released for use with
Cyberdog 1.0 and 1.2 and with Mac OS Runtime for Java (MRJ) 1.0. TEC
Manager 1.1 was released for use with Cyberdog 2.0.

TEC Manager 1.2 was included with Mac OS 8 in July 1997, and with MRJ 1.5;
the corresponding interfaces were in Universal Interfaces 3.0. TEC Manager
1.2.1 was released as an SDK in September 1997.

TEC Manager 1.3 was included with Mac OS 8.1 in January 1998, and with MRJ
2.0. TEC Manager 1.3.1 (with one additional bug fix) was released as an SDK.
The corresponding interfaces were in Universal Interfaces 3.1.

TEC Manager 1.4 was released as an SDK in September 1998, and was included
with Mac OS 8.5 in October 1998. The corresponding interfaces were in
Universal Interfaces 3.2. TEC Manager 1.4.2 was released as an SDK in February
1999, and was included with MRJ 2.1. TEC Manager 1.4.3 was included with
Mac OS 8.6 in May 1999.

In older documentation for the Text Encoding Conversion Manager, the
Unicode Converter was called the Low- Level Encoding Converter and the Text
Encoding Converter was called the High-Level Encoding Converter.

Checking the Version 1

Versions 1.2.1 and later of the Text Encoding Conversion Manager include the
TECGetInfo function, which returns the product version number and other
information. This function does not exist in previous releases; absence of this
function identifies the version in use as 1.2 or earlier.

You can determine if an earlier release of the Text Encoding Conversion
Manager is in use by soft-linking to the TECGetInfo function.
26 About the Text Encoding Manager Package

 Apple Computer, Inc. 10/4/99

C H A P T E R 1

About Text Encodings and Conversions
Unicode Converter 68K Static Libraries 1

For those of you who do not want to use the Code Fragment Manager (CFM)
68K version of the Unicode Converter, a 68K static library version of the
Unicode Converter and Basic Text functions is available for Text Encoding
Converter Manager 1.3 and later.

The static libraries are provided for you to link directly into your applications
rather than relying on operating system support; the shared libraries that
require CFM are distributed with Mac OS, beginning with Mac OS 8.

These static libraries use resources from the Text Encoding Converter extension
and from the files in the Text Encodings folder, so both of these must be present
whether you use the CFM 68K version of the Unicode Converter or the 68K
shared libraries.

To use the static libraries, install the full shared library version comprised of the
table files and extension. If you use the 68K static libraries, explicitly initialize
and terminate the Unicode Converter using its functions provided for this
purpose.
About the Text Encoding Manager Package 27
 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Contents

 Apple Computer, Inc. 10/4/99

Contents
Figure 2-0
Listing 2-0
Table 2-0
2 Basic Text Types Reference
Basic Text Constants 31
Text Encoding Base 31
Text Encoding Variant 36
Text Encoding Format 43
Text Encoding Name Selector 44
Script Manager Derivation Specifiers 45
Unicode Character Properties 46
Text Encoding Conversion Manager Result Codes 48

Basic Text Structures and Other Types 50
TextEncoding 50
TextEncodingRun 51
TECInfo 52

Unicode Character and String Pointer Data Types 56
Basic Text Functions 56

Creating a Text Encoding Specification 57
CreateTextEncoding 57

Obtaining Information From a Text Encoding Specification 58
GetTextEncodingBase 58
GetTextEncodingVariant 58
GetTextEncodingFormat 59
ResolveDefaultTextEncoding 59
GetTextEncodingName 60

Obtaining Converter Information 62
TECGetInfo 62

Converting Between Script Manager Values and Text Encodings 63
UpgradeScriptInfoToTextEncoding 63
RevertTextEncodingToScriptInfo 65
29

C H A P T E R 2
Finding Mac OS Encodings that Match Other Encodings 67
NearestMacTextEncodings 67

Obtaining Unicode Character Properties 68
UCGetCharProperty 68
30 Contents

 Apple Computer, Inc. 10/4/99

C H A P T E R 2
Basic Text Types Reference 2

This chapter describes the Mac OS basic text data types, constants, and
functions, which you can use to create text encoding specifications, to obtain
values from existing specifications, to obtain localized names corresponding to
text encoding specifications, and to obtain information about the Text Encoding
Conversion Manager itself. It also includes result codes returned for both the
Text Encoding Converter functions and the Unicode Converter functions.

For a description of types, constants, and functions pertaining to the Text
Encoding Converter, see Chapter 3, “Text Encoding Converter Reference.” For a
description of types, constants, and functions pertaining to the Unicode
Converter, see Chapter 4, “Unicode Converter Reference.”

Basic Text Constants 2

Text Encoding Base 2

You use a base text encoding data type to specify which text encoding or text
encoding scheme you have used to express a given text. The text encoding base
value is the primary specification of the source or target encoding. Values 0
through 32 correspond directly to Mac OS script codes. Values 33 through 254
are for other Mac OS encodings that do not have their own script codes, such as
the Symbol encoding implemented by the Symbol font. You can also specify a
meta-value as a base text encoding, such as kTextEncodingMacHFS and
kTextEncodingUnicodeDefault. A meta-value is mapped to a real value.

The function GetTextEncodingBase (page 58) returns the text encoding base of a
text encoding specification.

A base text encoding is defined by the TextEncodingBase data type.

typedef UInt32 TextEncodingBase;

You can use these enumerated constants to specify base text encodings:

enum {
/* Mac OS encodings */
kTextEncodingMacRoman = 0L,
kTextEncodingMacJapanese = 1,
Basic Text Constants 31
 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
kTextEncodingMacChineseTrad = 2,
kTextEncodingMacKorean = 3,
kTextEncodingMacArabic = 4,
kTextEncodingMacHebrew = 5,
kTextEncodingMacGreek = 6,
kTextEncodingMacCyrillic = 7,
kTextEncodingMacDevanagari = 9,
kTextEncodingMacGurmukhi = 10,
kTextEncodingMacGujarati = 11,
kTextEncodingMacOriya = 12,
kTextEncodingMacBengali = 13,
kTextEncodingMacTamil = 14,
kTextEncodingMacTelugu = 15,
kTextEncodingMacKannada = 16,
kTextEncodingMacMalayalam = 17,
kTextEncodingMacSinhalese = 18,
kTextEncodingMacBurmese = 19,
kTextEncodingMacKhmer = 20,
kTextEncodingMacThai = 21,
kTextEncodingMacLaotian = 22,
kTextEncodingMacGeorgian = 23,
kTextEncodingMacArmenian = 24,
kTextEncodingMacChineseSimp = 25,
kTextEncodingMacTibetan = 26,
kTextEncodingMacMongolian = 27,
kTextEncodingMacEthiopic = 28,
kTextEncodingMacCentralEurRoman = 29,
kTextEncodingMacVietnamese = 30,
kTextEncodingMacExtArabic = 31,

/* The following use script code 0, smRoman */
kTextEncodingMacSymbol = 33,
kTextEncodingMacDingbats = 34,
kTextEncodingMacTurkish = 35,
kTextEncodingMacCroatian = 36,
kTextEncodingMacIcelandic = 37,
kTextEncodingMacRomanian = 38,
kTextEncodingMacCeltic = 39,
kTextEncodingMacGaelic = 40,

/* Beginning in Mac OS 8.5, the set of Mac OS script codes has been */
32 Basic Text Constants

 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
/* extended for some Mac OS components to include Unicode. Some of */
/* these components have only 7 bits available for script code, so */
/* kTextEncodingUnicodeDefault cannot be used to indicate Unicode. */
/* Instead, the following meta-value is used to indicate Unicode */
/* handled as a special Mac OS script code; TEC handles this value */
/* like kTextEncodingUnicodeDefault. */

kTextEncodingMacUnicode = 0x7E, /* Meta-value, Unicode as Mac encoding */

/* The following use script code 4, smArabic */
kTextEncodingMacFarsi = 0x8C, /* Like MacArabic but uses Farsi digits */

/* The following use script code 28, smEthiopic */
kTextEncodingMacInuit = 0xEC,

/* The following use script code 32, smUninterp */
kTextEncodingMacVT100 = 0xFC, /* VT100/102 font: Latin-1 chars, box dwg… */

/* Special Mac OS encodings */
kTextEncodingMacHFS = 0xFF, /* metavalue. */

/* Unicode & ISO UCS encodings begin at 0x100
kTextEncodingUnicodeDefault = 0x100, /* Meta-value. */
kTextEncodingUnicodeV1_1 = 0x101,
kTextEncodingISO10646_1993 = 0x101, /* code points identical to Unicode 1.1 */
kTextEncodingUnicodeV2_0 = 0x103, /* new location for Korean Hangul */
kTextEncodingUnicodeV2_1 = 0x103, /* For TEC, Unicode 2.0 = 2.1 */

/* ISO 8-bit and 7-bit encodings begin at 0x200 */
kTextEncodingISOLatin1 = 0x201, /* ISO 8859-1 */
kTextEncodingISOLatin2 = 0x202, /* ISO 8859-2 */
kTextEncodingISOLatin3 = 0x203, /* ISO 8859-3 */
kTextEncodingISOLatin4 = 0x204, /* ISO 8859-4 */
kTextEncodingISOLatinCyrillic = 0x205, /* ISO 8859-5 */
kTextEncodingISOLatinArabic = 0x206, /* ISO 8859-6, = ASMO 708, =DOS CP 708 */
kTextEncodingISOLatinGreek = 0x207, /* ISO 8859-7 */
kTextEncodingISOLatinHebrew = 0x208, /* ISO 8859-8 */
kTextEncodingISOLatin5 = 0x209, /* ISO 8859-9 */
kTextEncodingISOLatin6 = 0x020A, /* ISO 8859-10 */
kTextEncodingISOLatin7 = 0x020D, /* ISO 8859-13, Baltic Rim */
kTextEncodingISOLatin8 = 0x020E, /* ISO 8859-14, Celtic */
Basic Text Constants 33
 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
kTextEncodingISOLatin9 = 0x020F, /* ISO 8859-15, 8859-1 + EURO etc */

/* MS-DOS & Windows encodings begin at 0x400 */
kTextEncodingDOSLatinUS = 0x400, /* code page 437 */
kTextEncodingDOSGreek = 0x405, /* code page 737 (formerly 437G) */
kTextEncodingDOSBalticRim = 0x406, /* code page 775 */
kTextEncodingDOSLatin1 = 0x410, /* code page 850, "Multilingual" */
kTextEncodingDOSGreek1 = 0x411, /* code page 851 */
kTextEncodingDOSLatin2 = 0x412, /* code page 852, Slavic */
kTextEncodingDOSCyrillic = 0x413, /* code page 855, IBM Cyrillic */
kTextEncodingDOSTurkish = 0x414, /* code page 857, IBM Turkish */
kTextEncodingDOSPortuguese = 0x415, /* code page 860 */
kTextEncodingDOSIcelandic = 0x416, /* code page 861 */
kTextEncodingDOSHebrew = 0x417, /* code page 862 */
kTextEncodingDOSCanadianFrench = 0x418, /* code page 863 */
kTextEncodingDOSArabic = 0x419, /* code page 864 */
kTextEncodingDOSNordic = 0x41A, /* code page 865 */
kTextEncodingDOSRussian = 0x41B, /* code page 866 */
kTextEncodingDOSGreek2 = 0x41C, /* code page 869, IBM Modern Greek */
kTextEncodingDOSThai = 0x41D, /* code page 874, also for Windows */
kTextEncodingDOSJapanese = 0x420, /* code page 932, also for Windows */
kTextEncodingDOSChineseSimplif = 0x421, /* code page 936, also for Windows */
kTextEncodingDOSKorean = 0x422, /* code page 949, also for Windows;Unified Hangul

*/
kTextEncodingDOSChineseTrad = 0x423, /* code page 950, also for Windows */
kTextEncodingWindowsLatin1 = 0x500, /*code page 1252 */
kTextEncodingWindowsANSI = 0x500, /* code page 1252 (alternate name) */
kTextEncodingWindowsLatin2 = 0x501, /* code page 1250, Central Europe */
kTextEncodingWindowsCyrillic = 0x502, /* code page 1251, Slavic Cyrillic */
kTextEncodingWindowsGreek = 0x503, /* code page 1253 */
kTextEncodingWindowsLatin5 = 0x504, /* code page 1254, Turkish */
kTextEncodingWindowsHebrew = 0x505, /* code page 1255 */
kTextEncodingWindowsArabic = 0x506, /* code page 1256 */
kTextEncodingWindowsBalticRim = 0x507, /* code page 1257 */
kTextEncodingWindowsVietnamese = 0x508, /* code page 1258 */
kTextEncodingWindowsKoreanJohab =0x510, /* code page 1361, for Windows NT */

/* Various national standards begin at 0x600 */
kTextEncodingUS_ASCII = 0x600,
kTextEncodingJIS_X0201_76 = 0x620,
34 Basic Text Constants

 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
kTextEncodingJIS_X0208_83 = 0x621,
kTextEncodingJIS_X0208_90 = 0x622,
kTextEncodingJIS_X0212_90 = 0x623,
kTextEncodingJIS_C6226_78 = 0x624,
kTextEncodingGB_2312_80 = 0x630,
kTextEncodingGBK_95 = 0x631, /* annex to GB 13000-93; for Windows 95 */
kTextEncodingKSC_5601_87 = 0x640, /* same as KSC 5601-92 without Johab annex */
kTextEncodingKSC_5601_92_Johab = 0x641, /* KSC 5601-92 Johab annex */
kTextEncodingCNS_11643_92_P1 = 0x651, /* CNS 11643-1992 plane 1 */
kTextEncodingCNS_11643_92_P2 = 0x652, /* CNS 11643-1992 plane 2 */
kTextEncodingCNS_11643_92_P3 = 0x653, /* CNS 11643-1992 plane 3

 (11643-1986 plane 14) */

/* ISO 2022 collections begin at 0x800 */
kTextEncodingISO_2022_JP = 0x820,
kTextEncodingISO_2022_JP_2 = 0x821,
kTextEncodingISO_2022_CN = 0x830,
kTextEncodingISO_2022_CN_EXT = 0x831,
kTextEncodingISO_2022_KR = 0x840,

/* EUC collections begin at 0x900 */
kTextEncodingEUC_JP = 0x920, /* ISO 646,1-byte Katakana,JIS 208,JIS 212 */
kTextEncodingEUC_CN = 0x930, /* ISO 646, GB 2312-80 */
kTextEncodingEUC_TW = 0x931, /* ISO 646, CNS 11643-1992 Planes 1-16 */
kTextEncodingEUC_KR = 0x940, /* ISO 646, KS C 5601-1987 */

/* Miscellaneous standards begin at 0xA00 */
kTextEncodingShiftJIS = 0xA01, /* plain Shift-JIS */
kTextEncodingKOI8_R = 0xA02, /* Russian Internet standard */
kTextEncodingBig5 = 0xA03, /* Big-5 */
kTextEncodingMacRomanLatin1 = 0xA04, /* Mac OS Roman permuted to align

with 8859-1 */
kTextEncodingHZ_GB_2312 = 0xA05, /* HZ (RFC 1842, for Chinese mail & news) */

/* Other platform encodings */
kTextEncodingNextStepLatin = 0xB01, /* NextStep encoding */

/* EBCDIC & IBM host encodings begin at 0xC00 */
kTextEncodingEBCDIC_US = 0xC01, /* basic EBCDIC-US */
kTextEncodingEBCDIC_CP037 = 0xC02, /* code page 037, extended EBCDIC-US Latin1 */
Basic Text Constants 35
 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
/* Special value */
kTextEncodingMultiRun = 0xFFF, /* Multiple encoded text, external run info */
kTextEncodingUnknown = 0xFFFF /* Unknown or unspecified */

};

Text Encoding Variant 2

A text encoding variant specifies one among possibly several minor variants of
a particular base encoding or group of base encodings. Text encoding variants
are often used to support special cases such as the following:

� Differences among fonts that are all intended to support the same encoding.
For example, different fonts associated with the MacJapanese and MacArabic
encodings support slightly different encoding variants. These fonts would
typically coexist on the same system without the user being aware of any
differences.

� Artificial variants created by excluding some of the characters in an
encoding. For example, the MacJapanese encoding includes
separately-encoded vertical forms for some characters. In some contexts
(such as with QuickDraw GX), it may be desirable to exclude these.

� Different mappings of a particular character or group of characters for
different usages.

� Minor changes in an encoding for newer system versions (such as changes
made to support the EURO SIGN character). Apple assigns a different
non-zero variant for each version of the encoding; the default variant can be
a “meta-variant” that resolves to the correct variant depending on the system
version.

For a given text encoding base or small set of related text encoding base values,
there may be an enumeration of TextEncodingVariant values, which always
begins with 0, the default variant.

Languages that are dissimilar but use similar character sets are generally not
designated as variants of the same base encoding (for example, MacIcelandic
and MacTurkish both use a slight modification of the MacRoman character set,
but they are considered separate base encodings).

A text encoding variant is defined by the TextEncodingVariant data type.

typedef UInt32 TextEncodingVariant;
36 Basic Text Constants

 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
When you create a new text encoding, you can specify an explicit variant of a
base encoding or you can specify the default variant of that base.

The function GetTextEncodingVariant (page 59) returns the text encoding
variant of a text encoding specification.

The following enumeration defines constants for the default variant of any base
text encoding and for variants of the Mac OS Japanese, Mac OS Arabic, Mac OS
Farsi, Mac OS Hebrew, and Unicode base encodings.

enum {
/* Default TextEncodingVariant, for any TextEncodingBase */
kTextEncodingDefaultVariant = 0 ,

/* Variants of kTextEncodingMacRoman */
kMacRomanDefaultVariant = 0, /* meta value, maps to 1 or 2 */
kMacRomanCurrencySignVariant = 1, /* for Mac OS version < 8.5 */
kMacRomanEuroSignVariant = 2, /* for Mac OS version >= 8.5 */

/* Variants of kTextEncodingMacJapanese */
kMacJapaneseStandardVariant = 0,
kMacJapaneseStdNoVerticalsVariant = 1,
kMacJapaneseBasicVariant = 2,
kMacJapanesePostScriptScrnVariant = 3,
kMacJapanesePostScriptPrintVariant = 4,
kMacJapaneseVertAtKuPlusTenVariant = 5,

/* Variants of kTextEncodingMacArabic */
kMacArabicStandardVariant = 0, /* Cairo font & WorldScript tables */
kMacArabicTrueTypeVariant = 1, /* Baghdad, Geeza, Kufi, Nadeem fonts */
kMacArabicThuluthVariant = 2, /* Thuluth font */
kMacArabicAlBayanVariant = 3, /* Al Bayan font */

/* Variants of kTextEncodingMacFarsi */
kMacFarsiStandardVariant = 0, /* Tehran font & WorldScript tables */
kMacFarsiTrueTypeVariant = 1, /* TrueType fonts */

/* Variants of kTextEncodingMacHebrew */
kMacHebrewStandardVariant = 0,
kMacHebrewFigureSpaceVariant = 1,

/* Variants of kTextEncodingMacCyrillic */
Basic Text Constants 37
 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
kMacCyrillicDefaultVariant = 0, /* meta value, maps to 1, 2, or 3 */
kMacCyrillicCurrSignStdVariant = 1, /* for Russian & Bulg Mac OS < 9.0 */
kMacCyrillicCurrSignUkrVariant = 2, /* for Ukraine Mac OS < 9.0 & CyrLK */
kMacCyrillicEuroSignVariant = 3, /* for Mac OS >= 9.0 */

/* Variants of kTextEncodingMacIcelandic */
kMacIcelandicStdDefaultVariant = 0, /* meta value, maps to 2 or 4 */
kMacIcelandicTTDefaultVariant = 1, /* meta value, maps to 3 or 5 */
/* The following are for Mac OS version < 8.5 */
kMacIcelandicStdCurrSignVariant = 2, /* 0xBB/0xBC are ord. indicators */
kMacIcelandicTTCurrSignVariant = 3, /* 0xBB/0xBC are fi/fl ligatures */
/* The following are for Mac OS version >= 8.5 */
kMacIcelandicStdEuroSignVariant = 4, /* 0xBB/0xBC are ord. indicators */
kMacIcelandicTTEuroSignVariant = 5, /* 0xBB/0xBC are fi/fl ligatures */

/* Variants of kTextEncodingMacCroatian */
kMacCroatianDefaultVariant = 0, /* meta value, maps to 1 or 2 */
kMacCroatianCurrencySignVariant = 1, /* Mac OS version < 8.5 */
kMacCroatianEuroSignVariant = 2, /* Mac OS version >= 8.5 */

/* Variants of kTextEncodingMacRomanian */
kMacRomanianDefaultVariant = 0, /* meta value, maps to 1 or 2 */
kMacRomanianCurrencySignVariant = 1, /* Mac OS version < 8.5 */
kMacRomanianEuroSignVariant = 2, /* Mac OS version >= 8.5 */

/* Variants of kTextEncodingMacVT100 */
kMacVT100DefaultVariant = 0, /* meta value, maps to 1 or 2 */
kMacVT100CurrencySignVariant = 1, /* Mac OS version < 8.5 */
kMacVT100EuroSignVariant = 2, /* Mac OS version >= 8.5 */

/* Variants of Unicode & ISO 10646 encodings */
kUnicodeNoSubset = 0,
kUnicodeCanonicalDecompVariant = 2

};

Constant descriptions

kTextEncodingDefaultVariant
The standard default variant for any base encoding.
38 Basic Text Constants

 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
Mac OS Roman variants

kMacRomanDefaultVariant
A meta-variant which resolves to one of the following two
variants depending on system version.

kMacRomanCurrencySignVariant
The variant of Mac OS Roman used before Mac OS 8.5;
0xDB is CURRENCY SIGN.

kMacRomanEuroSignVariant
The standard variant of Mac OS Roman for Mac OS 8.5 and
later; 0xDB is EURO SIGN.

Mac OS Japanese variants
kMacJapaneseStandardVariant

The standard Japanese variant. Shift-JIS with JIS Roman
modifications, extra 1-byte characters, 2-byte Apple
extensions, and some vertical presentation forms in the
range 0xEB40—0xEDFE ("ku plus 84").

kMacJapaneseStdNoVerticalsVariant
An artificial variant for callers who don’t want to use
separately encoded vertical forms (for example, developers
using QuickDraw GX).

kMacJapaneseBasicVariant
An artificial variant without Apple 2-byte extensions.

kMacJapanesePostScriptScrnVariant
The Japanese variant for the screen bitmap version of the
Sai Mincho and Chu Gothic fonts.

kMacJapanesePostScriptPrintVariant
The Japanese variant for PostScript printing versions of the
Sai Mincho and Chu Gothic PostScript fonts. This version
includes 2-byte half-width characters in addition to 1-byte
half-width characters.

kMacJapaneseVertAtKuPlusTenVariant
The Japanese variant for the Hon Mincho and Maru Gothic
fonts used in the Japanese localized version of System 7.1.
It does not include the standard Apple extensions, and
encodes vertical forms at a different location.

Mac OS Arabic variants

kMacArabicStandardVariant
This variant is supported by the Cairo font (the system font
Basic Text Constants 39
 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
for Arabic) and is the encoding supported by the text
processing utilities.

kMacArabicTrueTypeVariant
This variant is used for most of the Arabic TrueType fonts:
Baghdad, Geeza, Kufi, Nadeem.

kMacArabicThuluthVariant
This variant is used for the Arabic PostScript-only fonts:
Thuluth and Thuluth bold.

kMacArabicAlBayanVariant
This variant is used for the Arabic TrueType font Al Bayan.

Mac OS Farsi variants

kMacFarsiStandardVariant
This variant is supported by the Tehran font (the system
font for Farsi) and is the encoding supported by the text
processing utilities.

kMacFarsiTrueTypeVariant
This variant is used for most of the Farsi TrueType fonts:
Ashfahan, Amir, Kamran, Mashad, NadeemFarsi.

Mac OS Hebrew variants
kMacHebrewStandardVariant

The standard Hebrew variant.
kMacHebrewFigureSpaceVariant

The Hebrew variant in which 0xD4 represents figure space,
not left single quotation mark as in the standard variant.

Mac OS Cyrillic variants

kMacCyrillicDefaultVariant
A meta-variant which resolves to one of the following three
variants depending on system version and system
localization.

kMacCyrillicCurrSignStdVariant
The Cyrillic currency-sign variant of Mac OS Cyrillic used
for Russian and Bulgarian localized systems before Mac OS
9.0; 0xA2 and 0xB6 are CENT SIGN and PARTIAL
DIFFERENTIAL, 0xFF is CURRENCY SIGN.

kMacCyrillicCurrSignUkrVariant
The Ukrainian currency-sign variant of Mac OS Cyrillic
40 Basic Text Constants

 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
used for Ukrainian localized systems and the Cyrillic
Language Kit before Mac OS 9.0; 0xA2 and 0xB6 are capital
and small GHE WITH UPTURN, 0xFF is CURRENCY
SIGN.

kMacCyrillicEuroSignVariant
The standard Euro-sign variant of MacCyrillic used for all
Slavic Cyrillic localized systems and the Cyrillic language
kit for Mac OS 9.0 and later; 0xA2 and 0xB6 are capital and
small GHE WITH UPTURN, 0xFF is EURO SIGN.

Mac OS Icelandic variants

kMacIcelandicStdDefaultVariant
A meta-variant for the standard Icelandic font variant used
for the bitmap versions of Chicago, Geneva, Monaco, and
New York in the Icelandic system; this is also the variant
supported by the text processing utilities. In this font
variant, 0xBB and 0xBC are feminine and masculine ordinal
indicators. This meta-variant resolves to either
kMacIcelandicStdCurrSignVariant or
kMacIcelandicStdEuroSignVariant depending on the system
version.

kMacIcelandicTTDefaultVariant
A meta-variant for the “TrueType” Icelandic font variant
used for the TrueType versions of Chicago, Geneva,
Monaco, New York and for the TrueType and bitmap
versions of Courier, Helvetica, Palatino, and Times in the
Icelandic system. In this font variant, 0xBB and 0xBC are fi
and fl ligatures. This meta-variant resolves to either
kMacIcelandicTTCurrSignVariant or
kMacIcelandicTTEuroSignVariant depending on the system
version.

kMacIcelandicStdCurrSignVariant
The standard font variant of Mac OS Icelandic used before
Mac OS 8.5; 0xDB is CURRENCY SIGN.

kMacIcelandicTTCurrSignVariant
The standard font variant of Mac OS Icelandic for Mac OS
8.5 and later; 0xDB is EURO SIGN.
Basic Text Constants 41
 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
kMacIcelandicStdEuroSignVariant
The TrueType font variant of Mac OS Icelandic used before
Mac OS 8.5; 0xDB is CURRENCY SIGN.

kMacIcelandicTTEuroSignVariant
The TrueType font variant of Mac OS Icelandic for Mac OS
8.5 and later; 0xDB is EURO SIGN.

Mac OS Croatian variants

kMacCroatianDefaultVariant
A meta-variant which resolves to one of the following two
variants depending on system version.

kMacCroatianCurrencySignVariant
The variant of Mac OS Croatian used before Mac OS 8.5;
0xDB is CURRENCY SIGN.

kMacCroatianEuroSignVariant
The standard variant of Mac OS Croatian for Mac OS 8.5
and later; 0xDB is EURO SIGN.

Mac OS Romanian variants

kMacRomanianDefaultVariant
A meta-variant which resolves to one of the following two
variants depending on system version.

kMacRomanianCurrencySignVariant
The variant of Mac OS Romanian used before Mac OS 8.5;
0xDB is CURRENCY SIGN.

kMacRomanianEuroSignVariant
The standard variant of Mac OS Romanian for Mac OS 8.5
and later; 0xDB is EURO SIGN.

Mac OS VT100 variants

kMacVT100DefaultVariant
A meta-variant which resolves to one of the following two
variants depending on system version.

kMacVT100CurrencySignVariant
The variant of Mac OS VT100 used before Mac OS 8.5;
0xDB is CURRENCY SIGN.
42 Basic Text Constants

 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
kMacVT100EuroSignVariant
The standard variant of Mac OS VT100 for Mac OS 8.5 and
later; 0xDB is EURO SIGN.

Unicode variants

kUnicodeNoSubset
The standard Unicode encoded character set in which the
full set of Unicode characters are supported.

kUnicodeCanonicalDecompVariant
A variant of Unicode using maximal decomposition with
characters in canonical order. This variant does not include
most characters which have a canonical decomposition,
such as single characters for accented Latin letters or single
characters for Korean Hangul syllables (however, this
restriction is relaxed for symbol characters in the range
U+2000 to U+2FFF). In TEC Manager 1.3, the Unicode
Converter supports this variant for converting to and from
Mac OS encodings.

Text Encoding Format 2

A text encoding format specifies a way of formatting or algorithmically
transforming a particular base encoding. For example, the UTF-7 format is the
Unicode standard formatted for transmission through channels that can handle
only 7-bit values. Other text encoding formats for Unicode include UTF-8 and
16-bit or 32-bit formats. These transformations are not viewed as different base
encodings. Rather, they are different formats for representing the same base
encoding.

Similar to text encoding variant values, text encoding format values are specific
to a particular text encoding base value or to a small set of text encoding base
values. A text encoding format is defined by the TextEncodingFormat data type.

typedef UInt32 TextEncodingFormat;

The function GetTextEncodingFormat (page 59) returns the text encoding format
of a text encoding specification.

The following enumeration defines constants for specifying text encoding
formats:
Basic Text Constants 43
 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
enum {
/* Default TextEncodingFormat for any TextEncodingBase */
kTextEncodingDefaultFormat = 0,

/* Formats for Unicode encodings */
kUnicode16BitFormat = 0,
kUnicodeUTF7Format = 1,
kUnicodeUTF8Format = 2,
kUnicode32BitFormat = 3

};

Constant descriptions

kTextEncodingDefaultFormat
The standard default format for any base encoding.

For Unicode and ISO10646

kUnicode16BitFormat
The 16-bit character encoding format specified by the
Unicode standard, equivalent to the UCS-2 format for ISO
10646. This includes support for the UTF-16 method of
including non-BMP characters in a stream of 16-bit values.

kUnicodeUTF7Format
The Unicode transformation format in which characters
encodings are represented by a sequence of 7-bit values.
This format cannot be handled by the Unicode Converter,
only by the Text Encoding Converter.

kUnicodeUTF8Format
The Unicode transformation format in which characters are
represented by a sequence of 8-bit values.

kUnicode32BitFormat
The UCS-4 32-bit format defined for ISO 10646. This format
is not currently supported.

Text Encoding Name Selector 2

You use a selector for the GetTextEncodingName function to indicate which part
of an encoding name you want to determine. The text encoding name selector is
defined by the TextEncodingNameSelector data type:
44 Basic Text Constants

 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
typedef UInt32 TextEncodingNameSelector;

The following enumeration defines the allowable constants for selecting parts of
encoding names:

enum {
kTextEncodingFullName = 0,
kTextEncodingBaseName = 1,
kTextEncodingVariantName = 2,
kTextEncodingFormatName = 3

};

Constant descriptions

kTextEncodingFullName
Selector that requests the full name of the text encoding.

kTextEncodingBaseName
Requests the name of the base encoding.

kTextEncodingVariantName
Requests the name of the encoding variant, if available.

kTextEncodingFormatName
Requests the name of the encoding format, if available.

Script Manager Derivation Specifiers 2

For backward compatibility with earlier releases of the Mac OS, the Text
Encoding Conversion Manager provides the functions
UpgradeScriptInfoToTextEncoding (page 63) and
RevertTextEncodingToScriptInfo (page 65) that you can use to derive Script
Manager values from a text encoding or vice versa.

When using these functions, you can specify a Script Manager language code,
script code, and/or font values to derive a text encoding. These three constants
are defined to allow you to identify any part of the derivation you don’t care
about. When reverting from a text encoding to Script Manager values, the
Unicode Converter returns these constants for a corresponding value it does not
derive: kTextLanguageDontCare, kTextScriptDontCare, and kTextRegionDontCare.
Basic Text Constants 45
 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
enum {
kTextLanguageDontCare = -128
kTextScriptDontCare = -128
kTextRegionDontCare = -128
);

Constant descriptions

kTextLanguageDontCare
Indicates that language code is not provided for the
derivation.

kTextScriptDontCare
Indicates that the code is not provided for the derivation.

kTextRegionDontCare
The region code is not provided for the derivation.

Unicode Character Properties 2

You can obtain information about the some of the properties of a Unicode
character using the function UCGetCharProperty. These properties are defined by
the Unicode Consortium. You specify the property whose value you would like
to obtain using the UCCharPropertyType data type.

typedef SInt32 UCCharPropertyType;

There are three public tags defined for UCCharPropertyType:

enum {
kUCCharPropTypeGenlCategory = 1,/* requests enum value */
kUCCharPropTypeCombiningClass = 2,/* requests numeric value 0..255 */
kUCCharPropTypeBidiCategory = 3/* requests enum value */

};

The value of the requested property is returned as a UCCharPropertyValue data
type:

typedef UInt32 UCCharPropertyValue;
46 Basic Text Constants

 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
The kUCCharPropTypeGenlCategory tag requests the Unicode General Category
property. The UCCharPropertyValue values that can be returned for the property
are enumerated based on the categories defined by the Unicode Consortium.

enum {
/* Normative categories: */
kUCGenlCatOtherNotAssigned = 0,/* Cn Other, Not Assigned */
kUCGenlCatOtherControl = 1,/* Cc Other, Control */
kUCGenlCatOtherFormat = 2,/* Cf Other, Format */
kUCGenlCatOtherSurrogate = 3,/* Cs Other, Surrogate */
kUCGenlCatOtherPrivateUse = 4,/* Co Other, Private Use */
kUCGenlCatMarkNonSpacing = 5,/* Mn Mark, Non-Spacing */
kUCGenlCatMarkSpacingCombining = 6,/* Mc Mark, Spacing Combining */
kUCGenlCatMarkEnclosing = 7,/* Me Mark, Enclosing */
kUCGenlCatNumberDecimalDigit = 8,/* Nd Number, Decimal Digit */
kUCGenlCatNumberLetter = 9,/* Nl Number, Letter */
kUCGenlCatNumberOther = 10,/* No Number, Other */
kUCGenlCatSeparatorSpace = 11,/* Zs Separator, Space */
kUCGenlCatSeparatorLine = 12,/* Zl Separator, Line */
kUCGenlCatSeparatorParagraph = 13,/* Zp Separator, Paragraph */

/* Informative categories: */
kUCGenlCatLetterUppercase = 14,/* Lu Letter, Uppercase */
kUCGenlCatLetterLowercase = 15,/* Ll Letter, Lowercase */
kUCGenlCatLetterTitlecase = 16,/* Lt Letter, Titlecase */
kUCGenlCatLetterModifier = 17,/* Lm Letter, Modifier */
kUCGenlCatLetterOther = 18,/* Lo Letter, Other */
kUCGenlCatPunctConnector = 20,/* Pc Punctuation, Connector */
kUCGenlCatPunctDash = 21,/* Pd Punctuation, Dash */
kUCGenlCatPunctOpen = 22,/* Ps Punctuation, Open */
kUCGenlCatPunctClose = 23,/* Pe Punctuation, Close */
kUCGenlCatPunctInitialQuote = 24,/* Pi Punctuation, Initial quote */
kUCGenlCatPunctFinalQuote = 25,/* Pf Punctuation, Final quote */
kUCGenlCatPunctOther = 26,/* Po Punctuation, Other */
kUCGenlCatSymbolMath = 28,/* Sm Symbol, Math */
kUCGenlCatSymbolCurrency = 29,/* Sc Symbol, Currency */
kUCGenlCatSymbolModifier = 30,/* Sk Symbol, Modifier */
kUCGenlCatSymbolOther = 31/* So Symbol, Other */

};
Basic Text Constants 47
 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
The kUCCharPropTypeCombiningClass tag requests the Unicode Canonical
Combining Class property. The UCCharPropertyValue values that can be
returned for the property are numeric values in the range 0 through 255, as
defined by the Unicode Consortium.

The kUCCharPropTypeBidiCategory tag requests the Unicode Bidirectional
Category property. The UCCharPropertyValue values that can be returned for the
property are enumerated based on the categories defined by the Unicode
Consortium.

enum {
kUCBidiCatNotApplicable = 0, /* currently used for unassigned */

/* Strong types: */
kUCBidiCatLeftRight = 1, /* L Left-Right */
kUCBidiCatRightLeft = 2, /* R Right-Left */

/* Weak types: */
kUCBidiCatEuroNumber = 3, /* EN European Number */
kUCBidiCatEuroNumberSeparator = 4, /* ES European Number Separator */
kUCBidiCatEuroNumberTerminator = 5, /* ET European Number Terminator */
kUCBidiCatArabicNumber = 6, /* AN Arabic Number */
kUCBidiCatCommonNumberSeparator = 7, /* CS Common Number Separator */

/* Separators: */
kUCBidiCatBlockSeparator = 8, /* B Block Separator */
kUCBidiCatSegmentSeparator = 9, /* S Segment Separator */

/* Neutrals: */
kUCBidiCatWhitespace = 10, /* WS Whitespace */
kUCBidiCatOtherNeutral = 11 /* ON Other Neutrals */

};

Text Encoding Conversion Manager Result Codes 2

Many of the Text Encoding Conversion Manager functions return result codes.
This section includes result codes that are common to both converters and those
that are specific to one or the other. This section explains briefly the conditions
under which result codes are returned. Some functions that return a result code
include descriptions that give result code information specific to the function.
48 Basic Text Constants

 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
Chapter 3, “Text Encoding Converter Reference,” and Chapter 4, “Unicode
Converter Reference,” describe these functions.

Text Encoding Conversion Manager functions can return result codes specific to
text encoding conversions and also general error codes such as noErr (meaning
the function completed successfully), paramErr (meaning one or more of the
input parameters has an invalid value), and memory, operating system, and
resource errors.

kTextUnsupportedEncodingErr -8738 The encoding or mapping is not supported for
this function by the current set of tables or
plug-ins.

kTextMalformedInputErr -8739 The text input contains a sequence that is not
legal in the specified encoding, such as a DBCS
high byte followed by an invalid low byte
(0x8120 in Shift-JIS).

kTextUndefinedElementErr -8740 The text input contains a code point that is
undefined in the specified encoding.

kTECMissingTableErr -8745 The specified encoding is partially supported,
but a specific table required for this function is
missing.

kTECTableChecksumErr -8746 A specific table required for this function has a
checksum error.

kTECTableFormatErr -8747 The table format is either invalid or it cannot be
handled by the current version of the code.

kTECCorruptConverterErr -8748 The converter object is invalid. Returned by the
Text Encoding Converter functions only.

kTECNoConversionPathErr -8749 The converter supports both the source and
target encodings, but cannot convert between
them either directly or indirectly. Returned by
the Text Encoding Converter functions only.

kTECBufferBelowMinimumSizeErr -8750 The output text buffer is too small to
accommodate the result of processing of the
first input text element.

kTECArrayFullErr -8751 The supplied TextEncodingRun, ScriptCodeRun,
or UnicodeMapping array is too small.

kTECPartialCharErr -8753 The input text ends in the middle of a multibyte
character and conversion stopped.
Basic Text Constants 49
 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
kTECUnmappableElementErr -8754 An input text element cannot be mapped to the
specified output encoding(s) using the specified
options. For the Unicode Converter, this error
can occur only if kUnicodeUseFallbacksBit is
not set.

kTECIncompleteElementErr -8755 The input text ends with a text element that
might be incomplete, or contains a text element
that is too long for the internal buffers.

kTECDirectionErr -8756 An error, such as a direction stack overflow,
occurred in directionality processing.

kTECGlobalsUnavailableErr -8770 Global variables have already been deallocated,
premature termination.

kTECItemUnavailableErr -8771 An item (for example, a name) is not available
for the specified region (and encoding, if
relevant).

kTECUsedFallbacksStatus -8783 The function has completely converted the
input string to the specified target using one or
more fallbacks. For the Unicode Converter, this
status code can only occur if
kUnicodeUseFallbacksBit is set.

kTECNeedFlushStatus -8784 The application disposed of a converter object
by calling TECDisposeConverter, but there is still
text contained in internal buffers. Returned by
the Text Encoding Converter functions only.

kTECOutputBufferFullStatus -8785 The converter successfully converted part of the
input text, but the output buffer was not large
enough to accommodate the entire input text
after conversion. Convert the remaining text
beginning from the position where the
conversion stopped.
50 Basic Text Constants

 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
Basic Text Structures and Other Types 2

TextEncoding 2

A text encoding specification is a set of numeric codes used to identify text
encodings. It specifies the base text encoding, the text encoding variant, and the
text encoding format. It is used, for example, to identify the encoding of text
passed to a text converter. Two such specifications are needed—for source and
destination encoding—when calling the Text Encoding Converter or the
Unicode Converter to convert text.

You can use these data types when you create a text encoding specification:

� TextEncodingBase, described in “Text Encoding Base” (page 31)

� TextEncodingVariant, described in “Text Encoding Variant” (page 36)

� TextEncodingFormat, described in “Text Encoding Format” (page 43)

A text encoding specification is defined by the TextEncoding data type.

typedef UInt32 TextEncoding;

TextEncodingRun 2

It is not always possible to convert text expressed in Unicode to another single
encoding because no other single encoding encompasses the Unicode character
encoding range. To adjust for this, you can create a Unicode mapping structure
array that specifies the target encodings the Unicode text should be converted
to when multiple encodings must be used.

If the kUnicodeTextRunMask flag is set, ConvertFromUnicodeToTextRun and
ConvertFromUnicodeToScriptCodeRun may convert Unicode text to a string of text
containing multiple text encoding runs. Each run contains text expressed in a
different encoding from that of the preceding or following text segment. For
Basic Text Structures and Other Types 51
 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
each text encoding run in the string, a TextEncodingRun structure indicates the
beginning offset and the text encoding for that run.

Functions that convert text from Unicode to a text run return the converted text
in an array of text encoding run structures. A text encoding run structure is
defined by the TextEncodingRun data type.

struct TextEncodingRun {
ByteOffset offset;
TextEncoding textEncoding;

};
typedef struct TextEncodingRun TextEncodingRun;

Field descriptions
offset The beginning character position of a run of text in the

converted text string.

textEncoding The encoding of the text run that begins at the position
specified.

struct TextEncodingRun {
ByteOffset offset;
TextEncoding textEncoding;

};

Field descriptions
offset The byte offset at which the given text encoding begins.

The offset is from the beginning of the text buffer.
textEncoding

The text encoding that begins at the byte offset.

TECInfo 2

The converter information structure is used by the function TECGetInfo
(page 62) to hold returned information about the Unicode Converter, the Text
Encoding Converter, and Basic Text Types.
52 Basic Text Structures and Other Types

 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
struct TECInfo {
UInt16 format;
UInt16 tecVersion;
UInt32 tecTextConverterFeatures;
UInt32 tecUnicodeConverterFeatures;
UInt32 tecTextCommonFeatures;
Str31 tecTextEncodingsFolderName;
Str31 tecExtensionFileName;

/* The following are present if format is >= 2 */
UInt16 tecLowestTEFileVersion;
UInt16 tecHighestTEFileVersion;

};
typedef struct TECInfo TECInfo;
typedef TECInfo * TECInfoPtr;
typedef TECInfoPtr * TECInfoHandle;

The following enumerations should be moved to the “Constants” section, and
constant descriptions for them need to be added there.

enum {
kTECInfoCurrentFormat = 2

};

enum {
kTECKeepInfoFixBit = 0,
kTECFallbackTextLengthFixBit = 1,
kTECTextRunBitClearFixBit = 2,
kTECTextToUnicodeScanFixBit = 3,
kTECAddForceASCIIChangesBit = 4,
kTECPreferredEncodingFixBit = 5,
kTECAddTextRunHeuristicsBit = 6,
kTECAddFallbackInterruptBit = 7

};

enum {
kTECKeepInfoFixMask = 1L << kTECKeepInfoFixBit,
kTECFallbackTextLengthFixMask = 1L << kTECFallbackTextLengthFixBit,
kTECTextRunBitClearFixMask = 1L << kTECTextRunBitClearFixBit,
kTECTextToUnicodeScanFixMask = 1L << kTECTextToUnicodeScanFixBit,
kTECAddForceASCIIChangesMask = 1L << kTECAddForceASCIIChangesBit,
kTECPreferredEncodingFixMask = 1L << kTECPreferredEncodingFixBit,
Basic Text Structures and Other Types 53
 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
kTECAddTextRunHeuristicsMask = 1L << kTECAddTextRunHeuristicsBit,
kTECAddFallbackInterruptMask = 1L << kTECAddFallbackInterruptBit

};

Field descriptions
format The current format of the returned structure. The format of

the structure is indicated by the kTECInfoCurrentFormat
constant. Any future changes to the format will always be
backward compatible; any new fields will be added to the
end of the structure.

tecVersion The current version of the Text Encoding Conversion
Manager extension in BCD (binary coded decimal), with
the first byte indicating the major version; for example,
0x0121 for 1.2.1.

tecTextConverterFeatures

New features or bug fixes in the Text Encoding Converter.
No bits are currently defined.

tecUnicodeConverterFeatures

Bit flags indicating new features or bug fixes in the Unicode
Converter. The bits currently defined are
kTECKeepInfoFixBit, kTECFallbackTextLengthFixBit,
kTECTextRunBitClearFixBit, kTECTextToUnicodeScanFixBit,
kTecAddForceASCIIChangesBit,
kTECPreferredEncodingFixBit;
kTECAddTextRunHeuristicsBit, and
kTECAddFallbackInterruptBit; the corresponding masks are
kTECKeepInfoFixMask, kTECFallbackTextLengthFixMask,
kTECTextRunMaskClearFixMask,
kTECTextToUnicodeScanFixMask,
kTecAddForceASCIIChangesMask,
kTECPreferredEncodingFixMask.,
kTECAddTextRunHeuristicsMask, and
kTECAddFallbackInterruptMask.
The kTECKeepInfoFixBit is set if the Unicode Converter has
a bug fix to stop ignoring certain control flags if the
kUnicodeKeepInfoBit flag is set.
The kTECFallbackTextLengthFixBit is set if the Unicode
Converter has a bug fix to use the source length
(srcConvLen) and destination length (destConvLen)
54 Basic Text Structures and Other Types

 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
returned by a caller-supplied fall-back handler for any
status it returns except kTECUnmappableElementErr.
Previously it honored only these values if noErr was
returned.
The kTECTextRunBitClearFixBit is set if
ConvertFromUnicodeToTextRun and
ConvertFromUnicodeToScriptCodeRun function correctly if
the kUnicodeTextRunBit is clear.
The kTECTextToUnicodeScanFixBit is set if
ConvertFromTextToUnicode is enhanced so mappings can
depend on context and saved state. The consequences of
this are (1) malformed input results in
kTextMalformedInputErr; (2) ConvertFromTextToUnicode
accepts the control flags kUnicodeLooseMappingsMask,
kUnicodeKeepInfoMask, and
kUnicodeStringUnterminatedMask; (3) elimination of
redundant direction overrides when converting Mac OS
Arabic and Hebrew to Unicode; and (4) improved mapping
of 0x30-0x39 digits in Mac OS Arabic when loose mappings
are used.
kTECAddForceASCIIChangesBit is set if the new control flag
bits kUnicodeForceASCIIRangeBit and
kUnicodeNoHalfwidthCharsBit are supported for use with
the functions ConvertFromTextToUnicode,
ConvertFromUnicodeToText, and so forth.
kTECPreferredEncodingFixBit is set to indicate that if a
preferred encoding is specified for
CreateUnicodeToTextRunInfo and related functions, they
handle it correctly even if it does not match the system
script.
kTECAddTextRunHeuristicsBit is set if the new control flag
bit kUnicodeTextRunHeuristicsBit is supported for use with
the function ConvertFromUnicodeToTextRun.
kTECAddFallbackInterruptBit is set if the new control flag
bit kUnicodeFallbackInterruptSafeMask is supported for use
with the functions SetFallbackUnicodeToText and
SetFallbackUnicodeToTextRun.

tecTextCommonFeatures
Bit flags indicating new features or bug fixes in Basic Text
Basic Text Structures and Other Types 55
 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
Types (the Text Common static library). No bits are
currently defined.

tecTextEncodingsFolderName
A Pascal string with the (possibly localized) name of the
Text Encodings folder.

tecExtensionFileName
A Pascal string with the (possibly localized) name of the
Text Encoding Conversion Manager extension file.

tecLowestTEFileVersion
The lowest version number for any file in the Text
Encodings folder. This can be compared with the version of
the TEC Manager in the tecVersion field.

tecHighestTEFileVersion
The highest version number for any file in the Text
Encodings folder. This can be compared with the version of
the TEC Manager in the tecVersion field.

