



April 21, 1999
Technical Publications
© 1999 Apple Computer, Inc.



I N S I D E M A C I N T O S H

Programming With the
Appearance Manager

For Appearance Manager 1.1

4/21/99



 Apple Computer, Inc.



Apple Computer, Inc.
© 1998, 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.
Adobe, the Adobe logo, Acrobat, the
Acrobat logo, Distiller, PostScript,

and the PostScript logo are
trademarks of Adobe Systems
Incorporated.
Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures, Tables, and Listings 7

Chapter 1 Introduction 9

Chapter 2 About the Appearance Manager 11

The Appearance Control Panel 13
A Theme-Compliant User Interface 21

Theme-Compliant Fonts 23
Theme-Compliant Sounds 24
Theme-Compliant Cursors 25
Theme-Compliant Controls 25
Theme-Compliant Windows 28
Theme-Compliant Menus 29
Theme-Compliant Colors and Patterns 30

Definition Function Mapping and Program Registration 32
Appearance Manager Versions 34
Appearance Manager Memory Requirements 35

Chapter 3 Using the Appearance Manager 37

A Checklist for Creating a Theme-Compliant Program 39
Becoming a Client of the Appearance Manager 41
Using Theme-Compliant Colors and Patterns 43

Using Theme Brushes 43
Using Theme Text Colors 44
Saving and Restoring the Drawing Environment 44
Obtaining Device Color and Depth Information 45

Case Studies for Making Custom Interface Elements Theme-Compliant 46
Making an Object Drawn With QuickDraw Theme-Compliant 47
Making a Dialog User Item Theme-Compliant 48
3
4/21/99  Apple Computer, Inc.

Making a Control User Pane Theme-Compliant 50
Making a Custom Definition Function Theme-Compliant 52
Drawing Tracks 55

Creating Custom Themes 56

Chapter 4 Appearance Manager Reference 59

Gestalt Constants 65
Functions 66

Registering With the Appearance Manager 67
Accessing Theme Information 69
Using Theme-Compliant Colors and Patterns 75
Playing Theme Sounds 87
Specifying Theme-Compliant Cursors 90
Drawing Theme-Compliant Controls 92
Drawing Theme-Compliant Windows 128
Drawing Theme-Compliant Menus 144

Application-Defined Functions 154
Data Types 164
Constants 176

Appearance Manager Apple Event Constants 177
Appearance Manager File Type Constants 179
Theme Background Kind Constants 179
Theme Brush Constants 180
Theme Button Adornment Constants 186
Theme Button Kind Constants 187
Theme Button Value Constants 189
Theme Checkbox Style Constants 190
Theme Collection Tags 190
Theme Cursor Constants 194
Theme Drag Sound Constants 197
Theme Draw State Constants 199
Theme Font ID Constants 200
Theme Menu Bar State Constants 200
Theme Menu Item Type Constants 201
Theme Menu State Constants 203
Theme Menu Type Constants 203
4
4/21/99  Apple Computer, Inc.

Theme Pop-Up Arrow Orientation Constants 204
Theme Pop-Up Arrow Size Constants 205
Theme Scroll Bar Arrow Style Constants 205
Theme Scroll Box Style Constants 206
Theme Size Box Direction Constants 206
Theme Slider Indicator Direction Constants 207
Theme Sound Constants 208
Theme Sound Mask Constants 223
Theme Tab Direction Constants 223
Theme Tab Style Constants 224
Theme Text Color Constants 225
Theme Title Bar Item Constants 230
Theme Track Attributes Constants 231
Theme Track Enable State Constants 231
Theme Track Kind Constants 232
Theme Track Press State Constants 233
Theme Window Attribute Constants 235
Theme Window Type Constants 236

Result Codes 238

Appendix A Document Version History 239

Index 241
5
4/21/99  Apple Computer, Inc.

Figures, Tables, and Listings

Chapter 2 About the Appearance Manager 11

Figure 2-1 The same desktop in two different themes 14
Figure 2-2 The Themes pane of the Appearance control panel 15
Figure 2-3 The Appearance pane of the Appearance control panel 16
Figure 2-4 The Fonts pane of the Appearance control panel 17
Figure 2-5 The Desktop pane of the Appearance control panel 18
Figure 2-6 The Sound pane of the Appearance control panel 19
Figure 2-7 The Options pane of the Appearance control panel 20
Figure 2-8 The same dialog box, before and after being made

theme-compliant 22
Figure 2-9 Examples of the views font, the large system font, and the small

system font 24
Figure 2-10 Mapping of standard definition functions 33

Table 2-1 Appearance Manager versions 35

Chapter 3 Using the Appearance Manager 37

Listing 3-1 Determining whether the Appearance Manager is present 41
Listing 3-2 Obtaining color and depth information for the current device 45
Listing 3-3 Moving from QuickDraw to the Appearance Manager 47
Listing 3-4 Drawing a dialog user item that is theme-compliant 49
Listing 3-5 Drawing a control user pane that is theme-compliant 51
Listing 3-6 Drawing a custom definition function that is theme-compliant 53
Listing 3-7 Drawing a scroll bar with arrows 55

Appendix A Document Version History 239

Table A-1 Programming With the Appearance Manager revision history 239
7
4/21/99  Apple Computer, Inc.

C H A P T E R 1

Introduction 1
This document describes how your program can use the Appearance Manager,
through Appearance Manager version 1.1.

The Appearance Manager coordinates the look of human interface elements on
the Mac OS and provides the underlying support for appearances and themes.
Appearances unify the look of human interface elements in your program and
across the system—including alert icons, controls, background colors, dialog
boxes, menus, windows, and state transitions—thus giving the user a consistent
experience. Themes bundle additional user preferences regarding such
interface aspects as sounds, desktop pictures or patterns, and system fonts.

You can use the Appearance Manager to adapt any nonstandard interface
elements in your program to the same coordinated look as the rest of the
Mac OS. The Appearance Manager also provides many standard human
interface elements, such as focus rings and group boxes, that can eliminate the
need to create and maintain your own custom solutions.

Many programs exclusively use standard, system-defined interface elements. If
yours is one of these, you may need only to register your program with the
Appearance Manager and be prepared to respond to Appearance Manager
Apple events in order to coordinate with the systemwide look, that is, to be
theme-compliant. However, if your program uses any custom interface
elements, you may need to use other features of the Appearance Manager for
your program to be theme-compliant.

If your program has a user interface, you should read this document to learn
how to give your program a look consistent with the system and other Mac OS
programs. Documentation on related Mac OS human interface technologies is
available at

<http://developer.apple.com/techpubs/macos8/HumanInterfaceToolbox/
humaninterfacetoolbox.html>

The following chapters describe the Appearance Manager:
9
4/21/99  Apple Computer, Inc.

C H A P T E R 1

Introduction

■ “About the Appearance Manager” (page 13) introduces the Appearance
Manager and its capabilities.

■ “Using the Appearance Manager” (page 39) provides examples of how your
program can use the Appearance Manager.

■ “Appearance Manager Reference” (page 65) describes the complete
Appearance Manager application programming interface (API) through
version 1.1.

