



November 16, 1998
Technical Publications
© 1998 Apple Computer, Inc.



I N S I D E M A C I N T O S H

Mac OS 8
Menu Manager Reference

Updated for Appearance 1.0.2

11/16/98



 Apple Computer, Inc.



Apple Computer, Inc.
© 1997, 1998 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures, Tables, and Listings 5

Chapter 1 Menu Manager Reference 7

Contextual Menu Gestalt Selector Constants 9
Menu Manager Functions 10

Initializing the Menu Manager 10
Creating Menus 13
Responding to the User’s Choice of a Menu Command 15
Manipulating and Accessing Menu Item Characteristics 20
Defining Your Own Contextual Menu Plug-In 36

Menu Manager Data Types 43
Menu Manager Constants 56

Menu Definition IDs 56
Contextual Menu Help Type Constants 57
Contextual Menu Selection Type Constants 58
Modifier Key Mask Constants 58
Menu Item Icon Type Constants 59
Menu Definition Message and Feature Constants 60

Result Codes 61

Appendix A Version History 63

Index 65
3
11/16/98  Apple Computer, Inc.

4
11/16/98  Apple Computer, Inc.

Figures, Tables, and Listings

Chapter 1 Menu Manager Reference 7

Listing 1-1 Registering a contextual menu plug-in 37
Figure 1-1 A menu command list in the AEDescList array 40
Figure 1-2 A menu record showing submenus 41
Figure 1-3 Structure of a compiled menu ('MENU') resource 46
Figure 1-4 Variable-length data portion of a compiled 'MENU' resource 48
Figure 1-5 Structure of a compiled extended menu ('xmnu') resource 50
Figure 1-6 Structure of an extended menu item entry 51
Table 1-1 Keyboard font character codes 54

Appendix A Version History 63

Table A-1 Mac OS 8 Menu Manager Reference Revision History 63
5
11/16/98  Apple Computer, Inc.

6
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Contents

11/16/98



 Apple Computer, Inc.

Contents

Figure 1-0
Listing 1-0
Table 1-0
1 Menu Manager Reference
Contextual Menu Gestalt Selector Constants 9
Menu Manager Functions 10

Initializing the Menu Manager 10
InitContextualMenus 11
ProcessIsContextualMenuClient 11
InitProcMenu 12

Creating Menus 13
GetMenu 13

Responding to the User’s Choice of a Menu Command 15
MenuEvent 15
MenuKey 17
IsShowContextualMenuClick 17
ContextualMenuSelect 18

Manipulating and Accessing Menu Item Characteristics 20
SetItemCmd 22
SetMenuItemCommandID 22
GetMenuItemCommandID 23
SetMenuItemFontID 24
GetMenuItemFontID 24
SetMenuItemHierarchicalID 25
GetMenuItemHierarchicalID 26
SetMenuItemIconHandle 26
GetMenuItemIconHandle 27
SetMenuItemKeyGlyph 28
GetMenuItemKeyGlyph 29
SetMenuItemModifiers 30
GetMenuItemModifiers 31
7

C H A P T E R 1

SetMenuItemRefCon 32
GetMenuItemRefCon 32
SetMenuItemRefCon2 33
GetMenuItemRefCon2 34
SetMenuItemTextEncoding 35
GetMenuItemTextEncoding 36

Defining Your Own Contextual Menu Plug-In 36
Initialize 38
ExamineContext 39
HandleSelection 42
PostMenuCleanup 43

Menu Manager Data Types 43
MCEntry 44
'mctb' 44
'MENU' 44
'xmnu' 50

Menu Manager Constants 56
Menu Definition IDs 56
Contextual Menu Help Type Constants 57
Contextual Menu Selection Type Constants 58
Modifier Key Mask Constants 58
Menu Item Icon Type Constants 59
Menu Definition Message and Feature Constants 60

Result Codes 61
8 Contents

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference 1

Menus allow users to view or choose from a list of choices and commands that
your application provides. You can use the Menu Manager to create, display,
and manage the drawing and behavior of pull-down, hierarchical, and
contextual menus.

Portions of the Menu Manager application programming interface (API) are
new, changed, or not recommended with Mac OS 8 or Appearance Manager 1.0.
See the following sections for descriptions of the changes to the Menu Manager:

■ “Contextual Menu Gestalt Selector Constants” (page 9)

■ “Menu Manager Functions” (page 10)

■ “Menu Manager Data Types” (page 43)

■ “Menu Manager Constants” (page 56)

For descriptions of the parts of the Menu Manager API that are unaffected by
Mac OS 8 or Appearance Manager 1.0, see Inside Macintosh: Macintosh Toolbox
Essentials. For a description of the Mac OS 8.5 Menu Manager API, see Mac OS
8.5 Menu Manager Reference.

Contextual Menu Gestalt Selector Constants 1

Before calling any contextual menu functions, your application should pass the
selector gestaltContextualMenuAttr to the Gestalt function to determine
whether contextual menu functions are available.

enum{
gestaltContextualMenuAttr = 'cmnu'

};

Constant description

gestaltContextualMenuAttr
The Gestalt selector passed to the Gestalt function to
determine whether contextual menu functions are
available. Produces a value whose bits you should test to
determine whether the contextual menu functions are
available.
Contextual Menu Gestalt Selector Constants 9
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference

Your program can use the following value to test for the presence of contextual
menu functions:

enum{
gestaltContextualMenuTrapAvailable = 1

};

Constant description

gestaltContextualMenuTrapAvailable
If this bit is set, the contextual menu functions are available
to 68K applications. If this bit is not set, these functions are
not available to 68K applications.

Menu Manager Functions 1

Menu Manager functions in the following areas have been affected by
Appearance Manager 1.0:

■ “Initializing the Menu Manager” (page 10)

■ “Creating Menus” (page 13)

■ “Responding to the User’s Choice of a Menu Command” (page 15)

■ “Manipulating and Accessing Menu Item Characteristics” (page 20)

■ “Defining Your Own Contextual Menu Plug-In” (page 36)

Initializing the Menu Manager 1
The following Menu Manager functions for initializing the Menu Manager are
new, changed, or not recommended with Appearance Manager 1.0:

■ InitContextualMenus (page 11) adds a program to the system registry of
contextual menu clients. New with Appearance Manager 1.0.

■ ProcessIsContextualMenuClient (page 11) determines whether a given
program is a contextual menu client. New with Appearance Manager 1.0.
10 Menu Manager Functions

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference

■ InitProcMenu (page 12) sets the mbResID field of the current menu list to the
resource ID of a custom 'MBDF' resource. Changed with Appearance Manager
1.0.

InitContextualMenus 1
Adds a program to the system registry of contextual menu clients.

pascal OSStatus InitContextualMenus (void);

function result A result code; see “Result Codes” (page 61).

DISCUSSION

Your program should call the InitContextualMenus function early in your
startup code to register your application as a contextual menu client. If you do
not register your program, some system-level functions may respond as though
your program does not use contextual menus. Not registering your program
may also cause ProcessIsContextualMenuClient (page 11) to return an incorrect
value.

If you have a 68K program, you must pass the selector
gestaltContextualMenuAttr to the Gestalt function before calling the
InitContextualMenus function. If the Gestalt function returns a bit field with
the gestaltContextualTrapAvailable bit set, InitContextualMenus can be called;
see “Contextual Menu Gestalt Selector Constants” (page 9).

VERSION NOTES

Available with Appearance Manager 1.0 and later.

ProcessIsContextualMenuClient 1
Determines whether a given program is a contextual menu client.

pascal Boolean ProcessIsContextualMenuClient(ProcessSerialNumber* inPSN);

inPSN A pointer to the ID of the process containing the program.
Menu Manager Functions 11
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference

function result A Boolean value. ProcessIsContextualMenuClient returns true if
the program in the process uses contextual menus; otherwise,
false.

DISCUSSION

The ProcessIsContextualMenuClient function checks the system registry of
contextual menu clients and returns true if the program in the given process
supports contextual menus. However, the program must have been registered
as a client using InitContextualMenus (page 11).

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

“Contextual Menu Gestalt Selector Constants” (page 9).

InitProcMenu 1
Sets the mbResID field of the current menu list to the resource ID of a custom
'MBDF' resource.

pascal void InitProcMenu (short resID);

resID The resource ID of your application’s menu bar definition
function in the upper 13 bits of this parameter; the variant in the
lower 3 bits. You must use a resource ID greater than 0x100.
Resource IDs 0x000 through 0x100 are reserved for the use of
Apple Computer, Inc.

DISCUSSION

If your application provides its own menu bar definition function, use the
InitProcMenu function to associate your custom 'MBDF' resource with the current
menu list. In general, you should not use a custom menu bar definition unless
absolutely necessary. InitProcMenu creates the current menu list if it hasn’t
already been created by a previous call to InitMenus .
12 Menu Manager Functions

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
You can also call InitProcMenu to bypass mapping of the pre-Appearance menu
resource ID constant textMenuProc to its corresponding Appearance-compliant
menu resource ID constant kMenuStdMenuProc when mapping is enabled.

SPECIAL CONSIDERATIONS

The resource ID of your application’s menu bar definition function is
maintained in the current menu list until your application next calls InitMenus;
InitMenus initializes the mbResID field with the resource ID of the standard menu
bar definition function. This can affect applications such as development
environments that control other applications which may call InitMenus.

VERSION NOTES

Bypasses definition function mapping under Appearance Manager 1.0 and later.

Creating Menus 1
The following Menu Manager function for creating menus is changed with
Appearance Manager 1.0:

■ GetMenu (page 13) creates a menu from the specified menu and extended
menu resources. Changed with Appearance Manager 1.0.

