



November 10, 1998
Technical Publications
© 1998 Apple Computer, Inc.



I N S I D E M A C I N T O S H

Mac OS 8
Dialog Manager Reference

Updated for Appearance 1.0.2

11/10/98



 Apple Computer, Inc.



Apple Computer, Inc.
© 1997, 1998 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures, Tables, and Listings 5
Dialog Manager Reference 7

Dialog Manager Functions 7
Creating Alert Boxes 7
Creating Dialog Boxes 15
Manipulating Items in Dialog Boxes and Alert Boxes 19
Handling Text in Alert and Dialog Boxes 28
Handling Events in Dialog Boxes 29
Defining Your Own Dialog Item Function 33

Dialog Manager Data Types 33
Dialog Manager Constants 45

Alert Type Constants 45
Dialog Feature Flag Constants 46
Alert Feature Flag Constants 46
Alert Button Constants 47
Alert Default Text Constants 48
Dialog Font Flag Constants 49

Dialog Manager Result Codes 51

Appendix A Version History 53

Index 55
3
11/10/98  Apple Computer, Inc.

4
11/10/98  Apple Computer, Inc.

Figures, Tables, and Listings

Figure 1-1 Structure of a compiled dialog ('DLOG') resource 36
Figure 1-2 Structure of a compiled extended dialog ('dlgx') resource 38
Figure 1-3 Structure of a compiled extended alert ('alrx') resource 39
Figure 1-4 Structure of a compiled dialog font table ('dftb') resource 41
Figure 1-5 Structure of dialog control font entry in a 'dftb' resource 42
5
11/10/98  Apple Computer, Inc.

6
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference 0

The Dialog Manager provides a simplified human interface that you can use to
readily implement dialog boxes and alert boxes. Your program typically uses
dialog boxes and alert boxes to present information to and solicit information
from the user.

Portions of the Dialog Manager application programming interface are new,
changed, or not recommended with Appearance Manager 1.0. See the following
sections for descriptions of the changes to the Dialog Manager:

■ “Dialog Manager Functions” (page 7)

■ “Dialog Manager Data Types” (page 33)

■ “Dialog Manager Constants” (page 45)

■ “Dialog Manager Result Codes” (page 51)

Dialog Manager Functions 0

Dialog Manager functions in the following areas have been affected by
Appearance Manager 1.0:

■ “Creating Alert Boxes” (page 7)

■ “Creating Dialog Boxes” (page 15)

■ “Manipulating Items in Dialog Boxes and Alert Boxes” (page 19)

■ “Handling Text in Alert and Dialog Boxes” (page 28)

■ “Handling Events in Dialog Boxes” (page 29)

■ “Defining Your Own Dialog Item Function” (page 33)

Creating Alert Boxes 0
The following Dialog Manager functions for creating alert boxes are new,
changed, or not recommended with Appearance Manager 1.0:

■ StandardAlert (page 8) displays a standard alert box. New with Appearance
Manager 1.0.
Dialog Manager Functions 7
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference

■ Alert (page 9) displays an alert box and/or plays an alert sound. Changed
with Appearance Manager 1.0.

■ StopAlert (page 11) displays an alert box with a stop icon and/or plays an
alert sound. Changed with Appearance Manager 1.0.

■ NoteAlert (page 12) displays an alert box with a note icon and/or plays an
alert sound. Changed with Appearance Manager 1.0.

■ CautionAlert (page 14) displays an alert box with a caution icon and/or
plays an alert sound. Changed with Appearance Manager 1.0.

StandardAlert 0
Displays a standard alert box.

pascal OSErr StandardAlert (
AlertType inAlertType,
StringPtr inError,
StringPtr inExplanation,
AlertStdAlertParamPtr inAlertParam,
SInt16 *outItemHit);

inAlertType A constant indicating the type of alert box you wish to create;
see “Alert Type Constants” (page 45).

inError A pointer to a Pascal string containing the primary error text
you wish to display.

inExplanation A pointer to a Pascal string containing the secondary text you
wish to display; secondary text is displayed in the small system
font. Pass nil to indicate no secondary text.

inAlertParam A pointer to the standard alert structure; see
AlertStdAlertParamRec (page 34). Pass nil to specify that you do
not wish to your alert box to incorporate any of the features that
the standard alert structure provides.

outItemHit A pointer to an signed 16-bit integer value. On return, the value
indicates the alert button pressed; see “Alert Button Constants”
(page 47).

function result A result code; see “Dialog Manager Result Codes” (page 51).
8 Dialog Manager Functions

 11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference

DISCUSSION

The StandardAlert function displays an alert box based on the values you pass
it. You can pass the error text you wish displayed in the error and explanation
parameters, and customize the alert button text by filling in the appropriate
fields of the standard alert structure passed in the inAlertParam parameter.

StandardAlert automatically resizes the height of a dialog box to fit all static
text. It ignores alert stages and therefore provides no corresponding alert
sounds.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

Alert 0
Displays an alert box and/or plays an alert sound.

pascal short Alert (short alertID,
ModalFilterUPP modalFilter);

alertID The resource ID of an alert resource and extended alert resource.
If the alert resource is missing, the Dialog Manager returns to
your application without creating the requested alert. See 'alrx'
(page 39) for a description of the extended alert resource.

modalFilter A universal procedure pointer for a filter function that responds
to events not handled by the ModalDialog (page 30) function. If
you set this parameter to nil, the Dialog Manager uses the
standard event filter function.

function result If no alert box is to be drawn at the current alert stage or the
'ALRT' resource is not found, Alert returns –1; otherwise, it
creates and displays the alert box and returns the item number
of the control selected by the user; see “Alert Button Constants”
(page 47).

DISCUSSION

The Alert function displays an alert box or, if appropriate for the alert stage,
plays an alert sound instead of or in addition to displaying the alert box. The
Dialog Manager Functions 9
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference

Alert function creates the alert defined in the specified alert resource and its
corresponding extended alert resource. The function calls the current alert
sound function and passes it the sound number specified in the alert resource
for the current alert stage. If no alert box is to be drawn at this stage, Alert
returns –1; otherwise, it uses the NewDialog function to create and display the
alert box. The default system window colors are used unless your application
provides an alert color table resource with the same resource ID as the alert
resource. The Alert function uses the ModalDialog (page 30) function to get and
handle most events for you.

The Alert function does not display a default icon in the upper-left corner of the
alert box; you can leave this area blank, or you can specify your own icon in the
alert’s item list resource, which in turn is specified in the alert resource.

The Alert function continues calling ModalDialog until the user selects an
enabled control (typically a button), at which time the Alert function removes
the alert box from the screen and returns the item number of the selected
control. Your application then responds as appropriate when the user clicks this
item.

IMPORTANT

Your application should never draw its own default rings.
Prior to Mac OS 8, the Alert function would only redraw
the default button ring once and never redraw it on an
update event. However, when Appearance is available,
default rings do redraw when you call Alert.

SPECIAL CONSIDERATIONS

If you need to display an alert box while your application is running in the
background or is otherwise invisible to the user, call AEInteractWithUser; see
Inside Macintosh: Interapplication Communication.

The Dialog Manager uses the system alert sound as the error sound unless you
change it by calling the ErrorSound function .

VERSION NOTES

Changed with Appearance Manager 1.0 to support the extended alert ('alrx')
resource.
10 Dialog Manager Functions

 11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference

SEE ALSO

The function NoteAlert (page 12).

The function CautionAlert (page 14).

The function StopAlert (page 11).

StopAlert 0
Displays an alert box with a stop icon and/or plays an alert sound.

pascal short StopAlert (short alertID, ModalFilterUPP modalFilter);

alertID The resource ID of an alert resource and extended alert resource.
The resource ID of both types of resources must be identical. If
the alert resource is missing, the Dialog Manager returns to your
application without creating the requested alert. See 'alrx'
(page 39) for a description of the extended alert resource.

modalFilter A universal procedure pointer for a filter function that responds
to events not handled by the ModalDialog (page 30) function. If
you set this parameter to nil, the Dialog Manager uses the
standard event filter function.

function result If no stop alert box is to be drawn at the current alert stage,
StopAlert returns –1; otherwise, it creates and displays the alert
box and returns the item number of the control selected by the
user; see “Alert Button Constants” (page 47).

DISCUSSION

The StopAlert function displays an alert box with a stop icon in its upper-left
corner or, if appropriate for the alert stage, plays an alert sound instead of or in
addition to displaying the alert box.