■ “Document Version History” (page 239) provides a history of corrections and
other changes to this document.
10
4/21/99  Apple Computer, Inc.

C H A P T E R 2

Contents

4/21/99



 Apple Computer, Inc.

Contents

Figure 2-0
Listing 2-0
Table 2-0

Figure 1-0
Listing 1-0
Table 1-0
2 About the Appearance Manager
The Appearance Control Panel 13
A Theme-Compliant User Interface 21

Theme-Compliant Fonts 23
Theme-Compliant Sounds 24
Theme-Compliant Cursors 25
Theme-Compliant Controls 25
Theme-Compliant Windows 28
Theme-Compliant Menus 29
Theme-Compliant Colors and Patterns 30

Definition Function Mapping and Program Registration 32
Appearance Manager Versions 34
Appearance Manager Memory Requirements 35
11

C H A P T E R 2

About the Appearance Manager 2

The Appearance Manager coordinates the look of standard Mac OS human
interface elements and helps you adapt your custom interface elements to the
coordinated systemwide look, that is, to be theme-compliant.

This chapter describes the Appearance Manager, through version 1.1, in the
following sections:

■ “The Appearance Control Panel” (page 13) discusses appearances, themes,
and the various other settings that the Appearance control panel affects.

■ “A Theme-Compliant User Interface” (page 21) discusses the parts of the
Mac OS user interface that are affected by the Appearance Manager.

■ “Definition Function Mapping and Program Registration” (page 32)
discusses how the Appearance Manager maps standard pre–Appearance
Manager definition functions to their theme-compliant equivalents.

■ “Appearance Manager Versions” (page 34) discusses the availability of the
Appearance Manager under various versions of the Mac OS.

■ “Appearance Manager Memory Requirements” (page 35) discusses the
impact of the Appearance Manager on your program’s memory usage.

The Appearance Control Panel 2

The Appearance control panel is the user interface for the Appearance Manager.
Through the Appearance control panel, users can adapt their experience of the
system’s look and sound by changing the current theme. The changes that the
user makes to the current theme apply not just to the Mac OS itself, but also to
all theme-compliant programs that the user is currently running.

Figure 2-1 shows the same desktop, before and after a change of themes.
The Appearance Control Panel 13
4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager

Figure 2-1 The same desktop in two different themes
14 The Appearance Control Panel

4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager

As Figure 2-1 shows, changing a theme can mean changing various user
preferences. A theme can contain preferences for the current desktop picture or
pattern, the system fonts, any interface-related sounds, the current appearance,
and other options.

Each pane of the Appearance control panel allows the user to specify
preferences for selected aspects of a theme. As shown in Figure 2-2, the Themes
pane is the first presented to the user. In this pane, the user can select the
current theme from among various system-supplied themes, or the user can
choose a theme that they themselves have previously created.

Figure 2-2 The Themes pane of the Appearance control panel
The Appearance Control Panel 15
4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager

Figure 2-3 shows the Appearance pane of the Appearance control panel. In this
pane, the user can select highlight and variation colors for an appearance. An
appearance unifies the look of human interface objects on the system, including
alert icons, controls, background colors, dialog boxes, menus, windows, and
state transitions.

Figure 2-3 The Appearance pane of the Appearance control panel

In the Fonts pane of the Appearance control panel, shown in Figure 2-4, the user
can select the preferences for the system fonts in a theme. Note that the
Appearance Manager distinguishes between large and small system fonts, as
16 The Appearance Control Panel

4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager

well as providing the user with the option to choose a separate views font for
lists and labels, such as those used in Finder windows.

Figure 2-4 The Fonts pane of the Appearance control panel

As shown in Figure 2-5, the user can change the current desktop picture or
pattern via the Desktop pane of the Appearance control panel.
The Appearance Control Panel 17
4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager

Figure 2-5 The Desktop pane of the Appearance control panel

Figure 2-6 shows the Sound pane of the Appearance control panel. Users can
choose a “sound track” for any or all interface aspects in the current theme, or
they can choose to eliminate interface sounds from the theme entirely.
18 The Appearance Control Panel

4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager

Figure 2-6 The Sound pane of the Appearance control panel

In the Options pane of the Appearance control panel, shown in Figure 2-7, the
user can select scroll bar preferences and choose the window collapsing
behavior for a theme.

When the user selects Smart Scrolling, double scroll bar arrows are used at one
end of a scroll bar. For vertical scroll bars, the double arrows are located at the
lower end of the scroll bar. For horizontal scroll bars, the double arrows are
located at the right end of the scroll bar. The scroll box (also known as a “scroll
indicator” or “thumb”) is proportional in size to the amount of a window’s
visible content with smart scrolling.
The Appearance Control Panel 19
4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager

If the user does not select smart scrolling, a single scroll bar arrow is used at
each end of a scroll bar and the scroll box is of fixed size.

Figure 2-7 The Options pane of the Appearance control panel

While the Appearance control panel allows users to adapt their experience of
the system’s look and sound, some programs may also wish to set their own
theme preferences, thus creating a custom theme environment in which to run.
This is useful for some programs, such as games, that need to control the entire
user environment while they are active. See “Creating Custom Themes”
(page 56) for more details on this process.
20 The Appearance Control Panel

4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager

The Appearance Manager saves the preferences that describe a theme in a
theme file in the System Folder. The Appearance Manager provides the
following functions for working with theme files:

■ GetTheme (page 70) obtains a collection containing data describing the current
theme.

■ SetTheme (page 73) sets a specified collection as the current theme.

■ IterateThemes (page 73) iterates over all themes installed on a system.

■ IsValidAppearanceFileType (page 72) returns whether the system can
interpret files of a given file type as appearance files.

A Theme-Compliant User Interface 2

A theme-compliant program is either one that uses only standard Mac OS
human interface elements (that is, controls, windows, and other elements
created from standard definition functions) or one that contains custom
interface elements but uses the Appearance Manager to be theme-compliant.

Theme-compliant interface elements automatically coordinate with the rest of
the user interface under any theme. An interface element that is not
theme-compliant may appear to be visually incongruous or may not provide
the same behavior (such as not having smart scrolling features) as a
theme-compliant element.

Figure 2-8 shows the same dialog box, before and after being made
theme-compliant. Comparing the two dialog boxes, you can see that the
theme-compliant version uses the correct background color (gray) for the
platinum appearance. Another difference is that the theme-compliant dialog
box uses standard system-defined primary group boxes; these group boxes
have a beveled look in the platinum appearance and allow you to use a
checkbox item for the title of the group box. Finally, the theme-compliant dialog
box also makes use of a standard focus ring for the editable text field into which
the user may currently type.
A Theme-Compliant User Interface 21
4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager

Figure 2-8 The same dialog box, before and after being made theme-compliant

The key to making your program theme-compliant is to allow the system to do
as much of your interface work for you as is possible. Using the standard,
system-defined interface elements is the biggest step you can take toward

Not theme-compliant

Theme-compliant
22 A Theme-Compliant User Interface

4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager

theme-compliance. However, if your program uses custom interface elements,
you must then use the Appearance Manager to adapt these nonstandard
elements to the same coordinated look as the rest of the Mac OS. See “Case
Studies for Making Custom Interface Elements Theme-Compliant” (page 46) for
examples of making various custom control elements theme-compliant.