GetMenu 1
Creates a menu from the specified menu and extended menu resources.

pascal MenuHandle GetMenu (short resourceID);

resourceID The resource ID of the menu and extended menu that defines
the characteristics of the menu. You typically use the same
number for a menu’s resource ID as the number that you specify
for the menu ID in the menu resource.

function result Returns a handle to the menu structure for the menu. You can
use the returned menu handle to refer to this menu in most
Menu Manager functions. If GetMenu is unable to read the menu
or menu definition function from the resource file, GetMenu
returns nil.
Menu Manager Functions 13
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
DISCUSSION

In addition to creating a menu, the GetMenu function also creates a menu
structure for the menu. GetMenu reads the menu definition function into memory
(if not already present) and stores a handle to the menu definition function in
the menu structure. GetMenu does not insert the newly created menu into the
current menu list.

Note
You typically use the GetMenu function only when you
create submenus; you can create all your pull-down menus
at once using the function GetNewMBar, and you can create
pop-up menus using the standard pop-up menu button
control definition function.

After reading the 'MENU' resource (page 44), GetMenu searches for an extended
menu resource and an 'mctb' resource with the same resource ID as the 'MENU'
resource. If the specified 'mctb' resource exists, GetMenu uses SetMCEntries to
add the entries defined by the resource to the application’s menu color
information table. If the 'mctb' resource does not exist, GetMenu uses the default
colors specified in the menu bar entry of the application’s menu color
information. If neither a menu bar entry nor a 'mctb' resource exists, GetMenu
uses the standard colors for the menu.

Storing the definitions of your menus in resources (especially menu titles and
menu items) makes your application easier to localize.

▲ W AR N I N G

Menus in a resource must not be purgeable nor should the
resource lock bit be set. Do not define a “circular”
hierarchical menu—that is, a hierarchical menu in which a
submenu has a submenu whose submenu is a hierarchical
menu higher in the chain.

SPECIAL CONSIDERATIONS

To release the memory associated with a menu that you created using GetMenu,
first call DeleteMenu to remove the menu from the current menu list and to
remove any entries for this menu in your application’s menu color information
table; then call DisposeMenu to dispose of the menu structure. After disposing of
a menu, use DrawMenuBar to update the menu bar.
14 Menu Manager Functions

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
VERSION NOTES

Changed with Appearance Manager 1.0 to support the extended menu
resource.

Responding to the User’s Choice of a Menu Command 1
The following Menu Manager functions for responding to the user’s choice of a
menu command are new, changed, or not recommended with Appearance
Manager 1.0:

■ MenuEvent (page 15) maps a keyboard combination from the event structure
to the keyboard equivalent of a menu item in a menu in the current menu
list. New with Appearance Manager 1.0.

■ MenuKey (page 17) maps a character key with the Command key to determine
the keyboard equivalent of a menu item in a menu in the current menu list.
Not recommended with Appearance Manager 1.0.

■ IsShowContextualMenuClick (page 17) returns whether a particular event
could invoke a contextual menu. New with Appearance Manager 1.0.

■ ContextualMenuSelect (page 18) displays a contextual menu. New with
Appearance Manager 1.0.

MenuEvent 1
Maps a keyboard combination from the event structure to the keyboard
equivalent of a menu item in a menu in the current menu list.

pascal UInt32 MenuEvent (EventRecord* inEvent);

inEvent A pointer to the event structure containing the keyboard
equivalent.

function result Returns a value that indicates the menu ID and menu item that
the user chose. If the given character does not map to an enabled
menu item in the current menu list, MenuEvent returns 0 in its
high-order word and the low-order word is undefined.
Menu Manager Functions 15
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
 DISCUSSION

When the Appearance Manager is available, your program should call the
MenuEvent function instead of the MenuKey function. MenuEvent maps the
keyboard equivalent character in the event structure to its corresponding menu
and menu item. Unlike MenuKey, the MenuEvent function supports the Shift,
Option, and Control modifier keys in addition to the Command key.

The MenuEvent function does not distinguish between uppercase and lowercase
letters. This allows a user to invoke a keyboard equivalent command, such as
the Copy command, by pressing the Command key and “c” or “C”. For
consistency between applications, you should define the keyboard equivalents
of your commands so that they appear in uppercase in your menus.

If the given character maps to an enabled menu item in the current menu list,
MenuEvent highlights the menu title of the chosen menu, returns the menu ID in
the high-order word of its function result, and returns the chosen menu item in
the low-order word of its function result. After performing the chosen task,
your application should unhighlight the menu title using the HiliteMenu
function.

You should not define menu items with identical keyboard equivalents. The
MenuEvent function scans the menus from right to left and the items from top to
bottom. If you have defined more than one menu item with identical keyboard
equivalents, MenuEvent returns the first one it finds.

The MenuEvent function first searches the regular portion of the current menu list
for a menu item with a keyboard equivalent matching the given key. If it
doesn’t find one there, it searches the submenu portion of the current menu list.
If the given key maps to a menu item in a submenu, MenuEvent highlights the
menu title in the menu bar that the user would normally pull down to begin
traversing to the submenu. Your application should perform the desired
command and then unhighlight the menu title.

You shouldn’t assign a Command–Shift–number key sequence to a menu item
as its keyboard equivalent; Command–Shift–number key sequences are
reserved for use as 'FKEY' resources. Command–Shift–number key sequences
are not returned to your application, but instead are processed by the Event
Manager. The Event Manager invokes the 'FKEY' resource with a resource ID
that corresponds to the number that activates it.

VERSION NOTES

Available with Appearance Manager 1.0 and later.
16 Menu Manager Functions

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
MenuKey 1
Maps a character key with the Command key to determine the keyboard
equivalent of a menu item in a menu in the current menu list. When the
Appearance Manager is available, call MenuEvent (page 15) instead of MenuKey, in
order to map the keyboard equivalent character in the event structure to its
corresponding menu and menu item. Unlike MenuKey, the MenuEvent function
supports the Shift, Option, and Control modifier keys in addition to the
Command key.

VERSION NOTES

Not recommended with Appearance Manager 1.0 and later.

IsShowContextualMenuClick 1
Returns whether a particular event could invoke a contextual menu.

pascal Boolean IsShowContextualMenuClick(const EventRecord* inEvent);

inEvent A pointer to the event structure that describes the event to
examine.

function result Returns a Boolean value indicating whether or not a contextual
menu should be displayed. If true, the contextual menu should
be displayed; if false, not.

DISCUSSION

Before calling the IsShowContextualMenuClick function, you should call
InitContextualMenus (page 11). If no error is returned, you can then call
IsShowContextualMenuClick.

Applications should call IsShowContextualMenuClick when they receive non-null
events. If IsShowContextualMenuClick returns true, your application should
generate its own menu and Apple Event descriptor (AEDesc), and then call
ContextualMenuSelect (page 18) to display and track the contextual menu, and
then handle the user’s choice.

If the mouse-down event did not invoke a contextual menu, then the
application should check to see if the event occurred in the menu bar (using the
Menu Manager Functions 17
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
FindWindow function) and, if so, call MenuSelect to allow the user to choose a
command from the menu bar.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

“Contextual Menu Gestalt Selector Constants” (page 9).

ContextualMenuSelect 1
Displays a contextual menu.

pascal OSStatus ContextualMenuSelect (
MenuHandle inMenu,
Point inGlobalLocation,
Boolean inReserved,
UInt32 inHelpType,
ConstStr255Param inHelpItemString,
const AEDesc* inSelection,
UInt32* outUserSelectionType,
SInt16* outMenuID,
UInt16* outMenuItem);

inMenu Pass a handle to a menu containing application commands to
display. The caller creates this menu based on the current
context, the mouse location, and the current selection (if it was
the target of the mouse). If you pass nil, only system commands
will be displayed. The menu should be added to the menu list as
a pop-up menu (using the InsertMenu function).

inGlobalLocation
Pass the location (in global coordinates) of the mouse near
which the menu is to be displayed.

inReserved Reserved for future use. Pass false for this parameter.
18 Menu Manager Functions

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
inHelpType Pass an identifier specifying the type of help to be provided by
the application; see “Contextual Menu Help Type Constants”
(page 57).

inHelpItemString
Pass the string containing the text to be displayed for the help
menu item. This string is unused unless you also pass the
constant kCMOtherHelp in the inHelpType parameter.

inSelection Pass a pointer to an object specifier for the current selection. This
allows the system to examine the selection and add special
system commands accordingly. Passing a value of nil indicates
that no selection should be examined, and most likely, no special
system actions will be included.

outUserSelectionType
Pass a pointer to an unsigned 32-bit value. On return, the value
indicates what the user selected from the contextual menu; see
“Contextual Menu Help Type Constants” (page 57).

outMenuID Pass a pointer to a signed 16-bit value. On return, if
outUserSelectionType is set to kCMMenuItemSelected, the value is
set to the menu ID of the chosen item.

outMenuItem Pass a pointer to an unsigned 16-bit value. On return, if
outUserSelectionType is set to kCMMenuItemSelected, the value is
set to the menu item chosen.

function result A result code; see “Result Codes” (page 61).
ContextualMenuSelect returns the result code userCanceledErr
and sets outUserSelectionType to kCMNothingSelected to indicate
that the user did not select anything from the contextual menu
and no further processing is needed.

DISCUSSION

If the IsShowContextualMenuClick function returns true, you should call the
ContextualMenuSelect function after generating your own menu and preparing
an Apple Event descriptor (AEDesc) that describes the item for which your
application is displaying a contextual menu. This descriptor may contain an
object specifier or raw data and will be passed to all contextual menu plug-ins.