The StopAlert function is the same as the Alert function (page 9) except that,
before drawing the items in the alert box, StopAlert draws the stop icon in the
upper-left corner. The stop icon has resource ID 0, which you can also specify
with the constant stopIcon . By default, the Dialog Manager uses the standard
stop icon from the System file. You can change this icon by providing your own
'ICON' resource with resource ID 0.
Dialog Manager Functions 11
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference

Use a stop alert to inform the user that a problem or situation is so serious that
the action cannot be completed. Stop alerts typically have only a single button
(OK), because all the user can do is acknowledge that the action cannot be
completed.

IMPORTANT

Your application should never draw its own default rings
or alert icons. Prior to Mac OS 8, the StopAlert function
would only redraw the alert icon and default button ring
once and never redraw them on an update event. However,
when Appearance is available, alert icons and default rings
do redraw when you call StopAlert.

VERSION NOTES

Changed with Appearance Manager 1.0 to support the extended alert ('alrx')
resource.

SEE ALSO

The function NoteAlert (page 12).

The function CautionAlert (page 14).

NoteAlert 0
Displays an alert box with a note icon and/or plays an alert sound.

pascal short NoteAlert (
short alertID,
ModalFilterUPP modalFilter);

alertID The resource ID of an alert resource and extended alert resource.
If the alert resource is missing, the Dialog Manager returns to
your application without creating the requested alert. See 'alrx'
(page 39) for a description of the extended alert resource.
12 Dialog Manager Functions

 11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
modalFilter A universal procedure pointer for a filter function that responds
to events not handled by the ModalDialog (page 30) function. If
you set this parameter to nil, the Dialog Manager uses the
standard event filter function.

function result If no alert box is to be drawn at the current alert stage, NoteAlert
returns –1; otherwise, it creates and displays the alert box and
returns the item number of the control selected by the user; see
“Alert Button Constants” (page 47).

DISCUSSION

The NoteAlert function displays an alert box with a note icon in its upper-left
corner or, if appropriate for the alert stage, plays an alert sound instead of or in
addition to displaying the alert box.

The NoteAlert function is the same as the Alert (page 9) function except that,
before drawing the items in the alert box, NoteAlert draws the note icon in the
upper-left corner. The note icon has resource ID 1, which you can also specify
with the constant noteIcon. By default, the Dialog Manager uses the standard
note icon from the System file. You can change this icon by providing your own
'ICON' resource with resource ID 1.

Use a note alert to inform users of a minor mistake that won’t have any
disastrous consequences if left as is. Usually this type of alert simply offers
information, and the user responds by clicking an OK button. Occasionally, a
note alert may ask a simple question and provide a choice of responses.

IMPORTANT

Your application should never draw its own default rings
or alert icons. Prior to Mac OS 8, the NoteAlert function
would only redraw the alert icon and default button ring
once and never redraw them on an update event. However,
when Appearance is available, alert icons and default rings
do redraw when you call NoteAlert.

VERSION NOTES

Changed with Appearance Manager 1.0 to support the extended alert ('alrx')
resource.
Dialog Manager Functions 13
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
SEE ALSO

The function CautionAlert (page 14).

The function StopAlert (page 11).

CautionAlert 0
Displays an alert box with a caution icon and/or plays an alert sound.

pascal short CautionAlert (
short alertID,
ModalFilterUPP modalFilter);

alertID The resource ID of an alert resource and extended alert resource.
If the alert resource is missing, the Dialog Manager returns to
your application without creating the requested alert. See 'alrx'
(page 39) for a description of the extended alert resource.

modalFilter A universal procedure pointer for a filter function that responds
to events not handled by the ModalDialog function (page 30). If
you set this parameter to nil, the Dialog Manager uses the
standard event filter function.

function result If no alert box is to be drawn at the current alert stage,
CautionAlert returns –1; otherwise, it uses NewDialog to create
and display the alert box and returns the item hit; see “Alert
Button Constants” (page 47).

DISCUSSION

Displays an alert box with a caution icon in its upper-left corner or, if
appropriate for the alert stage, to play an alert sound instead of or in addition to
displaying the alert box.

The CautionAlert function is the same as the Alert (page 9) function except that,
before drawing the items in the alert box, CautionAlert draws the caution icon
in the upper-left corner. The caution icon has resource ID 2, which you can also
specify with the constant kCautionIcon. By default, the Dialog Manager uses the
standard caution icon from the System file. You can change this icon by
providing your own 'ICON' resource with resource ID 2.
14 Dialog Manager Functions

 11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
Use a caution alert to alert the user of an operation that may have undesirable
results if it’s allowed to continue. Give the user the choice of continuing the
action (by clicking an OK button) or stopping it (by clicking a Cancel button).

IMPORTANT

Your application should never draw its own default rings
or alert icons. Prior to Mac OS 8, the CautionAlert function
would only redraw the alert icon and default button ring
once and never redraw them on an update event. However,
when Appearance is available, alert icons and default rings
do redraw when you call CautionAlert.

VERSION NOTES

Changed with Appearance Manager 1.0 to support the extended alert ('alrx')
resource.

SEE ALSO

The function NoteAlert (page 12).

The function StopAlert (page 11).

Creating Dialog Boxes 0
The following Dialog Manager functions for creating dialog boxes are new,
changed, or not recommended with Appearance Manager 1.0:

■ GetNewDialog (page 16) creates a dialog box from a resource-based
description. Changed with Appearance Manager 1.0.

■ NewFeaturesDialog (page 17) creates a dialog box from information passed in
memory. New with Appearance Manager 1.0.
Dialog Manager Functions 15
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
GetNewDialog 0
Creates a dialog box from a resource-based description.

pascal DialogPtr GetNewDialog (
short dialogID,
void *dStorage,
WindowPtr behind);

dialogID The resource ID of a dialog resource and an extended dialog
resource. The resource IDs for both resources must be identical.
If the dialog resource is missing, the Dialog Manager returns to
your application without creating the requested dialog box. See
'DLOG' (page 35) and 'dlgx' (page 38) for a description of the
dialog resource and the extended dialog resource, respectively.

dStorage A pointer to the memory for the dialog structure. If you set this
parameter to nil, the Dialog Manager automatically allocates a
nonrelocatable block in your application heap.

behind A pointer to the window behind which the dialog box is to be
placed on the desktop. Set this parameter to the window pointer
(WindowPtr)-1L to bring the dialog box in front of all other
windows.

function result Returns a pointer to a dialog box. If none was created, returns
nil.

DISCUSSION

The GetNewDialog function creates a dialog structure from information in a
dialog resource and an extended dialog resource (if it exists) and returns a
pointer to the dialog structure. You can use this pointer with Window Manager
or QuickDraw functions to manipulate the dialog box. If the dialog resource
specifies that the dialog box should be visible, the dialog box is displayed. If the
dialog resource specifies that the dialog box should initially be invisible, use the
Window Manager function ShowWindow to display the dialog box.

The dialog resource contains a resource ID that specifies both the dialog box’s
item list ('DITL') resource and its dialog font table ('dftb') resource. After
calling the Resource Manager to read these resources into memory (if they are
not already in memory), GetNewDialog makes a copy of the 'DITL' resource and
uses that copy; thus you may have several dialog boxes with identical items.
16 Dialog Manager Functions

 11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
If you supply a dialog color table ('dctb') resource with the same resource ID as
the dialog resource, GetNewDialog uses NewColorDialog and returns a pointer to a
color graphics port. If no dialog color table resource is present, GetNewDialog
uses NewDialog to return a pointer to a black-and-white graphics port, although
system software draws the window frame using the system’s default colors.
However, if the Appearance Manager is available and the
kDialogFlagsUseThemeBackground feature bit of the extended dialog resource is
set, then the 'dctb' resource is ignored and a color graphics port is created.

SPECIAL CONSIDERATIONS

The GetNewDialog function doesn’t release the memory occupied by the
resources. Therefore, your application should mark all resources used for a
dialog box as purgeable or you should release the resources yourself.

If either the dialog resource or the item list resource can’t be read, the function
result is nil; your application should test to ensure that nil is not returned
before performing any more operations with the dialog box or its items.

As with all other windows, dialogs are created with an update region equal to
their port rectangle. However, if the dialog’s 'DLOG' resource specifies that the
dialog be made visible upon creation, the Dialog Manager draws the controls
immediately and calls ValidRgn for each of their bounding rectangles. Other
items are not drawn until the first update event for the dialog box is serviced.

If you need to display an alert box while your application is running in the
background or is otherwise invisible to the user, call AEInteractWithUser; see
Inside Macintosh: Interapplication Communication.

VERSION NOTES

Changed with Appearance Manager 1.0 to support the extended dialog ('dlgx')
resource and the dialog font table ('dftb') resource.