Of course, the specific actions necessary to achieve theme-compliance vary from
program to program, so you should use the checklist provided in “A Checklist
for Creating a Theme-Compliant Program” (page 39) to determine what you
need to do to make your program theme-compliant.

The following sections discuss the elements of a theme-compliant user interface
in more detail:

■ “Theme-Compliant Fonts” (page 23)

■ “Theme-Compliant Sounds” (page 24)

■ “Theme-Compliant Cursors” (page 25)

■ “Theme-Compliant Controls” (page 25)

■ “Theme-Compliant Windows” (page 28)

■ “Theme-Compliant Menus” (page 29)

■ “Theme-Compliant Colors and Patterns” (page 30)

Theme-Compliant Fonts 2

As shown in Figure 2-9, the user can use the Appearance control panel to select
the preferences for the system fonts in a theme. Because of this, system fonts
may change with a theme change while your program is running. If you are
using standard interface elements (that is, system-defined windows, controls,
and menus), the fonts used for these elements automatically change with a
theme change.

Some programs may not use standard interface elements in all instances,
however. For example, a program may draw its own text into a dialog box. In
such cases, to ensure that the fonts you use match the corresponding system
fonts in the current theme, you should use the Appearance Manager to
determine the fonts that you use. The Appearance Manager provides the
following functions for working with theme fonts:
A Theme-Compliant User Interface 23
4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager

Figure 2-9 Examples of the views font, the large system font, and the small system
font

■ GetThemeFont (page 71) obtains information about a system font in the current
theme.

■ UseThemeFont (page 74) sets the font of the current graphics port to one of the
current theme’s system fonts.

Theme-Compliant Sounds 2

As shown in Figure 2-6 (page 19), the user can select preferences for the use of
sounds in a theme. Therefore, not only may users choose to play sounds
associated with various aspects of your program’s user interface, but the
sounds associated with various interface elements may change with a theme
change. If you are using standard interface elements (that is, system-defined

Large system
font

Views font

Small system
font
24 A Theme-Compliant User Interface

4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager

windows, controls, and menus), the system automatically plays the appropriate
sounds, if any, for these elements in the current theme.

Some programs may not use standard interface elements in all instances,
however. In such cases, to ensure that your program’s sounds match those used
in the current theme, you should use the Appearance Manager to determine the
sounds that your program uses. The Appearance Manager provides the
following functions for playing theme sounds:

■ PlayThemeSound (page 89) plays an asynchronous sound associated with the
specified state change.

■ BeginThemeDragSound (page 88) continuously plays a theme-specific sound
associated with the user’s movement of a given interface object.

■ EndThemeDragSound (page 88) terminates the playing of a sound associated
with the user’s movement of a given interface object.

Theme-Compliant Cursors 2

Appearance Manager 1.1 introduces cursors that can change appearance with a
theme change. In order to be theme-compliant, your program should use these
theme-specific cursors whenever possible, instead of the classic black-and-white
or color cursors. To obtain theme-compliant cursors, you must use the
Appearance Manager to draw cursors in your program, rather than the
QuickDraw cursor utilities.

Because the Appearance Manager cursors are color cursors, they currently
cannot be set from interrupt time. Therefore, if you support animated cursors
that are changed at interrupt time you should continue to use your own cursors
for now. The Appearance Manager provides the following functions for
specifying theme-compliant cursors:

■ SetThemeCursor (page 91) sets the cursor to a version of the specified cursor
type that is consistent with the current theme.

■ SetAnimatedThemeCursor (page 90) animates a version of the specified cursor
type that is consistent with the current theme.

Theme-Compliant Controls 2

Controls are graphical objects, such as buttons, scroll bars, or tabs, that the user
can manipulate to take an immediate action or change settings to modify a
A Theme-Compliant User Interface 25
4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager
future action. Your program can use the Control Manager to create standard
Mac OS controls. To be theme-compliant, your program should either use
standard controls or use the Appearance Manager to adapt its custom control
elements. For examples and descriptions of the standard Mac OS 8.x controls,
see the Mac OS 8 Human Interface Guidelines at

<http://developer.apple.com/techpubs/mac/HIGOS8Guide/thig-2.html>

Although your program (and the Control Manager) may typically define many
different types of buttons, for simplicity the Appearance Manager treats various
types of buttons—including push buttons, checkboxes, radio buttons, arrow
buttons, pop-up menu buttons, disclosure triangles, increment/decrement
buttons, and bevel buttons—within a single concept of “buttons.” The
Appearance Manager provides the following functions for creating
theme-compliant custom buttons:

■ DrawThemeButton (page 94) draws a button.

■ DrawThemePopupArrow (page 102) draws a pop-up arrow.

■ GetThemeButtonBackgroundBounds (page 113) obtains the rectangle that
contains a button.

■ GetThemeButtonContentBounds (page 114) obtains the rectangle where content
can be drawn for a button.

■ GetThemeButtonRegion (page 115) obtains the region occupied by a button.

■ GetThemeCheckBoxStyle (page 116) obtains the system preference for the type
of mark to use in a checkbox.

The Appearance Manager also treats various types of rectangular controls—
including scroll bars, sliders, and progress bars—as a single concept of “tracks.”
The Appearance Manager provides the following functions for creating
theme-compliant custom tracks:

■ DrawThemeTrack (page 110) draws a track.

■ DrawThemeTrackTickMarks (page 111) draws tick marks for a track.

■ DrawThemeTickMark (page 109) draws a tick mark.

■ DrawThemeScrollBarArrows (page 104) draws scroll bar arrows consistent with
the current system preferences.

■ GetThemeTrackBounds (page 120) obtains the bounding rectangle of a track.
26 A Theme-Compliant User Interface

4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager
■ GetThemeTrackDragRect (page 121) obtains the area in which the user may
drag a track’s indicator.

■ GetThemeTrackLiveValue (page 122) obtains the current value of a track’s
indicator, given its relative position.

■ GetThemeTrackThumbPositionFromOffset (page 123) obtains the relative
position of a track’s indicator, given an offset from its prior position.

■ GetThemeTrackThumbPositionFromRegion (page 124) obtains the relative
position of a track’s indicator, given its current position.

■ GetThemeTrackThumbRgn (page 124) obtains the region containing a track’s
indicator.

■ GetThemeScrollBarTrackRect (page 118) obtains the area containing the track
portion of a scroll bar.

■ HitTestThemeTrack (page 127) returns whether the user clicked upon the
specified track.

■ HitTestThemeScrollBarArrows (page 125) returns whether the user clicked
upon the specified scroll bar’s arrows.

■ GetThemeScrollBarArrowStyle (page 116) obtains the system preference for
the type of scroll bar arrows to be used.

■ GetThemeScrollBarThumbStyle (page 117) obtains the system preference for
the type of scroll box to be used.

The Appearance Manager provides the following functions for creating
theme-compliant custom tabs:

■ DrawThemeTab (page 107) draws a tab.