The system will add other items before displaying the contextual menu, and it
will remove those items before returning, leaving the menu in its original state.
Menu Manager Functions 19
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
After all the system commands are added, the contextual menu is displayed
and tracked. If the user selects one of the system items, it is handled by the
system and the call returns as though the user didn’t select anything from the
menu. If the user selects any other item (or no item at all), the Menu Manager
passes back appropriate values in the parameters outUserSelectionType,
outMenuID, and outMenuItem.

Your application should provide visual feedback indicating the item that was
clicked upon. For example, a click on an icon should highlight the icon, while a
click on editable text should not eliminate the current selection.

If the outUserSelectionType parameter contains kCMMenuItemSelected, you
should look at the outMenuID and outMenuItem parameters to determine what
menu item the user chose and handle it appropriately. If the user selected
kCMHelpItemSelected, you should open the proper Apple Guide sequence or
other form of custom help.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

“Contextual Menu Gestalt Selector Constants” (page 9).

Manipulating and Accessing Menu Item Characteristics 1
The following Menu Manager functions for manipulating and accessing menu
item characteristics are new, changed, or not recommended with Appearance
Manager 1.0:

■ SetItemCmd (page 22) sets the value of the keyboard equivalent field of a
menu item. Not recommended with Appearance Manager 1.0.

■ SetMenuItemCommandID (page 22) sets a menu item’s command ID. New with
Appearance Manager 1.0.

■ GetMenuItemCommandID (page 23) obtains a menu item’s command ID. New
with Appearance Manager 1.0.

■ SetMenuItemFontID (page 24) sets the font for a menu item. New with
Appearance Manager 1.0.
20 Menu Manager Functions

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
■ GetMenuItemFontID (page 24) obtains a menu item’s font ID. New with
Appearance Manager 1.0.

■ SetMenuItemHierarchicalID (page 25) attaches a submenu to a menu item.
New with Appearance Manager 1.0.

■ GetMenuItemHierarchicalID (page 26) obtains the menu ID of a specified
submenu. New with Appearance Manager 1.0.

■ SetMenuItemIconHandle (page 26) sets a menu item’s icon. New with
Appearance Manager 1.0.

■ GetMenuItemIconHandle (page 27) obtains a handle to a menu item’s icon.
New with Appearance Manager 1.0.

■ SetMenuItemKeyGlyph (page 28) substitutes a keyboard glyph for the glyph
normally displayed for a menu item’s keyboard equivalent. New with
Appearance Manager 1.0.

■ GetMenuItemKeyGlyph (page 29) obtains the keyboard glyph for a menu item’s
keyboard equivalent. New with Appearance Manager 1.0.

■ SetMenuItemModifiers (page 30) sets the modifier key(s) that must be pressed
with a character key to select a particular menu item. New with Appearance
Manager 1.0.

■ GetMenuItemModifiers (page 31) obtains the modifier keys that must be
pressed with a character key to select a particular menu item. New with
Appearance Manager 1.0.

■ SetMenuItemRefCon (page 32) sets application-specific information for a menu
item. New with Appearance Manager 1.0.

■ GetMenuItemRefCon (page 32) obtains application-specific information for a
menu item. New with Appearance Manager 1.0.

■ SetMenuItemRefCon2 (page 33) sets additional application-specific information
for a menu item. New with Appearance Manager 1.0.

■ GetMenuItemRefCon2 (page 34) obtains application-specific information for a
menu item. New with Appearance Manager 1.0.

■ SetMenuItemTextEncoding (page 35) sets the text encoding for a menu item’s
text. New with Appearance Manager 1.0.

■ GetMenuItemTextEncoding (page 36) obtains the text encoding used for a menu
item’s text. New with Appearance Manager 1.0.
Menu Manager Functions 21
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
SetItemCmd 1
Sets the value of the keyboard equivalent field of a menu item. When the
Appearance Manager is available, you should call SetMenuItemModifiers
(page 30), SetMenuItemHierarchicalID (page 25), and SetMenuItemTextEncoding
(page 35) instead of SetItemCmd to set a menu item’s keyboard equivalent and
text encoding and to indicate that a menu item has a submenu.

VERSION NOTES

Not recommended with Appearance Manager 1.0 and later.

SetMenuItemCommandID 1
Sets a menu item’s command ID.

pascal OSErr SetMenuItemCommandID (
MenuHandle inMenu,
SInt16 inItem,
UInt32 inCommandID);

inMenu A handle to the menu that contains the menu item for which
you wish to set a command ID.

inItem An integer representing the item number of the menu item.

inCommandID An integer representing the command ID that you wish to set.

function result A result code; see “Result Codes” (page 61).

DISCUSSION

You can use a menu item’s command ID as a position-independent method of
signalling a specific action in an application.

VERSION NOTES

Available with Appearance Manager 1.0 and later.
22 Menu Manager Functions

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
SEE ALSO

GetMenuItemCommandID (page 23).

GetMenuItemCommandID 1
Obtains a menu item’s command ID.

pascal OSErr GetMenuItemCommandID (
MenuHandle inMenu,
SInt16 inItem,
UInt32* outCommandID);

inMenu A handle to the menu that contains the menu item for which
you wish to get a command ID.

inItem An integer representing the item number of the menu item.

outCommandID Pass a pointer to an unsigned 32-bit integer value. On return,
the value is set to the item’s command ID.

function result A result code; see “Result Codes” (page 61).

DISCUSSION

After a successful call to MenuSelect, MenuEvent (page 15), or MenuKey (page 17),
call the GetMenuItemCommandID function to get a menu item’s command ID. You
can use a menu item’s command ID as a position-independent method of
signalling a specific action in an application.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

SetMenuItemCommandID (page 22).
Menu Manager Functions 23
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
SetMenuItemFontID 1
Sets the font for a menu item.

pascal OSErr SetMenuItemFontID (
MenuHandle inMenu,
SInt16 inItem,
SInt16 inFontID);

inMenu A handle to the menu that contains the menu item for which
you wish to set the font.

inItem An integer representing the item number of the menu item.

inFontID An integer representing the font ID that you wish to set.

function result A result code; see “Result Codes” (page 61).

DISCUSSION

The SetMenuItemFontID function enables you to set up a font menu with each
item being drawn in the actual font.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

GetMenuItemFontID (page 24).

GetMenuItemFontID 1
Obtains a menu item’s font ID.

pascal OSErr GetMenuItemFontID (
MenuHandle inMenu,
SInt16 inItem,
SInt16* outFontID);

inMenu A handle to the menu that contains the menu item for which
you wish to get a font ID.
24 Menu Manager Functions

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
inItem An integer representing the item number of the menu item.

outFontID Pass a pointer to a signed 16-bit integer value. On return, the
value is set to the font ID for the menu item.

function result A result code; see “Result Codes” (page 61).

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

SetMenuItemFontID (page 24).

SetMenuItemHierarchicalID 1
Attaches a submenu to a menu item.

pascal OSErr SetMenuItemHierarchicalID (
MenuHandle inMenu,
SInt16 inItem,
SInt16 inHierID)

inMenu A handle to the menu that contains the menu item to which you
wish to attach a submenu.

inItem An integer representing the item number of the menu item.

inHierID An integer representing the menu ID of the submenu you wish
to attach. This menu should be inserted into the menu list by
calling InsertMenu.

function result A result code; see “Result Codes” (page 61).

DISCUSSION

The SetMenuItemHierarchicalID function should be called instead of setting the
keyboard equivalent to 0x1B. When the Appearance Manager is available, you
should call SetMenuItemHierarchicalID instead of SetItemMark to set the menu
ID of a menu item’s submenu. However, you can still use SetItemMark to set the
mark of a menu item.
Menu Manager Functions 25
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
VERSION NOTES

Available with Appearance Manager 1.0 and later.

Setting a submenu with an menu ID greater than 255 is only supported under
Mac OS 8.5 and later.

GetMenuItemHierarchicalID 1
Obtains the menu ID of a specified submenu.

pascal OSErr GetMenuItemHierarchicalID (
MenuHandle inMenu,
SInt16 inItem,
SInt16 *outHierID)

inMenu A handle to the menu that contains the menu item for which
you wish to get the submenu’s menu ID.

inItem An integer representing the item number of the menu item.

outHierID Pass a pointer to a signed 16-bit integer value. On return, the
value is set to the menu ID of the submenu.

function result A result code; see “Result Codes” (page 61).

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SetMenuItemIconHandle 1
Sets a menu item’s icon.

pascal OSErr SetMenuItemIconHandle (
MenuHandle inMenu,
SInt16 inItem,
UInt8 inIconType,
Handle inIconHandle);

inMenu A handle to the menu that contains the menu item for which
you wish to set an icon.
26 Menu Manager Functions

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
inItem An integer representing the item number of the menu item.

inIconType Pass a value representing the type of icon ('ICON', 'cicn',
'SICN', icon suite, or IconRef) you wish to attach; see “Menu
Item Icon Type Constants” (page 59) for descriptions of possible
values.

inIconHandle Pass a handle to the icon you wish to attach to a menu item.

function result A result code; see “Result Codes” (page 61).

DISCUSSION

The SetMenuItemIconHandle function sets the icon of a menu item with an icon
handle instead of a resource ID. SetMenuItemIconHandle allows you to set icons
of type 'ICON', 'cicn', 'SICN', as well as icon suites. To set resource-based icons
for a menu item, call SetItemIcon.

▲ W AR N I N G

Disposing of the menu will not dispose of the icon handles
set by this function. To prevent memory leaks, your
application should dispose of the icons when you dispose
of the menu.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

GetMenuItemIconHandle (page 27).