NewFeaturesDialog 0
Creates a dialog box from information passed in memory.

pascal DialogPtr NewFeaturesDialog (
void *inStorage,
const Rect *inBoundsRect,
Dialog Manager Functions 17
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
ConstStr255Param inTitle,
Boolean inIsVisible,
SInt16 inProcID,
WindowPtr inBehind,
Boolean inGoAwayFlag,
SInt32 inRefCon,
Handle inItemListHandle,
UInt32 inFlags);

inStorage A pointer to the memory for the dialog box. If you set this
parameter to nil, the Dialog Manager automatically allocates a
nonrelocatable block in your application heap.

inBoundsRect A pointer to a rectangle, given in global coordinates, that
determines the size and position of the dialog box; these
coordinates specify the upper-left and lower-right corners of the
dialog box.

inTitle A pointer to a text string used for the title of a modeless or
movable modal dialog box. You can specify an empty string (not
nil) for a title bar that contains no text.

inIsVisible A flag that specifies whether the dialog box should be drawn on
the screen immediately. If you set this parameter to false, the
dialog box is not drawn until your application uses the Window
Manager function ShowWindow to display it.

inProcID The window definition ID for the type of dialog box, specified
with constants defined by the Window Manager. Use the
kWindowModalDialogProc constant to specify modal dialog boxes,
the kWindowDocumentProc constant to specify modeless dialog
boxes, and the kWindowMovableModalDialogProc constant to
specify movable modal dialog boxes.

inBehind A pointer to the window behind which the dialog box is to be
placed on the desktop. Set this parameter to the window pointer
(WindowPtr)-1L to bring the dialog box in front of all other
windows.

inGoAwayFlag A Boolean value. If true, specifies that an active modeless dialog
box has a close box in its title bar.

inRefCon A value that the Dialog Manager uses to set the refCon field of
the dialog box’s window structure. Your application may store
any value here for any purpose. For example, your application
18 Dialog Manager Functions

 11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
can store a number that represents a dialog box type, or it can
store a handle to a structure that maintains state information
about the dialog box. You can use the Window Manager
function SetWRefCon at any time to change this value in the
dialog structure for a dialog box, and you can use the
GetWRefCon function to determine its current value.

inItemListHandle
A handle to an item list resource for the dialog box. You can get
the handle by calling the Resource Manager function
GetResource to read the item list resource into memory.

inFlags An unsigned 32-bit mask specifying the dialog box’s
Appearance-compliant feature flags; see “Dialog Feature Flag
Constants” (page 46). To establish an embedding hierarchy in a
dialog box, pass kDialogFlagsUseControlHierarchy in the
inFlags parameter.

function result A pointer to the newly created dialog box. If NewFeaturesDialog
doesn’t create a new dialog box, it returns nil.

DISCUSSION

The NewFeaturesDialog function creates a dialog box without using 'DLOG' or
'dlgx' resources. Although the inItemListHandle parameter specifies an item
list ('DITL') resource for the dialog box, the corresponding dialog font table
('dftb') resource is not automatically accessed. You must explicitly set the
dialog box’s control font style(s) individually.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

Manipulating Items in Dialog Boxes and Alert Boxes 0
The following Dialog Manager functions for manipulating items in dialog boxes
and alert boxes are new, changed, or not recommended with Appearance
Manager 1.0:

■ GetDialogItemAsControl (page 20) obtains the control handle for a dialog item
in an embedding hierarchy. New with Appearance Manager 1.0.
Dialog Manager Functions 19
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
■ GetDialogItem (page 21) obtains a handle to a dialog item. Changed with
Appearance Manager 1.0.

■ SetDialogItem (page 22) sets or changes information for a dialog item.
Changed with Appearance Manager 1.0.

■ GetDialogKeyboardFocusItem (page 23). Not recommended with Appearance
Manager 1.0 and later.

■ FindDialogItem (page 24) obtains the control handle for a dialog item in an
embedding hierarchy. New with Appearance Manager 1.0.

■ MoveDialogItem (page 25) obtains the control handle for a dialog item in an
embedding hierarchy. New with Appearance Manager 1.0.

■ SizeDialogItem (page 25) obtains the control handle for a dialog item in an
embedding hierarchy. New with Appearance Manager 1.0.

■ AutoSizeDialog (page 26) obtains the control handle for a dialog item in an
embedding hierarchy. New with Appearance Manager 1.0.

■ AppendDialogItemList (page 27) adds items to an existing dialog box while
your program is running. New with Appearance Manager 1.0.

GetDialogItemAsControl 0
Obtains the control handle for a dialog item in an embedding hierarchy.

pascal OSErr GetDialogItemAsControl (
DialogPtr inDialog,
SInt16 inItemNo,
ControlHandle *outControl);

inDialog A pointer to the dialog box to examine.

inItemNo The position of an item in the dialog box’s item list.

outControl A pointer to a control handle that, on return, refers to the
embedded control.

function result A result code; see “Dialog Manager Result Codes” (page 51).
The Control Manager result code errItemNotControl indicates
that the specified dialog item is not a control.
20 Dialog Manager Functions

 11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
DISCUSSION

When an embedding hierarchy is established, GetDialogItemAsControl
produces a handle to the embedded controls (except Help items). It should be
used instead of GetDialogItem (page 21) when an embedding hierarchy is
established.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

GetDialogItem 0
Obtains a handle to a dialog item.

pascal void GetDialogItem (
DialogPtr theDialog,
short itemNo,
short *itemType,
Handle *item,
Rect *box);

theDialog A pointer to the dialog box to examine.

itemNo The position of the item in the dialog box’s item list resource;
use FindDialogItem (page 24) to determine this value.

itemType A pointer to a short value. On return, the value identifies the
item type of the dialog item requested in the itemNo parameter.
See Inside Macintosh: Macintosh Toolbox Essentials for a discussion
of dialog item types.

item A pointer to an item handle. On return the handle refers to the
item specified in the itemNo parameter or, for
application-defined draw functions, a pointer (coerced to a
handle) to the draw function.

box A pointer to a rectangle. On return, the rectangle specifies the
display rectangle (described in coordinates local to the dialog
box), for the item specified in the itemNo parameter.
Dialog Manager Functions 21
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
DISCUSSION

The GetDialogItem function produces the item type, a handle to the item (or, for
application-defined draw functions, the function pointer), and the display
rectangle for a specified item in an item list resource. When a control hierarchy
is present in the dialog box, GetDialogItem gets the appropriate information (for
example, a text handle) from the controls. If you wish to get a control handle for
a dialog item in an embedding hierarchy, see GetDialogItemAsControl (page 20).

You should call GetDialogItem before calling functions such as
SetDialogItemText (page 29) that need a handle to a dialog item.

SEE ALSO

SetDialogItem (page 22).

VERSION NOTES

Changed with Appearance Manager 1.0 to support retrieving item information
from controls.

SetDialogItem 0
Sets or changes information for a dialog item.

pascal void SetDialogItem (
DialogPtr theDialog,
short itemNo,
short itemType,
Handle item,
const Rect *box);

theDialog A pointer to the dialog box containing the dialog item.

itemNo The position of the item in the dialog box’s item list resource;
use FindDialogItem (page 24) to determine this value.

itemType A short value. Pass an item type constant identifying the dialog
item specified in the itemNo parameter. See Inside Macintosh:
Macintosh Toolbox Essentials for a discussion of dialog item types.
When an embedding hierarchy is established, only the
kItemDisableBit item type constant is honored.
22 Dialog Manager Functions

 11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
item Either a handle to the dialog item specified in the itemNo
parameter or, for a custom dialog item, a pointer (coerced to a
handle) to an application-defined item drawing function. When
an embedding hierarchy is established, the item parameter is
ignored unless you pass a universal procedure pointer to an
application-defined item draw function.

box A pointer to the display rectangle (in local coordinates) for the
item specified in the itemNo parameter. If you set the control
rectangle on an item when an embedding hierarchy is present,
SetDialogItem will move and resize the item appropriately for
you, on return.

DISCUSSION

The SetDialogItem function sets the item specified by the itemNo parameter for
the specified dialog box. If an embedding hierarchy exists, however, you cannot
change the type or handle of an item, although application-defined item
drawing functions can still be set.

SEE ALSO

GetDialogItem (page 21).

VERSION NOTES

Changed with Appearance Manager 1.0 to work with embedding hierarchies.

GetDialogKeyboardFocusItem 0
When the Appearance Manager is available and an embedding hierarchy is
established, you should call the Control Manager function GetKeyboardFocus
instead of GetDialogKeyboardFocusItem to return the item number of the item in
a dialog box that has keyboard focus.

