



March 8, 1999
Technical Publications
© 1999 Apple Computer, Inc.



I N S I D E M A C I N T O S H

Programming With the Mac OS 8.5
Window Manager

3/8/99



 Apple Computer, Inc.



Apple Computer, Inc.
© 1998, 1999Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated.
Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures, Tables, and Listings 7

Chapter 1 About the Mac OS 8.5 Window Manager 9

Window Creation, Storage, and Disposal 11
Floating Windows 13
Window Proxy Icons 15
Window Path Pop-Up Menus 20
Transitional Window Animations and Sounds 21
Window Zooming 21
Window Position and Size 23
Window Content Color 24
Window Update Regions 26
Data Associated With Windows 27
Window Information Accessors 27

Chapter 2 Using the Mac OS 8.5 Window Manager 29

Managing Multiple Windows 31
Creating a Window 32
Enabling Floating Windows 35
Positioning a Window on the Desktop 35
Supporting Window Proxy Icons 37
Drawing in a Window’s Content Region 42
Handling Window Events 43

Responding to Mouse-Down Events 44
Tracking a Window Proxy Icon Drag 45
Displaying a Window Path Pop-Up Menu 46

Responding to Suspend and Resume Events 50
Maintaining the Update Region 52
Moving a Window 53
Zooming a Window Gracefully 54
3
3/8/99  Apple Computer, Inc.

Resizing a Window 56
Setting a Window’s Modification State 57
Storing a Document Window Into a Collection 57

Chapter 3 Mac OS 8.5 Window Manager Reference 61

Gestalt Constants 65
Functions 66

Creating and Storing Windows 67
Referencing Windows 71
Displaying Floating Windows and Window Animations 72
Accessing Window Information 79
Manipulating Window Color Information 82
Zooming Windows 86
Sizing and Positioning Windows 91
Establishing Proxy Icons 97
Coordinating Proxy Icons With Drag-and-Drop Management 106
Activating Window Path Pop-Up Menus 115
Associating Data With Windows 118
Maintaining the Update Region 122

Data Types 126
Resources 130
Constants 134

BasicWindowDescription State Constant 134
BasicWindowDescription Version Constants 135
FindWindow Result Code Constant for the Proxy Icon 135
RepositionWindow Constants 136
'wind' Resource Default Collection Item Constants 138
Window Attribute Constants 138
Window Class Constants 140
Window Definition Feature Constants 141
Window Definition Hit Test Result Code Constant 143
Window Definition Message Constants 143
Window Definition State-Changed Constant 146
Window Region Constant for the Proxy Icon Region 146
Window Transition Action Constants 147
Window Transition Effect Constant 147
4
3/8/99  Apple Computer, Inc.

Result Codes 148

Appendix A Document Version History 151

Index 153
5
3/8/99  Apple Computer, Inc.

Figures, Tables, and Listings

Chapter 1 About the Mac OS 8.5 Window Manager 9

Figure 1-1 Floating windows 14
Figure 1-2 Proxy icon in a window containing a document with no unsaved

changes 16
Figure 1-3 Proxy icon in a window containing a document with unsaved

changes 18
Figure 1-4 Proxy icon in a window that is a valid drag-and-drop target 19
Figure 1-5 Proxy icon states 19
Figure 1-6 Window path pop-up menu 20
Figure 1-7 A window with a patterned content area 25

Chapter 2 Using the Mac OS 8.5 Window Manager 29

Listing 2-1 Creating and displaying a document window 33
Listing 2-2 Synchronizing files for all document windows 38
Listing 2-3 Setting the window’s content color to red 42
Listing 2-4 Tracking a window proxy icon drag within the event loop 46
Listing 2-5 Determining whether to display the window path pop-up menu 47
Listing 2-6 Bringing the Finder to the front 49
Listing 2-7 Finding the process serial number of a process 49
Listing 2-8 Hiding and showing floating windows 51
Listing 2-9 Determining the appropriate part code to supply to

ZoomWindowIdeal 55
Listing 2-10 Setting the modified state for a window 57
Listing 2-11 Writing a document window into a flattened collection

resource 58

Chapter 3 Mac OS 8.5 Window Manager Reference 61

Figure 3-1 Structure of a compiled 'wind' resource 132

Appendix A Document Version History 151

Table A-1 Programming With the Mac OS 8.5 Window Manager revision
history 151
7
  Apple Compute r, Inc. 3/8/993/8/99  Apple Compute r, Inc.

Figure 1-01
Listing 1-01
Table 1-01

1 About the Mac OS 8.5 Window
Manager
Contents
Window Creation, Storage, and Disposal 11
Floating Windows 13
Window Proxy Icons 15
Window Path Pop-Up Menus 20
Transitional Window Animations and Sounds 21
Window Zooming 21
Window Position and Size 23
Window Content Color 24
Window Update Regions 26
Data Associated With Windows 27
Window Information Accessors 27
Contents 9
3/8/99  Apple Computer, Inc.

C H A P T E R 1

About the Mac OS 8.5 Window Manager 1

Mac OS applications typically interact with users via windows on the screen.
You can use the Window Manager to create, display, and manage the drawing
and behavior of windows.

This document describes the Window Manager application programming
interface (API) introduced with Mac OS 8.5 and Appearance Manager 1.1.
Preexisting Window Manager functionality is not discussed in this document.
For a description of the Mac OS 8 Window Manager API, see Mac OS 8 Window
Manager Reference. For descriptions of the pre–Mac OS 8 Window Manager API,
see Inside Macintosh: Macintosh Toolbox Essentials.

See the following sections for descriptions of various features of the Mac OS 8.5
Window Manager.

■ “Window Creation, Storage, and Disposal” (page 11)

■ “Floating Windows” (page 13)

■ “Window Proxy Icons” (page 15)

■ “Window Path Pop-Up Menus” (page 20)

■ “Transitional Window Animations and Sounds” (page 21)

■ “Window Zooming” (page 21)

■ “Window Position and Size” (page 23)

■ “Window Content Color” (page 24)

■ “Window Update Regions” (page 26)

■ “Data Associated With Windows” (page 27)

■ “Window Information Accessors” (page 27)

Window Creation, Storage, and Disposal 1

Prior to the Mac OS 8.5 Window Manager, there were two forms of window
data: the window structure in memory that is referenced at execution time by a
window pointer and the window resource (of type 'WIND'). With the Mac OS 8.5
Window Manager, there are three forms of window data from which your
application can create a window: the live window, the window’s collection data,
and the window’s flattened collection data. See “Creating a Window” (page 32)
Window Creation, Storage, and Disposal 11
3/8/99  Apple Computer, Inc.

C H A P T E R 1

About the Mac OS 8.5 Window Manager

for an example of how your application might use Mac OS 8.5 Window
Manager functions to create a window.

A collection is an abstract data type, defined by the Collection Manager, that
allows you to store multiple pieces of related information. For purposes of the
Window Manager, however, a collection might best be understood as an
intermediate state between a live window and a 'wind' resource. Using the
Mac OS 8.5 Window Manager, your application can store any window, even
those not created with Mac OS 8.5 Window Manager functions, into a collection.
You can also store data associated with the window into the same collection.
This provides a quick way for your application to save a simple document.

From a collection, your application can create a flattened collection—that is, a
stream of address-independent data—using the Collection Manager. Because
the 'wind' resource consists of an extensible flattened collection, your
application can store a flattened collection consisting of a window and its data
into a 'wind' resource using the Resource Manager. “Storing a Document
Window Into a Collection” (page 57) provides an example of how your
application might store a window and its data as a single flattened collection in
an extended 'wind' resource.

The Mac OS 8.5 Window Manager provides the following functions to create
and store windows:

■ CreateNewWindow (page 67) creates a window from parameter data.

■ CreateWindowFromResource (page 69) creates a window from 'wind' resource
data.

■ CreateWindowFromCollection (page 68) creates a window from collection data.

■ StoreWindowIntoCollection (page 70) stores data describing a window into a
collection.

With the Mac OS 8.5 Window Manager, all references to a window are counted
and thereby tracked. As there is only one owner with a reference to a given
window when it is first created, windows are created with a reference count (or
“owner count”) of one. When another owner acquires a reference to a window,
the window’s reference count increases by one. When an owner stops using a
window and releases its reference, the number of references to the window
decreases by one. When the reference count reaches zero, the Window Manager
automatically disposes of the window.

The Mac OS 8.5 Window Manager provides the following functions for working
with references to windows:
12 Window Creation, Storage, and Disposal

3/8/99  Apple Computer, Inc.

C H A P T E R 1

About the Mac OS 8.5 Window Manager

■ GetWindowOwnerCount (page 72) obtains the number of existing references to a
window.

■ CloneWindow (page 71) increments the number of references to a window.

Floating Windows 1

Windows are often placed on the display screen so that one window appears to
be behind another. This visual overlapping gives the user an impression of
depth. A floating window is so-named because its front-to-back display order
(that is, its z-order placement relative to other windows on the screen) makes it
appear to float in front of document windows. In Figure 1-1, the “Clipboard”
window appears to float in front of the active and inactive document windows.
Floating Windows 13
3/8/99  Apple Computer, Inc.

C H A P T E R 1

About the Mac OS 8.5 Window Manager

Figure 1-1 Floating windows

Because earlier versions of the Window Manager defined only the look of
floating windows, not their floating behavior, some applications contain code
that implements a floating effect for tool palettes and other such windows.
However, your application can now use the Window Manager to automatically
sort floating and non-floating windows into separately z-ordered groups,
thereby enforcing the proper front-to-back display order.
14 Floating Windows

3/8/99  Apple Computer, Inc.

C H A P T E R 1

About the Mac OS 8.5 Window Manager

IMPORTANT

Floating windows are supported under Mac OS 8.6 and
later. ▲

The Mac OS 8.5 Window Manager provides the following functions for
displaying floating windows:

■ InitFloatingWindows (page 75) initializes the Window Manager and sorts
your application’s windows into the proper front-to-back display order.

■ ShowFloatingWindows (page 77) shows an application’s floating windows.

■ HideFloatingWindows (page 74) hides an application’s floating windows.

■ AreFloatingWindowsVisible (page 73) indicates whether an application’s
floating windows are currently visible.

Window Proxy Icons 1

The Mac OS 8.5 Window Manager supports the display of a small icon in the
title bar of document windows (next to the window title) that serves as a proxy
for the document’s icon in the Finder. This proxy icon appears and behaves the
way the icon for the document does in the Finder. For example, the user can
drag a document’s proxy icon to move or copy the document file.

Additionally, the proxy icon is a source of visual feedback for the user on the
current state of the document, such as whether the document window is a valid
drag-and-drop target and whether the document has unsaved changes.
Figure 1-2 shows a proxy icon in a window that contains a document with no
unsaved changes.
Window Proxy Icons 15
3/8/99  Apple Computer, Inc.

C H A P T E R 1

About the Mac OS 8.5 Window Manager

Figure 1-2 Proxy icon in a window containing a document with no unsaved changes

The Mac OS 8.5 Window Manager provides the following functions for
establishing proxy icons in your application’s windows. See “Supporting
Window Proxy Icons” (page 37) for examples of how your application can
provide proxy icon support in its document windows.

■ SetWindowProxyFSSpec (page 104) associates a file with a window.

■ GetWindowProxyFSSpec (page 99) obtains a file system specification structure
for the file that is associated with a window.

■ SetWindowProxyAlias (page 101) associates a file with a window.

■ GetWindowProxyAlias (page 98) obtains an alias for the file that is associated
with a window.

■ SetWindowProxyCreatorAndType (page 102) sets the proxy icon for a window
that lacks an associated file.

■ SetWindowProxyIcon (page 105) overrides the default proxy icon for a
window.

■ GetWindowProxyIcon (page 100) obtains a window’s proxy icon.

■ RemoveWindowProxy (page 100) dissociates a file from a window.
16 Window Proxy Icons

3/8/99  Apple Computer, Inc.

C H A P T E R 1

About the Mac OS 8.5 Window Manager

Note that, in Figure 1-2, the proxy icon is drawn in the enabled state to indicate
that the file represented by the icon has no unsaved changes and that the user
may therefore manipulate the icon and thereby the file itself. If a user drags a
proxy icon to a folder, Finder window, the desktop, or another volume, the file
represented by the proxy icon is moved or copied accordingly, as if the user had
dragged the file’s icon in the Finder.

The Mac OS 8.5 Window Manager provides the following functions for
dragging proxy icons. See “Tracking a Window Proxy Icon Drag” (page 45) for
an example of how your application can call these functions.

■ TrackWindowProxyDrag (page 112) handles all aspects of the drag process when
the user drags a proxy icon.

■ TrackWindowProxyFromExistingDrag (page 113) allows custom handling of the
drag process when the user drags a proxy icon.

■ BeginWindowProxyDrag (page 107) creates the drag reference and the drag
image when the user drags a proxy icon.

■ EndWindowProxyDrag (page 108) disposes of the drag reference when the user
completes the drag of a proxy icon.

An application typically tracks the modification state of a document. A common
reason to do so is to inform the user that they have made changes to the
document which they might wish to save before closing the window.

When your application uses proxy icons, it should inform the Window Manager
when a document has unsaved changes. When you do so, the Window
Manager displays the document’s proxy icon in a disabled state and prevents
the user from dragging the proxy icon. Disabled proxy icons cannot be dragged
because unsaved documents cannot be moved or copied in a manner
predictable to the user. Figure 1-3 shows a proxy icon in a document window
with unsaved changes.

IMPORTANT

The only time that a document’s proxy icon should be
disabled is when the document has unsaved changes. Your
application should not disable the proxy icon at any other
time. ▲
Window Proxy Icons 17
3/8/99  Apple Computer, Inc.

C H A P T E R 1

About the Mac OS 8.5 Window Manager
Figure 1-3 Proxy icon in a window containing a document with unsaved changes

The Mac OS 8.5 Window Manager provides the following functions for
accessing the modification state of a window. See “Setting a Window’s
Modification State” (page 57) for an example of how your application can call
these functions.

■ SetWindowModified (page 111) sets the modification state of the specified
window.

■ IsWindowModified (page 111) obtains the modification state of the specified
window.

When the user drags content that an application can accept into the content area
of one of its windows, the structure region of the window, including the proxy
icon, should become highlighted, as shown in Figure 1-4. This gives visual
feedback that the window is a valid destination for the content.
18 Window Proxy Icons

3/8/99  Apple Computer, Inc.

C H A P T E R 1

About the Mac OS 8.5 Window Manager
Figure 1-4 Proxy icon in a window that is a valid drag-and-drop target

The Mac OS 8.5 Window Manager provides the following function for
indicating to the user whether a window is a valid drag-and-drop target:

■ HiliteWindowFrameForDrag (page 110) sets the highlight state of the window’s
structure region to reflect the window’s validity as a drag-and-drop
destination.

Figure 1-5 compares the various states of a proxy icon: enabled, for a document
with no unsaved changes; disabled, for a document that does have unsaved
changes; and highlighted, for when the document window is a valid destination
for content that the user is dragging.

Figure 1-5 Proxy icon states

Enabled Disabled Highlighted
Window Proxy Icons 19
3/8/99  Apple Computer, Inc.

C H A P T E R 1

About the Mac OS 8.5 Window Manager
Window Path Pop-Up Menus 1

The Mac OS 8.5 Window Manager provides system support for your
application to display window path pop-up menus—like those used in Finder
windows. If your application uses window path pop-up menus, when the user
presses the Command key and clicks the window title, your window displays a
pop-up menu containing a standard file system path. The window path pop-up
menu informs the user of the location of the document displayed in the window
and allows the user to open windows for folders along the path. Figure 1-6
shows a window path pop-up menu for a document window.

Figure 1-6 Window path pop-up menu

The Mac OS 8.5 Window Manager provides the following functions for
handling the activation of window path pop-up menus. “Displaying a Window
Path Pop-Up Menu” (page 46) shows how your application can handle a user
request to display the window path pop-up menu.
20 Window Path Pop-Up Menus

3/8/99  Apple Computer, Inc.

C H A P T E R 1

About the Mac OS 8.5 Window Manager
■ IsWindowPathSelectClick (page 115) reports whether a mouse click should
activate the window path pop-up menu.

■ WindowPathSelect (page 116) displays a window path pop-up menu.

Transitional Window Animations and Sounds 1

Prior to Mac OS 8.5, the Window Manager supported playing a sound to
accompany the transitional “window shade” animation that occurs when a user
clicks the collapse box of a window. In addition to this combination of
animation and sound for a user interaction with a window, the Mac OS 8.5
Window Manager now supports a combination of animation and sound to go
with the opening and closing of windows.

The Mac OS 8.5 Window Manager provides the following function for
displaying a window with animation and sound:

■ TransitionWindow (page 78) displays an animation and plays the
theme-appropriate sound for a window when it is shown or hidden.

“Creating a Window” (page 32) provides an example of how your application
might call the TransitionWindow function.

Window Zooming 1

When the user clicks a window’s zoom box, a window zooms between two
states, the user state and the standard state. The user state is any size and
position in which the user can place the window on the desktop. The standard
state is the size and position that the application defines as being best for the
display of the data contained in the window. There are human interface
guidelines for how best to determine a window’s standard state, based upon its
current user state, but prior to Mac OS 8.5 there were no system-supplied
functions that enforced these guidelines for your application.

When you use the Mac OS 8.5 Window Manager zooming functions, your
application automatically conforms to the human interface guidelines for
determining a window’s standard state, as follow:
Transitional Window Animations and Sounds 21
3/8/99  Apple Computer, Inc.

C H A P T E R 1

About the Mac OS 8.5 Window Manager
■ A window should move as little as possible when zooming between the user
state and standard state, to avoid distracting the user.

■ A window in its standard state should be positioned so that it is entirely on
one screen.

■ If a window straddles more than one screen in the user state, when it is
zoomed to the standard state it should be zoomed to the screen that contains
the largest portion of the window’s content region.

■ If the ideal size for the standard state is larger than the destination screen, the
dimensions of the standard state should be that of the destination screen,
minus a few pixels’ boundary. If the destination screen is the main screen,
space should also be left for the menu bar.

■ When a window is zoomed from the user state to the standard state, the top
left corner of the window should remain anchored in place; however, if the
standard state of the window cannot fit on the screen with the top left corner
anchored, the window should be “nudged” so that the parts of the window
in the standard state that would fall offscreen are, instead, just onscreen.

The Window Manager also ensures that the user state is tracked accurately and
gives your application access to a window’s user state information through the
new zooming functions.

The Mac OS 8.5 Window Manager provides the following functions for
zooming windows. See “Zooming a Window Gracefully” (page 54) for an
example of how your application can call these functions.

■ ZoomWindowIdeal (page 90) zooms a window in accordance with human
interface guidelines.

■ IsWindowInStandardState (page 87) determines whether a window is
currently zoomed in to the user state or zoomed out to the standard state.

■ SetWindowIdealUserState (page 89) sets the size and position of a window in
its user state.

■ GetWindowIdealUserState (page 86) obtains the size and position of a window
in its user state.
22 Window Zooming

3/8/99  Apple Computer, Inc.

C H A P T E R 1

About the Mac OS 8.5 Window Manager
Window Position and Size 1

With the Appearance Manager, the look of a window frame—not just its color,
but its size and shape—may vary from appearance to appearance. Because the
size of a window frame can vary, the total dimensions of a window (that is, the
window’s structure region) may also vary, causing the window’s spatial
relationship to the rest of the screen to change.

Additionally, the elements of a window frame may vary in their size, shape, or
position. For example, some appearances may allow the window to be resized
from any corner, not just the bottom right, and as a result, when the user drags
the size box around the screen, the window may move on the screen and not
merely change size.

Your application can best accommodate variable window dimensions by using
the functions provided by the Mac OS 8.5 Window Manager to size and
position your windows, rather than via constant dimensions. Using these
functions allows your application to avoid maintaining its own table of window
definition IDs and their various border dimensions.

The Mac OS 8.5 Window Manager provides the following functions for working
with the size and position of windows. See “Positioning a Window on the
Desktop” (page 35) and “Resizing a Window” (page 56) for a discussion of
these functions.

■ SetWindowBounds (page 96) sets a window’s size and position from the
bounding rectangle of the specified window region.

■ GetWindowBounds (page 92) obtains the size and position of the bounding
rectangle of the specified window region.

■ MoveWindowStructure (page 93) positions a window relative to its structure
region.

■ ResizeWindow (page 95) handles all user interaction while a window is being
resized.

■ RepositionWindow (page 94) positions a window relative to another window
or a display screen.
Window Position and Size 23
3/8/99  Apple Computer, Inc.

C H A P T E R 1

About the Mac OS 8.5 Window Manager
Window Content Color 1

Your application and the Window Manager work together to display windows
on the screen. Once you have created a window and made it visible, the
Window Manager automatically draws the window’s structure region (that is,
its “frame”) in the appropriate location. The Window Manager does not
typically draw any content in a window; it only draws the color or pattern of
the content region. Your application is responsible for drawing content such as
text or graphics in the window’s content region.

When the user exposes a window that has previously been obscured, the
Window Manager redraws the exposed, invalid portions of the window. If some
part of the window’s content region is exposed, the Window Manager redraws
it to the current content color and adds it to the window’s update region. You
can use the Mac OS 8.5 Window Manager to set a window’s content region to a
specific color or pattern, which the Window Manager then uses to redraw the
content region of the window. Figure 1-7 shows an example of a window for
which the content region has been set to a pattern.
24 Window Content Color

3/8/99  Apple Computer, Inc.

C H A P T E R 1

About the Mac OS 8.5 Window Manager
Figure 1-7 A window with a patterned content area

The Mac OS 8.5 Window Manager provides the following functions for
redrawing a window’s content region. See “Drawing in a Window’s Content
Region” (page 42) for further discussion and an example of how your
application might call these functions.

■ SetWindowContentColor (page 84) sets the color to which a window’s content
region is redrawn.

■ GetWindowContentColor (page 83) obtains the color to which a window’s
content region is redrawn.

■ SetWindowContentPattern (page 85) sets the pattern to which a window’s
content region is redrawn.

■ GetWindowContentPattern (page 83) obtains the pattern to which a window’s
content region is redrawn.
Window Content Color 25
3/8/99  Apple Computer, Inc.

C H A P T E R 1

About the Mac OS 8.5 Window Manager
Window Update Regions 1

As the user creates, moves, resizes, and closes windows on the desktop,
portions of windows may be obscured and uncovered. The Window Manager
keeps track of these changes, accumulating a dynamic region known as the
update region for each window. The update region contains all areas of a
window’s content region that need updating. The Event Manager periodically
scans the update regions of all windows on the desktop, generating update
events for windows whose update regions are not empty. When your
application receives an update event, it should redraw the update region.

Both your application and the Window Manager can manipulate a window’s
update region. Your application can force or suppress update events by
manipulating the update region, using Window Manager functions provided
for this purpose. For example, in order to decrease the time that your
application spends redrawing window content, you can remove an area from
the update region when you know that it is in fact valid.

The Mac OS 8.5 Window Manager provides enhanced functions for
manipulating the update region. They are similar to previous Window Manager
functions but allow the window that you are operating upon to be explicitly
specified, instead of operating on the current graphics port, so they do not
require you to set the graphics port before their use. As possible, you should
update pre–Mac OS 8.5 applications to use these functions rather than the
pre-existing ones, so that your code more readily supports future versions of
the Mac OS.