GetMenuItemIconHandle 1
Obtains a handle to a menu item’s icon.

pascal OSErr GetMenuItemIconHandle (
MenuHandle inMenu,
SInt16 inItem,
UInt8* outIconType,
Handle* outIconHandle);
Menu Manager Functions 27
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
inMenu A handle to the menu that contains the menu item for which
you wish to obtain the handle.

inItem An integer representing the item number of the menu item.

outIconType Pass a pointer to an unsigned 8-bit value. On return, the value
specifies the type of icon ('ICON', 'cicn', 'SICN', icon suite, or
IconRef) for which you are obtaining a handle. If the menu item
has no icon attached, this parameter will contain kMenuNoIcon.
See “Menu Item Icon Type Constants” (page 59) for descriptions
of possible values.

outIconHandle Pass a pointer to a handle. On return, outIconHandle contains a
handle to the icon that is attached to the menu item. If the menu
item has no icon attached, this parameter contains nil.

function result A result code; see “Result Codes” (page 61).

DISCUSSION

The GetMenuItemIconHandle function gets the icon handle and type of icon of the
specified menu item. If you wish to get a resource-based menu item icon, call
GetItemIcon.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

SetMenuItemIconHandle (page 26).

SetMenuItemKeyGlyph 1
Substitutes a keyboard glyph for the glyph normally displayed for a menu
item’s keyboard equivalent.

pascal OSErr SetMenuItemKeyGlyph (
MenuHandle inMenu,
SInt16 inItem,
SInt16 inGlyph)
28 Menu Manager Functions

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
inMenu A handle to the menu that contains the menu item for which
you wish to substitute a keyboard glyph.

inItem An integer representing the item number of the menu item.

inGlyph An integer representing the substitute glyph to display. Pass 0 if
you wish no substitution to occur. For a description of keyboard
glyphs and a list of the keyboard font character codes, see
'xmnu' (page 50).

function result A result code; see “Result Codes” (page 61).

DISCUSSION

The SetMenuItemKeyGlyph function overrides the character that would normally
be displayed in a menu item’s keyboard equivalent with a substitute keyboard
glyph. This is useful if the keyboard glyph in the font doesn’t match the actual
character generated. For example, you might use this function to display
function keys.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

GetMenuItemKeyGlyph (page 29).

GetMenuItemKeyGlyph 1
Obtains the keyboard glyph for a menu item’s keyboard equivalent.

pascal OSErr GetMenuItemKeyGlyph (
MenuHandle inMenu,
SInt16 inItem,
SInt16 *outGlyph)

inMenu A handle to the menu that contains the menu item for which
you wish to get the keyboard glyph.

inItem An integer representing the item number of the menu item.
Menu Manager Functions 29
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
outGlyph A pointer to a signed 16-bit integer value. On return the value is
set to the modifier key glyph. For a description of keyboard
glyphs and a list of the keyboard font character codes, see
'xmnu' (page 50).

function result A result code; see “Result Codes” (page 61).

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

SetMenuItemIconHandle (page 26).

SetMenuItemModifiers 1
Sets the modifier key(s) that must be pressed with a character key to select a
particular menu item.

pascal OSErr SetMenuItemModifiers (
MenuHandle inMenu,
SInt16 inItem,
UInt8 inModifiers);

inMenu A handle to the menu that contains the menu item for which
you wish to set the modifier key(s).

inItem An integer representing the item number of the menu item.

inModifiers A value representing the modifier key(s) to be used in selecting
the menu item; see “Modifier Key Mask Constants” (page 58).

function result A result code; see “Result Codes” (page 61).

DISCUSSION

You can call the SetMenuItemModifiers function to change the modifier key(s)
you can include with a character key to create your keyboard equivalent. For
example, you can change Command-x to Command-Option-Shift-x. By default,
the Command key is always specified; however, you can remove the Command
30 Menu Manager Functions

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
key by setting the kMenuNoCommand flag in the modifier keys field of an extended
menu item entry in the 'xmnu' resource; see 'xmnu' (page 50).

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

GetMenuItemModifiers (page 31).

GetMenuItemModifiers 1
Obtains the modifier keys that must be pressed with a character key to select a
particular menu item.

pascal OSErr GetMenuItemModifiers (
MenuHandle inMenu,
SInt16 inItem,
UInt8* outModifiers);

inMenu A handle to the menu that contains the menu item for which
you wish to get the modifier key(s).

inItem An integer representing the item number of the menu item.

outModifiers A pointer to an unsigned 8-bit value. On return, the bits of the
value are set to indicate the modifier keys that can be used in
selecting the menu item; see “Modifier Key Mask Constants”
(page 58).

function result A result code; see “Result Codes” (page 61).

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

SetMenuItemModifiers (page 30).
Menu Manager Functions 31
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
SetMenuItemRefCon 1
Sets application-specific information for a menu item.

pascal OSErr SetMenuItemRefCon (
MenuHandle inMenu,
SInt16 inItem,
UInt32 inRefCon);

inMenu A handle to the menu that contains the menu item with which
you wish to associate information.

inItem An integer representing the item number of the menu item.

inRefCon An unsigned 32-bit integer value. Pass a reference constant to
associate with the menu item.

function result A result code; see “Result Codes” (page 61).

DISCUSSION

If you have any data you want to associate with a menu item, you can do so
using the SetMenuItemRefCon function.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

GetMenuItemRefCon (page 32).

GetMenuItemRefCon 1
Obtains application-specific information for a menu item.

pascal OSErr GetMenuItemRefCon (
MenuHandle inMenu,
SInt16 inItem,
UInt32* outRefCon);
32 Menu Manager Functions

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
inMenu A handle to the menu that contains the menu item for which
you wish to get information.

inItem An integer representing the item number of the menu item.

outRefCon A pointer to an unsigned 32-bit integer value. On return, the
value is set to the reference constant associated with the menu
item.

function result A result code; see “Result Codes” (page 61).

DISCUSSION

If you have assigned any data to a menu item using SetMenuItemRefCon
function, you can read it using the GetMenuItemRefCon function.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

SetMenuItemRefCon (page 32).

SetMenuItemRefCon2 1
Sets additional application-specific information for a menu item.

pascal OSErr SetMenuItemRefCon2 (
MenuHandle inMenu,
SInt16 inItem,
UInt32 inRefCon);

inMenu A handle to the menu that contains the menu item for which
you wish to set information.

inItem An integer representing the item number of the menu item.

inRefCon An unsigned 32-bit integer value. Pass a reference constant to
associate with the menu item.

function result A result code; see “Result Codes” (page 61).
Menu Manager Functions 33
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
DISCUSSION

If you have data you want to associate with a menu item in addition to that set
with the SetMenuItemRefCon (page 32) function, you can do so using the
SetMenuItemRefCon2 function.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

GetMenuItemRefCon2 (page 34).

GetMenuItemRefCon2 1
Obtains application-specific information for a menu item.

pascal OSErr GetMenuItemRefCon2 (
MenuHandle inMenu,
SInt16 inItem,
UInt32* outRefCon);

inMenu A handle to the menu that contains the menu item for which
you wish to retrieve information.

inItem An integer representing the item number of the menu item.

outRefCon A pointer to an unsigned 32-bit integer value. On return, the
value is set to the reference constant associated with the menu
item.

function result A result code; see “Result Codes” (page 61).

DISCUSSION

If you have assigned any data to a given menu item using SetMenuItemRefCon2
function, you can read it using the GetMenuItemRefCon function.
34 Menu Manager Functions

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

SetMenuItemRefCon2 (page 33).

SetMenuItemTextEncoding 1
Sets the text encoding for a menu item’s text.

pascal OSErr SetMenuItemTextEncoding (
MenuHandle inMenu,
SInt16 inItem,
TextEncoding inScriptID);

inMenu A handle to the menu that contains the menu item whose text
encoding you wish to set.

inItem An integer representing the item number of the menu item.

inScriptID The script code that corresponds to the text encoding you wish
to set.

function result A result code; see “Result Codes” (page 61).

DISCUSSION

To set the text encoding for a menu item’s text, call the SetMenuItemTextEncoding
function instead of SetItemCmd. If a menu item has a command code of 0x1C
when SetMenuItemTextEncoding is called, the values in the command and icon
fields of the menu resource are cleared and replaced with the value in the
inScriptID parameter of SetMenuItemTextEncoding.

VERSION NOTES

Available with Appearance Manager 1.0 and later.
Menu Manager Functions 35
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
SEE ALSO

GetMenuItemTextEncoding (page 36).

GetMenuItemTextEncoding 1
Obtains the text encoding used for a menu item’s text.

pascal OSErr GetMenuItemTextEncoding (
MenuHandle inMenu,
SInt16 inItem,
TextEncoding* outScriptID);

inMenu A handle to the menu that contains the menu item whose text
encoding you wish to get.

inItem An integer representing the item number of the menu item.

outScriptID A pointer to a TextEncoding value. On return, the value is set to
the script code of the text encoding used in the menu item’s text.

function result A result code; see “Result Codes” (page 61).

DISCUSSION

If a menu item has a command code of 0x1C when GetMenuItemTextEncoding is
called, GetMenuItemTextEncoding gets the value in the icon field of the menu
item’s menu resource.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

SetMenuItemTextEncoding (page 35).

Defining Your Own Contextual Menu Plug-In 1
The following Menu Manager methods for defining your own contextual menu
plug-in are new with Appearance Manager 1.0:
36 Menu Manager Functions

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
■ Initialize (page 38) performs any required plug-in initialization.