VERSION NOTES

Not recommended with Appearance Manager 1.0 and later.
Dialog Manager Functions 23
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
FindDialogItem 0
Determines the item number of an item at a particular location in a dialog box.

pascal short FindDialogItem (
DialogPtr theDialog,
Point thePt);

theDialog A pointer to a dialog structure.

thePt The point (in local coordinates) where the mouse-down event
occurred.

function result When an embedding hierarchy is established, the
FindDialogItem function returns the deepest control selected by
the user corresponding to the point specified in the thePt
parameter. When an embedding hierarchy does not exist,
FindDialogItem performs a linear search of the item list resource
and returns a number corresponding to the hit item’s position in
the item list resource. For example, it returns 0 for the first item
in the item list, 1 for the second, and 2 for the third. If the mouse
is not over a dialog item, FindDialogItem returns –1.

DISCUSSION

The function FindDialogItem is useful for changing the cursor when the user
moves the cursor over a particular item.

To get the proper item number before calling the GetDialogItem (page 21)
function or the SetDialogItem (page 22) function, add 1 to the result of
FindDialogItem, as shown here:

theItem = FindDialogItem(theDialog, thePoint) + 1;

Note that FindDialogItem returns the item number of disabled items as well as
enabled items.

VERSION NOTES

Changed with Appearance Manager 1.0 to support embedding hierarchies.
24 Dialog Manager Functions

 11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
MoveDialogItem 0
Moves a dialog item to a specified location in a window.

pascal OSErr MoveDialogItem (
DialogPtr inDialog,
SInt16 inItemNo,
SInt16 inHoriz,
SInt16 inVert);

inDialog A pointer to the dialog box containing the item to move.

inItemNo The position of the item in the dialog box’s item list resource;
use FindDialogItem (page 24) to determine this value.

inHoriz The new horizontal coordinate for the dialog item.

inVert The new vertical coordinate for the dialog item.

function result A result code; see “Dialog Manager Result Codes” (page 51).

DISCUSSION

The MoveDialogItem function moves a dialog item to a specified location in a
window. MoveDialogItem ensures that if the item is a control, the control
rectangle and the dialog item rectangle (maintained by the Dialog Manager) are
always the same.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SizeDialogItem 0
Sizes a dialog item.

pascal OSErr SizeDialogItem (
DialogPtr inDialog,
SInt16 inItemNo,
SInt16 inWidth,
SInt16 inHeight);

inDialog A pointer to the dialog box containing the item to be resized.
Dialog Manager Functions 25
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
inItemNo The position of the item in the dialog box’s item list resource;
use FindDialogItem (page 24) to determine this value.

inWidth The new width (in pixels) of the dialog item’s control rectangle.

inHeight The new height (in pixels) of the dialog item’s control rectangle.

function result A result code; see “Dialog Manager Result Codes” (page 51).

DISCUSSION

The SizeDialogItem function resizes a dialog item to a specified size. If the
dialog item is a control, the control rectangle and the dialog item rectangle
(maintained by the Dialog Manager) are always the same.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

AutoSizeDialog 0
Automatically resizes static text fields and their dialog boxes to accommodate
changed static text.

pascal OSErr AutoSizeDialog (DialogPtr inDialog);

inDialog A pointer to a dialog box.

function result A result code; see “Dialog Manager Result Codes” (page 51).

DISCUSSION

The AutoSizeDialog function is useful in situations such as localization, where
the size of a static text field (and the dialog box that contains it) may need to be
altered to accommodate a change in the size of the static text.

For each static text item AutoSizeDialog finds in the item list resource, it adjusts
the static text field and the bottom of the dialog box window to accommodate
the text. Any items below a static text field are moved down. If the dialog box is
visible when this function is called, it is hidden, resized, and then shown. If the
dialog box has enough room to show the text as is, no resizing is done.
26 Dialog Manager Functions

 11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
Note that the AutoSizeDialog function does not process update events for your
dialog box, so your program must call the DrawDialog function or the
DialogSelect function to process the update event generated from showing the
window.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

AppendDialogItemList 0
Adds items to an existing dialog box while your program is running.

pascal OSErr AppendDialogItemList (
DialogPtr dialog,
SInt16 ditlID,
DITLMethod method);

dialog A pointer to the dialog box to which the items in the item list
resource specified in the ditlID parameter are to be appended.

ditlID The resource ID of the item list resource whose items are to be
appended to the dialog box specified in the dialog parameter.

method The manner in which the new items are to be displayed in the
dialog box.
If you use the overlayDITL constant, AppendDialogItemList
superimposes the appended items over the dialog box by
interpreting the coordinates of the display rectangles for the
appended items (as specified in their item list resource) as local
coordinates within the dialog box.
If you use the appendDITLRight constant, AppendDialogItemList
appends the items to the right of the dialog box by positioning
the display rectangles of the appended items relative to the
upper-right coordinate of the dialog box. The
AppendDialogItemList function automatically expands the dialog
box to accommodate the new dialog items.
If you use the appendDITLBottom constant, AppendDialogItemList
appends the items to the bottom of the dialog box by
positioning the display rectangles of the appended items
relative to the lower-left coordinate of the dialog box. The
Dialog Manager Functions 27
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
AppendDialogItemList function automatically expands the dialog
box to accommodate the new dialog items.
You can append a list of items relative to an existing item by
passing a negative number. The absolute value of this number is
interpreted as the item in the dialog box relative to which the
new items are to be positioned. For example, if you pass -2, the
display rectangles of the appended items are offset relative to
the upper-left corner of item number 2 in the dialog box.

function result A result code; see “Dialog Manager Result Codes” (page 51).

DISCUSSION

To be Appearance-compliant, your program should use the
AppendDialogItemList function rather than the AppendDITL function. Unlike
AppendDITL, the AppendDialogItemList function takes a 'DITL' resource ID
instead of a handle as the parameter describing the dialog item list to be
appended, and it properly appends entries from a dialog font table ('dftb')
resource, if there is a 'dftb' resource with the same resource ID as the 'DITL'
resource.

The AppendDialogItemList function adds the items in the item list resource
specified in the parameter ditlID to the items of a dialog box. This is especially
useful if several dialog boxes share a single item list resource, because you can
use AppendDialogItemList to add items that are appropriate for individual
dialog boxes. Your application can use the Resource Manager function
GetResource to get a handle to the item list resource whose items you wish to
add.

You typically create an invisible dialog box, call the AppendDialogItemList
function, then make the dialog box visible by using the Window Manager
function ShowWindow.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

Handling Text in Alert and Dialog Boxes 0
The following Dialog Manager function for handling text in dialog boxes and
alert boxes is changed with Appearance Manager 1.0:
28 Dialog Manager Functions

 11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
■ SetDialogItemText (page 29) sets the text string for static text and editable
text fields. Changed with Appearance Manager 1.0.

SetDialogItemText 0
Sets the text string for static text and editable text fields.

pascal void SetDialogItemText (
Handle item,
ConstStr255Param text);

item A handle to an editable text field or static text field. When
embedding is on, you should pass in the control handle
produced by a call to the function GetDialogItemAsControl
(page 20). If embedding is not on, pass in the handle produced
by the GetDialogItem (page 21) function.

text A pointer to a string containing the text to display in the field.

DISCUSSION

The SetDialogItemText function sets and redraws text strings for static text and
editable text fields. SetDialogItemText is useful for supplying a default text
string—such as a document name—for an editable text field while your
application is running.

VERSION NOTES

Changed with Appearance Manager 1.0 to support embedding hierarchies.

Handling Events in Dialog Boxes 0
The following Dialog Manager function for handling events in dialog boxes is
changed with Appearance Manager 1.0:

■ ModalDialog (page 30) handles events while your application displays a
modal or movable modal dialog box. Changed with Appearance Manager
1.0.
Dialog Manager Functions 29
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
ModalDialog 0
Handles events while your application displays a modal or movable modal
dialog box.

pascal void ModalDialog (
ModalFilterUPP modalFilter,
short *itemHit);

modalFilter A universal procedure pointer for an event filter function. For
modal dialog boxes, you can specify nil if you want to use the
standard event-handling function. For movable modal dialog
boxes, you should specify your own event filter function.

itemHit A pointer to a short integer. After receiving an event involving
an enabled item, ModalDialog produces a number representing
the position of the selected item in the active dialog box’s item
list resource.

DISCUSSION

Call the ModalDialog function immediately after displaying a modal or movable
modal dialog box. Your application should continue calling ModalDialog until
the user dismisses your dialog.

For modal dialogs, the ModalDialog function repeatedly handles events until an
event involving an enabled dialog box item—such as a click in a radio button,
for example—occurs. If the event is a mouse-down event outside the content
region of the dialog box, ModalDialog plays the system alert sound and gets the
next event.

For movable modal dialogs, if the kDialogFlagsHandleMovableModal feature bit
in the extended dialog resource is set, the ModalDialog function will handle all
standard movable modal user interactions, such as dragging a dialog box by its
title bar and allowing the user to switch into another application. However, a
difference between the ModalDialog function’s behavior with movable modal
and modal dialogs is that, with movable modal dialogs, your event filter
function receives all events. If you want the Dialog Manager to assist you in
handling events in movable modal dialog boxes, call GetStdFilterProc and
StdFilterProc.