The Mac OS 8.5 Window Manager provides the following functions for
updating windows. See “Maintaining the Update Region” (page 52) for a
discussion of how your application can use these functions.

■ InvalWindowRect (page 122) adds a rectangle to a window’s update region.

■ ValidWindowRect (page 124) removes a rectangle from a window’s update
region.

■ InvalWindowRgn (page 123) adds a region to a window’s update region.

■ ValidWindowRgn (page 125) removes a region from a window’s update region.
26 Window Update Regions

3/8/99  Apple Computer, Inc.

C H A P T E R 1

About the Mac OS 8.5 Window Manager
Data Associated With Windows 1

In the past, some applications have associated information with a window by
creating a structure that contains both the window’s window record and the
application’s data. However, this technique is not Carbon-compliant. Your
application should use the standard mechanism provided by the Mac OS 8.5
Window Manager instead, by which any kind of data can be associated with a
given window. Or, optionally, your application may use the pre–Mac OS 8.5
functionality provided by the SetWRefCon function, which allows your
application to associate a pointer to data with a pointer to a window.

The Mac OS 8.5 Window Manager provides the following functions for
associating data with windows. See “Managing Multiple Windows” (page 31)
for a discussion of how your application can use these functions.

■ SetWindowProperty (page 121) associates an arbitrary piece of data with a
window.

■ GetWindowProperty (page 118) obtains a piece of data that is associated with a
window.

■ GetWindowPropertySize (page 119) obtains the size of a piece of data that is
associated with a window.

■ RemoveWindowProperty (page 120) removes a piece of data that is associated
with a window.

Window Information Accessors 1

The Window Manager provides accessor functions for Mac OS 8.5–related
window info. Your application should always use accessor functions instead of
accessing structure fields and low memory directly.

The Mac OS 8.5 Window Manager provides the following functions for
determining information about windows:

■ GetWindowClass (page 81) obtains the class of a window.

■ GetWindowAttributes (page 80) obtains the attributes of a window.
Data Associated With Windows 27
3/8/99  Apple Computer, Inc.

C H A P T E R 1

About the Mac OS 8.5 Window Manager
■ FrontNonFloatingWindow (page 80) returns a pointer to the application’s
frontmost visible window that is not a floating window.

■ IsValidWindowPtr (page 82) reports whether a pointer is a valid window
pointer.
28 Window Information Accessors

3/8/99  Apple Computer, Inc.

Figure 2-01
Listing 2-01
Table 2-01
2 Using the Mac OS 8.5 Window
Manager
Contents
Managing Multiple Windows 31
Creating a Window 32
Enabling Floating Windows 35
Positioning a Window on the Desktop 35
Supporting Window Proxy Icons 37
Drawing in a Window’s Content Region 42
Handling Window Events 43

Responding to Mouse-Down Events 44
Tracking a Window Proxy Icon Drag 45
Displaying a Window Path Pop-Up Menu 46

Responding to Suspend and Resume Events 50
Maintaining the Update Region 52
Moving a Window 53
Zooming a Window Gracefully 54
Resizing a Window 56
Setting a Window’s Modification State 57
Storing a Document Window Into a Collection 57
Contents 29
3/8/99  Apple Computer, Inc.

C H A P T E R 2
Using the Mac OS 8.5 Window Manager 2

Macintosh applications typically use the Window Manager to simplify the
display and management of windows and to retrieve basic information about
user activities. Your application works with the Window Manager to present the
standard user interface for windows.

This chapter discusses some programming topics for the Mac OS 8.5 Window
Manager, as follows:

■ “Managing Multiple Windows” (page 31)

■ “Creating a Window” (page 32)

■ “Enabling Floating Windows” (page 35)

■ “Positioning a Window on the Desktop” (page 35)

■ “Supporting Window Proxy Icons” (page 37)

■ “Drawing in a Window’s Content Region” (page 42)

■ “Handling Window Events” (page 43)

■ “Maintaining the Update Region” (page 52)

■ “Moving a Window” (page 53)

■ “Zooming a Window Gracefully” (page 54)

■ “Resizing a Window” (page 56)

■ “Setting a Window’s Modification State” (page 57)

■ “Storing a Document Window Into a Collection” (page 57)

Managing Multiple Windows 2

Your application is likely to have multiple windows on the desktop at once: one
or more document windows, possibly one or more dialog boxes, and possibly
some special-purpose windows of your own. Only one window is active at a
time, however.

You can use various strategies for keeping track of different kinds of windows.
In the past, some applications have done this by creating a structure that
contains both the window’s window record and the application’s data.
However, this technique is not Carbon-compliant. Instead, you can use the
Managing Multiple Windows 31
3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
Mac OS 8.5 Window Manager function SetWindowProperty (page 121), which
allows any kind of data to be associated with a given window. Alternately, you
may use the pre–Mac OS 8.5 functionality provided by the SetWRefCon function,
which can allow your application to associate a pointer to data with a window.

Creating a Window 2

You typically create a new window every time the user creates a new
document, opens a previously saved document, or issues a command that
triggers a dialog box.

Prior to the Mac OS 8.5 Window Manager, you could create a window in two
ways:

■ from window characteristics passed as parameters to the NewCWindow and
NewWindow functions

■ from a window resource (a resource of type 'WIND'), with the GetNewCWindow
and GetNewWindow functions

With the Mac OS 8.5 Window Manager, you can still create a window by
passing parameter data, but there is an updated function for this purpose,
CreateNewWindow (page 67), which allows you to specify Mac OS 8.5 window
features. Listing 2-1 provides an example of using CreateNewWindow as part of an
application-defined function, MyCreateAndShowNewDocumentWindow, that creates
and displays a document window.

Because the window being created is a document window,
MyCreateAndShowNewDocumentWindow calls the function
SetWindowProxyCreatorAndType to establish a proxy icon for the window. See
“Supporting Window Proxy Icons” (page 37) for more on working with proxy
icons in your document windows.

Note that because CreateNewWindow creates the specified window invisibly—as
do the other Mac OS 8.5 window-creation functions—
MyCreateAndShowNewDocumentWindow also includes a call to the function
TransitionWindow (page 78) to display the window. The TransitionWindow
function displays an animation and plays the theme-appropriate sound for a
window when it is shown or hidden. Your application may use
TransitionWindow instead of the pre–Mac OS 8.5 Window Manager functions
ShowWindow and HideWindow. Like these earlier functions, TransitionWindow
32 Creating a Window

3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
generates the appropriate update and active events when it shows and hides
windows.

Listing 2-1 Creating and displaying a document window

static pascal OSStatus MyCreateAndShowNewDocumentWindow
(const Rect *bounds,
OSType fileCreator,
OSType fileType,
SInt16 vRefNum,
WindowPtr *window)

{
OSStatus err;

// Create an invisible window

err = CreateNewWindow (kDocumentWindowClass,
kWindowStandardDocumentAttributes,
bounds,
window);

if (err == noErr)
{

// Since this is a document window, give it a proxy icon

err = SetWindowProxyCreatorAndType (*window,
fileCreator,
fileType,
vRefNum);

// Make the window visible (with animation and sound)

if (err == noErr)
{

err = TransitionWindow (*window,
kWindowZoomTransitionEffect,
kWindowShowTransitionAction,
nil);

}

Creating a Window 33
3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
// Destroy the window if TransitionWindow returned an error
// (the most likely cause for error being that the
// application is out of memory)

if (err != noErr)
{

DisposeWindow (*window);
}

}

return err;
}

Additionally, with the Mac OS 8.5 Window Manager, there are two new ways to
create a window:

■ from an extensible window resource (a resource of type 'wind'), with the
function CreateWindowFromResource (page 69)

■ from a Collection Manager collection, with the function
CreateWindowFromCollection (page 68)

A collection is an abstract data type, defined by the Collection Manager, that
allows you to store multiple pieces of related information. For purposes of the
Window Manager, however, a collection might best be understood as an
intermediate state between a live window and a 'wind' resource. Using the
function StoreWindowIntoCollection (page 70), your application can store any
window, even those not created with Mac OS 8.5 Window Manager functions,
into a collection. You can also store data associated with the window into the
same collection. This provides a quick way for your application to save a simple
document.

From a collection, your application can create a flattened collection—that is, a
stream of address-independent data—using the Collection Manager. Because
the 'wind' resource consists of an extensible flattened collection, your
application can store a flattened collection consisting of a window and its data
into a 'wind' resource using the Resource Manager. “Storing a Document
Window Into a Collection” (page 57) provides an example of how your
application might store a window and its data as a single flattened collection in
an extended 'wind' resource.
34 Creating a Window

3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
Enabling Floating Windows 2

If you wish to enable system support for floating windows, you must initialize
the Window Manager by calling the function InitFloatingWindows (page 75)
before using any other Window Manager functions. Your application calls the
InitFloatingWindows function—instead of the InitWindows function—to
initialize the Window Manager and enable automatic front-to-back display
ordering of all your application’s windows. When your application calls
InitFloatingWindows, the system automatically sorts each of your application’s
windows into one of three window display layers: modal, floating, and
document. As with InitWindows, before calling InitFloatingWindows, you must
initialize QuickDraw and the Font Manager by calling the InitGraf and
InitFonts functions, respectively.

IMPORTANT

The InitFloatingWindows function is supported under
Mac OS 8.6 and later. ▲

See “Responding to Suspend and Resume Events” (page 50) for an example of
how you can use the Mac OS 8.5 Window Manager to hide and show floating
windows when your application receives suspend and resume events.

Positioning a Window on the Desktop 2

Your goal in positioning a window on the desktop is to place it where the user
expects it. For a new document, this usually means just below and to the right
of the last document window in which the user was working. For a saved
document, it usually means the location of the document window when the
document was last saved (if it was saved on a computer with the same screen
configuration).

On Macintosh computers with a single screen of known size, positioning
windows is fairly straightforward. You position the first new document
window on the upper-left corner of the desktop. Open each additional new
document window with its upper-left corner slightly below and to the right of
the upper-left corner of its predecessor.
Enabling Floating Windows 35
3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
On computers with multiple monitors, window placement depends on a
number of factors:

■ the number of screens available and their dimensions

■ the location of the main screen—that is, the screen that contains the menu bar

■ the location of the screen on which the user was most recently working

In general, you place the first new document window on the main screen, and
you place subsequent document windows on the screen that contains the
largest portion of the most recently active document window. That is, if you
display a blank document window when the user starts up your application,
you place the window on the main screen. If the user moves the window to
another screen and then creates another new document, you place the new
document window on the other screen. Although the user is free to place
windows so that they cross screen boundaries, you should never display a new
window that spans multiple screens.

When the user opens a saved document, you replicate the size and location of
the window in which the document was last saved, if possible.

The Window Manager recognizes a set of positioning constants—which you
supply in the extended window ('wind') resource or via the function
RepositionWindow (page 94)—that let you position new windows automatically.
You typically use the constant kWindowCascadeOnParentWindowScreen for
positioning document windows. The kWindowCascadeOnParentWindowScreen
constant specifies the basic guidelines for document window placement: The
Window Manager places the first window in the upper-left corner of the main
screen. It places subsequent windows with their upper-left corners below and to
the right of the upper-left corner of the last window in which the user was
working. The exact amount of pixels that the subsequent windows are shifted
depends upon the current appearance.

If the user moves or closes a window that occupies one of the interim positions,
and the window template specifies kWindowCascadeOnParentWindowScreen, the
Window Manager uses the “empty” slot for the next new window created
before moving further down and to the right.

For a complete list of the positioning constants and their effects, see
“RepositionWindow Constants” (page 136).
36 Positioning a Window on the Desktop

3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
Supporting Window Proxy Icons 2

With Mac OS 8.5, document windows support the display of a small icon in the
window’s title bar, next to the window title, that serves as a proxy for the
document’s icon in the Finder. This proxy icon should appear and behave the
way the document’s icon does in the Finder.

Your application can call the function SetWindowProxyCreatorAndType (page 102)
when you want to establish a proxy icon for a window, but the window’s data
has not yet been saved to a file. By passing SetWindowProxyCreatorAndType the
creator and type of the file that the window is to contain, you can provide
visual consistency with other windows that have saved files and with the
Finder. Listing 2-1 in “Creating a Window” (page 32) provides an example of a
simple function for creating and displaying a window that includes using
SetWindowProxyCreatorAndType to establish a proxy icon.

If the window’s data has been saved to a file, your application can call the
functions SetWindowProxyFSSpec (page 104) or SetWindowProxyAlias (page 101) to
associate the file with the window and thereby establish the proxy icon.

Once a window has a proxy icon, the user should be able to manipulate it as if
they were performing actions with a Finder icon for the window’s file. For
example, if a user drags a proxy icon to a folder, Finder window, the desktop, or
another volume, the file represented by the proxy icon should be moved or
copied accordingly, as if the user had dragged the file’s icon in the Finder.

Your application detects a proxy icon drag when the function FindWindow
returns the inProxyIcon result code, and it can use Window Manager-supplied
functions to handle the drag process. If the proxy icon represents an object type
handled by the Window Manager (currently, files), the Window Manager can
handle all aspects of the drag process itself, and your application should simply
call the function TrackWindowProxyDrag (page 112). If your application calls the
TrackWindowProxyDrag function it does not have to call the Drag Manager
function WaitMouseMoved before starting to track the drag, as the Window
Manager handles this automatically. “Tracking a Window Proxy Icon Drag”
(page 45) provides an example of how your application might call
TrackWindowProxyDrag.

Because a user can so readily use a proxy icon to manipulate a document file
while the document is itself open, your application should call a function in its
Supporting Window Proxy Icons 37
3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
event loop to synchronize the file data for all of its document windows. While
keeping your application’s file data synchronized with that of the Finder is a
good practice in general, it is especially important if your application is using
proxy icons in its document windows. Because a proxy icon is much more
prominent to a user than a Finder icon when the user is working in an open
document, it is therefore more likely that the user may move the file
represented by the proxy icon while the document is open.

For example, if a user opens “My Document” in an application, then drags the
proxy icon for “My Document” to a different folder, the application may still
expect “My Document” to be in its original location. Additionally, the user may
change the name of “My Document” to “Your Document” or place “My
Document” in the Trash folder while “My Document” is open.

Optimally, your application should synchronize itself with the actual location of
files on disk after every call to WaitNextEvent. This is preferable to performing
file synchronization after calling TrackWindowProxyDrag, because some time may
elapse between the time TrackWindowProxyDrag returns and the time that the file
is actually moved on disk.

The application-defined function MySynchronizeFiles shown in Listing 2-2 is
intended to be called after every call to WaitNextEvent. For each of an
application’s document windows, MySynchronizeFiles updates the application’s
internal data structures to match that of the file as it exists on disk. The
MySynchronizeFiles function additionally ensures that the name of the
document window is changed to match the name of the file on disk, and closes
the document window if the file is moved to the Trash folder.

Listing 2-2 Synchronizing files for all document windows

static void MySynchronizeFiles(void)
{

// File synchronization for all document windows

static UInt32 nextSynchTicks = 0;
UInt32 currentTicks;
WindowPtr currentWindow;
OSStatus trashStatus;
SInt16 trashVRefNum;
SInt32 trashDirID;
38 Supporting Window Proxy Icons

3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
currentTicks = TickCount();
currentWindow = FrontNonFloatingWindow();

// Find the Trash folder
trashStatus = FindFolder(kOnSystemDisk,

kTrashFolderType,
kDontCreateFolder,
&trashVRefNum,
&trashDirID);

if(currentTicks > nextSynchTicks)
{

// Loop over all document windows,
// searching for files whose locations have changed
while (currentWindow != NULL)
{

// Note: DocumentWindowData is a placeholder for
// your application’s document data structure
DocumentWindowData *documentWindowData = GetWRefCon(currentWindow);

// If the window is owned by this application...
if(documentWindowData != NULL)
{

Boolean aliasChanged;
FSSpec newSpec;
FolderType folder;

aliasChanged = false;
folder = 0;

// Ask the Alias Manager for the document’s file location...
(void) ResolveAlias(NULL,

documentWindowData->fileAlias,
&newSpec,
&aliasChanged);

if(aliasChanged)
{

// The file location has changed; update the window
documentWindowData->fileSpec = newSpec;
Supporting Window Proxy Icons 39
3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
// The user might have renamed the file
SetWTitle(currentWindow, newSpec.name);

}

// Close the document if the user moved the file into the Trash
//
// We need to walk up the file’s parent folder hierarchy to ensure
// that the user hasn’t moved it into a folder inside the Trash
//
// We ignore the aliasChanged flag because the parent folder
// hierarchy can change without affecting the alias

if(trashStatus == noErr)
{

do
{

// If we’ve reached a root folder, we know
// the file’s not in the Trash

if(newSpec.parID == fsRtParID)
break;

// If the Trash is a parent of the original file,
// close the window

if((newSpec.vRefNum == trashVRefNum)
&& (newSpec.parID == trashDirID)
)

{
// Your app’s “close document window” code goes here...
break;

}
} while(FSMakeFSSpec(newSpec.vRefNum,

newSpec.parID,
"\p",
&newSpec) == noErr);

}
}

40 Supporting Window Proxy Icons

3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
currentWindow = GetNextWindow(currentWindow);
}

// To avoid calling ResolveAlias too often, wait at least
// 1/4 second between synchronization iterations
nextSynchTicks = (currentTicks + 15);

}
}

Applications typically track the modification state of a document in order to
inform the user that they have made changes to the document which they
might wish to save before closing the window. Your application should inform
the Window Manager when a document has unsaved changes by calling the
function SetWindowModified (page 111). When you do so, the Window Manager
displays the document’s proxy icon in a disabled state and prevents the user
from dragging the proxy icon. Disabled proxy icons cannot be dragged because
unsaved documents cannot be moved or copied in a manner predictable to the
user. “Setting a Window’s Modification State” (page 57) provides an example of
how your application might call SetWindowModified.

IMPORTANT

The only time that a document’s proxy icon should be
disabled is when the document has unsaved changes. Your
application should not disable the proxy icon at any other
time. ▲

Finally, when the user drags content that your application can accept into the
content area of one of its windows, the window’s structure region, including the
proxy icon, should become highlighted. This gives visual feedback that the
window is a valid destination for the content. Applications typically call the
Drag Manager functions ShowDragHilite and HideDragHilite to indicate that a
window is a valid drag-and-drop destination. If your application does not do
this—that is, if your application implements any type of custom drag
highlighting, such as highlighting more than one area of a window at a time—it
must call the function HiliteWindowFrameForDrag (page 110).
Supporting Window Proxy Icons 41
3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
Drawing in a Window’s Content Region 2

Your application and the Window Manager work together to display windows
on the screen. Once you have created a window and made it visible, the
Window Manager automatically draws the window’s structure region (that is,
its “frame”) in the appropriate location. The Window Manager does not
typically draw any content in a window; it only draws the color or pattern of
the content region. Your application is responsible for drawing content such as
text or graphics in the window’s content region.

When the user exposes a window that has previously been obscured, the
Window Manager redraws the exposed, invalid portions of the window. If some
part of the window’s content region is exposed, the Window Manager redraws
it to the current content color and adds it to the window’s update region.

You can set a window’s content color by calling the function
SetWindowContentColor (page 84). As shown in Listing 2-3, when your
application calls SetWindowContentColor, the Window Manager uses this content
color to redraw the content region of the window. Your application can use the
function SetWindowContentPattern (page 85) to specify a pattern for the content
region.

Listing 2-3 Setting the window’s content color to red

static OSStatus MySetWindowContentColorToRed(WindowPtr window)
{

RGBColor rgbRedColor = { 0xFFFF, 0, 0 }; // red, green, blue
OSStatus outStatus;

outStatus = SetWindowContentColor(window, &rgbRedColor);
return outStatus;

}

None of the Mac OS 8.5 functions affect the window’s graphics port’s
background color or pattern. However, SetWindowContentColor and
SetWindowContentPattern do supersede the window color table structure, the
42 Drawing in a Window’s Content Region

3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
'wctb' resource, and the SetWinColor function, none of which are supported
under Carbon.

Handling Window Events 2

Your application must be prepared to handle two basic kinds of window-related
events in its event loop:

■ mouse and keyboard events, which are reported by the Event Manager in
direct response to user actions

■ activate, update, suspend, and resume events, which are generated by the
Window Manager and the Event Manager as an indirect result of user actions

Your application receives mouse-down events if it is the foreground process
and the user clicks in the menu bar or a window belonging to your application.
When it receives a mouse-down event, your application first calls the
FindWindow function to map the cursor location to a window region, and then it
branches to one of its own functions. See “Responding to Mouse-Down Events”
(page 44) for a further discussion of handling mouse-down events under
Mac OS 8.5.

Whenever your application is the foreground process, it receives keyboard
events. When the user presses a key or a combination of keys, your application
responds by inserting data into the document, changing the display, or taking
other actions as defined by your application.

Your application activates and deactivates windows in response to activate
events, which the Event Manager generates to inform your application that a
window is becoming active or inactive. Each activate event specifies the
window to be changed and the direction of the change (that is, whether it is to
be activated or deactivated).

The Event Manager sends your application an update event when changes on
the desktop or in a window require that part or all of a window’s content region
be updated. The Window Manager and your application can both trigger
update events by adding regions that need updating to the update region, as
described in the section “Maintaining the Update Region” (page 52).

A switch into or out of your application from a different application is handled
through suspend and resume events, not activate events. For example, if the
user clicks in a window belonging to another application, the Event Manager
Handling Window Events 43
3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
typically sends your application a suspend event and performs a major switch
to the other application. One of the ways that your application handles a
suspend or resume event is by hiding or showing its floating windows; see
“Responding to Suspend and Resume Events” (page 50) for details.

In addition to handling specific events, however, your application should also
call a function in its event loop to synchronize the file data for all of its
document windows. While keeping your application’s file data synchronized
with that of the Finder is a good practice in general, it is especially important if
your application is using proxy icons in its document windows. Because a
proxy icon is much more prominent to a user than a Finder icon when the user
is working in an open document, it is therefore more likely that the user may
move the file represented by the proxy icon while the document is open. See
“Supporting Window Proxy Icons” (page 37) for a sample file synchronization
function and a description of other aspects of proxy icon management.

Responding to Mouse-Down Events 2
When your application receives a mouse-down event, your application calls the
FindWindow function to map the cursor location to a window region. The
FindWindow function specifies the region by returning one of these constants:

Constant Description

inDesk or
inNoWindow

None of the following

inMenuBar The menu bar

inSysWindow A desk accessory window

inContent Anywhere in the content region except the size box if the
window is active; anywhere including the size box if the
window is inactive

inDrag The drag region (in a window that contains a proxy icon, the
drag region excludes the proxy icon region)

inGrow The size box (of an active window only)

inGoAway The close box

inZoomIn The zoom box (when the window is in the standard state)
44 Handling Window Events

3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
When the user presses the mouse button while the cursor is in a window,
FindWindow not only returns a constant that identifies the window region but
also reports which window the cursor is in by placing a pointer to this window
at the address specified in one of its parameters. Your response to FindWindow
depends on whether the cursor is in the active window and the kind of window
that the cursor is in.

When you receive a mouse-down event in the active window, you route the
event to the function that is appropriate for handling the mouse-down event for
a given region. “Tracking a Window Proxy Icon Drag” (page 45) describes how
your application can respond to a mouse-down event in the proxy icon region
of a window that indicates a user request to drag the proxy icon. “Displaying a
Window Path Pop-Up Menu” (page 46) shows how your application can handle
the case where a mouse-down event—in either a window’s drag region or its
proxy icon region—indicates a user request to display the window path pop-up
menu.