Unicode Character and String Pointer Data Types 2

The Unicode Converter functions that use a Unicode character data type
assume that the Unicode character has the normal byte order for an unsigned
16-bit integer on the current platform and that any initial byte-order prefix
character has been removed. These functions also assume that each Unicode
character is aligned on a 2-byte boundary. A 16-bit Unicode character is defined
by the UniChar data type.

typedef UInt16 UniChar;

You specify a Unicode character array pointer to reference an array used to hold
a Unicode string. A Unicode character array pointer is defined by the
UniCharArrayPtr data type.

typedef UniChar *UniCharArrayPtr;

You specify a constant Unicode character array pointer for Unicode strings used
within the scope of a function whose contents are not modified by that function.
A constant Unicode character array pointer is defined by the
ConstUniCharArrayPtr data type.

typedef const UniChar *ConstUniCharArrayPtr;
56 Basic Text Structures and Other Types

 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
Basic Text Functions 2

You must not directly modify text encoding specifications. Instead, the Mac OS
provides you with functions for creating them, modifying them, and obtaining
their contents.

Creating a Text Encoding Specification 2

CreateTextEncoding 2

Creates and returns a text encoding specification.

pascal TextEncoding CreateTextEncoding (
TextEncodingBase encodingBase,
TextEncodingVariant encodingVariant,
TextEncodingFormat encodingFormat);

encodingBase A base text encoding of type TextEncodingRun (page 51).

encodingVariant
A variant of the base text encoding. To specify the default
variant for the base encoding given in the encodingBase
parameter, you can use the kTextEncodingDefaultVariant
constant.

encodingFormat
A format for the base text encoding. To specify the default
format for the base encoding, you can use the
kTextEncodingDefaultFormat constant.

function result The text encoding specification that the function creates from
the values you pass it.
Basic Text Functions 57
 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
DISCUSSION

When you create a text encoding specification, the three values that you specify
are packed into an unsigned integer, which you can then pass by value to the
functions that use text encodings.

SEE ALSO

The data type TextEncodingRun (page 51)

“Text Encoding Variant” (page 36)

“Text Encoding Format” (page 43)

Obtaining Information From a Text Encoding Specification 2

You use the functions described in this section to obtain the contents of a text
encoding specification; you must not access the structure directly.

GetTextEncodingBase 2

Returns the base encoding of the specified text encoding.

pascal TextEncodingBase GetTextEncodingBase (TextEncoding encoding);

encoding A text encoding specification whose base encoding you want to
obtain.

function result The base encoding portion of the specified text encoding.

SEE ALSO

“Text Encoding Base” (page 31)

The data type TextEncodingRun (page 51)
58 Basic Text Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
GetTextEncodingVariant 2

Returns the variant from the specified text encoding.

pascal TextEncodingVariant GetTextEncodingVariant (
TextEncoding encoding);

encoding A text encoding specification containing the variant you want to
obtain.

function result The text encoding variant portion of the specified text encoding.

SEE ALSO

“Text Encoding Base” (page 31)

“Text Encoding Variant” (page 36)

GetTextEncodingFormat 2

Returns the format value of the specified text encoding.

pascal TextEncodingFormat GetTextEncodingFormat (TextEncoding encoding);

encoding A text encoding specification containing the text encoding
format you want to obtain.

function result The text encoding format value contained in the text encoding
you specified.

SEE ALSO

“Text Encoding Base” (page 31)

“Text Encoding Format” (page 43)
Basic Text Functions 59
 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
ResolveDefaultTextEncoding 2

Returns a text encoding specification in which any meta-values have been
resolved to real values. Currently, this affects only the base encoding and
variant values packed into the text encoding specification.

pascal TextEncoding ResolveDefaultTextEncoding (TextEncoding encoding);

encoding A text encoding specification possibly containing meta-values
that you want to resolve into a text encoding specification
containing only real values.

function result A text encoding specification containing only real base encoding
values.

DISCUSSION

This function is useful for application developers who are providing APIs that
take text encoding specifications as parameters. All APIs in the Unicode
Converter and Text Encoding Converter perform this translation automatically.

SEE ALSO

“Text Encoding Base” (page 31)

GetTextEncodingName 2

Returns the localized name for a specified text encoding.

OSStatus GetTextEncodingName (TextEncoding iEncoding,
TextEncodingNameSelector iNamePartSelector,
RegionCode iPreferredRegion,
TextEncoding iPreferredEncoding,
ByteCount iOutputBufLen,
ByteCount *oNameLength,
RegionCode *oActualRegion,
TextEncoding *oActualEncoding,
TextPtr oEncodingName);
60 Basic Text Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
iEncoding A text encoding specification whose name you want to obtain.

iNamePartSelector
The portion of the encoding name you want to obtain. See “Text
Encoding Name Selector” (page 44) for a list of possible values.

iPreferredRegion
The preferred region to use for the name. You can specify a Mac
OS region code (which also implies a language) for this
parameter. If the function cannot return the name for the
preferred region, it returns the name using a region code with
the same language or in a default language (for example,
English).

iPreferredEncoding
The preferred encoding to use for the name. For example, you
might want the name returned encoded in ASCII, Mac OS
Roman, or Shift-JIS. If the function cannot return the name using
the preferred encoding, it returns the name using another
encoding, such as Unicode or ASCII.

iOutputBufLen The length in bytes of the output buffer that your application
provides for the returned encoding name.

oNameLength A pointer to a value of type ByteCount. On output, this
parameter holds the actual length, in bytes, of the text encoding
name. The value represents the full length of the name, which
might be greater than the size of the output buffer, specified by
the iOutputBufLen parameter. The length of the portion of the
name actually contained in the output buffer is thus the smaller
of oNameLength and iOutputBufLen.

oActualRegion A pointer to a value of type RegionCode. On output, this
parameter holds the actual region associated with the returned
encoding name.

oActualEncoding
A pointer to a value of type TextEncoding. On output, this
parameter holds the actual encoding associated with the
returned encoding name.

oEncodingName A pointer to a buffer you provide. On output, this parameter
holds the text encoding name.
Basic Text Functions 61
 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
function result A result code. For a list of possible result codes, see “Text
Encoding Conversion Manager Result Codes” (page 48).

DISCUSSION

Names returned by GetTextEncodingName (in the buffer referred to by
oEncodingName) may contain parentheses and possibly other menu item
metacharacters, and so cannot be used with AppendMenu or InsertMenuItem. They
can, however, be used with SetMenuItemText.

In addition to various resource and memory errors, this function can return the
following result codes:

� kTextUnsupportedEncodingErr, which indicates that the encoding whose name
you want to obtain is not supported.

� kTECMissingTableErr, which indicates the name resource associated with the
encoding is missing.

� kTECTableFormatErr or kTECTableCheckSumErr, which indicates that the name
resource associated with that encoding is invalid.

SEE ALSO

“Text Encoding Base” (page 31)

Obtaining Converter Information 2

TECGetInfo 2

Allocates a converter information structure of type TECInfo in the application
heap using NewHandle, fills it out, and returns a handle.

pascal OSStatus TECGetInfo (TECInfoHandle *tecInfo);
62 Basic Text Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
tecInfo A handle to a structure of type TECInfo (page 52) containing
information about the converter.

function result A result code. This function can return memory errors. For a list
of other possible result codes, see “Text Encoding Conversion
Manager Result Codes” (page 48).

DISCUSSION

When you are finished with the handle, your application must dispose of it
using DisposeHandle. You must also perform any required preflighting or
memory rearrangement before calling TECGetInfo.

Converting Between Script Manager Values and Text Encodings 2

UpgradeScriptInfoToTextEncoding 2

Converts any combination of a Mac OS script code, a language code, a region
code, and a font name to a text encoding.

pascal OSStatus UpgradeScriptInfoToTextEncoding (
ScriptCode iTextScriptID,
LangCode iTextLanguageID,
RegionCode iRegionID,
ConstStr255Param iTextFontname,
TextEncoding *oEncoding);

iTextScriptID A valid Script Manager script code. The Mac OS Script Manager
defines constants for script codes using this format: smXxx. To
designate the system script, specify the meta-value of
smSystemScript. To designate the current script based on the font
specified in the graphics port (grafPort), specify the metavalue
of smCurrentScript. To indicate that you do not want to provide
a script code for this parameter, specify the constant
kTextScriptDontCare. See Inside Macintosh: Text for more
information on the Script Manager’s script codes, language
codes, and region codes.
Basic Text Functions 63
 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
iTextLanguageID
A valid Script Manager language code. The Mac OS Script
Manager defines constants for language codes using this format:
langXxx. To indicate that you do not want to provide a language
code for this parameter, specify the constant
kTextLanguageDontCare.

iRegionID A valid Script Manager region code. The Mac OS Script
Manager defines constants for region codes using this format:
verXxx. To indicate that you do not want to provide a region
code for this parameter, specify the constant
kTextRegionDontCare.

iTextFontname The name of a font associated with a particular text encoding
specification, such as Symbol or Zapf Dingbats, or the name of
any font that is currently installed on the system. To indicate
that you do not want to provide a font name, specify a value of
NULL.

oEncoding A pointer to a value of type TextEncoding. On output, this value
holds the text encoding specification that the function created
from the other values you provided.

function result A result code. This function returns paramErr if two or more of
the input parameter values conflict in some way—for example,
the Mac OS language code does not belong to the script whose
script code you specified, or if the input parameter values are
invalid. The function returns a kTECTableFormatErr result code if
the internal mapping tables used for translation are invalid. For
a list of other possible result codes, see “Text Encoding
Conversion Manager Result Codes” (page 48).

DISCUSSION

The UpgradeScriptInfoToTextEncoding function allows you to derive a text
encoding specification from script codes, language codes, region codes, and font
names. A one-to-one correspondence exists between many of the Script
Manager’s script codes and a particular Mac OS text encoding base value.
However, because text encodings are a superset of script codes, some
combinations of script code, language code, region code, and font name might
result in a different text encoding base value than would be the case if the
translation were based on the script code alone.
64 Basic Text Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
When you call the UpgradeScriptInfoToTextEncoding function, you can specify
any combination of its parameters, but you must specify at least one.

If you don’t specify an explicit value for a script, language, or region code
parameter, you must pass the don’t-care constant appropriate to that parameter.
If you don’t specify an explicit value for iTextFontName, you must pass NULL.
UpgradeScriptInfoToTextEncoding uses as much information as you supply to
determine the equivalent text encoding or the closest approximation. If you
provide more than one parameter, all parameters are checked against one
another to ensure that they are valid in combination.

A font name, such as 'Symbol' or 'Zapf Dingbats', can indicate a particular text
encoding base. Other font names can indicate particular variants associated
with a particular text encoding base. Otherwise, the font name is used to obtain
a script code, and this script code will be checked against any script code you
supply (in this case, the font must be installed; if it is not, the function returns a
paramErr result code). If you do not supply either a language code or a region
code and the script code you supply or the one that is derived matches the
system script, then the system’s localization is used to determine the
appropriate region and language code. This is used for deriving text encoding
base values that depend on region and language, such as
kTextEncodingMacTurkish.

SEE ALSO

The function RevertTextEncodingToScriptInfo (page 65)

“Text Encoding Base” (page 31)

RevertTextEncodingToScriptInfo 2

Converts the given Mac OS text encoding specification to the corresponding
script code and, if possible, language code and font name.

pascal OSStatus RevertTextEncodingToScriptInfo (
TextEncoding iEncoding,
ScriptCode *oTextScriptID,
LangCode *oTextLanguageID
Str255 oTextFontname);
Basic Text Functions 65
 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
iEncoding The text encoding specification to be converted.

oTextScriptID A pointer to a value of type ScriptCode. On output, a Mac OS
script code that corresponds to the text encoding specification
you identified in the iEncoding parameter. If you do not pass a
pointer for this parameter on input, the function returns a
paramErr result code.

oTextLanguageID
A pointer to a value of type LangCode. On input, to indicate that
you do not want the function to return the language code,
specify NULL as the value of this parameter. On output, the
appropriate language code, if the language can be
unambiguously derived from the text encoding specification, for
example, Japanese, and you did not set the parameter to NULL.

If you do not specify NULL on input and the language is
ambiguous—that is, the function cannot accurately derive it
from the text encoding specification—the function returns a
value of kTextLanguageDontCare.

oTextFontname A Pascal string. On input, to indicate that you do not want the
function to return the font name, specify NULL as the value of this
parameter. On output, the name of the appropriate font if the
font can be unambiguously derived from the text encoding
specification, for example, Symbol, and you did not set the
parameter to NULL.

If you do not specify NULL on input and the font is ambiguous—
that is, the function cannot accurately derive it from the text
encoding specification—the function returns a zero-length
string.

function result A result code. The function returns paramErr if the text encoding
specification input parameter value is invalid. The function
returns a kTECTableFormatErr result code if the internal
mapping tables used for translation are invalid. For a list of
other possible result codes, see “Text Encoding Conversion
Manager Result Codes” (page 48).

DISCUSSION

If you have applications that use Mac OS Script Manager and Font Manager
functions, you can use the RevertTextEncodingToScriptInfo function to convert
66 Basic Text Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
information in a text encoding specification into the appropriate Mac OS script
code, language code, and font name, if they can be unambiguously derived.
Your application can then use this information to display text to a user on the
screen.

SEE ALSO

The function UpgradeScriptInfoToTextEncoding (page 63)

“Text Encoding Base” (page 31)

Finding Mac OS Encodings that Match Other Encodings 2

NearestMacTextEncodings 2

Finds Mac OS encodings which have a character repertoire closest to that of an
arbitrary non-Unicode encoding.

pascal OSStatus NearestMacTextEncodings(
TextEncoding generalEncoding,
TextEncoding *bestMacEncoding,
TextEncoding *alternateMacEncoding);

generalEncoding
A TextEncoding specifying an arbitrary non-Unicode encoding.

bestMacEncoding
A pointer to a variable of type TextEncoding. On output, this
variable indicates the Mac OS encoding with the closest
repertoire match to generalEncoding. If there is no appropriate
Mac OS encoding, this variable contains kTextEncodingUnknown
(0xFFFF).

alternateMacEncoding
A pointer to a variable of type TextEncoding. On output, this
variable indicates a Mac encoding that may be more generally
available but may not have as good a match (e.g. if
bestMacEncoding specifies Mac OS VT100,
Basic Text Functions 67
 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
alternateMacEncoding might specify Mac OS Roman). If there is
no appropriate Mac OS encoding, this variable contains
kTextEncodingUnknown (0xFFFF). You can pass NULL for
alternateMacEncoding if you do not need the alternate encoding
information.

function result A result code. The function returns paramErr if generalEncoding
is a Unicode encoding or if bestMacEncoding is NULL. It returns
kTextUnsupportedEncodingErr if it does not support
generalEncoding. For more serious errors, it may return
kTECGlobalsUnavailableErr, kTECMissingTableErr, or Resource or
Memory Manager errors.

DISCUSSION

When converting text from the Internet or from other platforms to Mac OS
encodings (for display on the Mac OS, for example), you may need to know
which Mac OS encodings provide the best match—that is, which Mac OS
encodings have a character repertoire which is closest to that of an arbitrary
non-Unicode encoding.

VERSION NOTES

Introduced with Text Encoding Conversion Manager 1.5.

Obtaining Unicode Character Properties 2

UCGetCharProperty 2

Obtains a specified Unicode property for a Unicode character.

OSStatus UCGetCharProperty(
const UniChar *charPtr,
UniCharCount textLength,
UCCharPropertyType propType,
UCCharPropertyValue *propValue);
68 Basic Text Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 2

Basic Text Types Reference
charPtr A pointer to a UTF-16 Unicode character, which may be a single
16-bit value or a surrogate pair (a sequence of two 16-bit values)

textLength The length of Unicode text at the position indicated by charPtr.
This is only used to verify that the text contains at least as many
16-bit units as are required for a single character.

propType A tag of type UCCharPropertyType indicating the requested
property type See the section “Unicode Character Properties”
(page 46) for more information.

propValue A pointer to a variable of type UCCharPropertyValue. On output,
this variable contains the value of the requested property type.

function result A result code. The function returns paramErr if charPtr is NULL, if
textLength is 0, or if propValue is NULL. It returns resNotFound if it
cannot locate data for the specified property.

DISCUSSION

For a Unicode character indicated by charPtr, this function can return a
particular property from among the set of properties defined by the Unicode
Consortium and supported by this function.

VERSION NOTES

Introduced with Text Encoding Conversion Manager 1.5.
Basic Text Functions 69
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Contents

 Apple Computer, Inc. 10/4/99

Contents
Figure 3-0w
Listing 3-0
Table 3-0
3 Text Encoding Converter
Reference
Chapter Overview 73
Text Encoding Converter Constants 74

Text Encoding Converter Result Codes 74
Text Encoding Converter Structures and Other Types 74

TECObjectRef 74
TECConversionInfo 74
TECSnifferObjectRef 75

Text Encoding Converter Functions 76
Obtaining Information About Available Text Encodings 76

TECCountAvailableTextEncodings 76
TECGetAvailableTextEncodings 77
TECCountSubTextEncodings 78
TECGetSubTextEncodings 79

Identifying Direct Encoding Conversions 80
TECCountDirectTextEncodingConversions 81
TECGetDirectTextEncodingConversions 82

Identifying Possible Destination Encodings 83
TECCountDestinationTextEncodings 83
TECGetDestinationTextEncodings 84

Internet and Regional Text Encoding Names 85
TECGetTextEncodingFromInternetName 86
TECGetTextEncodingInternetName 87
TECCountWebTextEncodings 87
TECGetWebTextEncodings 89
TECCountMailTextEncodings 90
TECGetMailTextEncodings 92

Investigating Encodings 93
71

C H A P T E R 3
TECCountAvailableSniffers 93
TECGetAvailableSniffers 94
TECCreateSniffer 95
TECSniffTextEncoding 96
TECDisposeSniffer 99
TECClearSnifferContextInfo 100

Creating and Deleting Converter objects 100
TECCreateConverter 101
TECCreateConverterFromPath 102
TECDisposeConverter 103
TECClearConverterContextInfo 104

Setting Conversion Options 105
TECSetBasicOptions 105

Converting Text Between Encodings 106
TECConvertText 106
TECFlushText 108

Multiple Encoding Run Conversions 109
TECCreateOneToManyConverter 110
TECCreateOneToManyConverterFromPath 111
TECGetEncodingList 111
TECConvertTextToMultipleEncodings 112
TECFlushMultipleEncodings 115
72 Contents

 Apple Computer, Inc. 10/4/99

C H A P T E R 3
Text Encoding Converter Reference 3

This chapter describes the types, constants, and functions pertaining to the Text
Encoding Converter.

For a description of types, constants, and functions that pertain to text
encodings in general, see Chapter 2, “Basic Text Types Reference.” For a
description of types, constants, and functions pertaining to the Unicode
Converter, see Chapter 4, “Unicode Converter Reference.”

Chapter Overview

The Text Encoding Converter provides conversion between any two text
encodings. This involves a combination of the following techniques:

� Table-based conversion to or from Unicode, using the Unicode Converter. A
single X-to-Y conversion may involve converting X to Unicode, and then
converting Unicode to Y. Intermediate storage for the Unicode form is
handled by the Text Encoding Converter.

� Algorithmic conversion, using plug-in code modules. These plug-ins are
implemented as code fragments.

� Maintaining and updating the current state (the current encoding and other
relevant information) for multiple-encoding streams. It also handles
detecting escape sequences, special control characters, and any other tags
that change the current encoding state. This information is stored in the
converter object and maintained by the plug-ins performing the conversion.

Conversion routines are handled using plug-in components implemented as
code fragments. The main export symbol of each fragment is a routine that
returns a pointer to a table containing a plug-in signature, table version
information, and hooks to each of the plug-ins functions. Each plug-in can be
polled for the encodings it supports and is responsible for handling all
conversions between its supported encodings. The Text Encoding Converter
decides how best to meet a caller’s conversion requirements using the
conversion resources available to it. A conversion may involve combining
several conversions in succession. The caller is shielded from this complexity
and treats an encoding converter object as a single entity regardless of its actual
structure.

When using the Text Encoding Converter, an application does not need to be
aware of the plug-ins available. Each of the converter objects that returns
Chapter Overview 73
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
information about the available text encoding conversion services polls all
plug-ins and makes them appear as one large plug-in.

Text Encoding Converter Constants 3

Text Encoding Converter Result Codes 3

Many of the Text Encoding Converter functions return result codes. These codes
are listed in “Text Encoding Conversion Manager Result Codes” (page 48).

Text Encoding Converter Structures and Other Types 3

TECObjectRef 3

When making a text conversion, the Text Encoding Converter requires a
reference to a converter object that indicates how to accomplish the conversion.
Functions, such as TECCreateConverter (page 101), that create a converter object
return this reference, which you can then pass to other functions when
converting text. A converter object reference is defined by the TECObjectRef data
type:

typedef struct OpaqueTECObjectRef* TECObjectRef;

The structure of the OpaqueTECObjectRef data type is private, and a converter
object is not accessible directly.
74 Text Encoding Converter Constants

 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
TECConversionInfo 3

When you call the function TECGetDirectTextEncodingConversions (page 82),
you pass an array of text encoding conversion information structures. The
function fills these structures with information about each type of supported
conversion. A text encoding conversion information structure is defined by the
TECConversionInfo data structure.

struct TECConversionInfo {
TextEncoding sourceEncoding;
TextEncoding destinationEncoding;
UInt16 reserved1;
UInt16 reserved2;

};
typedef struct TECConversionInfo TECConversionInfo;

Field descriptions
sourceEncoding The text encoding specification for the source text.
destinationEncoding

The text encoding specification for the destination text.
reserved1 Reserved.
reserved2 Reserved.

TECSnifferObjectRef 3

When analyzing text for possible encodings, the Text Encoding Converter
requires a reference to a sniffer object that specifies what types of encodings can
be detected. You receive this reference when calling the function
TECCreateSniffer (page 95). A sniffer object reference is defined by the
TECSnifferObjectRef data type:

typedef struct OpaqueTECSnifferObjectRef* TECSnifferObjectRef;

The structure of the OpaqueTECObjectRef data type is private, and a sniffer object
is not accessible directly.
Text Encoding Converter Structures and Other Types 75
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
Text Encoding Converter Functions 3

Obtaining Information About Available Text Encodings 3

The number and kind of text encodings that the Text Encoding Converter
supports depend on the conversion plug-ins currently installed in the user’s
system. Conversion plug-ins support conversion between encodings and are
installed in the Text Encodings folder within the System Folder. For information
about writing plug-ins, see Appendix A.

TECCountAvailableTextEncodings 3

Counts and returns the number of text encodings the Text Encoding Converter
supports.

pascal OSStatus TECCountAvailableTextEncodings
(ItemCount *numberEncodings);

numberEncodings
A pointer to a value of type ItemCount. On output, this value
indicates the number of currently supported text encodings.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If other than noErr,
then one of the text conversion plug-ins encountered an error
condition when polled by the Text Encoding Converter.

DISCUSSION

The TECCountAvailableTextEncodings function counts and returns the number of
text encodings that you can use to perform conversions based on the current
configuration of the Text Encoding Converter. This number indicates what size
array you must allocate in a parameter of the function
TECGetAvailableTextEncodings (page 77). Therefore, you should call this
76 Text Encoding Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
function before you call TECGetAvailableTextEncodings in order to
accommodate the specifications for all of these text encodings.

TECCountAvailableTextEncodings counts each instance of the same encoding.
That is, if different conversion plug-ins support the same text encoding for any
of the conversion processes they provide, this function includes each instance of
the text encoding in its sum. Consequently, the same text encoding may be
counted more than once. For example, the Japanese Encodings plug-in supports
Mac OS Japanese, and so does the Unicode Encodings plug-in. However, since
the TECGetAvailableTextEncodings function does not return duplicate text
encoding specifications, TECCountAvailableTextEncodings may return a number
greater than the number of array elements required.

TECGetAvailableTextEncodings 3

Returns the text encoding specifications the converter is currently configured to
handle.

pascal OSStatus TECGetAvailableTextEncodings (
TextEncoding availableEncodings[],
ItemCount maxAvailableEncodings,
ItemCount *actualAvailableEncodings);

availableEncodings[]
An array of text encoding specifications. On output, the
TECGetAvailableTextEncodings function fills the array with the
specifications for the text encodings the Text Encoding
Converter currently supports. To determine how large an array
to allocate, use the function TECCountAvailableTextEncodings
(page 76).

maxAvailableEncodings
The number of text encoding specifications the
availableEncodings array can contain.

actualAvailableEncodings
A pointer to a value of type ItemCount. On output, this value
indicates the number of text encodings the function returned in
the availableEncodings array.
Text Encoding Converter Functions 77
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If other than noErr,
then one of the text conversion plug-ins encountered an error
when polled by the Text Encoding Converter.

DISCUSSION

The TECGetAvailableTextEncodings function returns the text encoding
specifications in the array you pass to the function as the availableEncodings
parameter, eliminating any duplicate information in the process. Consequently,
the number of encodings TECGetAvailableTextEncodings returns in the available
encodings array may be fewer than the number of elements you allocated for
the array based on your call to TECCountAvailableTextEncodings (page 76).
TECGetAvailableTextEncodings tells you the number of specifications it returns
in the actualAvailableEncodings parameter.

TECCountSubTextEncodings 3

Counts and returns the number of subencodings a text encoding supports.

pascal OSStatus TECCountSubTextEncodings (
TextEncoding inputEncoding,
ItemCount *numberEncodings);

inputEncoding
The text encoding specification containing the subencodings.

numberEncodings
A pointer to a value of type ItemCount. On output, this value
indicates the number of currently supported subencodings.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If other than noErr,
then one of the text conversion plug-ins encountered an error
when polled by the Text Encoding Converter.

DISCUSSION

The TECCountSubTextEncodings function counts and returns the number of
subencodings that you can use to perform conversions based on the current
78 Text Encoding Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
configuration of the Text Encoding Converter. Subencodings are text encodings
that are embedded as part of a larger text encoding specification. For example,
EUC-JP contains JIS Roman or ASCII, JIS X0208, JIS X0212, and half-width
Katakana from JIS X0201. Not every encoding that can be broken into multiple
encodings necessarily supports this routine. It’s up to the plug-in developer to
decide which encodings might be useful to break up. Subencodings are not the
same as text encoding variants.

The numberEncodings value returned tells you what size array you must allocate
in a parameter of the function TECGetSubTextEncodings (page 79). Therefore,
you should call this function before you call TECGetSubTextEncodings in order to
accommodate the specifications for all of these text encodings.

If an encoding can be converted to multiple runs of encodings (as indicated by a
destination base encoding of kTextEncodingMultiRun), you can call the function
TECGetSubTextEncodings to get the list of output encodings. See the descriptions
of the TECCreateOneToManyConverter (page 110) and
TECGetDestinationTextEncodings (page 84) for information about multiple
output encoding run conversions.

TECGetSubTextEncodings 3

Returns the text encoding specifications for the subencodings the encoding
scheme supports.

pascal OSStatus TECGetSubTextEncodings (
TextEncoding inputEncoding,
TextEncoding subEncodings[],
ItemCount maxSubEncodings,
ItemCount *actualSubEncodings);

inputEncoding
The text encoding specification containing the subencodings.

subEncodings[]
An array composed of text encoding specifications. On return,
the TECGetSubTextEncodings function fills the array with the
specifications for the text encodings, which are subencodings of
the encoding specified in the inputEncoding parameter, given the
Text Encoding Converter Functions 79
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
current configuration of the Text Encoding Converter. To
determine how large an array to allocate, use the function
TECCountSubTextEncodings (page 78).

maxSubEncodings
The number of text encoding specifications the subEncodings
array can contain.

actualSubEncodings
A pointer to a value of type ItemCount. On output, this value
indicates the number of subencodings the function returned in
the subEncodings array.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If other than noErr,
then one of the text conversion plug-ins encountered an error
when polled by the Text Encoding Converter.

DISCUSSION

The TECGetSubTextEncodings function returns the text encoding specifications in
the array you pass to the function as the subEncodings parameter. Subencodings
are text encodings that are embedded as part of a larger text encoding
specification. For example, EUC-JP contains JIS Roman or ASCII, JIS X0208, JIS
X0212, and half-width Katakana from JIS X0201. Not every encoding that can be
broken into multiple encodings necessarily supports this routine. It’s up to the
plug-in developer to decide which encodings might be useful to break up.
Subencodings are not the same as text encoding variants.

If an encoding can be converted to multiple runs of encodings (as indicated by a
destination base encoding of kTextEncodingMultiRun), you can call the
TECGetSubTextEncodings (page 79) function to get the list of output encodings.
See the TECCreateOneToManyConverter (page 110) and
TECGetDestinationTextEncodings (page 84) functions for information about
multiple output encoding run conversions.

Identifying Direct Encoding Conversions 3

A direct conversion is one that can convert from a source encoding to a
destination encoding in one step. Generally this means that a plug-in must be
available that handles that specific conversion.
80 Text Encoding Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
If more than one step is needed, the Text Encoding Converter can convert
between any two encodings by using the available direct conversions to make
intermediate conversions. The direct conversions available depend on the
conversion plug-ins currently installed on the user’s system.

TECCountDirectTextEncodingConversions 3

Counts and returns the number of direct conversions that the Text Encoding
Converter supports in its current configuration.

pascal OSStatus TECCountDirectTextEncodingConversions (
ItemCount *numberOfEncodings);

numberOfEncodings
A pointer to a value of type ItemCount. On output, this value
indicates the number of direct conversions that the converter is
currently configured to support.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If other than noErr,
then one of the text conversion plug-ins encountered an error
when polled by the Text Encoding Converter.

DISCUSSION

You use the number that TECCountDirectTextEncodingConversions returns to
determine how large to make the array you pass to the function
TECGetDirectTextEncodingConversions (page 82).

TECCountDirectTextEncodingConversions counts each instance of an available
conversion. That is, if different conversion plug-ins support the same direct
conversion, this function includes each instance of the direct conversion in its
sum. Consequently, the same direct conversion may be counted more than once.
Because the TECGetDirectTextEncodingConversions (page 82) function does not
return duplicate direct conversions, TECCountDirectTextEncodingConversions
may return a number greater than the number of array elements required.
Text Encoding Converter Functions 81
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
TECGetDirectTextEncodingConversions 3

Returns the types of direct conversions the Text Encoding Converter supports in
its current configuration.

pascal OSStatus TECGetDirectTextEncodingConversions (
TECConversionInfo directConversions[],
ItemCount maxDirectConversions,
ItemCount *actualDirectConversions);

directConversions[]
An array composed of text encoding conversion information
structures, each of which specifies a set of source and
destination encodings. On return, each structure indicates one
type of conversion the Text Encoding Converter supports. See
TECConversionInfo (page 75) for more information. To
determine how large an array to allocate, use the function
TECCountDirectTextEncodingConversions (page 81).

maxDirectConversions
The maximum number of text encoding conversion information
structures that the directConversions array can contain.

actualDirectConversions
A pointer to a value of type ItemCount. On output, this value
indicates the number of text encoding conversion information
structures returned in the directConversions array.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If other than noErr,
then one of the text conversion plug-ins encountered an error
when polled by the Text Encoding Converter

DISCUSSION

The TECGetDirectTextEncodingConversions function returns the text encoding
specifications in the array you pass to the function as the directConversions
parameter, eliminating any duplicate information in the process. Consequently,
the number of encodings TECGetDirectTextEncodingConversions returns in the
available encodings array may be fewer than the number of elements you
allocated for the array based on your call to
TECCountDirectTextEncodingConversions (page 81).
82 Text Encoding Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
TECGetDirectTextEncodingConversions tells you the number of specifications it
returns in the actualDirectConversions parameter.

Identifying Possible Destination Encodings 3

You can identify possible destination encodings to which the Text Encoding
Converter can convert a specific source encoding by calling the
TECGetDestinationTextEncodings function. To determine how large an array you
need to allocate to hold the information TECGetDestinationTextEncodings
returns, you first call TECCountDestinationTextEncodings.

TECCountDestinationTextEncodings 3

Counts and returns the number of destination encodings possible for the
specified source encoding using a single-step, direct conversion.

pascal OSStatus TECCountDestinationTextEncodings (
TextEncoding inputEncoding,
ItemCount *numberOfEncodings);

inputEncoding
The text encoding specification describing the source text.

numberOfEncodings
A pointer to a value of type ItemCount. On output, this value
indicates the number of text encodings to which the source
encoding given in the inputEncoding parameter can be directly
converted.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If other than noErr,
then one of the text conversion plug-ins encountered an error
when polled by the Text Encoding Converter

DISCUSSION

The TECCountDestinationTextEncodings function returns the number of direct
conversions possible from the specified source encoding to any supported
Text Encoding Converter Functions 83
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
destination encodings. A direct encoding conversion consists of a conversion
from the source encoding to a destination encoding without any intermediate
conversions (that is, only one plug-in conversion function needs to be called).
For example, suppose Mac OS Japanese is the source encoding. If a plug-in
contains a Mac OS Japanese to ISO 2022-JP function, then conversion from
Mac OS Japanese to ISO 2022-JP can be a direct (that is, a one-step) conversion.
However, if no such function exists, the conversion must take place indirectly
(for example, from Mac OS Japanese to EUC-JP and then from EUC-JP to ISO
2022-JP).

You can use the number that this function returns to determine how many text
encoding specification elements to allocate for the array you pass to the
function TECGetDestinationTextEncodings (page 84).

TECCountDestinationTextEncodings counts each instance of the same encoding.
That is, if different conversion plug-ins support the same text encoding for any
of the conversion processes they provide, this function includes each instance of
the text encoding in its sum. Consequently, the same text encoding may be
counted more than once. Since the TECGetDestinationTextEncodings function
does not return duplicate text encoding specifications,
TECCountDestinationTextEncodings may return a number greater than the
number of array elements required.

TECGetDestinationTextEncodings 3

Returns the encoding specifications for all the destination text encodings to
which the Text Encoding Converter can directly convert the specified source
encoding.

pascal OSStatus TECGetDestinationTextEncodings (
TextEncoding inputEncoding,
TextEncoding destinationEncodings[],
ItemCount maxDestinationEncodings,
ItemCount *actualDestinationEncodings);

inputEncoding
The text encoding specification describing the source text.
84 Text Encoding Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
destinationEncodings[]
An array of text encoding specifications. On return, this function
fills the array elements with specifications for the destination
encodings to which the converter can directly convert the source
encoding given in the inputEncoding parameter. Your
application allocates memory for this array to accommodate the
encodings that this function returns. To determine how large an
array to allocate, use the function
TECCountDestinationTextEncodings (page 83).

maxDestinationEncodings
The maximum number of destination text encodings that the
array can contain.

actualDestinationEncodings
A pointer to a value of type ItemCount. On return, this value
indicates the number of text encoding specifications the function
returned in the destination encodings array.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If other than noErr,
then one of the text conversion plug-ins encountered an error
when polled by the Text Encoding Converter.

DISCUSSION

The TECGetDestinationTextEncodings function returns text encoding
specifications for the possible destination encodings in the array you pass as the
directConversions parameter, eliminating any duplicate information in the
process. Consequently, the number of encodings
TECGetDestinationTextEncodings returns in the available encodings array may
be fewer than the number of elements you allocated for the array based on your
call to the function TECCountDestinationTextEncodings (page 83).
TECGetDestinationTextEncodings tells you the number of specifications it
returns in the actualDestinationEncodings parameter.

You can display the names of these destination encodings to the user if desired.

Internet and Regional Text Encoding Names 3

The Internet has its own set of encoding names, defined in the Internet
Assigned Numbers Authority (IANA) registry, that identify text encodings for
Text Encoding Converter Functions 85
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
HTML, Web text, and Internet mail. The Text Encoding Converter uses numeric
text encoding specifications. However, the Text Encoding Converter provides
functions that let you translate between text encoding specifications and
Internet name strings. In addition, the Text Encoding Converter also supplies
functions that return a list of text encodings used for a particular language and
geographic region.

TECGetTextEncodingFromInternetName 3

Returns the Mac OS text encoding specification that corresponds to the
specified Internet encoding name.

pascal OSStatus TECGetTextEncodingFromInternetName (
TextEncoding *textEncoding,
ConstStr255Param encodingName);

textEncoding A pointer to a text encoding specification. On output, the
structure contains the Mac OS text encoding specification that
corresponds to the Internet name specified by the encodingName
parameter.

encodingName A character string holding the Internet encoding name, in 7-bit
US ASCII.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values.

DISCUSSION

The Internet uses names (strings) to identify Web or mail encodings, while the
Text Encoding Converter uses numeric text encoding specifications. You use
TECGetTextEncodingFromInternetName to obtain the text encoding specification
for a text encoding whose Internet encoding name you provide. This function
performs the opposite action of TECGetTextEncodingInternetName (page 87).

SEE ALSO

The function GetTextEncodingName (page 60)
86 Text Encoding Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
TECGetTextEncodingInternetName 3

Returns the Internet encoding name that corresponds to the specified Mac OS
text encoding.

pascal OSStatus TECGetTextEncodingInternetName (
TextEncoding textEncoding,
Str255 encodingName);

textEncoding The text encoding specification for the encoding whose Internet
encoding name you want to obtain.

encodingName The Internet encoding name. On return, this holds a character
string in 7-bit US ASCII that represents the text encoding
specified by the textEncoding parameter.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values.

DISCUSSION

If there are several Internet encoding names for the same text encoding, the
function returns the preferred name. This function performs the opposite action
of TECGetTextEncodingFromInternetName (page 86).

SEE ALSO

The function GetTextEncodingName (page 60)

TECCountWebTextEncodings 3

Counts and returns the number of currently supported text encodings for a
specified region.

pascal OSStatus TECCountWebTextEncodings (
RegionCode locale,
ItemCount *numberEncodings);
Text Encoding Converter Functions 87
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
locale A Mac OS region code indicating the locale for which you want
to count encodings. A region code designates a combination of
language, writing system, and geographic region; the region
may not correspond to a particular country (for example, Swiss
French or Arabic).

numberEncodings
A pointer to a value of type ItemCount. On output, this value
indicates the number of currently supported regional text
encodings.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If other than noErr,
then one of the text conversion plug-ins encountered an error
when polled by the Text Encoding Converter.

DISCUSSION

The TECCountWebTextEncodings function counts and returns the number of text
encodings that you can use to perform conversions for the specified region. This
number tells you what size array you must allocate in a parameter of the
function TECGetWebTextEncodings (page 89). Therefore, you should call this
function before you call TECGetWebTextEncodings in order to accommodate the
specifications for all of these text encodings.

TECCountWebTextEncodings counts each instance of the same encoding. That is, if
different conversion plug-ins support the same text encoding for any of the
conversion processes they provide, this function includes each instance of the
text encoding in its sum. Consequently, the same text encoding may be counted
more than once. For example, the Japanese Encodings plug-in supports Mac OS
Japanese and so does the Unicode Encodings plug-in. However, since the
TECGetWebTextEncodings function does not return duplicate text encoding
specifications, TECCountWebTextEncodings may return a number greater than the
number of array elements required.

SEE ALSO

The function TECCountAvailableTextEncodings (page 76)

The function TECGetAvailableTextEncodings (page 77)

The function TECGetTextEncodingFromInternetName (page 86)
88 Text Encoding Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
The function GetTextEncodingName (page 60)

The region codes section of “Script Manager” in Inside Macintosh: Text

TECGetWebTextEncodings 3

Returns the currently supported text encoding specifications for a specified
region.

pascal OSStatus TECGetWebTextEncodings (
RegionCode locale,
TextEncoding availableEncodings[],
ItemCount maxAvailableEncodings,
ItemCount *actualAvailableEncodings);

locale A Mac OS region code indicating the locale for which you want
to obtain encodings. A region code designates a combination of
language, writing system, and geographic region; the region
may not correspond to a particular country (for example, Swiss
French or Arabic).

availableEncodings[]
An array of text encoding specifications. On return, the array
contains specifications for the currently supported text
encodings in the specified region. To determine how large an
array to allocate, use the function TECGetWebTextEncodings
(page 89).

maxAvailableEncodings
The number of text encoding specifications the
availableEncodings array can contain.

actualAvailableEncodings
A pointer to a value of type ItemCount. On output, this value
indicates the number of text encodings the function returned in
the availableEncodings array.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If other than noErr,
then one of the text conversion plug-ins encountered an error
when polled by the Text Encoding Converter.
Text Encoding Converter Functions 89
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
DISCUSSION

For a specified Mac OS region code, TECGetWebTextEncodings fills in an array of
type TextEncoding with a list of encodings commonly found on the World Wide
Web for that region. The function eliminates any duplicate information in the
process, so the number of encodings TECGetWebTextEncodings returns in the
availableEncodings array may be fewer than the number of elements you
allocated for the array based on your call to TECCountWebTextEncodings
(page 87). TECGetWebTextEncodings tells you the number of specifications it
returns in the actualAvailableEncodings parameter.

The list of available encodings could be used for an encoding selection menu
found in many Web browsers.

SEE ALSO

The function TECCountAvailableTextEncodings (page 76)

The function TECGetAvailableTextEncodings (page 77)

The function TECGetTextEncodingFromInternetName (page 86)

The function GetTextEncodingName (page 60)

The region codes section of “Script Manager” in Inside Macintosh: Text

TECCountMailTextEncodings 3

Counts and returns the number of currently supported e-mail encodings for a
specified region.

pascal OSStatus TECCountMailTextEncodings (
RegionCode locale,
ItemCount *numberEncodings);

locale A Mac OS region code indicating the locale for which you want
to count encodings. A region code designates a combination of
language, writing system, and geographic region; the region
may not correspond to a particular country (for example, Swiss
French or Arabic).
90 Text Encoding Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
numberEncodings
A pointer to a value of type ItemCount. On output, this value
indicates the number of currently supported e-mail encodings
for the region.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If other than noErr,
then one of the text conversion plug-ins encountered an error
when polled by the Text Encoding Converter.

DISCUSSION

The TECCountMailTextEncodings function counts and returns the number of
e-mail text encodings currently available for a specified region. This number
tells you what size array you must allocate in a parameter of the function
TECGetMailTextEncodings (page 92). Therefore, you should call this function
before you call TECGetMailTextEncodings in order to accommodate the
specifications for all of these text encodings.

TECCountMailTextEncodings counts each instance of the same encoding. That is,
if different conversion plug-ins support the same e-mail text encoding for any
of the conversion processes they provide, this function includes each instance of
the text encoding in its sum. Consequently, the same text encoding may be
counted more than once. For example, the Japanese Encodings plug-in supports
Mac OS Japanese and so does the Unicode Encodings plug-in. However, since
the TECGetMailTextEncodings function does not return duplicate text encoding
specifications, TECCountMailTextEncodings may return a number greater than the
number of array elements required.