■ DrawThemeTabPane (page 109) draws a tab pane.

■ GetThemeTabRegion (page 119) obtains the region occupied by a tab.

The Appearance Manager provides the following other functions for creating
theme-compliant custom controls:

■ DrawThemeChasingArrows (page 96) draws an asynchronous arrows indicator.

■ DrawThemeEditTextFrame (page 97) draws an editable text frame.

■ DrawThemeFocusRect (page 98) draws or erases a focus ring around a specified
rectangle.
A Theme-Compliant User Interface 27
4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager
■ DrawThemeFocusRegion (page 99) draws or erases a focus ring around a
specified region.

■ DrawThemeGenericWell (page 100) draws an image well frame.

■ DrawThemeListBoxFrame (page 100) draws a list box frame.

■ DrawThemePlacard (page 101) draws a placard.

■ DrawThemePrimaryGroup (page 103) draws a primary group box frame.

■ DrawThemeSecondaryGroup (page 105) draws a secondary group box frame.

■ DrawThemeSeparator (page 106) draws a separator line.

Theme-Compliant Windows 2

Mac OS applications typically interact with users via windows on the screen.
You can use the Window Manager to create, display, and manage the drawing
and behavior of standard Mac OS windows. Dialog boxes and alert boxes are
specific types of windows that are used to present information to and solicit
information from the user. You can use the Dialog Manager to readily
implement standard Mac OS dialog boxes and alert boxes. To be
theme-compliant, your program should either use standard windows or use the
Appearance Manager to adapt your custom window, dialog box, and alert box
elements. For examples and descriptions of standard Mac OS 8.x windows, see
the Mac OS 8 Human Interface Guidelines at

<http://developer.apple.com/techpubs/mac/HIGOS8Guide/thig-2.html>

The Appearance Manager provides the following functions for applying
theme-compliant colors and patterns to custom windows:

■ SetThemeWindowBackground (page 143) associates a theme-compliant color or
pattern with the background of a window.

■ SetThemeTextColorForWindow (page 142) sets a window’s foreground color to a
theme-compliant color.

The Appearance Manager provides the following functions for drawing
theme-compliant custom windows:

■ DrawThemeModelessDialogFrame (page 129) draws a beveled outline inside the
content area of a modeless dialog box.

■ DrawThemeScrollBarDelimiters (page 130) outlines a window’s scroll bars.
28 A Theme-Compliant User Interface

4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager
■ DrawThemeStandaloneGrowBox (page 131) draws a size box.

■ DrawThemeStandaloneNoGrowBox (page 132) draws a fill image for use in the
corner space between scroll bars.

■ DrawThemeTitleBarWidget (page 133) draws a close box, zoom box, or collapse
box.

■ DrawThemeWindowFrame (page 135) draws a window frame.

■ DrawThemeWindowHeader (page 136) draws a window header.

■ DrawThemeWindowListViewHeader (page 137) draws a window list view header.

The Appearance Manager provides the following functions for obtaining
window region information:

■ GetThemeStandaloneGrowBoxBounds (page 138) obtains the bounds of a size
box.

■ GetThemeWindowRegion (page 139) obtains the specified window region.

■ GetThemeWindowRegionHit (page 140) obtains the part of the window that the
user clicked upon.

Theme-Compliant Menus 2

Menus allow users to view or choose from a list of choices and commands that
your application provides. You can use the Menu Manager to create, display,
and manage standard Mac OS menus. To be theme-compliant, your program
should either use standard menus or use the Appearance Manager to adapt
your custom menu and menu bar elements. For examples and descriptions of
standard Mac OS 8.x menus, see the Mac OS 8 Human Interface Guidelines at

<http://developer.apple.com/techpubs/mac/HIGOS8Guide/thig-2.html>

The Appearance Manager provides the following functions for drawing
theme-compliant custom menus:

■ DrawThemeMenuBackground (page 145) draws a menu background.

■ GetThemeMenuBackgroundRegion (page 150) obtains the background region for
a menu.

The Appearance Manager provides the following functions for drawing
theme-compliant custom menu titles:

■ DrawThemeMenuTitle (page 149) draws a menu title.
A Theme-Compliant User Interface 29
4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager
■ GetThemeMenuTitleExtra (page 154) obtains a measurement of the space to
either side of a menu title.

The Appearance Manager provides the following functions for drawing
theme-compliant custom menu items:

■ DrawThemeMenuItem (page 146) draws a menu item.

■ DrawThemeMenuSeparator (page 148) draws a menu item separator line.

■ GetThemeMenuItemExtra (page 152) obtains a measurement of the space
surrounding a menu item.

■ GetThemeMenuSeparatorHeight (page 153) obtains the height of a menu
separator line.

The Appearance Manager provides the following functions for drawing
theme-compliant custom menu bars:

■ DrawThemeMenuBarBackground (page 146) draws a menu bar background.

■ GetThemeMenuBarHeight (page 151) obtains the optimal height of a menu bar.

Theme-Compliant Colors and Patterns 2

The colors used for interface elements may vary from theme to theme. If you
are using standard interface elements (that is, system-defined windows,
controls, and menus), the colors used for these elements automatically change
with a theme change.

Some programs may not use standard interface elements in all instances,
however. In such cases, to ensure that your interface elements coordinate with
the current theme, you should use the Appearance Manager to determine the
colors (and patterns) that your program uses. See “Using Theme-Compliant
Colors and Patterns” (page 43) for more details on this process.

To be theme-compliant, you should not use any set values for the colors of
interface objects in your program. For example, compare the background colors
of the two dialog boxes shown in Figure 2-8 (page 22). The
non-theme-compliant dialog box uses a set background color of white, which
contrasts with the theme-compliant dialog box, whose background color is
automatically drawn in gray, the correct color for the current theme.

The Appearance Manager provides the following functions for setting the
foreground or background of the current graphics port:
30 A Theme-Compliant User Interface

4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager
■ ApplyThemeBackground (page 76) sets the background color or pattern of the
current port to be consistent with that of an embedding object.

■ SetThemeBackground (page 83) applies a theme-compliant color or pattern to
the background of the current port.

■ SetThemePen (page 85) applies a theme-compliant color or pattern to the
foreground of the current port.

The Appearance Manager provides the following functions for working with
text colors:

■ GetThemeTextColor (page 81) obtains the text color used for a specified
element under the current theme.

■ SetThemeTextColor (page 86) sets the current text color to be consistent with
that of a specified element.

The Appearance Manager provides the following functions for obtaining theme
color information:

■ GetThemeAccentColors (page 78) obtains a copy of a theme’s accent colors.

■ GetThemeBrushAsColor (page 79) obtains the color that corresponds to a given
theme brush type under the current theme.

■ IsThemeInColor (page 82) returns whether the current theme would draw in
color in the given environment.

The Appearance Manager provides the following functions for working with
the drawing state of the current graphics port:

■ GetThemeDrawingState (page 80) obtains the drawing state of the current
graphics port.

■ SetThemeDrawingState (page 84) sets the drawing state of the current graphics
port.