Tracking a Window Proxy Icon Drag 2

A mouse-down event in the proxy icon region of a document window can
indicate that the user either wishes to drag the proxy icon or wishes to display
the path pop-up menu for the window. Listing 2-5 in “Displaying a Window
Path Pop-Up Menu” (page 46) provides an example of how your application
can respond to receiving the inProxyIcon result from the FindWindow function if
the user is not dragging the proxy icon.

If the user is dragging the proxy icon, your application can use Window
Manager-supplied functions to handle the drag process. If the proxy icon
represents a type of object (currently, file system entities such as files, folders,
and volumes) that the Window Manager supports, the Window Manager can
handle all aspects of the drag process itself, and your application should simply
call the function TrackWindowProxyDrag (page 112), as shown in Listing 2-4. If
your application calls the TrackWindowProxyDrag function it does not have to call
the Drag Manager function WaitMouseMoved before starting to track the drag, as
the Window Manager handles this automatically.

inZoomOut The zoom box (when the window is in the user state)

inCollapseBox The collapse box

inProxyIcon The proxy icon

Constant Description
Handling Window Events 45
3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
If the proxy icon represents an object type other than a file (other object types
are currently not handled by the Window Manager), or if you wish to
implement custom dragging behavior, your application should call the function
TrackWindowProxyFromExistingDrag (page 113). The
TrackWindowProxyFromExistingDrag function accepts an existing drag reference
and adds file data if the window contains a file proxy.

If your application uses TrackWindowProxyFromExistingDrag, you have the choice
of using this function in conjunction with the functions BeginWindowProxyDrag
(page 107) and EndWindowProxyDrag (page 108) or simply calling
TrackWindowProxyFromExistingDrag and handling all aspects of creating and
disposing of the drag yourself.

Listing 2-4 Tracking a window proxy icon drag within the event loop

case inProxyIcon:

// We’ve seen a hit in the window proxy area, so drag the proxy icon

// Note that we don’t check that the
// window is an app window, but you should

{
OSStatus status = TrackWindowProxyDrag(pWindow, pEvent->where);
if(status == errUserWantsToDragWindow)

handled = false;
else if(status == noErr)

handled = true;
}
// Fall through to checking whether the user
// wants to display a window path pop-up menu

Displaying a Window Path Pop-Up Menu 2

The Mac OS 8.5 Window Manager provides system support for your
application to display window path pop-up menus—like those used in Finder
windows. When the user presses the Command key and clicks on the window’s
title, the window displays a pop-up menu containing a standard file system
path, informing the user of the location of the document displayed in the
window and allowing the user to open windows for folders along the path.
46 Handling Window Events

3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
Because the window title includes both the proxy icon region and part of the
drag region of the window, your application must be prepared to respond to a
click in either region by displaying a window path pop-up menu. Therefore,
when the FindWindow function returns either the inDrag or the inProxyIcon result
code—you should pass the event to the function IsWindowPathSelectClick
(page 115) to determine whether the mouse-down event should activate the
window path pop-up menu. If IsWindowPathSelectClick returns a value of true,
your application should then call the function WindowPathSelect (page 116) to
display the menu. Listing 2-5 shows how your application might handle a user
request to display the window path pop-up menu.

Listing 2-5 Determining whether to display the window path pop-up menu

case mouseDown:
{
short part = FindWindow(pEvent->where, &pWindow);

switch (part)
{
case inProxyIcon:

// We’ve seen a hit in the window proxy area, so drag the proxy icon
// Note that we don’t check that the window is an app window, but you should

{
OSStatus status = TrackWindowProxyDrag(pWindow, pEvent->where);
if(status == errUserWantsToDragWindow)

handled = false;
else if(status == noErr)

handled = true;

}

// fall through

case inDrag:
if(!handled)
// Check that we should show the window file path pop-up menu

{
// Note that we don’t check that the window
Handling Window Events 47
3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
// is an app window, but you should
{
if(IsWindowPathSelectClick(pWindow, pEvent))

{
SInt32 itemSelected;

if(WindowPathSelect(pWindow, NULL, &itemSelected) == noErr)
{
// If the menu item selected is not the title of the window
// itself, switch to the Finder, since the window chosen
// probably isn’t visible
if(LoWord(itemSelected) > 1)

{
MyBringFinderToFront();
}

}

handled = true;
}

}

if(!handled)
{
// Call DragWindow and drag the window
...
}

}
break;

}
break;
}

Note that in Listing 2-5, the user may have selected a menu item for a folder
representing a Finder window from the window path pop-up menu. Your
application must ensure that the resulting window is visible to the user by
making the Finder the frontmost process, as is shown in Listing 2-6.
48 Handling Window Events

3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
Listing 2-6 Bringing the Finder to the front

static void MyBringFinderToFront(void)
{

const OSType kFinderSignature = 'MACS';
const OSType kFinderType = 'FNDR';
ProcessSerialNumber finderProcess;

// If we find the Finder...
if(MyFindProcess(kFinderSignature, kFinderType, &finderProcess) == noErr)
{

// Tell the Process Manager to bring the Finder to the front
(void) SetFrontProcess(&finderProcess);

}
else
{

// If the Finder can’t be brought up, alert the user
...

}
}

As shown in Listing 2-6, making the Finder the frontmost process requires that
your application call the Process Manager function SetFrontProcess with the
Finder’s process serial number to bring the Finder to the front. Listing 2-7
provides an example of how your application may obtain the Finder’s process
serial number.

Listing 2-7 Finding the process serial number of a process

// Find the PSN of a process, in this case, the Finder,
// given a type and creator pair corresponding to the type
// and creator of the file from which the process was launched.

static OSStatus MyFindProcess(OSType creator, OSType type, ProcessSerialNumber
*outProcess)
{

ProcessInfoRec theProc;
OSStatus outStatus = 0L;
ProcessSerialNumber psn;
Handling Window Events 49
3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
// Start from kNoProcess
psn.highLongOfPSN = 0;
psn.lowLongOfPSN = kNoProcess;

// Initialize ProcessInfoRec fields, or we'll have memory hits in random locations
theProc.processInfoLength = sizeof(ProcessInfoRec);
theProc.processName = nil;
theProc.processAppSpec = nil;
theProc.processLocation = nil;

while(true)
{

// Keep looking for the process until we find it
outStatus = GetNextProcess(&psn);
if(outStatus != noErr)

break;

// Is the current process the one we're looking for?
outStatus = GetProcessInformation(&psn, &theProc);
if(outStatus != noErr)

break;
if((theProc.processType == type) && (theProc.processSignature == creator))

break;
}
*outProcess = psn;
return outStatus;

}

Responding to Suspend and Resume Events 2
The Event Manager function WaitNextEvent returns a suspend event when your
application is about to be switched to the background. WaitNextEvent returns a
resume event when your application becomes the foreground process again.

Upon receiving a suspend event, your application should deactivate the front
window and hide any floating windows. Upon receiving a resume event, your
application should activate the front window and restore any windows to the
state the user left them in at the time of the previous suspend event. For
example, your application should show scroll bars and any floating windows.
Listing 2-8 provides an example of how your application can respond to a
50 Handling Window Events

3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
suspend or resume event by calling the Window Manager functions
HideFloatingWindows (page 74) and ShowFloatingWindows (page 77) to hide or
show its floating windows, respectively.

IMPORTANT

The HideFloatingWindows and ShowFloatingWindows
functions are supported under Mac OS 8.6 and later. ▲

Listing 2-8 Hiding and showing floating windows

case suspendResumeMessage:
{

// The message field of the EventRecord indicates whether you are
// activating (resumeFlag is 1) or deactivating (resumeFlag is 0)

Boolean becomingActive = (pEvent->message & resumeFlag) != 0;

// The first document window should be activated or deactivated
// in response to a suspendResumeMessage, since no other explicit
// activate message will be sent to your application

WindowPtr pWindow = FrontNonFloatingWindow();
if (pWindow != NULL)

MyHandleActivateDeactivateEvent(pWindow, becomingActive);

// Human interface standards specify that floating windows be
// shown when your application becomes active, and hidden while
// it is inactive

if (becomingActive)
(void) ShowFloatingWindows();

else
(void) HideFloatingWindows();

break;
}

Handling Window Events 51
3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
Maintaining the Update Region 2

The Window Manager helps your application keep the window display current
by maintaining an update region, which represents the parts of your content
region that have been affected by changes to the desktop. If a user exposes part
of an inactive window by dragging an active window to a new location, for
example, the Window Manager adds the newly exposed area of the inactive
window to that window’s update region.

When your application calls the Event Manager function WaitNextEvent and
there are no events queued, the Event Manager scans the update regions of all
windows on the desktop. If it finds one whose update region is not empty, it
generates an update event for that window. When your application receives an
update event, it redraws as much of the content area as necessary. Note that
your application can receive update events when it is in either the foreground
or the background.

Your application can force and suppress update events by manipulating the
update region using Window Manager functions provided for this purpose.

You can remove an area from the update region by calling either of the
functions ValidWindowRect (page 124) or ValidWindowRgn (page 125), when you
know that the area is in fact valid. Limiting the size of the update region
decreases the time that your application spends redrawing window content in
response to update events.

The functions ValidWindowRect and ValidWindowRgn each inform the Window
Manager that an area of a window no longer needs to be redrawn. The
functions are, respectively, similar to the earlier Window Manager functions
ValidRect and ValidRgn, but the Mac OS 8.5 functions allow the window that
they operate upon to be explicitly specified, instead of operating on the current
graphics port, so they do not require the graphics port to be set before their use.

You can add an area to the update region by calling either of the functions
InvalWindowRect (page 122) or InvalWindowRgn (page 123). Each function informs
the Window Manager that an area of a window should be redrawn.
52 Maintaining the Update Region

3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
Moving a Window 2

When the user drags a window, the window should move, following the cursor
as it moves on the desktop. By calling the pre–Mac OS 8.5 Window Manager
function DragWindow, your application lets the user move the window. When
your application wishes to move a window for a reason other than a
user-instigated drag, however, it should use either the Mac OS 8.5 Window
Manager function MoveWindowStructure (page 93) or the earlier function
MoveWindow.

On versions of the Mac OS that include the Appearance Manager, the size and
shape of a window frame may vary from appearance to appearance. Because of
this, the total dimensions of a window (that is, the window’s structure region)
may also vary, causing the window’s spatial relationship to the rest of the
screen to change. Your application can best accommodate variable window
dimensions by using Window Manager functions to size and position your
windows, rather than via constant dimensions. Using these functions also
allows your application to avoid maintaining its own table of window
definition IDs and their various border dimensions, as well as ensuring your
application’s support of future window definitions.

The MoveWindowStructure function moves the specified window, but does not
change the window’s size. When your application calls MoveWindowStructure,
the positioning of the specified window is determined by the positioning of its
structure region. This is in contrast to the MoveWindow function, where the
positioning of the window’s content region determines the positioning of the
window.

The function SetWindowBounds (page 96) also provides a means of moving a
window, but you would typically call SetWindowBounds when you wish to set the
size of a window as well. The SetWindowBounds function sets a window to the
size and position of a rectangle that you specify, and it can interpret this
rectangle as the bounding rectangle for either the window’s structure or content
region (your choice).

In general, you should specify the structure region as the determining basis if
how the window as a whole relates to a given monitor is more important than
the exact positioning of its content on the screen. If you specify the content
region—because the positioning of your application’s content is of greatest
concern—it is important to note that under some appearances some part of the
Moving a Window 53
3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
window’s structure region or “frame” may extend past the edge of a monitor
and not be displayed.

Finally, setting a window’s position may also be done algorithmically, via the
function RepositionWindow (page 94), which positions a window relative to
another window or a display screen. See “Positioning a Window on the
Desktop” (page 35) for a discussion of algorithmic window positioning on
Mac OS 8.5.

Zooming a Window Gracefully 2

When the user clicks a window’s zoom box, a window zooms between two
states, the user state and the standard state. The user state is any size and
position in which the user can place the window on the desktop. The standard
state is the size and position that the application defines as being best for the
display of the data contained in the window. There are human interface
guidelines, described in “Window Zooming” (page 21), that describe how best
to determine a window’s standard state, based upon its current user state, but
prior to Mac OS 8.5 there were no system-supplied functions that enforced
these guidelines for your application.

With Mac OS 8.5, you can use the Window Manager function ZoomWindowIdeal
(page 90) instead of the older function ZoomWindow to zoom a window. When
your application calls ZoomWindowIdeal, it automatically conforms to the human
interface guidelines for determining a window’s standard state. Using
ZoomWindowIdeal in conjunction with the Mac OS 8.5 Window Manager
functions SetWindowIdealUserState (page 89) and GetWindowIdealUserState
(page 86) also ensures that the user state is tracked accurately, as well as giving
your application access to a window’s user state in a Carbon-compliant manner.

Note that if your application uses ZoomWindowIdeal, the WStateData structure is
superseded, and the result of the FindWindow function should be ignored when
determining whether a particular user click on the zoom box is a request to
zoom in or out. When you adopt ZoomWindowIdeal and your application receives
a result of either inZoomIn or inZoomOut from FindWindow, your application
should use the function IsWindowInStandardState (page 87) and code such as
that in Listing 2-9 to determine the appropriate part code to pass into the
partCode parameter.
54 Zooming a Window Gracefully

3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
Listing 2-9 Determining the appropriate part code to supply to ZoomWindowIdeal

switch (FindWindow(myEvent.where, &window))
{

// If FindWindow returns a part code for the zoom box, don’t rely on it;
// call IsWindowInStandardState with your application-defined ideal
// window size to figure out whether the window is currently zoomed in or
// out and, therefore, what the part code should be

case inZoomIn:
case inZoomOut:
{

int part;
Point idealSize = MyFigureWindowIdealSize(window);

// If IsWindowInStandardState returns true, the window is
// currently zoomed out to the standard state, so the mouse-down
// event in the zoom box should be interpreted as inZoomIn

if (IsWindowInStandardState(window, &idealSize, NULL))
{

part = inZoomIn;
}

else
{

// If IsWindowInStandardState returns false, the window is
// currently zoomed in to the user state, so the mouse-down event
// in the zoom box should be interpreted as inZoomOut

part = inZoomOut;
}

// If TrackBox confirms that the mouse-up event occurred while
// the cursor was still over the zoom box, give ZoomWindowIdeal
// the real part code, so it can get on with zooming

if (TrackBox(window, myEvent.where, part))
{

Zooming a Window Gracefully 55
3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
ZoomWindowIdeal(window, part, &idealSize);
}
break;

}
}

Resizing a Window 2

The size box, in the lower-right corner of a window’s content region, allows the
user to change a window’s size. When the user positions the cursor in the size
box and presses the mouse button, your application can call the Window
Manager’s ResizeWindow (page 95) function. This function displays a grow
image—an outline of the window’s frame and scroll bar areas, which expands
or contracts as the user drags the size box. The grow image indicates where the
window edges would be if the user released the mouse button at any given
moment.

The ResizeWindow function moves the grow image around the screen, following
the user’s cursor movements, and handles all user interaction until the mouse
button is released. Unlike with the function GrowWindow, there is no need to
follow this call with a call to the function SizeWindow, because once the mouse
button is released, ResizeWindow resizes the window if the user has changed the
window size. Once the resizing is complete, ResizeWindow draws the window in
the new size.

Your application should call the ResizeWindow function instead of the earlier
Window Manager functions SizeWindow and GrowWindow. Some appearances may
allow the window to be resized from any corner, not just the bottom right, and
as a result, when the user resizes the window, the window may move on the
screen and not merely change size. ResizeWindow informs your application of the
new window bounds, so that your application can respond to any changes in
the window’s position.

IMPORTANT

The ResizeWindow function is supported under Mac OS 8.6
and later. ▲

To avoid an unmanageably large or small window, you supply the lower and
upper size limits for the window in the sizeConstraints parameter of
56 Resizing a Window

3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
ResizeWindow. Note that although you supply ResizeWindow with the size limits
via a structure of type Rect, the values referenced through the sizeConstraints
parameter represent window dimensions, not screen coordinates.

Setting a Window’s Modification State 2

Your application should inform the Window Manager when a document has
unsaved changes by calling the function SetWindowModified (page 111). When
you do so, the Window Manager displays the document’s proxy icon in a
disabled state and prevents the user from dragging the proxy icon. Disabled
proxy icons cannot be dragged because unsaved documents cannot be moved
or copied in a manner predictable to the user. Listing 2-10 provides an example
of how your application might call SetWindowModified to set the modified state
of a window.

IMPORTANT

The only time that a document’s proxy icon should be
disabled is when the document has unsaved changes. Your
application should not disable the proxy icon at any other
time. ▲

Listing 2-10 Setting the modified state for a window

void MySetDocumentContentChanged(WindowDataPtr pData, Boolean changed)
{

pData->changed = changed;
SetWindowModified((WindowPtr)pData, changed);

}

Storing a Document Window Into a Collection 2

Using the function StoreWindowIntoCollection (page 70), your application can
store any window, not just those created with Mac OS 8.5 Window Manager
functions, into a collection. You can also store data associated with the window
Setting a Window’s Modification State 57
3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
into the same collection. This provides a quick way for your application to save
a simple document.

From a collection, your application can create a flattened collection—that is, a
stream of address-independent data—using the Collection Manager. Because
the 'wind' resource consists of an extensible flattened collection, your
application can store a flattened collection consisting of a window and its data
into a 'wind' resource using the Resource Manager. Listing 2-11 provides an
example of how your application might store a window and its data as a single
flattened collection in an extended 'wind' resource.

Listing 2-11 Writing a document window into a flattened collection resource

enum
{

kDocumentResType = 'Docu', // 'Docu' is an extended 'wind' resource
kResID_Document = 128

};

static pascal OSStatus MyWriteDocumentFile (WindowPtr window, short fileRefNum)
{

OSStatus err = noErr;

TEHandle teHandle = (TEHandle) GetWRefCon (window);

Collection collection = nil;
Handle flatDoc = nil;
Handle flatDocRes = nil;

do
{

// Temporarily create a collection into which the Window Manager will put
// a description of the window

if (!(collection = NewCollection ()))
{

err = MemError ();
break;

}

58 Storing a Document Window Into a Collection

3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
// Store the window into the collection

err = StoreWindowIntoCollection (window, collection);
if (err != noErr) break;

// Stash a copy of the text into the collection

err = AddCollectionItemHdl (collection, 'TEXT', 1, (**teHandle).hText);
if (err != noErr) break;

// Allocate a new 0-length handle to hold the flattened collection

flatDoc = NewHandle (0);
if (!flatDoc)
{

err = MemError ();
break;

}

// Flatten the collection into the handle

err = FlattenCollectionToHdl (collection, flatDoc);
if (err != noErr) break;

// Save the flattened collection as a resource in the file
// whose resource map is topmost in the chain

AddResource (flatDoc, kDocumentResType, kResID_Document, "\p");
err = ResError ();
if (err != noErr) break;

flatDocRes = flatDoc;
flatDoc = nil;

WriteResource (flatDocRes);
err = ResError ();
if (err != noErr) break;

// We've changed the resource map, so force it to be updated on disk

UpdateResFile (fileRefNum);
Storing a Document Window Into a Collection 59
3/8/99  Apple Computer, Inc.

C H A P T E R 2

Using the Mac OS 8.5 Window Manager
err = ResError ();
if (err != noErr) break;

// The document has been written, so it's OK to say so

err = SetWindowModified (window, false);
if (err != noErr) break;

}
while (false);

if (collection)
DisposeCollection (collection);

if (flatDocRes)
ReleaseResource (flatDocRes);

if (flatDoc)
DisposeHandle (flatDoc);

return err;
}

60 Storing a Document Window Into a Collection

3/8/99  Apple Computer, Inc.

Figure 3-01
Listing 3-01
Table 3-01
3 Mac OS 8.5 Window Manager
Reference
Contents
Gestalt Constants 65
Functions 66

Creating and Storing Windows 67
CreateNewWindow 67
CreateWindowFromCollection 68
CreateWindowFromResource 69
StoreWindowIntoCollection 70

Referencing Windows 71
CloneWindow 71
GetWindowOwnerCount 72

Displaying Floating Windows and Window Animations 72
AreFloatingWindowsVisible 73
HideFloatingWindows 74
InitFloatingWindows 75
ShowFloatingWindows 77
TransitionWindow 78

Accessing Window Information 79
FrontNonFloatingWindow 80
GetWindowAttributes 80
GetWindowClass 81
IsValidWindowPtr 82

Manipulating Window Color Information 82
GetWindowContentColor 83
GetWindowContentPattern 83
SetWindowContentColor 84
SetWindowContentPattern 85

Zooming Windows 86
Contents 61
3/8/99  Apple Computer, Inc.

GetWindowIdealUserState 86
IsWindowInStandardState 87
SetWindowIdealUserState 89
ZoomWindowIdeal 90

Sizing and Positioning Windows 91
GetWindowBounds 92
MoveWindowStructure 93
RepositionWindow 94
ResizeWindow 95
SetWindowBounds 96

Establishing Proxy Icons 97
GetWindowProxyAlias 98
GetWindowProxyFSSpec 99
GetWindowProxyIcon 100
RemoveWindowProxy 100
SetWindowProxyAlias 101
SetWindowProxyCreatorAndType 102
SetWindowProxyFSSpec 104
SetWindowProxyIcon 105

Coordinating Proxy Icons With Drag-and-Drop Management 106
BeginWindowProxyDrag 107
EndWindowProxyDrag 108
HiliteWindowFrameForDrag 110
IsWindowModified 111
SetWindowModified 111
TrackWindowProxyDrag 112
TrackWindowProxyFromExistingDrag 113

Activating Window Path Pop-Up Menus 115
IsWindowPathSelectClick 115
WindowPathSelect 116

Associating Data With Windows 118
GetWindowProperty 118
GetWindowPropertySize 119
RemoveWindowProperty 120
SetWindowProperty 121

Maintaining the Update Region 122
InvalWindowRect 122
InvalWindowRgn 123
62 Contents

3/8/99  Apple Computer, Inc.

ValidWindowRect 124
ValidWindowRgn 125

Data Types 126
BasicWindowDescription 126
MeasureWindowTitleRec 128
SetupWindowProxyDragImageRec 129

Resources 130
'wind' 130

Constants 134
BasicWindowDescription State Constant 134
BasicWindowDescription Version Constants 135
FindWindow Result Code Constant for the Proxy Icon 135
RepositionWindow Constants 136
'wind' Resource Default Collection Item Constants 138
Window Attribute Constants 138
Window Class Constants 140
Window Definition Feature Constants 141
Window Definition Hit Test Result Code Constant 143
Window Definition Message Constants 143
Window Definition State-Changed Constant 146
Window Region Constant for the Proxy Icon Region 146
Window Transition Action Constants 147
Window Transition Effect Constant 147

Result Codes 148
Contents 63
3/8/99  Apple Computer, Inc.

C H A P T E R 3
Mac OS 8.5 Window Manager Reference 3

This chapter describes the Window Manager application programming
interface (API) introduced with Mac OS 8.5 and Appearance Manager 1.1, as
follows:

■ “Gestalt Constants” (page 65)

■ “Functions” (page 66)

■ “Data Types” (page 126)

■ “Resources” (page 130)

■ “Constants” (page 134)

■ “Result Codes” (page 148)

Note that the preexisting Window Manager API is not discussed in this
document. For a description of the Mac OS 8 Window Manager API, see
Mac OS 8 Window Manager Reference. For descriptions of the pre–Mac OS 8
Window Manager API, see Inside Macintosh: Macintosh Toolbox Essentials.