■ ExamineContext (page 39) examines the context chosen by the user and
determines possible menu commands appropriate to the context.

■ HandleSelection (page 42) executes the contextual menu item chosen by the
user.

■ PostMenuCleanup (page 43) performs any necessary cleanup when the
contextual menu is dismissed.

Note
A contextual menu plug-in is implemented as a SOMObject
object inside a shared library. (SOMObjects for the Mac OS
platform is the Mac OS implementation of the System
Object Model.) Typically your development environment
can compile directly to a SOMObject object, so you do not
need to create your own SOM interfaces.

A contextual menu plug-in is a subclass of AbstractCMPlugin : SOMObject. It
consists of four methods described above. Each subclass of the
AbstractCMPlugin must have an extended 'cfrg' resource, through which it
identifies itself as a SOMObject object which derives from the AbstractCMPlugin
class. See Mac OS Runtime Architectures for information about the extended
'cfrg' resource.

In addition you must register the plug-in class as a SOMObject object so that the
Menu Manager can instantiate it by name. Typically you can do this in a
fragment’s initialization function.

Listing 1-1 shows a sample initialization function that registers the plug-in.

Listing 1-1 Registering a contextual menu plug-in

pascal OSErr MyPluginInitialize(CFragInitBlockPtr init)
{

/* If your compiler creates a default initialization function,*/
/* you should call it here */

/* Now register our class with SOM */
somNewClass(MyPlugIn);
Menu Manager Functions 37
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
return noErr;
}

The class declaration for a contextual menu definition plug-in is as follows:

class AbstractCMPlugin: SOMObject
{

OSStatus Initialize(FSSpec *inFileSpec);
OSStatus ExamineContext(AEDesc* inContextDescriptor,

SInt32 inTimeOutInTicks
AEDescList* ioCommandPairs,
Boolean* outNeedMoreTime);

OSStatus HandleSelection(AEDesc* inContextDescriptor, SInt32
inCommandID);

OSStatus PostMenuCleanup(void);
}

When writing your own contextual menu plug-in, you must follow this
declaration and include the specified methods. The following sections describe
these methods in detail.

Initialize 1
Performs any required plug-in initialization. If you write a contextual menu
plug-in, you may include an Initialize method with the following form:

OSStatus Initialize (FSSpec *inFileSpec);

inFileSpec A pointer to a file system specification record for the file that
contains the plug-in.

method result A result code. See “Result Codes” (page 61) for a list of possible
values. If this value is not noErr then the Menu Manager does
not use the plug-in.

DISCUSSION

The Initialize method is called when the Menu Manager builds its registry of
available plug-ins (typically at system startup). You should use the Initialize
38 Menu Manager Functions

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
method to check for available resources before the plug-in is actually required.
To maintain a small memory footprint, the Initialize method should not
allocate any memory, buffers, or so on. Instead, you should allocate memory as
needed when examining the context or acting on the selection.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

ExamineContext 1
Examines the context chosen by the user and determines possible menu
commands appropriate to the context. If you write a contextual menu plug-in, it
must contain an ExamineContext method with the following form:

OSStatus ExamineContext (AEDesc* inContextDescriptor,
SInt32 inTimeOutInTicks,
AEDescList* ioCommandPairs,
Boolean* outNeedMoreTime);

inContextDescriptor
The context chosen by the user. The Menu Manager passes this
in the form of a pointer to an Apple Event descriptor. See Inside
Macintosh: Interapplication Communication for information about
the form of this descriptor. If there is no selection to examine,
the pointer is NULL.

inTimeOutInTicks
The amount of time the plug-in is allowed to examine the
context and create menu items.

ioCommandPairs
A pointer to an Apple Event descriptor list containing the
commands allowed for this context.

outNeedMoreTime
Not currently used.
Menu Manager Functions 39
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
method result A result code. See “Result Codes” (page 61) for a list of possible
values. If this value is not noErr then the Menu Manager does
not use the plug-in in this case. However, it will call
ExamineContext again the next time a contextual menu is
invoked.

DISCUSSION

When the user activates a contextual menu, each module in the registry has its
ExamineContext method called so it can inspect the context and add menu items
as appropriate. After examining the context, the plug-in should then fill the
AEDescList array with every command that it wants to add to the menu. This
AEDescList will be created and disposed of for the plug-in; it will be empty
when the plug-in receives it.

Each menu command that the plug-in can perform on the selection is described
in an AERecord with two keyword-specified descriptor records. The structure of
the AERecord is shown in Figure 1-1.

Figure 1-1 A menu command list in the AEDescList array

The first descriptor (keyAEName) is of typeIntlText and contains the text of the
menu item to be added to the menu. The second descriptor
(keyContextualMenuCommandID) is of type typeLongInteger and must contain a
value specific to the plug-in that uniquely identifies this menu item.

AEDescList of plug-in commands

Command AERecord:
 keyAEName:"Check Spelling..."
 keyContextualMenuCommandID: 1

Command AERecord:
 keyAEName:"Define..."
 keyContextualMenuCommandID: 2
40 Menu Manager Functions

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
If a plug-in wants to display a submenu for a particular menu item, it must use
a variation of the AERecord used to describe a normal menu item. Figure 1-2
shows this variation.

Figure 1-2 A menu record showing submenus

The first descriptor (keyAEName) is the same, but the second descriptor uses a
different keyword (keyContextualMenuSubmenu) and is of type typeAEList. It must
contain an AEDescList with an AERecord for every command to be added to the
submenu. Submenu items can themselves have submenus by recursively using
this technique. The depth of the submenus is limited only by the constraints of
the Menu Manager.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

AEDescList of Subcommands

Command AERecord:
 keyAEName:"Check Spelling..."
 keyContextualMenuCommandID: 1

Command AERecord:
 keyAEName:"Define..."
 keyContextualMenuCommandID: 2

Command AERecord:
 keyAEName:"Text Commands"
 keyContextualMenuSubmenu:

AEDescList of plug-in commands
Menu Manager Functions 41
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
HandleSelection 1
Executes the contextual menu item chosen by the user. If you write a contextual
menu plug-in, it must contain a HandleSelection method with the following
form:

OSStatus HandleSelection(AEDesc* inContextDescriptor,
SInt32 inCommandID);

inContextDescriptor
The context chosen by the user. This data is the same as that
passed in the inContextDescriptor parameter for the
ExamineContext method. The Menu Manager passes this in the
form of a pointer to an Apple Event descriptor. See Inside
Macintosh: Interapplication Communication for information about
the form of this descriptor.

inCommandID A long integer assigned to the chosen menu item via the
keyContextualMenuCommandID descriptor, passed in by the Menu
Manager.

method result A result code. See “Result Codes” (page 61) for a list of possible
values. If this value is not noErr then the Menu Manager does
not use the plug-in in this case. However, it will call
HandleSelection again the next time an action is selected.

DISCUSSION

If one of the plug-in’s menu items is chosen, the Menu Manager calls the
plug-in’s HandleSelection method to execute the action. The plug-in should
then perform the appropriate action.

VERSION NOTES

Available with Appearance Manager 1.0 and later.
42 Menu Manager Functions

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
PostMenuCleanup 1
Performs any necessary cleanup when the contextual menu is dismissed. If you
write a contextual menu plug-in, it must contain a PostMenuCleanup method
with the following form:

OSStatus PostMenuCleanup(void);

method result A result code. See “Result Codes” (page 61) for a list of possible
values.

DISCUSSION

When a contextual menu is dismissed (regardless of whether or not the user
made a selection), the Menu Manager calls each plug-in’s PostMenuCleanup
method. The PostMenuCleanup method should do any necessary cleanup or
memory deallocation. For example, a plug-in that allocated a buffer in the
ExamineContext method should dispose of that buffer when PostMenuCleanup is
called.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

Menu Manager Data Types 1

The following Menu Manager data types are new, changed, or not
recommended with Appearance Manager 1.0:

■ MCEntry (page 44)

■ 'mctb' (page 44)

■ 'MENU' (page 44)

■ 'xmnu' (page 50)
Menu Manager Data Types 43
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
MCEntry 1
The menu color information table defines the standard color for the menu bar,
menu titles, menu items, and the background color of a displayed menu. If you
do not add any menu color entries to this table, the Menu Manager draws your
menus using the current default colors. Using the menu color information table
to define custom colors for your menus is not recommended with Appearance
Manager 1.0 and later.

When the Appearance Manager is available and you are using standard menus,
if you do not include a menu bar entry in your menu color information table,
only the menu title color and menu item text color values from menu color
entries are used. If you do include a menu bar entry in your menu color
information table, all menu colors are used, and the menus revert to a standard
System 7 appearance.

If you are creating your own custom menu definition function, all entries in the
table are used.

'mctb' 1
The menu color information table ('mctb') resource defines the standard color
for the menu bar, menu titles, menu items, and the background color of a
displayed menu. If you do not add any menu color entries to this resource, the
Menu Manager draws your menus using the current default colors. Using the
menu color information table resource to define custom colors for your menus
is not recommended with Appearance Manager 1.0 and later.

When the Appearance Manager is available and you are using standard menus,
if you do not include a menu bar entry in your menu color information table
resource, only the menu title color and menu item text color values from menu
color entries are used. If you do include a menu bar entry in your menu color
information table resource, all menu colors are used, and the menus revert to a
standard System 7 appearance.

If you are creating your own custom menu definition function, all entries in the
menu color information table resource are used.

'MENU' 1
A menu ('MENU') resource describes the initial characteristics of a menu and its
menu items. With Appearance Manager 1.0,the recommended usage for certain
44 Menu Manager Data Types

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
fields of the variable-length data portion of the menu resource has been
changed, and the fields may take on different values, depending on the type of
information you wish to display with your menu item. However, the format of
the resource remains identical.