■ DisposeThemeDrawingState (page 78) releases the memory associated with a
reference to a graphics port’s drawing state.

■ NormalizeThemeDrawingState (page 83) sets the current graphics port to a
default drawing state.
A Theme-Compliant User Interface 31
4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager
Definition Function Mapping and Program Registration 2

One way the Appearance Manager coordinates the system’s look and behavior
is by mapping standard pre–Appearance Manager definition functions (the
'MBDF' 0, 'MDEF' 0, 'WDEF' 0, 'WDEF' 124, 'CDEF' 0, 'CDEF' 1, and 'CDEF' 63
resources) to their theme-compliant equivalents. With Appearance Manager 1.1,
mapping always occurs systemwide. Prior to Appearance Manager 1.1, the user
can turn off systemwide appearance and, therefore, systemwide mapping.
Programs can ensure that their standard interface elements are mapped—with
any version of the Appearance Manager—by registering with the Appearance
Manager. See “Becoming a Client of the Appearance Manager” (page 41) for
more details on registering your program.

Figure 2-10 shows how the Appearance Manager determines whether mapping
occurs for standard definition functions.
32 Definition Function Mapping and Program Registration

4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager
Figure 2-10 Mapping of standard definition functions

Some mapped definition functions have a slightly different look and behavior
than if they were specified directly. For example, since a standard
pre–Appearance Manager window definition function can’t specify the
inclusion of a horizontal zoom box, when the old resource is mapped to a new
one, the resulting window still won’t have a horizontal zoom box. For this
reason (and to eliminate the time spent going through the mapping layer), it’s
recommended that you specify theme-compliant definition function IDs
directly.

Note
Custom definition functions cannot be mapped
automatically to theme-compliant equivalents. However,
the Appearance Manager does provide functions that you
can use to coordinate specific custom interface elements
with themes.

Register-
AppearanceClient

called?

Systemwide
appearance

on?

Application requests
'MDEF'0

Application requests
'MDEF'63

No No

Yes Yes

'MDEF'63 is used
(via mapping)

'MDEF'0 is used
(no mapping)

'MDEF'63 is used
(directly, no mapping)
Definition Function Mapping and Program Registration 33
4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager
The Appearance Manager provides the following functions for registering your
program:

■ RegisterAppearanceClient (page 68) registers your program with the
Appearance Manager.

■ UnregisterAppearanceClient (page 69) informs the Appearance Manager that
your program is no longer its client.

■ IsAppearanceClient (page 67) returns whether a given process is currently
registered as a client of the Appearance Manager.

Appearance Manager Versions 2

A number of versions of the Appearance Manager are currently available. Table
2-1 specifies

■ the version of the Appearance Manager that must or may be installed on a
given version of the Mac OS

■ the version of the API provided by that Appearance Manager version

■ the version number produced by passing gestaltAppearanceVersion to the
Gestalt function
34 Appearance Manager Versions

4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager
Table 2-1 Appearance Manager versions

Version 1.0 of the Appearance Manager does not advertise its version via
Gestalt; if the gestaltAppearanceVersion selector is not present but the
gestaltAppearanceAttr selector is present, you can assume version 1.0 of the
API is available.

Appearance Manager 1.0.2 uses Gestalt to advertise version 1.0.1 of the API.
The only differences between Appearance Manager 1.0.1 and 1.0.2 are that 1.0.2
contains extra code for backward compatibility and the “.Keyboard” font,
which you can detect by calling the Font Manager function GetFNum

Appearance Manager 1.0.3 uses Gestalt to advertise version 1.0.1 of the API.
The only difference between Appearance Manager 1.0.2 and 1.0.3 is that 1.0.3 no
longer contains the “.Keyboard” font. In the 1.0.3 SDK, the font is delivered as a
separate suitcase that should be installed into the Fonts folder. The font can still
be detected with the function GetFNum.

Do not attempt to install a version of the Appearance Manager bundled with
the Mac OS onto any other version of the Mac OS. Apple has not tested such
configurations and does not recommend or support such configurations.

Appearance Manager Memory Requirements 2

Because appearance design is intended to be very flexible, some appearances
may apply complex, nonrectangular shapes to their interface elements. Because
data describing these shapes is saved in the form of QuickDraw Region

System version
Appearance
Manager version API version gestaltAppearanceVersion

System 7.1
through
Mac OS 7.6.1

must install 1.0.2
or 1.0.3

1.0.1 1.0.1

Mac OS 8 1.0 (bundled) 1.0 none
Mac OS 8.1 1.0.1 (bundled) 1.0.1 1.0.1
Mac OS 8 and
Mac OS 8.1

may install 1.0.2
or 1.0.3

1.0.1 1.0.1

Mac OS 8.5 1.1 (built into the
System file)

1.1 1.1.0
Appearance Manager Memory Requirements 35
4/21/99  Apple Computer, Inc.

C H A P T E R 2

About the Appearance Manager
structures—which are of variable length, depending upon the complexity of the
shapes being described—the amount of memory your application requires may
increase when some appearances are active. If your program’s memory usage is
finely tuned according to assumptions about the amount of memory consumed
on versions of the Mac OS prior to Mac OS 8.5, and in particular the amount of
memory consumed by the Window Manager for each window, you may wish to
increase your heap size to accommodate appearance-specific memory usage
variations.
36 Appearance Manager Memory Requirements

4/21/99  Apple Computer, Inc.

C H A P T E R 3

Contents

4/21/99  Apple Computer, Inc.

Contents
Figure 3-0
Listing 3-0
Table 3-0
3 Using the Appearance Manager
A Checklist for Creating a Theme-Compliant Program 39
Becoming a Client of the Appearance Manager 41
Using Theme-Compliant Colors and Patterns 43

Using Theme Brushes 43
Using Theme Text Colors 44
Saving and Restoring the Drawing Environment 44
Obtaining Device Color and Depth Information 45

Case Studies for Making Custom Interface Elements Theme-Compliant 46
Making an Object Drawn With QuickDraw Theme-Compliant 47
Making a Dialog User Item Theme-Compliant 48
Making a Control User Pane Theme-Compliant 50
Making a Custom Definition Function Theme-Compliant 52
Drawing Tracks 55

Creating Custom Themes 56
37

C H A P T E R 3
Using the Appearance Manager 3

Many programs exclusively use standard, system-defined interface elements. If
yours is one of these, you may only need to register your program with the
Appearance Manager and be prepared to respond to Appearance Manager
Apple events in order to be theme-compliant. However, if your program uses
any custom interface elements, you may need to use other features of the
Appearance Manager for your program to be theme-compliant.

This chapter discusses how you can use the Appearance Manager, through
version 1.1, in the following sections:

■ “A Checklist for Creating a Theme-Compliant Program” (page 39) presents
the main steps you should take to make your program theme-compliant.

■ “Becoming a Client of the Appearance Manager” (page 41) describes the
process of checking for and registering with the Appearance Manager.

■ “Using Theme-Compliant Colors and Patterns” (page 43) discusses how to
work with color in your interface.

■ “Case Studies for Making Custom Interface Elements Theme-Compliant”
(page 46) presents examples of making custom interface elements
theme-compliant.