Gestalt Constants 3

Before calling any functions dependent on the Window Manager, your
application should pass the selector gestaltWindowMgrAttr to the Gestalt
function to determine which Window Manager functions are available.

enum {
gestaltWindowMgrAttr = 'wind',
gestaltWindowMgrPresent = (1L << 0),
gestaltHasFloatingWindows = 2

};

Constant descriptions

gestaltWindowMgrAttr
The Gestalt selector passed to determine what features of
the Window Manager are present. This selector is available
with Mac OS 8.5 and later. The Gestalt function produces a
32-bit value whose bits you should test to determine which
Window Manager features are available.
Gestalt Constants 65
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
gestaltWindowMgrPresent
If the bit specified by this mask is set, the Window Manager
functionality for Appearance Manager 1.1 is available. This
bit is set for Mac OS 8.5 and later.

gestaltWindowMgrPresent
If this bit is set, the functions InitFloatingWindows
(page 75), HideFloatingWindows (page 74),
ShowFloatingWindows (page 77), and
AreFloatingWindowsVisible (page 73) are supported. This
bit is set for Mac OS 8.6 and later.

Functions 3

The Mac OS 8.5 Window Manager provides new functions in the following
areas:

■ “Creating and Storing Windows” (page 67)

■ “Referencing Windows” (page 71)

■ “Displaying Floating Windows and Window Animations” (page 72)

■ “Accessing Window Information” (page 79)

■ “Manipulating Window Color Information” (page 82)

■ “Zooming Windows” (page 86)

■ “Sizing and Positioning Windows” (page 91)

■ “Establishing Proxy Icons” (page 97)

■ “Coordinating Proxy Icons With Drag-and-Drop Management” (page 106)

■ “Activating Window Path Pop-Up Menus” (page 115)

■ “Associating Data With Windows” (page 118)

■ “Maintaining the Update Region” (page 122)
66 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
Creating and Storing Windows 3
The Mac OS 8.5 Window Manager provides the following functions to create
and store windows:

■ CreateNewWindow (page 67) creates a window from parameter data.

■ CreateWindowFromResource (page 69) creates a window from 'wind' resource
data.

■ CreateWindowFromCollection (page 68) creates a window from collection data.

■ StoreWindowIntoCollection (page 70) stores data describing a window into a
collection.

CreateNewWindow 3
Creates a window from parameter data.

pascal OSStatus CreateNewWindow (
WindowClass windowClass,
WindowAttributes attributes,
const Rect *bounds,
WindowPtr *outWindow);

windowClass A value of type WindowClass. You pass a WindowClass constant
that categorizes the type of window to be created. The window
class cannot be altered once the window has been created. See
“Window Class Constants” (page 140) for a description of
possible values for this parameter.

attributes An unsigned 32-bit value of type WindowAttributes. You set the
bits in a WindowAttributes field to specify certain features and
logical attributes of the window to be created. See “Window
Attribute Constants” (page 138) for descriptions of possible
values for this parameter.

bounds A pointer to a structure of type Rect. Before calling
CreateNewWindow, set the rectangle to specify the size and
position of the new window’s content region, in global
coordinates.

outWindow A pointer to a value of type WindowPtr. On return, the window
pointer points to the newly created window.
Functions 67
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
function result A result code. See “Result Codes” (page 148).

DISCUSSION

The CreateNewWindow function creates a window based on the attributes and
class you specify in the attributes and windowClass parameters.
CreateNewWindow sets the new window’s content region to the size and location
specified by the rectangle passed in the bounds parameter, which in turn
determines the dimensions of the entire window. The Window Manager creates
the window invisibly and places it at the front of the window list. After calling
CreateNewWindow, you should set any desired associated data—using Window
Manager or Control Manager accessor functions—then call the function
TransitionWindow (page 78) to display the window. See “Creating a Window”
(page 32) for a sample application-defined window-creation function.

VERSION NOTES

Available with Mac OS 8.5 and later.

CreateWindowFromCollection 3
Creates a window from collection data.

pascal OSStatus CreateWindowFromCollection (
Collection collection,
WindowPtr *outWindow);

collection A reference to the collection to be used in creating the window.
You pass a reference to a previously created collection, such as
that returned by the Collection Manager function NewCollection.
The collection used to create the window must contain the
required items for a resource of type 'wind' (page 130) or
window creation fails.

outWindow A pointer to a value of type WindowPtr. On return, the window
pointer points to the newly created window.

function result A result code. See “Result Codes” (page 148).
68 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
DISCUSSION

The CreateWindowFromCollection function creates a window invisibly and places
it at the front of the window list. After calling CreateWindowFromCollection, you
should set any desired associated data—using Window Manager or Control
Manager accessor functions—then call the function TransitionWindow (page 78)
to display the window. The number of references to the collection (that is, its
owner count) is incremented by a minimum of one for the duration of this call.

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

The chapter “Collection Manager” in Inside Macintosh: QuickDraw GX
Environment and Utilities.

CreateWindowFromResource 3
Creates a window from 'wind' resource data.

pascal OSStatus CreateWindowFromResource (
SInt16 resID,
WindowPtr *outWindow);

resID The resource ID of a resource of type 'wind' (page 130). Pass in
the ID of the 'wind' resource to be used to create the window.

outWindow A pointer to a value of type WindowPtr. On return, the window
pointer points to the newly created window.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

The CreateWindowFromResource function loads a window from a 'wind' resource.
The Window Manager creates the window invisibly and places it at the front of
the window list. After calling CreateWindowFromResource, you should set any
desired associated data—using Window Manager or Control Manager accessor
Functions 69
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
functions—then call the function TransitionWindow (page 78) to display the
window.

VERSION NOTES

Available with Mac OS 8.5 and later.

StoreWindowIntoCollection 3
Stores data describing a window into a collection.

pascal OSStatus StoreWindowIntoCollection (
WindowPtr window,
Collection collection);

window A value of type WindowPtr. Pass a pointer to the window to be
stored.

collection A reference to the collection into which the window is to be
stored. You pass a reference to a previously created collection,
such as that returned by the Collection Manager function
NewCollection.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

The StoreWindowIntoCollection function stores any window—including those
not created by Mac OS 8.5 Window Manager calls—into the specified collection.
The Window Manager does not empty the collection beforehand, so any
existing items in the collection remain. See “Storing a Document Window Into a
Collection” (page 57) for an example of how your application can call
StoreWindowIntoCollection.

VERSION NOTES

Available with Mac OS 8.5 and later.
70 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
SEE ALSO

The chapter “Collection Manager” in Inside Macintosh: QuickDraw GX
Environment and Utilities.

Referencing Windows 3
The Mac OS 8.5 Window Manager provides the following functions for working
with references to windows:

■ GetWindowOwnerCount (page 72) obtains the number of existing references to a
window.

■ CloneWindow (page 71) increments the number of references to a window.

CloneWindow 3
Increments the number of references to a window.

pascal OSStatus CloneWindow (WindowPtr window);

window A value of type WindowPtr. Pass a pointer to the window whose
reference count is to be incremented.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

You should call CloneWindow if you are using a window and wish to ensure that
it is not disposed while you are using it. With the Mac OS 8.5 Window Manager,
all windows are created with a reference count (owner count) of one. The
function CloneWindow increments the number of references to a window, and the
earlier function DisposeWindow decrements the number of references. When the
reference count reaches zero, DisposeWindow disposes of the window.

SPECIAL CONSIDERATIONS

To maintain an accurate reference count, you must follow every call to the
CloneWindow function with a matching call to the DisposeWindow function when
your application is ready to release its reference to the window.
Functions 71
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
VERSION NOTES

Available with Mac OS 8.5 and later.

GetWindowOwnerCount 3
Obtains the number of existing references to a window.

pascal OSStatus GetWindowOwnerCount (
WindowPtr window,
UInt32 *outCount);

window A value of type WindowPtr. Pass a pointer to the window whose
reference (owner) count is to be determined.

outCount A pointer to a value that, on return, contains the current number
of references to the window.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

With the Mac OS 8.5 Window Manager, all windows are created with a
reference count (owner count) of one. The function CloneWindow (page 71)
increments the number of references to a window, and the earlier function
DisposeWindow decrements the number of references. When the reference count
reaches zero, DisposeWindow disposes of the window.

VERSION NOTES

Available with Mac OS 8.5 and later.

Displaying Floating Windows and Window Animations 3
The Mac OS 8.5 Window Manager provides the following functions for
displaying floating windows:

■ InitFloatingWindows (page 75) initializes the Window Manager and sorts
your application’s windows into the proper front-to-back display order.

■ ShowFloatingWindows (page 77) shows an application’s floating windows.
72 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
■ HideFloatingWindows (page 74) hides an application’s floating windows.

■ AreFloatingWindowsVisible (page 73) indicates whether an application’s
floating windows are currently visible.

The Mac OS 8.5 Window Manager provides the following function for
displaying a window with animation and sound:

■ TransitionWindow (page 78) displays an animation and plays the
theme-appropriate sound for a window when it is shown or hidden.

AreFloatingWindowsVisible 3
Indicates whether an application’s floating windows are currently visible.

pascal Boolean AreFloatingWindowsVisible (void);

function result A value of type Boolean. The AreFloatingWindowsVisible
function returns true if the application’s floating windows are
currently shown. Otherwise, if the application’s floating
windows are currently hidden, or if the function
InitFloatingWindows (page 75) has not been called prior to a call
to AreFloatingWindowsVisible, it returns false.

DISCUSSION

When your application receives a suspend event, it must hide any visible
floating windows. When your application receives a resume event, it must
make its floating windows visible again. If your application needs to check
which visibility state its floating windows are in, it may call the
AreFloatingWindowsVisible function.

SPECIAL CONSIDERATIONS

You should call the function InitFloatingWindows (page 75) prior to calling
AreFloatingWindowsVisible.

The AreFloatingWindowsVisible function operates only upon windows created
with the kFloatingWindowClass constant; see “Window Class Constants”
(page 140) for more details on this constant.
Functions 73
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
VERSION NOTES

Supported with Mac OS 8.6 and later.

HideFloatingWindows 3
Hides an application’s floating windows.

pascal OSStatus HideFloatingWindows (void);

function result A result code; see “Result Codes” (page 148). Returns
errFloatingWindowsNotInitialized (-5609) if you have not called
InitFloatingWindows prior to HideFloatingWindows; otherwise,
returns noErr (0).

DISCUSSION

When your application receives a suspend event, it must hide any visible
floating windows. When your application receives a resume event, it must
make its floating windows visible again. See “Responding to Suspend and
Resume Events” (page 50) for an example of how your application can call the
HideFloatingWindows function.

SPECIAL CONSIDERATIONS

You must call the function InitFloatingWindows (page 75) prior to calling
HideFloatingWindows.

The HideFloatingWindows function operates only upon windows created with
the kFloatingWindowClass constant; see “Window Class Constants” (page 140)
for more details on this constant.

VERSION NOTES

Supported with Mac OS 8.6 and later.

SEE ALSO

The function ShowFloatingWindows (page 77).
74 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
InitFloatingWindows 3
Initializes the Window Manager and sorts your application’s windows into the
proper front-to-back display order.

pascal OSStatus InitFloatingWindows (void);

function result A result code; see “Result Codes” (page 148). Returns
errWindowsAlreadyInitialized (-5608) if you have already called
either InitFloatingWindows or InitWindows; otherwise, returns
noErr (0).

DISCUSSION

Your application calls the InitFloatingWindows function—instead of the
InitWindows function—to initialize the Window Manager and enable automatic
front-to-back display ordering of all your application’s windows.

Windows can be placed on the display screen so that one window appears to be
behind another. This visual overlapping gives the user an impression of depth.
A floating window is so-named because its front-to-back display order (that is,
its z-order placement relative to other windows on the screen) makes it appear
to float in front of document windows.

Because earlier versions of the Window Manager only defined the look of
floating windows, not their floating behavior, some applications contain code
that implements a floating effect for tool palettes and other such windows.
However, your application can now use the Window Manager to automatically
sort floating and non-floating windows into separately z-ordered groups,
thereby enforcing the proper front-to-back display order.

The Window Manager only enforces display ordering for windows belonging to
applications that have explicitly requested this functionality by calling the
InitFloatingWindows function. Therefore, if you wish to make use of the
system-supplied “floating” behavior, you must call InitFloatingWindows to
initialize the Window Manager, not InitWindows. If you use InitWindows to
initialize the Window Manager, floating windows intermingle with non-floating
windows, and your application is still responsible for ensuring that floating
windows remain higher in z-order than non-floating windows. However, if you
use InitFloatingWindows, the Window Manager automatically ensures that
floating windows remain higher in z-order than any non-floating window.
When your application calls InitFloatingWindows, the Window Manager sorts
Functions 75
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
each of your application’s windows into one of three window display layers:
modal, floating, and document.

For windows created with the Mac OS 8.5 function CreateNewWindow (page 67),
the order in which the Window Manager sorts the windows is based on
window class. See “Window Class Constants” (page 140) for a description of
the various window classes (for a floating window, kFloatingWindowClass)
which determine sort order for windows created with CreateNewWindow.

For pre–Mac OS 8.5 windows, the sort order is based upon window definition
ID. For example, if your application calls InitFloatingWindows, then calls the
GetNewWindow function with a dboxProc window ID, this produces a dialog box
located in the modal display layer. A similar ordering is imposed for floating
and document window definition function IDs.

To obtain system support for floating windows, before using any other Window
Manager functions you must initialize the Window Manager by calling the
InitFloatingWindows function. As with InitWindows, before calling
InitFloatingWindows, you must initialize QuickDraw and the Font Manager by
calling the InitGraf and InitFonts functions, respectively.

Also, before calling the InitFloatingWindows function you should always
confirm that InitFloatingWindows is supported by the version of the Mac OS
upon which your application is running. To do this, check the value returned by
the Gestalt function to ensure that the gestaltHasFloatingWindows bit is set, as
described in “Gestalt Constants” (page 65).

As part of initialization, the InitFloatingWindows function creates the Window
Manager port, a graphics port that occupies all of the main screen. The Window
Manager draws your application’s windows into the Window Manager port.
Your application should not draw directly into the Window Manager port,
except through custom window definition functions.

Note that the functions HideFloatingWindows (page 74) and ShowFloatingWindows
(page 77) require you to call InitFloatingWindows prior to their use.

VERSION NOTES

Supported with Mac OS 8.6 and later.
76 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
ShowFloatingWindows 3
Shows an application’s floating windows.

pascal OSStatus ShowFloatingWindows (void);

function result A result code; see “Result Codes” (page 148). Returns
errFloatingWindowsNotInitialized (-5609) if you have not called
InitFloatingWindows prior to ShowFloatingWindows; otherwise,
returns noErr (0).

DISCUSSION

When your application receives a suspend event, it must hide any visible
floating windows. When your application receives a resume event, it must
make its floating windows visible again. See “Responding to Suspend and
Resume Events” (page 50) for an example of how your application can call the
ShowFloatingWindows function.

SPECIAL CONSIDERATIONS

You must call the function InitFloatingWindows (page 75) prior to calling
ShowFloatingWindows.

The ShowFloatingWindows function operates only upon windows created with
the kFloatingWindowClass constant; see “Window Class Constants” (page 140)
for more details on this constant.

VERSION NOTES

Supported with Mac OS 8.6 and later.

SEE ALSO

The function HideFloatingWindows (page 74).
Functions 77
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
TransitionWindow 3
Displays an animation and plays the theme-appropriate sound for a window
when it is shown or hidden.

pascal OSStatus TransitionWindow (
WindowPtr window,
WindowTransitionEffect effect,
WindowTransitionAction action,
const Rect *rect);

window A value of type WindowPtr. Pass a pointer to the window that is
being shown or hidden.

effect A value of type WindowTransitionEffect. Pass a constant
specifying the window transition effect to be performed. With
the Mac OS 8.5 Window Manager, the only valid constant is
kWindowZoomTransitionEffect; see “Window Transition Effect
Constant” (page 147) for a description of this value.

action A value of type WindowTransitionAction. Pass a constant
specifying the window transition action to be performed; valid
constants are kWindowShowTransitionAction and
kWindowHideTransitionAction. See “Window Transition Action
Constants” (page 147) for descriptions of these values.

rect A pointer to a structure of type Rect.
If you pass kWindowShowTransitionAction in the action
parameter then, before calling TransitionWindow, set the
rectangle to specify the dimensions and position, in global
coordinates, of the area from which the zoom is to start. If you
pass NULL, TransitionWindow uses the center of the display screen
as the source rectangle.
If you pass kWindowHideTransitionAction in the action
parameter then, before calling TransitionWindow, set the
rectangle to specify the dimensions and position, in global
coordinates, of the area at which the zoom is to end.
If you pass NULL, TransitionWindow uses the center of the display
screen as the destination rectangle.

function result A result code. See “Result Codes” (page 148).
78 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
DISCUSSION

The TransitionWindow function displays an animation of a window’s transition
between the open and closed states, such as that displayed by the Finder.
TransitionWindow uses the rectangle specified in the rect parameter for one end
of the animation (the source or the destination of the zoom, depending upon
whether the window is being shown or hidden, respectively) and the window’s
current size and position for the other end of the animation. TransitionWindow
also plays sounds appropriate to the current theme for the opening and closing
actions. See “Creating a Window” (page 32) for an example of how your
application can call the TransitionWindow function.

Your application may use TransitionWindow instead of the functions ShowWindow
and HideWindow. Like these pre–Mac OS 8.5 Window Manager functions,
TransitionWindow generates the appropriate update and active events when it
shows and hides windows.

VERSION NOTES

Available with Mac OS 8.5 and later.

Accessing Window Information 3
The Mac OS 8.5 Window Manager provides the following functions for
determining information about windows:

■ GetWindowClass (page 81) obtains the class of a window.

■ GetWindowAttributes (page 80) obtains the attributes of a window.

■ FrontNonFloatingWindow (page 80) returns a pointer to the application’s
frontmost visible window that is not a floating window.

■ IsValidWindowPtr (page 82) reports whether a pointer is a valid window
pointer.
Functions 79
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
FrontNonFloatingWindow 3
Returns a pointer to the application’s frontmost visible window that is not a
floating window.

pascal WindowPtr FrontNonFloatingWindow (void);

function result A pointer to the first visible window in the window list that is of
a nonfloating class. See “Window Class Constants” (page 140)
for a description of window classes.

DISCUSSION

Your application should call the FrontNonFloatingWindow function when you
want to identify the frontmost visible window that is not a floating window. If
you want to identify the frontmost visible window, whether floating or not,
your application should call the function FrontWindow.

GetWindowAttributes 3
Obtains the attributes of a window.

pascal OSStatus GetWindowAttributes (
WindowPtr window,
WindowAttributes *outAttributes);

window A value of type WindowPtr. Pass a pointer to the window whose
attributes you wish to obtain.

outAttributes A pointer to an unsigned 32-bit value of type WindowAttributes.
On return, the bits are set to the attributes of the specified
window. See “Window Attribute Constants” (page 138) for a
description of possible attributes. With Mac OS 8.5, if the
window was not originally created using the function
CreateNewWindow (page 67), then all attribute bits are set to 0, and
GetWindowAttributes returns a paramErr (-50) result.

function result A result code. See “Result Codes” (page 148).
80 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
DISCUSSION

Window attributes specify a window’s features (such as whether the window
has a close box) and logical attributes (such as whether the window receives
update and activate events).

VERSION NOTES

Available with Mac OS 8.5 and later.

GetWindowClass 3
Obtains the class of a window.

pascal OSStatus GetWindowClass (
WindowPtr window,
WindowClass *outClass);

window A value of type WindowPtr. Pass a pointer to the window whose
class you wish to obtain.

outClass A pointer to a value of type WindowClass. On return, this value
identifies the class of the specified window. See “Window Class
Constants” (page 140) for a list of possible window classes. If the
window was not originally created using the function
CreateNewWindow (page 67), the class pointed to by the outClass
parameter is always identified by the constant
kDocumentWindowClass.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

A window’s class categorizes the window for purposes of display (that is, both
the window’s appearance and its display ordering) and tracking. A window’s
class cannot be altered once the window has been created.

VERSION NOTES

Available with Mac OS 8.5 and later.
Functions 81
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
IsValidWindowPtr 3
Reports whether a pointer is a valid window pointer.

pascal Boolean IsValidWindowPtr (GrafPtr grafPort);

grafPort A pointer to a graphics port. You pass the pointer to be
examined.

function result A value of type Boolean. The function returns true if the
specified pointer is a valid window pointer; otherwise, false.

DISCUSSION

A custom control definition may use the IsValidWindowPtr function to
determine whether it is being asked to draw onscreen or offscreen.

This function is primarily intended for use with debugging your application.

SPECIAL CONSIDERATIONS

The IsValidWindowPtr function is a processor-intensive call.

VERSION NOTES

Available with Mac OS 8.5 and later.

Manipulating Window Color Information 3
The Mac OS 8.5 Window Manager provides the following functions for
redrawing a window’s content region:

■ SetWindowContentColor (page 84) sets the color to which a window’s content
region is redrawn.

■ GetWindowContentColor (page 83) obtains the color to which a window’s
content region is redrawn.

■ SetWindowContentPattern (page 85) sets the pattern to which a window’s
content region is redrawn.

■ GetWindowContentPattern (page 83) obtains the pattern to which a window’s
content region is redrawn.
82 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
GetWindowContentColor 3
Obtains the color to which a window’s content region is redrawn.

pascal OSStatus GetWindowContentColor (
WindowPtr window,
RGBColor *color);

window A value of type WindowPtr. Pass a pointer to the window whose
content color is being retrieved.

color A pointer to an RGBColor structure. On return, the structure
contains the content color for the specified window.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

The GetWindowContentColor function obtains the color to which the window’s
content region is redrawn. See “Window Content Color” (page 24) for further
discussion.

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

The function SetWindowContentColor (page 84).

GetWindowContentPattern 3
Obtains the pattern to which a window’s content region is redrawn.

pascal OSStatus GetWindowContentPattern (
WindowPtr window,
PixPatHandle outPixPat);

window A value of type WindowPtr. Pass a pointer to the window whose
content pattern is being retrieved.
Functions 83
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
outPixPat A handle to a structure of type PixPat. On return, the structure
contains a copy of the content pattern data for the specified
window, which your application is responsible for disposing.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

The GetWindowContentPattern function obtains the pattern to which the
window’s content region is redrawn. See “Window Content Color” (page 24)
for further discussion.

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

The function SetWindowContentPattern (page 85).

SetWindowContentColor 3
Sets the color to which a window’s content region is redrawn.

pascal OSStatus SetWindowContentColor (
WindowPtr window,
RGBColor *color);

window A value of type WindowPtr. Pass a pointer to the window whose
content color is being set.

color A pointer to an RGBColor structure. Before calling
SetWindowContentColor, set this structure to specify the content
color to be used.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

If your application uses the SetWindowContentColor function, the window’s
content region is redrawn to the color you specify, without affecting the value
84 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
specified in the window’s CGrafPort structure for the current background color.
Applications should use SetWindowContentColor instead of the SetWinColor
function. See “Drawing in a Window’s Content Region” (page 42) for further
discussion and an example of how your application might call the
SetWindowContentColor function.

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

The function GetWindowContentColor (page 83).