For events inside the dialog box, ModalDialog passes the event to the event filter
function pointed to in the modalFilter parameter before handling the event.
When the event filter returns false, ModalDialog handles the event. If the event
30 Dialog Manager Functions

 11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
filter function handles the event, returning true, ModalDialog performs no more
event handling.

If you set the modalFilter parameter to nil, the standard event filter function is
executed. The standard event filter function checks whether

■ the user has pressed the Enter or Return key and, if so, returns the item
number of the default button

■ the user has pressed the Escape key or Command-period and, if so, returns
the item number of the Cancel button

■ the cursor is over an editable text box, and optionally changes the cursor to
an I-beam whenever this is the case

If you set the modalFilter parameter to point to your own event filter function,
that function can use the standard filter function to accomplish the above tasks.
(To do so, you can call GetStdFilterProc, and dispatch the event to the standard
filter function yourself, or you can call StdFilterProc , which obtains a
ModalFilterUPP for the standard filter function and then dispatches the
function.) Additionally, your own event filter function should also

■ handle update events, so that background processes can receive processor
time, and return false

■ return false for all events that your event filter function doesn’t handle

You can also use your event filter function to test for and respond to keyboard
equivalents and more complex events—for instance, the user dragging the
cursor within an application-defined item. You can use your same event filter
function in most or all of your alert and modal dialog boxes.

If the event filter function does not handle the event (returning false),
ModalDialog handles the event as follows:

■ In response to an activate or update event for the dialog box, ModalDialog
activates or updates its window.

■ If the user presses the mouse button while the cursor is in an editable text
item, ModalDialog responds to the mouse activity as appropriate—that is,
either by displaying an insertion point or by selecting text. If a key-down
event occurs and there’s an editable text item, ModalDialog uses TextEdit to
handle text entry and editing automatically. If the editable text item is
enabled, ModalDialog produces its item number after it receives either the
mouse-down or key-down event. Normally, editable text items are disabled,
Dialog Manager Functions 31
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
and you use the GetDialogItemText function to read the information in the
items only after the user clicks the OK button.

■ If the user presses the mouse button while the cursor is in a control,
ModalDialog calls the Control Manager function TrackControl. If the user
releases the mouse button while the cursor is in an enabled control,
ModalDialog produces the control’s item number. Your application should
respond appropriately—for example, by performing a command after the
user clicks the OK button.

■ If the user presses the mouse button while the cursor is in any other enabled
item in the dialog box, ModalDialog produces the item’s number, and your
application should respond appropriately. Generally, only controls should be
enabled. If your application creates a control more complex than a button,
radio button, or checkbox, your application must handle events inside that
item with your event filter function.

■ If the user presses the mouse button while the cursor is in a disabled item or
in no item, or if any other event occurs, ModalDialog does nothing.

SPECIAL CONSIDERATIONS

The ModalDialog function traps all events. This prevents your event loop from
receiving activate events for your windows. Thus, if one of your application’s
windows is active when you use GetNewDialog to create a modal dialog box, you
must explicitly deactivate that window before displaying the modal dialog box.

When ModalDialog calls the Control Manager function TrackControl, it does not
allow you to specify the action function necessary for anything more complex
than a button, radio button, or checkbox. If you need a more complex control,
you can create your own control, a picture, or an application-defined item that
draws a control-like object in your dialog box. You must then provide an event
filter function that appropriately handles events in that item.

VERSION NOTES

Changed with Appearance Manager 1.0 to handle events for movable modal
dialogs.
32 Dialog Manager Functions

 11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
Defining Your Own Dialog Item Function 0
When the Appearance Manager is available and an embedding hierarchy is
established in a dialog box, you should provide the Control Manager user pane
drawing function MyUserPaneDrawProc instead of the user item drawing function
MyUserItemProc to draw an application-defined control (a dialog item becomes a
control in a dialog box with an embedding hierarchy).

You can provide other user pane application-defined functions to hit test, track,
perform idle processing, handle keyboard, activate, and deactivate event
processing, handle keyboard focus, and set the background color or pattern in a
user pane control. For examples of how to write these functions, see Mac OS 8
Control Manager Reference.

VERSION NOTES

Not recommended with Appearance Manager 1.0 and later.

Dialog Manager Data Types 0

The following Dialog Manager data types are new, changed, or not
recommended with Appearance Manager 1.0:

■ AlertStdAlertParamRec (page 34)

■ 'DLOG' (page 35)

■ 'dlgx' (page 38)

■ 'alrx' (page 39)

■ 'dftb' (page 40)

■ 'dctb' (page 44)

■ 'actb' (page 44)

■ 'ictb' (page 44)
Dialog Manager Data Types 33
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
AlertStdAlertParamRec 0
A standard alert structure of type AlertStdAlertParamRec can be used when you
call the function StandardAlert (page 8) to customize the alert box. The
AlertStdAlertParamRec type is available with Appearance Manager 1.0 and
later.

struct AlertStdAlertParamRec {
Boolean movable;
Boolean helpButton;
ModalFilterUPP filterProc;
StringPtr defaultText;
StringPtr cancelText;
StringPtr otherText;
SInt16 defaultButton;
SInt16 cancelButton;
UInt16 position;

};
typedef struct AlertStdAlertParamRec AlertStdAlertParamRec;
typedef AlertStdAlertParamRec *AlertStdAlertParamPtr;

Field descriptions
movable A Boolean value indicating whether or not the alert box is

movable.
helpButton A Boolean value indicating whether or not the alert

includes a Help button.
filterProc If the value in the movable field is true (alert is movable),

then specify in this parameter a universal procedure
pointer to an application-defined filter function that
responds to events not handled by ModalDialog (page 30). If
you do, all events will get routed to your
application-defined event filter function for handling, even
when your alert box window is in the background. If you
set this parameter to nil, the Dialog Manager uses the
standard event filter function.

defaultText Text for button in OK position; see “Alert Default Text
Constants” (page 48). The button automatically sizes and
positions itself in the alert box. To specify that the default
button names should be used, pass -1. To indicate that no
button should be displayed, pass nil.
34 Dialog Manager Data Types

 11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
cancelText Text for button in Cancel position; see “Alert Default Text
Constants” (page 48). The button automatically sizes and
positions itself in the alert box. To specify that the default
button names should be used, pass -1. To indicate that no
button should be displayed, pass nil.

otherText Text for button in leftmost position; see “Alert Default Text
Constants” (page 48). The button automatically sizes and
positions itself in the alert box. To specify that the default
button names should be used, pass -1. To indicate that no
button should be displayed, pass nil.

defaultButton Specifies which button acts as the default button; see “Alert
Button Constants” (page 47).

cancelButton Specifies which button acts as the Cancel button (can be 0);
see “Alert Button Constants” (page 47).

position The alert box position, as defined by a window positioning
constant; see Macintosh Toolbox Essentials for a discussion of
these constants. In this structure, the constant
kWindowDefaultPosition is equivalent to the constant
kWindowAlertPositionParentWindowScreen.

'DLOG' 0
A dialog resource is a resource of type 'DLOG'. All dialog resources can be
marked purgeable, and they must have resource ID numbers greater than 127.
With Appearance Manager 1.0, the 'DLOG' resource has been changed to support
the dialog font table ('dftb') resource; see 'dftb' (page 40) for a description of
the dialog font table resource.

You can use an extended dialog resource with the same resource ID as your
dialog resource to provide additional features for your dialog box, including
movable modal behavior, Appearance-compliant backgrounds and controls,
and embedding hierarchies. See 'dlgx' (page 38) for a description of the
extended dialog resource. Use the GetNewDialog (page 16) function to create the
dialog box defined in the dialog resource and extended dialog resource.

Figure 1-1 shows the format of a compiled dialog resource.
Dialog Manager Data Types 35
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
Figure 1-1 Structure of a compiled dialog ('DLOG') resource

The compiled version of a dialog resource contains the following elements:

■ Rectangle. This determines the dialog box’s dimensions and, possibly, its
position. (The last element in the dialog resource usually specifies a position
for the dialog box.)

■ Window definition ID. See Mac OS 8 Window Manager Reference for
descriptions of the ID constants that can be used in this field to specify
Appearance-compliant modal, movable modal, or modeless dialog boxes.

■ Visibility. If this is set to a value of 1 (as specified by the visible constant in
the Rez input file), the Dialog Manager displays this dialog box as soon as
you call the GetNewDialog function (page 16). If this is set to a value of 0 (as
specified by the invisible constant in the Rez input file), the Dialog Manager
does not display this dialog box until you call the Window Manager function
ShowWindow.