■ “Creating Custom Themes” (page 56) describes how to set up a custom
environment for your program.

A Checklist for Creating a Theme-Compliant Program 3

The key to making your program theme-compliant is to allow the system to do
as much of your interface work for you as possible. Using the standard,
system-defined interface elements is one major step toward theme-compliance.
Avoiding making hard-coded assumptions about dimensions and colors is
another major step. Both steps save you engineering effort and repay you with a
theme-compliant interface. The specific actions necessary to achieve
theme-compliance vary from program to program, so you should use the
checklist below to determine what you need to do to make your program
theme-compliant.

■ Register with the Appearance Manager. See “Becoming a Client of the
Appearance Manager” (page 41) for more details.
A Checklist for Creating a Theme-Compliant Program 39
4/21/99  Apple Computer, Inc.

C H A P T E R 3

Using the Appearance Manager
■ Whenever possible, use the system-defined windows supplied by the
Window Manager instead of creating your own. With Mac OS 8.5 and 8.6,
the Window Manager provides extensive support for a variety of window
features, including floating windows, that developers previously had to
implement on their own.

■ Whenever possible, use the system-defined menus provided by the Menu
Manager instead of creating your own. With Mac OS 8 and 8.5, the Menu
Manager supports a variety of long-requested features, including: an
extended selection of available modifier keys to use for keyboard
equivalents, different fonts for individual menu items, a wider selection of
icon data formats, and menu item command IDs.

■ Whenever possible, use the wide assortment of system-defined controls
available with the Mac OS 8 Control Manager instead of creating your
own. At a minimum, you should revise any custom controls in your
program so that they work in control hierarchies.

■ Make your dialog boxes and alert boxes theme-compliant. The Mac OS 8
Dialog Manager introduces two new resources—the 'dlgx' and 'alrx'
resources—that you can use to specify theme-compliant features for your
dialog boxes and alert boxes, respectively.

■ Where you absolutely cannot use standard interface elements, use
Appearance Manager functions to adapt your custom elements to a
theme-compliant look. See “Case Studies for Making Custom Interface
Elements Theme-Compliant” (page 46) for some examples of using the
Appearance Manager to make custom control elements theme-compliant.

■ Remove color table resources for windows, controls, menus, dialog boxes,
and alert boxes from your program. Because they limit theme-compliance,
these resources—typically used to specify custom color information for
interface elements—are now mostly ignored by the system.

■ Make no assumptions about color values for your interface. Instead of
hard-coding color values, use the Appearance Manager’s ThemeBrush and
ThemeTextColor constants, described in “Theme Brush Constants”
(page 180) and “Theme Text Color Constants” (page 225). When you use
these constants in your program, the Appearance Manager automatically
applies the correct color or pattern for a given interface element in the
current theme. See “Using Theme-Compliant Colors and Patterns”
(page 43) for more details on handling color in your program’s interface.

■ Because the measurements of standard interface objects may change in a
given appearance, you should make no assumptions about the dimensions
of menus, windows, or controls. For example, relying on an unchanging
40 A Checklist for Creating a Theme-Compliant Program

4/21/99  Apple Computer, Inc.

C H A P T E R 3

Using the Appearance Manager
menu bar height in order to position your windows means that you could
end up with the menu bar overlapping your windows after a theme
change. Instead of relying on hard-coded dimension values, you should
call Appearance Manager functions to obtain the measurements that are
used in the current theme.

■ Call Appearance Manager functions to use theme-compliant color cursors
in your program.

Becoming a Client of the Appearance Manager 3

Before calling any Appearance Manager functions, you should check that the
Appearance Manager is present. Listing 3-1 shows an example of a function
that simply checks to see whether the Appearance Manager is present. You may
wish to perform a more extended check to determine, for example, the version
of the Appearance Manager that is installed.

Listing 3-1 Determining whether the Appearance Manager is present

static pascal OSStatus MyIsAppearancePresent (Boolean *haveAppearance)
{

OSStatus err = noErr;

long response;

// Attempt to call Gestalt; if we succeed, test for presence of Appearance Mgr
if (!(err = Gestalt (gestaltAppearanceAttr,&response)))

*haveAppearance = response & (1 << gestaltAppearanceExists) ? true : false;
// If the Appearance Mgr selector is undefined, the Appearance Mgr is not present
else if (err == gestaltUndefSelectorErr)
{

*haveAppearance = false;
err = noErr;

}

return err;
}

Becoming a Client of the Appearance Manager 41
4/21/99  Apple Computer, Inc.

C H A P T E R 3

Using the Appearance Manager
After determining that the Appearance Manager is present, but prior to
initializing or drawing any onscreen elements or invoking any definition
functions, you should register your program as client of the Appearance
Manager by calling the function RegisterAppearanceClient (page 68), which is
all many programs need to do to be theme-compliant.

You should call RegisterAppearanceClient in order to receive Appearance
Manager Apple events. With Appearance Manager 1.1 and later, when the user
changes the current appearance (that is, when a theme switch occurs), the
Appearance Manager sends Apple events to all running applications that are
registered as clients of the Appearance Manager and which are high-level event
aware. Because typical results of a theme switch might include a change in
menu bar height or window structure dimensions, as well as changes to the
system fonts, colors, and patterns currently in use, you should listen for and,
under most circumstances, respond to the Appearance Manager Apple events.
See “Appearance Manager Apple Event Constants” (page 177) for more details
on the Appearance Manager Apple events.

Note
The Appearance Manager Apple events are notifications
your program receives after the theme switch has occurred,
so you should not depend on receiving an Apple event
before being asked to redraw in the new theme.

When your program calls RegisterAppearanceClient, the Appearance Manager
also automatically maps standard pre–Appearance Manager definition
functions to their theme-compliant equivalents for your program, whether or
not systemwide appearance is active; see “Definition Function Mapping and
Program Registration” (page 32) for more details on this process.

You are also encouraged to register plug-ins with the Appearance Manager in
order to receive definition function mapping when systemwide appearance is
off. You can use the function IsAppearanceClient (page 67) to determine if the
process containing your plug-in is registered as a client of the Appearance
Manager. If it is not, you can register your plug-in on entry by calling
RegisterAppearanceClient (page 68), and you can unregister it on exit by calling
the function UnregisterAppearanceClient (page 69).
42 Becoming a Client of the Appearance Manager

4/21/99  Apple Computer, Inc.

C H A P T E R 3

Using the Appearance Manager
Using Theme-Compliant Colors and Patterns 3

As mentioned in “A Checklist for Creating a Theme-Compliant Program”
(page 39), one of the first steps in becoming theme-compliant is to remove color
table resources for windows, controls, menus, dialog boxes, and alert boxes
from your program. The system no longer fully supports the 'wctb', 'ictb',
'mctb', 'dctb', 'actb', and 'cctb' resources, which typically have been used to
specify custom color information for interface elements. In some cases, using
these resources can inhibit the ability of your user interface to integrate with the
current theme. For theme-compliant dialog boxes and alert boxes, instead use
the following Mac OS 8 Dialog Manager resources: the dialog font table
resource ('dftb'), the extended dialog resource ('dlgx'), and the extended alert
resource ('alrx').