SEE ALSO

The function TECCountAvailableTextEncodings (page 76)

The function TECGetAvailableTextEncodings (page 77)

The function TECCountWebTextEncodings (page 87)

The function TECGetTextEncodingFromInternetName (page 86)

The function TECGetWebTextEncodings (page 89)

The function GetTextEncodingName (page 60)

The region codes section of “Script Manager” in Inside Macintosh: Text
Text Encoding Converter Functions 91
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
TECGetMailTextEncodings 3

Returns the currently supported mail encoding specifications for a specified
region.

pascal OSStatus TECGetMailTextEncodings (
RegionCode locale,
TextEncoding availableEncodings[],
ItemCount maxAvailableEncodings,
ItemCount *actualAvailableEncodings);

locale A Mac OS region code indicating the locale for which you want
to obtain encodings. A region code designates a combination of
language, writing system, and geographic region; the region
may not correspond to a particular country (for example, Swiss
French or Arabic).

availableEncodings[]
An array composed of text encoding specifications. On return,
the array contains specifications for the currently supported
e-mail text encodings in the specified region. To determine how
large an array to allocate, use the function
TECCountMailTextEncodings (page 90).

maxAvailableEncodings
The number of text encoding specifications the
availableEncodings array can contain.

actualAvailableEncodings
A pointer to a value of type ItemCount. On output, this value
indicates the number of text encodings the function returned in
the availableEncodings array.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If other than noErr,
then one of the text conversion plug-ins encountered an error
when polled by the Text Encoding Converter.

DISCUSSION

The TECGetMailTextEncodings function returns the text encoding specifications
currently supported from those that are commonly used for e-mail in the
92 Text Encoding Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
specified region. The text encoding specifications are returned in the array you
pass to the function as the availableEncodings parameter, eliminating any
duplicate information in the process. Consequently, the number of encodings
TECGetMailTextEncodings returns in the availableEncodings array may be fewer
than the number of elements you allocated for the array based on your call to
TECCountMailTextEncodings (page 90).

SEE ALSO

The function TECCountAvailableTextEncodings (page 76)

The function TECGetAvailableTextEncodings (page 77)

The function TECCountWebTextEncodings (page 87)

The function TECGetTextEncodingFromInternetName (page 86)

The function GetTextEncodingName (page 60)

The region codes section of “Script Manager” in Inside Macintosh: Text

Investigating Encodings 3

Sniffer functions, optionally supported with plug-ins, check for unique or
signifying characteristics that identify a particular text encoding. The Text
Encoding Converter uses these functions to determine the most likely text
encoding for a given piece of text.

TECCountAvailableSniffers 3

Counts and returns the number of sniffers available in all installed plug-ins.

pascal OSStatus TECCountAvailableSniffers (
ItemCount *numberOfEncodings);

numberOfEncodings
A pointer to a value of type ItemCount. On output, this value
indicates the number of sniffers in all installed plug-ins.
Text Encoding Converter Functions 93
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If other than noErr,
then one of the text conversion plug-ins encountered an error
when polled for available sniffers.

DISCUSSION

The TECCountAvailableSniffers function counts and returns the number of
sniffers that you can use to perform a determination of the current text
encoding. This number tells you what size array you must allocate in a
parameter of the function TECGetAvailableSniffers (page 94).

TECCountAvailableSniffers counts each instance of the same sniffer. That is, if
different conversion plug-ins support a sniffer for the same text encoding, this
function includes each instance of the sniffer in its sum. Consequently, one type
of sniffer may be counted more than once. However, since the
TECGetAvailableSniffers function does not return duplicate text encoding
specifications, TECCountAvailableSniffers may return a number greater than the
number of array elements required.

TECGetAvailableSniffers 3

Returns the list of sniffers available in all installed plug-ins.

pascal OSStatus TECGetAvailableSniffers (
TextEncoding availableSniffers[],
ItemCount maxAvailableSniffers,
ItemCount *actualAvailableSniffers);

availableSniffers[]
An array composed of text encoding specifications. On output,
the TECGetAvailableSniffers function fills the array with the text
encoding specifications that the available sniffers currently
support. To determine how large an array to allocate, use the
function TECCountAvailableSniffers (page 93).

maxAvailableSniffers
The number of text encoding specifications the
availableSniffers array can contain.
94 Text Encoding Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
actualAvailableSniffers
A pointer to a value of type ItemCount. On output, this value
indicates the number of text encodings the function returned in
the availableSniffers array.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If other than noErr,
then one of the text conversion plug-ins encountered an error
when polled for available sniffers.

DISCUSSION

The TECGetAvailableSniffers function returns the text encoding specifications
that can be sniffed in the array you pass to the function as the
availableSniffers parameter, eliminating any duplicate information in the
process. Consequently, the number of encodings TECGetAvailableSniffers
returns in the availableSniffers array may be fewer than the number of
elements you allocated for the array based on your call to the function
TECCountAvailableSniffers (page 93). TECGetAvailableSniffers tells you the
actual number of specifications it returns in the actualAvailableSniffers
parameter.

TECCreateSniffer 3

Creates a sniffer object and returns a reference to it.

pascal OSStatus TECCreateSniffer (
TECSnifferObjectRef *encodingSniffer,
TextEncoding testEncodings[],
ItemCount numTextEncodings);

encodingSniffer
A pointer to a sniffer object reference, which is of type
TECSnifferObjectRef (page 75). On output, the reference
pertains to the newly created sniffer object.
Text Encoding Converter Functions 95
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
testEncodings[]
An array of text encoding specifications supplied by the caller;
TECCreateSniffer will attempt to create a sniffer that is capable
of sniffing for each of these encodings.

numTextEncodings
A value of type ItemCount that specifies the number of text
encoding specifications in the testEncodings[] array.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If other than noErr,
then one of the text conversion plug-ins encountered an error
when polled for available sniffers.

DISCUSSION

The TECCreateSniffer function polls plug-ins for available sniffers, creates a
sniffer object capable of sniffing each of the specified encodings that it can find a
sniffer function for, and returns a reference to it. You use this sniffer object
reference with sniffer functions such as TECSniffTextEncoding (page 96). If no
sniffer function is available for a particular encoding, no error is returned and
TECSniffTextEncoding indicates later that the encoding was not examined.

To remove a sniffer object, you must call the function TECDisposeSniffer
(page 99).

SEE ALSO

The function TECCountAvailableSniffers (page 93)

The function TECGetAvailableSniffers (page 94)

TECSniffTextEncoding 3

Sniffs a text stream of unknown encoding, based on an array of possible
encodings, and returns the probable encodings in a ranked list.

pascal OSStatus TECSniffTextEncoding (
TECSnifferObjectRef encodingSniffer,
TextPtr inputBuffer,
96 Text Encoding Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
ByteCount inputBufferLength,
TextEncoding testEncodings[],
ItemCount numTextEncodings,
ItemCount numErrsArray[],
ItemCount maxErrs,
ItemCount numFeaturesArray[],
ItemCount maxFeatures);

encodingSniffer
A pointer to a sniffer object.

inputBuffer The text to be sniffed.

inputBufferLength
The length of the input buffer.

testEncodings[]
An array of text encoding specifications. On input, you must
specify which text encodings you want to sniff for. On output,
this array contains the input array rearranged in the order of
most likely to least likely text encodings.

numTextEncodings
A value of type ItemCount. This value refers to the number of
entries in the testEncodings[] parameter.

numErrsArray[]
An array of type ItemCount. This array must contain at least
numTextEncodings elements. On return, numErrsArray holds the
number of errors found for each possible text encoding. The
entries are in the same order as the entries in the
testEncodings[] parameter at output.

maxErrs The maximum number of errors allowed for a sniffer. The sniffer
stops sniffing an encoding after this number is reached when
creating the numErrsArray list.

numFeaturesArray[]
An array of type ItemCount. This array must contain at least
numTextEncodings elements. On return, the numFeaturesArray[]
parameter holds the number of features found for each possible
text encoding. The entries are in the same order as the entries in
the testEncodings[] parameter at output.
Text Encoding Converter Functions 97
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
maxFeatures The maximum number of features allowed for a sniffer. The
sniffer stops sniffing an encoding after this number is reached
when creating the numFeaturesArray list.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If this function
returns a result code other than noErr, then one of the
conversion plug-ins accessed by the converter encountered an
error condition while accessing a sniffer function.

DISCUSSION

For a specified stream of bytes in an unknown encoding and an array of
possible encodings, TECSniffTextEncoding returns counts of “errors” and
“features” for each of the encodings. Each error indicates a code point or
sequence that is illegal in the specified encoding, and a feature indicates the
presence of a sequence that is characteristic of that encoding. Table 3-1 shows
sample output from a sniffer run.

For example, the byte sequence which is interpreted in Mac OS Roman as
“äøéö” could legally be interpreted either as Mac OS Roman text or as Mac OS
Japanese text. Both sniffers would return zero errors, but the Mac OS Japanese
sniffer would also return two features of Mac OS Japanese (representing two
legal 2-byte characters.)

The arrays are returned in a ranked list with the most likely text encodings first.
The results are sorted first by number of errors (fewest to most), then by
number of features (most to fewest), and then by the original order in the list.
Upon return from the function, you can assume the correct encoding is in
testEncodings[0], or possibly testEncodings[1].

Table 3-1 Sample Sniffer Output

Encoding Errors Features

EUC 0 8

JIS 0 0

Mac OS Japanese 20 20
98 Text Encoding Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
If any of the available encodings are not examined, their number of errors and
number of features are set to 0xFFFFFFFF, and they sort to the end of the list.

SEE ALSO

The function TECCountAvailableSniffers (page 93)

The function TECGetAvailableSniffers (page 94)

The function TECCreateSniffer (page 95)

TECDisposeSniffer 3

Disposes of a sniffer object.

pascal OSStatus TECDisposeSniffer (
TECSnifferObjectRef encodingSniffer);

encodingSniffer
A pointer to the sniffer object you want to remove.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If this function
returns a result code other than noErr, then one of the
conversion plug-ins accessed by the converter encountered an
error condition.

DISCUSSION

This function releases all memory associated with the sniffer object created by
the function TECCreateSniffer (page 95).

SEE ALSO

The function TECCountAvailableSniffers (page 93)

The function TECGetAvailableSniffers (page 94)

The function TECSniffTextEncoding (page 96)
Text Encoding Converter Functions 99
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
TECClearSnifferContextInfo 3

Resets a sniffer object to its initial settings so it can be reused.

pascal OSStatus TECClearSnifferContextInfo (
TECSnifferObjectRef encodingSniffer);

encodingSniffer
A pointer to the sniffer object you want to reuse.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If this function
returns a result code other than noErr, then one of the
conversion plug-ins accessed by the converter encountered an
error condition.

DISCUSSION

Sniffers maintain state information about the input encoding buffer and the
number of errors and features found for each encoding; this information allows
a caller to progressively sniff an input buffer in sequential chunks. Before
sniffing a buffer than contains completely new information you must clear any
state information by calling TECClearSnifferContextInfo.

SEE ALSO

The function TECCountAvailableSniffers (page 93)

The function TECGetAvailableSniffers (page 94)

The function TECCreateSniffer (page 95)

The function TECSniffTextEncoding (page 96)

The function TECDisposeSniffer (page 99)

Creating and Deleting Converter objects 3

The Text Encoding Converter functions use converter objects to describe the
source, destination, and any intermediate encodings for a given conversion.
These objects contain state information and references to plug-ins. When you
100 Text Encoding Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
call a text conversion function, you must pass a reference to the converter
object. The functions in this section let you create a converter object and specify
indirect conversion paths.

TECCreateConverter 3

Creates a text encoding converter object and returns a reference to it.

pascal OSStatus TECCreateConverter (
TECObjectRef *newEncodingConverter,
TextEncoding inputEncoding,
TextEncoding outputEncoding);

newEncodingConverter
A pointer to a converter object. On return, this reference points
to the newly created text converter object.

inputEncoding
The text encoding specification for the source text encoding.

outputEncoding
The text encoding specification for the destination text encoding.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If this function
returns a result code other than noErr, then it did not
successfully create the converter object reference. If the current
configuration of the converter does not support either the source
or destination encoding, the function returns a
kTextUnsupportedEncodingErr result code.

DISCUSSION

For a specified source encoding and destination encoding, TECCreateConverter
determines a conversion path, creates a text encoding converter object, and
returns a reference to it. You use this converter object reference with conversion
functions such as TECConvertText (page 106) to convert text. This converter
object describes the source, destination, and intermediate encodings; state
information; and references to required plug-ins.
Text Encoding Converter Functions 101
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
If no direct conversion path is found, then TECCreateConverter creates an
indirect conversion automatically. You may also use the function
TECCreateConverterFromPath (page 102) to explicitly specify a conversion path.

To remove a converter object, you must call the function TECDisposeConverter
(page 103).

TECCreateConverterFromPath 3

Creates a converter object that includes a specific conversion path—from a
source encoding through intermediate encodings to a destination encoding—
and returns a reference to it.

pascal OSStatus TECCreateConverterFromPath(
TECObjectRef *newEncodingConverter,
const TextEncoding inPath[],
ItemCount inEncodings);

newEncodingConverter
A pointer to a converter object reference. On return, the
reference points to the newly created text converter object.

inPath[] An ordered array of text encoding specifications, beginning with
the source encoding specification and ending with the
destination encoding specification.

inEncodings The number of text encoding specifications in the inPath array.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If this function
returns a result code other than noErr, then it did not
successfully create the converter object reference. If the current
configuration of the converter does not support all of the
encodings in the array, the function returns a
kTextUnsupportedEncodingErr result code.

DISCUSSION

You use TECCreateConverterFromPath to create and obtain a reference to a
converter object that specifies a conversion path you define. This function is
102 Text Encoding Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
faster than the function TECCreateConverter (page 101) since it does not need to
search for a conversion path.

You specify the conversion sequence from the source encoding through
intermediate encodings to the destination encoding. To do so, you create an
array of text encoding specifications that identify the encoding conversions
through which the text to be converted should pass.

In this array, each adjacent pair of text encodings you specify must represent a
conversion that is supported by the current configuration of the Text Encoding
Converter. Otherwise, the function returns an error result code and does not
create the converter object. To determine each subsequent step in the sequence
from the source to the destination encoding, use the function
TECGetDestinationTextEncodings (page 84).

To remove a converter object, you must call the function TECDisposeConverter
(page 103).

TECDisposeConverter 3

Disposes of a converter object.

pascal OSStatus TECDisposeConverter (TECObjectRef newEncodingConverter);

newEncodingConverter
A reference to the text encoding converter object to be removed.
This can be the reference returned by the function
TECCreateConverter (page 101), TECCreateConverterFromPath
(page 102), or TECCreateOneToManyConverter (page 110).

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values.

DISCUSSION

You use TECDisposeConverter to dispose of an encoding converter object and its
associated reference when you have finished using it. Do not specify a converter
object reference as a parameter to another function after you use
TECDisposeConverter to dispose of it.
Text Encoding Converter Functions 103
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
If you want to reuse the converter object for a different text stream with the
same source and destination encoding, you should clear the converter object
using the function TECClearConverterContextInfo (page 104) rather than
dispose of it and create the object again.

TECClearConverterContextInfo 3

Resets a converter object to its initial state so it can be reused.

pascal OSStatus TECClearConverterContextInfo (
TECObjectRef encodingConverter);

encodingConverter
The reference to the text encoding converter object whose
context is to be cleared. This can be a reference returned by the
function TECCreateConverter (page 101),
TECCreateOneToManyConverter (page 110), or
TECCreateConverterFromPath (page 102).

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values.

DISCUSSION

Creating a converter object and obtaining a reference to it entails some
overhead and expense. It is more economical to reuse an existing converter
object than to create a new one containing the same conversion information.
You use the TECClearConverterContextInfo function to clear a converter object
of any state and context information it contains and return it to its initial state.
This does not, however, affect the source and destination encoding for which
this converter object is intended to be used. If this function is unable to clear the
context, it returns a result code passed through from one of the conversion
plug-ins.

If you are converting multiple segments of a text string, you should not clear
the converter object until you have completely converted all the text segments.
104 Text Encoding Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
Setting Conversion Options 3

TECSetBasicOptions 3

Sets standard options that can be checked by the Text Encoding Converter
plug-in components.

pascal OSStatus TECSetBasicOptions(
TECObjectRef encodingConverter,
OptionBits controlFlags);

encodingConverter
The reference to the text encoding converter object for which the
options will be specified.This can be a reference returned by the
function TECCreateConverter (page 101) or
TECCreateConverterFromPath (page 102).

controlFlags Control flags that apply to the conversion performed by plugins.
Currently you can use the following bitmasks to set flags that
affect the Unicode plug-in: kUnicodeForceASCIIRangeMask and
kUnicodeNoHalfwidthCharsMask. See “Conversion Control Flags”
(page 122) for more information.

function return The function returns paramErr if invalid options are specified,
and kTECCorruptConverterErr if encodingConverter specifies an
invalid converter object.

DISCUSSION

This function allows you to specify options in a converter object that can be
checked by all plug-ins invoked by that converter object. Currently, only the
Unicode plug-in (which calls the Unicode Converter) checks these options. The
available options are a subset of the options available for the Unicode Converter
conversion functions.

VERSION NOTES

Introduced with Text Encoding Conversion Manager 1.5.
Text Encoding Converter Functions 105
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
Converting Text Between Encodings 3

TECConvertText 3

Converts a stream of text from a source encoding to a destination encoding.

pascal OSStatus TECConvertText(
TECObjectRef encodingConverter,
ConstTextPtr inputBuffer,
ByteCount inputBufferLength,
ByteCount *actualInputLength,
TextPtr outputBuffer,
ByteCount outputBufferLength,
ByteCount *actualOutputLength);

encodingConverter
The reference to the text encoding converter object to be used for
the conversion.This can be a reference returned by the function
TECCreateConverter (page 101) or TECCreateConverterFromPath
(page 102).

inputBuffer The stream of text to be converted.

inputBufferLength
The length in bytes of the stream of text specified in the
inputBuffer parameter. A byte is currently defined as a value of
type UInt8 or unsigned char.

actualInputLength
A pointer to a value of type ByteCount. On output, this value is
the number of source text bytes from the input buffer that
TECConvertText converted.

outputBuffer A pointer to a buffer for a byte stream. On output, this buffer
holds the converted text.

outputBufferLength
The length in bytes of the buffer provided by the outputBuffer
parameter.
106 Text Encoding Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
actualOutputLength
A pointer to a value of type ByteCount. On output this value is
the number of bytes of converted text returned in the buffer
specified by the outputBuffer parameter.

function result
A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If there is not
enough memory available for TECConvertText to convert the text
when allocating internal buffers, the function returns the
appropriate Memory Manager result code.

DISCUSSION

The TECConvertText function converts a buffer of text according to information
contained in the converter object. The converter object specifies the source
encoding, destination encoding, and any intermediate encodings required for
conversion. The function returns the text in the output buffer that you provide.

In allocating an output buffer, a good rule of thumb is larger is better, basing
your estimate on the byte requirements of the destination encoding. You should
always allocate a buffer at least 32 bytes long. For the function to return
successfully, the output buffer you allocate must be large enough to
accommodate at least part of the converted text. Then, if the function cannot
convert all of the text, it executes successfully, returns the portion of the text it
converted, and returns the number of source bytes it removed from input in the
actualInputLength parameter. You can use this number to identify the next byte
to be taken and to determine how many bytes remain. To convert the remaining
text, you simply call the function again with the remaining text and a new
output buffer.

If the output buffer you allocate is too small to accommodate any of the
converted text, the function fails. For example, if the destination encoding
requires additional bytes in addition to the actual text (for instance, an escape
sequence preceding the converted text), your buffer must be large enough to
accommodate both.
Text Encoding Converter Functions 107
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
IMPORTANT

If the destination encoding is a character encoding
scheme—such as ISO-2022-JP, which begins in ASCII and
switches to other coded character sets through limited
combinations of escape sequences—then you need to
allocate enough space to accommodate escape sequences
that signal switches. ISO-2022-JP requires 3 to 5 bytes for an
escape sequence preceding the 1-byte or 2-byte character it
introduces. If you allocate a buffer that is less than 5 bytes,
the TECConvertText function could fail, depending on the
text being converted. �

To make sure that you receive all of the converted text, you should call the
function TECFlushText (page 108) when you are finished converting all the text
in a particular text stream.

TECFlushText 3

Flushes out any data that may be stored in a converter object’s temporary
buffers and returns the converter object to its default state.

pascal OSStatus TECFlushText(
TECObjectRef encodingConverter,
TextPtr outputBuffer,
ByteCount outputBufferLength,
ByteCount *actualOutputLength);

encodingConverter
A reference to the text converter object, whose contents are to be
flushed. This can be a reference returned by the function
TECCreateConverter (page 101) or TECCreateConverterFromPath
(page 102).

outputBuffer A pointer to a buffer for a byte stream. On output, this buffer
holds the converted text.

outputBufferLength
The length in bytes of the buffer provided by the outputBuffer
parameter.
108 Text Encoding Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
actualOutputLength
A pointer to a value of type ByteCount. On output this value is
the number of bytes of converted text returned in the buffer
specified by the outputBuffer parameter.

function result
A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values.

DISCUSSION

The TECFlushText function flushes out any data that may be stored in the
temporary buffers in the specified text encoding converter object. Always call
TECFlushText when you finish converting a text stream. If you are converting a
single stream in multiple chunks using multiple calls to TECConvertText, you
need call TECFlushText only after the last call to TECConvertText for that stream.
The function relies on the specified converter object for information identifying
the source encoding, the destination encoding, and any intermediate encodings
required for conversion.

In allocating an output buffer, a good rule of thumb is larger is better, basing
your estimate on the byte requirements of the destination encoding. You should
always allocate a buffer at least 32 bytes long. For the function to return
successfully, the output buffer you allocate must be large enough to
accommodate the flushed text. If the output buffer you allocate is too small to
accommodate any flushed text, the function will fail. For example, if the
destination encoding requires additional bytes in addition to the actual text (for
instance, an escape sequence preceding the converted text), your buffer must be
large enough to accommodate both.

Encodings such as ISO-2022 that need to shift back to a certain default state at
the end of a conversion can do so when this function is called.

Multiple Encoding Run Conversions 3

The following functions allow conversion to multiple encoding runs. This
makes possible conversion of Unicode to multiple Mac OS encodings for
display using the Script Manager.
Text Encoding Converter Functions 109
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
TECCreateOneToManyConverter 3

Creates a converter object that can handle conversion from one source encoding
to multiple destination encodings.

pascal OSStatus TECCreateOneToManyConverter(
TECObjectRef *newEncodingConverter,
TextEncoding inputEncoding,
ItemCount numOutputEncodings,
const TextEncoding outputEncodings[]);

newEncodingConverter
A pointer to a converter object. On return this points to the
newly created one-to-many converter object.

inputEncoding
The text encoding specification for the source text encoding.

numOutputEncodings
The number of text encoding specifications in the
outputEncoding array.

outputEncodings[]
An ordered array of text encoding specifications for the
destination text encodings.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If this function
returns a result code other than NoErr, then it did not
successfully create the converter object reference. If the current
configuration of the converter does not support the source
encoding or any of the destination encodings, the function
returns KTextUnsupportedEncodingErr.

DISCUSSION

The TECCreateOneToManyConverter function determines a conversion path for the
source encoding and destinations encodings you specify, creates a text encoding
converter object, and returns a reference to it. You use this converter object
reference with conversion functions such as TECConvertTextToMultipleEncodings
(page 112). This converter object describes the source, destination, and
intermediate encodings; state information; and references to required plug-ins.
110 Text Encoding Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
To remove a converter object, you must call the function TECDisposeConverter
(page 103).

SEE ALSO

The function TECFlushText (page 108)

TECCreateOneToManyConverterFromPath 3

This function is obsolete and no longer supported.

TECGetEncodingList 3

Gets the list of destination encodings specified in TECCreateOneToManyConverter.

pascal OSStatus TECGetEncodingList(
TECObjectRef encodingConverter,
ItemCount *numEncodings,
Handle *encodingList
);

encodingConverter
A reference to the text encoding conversion object returned by
the TECCreateOneToManyConverter (page 110) function.

numEncodings
A pointer to a value of type ItemCount. On return, this value
indicates the number of encodings specified by the encodingList
handle.

encodingList
A handle to an array of text encoding specifications. On return,
encodingList contains an array of destination text encoding
specifications that the converter object can convert to. The
memory is allocated by the Text Encoding Converter.
Text Encoding Converter Functions 111
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
function result
A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values.

DISCUSSION

The TECGetEncodingList function returns a list of destination encodings from a
converter object created by TECCreateOneToManyConverter (page 110). The
function returns the number of destination encodings and a handle to an array
of text encoding specifications.

IMPORTANT

The TECDisposeConverter function automatically disposes
of the handle, so you do not need to do so yourself. This
also means that you should not attempt to reference the
handle after you have disposed of the converter object. �

Plug-ins that handle one-to-many conversions use the TECGetEncodingList
function to get the output encoding list from the converter object reference.

SEE ALSO

The function TECDisposeConverter (page 103)

TECConvertTextToMultipleEncodings 3

Converts text in the source encoding to runs of text in multiple destination
encodings.

pascal OSStatus TECConvertTextToMultipleEncodings(
TECObjectRef encodingConverter,
ConstTextPtr inputBuffer,
ByteCount inputBufferLength,
ByteCount *actualInputLength,
TextPtr outputBuffer,
ByteCount outputBufferLength,
ByteCount *actualOutputLength,
112 Text Encoding Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
TextEncodingRun outEncodingsBuffer[],
ItemCount maxOutEncodingRuns,
ItemCount *actualOutEncodingRuns);

encodingConverter
The reference to the text encoding converter object to be used for
the conversion. This is the reference returned by the function
TECCreateOneToManyConverter (page 110).

inputBuffer The stream of text to be converted.

inputBufferLength
The length in bytes of the stream of text specified in the
inputBuffer parameter.

actualInputLength
A pointer to a value of type ByteCount. On output, this value is
the number of source text bytes that
TECConvertTextToMultipleEncodings converted.

outputBuffer A pointer to a buffer for a byte stream. On output, this buffer
holds the converted text.

outputBufferLength
The length in bytes of the buffer provided by the outputBuffer
parameter.

actualOutputLength
A pointer to a value of type ByteCount. On output, this value is
the number of bytes of the converted text returned in the buffer
specified by the outputBuffer parameter.

outEncodingsBuffer[]
An array of text encoding runs for output. Note that the actual
byte size of this buffer should be actualOutEncodingRuns *
sizeof(TextEncodingRun). See TextEncodingRun (page 51) for
more information about the TextEncodingRun structure.

maxOutEncodingRuns
The maximum number of runs that will fit in the
outEncodingsBuffer array.

actualOutEncodingRuns
A pointer to a value of type ItemCount. On output
actualOutEncodingRuns contains the number of runs put in
outEncodingsBuffer array.
Text Encoding Converter Functions 113
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
function result
A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values. If the outEncodings
buffer is filled while converting text, then function returns
kTECOutputBufferFullStatus. If there is not enough memory
available for TECConvertTextToMultipleEncodings to convert the
text when allocating internal buffers, the function returns the
appropriate Memory Manager result code.

DISCUSSION

The TECConvertTextToMultipleEncodings function converts the stream of text
you pass it to runs of destination encodings specified in the converter object.
The function relies on the specified converter object for the source encoding in
which the text is expressed, the destination encodings, and the train of
encodings forming the intermediate conversion path (if one is explicitly
specified). The function returns the text in the output buffer that you provide.

In allocating an output buffer, a good rule of thumb is larger is better, basing
your estimate on the byte requirements of the destination encoding. You should
always allocate a buffer at least 32 bytes long. For the function to return
successfully, the output buffer you allocate must be large enough to
accommodate at least part of the converted text. Then, if the function cannot
convert all of the text, it executes successfully, returns the portion of the text it
converted, and returns the number of source bytes it removed from input in the
actualInputLength parameter. You can use this number to identify the next byte
to be taken and to determine how many bytes remain. To convert the remaining
text, you simply call the function again with the remaining text and a new
output buffer.

If the output buffer you allocate is too small to accommodate any of the
converted text, the function fails. For example, if the destination encoding
requires bytes in addition to the actual text (for instance, an escape sequence
preceding the converted text), your buffer must be large enough to
accommodate both.
114 Text Encoding Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
IMPORTANT

If the destination encoding is a character encoding
scheme—such as ISO-2022-JP, which begins in ASCII and
switches to other coded character sets through limited
combinations of escape sequences—then you need to
allocate enough space to accommodate escape sequences
that signal switches. ISO-2022-JP requires 3 to 5 bytes for an
escape sequence preceding the 1-byte or 2-byte character it
introduces. If you allocate a buffer that is less than 5 bytes,
the TECConvertText function could fail, depending on the
text being converted. �

The Text Encoding Converter creates internal buffers for all multistaged (that is,
indirect) conversions that hold intermediate results.

SEE ALSO

The function TECConvertText (page 106)

TECFlushMultipleEncodings 3

Flushes out any encodings that may be stored in a converter object’s temporary
buffers and shifts encodings back to their default state, if any.

pascal OSStatus TECFlushMultipleEncodings(
TECObjectRef encodingConverter,
TextPtr outputBuffer,
ByteCount outputBufferLength,
ByteCount *actualOutputLength,
TextEncodingRun outEncodingsBuffer[],
ItemCount maxOutEncodingRuns,
ItemCount *actualOutEncodingRuns);

encodingConverter
The reference to the text encoding converter object whose
contents are to be flushed. This is the reference returned by the
function TECCreateOneToManyConverter (page 110).
Text Encoding Converter Functions 115
 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
outputBuffer A pointer to a buffer for a byte stream. On return, this buffer
holds the converted text. If the buffer that you allocate is not
large enough to hold the entire converted text stream, an error is
returned.

outputBufferLength
The length in bytes of the buffer provided by the outputBuffer
parameter.

actualOutputLength
A pointer to a value of type ByteCount. On output, this value is
the actual number of bytes of the converted text returned in the
buffer specified by the outputBuffer parameter.

outEncodingsBuffer[]
An ordered array of text encoding runs for the destination text
encoding. Note that the actual byte size of this buffer should be
actualOutEncodingRuns * sizeof(TextEncodingRun). See
TextEncodingRun (page 51) for more information about the
TextEncodingRun structure.

maxOutEncodingRuns
The maximum number of encoding runs that will fit in
outEncodingsBuffer[].

actualOutEncodingRuns
A pointer to a value of type ItemCount. On return,
actualOutEncodingRuns specifies how many runs were put in the
buffer during conversion.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) for a list of possible values.

DISCUSSION

You should always call TECFlushMultipleEncodings at the end of the conversion
process to flush out any data that may be stored in the temporary buffers of the
text encoding converter object or perform other end-of-encoding conversion
tasks. Encodings such as ISO-2022-JP that need to shift back to a certain default
state at the end of a conversion can do so when this conversion function is
called.

In allocating an output buffer, a good rule of thumb is larger is better, basing
your estimate on the byte requirements of the destination encoding. You should
116 Text Encoding Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 3

Text Encoding Converter Reference
always allocate a buffer at least 32 bytes long. For the function to return
successfully, the output buffer you allocate must be large enough to
accommodate at least part of the converted text. Then, if the function cannot
convert all of the text, it executes successfully, returns the portion of the text it
converted, and returns the number of source bytes it removed from input in the
actualInputLength parameter. You can use this number to identify the next byte
to be taken and to determine how many bytes remain. To convert the remaining
text, you simply call the function again with the remaining text and a new
output buffer.

If the output buffer you allocate is too small to accommodate any of the
converted text, the function fails. For example, if the destination encoding
requires bytes in addition to the actual text (for instance, an escape sequence
preceding the converted text), your buffer must be large enough to
accommodate both.

IMPORTANT

If the destination encoding is a character encoding
scheme—such as ISO-2022-JP, which begins in ASCII and
switches to other coded character sets through limited
combinations of escape sequences—then you need to
allocate enough space to accommodate escape sequences
that signal switches. ISO-2022-JP requires 3 to 5 bytes for an
escape sequence preceding the 1-byte or 2-byte character it
introduces. If you allocate a buffer that is less than 5 bytes,
the TECConvertText function could fail, depending on the
text being converted. �

SEE ALSO

The function TECFlushText (page 108)

The function TECCreateOneToManyConverter (page 110)
Text Encoding Converter Functions 117
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Contents

 Apple Computer, Inc. 10/4/99

Contents
Figure 4-0
Listing 4-0
Table 4-0
4 Unicode Converter Reference
Unicode Converter Constants 121
Unicode Mapping Versions 121
Conversion Control Flags 122
Fallback-Handler Control Flags 128
Filter Control Flags 129
Unicode Converter Result Codes 131

Unicode Converter Structures and Other Types 131
UnicodeMapping 131
TextToUnicodeInfo 132
UnicodeToTextInfo 133
UnicodeToTextRunInfo 134
ScriptCodeRun 135
UnicodeToTextFallbackProcPtr 136

Unicode Converter Functions 136
Using a Static Library 137

InitializeUnicodeConverter 137
TerminateUnicodeConverter 138

Converting to Unicode 138
CreateTextToUnicodeInfo 139
CreateTextToUnicodeInfoByEncoding 140
ChangeTextToUnicodeInfo 141
ConvertFromTextToUnicode 143
DisposeTextToUnicodeInfo 147

Converting From Unicode 147
CreateUnicodeToTextInfo 148
CreateUnicodeToTextInfoByEncoding 150
ChangeUnicodeToTextInfo 151
119

C H A P T E R 4
ConvertFromUnicodeToText 152
DisposeUnicodeToTextInfo 157

Converting From Unicode to Multiple Encodings 157
CreateUnicodeToTextRunInfo 158
CreateUnicodeToTextRunInfoByEncoding 160
CreateUnicodeToTextRunInfoByScriptCode 162
ConvertFromUnicodeToTextRun 163
ConvertFromUnicodeToScriptCodeRun 169
DisposeUnicodeToTextRunInfo 173

Truncating Strings Before Converting Them 174
TruncateForTextToUnicode 174
TruncateForUnicodeToText 176

Converting Between Unicode and Pascal Strings 177
ConvertFromPStringToUnicode 177
ConvertFromUnicodeToPString 179

Obtaining Mapping Information 181
QueryUnicodeMappings 181
CountUnicodeMappings 184

Setting the Fallback Handler 185
SetFallbackUnicodeToText 186
SetFallbackUnicodeToTextRun 189

Application-Defined Function 191
MyUnicodeToTextFallbackProc 191
120 Contents

 Apple Computer, Inc. 10/4/99

C H A P T E R 4
Unicode Converter Reference 4

This chapter describes the types, constants, and functions pertaining to the
Unicode Converter.

For a description of types, constants, and functions pertaining to text encodings
and their specifications and for result codes returned by Unicode Converter
functions, see Chapter 2, “Basic Text Types Reference.” For a description of
types, constants, and functions pertaining to the Text Encoding Converter, see
Chapter 3, “Text Encoding Converter Reference.”

The Unicode Converter provides mapping table conversion to or from Unicode.
Its primary use is to convert text from any text encoding to Unicode or to
convert Unicode text to any text encoding. It does not provide direct conversion
between any two non-Unicode encodings, nor does it handle algorithmic code
conversions (such as JIS to Shift-JIS) or code–switching schemes (ISO 2022, for
example). However, when you want control over the conversion mapping
process and extensive error reporting, you can use the Unicode Converter to
convert between two text encodings using Unicode as the hub.

Unicode Converter Constants 4

Unicode Mapping Versions 4

When performing conversions, you specify the version of the Unicode mapping
table to be used for the conversion. You provide the version number in the
mapping version field of the structure UnicodeMapping (page 131) that is passed
to a function. A Unicode mapping version is defined by the UnicodeMapVersion
data type.

typedef SInt32 UnicodeMapVersion;

Instead of explicitly specifying the mapping version of the Unicode mapping
table to be used for conversion of a text string, you can specify that the latest
version be used. The following enumeration defines the use-latest-mapping
constant:
Unicode Converter Constants 121
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
enum {
kUnicodeUseLatestMapping = –1

};

Only one constant is defined so far for a specific mapping version–the mapping
version used by HFS Plus to convert filenames between Mac OS encodings and
Unicode. In the future constants may be defined for other specific mapping
versions.

enum {
kUnicodeUseHFSPlusMapping = 4

};

Conversion Control Flags 4

Your application uses control flags to determine how the conversion of text
from one encoding to another is performed. The conversion functions
ConvertFromTextToUnicode (page 143), ConvertFromUnicodeToText (page 152),
ConvertFromUnicodeToScriptCodeRun (page 169) and
ConvertFromUnicodeToTextRun (page 163) allow you to set control flags
specifying the conversion process behavior. You can also specify control flags
for the function TruncateForUnicodeToText (page 176) and TECSetBasicOptions
(page 105).

These functions take a controlFlags parameter whose value you can set using
the bitmask constants defined for the flags. A different subset of control flags
applies to each of these functions. Using the bitmask constants, you can
perform a bitwise OR operation to set the pertinent flags for a particular
function’s parameters. For example, when you call a function, you might pass
the following controlFlags parameter setting:

controlflags=kUnicodeUseFallbacksMask | kUnicodeLooseMappingsMask;

The following enumerations define constants for the control flag masks:

enum {
kUnicodeUseFallbacksBit = 0,
kUnicodeKeepInfoBit = 1,
kUnicodeDirectionalityBits = 2,
kUnicodeVerticalFormBit = 4,
122 Unicode Converter Constants

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
kUnicodeLooseMappingsBit = 5,
kUnicodeStringUnterminatedBit = 6,
kUnicodeTextRunBit = 7,
kUnicodeKeepSameEncodingBit = 8,
kUnicodeForceASCIIRangeBit = 9,
kUnicodeNoHalfwidthCharsBit = 10,
kUnicodeTextRunHeuristicsBit = 11

};

enum {
kUnicodeUseFallbacksMask = 1L << kUnicodeUseFallbacksBit,
kUnicodeKeepInfoMask = 1L << kUnicodeKeepInfoBit,
kUnicodeDirectionalityMask = 3L << kUnicodeDirectionalityBits,
kUnicodeVerticalFormMask = 1L << kUnicodeVerticalFormBit,
kUnicodeLooseMappingsMask = 1L << kUnicodeLooseMappingsBit,
kUnicodeStringUnterminatedMask = 1L <<

kUnicodeStringUnterminatedBit,
kUnicodeTextRunMask = 1L << kUnicodeTextRunBit,
kUnicodeKeepSameEncodingMask = 1L << kUnicodeKeepSameEncodingBit,
kUnicodeForceASCIIRangeMask = 1L << kUnicodeForceASCIIRangeBit,
kUnicodeNoHalfwidthCharsMask = 1L << kUnicodeNoHalfwidthCharsBit,

 kUnicodeTextRunHeuristicsMask = 1L << kUnicodeTextRunHeuristicsBit
};

The following enumeration defines the possible settings for the directionality
bits:

enum {
kUnicodeDefaultDirection = 0,
kUnicodeLeftToRight = 1,
kUnicodeRightToLeft = 2

};

enum {
kUnicodeDefaultDirectionMask =

kUnicodeDefaultDirection << kUnicodeDirectionalityBits,
kUnicodeLeftToRightMask =

kUnicodeLeftToRight << kUnicodeDirectionalityBits,
kUnicodeRightToLeftMask =

UnicodeRightToLeft << kUnicodeDirectionalityBits
};
Unicode Converter Constants 123
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
Constant descriptions

kUnicodeUseFallbacksMask
A mask for setting the Unicode-use-fallbacks conversion
control flag. The Unicode Converter uses fallback
mappings when it encounters a source text element for
which there is no equivalent destination encoding. Fallback
mappings are mappings that do not preserve the meaning
or identity of the source character but represent a useful
approximation of it. See the function
SetFallbackUnicodeToText (page 186).

kUnicodeKeepInfoMask
A mask for setting the keep-information control flag which
governs whether the Unicode Converter keeps the current
state stored in the Unicode converter object before
converting the text string.
If you clear this flag, the converter will initialize the
Unicode converter object before converting the text string
and assume that subsequent calls do not need any context,
such as direction state for the current call.
If you set the flag, the converter uses the current state. This
is useful if your application must convert a stream of text in
pieces that are not block delimited. You should set this flag
for each call in a series of calls on the same text stream.

kUnicodeDefaultDirectionMask
kUnicodeLeftToRightMask

kUnicodeRightToLeftMask
You can specify one of these masks to indicate the global, or
base, line direction for the text being converted. This
determines which direction the converter should use for
resolution of neutral coded characters, such as spaces that
occur between sets of coded characters having different
directions—for example, between Latin and Arabic
characters—rendering ambiguous the direction of the space
character.
The value kUnicodeDefaultDirectionMask tells the converter
to use the value of the first strong direction character in the
string, kUnicodeLeftToRightMask tells the converter that the
base paragraph direction is left to right, and
124 Unicode Converter Constants

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
kUnicodeRightToLeftMask tells the converter that the base
paragraph direction is right to left.

kUnicodeVerticalFormBitMask

A mask for setting the vertical form control flag. The
vertical form control flag tells the Unicode Converter how
to map text elements for which there are both abstract and
vertical presentation forms in the destination encoding.
If set, the converter maps these text elements to their
vertical forms, if they are available. For explanation of
presentation forms, see Chapter 1, “About Text Encodings
and Conversions.”

kUnicodeLooseMappingsMask

A mask that determines whether the Unicode Converter
should use the loose-mapping portion of a mapping table
for character mapping if the strict mapping portion of the
table does not include a destination encoding equivalent
for the source text element.
If you clear this flag, the converter will use only the strict
equivalence portion.
 If set this flag and a conversion for the source text element
does not exist in the strict equivalence portion of the
mapping table, then the converter uses the loose mapping
section. For explanation of strict and loose mapping, see
Chapter 1, “About Text Encodings and Conversions.”

kUnicodeStringUnterminatedMask

A mask for setting the string-unterminated control flag.
Determines how the Unicode Converter handles
text-element boundaries and direction resolution at the end
of an input buffer.
If you clear this bit, the converter treats the end of the
buffer as the end of text.
If you set this bit, the converter assumes that the next call
you make using the current context will supply another
buffer of text that should be treated as a continuation of the
current text. For example, if the last character in the input
buffer is 'A', ConvertFromUnicodeToText stops conversion at
the 'A' and returns kTECIncompleteElementErr, because the
next buffer could begin with a combining diacritical mark
that should be treated as part of the same text element. If
Unicode Converter Constants 125
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
the last character in the input buffer is a control character,
ConvertFromUnicodeToText does not return
kTECIncompleteElementErr because a control character
could not be part of a multiple character text element.
In attempting to analyze the text direction, when the
Unicode Converter reaches the end of the current input
buffer and the direction of the current text element is still
unresolved, if you clear this flag, the converter treats the
end of the buffer as a block separator for direction
resolution. If you set this flag, it sets the direction as
undetermined

kUnicodeTextRunMask
A mask for setting the text-run control flag which
determines how the Unicode Converter converts Unicode
text to a non-Unicode encoding when more than one
possible destination encoding exists.
If you clear this flag, the function
ConvertFromUnicodeToTextRun (page 163) or
ConvertFromUnicodeToScriptCodeRun (page 169) attempts to
convert the Unicode text to the single encoding from the
list of encodings in the Unicode converter object that
produces the best result, that is, that provides for the
greatest amount of source text conversion.
If you set this flag, ConvertFromUnicodeToTextRun or
ConvertFromUnicodeToScriptCodeRun, which are the only
functions to which it applies, may generate a destination
string that combines text in any of the encodings specified
by the Unicode converter object.

kUnicodeKeepSameEncodingMask

A mask for setting the keep-same-encoding control flag.
Determines how the Unicode Converter treats the
conversion of Unicode text following a text element that
could not be converted to the first destination encoding
when multiple destination encodings exist. This control
flag applies only if the kUnicodeTextRunMask control flag is
set.
If you set this flag, the function
ConvertFromUnicodeToTextRun (page 163) attempts to
minimize encoding changes in the conversion of the source
126 Unicode Converter Constants

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
text string; that is, once it is forced to make an encoding
change, it attempts to use that encoding as the conversion
destination for as long as possible.
If you clear this flag, ConvertFromUnicodeToTextRun attempts
to keep most of the converted string in one encoding,
switching to other encodings only when necessary.

kUnicodeForceASCIIRangeMask

A mask for setting the force ASCII range control flag. If an
encoding normally treats 1-byte code points 0x00–0x7F as
an ISO 646 national variant that is different from ASCII,
setting this flag forces 0x00–0x7F to be treated as ASCII. For
example, Japanese encodings such as Shift-JIS generally
treat 0x00–0x7F as JIS Roman, with 0x5C as YEN SIGN
instead of REVERSE SOLIDUS, but when converting a DOS
file path you may want to set this flag so that 0x5C is
mapped as REVERSE SOLIDUS.

kUnicodeNoHalfwidthCharsMask

A mask for setting the no halfwidth characters control flag.
Japanese encodings such as Shift-JIS and EUC-JP include a
set of halfwidth katakana characters derived from JIS X0201
(0xA1–0xDF in Shift-JIS, 0x8EA1–0x8EDF in EUC-JP). Setting
this flag makes the Unicode Converter treat these
encodings as if they did not include the halfwidth katakana
and makes the corresponding code points unmappable.

kUnicodeTextRunHeuristicsMask

A mask for setting the text-run heuristics control flag. This
flag interacts with the keep-same-encoding control flag to
affect the behavior of ConvertFromUnicodeToTextRun
(page 163) and ConvertFromUnicodeToScriptCodeRun
(page 169); it applies only if the kUnicodeTextRunMask flag is
set.
If you clear the text-run heuristics control flag, then
kUnicodeKeepSameEncodingMask works as described above.
If you set the text-run heuristics control flag, then
ConvertFromUnicodeToTextRun and
ConvertFromUnicodeToScriptCodeRun attempt to be a little
smarter about when to switch encodings. For example, if
the text-run heuristics control flag is set and the
keep-same-encoding control flag is clear, the conversion
Unicode Converter Constants 127
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
functions will not switch back to the preferred encoding
just to convert characters such as space and common
punctuation that may occur in the middle of other text that
cannot be converted to the preferred encoding.

Fallback-Handler Control Flags 4

A fallback mapping is a sequence of one or more characters in the destination
encoding that are not exactly equivalent to the source characters but which
preserve some of the information of the original. For example, (C) is a possible
fallback mapping for ©.