You can provide descriptions of your menus in menu resources and use the
functions GetMenu (page 13) or GetNewMBar to read the descriptions of your
menus. After reading in the resource description, the Menu Manager stores the
information about specific menus in menu structures. When you use a menu
resource to define a menu, you should check for the presence of an extended
menu resource with the same resource ID.

▲ W AR N I N G

Menus in a resource must not be purgeable nor should they
have the resource lock bit set. They must have resource ID
numbers greater than 127. Do not define a “circular”
hierarchical menu—that is, a hierarchical menu in which a
submenu has a submenu whose submenu is a hierarchical
menu higher in the chain.

Figure 1-3 shows the format of a compiled 'MENU' resource.
Menu Manager Data Types 45
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
Figure 1-3 Structure of a compiled menu ('MENU') resource

A compiled version of a 'MENU' resource contains the following elements:

■ Menu ID. Each menu in your application should have a unique menu ID
(this can be the menu’s resource ID). A negative value indicates that the
menu (but not a submenu) belongs to a driver such as a desk accessory. A
menu ID from 1 through 235 indicates a menu (or submenu) of an
application; a menu ID from 236 through 255 indicates a submenu of a driver.
Apple reserves the menu ID of 0.

■ Placeholder (two integers containing 0) for the menu’s width and height.
After reading in the resource data, the Menu Manager requests the menu
definition function to calculate the width and height of the menu and to store
these values in the menuWidth and menuHeight fields of the menu structure.

■ Resource ID of the menu’s menu definition function; see “Menu Definition
IDs” (page 56). If the integer 63 appears here, as specified by the
kMenuStdMenuProc constant in the Rez input file, the Menu Manager uses the

2

2

2

2

2

'MENU' resource type Bytes

Menu ID

Placeholder for menu width

Placeholder for menu height

Resource ID of menu definition procedure

Placeholder

Initial enabled state of the menu
and menu items

Variable-length data that
defines the menu items

4

1

Characters of menu title

Length (n) of title

n

variable

1Placeholder
46 Menu Manager Data Types

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
standard Appearance-compliant menu definition function to manage the
menu. If you provide your own menu definition function, its resource ID
should appear in this field. After reading in the menu’s resource data, the
Menu Manager reads in the menu definition function, if necessary. The Menu
Manager stores a handle to the menu definition function in the menuProc field
of the menu structure.

■ Placeholder (an integer containing 0).

■ The initial enabled state of the menu and first 31 menu items. This is a 32-bit
value, where bits 1–31 indicate if the corresponding menu item is disabled or
enabled, and bit 0 indicates whether the menu as a whole is enabled or
disabled. The Menu Manager automatically enables menu items greater than
31 when a menu is created.

■ The length (in bytes) of the menu title.

■ The title of the menu.

■ Variable-length data that describes the menu items. If you provide your own
menu definition function you can define and provide this data according to
the needs of your function. The Menu Manager simply reads in the data for
each menu item and stores it as variable data at the end of the menu
structure. The menu definition function is responsible for interpreting the
contents of the data. For example, the standard menu definition function
interprets this data according to the description given in the following
paragraphs.

■ Placeholder (a byte containing 0) to indicate the end of the menu item
definitions.

Figure 1-4 shows the variable-length data portion of a compiled 'MENU' resource
that uses the standard menu definition function.
Menu Manager Data Types 47
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
Figure 1-4 Variable-length data portion of a compiled 'MENU' resource

For the standard menu definition function, the variable-length data contains the
following elements:

■ Length (in bytes) of the menu item’s text.

■ Text of the menu item.

■ A 1-byte field containing one of the following:

■ An icon number. The icon number is a number from 1 through 255 (or
from 1 through 254 for small or reduced icons). The Menu Manager adds
256 to the icon number to generate the resource ID of the menu item’s
icon. If a menu item has an icon, you should also provide a 'cicn', 'SICN',
or an 'ICON' resource with the resource ID equal to the icon number plus
256. If you want the Menu Manager to reduce an 'ICON' resource to the
size of a small icon, you must also provide the value 0x1D in the keyboard
equivalent field. If you provide a 'SICN' resource, provide 0x1E in the
keyboard equivalent field. Otherwise, the Menu Manager looks first for a
'cicn' resource with the calculated resource ID and uses that icon.

■ A text encoding value. (Not recommended with Appearance.) If you want
the Menu Manager to draw the item’s text in a script other than the
system script, specify the text encoding here and also provide 0x1C in the
keyboard equivalent field. If the script system for the specified script is
installed, the Menu Manager draws the item’s text using that script.

■ 0 (as specified by the noicon constant in a Rez input file) if the menu item
doesn’t contain an icon and uses the system script.

1

Variable-length data in 'MENU' resource
(For each menu item)

Bytes

Text of menu item

 Length (m) of menu item text

Icon number, script code, or 0
Keyboard equivalent, $1B, $1C, $1D, $1E, or 0
Marking character or menu ID of submenu, or 0

Style of the menu item

m

1
1
1
1

48 Menu Manager Data Types

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
A menu item can have an icon or be drawn in a script other than the system
script, but not both.

■ Keyboard equivalent (specified as a 1-byte character). This can be enhanced
with modifier key constants in the modifier keys field of the extended menu
resource; see “'xmnu'” (page 50). In some cases, this field may take on one of
the following values instead:

■ 0x1B (as specified by the constant hierarchicalMenu in a Rez input file) if
the item has a submenu. (Not recommended with Appearance.)

■ 0x1C if the item uses a script other than the system script. (Not
recommended with Appearance.)

■ 0x1D if you want the Menu Manager to reduce an 'ICON' resource to the
size of a small icon.

■ 0x1E if you want the Menu Manager to use an 'SICN' resource for the
item’s icon.

■ 0 (as specified by the nokey constant in a Rez input file) if the item has
neither a keyboard equivalent nor a submenu and uses the system script.

The values 0x01 through 0x1A as well as 0x1F and 0x20 are reserved for use
by Apple; your application should not use any of these reserved values in
this field.

■ A 1-byte field containing one of the following:

■ A marking character. Special marking characters are available to indicate
the marks associated with a menu item.

■ The menu ID of the item’s submenu. (Not recommended with
Appearance.) Submenus of an application should have menu IDs from 1
through 235; submenus of a driver (such as a desk accessory) should have
menu IDs from 236 through 255. If you choose a submenu, you must also
set the keyboard equivalent field to 0x1B.

■ 0 (as specified by the nomark constant in a Rez input file) if the item has
neither a mark nor a submenu.

A menu item can have a mark or a submenu, but not both.

■ Font style of the menu item. The constants bold, italic, plain, outline, and
shadow can be used in a Rez input file to define their corresponding styles.

If you provide your own menu definition function, you should use the same
format for your resource descriptions of menus as shown in Figure 1-3. You can
use the same format or one of your choosing to describe menu items. You can
Menu Manager Data Types 49
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
also use bits 1–31 of the enableFlags field of the menu structure as you choose;
however, bit 0 must still indicate whether the menu is enabled or disabled.

'xmnu' 1
You can use the extended menu ('xmnu') resource to create menus with modifier
key keyboard glyphs and icons attached to menu items and
Appearance-compliant menu backgrounds. The extended menu resource is
available with Appearance Manager 1.0 and later.

After reading in a 'MENU' resource, GetMenu (page 13) looks for an extended
menu resource of type 'xmnu' with the same resource ID. The information is set
for specified menu items; it is not necessary to create an extended menu entry
for each item. At this point, the information can be purged or released.
Figure 1-5 shows the format of a compiled 'xmnu' resource.

Figure 1-5 Structure of a compiled extended menu ('xmnu') resource

A compiled version of an 'xmnu' resource contains the following elements:

■ Version number. An integer specifying the version of the resource.

Number of entries

Version number

First extended menu entry

Last extended menu entry

'xmnu' resource type

2

2

46

46

Bytes
50 Menu Manager Data Types

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
■ Number of entries. An integer that specifies the number of entries in the
resource. Each entry is an extended menu item structure.

■ Extended menu item entries. A series of extended menu item structures, each
of which consists of a type, command ID, modifier keys, text encoding,
reference constants, menu ID of submenu, font ID, and keyboard glyph.

Figure 1-6 shows the format of an extended menu item entry.

Figure 1-6 Structure of an extended menu item entry

Each entry in a 'xmnu' resource corresponds to a menu item and contains the
following:

Type

Command ID

Modifier keys

Reserved

Reserved

Text encoding

Menu ID of submenu

Font ID

Keyboard glyph

Reserved

Reference constant

Reference constant

Extended menu entry

2

4

1

1

4

4

4

4

2

2

1
1

Bytes
Menu Manager Data Types 51
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
■ Type. An integer that specifies whether there is menu item information for
the item in the 'MENU' entry. If this is 0, there is no information for the item in
the corresponding 'MENU' entry, and the rest of the record is skipped. If this is
1, there is information for the item in the corresponding 'MENU' entry, and the
rest of the record is read.

■ Command ID. A unique value which you set to identify the menu item
(instead of referring to it using the menu ID and item number). You can also
call SetMenuItemCommandID (page 22) to set the command ID of a menu item.
After a successful call to MenuSelect, MenuEvent (page 15), or MenuKey
(page 17), you can call GetMenuItemCommandID (page 23) to determine its
current value.

■ Modifier keys. A mask that determines which modifier keys are used in a
keyboard equivalent to select a menu item; see “Modifier Key Mask
Constants” (page 58).

■ Reserved. Set to 0.