'DLOG' resource type

Dialog box position

Alignment byte

Rectangle

Window definition ID

Visibility
Reserved

Close box specification
Reserved

Reference constant

Item list ID

Window title

8

2

1
1
1
1

4

2

1 to 256

2

0 or 1

Bytes
36 Dialog Manager Data Types

 11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
■ Close box specification. This specifies whether to draw a close box. Normally,
this is set to a value of 1 (as specified by the goAway constant in the Rez input
file) only for a modeless dialog box to specify a close box in its title bar.
Otherwise, this is set to a value of 0 (as specified by the noGoAway constant in
the Rez input file).

■ Reference constant. This contains any value that an application stores here.
For example, an application can store a number here that represents a dialog
box type, in order to distinguish between a number of similar dialog boxes.
As this information is stored in a window structure within the dialog
structure, you can use the Window Manager function SetWRefCon at any time
to change this value in the dialog structure for a dialog box, and you can use
the Window Manager function GetWRefCon to determine its current value.

■ Item list resource ID. This ID specifies both the item list resource and the
dialog font table resource that will be used with this dialog box. See 'dftb'
(page 40) for a description of the dialog font table resource.

■ Window title. A string displayed in the dialog box’s title bar only when the
dialog box is modeless or movable modal.

■ Alignment byte. This is an extra byte added if necessary to make the
previous Pascal string end on a word boundary.

■ Dialog box position. A constant specifying the position of the dialog box on
the screen; see the discussion of window positioning constants in Macintosh
Toolbox Essentials (page 4-126). If your application positions dialog boxes on
its own, you shouldn’t use these constants, because they may cause conflicts
with the Dialog Manager.

■ If 0x0000 appears here (as specified by the kWindowDefaultPosition
constant in the Rez input file), the Dialog Manager positions this dialog
box according to the global coordinates specified in the rectangle element
of this resource.

■ If 0xB00A appears here (as specified by the
kWindowAlertPositionParentWindow constant in the Rez input file), the
Dialog Manager positions the dialog box over the frontmost window so
that the window’s title bar appears.

■ If 0x300A appears here (as specified by the
kWindowAlertPositionMainScreen constant in the Rez input file), the Dialog
Manager centers the dialog box near the top of the main screen.
Dialog Manager Data Types 37
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
■ If 0x700A appears here (as specified in the Rez input file by the
kWindowAlertPositionParentWindowScreen constant), the Dialog Manager
positions the dialog box on the screen where the user is currently working.

'dlgx' 0
Use an extended dialog ('dlgx') resource with the same resource ID as your
dialog resource to provide additional features for your dialog box, including
movable modal behavior, theme-compliant backgrounds and controls, and
embedding hierarchies. The extended dialog resource is available with
Appearance 1.0 and later.

All extended dialog resources can be marked purgeable, and they must have
the same resource ID and be located in the same file as their corresponding
dialog resource. Use the function GetNewDialog (page 16) to create the dialog
box defined in the dialog resource and extended dialog resource.

Figure 1-2 shows the format of a compiled extended dialog resource.

Figure 1-2 Structure of a compiled extended dialog ('dlgx') resource

The compiled version of an extended dialog resource contains the following
elements:

■ Version number. An integer specifying the version of the format of the
resource.

■ Dialog flags. Constants that specify the dialog box’s Appearance features; see
“Dialog Feature Flag Constants” (page 46).

Version number

Dialog flags

'dlgx' resource type

2

4

Bytes
38 Dialog Manager Data Types

 11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
'alrx' 0
You can use an extended alert ('alrx') resource with the same resource ID as
your alert resource to provide additional features for your alert box, including
movable modal behavior, Appearance-compliant backgrounds and controls,
and embedding hierarchies. The resource also gives you the option of creating a
title for movable alert boxes. The extended alert resource is available with
Appearance 1.0 and later.

Note
Alert titles are only available with Appearance version 1.0.1
and later.

All extended alert resources can be marked purgeable, and they must have the
same resource ID and resource file as their corresponding alert resource.
Figure 1-3 shows the structure of a compiled extended alert resource.

Figure 1-3 Structure of a compiled extended alert ('alrx') resource

The compiled version of an extended alert resource contains the following
elements:

■ Version number. An integer specifying the version of the format of the
resource.

Version number

Alert flags

Reference constant

Window type

Reserved

Title (movable alert only)

'alrx' resource type

2

4

4

1

1

1 to 256

Bytes
Dialog Manager Data Types 39
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
■ Alert flags. Constants specifying the alert box’s Appearance features; see
“Alert Feature Flag Constants” (page 46).

■ Reference constant. This contains any value that an application wishes to
store here. For example, an application can store a number here that
represents an alert box type, in order to distinguish between a number of
similar alert boxes. As this information is stored in a window structure
within the dialog structure, you can use GetWRefCon to determine this value.

■ Window type. If this Boolean is set to 1 (true), the Dialog Manager specifies
an Appearance-compliant window definition ID constant directly when
drawing the alert box window.

■ Reserved. Set to 0.

■ Window title. A string representing the title of a movable alert box.

'dftb' 0
Your application can specify the initial font settings for all controls in a dialog
box or alert box by creating a dialog font table resource of type 'dftb' with the
same resource ID as the item list resource ('DITL'). The control font style
information in the dialog font table resource is automatically read in (along
with the 'DITL') by the Dialog Manager. When the 'dftb' resource is read in,
the control font styles are set, and the resource is marked purgeable.

When an embedding hierarchy is established in a dialog box, the dialog font
table resource should be used instead of the item color table ('ictb') resource,
since edit and static text dialog items become controls in an embedding
hierarchy. The dialog font table resource is available with Appearance 1.0 and
later.

Figure 1-4 shows the format of a compiled dialog font table resource.
40 Dialog Manager Data Types

 11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
Figure 1-4 Structure of a compiled dialog font table ('dftb') resource

A compiled version of a 'dftb' resource contains the following elements:

■ Version number. An integer specifying the version of the format of the
resource.

■ Number of entries. An integer that specifies the number of entries in the
resource. Each entry is a dialog control font structure.

■ Dialog control font entries. A series of dialog control font structures, each of
which consist of type, dialog font flags, the font ID, font size, font style, text
mode, justification, text color, background color, and font name.

Figure 1-5 shows the format of a compiled dialog control font entry in a 'dftb'
resource.

Number of entries

First dialog control font entry

Last dialog control font entry

'dftb' resource type

2

Version number 2

Variable

Variable

Bytes
Dialog Manager Data Types 41
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
Figure 1-5 Structure of dialog control font entry in a 'dftb' resource

Each entry in a 'dftb' resource corresponds to a dialog item and contains the
following elements:

■ Type. An integer that specifies whether there is font information for the
dialog or alert item in the 'DITL'. If you specify a value of 0, there is no font
information for the item in the corresponding 'DITL', and no data follows. If
you specify a value of 1, there is font information for the item, and the rest of
the structure is read. You can cause entries to be skipped by setting this value
to 0.

■ Dialog font flags. You can use one or more of these flag constants to specify
which other fields in the dialog font table should be used; see “Dialog Font
Flag Constants” (page 49).

Dialog font flags

Type

Font size

Font ID

Font style

Text mode

Justification

Text color

Background color

Dialog control font entry

2

2

2

2

2

2

2

6

6

Font name 1 to 256

Bytes
42 Dialog Manager Data Types

 11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
■ Font ID. If the kDialogFontUseFontMask bit is set to 1, then this element will
contain an integer indicating the ID of the font family to use. See Mac OS 8
Control Manager Reference for information about the metafont constants that
you can specify in this field. If this bit is set to 0, then the system default font
is used.

■ Font size. If a constant representing the system font, small system font, or
small emphasized system font is specified in the Font ID field, this field is
ignored. If the kDialogFontUseSizeMask bit is set, this field should contain an
integer representing the point size of the text. If the kDialogFontAddSizeMask
bit is set, this value will contain the size to add to the current point size of the
text.

■ Style. If the kDialogFontUseFaceMask bit is set, then this element should
contain an integer specifying the text style to describe which styles to apply
to the text. You can use one or more of the following style data type mask
constants to specify font style:

■ Text mode. If the kDialogFontUseModeMask bit is set, then this element should
contain an integer specifying how characters are drawn. See Inside Macintosh:
Imaging With QuickDraw for a discussion of source transfer modes.

■ Justification. If the kDialogFontUseJustMask bit is set, then this element should
contain an integer specifying text justification (left, right, centered, or
system-justified).

■ Text color. If the kDialogUseFontForeColorMask bit is set, then this element
should contain a color to use when drawing the text.

■ Background color. If the kDialogFontUseBackColorMask bit is set, then this
element should contain a color to use when drawing the background behind
the text. In certain text modes, background color is ignored.