Other steps you can take to ensure that your program’s use of color is
theme-compliant are described in the following sections:

■ “Using Theme Brushes” (page 43)

■ “Using Theme Text Colors” (page 44)

■ “Saving and Restoring the Drawing Environment” (page 44)

■ “Obtaining Device Color and Depth Information” (page 45)

Using Theme Brushes 3

One of the main things that you can do to make your program theme-compliant
is to avoid using “fixed” color values for your interface. Instead of hard-coding
color values, use the Appearance Manager ThemeBrush constants, described in
“Theme Brush Constants” (page 180), for painting the background of a window
or control. Theme brushes are an abstract mechanism that allows colors and
patterns to be coordinated with the current theme. A theme brush may specify
either an RGB color or a pixel pattern, depending on the theme. You can pass
constants of type ThemeBrush in the inBrush parameter of the functions
SetThemeBackground (page 83), SetThemePen (page 85), and
SetThemeWindowBackground (page 143) to specify that the Appearance Manager
substitute whatever the appropriate color or pattern is for a given human
interface element in the current theme. Using these brushes makes your existing
user interface integrate more smoothly with the current theme.
Using Theme-Compliant Colors and Patterns 43
4/21/99  Apple Computer, Inc.

C H A P T E R 3

Using the Appearance Manager
The SetThemeBackground function applies a theme-compliant color or pattern to
the background of the current graphics port. Your application should call the
SetThemeBackground function each time you wish to draw a background in a
particular brush type. Note that the SetThemeBackground function aligns patterns
with local coordinates (0,0) in the current port. To apply a theme-compliant
color or pattern to the foreground of the current port, use the SetThemePen
function. Your application should call the SetThemePen function each time you
wish to draw a foreground element in a specified brush constant. For use
specifically with windows, not ports, the SetThemeWindowBackground function
sets the theme-compliant color or pattern value to which the Window Manager
erases a window’s background.

Because ThemeBrush constants can represent a color or pattern, depending on the
current theme, your application must save and restore the current drawing state
of the graphics port around calls to SetThemeBackground, SetThemePen, and
SetThemeWindowBackground. For details on this process, see “Saving and
Restoring the Drawing Environment” (page 44).

Using Theme Text Colors 3

The Appearance Manager also provides a wide variety of text colors for
drawing the text of a control. Again, instead of hard-coding color values for
text, use the Appearance Manager’s ThemeTextColor constants, described in
“Theme Text Color Constants” (page 225), which identify a particular context in
which text is used. You can pass a constant of type ThemeTextColor to the
function SetThemeTextColor (page 86) to specify that the Appearance Manager
substitute whatever the appropriate text color is for a given context under the
current theme. You can use the function GetThemeTextColor (page 81) to obtain
the actual color in use under the current theme for the specified ThemeTextColor
constant. When you use the ThemeTextColor constants in your program, the
Appearance Manager automatically applies the correct color for text in the
current theme.

Saving and Restoring the Drawing Environment 3

You may have existing code that saves the state of the graphics port before
changing the background or pen, and restores the state after drawing. When
adopting theme brushes, you should convert your code to use Appearance
Manager functions to save and restore all graphics port state values that can be
44 Using Theme-Compliant Colors and Patterns

4/21/99  Apple Computer, Inc.

C H A P T E R 3

Using the Appearance Manager
modified by the theme brush, including pixel patterns and other state
information that is not typically accessible to applications.

To obtain the current graphics port state values, you can call the function
GetThemeDrawingState (page 80) before performing an operation that modifies
the drawing state of a graphics port. To return the graphics port to its previous
drawing state and release the memory allocated for the drawing state reference,
you can call SetThemeDrawingState (page 84), providing the reference obtained
in the outState parameter of GetThemeDrawingState. You can also call
DisposeThemeDrawingState (page 78) to release the allocated memory.

The function NormalizeThemeDrawingState (page 83) sets the current graphics
port to a default drawing state. NormalizeThemeDrawingState sets the
background of a graphics port to white; the pen of the port to a size of 1 pixel
by 1 pixel, a pattern mode of patCopy, and a pattern of black; and the text mode
of the port to srcOr. The NormalizeThemeDrawingState function also flushes from
memory any color foreground or background patterns saved in the port’s
GrafPort.pnPat or GrafPort.bkPat fields, respectively.

Obtaining Device Color and Depth Information 3

To be truly theme-compliant, your program should use the QuickDraw function
DeviceLoop with all of its drawing. DeviceLoop automatically supplies your
application with the color and depth information that you need to supply to
many Appearance Manager functions.

If your program is not drawing via DeviceLoop, your program should obtain the
color and depth information itself. You typically do this by calling the
QuickDraw function GetGDevice. Your program then examines the GDevice
structure for the current device’s color and depth information, as shown in
Listing 3-2. Note that the example shown may not produce optimal results
when you are drawing across multiple monitors with different bit depths.

Listing 3-2 Obtaining color and depth information for the current device

// Is the current device a color device?
static pascal Boolean MyGraphicDeviceIsColor (GDHandle gdh)
{

if (!gdh) gdh = GetGDevice ();
return ((1 << gdDevType) & (**gdh).gdFlags) != 0;

}

Using Theme-Compliant Colors and Patterns 45
4/21/99  Apple Computer, Inc.

C H A P T E R 3

Using the Appearance Manager
// What is the bit depth of the current device?
static pascal short MyGetGraphicDeviceDepth (GDHandle gdh)
{

if (!gdh) gdh = GetGDevice ();
return (**((**gdh).gdPMap)).pixelSize;

}

Case Studies for Making Custom Interface Elements
Theme-Compliant 3

As discussed in “A Checklist for Creating a Theme-Compliant Program”
(page 39), the easiest way to have your program’s interface be theme-compliant
is to use the system-defined menus, windows, and controls rather than creating
your own. For example, the Mac OS 8 Control Manager supports a variety of
new control definitions, as well as enhancements to existing controls, all of
which are completely theme-compliant. In the case of your program’s controls,
if you find that you cannot use the system definitions supplied by Control
Manager for all your needs, you then should use the Appearance Manager to
ensure that those custom control elements in your program are
theme-compliant.

The following four “before and after” case studies show how you can use the
Appearance Manager to make a custom control element theme-compliant. Each
case presents both a non-theme-compliant, custom control element (in our
examples, a frame for an editable text field) and the theme-compliant version of
the same element. The cases differ in the ways in which the
non-theme-compliant elements have originally been implemented, which, in
turn, affects how one makes the elements theme-compliant with the
Appearance Manager. You may note that—even in these simple examples—in
each case drawing the element with the Appearance Manager requires even less
code than is needed for the original, non-theme-compliant drawing.

■ “Making an Object Drawn With QuickDraw Theme-Compliant” (page 47)

■ “Making a Dialog User Item Theme-Compliant” (page 48)

■ “Making a Control User Pane Theme-Compliant” (page 50)

■ “Making a Custom Definition Function Theme-Compliant” (page 52)
46 Case Studies for Making Custom Interface Elements Theme-Compliant

4/21/99  Apple Computer, Inc.