■ Reserved. Set to 0.

■ Text encoding. A long integer which indicates the text encoding which your
item text will use. Use currScript for the default text encoding. To change
this value, call SetMenuItemTextEncoding (page 35). You can call
GetMenuItemTextEncoding (page 36) to determine its current value. This
should be used instead of setting a menu item’s modifier key to 0x1C and its
icon ID to the script code.

■ If you wish the text of the menu item to use the system script, this value
should be -1. This should be used as the default.

■ If you wish the text of the menu item to use the current script, this value
should be -2.

■ Reference constant. Any value that an application wishes to store. To change
this value, call SetMenuItemRefCon (page 32). You can call GetMenuItemRefCon
(page 32) to determine its current value.

■ Reference constant. Any additional value that an application wishes to store.
To change this value, call SetMenuItemRefCon2 (page 33). You can call
GetMenuItemRefCon2 (page 34) to determine its current value.

■ Menu ID of submenu. A value between 1 and 235, identifying the application
submenu.

■ Font ID. An integer representing the ID of the font family. If this value is 0,
then the system font ID is used.
52 Menu Manager Data Types

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
■ Keyboard glyph. A symbol representing a menu item’s modifier key. In
Appearance 1.0, if the value in this field is zero, the keyboard glyph uses the
system font. In Appearance 1.0.1, if the value in this field is zero, the
keyboard glyph uses the keyboard font; see Table 1-1 (page 54). Use of the
keyboard font (rather than the system font) provides a consistent user
interface across applications, since a modifier key’s symbol will not change
regardless of what system font is running. If the value in this field is nonzero,
you can override the character code to be displayed with a substitute glyph.

■ Reserved. Set to 0.
Menu Manager Data Types 53
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
Table 1-1 Keyboard font character codes

Character code Description

0x00 Null (always glyph 1)

0x01 Unassigned (reserved for 2 bytes)

0x02 Tab to the right key (for left-to-right script systems)

0x03 Tab to the left key (for right-to-left script systems)

0x04 Enter key

0x05 Shift key

0x06 Control key

0x07 Option key

0x08 Null (always glyph 1)

0x09 Space (always glyph 3) key

0x0A Delete to the right key (for right-to-left script
systems)

0x0B Return key (for left-to-right script systems)

0x0C Return key (for right-to-left script systems)

0x0D Nonmarking return key

0x0E Unassigned

0x0F Pencil key

0x10 Downward dashed arrow key

0x11 Command key

0x12 Checkmark key

0x13 Diamond key

0x14 Apple logo key (filled)

0x15 Unassigned (paragraph in Korean)

0x16 Unassigned

0x17 Delete to the left key (for left-to-right script
systems)

0x18 Leftward dashed arrow key

0x19 Upward dashed arrow key

0x1A Rightward dashed arrow key
54 Menu Manager Data Types

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
0x1B Escape key

0x1C Clear key

0x1D Unassigned (left double quotes in Japanese)

0x1E Unassigned (right double quotes in Japanese)

0x1F Unassigned (trademark in Japanese)

0x61 Blank key

0x62 Page up key

0x63 Caps lock key

0x64 Left arrow key

0x65 Right arrow key

0x66 Northwest arrow key

0x67 Help key

0x68 Up arrow key

0x69 Southeast arrow key

0x6A Down arrow key

0x6B Page down key

0x6C Apple logo key (outline)

0x6D Contextual menu key

0x6E Power key

0x6F F1 key

0x70 F2 key

0x71 F3 key

0x72 F4 key

0x73 F5 key

0x74 F6 key

0x75 F7 key

0x76 F8 key

0x77 F9 key

0x78 F10 key

0x79 F11 key

Character code Description
Menu Manager Data Types 55
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
Menu Manager Constants 1

The following Menu Manager constants are new, changed, or not recommended
with Appearance Manager 1.0:

■ “Menu Definition IDs” (page 56)

■ “Contextual Menu Help Type Constants” (page 57)

■ “Contextual Menu Selection Type Constants” (page 58)

■ “Modifier Key Mask Constants” (page 58)

■ “Menu Item Icon Type Constants” (page 59)

Menu Definition IDs 1
A menu definition ID is supplied to the menu resource (page 44) or a
menu-creation function such as NewMenu to specify which menu definition
function to use in creating the menu. The menu definition ID contains the
resource ID of the menu definition function.

Menu definition IDs are changed with Appearance Manager 1.0 to support
Appearance-compliant menus and menu bars. When mapping is enabled, the
pre-Appearance menu definition ID textmenuProc will be mapped to
kMenuStdMenuProc, its Appearance-compliant equivalent.

0x7A F12 key

0x87 F13 key

0x88 F14 key

0x89 F15 key

0x8A Control key (ISO standard)

Character code Description
56 Menu Manager Constants

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
enum {
textmenuProc = 0,
kMenuStdMenuProc = 63,
kMenuStdMenuBarProc = 63

};

Constant descriptions

textmenuProc The menu definition ID for menus that are not
Appearance-compliant.

kMenuStdMenuProc The menu definition ID for Appearance-compliant menus.
Available with Appearance Manager 1.0 and later.

kMenuStdMenuBarProc
The menu bar definition ID for Appearance-compliant
menu bars. Available with Appearance Manager 1.0 and
later.

Contextual Menu Help Type Constants 1
You can pass the following constants in the inHelpType parameter of the
function ContextualMenuSelect (page 18) to specify the kind of help the
application supports. Contextual menu help type constants are available with
Appearance Manager 1.0 and later.

enum{
kCMHelpItemNoHelp = 0,
kCMHelpItemAppleGuide = 1,
kCMHelpItemOtherHelp = 2

};

Constant descriptions

kCMHelpItemNoHelp The application does not support any help. The Menu
Manager will put an appropriate help string into the menu
and disable it.

kCMHelpItemAppleGuide
The application supports Apple Guide help. The Menu
Manager will put the name of the main Guide file into the
menu and enable it.

kCMHelpItemOtherHelp
The application supports some other form of help. In this
Menu Manager Constants 57
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
case, the application must also pass a valid string into the
inHelpItemString parameter of ContextualMenuSelect. This
string will be the text of the help item in the menu, and the
help item will be enabled.

Contextual Menu Selection Type Constants 1
The following constants are returned in the outUserSelectionType parameter of
the function ContextualMenuSelect (page 18) to specify what the user selected
from the contextual menu. Contextual menu selection type constants are
available with Appearance Manager 1.0 and later.

enum{
kCMNothingSelected = 0,
kCMMenuItemSelected = 1,
kCMShowHelpSelected = 3

};

Constant descriptions

kCMNothingSelected The user did not choose an item from the contextual menu
and the application should do no further processing of the
event.

kCMMenuItemSelected
The user chose one of the application’s items from the
menu. The application can examine the outMenuID and
outMenuItem parameters of ContextualMenuSelect to see
what the menu selection was, and it should then handle the
selection appropriately.

kCMShowHelpSelected
The user chose the Help item from the menu. The
application should open an Apple Guide database to a
section appropriate for the selection. If the application
supports some other form of help, it should be presented
instead.

Modifier Key Mask Constants 1
You can use one or more of the following mask constants in the modifier keys
field of the 'xmnu' resource (page 50) to determine which modifier key(s) must
58 Menu Manager Constants

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
be pressed along with a character key to create a keyboard equivalent for
selecting a menu item. These constants are also passed in and obtained by
SetMenuItemModifiers (page 30) and GetMenuItemModifiers (page 31),
respectively. Modifier key mask constants are available with Appearance
Manager 1.0 and later.

enum {
kMenuNoModifiers = 0,
kMenuShiftModifier = (1 << 0),
kMenuOptionModifier = (1 << 1),
kMenuControlModifier = (1 << 2),
kMenuNoCommandModifier = (1 << 3)

};

Constant descriptions

kMenuNoModifiers If no bit is set, only the Command key is used in the
keyboard equivalent.

kMenuShiftModifier If this bit (bit 0) is set, the Shift key is used in the keyboard
equivalent.

kMenuOptionModifier
If this bit (bit 1) is set, the Option key is used in the
keyboard equivalent.

kMenuControlModifier
If this bit (bit 2) is set, the Control key is used in the
keyboard equivalent.

kMenuNoCommandModifier
If this bit (bit 3) is set, the Command key is not used in the
keyboard equivalent.

Menu Item Icon Type Constants 1
The following constants specify the type of an icon attached to a menu item.
They are passed in SetMenuItemIconHandle (page 26) and obtained by
GetMenuItemIconHandle (page 27). Menu item icon type constants are available
with Appearance Manager 1.0 and later.

enum {
kMenuNoIcon = 0,
kMenuIconType = 1,
Menu Manager Constants 59
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
kMenuShrinkIconType = 2,
kMenuSmallIconType = 3,
kMenuColorIconType = 4,
kMenuIconSuiteType = 5,
kMenuIconRefType = 6

};

Constant descriptions

kMenuNoIcon No icon.
kMenuIconType Identifies an icon of type 'ICON'.
kMenuShrinkIconType

Identifies a 32-by-32-pixel icon of type 'ICON', shrunk (at
display time) to 16-by-16.

kMenuSmallIconType Identifies an icon of type 'SICN'.
kMenuColorIconType Identifies an icon of type 'cicn'.
kMenuIconSuiteType Identifies an icon suite.
kMenuIconRefType Identifies an icon of type IconRef. This value is supported

under Mac OS 8.5 and later.