A fallback handler is a function that the Unicode Converter uses to perform
fallback mapping. The Unicode Converter supplies a default fallback handler.
You can provide your own fallback handler and use it alone, or you can use
both. Using fallback control flags, described in “Fallback-Handler Control
Flags” (page 128), you can specify the order in which both handlers are called if
one fails.

You set a control flag value to specify which fallback handler the Unicode
Converter should use, and—if both are to be used—to specify the order in
which they are called. You can also set a control flag to specify that your
fallback handler does not make any calls that could move memory. If it does not
move memory, functions such as ConvertFromUnicodeToText (page 152) can
avoid locking some relocatable objects, thus improving performance.

The following enumeration defines constants for the setting the controlFlags
parameter of the functions SetFallbackUnicodeToText (page 186) and
SetFallbackUnicodeToTextRun (page 189).

enum {
/* You must use exactly one of the following: */
kUnicodeFallbackDefaultOnly = 0L,
kUnicodeFallbackCustomOnly = 1L,
kUnicodeFallbackDefaultFirst = 2L,
kUnicodeFallbackCustomFirst = 3L,
/* You may also OR in any of the following: */
kUnicodeFallbackInterruptSafeMask = 1L << 2

};
128 Unicode Converter Constants

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
Constant descriptions

kUnicodeFallbackDefaultOnly
Use the default fallback handler only.

kUnicodeFallbackCustomOnly
Use the custom fallback handler only.

kUnicodeFallbackDefaultFirst
Use the default fallback handler first, then the custom one.

kUnicodeFallbackCustomFirst
Use the custom fallback handler first, then the default one.

kUnicodeFallbackInterruptSafeMask
You can use this mask to set a control flags bit that indicates
that your custom fallback handler does not move memory.

Filter Control Flags 4

You can query the Unicode Converter for a list of all available mappings
between any two encodings whose base, variant, and format values match
those you specify as filter control flags. For example, you can check for all
available mappings between Unicode 2.0 and all encodings having a specific
default variant. To identify possible mappings, you set filter control flags that
give the matching criteria.

You call the QueryUnicodeMappings function (page 154) to obtain a list of
mappings that meet your search criteria. When you call this function, you
specify a pointer to a Unicode mapping structure (page 97). A Unicode
mapping structure contains fields that specify text encodings, and a text
encoding specification gives base, variant, and format values. For information
about text encoding specifications, see “Basic Text Types Reference”.

You can obtain a count of all possible mappings that match your criteria by
calling the function CountUnicodeMappings (page 184). You might want to do
this to determine how many elements to allocate for the array of mapping
information QueryUnicodeMappings returns.

To identify the text encoding specification subfields of the Unicode mapping
structure whose values you want to use as matching criteria, you set an iFilter
parameter that you pass to the QueryUnicodeMappings function or the
CountUnicodeMappings function. The iFilter parameter control flag settings
identify the three fields of the Unicode encoding specification and the three
fields of the other text encoding specification. The QueryUnicodeMappings
Unicode Converter Constants 129
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
function returns only those mappings whose corresponding field values match
the ones you specify.

The following enumerations define constants that set the filter indicators of the
QueryUnicodeMappings and CountUnicodeMappings iFilter fields:

enum {
kUnicodeMatchUnicodeBaseBit = 0,
kUnicodeMatchUnicodeVariantBit = 1,
kUnicodeMatchUnicodeFormatBit = 2,
kUnicodeMatchOtherBaseBit = 3,
kUnicodeMatchOtherVariantBit = 4,
kUnicodeMatchOtherFormatBit = 5,

};

enum {
kUnicodeMatchUnicodeBaseMask = 1L << kUnicodeMatchUnicodeBaseBit,
kUnicodeMatchUnicodeVariantMask =

1L << kUnicodeMatchUnicodeVariantBit,
kUnicodeMatchUnicodeFormatMask = 1L << kUnicodeMatchUnicodeFormatBit,
kUnicodeMatchOtherBaseMask = 1L << kUnicodeMatchOtherBaseBit,
kUnicodeMatchOtherVariantMask = 1L << kUnicodeMatchOtherVariantBit,
kUnicodeMatchOtherFormatMask = 1L << kUnicodeMatchOtherFormatBit

};

Constant descriptions

kUnicodeMatchUnicodeBaseMask
If set, excludes mappings that do not match the text
encoding base of the unicodeEncoding field of the structure
UnicodeMapping (page 131). If not set, the function ignores
the text encoding base of that field.

kUnicodeMatchUnicodeVariantMask

If set, excludes mappings that do not match the text
encoding variant of the unicodeEncoding field of the
specified Unicode mapping structure. If not set, the
function ignores the text encoding variant of that field.

kUnicodeMatchUnicodeFormatMask

If set, excludes mappings that do not match the text
encoding format of the unicodeEncoding field of the
specified Unicode mapping structure. If not set, the
function ignores the text encoding format of that field.
130 Unicode Converter Constants

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
kUnicodeMatchOtherBaseMask

If set, excludes mappings that do not match the text
encoding base of the otherEncoding field of the structure
UnicodeMapping (page 131). If not set, the function ignores
the text encoding base of that field.

kUnicodeMatchOtherVariantMask

If set, excludes mappings that do not match the text
encoding variant of the otherEncoding field of the specified
Unicode mapping structure. If not set, the function ignores
the text encoding variant of that field.

kUnicodeMatchOtherFormatMask
If set, excludes mappings that do not match the text
encoding format of the otherEncoding field of the specified
Unicode mapping structure. If not set, the function ignores
the text encoding format of that field.

Unicode Converter Result Codes 4

Many of the Unicode Converter functions return result codes. These codes are
listed in “Text Encoding Conversion Manager Result Codes” (page 48).

Unicode Converter Structures and Other Types 4

UnicodeMapping 4

A Unicode mapping structure contains a complete text encoding specification
for a Unicode encoding, a complete text encoding specification giving the
encoding for the text to be converted to or from Unicode (usually this is for a
non-Unicode encoding), and the version of the mapping table to be used for
conversion.

struct UnicodeMapping {
TextEncoding unicodeEncoding;
TextEncoding otherEncoding;
Unicode Converter Structures and Other Types 131
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
UnicodeMapVersion mappingVersion;
};
typedef struct UnicodeMapping UnicodeMapping
typedef UnicodeMapping *UnicodeMappingPtr;

Field descriptions
unicodeEncoding A Unicode text encoding specification of type TextEncoding.

See “Text Encoding Base” (page 31).

otherEncoding A text encoding specification for the text to be converted to
or from Unicode.

mappingVersion The version of the Unicode mapping table to be used.
Many Unicode Converter functions take a pointer to a Unicode mapping
structure as a parameter. For functions that do not modify the Unicode
mapping contents, the Unicode Converter provides a constant pointer to a
Unicode mapping structure defined by the ConstUnicodeMappingPtr data type.

typedef const UnicodeMapping *ConstUnicodeMappingPtr;

TextToUnicodeInfo 4

A Unicode converter object is a private object containing mapping and state
information. Many of the Unicode Converter functions that perform
conversions require a Unicode converter object containing information used for
the conversion process. There are three types of Unicode converter objects, all
serving the same purpose but used for different types of conversions. You use
the TextToUnicodeInfo type, described here, for converting from non-Unicode
text to Unicode text.

Because your application cannot directly create or modify the contents of the
private Unicode converter object, the Unicode Converter provides functions to
create and dispose of it. To create a Unicode converter object for converting
from non-Unicode text to Unicode text, your application must first call either
the function CreateTextToUnicodeInfo (page 139) or the function
CreateTextToUnicodeInfoByEncoding (page 140) to provide the mapping
information required for the conversion. You can then pass this object to the
function ConvertFromTextToUnicode (page 143) or ConvertFromPStringToUnicode
(page 177) to identify the information to be used in performing the actual
conversion. After you have finished using the object, you should release the
memory allocated for it by calling the function DisposeTextToUnicodeInfo
132 Unicode Converter Structures and Other Types

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
(page 147). The TextToUnicodeInfo data type defines the Unicode converter
object.

typedef struct OpaqueTextToUnicodeInfo *TextToUnicodeInfo;

Another function, the function TruncateForTextToUnicode (page 174), also
requires a Unicode converter object as a parameter. This function does not
modify the contents of the private structure to which the Unicode converter
object refers, so it uses the constant Unicode converter object defined by the
ConstTextToUnicodeInfo data type.

typedef const TextToUnicodeInfo ConstTextToUnicodeInfo;

SEE ALSO

The Unicode converter object of type UnicodeToTextInfo (page 133) that you
use for converting from Unicode text to non-Unicode text.

The Unicode converter object of type UnicodeToTextRunInfo (page 134) that you
use to convert from Unicode text to runs of text expressed in various encodings.

UnicodeToTextInfo 4

Many of the Unicode Converter functions that perform conversions require a
Unicode converter object containing information used for the conversion
process. There are three types of Unicode converter objects used for different
types of conversions. You use the UnicodeToTextInfo type, described here, for
converting from Unicode to text.

Because your application cannot directly create or modify the contents of the
private Unicode converter object, the Unicode Converter provides functions to
create and dispose of it. To create a Unicode converter object for converting
from Unicode to text, your application must first call either the function
CreateUnicodeToTextInfo (page 148) or CreateUnicodeToTextInfoByEncoding
(page 150).

You can then pass this object to the function ConvertFromUnicodeToText
(page 152) or ConvertFromUnicodeToPString (page 179) to identify the
information used to perform the actual conversion. After you have finished
Unicode Converter Structures and Other Types 133
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
using the object, you should release the memory allocated for it by calling the
function DisposeUnicodeToTextInfo (page 157).

A Unicode converter object for this purpose is defined by the UnicodeToTextInfo
data type.

typedef struct OpaqueUnicodeToTextInfo *UnicodeToTextInfo;

Another function, TruncateForUnicodeToText (page 176), also requires a
Unicode converter object as a parameter. This function does not modify the
contents of the private structure to which the Unicode converter object refers, so
it uses the constant Unicode converter object defined by the
ConstUnicodeToTextInfo data type.

typedef const UnicodeToTextInfo ConstUnicodeToTextInfo;

SEE ALSO

The Unicode converter object of type TextToUnicodeInfo (page 132) that you
use for converting from non-Unicode text to Unicode text.

The Unicode converter object of type UnicodeToTextRunInfo (page 134) that you
use to convert from Unicode text to runs of text expressed in various encodings.

UnicodeToTextRunInfo 4

Many of the Unicode Converter functions that perform conversions require a
Unicode converter object containing information used for the conversion
process. There are three types of Unicode converter objects used for different
types of conversions. You use the UnicodeToTextRunInfo type, described here,
for converting from Unicode to multiple encodings.

Because your application cannot directly create or modify the contents of the
private Unicode converter object, the Unicode Converter provides functions to
create and dispose of it. You can use any of three functions to create a Unicode
converter object for converting from Unicode to multiple encodings. You can
use CreateUnicodeToTextRunInfo (page 158),
CreateUnicodeToTextRunInfoByEncoding (page 160), or
CreateUnicodeToTextRunInfoByScriptCode (page 162).
134 Unicode Converter Structures and Other Types

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
You can then pass this object to the function ConvertFromUnicodeToTextRun
(page 163) or ConvertFromUnicodeToScriptCodeRun (page 169) to identify the
information used to perform the actual conversion. After you have finished
using the object, you should release the memory allocated for it by calling the
function DisposeUnicodeToTextRunInfo (page 173).

A Unicode converter object for this purpose is defined by the
UnicodeToTextRunInfo data type.

typedef struct OpaqueUnicodeToTextRunInfo *UnicodeToTextRunInfo;

SEE ALSO

The Unicode converter object of type TextToUnicodeInfo (page 132) that you
use for converting from non-Unicode text to Unicode text.

The Unicode converter object of type UnicodeToTextInfo (page 133) that you
use for converting from Unicode text to non-Unicode text.

ScriptCodeRun 4

To return the result of a multiple encoding conversion, the function
ConvertFromUnicodeToScriptCodeRun (page 169) uses a script code run structure.

The script code run structure uses an extended script code with values in the
range 0–254, which are the text encoding base equivalents to Mac OS encodings.
Values 0–32 correspond directly to traditional script codes. This allows a script
code run to distinguish Icelandic, Turkish, Symbol, Zapf Dingbats, and so on.

A script code run structure is defined by the ScriptCodeRun data type.

struct ScriptCodeRun {
ByteOffset offset;
ScriptCode script;

};
typedef struct ScriptCodeRun ScriptCodeRun;

Field descriptions
offset The beginning character position of a text run and its script

code in the converted text.
Unicode Converter Structures and Other Types 135
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
script The script code for the text that begins at the position
specified.

UnicodeToTextFallbackProcPtr 4

In converting a text string, when the Unicode Converter encounters a source
text element for which there is no destination encoding equivalent, it may use
loose mappings and fallback characters to perform the conversion.

A fallback handler is a function that the Unicode Converter uses to perform
fallback mapping. To assign your fallback handler to a Unicode converter
object, you use the function SetFallbackUnicodeToText (page 186) or
SetFallbackUnicodeToTextRun (page 189). Your own fallback handler must
adhere to the following prototype function defined by the Unicode Converter:

typedef pascal OSStatus (*UnicodeToTextFallbackProcPtr)(
UniChar *iSrcUniStr,
ByteCount iSrcUniStrLen,
ByteCount *oSrcConvLen,
TextPtr oDestStr,
ByteCount iDestStrLen,
ByteCount *oDestConvLen,
LogicalAddress iInfoPtr,
ConstUnicodeMappingPtr iUnicodeMappingPtr);

For information about creating a fallback handler function, see the description
of the function MyUnicodeToTextFallbackProc (page 191).

Unicode Converter Functions 4

You use the Unicode Converter functions to convert text to or from Unicode.
The Unicode Converter consists of two main symmetrical parts: one you use to
convert text to Unicode from any other encoding, and the other you use to
convert text from Unicode to any other encoding. Each of these parts contains
its own set of functions. By using the Unicode Converter with Unicode as an
136 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
intermediary encoding, you can also convert text from any source encoding to
any destination encoding.

Using a Static Library 4

The Text Encoding Conversion Manager provides 68K static libraries that
include the Unicode Converter and Basic Text functions. You can use the static
libraries if you do not want to use the CFM 68K version. The static libraries are
provided directly to you for you to link into your applications, whereas the
shared libraries that require the Code Fragment Manager are distributed with
Mac OS, beginning with Mac OS 8. These static libraries use resources from the
Text Encoding Converter extension and from the files in the Text Encodings
folder, so both must be present whether you use the CFM 68K Unicode
Converter or the 68K shared libraries.

Clients of the 68K static libraries must explicitly initialize and terminate the
Unicode Converter using the functions described in this section. Initialization
and termination are handled automatically for CFM clients.

InitializeUnicodeConverter 4

Initializes the 68K static library version of the Unicode Converter.

pascal OSStatus InitializeUnicodeConverter (StringPtr TECFileName);

TECFileName Text Encoding Conversion Manager extension file name. You
may pass NULL for this parameter or you can pass the extension
file name, which improves performance of the function. After
you call InitializeUnicodeConverter, you can obtain the
extension name for subsequent calls to
InitializeUnicodeConverter using the function TECGetInfo
(page 62).

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) in the chapter “Basic Text Types Reference.”
Unicode Converter Functions 137
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
DISCUSSION

You may call InitializeUnicodeConverter more than once. The function checks
whether the converter has already been initialized, and if so, completes
execution successfully.

TerminateUnicodeConverter 4

Terminates the 68K static library version of the Unicode Converter.

pascal void TerminateUnicodeConverter (void);

Converting to Unicode 4

For each stream of text in a single encoding that you want to convert to
Unicode, your application must first call the function CreateTextToUnicodeInfo
(page 139) or CreateTextToUnicodeInfoByEncoding (page 140) to create a
Unicode converter object. When you call these functions, they locate and load
the mapping tables required for the conversion, based on the mapping table
information you provide.

After you finish converting a text stream using a Unicode converter object, you
should dispose of the memory allocated for the Unicode converter object by
calling function DisposeTextToUnicodeInfo (page 147).

You can use the same Unicode converter object to convert multiple text
segments of a single text stream. A Unicode converter object persists until you
dispose of it. You should use the same Unicode converter object only to convert
segments of text belonging to the text stream for which you created the
object.You should create a new Unicode converter object to convert another
stream of text even if you intend to use the same mapping information stored in
an existing Unicode converter object. This is because the Unicode Converter
stores private state information in a Unicode converter object that is relevant
only to the single text stream for which it is used.

For example, to convert a document in a single encoding to Unicode, your
application can use a single Unicode converter object. Each time you call the
ConvertFromTextToUnicode function to convert a segment of text belonging to the
text stream, you pass the function the same object, repeating the process until
the entire text stream is converted.
138 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
CreateTextToUnicodeInfo 4

Creates and returns a Unicode converter object containing information required
for converting strings from a non-Unicode encoding to Unicode.

pascal OSStatus CreateTextToUnicodeInfo (
ConstUnicodeMappingPtr iUnicodeMapping,
TextToUnicodeInfo *oTextToUnicodeInfo);

iUnicodeMapping
A pointer to a structure of type UnicodeMapping (page 131). Your
application provides this structure to identify the mapping to be
used for the conversion. The unicodeEncoding field of this
structure can specify a Unicode format of kUnicode16BitFormat
or kUnicodeUTF8Format. Versions of the Unicode Converter prior
to 1.2.1 do not support kUnicodeUTF8Format.

oTextToUnicodeInfo
A pointer to a Unicode converter object of type
TextToUnicodeInfo (page 132), used for converting text to
Unicode. On output, the parameter returns a Unicode converter
object that holds mapping table information you supply as the
UnicodeMapping parameter and state information related to the
conversion. This information is required for conversion of a text
stream in a non-Unicode encoding to Unicode.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) in the chapter “Basic Text Types Reference.”

DISCUSSION

You pass a Unicode converter object returned from the function
CreateTextToUnicodeInfo to the function ConvertFromTextToUnicode (page 143)
or ConvertFromPStringToUnicode (page 177) to identify the information to be
used for the conversion. These two functions modify the contents of the object.

You pass a Unicode converter object returned from CreateTextToUnicodeInfo to
the function TruncateForTextToUnicode (page 174) to identify the information to
be used to truncate the string. This function does not modify the contents of the
Unicode converter object.
Unicode Converter Functions 139
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
In addition to various resource and memory errors that it can return, the
function can return the following result codes:

� kTextUnsupportedEncodingErr
One of the encodings specified by the Unicode mapping structure you
supply is not currently supported.

� kTECMissingTableErr
A resource associated with one of the encodings is missing.

� kTECTableChecksumErr
A resource has an invalid checksum, indicating that it has become corrupted.

If an error is returned, the Unicode converter object is invalid

SEE ALSO

CreateTextToUnicodeInfoByEncoding (page 140)

CreateTextToUnicodeInfoByEncoding 4

Based on the given text encoding specification, creates and returns a Unicode
converter object containing information required for converting strings from the
specified non-Unicode encoding to Unicode.

pascal OSStatus CreateTextToUnicodeInfoByEncoding (
TextEncoding iEncoding,
TextToUnicodeInfo *oTextToUnicodeInfo);

iEncoding The text encoding specification for the source text. For text
encoding specifications, see Chapter 2, “Basic Text Types
Reference.”

oTextUnicodeInfo
The Unicode converter object of type TextToUnicodeInfo
(page 132) returned by the function.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) in the chapter “Basic Text Types Reference.”
140 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
DISCUSSION

This function offers you an easier, alternative way to create a Unicode converter
than with the function CreateTextToUnicodeInfo (page 139) because you do not
need to create a Unicode mapping structure. You simply specify the text
encoding of the source text. However, this method is less efficient because the
text encoding parameter must be resolved internally into a Unicode mapping.

Using this function, you cannot specify a version of Unicode, so a default
version of Unicode is used; 16-bit format is assumed.

You pass a Unicode converter object returned from
CreateTextToUnicodeInfoByEncoding to the function ConvertFromTextToUnicode
(page 143) or ConvertFromPStringToUnicode (page 177) to identify the
information to be used for the conversion. These two functions modify the
contents of the Unicode converter object.

You pass a Unicode converter object returned from
CreateTextToUnicodeInfoByEncoding to the function TruncateForTextToUnicode
(page 174) to identify the information to be used to truncate the string. This
function does not modify the contents of the Unicode converter object.

If you are converting the text stream to Unicode as an intermediary encoding,
and then from Unicode to the final destination encoding, you use the function
CreateUnicodeToTextInfo (page 148) to create a Unicode converter object for the
second part of the process.

SEE ALSO

CreateTextToUnicodeInfo (page 139)

“Text Encoding Base” (page 31)

ChangeTextToUnicodeInfo 4

Changes the mapping information for the specified Unicode converter object
used to convert text to Unicode to the new mapping you provide.

pascal OSStatus ChangeTextToUnicodeInfo (
TextToUnicodeInfo ioTextToUnicodeInfo,
ConstUnicodeMappingPtr iUnicodeMapping);
Unicode Converter Functions 141
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
ioTextToUnicodeInfo
The Unicode converter object of type TextToUnicodeInfo
(page 132) containing the mapping to be modified. You use the
function CreateTextToUnicodeInfo (page 139) to obtain one.

iUnicodeMapping
A structure of type UnicodeMapping (page 131) identifying the
new mapping to be used. This is the mapping that replaces the
existing mapping in the Unicode converter object.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) in the chapter “Basic Text Types Reference.”

DISCUSSION

The ChangeTextToUnicodeInfo function allows you to provide new mapping
information for text to be converted to Unicode. The function replaces the
mapping table information that currently exists in the Unicode converter object
pointed to by the ioTextToUnicodeInfo parameter with the information
contained in the UnicodeMapping structure you supply as the iUnicodeMapping
parameter.

ChangeTextToUnicodeInfo resets the Unicode converter object’s fields as
necessary.

In addition to various resource errors, the function can return the following
result codes:

� paramErr
The Unicode converter object you supplied is invalid.

� kTextUnsupportedEncodingErr
One of the encodings specified by the Unicode mapping structure you
supplied is not currently supported.

� kTECMissingTableErr
A resource associated with one of the encodings is missing.

� kTECTableChecksumErr
A resource has an invalid checksum, indicating that it has become corrupted.

If an error is returned, the Unicode converter object is invalid.
142 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
ConvertFromTextToUnicode 4

Converts a string from any encoding to Unicode.

pascal OSStatus ConvertFromTextToUnicode (
TextToUnicodeInfo iTextToUnicodeInfo,
ByteCount iSourceLen,
ConstLogicalAddress iSourceStr,
OptionsBits iControlFlags,
ItemCount iOffsetCount,
ByteOffset iOffsetArray[],
ItemCount *oOffsetCount,
ByteOffset oOffsetArray[],
ByteCount iOutputBufLen,
ByteCount *oSourceRead,
ByteCount *oUnicodeLen,
UniCharArrayPtr oUnicodeStr);

iTextToUnicodeInfo
A Unicode converter object of type TextToUnicodeInfo
containing mapping and state information used for the
conversion. Your application obtains a Unicode converter object
using the function CreateTextToUnicodeInfo (page 139).

iSourceLen The length in bytes of the source string to be converted.

iSourceStr The address of the source string to be converted.

iControlFlags Conversion control flags. You can use these bitmasks to set the
control flags that apply to this function:

kUnicodeUseFallbacksMask
kUnicodeLooseMappingsMask
kUnicodeKeepInfoMask
kUnicodeStringUnterminatedMask
kUnicodeForceASCIIRangeMask
kUnicodeNoHalfwidthCharsMask

See “Conversion Control Flags” (page 122).
Unicode Converter Functions 143
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
iOffsetCount The number of offsets in the iOffsetArray parameter. Your
application supplies this value. The number of entries in
iOffsetArray must be fewer than the number of bytes specified
in iSourceLen. If you don’t want offsets returned to you, specify
0 (zero) for this parameter.

iOffsetArray An array of type ByteOffset. On input, you specify the array
that contains an ordered list of significant byte offsets pertaining
to the source string. These offsets may identify font or style
changes, for example, in the source string. All array entries must
be less than the length in bytes specified by the iSourceLen
parameter. If you don’t want offsets returned to your
application, specify NULL for this parameter and 0 (zero) for
iOffsetCount.

oOffsetCount A pointer to a value of type ItemCount. On output, this value
contains the number of offsets that were mapped in the output
stream.

oOffsetArray An array of type ByteOffset. On output, this array contains the
corresponding new offsets for the Unicode string produced by
the converter.

iOutputBufLen The length in bytes of the output buffer pointed to by the
oUnicodeStr parameter. Your application supplies this buffer to
hold the returned converted string. The oUnicodeLen parameter
may return a byte count that is less than this value if the
converted byte string is smaller than the buffer size you
allocated. The relationship between the size of the source string
and the Unicode string is complex and depends on the source
encoding and the contents of the string.

oSourceRead A pointer to a value of type ByteCount. On output, this value
contains the number of bytes of the source string that were
converted. If the function returns a kTECUnmappableElementErr
result code, this parameter returns the number of bytes that
were converted before the error occurred.

oUnicodeLen A pointer to a value of type ByteCount. On output, this value
contains the length in bytes of the converted stream.

oUnicodeStr A pointer to an array used to hold a Unicode string. On input,
this value points to the beginning of the array for the converted
string. On output, this buffer holds the converted Unicode
144 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
string. (For guidelines on estimating the size of the buffer
needed, see the following discussion.) For a description of the
UniCharArrayPtr data type, see Chapter 2, “Basic Text Types
Reference.”

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) in the chapter “Basic Text Types Reference.”

DISCUSSION

The ConvertFromTextToUnicode function converts a text string in a non-Unicode
encoding to Unicode. You specify the source string’s encoding in the Unicode
mapping structure that you pass to the function CreateTextToUnicodeInfo
(page 139) to obtain a Unicode converter object for the conversion. You pass the
Unicode converter object returned by CreateTextToUnicodeInfo to
ConvertFromTextToUnicode as the iTextToUnicodeInfo parameter.

In addition to converting a text string in any encoding to Unicode, the
ConvertFromTextToUnicode function can map offsets for style or font information
from the source text string to the returned converted string. The converter reads
the application-supplied offsets, which apply to the source string, and returns
the corresponding new offsets in the converted string. If you do not want the
offsets at which font or style information occurs mapped to the resulting string,
you should pass NULL for iOffsetArray and 0 (zero) for iOffsetCount.

Your application must allocate a buffer to hold the resulting converted string
and pass a pointer to the buffer in the oUnicodeStr parameter. To determine the
size of the output buffer to allocate, you should consider the size of the source
string, its encoding type, and its content in relation to the resulting Unicode
string.

For example, for 1-byte encodings, such as MacRoman, the Unicode string will
be at least double the size (more if it uses noncomposed Unicode); for
MacArabic and MacHebrew, the corresponding Unicode string could be up to
six times as big. For most 2-byte encodings, for example Shift-JIS, the Unicode
string will be less than double the size. For international robustness, your
application should allocate a buffer three to four times larger than the source
string. If the output Unicode text is actually UTF-8—which could occur
beginning with the current release of the Text Encoding Conversion Manager,
version 1.2.1—the UTF-8 buffer pointer must be cast to UniCharArrayPtr before
it can be passed as the oUnicodeStr parameter. Also, the output buffer length
will have a wider range of variation than for UTF-16; for ASCII input, the
Unicode Converter Functions 145
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
output will be the same size; for Han input, the output will be twice as big, and
so on.

The function returns a noErr result code if it has completely converted the input
string to Unicode without using fallback characters. If the function returns the
paramErr, kTECTableFormatErr, or kTECGlobalsUnavailableErr result codes, it did
not convert the string.

If the function returns kTECBufferBelowMinimumSizeErr, the output buffer was
too small to allow conversion of any part of the input string. You need to
increase the size of the output buffer and try again.

If the function returns the kTECUsedFallbacksStatus result code, the function has
completely converted the string using one or more fallback characters. This can
only happen if you set the Unicode-use-fallbacks control flag.

If the function returns kTECOutputBufferFullErr, the output buffer was not big
enough to completely convert the input; oSourceRead indicates the amount of
input converted. You can call the function again with another output buffer—or
with the same output buffer, after copying its contents—to convert the
remainder of the input string.

If the function returns kTECPartialCharErr, the input buffer ended with an
incomplete multibyte character. If you have subsequent input text available,
you can append the unconverted input from this call to the beginning of the
subsequent input text and call the function again.

If the function returns kTECUnmappableElementErr because an input text element
could not be mapped to Unicode, then the function did not completely convert
the input string. This can only happen if you did not set the
Unicode-use-fallbacks control flag. You can set this flag and then convert the
remaining unconverted input, or take some other action.

SPECIAL CONSIDERATIONS

This function modifies the contents of the Unicode converter object you pass in
the iTextToUnicodeInfo parameter.
146 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
DisposeTextToUnicodeInfo 4

Releases the memory allocated for the specified Unicode converter object.

pascal OSStatus DisposeTextToUnicodeInfo (
TextToUnicodeInfo *ioTextToUnicodeInfo);

ioTextToUnicodeInfo
A pointer to a Unicode converter object of type
TextToUnicodeInfo (page 132), used for converting text to
Unicode. On input, you specify the object to be disposed of,
which your application created using the function
CreateTextToUnicodeInfo (page 139) or
CreateTextToUnicodeInfoByEncoding (page 140).

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) in the chapter “Basic Text Types Reference.”

DISCUSSION

The DisposeTextToUnicodeInfo function disposes of the Unicode converter
object and releases the memory allocated for it. Your application should not
attempt to dispose of the same structure more than once.

You use this function only to release the memory for objects that your
application created through the function CreateTextToUnicodeInfo (page 139) or
CreateTextToUnicodeInfoByEncoding (page 140). You must not use it for any
other type of Unicode converter object.

If your application specifies an invalid Unicode converter object, such as NULL,
the function returns a paramErr result code.

Converting From Unicode 4

To convert text from Unicode to another encoding, you must first obtain a
Unicode converter object containing the mapping and state information the
Unicode Converter uses to perform the conversion. You use the function
CreateUnicodeToTextInfo (page 148) or CreateUnicodeToTextInfoByEncoding
(page 150) to obtain this object. These functions locate and load the mapping
table resources required for the conversion. You then pass the Unicode
converter object to the function ConvertFromTextToUnicode (page 143) to
Unicode Converter Functions 147
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
perform the conversion. When your application is finished using the Unicode
converter object, you must dispose of it and the memory allocated for it by
calling the function DisposeUnicodeToTextInfo (page 157).

You can use the same Unicode converter object to convert multiple Unicode
strings belonging to the same text stream to the encoding specified in the
mapping table.

If you use the same Unicode converter object for multiple segments of the same
text stream, you should set the keep-information control flag when you call the
conversion function. This is because how the conversion is performed might
depend on the previous segment. The Unicode Converter might need to refer to
the direction state from the previous segment—for example, to determine the
text direction for Hebrew or Arabic text.

You should use the same Unicode converter object only to convert segments of
text belonging to the single text stream for which you created the Unicode
converter object. This is because the Unicode Converter stores private state
information in a Unicode converter object that is relevant only to that particular
Unicode converter object and the single text stream for which it is used.

When you are finished converting all the text reliant on the Unicode converter
object, you must release the memory allocated for the Unicode converter object
by calling the function DisposeUnicodeToTextInfo (page 157).

Converting text from one encoding to another using Unicode as an
intermediary encoding is a two-part process. You use the functions described in
“Converting to Unicode” (page 138) to convert the text to Unicode, then you
use these functions to convert the text from Unicode to the final, destination
encoding.

CreateUnicodeToTextInfo 4

Creates and returns a Unicode converter object containing information required
for converting strings from Unicode to another encoding.

pascal OSStatus CreateUnicodeToTextInfo (
ConstUnicodeMappingPtr iUnicodeMapping,
UnicodeToTextInfo *oUnicodeToTextInfo);
148 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
iUnicodeMapping
A pointer to a structure of type UnicodeMapping (page 131). Your
application provides this structure to identify the mapping to be
used for the conversion. The unicodeEncoding field of this
structure can specify a Unicode format of kUnicode16BitFormat
or kUnicodeUTF8Format. Note that the versions of the Unicode
Converter prior to 1.2.1 do not support kUnicodeUTF8Format.

oUnicodeToTextInfo
A pointer to a Unicode converter object of type
UnicodeToTextInfo (page 133), used for converting Unicode
strings to text. On output, the parameter returns a Unicode
converter object that holds the mapping table information you
supply as the iUnicodeMapping parameter and the state
information related to the conversion. The information
contained in the Unicode converter object is required for the
conversion of a Unicode string to a non-Unicode encoding.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) in the chapter “Basic Text Types Reference.”

DISCUSSION

You pass the Unicode converter object returned from CreateUnicodeToTextInfo
to the function ConvertFromUnicodeToText (page 152) or
ConvertFromUnicodeToPString (page 179) to identify the information to be used
for the conversion. These two functions modify the contents of the Unicode
converter object.

In addition to various resource and memory errors, the function can return the
following result codes:

� kTextUnsupportedEncodingErr
One of the encodings specified by the Unicode mapping structure you
supply is not currently supported.

� kTECMissingTableErr
A resource associated with one of the encodings is missing.

� kTECTableChecksumErr
A resource has an invalid checksum, indicating that it has become corrupted.

If an error is returned, the Unicode converter object is invalid.
Unicode Converter Functions 149
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
SEE ALSO

The function CreateUnicodeToTextInfoByEncoding (page 150)

CreateUnicodeToTextInfoByEncoding 4

Based on the given text encoding specification for the converted text, creates
and returns a Unicode converter object containing information required for
converting strings from Unicode to the specified encoding.

pascal OSStatus CreateUnicodeToTextInfoByEncoding (
TextEncoding iEncoding,
TextToUnicodeInfo *oUnicodeToTextInfo);

iEncoding The text encoding specification for the destination, or converted,
text.

oUnicodeToTextInfo
The Unicode converter object of type UnicodeToTextInfo
(page 133) returned by the function.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) in the chapter “Basic Text Types Reference.”

DISCUSSION

This function offers you an easier, alternative way to create a Unicode converter
than the function CreateUnicodeToTextInfo (page 148). However, this method is
less efficient internally because the destination text encoding you specify must
be resolved into a Unicode mapping. Using this function, you cannot specify a
version of Unicode, so a default version of Unicode is used; 16-bit format is
assumed.

You pass a Unicode converter object returned from the function
CreateUnicodeToTextInfoByEncoding to the function ConvertFromUnicodeToText
(page 152) or ConvertFromUnicodeToPString (page 179) to identify the
information to be used for the conversion. These two functions modify the
contents of the Unicode converter object.

You pass a Unicode converter object returned from
CreateUnicodeToTextInfoByEncoding to the function TruncateForUnicodeToText
150 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
(page 176) to identify the information to be used to truncate the string. This
function does not modify the contents of the Unicode converter object.

SEE ALSO

“Text Encoding Base” (page 31)

ChangeUnicodeToTextInfo 4

Changes the mapping information contained in the specified Unicode converter
object used to convert Unicode text to another encoding.

pascal OSStatus ChangeUnicodeToTextInfo (
UnicodeToTextInfo ioUnicodeToTextInfo,
ConstUnicodeMappingPtr iUnicodeMapping);

ioUnicodeToTextInfo
The Unicode converter object of type UnicodeToTextInfo
(page 133) to be modified. You use the function
CreateUnicodeToTextInfo (page 148) or
CreateUnicodeToTextInfoByEncoding (page 150) to obtain a
Unicode converter object of this type.

iUnicodeMapping
The structure of type UnicodeMapping (page 131) to be used. This
is the new mapping that replaces the existing mapping in the
Unicode converter object.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) in the chapter “Basic Text Types Reference.”

DISCUSSION

The ChangeUnicodeToTextInfo function allows you to provide new mapping
information for converting text from Unicode to another encoding. The function
replaces the mapping table information that currently exists in the specified
Unicode converter object with the information contained in the new Unicode
mapping structure you provide.
Unicode Converter Functions 151
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
ChangeUnicodeToTextInfo resets the Unicode converter object’s fields as
necessary. However, it does not initialize or reset the conversion state
maintained by the Unicode converter object.

This function is especially useful for converting a string from Unicode if the
Unicode string contains characters that require multiple destination encodings
and you know the next destination encoding.

For example, you can change the other (destination) encoding of the Unicode
mapping structure pointed to by the iUnicodeMapping parameter before you call
the function ConvertFromUnicodeToText (page 152) to convert the next character
or sequence of characters that require a different destination encoding.

In addition to various resource errors, the function can return the following
result codes:

� paramErr
The Unicode converter object you supplied is invalid.

� kTextUnsupportedEncodingErr
One of the encodings specified by the Unicode mapping structure you
supplied is not currently supported.

� kTECMissingTableErr
A resource associated with one of the encodings is missing.

� kTECTableChecksumErr
A resource has an invalid checksum, indicating that it has become corrupted.

If an error is returned, the Unicode converter object is invalid.

ConvertFromUnicodeToText 4

Converts a string from Unicode to the specified encoding.

pascal OSStatus ConvertFromUnicodeToText (
UnicodeToTextInfo iUnicodeToTextInfo,
ByteCount iUnicodeLen,
ConstUniCharArrayPtr iUnicodeStr,
OptionBits iControlFlags,
ItemCount iOffsetCount,
ByteOffset iOffsetArray[],
ItemCount *oOffsetCount,
152 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
ByteOffset oOffsetArray[],
ByteCount iOutputBufLen,
ByteCount *oInputRead,
ByteCount *oOutputLen,
LogicalAddress oOutputStr);

iUnicodeToTextInfo
A Unicode converter object of type UnicodeToTextInfo for
converting text from Unicode. You use the function
CreateUnicodeToTextInfo (page 148) or
CreateUnicodeToTextInfoByEncoding (page 150) to obtain a
Unicode converter object to specify for this parameter.

iUnicodeLen The length in bytes of the Unicode string to be converted.

iUnicodeStr A pointer to the Unicode string to be converted. If the input text
is UTF-8, which is supported for versions 1.2.1 or later of the
converter, you must cast the UTF-8 buffer pointer to
ConstUniCharArrayPtr before you can pass it as this parameter.

iControlFlags Conversion control flags. You can use these bitmasks to set the
control flags that apply to this function:
kUnicodeUseFallbacksMask
kUnicodeKeepInfoMask
kUnicodeVerticalFormMask
kUnicodeLooseMappingsMask
kUnicodeStringUnterminatedMask
kUnicodeForceASCIIRangeMask
kUnicodeNoHalfwidthCharsMask

You can also set one of the following directionality masks:
 kUnicodeDefaultDirectionMask
 kUnicodeLeftToRightMask
 kUnicodeRightToLeftMask

For a description of these control flags, see “Conversion Control
Flags” (page 122).

iOffsetCount The number of offsets contained in the array provided by the
iOffsetArray parameter. Your application supplies this value. If
you don’t want offsets returned to you, specify 0 (zero) for this
parameter.
Unicode Converter Functions 153
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
iOffsetArray An array of type ByteOffset. On input, you specify the array
that gives an ordered list of significant byte offsets pertaining to
the Unicode source string to be converted. These offsets may
identify font or style changes, for example, in the source string.
If you don’t want offsets returned to your application, specify
NULL for this parameter and 0 (zero) for iOffsetCount. All offsets
must be less than iUnicodeLen.

oOffsetCount A pointer to an ItemCount. On output, this value contains the
number of offsets that were mapped in the output stream.

oOffsetArray An array of type ByteOffset. On output, this array contains the
corresponding new offsets for the converted string in the new
encoding.

iOutputBufLen The length in bytes of the output buffer pointed to by the
oOutputStr parameter. Your application supplies this buffer to
hold the returned converted string. The oOutputLen parameter
may return a byte count that is less than this value if the
converted byte string is smaller than the buffer size you
allocated.

oInputRead A pointer to a value of type ByteCount. On output, this value
gives the number of bytes of the Unicode string that were
converted. If the function returns a kTECUnmappableElementErr
result code, this parameter returns the number of bytes that
were converted before the error occurred.

oOutputLen A pointer to a value of type ByteCount. On output, this value
give the length in bytes of the converted text stream.

oOutputStr A value of type LogicalAddress. On input, this value points to a
buffer for the converted string. On output, the buffer holds the
converted text string. (For guidelines on estimating the size of
the buffer needed, see the following discussion.)

function result A result code. The function returns a noErr result code if it has
completely converted the Unicode string to the destination
encoding without using fallback characters. If the function
returns the paramErr or kTECGlobalsUnavailableErr result codes,
it did not convert the string.

If the function returns kTECTableFormatErr, the code encountered
a table in an unknown format. The function did not completely
convert the input string (and may not have converted any of it).
154 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
If the function returns kTECBufferBelowMinimumSizeErr, the
output buffer was too small to allow conversion of any part of
the input string. You need to increase the size of the output
buffer and try again.

If the function returns the kTECUsedFallbacksStatus result code,
the function has completely converted the string using one or
more fallback characters. This can only happen if you set the
Unicode-use-fallbacks control flag.

If the function returns kTECOutputBufferFullErr, the output
buffer was not big enough to completely convert the input;
oInputRead indicates the amount of input converted. You can call
the function again with another output buffer (or with the same
output buffer, after copying its contents) to convert the
remainder of the Unicode string.

If the function returns kTECPartialCharErr, the Unicode input
string ended with an incomplete UTF-8 character (can only
happen for UTF-8 input). If you have subsequent input text
available, you can append the unconverted input from this call
to the beginning of the subsequent input text and call the
function again.

If the function returns kTECUnmappableElementErr, an input text
element could not be mapped to the destination encoding. The
function did not completely convert the Unicode input string.
This can only happen if you did not set the
Unicode-use-fallbacks control flag. You can set this flag and
convert the remaining unconverted input, or take some other
action.

If the function returns kTextUndefinedElementErr, the Unicode
input string included a value which is undefined for the
specified Unicode version. The function did not completely
convert the input string, and fallback handling will not be
invoked. You can resume conversion from a point beyond the
offending Unicode character, or take some other action.

If the function returns kTextIncompleteElementErr, then either
the input string included a text element which is too long for the
internal buffers, or the input string ended with a text element
which may be incomplete (this latter case can only happen if
Unicode Converter Functions 155
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
you set the kUnicodeStringUnterminatedMask control flag). The
function did not completely convert the input string, and
fallback handling will not be invoked.

For additional information, see “Text Encoding Conversion
Manager Result Codes” (page 48) in the chapter “Basic Text
Types Reference.”

DISCUSSION

The ConvertFromUnicodeToText function converts a Unicode text string to the
destination encoding you specify in the Unicode mapping structure that you
pass to the function CreateUnicodeToTextInfo (page 148) or
CreateUnicodeToTextInfoByEncoding (page 150) when you call them to obtain a
Unicode converter object for the conversion process. You pass the returned
object to ConvertFromUnicodeToText as the iUnicodeToTextInfo parameter.

In addition to converting the Unicode string, ConvertFromUnicodeToText can
map offsets for style or font information from the source text string to the
returned converted string. The converter reads the application-supplied offsets
and returns the corresponding new offsets in the converted string. If you do not
want font or style information offsets mapped to the resulting string, you
should pass NULL for iOffsetArray and 0 (zero) for iOffsetCount.

Your application must allocate a buffer to hold the resulting converted string
and pass a pointer to the buffer in the oOutputStr parameter. To determine the
size of the output buffer to allocate, you should consider the size and content of
the Unicode source string in relation to the type of encoding to which it will be
converted. For example, for many encodings, such as MacRoman and Shift-JIS,
the size of the returned string will be between half the size and the same size as
the source Unicode string. However, for some encodings that are not Mac OS
ones, such as EUC-JP, which has some 3-byte characters for Kanji, the returned
string could be larger than the source Unicode string. For MacArabic and
MacHebrew, the result will usually be less than half the size of the Unicode
string.

This function modifies the contents of the Unicode converter object you passed
as the iUnicodeToTextInfo parameter.

SEE ALSO

 The function ConvertFromTextToUnicode (page 143)
156 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
DisposeUnicodeToTextInfo 4

Releases the memory allocated for the specified Unicode converter object.

pascal OSStatus DisposeUnicodeToTextInfo (
UnicodeToTextInfo *ioUnicodeToTextInfo);

ioUnicode
A pointer to a Unicode converter object for converting from
Unicode to a non-Unicode encoding. On input, you specify a
Unicode converter object that your application created using the
function CreateUnicodeToTextInfo (page 148) or
CreateUnicodeToTextInfoByEncoding (page 150).

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) in the chapter “Basic Text Types Reference.”

DISCUSSION

The DisposeUnicodeToTextInfo function disposes of the Unicode converter
object and releases the memory allocated for it. Your application should not
attempt to dispose of the same Unicode converter object more than once.

You must use this function only to release the memory for a Unicode converter
object that your application created through the function
CreateUnicodeToTextInfo (page 148) or CreateUnicodeToTextInfoByEncoding
(page 150). You must not use it for any other type of Unicode converter object.

The function returns noErr if it disposes of the Unicode converter object
successfully. If your application specifies an invalid Unicode converter object,
such as NULL, the function returns a paramErr result code.

Converting From Unicode to Multiple Encodings 4

It may not be possible to convert a Unicode string to a single destination
encoding. To handle these cases, the Unicode Converter provides a function
that allows you to specify a number of possible destination encodings and how
the function should use these destination encodings, if necessary, when
converting the Unicode string. Before you can use the function
ConvertFromUnicodeToTextRun (page 163) for this purpose, you must first create
and obtain a Unicode converter object containing the mapping and state
Unicode Converter Functions 157
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
information the Unicode Converter uses to perform the conversion. You use the
function CreateUnicodeToTextRunInfo (page 158)
CreateUnicodeToTextRunInfoByEncoding (page 160), or
CreateUnicodeToTextRunInfoByScriptCode (page 162) for this purpose. You then
pass the object to the ConvertUnicodeToTextRun function to perform the
conversion. You can also convert a Unicode string to one or more scripts. For
this purpose you use the function ConvertFromUnicodeToScriptCodeRun
(page 169).