Bit
value Style
0x00 Normal
0x01 Bold
0x02 Italic
0x04 Underline
0x08 Outline
0x10 Shadow
0x20 Condense
0x40 Extend
Dialog Manager Data Types 43
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
■ Font name. If the kDialogFontUseFontNameMask bit is set, then this element
should contain a Pascal string representing the font name to be used. This
overrides the font ID.

'dctb' 0
The dialog color table resource is not recommended with Appearance Manager
1.0 and later. When the Appearance Manager is available and the
kDialogFlagsUseThemeBackground feature bit of the extended dialog resource
(page 35) is set, the entire dialog color table resource ('dctb') is ignored. If the
Appearance Manager is available, but the above is not true, the wContent field of
the 'dctb' resource is used, but all other fields are still ignored.

'actb' 0
The alert color table resource is not recommended with Appearance Manager
1.0 and later. When the Appearance Manager is available and the
kAlertFlagsUseThemeBackground feature bit of the extended alert resource is set,
the entire alert color table resource ('actb') is ignored. If the Appearance
Manager is available, but the kAlertFlagsUseThemeBackground bit is not set, the
wContent field of the 'actb' resource is used, but all other fields are still ignored.

'ictb' 0
The item color table resource is not recommended with Appearance Manager
1.0 and later. When the Appearance Manager is available and an embedding
hierarchy is established in the dialog box, any item color table ('ictb') resource
information is ignored. The dialog font table ('dftb') resource should be used
instead of the item color table resource to specify the font settings for all dialog
items in an embedding hierarchy.

If an embedding hierarchy is not established, the item color table resource can
be used to set the font information for any editable text and static text dialog
items, but the dialog font table resource will still be used for any controls in the
dialog box.
44 Dialog Manager Data Types

 11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
Dialog Manager Constants 0

The following Dialog Manager constants are new, changed, or not
recommended with Appearance Manager 1.0:

■ “Alert Type Constants” (page 45)

■ “Dialog Feature Flag Constants” (page 46)

■ “Alert Button Constants” (page 47)

■ “Alert Feature Flag Constants” (page 46)

■ “Alert Default Text Constants” (page 48)

■ “Dialog Font Flag Constants” (page 49)

Alert Type Constants 0
You can pass constants of type AlertType in the inAlertType parameter of
StandardAlert (page 8) to specify the type of alert box you wish to create. Alert
type constants are available with Appearance Manager 1.0 and later.

enum {
kAlertStopAlert = 0,
kAlertNoteAlert = 1,
kAlertCautionAlert = 2,
kAlertPlainAlert = 3

};
typedef SInt16 AlertType;

Constant descriptions

kAlertStopAlert Stop alert box.
kAlertNoteAlert Note alert box.
kAlertCautionAlert Caution alert box.
kAlertPlainAlert Alert box with no icon.
Dialog Manager Constants 45
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
Dialog Feature Flag Constants 0
You can set the following bits in the dialog flags field of the extended dialog
resource (page 35) or pass them in the inFlags parameter of NewFeaturesDialog
(page 17) to specify the dialog box’s Appearance-compliant features. Dialog
feature flag constants are available with Appearance Manager 1.0 and later.

enum {
kDialogFlagsUseThemeBackground = (1 << 0),
kDialogFlagsUseControlHierarchy = (1 << 1),
kDialogFlagsHandleMovableModal = (1 << 2),
kDialogFlagsUseThemeControls = (1 << 3)

};

Constant descriptions

kDialogFlagsUseThemeBackground
If this bit (bit 0) is set, the Dialog Manager sets the dialog
box’s background color or pattern.

kDialogFlagsUseControlHierarchy
If this bit (bit 1) is set, the Dialog Manager creates a root
control in the dialog box and establishes an embedding
hierarchy. Any dialog items become controls once the
embedding hierarchy is established.

kDialogFlagsHandleMovableModal
If this bit (bit 2) is set, and the dialog box is a movable
modal (specify the kWindowMovableModalDialogProc window
definition ID), the Dialog Manager handles movable modal
behavior such as dragging a dialog box by its title bar or
switching out of the application by clicking in another one.

kDialogFlagsUseThemeControls
If this bit (bit 3) is set, the Dialog Manager creates
Appearance-compliant controls in the dialog box directly.
Otherwise, push buttons, checkboxes, and radio buttons
will be displayed in their pre-Appearance forms when
systemwide Appearance is off.

Alert Feature Flag Constants 0
You can set the following bits in the alert flags field of the extended alert
resource (page 39) to specify the alert box’s Appearance-compliant features.
46 Dialog Manager Constants

 11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
Alert feature flag constants are available with Appearance Manager 1.0 and
later.

enum {
kAlertFlagsUseThemeBackground = (1 << 0),
kAlertFlagsUseControlHierarchy = (1 << 1),
kAlertFlagsAlertIsMovable = (1 << 2),
kAlertFlagsUseThemeControls = (1 << 3)

};

kAlertFlagsUseThemeBackground
If this bit (bit 0) is set, the Dialog Manager sets the alert
box’s background color or pattern.

kAlertFlagsUseControlHierarchy
If this bit (bit 1) is set, the Dialog Manager creates a root
control in the alert box and establishes an embedding
hierarchy. Any alert items become controls once the
embedding hierarchy is established.

kAlertFlagsAlertIsMovable
If this bit (bit 2) is set, the alert box is movable modal. The
Dialog Manager handles movable modal behavior such as
dragging the alert box by its title bar or switching out of the
application by clicking in another one.

kAlertFlagsUseThemeControls
If this bit (bit 3) is set, the Dialog Manager creates
Appearance-compliant controls in your alert box.
Otherwise, push buttons, checkboxes, and radio buttons
will be displayed in their pre-Appearance forms when
systemwide Appearance is off.

Alert Button Constants 0
You can use these constants in the defaultButton and cancelButton fields in the
standard alert structure (page 34) to specify which buttons act as the default
and Cancel buttons in the standard alert structure. These constants are also
returned in the itemHit parameter of StandardAlert (page 8). Alert button
constants are available with Appearance Manager 1.0 and later.
Dialog Manager Constants 47
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
enum {
kAlertStdAlertOKButton = 1,
kAlertStdAlertCancelButton = 2,
kAlertStdAlertOtherButton = 3,
kAlertStdAlertHelpButton = 4

};

Constant descriptions

kAlertStdAlertOKButton
The OK button. The default text for this button is “OK”.

kAlertStdAlertCancelButton
The Cancel button (optional). The default text for this
button is “Cancel”.

kAlertStdAlertOtherButton
A third button (optional). The default text for this button is
“Don’t Save”.

kAlertStdAlertHelpButton
The Help button (optional).

Alert Default Text Constants 0
You can use these constants in the defaultText, cancelText, and otherText
fields of the standard alert structure (page 34) to specify the default text for the
OK, Cancel, and Don’t Save buttons. Alert default text constants are available
with Appearance Manager 1.0 and later.

enum {
kAlertDefaultOKText = -1,
kAlertDefaultCancelText = -1,
kAlertDefaultOtherText = -1

};

Constant descriptions

kAlertDefaultOKText
The default text for the default (right) button is “OK” on an
English system. The text will vary depending upon the
localization of the user’s system. Use this constant in the
defaultText field of the standard alert structure (page 34).
48 Dialog Manager Constants

 11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
kAlertDefaultCancelText
The default text for the Cancel (middle) button is “Cancel”
on an English system. The text will vary depending upon
the localization of your system. Use this constant in the
cancelText field of the standard alert structure (page 34).

kAlertDefaultOtherText
The default text for the third (leftmost) button is “Don’t
Save” for an English system. The text will vary depending
upon the localization of the user’s system. Use this constant
in the otherText field of the standard alert structure.