SetWindowContentPattern 3
Sets the pattern to which a window’s content region is redrawn.

pascal OSStatus SetWindowContentPattern (
WindowPtr window,
PixPatHandle pixPat);

window A value of type WindowPtr. Pass a pointer to the window whose
content pattern is being set.

pixPat A handle to a structure of type PixPat. Before calling
SetWindowContentPattern, set this structure to specify the content
pattern to be used. This handle is copied by the Window
Manager, and your application continues to own the original.
Therefore there may be higher RAM requirements for
applications with numerous identically patterned windows.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

If your application uses the SetWindowContentPattern function, the window’s
content region is redrawn to the pattern you specify, without affecting the value
specified in the window’s CGrafPort structure for the current background
pattern. See “Drawing in a Window’s Content Region” (page 42) for further
Functions 85
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
discussion and an example of calling the related function
SetWindowContentColor (page 84).

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

The function GetWindowContentPattern (page 83).

Zooming Windows 3
The Mac OS 8.5 Window Manager provides the following functions for
zooming windows:

■ ZoomWindowIdeal (page 90) zooms a window in accordance with human
interface guidelines.

■ IsWindowInStandardState (page 87) determines whether a window is
currently zoomed in to the user state or zoomed out to the standard state.

■ SetWindowIdealUserState (page 89) sets the size and position of a window in
its user state.

■ GetWindowIdealUserState (page 86) obtains the size and position of a window
in its user state.

GetWindowIdealUserState 3
Obtains the size and position of a window in its user state.

pascal OSStatus GetWindowIdealUserState (
WindowPtr window,
Rect *userState);

window A value of type WindowPtr. Pass a pointer to the window for
which you wish to obtain the user state.
86 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
userState A pointer to a structure of type Rect. On return, this rectangle
specifies the current size and position of the window’s user
state, in global coordinates.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

Because the window definition function relies upon the WStateData structure, it
is unaware of the ideal standard state, and this causes the user state data that it
stores in the WStateData structure to be unreliable. While the Window Manager
is reliably aware of the window’s zoom state, it cannot record the current user
state in the WStateData structure, because the window definition function can
overwrite that data. Therefore, the function ZoomWindowIdeal (page 90)
maintains the window’s user state independently of the WStateData structure.
The GetWindowIdealUserState function gives your application access to the user
state data maintained by ZoomWindowIdeal. However, your application should
not typically need to use this function; it is supplied for completeness.

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

The function SetWindowIdealUserState (page 89).

IsWindowInStandardState 3
Determines whether a window is currently zoomed in to the user state or
zoomed out to the standard state.

pascal Boolean IsWindowInStandardState (
WindowPtr window,
Point *idealSize,
Rect *idealStandardState);

window A value of type WindowPtr. Pass a pointer to the window for
which you wish to determine the zoom state.
Functions 87
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
idealSize A pointer to a structure of type Point. Before calling
IsWindowInStandardState, set the Point structure to contain the
ideal width and height of the window’s content region,
regardless of the actual screen device dimensions. If you set
idealSize to NULL, IsWindowInStandardState examines the
dimensions stored in the stdState field of the WStateData
structure.

idealStandardState
A pointer to a structure of type Rect. On return, the rectangle
contains the global coordinates for the content region of the
window in its standard state, based on the data supplied in the
idealSize parameter. You may pass NULL if you do not wish to
receive this data.

function result A value of type Boolean. The IsWindowInStandardState function
returns true if the window is currently in its standard state;
otherwise, if the window is currently in the user state,
IsWindowInStandardState returns false.

DISCUSSION

The IsWindowInStandardState function compares the window’s current
dimensions to those referred to by the idealSize parameter to determine if the
window is currently in the standard state. Your application may use
IsWindowInStandardState to decide whether a user’s click of the zoom box is a
request to zoom to the user state or the standard state, as described in the
function ZoomWindowIdeal (page 90). Your application may also use
IsWindowInStandardState to determine the size and position of the standard
state that the Window Manager would calculate for a window, given a specified
ideal size; this value is produced in the idealStandardState parameter. See
“Zooming a Window Gracefully” (page 54) for an example of calling the
IsWindowInStandardState function.

VERSION NOTES

Available with Mac OS 8.5 and later.
88 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
SetWindowIdealUserState 3
Sets the size and position of a window in its user state.

pascal OSStatus SetWindowIdealUserState (
WindowPtr window,
Rect *userState);

window A value of type WindowPtr. Pass a pointer to the window for
which you wish to set the user state.

userState A pointer to a structure of type Rect. Before calling
SetWindowIdealUserState set this rectangle to specify the new
size and position of the window’s user state, in global
coordinates.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

Because the window definition function relies upon the WStateData structure, it
is unaware of the ideal standard state, and this causes the user state data that it
stores in the WStateData structure to be unreliable. While the Window Manager
is reliably aware of the window’s zoom state, it cannot record the current user
state in the WStateData structure, because the window definition function can
overwrite that data. Therefore, the function ZoomWindowIdeal (page 90)
maintains the window’s user state independently of the WStateData structure.
The SetWindowIdealUserState function gives your application access to the user
state data maintained by ZoomWindowIdeal. However, your application does not
typically need to use this function; it is supplied for completeness.

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

The function GetWindowIdealUserState (page 86).
Functions 89
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
ZoomWindowIdeal 3
Zooms a window in accordance with human interface guidelines.

pascal OSStatus ZoomWindowIdeal (
WindowPtr window,
SInt16 partCode,
Point *ioIdealSize);

window A value of type WindowPtr. Pass a pointer to the window to be
zoomed.

partCode A value specifying the direction of the zoom being requested.
Your application passes in the relevant value (either the
inZoomIn or the inZoomOut constant).

ioIdealSize A pointer to a structure of type Point.
When you specify inZoomIn in the partCode parameter, you pass
a pointer to the Point structure, but do not fill the structure with
data. On return, the Point structure contains the new height and
width of the window’s content region, and ZoomWindowIdeal
restores the previous user state.
When you specify inZoomOut in the partCode parameter, you pass
the ideal height and width of the window’s content region in the
Point structure. On return, the Point structure contains the new
height and width of the window’s content region;
ZoomWindowIdeal saves the user state of the window and zooms
the window to its ideal size for the standard state.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

Applications should use the ZoomWindowIdeal function instead of the older
function ZoomWindow. When your application calls ZoomWindowIdeal, it
automatically conforms to the human interface guidelines for determining a
window’s standard state, as described in “Window Zooming” (page 21).

The ZoomWindowIdeal function calculates a window’s ideal standard state and
updates a window’s ideal user state independently of the WStateData structure.
Previously, the window definition function was responsible for updating the
user state, but because it relies upon the WStateData structure, the window
definition function is unaware of the ideal standard state and can no longer
track the window’s zoom state reliably.
90 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
While the Window Manager is reliably aware of the window’s zoom state, it
cannot record the current user state in the WStateData structure, because the
window definition function can overwrite that data. Therefore, if your
application uses ZoomWindowIdeal, the WStateData structure is superseded, and
the result of the FindWindow function should be ignored when determining
whether a particular user click of the zoom box is a request to zoom in or out.
When you adopt ZoomWindowIdeal and your application receives a result of
either inZoomIn or inZoomOut from FindWindow, your application must use the
function IsWindowInStandardState (page 87) and code such as that in Listing 2-9
in “Zooming a Window Gracefully” (page 54) to determine the appropriate part
code to pass in the partCode parameter.

VERSION NOTES

Available with Mac OS 8.5 and later.

Sizing and Positioning Windows 3
The Mac OS 8.5 Window Manager provides the following functions for working
with the size and position of windows:

■ SetWindowBounds (page 96) sets a window’s size and position from the
bounding rectangle of the specified window region.

■ GetWindowBounds (page 92) obtains the size and position of the bounding
rectangle of the specified window region.

■ MoveWindowStructure (page 93) positions a window relative to its structure
region.

■ ResizeWindow (page 95) handles all user interaction while a window is being
resized.

■ RepositionWindow (page 94) positions a window relative to another window
or a display screen.
Functions 91
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
GetWindowBounds 3
Obtains the size and position of the bounding rectangle of the specified window
region.

pascal OSStatus GetWindowBounds (
WindowPtr window,
WindowRegionCode regionCode,
Rect *globalBounds);

window A value of type WindowPtr. Pass a pointer to the window whose
bounds you wish to obtain.

regionCode A value of type WindowRegionCode. Pass in a constant identifying
the window region whose bounds you wish to obtain. Currently,
the only valid values for the region code are
kWindowStructureRgn and kWindowContentRgn; see Mac OS 8
Window Manager Reference for descriptions of these and other
WindowRegionCode constants.

globalBounds A pointer to a structure of type Rect. On return, the rectangle
contains the dimensions and position, in global coordinates, of
the window region specified in the regionCode parameter.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

When you call the function SetWindowBounds (page 96), your application
specifies whether the window’s content region or its structure region is more
important in determining the window’s ultimate size and position. This
distinction can be important with versions of the Mac OS running the
Appearance Manager, since the total dimensions of a window—and, therefore,
its spatial relationship to the rest of the screen—may vary from appearance to
appearance. Use the GetWindowBounds function to obtain the bounding rectangle
for either of these regions for the specified window.

VERSION NOTES

Available with Mac OS 8.5 and later.
92 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
MoveWindowStructure 3
Positions a window relative to its structure region.

pascal OSStatus MoveWindowStructure (
WindowPtr window,
short hGlobal,
short vGlobal);

window A value of type WindowPtr. Pass a pointer to the window to be
moved.

hGlobal Pass a value specifying the horizontal position, in global
coordinates, to which the left edge of the window’s structure
region is to be moved.

vGlobal Pass a value specifying the vertical position, in global
coordinates, to which the top edge of the window’s structure
region is to be moved.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

The MoveWindowStructure function moves the specified window, but does not
change the window’s size. When your application calls MoveWindowStructure,
the positioning of the specified window is determined by the positioning of its
structure region. This is in contrast to the MoveWindow function, where the
positioning of the window’s content region determines the positioning of the
window. After moving the window, MoveWindowStructure displays the window
in its new position.

Note that your application should not call the MoveWindowStructure function to
position a window when the user drags the window by its drag region. When
the user drags the window, your application should call the pre–Mac OS 8.5
Window Manager function DragWindow.

VERSION NOTES

Available with Mac OS 8.5 and later.
Functions 93
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
RepositionWindow 3
Positions a window relative to another window or a display screen.

pascal OSStatus RepositionWindow (
WindowPtr window,
WindowPtr parentWindow,
WindowPositionMethod method);

window A value of type WindowPtr. Pass a pointer to the window whose
position you want to set.

parentWindow A value of type WindowPtr. Pass a pointer to the “parent”
window, as defined by your application. In cases where the
window positioning method does not require a parent window,
you should set the parentWindow parameter to NULL.

method A value of type WindowPositionMethod. Pass a constant
specifying the window positioning method to be used; see
“RepositionWindow Constants” (page 136) for descriptions of
possible values.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

Your application may call the RepositionWindow function to position any
window, relative to another window or to a display screen. After positioning
the window, RepositionWindow displays the window in its new position. See
“Positioning a Window on the Desktop” (page 35) for further discussion.

VERSION NOTES

Available with Mac OS 8.5 and later.
94 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
ResizeWindow 3
Handles all user interaction while a window is being resized.

pascal Boolean ResizeWindow (
WindowPtr window,
Point startPoint,
const Rect *sizeConstraints,
Rect *newContentRect);

window A value of type WindowPtr. Pass a pointer to the window to be
resized.

startPt A structure of type Point. Before calling ResizeWindow, your
application should set the Point structure to contain the
location, specified in global coordinates, where the mouse-down
event occurred. Your application may retrieve this value from
the where field of the event structure.

sizeConstraints
A pointer to a structure of type Rect. Before calling ResizeWindow,
set the rectangle to specify the limits on the vertical and
horizontal measurements of the content rectangle, in pixels.
Although this parameter gives the address of a structure that is
in the form of the Rect data type, the four numbers in the
structure represent limits, not screen coordinates. The top, left,
bottom, and right fields of the structure specify the minimum
vertical measurement (top), the minimum horizontal
measurement (left), the maximum vertical measurement
(bottom), and the maximum horizontal measurement (right).
The minimum dimensions should be large enough to allow a
manageable rectangle; 64 pixels on a side is typical. The
maximum dimensions can be no greater than 32,767. You can
pass NULL to allow the user to resize the window to any size that
is contained onscreen.

newContentRect
A pointer to a structure of type Rect. On return, the structure
contains the new dimensions of the window’s content region, in
global coordinates.

function result A value of type Boolean. The function returns true if the
window was successfully resized; otherwise, false.
Functions 95
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
DISCUSSION

The ResizeWindow function moves an outline (grow image) of the window’s
edges around the screen, following the user’s cursor movements, and handles
all user interaction until the mouse button is released. Unlike with the function
GrowWindow, there is no need to follow this call with a call to the function
SizeWindow, because once the mouse button is released, ResizeWindow resizes the
window if the user has changed the window size. Once the resizing is complete,
ResizeWindow draws the window in the new size.

Your application should call the ResizeWindow function instead of the earlier
Window Manager functions SizeWindow and GrowWindow. Some appearances may
allow the window to be resized from any corner, not just the bottom right, and
as a result, when the user resizes the window, the window may move on the
screen and not merely change size. ResizeWindow informs your application of the
new window bounds, so that your application can respond to any changes in
the window’s position.

VERSION NOTES

Supported with Mac OS 8.6 and later.

SetWindowBounds 3
Sets a window’s size and position from the bounding rectangle of the specified
window region.

pascal OSStatus SetWindowBounds (
WindowPtr window,
WindowRegionCode regionCode,
const Rect *globalBounds);

window A value of type WindowPtr. Pass a pointer to the window whose
bounds are to be set.

regionCode A value of type WindowRegionCode. Pass in a constant specifying
the region to be used in determining the window’s size and
position. With Mac OS 8.5, the only valid values for the region
code are kWindowStructureRgn and kWindowContentRgn; see
Mac OS 8 Window Manager Reference for descriptions of these
and other WindowRegionCode constants.
96 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
globalBounds A pointer to a structure of type Rect. Before calling
SetWindowBounds, set the rectangle to specify the dimensions and
position, in global coordinates, of the window region specified
in the regionCode parameter.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

The SetWindowBounds function sets a window’s size and position to that
specified by the rectangle that your application passes in the globalBounds
parameter. After doing so, SetWindowBounds displays the window.

When you call the SetWindowBounds function, your application specifies whether
the window’s content region or its structure region is more important in
determining the window’s ultimate size and position. This distinction can be
important with versions of the Mac OS running the Appearance Manager, since
the total dimensions of a window—and, therefore, its spatial relationship to the
rest of the screen—may vary from appearance to appearance. In general, you
should specify kWindowStructureRgn for the regionCode parameter if how the
window as a whole relates to a given monitor is more important than the exact
positioning of its content on the screen. On the other hand, if you specify
kWindowContentRgn for the regionCode parameter because the positioning of your
application’s content is of greatest concern, then it is important to note that with
some appearances some part of the window’s structure region or “frame” may
extend past the edge of a monitor and not be displayed.

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

The function GetWindowBounds (page 92).

Establishing Proxy Icons 3
The Mac OS 8.5 Window Manager provides the following functions for
establishing proxy icons:

■ SetWindowProxyFSSpec (page 104) associates a file with a window.
Functions 97
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
■ GetWindowProxyFSSpec (page 99) obtains a file system specification structure
for the file that is associated with a window.

■ SetWindowProxyAlias (page 101) associates a file with a window.

■ GetWindowProxyAlias (page 98) obtains an alias for the file that is associated
with a window.

■ SetWindowProxyCreatorAndType (page 102) sets the proxy icon for a window
that lacks an associated file.

■ SetWindowProxyIcon (page 105) overrides the default proxy icon for a
window.

■ GetWindowProxyIcon (page 100) obtains a window’s proxy icon.

■ RemoveWindowProxy (page 100) dissociates a file from a window.

GetWindowProxyAlias 3
Obtains an alias for the file that is associated with a window.

pascal OSStatus GetWindowProxyAlias (
WindowPtr window,
AliasHandle *alias);

window A value of type WindowPtr. Pass a pointer to the window for
which you wish to determine the associated file.

alias A pointer to a value of type AliasHandle. On return, the
AliasRecord structure referenced by the alias handle contains a
copy of the alias data for the file associated with the specified
window. Your application must dispose of this handle. See Inside
Macintosh: Files for more information on aliases.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

Your application can call the GetWindowProxyAlias function to retrieve alias data
for the file associated with a window. See “Supporting Window Proxy Icons”
(page 37) for examples of how your application can provide proxy icon support
in its document windows.
98 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

The function SetWindowProxyAlias (page 101).

GetWindowProxyFSSpec 3
Obtains a file system specification structure for the file that is associated with a
window.

pascal OSStatus GetWindowProxyFSSpec (
WindowPtr window,
FSSpec *outFile);

window A value of type WindowPtr. Pass a pointer to the window for
which you wish to determine the associated file.

outFile A pointer to an FSSpec structure. On return, this structure
contains a copy of the file system specification data for the file
associated with the specified window. See Inside Macintosh: Files
for more information on the FSSpec data type.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

You can use the GetWindowProxyFSSpec function to obtain identifying
information about a proxy file: its volume reference number, directory ID, and
file name. See “Supporting Window Proxy Icons” (page 37) for examples of how
your application can provide proxy icon support in its document windows.

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

The function SetWindowProxyFSSpec (page 104).
Functions 99
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
GetWindowProxyIcon 3
Obtains a window’s proxy icon.

pascal OSStatus GetWindowProxyIcon (
WindowPtr window,
IconRef *outIcon);

window A value of type WindowPtr. Pass a pointer to the window for
which you wish to obtain the proxy icon.

outIcon A pointer to a value of type IconRef. On return, the icon
reference identifies the icon currently used for the window’s
proxy icon. Your application is responsible for disposing of this
icon reference.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

Your application should call the GetWindowProxyIcon function if it needs to
obtain an IconRef value for a proxy icon, such as is required for the function
SetWindowProxyIcon (page 105). See “Supporting Window Proxy Icons”
(page 37) for examples of how your application can provide proxy icon support
in its document windows.

VERSION NOTES

Available with Mac OS 8.5 and later.

RemoveWindowProxy 3
Dissociates a file from a window.

pascal OSStatus RemoveWindowProxy (WindowPtr window);

window A value of type WindowPtr. Pass a pointer to the window for
which you wish to remove the associated file.

function result A result code. See “Result Codes” (page 148).
100 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
DISCUSSION

The RemoveWindowProxy function redraws the window title bar after removing all
data associated with a given file, including the proxy icon, path menu, and file
data.

SPECIAL CONSIDERATIONS

With Mac OS 8.5, you must save and restore the current graphics port—by
calling the QuickDraw functions GetPort and SetPort—around each call to the
RemoveWindowProxy function. See “Supporting Window Proxy Icons” (page 37)
for examples of how your application can provide proxy icon support in its
document windows.

VERSION NOTES

Available with Mac OS 8.5 and later.

SetWindowProxyAlias 3
Associates a file with a window.

pascal OSStatus SetWindowProxyAlias (
WindowPtr window,
AliasHandle alias);

window A value of type WindowPtr. Pass a pointer to the window with
which the specified file is to be associated.

alias A value of type AliasHandle. Pass in a handle to a structure of
type AliasRecord for the file to associate with the specified
window. You can obtain an alias handle by calling the function
GetWindowProxyAlias (page 98). See Inside Macintosh: Files for
more information on aliases.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

Your application should call the SetWindowProxyAlias function to establish a
proxy icon for a given window. The creator code and file type of the file
Functions 101
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
associated with a window determine the proxy icon that is displayed for the
window.

Because the SetWindowProxyAlias function won’t work without a saved file, you
must establish the initial proxy icon for a new, untitled window with the
function SetWindowProxyCreatorAndType (page 102), which requires that you
know the file type and creator code for the file, but does not require that the file
have been saved.

See “Supporting Window Proxy Icons” (page 37) for examples of how your
application can provide proxy icon support in its document windows.

SPECIAL CONSIDERATIONS

With Mac OS 8.5, you must save and restore the current graphics port—by
calling the QuickDraw functions GetPort and SetPort—around each call to the
SetWindowProxyAlias function.

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

The function SetWindowProxyFSSpec (page 104).

SetWindowProxyCreatorAndType 3
Sets the proxy icon for a window that lacks an associated file.

pascal OSStatus SetWindowProxyCreatorAndType (
WindowPtr window,
OSType fileCreator,
OSType fileType,
SInt16 vRefNum);

window A value of type WindowPtr. Pass a pointer to the window for
which you want to set the proxy icon.
102 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
fileCreator A four-character code. Pass in the code that is to be used,
together with the fileType parameter, to determine the proxy
icon. This typically is the creator code of the file that would be
created, were the user to save the contents of the window.

fileType A four-character code. Pass in a code that is to be used, together
with the fileCreator parameter, to determine the proxy icon.
This typically is the file type of the file that would be created,
were the user to save the contents of the window.

vRefNum A value identifying the volume containing the default desktop
database to search for the icon associated with the file type and
creator code specified in the fileCreator and fileType
parameters. Pass kOnSystemDisk if the volume is unknown.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

A new, untitled window needs a proxy icon in order to maintain visual
consistency with other windows under Mac OS 8.5 and later. Your application
should call the SetWindowProxyCreatorAndType function when you want to
establish a proxy icon for a window, but the window’s data has not yet been
saved to a file. See “Creating a Window” (page 32) for an example of how your
application can call the SetWindowProxyCreatorAndType function.

If the window’s data has been saved to a file, your application can call the
functions SetWindowProxyFSSpec (page 104) or SetWindowProxyAlias (page 101) to
associate the file with the window and thereby establish the proxy icon. See
“Supporting Window Proxy Icons” (page 37) for examples of how your
application can provide proxy icon support in its document windows.

SPECIAL CONSIDERATIONS

With Mac OS 8.5, you must save and restore the current graphics port—by
calling the QuickDraw functions GetPort and SetPort—around each call to the
SetWindowProxyCreatorAndType function.

VERSION NOTES

Available with Mac OS 8.5 and later.
Functions 103
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
SetWindowProxyFSSpec 3
Associates a file with a window.

pascal OSStatus SetWindowProxyFSSpec (
WindowPtr window,
const FSSpec *inFile);

window A value of type WindowPtr. Pass a pointer to the window with
which the specified file is to be associated.

inFile A pointer to an FSSpec structure. Before calling
SetWindowProxyFSSpec, set the file system specification structure
to contain the data for the file to associate with the specified
window. You can obtain an FSSpec structure by calling the
function GetWindowProxyFSSpec (page 99). See Inside Macintosh:
Files for more information on the FSSpec data type.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

Your application should call the SetWindowProxyFSSpec function to establish a
proxy icon for a given window. The creator code and file type of the file
associated with a window determine the proxy icon that is displayed for the
window.

Because the SetWindowProxyFSSpec function won’t work without a saved file,
you must establish the initial proxy icon for a new, untitled window with the
function SetWindowProxyCreatorAndType (page 102), which requires that you
know the file type and creator code for the file, but does not require that the file
have been saved.

See “Supporting Window Proxy Icons” (page 37) for examples of how your
application can provide proxy icon support in its document windows.

SPECIAL CONSIDERATIONS

With Mac OS 8.5, you must save and restore the current graphics port—by
calling the QuickDraw functions GetPort and SetPort—around each call to the
SetWindowProxyFSSpec function.
104 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

The function SetWindowProxyAlias (page 101).