You can use the same Unicode converter object to convert multiple Unicode
strings belonging to the same text stream to the encodings specified in the
mapping table.

If you use the same Unicode converter object to convert multiple Unicode
strings, you should set the keep-information control flag when you call the
conversion function. This is because how the conversion is performed might
depend on the previous segment. The Unicode Converter might need to refer to
the direction state from the previous segment—for example, to determine the
text direction for Hebrew or Arabic text.

You should use the same Unicode converter object only to convert the text
stream for which you created the Unicode converter object. This is because the
Unicode Converter stores private state information in a Unicode converter
object that is relevant only to the single text stream for which it is used.

When you are finished converting all of the text reliant on the Unicode
converter object, release the memory allocated for the Unicode converter object
by calling the function DisposeUnicodeToTextRunInfo (page 173).

CreateUnicodeToTextRunInfo 4

Creates and returns a Unicode converter object containing the information
required for converting a Unicode text string to strings in one or more
non-Unicode encodings.

pascal OSStatus CreateUnicodeToTextRunInfo (
ItemCount iNumberOfMappings,
const UnicodeMapping iUnicodeMappings[],
UnicodeToTextRunInfo *oUnicodeToTextInfo);
158 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
iNumberOfMappings
The number of mappings specified by your application for
converting from Unicode to any other encoding types, including
other forms of Unicode. If you pass 0 for this parameter, the
converter will use all of the scripts installed in the system. The
primary script is the one with highest priority; ScriptOrder
('itlm' resource) determines the priority of the rest. If you set
the high-order bit for this parameter, the Unicode converter
assumes that the iEncodings parameter contains a single element
specifying the preferred encoding. This feature is supported for
versions 1.2 or later of the converter.

iUnicodeMappings
A pointer to an array of structures of type UnicodeMapping
(page 131). Your application provides this structure to identify
the mappings to be used for the conversion. The order in which
you specify the mappings determines the priority of the
destination encodings. For this function, the Unicode mapping
structure can specify a Unicode format of kUnicode16BitFormat
or kUnicodeUTF8Format. Note that the versions of the Unicode
Converter prior to the Text Encoding Conversion Manager 1.2.1
do not support kUnicodeUTF8Format. Also, note that the
unicodeEncoding field should be the same for all of the entries in
iUnicodeMappings. If you pass NULL for the iUnicodeMappings
parameter, the converter uses all of the scripts installed in the
system, assuming the default version of Unicode with 16-bit
format. The primary script is the one with the highest priority
and ScriptOrder('itlm' resource) determines the priority of the
rest. This is supported beginning with version 1.2 of the Text
Encoding Conversion Manager.

oUnicodeToTextInfo

A pointer to a Unicode converter object for converting Unicode
text strings to strings in one or more non-Unicode encodings.
On output, a Unicode converter object that holds the mapping
table information you supply as the iUnicodeMappings parameter
and the state information related to the conversion.

function result A result code. In addition to various resource and memory
errors, the function can return the following result codes:
Unicode Converter Functions 159
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
kTextUnsupportedEncodingErr
One of the encodings specified by the Unicode mapping
structure you supply is not currently supported.

kTECMissingTableErr
A resource associated with one of the encodings is missing.

kTECTableChecksumErr
A resource has an invalid checksum, indicating that it has
become corrupted.

If an error is returned, the Unicode converter object is invalid.
See “Text Encoding Conversion Manager Result Codes”
(page 48) in the chapter “Basic Text Types Reference” for other
possible result code values.

DISCUSSION

You pass a Unicode converter object returned from the function
CreateUnicodeToTextRunInfo to the function ConvertFromUnicodeToTextRun
(page 163) or ConvertFromUnicodeToScriptCodeRun (page 169) to identify the
information to be used for the conversion. These two functions modify the
contents of the Unicode converter object.

SEE ALSO

The function CreateUnicodeToTextInfoByEncoding (page 150)

The function CreateUnicodeToTextRunInfoByScriptCode (page 162)

CreateUnicodeToTextRunInfoByEncoding 4

Based on the given text encoding specifications for the converted text runs,
creates and returns a Unicode converter object containing information required
160 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
for converting strings from Unicode to one or more specified non-Unicode
encodings.

pascal OSStatus CreateUnicodeToTextRunInfoByEncoding (
ItemCount iNumberOfEncodings,
const TextEncoding iEncodings[],
UnicodeToTextRunInfo *oUnicodeToTextInfo);

iNumberOfEncodings
The number of desired encodings. If you pass 0 for this
parameter, the converter will use all of the scripts installed in
the system. The primary script is the one with highest priority;
ScriptOrder('itlm' resource) determines the priority of the rest.
If you set the high-order bit for this parameter, the Unicode
converter assumes that the iEncodings parameter contains a
single element specifying the preferred encoding. This feature is
supported for versions 1.2 or later of the converter.

iEncodings An array of text encoding specifications for the desired
encodings. Your application provides this structure to identify
the encodings to be used for the conversion. The order in which
you specify the encodings determines the priority of the
destination encodings. If you pass NULL for this parameter, the
converter will use all of the scripts installed in the system. The
primary script is the one with highest priority and
ScriptOrder('itlm' resource) determines the priority of the
rest.This feature is supported for versions 1.2 or later of the
converter.

oUnicodeToTextInfo
A pointer to a Unicode converter object for converting Unicode
text strings to strings in one or more non-Unicode encodings.
On output, a Unicode converter object that holds the encodings
you supply as the iEncodings parameter and the state
information related to the conversion.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) in the chapter “Basic Text Types Reference.”
Unicode Converter Functions 161
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
DISCUSSION

You pass a Unicode converter object returned from
CreateUnicodeToTextRunInfoByEncoding to the function
ConvertFromUnicodeToTextRun (page 163) or ConvertFromUnicodeToScriptCodeRun
(page 169) to identify the information to be used for the conversion. These two
functions modify the contents of the Unicode converter object.

In addition to various resource and memory errors, the function can return the
following result codes:

� kTextUnsupportedEncodingErr
One of the encodings specified by the Unicode mapping structure you
supply is not currently supported.

� kTECMissingTableErr
A resource associated with one of the encodings is missing.

� kTECTableChecksumErr
A resource has an invalid checksum, indicating that it has become corrupted.

If an error is returned, the converter object is invalid.

CreateUnicodeToTextRunInfoByScriptCode 4

Based on the given script codes for the converted text runs, creates and returns
a Unicode converter object containing information required for converting
strings from Unicode to one or more specified non-Unicode encodings.

pascal OSStatus CreateUnicodeToTextRunInfoByScriptCode(
ItemCount iNumberOfScriptCodes,
const ScriptCode iScripts[],
UnicodeToTextRunInfo *oUnicodeToTextInfo);

iNumberOfScriptCodes
The number of desired scripts. If you pass 0 for this parameter,
the converter uses all the scripts installed in the system. In this
case, the primary script is the one with highest priority;
ScriptOrder (’itlm’ resource) determines the priority of the rest.
If you set the high-order bit for this parameter, the Unicode
converter assumes that the iScripts parameter contains a single
162 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
element specifying the preferred script. This feature is
supported beginning with the Text Encoding Conversion
Manager 1.2.

iScripts An array of script codes for the desired scripts. Your application
provides this structure to identify the scripts to be used for the
conversion. The order in which you specify the scripts
determines their priority. If you pass NULL for this parameter, the
converter uses all of the scripts installed in the system. In this
case, the primary script is the one with the highest priority and
the priority order of the remaining scripts is defined by the
ScriptOrder(itlm resource) resource. This feature is supported
for versions 1.2 or later of the converter.

oUnicodeToTextInfo
A pointer to a Unicode converter object for converting Unicode
text strings to strings in one or more non-Unicode encodings.
On output, a Unicode converter object that holds the scripts you
supply as the iScripts parameter and the state information
related to the conversion.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) in the chapter “Basic Text Types Reference.”

DISCUSSION

You pass a Unicode converter object returned from
CreateUnicodeToTextRunInfoByScriptCode to the function
ConvertFromUnicodeToTextRun (page 163) or ConvertFromUnicodeToScriptCodeRun
(page 169) to identify the information to be used for the conversion. These two
functions modify the contents of the Unicode converter object.

ConvertFromUnicodeToTextRun 4

Converts a string from Unicode to one or more encodings.

pascal OSStatus ConvertFromUnicodeToTextRun (
UnicodeToTextRunInfo iUnicodeToTextInfo,
ByteCount iUnicodeLen,
ConstUniCharArrayPtr iUnicodeStr,
Unicode Converter Functions 163
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
OptionBits iControlFlags,
ItemCount iOffsetCount,
ByteOffset iOffsetArray[],
ItemCount *oOffsetCount,
ByteOffset oOffsetArray[],
ByteCount iOutputBufLen,
ByteCount *oInputRead,
ByteCount *oOutputLen,
LogicalAddress oOutputStr,
ItemCount iEncodingRunBufLen,
ItemCount *oEncodingRunOutLen,
TextEncodingRun oEncodingRuns[]);

iUnicodeToTextInfo
A Unicode converter object for converting Unicode text to one
or more encodings. You use the function
CreateUnicodeToTextRunInfo (page 158),
CreateUnicodeToTextRunInfoByEncoding (page 160), or
CreateUnicodeToTextRunInfoByScriptCode (page 162) to obtain a
Unicode converter object to specify for this parameter.

iUnicodeLen The length in bytes of the Unicode string to be converted.

iUnicodeStr A pointer to the Unicode string to be converted.

iControlFlags Conversion control flags. The following constants define the
masks for control flags valid for this parameter. You can use
these masks to set the iControlFlags parameter:
kUnicodeUseFallbacksMask
kUnicodeKeepInfoMask
kUnicodeVerticalFormMask
kUnicodeLooseMappingsMask
kUnicodeStringUnterminatedMask
kUnicodeTextRunMask
kUnicodeKeepSameEncodingMask
kUnicodeForceASCIIRangeMask
kUnicodeNoHalfwidthCharsMask
kUnicodeTextRunHeuristicsMask

You can also set one of the following directionality masks:
kUnicodeDefaultDirectionMask
kUnicodeLeftToRightMask
kUnicodeRightToLeftMask
164 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
For a description of these control flags, see “Conversion Control
Flags” (page 122).

If the text-run control flag is clear, ConvertFromUnicodeToTextRun
attempts to convert the Unicode text to the single encoding it
chooses from the list of encodings in the Unicode mapping
structures array that you provide when you create the Unicode
converter object. This is the encoding that produces the best
result, that is, that provides for the greatest amount of source
text conversion. If the complete source text can be converted
into more than one of the encodings specified in the Unicode
mapping structures array, then the converter chooses among
them based on their order in the array. If this flag is clear, the
oEncodingRuns parameter always points to a value equal to 1.

If you set the use-fallbacks control flag, the converter uses the
default fallback characters for the current encoding. If the
converter cannot handle a character using the current encoding,
even using fallbacks, the converter attempts to convert the
character using the other encodings, beginning with the first
encoding specified in the list and skipping the encoding where it
failed.

If you set the kUnicodeTextRunBit control flag, the converter
attempts to convert the complete Unicode text string into the
first encoding specified in the Unicode mapping structures array
you passed to CreateUnicodeToTextRunInfo,
CreateUnicodeToTextRunInfoByEncoding, or
CreateUnicodeToTextRunInfoByScriptCode when you created the
Unicode converter object for this conversion. If it cannot do this,
the converter then attempts to convert the first text element that
failed to the remaining encodings, in their specified order in the
array. What the converter does with the next text element
depends on the setting of the keep-same-encoding control flag.

If the keep-same-encoding control flag is clear and the text-run
heuristics control flags is clear, the converter returns to the
original encoding and attempts to continue conversion with that
encoding; this is equivalent to converting each text element to
the first encoding that works, in the order specified. If the
text-run heuristics control flags is set, the converter does not
Unicode Converter Functions 165
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
return to the original encoding for common characters such as
space and punctuation that are present in most encodings and
shared by many writing systems.

If the keep-same-encoding control flag is set, the converter
continues with the new destination encoding until it encounters
a text element that cannot be converted using the new encoding.
This attempts to minimize the number of encoding changes in
the output text. When the converter cannot convert a text
element using any of the encodings in the list and the
Unicode-keep-same-encoding control flag is set, the converter
uses the fallbacks default characters for the current encoding.

iOffsetCount The number of offsets in the array pointed to by the
iOffsetArray parameter. Your application supplies this value. If
you don’t want offsets returned to you, specify 0 (zero) for this
parameter.

iOffsetArray An array of type ByteOffset. On input, you specify the array
that contains an ordered list of significant byte offsets pertaining
to the source Unicode string. These offsets may identify font or
style changes, for example, in the Unicode string. If you don’t
want offsets returned to your application, specify NULL for this
parameter and 0 (zero) for iOffsetCount. All offsets must be less
than iUnicodeLen.

oOffsetCount A pointer to a value of type ItemCount. On output, this value
contains the number of offsets that were mapped in the output
stream.

oOffsetArray An array of type ByteOffset. On output, this array contains the
corresponding new offsets for the resulting converted string.

iOutputBufLen The length in bytes of the output buffer pointed to by the
oOutputStr parameter. Your application supplies this buffer to
hold the returned converted string. The oOutputLen parameter
may return a byte count that is less than this value if the
converted byte string is smaller than the buffer size you
allocated.
166 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
oInputRead A pointer to a value of type ByteCount. On output, this value
contains the number of bytes of the Unicode source string that
were converted. If the function returns a result code other than
noErr, then this parameter returns the number of bytes that were
converted before the error occurred.

oOutputLen A pointer to a value of type ByteCount. On output, this value
contains the length in bytes of the converted string.

oOutputStr A value of type LogicalAddress. On input, this value points to
the start of the buffer for the converted string. On output, this
buffer contains the converted string in one or more encodings.
When an error occurs, the ConvertFromUnicodeToTextRun
function returns the converted string up to the character that
caused the error. (For guidelines on estimating the size of the
buffer needed, see the discussion following the parameter
descriptions.)

iEncodingRunBufLen
The number of text encoding run elements you allocated for the
encoding run array pointed to by the oEncodingRuns parameter.
The converter returns the number of valid encoding runs in the
location pointed to by oEncodingRunOutLen. Each entry in the
encoding runs array specifies the beginning offset in the
converted text and its associated text encoding.

oEncodingRunOutLen
A pointer to a value of type ItemCount. On output, this value
contains the number of valid encoding runs returned in the
oEncodingRuns parameter.

oEncodingRuns On input, an array of structures of type TextEncodingRun
(page 51). Your application should allocate an array with the
number of elements you specify in the iEncodingRunBufLen
parameter. On output, this array contains the encoding runs for
the converted text string. Each entry in the encoding run array
specifies the beginning offset in the converted text string and the
associated encoding specification.

function result A result code. The result codes are the same as those for the
function ConvertFromUnicodeToText (page 152), with the
following additional possibility: If the function returns
kTECArrayFullErr, then the oEncodingRuns array was too small
for all of the encodings runs in the output text, and the input
Unicode Converter Functions 167
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
was not completely converted. As you would if
kTECOutputBufferFullErr was returned, you can call the function
again with another output buffer—or with the same output
buffer after copying its contents—to convert the remainder of
the Unicode string.

DISCUSSION

To use the ConvertFromUnicodeToTextRun function, you must first set up an array
of structures of type UnicodeMapping (page 131) containing, in order of
precedence, the mapping information for the conversion. To create a Unicode
converter object, you call the CreateUnicodeToTextRunInfo function passing it
the Unicode mapping array, or you can the
CreateUnicodeToTextRunInfoByEncoding or
CreateUnicodeToTextRunInfoByScriptCode functions, which take arrays of text
encodings or script codes instead of an array of Unicode mappings. You pass
the returned Unicode converter object as the iUnicodeToTextInfo parameter
when you call the ConvertFromUnicodeToTextRun function.

Two of the control flags that you can set for the iControlFlags parameter allow
you to control how the Unicode Converter uses the multiple encodings in
converting the text string. These flags are explained in the description of the
iControlFlags parameter. Here is a summary of how to use these two control
flags:

� To keep the converted text in a single encoding, clear the text-run control
flag.

� To keep as much contiguous converted text as possible in one encoding, set
the text-run control flag and clear the keep-same-encoding control flag. You
can reduce gratuitous encoding changes in this mode by setting the text-run
heuristics control flag.

� To minimize the number of resulting encoding runs and the changes of
destination encoding, set both the text-run and keep-same-encoding control
flags.

The ConvertFromUnicodeToTextRun function returns the converted string in the
array pointed to by the oOutputStr parameter. Beginning with the first text
element in the oOutputStr array, the elements of the array pointed to by the
oEncodingRuns parameter identify the encodings of the converted string. The
number of elements in the oEncodingRuns array may not correspond to the
number of elements in the oOutputStr array. This is because the oEncodingRuns
168 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
array includes only elements for the beginning of each new encoding run in the
converted string.

SEE ALSO

The function ConvertFromUnicodeToScriptCodeRun (page 169)

ConvertFromUnicodeToScriptCodeRun 4

Converts a string from Unicode to one or more scripts.

pascal OSStatus ConvertFromUnicodeToScriptCodeRun (
UnicodeToTextRunInfo iUnicodeToTextInfo,
ByteCount iUnicodeLen,
ConstUniCharArrayPtr iUnicodeStr,
OptionBits iControlFlags,
ItemCount iOffsetCount,
ByteOffset iOffsetArray[],
ItemCount *oOffsetCount,
ByteOffset oOffsetArray[],
ByteCount iOutputBufLen,
ByteCount *oInputRead,
ByteCount *oOutputLen,
LogicalAddress oOutputStr,
ItemCount iScriptRunBufLen,
ItemCount *oScriptRunOutLen,
ScriptCodeRun oScriptCodeRuns[]
);

iUnicodeToTextInfo
A Unicode converter object for converting Unicode text to one
or more scripts. You use the function
CreateUnicodeToTextRunInfoByScriptCode (page 162) to obtain a
Unicode converter object to specify for this parameter.

iUnicodeLen The length in bytes of the Unicode string to be converted.

iUnicodeStr A pointer to the Unicode string to be converted.
Unicode Converter Functions 169
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
iControlFlags Conversion control flags. The following constants define the
masks for control flags valid for this parameter. You can use
these masks to set the iControlFlags parameter:

kUnicodeUseFallbacksBit
kUnicodeKeepInfoBit
kUnicodeVerticalFormBit
kUnicodeLooseMappingsBit
kUnicodeStringUnterminatedBit
kUnicodeTextRunBit
kUnicodeKeepSameEncodingBit
kUnicodeForceASCIIRangeMask
kUnicodeNoHalfwidthCharsMask
kUnicodeTextRunHeuristicsMask

You can also set one of the following directionality masks:
 kUnicodeDefaultDirection
 kUnicodeLeftToRightBit
 kUnicodeRightToLeft

For a description of these control flags, see “Conversion Control
Flags” (page 122).

If the text-run control flag is clear,
ConvertFromUnicodeToScriptCodeRun attempts to convert the
Unicode text to the single script from the list of scripts in the
Unicode converter object that produces the best result, that is,
that provides for the greatest amount of source text conversion.
If the complete source text can be converted into more than one
of the scripts specified in the array, then the converter chooses
among them based on their order in the array. If this flag is clear,
the oScriptCodeRuns parameter always points to a value equal to
1.

If you set the use-fallbacks control flag, the converter uses the
default fallback characters for the current script. If the converter
cannot handle a character using the current encoding, even
using fallbacks, the converter attempts to convert the character
using the other scripts, beginning with the first one specified in
the list and skipping the one where it failed.
170 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
If you set the kUnicodeTextRunBit control flag, the converter
attempts to convert the complete Unicode text string into the
first script specified in the Unicode mapping structures array
you passed to CreateUnicodeToTextRunInfo,
CreateUnicodeToTextRunInfoByEncoding, or
CreateUnicodeToTextRunInfoByScriptCode to create the Unicode
converter object used for this conversion. If it cannot do this, the
converter then attempts to convert the first text element that
failed to the remaining scripts, in their specified order in the
array. What the converter does with the next text element
depends on the setting of the keep-same-encoding control flag:

If the keep-same-encoding control flag is clear and the text-run
heuristics control flags is clear, the converter returns to the
original encoding and attempts to continue conversion with that
encoding; this is equivalent to converting each text element to
the first encoding that works, in the order specified. If the
text-run heuristics control flags is set, the converter does not
return to the original encoding for common characters such as
space and punctuation that are present in most encodings and
shared by many writing systems.

If the Unicode-keep-same-encoding control flag is set, the
converter continues with the new destination script until it
encounters a text element that cannot be converted using the
new script. This attempts to minimize the number of script code
changes in the output text. When the converter cannot convert a
text element using any of the scripts in the list and the
Unicode-keep-same-encoding control flag is set, the converter
uses the fallbacks default characters for the current script.

iOffsetCount The number of offsets in the array pointed to by the
iOffsetArray parameter. Your application supplies this value.
The number of entries in iOffsetArray must be fewer than half
the number of bytes specified in iUnicodeLen. If you don’t want
offsets returned to you, specify 0 (zero) for this parameter.

iOffsetArray An array of type ByteOffset. On input, you specify the array
that contains an ordered list of significant byte offsets pertaining
to the source Unicode string. These offsets may identify font or
style changes, for example, in the Unicode string. If you don’t
want offsets returned to your application, specify NULL for this
parameter and 0 (zero) for iOffsetCount.
Unicode Converter Functions 171
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
oOffsetCount A pointer to a value of type ItemCount. On output, this value
contains the number of offsets that were mapped in the output
stream.

oOffsetArray An array of type ByteOffset. On output, this array contains the
corresponding new offsets for the resulting converted string.

iOutputBufLen The length in bytes of the output buffer pointed to by the
oOutputStr parameter. Your application supplies this buffer to
hold the returned converted string. The oOutputLen parameter
may return a byte count that is less than this value if the
converted byte string is smaller than the buffer size you
allocated.

oInputRead A pointer to a value of type ByteCount. On output, this value
contains the number of bytes of the Unicode source string that
were converted. If the function returns a result code other than
noErr, then this parameter returns the number of bytes that were
converted before the error occurred.

oOutputLen A pointer to a value of type ByteCount. On output, this value
contains the length in bytes of the converted string.

oOutputStr A buffer address. On input, this value points to the beginning of
the buffer for the converted string. On output, this buffer
contains the converted string in one or more encodings. When
an error occurs, the ConvertFromUnicodeToScriptCodeRun
function returns the converted string up to the character that
caused the error.

iScriptRunBufLen
The number of script code run elements you allocated for the
script code run array pointed to by the oScriptCodeRuns
parameter. The converter returns the number of valid script
code runs in the location pointed to by oScriptRunOutLen. Each
entry in the script code run array specifies the beginning offset
in the converted text and its associated script code.

oScriptRunOutLen
A pointer to a value of type ItemCount. On output, this value
contains the number of valid script code runs returned in the
oScriptCodeRuns parameter.
172 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
oScriptCodeRuns
An array of elements of type ScriptCodeRun. Your application
should allocate an array with the number of elements you
specify in the iScriptRunBufLen parameter. On output, this array
contains the script code runs for the converted text string. Each
entry in the array specifies the beginning offset in the converted
text string and the associated script code specification.

function result A result code. The result codes are the same as those for the
function ConvertFromUnicodeToText (page 152).

DISCUSSION

To use the ConvertFromUnicodeToScriptCodeRun function, you must first set up
an array of script codes containing in order of precedence the scripts to be used
for the conversion. To create a Unicode converter object, you call the function
CreateUnicodeToTextRunInfoByScriptCode (page 162). You pass the returned
Unicode converter object as the iUnicodeToTextInfo parameter when you call
the ConvertFromUnicodeToScriptCodeRun function.

The ConvertFromUnicodeToScriptCodeRun function returns the converted string
in the array pointed to by the oOutputStr parameter.

DisposeUnicodeToTextRunInfo 4

Releases the memory allocated for the specified Unicode converter object.

pascal OSStatus DisposeUnicodeToTextRunInfo (
UnicodeToTextRunInfo *ioUnicodeToTextRunInfo);

ioUnicodeToTextRunInfo
A pointer to a Unicode converter object. On input, you specify a
Unicode converter object that points to the conversion
information to be disposed of, which your application created
using the function CreateUnicodeToTextRunInfo (page 158),
CreateUnicodeToTextRunInfoByEncoding (page 160), or
CreateUnicodeToTextRunInfoByScriptCode (page 162).

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) in the chapter “Basic Text Types Reference.”
Unicode Converter Functions 173
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
DISCUSSION

The DisposeUnicodeToTextRunInfo function disposes of the Unicode converter
object specified by the ioUnicodeToTextRunInfo parameter and releases the
memory allocated for it. Your application should not attempt to dispose of the
same Unicode converter object more than once.

You must use this function to release the memory only for a Unicode converter
object that your application created through the function
CreateUnicodeToTextRunInfo (page 158),
CreateUnicodeToTextRunInfoByEncoding (page 160), or
CreateUnicodeToTextRunInfoByScriptCode (page 162).

You must not use it for any other type of Unicode converter object.

If your application specifies an invalid Unicode converter object, such as NULL,
the function returns paramErr.

Truncating Strings Before Converting Them 4

If you need to divide up a string, before converting it, your application can use
the truncation functions to properly break the string so that the string to be
converted is terminated with complete characters and complete text elements.
To avoid the possibility of corrupting the contents of the string or breaking a
string between the bytes of a multibyte character, it is best to use these functions
instead of truncating the string yourself.

TruncateForTextToUnicode 4

Identifies where your application can safely break a multibyte string to be
converted to Unicode so that the string is not broken in the middle of a
multibyte character.

pascal OSStatus TruncateForTextToUnicode(
ConstTextToUnicodeInfo iTextToUnicodeInfo,
ByteCount iSourceLen,
ConstLogicalAddress iSourceStr,
ByteCount iMaxLen,
ByteCount *oTruncatedLen);
174 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
iTextToUnicodeInfo
The Unicode converter object of type TextToUnicodeInfo
(page 132) for the text string to be divided up with each segment
properly truncated. The TruncateForTextToUnicode function
does not modify the object’s contents.

iSourceLen The length in bytes of the multibyte string to be divided up.

iSourceStr The address of the multibyte string to be divided up.

iMaxLen The maximum allowable length of the string to be truncated.
This must be less than or equal to iSourceLen.

oTruncatedLen A pointer to a value of type ByteCount. On output, this value
contains the length of the longest portion of the multibyte string,
pointed to by iSourceStr, that is less than or equal to the length
specified by iMaxLen. This identifies the byte after which you can
break the string.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) in the chapter “Basic Text Types Reference.”

DISCUSSION

Your application can use this function to break a string properly before you call
the function ConvertFromTextToUnicode (page 143) so that the string you pass it
is terminated with complete characters. You can call this function repeatedly to
properly divide up a text segment, each time identifying the new beginning of
the string, until the last portion of the text is less than or equal to the maximum
allowable length. Each time you use the function, you get a properly terminated
string within the allowable length range. You use the function as many times as
necessary to be able to convert the entire text segment.

Because the TruncateForTextToUnicode function does not modify the contents of
the Unicode converter object, you can call this function safely between calls to
the function ConvertFromTextToUnicode (page 143).

If the function returns paramErr, kTECGlobalsUnavailableErr, or
kTECTableFormatErr the value returned by the oTruncatedLen parameter is
invalid.
Unicode Converter Functions 175
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
TruncateForUnicodeToText 4

Identifies where your application can safely break a Unicode string to be
converted to any encoding so that the string is broken in a way that preserves
the text element integrity.

pascal OSStatus TruncateForUnicodeToText (
ConstUnicodeToTextInfo iUnicodeToTextInfo,
ByteCount iSourceLen,
ConstUniCharArrayPtr iSourceStr,
OptionBits iControlFlags,
ByteCount iMaxLen,
ByteCount *oTruncatedLen);

iUnicodeToTextInfo
A Unicode converter object UnicodeToTextInfo (page 133) for
the Unicode string to be divided up. The
TruncateForUnicodeToText function does not modify the
contents of this private structure.

iSourceLen The length in bytes of the Unicode string to be divided up.

iSourceStr A pointer to the Unicode string to be divided up.

iControlFlags Truncation control flags. Specify the flag
kUnicodeStringUnterminatedMask if truncating a buffer of text
that belongs to a longer stream containing a subsequent buffer
of text that could have characters belonging to a text element
that begins at the end of the current buffer. If you set this flag,
typically you would set the iMaxLen parameter equal to
iSourceLen. For information on the flag
kUnicodeStringUInterminatedMask, see “Conversion Control
Flags” (page 122).

iMaxLen The maximum allowable length of the string to be truncated.
This must be less than or equal to iSourceLen.

oTruncatedLen A pointer to a value of type ByteCount. On output, this value
contains the length of the longest portion of the Unicode source
string, pointed to by the iSourceStr parameter, that is less than
or equal to the value of the iMaxLen parameter. This returned
parameter identifies the byte after which you can truncate the
string.
176 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) in the chapter “Basic Text Types Reference.”

DISCUSSION

Your application can use this function to divide up a Unicode string properly
truncating each portion before you call ConvertFromUnicodeToText or
ConvertFromUnicodeToScriptCodeRun to convert the string. You can call this
function repeatedly to properly truncate a text segment, each time identifying
the new beginning of the string, until the last portion of the text is less than or
equal to the maximum allowable length. Each time you use the function, you
get a properly terminated string within the allowable length range. You use the
function as many times as necessary to be able to convert the entire text
segment.

Because this function does not modify the contents of the Unicode converter
object, you can call this function between conversion calls.

In addition to resource errors, the functions may return any of the following
result codes: paramErr, kTECGlobalsUnavailableErr, kTECTableFormatErr,
kTECPartialCharErr (if truncating UTF-8), kTECIncompleteElementErr, or
kTextUndefinedElementErr. If the result code is not noErr, then the value
returned by the oTruncatedLen parameter is invalid.

Converting Between Unicode and Pascal Strings 4

ConvertFromPStringToUnicode 4

Converts a Pascal string in a Mac OS text encoding to a Unicode string.

pascal OSStatus ConvertFromPStringToUnicode (
TextToUnicodeInfo iTextToUnicodeInfo,
ConstStr255Param iPascalStr,
ByteCount iOutputBufLen,
ByteCount *oUnicodeLen,
UniCharArrayPtr oUnicodeStr);
Unicode Converter Functions 177
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
iTextToUnicodeInfo
A Unicode converter object of type TextToUnicodeInfo
(page 132) for the Pascal string to be converted. You can use the
function CreateTextToUnicodeInfo (page 139) or
CreateTextToUnicodeInfoByEncoding (page 140) to create the
Unicode converter object.

iPascalStr The Pascal string to be converted to Unicode.

iOutputBufLen The length in bytes of the output buffer pointed to by the
oUnicodeStr parameter. Your application supplies this buffer to
hold the returned converted string. The oUnicodeLen parameter
may return a byte count that is less than this value if the
converted string is smaller than the buffer size you allocated.

oUnicodeLen A pointer to a value of type ByteCount. On output, the length in
bytes of the converted Unicode string returned in the
oUnicodeStr parameter.

oUnicodeStr A pointer to a Unicode character array. On output, this buffer
holds the converted Unicode string. For information on the
Unicode character array, see “Unicode Character and String
Pointer Data Types” (page 56).

function result A result code. The function returns the noErr result code if it has
completely converted the Pascal string to Unicode without
using fallback characters. If the function returns the paramErr,
kTECTableFormatErr, or kTECGlobalsUnavailableErr result codes,
it did not convert the string.

If the function returns kTECBufferBelowMinimumSizeErr, the
output buffer was too small to allow conversion of any part of
the input string. You need to increase the size of the output
buffer and try again.

If the function returns the kTECUsedFallbacksStatus result code,
the function has completely converted the Pascal string using
one or more fallback characters.

If the function returns kTECOutputBufferFullErr, the output
buffer was not big enough to completely convert the input. You
can call the function again with another output buffer—or with
the same output buffer, after copying its contents—to convert
the remainder of the input string.
178 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
If the function returns kTECPartialCharErr, the input buffer
ended with an incomplete multibyte character. If you have
subsequent input text available, you can append the
unconverted input from this call to the beginning of the
subsequent input text and call the function again.

See “Text Encoding Conversion Manager Result Codes”
(page 48) in the chapter “Basic Text Types Reference” for other
possible values.

DISCUSSION

The ConvertFromPStringToUnicode function provides an easy and efficient way
to convert a short Pascal string to a Unicode string without incurring the
overhead associated with the function ConvertFromTextToUnicode (page 143).

If necessary, this function automatically uses fallback characters to map the text
elements of the string.

ConvertFromUnicodeToPString 4

Converts a Unicode string to Pascal in a Mac OS text encoding.

pascal OSStatus ConvertFromUnicodeToPString (
UnicodeToTextInfo iUnicodeToTextInfo,
ByteCount iUnicodeLen,
ConstUniCharArrayPtr iUnicodeStr,
Str255 oPascalStr);

iUnicodeToTextInfo
A Unicode converter object. You use the
CreateUnicodeToTextInfo or CreateUnicodeToTextInfoByEncoding
function to obtain the Unicode converter object for the
conversion.

iUnicodeLen The length in bytes of the Unicode string to be converted. This is
the string your application provides in the iUnicodeStr
parameter.
Unicode Converter Functions 179
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
iUnicodeStr A pointer to an array containing the Unicode string to be
converted. For information on the Unicode character array, see
Chapter 2, “Basic Text Types Reference.”

oPascalStr A buffer. On output, the converted Pascal string returned by the
function.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) in the chapter “Basic Text Types Reference.”

DISCUSSION

The ConvertFromUnicodeToPString function provides an easy and efficient way
to convert a Unicode string to a Pascal string in a Mac OS text encoding without
incurring the overhead associated with use of the function
ConvertFromUnicodeToText (page 152) or ConvertFromUnicodeToScriptCodeRun
(page 169).

If necessary, this function uses the loose mapping and fallback characters to
map the text elements of the string. For fallback mappings, it uses the handler
associated with the Unicode converter object.

The function returns a noErr result code if it has completely converted the
Unicode string to the Pascal without using fallback characters. If the function
returns the paramErr or kTECGlobalsUnavailableErr result codes, it did not
convert the string.

If the function returns kTECTableFormatErr, the code encountered a table in an
unknown format. The function did not completely convert the input string (and
may not have converted any of it).

If the function returns kTECBufferBelowMinimumSizeErr, the output buffer was
too small to allow conversion of any part of the input string. You need to
increase the size of the output buffer and try again.

If the function returns the kTECUsedFallbacksStatus result code, the function has
completely converted the string using one or more fallback characters.

If the function returns kTECOutputBufferFullErr, the output buffer was not big
enough to completely convert the input. You can call the function again with
another output buffer (or with the same output buffer, after copying its
contents) to convert the remainder of the Unicode string.

If the function returns kTECPartialCharErr, the Unicode input string ended with
an incomplete UTF-8 character, which can only happen for UTF-8 input. If you
180 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
have subsequent input text available, you can append the unconverted input
from this call to the beginning of the subsequent input text and call the function
again.

If the function returns kTextUndefinedElementErr, the Unicode input string
included a value that is undefined for the specified Unicode version. The
function did not completely convert the input string, and fallback handling was
not invoked. You can resume conversion from a point beyond the offending
Unicode character, or take some other action.

If the function returns kTextIncompleteElementErr, then either the input string
included a text element that is too long for the internal buffers, or the input
string ended with a text element that may be incomplete. The latter case can
happen only if you set the kUnicodeStringUnterminatedMask control flag. The
function did not completely convert the input string, and fallback handling was
not invoked.

Obtaining Mapping Information 4

The Unicode Converter provides functions you can use to obtain a list of the
mappings available on the system that match specified criteria.

QueryUnicodeMappings 4

Returns a list of the conversion mappings available on the system that meet
specified matching criteria and returns the number of mappings found.

pascal OSStatus QueryUnicodeMappings (
OptionBits iFilter,
ConstUnicodeMappingPtr iFindMapping,
ItemCount iMaxCount,
ItemCount *oActualCount,
UnicodeMappingPtr oReturnedMappings);

iFilter Filter control flags representing the six values given in the
Unicode mapping structure that this function uses to match
against in determining which mappings on the system to return
to your application. The filter control flag enumerations,
Unicode Converter Functions 181
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
described in “Filter Control Flags” (page 129), define the
constants for the flags and their masks. You can include in the
search criteria any of the three text encoding values—base,
variant, and format—for both the Unicode encoding and the
other specified encoding. For any flag not turned on, the value is
ignored; the function does not check the corresponding value of
the mapping tables on the system.

iFindMapping
A structure of type UnicodeMapping (page 131) containing the
text encodings whose values are to be matched.

iMaxCount The maximum number of mappings that can be returned. You
provide this value to identify the number of elements in the
array pointed to by the oReturnedMappings parameter that your
application allocated. If the function identifies more matching
mappings than the array can hold, it returns as many of them as
fit. The function also returns a kTECArrayFullErr in this case.

oActualCount A pointer to a value of type ItemCount. On output, the number
of matching mappings found. This number may be greater than
the number of mappings specified by iMaxCount if more
matching mappings are found than can fit in the
oReturnedMappings array.

oReturnedMappings
A pointer to an array of structures of type UnicodeMapping
(page 131). On input, this pointer refers to an array for the
matching mappings returned by the function. To allocate
sufficient elements for the array, you can use the function
CountUnicodeMappings (page 184) to determine the number of
mappings returned for given values of the iFilter and
iFindMapping parameters. On output, this array holds the
matching mappings. If there are more matches than the array
can hold, the function returns as many of them as will fit and a
kTECBufferBelowMinimumSizeErr error result. The oActualCount
parameter identifies the number of matching mappings actually
found, which may be greater than the number returned.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) in the chapter “Basic Text Types Reference.”
182 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
DISCUSSION

You can use the QueryUnicodeMappings function to obtain all mappings on the
system up to the number allowed by your oReturnedMappings array by
specifying a value of zero for the iFilter field.

You can use the function to obtain very specific mappings by setting individual
filter control flags. You can filter on any of the three text encoding subfields of
the Unicode mapping structure’s unicodeEncoding specification and on any of
the three text encoding subfields of the mapping’s otherEncoding specification.
The iFilter parameter consists of a set of six control flags that you set to
identify which of the corresponding six subfields to include in the match. The
list provided in the oReturnedMappings parameter will contain only mappings
that match the fields of the Unicode mapping structure whose text encodings
subfields you identify in the filter control flags. No filtering is performed on
subfields for which you do not set the corresponding filter control flag.

For example, to obtain a list of all mappings in which one of the encodings is
the default variant and default format of the Unicode 1.1 base encoding and the
other encoding is the default variant and default format of a base encoding
other than Unicode, you would set up the iFilter and iFindMappings parameter
as follows. To set up these parameters, you use the constants defined for the text
encoding bases, the text encoding default variants, the text encoding default
formats, and the filter control flag bitmasks. For information on text encoding
bases, text encoding default variants, and text encoding default formats and
their constants, see the chapter “Basic Text Types Reference.” In this example,
the text encoding base field of the Unicode mapping structure’s otherEncoding
field is ignored, so you can specify any value for it. When you call
QueryUnicodeMappings, passing it these parameters, the function will return a list
of mappings between the Unicode encoding you specified and every other
available encoding in which each non-Unicode base encoding shows up once
because you specified its default variant and default format.

iFindMapping.unicodeMapping = CreateTextEncoding(
kTextEncodingUnicodeV1_1,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat);

iFindMapping.otherEncoding = CreateTextEncoding(
kTextEncodingMacRoman,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat);
Unicode Converter Functions 183
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
iFilter = kUnicodeMatchUnicodeBaseMask |
kUnicodeMatchUnicodeVariantMask |
kUnicodeMatchUnicodeFormatMask | kUnicodeMatchOtherVariantMask |
kUnicodeMatchOtherFormatMask;

If the function returns a noErr result code, the value retuned in the oActualCount
parameter is less than or equal to the value returned in the iMaxCount parameter
and the oReturnedMappings parameter contains all of the matching mappings
found. If the function returns a kTECArrayFullErr, the function found more
mappings than your oReturnedMappings array could accommodate.

CountUnicodeMappings 4

Counts available mappings that meet the specified matching criteria.

pascal OSStatus CountUnicodeMappings (
OptionBits iFilter
ConstUnicodeMappingPtr iFindMapping
ItemCount *oActualCount);

iFilter Filter control flags representing the six subfields of the Unicode
mapping structure that this function uses to match against in
determining which mappings on the system to return to your
application. The filter control enumeration, described in “Filter
Control Flags” (page 129), define the constants for the subfield’s
flags and their masks. You can include in the search criteria any
of the three text encoding subfields for both the Unicode
encoding and the other specified encoding. For any flag not
turned on, the subfield value is ignored and the function does
not check the corresponding subfield of the mappings on the
system.

iFindMapping
A structure of type UnicodeMapping (page 131) containing the
text encodings whose field values are to be matched.

oActualCount A pointer to a value of type ItemCount. On output, the number
of matching mappings found.
184 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) in the chapter “Basic Text Types Reference.”

DISCUSSION

You can use the function to obtain the count of mappings that meet specified
criteria by setting individual filter control flags. You can filter on any of the
three text encoding subfields of the Unicode mapping structure’s
unicodeEncoding specification and on any of the three text encoding subfields of
the structure’s otherEncoding specification. The iFilter parameter consists of a
set of six control flags that you set to identify which of the corresponding six
subfields to include in the match count. No filtering is performed on fields for
which you do not set the corresponding filter control flag.

SEE ALSO

The function QueryUnicodeMappings (page 181)

Setting the Fallback Handler 4

A fallback handler is a function that the Unicode Converter uses to perform
fallback mapping from Unicode to another encoding. Fallback mapping is
invoked if the kUnicodeUseFallbacksMask control flag is set and the converter
encounters a Unicode character that cannot be mapped to the destination
encoding using either strict mappings or—if the kUnicodeLooseMappingsMask
control flag is set—loose mappings.

Fallback mapping from Unicode is a process in which a Unicode character is
mapped to a sequence of one or more characters in another encoding that may
not have the same meaning or use, but that may provide an approximate
graphic representation or even textual representation of the corresponding
Unicode character. The fallback mapping depends on the destination encoding.
In general, fallback mappings are not reversible, and therefore, do not provide
round-trip fidelity.

The Unicode Converter supplies a default fallback handler for mapping from
Unicode to other encodings. Using SetFallbackUnicodeToText or
SetFallbackUnicodeToTextRun, you can also install your own application-defined
fallback handler and use it alone, or you can use yours in combination with the
default fallback handler. If you use both, you can specify which one gets called
Unicode Converter Functions 185
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
first; the other one gets called only if the first one fails. If fallback mapping is
invoked and the specified fallback handler fails—or if both handlers fail when
both are used—then the Unicode Converter uses a default fallback sequence
obtained from the mapping table to represent the unmappable Unicode
character. The default fallback sequence is usually a question mark character in
the destination encoding.

SetFallbackUnicodeToText 4

Associates an application-defined fallback handler with a specific
UnicodeToTextInfo Unicode converter object for a single text run to be used with
either the function ConvertFromUnicodeToText (page 152) or
ConvertFromUnicodeToPString (page 179).

pascal OSStatus SetFallbackUnicodeToText (
UnicodeToTextInfo iUnicodeToTextInfo,
UnicodeToTextFallbackUPP iFallback,
OptionBits iControlFlags,
LogicalAddress iInfoPtr);

iUnicodeToTextInfo
The Unicode converter object with which the fallback handler is
to be associated. You use the function CreateUnicodeToTextInfo
(page 148) or CreateUnicodeToTextInfoByEncoding (page 150) to
obtain a Unicode converter object of this type.

iFallback A universal procedure pointer to the application-defined
fallback routine. For a description of the function prototype that
your fallback handler must adhere to, see
UnicodeToTextFallbackProcPtr (page 136). For a description of
how to create your own fallback handler, see
MyUnicodeToTextFallbackProc (page 191). You should use the
NewUnicodeToTextFallbackProc macro to convert a pointer to
your fallback handler into a UnicodeToTextFallbackUPP. See the
example in this function’s discussion.

iControlFlags Control flags that stipulate which fallback handler the Unicode
Converter should call—the application-defined fallback handler
or the default handler—if a fallback handler is required, and the
sequence in which the Unicode Converter should call the
186 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
fallback handlers if either can be used when the other fails or is
unavailable. Control flags can also specify whether the
application-defined fallback handler can move memory. See
“Fallback-Handler Control Flags” (page 128).

iInfoPtr The address of a block of memory to be passed to the
application-defined fallback handler. The Unicode Converter
passes this pointer to the application-defined fallback handler as
the last parameter when it calls the fallback handler. Your
application can use this memory block to store data required by
your fallback handler whenever it is called. This is similar in use
to a reference constant (refcon). If you don’t need to use a
memory block, specify NULL for this parameter.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) in “Basic Text Types Reference.”

DISCUSSION

You use this function to specify a fallback handler to be used for converting a
Unicode text segment to another encoding when the Unicode Converter cannot
convert the text using the mapping table specified by the Unicode converter
object passed to the functions ConvertFromUnicodeToText (page 152),
ConvertFromUnicodeToTextRun (page 163), ConvertFromUnicodeToPString
(page 179), and ConvertFromUnicodeToScriptCodeRun (page 169). You can define
multiple fallback handlers and associate them with different Unicode converter
objects, depending on your requirements.

The following example shows how to install an application-defined fallback
handler. You can name your application-defined fallback handler anything you
choose. The name, MyUnicodeToTextFallbackProc, used in this example is not
significant. However, you must adhere to the parameters, the return type, and
the calling convention as expressed in this example, which follows the
prototype, because a pointer to this function must be of type
UnicodeToTextFallbackProcPtr as defined in the UnicodeConverter.h header file.