Menu Definition Message and Feature Constants 1
With Appearance Manager 1.0, the Menu Manager may pass a new constant in
the message parameter of your menu definition function to specify the action
that your function must perform. In response, your menu definition function
may report a new feature flag in the whichItem parameter.

enum {
kMenuThemeSavvyMsg = 7,
kThemeSavvyMenuResponse = 0x7473

};

Constant descriptions

kMenuThemeSavvyMsg Identify whether your menu definition function is
theme-compliant. If so, your menu definition function
should respond by passing back kThemeSavvyMenuResponse
in the whichItem parameter. The Menu Manager then draws
the menu background as appropriate for the current theme.
60 Menu Manager Constants

11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
kThemeSavvyMenuResponse
If this bit is set, the menu supports the kMenuThemeSavvyMsg
message.

Result Codes 1

The most common result codes returned by Menu Manager functions are listed
below.

noErr 0 No error
paramErr –50 Error in parameter list
memFullErr –108 Not enough memory
resNotFound –192 Unable to read resource
hmHelpManagerNotInited –855 Help manager not set up
Result Codes 61
11/16/98  Apple Computer, Inc.

C H A P T E R 1

Menu Manager Reference
62 Result Codes

11/16/98  Apple Computer, Inc.

A P P E N D I X A
Version History A

This document has had the following releases:

Table A-1 Mac OS 8 Menu Manager Reference Revision History

Version Notes

Nov. 16, 1998 Removed “Menu Manager Reference” chapter from the Mac OS 8 Toolbox
Reference document. Mac OS 8 Menu Manager Reference is now available as an
independent document.

The following corrections were made:

“Contextual Menu Gestalt Selector Constants” (page 9). Removed
unsupported value gestaltContextualMenuPresent.

SetItemMark. Recategorized from “not recommended with the Appearance
Manager” to “unchanged” and, therefore, removed from this delta
document.

SetMenuItemHierarchicalID (page 25). Noted that menu IDs >255 are
supported under Mac OS 8.5 and later.

SetMenuItemIconHandle (page 26). Corrected type of inIconType parameter to
be UInt8.

GetMenuItemIconHandle (page 27). Corrected type of outIconType parameter
to be UInt8*. Corrected description of outIconHandle parameter to specify
that nil is only produced when no icon is attached to the menu item.

SetMenuItemModifiers (page 30). Corrected type of inModifiers parameter to
be UInt8.

GetMenuItemModifiers (page 31). Corrected type of outModifiers parameter
to be UInt8*.

SetMenuItemRefCon (page 32). Corrected type of inRefCon parameter to be
UInt32.

GetMenuItemRefCon (page 32). Corrected type of outRefCon parameter to be
UInt32.
63
11/16/98  Apple Computer, Inc.

A P P E N D I X

Version History
Nov. 16, 1998

(continued)

SetMenuItemRefCon2 (page 33). Corrected type of inRefCon parameter to be
UInt32.

GetMenuItemRefCon2 (page 34). Corrected type of outRefCon parameter to be
UInt32.

MCEntry (page 44) and 'mctb' (page 44). Expanded description of menu color
table behavior with the Appearance Manager.

“Modifier Key Mask Constants” (page 58). Corrected the constant name for
value 0; was kMenuCommandModifiers, should have been kMenuNoModifiers.

“Menu Item Icon Type Constants” (page 59). Renamed from “Menu Icon
Handle Constants”. Added missing constant, kMenuIconRefType.

“Menu Definition Message and Feature Constants” (page 60). Added a
previously undocumented message and feature flag.

Jan. 15, 1998 The following corrections were made:

Noted Appearance 1.0.2 where applicable.

Dec. 10, 1997 The following corrections were made:

“Keyboard font character codes” (page 54). Clarified the descriptions of
those character codes that differ in right-to-left and left-to-right script
systems.

Dec. 2, 1997 PDF formatting improved.

Nov. 3, 1997 First document release.

Table A-1 Mac OS 8 Menu Manager Reference Revision History

Version Notes
64
11/16/98  Apple Computer, Inc.

Index
A

AbstractCMPlugin class 38

C

contextual menu Gestalt selector constants 9
contextual menu help type constants 57
contextual menus, creating new plug-ins 37
ContextualMenuSelect function 18
contextual menu selection type constants 58

E

ExamineContext method 39
extended menu resource 50, 50–53

G

gestaltContextualMenuAttr constant 9
gestaltContextualMenuTrapAvailable

constant 10
GetMenu function 13
GetMenuItemCommandID function 23
GetMenuItemFontID function 24
GetMenuItemHierarchicalID function 26
GetMenuItemIconHandle function 27
GetMenuItemKeyGlyph function 29
GetMenuItemModifiers function 31
GetMenuItemRefCon2 function 34
GetMenuItemRefCon function 32
GetMenuItemTextEncoding function 36

H

HandleSelection method 42

I

InitContextualMenus function 11
Initialize method 38
InitProcMenu function 12
IsShowContextualMenuClick function 17

K

kCMHelpItemAppleGuide constant 57
kCMHelpItemNoHelp constant 57
kCMHelpItemOtherHelp constant 57
kCMMenuItemSelected constant 58
kCMNothingSelected constant 58
kCMShowHelpSelected constant 58
keyboard font character codes 54
kMenuColorIconType constant 60
kMenuControlModifier constant 59
kMenuIconRefType constant 60
kMenuIconSuiteType constant 60
kMenuIconType constant 60
kMenuNoCommandModifier constant 59
kMenuNoIcon constant 60
kMenuNoModifiers constant 59
kMenuOptionModifier constant 59
kMenuShiftModifier constant 59
kMenuShrinkIconType constant 60
kMenuSmallIconType constant 60
kMenuStdMenuBarProc constant 57
kMenuStdMenuProc constant 57
kMenuThemeSavvyMsg constant 60
65
11/16/98  Apple Computer, Inc.

I N D E X
kThemeSavvyMenuResponse constant 61

M

MCEntry type 44
''mctb'' resource type 44
menu color information table 44
menu color information table resource 44
menu definition IDs 56
MenuEvent function 15
menu icon handle constants 59
menu resource 45
'MENU' resource type 44
modifier key mask constants 58

P

Plug-In 36
plug-ins, creating for contextual menus 36
PostMenuCleanup method 43
ProcessIsContextualMenuClient function 11

R

resources
extended menu 50–53

resource types
'xmnu' 50–53

result codes, Menu Manager 61

S

SetMenuItemCommandID function 22
SetMenuItemFontID function 24
SetMenuItemHierarchicalID function 25
SetMenuItemIconHandle function 26
SetMenuItemKeyGlyph function 28
SetMenuItemModifiers function 30

SetMenuItemRefCon2 function 33
SetMenuItemRefCon function 32
SetMenuItemTextEncoding function 35

T

textmenuProc constant 57

X

'xmnu' resource type 50
66
11/16/98  Apple Computer, Inc.

I N D E X
67
11/16/98  Apple Computer, Inc.

T H E A P P L E P U B L I S H I N G S Y S T E M

11/16/98  Apple Computer, Inc.

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobe™ Illustrator and
Adobe Photoshop.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITERS
Lisa Karpinski, Donna S. Lee,
Judith Rosado, and Jun Suzuki

ILLUSTRATORS
David Arrigoni and Karin Stroud

PRODUCTION EDITOR
Glen Frank

PROJECT MANAGER
Tony Francis

Acknowledgments to Matt Ackeret,
Guy Fullerton, Pete Gontier,
Chris Thomas, and Ed Voas

	Mac OS 8 Menu Manager Reference
	Contents
	Figures, Tables, and Listings
	Menu Manager Reference
	Menu Manager Reference
	Contextual Menu Gestalt Selector Constants
	Menu Manager Functions
	Initializing the Menu Manager
	InitContextualMenus
	ProcessIsContextualMenuClient
	InitProcMenu

	Creating Menus
	GetMenu

	Responding to the User’s Choice of a Menu Command
	MenuEvent
	MenuKey
	IsShowContextualMenuClick
	ContextualMenuSelect

	Manipulating and Accessing Menu Item Characteristics
	SetItemCmd
	SetMenuItemCommandID
	GetMenuItemCommandID
	SetMenuItemFontID
	GetMenuItemFontID
	SetMenuItemHierarchicalID
	GetMenuItemHierarchicalID
	SetMenuItemIconHandle
	GetMenuItemIconHandle
	SetMenuItemKeyGlyph
	GetMenuItemKeyGlyph
	SetMenuItemModifiers
	GetMenuItemModifiers
	SetMenuItemRefCon
	GetMenuItemRefCon
	SetMenuItemRefCon2
	GetMenuItemRefCon2
	SetMenuItemTextEncoding
	GetMenuItemTextEncoding

	Defining Your Own Contextual Menu Plug-In
	Listing�1-1 Registering a contextual menu plug-in
	Initialize
	ExamineContext
	Figure�1-1 A menu command list in the AEDescList array
	Figure�1-2 A menu record showing submenus

	HandleSelection
	PostMenuCleanup

	Menu Manager Data Types
	MCEntry
	'mctb'
	'MENU'
	Figure�1-3 Structure of a compiled menu ('MENU') resource
	Figure�1-4 Variable-length data portion of a compiled 'MENU' resource

	'xmnu'
	Figure�1-5 Structure of a compiled extended menu ('xmnu') resource
	Figure�1-6 Structure of an extended menu item entry
	Table 1-1 Keyboard font character codes

	Menu Manager Constants
	Menu Definition IDs
	Contextual Menu Help Type Constants
	Contextual Menu Selection Type Constants
	Modifier Key Mask Constants
	Menu Item Icon Type Constants
	Menu Definition Message and Feature Constants

	Result Codes

	Version History
	Table A-1 Mac OS 8 Menu Manager Reference Revision History

	Index