SetWindowProxyIcon 3
Overrides the default proxy icon for a window.

pascal OSStatus SetWindowProxyIcon (
WindowPtr window,
IconRef icon);

window A value of type WindowPtr. Pass a pointer to the window for
which you wish to set the proxy icon.

icon A value of type IconRef. Pass an icon reference identifying the
icon to be used for the window’s proxy icon. If there is already a
proxy icon in use of the type desired, an IconRef value may be
obtained for that icon by calling the function GetWindowProxyIcon
(page 100). Otherwise, your application must call the Icon
Services function GetIconRefFromFile to get a value of type
IconRef.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

If you wish to override the proxy icon that the Window Manager displays by
default for a given file, your application should call the SetWindowProxyIcon
function.

More typically, when you do not wish to override a window’s default proxy
icon, your application would call one of the following functions:
SetWindowProxyFSSpec (page 104), SetWindowProxyAlias (page 101), or
SetWindowProxyCreatorAndType (page 102).

See “Supporting Window Proxy Icons” (page 37) for examples of how your
application can provide proxy icon support in its document windows.
Functions 105
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
SPECIAL CONSIDERATIONS

With Mac OS 8.5, you must save and restore the current graphics port—by
calling the QuickDraw functions GetPort and SetPort—around each call to the
SetWindowProxyIcon function.

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

The function GetWindowProxyIcon (page 100).

Coordinating Proxy Icons With Drag-and-Drop Management 3
The Mac OS 8.5 Window Manager provides the following functions for
dragging proxy icons:

■ TrackWindowProxyDrag (page 112) handles all aspects of the drag process when
the user drags a proxy icon.

■ TrackWindowProxyFromExistingDrag (page 113) allows custom handling of the
drag process when the user drags a proxy icon.

■ BeginWindowProxyDrag (page 107) creates the drag reference and the drag
image when the user drags a proxy icon.

■ EndWindowProxyDrag (page 108) disposes of the drag reference when the user
completes the drag of a proxy icon.

The Mac OS 8.5 Window Manager provides the following functions for
indicating whether a proxy icon can currently be dragged:

■ SetWindowModified (page 111) sets the modification state of the specified
window.

■ IsWindowModified (page 111) obtains the modification state of the specified
window.

The Mac OS 8.5 Window Manager provides the following function for
indicating whether a window is a valid drag-and-drop target:
106 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
■ HiliteWindowFrameForDrag (page 110) sets the highlight state of the window’s
structure region to reflect the window’s validity as a drag-and-drop
destination.

BeginWindowProxyDrag 3
Creates the drag reference and the drag image when the user drags a proxy
icon.

pascal OSStatus BeginWindowProxyDrag (
WindowPtr window,
DragReference *outNewDrag,
RgnHandle outDragOutlineRgn);

window A value of type WindowPtr. Pass a pointer to the window whose
proxy icon is being dragged.

outNewDrag A pointer to a value of type DragReference. On return, the value
refers to the current drag process.

outDragOutlineRgn
A value of type RgnHandle. Your application can create this
handle with a call to the QuickDraw function NewRgn. On return,
this region is set to the outline of the icon being dragged.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

Typically, if the proxy icon represents a type of object (currently, file system
entities such as files, folders, and volumes) supported by the Window Manager,
the Window Manager can handle all aspects of the drag process itself, and your
application should call the function TrackWindowProxyDrag (page 112). However,
if the proxy icon represents a type of data that the Window Manager does not
support, or if you wish to implement custom dragging behavior, your
application should call the function TrackWindowProxyFromExistingDrag
(page 113).

The TrackWindowProxyFromExistingDrag function accepts an existing drag
reference and adds file data if the window contains a file proxy. If your
application uses TrackWindowProxyFromExistingDrag, you then have the choice of
using this function in conjunction with the functions BeginWindowProxyDrag and
Functions 107
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
EndWindowProxyDrag (page 108) or simply calling
TrackWindowProxyFromExistingDrag and handling all aspects of creating and
disposing of the drag yourself.

Specifically, your application can call BeginWindowProxyDrag to set up the drag
image and drag reference. Your application must then track the drag, using
TrackWindowProxyFromExistingDrag, and do any required moving of data and,
finally, call EndWindowProxyDrag to dispose of the drag reference.
BeginWindowProxyDrag should not be used for types handled by the Window
Manager unless the application wishes to implement custom dragging behavior
for those types.

Your application detects a drag when the function FindWindow returns the
inProxyIcon result code; see “FindWindow Result Code Constant for the Proxy
Icon” (page 135) for more details.

See “Supporting Window Proxy Icons” (page 37) for examples of how your
application can provide proxy icon support in its document windows.

VERSION NOTES

Available with Mac OS 8.5 and later.

EndWindowProxyDrag 3
Disposes of the drag reference when the user completes the drag of a proxy
icon.

pascal OSStatus EndWindowProxyDrag (
WindowPtr window,
DragReference theDrag);

window A value of type WindowPtr. Pass a pointer to the window whose
proxy icon is being dragged.

theDrag A value of type DragReference that refers to the current drag
process. Pass in the value produced in the outNewDrag parameter
of BeginWindowProxyDrag.

function result A result code. See “Result Codes” (page 148).
108 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
DISCUSSION

Typically, if the proxy icon represents a type of object (currently, file system
entities such as files, folders, and volumes) supported by the Window Manager,
the Window Manager can handle all aspects of the drag process itself, and your
application should call the function TrackWindowProxyDrag (page 112). However,
if the proxy icon represents a type of data that the Window Manager does not
support, or if you wish to implement custom dragging behavior, your
application should call the function TrackWindowProxyFromExistingDrag
(page 113).

The TrackWindowProxyFromExistingDrag function accepts an existing drag
reference and adds file data if the window contains a file proxy. If your
application uses TrackWindowProxyFromExistingDrag, you then have the choice of
using this function in conjunction with the functions BeginWindowProxyDrag
(page 107) and EndWindowProxyDrag or simply calling
TrackWindowProxyFromExistingDrag and handling all aspects of creating and
disposing of the drag yourself.

Specifically, your application can call BeginWindowProxyDrag to set up the drag
image and drag reference. Your application must then track the drag, using
TrackWindowProxyFromExistingDrag, and do any required moving of data and,
finally, call EndWindowProxyDrag to dispose of the drag reference and its
associated image data. The EndWindowProxyDrag function does not dispose of the
region created for use by BeginWindowProxyDrag, however, so this remains the
application’s responsibility to dispose. The EndWindowProxyDrag function should
not be used for types handled by the Window Manager unless the application
wishes to implement custom dragging behavior for those types.

See “Supporting Window Proxy Icons” (page 37) for examples of how your
application can provide proxy icon support in its document windows.

VERSION NOTES

Available with Mac OS 8.5 and later.
Functions 109
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
HiliteWindowFrameForDrag 3
Sets the highlight state of the window’s structure region to reflect the window’s
validity as a drag-and-drop destination.

pascal OSStatus HiliteWindowFrameForDrag (
WindowPtr window,
Boolean hilited);

window A value of type WindowPtr. Pass a pointer to the window for
which you wish to set the highlight state.

hilited A value of type Boolean. Set to true to indicate that the
window’s frame should be highlighted; otherwise, false.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

Applications typically call the Drag Manager functions ShowDragHilite and
HideDragHilite to indicate that a window is a valid drag-and-drop destination.
If your application does not do this—that is, if your application implements any
type of custom drag highlighting, such as highlighting more than one area of a
window at a time—it must call the HiliteWindowFrameForDrag function.

The HiliteWindowFrameForDrag function highlights a window’s proxy icon when
the user drags content inside the window that is a valid content type for that
destination. The default behavior of system-defined windows is to highlight the
proxy icon along with the window’s content area when the window is a valid
drag-and-drop destination. If you call the Drag Manager functions
ShowDragHilite and HideDragHilite, you don’t need to use
HiliteWindowFrameForDrag.

See “Supporting Window Proxy Icons” (page 37) for examples of how your
application can provide proxy icon support in its document windows.

VERSION NOTES

Available with Mac OS 8.5 and later.
110 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
IsWindowModified 3
Obtains the modification state of the specified window.

pascal Boolean IsWindowModified (WindowPtr window);

window A value of type WindowPtr. Pass a pointer to the window whose
modification state is to be obtained.

function result A value of type Boolean. The function returns true to indicate
that the content of the window has been modified; otherwise,
false. Newly created windows start out with their modification
state automatically set to true.

DISCUSSION

Your application can use the functions IsWindowModified and SetWindowModified
(page 111) instead of maintaining its own separate record of the modification
state of the content of a window.

VERSION NOTES

Available with Mac OS 8.5 and later.

SetWindowModified 3
Sets the modification state of the specified window.

pascal OSStatus SetWindowModified (
WindowPtr window,
Boolean modified);

window A value of type WindowPtr. Pass a pointer to the window whose
modification state is to be set.

modified A value of type Boolean. Set to true to indicate that the content
of the window has been modified; otherwise, set to false.

function result A result code. See “Result Codes” (page 148).
Functions 111
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
DISCUSSION

Your application can use the functions SetWindowModified and IsWindowModified
(page 111) instead of maintaining its own separate record of the modification
state of the content of a window.

Your application should distinguish between the modification state of the
window and the modification state of the window’s contents, typically a
document. The modification state of the window contents are what should
affect SetWindowModified. For example, in the case of a word processing
document, you call SetWindowModified (passing true in the modified parameter)
whenever the user types new characters into the document. However, you do
not call SetWindowModified when the user moves the window, because that
change does not affect the document contents. If you need to track whether the
window position has changed, you need to do this with your own flag.

See “Setting a Window’s Modification State” (page 57) for an example of how
your application might call the SetWindowModified function.

VERSION NOTES

Available with Mac OS 8.5 and later.

TrackWindowProxyDrag 3
Handles all aspects of the drag process when the user drags a proxy icon.

pascal OSStatus TrackWindowProxyDrag (
WindowPtr window,
Point startPt);

window A value of type WindowPtr. Pass a pointer to the window whose
proxy icon is being dragged.

startPt A structure of type Point. Before calling TrackWindowProxyDrag,
your application should set the Point structure to contain the
point, specified in global coordinates, where the mouse-down
event that began the drag occurred. Your application may
retrieve this value from the where field of the event structure.
112 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
function result A result code. See “Result Codes” (page 148). If you receive the
error errUserWantsToDragWindow (–5607), your application should
respond by calling the Window Manager function DragWindow.
Errors are also returned from the Drag Manager, including
userCanceledErr (–128).

DISCUSSION

If your application uses proxy icons to represent a type of object (currently, file
system entities such as files, folders, and volumes) supported by the Window
Manager, your application should call the TrackWindowProxyDrag function, and
the Window Manager can handle all aspects of the drag process for you. If your
application calls the TrackWindowProxyDrag function, it does not have to call the
Drag Manager function WaitMouseMoved before starting to track the drag, as the
Window Manager handles this automatically. However, if a proxy icon
represents a type of data that the Window Manager does not support, or if you
wish to implement custom dragging behavior, your application should call the
function TrackWindowProxyFromExistingDrag (page 113).

Your application detects that a user is dragging one of its proxy icons when the
function FindWindow returns the inProxyIcon result code; see “FindWindow
Result Code Constant for the Proxy Icon” (page 135) for more details.

See “Supporting Window Proxy Icons” (page 37) for examples of how your
application can provide proxy icon support in its document windows.

VERSION NOTES

Available with Mac OS 8.5 and later.

TrackWindowProxyFromExistingDrag 3
Allows custom handling of the drag process when the user drags a proxy icon.

pascal OSStatus TrackWindowProxyFromExistingDrag (
WindowPtr window,
Point startPt,
DragReference drag,
RgnHandle inDragOutlineRgn);
Functions 113
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
window A value of type WindowPtr. Pass a pointer to the window whose
proxy icon is being dragged.

startPt A structure of type Point. Before calling
TrackWindowProxyFromExistingDrag, your application should set
the Point structure to contain the point, specified in global
coordinates, where the mouse-down event that began the drag
occurred. Your application may retrieve this value from the
where field of the event structure.

drag A value of type DragReference that refers to the current drag
process. Pass in the value produced in the outNewDrag parameter
of the function BeginWindowProxyDrag (page 107). If you are not
using BeginWindowProxyDrag in conjunction with
TrackWindowProxyFromExistingDrag, you must create the drag
reference yourself with the Drag Manager function NewDrag.

inDragOutlineRgn
A value of type RgnHandle. Pass in a region handle representing
an outline of the icon being dragged. You may obtain a handle
to this region from the outDragOutlineRgn parameter of
BeginWindowProxyDrag. If you are not using
BeginWindowProxyDrag in conjunction with
TrackWindowProxyFromExistingDrag, you must create the region
yourself.

function result A result code. See “Result Codes” (page 148). Errors are also
returned from the Drag Manager, including userCanceledErr
(-128).

DISCUSSION

Typically, if the proxy icon represents a type of object (currently, file system
entities such as files, folders, and volumes) supported by the Window Manager,
the Window Manager can handle all aspects of the drag process itself, and your
application should call the function TrackWindowProxyDrag (page 112). However,
if the proxy icon represents a type of data that the Window Manager does not
support, or if you wish to implement custom dragging behavior, your
application should call the TrackWindowProxyFromExistingDrag function.

The TrackWindowProxyFromExistingDrag function accepts an existing drag
reference and adds file data if the window contains a file proxy. If your
application uses TrackWindowProxyFromExistingDrag, you then have the choice of
114 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
using this function in conjunction with the functions BeginWindowProxyDrag
(page 107) and EndWindowProxyDrag (page 108) or simply calling
TrackWindowProxyFromExistingDrag and handling all aspects of creating and
disposing of the drag yourself.

Your application detects a drag when the function FindWindow returns the
inProxyIcon result code; see “FindWindow Result Code Constant for the Proxy
Icon” (page 135) for more details.

See “Supporting Window Proxy Icons” (page 37) for examples of how your
application can provide proxy icon support in its document windows.

VERSION NOTES

Available with Mac OS 8.5 and later.

Activating Window Path Pop-Up Menus 3
The Mac OS 8.5 Window Manager provides the following functions for
handling the activation of window path pop-up menus:

■ IsWindowPathSelectClick (page 115) reports whether a mouse click should
activate the window path pop-up menu.

■ WindowPathSelect (page 116) displays a window path pop-up menu.

IsWindowPathSelectClick 3
Reports whether a mouse click should activate the window path pop-up menu.

pascal Boolean IsWindowPathSelectClick (
WindowPtr window,
EventRecord *event);

window A value of type WindowPtr. Pass a pointer to the window in
which the mouse-down event occurred.

event A pointer to a value of type EventRecord. Pass a pointer to the
EventRecord structure containing the mouse-down event that
IsWindowPathSelectClick is to examine.
Functions 115
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
function result A value of type Boolean. The function returns true if the mouse
click should activate the window path pop-up menu; otherwise,
false.

DISCUSSION

The Mac OS 8.5 Window Manager provides system support for your
application to display window path pop-up menus—like those used in Finder
windows. When the user presses the Command key and clicks on the window’s
title, the window displays a pop-up menu containing a standard file system
path, informing the user of the location of the document displayed in the
window and allowing the user to open windows for folders along the path.

Because the window title includes both the proxy icon region and part of the
drag region of the window, your application must be prepared to respond to a
click in either region by displaying a window path pop-up menu. Therefore,
when the FindWindow function returns either the inDrag or the inProxyIcon result
code—you should pass the event to the IsWindowPathSelectClick function to
determine whether the mouse-down event should activate the window path
pop-up menu. If IsWindowPathSelectClick returns a value of true, your
application should then call the function WindowPathSelect (page 116) to display
the menu. Listing 2-5 in “Displaying a Window Path Pop-Up Menu” (page 46)
shows how your application might handle a user request to display the window
path pop-up menu.

VERSION NOTES

Available with Mac OS 8.5 and later.

WindowPathSelect 3
Displays a window path pop-up menu.

pascal OSStatus WindowPathSelect (
WindowPtr window,
MenuHandle menu,
SInt32 *outMenuResult);

window A value of type WindowPtr. Pass a pointer to the window for
which a window path pop-up menu is to be displayed.
116 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
menu A value of type MenuHandle. Pass a handle to a menu to be
displayed for the specified window or NULL. If you pass NULL in
this parameter, the Window Manager provides a default menu
and sends a Reveal Object Apple event to the Finder if a menu
item is selected. Note that in order to pass NULL, there must be a
file currently associated with the window. If you pass in a menu
handle, this menu supersedes the default window path pop-up
menu, and the WindowPathSelect function temporarily inserts
the specified menu into the current pop-up menu list. There
does not have to be a file currently associated with the window
if you pass in your own menu handle.

outMenuResult A pointer to a value that, on return, contains the menu and
menu item the user chose. The high-order word of the value
produced contains the menu ID, and the low-order word
contains the item number of the menu item. If the user does not
select a menu item, 0 is produced in the high-order word, and
the low-order word is undefined. For file menus that have not
been overridden, 0 is always produced in this parameter. Pass
NULL in this parameter if you do not want this information.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

Your application should call the WindowPathSelect function when it detects a
Command-click in the title of a window, that is, when the function
IsWindowPathSelectClick (page 115) returns a value of true. Calling
WindowPathSelect causes the Window Manager to display a window path
pop-up menu for your window. Listing 2-5 in “Displaying a Window Path
Pop-Up Menu” (page 46) shows an example of how your application might call
the WindowPathSelect function.

SPECIAL CONSIDERATIONS

Note that when WindowPathSelect returns noErr, your application should ensure
that the window opened by the Finder’s Reveal Object Apple event handler is
visible to the user. To do this, your application should call the Process Manager
function SetFrontProcess with the Finder’s process serial number, as shown in
Listing 2-6 in “Displaying a Window Path Pop-Up Menu” (page 46).
Functions 117
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
VERSION NOTES

Available with Mac OS 8.5 and later.

Associating Data With Windows 3
The Mac OS 8.5 Window Manager provides the following functions for
associating data with windows:

■ SetWindowProperty (page 121) associates an arbitrary piece of data with a
window.

■ GetWindowProperty (page 118) obtains a piece of data that is associated with a
window.

■ GetWindowPropertySize (page 119) obtains the size of a piece of data that is
associated with a window.

■ RemoveWindowProperty (page 120) removes a piece of data that is associated
with a window.

GetWindowProperty 3
Obtains a piece of data that is associated with a window.

pascal OSStatus GetWindowProperty (
WindowPtr window,
PropertyCreator propertyCreator,
PropertyTag propertyTag,
UInt32 bufferSize,
UInt32 *actualSize,
void *propertyBuffer);

window A value of type WindowPtr. Pass a pointer to the window to be
examined for associated data.

propertyCreator
A four-character code. Pass the creator code (typically, the
application’s signature) of the associated data to be obtained.

propertyTag A four-character code. Pass the application-defined code
identifying the associated data to be obtained.
118 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
bufferSize Pass a value specifying the size of the associated data to be
obtained. If the size of the data is unknown, use the function
GetWindowPropertySize (page 119) to get the data’s size. If the
size specified does not match the actual size of the property,
GetWindowProperty only retrieves data up to the size specified or
up to the actual size of the property, whichever is smaller, and
an error is returned.

actualSize A pointer to a value. On return, the value specifies the actual
size of the obtained data. You may pass NULL for the actualSize
parameter if you are not interested in this information.

propertyBufferA pointer to a buffer. On return, this buffer contains a copy of
the data that is associated with the specified window.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

The data retrieved by the GetWindowProperty function must have been
previously associated with the window with the function SetWindowProperty
(page 121).

VERSION NOTES

Available with Mac OS 8.5 and later.

GetWindowPropertySize 3
Obtains the size of a piece of data that is associated with a window.

pascal OSStatus GetWindowPropertySize (
WindowPtr window,
PropertyCreator creator,
PropertyTag tag,
UInt32 *size);

window A value of type WindowPtr. Pass a pointer to the window to be
examined for associated data.
Functions 119
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
creator A four-character code. Pass the creator code (typically, the
application’s signature) of the associated data whose size is to
be obtained.

tag A four-character code. Pass the application-defined code
identifying the associated data whose size is to be obtained.

size A pointer to a value that, on return, specifies the size of the
associated data.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

If you want to retrieve a piece of associated data with the GetWindowProperty
(page 118) function, you typically need to use the GetWindowPropertySize
function to determine the size of the data beforehand.

VERSION NOTES

Available with Mac OS 8.5 and later.

RemoveWindowProperty 3
Removes a piece of data that is associated with a window.

pascal OSStatus RemoveWindowProperty (
WindowPtr window,
PropertyCreator propertyCreator,
PropertyTag propertyTag);

window A value of type WindowPtr. Pass a pointer to the window whose
data is to be removed.

propertyCreator
A four-character code. Pass the creator code (typically, the
application’s signature) of the associated data to be removed.

propertyTag A four-character code. Pass the application-defined code
identifying the associated data to be removed.

function result A result code. See “Result Codes” (page 148).
120 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
DISCUSSION

The data removed by the RemoveWindowProperty function must have been
previously associated with the window with the function SetWindowProperty
(page 121).

VERSION NOTES

Available with Mac OS 8.5 and later.

SetWindowProperty 3
Associates an arbitrary piece of data with a window.

pascal OSStatus SetWindowProperty (
WindowPtr window,
PropertyCreator propertyCreator,
PropertyTag propertyTag,
UInt32 propertySize,
void *propertyBuffer);

window A value of type WindowPtr. Pass a pointer to the window with
which data is to be associated.

propertyCreator
A four-character code. Pass the creator code (typically, the
application’s signature) of the data to be associated.

propertyTag A four-character code. Pass a value identifying the data to be
associated. You define the tag your application uses to identify
the data; this code is not to be confused with the file type for the
data.

propertySize Pass a value specifying the size of the data to be associated.

propertyBufferPass a pointer to the data to be associated.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

Data set with the SetWindowProperty function may be obtained with the function
GetWindowProperty (page 118) and removed with the function
Functions 121
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
RemoveWindowProperty (page 120). See “Managing Multiple Windows” (page 31)
for a discussion of using the SetWindowProperty function.

VERSION NOTES

Available with Mac OS 8.5 and later.

Maintaining the Update Region 3
The Mac OS 8.5 Window Manager provides the following functions for
updating windows:

■ InvalWindowRect (page 122) adds a rectangle to a window’s update region.

■ ValidWindowRect (page 124) removes a rectangle from a window’s update
region.

■ InvalWindowRgn (page 123) adds a region to a window’s update region.

■ ValidWindowRgn (page 125) removes a region from a window’s update region.

InvalWindowRect 3
Adds a rectangle to a window’s update region.

pascal OSStatus InvalWindowRect (
WindowPtr window,
const Rect *bounds);

window A value of type WindowPtr. Pass a pointer to the window
containing the rectangle that you wish to be updated.

bounds A pointer to a structure of type Rect. Before calling
InvalWindowRect, set this structure to specify, in local
coordinates, a rectangle to be added to the window’s update
region.

function result A result code. See “Result Codes” (page 148).
122 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
DISCUSSION

The InvalWindowRect function informs the Window Manager that an area of a
window should be redrawn. The InvalWindowRect function is similar to the
InvalRect function, but InvalWindowRect allows the window that it operates
upon to be explicitly specified, instead of operating on the current graphics
port, so InvalWindowRect does not require the graphics port to be set before its
use. See “Maintaining the Update Region” (page 52) for further discussion.