The UnicodeConverter.h header file also defines the UnicodeToTextFallbackUPP
type and the NewUnicodeToTextFallbackProc macro. See “Application-Defined
Function” (page 191) for a description of the parameters of an
application-defined fallback handler.
Unicode Converter Functions 187
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
Listing 4-1 Installing an Application-Defined Fallback Handler

#include <Types.h>
#include <Errors.h>
#include <MixedMode.h>
#include <TextCommon.h>
#include <UnicodeConverter.h>
pascal OSStatus MyUnicodeToTextFallbackProc(

UniChar *iSrcUniStr, ByteCount iSrcUniStrLen, ByteCount *oSrcConvLen,
TextPtr oDestStr, ByteCount iDestStrLen,
ByteCount *oDestConvLen, LogicalAddress iInfoPtr,
ConstUnicodeMappingPtr iUnicodeMappingPtr) {

.

.

.

/* include your actual fallback handler implementation here */
}

.

.

.
main () {

.

.

.
UnicodeMapping mapping;
UnicodeToTextInfo unicodeToTextInfo;
UnicodeToTextFallbackUPP fallbackProc;
OSStatus status;

.

.

.
mapping.unicodeEncoding =

CreateTextEncoding(kTextEncodingUnicodeDefault,
kTextEncodingDefaultVariant, kUnicode16BitFormat);

mapping.otherEncoding =
CreateTextEncoding(kTextEncodingMacRoman,
kTextEncodingDefaultVariant, kTextEncodingDefaultFormat);

mapping.mappingVersion = kUnicodeUseLatestMapping;
status = CreateUnicodeToTextInfo(&mapping, &unicodeToTextInfo);

.

188 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
.

.
fallbackProc =

NewUnicodeToTextFallbackProc(MyUnicodeToTextFallbackProc);
status = SetFallbackUnicodeToText(unicodeToTextInfo, fallbackProc,

kUnicodeFallbackCustomFirst, NULL);
.
.
.

status = ConvertFromUnicodeToText(unicodeToTextInfo,
.
.
.

}

SetFallbackUnicodeToTextRun 4

Associates an application-defined fallback handler with a specific Unicode
converter object for multiple text runs to be used with the function
ConvertFromUnicodeToTextRun (page 163) or ConvertFromUnicodeToScriptCodeRun
(page 169).

pascal OSStatus SetFallbackUnicodeToTextRun (
UnicodeToTextRunInfo iUnicodeToTextRunInfo,
UnicodeToTextFallbackUPP iFallback,
OptionBits iControlFlags,
LogicalAddress iInfoPtr);

iUnicodeToTextInfo
The Unicode converter object with which the fallback handler is
to be associated. You use the function
CreateUnicodeToTextRunInfo (page 158),
CreateUnicodeToTextRunInfoByEncoding (page 160), or
CreateUnicodeToTextRunInfoByScriptCode (page 162) to obtain a
Unicode converter object to specify for this parameter.

iFallback A universal procedure pointer to the application-defined
fallback routine. For a description of the function prototype that
your fallback handler must adhere to, see
Unicode Converter Functions 189
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
UnicodeToTextFallbackProcPtr (page 136). For a description of
how to create your own fallback handler, see
MyUnicodeToTextFallbackProc (page 191). You should use the
NewUnicodeToTextFallbackProc macro described in the
discussion of the function SetFallbackUnicodeToText (page 186).

iControlFlags Control flags that stipulate which fallback handler the Unicode
Converter should call—the application-defined fallback handler
or the default handler—if a fallback handler is required, and the
sequence in which the Unicode Converter should call the
fallback handlers if either can be used when the other fails or is
unavailable. Control flags can also specify whether the
application-defined fallback handler can move memory. See
“Fallback-Handler Control Flags” (page 128).

iInfoPtr The address of a block of memory to be passed to the
application-defined fallback handler. The Unicode Converter
passes this pointer to the application-defined fallback handler as
the last parameter when it calls the fallback handler. Your
application can use this block to store data required by your
fallback handler whenever it is called. This is similar in use to a
reference constant (refcon). If you don’t need to use a memory
block, specify NULL for this parameter.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) in the chapter “Basic Text Types Reference.”

DISCUSSION

You use this function to specify a fallback handler to be used for converting a
Unicode text segment to another encoding when the Unicode Converter cannot
convert the text using the mapping table specified by the Unicode converter
object passed to the function ConvertFromUnicodeToText (page 152),
ConvertFromUnicodeToTextRun (page 163), ConvertFromUnicodeToPString
(page 179), or ConvertFromUnicodeToScriptCodeRun (page 169). You can define
multiple fallback handlers and associate them with different Unicode converter
objects, depending on your requirements.
190 Unicode Converter Functions

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
Application-Defined Function 4

You can name the application-defined fallback handler anything you choose—
the name is not significant. Here, the name MyUnicodeToTextFallbackProc is used
for illustrative purposes. However, the parameters, the return type, and the
calling convention are all important, since a pointer to the application-defined
fallback handler function must be of type UnicodeToTextFallbackProcPtr as
defined in UnicodeConverter.h.

MyUnicodeToTextFallbackProc 4

Converts a Unicode text element for which there is no destination encoding
equivalent in the appropriate mapping table to the fallback character sequence
defined by your fallback handler, and returns the converted character sequence
to the Unicode Converter.

pascal OSStatus MyUnicodeToTextFallbackProc(
UniChar *iSrcUniStr,
ByteCount iSrcUniStrLen,
ByteCount *oSrcConvLen,
TextPtr *oDestStr,
ByteCount iDestStrLen,
ByteCount *oDestConvLen,
LogicalAddress *iInfoPtr
ConstUnicodeMappingPtr iUnicodeMappingPtr);

iSrcUniStr A pointer to a single UTF-16 character to be mapped by the
fallback handler.

iSrcUniStrLen The length in bytes of the UTF-16 character indicated by the
iSrcUniStr parameter. Usually this is 2 bytes, but it could be 4
bytes for a non-BMP character.

oSrcConvLen A pointer to a value of type ByteCount. On output, the length in
bytes of the portion of the Unicode character that was actually
processed by your fallback handler. Your fallback handler
Application-Defined Function 191
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
returns this value. It should set this to 0 if none of the text was
handled, or 2 or 4 if the Unicode character was handled. This
value is initialized to 0 before the fallback handler is called.

oDestStr A pointer to the output buffer where your handler should place
any converted text.

iDestStrLen The maximum size in bytes of the buffer provided by the
oDestStr parameter.

oDestConvLen A pointer to a value of type ByteCount. On output, the length in
bytes of the fallback character sequence generated by your
fallback handler. Your handler should return this length. It is
initialized to 0 (zero) before the fallback handler is called.

iInfoPtr A pointer to a block of memory allocated by your application,
which can be used by your fallback handler in any way that you
like. This is the same pointer passed as the last parameter of
SetFallbackUnicodeToText or SetFallbackUnicodeToTextRun.
How you use the data passed to you in this memory block is
particular to your handler. This is similar in use to a reference
constant (refcon).

iUnicodeMappingPtr
A constant pointer to a structure of type UnicodeMapping
(page 131). This structure identifies a Unicode encoding
specification and a particular base encoding specification.

function result A result code. See “Text Encoding Conversion Manager Result
Codes” (page 48) in the chapter “Basic Text Types Reference.”

DISCUSSION

The Unicode Converter calls your fallback handler when it cannot convert a text
string using the mapping table specified by the Unicode converter object passed
to either ConvertFromUnicodeToText or ConvertFromUnicodeToPString. The control
flags you set for the controlFlags parameter of the function
SetFallbackUnicodeToText (page 186) or the SetFallbackUnicodeToTextRun
(page 189) stipulate which fallback handler the Unicode Converter should call
and which one to try first if both can be used.

When the Unicode Converter calls your handler, it passes to it the Unicode
character to be converted and its length, a buffer for the converted string you
return and the buffer length, and a pointer to a block of memory containing the
192 Application-Defined Function

 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
data your application supplied to be passed on to your fallback handler. For a
description of the function prototype your handler should adhere to, see
UnicodeToTextFallbackProcPtr (page 136).

After you convert the Unicode text segment to fallback characters, you return
the fallback character sequence of the converted text in the buffer provided to
you and the length in bytes of this fallback character sequence. You also return
the length in bytes of the portion of the source Unicode text element that your
handler actually processed.

You provide a fallback-handler function for use with the function
CreateUnicodeToTextInfoByEncoding (page 150), ConvertFromUnicodeToPString
(page 179), ConvertFromUnicodeToTextRun (page 163), or
ConvertFromUnicodeToScriptCodeRun (page 169). You associate an
application-defined fallback handler with a particular Unicode converter object
you intend to pass to the conversion function when you call it.

Your handler should return noErr if it can handle the fallback, or
kTECUnmappableElementErr if it cannot. It can return other errors for exceptional
conditions, such as when the output buffer is too small. If your handler returns
kTECUnmappableElementErr, then oSrcConvLen and oDestConvLen are ignored
because either the default handler will be called or the default fallback sequence
will be used.

Text converted from UTF-8 will already have been converted to UTF-16 before
the fallback handler is called to process it. Your fallback handler should do all of
its processing on text encoded in UTF-16.

Ideally your application-defined fallback handler should not call any Memory
Manager function or any toolbox function that would move memory. If it needs
memory, you should allocate it before the call to SetFallbackUnicodeToText or
SetFallbackUnicodeToTextRun, and pass a reference to the memory either
directly in the iInfoPtr parameter or in the data referenced by iInfoPtr.

If your application-defined fallback handler does not move memory, then you
should set the bit corresponding to kUnicodeFallbackInterruptSafeMask in the
iControlFlags parameter of either SetFallbackUnicodeToText or
SetFallbackUnicodeToTextRun (depending on whether you want to install the
handler in a UnicodeToTextInfo object or a UnicodeToTextRunInfo object,
respectively). If you do this, ConvertFromUnicodeToText (or
ConvertFromUnicodeToTextRun) calls that use that UnicodeToTextInfo (or
UnicodeToTextRunInfo) object will not need to lock relocatable memory items
and can therefore operate more efficiently.
Application-Defined Function 193
 Apple Computer, Inc. 10/4/99

C H A P T E R 4

Unicode Converter Reference
If your application-defined fallback handler must move memory, you should
leave the bit corresponding to kUnicodeFallbackInterruptSafeMask unset when
installing the callback handler. In such cases, calls to ConvertFromUnicodeToText
or ConvertFromUnicodeToTextRun that use that use that UnicodeToTextInfo (or
UnicodeToTextRunInfo) object will lock the necessary relocatable memory items
to ensure that the fallback handlers cannot move them.

To associate a fallback-handler function with a Unicode converter object you
use the SetFallbackUnicodeToText (page 186) and SetFallbackUnicodeToTextRun
(page 189) functions. For these functions, you must pass a universal procedure
pointer (UniversalProcPtr). This is derived from a pointer to your function by
using the predefined macro NewUnicodeToTextFallbackProc.

For versions of the Unicode Converter prior to 1.2, the fallback handler may
receive a multiple character text element, so the source string length value
could be greater than 2 and the fallback handler may set srcConvLen to a value
greater than 2. In versions earlier than 1.2.1, the srcConvLen and destConvLen
variables are not initialized to 0; both values are ignored unless the fallback
handler returns noErr.

For a complete description of how to use universal procedure pointers, refer to
Inside Macintosh: PowerPC System Software.
194 Application-Defined Function

 Apple Computer, Inc. 10/4/99

Appendixes
 Apple Computer, Inc. 10/4/99

© Apple Computer, Inc. 10/4/99

A P P E N D I X A

Figure A-0
Listing A-0
Table A-0
Writing Custom Plug-Ins A

This document provides information on writing plug-ins for text encoding
conversion on Mac OS–based computers.

Text encoding conversion plug-ins, which provide conversion services between
pairs of encodings, inform the Text Encoding Conversion Manager about their
conversion and encoding analysis capabilities. The Text Encoding Conversion
Manager sets up plug-ins and tears them down; the plug-ins perform
conversions, handle caller options, and examine text encodings.

Support for new encodings is provided by writing new text encoding plug-ins.
Plug-ins are implemented as Code Fragment Manager (CFM) libraries.

The number and kind of text encodings that the Text Encoding Conversion
Manager supports depends on the conversion plug-ins that are currently
installed in the system. Text encoding conversion plug-ins are installed in the
Text Encodings folder within the System Folder.

Generally, plug-ins provide algorithmic conversions, although plug-ins can also
provide mapping-table-based conversions. Mapping-table-based conversions
provided by the Unicode Converter are available through a provided plug-in
which calls the Unicode Converter.

The Text Encoding Conversion Manager provides mechanisms to create
converter objects to communicate with the plug-ins.

Plug-ins are implemented as code fragments. The main export symbol of the
code fragment is a routine that returns the address of a structure of type
TECPluginDispatchTable. The structure is a plug-in dispatch table that contains a
dispatch table format version number, a signature for the plug-in, and hooks for
the methods each plug-in needs to support.

The filename of a plug-in does not affect the actual text conversion performed
by the Text Encoding Conversion Manager.

Export symbols of the code fragment plug-in include the standard CFM
initialization and termination routines as well as the main routine.
197
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
The initialization routine is called by the Text Encoding Conversion Manager
when the plug-in is loaded. It must return noErr or the plug-in is not installed.
For example,

OSErr INIT_KoreanPlugin(InitBlockPtr initBlkPtr){
return noErr;
}

The termination routine performs cleanup before the plug-in is unloaded. For
example,

void TERM_KoreanPlugin(void)
{
}

The main export symbol is the name of the routine that returns the address of
the TECPluginDispatchTable. Because this is the main export symbol, the table is
loaded after the plug-in has been installed by the Text Encoding Conversion
Manager. For example,

TECPluginDispatchTable *GetKoreanDispatchTable(void)
{
return &KoreanPluginDispatchTable;
}

The table consists of a dispatch table format version number, a signature that
uniquely identifies the plug-in, and routine pointers to the plug-in’s methods.
The methods are discussed later in this appendix. The compatible version
number is always less than or equal to the current version number.

struct TECPluginDispatchTable {
/* version information */
TECPluginVersion version;
TECPluginVersion compatibleVersion;
TECPluginSignature PluginID;

/* converter hooks */
TECPluginNewEncodingConverterPtr PluginNewEncodingConverter;
TECPluginClearContextInfoPtr PluginClearContextInfo;
TECPluginConvertTextEncodingPtr PluginConvertTextEncoding;
TECPluginFlushConversionPtr PluginFlushConversion;
TECPluginDisposeEncodingConverterPtr PluginDisposeEncodingConverter;
198
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
/* sniffer hooks */
TECPluginNewEncodingSnifferPtr PluginNewEncodingSniffer;
TECPluginClearSnifferContextInfoPtr PluginClearSnifferContextInfo;
TECPluginSniffTextEncodingPtr PluginSniffTextEncoding;
TECPluginDisposeEncodingSnifferPtr PluginDisposeEncodingSniffer;

/* Support encoding information. These hooks can be implemented as resources. */
TECPluginGetCountAvailableTextEncodingsPtr

PluginGetCountAvailableTextEncodings;
TECPluginGetCountAvailableTextEncodingPairsPtr

PluginGetCountAvailableTextEncodingPairs;
TECPluginGetCountDestinationTextEncodingsPtr

PluginGetCountDestinationTextEncodings;
TECPluginGetCountSubTextEncodingsPtr PluginGetCountSubTextEncodings;
TECPluginGetCountAvailableSniffersPtr PluginGetCountAvailableSniffers;
TECPluginGetCountWebEncodingsPtr PluginGetCountWebTextEncodings;
TECPluginGetCountMailEncodingsPtr PluginGetCountMailTextEncodings;

TECPluginGetTextEncodingInternetNamePtr PluginGetTextEncodingInternetName;
TECPluginGetTextEncodingFromInternetNamePtr

PluginGetTextEncodingFromInternetName;
};
typedef struct TECPluginDispatchTable TECPluginDispatchTable;

Each plug-in must implement routines for creating the converter object,
resetting the state of the converter object, encoding conversions, and disposing
of the converter object. That is, the following routine pointers in the dispatch
table should be valid for a basic plug-in:

TECPluginNewEncodingConverterPtr
TECPluginClearContextInfoPtr
TECPluginConvertTextEncodingPtr
TECPluginDisposeEncodingConverterPtr

/* You can implement the following routine pointers or use their
corresponding resources. */
TECPluginGetCountAvailableTextEncodingsPtr
TECPluginGetCountAvailableTextEncodingPairsPtr
TECPluginGetCountDestinationTextEncodingsPtr
199
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
Example:

TECPluginDispatchTable KoreanPluginDispatchTable = {
kTECPluginDispatchTableCurrentVersion,
kTECPluginDispatchTableCurrentVersion,
kTECKoreanPluginSignature,

&ConverterPluginNewEncodingConverter,
&ConverterPluginClearContextInfo,
&ConverterPluginConvertTextEncoding,
&ConverterPluginFlushConversion,
&ConverterPluginDisposeEncodingConverter,

&ConverterPluginNewEncodingSniffer,
&ConverterPluginClearSnifferContextInfo,
&ConverterPluginSniffTextEncoding,
&ConverterPluginDisposeEncodingSniffer,

nil, // &ConverterPluginGetAvailableTextEncodings,
nil, // &ConverterPluginGetAvailableTextEncodingPairs,
nil, // &ConverterPluginGetDestinationTextEncodings,
nil, // PluginGetSubTextEncodings,

nil, // PluginGetSniffers;
nil, // PluginGetWebTextEncodings;
nil, // PluginGetMailTextEncodings;

nil, // PluginGetTextEncodingMIMEName,
nil, // PluginGetTextEncodingFromMIMEName,
};

The Text Encoding Conversion Manager communicates with its plug-ins
through structures of type TECConverterContextRec. Context structures are
created and disposed of by the Text Encoding Conversion Manager. Plug-ins are
called to construct and dispose of their own data. The Text Encoding
Conversion Manager and plug-ins communicate with each other in the
following ways:

1. The Text Encoding Conversion Manager supplies input and output buffers to
plug-ins.

2. Plug-ins report back how much text they have converted.
200
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
Note
TECConverterContextRec is used by encoding converter
objects. TECSnifferContextRec is used by encoding sniffers.
Encoding sniffers are discussed in later sections.

struct TECConverterContextRec {
/* public - manipulated externally and within plug-in */
Ptr pluginRec;
TextEncoding sourceEncoding;
TextEncoding destEncoding;
UInt32 reserved1;
UInt32 reserved2;
TECBufferContextRec bufferContext;

/* private - manipulated only within plug-in */
UInt32 contextRefCon;
ProcPtr conversionProc;
ProcPtr flushProc;
ProcPtr clearContextInfoProc;
UInt32 options1;
UInt32 options2;
TECPluginStateRec pluginState; /* state information */

};
typedef struct TECConverterContextRec TECConverterContextRec;

Most of the public section of the TECConverterContextRec structure is
maintained by the Text Encoding Conversion Manager and should not be
modified by the plug-in. The bufferContext field is set up by the Text Encoding
Conversion Manager to point to the input and output buffers before the
conversion routine, pointed to by PluginConvertTextEncoding (a routine pointer
defined in the plug-in dispatch table), is called. On exit from that routine, the
plug-in should update this structure to indicate how much of the input buffer
was consumed and how much text was placed in the output buffer.

struct TECBufferContextRec {
TextPtr textInputBuffer;
TextPtr textInputBufferEnd;
TextPtr textOutputBuffer;
TextPtr textOutputBufferEnd;
TextPtr encodingInputBuffer; /* currently not used */
TextPtr encodingInputBufferEnd; /* currently not used */
201
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
TextPtr encodingOutputBuffer; /* currently not used */
TextPtr encodingOutputBufferEnd; /* currently not used */

};
typedef struct TECBufferContextRec TECBufferContextRec;

The private section of the TECConverterContextRec structure provides persistent
storage for a plug-in between conversion routine calls. It isn’t modified by the
Text Encoding Conversion Manager. For example, the private section can be
used to store state information during a multi-pass encoding conversion. If a
plug-in requires more space than is provided in this structure to keep its local
data, it can maintain a pointer or a handle to its data in the contextRefCon field.

The fields in the private section can be used in any way a particular plug-in
requires. All current Apple plug-ins set up these fields with the routine pointed
to by PluginNewEncodingConverter, a routine pointer defined in the plug-in
dispatch table, in the following way:

The contextRefCon field is set to nil. It can be used to store a handle to
additional information handled by the plug-in.

The conversionProc field points to a routine within the plug-in that performs a
specific conversion, for example, EUC to ISO-2022-JP.

The flushProc field points to a routine within the plug-in that flushes the
output buffer with some text sequence in order to set the output buffer state to a
certain text mode, such as ASCII mode. It is currently used in EUC to
ISO-2022-JP conversion.

The clearContextInfoProc field points either to a generic routine that clears all
state information in the private section or to custom routines that clear the
conversion context for each specific conversion.

Only state1, state2, state3, and state4 of the TECPluginStateRec structure are
used for storing plug-in state information. But you can use the rest in any way
you want.

struct TECPluginStateRec {
UInt8 state1;
UInt8 state2;
UInt8 state3;
UInt8 state4;
UInt32 longState1;
UInt32 longState2;
202
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
UInt32 longState3;
UInt32 longState4;
};

typedef struct TECPluginStateRec TECPluginStateRec;

When a converter object is created, the creation routine pointed to by
PluginNewEncodingConverter, a routine pointer defined in the plug-in dispatch
table, is called by the Text Encoding Conversion Manager to allow the plug-in
to set up its TECConverterContextRec structure. This creation routine sets up the
conversion routine pointer, clear context information routine pointer, flush
routine pointer, and the context reference value.

The TECConverterContextRec structure needs to contain all the information the
plug-in required to perform conversions between the encodings specified in
inputEncoding and outputEncoding.

Note that text encoding specifications (type TextEncoding) are considered
private structures. They are defined as of type UInt32 and can be passed by
value. Text encoding specifications are persistent objects. For example,

static OSStatus ConverterPluginNewEncodingConverter(
TECObjectRef *newEncodingConverter,
TECConverterContextRec *plugContext,
TextEncoding inputEncoding,
TextEncoding outputEncoding)

{
#pragma unused(newEncodingConverter)

OSStatus status = noErr;
TextEncoding encodingKSC_5601_87 = CreateTextEncoding(kTextEncodingKSC_5601_87,

kTextEncodingDefaultVariant, kTextEncodingDefaultFormat);
TextEncoding encodingISO_2022_KR = CreateTextEncoding(kTextEncodingISO_2022_KR,

kTextEncodingDefaultVariant, kTextEncodingDefaultFormat);
TextEncoding encodingEUC_KR = CreateTextEncoding(kTextEncodingEUC_KR,

kTextEncodingDefaultVariant, kTextEncodingDefaultFormat);
TextEncoding encodingMacKorean = CreateTextEncoding(kTextEncodingMacKorean,

kTextEncodingDefaultVariant, kTextEncodingDefaultFormat);

/* initialize private data in plugContext */
plugContext->conversionProc = nil;
plugContext->clearContextInfoProc = nil;
203
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
plugContext->flushProc = nil;
plugContext->contextRefCon = (unsigned long)nil;

/* create the converter if possible */
if (inputEncoding == encodingKSC_5601_87) {

if (outputEncoding == encodingEUC_KR || outputEncoding == encodingMacKorean) {
plugContext->conversionProc = (ProcPtr) &ConvertKSC_5601toEUC_KR;
plugContext->clearContextInfoProc = (ProcPtr) &ClearConverterContext;

} else{
status = kTextUnsupportedEncodingErr;

}

} else if (inputEncoding == encodingISO_2022_KR) {
if (outputEncoding == encodingEUC_KR || outputEncoding == encodingMacKorean) {

plugContext->conversionProc = (ProcPtr) &ConvertISO2022KRtoEUC_KR;
plugContext->clearContextInfoProc = (ProcPtr) &ClearConverterContext;

} else {
status = kTextUnsupportedEncodingErr;
}

} else if (inputEncoding == encodingEUC_KR ||
inputEncoding == encodingMacKorean) {

if (outputEncoding == encodingKSC_5601_87) {
plugContext->conversionProc = (ProcPtr) &ConvertEUC_KRtoKSC_5601;
plugContext->clearContextInfoProc = (ProcPtr) &ClearConverterContext;

} else if (outputEncoding == encodingISO_2022_KR) {
plugContext->conversionProc = (ProcPtr) &ConvertEUC_KRtoISO2022KR;
plugContext->clearContextInfoProc = (ProcPtr) &ClearConverterContext;
plugContext->flushProc = (ProcPtr) &FlushTextEUC_KRtoISO_2022_KR;

} else{status = kTextUnsupportedEncodingErr;
}
} else {

status = kTextUnsupportedEncodingErr;
}
return status;
}

The clear context routine pointed to by PluginClearContextInfo, a routine
pointer defined in the plug-in dispatch table, is called to clear out the plug-in
context or state information to prepare for a new conversion of the same type. It
204
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
is always called by the Text Encoding Conversion Manager right after creating
the converter object. For example,

static OSStatus ConverterPluginClearContextInfo(
TECObjectRef encodingConverter,
TECConverterContextRec *plugContext)
{
OSStatus status = noErr;
status = (
*((TECPluginClearContextInfoPtr)
(plugContext->clearContextInfoProc))
) (encodingConverter, plugContext);
return status;
}

The pointer plugContext->clearContextInfoProc points to a clear context
routine. It is set up in the ConverterPluginNewEncodingConverter routine above
when a converter object is created. For example,

OSStatus ClearConverterContext(
TECObjectRef encodingConverter,
TECConverterContextRec *plugContext)
{
#pragma unused (encodingConverter)
OSStatus status = noErr;
if (plugContext)
{

// for normal state
plugContext->pluginState.state1 = kASCIIState;

// for shift in/out state
plugContext->pluginState.state2 = kShiftInState;

// for saved byte
plugContext->pluginState.state3 = kNullSaveByte;

// for pure KSC <-> EUC conversion
plugContext->pluginState.state4 = kKSC5601_92State;
plugContext->pluginState.longState1 = 0;
plugContext->pluginState.longState2 = 0;
205
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
plugContext->pluginState.longState3 = 0;
plugContext->pluginState.longState4 = 0;
}

else
{
status = paramErr;
}
return status;
}

Note that you may directly call a particular ClearConverterContext routine in
the ConverterPluginClearContextInfo routine for clearing the converter context
if you don’t care what the conversion is. The Text Encoding Conversion
Manager provides a convenient way, using the routine pointer
plugContext->clearContextInfoProc, to call a clear context routine that is set up
according to the input and output encodings when the converter object is
created.

The conversion routine pointed to by PluginConvertTextEncoding, a routine
pointer defined in the plug-in dispatch table, is called to perform the actual
encoding conversion.

The bufferContext field of a structure of type TECBufferContextRec—used for
the TECConverterContextRec parameter of the conversion routine—points to the
beginning and end of the input and output buffers.

The plug-in should convert the text in the input buffer to the desired encoding
and place it in the output buffer, deciding how much of the input text it can
convert and fit in the output buffer. Upon exit, the plug-in needs to update the
inputBuffer and outputBuffer pointers to reflect how much of the text was
converted an how large the output was. The plug-in should save all necessary
state information so that it can continue the conversion where it left off in the
event that all of the input text could not fit, after conversion, in the output
buffer. When converting the text, convert as much of the input text as you can
and still fit the converted text in the output buffer. For example,

static OSStatus ConverterPluginConvertTextEncoding(
TECObjectRef encodingConverter, TECConverterContextRec
*plugContext)
{
OSStatus status = noErr;
206
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
status = (
*((TECPluginConvertTextEncodingPtr) (plugContext->conversionProc)))

(encodingConverter, plugContext);
return status;
}

The pointer plugContext->conversionProc points to a encoding conversion
routine. It is setup in the ConverterPluginNewEncodingConverter routine above
when a converter object is created. For example,

OSStatus ConvertISO2022KRtoEUC_KR(
TECObjectRef encodingConverter, TECConverterContextRec
*plugContext)
{
#pragma unused (encodingConverter)
OSStatus status = noErr;

if (plugContext) {
BytePtr inBuf = plugContext->bufferContext.textInputBuffer;
BytePtr inEnd = plugContext->bufferContext.textInputBufferEnd;
BytePtr outBuf = plugContext->bufferContext.textOutputBuffer;
BytePtr outEnd = plugContext->bufferContext.textOutputBufferEnd;
Byte saveByte;
UInt8 escState, shiftState;

/* get state information */
escState = plugContext->pluginState.state1;
shiftState = plugContext->pluginState.state2;
saveByte = plugContext->pluginState.state3;

/* perform conversion */
/* no error message yet if there is no input */
while ((inBuf < inEnd) && (status == noErr))
{
status = HandleState(*inBuf, &escState, &shiftState,
&saveByte, &outBuf, outEnd);

/* Check if the buffer full status is actually */
/* a buffer below minimum size error. */
/* And advance the input buffer if appropriate. */
207
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
PostProcess(plugContext->bufferContext.textOutputBuffer,
outBuf, &inBuf, inEnd, &escState, &status);
}
/* save state information */
plugContext->pluginState.state1 = escState;
plugContext->pluginState.state2 = shiftState;
plugContext->pluginState.state3 = saveByte;

/* save new buffer positions */
plugContext->bufferContext.textOutputBuffer = outBuf;
plugContext->bufferContext.textInputBuffer = inBuf;
}

else
{
status = paramErr;
}

return status;
}

Note that you may not directly use the ConverterPluginConvertTextEncoding
routine for converting the encodings because you don’t have the conversion
information. The Text Encoding Conversion Manager provides a convenient
way to call a conversion routine that is set up according to the input and output
encodings.

The destruction routine pointed to by PluginDisposeEncodingConverter, a
routine pointer defined in the plug-in dispatch table, is called for each plug-in
referenced in a converter object when it is disposed of. The plug-in is
responsible for disposing of any memory or other resources such as conversion
tables it may have created or loaded from disk in the creation routine. For
example,

static OSStatus ConverterPluginDisposeEncodingConverter(
TECObjectRef newEncodingConverter,
TECConverterContextRec *plugContext)
{
OSStatus status = noErr;
return status;
}

208
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
The flush routine pointed to by PluginFlushConversion, a routine pointer
defined in the plug-in dispatch table, is called to flush the output buffer to
certain mode. For example, this is needed in the EUC_KR to ISO2022_KR
conversion because after an input buffer has been consumed, a shift in sequence
may be needed to change back to ASCII mode in the output buffer.

OSStatus FlushTextEUC_KRtoISO_2022_KR(
TECObjectRef encodingConverter,
TECConverterContextRec *plugContext)
{
#pragma unused(encodingConverter)

OSStatus status = noErr;

if (plugContext)
{
BytePtr outBuf = plugContext->bufferContext.textOutputBuffer;
BytePtr outEnd = plugContext->bufferContext.textOutputBufferEnd;
UInt8 isoState, shiftState;
Byte saveByte;

isoState = plugContext->pluginState.state1;
shiftState = plugContext->pluginState.state2;
saveByte = plugContext->pluginState.state3;
if (shiftState != kShiftInState) {
/* Shift in sequence */
status = OutputEscapeSequence(
kShiftInState, &outBuf, outEnd);

if (status == noErr)
{

/* Remember to reset back to shift in mode if no error */
isoState = kDesignationState;
shiftState = kShiftInState;
saveByte = kNullSaveByte;
}

/* Check if the buffer full status is actually */
/* a buffer below minimum size error */
if ((status == kTECOutputBufferFullStatus) &&
209
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
(outBuf == plugContext->bufferContext.textOutputBuffer))
status = kTECBufferBelowMinimumSizeErr;

/* Save state information & new buffer positions */
plugContext->pluginState.state1 = isoState;
plugContext->pluginState.state2 = shiftState;
plugContext->pluginState.state3 = saveByte;
plugContext->bufferContext.textOutputBuffer = outBuf;
}
}

else
{
status = paramErr;
}

return status;
}

Note
UTF7 maintains an internal bit buffer that needs to be
flushed. �

The following routines, defined in the plug-in dispatch table, provide
information to the Text Encoding Conversion Manager to find out what services
are available to it in each of its plug-ins. These services include which
encodings the plug-in knows about and which conversions it can perform on
those encodings.

Some routines may be replaced by resources. Resources are preferable.
However, in some cases, you might want to use the routines—for example, for
the Unicode plug-in, which needs to scan tables.

The routine pointed to by PluginGetCountAvailableTextEncodings, a routine
pointer defined in the plug-in dispatch table, counts the actual number of
available text encodings and fills in an array of type TextEncoding with the
encodings supported by the plug-in. This is used by the
210
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
TECGetAvailableTextEncodings routine in the Text Encoding Conversion
Manager.

typedef OSStatus (*TECPluginGetCountAvailableTextEncodingsPtr)
(TextEncoding *availableEncodings,
ItemCount maxAvailableEncodings,
ItemCount *actualAvailableEncodings);

The routine pointed to by PluginGetCountAvailableTextEncodingPairs, a routine
pointer defined in the plug-in dispatch table, counts the actual number of
available text encoding conversions and fills in an array of type
TECConversionInfo with the encoding conversions supported by the plug-in.
This is used by the TECGetAvailableTextEncodings routine in the Text Encoding
Conversion Manager.

typedef OSStatus (*TECPluginGetCountAvailableTextEncodingPairsPtr)
(TECConversionInfo *availableEncodings,
ItemCount maxAvailableEncodings,
ItemCount *actualAvailableEncodings);

A TECConversionInfo structure is used to describe conversion services available
in a plug-in. Each plug-in is required to provide information about the actual
encoding conversions in a given buffer. This is used by
TECGetDirectTextEncodingConversions in the Text Encoding Conversion
Manager.

struct TECConversionInfo {
TextEncoding sourceEncoding;
TextEncoding destinationEncoding;
UInt16 reserved1;
UInt16 reserved2;
};
211
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
Each structure contains a pair of source and destination encodings that
describes the kind of conversion the plug-in can perform. An encoding is
created by using the CreateTextEncoding function. For example,

TextEncoding encodingKSC_5601_87 = CreateTextEncoding(
kTextEncodingKSC_5601_87,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat
);

The variant and format are discussed in conjunction with the resource of type
kTECAvailableEncodingsResType later in this appendix.

The routine pointed to by PluginGetCountDestinationTextEncodings, a routine
pointer defined in the plug-in dispatch table, counts the actual number of
available destination text encodings. The routine also fills in an array of type
TextEncoding with all the text encodings that the parameter inputEncoding can
be directly converted to in one step. This routine is used by the Text Encoding
Conversion Manager to find and evaluate paths from one encoding to another.

Note
A conversion may go through many intermediate
encodings. �

typedef OSStatus (*TECPluginGetCountDestinationTextEncodingsPtr)
(TextEncoding inputEncoding,
TextEncoding *destinationEncodings,
ItemCount maxDestinationEncodings,
ItemCount *actualDestinationEncodings
);

The routine pointed to by PluginGetCountSubTextEncodings, a routine pointer
defined in the plug-in dispatch table, finds out which subencodings are
packaged within a text encoding. For example EUC-JP and ISO 2022-JP both
contain JIS X0208, JIS X0212, JIS Roman, and half-width Katakana.

typedef OSStatus (*TECPluginGetCountSubTextEncodingsPtr)
(TextEncoding inputEncoding,
TextEncoding subEncodings[],
ItemCount maxSubEncodings,
ItemCount *actualSubEncodings);
212
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
The routine pointed to by PluginGetCountAvailableSniffers, a routine pointer
defined in the plug-in dispatch table, counts the actual number of available
sniffers and fills in an array of type TextEncoding with the encodings that can be
sniffed by the plug-in.

typedef OSStatus (*TECPluginGetCountAvailableSniffersPtr)
(TextEncoding *availableEncodings,
ItemCount maxAvailableEncodings,
ItemCount *actualAvailableEncodings);

The routine pointed to by PluginGetTextEncodingInternetName, a routine pointer
defined in the plug-in dispatch table, finds the name of a text encoding as it
would appear in a Multipurpose Internet Mail Extensions (MIME) header. The
routine pointed to by PluginGetTextEncodingFromInternetName performs the
inverse.

typedef OSStatus (*TECPluginGetTextEncodingInternetNamePtr)
(TextEncoding textEncoding,
Str255 encodingName);

typedef OSStatus (*TECPluginGetTextEncodingFromInternetNamePtr)
(TextEncoding *textEncoding,
ConstStr255Param encodingName);

The routine pointed to by PluginGetCountWebTextEncodings, a routine pointer
defined in the plug-in dispatch table, counts the actual number of available Web
encodings and fills in an array of type TextEncoding with the Web encodings.
These encodings might appear in a Web browser encoding menu.

typedef OSStatus (*TECPluginGetCountWebEncodingsPtr)
(TextEncoding *availableEncodings,
ItemCount maxAvailableEncodings,
ItemCount *actualAvailableEncodings);

The routine pointed to by PluginGetCountMailTextEncodings, a routine pointer
defined in the plug-in dispatch table, counts the actual number of available mail
213
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
encodings and fills in an array of type TextEncoding with the mail encodings.
These encodings might appear in an email transfer encoding menu.

typedef OSStatus (*TECPluginGetCountMailEncodingsPtr)
(TextEncoding *availableEncodings,
ItemCount maxAvailableEncodings,
ItemCount *actualAvailableEncodings);

To facilitate plug-in development, avoid duplicate code, and eventually avoid
unnecessarily loading a plug-in, certain data access plug-in methods can be
implemented as resources. If these resources are present, the corresponding
routines are never called. If this information is not available until runtime, such
as is the case with the Unicode plug-in, which needs to find out which
conversion tables are available, then the plug-in is loaded and the
corresponding routine is called instead. If all of these are implemented as
resources, then initialization of the Text Encoding Conversion Manager occurs
more quickly because you don’t need to load your plug-in fragment until it is
required.

All resource IDs are kTECResourceID.

The above resources are discussed below.

The following resource type provides information that tells which encodings
the plug-in knows about.

/* supported encodings list */

type kTECAvailableEncodingsResType {

Resource macro Replaces Routines

kTECAvailableEncodingsResType PluginGetCountAvailableTextEncodings

kTECConversionInfoResType PluginGetCountAvailableTextEncodingPairs

PluginGetCountDestinationTextEncodings

kTECInternetNamesResType PluginGetTextEncodingInternetName
PluginGetTextEncodingFromInternetName

kTECLocalizedNamesResType PluginGetTextEncodingLocalizedName

kTECAvailableSniffersResType PluginGetCountAvailableSniffers

kTECWebEncodingsResType PluginGetCountWebTextEncodings

kTECMailEncodingsResType PluginGetCountMailTextEncodings

kTECSubTextEncodingsResType PluginGetCountSubTextEncodings
214
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
longint = $$CountOf (memberArray);
Array memberArray {

memberStart:
TECTextEncoding /* encoding */
memberEnd:

};
};

For example,

resource kTECAvailableEncodingsResType (kTECResourceID) {
{
kTextEncodingKSC_5601_87,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
kTextEncodingISO_2022_KR,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
kTextEncodingMacKorean,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
kTextEncodingEUC_KR,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
}
};

The above example shows that there are four encodings, namely,
kTextEncodingKSC_5601_87, kTextEncodingISO_2022_KR, kTextEncodingMacKorean,
and kTextEncodingEUC_KR, that this plug-in knows about. Since the encodings do
not have special variants and formats, default variants and formats are used. If
a plug-in supports different variants and formats, the text encodings must
appear in the list.

The first value in the resource entries above, kTextEncodingKSC_5601_87
(0x0640), with type TextEncodingBase (UInt32), as defined in TextCommon.h, is the
primary specification of the source or destination encoding. The values 0
through 32 (0x00 through 0x0020) correspond to Mac OS script codes.

The second value, with type TextEncodingVariant (UInt32), specifies the minor
variant of the base encoding. For a given TextEncodingBase, the enumeration of
215
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
variants always begins with 0. The value kTextEncodingDefaultVariant specifies
the default variant of the base encoding.

The last value, with type TextEncodingFormat (UInt32), designates a particular
way of algorithmically transforming a particular encoding, say for transmission
through communication channels that may handle only 7-bit values. These
transformations are not viewed as different encodings, but merely as different
formats for representing the same encoding. The value
kTextEncodingDefaultFormat specifies the default format of the base encoding.

Note
Only Unicode encodings can take non-zero formats
currently. �

The following resource type provides information identifying which encoding
conversions the plug-in can perform.

/* Conversion pairs */

type kTECConversionInfoResType {
longint = $$CountOf (memberArray);
Array memberArray {

memberStart:
TECTextEncoding /* source encoding */
TECTextEncoding /* dest encoding */

longint res1; /* reserved - free */
longint res2; /* reserved - free */
memberEnd:

};
};

For example,

resource kTECConversionInfoResType (kTECResourceID) {
{
/* Round trip KSC 5601 to MacKorean */
kTextEncodingKSC_5601_87,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
kTextEncodingMacKorean, kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat, 0, 0,
216
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
kTextEncodingMacKorean, kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
kTextEncodingKSC_5601_87,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat, 0, 0,

/* Round trip ISO 2022 to MacKorean */
kTextEncodingISO_2022_KR,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
kTextEncodingMacKorean, kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat, 0, 0,
kTextEncodingMacKorean, kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
kTextEncodingISO_2022_KR,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat, 0, 0,
...
}
};

The following resource type provides the name of a text encoding as it would
appear in a Multipurpose Internet Mail Extensions (MIME) header. Multiple
encodings can map to one Internet MIME name, but an Internet MIME name
maps only to the first encoding found.

/* Internet names */

type kTECInternetNamesResType {
longint = $$CountOf (memberArray);
Array memberArray {

memberStart:
ListStart:
longint = (ListEnd[$$ArrayIndex(memberArray)] -

ListStart[$$ArrayIndex(memberArray)]) / 8 - 4;
/* offset to next item */

TECTextEncoding /* text encoding of name */
pstring; /* encoding name */
align long; /* match size to C structure size */
217
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
ListEnd:
memberEnd:
};

};

For example,

resource kTECInternetNamesResType (kTECResourceID) {
{
kTextEncodingKSC_5601_87,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
"KS_C_5601-1987",
kTextEncodingKSC_5601_87,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
"KSC_5601",
kTextEncodingISO_2022_KR,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
"ISO-2022-KR",
kTextEncodingEUC_KR,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
"EUC-KR”
}
};

The above example shows that there are three encodings, namely,
kTextEncodingKSC_5601_87, kTextEncodingISO_2022KR, and kTextEncodingEUC_KR,
for which this plug-in knows the Internet names. Because the encodings do not
have special variants and formats, default variants and formats are used. One of
the encodings, kTextEncodingKSC_5601_87, has two Internet names, namely,
KS_C_5601-1987 and KSC_5601.

The following resource type provides information about the available sniffers.

/* supported sniffers list */

type kTECAvailableSniffersResType {
longint = $$CountOf (memberArray);
Array memberArray {
218
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
memberStart:
TECTextEncoding /* encoding */
memberEnd:
};

};

For example,

resource kTECAvailableSniffersResType (kTECResourceID) {
{
kTextEncodingKSC_5601_87,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
kTextEncodingISO_2022_KR,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
kTextEncodingEUC_KR, kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
}
};

The following resource type provides information about the available Web
encodings.

/* Web encodings */

type kTECWebEncodingsResType {
longint = $$CountOf (memberArray); /* number of sets in resource */
Array memberArray {

memberStart:
ListStart:

longint = (ListEnd[$$ArrayIndex(memberArray)] -
ListStart[$$ArrayIndex(memberArray)]) / 8 - 4;

 /* offset to next item */
longint = $$CountOf (localesArray);

 /* number of encodings in resource */
Array localesArray {

TECLocale /* search locales */
};
219
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
longint = $$CountOf (webEncodingsArray);
/* number of encodings in resource *

Array webEncodingsArray {
TECTextEncoding /* Web encodings */

};

ListEnd:
memberEnd:
};

};

For example,

resource kTECWebEncodingsResType (kTECResourceID) {
{

/* Korean encodings */
{
verKorea, /* Korean Republic of Korea */
},

{
kTextEncodingISO_2022_KR,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
kTextEncodingEUC_KR,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat
},

}
};

The following resource type provides information about the available
encodings for electronic mail (e-mail) by region.

/* mail encodings */
220
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
type kTECMailEncodingsResType {
longint = $$CountOf (memberArray); /* number of sets in resource */
Array memberArray {

memberStart:
ListStart:

longint = (ListEnd[$$ArrayIndex(memberArray)] -
ListStart[$$ArrayIndex(memberArray)]) / 8 - 4;

/* offset to next item */
longint = $$CountOf (localesArray);

/* number of encodings in resource */
Array localesArray {

TECLocale /* search locales */
};
longint = $$CountOf (mailEncodingsArray);

/* number of encodings in resource */
Array mailEncodingsArray {

TECTextEncoding /* mail encodings */
};

ListEnd:
memberEnd:

};
};

For example,

resource kTECMailEncodingsResType (kTECResourceID) {
{

/* Korean encodings */
{
verKorea, /* Korean Republic of Korea */
},

{
kTextEncodingMacKorean,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
kTextEncodingISO_2022_KR,
kTextEncodingDefaultVariant,
221
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
kTextEncodingDefaultFormat,
kTextEncodingEUC_KR,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
kTextEncodingUnicodeV2_0,
kTextEncodingDefaultVariant,
kUnicodeUTF7Format,
kTextEncodingUnicodeV2_0,
kTextEncodingDefaultVariant,
kUnicodeUTF8Format
},

}
};

The following resource type provides information about which subencodings
are packaged within a text encoding. For example ISO 2022-JP and EUC-JP both
contain JIS Roman, JIS X0208, JIS X0212, and half-width Katakana.