Dialog Font Flag Constants 0
You can set the following bits in the dialog font table resource (page 40) to
specify fields in the dialog font table that should be used. Dialog font flag
constants are available with Appearance Manager 1.0 and later.

enum {
kDialogFontNoFontStyle = 0,
kDialogFontUseFontMask = 0x0001,
kDialogFontUseFaceMask = 0x0002,
kDialogFontUseSizeMask = 0x0004,
kDialogFontUseForeColorMask = 0x0008,
kDialogFontUseBackColorMask = 0x0010,
kDialogFontUseModeMask = 0x0020,
kDialogFontUseJustMask = 0x0040,
kDialogFontUseAllMask = 0x00FF,
kDialogFontAddFontSizeMask = 0x0100,
kDialogFontUseFontNameMask = 0x0200

};

Constant descriptions

kDialogFontNoFontStyle
If the kDialogFontNoFontStyle constant is used, no font
style information is applied.

kDialogFontUseFontMask
If the kDialogFontUseFontMask flag (bit 0) is set, the font ID
specified in the Font ID field of the dialog font table is
applied.
Dialog Manager Constants 49
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
kDialogFontUseFaceMask
If the kDialogFontUseFaceMask flag (bit 1) is set, the font
style specified in the Style field of the dialog font table is
applied.

kDialogFontUseSizeMask
If the kDialogFontUseSizeMask flag (bit 2) is set, the font size
specified in the Font Size field of the dialog font table is
applied.

kDialogFontUseForeColorMask
If the kDialogFontUseForeColorMask flag (bit 3) is set, the
text color specified in the Text Color field of the dialog font
table is applied. This flag only applies to static text controls.

kDialogFontUseBackColorMask
If the kDialogFontUseBackColorMask flag (bit 4) is set, the
background color specified in the Background Color field
of the dialog font table is applied. This flag only applies to
static text controls.

kDialogFontUseModeMask
If the kDialogFontUseModeMask flag (bit 5) is set, the text
mode specified in the Text Mode field of the dialog font
table is applied.

kDialogFontUseJustMask
If the kDialogFontUseJustMask flag (bit 6) is set, the text
justification specified in the Justification field of the dialog
font table is applied.

kDialogFontUseAllMask
If the kDialogFontUseAllMask constant is used, all flags in
this mask will be set except kDialogFontAddFontSizeMask
and kDialogFontUseFontNameMask.

kDialogFontAddFontSizeMask
If the kDialogFontAddFontSizeMask flag (bit 8) is set, the
Dialog Manager will add a specified font size to the
existing font size indicated in the Font Size field of the
dialog font table resource.

kDialogFontUseFontNameMask
If the kDialogFontUseFontNameMask flag (bit 9) is set, the
Dialog Manager will use the string in the Font Name field
for the font name instead of a font ID.
50 Dialog Manager Constants

 11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
Dialog Manager Result Codes 0

The most common result codes that can be returned by Dialog Manager
functions are listed below.

noErr 0 No error
paramErr –50 Error in parameter list
memFullErr –108 Not enough memory
resNotFound –192 Unable to read resource
hmHelpManagerNotInited –855 Help Manager not set up
Dialog Manager Result Codes 51
11/10/98  Apple Computer, Inc.

C H A P T E R 1

Dialog Manager Reference
52 Dialog Manager Result Codes

 11/10/98  Apple Computer, Inc.

A P P E N D I X A
Version History A

This document has had the following releases:

Table A-1 Mac OS 8 Dialog Manager Reference Revision History

Version Notes

Nov. 10, 1998 Removed “Dialog Manager Reference” chapter from Mac OS 8 Toolbox
Reference, making Mac OS 8 Dialog Manager Reference available as an
independent document.

The following corrections were also made at this time:

AppendDialogItemList (page 27). A description of this function has been
added.

SizeDialogItem (page 25). Corrected the parameter order for this function.

AutoSizeDialog (page 26). Amended the description of this function to note
that it does not process update events.

Jan. 15, 1998 The following corrections were made:

Noted Appearance 1.0.2 where applicable.

Dec. 10, 1997 The following corrections were made:

GetNewDialog (page 16). Specified the creation of a color graphics port
under Appearance when the kDialogFlagsUseThemeBackground feature bit of
the 'dlgx' resource is set.

Dec. 2, 1997 PDF formatting improved.

Nov. 3, 1997 First document release.
53
11/10/98  Apple Computer, Inc.

A P P E N D I X

Version History
54
11/10/98  Apple Computer, Inc.

Index
A

'actb' resource type 44
alert button constants 47
alert color table resource 44
alert default text constants 48
alert feature flag constants 46
Alert function 9
AlertStdAlertParamPtr type 34
AlertStdAlertParamRec type 34
alert type constants 45
AlertType type 45
'alrx' resource type 39
AppendDialogItemList function 27
AutoSizeDialog function 26

C

CautionAlert function 14

D

'dctb' resource type 44
'dftb' resource type 40
dialog color table resource 44
dialog feature flag constants 46
dialog font flag constants 49
dialog font table resource 40, 44
dialog resource 35
'dlgx' resource type 38
'DLOG' resource type 35

E

extended alert resource 39
extended dialog resource 35, 38

F

FindDialogItem function 24

G

GetDialogItemAsControl function 20
GetDialogItem function 21
GetDialogKeyboardFocusItem function 23
GetNewDialog function 16

H

hmHelpManagerNotInited result code 51

I

'ictb' resource type 44
item color table resource 44

K

kAlertCautionAlert constant 45
kAlertDefaultCancelText constant 49
kAlertDefaultOKText constant 48
55
11/10/98  Apple Computer, Inc.

I N D E X
kAlertDefaultOtherText constant 49
kAlertFlagsAlertIsMovable constant 47
kAlertFlagsUseControlHierarchy constant 47
kAlertFlagsUseThemeBackground constant 47
kAlertFlagsUseThemeControls constant 47
kAlertNoteAlert constant 45
kAlertPlainAlert constant 45
kAlertStdAlertCancelButton constant 48
kAlertStdAlertHelpButton constant 48
kAlertStdAlertOKButton constant 48
kAlertStdAlertOtherButton constant 48
kAlertStopAlert constant 45
kDialogFlagsHandleMovableModal constant 46
kDialogFlagsUseControlHierarchy

constant 46
kDialogFlagsUseThemeBackground constant 46
kDialogFlagsUseThemeControls constant 46
kDialogFontAddFontSizeMask constant 50
kDialogFontNoFontStyle constant 49
kDialogFontUseAllMask constant 50
kDialogFontUseBackColorMask constant 50
kDialogFontUseFaceMask constant 50
kDialogFontUseFontMask constant 49
kDialogFontUseFontNameMask constant 50
kDialogFontUseForeColorMask constant 50
kDialogFontUseJustMask constant 50
kDialogFontUseModeMask constant 50
kDialogFontUseSizeMask constant 50

M

memFullErr result code 51
ModalDialog function 30
MoveDialogItem function 25
MyUserItemProc function 33

N

NewFeaturesDialog function 17
noErr result code 51
NoteAlert function 12

P

paramErr result code 51

R

resNotFound result code 51

S

SetDialogItem function 22
SetDialogItemText function 29
SizeDialogItem function 25
StandardAlert function 8
StopAlert function 11

U

user items 33
56
11/10/98  Apple Computer, Inc.

I N D E X
57
11/10/98  Apple Computer, Inc.

T H E A P P L E P U B L I S H I N G S Y S T E M

11/10/98  Apple Computer, Inc.

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobe™ Illustrator and
Adobe Photoshop.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITERS
Lisa Karpinski, Donna S. Lee,
Judith Rosado, and Jun Suzuki

ILLUSTRATORS
David Arrigoni and Karin Stroud

PRODUCTION EDITOR
Glen Frank

PROJECT MANAGER
Tony Francis

Acknowledgments to Matt Ackeret, Pete
Gontier, Chris Thomas, and Ed Voas.

	Mac OS 8 Dialog Manager Reference
	Contents
	Figures, Tables, and Listings
	Dialog Manager Reference
	Dialog Manager Functions
	Creating Alert Boxes
	StandardAlert
	Alert
	StopAlert
	NoteAlert
	CautionAlert

	Creating Dialog Boxes
	GetNewDialog
	NewFeaturesDialog

	Manipulating Items in Dialog Boxes and Alert Boxes
	GetDialogItemAsControl
	GetDialogItem
	SetDialogItem
	GetDialogKeyboardFocusItem
	FindDialogItem
	MoveDialogItem
	SizeDialogItem
	AutoSizeDialog
	AppendDialogItemList

	Handling Text in Alert and Dialog Boxes
	SetDialogItemText

	Handling Events in Dialog Boxes
	ModalDialog

	Defining Your Own Dialog Item Function

	Dialog Manager Data Types
	AlertStdAlertParamRec
	'DLOG'
	Figure�1-1 Structure of a compiled dialog ('DLOG') resource

	'dlgx'
	Figure�1-2 Structure of a compiled extended dialog ('dlgx') resource

	'alrx'
	Figure�1-3 Structure of a compiled extended alert ('alrx') resource

	'dftb'
	Figure�1-4 Structure of a compiled dialog font table ('dftb') resource
	Figure�1-5 Structure of dialog control font entry in a 'dftb' resource

	'dctb'
	'actb'
	'ictb'

	Dialog Manager Constants
	Alert Type Constants
	Dialog Feature Flag Constants
	Alert Feature Flag Constants
	Alert Button Constants
	Alert Default Text Constants
	Dialog Font Flag Constants

	Dialog Manager Result Codes

	Version History
	Table A-1 Mac OS 8 Dialog Manager Reference Revision History

	Index