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

The function ValidWindowRect (page 124).

The function InvalWindowRgn (page 123).

InvalWindowRgn 3
Adds a region to a window’s update region.

pascal OSStatus InvalWindowRgn (
WindowPtr window,
RgnHandle region);

window A value of type WindowPtr. Pass a pointer to the window
containing the region that you wish to be updated.

region A value of type RgnHandle. Before calling InvalWindowRgn, set this
region to specify, in local coordinates, the area to be added to the
window’s update region.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

The InvalWindowRgn function informs the Window Manager that an area of a
window should be redrawn. The InvalWindowRgn function is similar to the
InvalRgn function, but InvalWindowRgn allows the window that it operates upon
to be explicitly specified, instead of operating on the current graphics port, so
Functions 123
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
InvalWindowRgn does not require the graphics port to be set before its use. See
“Maintaining the Update Region” (page 52) for further discussion.

VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

The function InvalWindowRect (page 122).

The function ValidWindowRgn (page 125).

ValidWindowRect 3
Removes a rectangle from a window’s update region.

pascal OSStatus ValidWindowRect (
WindowPtr window,
const Rect *bounds);

window A value of type WindowPtr. Pass a pointer to the window
containing the rectangle that you wish to remove from being
updated.

bounds A pointer to a structure of type Rect. Before calling
ValidWindowRect, set this structure to specify, in local
coordinates, a rectangle to be removed from the window’s
update region.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

The ValidWindowRect function informs the Window Manager that an area of a
window no longer needs to be redrawn. The ValidWindowRect function is similar
to the ValidRect function, but ValidWindowRect allows the window that it
operates upon to be explicitly specified, instead of operating on the current
graphics port, so ValidWindowRect does not require the graphics port to be set
before its use. See “Maintaining the Update Region” (page 52) for further
discussion.
124 Functions

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
VERSION NOTES

Available with Mac OS 8.5 and later.

SEE ALSO

The function InvalWindowRect (page 122).

The function ValidWindowRgn (page 125).

ValidWindowRgn 3
Removes a region from a window’s update region.

pascal OSStatus ValidWindowRgn (
WindowPtr window,
RgnHandle region);

window A value of type WindowPtr. Pass a pointer to the window
containing the region that you wish to remove from being
updated.

region A value of type RgnHandle. Before calling ValidWindowRgn, set this
region to specify, in local coordinates, the area to be removed
from the window’s update region.

function result A result code. See “Result Codes” (page 148).

DISCUSSION

The ValidWindowRgn function informs the Window Manager that an area of a
window no longer needs to be redrawn. The ValidWindowRgn function is similar
to the ValidRgn function, but ValidWindowRgn allows the window that it operates
upon to be explicitly specified, instead of operating on the current graphics
port, so ValidWindowRgn does not require the graphics port to be set before its
use. See “Maintaining the Update Region” (page 52) for further discussion.

VERSION NOTES

Available with Mac OS 8.5 and later.
Functions 125
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
SEE ALSO

The function InvalWindowRgn (page 123).

The function ValidWindowRect (page 124).

Data Types 3

The following data types are available with the Mac OS 8.5 Window Manager:

■ BasicWindowDescription (page 126)

■ MeasureWindowTitleRec (page 128)

■ SetupWindowProxyDragImageRec (page 129)

BasicWindowDescription 3
The BasicWindowDescription structure is a default collection item for a resource
of type'wind' (page 130). You use the BasicWindowDescription structure to
describe the statically-sized base characteristics of a window.

struct BasicWindowDescription {
UInt32 descriptionSize;
Rect windowContentRect;
Rect windowZoomRect;
UInt32 windowRefCon;
UInt32 windowStateFlags;
WindowPositionMethod windowPositionMethod;
UInt32 windowDefinitionVersion;

union {

struct {
SInt16 windowDefProc;
Boolean windowHasCloseBox;

} versionOne;

struct {
WindowClass windowClass;
126 Data Types

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
WindowAttributes windowAttributes;
} versionTwo;

} windowDefinition;

};
typedef struct BasicWindowDescription BasicWindowDescription;

Field descriptions

descriptionSize A value specifying the size of the entire
BasicWindowDescription structure.

windowContentRect A structure of type Rect, specifying the initial size and
screen location of the window’s content area.

windowZoomRect Reserved.
windowRefCon The window’s reference value field, which is simply

storage space available to your application for any purpose.
The value contained in this field persists when the 'wind'
resource is stored, so you should avoid saving pointers in
this field, as they may become stale.

windowStateFlags A 32-bit value whose bits you set to indicate the status of
transient window states. See “BasicWindowDescription
State Constant” (page 134) for possible values.

windowPositionMethod
The specification last used in the function RepositionWindow
(page 94) to position this window, if any. See
“RepositionWindow Constants” (page 136) for a
description of possible values for this field.

windowDefinitionVersion
The version of the window definition used for the window.
Set this field to a value of 1 if your application is creating a
pre–Mac OS 8.5 window, that is, a window lacking class
and attribute information. Set this field to a value of 2 if
your application is creating a window using class and
attribute information. See “BasicWindowDescription
Version Constants” (page 135) for descriptions of these
values.

windowDefinition A union of the versionOne and versionTwo structures. Your
application must either specify the window’s class and
attributes, or it must supply a window definition ID and
Data Types 127
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
specify whether or not the window has a close box. See
“Window Class Constants” (page 140) and “Window
Attribute Constants” (page 138) for descriptions of class
and attribute values.

MeasureWindowTitleRec 3
If you implement a custom window definition function, when the Window
Manager passes the message kWindowMsgMeasureTitle in your window
definition function’s message parameter it also passes a pointer to a structure of
type MeasureWindowTitleRec in the param parameter. Your window definition
function is responsible for setting the contents of the MeasureWindowTitleRec
structure to contain data describing the ideal title width.

See “Window Definition Message Constants” (page 143) and “Window
Definition Feature Constants” (page 141) for more details on the
kWindowMsgMeasureTitle message and the corresponding
kWindowCanMeasureTitle feature flag.

struct MeasureWindowTitleRec
{
/* output parameters*/

SInt16 fullTitleWidth; /* text width + proxy icon width */
SInt16 titleTextWidth; /* text width only */

/* input parameters*/
Boolean isUnicodeTitle; /* future use */
Boolean reserved; /* future use */

};
typedef struct MeasureWindowTitleRec MeasureWindowTitleRec;
typedef MeasureWindowTitleRec *MeasureWindowTitleRecPtr;

Field descriptions

fullTitleWidth Your window definition function sets this field to a value
specifying the total width in pixels of the window title text
and any proxy icon that may be present, ignoring any
compression or truncation that might be required when the
title is actually drawn. That is, the specified width should
be the ideal width that would be used if the window were
sufficiently wide to draw the entire title along with a proxy
icon. You should measure the title width using the current
128 Data Types

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
system font. If no proxy icon is present, this field should
have the same value as the titleTextWidth field.

titleTextWidth Your window definition function sets this field to a value
specifying the width in pixels of the window title text,
ignoring any compression or truncation that might be
required when the title is actually drawn. That is, the
specified width should be the ideal width that would be
used if the window were sufficiently wide to draw the
entire title. You should measure the title width using the
current system font.

isUnicodeTitle Your window definition function may ignore this field; it is
reserved for future use.

reserved Your window definition function may ignore this field; it is
reserved for future use.

SetupWindowProxyDragImageRec 3
If you implement a custom window definition function, when the function
TrackWindowProxyDrag (page 112) is called, the Window Manager passes the
message kWindowMsgSetupProxyDragImage in your window definition function’s
message parameter and passes a pointer to a structure of type
SetupWindowProxyDragImageRec in the param parameter. Your window definition
function is responsible for setting the contents of the
SetupWindowProxyDragImageRec structure to contain data describing the proxy
icon’s drag image.

See “Window Definition Message Constants” (page 143) and “Window
Definition Feature Constants” (page 141) for more details on the
kWindowMsgSetupProxyDragImage message and the corresponding
kWindowCanSetupProxyDragImage feature flag.

struct SetupWindowProxyDragImageRec
{

GWorldPtr imageGWorld;
RgnHandle imageRgn;
RgnHandle outlineRgn;

};
typedef struct SetupWindowProxyDragImageRec SetupWindowProxyDragImageRec;
Data Types 129
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
Field descriptions

imageGWorld A pointer to the offscreen graphics world containing the
drag image. The window definition function must allocate
the offscreen graphics world, since the Window Manager
has no way of knowing the appropriate size for the drag
image. The Window Manager disposes of the offscreen
graphics world.

imageRgn A handle to a region containing the drag image. Only this
portion of the offscreen graphics world referred to by the
imageGWorld field is actually drawn. The Window Manager
allocates and disposes of this region.

outlineRgn A handle to a region containing an outline of the drag
image, for use on monitors incapable of displaying the drag
image itself. The Window Manager allocates and disposes
of this region.

Resources 3

The following resource is available with the Mac OS 8.5 Window Manager:

■ 'wind' (page 130)

'wind' 3
Windows can be stored in flattened collections in extensible window resources
of type 'wind'. You create a window from a 'wind' resource when you call the
function CreateWindowFromResource (page 69). For more details on collections,
see “Collection Manager” in Inside Macintosh: QuickDraw GX Environment and
Utilities.

Note that due to the complexity of this format, it is possible to create 'wind'
resources using Rez, but it is not possible to DeRez them. DeRez cannot
currently handle multiple undefined labels as used in this type definition.

Note, too, that your application’s 'wind' resources must have resource ID
numbers greater than 127.

There are currently two default collection items defined for the extended
window resource. One default item is a structure of type
130 Resources

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
BasicWindowDescription (page 126), which defines a standard Mac OS 8.5
Window Manager window. The other default item is a Pascal title string for the
window. Future versions of the Window Manager may add new default
collection items to the format without the application’s knowledge.

Application developers are welcome to extend 'wind' resources with new
collection items as they see fit (although zero-length items aren’t supported).
However, developers may not define new collection items using the 'appl'
collection item tag, which is reserved for use by Apple Computer, Inc. See
“'wind' Resource Default Collection Item Constants” (page 138) for details on
the tags and the IDs that are reserved for identifying default items.

The format of a compiled 'wind' resource is based upon that of a 'flac', or
flattened collection, resource. Figure 3-1 illustrates the format of this resource.
Resources 131
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
Figure 3-1 Structure of a compiled 'wind' resource

4

Last item’s data

First item’s data

Last item’s
specifications

First item’s
specifications

'wind' resource type Bytes

Default collection attributes

Number of collection items

First item’s tag

First item’s ID

First item’s attributes

Offset to first item’s data

Last item’s tag

Last item’s ID

Last item’s attributes

Offset to last item’s data

Size of data array

Size of first item’s data

First item’s data

Alignment bytes

Size of last item’s data

Last item’s data

Alignment bytes

Resource format version

4

4

4

4

4

4

4

4

4

4

4

4

Variable

0 to 1

4

Variable

0 to 1
132 Resources

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
A compiled version of the 'wind' resource contains the following elements:

■ A 32-bit value identifying the version of the 'wind' resource’s format. This
value should be set to 0x00010000.

■ Default attribute bits for the collection as a whole; 0 for none.

■ The total number of items in the collection.

■ An array of items, sorted by tag and ID. Each entry in the item array has
corresponding data in the data array. Each item array entry must contain
these elements:

■ A tag identifying the item type.
■ An ID identifying the particular item.
■ Thirty-two attributes, each represented by one bit flag, stored in a 32-bit

word. The bits are numbered from 0 to 31, with bit 31 being the high bit.
The upper 16 bits of an item’s attributes are reserved for use by Apple
Computer, Inc. The lower 16 bits are attributes that you can define for
purposes suitable to your application. Currently, two of the reserved
attributes are defined:

■ An offset to the item’s data.

■ A value representing the total size of all the items’ data in the collection’s
data array.

■ An array of data, corresponding to the array of items. Each entry in the data
array must be in the same order as its corresponding entry in the item array.
Each data array entry must contain these elements:

■ A value representing the size of the data for the item.
■ The data for the item, which can be of variable size.
■ Alignment bytes. Zero or one bytes used to make the previous data string

end on a word boundary.

Bit 31 The lock attribute. When an item has this attribute set, attempts
to replace the item result in an error.

Bit 30 The persistence attribute. When an item has this attribute set,
the item is included when the collection is flattened.
Resources 133
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
Constants 3

The following constants are available with the Mac OS 8.5 Window Manager:

■ “BasicWindowDescription State Constant” (page 134)

■ “BasicWindowDescription Version Constants” (page 135)

■ “FindWindow Result Code Constant for the Proxy Icon” (page 135)

■ “RepositionWindow Constants” (page 136)

■ “'wind' Resource Default Collection Item Constants” (page 138)

■ “Window Attribute Constants” (page 138)

■ “Window Class Constants” (page 140)

■ “Window Definition Feature Constants” (page 141)

■ “Window Definition Hit Test Result Code Constant” (page 143)

■ “Window Definition Message Constants” (page 143)

■ “Window Definition State-Changed Constant” (page 146)

■ “Window Region Constant for the Proxy Icon Region” (page 146)

■ “Window Transition Action Constants” (page 147)

■ “Window Transition Effect Constant” (page 147)

BasicWindowDescription State Constant 3
You can use the following mask to set a bit in the windowStateFlags field of a
structure of type BasicWindowDescription (page 126), thereby specifying a
transient window state.

enum {
kWindowIsCollapsedState = (1 << 0L)

};
134 Constants

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
Constant description

kWindowIsCollapsedState
If the bit specified by this mask is set, the window is
currently collapsed.

BasicWindowDescription Version Constants 3
You may supply one of the following values in the windowDefinitionVersion
field of a structure of type BasicWindowDescription (page 126) to specify the
version of the window definition used for a window.

enum {
kWindowDefinitionVersionOne = 1,
kWindowDefinitionVersionTwo = 2

};

Constant descriptions

kWindowDefinitionVersionOne
Specifies a pre–Mac OS 8.5 Window Manager window.
Windows of this version are created using a window
definition ID and a Boolean value indicating whether or not
the window has a close box.

kWindowDefinitionVersionTwo
Specifies a Mac OS 8.5 Window Manager window.
Windows of this version are created using class and
attribute information. For details on classes and attributes,
see “Window Class Constants” (page 140) and “Window
Attribute Constants” (page 138), respectively.

FindWindow Result Code Constant for the Proxy Icon 3
With the Mac OS 8.5 Window Manager, the FindWindow function may return the
following constant to identify the cursor location at the time the user pressed
the mouse button. See Mac OS 8 Window Manager Reference for information on
other FindWindow result code constants.

enum {
inProxyIcon = 12

};
Constants 135
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
Constant description

inProxyIcon The user has pressed the mouse button while the cursor is
in the proxy icon of a window. When FindWindow returns
inProxyIcon, your application typically calls the function
TrackWindowProxyDrag (page 112). See “Tracking a Window
Proxy Icon Drag” (page 45) and “Displaying a Window
Path Pop-Up Menu” (page 46) for examples of how your
application might respond to receiving inProxyIcon from
FindWindow.

RepositionWindow Constants 3
To specify the factors that determine how a window should be positioned, you
supply one of the following WindowPositionMethod constants to the function
RepositionWindow (page 94) or in the BasicWindowDescription structure of a
resource of type 'wind' (page 130). Do not confuse the WindowPositionMethod
constants with the pre–Mac OS 8.5 Window Manager window positioning
constants or use the WindowPositionMethod constants where the older constants
are required (such as in the StandardAlert function or in 'WIND', 'DLOG', or
'ALRT' resources).

enum {
kWindowCenterOnMainScreen = 0x00000001,
kWindowCenterOnParentWindow = 0x00000002,
kWindowCenterOnParentWindowScreen = 0x00000003,
kWindowCascadeOnMainScreen = 0x00000004,
kWindowCascadeOnParentWindow = 0x00000005,
kWindowCascadeOnParentWindowScreen = 0x00000006,
kWindowAlertPositionOnMainScreen = 0x00000007,
kWindowAlertPositionOnParentWindow = 0x00000008,
kWindowAlertPositionOnParentWindowScreen = 0x00000009

};
typedef UInt32 WindowPositionMethod;

Constant descriptions

kWindowCenterOnMainScreen
Center the window, both horizontally and vertically, on the
screen that contains the menu bar.
136 Constants

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
kWindowCenterOnParentWindow
Center the window, both horizontally and vertically, on the
parent window. If the window to be centered is wider than
the parent window, its left edge is aligned with the parent
window’s left edge.

kWindowCenterOnParentWindowScreen
Center the window, both horizontally and vertically, on the
screen containing the parent window.

kWindowCascadeOnMainScreen
Place the window just below the menu bar at the left edge
of the main screen. Subsequent windows are placed on the
screen relative to the first window, such that the frame of
the preceding window remains visible behind the current
window. The exact amount by which windows are offset
depends upon the dimensions of the window frame under
a given appearance.

kWindowCascadeOnParentWindow
Place the window a distance below and to the right of the
upper-left corner of the parent window such that the frame
of the parent window remains visible behind the current
window. The exact amount by which windows are offset
depends upon the dimensions of the window frame under
a given appearance.

kWindowCascadeOnParentWindowScreen
Place the window just below the menu bar at the left edge
of the screen containing the parent window. Subsequent
windows are placed on the screen relative to the first
window, such that the frame of the preceding window
remains visible behind the current window. The exact
amount by which windows are offset depends upon the
dimensions of the window frame under a given
appearance.

kWindowAlertPositionOnMainScreen
Center the window horizontally and position it vertically
on the screen that contains the menu bar, such that about
one-fifth of the screen is above it.

kWindowAlertPositionOnParentWindow
Center the window horizontally and position it vertically
such that about one-fifth of the parent window is above it.
Constants 137
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
kWindowAlertPositionOnParentWindowScreen
Center the window horizontally and position it vertically
such that about one-fifth of the screen containing the parent
window is above it.

'wind' Resource Default Collection Item Constants 3
The following constants specify the tag and the IDs that identify the default
collection items contained in a resource of type'wind' (page 130).

enum {
kStoredWindowSystemTag = 'appl',
kStoredBasicWindowDescriptionID = 'sbas',
kStoredWindowPascalTitleID = 's255'

};

Constant descriptions

kStoredWindowSystemTag
This item tag specifies a system-defined collection item.
Note that the 'appl' collection item tag is reserved for use
by Apple Computer, Inc. Do not define new collection
items using that tag.

kStoredBasicWindowDescriptionID
In combination with kStoredWindowSystemTag, this item ID
specifies an item of type BasicWindowDescription. See
BasicWindowDescription (page 126) for details on this type.

kStoredWindowPascalTitleID
In combination with kStoredWindowSystemTag, this item ID
specifies a Pascal title string.

Window Attribute Constants 3
The WindowAttributes enumeration defines masks your application can use to
set or test window feature bits. You can use these masks with the function
CreateNewWindow (page 67) to set window feature bits, thereby defining a
window’s attributes. You can also use these masks to test the window feature
bits produced by the function GetWindowAttributes (page 80), thereby obtaining
a window’s attributes.
138 Constants

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
enum {
kWindowNoAttributes = 0L,
kWindowCloseBoxAttribute = (1L << 0),
kWindowHorizontalZoomAttribute = (1L << 1),
kWindowVerticalZoomAttribute = (1L << 2),
kWindowFullZoomAttribute = (kWindowVerticalZoomAttribute |

kWindowHorizontalZoomAttribute),
kWindowCollapseBoxAttribute = (1L << 3),
kWindowResizeableAttribute = (1L << 4),
kWindowSideTitlebarAttribute = (1L << 5),
kWindowNoUpdatesAttribute = (1L << 16),
kWindowNoActivatesAttribute = (1L << 17),
kWindowStandardDocumentAttributes = (kWindowCloseBoxAttribute |

kWindowFullZoomAttribute |
kWindowCollapseBoxAttribute |
kWindowResizeableAttribute),

kWindowStandardFloatingAttributes = (kWindowCloseBoxAttribute |
kWindowCollapseBoxAttribute)

};
typedef UInt32 WindowAttributes;

Constant descriptions

kWindowNoAttributes
If no bits are set, the window has none of the following
attributes.

kWindowCloseBoxAttribute
If the bit specified by this mask is set, the window has a
close box.

kWindowHorizontalZoomAttribute
If the bit specified by this mask is set, the window has a
horizontal zoom box.

kWindowVerticalZoomAttribute
If the bit specified by this mask is set, the window has a
vertical zoom box.

kWindowFullZoomAttribute
If the bits specified by this mask are set, the window has a
full—horizontal and vertical—zoom box.
Constants 139
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
kWindowCollapseBoxAttribute
If the bit specified by this mask is set, the window has a
collapse box.

kWindowResizeableAttribute
If the bit specified by this mask is set, the window has a
size box.

kWindowSideTitlebarAttribute
If the bit specified by this mask is set, the window has a
side title bar. This attribute may be applied only to floating
windows, that is, those windows assigned the window
class constant kFloatingWindowClass. See “Window Class
Constants” (page 140) for a description of this constant.

kWindowNoUpdatesAttribute
If the bit specified by this mask is set, the window does not
receive update events.

kWindowNoActivatesAttribute
If the bit specified by this mask is set, the window does not
receive activate events.

kWindowStandardDocumentAttributes
If the bits specified by this mask are set, the window has
the attributes of a standard document window—that is, a
close box, full zoom box, collapse box, and size box.

kWindowStandardFloatingAttributes
If the bits specified by this mask are set, the window has
the attributes of a standard floating window—that is, a
close box and collapse box.

Window Class Constants 3
The WindowClass constants categorize windows into groups of like types. The
grouping of windows facilitates the appropriate display (that is, both the look
and the front-to-back ordering) and tracking of windows.

You can define a window’s class using the function CreateNewWindow (page 67)
and obtain a window’s class using the function GetWindowClass (page 81).
However, a window’s class cannot be altered once the window has been
created.

Note that the ordering of the constants in the WindowClass enumeration reflects
the window classes’ relative front-to-back display order.
140 Constants

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
enum {
kAlertWindowClass = 1L,
kMovableAlertWindowClass = 2L,
kModalWindowClass = 3L,
kMovableModalWindowClass = 4L,
kFloatingWindowClass = 5L,
kDocumentWindowClass = 6L

};
typedef UInt32 WindowClass;

Constant descriptions

kAlertWindowClass Identifies an alert box window.
kMovableAlertWindowClass

Identifies a movable alert box window.
kModalWindowClass Identifies a modal dialog box window.
kMovableModalWindowClass

Identifies a movable modal dialog box window.
kFloatingWindowClass

Identifies a window that floats above all document
windows. If your application assigns this constant to a
window and calls the function InitFloatingWindows
(page 75), the Window Manager ensures that the window
has the proper floating behavior. Supported with Mac OS
8.6 and later.

kDocumentWindowClass
Identifies a document window or modeless dialog box
window. The Window Manager assigns this class to
pre–Mac OS 8.5 Window Manager windows.