/* subencodings */

type kTECSubTextEncodingsResType {
longint = $$CountOf (memberArray);

/* number of sets of subencodings in resource */
Array memberArray {

memberStart:
ListStart:

longint = (ListEnd[$$ArrayIndex(memberArray)] -
ListStart[$$ArrayIndex(memberArray)]) / 8 - 4;

/* offset to next item */
TECTextEncoding /* search encoding */
longint = $$CountOf (subEncodingsArray);

 /* number of subencodings in resource */

Array subEncodingsArray {
TECTextEncoding /* search encoding */

};

ListEnd:
222
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
memberEnd:
};

};

For example,

resource kTECSubTextEncodingsResType (kTECResourceID) {
{
kTextEncodingISO_2022_JP,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,

{
kTextEncodingISOLatin1,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
kTextEncodingJIS_X0208_90,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
kTextEncodingJIS_X0212_90,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,

/* half-width katakana */
kTextEncodingJIS_X0201_76,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
},

kTextEncodingEUC_JP,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,

{
kTextEncodingISOLatin1,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
kTextEncodingJIS_X0208_90,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
kTextEncodingJIS_X0212_90,
223
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,

/* half-width katakana */
kTextEncodingJIS_X0201_76,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat,
...
}

}
};

Sniffers allow the Text Encoding Conversion Manager to detect the encoding
characteristics of a text stream. A context record of the sniffer is provided for
plug-ins and Text Encoding Conversion Manager communication. A sniffer is
created by the Text Encoding Conversion Manager and the routine pointed to
by PluginNewEncodingSniffer, a routine pointer defined in the plug-in dispatch
table, is called. All sniffer routines are defined in the plug-in dispatch table.
They are discussed below.

The sniffer context structure TECSnifferContextRec is similar to
TECConverterContextRec. Its public section contains information set up by the
Text Encoding Conversion Manager and returns information to the caller. The
private section is available for plug-in use.

struct TECSnifferContextRec {
/* public - manipulated externally and by plug-in */
Ptr pluginRec;
TextEncoding encoding;
ItemCount maxErrors;
ItemCount maxFeatures;
TextPtr textInputBuffer;
TextPtr textInputBufferEnd;
ItemCount numFeatures;

/* will be output to caller */
ItemCount numErrors;

/* private - manipulated only within plug-in */
UInt32 contextRefCon;
ProcPtr sniffProc;
224
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
ProcPtr clearContextInfoProc;
TECPluginStateRec pluginState; /* state information */
};

typedef struct TECSnifferContextRec TECSnifferContextRec;

When a sniffer object is created in the Text Encoding Conversion Manager, the
routine pointed to by PluginNewEncodingSniffer, a routine pointer defined in the
plug-in dispatch table, is called by the Text Encoding Conversion Manager to
allow the plug-in to set up its sniffer context structure TECSnifferContextRec.

Example:

OSStatus ConverterPluginNewEncodingSniffer(
TECSnifferObjectRef *encodingSniffer,
TECSnifferContextRec *snifContext,
TextEncoding inputEncoding)
{
#pragma unused (encodingSniffer)
OSStatus status = noErr;

TextEncoding encodingKSC_5601_87 =
CreateTextEncoding(kTextEncodingKSC_5601_87,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat);

TextEncoding encodingISO_2022_KR =
CreateTextEncoding(kTextEncodingISO_2022_KR,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat);

TextEncoding encodingEUC_KR =
CreateTextEncoding(kTextEncodingEUC_KR,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat);

TextEncoding encodingMacKorean =
CreateTextEncoding(kTextEncodingMacKorean,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat);

if (snifContext)
225
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
{
if (inputEncoding == encodingKSC_5601_87)
snifContext->sniffProc = (ProcPtr) SniffKSC_5601;

else if (inputEncoding == encodingISO_2022_KR)
snifContext->sniffProc = (ProcPtr) SniffISO2022KR;

else if (inputEncoding == encodingEUC_KR ||
inputEncoding == encodingMacKorean)
snifContext->sniffProc = (ProcPtr) SniffEUC_KR;

else
status = kTextUnsupportedEncodingErr;
}

else
{
status = paramErr;
}

return status;
}

The routine pointed to by PluginClearSnifferContextInfo, a routine pointer
defined in the plug-in dispatch table, is called to clear the sniffer context state
information for sniffing a new input buffer. This is always called by the Text
Encoding Conversion Manager right after creating the sniffer.

Example:

OSStatus ConverterPluginClearSnifferContextInfo(
TECSnifferObjectRef encodingSniffer,
TECSnifferContextRec *snifContext)
{
#pragma unused (encodingSniffer)
OSStatus status = noErr;

if (snifContext) {
snifContext->pluginState.state1 = kASCIIState;
snifContext->pluginState.state2 = kShiftInState;
snifContext->pluginState.state3 = 0;
snifContext->pluginState.state4 = 0;
226
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
snifContext->numFeatures = 0;
snifContext->numErrors = 0;
}

else
{
status = paramErr;
}

return status;
}

The routine pointed to by PluginSniffTextEncoding, a routine pointer defined in
the plug-in dispatch table, is called to perform the actual sniffing. To sniff text
encodings, loop through the input buffer and count errors and features. The
Text Encoding Conversion Manager looks at the number of errors and features
to determine the encoding of the given text. The routine is pointed to by
snifContext->sniffProc to ConverterPluginNewEncodingSniffer, which is also
defined in the plug-in dispatch table, when the sniffer is created. For example,

OSStatus SniffEUC_KR(
TECSnifferObjectRef encodingSniffer,
TECSnifferContextRec *snifContext)
{
#pragma unused (encodingSniffer)
OSStatus status = noErr;

if (snifContext)
{
BytePtr inputBuffer = snifContext->textInputBuffer;
BytePtr inputBufferEnd = snifContext->textInputBufferEnd;
ItemCount *numErrs = &snifContext->numErrors;
ItemCount maxErrs = snifContext->maxErrors;
ItemCount *numFeatures = &snifContext->numFeatures;
ItemCount maxFeatures = snifContext->maxFeatures;

if (inputBuffer && inputBufferEnd)
{
Byte c;
UInt8 isoState = snifContext->pluginState.state1;
ItemCount errs = *numErrs;
227
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
ItemCount features = *numFeatures;

while(errs < maxErrs && features < maxFeatures &&
inputBuffer < inputBufferEnd)
{
c = *inputBuffer++; /* count errors and features in encoding */
/* set status when appropriate */
...
}

/* save state information */
snifContext->pluginState.state1 = isoState;

/* save number of errors and features */
*numErrs = errs;
*numFeatures = features;
} else {
status = paramErr;

/* Initialization. Just in case. */
*numErrs = 0;
*numFeatures= 0;
}
}

else
{
status = paramErr;
}

return status;
}

The destruction routine pointed to by PluginDisposeEncodingSniffer, a routine
pointer defined in the plug-in dispatch table, is called when the sniffer is
disposed of. To dispose of the sniffer, simply dispose of any memory or
resources that may have been allocated in the creation routine.
228
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
Example:

OSStatus ConverterPluginDisposeEncodingSniffer(
TECSnifferObjectRef encodingSniffer,
TECSnifferContextRec *snifContext)
{
#pragma unused (encodingSniffer, snifContext)
/* nothing to do */

return noErr;
}

All plug-in routines should return values with OSStatus type, except the three
routines named by the plug-in library symbols.

Some common status and error codes that may be returned to the Text
Encoding Conversion Manager using type OSStatus are listed below:

� kTECOutputBufferFullStatus—Output buffer is full before all text could be
converted.

� noErr—No error occurred or status is normal.

� paramErr—One or more of the input parameters has an invalid value.

� kTextUnsupportedEncodingErr—The given encoding is not supported in the
current plug-in.

� kTECBufferBelowMinimumSizeErr—The output text buffer is too small to allow
processing of the first input text element.

� kTECPartialCharErr—The input text ends in the middle of a multi-byte
character, conversion stopped. In this case, the plug-in code should save the
state in its private space and the input pointer should back up to the
beginning of the multi-byte character.

� kTextMalformedInputErr—The text input contained a sequence that is not
legal in the specified encoding.

The plug-in should have 'encv' for file creator and 'ecpg' for file type.

The 'cfrg' resource serves to inform the Process Manager and Code Fragment
Manager of code fragments. The resource ID must be zero.
229
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
Example:

#ifdef PPC
resource 'cfrg' (0) {

{
kPowerPC, /* instruction set architecture */
kFullLib, /* base-level library */
kNoVersionNum, /* no implementation version number*/
kNoVersionNum, /* no definition version number */
kDefaultStackSize, /* use default stack size */
kNoAppSubFolder, /* no library directory */
kIsDropIn, /* fragment is a drop-in library */
kOnDiskFlat, /* fragment is in the data fork */
kZeroOffset, /* fragment starts at offset 0 */
kWholeFork, /* fragment occupies entire fork */
"KoreanPlugin" /* name of the library fragment */
}

};

#else
resource 'cfrg' (0) {

{
kMotorola, /* instruction set architecture */
kFullLib, /* base-level library */
kNoVersionNum, /* no implementation version number*/
kNoVersionNum, /* no definition version number */
kDefaultStackSize, /* use default stack size */
kNoAppSubFolder, /* no library directory */
kIsDropIn, /* fragment is a drop-in library */
kOnDiskFlat, /* fragment is in the data fork */
kZeroOffset, /* fragment starts at offset 0 */
kWholeFork, /* fragment occupies entire fork */
"KoreanPlugin" /* name of the library fragment */
};
#endif

The 'vers' resource provides the version information. The resource ID must
be 1.
230
 Apple Computer, Inc. 10/4/99

A P P E N D I X A

Writing Custom Plug-Ins
Example:

resource 'vers' (1, purgeable)
{
0x01, 0x20, final, 0x00,
verUS,
"1.2",
"1.2, Copyright Apple Computer, Inc. 1994-1997."
};

Here is the URL of a Web site that gives useful encoding conversion
information:
http://www.ora.com/people/authors/lunde/cjk-char.html

The Request For Comments (RFC) documents can be found at:
http://www.cis.ohio-state.edu/hypertext/information/rfc.html
231
 Apple Computer, Inc. 10/4/99

A P P E N D I X B

Figure B-0
Listing B-0
Table B-0
Character Encodings Concepts B

This appendix is adapted from a tutorial created by Peter Edberg that was
presented at the 11th International Unicode Conference. The original paper will
be published in the Proceedings of that conference with a notice indicating joint
copyright by Apple Computer, Inc. and the Unicode Consortium.

The appendix explores some aspects of character encodings, including

� terms used, such as coded character sets, character encoding schemes,
characters, glyphs, and related concepts

� existing character encodings, focusing on important Internet encodings and
how these encodings relate to the Unicode standard

� special features of various character encodings

� character data in programming languages

� Internet character encoding registry and encoding naming conventions

Terminology B

Many of the terms defined in this section are used informally. They are defined
in order to facilitate the discussion in the remainder of this appendix.

Character Sets and Encoding Schemes B

A recent meeting on character sets organized by the Internet Architecture Board
proposed a 7-layer architectural model for the transmission of text data. The
first three layers are required for specifying the content of a transmitted text
stream “on the wire”; higher layers specify language, locale, and so forth. As
specified in the minutes of that meeting, the first three layers are

� coded character set (CCS), a mapping from a set of abstract characters to a
set of integers. Examples include ISO 10646, ASCII, and the ISO 8859 series.
Terminology 233
 Apple Computer, Inc. 10/4/99

A P P E N D I X B

Character Encodings Concepts
� character encoding scheme (CES), a mapping from one or more CCSs to a
set of octets. Examples include ISO 2022 and UTF-8. A given CES is typically
associated with a single CCS; for example, UTF-8 applies only to ISO 10646.

� transfer encoding syntax (TES), a transformation applied to character data
encoded using a CCS and possibly a CES to allow it to be transmitted by a
specific protocol or set of protocols. Examples include base64 and
quoted-printable.

Note
The term integer is used in this appendix in its
mathematical sense; that is, it does not refer to the integer
size on a particular CPU. Also, the term octet is used here
instead of byte because the latter has not always meant an
8-bit unit; octet is explicitly defined to be an ordered
sequence of 8 bits considered as a unit (the term is from ISO
character set standards. �

Other documents offer slightly different definitions of characteristics of a CCS,
for example, a repertoire of abstract characters, range of numbers, and a
mapping from numbers to characters (not necessarily invertible). Each of the
integers in the set used to represent a CCS is called a code point.

A CES might be more accurately described as a mapping from a sequence of
elements in one or more CCSs to a sequence of octets. This definition suggests
that the mapping from a single CCS element to its representation in the CES
does not fully characterize the CES, which may include additional octets to set
or change state information.

A TES is usually used to send 8-bit data through a transport mechanism that is
only safe for 7-bit data, and even then may perform special handling for certain
7-bit values.

This appendix frequently uses the shorter term character set to mean coded
character set and character encoding or encoding scheme to encompass both
character sets and more complex character encoding schemes.

Characters, Glyphs, and Related Terms B

Characters are the atomic units of content for text data; they include letters,
digits, punctuation, and symbols. A character is an abstract entity without any
particular appearance. A coded character is a character together with its
numeric representation in a particular CCS.
234 Terminology

 Apple Computer, Inc. 10/4/99

A P P E N D I X B

Character Encodings Concepts
A text element is a group of one or more characters that is treated as a single
entity for a particular process such as collation, display, or transcoding. The
way that characters are grouped into text elements depends on the process;
each process may group characters differently.

Glyph images are the visual elements used to represent characters; aspects of
text presentation such as font and style apply to glyph images, not to characters.
The mapping from a sequence of coded characters to a sequence of glyph
images on a display device is complex. In general there is not a one-to-one
mapping from character to glyph image; a particular glyph image may
correspond to more or less than one character. Figure B-1 shows glyphs and
their associated characters.

Figure B-1 Some glyph images for representing characters

A script is a collection of related characters, subsets of which are required to
write a particular language. Some examples of scripts are Latin, Greek,
Hiragana, Katakana, and Han. A writing system consists of a set of characters
from one or more scripts that are used to write a particular language and the
rules that govern the presentation of those characters. Punctuation, digits, and
symbols that are shared across many writing systems can be considered as one
or more separate pseudo-scripts. For example, the Japanese writing system
includes a Kanji subset of Han characters, plus Hiragana, Katakana, some Latin,
and various punctuation and symbols, some of which are specific to CJK—
Chinese, Japanese, Korean—or even just to Japanese, and some of which are
more general.

The term presentation form is generally used to mean a kind of abstract shape
that represents a standard way to display a particular character or group of

Some glyph images for representing the character
LATIN SMALL LETTER A

Some glyph images for representing the character sequence
LATIN SMALL LETTER F, LATIN SMALL LETTER T
(two separate glyphs, single ligature, line-end form of ligature)

Some glyph images for representing the Unihan character
U+4ECA (“now, today, modern era”) from fonts used for
simplified and traditional Chinese, Japanese, and Korean.
Terminology 235
 Apple Computer, Inc. 10/4/99

A P P E N D I X B

Character Encodings Concepts
characters in a particular context as specified by a particular writing system.
The term glyph by itself may refer either to presentation forms or to glyph
images. This appendix assumes the latter convention. Figure B-2 shows some
examples of presentation forms.

Figure B-2 Presentation forms

The determination of what is a character in a CCS should be based on what is
best for implementing the range of text processes for which that CCS will be
used. The characters in a CCS need not correspond to what a user or linguist
might consider a character. In fact, if the CCS will be used for more than one
writing system, this might be impossible to do anyway, since each writing
system has its own notion of what constitutes a natural character. Well-designed
software should provide users with the behavior they expect or prefer,
regardless of the details of the underlying character encoding, and without
exposing users to those details.

Some character sets that were intended primarily for display using less
sophisticated display software have encoded presentation forms as characters.
For example, the DOS Arabic character set (code page 864) encodes Arabic
contextual forms and ligatures instead of abstract letters.

Different contextual forms (final, medial, initial,
isolated) for the character ARABIC LETTER HEH

Different ligature forms for the character sequence
ARABIC LETTER LAM, ARABIC LETTER ALEF
(final/medial form, isolated/initial form)

Me

Is/In

IsInFi

Fi/Me

fi fl
Ligatures for the character sequences
LATIN SMALL LETTER F, LATIN SMALL LETTER I and
LATIN SMALL LETTER F, LATIN SMALL LETTER L

CJK horizontal and vertical presentation variants

Katakana fullwidth and halfwidth variants
236 Terminology

 Apple Computer, Inc. 10/4/99

A P P E N D I X B

Character Encodings Concepts
Non-Unicode Character Encodings B

Most of these encodings are designed to support one writing system, or a group
of writing systems that use the same script. As a result, in some cases certain
encodings are treated as implying a particular language, which is information
that should be several layers higher in the architectural model described
previously in this appendix.

Appendix C provides a more complete list of character encodings (but with less
explanatory material), grouped by the writing systems they cover.

General Character Set Structure B

ISO 2022 and ISO 4873 define a structure for coded character sets using 7-bit or
8-bit values. These coded character sets provide a means of representing both
graphic characters and control functions; control functions that can be
represented with a single code point are also called control characters.

For character sets using 7-bit values, the range 0x00–0x1F is reserved for a set of
32 control characters, designated C0; another set of 32 control functions,
designated C1, may be represented with escape sequences. The range
0x20–0x7F (96 code points) is reserved for up to four sets of graphic characters,
designated G0–G3 (in some graphic sets, each code point requires two or three
7-bit values). Most Gn sets use only the 94 code points 0x21–0x7E, in which case
0x20 is reserved for SPACE, and 0x7F is reserved for DELETE. ISO 2022
specifies a protocol for

� assigning real sets of control functions, drawn from another standard, to C0
and possibly C1

� assigning real sets of graphic characters, drawn from another standard, to G0
and possibly G1, G2, and G3

� switching among the Gn sets for use of the range 0x20–0x7F

For 8-bit character sets, the C0 set uses 0x00–0x1F, but the C1 set uses
0x80–0x9F. The G0 set uses 0x21–0x7E (with SPACE and DELETE reserved), but
the G1, G2, and G3 sets share the range 0xA0–0xFF (96 code points). Figure B-3
shows these differences.
Non-Unicode Character Encodings 237
 Apple Computer, Inc. 10/4/99

A P P E N D I X B

Character Encodings Concepts
Figure B-3 Comparison of 7-bit and 8-bit character set structures

The G0 set is typically the ISO 646 international reference version (ASCII). The
C0 and C1 control functions are typically from ISO 6429, although other control
sets can be used.

Simple Coded Character Sets B

All of these use a fixed number of 7-bit or 8-bit values to represent the code
point. Here are some examples for different code point sizes.

� One 7-bit value (these can provide a Gn set that adheres to the ISO structure):

� ASCII, as specified by ANSI X3.4. This is a U.S. national standard, and is
the U.S. national variant of ISO 646.

� ISO 646, an international standard. It is similar to ASCII, except that for
ten code points (corresponding to ASCII characters @ [\] ^ ` { | } ~) it
does not designate a specific character, and for two other code points
(corresponding to ASCII characters $ #) it allows either of two specified
characters. National variants are defined by designating some of these
code points to represent specific non-ASCII characters needed for a
particular language. A sender and receiver can agree on a particular
variant; in the absence of such an agreement, ISO specifies an international
reference version, which is now the same as ASCII. For example, the
Japanese national variant (known as JIS Roman) replaces ASCII \ with ¥ ,
and replaces ASCII ~ with _ .

C0 Gn C0 G0
(ISO 646)

C1 G1/2/3

7-bit sets 8-bit sets
238 Non-Unicode Character Encodings

 Apple Computer, Inc. 10/4/99

A P P E N D I X B

Character Encodings Concepts
� Some older national and regional standards that are not ISO 646 variants,
such as SI 960 for Hebrew and ASMO 449 for Arabic.

� One 8-bit value:

� ISO 8859-x. This international standard has multiple parts. ISO 8859-1 is
well known as Latin-1, the most common encoding on the Web. ISO 8859
includes other Latin parts, such as Latin-5 (ISO 8859-9, used for Turkish),
as well as parts for Cyrillic, Greek, Arabic, Hebrew, and other scripts.
These adhere to the ISO 8-bit structure: The range 0x00–0x1F is reserved
for C0 controls, 0x20 is SPACE, the range 0x21–0x7E is identical to ASCII,
x7F is DELETE, the range 0x80–0x9F is reserved for C1 controls, and the
range 0xA0–0xFF contains a 96-character G1 set that depends on the 8859
part.

� ASCII-based vendor character sets for non-East-Asian scripts: DOS code
pages such as 437, Windows code pages such as 1252, Mac OS character
sets, and so on. These support the ASCII graphic characters directly, but
they typically do not follow the full 8-bit structure used for ISO standards;
for example, they typically encode graphic characters in the C1 area.
Windows 1252, for example, is ISO 8859-1 plus additional characters in the
C1 area.

� National standards such as TIS (Thai Industrial Standard) 620-2533 and JIS
(Japanese Industrial Standard) X0201. JIS X0201, for example, combines JIS
Roman with a set of Katakana and punctuation characters in the range
0xA1–0xDF.

� ISO character sets for bibliographic use, such as ISO 5426, which often use
nonspacing diacritic characters (in these standards, nonspacing marks
precede the base character).

� EBCDIC character sets used on IBM mainframes and midrange machines.
The layout is based on Hollerith card codes, and is quite different from
ASCII. The basic Latin letters are in six discontiguous ranges a–i, j–r, s–z,
A–I, J–R, S–Z, all with code points above 0x80; control characters are
0x00–0x3F and 0xFF. The original EBCDIC-US had a graphic character
repertoire somewhat different from ASCII: it did not include square
brackets or a circumflex accent, but did include cent sign, broken bar, not
sign, and no-break space; it also had 95 undefined code points scattered
about. Fourteen of the original EBCDIC-US code points could be changed
for national variants (as with ISO 646). Newer versions of EBCDIC fill in
the undefined code points with characters from ISO 8859-1 or other
standards.
Non-Unicode Character Encodings 239
 Apple Computer, Inc. 10/4/99

A P P E N D I X B

Character Encodings Concepts
� Two 7-bit values (Any of these can be used as a Gn set within the ISO
framework):

� Japan: The original Japanese 2-byte national standard was JIS C6226-1978.
This was significantly revised as JIS X0208-1983, with a minor update in
1990. It includes punctuation and symbols (some specific to CJK or to
Japanese), Hiragana, Katakana, and 6356 Kanji (Han), as well as basic
letters for Latin, Greek, and Cyrillic (all in 2-byte form). JIS X0212 (1990) is
an add-on set with additional Kanji (5801), additional Latin characters,
and so forth. JIS C6226 provided a model for other East Asia national
standards.

� China: GB 2312-1980 is the basic national standard, with 6763 Hanzi
(Han), punctuation and symbols, Katakana, Hiragana, basic Latin, Greek,
and Cyrillic, plus Bopomofo.

� Korea: KSC 5601-1987 is the most widely known of the Korean national
standards. It includes 2350 composed Hangul syllables, 4620 distinct
Hanja (Han), punctuation and symbols, Katakana, Hiragana, basic Latin,
Greek, and Cyrillic; some of the Hanja are encoded multiple times, once
for each pronunciation. This standard was updated in 1992; the basic
standard was not significantly changed, but a new annex defined a
complete “Johab” set of the 11,172 possible composed Hangul syllables.

� Taiwan: CNS 11643-1992 defines a set of 2-byte standards, something like
the parts of ISO 8859. Each part is called a plane, and the standard defines
16 planes. Only 7 planes currently have character assignments; altogether
they include 48,027 Hanzi and ~700 other characters.

� Three 7-bit values (these are mainly for bibliographic usage):

� CCCII (Chinese Character Code for Information Interchange): The
high-order value specifies the plane; planes are grouped into sets of 6,
called layers. The first layer (53,016 code points) contains basic characters;
most of the other layers are reserved for variant forms, which are assigned
code points that correspond to the position of the equivalent basic
character. The remaining layers contain Kana and Hangul (for Japanese
and Korean).

� EACC (East Asia Character Code): This is a U.S. standard (ANSI Z39.64)
based on CCCII.
240 Non-Unicode Character Encodings

 Apple Computer, Inc. 10/4/99

A P P E N D I X B

Character Encodings Concepts
Packing Schemes for Multiple Character Sets B

Packing schemes use a sequence of 8-bit values, so they are generally not
suitable for mail (although they are often used on the Web). In these schemes,
certain characters function as a local shift that controls the interpretation of the
next 1–3 bytes.

The most well-known packing scheme is probably Shift-JIS, which was
originally developed by Microsoft for use with MS-DOS. It includes the
following:

� The characters from JIS X0201, represented as single bytes, with same code
points as in JIS X0201: 0x00–0x7F and 0xA1–0xDF.

� The characters from JIS X0208, represented as 2 bytes, with the first byte in
the range 0x81–0x9F or 0xE0–0xEF and the second byte in the range
0x40–0x7E or 0x80–0xFC.

� Space for 2444 user-defined characters, represented as 2 bytes, with the first
byte in the range 0xF0–0xFC, and the second byte in the range 0x40–0x7E or
0x80–0xFC.

The 2-byte units all begin with byte values that are not used for JIS X0201, so it
is possible to distinguish them if the text is processed serially from the
beginning of a buffer. However, the second bytes of 2-byte units use values that
can be confused either with the first byte of a 2-byte unit or with a single-byte
code point from JIS X0201; when pointing into an arbitrary location in the
middle of Shift-JIS text, it may be impossible to determine character boundaries.
Figure B-4 shows this with a somewhat pathological Shift-JIS byte sequence
using only two different byte values (the corresponding character images are
also shown).

Figure B-4 Shift-JIS byte sequence

O
4F 8E 4F 8E 8E 4F

O

Packing Schemes for Multiple Character Sets 241
 Apple Computer, Inc. 10/4/99

A P P E N D I X B

Character Encodings Concepts
Moreover, Shift-JIS contains multiple representations of the Katakana and basic
Latin repertoires, which are available in 1-byte form via JIS X0201, and in 2-byte
form via JIS X0208. Shift-JIS has a well-deserved reputation as a troublesome
encoding scheme.

The EUC (Extended UNIX Code) packing schemes were originally developed
for UNIX systems; they use units of 1 to 4 bytes.

� EUC-JP (Japanese) combines JIS-Roman, the JIS X0201 Katakana and related
punctuation, JIS X0208, and JIS X0212:

� EUC-CN (simplified Chinese) combines ASCII, GB 2312 (adds 0x8080 to GB
code point)

� EUC-KR (Korean) combines ASCII, KSC 5601-1987 (adds 0x8080 to KSC code
point)

� EUC-TW (traditional Chinese) combines ASCII and all 16 planes of CNS
11643-1992. The 16 planes are encoded as 0x8E, then the plane number +
0xA0, then the CNS code point + 0x8080. In addition, Plane 1 is redundantly
encoded as simply the CNS code point + 0x8080.

The Big 5 encoding is a special case. This is not a national standard, but a de
facto encoding used for traditional Chinese. It combines ASCII—represented as
1-byte units—with 2-byte units that represent Hanzi, CJK punctuation and
symbols, and other characters. There is no separate specification for the set of
characters represented by the 2-byte units, although the Hanzi repertoire
matches the CNS 11643 Plane 1 repertoire. For the 2-byte units, the first byte is
in the range 0xA1–0xFE, and the second byte is in the range 0x40–0x7E or
0xA1–0xFE.

The acronym MBCS (multi-byte character set) is used for encoding schemes that
mix character units of different byte lengths (as in the packing schemes
mentioned above), in contrast to SBCS (single-byte character set). The acronym
DBCS (double-byte character set) is sometimes used for pure two-byte
encodings such as JIS X0208, and sometimes used synonymously with MBCS.

Character Set Range of Corresponding EUC Sequence

JIS-Roman 0x21–0x7E (same as JIS-Roman code point)

JIS X0208 0xA1A1–0xFEFE (X0208 code point + 0x8080)

JIS X0201,
Katakana, etc.

0x8EA1–0x8EDF (0x8E, then X0201 code point)

JIS X0212 0x8FA1A1–0x8FFEFE (0x8F, then X0212 code point + 0x8080)
242 Packing Schemes for Multiple Character Sets

 Apple Computer, Inc. 10/4/99

A P P E N D I X B

Character Encodings Concepts
Code-Switching Schemes for Multiple Character Sets B

Code-switching schemes generally use a sequence of 7-bit values, so they are
suitable for mail. ISO 2022 specifies a general code-switching scheme. In its
general 7-bit form, it uses

� escape sequences to specify the character sets currently assigned to G0–G3
and C0–C1

� certain C0 and C1 controls to switch the current character set to be any of
G0–G3 (using the character sets previously assigned to G0–G3)

� other C1 controls for a temporary character set switch that applies only to the
next character

However, ISO 2022 it is rarely used in this form on the Internet. Instead, for
certain languages there are one or more predefined combinations of character
sets and protocols for use with ISO 2022: for example, ISO-2022-JP (Japanese),
ISO-2022-KR (Korean), and ISO-2022-CN (simplified Chinese). Each of these
specifies the character sets to be used, the escape sequences or controls used to
switch among them, and necessary defaults and reset behavior (such as initial
state and the end-of-line reset).

Another common code-switching scheme is HZ, used for Chinese mail and
news. This uses ~} and ~{ for switching between ASCII and GB 2312.

The EBCDIC Host encodings used on IBM mainframes for CJK text are a special
case and use a sequence of 8-bit values. These encodings combine a single-byte
EBCDIC character set and a double-byte IBM character set with graphic
characters in the range 0x41–0xFE. The EBCDIC control character Shift Out (SO,
0x0E) is used to switch to the double-byte character set, and the control
character Shift In (SI, 0x0F) is used to switch to the single-byte character set.

Unicode B

Unicode is a universal character set whose goal is to include characters for all of
the worlds written languages, plus a large set of technical symbols, math
operators, and so on—everything that needs to be encoded in text. It originated
Code-Switching Schemes for Multiple Character Sets 243
 Apple Computer, Inc. 10/4/99

A P P E N D I X B

Character Encodings Concepts
in work by Apple and Xerox in 1988, which was in turn based on the Xerox
XCCS universal character set. At about the same time, the ISO/IEC joint
technical committee JTC1 was developing a separate universal character set.
These efforts were merged beginning in 1991 to produce what is essentially a
single character set.

There are actually two parallel standards. The Unicode Consortium is
responsible for Unicode, while ISO/IEC JTC1 is responsible for ISO 10646. The
goal is to keep the character repertoire and code point assignments
synchronized. However, beyond that there are some differences.

The Unicode standard specifies character properties and some rendering
behavior, and includes conformance criteria. It clarifies character usage and
semantics, and provides a set of guidelines for implementing Unicode.
Mapping tables for converting other character sets to Unicode are also
provided.

ISO/IEC 10646, like most ISO character set standards, does not specify
character properties or rendering behavior. On the other hand, it identifies three
implementation levels and many subset repertoires to permit software to
indicate precisely what it can and cannot support.

Basic Unicode uses 16-bit code points. Two ranges, each consisting of 1024
16-bit code points, are reserved for high-half surrogates and low-half
surrogates; these can be combined to function as a 32-bit code point. This
scheme, known as UTF-16, adds a million additional code points.

ISO 10646 supports a 16-bit form (including UTF-16), called UCS-2, as well as a
full 32-bit form, called UCS-4. In UCS-4, the high-order byte indicates the group
and the next highest order byte indicates the plane. UTF-16 can represent UCS-4
code points from group 0, planes 0 through 16, but uses different numeric
values for the characters in planes 1 through 16. Characters that can be
represented using a single 16-bit code point are said to be on the Base
Multilingual Plane (BMP).

All of these forms can use the full range of 16-bit values. No attempt is made to
avoid 16-bit values that contain bytes that may be interpreted in special ways
on byte-oriented systems. The first 256 Unicode characters parallel ISO 8859-1;
but since the Unicode code points are 16 bits, the high-order byte is 0, which
might be interpreted as a C-string terminator on a byte-oriented system.

To permit transmission of Unicode over byte-oriented 8-bit and 7-bit channels,
two transformation formats have been devised.
244 Unicode

 Apple Computer, Inc. 10/4/99

A P P E N D I X B

Character Encodings Concepts
UTF-8 is intended for 8-bit protocols (such as the Web). All of the ASCII
repertoire maps to single-byte characters using the ASCII code points. Other
Unicode BMP characters map to a sequence of 2 or 3 bytes; the initial bytes of
these sequences, as well as the following bytes, are all in distinct ranges so they
can be distinguished from each other and from the ASCII range. This makes it
relatively easy to process (much easier than Shift-JIS, for example).

UTF-7 is intended for 7-bit protocols (such as mail). Certain characters in the
ASCII repertoire are preserved intact. Other Unicode characters are mapped
using a modified base 64 encoding. The character + is used to switch to
modified base 64, and - is used to switch back out.

Figure B-5 shows the same Unicode sequence in UTF-16, UTF-8, and UTF-7.

Figure B-5 Unicode sequence expressed in UTF-16, UTF-8, and UTF-7

Unicode provides a single encoding that can be used to represent multilingual
text. Using a single encoding is much easier than supporting the multitude of
encodings otherwise required for multilingual text. Unicode is also much easier
to process than many of the other encodings.

The use of Unicode does not by itself imply any particular language or group of
languages, unlike the use of, say, ISO 2022-JP, which implies Japanese, or
EUC-KR, which implies Korean. A Unicode code point represents a character
that may be common to several languages. For example, Figure B-1 (page 235)
shows a single Unicode Han character that is used in Chinese, Japanese, and
Korean. Unicode encodes plain text—that is, the minimum information for
preservation of text content and basic text legibility. It does not explicitly encode
higher-level information such as language or font. Note, however, that Unicode
does distinguish among characters in different scripts that may have the same
appearance, such as LATIN CAPITAL LETTER A and GREEK CAPITAL
LETTER ALPHA; this is necessary for preservation of text content.

Beijing
0042 0065 0069 006A 0069 006E 0067 0020 5317 4EAC

Text:

UTF-16 (hex):

UTF-8 (hex): 42 65 69 6A 69 6E 67 20 E5 8C 97 E4 BA AC

UTF-7 (ASCII): Beijing +UxdOrA-
Unicode 245
 Apple Computer, Inc. 10/4/99

A P P E N D I X B

Character Encodings Concepts
The Unicode repertoire is a superset of the repertoires of a large number of
important standards. Thus, it can also serve as a hub for conversion among
multiple encoding systems. For a specific set of source standards, Unicode
ensures round-trip fidelity: Every character that is distinct in one of those
standards is also distinct in Unicode (for this and other reasons, Unicode
includes a number of compatibility characters that would not otherwise have
been separately encoded). However, for other standards there may not be a
one-to-one mapping from their repertoire onto Unicode; the other standards
may include multiple characters that all correspond to the same Unicode
character, or they may include characters for which there is no corresponding
Unicode character. For example, the Adobe symbol set includes separate code
points for upper, center, and lower sections of multiline parentheses, square
brackets, and curly brackets; there are no corresponding characters in Unicode.

Unicode provides considerable advantages over other encodings, and Unicode
is moving into widespread use. This is especially true on the Internet, where the
profusion of character encodings has created the most acute problems.
Examples of Unicode use include:

� the character encoding for Java

� the document character set for HTML 3.2

� LDAP and other Internet services

� UDF (the Universal Disk Format adopted for DVD)

� the base encoding for Windows NT

� the base encoding for NextStep and Rhapsody text

Character Set Features B

Repertoire and Semantics B

The notion of character repertoire becomes a bit fuzzy when a single character
in one repertoire has a range of interpretations that matches several characters
in another repertoire. Consider the following:
246 Character Set Features

 Apple Computer, Inc. 10/4/99

A P P E N D I X B

Character Encodings Concepts
� ASCII 0x2D, HYPHEN-MINUS. Unicode has a HYPHEN-MINUS, but also
separate HYPHEN and MINUS SIGN characters. In effect the Unicode
repertoire has three characters matching the single ASCII character.

� JIS X0208 0x2142, specified as «double vertical line, parallel.» Unicode has
separate characters for DOUBLE VERTICAL LINE and PARALLEL TO.
There is no single Unicode character that exactly matches the JIS character;
each of the Unicode characters matches one interpretation of the JIS
character.

Some character encodings explicitly represent presentation forms. All of the
forms shown in Figure B-2 (page 236), for example, are explicitly encoded in
one or another encodings. This also creates a situation where multiple
characters in one encoding match a smaller number of characters in another
encoding.

Finally, there are many nonstandard additions to various encodings. For
example:

� Many vendors have their own versions of Shift-JIS that add characters at
various code points that are unused in standard Shift-JIS. These may be
treated as separate encodings.

� Users in certain fields, such as law or medicine, may have their own standard
set of «gaiji» characters that are added to Shift-JIS using custom fonts. Even
without gaiji additions, different fonts on a platform may implement slightly
different versions of a character encoding (usually the differences are in less
commonly used characters).

� Many encodings permit the addition of user-defined characters in unused
code points. A glyph editor may be provided so users can create a custom
glyph and assign it to a code point.

Combining and Conjoining Characters B

The Unicode standard defines a combining character as «a character that
graphically combines with a preceding base character» and a nonspacing mark
as «a combining character whose positioning in presentation is dependent on its
base character». A nonspacing mark generally does not consume space along
the visual baseline in and of itself.

Similar nonspacing marks have been used in bibliographic standards for some
time. Many of these standards are derived from the USMARC set developed by
the Library of Congress in the 1960s. In these standards, nonspacing marks
Character Set Features 247
 Apple Computer, Inc. 10/4/99

A P P E N D I X B

Character Encodings Concepts
precede the base character so they can be handled by the primitive text layout
techniques that were characteristic of the 1960s. The MARC sets and ISO 5426
allow one or two combining marks; these sets support many Latin-script
languages and transliteration of several non-Latin-script languages. ISO 6937
allows one combining diacritic before a base character and allows only certain
combinations of diacritics and base characters.

In ASMO 449 (Arabic), ISCII-88 and ISCII-91 (Indic), and TIS 620-2529 and TIS
620-2533 (Thai), combining marks for vowels, tones, and so on follow the base
character. Unicode adopted this approach and extended it to nonspacing marks
for Latin, Greek, and other scripts, so that all combining characters could be
handled consistently.

The USMARC and ISO 5426 sets included characters for right and left halves of
diacritics that span two base characters (these are used in Tagalog, for example).
Unicode included these for compatibility, but also included single characters for
the full diacritic.

Unicode also includes a set of combining enclosing marks for symbols, such as
COMBINING ENCLOSING CIRCLE. Figure B-6 gives an idea of the variety of
combining marks present in Unicode:

Figure B-6 Some combining marks present in Unicode

A Á

a á

+ ´

+

o

´

oo+ o+

o + o+ + oo



Character sequence Resulting display
(may use one or multiple glyphs)

Notice that displayed
position of the acute
accent depends on the
base character

Combining
single diacritic

Combining
double diacritic
Combining
half diacritic

+Two combining
single diacritics · ·




Combining
enclosing mark

+

248 Character Set Features

 Apple Computer, Inc. 10/4/99

A P P E N D I X B

Character Encodings Concepts
There are other sorts of characters that combine graphically for display, but
that—strictly speaking—are not combining characters.

Unicode and some other character sets (such as Mac OS Roman) include a
FRACTION SLASH character for composing fractions. A digit (or digit
sequence), followed by a fraction slash, followed by another digit (sequence)
should be displayed as a single composed fraction.

Unicode also includes a set of conjoining Korean jamos. These constitute the
Korean alphabet and are graphically combined into square syllable blocks for
display according to well-defined rules (The Unicode standard provides an
algorithm for this). This is similar to the process of ligature formation in Arabic
or Devanagari (although in those scripts the set of ligatures and the rules are
typically more font-dependent); but Unicode also has a set of nonconjoining
jamos. Figure B-7 provides examples of the behavior of fraction slash and
conjoining jamos.

Figure B-7 Fraction slash and conjoining jamos

In Figure B-6 and Figure B-7, the character sequences shown on the left side are
called decomposed character sequences; they generally correspond to a single
displayed text element. Some character encodings may represent that displayed
text element with a single character code, in addition to or instead of using the
decomposed representation. Single code points for text elements such as the
ones on the right side of Figure B-6 and Figure B-7 are called precomposed
characters. Unicode includes many precomposed characters as well as
combining and conjoining characters that can be used for decomposed
sequences; the former accommodate backward compatibility requirements,
while the latter are better suited to modern graphics and text processing
systems.

Character sequence Resulting display
(may use one or multiple glyphs)

Fraction
slash

Conjoining
jamos

3 + 4+⁄

+ +

3
4

Character Set Features 249
 Apple Computer, Inc. 10/4/99

A P P E N D I X B

Character Encodings Concepts
As a result, Unicode includes multiple representations (or «multiple spellings»)
for the same text elements. Multiple representations of the same text elements
should generally be treated as equivalent for most text processing purposes.
Also, when converting among encodings, there may be multiple representations
in Unicode that correspond to a given character in another encoding.

Ordering Issues B

For Arabic and Hebrew, there are three conventions for the order in which text
is encoded:

� Implicit or logical order, in which the text is stored in memory in the same
order it would be spoken or typed. Characters have an inherent direction
attribute, and this attribute is used by a display algorithm to determine the
proper (or most likely) display order for the corresponding glyphs. The
algorithm may make use of global line direction information if available.

� Explicit order, in which all display ordering is determined by explicit
controls.

� Visual order, in which text is stored line-by-line in left-to-right display order
(that is, the Arabic and Hebrew non-numeric text is encoded in reverse
order). This is typically used for older systems or when no real support for
bidirectional text is provided, and requires explicit line breaks.

Unicode uses implicit order, with the addition of optional controls for unusual
cases or fine-tuning, and specifies the reordering algorithm for display. The
Windows and Mac OS Hebrew and Arabic encodings also assume implicit
order. Figure B-8 gives an example of implicit ordering.

Figure B-8 Implicit ordering

Character sequence Resulting display
(with global direction of right-left)

A B C
1 2 3 4 5 6 6 5 4 1 2 3
250 Character Set Features

 Apple Computer, Inc. 10/4/99

A P P E N D I X B

Character Encodings Concepts
Characters that are otherwise identical in different character encodings may
have different direction attributes in the two encodings, and this creates another
“fuzzy” problem for matching character repertoires. For example, Unicode has
a single PLUS SIGN character, with direction class European Number
Terminator; the Mac OS Hebrew and Arabic encodings have two plus sign
characters, one with strong left-right direction, and one with strong right-left
direction. This is because the Mac OS encodings were designed in 1986 for a
reordering model that was less sophisticated than the current Unicode
reordering model.

There are also two different ordering conventions for characters in Indic and
related Southeast Asian scripts. In these scripts, consonants have an inherent
vowel, which is pronounced after the consonant. A vowel mark may be used
with the consonant to change the vowel; this vowel mark may be displayed
above, below, to the left or to the right of the consonant; it may even surround
the consonant or have components that appear on either side.

The scripts of India are generally encoded in logical order, so that any
dependent vowel (and other marks related to the consonant) follows the
consonant in memory. The consonant, together with any dependent vowel and
other marks, constitutes a «consonant cluster». Successive clusters are displayed
in left-to-right order, but within a cluster the ordering may be complex.
(Clusters may also include vowel-less dead consonants that precede the main
consonant.)

Thai consonants have an inherent tone as well as an inherent vowel; tone marks
may be added to change the tone, in addition to any vowel signs. Thai is
generally encoded in visual order, unlike the scripts of India, so a vowel that
modifies a consonant’s inherent vowel may precede or follow that consonant in
memory.

Unicode follows the above conventions for encoding Indic and Thai (Lao is
related to Thai, and is encoded similarly).
Character Set Features 251
 Apple Computer, Inc. 10/4/99

A P P E N D I X B

Character Encodings Concepts
Figure B-9 Character sequence and resulting display

Character Data in Programming Languages B

The C char type is supposed to be large enough to store any member of the
execution character set. If a genuine character from that set is stored in a char
object, its value is equivalent to the integer code for the character and is
non-negative. The char type is also equivalent to a single byte and may be
signed or unsigned (implementation dependent).

C does not actually define the size of a byte, so in principle a byte could be
made large enough so a char would accommodate multi-octet characters and
Unicode characters. However, in most implementations, bytes and char objects
are 8 bits, and multi-octet characters require a sequence of char objects.

Instead, C provides the wide character or wchar_t type. This is really supposed
to be large enough to hold the largest character in any extended execution set
supported by the implementation (including MBCS encodings). It permits
internal processing using fixed-size characters; C library functions such as
mbstowcs() and wcstombs() convert between SBCS/MBCS strings and wide
character strings. However, the size of wchar_t is implementation specific;
although it is usually 16 or 32 bits, on some implementations it is equivalent to
char.

Java takes a different approach: Bytes remain 8 bits, but a Java char is a 16-bit
unit intended to contain a Unicode character.

Character sequence Resulting display

+ +

+ +

Devanagari

Thai

H(A)

EH H(AW) rising tone

Ĭ

HEH (rising)

HIM̆
˙

nasal mark
252 Character Data in Programming Languages

 Apple Computer, Inc. 10/4/99

A P P E N D I X B

Character Encodings Concepts
Finally, programming languages generally provide some abstraction away from
encoding details. For example, the C character constant 'A' may have the value
0x41 for an ASCII-based implementation, but 0xC1 for an EBCDIC-based
implementation. Nevertheless, programs may make more subtle assumptions
about character encodings, such as assuming that A–Z have sequential
contiguous code points (not true in EBCDIC).
Character Data in Programming Languages 253
 Apple Computer, Inc. 10/4/99

A P P E N D I X C

Figure C-0
Listing C-0
Table C-0
Some Character Encodings and Their
Common Internet Names C

Identifying Character Encodings on the Internet C

In many Internet protocols, a charset parameter may be used in certain contexts
to specify both a character set and a character encoding scheme. The value of
the charset parameter is a case-insensitive string limited to the characters A–Z,
a–z, 0–9, hyphen–minus, underscore, period, and colon. The character encoding
names specified for this parameter are generally expressed in US–ASCII octet
values.

The character encoding name may be an experimental name beginning with x-;
if it is not an experimental name, it must be a name registered with the Internet
Assigned Numbers Authority (IANA) that corresponds to a character encoding
that has a formal specification. Multiple names exist for most character
encodings in the registry. The IANA registry is updated periodically; for
example, the name EUC-JP was added to it in January. Table C-1 (page 257)
identifies character encodings for various languages, gives some of their
common Internet names, and tells when the character encoding was first
supported for the Text Encoding Converter and the Unicode Converter. To
preview the style of character set name used on the Internet, here are a few
sample names:

ISO-8859-1 latin1 UNICODE-1-1-UTF-7 Shift_JIS X-EUC-CN

Many of the character encodings in use on the Internet are not registered with
IANA and do not have official Internet names, although they may have names
that have become de facto standards. Moreover, even when an encoding is
registered, the name specified by IANA may not be the one that is actually used
on the Internet. For example, EUC-JP has been registered for some time with the
unwieldy name Extended_UNIX_Code_Packed_Format_for_Japanese, but the name
actually used is the unofficial X-EUC-JP. Another example, Shift_JIS, is the
official name, but the names commonly used in its stead are x-shift-jis and
Identifying Character Encodings on the Internet 255
 Apple Computer, Inc. 10/4/99

A P P E N D I X C

Some Character Encodings and Their Common Internet Names
x-sjis. In many cases, mail and browser software recognizes only the unofficial
names, not the official ones.

In some cases, the names for unregistered encodings follow a pattern
established by other, registered encodings. For example, some IBM/Microsoft
code pages are registered with names consisting of cp followed by the code
page number: cp437, cp850, cp852. Code page 874 is not registered, but the name
cp874 would be expected. Most Windows code pages are registered using the
form used in these examples: windows-1250, windows-1251. Windows Latin-1 is,
oddly enough, not registered as either windows-1252 or cp1252, although both
forms are in use.

Character Encodings Masquerading as Related Encodings C

Some Internet names used for similar character encodings could lead to
confusion. For example, the Windows Latin-1 character encoding is commonly
labeled ISO-8859-1 on the Internet because it is a superset of ISO 8859-1. Clients
that actually treat it as ISO 8859-1 may be confused by the extra characters in
the C1 area.

The Mac OS Roman character set used for Western European languages was
created several years before ISO 8859-1. It does not have exactly the same
repertoire, and many of the characters it does share with ISO 8859-1 have
different code points. Many Mac OS Internet applications use an encoding
developed by André Pirard in which the Mac OS Roman repertoire is assigned
new code points to align as much as possible with ISO 8859-1; this character
encoding is referred to as Mac Latin-1 or Mac Mail and is usually labeled as
ISO-8859-1 on the Internet.

Character Encodings and Their Internet Names C

Table C-1 lists character encodings for various languages, gives some of their
common Internet names, and identifies the version of the Text Encoding
Conversion Manager for which character encoding was first supported for use
by the Text Encoding Converter and the Unicode Converter. In the last two
columns of the table, “N/A” means that the encoding is not supported.
256 Character Encodings Masquerading as Related Encodings

 Apple Computer, Inc. 10/4/99

A P P E N D I X C

Some Character Encodings and Their Common Internet Names

g
at

er
Table C-1 Character encoding Internet names and availability in Mac OS

Character encoding Common Internet names
Related
information

Version of Text Encodin
Conversion Manager th
first offered support in:

Text
Encoding
Converter

Unicode
Convert

Universal

Unicode 2.0 (16 bit) UTF-16 1.2 1.2

Unicode 2.0 UTF-8 UTF-8 1.2 1.2.1

Unicode 2.0 UTF-7 UTF-7 1.2 N/A

Unicode 1.1 (16-bit) UNICODE 1-1 1.2 1.2

Unicode 1.1 UTF-8 UNICODE-1-1-UTF-8 1.2 1.2.1

Unicode 1.1 UTF-7 UNICODE-1-1-UTF-7 1.2 N/A

Western European languages

ASCII US-ASCII 1.2.1 1.2.1

ISO 8859-1 (Latin-1) ISO-8859-1, latin1 1.2.1 1.2.1

ISO 8859-3 (Latin 3) ISO-8859-3 , latin3 1.5 1.5

ISO-8859-15 (Latin 9) ISO-8859-15, latin9 Latin-1 with
EURO SIGN
and CP 1252
letters

1.5 1.5

CP 1252 (Windows
Latin-1)

windows-1252, cp1252 ISO 8859-1,
plus additions
in C1 area

1.2 1.2

CP 437
(DOS Latin-US)

cp437 1.2 1.2

CP 850 (DOS Latin-1) cp850 1.4 1.4

Mac OS Roman mac, macintosh,
x-mac-roman

1.2 1.2

Mac OS Icelandic x-mac-icelandic based on Mac
OS Roman

1.2 1.2
Character Encodings and Their Internet Names 257
 Apple Computer, Inc. 10/4/99

A P P E N D I X C

Some Character Encodings and Their Common Internet Names

g
at

er
Mac OS Latin-1,
Mac OS Mail

x-mac-latin1
(commonly sent as
ISO-8859-1)

Mac OS
Roman
permuted to
align with
8859-1

1.2 1.2

NextStep Latin 1.2 1.2

CP 037 (EBCDIC-US) cp037 ISO 8859-1
repertoire,
different
layout

1.2.1 1.2.1

Arabic

ISO 8859-6
(Latin/Arabic)

ISO-8859-6, arabic 1.2 1.2

CP 1256
(Windows Arabic)

windows-1256, cp1256 Partly 8859-6,
plus C1
additions

1.2 1.2

CP 864 (DOS Arabic) cp864 Encodes
Arabic
presentation
forms

1.2 1.2

Mac OS Arabic x-mac-arabic 1.2 1.2

Mac OS Farsi x-mac-farsi 1.2 1.2

Central European languages

ISO 8859-2 (Latin-2) ISO-8859-2, latin2 1.2 1.2

ISO 8859-4 (Latin-4) ISO-8859-4, latin4 1.5 1.5

CP 1250 (Windows
Latin-2)

windows-1250, cp 1250 Partly 8859-2,
plus C1
additions

1.2 1.2

Character encoding Common Internet names
Related
information

Version of Text Encodin
Conversion Manager th
first offered support in:

Text
Encoding
Converter

Unicode
Convert
258 Character Encodings and Their Internet Names

 Apple Computer, Inc. 10/4/99

A P P E N D I X C

Some Character Encodings and Their Common Internet Names

g
at

er
CP 1257 (Windows
BalticRim)

windows-1257,cp 1257 1.5 1.5

Mac OS Central
European Roman

x-mac-centraleurroman 1.2 1.2

Mac OS Croatian x-mac-croatian Based on Mac
OS Roman

1.2 1.2

Mac OS Romanian x-mac-romanian Based on Mac
OS Roman

1.2 1.2

Chinese

GB 2312-80 1.2 N/A

EUC-CN GB2312, X-EUC-CN ASCII + GB
2312- 80 (8-bit)

1.2 1.2

CP 936
(DOS and Windows
Simplified)

Similar to GBK 1.4 1.4

Mac OS
Chinese Simplified

Based on
EUC-CN

1.2 1.2

ISO 2022-CN ("GB") ISO-2022-CN ASCII +
GB 2312-80
(7-bit)
(see RFC1922)

1.2 N/A

HZ HZ-GB-2312 ASCII + GB
2312-80 (7-bit)
(see RFC1842);

1.2 N/A

GBK (extended GB) EUC-CN +
Unihan
repertoire
(8-bit)

1.2 1.2

CNS 11643 plane 1 x-cns11643-1 N/A N/A

CNS 11643 plane 2 x-cns11643-2 N/A N/A

Character encoding Common Internet names
Related
information

Version of Text Encodin
Conversion Manager th
first offered support in:

Text
Encoding
Converter

Unicode
Convert
Character Encodings and Their Internet Names 259
 Apple Computer, Inc. 10/4/99

A P P E N D I X C

Some Character Encodings and Their Common Internet Names

g
at

er
EUC-TW X-EUC-TW ASCII + CNS
11643-1992
(8-bit)

1.2 1.2

Big-5 Big5 (8-bit) 1.2 1.2

CP 950
(DOS and Windows
Traditional)

Based on Big-5 1.4 1.4

Mac OS
Chinese Traditional

Based on Big-5 1.2 1.2

CCCII N/A N/A

EACC N/A N/A

Cyrillic

ISO 8859-5
(Latin/Cyrillic)

ISO-8859-5, cyrillic 1.2 1.2

KOI8-R KOI8-R See Rfc 1489 1.2 1.2

CP 1251
(Windows Cyrillic)

windows-1251, cp1251 Not based on
ISO 8859-5

1.2 1.2

CP 866
(DOS Russian)

cp866 N/A N/A

Mac OS Cyrillic x-mac-cyrillic 1.2 1.2

Mac OS Ukrainian x-mac-ukrainian Mac OS
Cyrillic with
two
replacements

1.2 1.2

Greek

ISO 8859-7 ISO-8859-7, greek 1.2 1.2

ISO 5428 ISO_5428:1980 N/A N/A

Character encoding Common Internet names
Related
information

Version of Text Encodin
Conversion Manager th
first offered support in:

Text
Encoding
Converter

Unicode
Convert
260 Character Encodings and Their Internet Names

 Apple Computer, Inc. 10/4/99

A P P E N D I X C

Some Character Encodings and Their Common Internet Names

g
at

er
CP 1253
(Windows Greek)

windows-1253, cp1253 Nearly 8859-7,
plus C1
additions

1.2 1.2

Mac OS Greek x-mac-greek 1.2 1.2

Greek CCITT greek-ccitt N/A N/A

Hebrew

ISO 8859-8
(Latin/Hebrew)

ISO-8859-8, hebrew 1.2 1.2

CP 1255
(Windows Hebrew)

windows-1255,cp1255 Mostly 8859-8,
plus C1
additions

1.2 1.2

Mac OS Hebrew
(2 variants)

x-mac-hebrew 1.2 1.2

Indic

ISCII-91 Parallel
encodings for
all Indic scripts

N/A N/A

Mac OS Gujarati 1.2 1.2

Mac OS Devanagari 1.2 1.2

Mac OS Gurmukhi 1.2 1.2

Japanese

JIS X0208 1.2 N/A

JIS X0212 N/A N/A

EUC-JP EUC-JP, X-EUC-JP JIS 201 + JIS
208 + JIS 212
(8-bit)

1.2 1.4

Character encoding Common Internet names
Related
information

Version of Text Encodin
Conversion Manager th
first offered support in:

Text
Encoding
Converter

Unicode
Convert
Character Encodings and Their Internet Names 261
 Apple Computer, Inc. 10/4/99

A P P E N D I X C

Some Character Encodings and Their Common Internet Names

g
at

er
ISO 2022-JP ("JIS") ISO-2022-JP JIS 201 + JIS
208 + JIS 212
(7-bit); Rfc
1468

1.2 N/A

Shift-JIS Shift_JIS, x-sjis,
x-shift-jis

JIS 201 + JIS
208 (8-bit)

1.2 1.2

CP 932
(DOS + Windows)

Based on
Shift-JIS

1.4 1.4

Mac OS Japanese Based on
Shift-JIS

1.2 1.2

Korean

KSC 5601-1987 1.2 N/A

EUC-KR EUC-KR ASCII + KSC
5601-87 (8-bit);
Rfc 1557

1.2 1.2

CP 949
(DOS + Windows)

Unified
Hangul Code:
EUC-KR +
Johab

N/A N/A

Mac OS Korean Based on
EUC-KR

1.2 1.2

ISO 2022-KR ("KSC") ISO-2022-KR ASCII + KSC
5601-87 (7-bit):
Rfc 1557

1.2 N/A

KSC 5700 N/A N/A

Symbols encoding

Adobe Symbol Adobe-Symbol-Encoding N/A N/A

Mac OS Symbol x-mac-symbol Based on
Adobe Symbol

1.2 1.2

Character encoding Common Internet names
Related
information

Version of Text Encodin
Conversion Manager th
first offered support in:

Text
Encoding
Converter

Unicode
Convert
262 Character Encodings and Their Internet Names

 Apple Computer, Inc. 10/4/99

A P P E N D I X C

Some Character Encodings and Their Common Internet Names

g
at

er
Mac OS dingbats x-mac-dingbats Based on
Adobe Zapf
Dingbats

1.2 1.2

Thai

TIS 620-2533 N/A N/A

CP 874
(DOS + Windows)

cp874 Based on TIS
620-2533

1.4 1.4

Mac OS Thai x-mac-thai Based on TIS
620-2533

1.2 1.2

Turkish

ISO 8859-9 (Latin-5) ISO-8859, latin5 1.2 1.2

ISO 8859-3 (Latin-3) ISO-8859-3 N/A N/A

CP 1254
(Windows Latin-5)

windows-1254, cp1254 1.2 1.2

Mac OS Turkish x-mac-turkish Based on Mac
OS Roman

1.2 1.2

Vietnamese

VISCII VISCII Rfc 1456 N/A N/A

TCVN-n N/A N/A

CP 1258 (Windows
Vietnamese)

windows-1258, cp1258 1.5 1.5

Character encoding Common Internet names
Related
information

Version of Text Encodin
Conversion Manager th
first offered support in:

Text
Encoding
Converter

Unicode
Convert
Character Encodings and Their Internet Names 263
 Apple Computer, Inc. 10/4/99

English Name

Mac OS Icela

Script =

smRom

Chicago

Geneva

Monaco

New York

Palatino

Times

Helvetica

Courier

Figure D-0
Listing D-0
Table D-0
A P P E N D I X D

Mac OS Encoding Variants D

For font-based Mac OS encoding variants, Table D-1 gives the variant name in
the English language, comments about the variant (such as whether it is the
system or application font), and the constant used to represent the variant.

Note
Except for the names listed under Mac OS Icelandic, the
English font names given below are not the names used by
the Font Manager or displayed in menus. �

Table D-1 Mac OS Encoding Variants

Comments Constant for Variant

ndic
an (0), language = langIcelandic (15), region = verIceland (21)

System font kMacIcelandicStdDefaultVariant

Application font kMacIcelandicStdDefaultVariant

kMacIcelandicStdDefaultVariant

kMacIcelandicStdDefaultVariant

kMacIcelandicTTDefaultVariant

kMacIcelandicTTDefaultVariant

kMacIcelandicTTDefaultVariant

kMacIcelandicTTDefaultVariant
265
 Apple Computer, Inc. 10/4/99

A P P E N D I X D

Mac OS Encoding Variants
Mac OS Japanese

Osaka System font, application
font

kMacJapaneseStandardVariant

Osaka Tohaba kMacJapaneseStandardVariant

MaruGothic *

HonMincho *

TohabaGothic kMacJapaneseBasicVariant

TohabaMincho kMacJapaneseBasicVariant

ChuGothic PostScript kMacJapanesePostScriptScrnVariant

SaiMincho PostScript kMacJapanesePostScriptScrnVariant

HeiseiKakuGothic kMacJapaneseStandardVariant

HeiseiMincho kMacJapaneseStandardVariant

ChuGothic BBB kMacJapaneseStandardVariant

ChuGothic BBB Tohaba kMacJapaneseStandardVariant

Ryumin Light-KL kMacJapaneseStandardVariant

Ryumin
Light-KL-Tohaba

kMacJapaneseStandardVariant

* (For System 7.1-J, the constant is kMacJapaneseVertAtKuPlusTenVariant, otherwise it’s
kMacJapaneseStandardVariant.)

Mac OS Arabic

Cairo System font kMacArabicStandardVariant

Geeza Application font kMacArabicTrueTypeVariant

Nadeem kMacArabicTrueTypeVariant

Baghdad kMacArabicTrueTypeVariant

Kufi kMacArabicTrueTypeVariant

Thuluth PostScript kMacArabicThuluthVariant

Thuluth Bold PostScript kMacArabicThuluthVariant

AlBayan kMacArabicAlBayanVariant

English Name Comments Constant for Variant
266
 Apple Computer, Inc. 10/4/99

A P P E N D I X D

Mac OS Encoding Variants
Mac OS Farsi
Script = smArabic (4), language = langFarsi (31), region = verIran (48)

Tehran System font kMacFarsiStandardVariant

Asfahan kMacFarsiTrueTypeVariant

Mashad kMacFarsiTrueTypeVariant

NadeemFarsi kMacFarsiTrueTypeVariant

Kamran kMacFarsiTrueTypeVariant

Amir kMacFarsiTrueTypeVariant

Mac OS Hebrew

Eilat System font kMacHebrewStandardVariant

Hermon Application font kMacHebrewStandardVariant

Arial kMacHebrewStandardVariant

New Peninim kMacHebrewStandardVariant

Corsiva kMacHebrewStandardVariant

Raanana kMacHebrewStandardVariant

RamatGan kMacHebrewStandardVariant

Sinai Book kMacHebrewFigureSpaceVariant

Ramat Sharon kMacHebrewFigureSpaceVariant

Carmel kMacHebrewFigureSpaceVariant

Caesarea kMacHebrewFigureSpaceVariant

Gilboa kMacHebrewFigureSpaceVariant

English Name Comments Constant for Variant
267
 Apple Computer, Inc. 10/4/99

A P P E N D I X E

Figure E-0
Listing E-0
Table E-0
Conventions for Unicode Text in the
Mac OS E

This appendix describes the conventions for plain text documents and
Clipboard content in the Mac OS.

File Requirements E

Most documents created on a Mac OS-based system use a richer text model
than pure Unicode, so the emphasis here is on easy interchange with other
platforms. In particular, an application should be able to

� import and export Unicode plain text files from other platforms with no data
loss

� easily import a Unicode plain text file into a rich text environment

File Types E

The file type 'utxt' has been registered for UTF-16 plain text documents. The
(optional) scrap type 'utxt' is also registered for UTF-16 Clipboard text.

Whether it is useful to register a file type or scrap type for UTF-8 text is
currently under discussion. As do other documents and text that use
WorldScript encodings, plain UTF-8 documents could use the file and scrap
type 'TEXT'. UTF-8 is compatible with the assumptions that govern WorldScript
encodings; these encodings are not specifically identified in 'TEXT' files and
Clipboard contents.

File Content E

A plain text Unicode document, in a file or on the Clipboard, can contain any
valid character from Unicode 2.0 or later. In particular, it can contain control
characters in the range U+0000 through U+001F and U+0080 through U+009F. It may
File Requirements 269
 Apple Computer, Inc. 10/4/99

A P P E N D I X E

Conventions for Unicode Text in the Mac OS
also contain codes in the Corporate and Private Use Zones although these may
not interchange properly.

The byte-order mark U+FEFF may be present at the beginning of the content. If it
is absent in UTF-16 content, big-endian order is assumed.

Creating Content E

When creating file content, write line and paragraph separators using the
special Unicode characters intended for this purpose—U+2028 and U+2029—
instead of using some combination of CR and LF. This makes the content more
portable; when the content is read on a particular platform, these Unicode
separators can be converted to the separators customary for that platform.

Reading Content E

When reading file content, accept and treat the Unicode line and paragraph
separators as such. In addition, also treat any of the following as paragraph
separators: LF, CR, CRLF.

When converting content to Mac OS encodings, set the
kUnicodeLooseMappingsBit control flag. (You may use other control bits in
addition to this one).
270 File Requirements

 Apple Computer, Inc. 10/4/99

A P P E N D I X F

Figure F-0
Listing F-0
Table F-0
Document Version History F

This document has had the following releases:

Table A-1 Text Encodng Converter Managerrevision history

Version Notes

October 4, 1999 The following changes were made to reflect revisions for TEC 1.5:

Removed script code kTextEncodingMacUkrainian from enumeration in “Text
Encoding Base” (page 31).

Added the following ISO 8-bit and 7-bit script codes to enumeration under
“Text Encoding Base” (page 31).:

kTextEncodingISOLatin6 = 0x020A, /* ISO 8859-10 */
kTextEncodingISOLatin7 = 0x020D, /* ISO 8859-13, Baltic Rim */
kTextEncodingISOLatin8 = 0x020E, /* ISO 8859-14, Celtic */
kTextEncodingISOLatin9 = 0x020F, /* ISO 8859-15, 8859-1 + EURO etc */

Added the following script code to enumeration under “Text Encoding
Base” (page 31):

kTextEncodingUnknown = 0xFFFF /* Unknown or unspecified *

Under “Text Encoding Variant” (page 36), added information indicating that
minor variants can reflect minor changes to an encoding (such as the
addition of the EURO SIGN character). Removed obsolete information
describing bit masks to indicate variants.

Made the following changes to the enumeration under “Text Encoding
Variant” (page 36):

Removed current kTextEncodingMacRoman variants

kMacRomanStandardVariant = 0,
kMacRomanCurrencySignVariant = 1,

and replaced them with

kMacRomanDefaultVariant = 0, /* meta value, maps to 1 or 2 */
kMacRomanCurrencySignVariant = 1, /* for Mac OS version < 8.5 */
kMacRomanEuroSignVariant = 2, /* for Mac OS version >= 8.5 */
271
 Apple Computer, Inc. 10/4/99

A P P E N D I X F

Document Version History
Removed current kTextEncodingMacIcelandic variants

kMacIcelandicStandardVariant = 0,
kMacIcelandicTrueTypeVariant = 1

and replaced them with:

kMacIcelandicStdDefaultVariant = 0, /* meta value, maps to 2 or 4 */
kMacIcelandicTTDefaultVariant = 1, /* meta value, maps to 3 or 5 */

/* The following are for Mac OS version < 8.5 */
kMacIcelandicStdCurrSignVariant = 2, // 0xBB/0xBC are ord. indicators
kMacIcelandicTTCurrSignVariant = 3, // 0xBB/0xBC are fi/fl ligatures

/* The following are for Mac OS version >= 8.5 */
kMacIcelandicStdEuroSignVariant = 4, // 0xBB/0xBC are ord. indicators
kMacIcelandicTTEuroSignVariant = 5, // 0xBB/0xBC are fi/fl ligatures

Added new variants:

/* Variants of kTextEncodingMacCyrillic */
kMacCyrillicDefaultVariant = 0, // meta value, maps to 1, 2, or 3
kMacCyrillicCurrSignStdVariant = 1, //for Russian & Bulg Mac OS < 9.0
kMacCyrillicCurrSignUkrVariant = 2, //for Ukraine Mac OS < 9.0 & CyrLK
kMacCyrillicEuroSignVariant = 3, // for Mac OS >= 9.0

/* Variants of kTextEncodingMacCroatian */
kMacCroatianDefaultVariant = 0, /* meta value, maps to 1 or 2 */
kMacCroatianCurrencySignVariant = 1, /* Mac OS version < 8.5 */
kMacCroatianEuroSignVariant = 2, /* Mac OS version >= 8.5 */

/* Variants of kTextEncodingMacRomanian */
kMacRomanianDefaultVariant = 0, /* meta value, maps to 1 or 2 */
kMacRomanianCurrencySignVariant = 1, /* Mac OS version < 8.5 */
kMacRomanianEuroSignVariant = 2, /* Mac OS version >= 8.5 */

/* Variants of kTextEncodingMacVT100 */
kMacVT100DefaultVariant = 0, /* meta value, maps to 1 or 2 */
kMacVT100CurrencySignVariant = 1, /* Mac OS version < 8.5 */
kMacVT100EuroSignVariant = 2, /* Mac OS version >= 8.5 */

Added new section, “Unicode Character Properties” (page 46).

New fields added to the TECInfo (page 52) data structure. The
kTECInfoCurrentFormat is now set to 2, and the following other constants
were added:

kTECAddTextRunHeuristicsBit = 6,
kTECAddFallbackInterruptBit = 7

kTECAddTextRunHeuristicsMask= 1L << kTECAddTextRunHeuristicsBit,
kTECAddFallbackInterruptMask= 1L << kTECAddFallbackInterruptBit

Table A-1 Text Encodng Converter Managerrevision history

Version Notes
272
 Apple Computer, Inc. 10/4/99

A P P E N D I X F

Document Version History
Function description for ResolveDefaultTextEncoding (page 60) changed to
read “Currently, this affects only the base encoding and variant values
packed into the text encoding specification.”

Added new section“Finding Mac OS Encodings that Match Other
Encodings” (page 67) and added new function NearestMacTextEncodings
(page 67).

Added new section“Obtaining Unicode Character Properties” (page 68) and
added new function UCGetCharProperty (page 68).

Added new section“Setting Conversion Options” (page 105) and added new
function TECSetBasicOptions (page 105).

Under “Unicode Mapping Versions” (page 121):

kUnicodeUseHFSPlusMapping now correctly set to 4, not -4.

New constant and corresponding mask added:
kUnicodeTextRunHeuristicsBit = 11
kUnicodeTextRunHeuristicsMask = 1L << kUnicodeTextRunHeuristicsBit

Additional text changes throughout the chapter to reflect these additions.

Added new constant, kUnicodeFallbackInterruptSafeMask, to
“Fallback-Handler Control Flags” (page 128). Added text to
application-defined function MyUnicodeToTextFallbackProc (page 191) to
indicate proper usage of this constant.

Clarified function description for function UnicodeMapping (page 131).

Wording changed throughout the section “Converting From Unicode”
(page 147) to reflect that you can now convert strings from one Unicode
variant to another.

Appendix C: Added the following character encoding Internet names to
Table C-1:

Under Western European Languages: ISO 8859-3 (Latin 3) and ISO 8859-15
(Latin 9)

Under Central European Languages: ISO 8859-4 (Latin 4) and CP 1257
(Windows BalticRim)

Under Vietnamese, CP 1258 (Windows Vietnamese)

Table A-1 Text Encodng Converter Managerrevision history

Version Notes
273
 Apple Computer, Inc. 10/4/99

A P P E N D I X F

Document Version History
October 23,
1998

The following corrections were made to reflect revisions for TEC 1.4.

Noted “Text Encoding Converter 1.4” where applicable.

Constants added to the enumeration in “Text Encoding Base” (page 31):

kTextEncodingMacCeltic = 39
kTextEncodingMacGaelic = 40

kTextEncodingMacInuit = 0xEC

kTextEncodingUnicodeV2_1 = 0x103

kTextEncodingISOLatin3 = 0x203
kTextEncodingISOLatin4 = 0x204

kTextEncodingWindowsVietnamese = 0x508

Constants added to the enumeration in “Text Encoding Variant” (page 36):

kMacRomanStandardVariant = 0
kMacRomanCurrencySignVariant = 1

Constants deleted from the enumeration in “Text Encoding Variant” (page
36):

kJapaneseNoOneByteKanaOption = 0x20
kJapaneseUseAsciiBackslashOption = 0x40

Constants added to the enumerations associated with the TECInfo structure
(page 47):

kTECTextRunBitClearFixBit = 2
kTECTextToUnicodeScanFixBit = 3
kTECAddForceASCIIChangesBit = 4
kTECPreferredEncodingFixBit = 5

kTECTextRunBitClearFixMask = 1L << kTECTextRunBitClearFixBit,
kTECTextToUnicodeScanFixMask = 1L << kTECTextToUnicodeScanFixBit,
kTECAddForceASCIIChangesMask = 1L << kTECAddForceASCIIChangesBit,
kTECPreferredEncodingFixMask = 1L << kTECPreferredEncodingFixBit

Constants added to the first enumeration in “Conversion Control Flags”
(page 112):

kUnicodeForceASCIIRangeBit = 9
kUnicodeNoHalfwidthCharsBit = 10

Table A-1 Text Encodng Converter Managerrevision history

Version Notes
274
 Apple Computer, Inc. 10/4/99

A P P E N D I X F

Document Version History
Constants added to the second enumeration in “Conversion Control Flags”
(page 112):

kUnicodeForceASCIIRangeMask = 1L << kUnicodeForceASCIIRangeBit
kUnicodeNoHalfwidthCharsMask = 1L << kUnicodeNoHalfwidthCharsBit

Changes to Table C-1 (page 247):

New entry for CP 850 (DOS Latin-1).

Other entries updated for correct version of Text Encoding Converter or
Unicode Converter support.

Table A-1 Text Encodng Converter Managerrevision history

Version Notes
275
 Apple Computer, Inc. 10/4/99

Glossary
character An atomic unit of content for
text data. A character is an abstract entity
without any particular appearance;
characters include letters, digits,
punctuation, and symbols.

character encoding scheme A text
encoding that maps a sequence of characters
(from one or more coded character sets) to a
sequence of bytes, in order to combine
characters from multiple coded character
sets or to permit easier handling of some
coded character sets. Compare coded
character set.

code fragment See fragment.

Code Fragment Manager (CFM) The part
of the Macintosh system software that
prepares fragments for execution.

code point An integer value that
represents (or can represent) a character.

coded character A character together with
its numeric representation in a particular
coded character set.

coded character set A text encoding that
maps each character in a set of characters to
a particular integer from a set of integers.
Compare character encoding scheme.

code-switching scheme A character
encoding scheme that allows switching
between different coded character sets,
usually signaled by escape or other special
sequences. See also character coding
scheme.

content transfer encoding See transfer
encoding syntax.

converter object An instance of data that
tells a text converter how to convert text
from a particular source encoding to a
particular destination encoding, and
maintains any necessary state information
that applies to the conversion of a particular
stream of text.

destination encoding The text encoding
that describes the desired encoding of the
text after conversion. Compare source
encoding.

direct conversion A text conversion by the
Text Encoding Converter that can be
handled in one step (that is, by one call to a
single plug-in). Compare indirect
conversion.

Extended UNIX Code (EUC) A type of
packing scheme that is used as the text
encoding for UNIX workstations that handle
East Asian languages. See also packing
scheme.

fallback mapping A character or
sequence of characters used to replace a
character that has no direct equivalent in the
destination encoding. For example, if the
target encoding does not contain “å,” a
possible fallback mapping would be “aa.”
277
 Apple Computer, Inc. 10/4/99

G L O S S A R Y
fragment On the Mac OS, a block of
executable code or data. Fragments are
handled by the Code Fragment Manager.
See also Code Fragment Manager.

glyph image A visual element used to
represent one or more characters.

indirect conversion A text conversion by
the Text Encoding Converter that requires
stepping through one or more intermediate
conversions before reaching the desired
destination encoding. Compare direct
conversion.

Internet The name given to the
world-wide network of computers.

loose mapping A mapping between text
encodings that preserves the information
content of text but does not permit
round-trip fidelity.

Multipurpose Internet Mail Extensions
(MIME) Mechanisms for specifying and
describing the format of Internet message
bodies.

packing scheme A type of character
encoding scheme where characters are
encoded using a variable number of bytes.
Typically certain bytes signal the beginning
of a character and how many additional
bytes are used to encode the character.
Character sets with a large number of
elements are often stored using a packing
scheme. See also character encoding
scheme.

perfect round-trip conversion This occurs
when mapping a character from a particular
source encoding to a particular destination

encoding (usually Unicode) and then back
to the source encoding again yields the
original character.

plug in See text encoding conversion
plug-in.

presentation form An abstraction of a
range of glyph images, which represents a
standard way to display a particular
character or group of characters in a
particular context as specified by a
particular writing system. See also glyph
image.

script A collection of related characters,
subsets of which are required to write a
particular language. Some examples of
scripts are Latin, Greek, Hiragana,
Katakana, and Han.

sniffer A function included with a text
conversion plug-in that scans text for
features that identify a particular text
encoding.

source encoding The text encoding that
describes the encoding of the text before
conversion. Compare destination encoding.

strict mapping A mapping between text
encodings that preserves the information
content of text and permits round-trip
fidelity.

text element A group of one or more
characters that is treated as a single entity
for a particular process such as collation,
display, or transcoding.

text encoding The coded character set or
character encoding scheme used to
represent a particular piece of text. See also
coded character set, character encoding
scheme.
278
 Apple Computer, Inc. 10/4/99

G L O S S A R Y
text encoding base The primary
specification of a text encoding, and one
component of a text encoding specification.
See also text encoding specification, text
encoding variant, text encoding format.

text encoding conversion plug-in A code
fragment that provides conversion services
between pairs of encodings. A text encoding
conversion plug-in informs the Text
Encoding Conversion Manager about its
conversion and encoding analysis
capabilities

text encoding format A subset of the text
encoding specification that specifies the byte
format of the encoding. For example, a
format might specify that the encoding take
up only 7-bits for transmission over 7-bit
channels. See also text encoding
specification, universal transformation
format.

text encoding specification A scalar value
that defines a text encoding to be used in a
conversion. It includes information about
the text encoding base, the text encoding
variant, and the text encoding format.

text encoding variant A specification of
one among possibly several minor variants
or subsets of a particular text encoding base.
See also text encoding specification, text
encoding base.

Text Encoding Conversion Manager A
pair of shared library extensions—namely,
the Text Encoding Converter and the
Unicode Converter—that facilitate text
encoding conversion on Mac OS–based
computers

Text Encoding Converter A shared library
extension that provides the services for
general and algorithmic encoding
conversions or multi-encoding streams. The
Text Encoding Converter sometimes uses
the Unicode Converter.

transfer encoding syntax A
transformation applied to text encoded
using a character encoding scheme to allow
it to be transmitted by a specific protocol or
set of protocols. This is normally used to
permit 8-bit data to be sent through
channels that can only handle 7-bit values.
Also called content transfer encoding.
Compare character encoding scheme,
universal transformation format.

Unicode A universal character set that
includes tens of thousands of characters
covering the world’s major written
languages along with many symbols.

Unicode Converter A shared library
extension that provides table-based
conversion between Unicode and other
encodings.

universal transformation format Special
formats that allow transmission of Unicode
characters over 7-bit (UTF-7) and 8-bit
(UTF-8) channels. See also transfer
encoding syntax.

writing system A set of characters from
one or more scripts that are used to write a
particular language and the rules that
govern the presentation of those characters.
279
 Apple Computer, Inc. 10/4/99

Index
A, B, C

ChangeTextToUnicodeInfo function 141
ChangeUnicodeToTextInfo function 151
ConstTextToUnicodeInfo type 133
ConstUniCharArrayPtr type 56
ConstUnicodeMappingPtr type 132
ConstUnicodeToTextInfo type 134
conversion control flags 122
ConvertFromUnicodeToScriptCodeRun

function 169
ConvertPStringToUnicode function 177
ConvertTextToUnicode function 143
ConvertUnicodeToPString function 179
ConvertUnicodeToText function 152
ConvertUnicodeToTextRun function 163
CountUnicodeMappings function 184
CreateTextEncoding function 57
CreateTextToUnicodeInfoByEncoding

function 140
CreateTextToUnicodeInfo function 139
CreateUnicodeToTextInfoByEncoding

function 150
CreateUnicodeToTextInfo function 148
CreateUnicodeToTextRunInfoByEncoding

function 161
CreateUnicodeToTextRunInfoByScriptCode

function 162
CreateUnicodeToTextRunInfo function 158

D, E

DisposeTextToUnicodeInfo function 147
DisposeUnicodeToTextInfo function 157
DisposeUnicodeToTextRunInfo function 173

F

fallback-handler control flags 128
filter control flags 129

G, H

GetTextEncodingBase function 58
GetTextEncodingFormat function 59
GetTextEncodingName function 60
GetTextEncodingVariant function 59

I, J

InitializeUnicodeConverter function 137

K, L

kJapanesePostScriptPrintVariant
constant 39

kJapanesePostScriptScrnVariant constant 39
kMacArabicAlBayanVariant constant 40
kMacArabicStandardVariant constant 39
kMacArabicThuluthVariant constant 40
kMacArabicTrueTypeVariant constant 40
kMacCroatianCurrencySignVariant

constant 42
kMacCroatianDefaultVariant constant 42
kMacCroatianEuroSignVariant constant 42
kMacCyrillicCurrSignStdVariant constant 40
kMacCyrillicCurrSignUkrVariant constant 40
kMacCyrillicDefaultVariant constant 40
kMacCyrillicEuroSignVariant constant 41
kMacFarsiStandardVariant constant 40
281
Preliminary Draft.  Apple Computer, Inc. 10/4/99

I N D E X
kMacFarsiTrueTypeVariant constant 40
kMacHebrewFigureSpaceVariant constant 40
kMacHebrewStandardVariant constant 40
kMacIcelandicStdCurrSignVariant

constant 41
kMacIcelandicStdDefaultVariant constant 41
kMacIcelandicStdEuroSignVariant

constant 42
kMacIcelandicTTCurrSignVariant constant 41
kMacIcelandicTTDefaultVariant constant 41
kMacIcelandicTTEuroSignVariant constant 42
kMacJapaneseBasicVariant constant 39
kMacJapaneseStandardVariant constant 39
kMacJapaneseStdNoVerticalsVariant

constant 39
kMacJapaneseVertAtKuPlusTenVariant

constant 39
kMacRomanCurrencySignVariant constant 39
kMacRomanDefaultVariant constant 39
kMacRomanEuroSignVariant constant 39
kMacRomanianCurrencySignVariant

constant 42
kMacRomanianDefaultVariant constant 42
kMacRomanianEuroSignVariant constant 42
kMacVT100CurrencySignVariant constant 42
kMacVT100DefaultVariant constant 42
kMacVT100EuroSignVariant constant 43
kTECArrayFullErr constant 49
kTECBufferBelowMinimumSizeErr constant 49
kTECCorruptConverterErr constant 49
kTECDirectionErr constant 50
kTECGlobalsUnavailableErr constant 50
kTECIncompleteElementErr constant 50
kTECItemUnavailableErr constant 50
kTECMissingTableErr constant 49
kTECNoConversionPathErr constant 49
kTECOutputBufferFullStatus constant 50
kTECPartialCharErr constant 49
kTECTableChecksumErr constant 49
kTECTableFormatErr constant 49
kTECUnmappableElementErr constant 50
kTECUsedFallbacksStatus constant 50
kTextEncodingBaseName constant 45
kTextEncodingDefaultVariant constant 38, 44
kTextEncodingFormatName constant 45

kTextEncodingFullName constant 45
kTextEncodingVariantName constant 45
kTextLanguageDontCare constant 46
kTextMalformedInputErr constant 49
kTextRegionDontCare constant 46
kTextScriptDontCare constant 46
kTextUndefinedElementErr constant 49
kTextUnsupportedEncodingErr constant 49
kUnicodeDirectionalityBits constant 122
kUnicodeFallbackCustomFirst constant 129
kUnicodeFallbackCustomOnly constant 129
kUnicodeFallbackDefaultFirst constant 129
kUnicodeFallbackDefaultOnly constant 129
kUnicodeFallbackInterruptSafeMask

constant 129
kUnicodeForceASCIIRangeBit constant 123
kUnicodeKeepInfoBit constant 122
kUnicodeKeepSameEncodingBit constant 123
kUnicodeLooseMappingsBit constant 123
kUnicodeMatchOtherBaseBit constant 131
kUnicodeMatchOtherFormatBit constant 131
kUnicodeMatchOtherVariantBit constant 131
kUnicodeMatchUnicodeBaseBit constant 130
kUnicodeMatchUnicodeFormatBit constant 130
kUnicodeMatchUnicodeVariantBit constant 130
kUnicodeNoCompatibilityVariant constant 43
kUnicodeNoHalfwidthCharsBit constant 123
kUnicodeNoSubset constant 43
kUnicodeStringUnterminatedBit constant 123
kUnicodeTextRunBit constant 123
kUnicodeTextRunHeuristicsBit constant 123
kUnicodeUseFallbacksBit constant 122
kUnicodeVerticalFormBit constant 122

M

MyUnicodeToTextFallbackProc function 191

N

NearestMacTextEncodings function 67
282
Preliminary Draft.  Apple Computer, Inc. 10/4/99

I N D E X
O, P

OpaqueUnicodeToTextInfo type 134
OpaqueUnicodeToTextRunInfo type 135

Q

QueryUnicodeMappings function 181

R

ResolveDefaultTextEncoding function 60
RevertTextEncodingToScriptInfo function 65

S

ScriptCodeRun type 135
SetFallbackUnicodeToText function 186
SetFallbackUnicodeToTextRun function 189

T

TECClearConverterContextInfo function 104
TECClearSnifferContextInfo function 100
TECConversionInfo type 75
TECConvertText function 106
TECConvertTextToMultipleEncodings

function 112
TECCountAvailableSniffers function 93
TECCountAvailableTextEncodings function 76
TECCountDestinationTextEncodings

function 83
TECCountDirectTextEncodingConversions

function 81
TECCountMailTextEncodings function 90
TECCountSubTextEncodings function 78
TECCountWebTextEncodings function 87
TECCreateConverterFromPath function 102

TECCreateConverter function 101
TECCreateOneToManyConverterFromPath

function 111
TECCreateOneToManyConverter function 110
TECCreateSniffer function 95
TECDisposeConverter function 103
TECDisposeSniffer function 99
TECFlushMultipleEncodings function 115
TECFlushText function 108
TECGetAvailableSniffers function 94
TECGetAvailableTextEncodings function 77
TECGetDestinationTextEncodings function 84
TECGetDirectTextEncodingConversions

function 82
TECGetEncodingList function 111
TECGetInfo function 62
TECGetMailTextEncodings function 92
TECGetSubTextEncodings function 79
TECGetTextEncodingFromInternetName

function 86
TECGetTextEncodingInternetName function 87
TECGetWebTextEncodings function 89
TECInfo type 53
TECObjectRef type 74
TECSnifferObjectRef type 75
TECSniffTextEncoding function 96
TerminateUnicodeConverter function 138
TextEncodingBase type 31, 51
TextEncodingFormat type 43
TextEncodingRun type 52
TextEncoding type 51
text encoding variants 36
TextEncodingVariant type 36
TextToUnicodeInfo type 133
TruncateForTextToUnicode function 174
TruncateForUnicodeToText function 176

U–Z

UCCharPropertyType type 46
UCGetCharProperty function 68
UniCharArrayPtr type 56
UniChar type 56
283
Preliminary Draft.  Apple Computer, Inc. 10/4/99

I N D E X
UnicodeMappingPtr type 132
UnicodeMapping type 131
Unicode mapping versions 121
UnicodeMapVersion type 121
UnicodeToTextFallbackProcPtr type 136
UnicodeToTextInfo type 134
UnicodeToTextRunInfo type 135
UpgradeScriptInfoToTextEncoding

function 63
284
Preliminary Draft.  Apple Computer, Inc. 10/4/99

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobe™ Illustrator and
Adobe Photoshop.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITERS
Peter Edberg, Judy Melanson, and
Jun Suzuki

ILLUSTRATOR
Karin Stroud

DEVELOPMENTAL EDITOR
Laurel Rezeau

PRODUCTION EDITOR
Glen Frank, Gerri Gray

Special thanks to Julio Gonzalez and
Jim Chan.

	Programming With the Text Encoding Conversion Manager
	Contents
	Figures, Tables, and Listings
	About Text Encodings and Conversions
	Why You Need to Convert Text From One Encoding to Another
	Deciding Which Encoding Converter to Use
	The Text Encoding Converter
	The Unicode Converter

	Character Encoding and Other Concepts Fundamental to Text Encoding Conversion
	Characters
	Coded Character Sets
	Presentation Forms
	Character Encoding Schemes

	Text Encoding Specifications
	About Unicode and the Complexities of Conversion
	About Unicode
	ISO/IEC 10646

	Round-Trip Fidelity
	Multiple Semantics and Multiple Representations
	Strict and Loose Mapping
	Fallback Mappings
	Corporate Use Zone

	About the Text Encoding Manager Package
	About Earlier Releases
	Checking the Version
	Unicode Converter 68K Static Libraries

	Basic Text Types Reference
	Basic Text Constants
	Text Encoding Base
	Text Encoding Variant
	Text Encoding Format
	Text Encoding Name Selector
	Script Manager Derivation Specifiers
	Unicode Character Properties
	Text Encoding Conversion Manager Result Codes

	Basic Text Structures and Other Types
	Unicode Character and String Pointer Data Types

	Basic Text Functions
	Creating a Text Encoding Specification
	Obtaining Information From a Text Encoding Specification
	Obtaining Converter Information
	Converting Between Script Manager Values and Text Encodings
	Finding Mac OS Encodings that Match Other Encodings
	Obtaining Unicode Character Properties

	Text Encoding Converter Reference
	Chapter Overview
	Text Encoding Converter Constants
	Text Encoding Converter Result Codes

	Text Encoding Converter Structures and Other Types
	Text Encoding Converter Functions
	Obtaining Information About Available Text Encodings
	Identifying Direct Encoding Conversions
	Identifying Possible Destination Encodings
	Internet and Regional Text Encoding Names
	Investigating Encodings
	Creating and Deleting Converter objects
	Setting Conversion Options
	Converting Text Between Encodings
	Multiple Encoding Run Conversions

	Unicode Converter Reference
	Unicode Converter Constants
	Unicode Mapping Versions
	Conversion Control Flags
	Fallback-Handler Control Flags
	Filter Control Flags
	Unicode Converter Result Codes

	Unicode Converter Structures and Other Types
	Unicode Converter Functions
	Using a Static Library
	Converting to Unicode
	Converting From Unicode
	Converting From Unicode to Multiple Encodings
	Truncating Strings Before Converting Them
	Converting Between Unicode and Pascal Strings
	Obtaining Mapping Information
	Setting the Fallback Handler

	Application-Defined Function

	Writing Custom Plug-Ins
	Character Encodings Concepts
	Terminology
	Character Sets and Encoding Schemes
	Characters, Glyphs, and Related Terms

	Non-Unicode Character Encodings
	General Character Set Structure
	Simple Coded Character Sets

	Packing Schemes for Multiple Character Sets
	Code-Switching Schemes for Multiple Character Sets
	Unicode
	Character Set Features
	Repertoire and Semantics
	Combining and Conjoining Characters
	Ordering Issues

	Character Data in Programming Languages

	Some Character Encodings and Their Common Internet Names
	Identifying Character Encodings on the Internet
	Character Encodings Masquerading as Related Encodings
	Character Encodings and Their Internet Names

	Mac OS Encoding Variants
	Conventions for Unicode Text in the Mac OS
	File Requirements
	File Types
	File Content
	Creating Content
	Reading Content

	Document Version History
	Glossary
	Index