Window Definition Feature Constants 3
With the Mac OS 8.5 Window Manager, your window definition function may
report the following new feature flags to reflect the features that your window
supports. For descriptions of the messages that correspond to these feature
flags, see “Window Definition Message Constants” (page 143). For other
window definition feature flags, see “Defining Your Own Window Definition
Function” in Mac OS 8 Window Manager Reference.
Constants 141
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
enum {
kWindowSupportsDragHilite = (1 << 7),
kWindowSupportsModifiedBit = (1 << 8),
kWindowCanDrawInCurrentPort = (1 << 9),
kWindowCanSetupProxyDragImage = (1 << 10).
kWindowCanMeasureTitle = (1 << 11),
kWindowWantsDisposeAtProcessDeath = (1 << 12)

};

Constant descriptions

kWindowSupportsDragHilite
If the bit specified by this mask is set, the window supports
the kWindowMsgDragHilite message.

kWindowSupportsModifiedBit
If the bit specified by this mask is set, the window supports
the kWindowMsgModified message.

kWindowCanDrawInCurrentPort
If the bit specified by this mask is set, the window supports
the kWindowMsgDrawInCurrentPort message.

kWindowCanSetupProxyDragImage
If the bit specified by this mask is set, the window supports
the kWindowMsgSetupProxyDragImage message.

kWindowCanMeasureTitle
If the bit specified by this mask is set, the window supports
the kWindowMsgMeasureTitle message.

kWindowWantsDisposeAtProcessDeath
If the bit specified by this mask is set, the window
definition function wants to receive a wDispose message for
the window if it still exists when the application quits.
Previously, the Window Manager would send a wDispose
message only if the application explicitly closed the
window with calls to the CloseWindow or DisposeWindow
functions. The Window Manager would delete a window
that still existed when the application called ExitToShell
without notifying the window definition function, as part
of the destruction of the process.
Note that if a window has the
kWindowWantsDisposeAtProcessDeath feature bit set, the
Window Manager sends your window definition function a
142 Constants

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
wDispose message for the window when the application
exits for any cause, including if your application crashes.
A window might want to set this feature flag if it allocates
data when it is initialized that lives outside of the
application heap and that is not automatically disposed
when the application quits. The wDispose message is sent
very early in the termination process, so it is still safe for
the window definition function to call the system back (for
example, you may wish to do this in order to dispose of
any auxiliary data). However, to ensure compatibility and
to create the minimum performance impact, the window
definition function should try to do as little as possible after
receiving a wDispose message sent during the termination
process.
For further discussion of the wDispose message, see
“Defining Your Own Window Definition Function” in
Mac OS 8 Window Manager Reference.

Window Definition Hit Test Result Code Constant 3
With the Mac OS 8.5 Window Manager, your window definition function may
return the following constant to report that a mouse-down event occurred in
your window’s proxy icon. For other window definition hit test result code
constants, see “Defining Your Own Window Definition Function” in Mac OS 8
Window Manager Reference.

enum {
wInProxyIcon = 10

};

Constant description

wInProxyIcon The mouse-down event occurred in the proxy icon of a
window.

Window Definition Message Constants 3
With the Mac OS 8.5 Window Manager, the Window Manager may pass one of
the following constants in the message parameter of your window definition
function to specify the action that your function must perform. For descriptions
Constants 143
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
of the feature bits that correspond to these messages, see “Window Definition
Feature Constants” (page 141). For other window definition message constants,
see “Defining Your Own Window Definition Function” in Mac OS 8 Window
Manager Reference.

enum {
kWindowMsgDragHilite = 9,
kWindowMsgModified = 10,
kWindowMsgDrawInCurrentPort = 11,
kWindowMsgSetupProxyDragImage = 12,
kWindowMsgStateChanged = 13,
kWindowMsgMeasureTitle = 14

};

Constant descriptions

kWindowMsgDragHilite
Redraw the window’s structure region to reflect the
window’s validity as a drag-and-drop destination. The
Window Manager passes an accompanying Boolean value
in your window definition function’s param parameter. If
the value passed is true, this indicates that the window’s
structure region should be highlighted. If the value passed
is false, the structure region should be unhighlighted. Your
window definition function should return 0 as the function
result.

kWindowMsgModified
Track the window’s modification state. The Window
Manager sends this message when the function
SetWindowModified (page 111) is called. The Window
Manager passes an accompanying Boolean value in your
window definition function’s param parameter. If the value
passed is true, the document contained in the window has
been modified. If the value passed is false, the document
has been saved to disk. You should redraw the window’s
structure region to reflect the new modification state, if
appropriate. For example, system-defined document
windows dim the proxy icon to indicate that the document
has been modified by the user and cannot be moved at that
time. Your window definition function should return 0 as
the function result.
144 Constants

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
kWindowMsgDrawInCurrentPort
Draw the window’s frame in the current graphics port.
Other than restricting drawing to the current port, this
message is similar to the pre–Mac OS 8.5 Window Manager
window definition message constant wDraw. See “Drawing
the Window Frame” in the “Defining Your Own Window
Definition Function” section of Mac OS 8 Window Manager
Reference for more details on what to do when passed this
message.

kWindowMsgSetupProxyDragImage
Create the image of the window’s proxy icon that the Drag
Manager uses to represent the icon while it is being
dragged. When your application calls the function
TrackWindowProxyDrag (page 112), the Window Manager
passes this message in your window definition function’s
message parameter and an accompanying pointer to a
structure of type SetupWindowProxyDragImageRec (page 129)
in the param parameter. Your window definition function is
responsible for setting the contents of the structure to
contain the data describing the proxy icon’s drag image.
Your window definition function should return 0 as the
function result.

kWindowMsgStateChanged
Be informed that some aspect of the window’s public state
has changed. The Window Manager passes this message in
your window definition function’s message parameter and
an accompanying flag in the param parameter that indicates
what part of the window’s state has been altered. This
message is simply a notification message—no response by
the window definition function is required. Your window
definition function should return 0 as the function result.
The kWindowMsgStateChanged message is sent after the
window’s internal data has been updated, but before any
redraw occurs onscreen. A window definition function
should not redraw the window frame in response to this
message. If it is necessary to redraw the window frame, the
Window Manager notifies the window definition function
with a wDraw message. See “Window Definition
State-Changed Constant” (page 146) for descriptions of the
Constants 145
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
values that the Window Manager can pass to specify the
state change that has occurred.

kWindowMsgMeasureTitle
Measure and return the ideal title width. The Window
Manager passes this message in the window definition
function’s message parameter and an accompanying pointer
to a structure of type MeasureWindowTitleRec (page 128) in
the param parameter. Your window definition function is
responsible for setting the contents of the structure to
contain data describing the title width. You should return 0
as the function result.

Window Definition State-Changed Constant 3
If you implement a custom window definition function, when the Window
Manager passes the kWindowMsgStateChanged message in your window
definition function’s message parameter it may also pass a value in the param
parameter with one or more bits set to indicate what part of the window’s state
has changed. You may use the following mask to test this value. For a
description of the kWindowMsgStateChanged message, see “Window Definition
Message Constants” (page 143).

enum {
kWindowStateTitleChanged = (1 << 0)

};

Constant description

kWindowStateTitleChanged
If the bit specified by this mask is set, the window’s title
has changed.

Window Region Constant for the Proxy Icon Region 3
With the Mac OS 8.5 Window Manager, you may pass the following
WindowRegionCode constant to the function GetWindowRegion to obtain a handle to
the proxy icon region of a window. See Mac OS 8 Window Manager Reference for
information on the GetWindowRegion function and other WindowRegionCode
constants.
146 Constants

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
enum {
kWindowTitleProxyIconRgn = 8

};

Constant description

kWindowTitleProxyIconRgn
Specifies the region in the window’s title area that contains
the proxy icon. The proxy icon region is always located
within the window’s title text region.

Window Transition Action Constants 3
You may pass the following WindowTransitionAction constants to the function
TransitionWindow (page 78) to specify the direction of the animation effect that
is to be performed for a window.

enum {
kWindowShowTransitionAction = 1,
kWindowHideTransitionAction = 2

};
typedef UInt32 WindowTransitionAction;

Constant descriptions

kWindowShowTransitionAction
Specifies that the animation display the window opening,
that is, transitioning from a closed to an open state.

kWindowHideTransitionAction
Specifies that the animation display the window closing,
that is, transitioning from an open to a closed state.

Window Transition Effect Constant 3
You may pass the following WindowTransitionEffect constant to the function
TransitionWindow (page 78) to specify the type of animation effect that is to be
performed for a window.
Constants 147
3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
enum {
kWindowZoomTransitionEffect = 1

};
typedef UInt32 WindowTransitionEffect;

Constant description

kWindowZoomTransitionEffect
Specifies an animation that displays the window zooming
between the open and closed states. The direction of the
animation, whether from open to closed, or closed to open,
depends upon the WindowTransitionAction constant
specified in conjunction with the WindowTransitionEffect
constant; see “Window Transition Action Constants”
(page 147) for descriptions of possible values.

Result Codes 3

The most common result codes that the Mac OS 8.5 Window Manager returns
are listed below.

noErr 0 No error
errInvalidWindowPtr –5600 Invalid window pointer
errUnsupportedWindowAttributesForClass –5601 Attribute bits are

inappropriate for the
specified window class

errWindowDoesNotHaveProxy –5602 No proxy attached to
window

errInvalidWindowProperty –5603 'appl' creator code not
allowed

errWindowPropertyNotFound –5604 Specified property does
not exist

errUnrecognizedWindowClass –5605 Unknown window class
errCorruptWindowDescription –5606 Incorrect size or version

supplied in the
BasicWindowDescription
structure
148 Result Codes

3/8/99  Apple Computer, Inc.

C H A P T E R 3

Mac OS 8.5 Window Manager Reference
errUserWantsToDragWindow –5607 Entire window is being
dragged, not proxy icon

errWindowsAlreadyInitialized –5608 Called
InitFloatingWindows
twice, or called
InitWindows and then
InitFloatingWindows

errFloatingWindowsNotInitialized –5609 Called
HideFloatingWindows or
ShowFloatingWindows
without calling
InitFloatingWindows
Result Codes 149
3/8/99  Apple Computer, Inc.

A P P E N D I X A
Document Version History A

This document has had the following releases:

Table A-1 Programming With the Mac OS 8.5 Window Manager revision history

Version Notes

Mar. 8, 1999 Initial public release. The following changes were made from the prior (seed
draft) version:

Changed “Window Manager 2.0” to “Mac OS 8.5 Window Manager”
throughout to reflect final versioning.

Added “Using the Mac OS 8.5 Window Manager” and “About the Mac OS 8.5
Window Manager” chapters to contain programming discussions, code listings,
artwork, and conceptual material.

“Gestalt Constants” (page 65). Added description of the
gestaltHasFloatingWindows bit.

CreateNewWindow (page 67). Changed function name to CreateNewWindow from
CreateWindow to reflect final naming.

AreFloatingWindowsVisible (page 73), HideFloatingWindows (page 74), and
ShowFloatingWindows (page 77). Noted requirement for each of these functions
that the InitFloatingWindows function be called prior to their use and that these
functions are therefore not supported under Mac OS 8.5 (or prior system
versions).

InitFloatingWindows (page 75). Added description of this function.

MoveWindowStructure (page 93), RepositionWindow (page 94), and SetWindowBounds
(page 96). Noted that these functions display the window after changing its size
and/or position.

ResizeWindow (page 95). Noted that this function is not supported under Mac OS
8.5 (or prior Mac OS versions). Corrected description of sizeConstraints
parameter to note that 32,767 is the largest maximum value that can be passed
and that NULL may be passed, as well.
151
3/8/99  Apple Computer, Inc.

A P P E N D I X

Document Version History
RemoveWindowProxy (page 100), SetWindowProxyAlias (page 101),
SetWindowProxyCreatorAndType (page 102), SetWindowProxyFSSpec (page 104), and
SetWindowProxyIcon (page 105). Noted requirement under Mac OS 8.5 to set
graphics port before drawing, after calls to these functions.

EndWindowProxyDrag (page 108). Changed parameter name to theDrag from drag
to reflect final naming.

HiliteWindowFrameForDrag (page 110). Added more information on the functions
ShowDragHilite and HideDragHilite to discussion.

SetWindowModified (page 111). Expanded discussion to clarify that the state of the
content of the window is what the modification state of the window should
reflect.

IsWindowPathSelectClick (page 115). Corrected to discussion to note that
IsWindowPathSelectClick should be called when FindWindow returns either
inDrag or inProxyIcon.

WindowPathSelect (page 116). Noted that your program must ensure that the
Finder window resulting from this call is brought to the front.

GetWindowProperty (page 118), RemoveWindowProperty (page 120), and
SetWindowProperty (page 121). Changed parameter names to reflect final naming.
Also noted that NULL may be passed in the actualSize parameter of
GetWindowProperty.

MeasureWindowTitleRec (page 128). Changed the name of the first reserved field
to “isUnicodeTitle” to reflect final naming.

“Window Class Constants” (page 140). Noted that one must call the function
InitFloatingWindows (page 75) for windows assigned the kFloatingWindowClass
constant.

“Window Definition State-Changed Constant” (page 146). Removed
unimplemented constant values.

“Result Codes” (page 148). Added descriptions of the
errWindowsAlreadyInitialized and errFloatingWindowsNotInitialized result
codes.

Apr. 2, 1998 First seed draft release.

Table A-1 Programming With the Mac OS 8.5 Window Manager revision history

Version Notes
152
3/8/99  Apple Computer, Inc.

A

animating wind

AreFloatingWi

associating data
attributes, wind

B

BasicWindowDe

BeginWindowPr

C

categorize 140
classes, window

CloneWindow

 fu
Collection Man
collections 12,
content color 2
content pattern
content region

CreateNewWind

CreateWindowF

CreateWindowF

creating a wind

D

document mod
dragging proxy

Index

ows 21, 73
ndowsVisible function 73
 with windows 31, 118
ow 80, 138

scription type 126
oxyDrag function 107

81, 140
nction 71

ager 12
34, 57
4, 42, 82
24, 42, 82

24, 42, 53, 82
ow function 32, 67
romCollection function 68
romResource function 69
ow 11, 32, 67

E

EndWindowProxyDrag function 108
errCorruptWindowDescription result code 148
errFloatingWindowsNotInitialized result

code 149
errInvalidWindowProperty result code 148
errInvalidWindowPtr result code 148
errUnrecognizedWindowClass result code 148
errUnsupportedWindowAttributesForClass

result code 148
errUserWantsToDragWindow result code 149
errWindowDoesNotHaveProxy result code 148
errWindowPropertyNotFound result code 148
errWindowsAlreadyInitialized result

code 149
events, mouse-down 44
events, resume 50
events, suspend 50
events, update 52, 122

F

Finder, making the frontmost process 48
flattened collections 12, 34, 58
floating windows 13, 35, 50, 72
FrontNonFloatingWindow function 80

G

153
3/8/99  Apple Computer, Inc.

ification states 41, 57
 icons 45, 106

Gestalt constants 65
gestaltWindowMgrAttr constant 65
gestaltWindowMgrPresent constant 66
GetWindowAttributes function 80
GetWindowBounds function 92

154

GetWindowClas

GetWindowCont

GetWindowCont

GetWindowIdea

GetWindowOwne

GetWindowProp

GetWindowProp

GetWindowProx

GetWindowProx

GetWindowProx

H

HideFloatingW

HiliteWindowF

I, J

InitFloatingW

InvalWindowRe

InvalWindowRg

IsValidWindow

IsWindowInSta

IsWindowModif

IsWindowPathS

K, L

kAlertWindowC

kDocumentWind

kFloatingWind

kModalWindowC

kMovableAlert

kMovableModal

kStoredBasicW

constant

kStoredWindow

kStoredWindow

kWindowAlertP

constant

I N D E X

s function 81
entColor function 83
entPattern function 83
lUserState function 86
rCount function 72
erty function 118
ertySize function 119
yAlias function 98
yFSSpec function 99
yIcon function 100

indows function 51, 74
rameForDrag function 110

indows function 35, 75
ct function 122
n function 123
Ptr function 82
ndardState function 54, 87
ied function 111
electClick function 47, 115

lass constant 141
owClass constant 141
owClass constant 141
lass constant 141
WindowClass constant 141
WindowClass constant 141
indowDescriptionID

kWindowAlertPositionOnParentWindow
constant 137

kWindowAlertPositionOnParentWindowScreen
constant 138

kWindowCanDrawInCurrentPort constant 142
kWindowCanMeasureTitle constant 142
kWindowCanSetupProxyDragImage constant 142
kWindowCascadeOnMainScreen constant 137
kWindowCascadeOnParentWindow constant 137
kWindowCascadeOnParentWindowScreen

constant 137
kWindowCenterOnMainScreen constant 136
kWindowCenterOnParentWindow constant 137
kWindowCenterOnParentWindowScreen

constant 137
kWindowCloseBoxAttribute constant 139
kWindowCollapseBoxAttribute constant 140
kWindowDefinitionVersionOne constant 135
kWindowDefinitionVersionTwo constant 135
kWindowFullZoomAttribute constant 139
kWindowHideTransitionAction constant 147
kWindowHorizontalZoomAttribute constant 139
kWindowIsCollapsedState constant 135
kWindowMsgDragHilite constant 144
kWindowMsgDrawInCurrentPort constant 145
kWindowMsgMeasureTitle constant 146
kWindowMsgModified constant 144
kWindowMsgSetupProxyDragImage constant 145
kWindowMsgStateChanged constant 145
kWindowNoActivatesAttribute constant 140
kWindowNoAttributes constant 139
kWindowNoUpdatesAttribute constant 140
kWindowResizeableAttribute constant 140
kWindowShowTransitionAction constant 147
kWindowSideTitlebarAttribute constant 140
kWindowStandardDocumentAttributes

constant 140
kWindowStandardFloatingAttributes

constant 140
kWindowStateTitleChanged constant 146
3/8/99  Apple Computer, Inc.

138
PascalTitleID constant 138
SystemTag constant 138
ositionOnMainScreen
137

kWindowSupportsDragHilite constant 142
kWindowSupportsModifiedBit constant 142
kWindowTitleProxyIconRgn constant 147
kWindowVerticalZoomAttribute constant 139

kWindowWantsD
constant

kWindowZoomTr

M, N, O

MeasureWindow
modification st
mouse-down ev
MoveWindowStr
multiple windo

P, Q

path pop-up m
positioning a w
proxy icons, ab
proxy icons, dr
proxy icons, est
proxy icon state

R

reference count
RemoveWindowP
RemoveWindowP
RepositionWin
ResizeWindow
resizing a wind
resume events

S

SetupWindowPr
SetWinColor fu
SetWindowBoun
SetWindowCont
SetWindowCont
I N D E X

isposeAtProcessDeath
142
ansitionEffect constant 148

TitleRec type 128
ate 17, 41, 57

ents 44
ucture function 53, 93
ws 31

enus 20, 45, 46, 115
indow 23, 35, 91
out 15, 37
agging 45, 106
ablishing 97
s 19, 57

s 12, 71
roperty function 120
roxy function 100
dow function 94

function 56, 95
ow 23, 56, 91
50

SetWindowIdealUserState function 89
SetWindowModified function 41, 57, 111
SetWindowProperty function 121
SetWindowProxyAlias function 101
SetWindowProxyCreatorAndType function 32,

37, 102
SetWindowProxyFSSpec function 104
SetWindowProxyIcon function 105
ShowFloatingWindows function 51, 77
size box 56
standard state 21, 87
StoreWindowIntoCollection function 70
storing a window 57, 67
structure region 24, 42, 53
suspend events 50
synchronizing file data 38

T

TrackWindowProxyDrag function 37, 45, 112
TrackWindowProxyFromExistingDrag

function 46, 113
TransitionWindow function 32, 78

U

update events 26, 52, 122
update region 24, 26, 42, 52, 122
user state 21, 86, 87, 89

V

ValidWindowRect function 52, 124
ValidWindowRgn function 52, 125
155
3/8/99  Apple Computer, Inc.

oxyDragImageRec type 129
nction 43
ds function 53, 96
entColor function 42, 84
entPattern function 85

156

W, X, Y

'wctb' resourc
window attribu
WindowAttribu
window classes
WindowClass ty
window color t
window events
window graphi
window path p
WindowPathSel
WindowPositio
windows, anim
windows, assoc
windows, creat
windows, dispo
windows, floati
windows, mov
windows, posit
windows, refer
windows, resiz
windows, storin
windows, zoom
WindowTransit
WindowTransit
'WIND' resourc
'wind' resourc
wInProxyIcon

Z

zoom box 21
zooming a wind
ZoomWindowIde
I N D E X

e type 43
tes 80, 138
tes type 138

81, 140
pe 140

able structure 42
, handling 43
cs port 42
op-up menus 20, 45, 46, 115
ect function 47, 116
nMethod type 136
ating 21, 73
iating data with 31, 118
ing 11, 67
sing 11
ng 13, 35, 50, 72

ing 53
ioning 23, 35, 91
encing 71
ing 23, 56, 91
g 11, 57, 67
ing 21, 54, 86
ionAction type 147
ionEffect type 147
e type 11
e type 130
constant 143

ow 21, 54, 86
al function 54, 90
3/8/99  Apple Computer, Inc.

T H E A P P L E P U B L I S H I N G S Y S T E M

3/8/99  Apple Computer, Inc.

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobe™ Illustrator and
Adobe Photoshop.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITER
Donna S. Lee

ILLUSTRATORS
Ruth Anderson, David Arrigoni

PRODUCTION EDITORS
Glen Frank, Gerri Gray

Acknowledgments to Pete Gontier,
Eric Schlegel, Chris Thomas, and Ed Voas.

	Programming With the Mac OS 8.5 Window Manager
	Contents
	Figures, Tables, and Listings
	About the Mac OS 8.5 Window Manager
	Window Creation, Storage, and Disposal
	Floating Windows
	Window Proxy Icons
	Window Path Pop-Up Menus
	Transitional Window Animations and Sounds
	Window Zooming
	Window Position and Size
	Window Content Color
	Window Update Regions
	Data Associated With Windows
	Window Information Accessors

	Using the Mac OS 8.5 Window Manager
	Managing Multiple Windows
	Creating a Window
	Enabling Floating Windows
	Positioning a Window on the Desktop
	Supporting Window Proxy Icons
	Drawing in a Window’s Content Region
	Handling Window Events
	Responding to Mouse-Down Events
	Tracking a Window Proxy Icon Drag
	Displaying a Window Path Pop-Up Menu

	Responding to Suspend and Resume Events

	Maintaining the Update Region
	Moving a Window
	Zooming a Window Gracefully
	Resizing a Window
	Setting a Window’s Modification State
	Storing a Document Window Into a Collection

	Mac OS 8.5 Window Manager Reference
	Gestalt Constants
	Functions
	Creating and Storing Windows
	Referencing Windows
	Displaying Floating Windows and Window Animations
	Accessing Window Information
	Manipulating Window Color Information
	Zooming Windows
	Sizing and Positioning Windows
	Establishing Proxy Icons
	Coordinating Proxy Icons With Drag-and-Drop Management
	Activating Window Path Pop-Up Menus
	Associating Data With Windows
	Maintaining the Update Region

	Data Types
	Resources
	Constants
	BasicWindowDescription State Constant
	BasicWindowDescription Version Constants
	FindWindow Result Code Constant for the Proxy Icon
	RepositionWindow Constants
	'wind' Resource Default Collection Item Constants
	Window Attribute Constants
	Window Class Constants
	Window Definition Feature Constants
	Window Definition Hit Test Result Code Constant
	Window Definition Message Constants
	Window Definition State-Changed Constant
	Window Region Constant for the Proxy Icon Region
	Window Transition Action Constants
	Window Transition Effect Constant

	Result Codes

	Document Version History
	Index