C H A P T E R 3

Using the Appearance Manager
For a discussion of drawing theme-compliant tracks in your program, see
“Drawing Tracks” (page 55).

Making an Object Drawn With QuickDraw Theme-Compliant 3

Listing 3-3 shows a sample function called MyEditTextFrameDraw, which,
depending upon the presence of the Appearance Manager, branches between
two functions, each of which draws a frame for an editable text field. Prior to
drawing, the MyEditTextFrameDraw function calls the MyIsAppearancePresent
function, described in “Becoming a Client of the Appearance Manager”
(page 41), to determine whether the Appearance Manager is present.

If the Appearance Manager is not present, MyEditTextFrameDraw calls the
non-theme-compliant function MyClassicEditTextFrameDraw.
MyClassicEditTextFrameDraw draws a frame by setting the dimensions of the
rectangle and its color with calls to QuickDraw. However, an editable text frame
drawn in this manner maintains a “fixed” look in any appearance and cannot
adapt to theme switches.

If the Appearance Manager is present, however, MyEditTextFrameDraw calls the
MyAppearanceSavvyEditTextFrameDraw function.
MyAppearanceSavvyEditTextFrameDraw then passes the appropriate Appearance
Manager constant for the drawing state (kThemeStateActive or
kThemeStateInactive) to the function DrawThemeEditTextFrame (page 97).
DrawThemeEditTextFrame draws the frame appropriately for the activity state and
the current theme. And, when a theme switch occurs, the frame automatically
takes on a look consistent with the current theme.

Listing 3-3 Moving from QuickDraw to the Appearance Manager

static pascal OSStatus MyClassicEditTextFrameDraw (
const Rect *bounds,
Boolean active)

{
Rect frame = *bounds;
InsetRect (&frame,-1,-1);
// We’re pre-Appearance Mgr here, so always draw in black...
PenNormal ();
// unless the editable text field is inactive; in that case, draw in gray
Case Studies for Making Custom Interface Elements Theme-Compliant 47
4/21/99  Apple Computer, Inc.

C H A P T E R 3

Using the Appearance Manager
if (!active) PenPat (&(qd.gray));
FrameRect (&frame);
return noErr;

}

static pascal OSStatus MyAppearanceSavvyEditTextFrameDraw (
const Rect *bounds,
Boolean active)

{
DrawThemeEditTextFrame (bounds,

active ? kThemeStateActive : kThemeStateInactive);
return noErr;

}

static pascal OSStatus MyEditTextFrameDraw (const Rect *bounds, Boolean active)
{

OSStatus err = noErr;

Boolean haveAppearance;

if (!(err = MyIsAppearancePresent (&haveAppearance)))
{

if (haveAppearance)
err = MyAppearanceSavvyEditTextFrameDraw (bounds, active);

else
err = MyClassicEditTextFrameDraw (bounds, active);

}

return err;
}

Making a Dialog User Item Theme-Compliant 3

Listing 3-4 shows another sample function, MyEditTextFrameUserItemProc,
which, depending upon the presence of the Appearance Manager, branches
between two functions, each of which draws a frame for an editable text field.
In this example, the editable text frame is defined as a dialog user item. Again,
prior to drawing, the MyEditTextFrameUserItemProc function calls the
MyIsAppearancePresent function, described in “Becoming a Client of the
48 Case Studies for Making Custom Interface Elements Theme-Compliant

4/21/99  Apple Computer, Inc.

C H A P T E R 3

Using the Appearance Manager
Appearance Manager” (page 41), to determine whether the Appearance
Manager is present.

If the Appearance Manager is not present, MyEditTextFrameUserItemProc calls
the function MyClassicEditTextFrameUserItemProc.
MyClassicEditTextFrameUserItemProc first obtains the frame’s rectangle from the
Dialog Manager, then supplies the rectangle and a color to QuickDraw to draw
the frame. However, an editable text frame drawn in this manner maintains the
same “fixed” look in any appearance and cannot adapt to theme switches.

If the Appearance Manager is present, however, MyEditTextFrameUserItemProc
calls MyAppearanceSavvyEditTextFrameUserItemProc.
MyAppearanceSavvyEditTextFrameUserItemProc then passes the appropriate
Appearance Manager constant for the drawing state (kThemeStateActive or
kThemeStateInactive) to the function DrawThemeEditTextFrame (page 97).
DrawThemeEditTextFrame draws the frame appropriately for the activity state and
the current theme. And, when a theme switch occurs, the frame automatically
takes on a look consistent with the current theme.

Listing 3-4 Drawing a dialog user item that is theme-compliant

static pascal void MyClassicEditTextFrameUserItemProc (
WindowPtr window,
DialogItemIndex itemIndex)

{
short iType;
Handle iHandle;
Rect iRect;

GetDialogItem (window,itemIndex,&iType,&iHandle,&iRect);
InsetRect (&iRect,-1,-1);
// We’re pre-Appearance Mgr here, so always draw in black...
PenNormal ();
// unless the editable text field is disabled (inactive); if so, draw in gray
if (iType & kItemDisableBit) PenPat (&(qd.gray));
FrameRect (&iRect);

}

static pascal void MyAppearanceSavvyEditTextFrameUserItemProc (
WindowPtr window,
DialogItemIndex itemIndex)
Case Studies for Making Custom Interface Elements Theme-Compliant 49
4/21/99  Apple Computer, Inc.

C H A P T E R 3

Using the Appearance Manager
{
short iType;
Handle iHandle;
Rect iRect;

GetDialogItem (window,itemIndex,&iType,&iHandle,&iRect);
DrawThemeEditTextFrame (&iRect,

(iType & kItemDisableBit) ?
kThemeStateInactive : kThemeStateActive);

}

static pascal void MyEditTextFrameUserItemProc (
WindowPtr window,
DialogItemIndex itemIndex)

{
OSStatus err = noErr;

Boolean haveAppearance;

if (!(err = MyIsAppearancePresent (&haveAppearance)))
{

if (haveAppearance)
MyAppearanceSavvyEditTextFrameUserItemProc (window, itemIndex);

else
MyClassicEditTextFrameUserItemProc (window, itemIndex);

}
}

Making a Control User Pane Theme-Compliant 3

Listing 3-5 shows a sample function, MyEditTextFrameControlUserPaneDrawProc,
which, depending upon the presence of the Appearance Manager, branches
between two functions, each of which draws a frame for an editable text field.
In this example, the frame is defined as a control user pane. Before drawing, the
MyEditTextFrameControlUserPaneDrawProc function calls the
MyIsAppearancePresent function, described in “Becoming a Client of the
Appearance Manager” (page 41), to determine whether the Appearance
Manager is present.

MyEditTextFrameControlUserPaneDrawProc calls
MyClassicEditTextFrameControlUserPaneDrawProc if the Appearance Manager is
50 Case Studies for Making Custom Interface Elements Theme-Compliant

4/21/99  Apple Computer, Inc.

C H A P T E R 3

Using the Appearance Manager
not present. MyClassicEditTextFrameControlUserPaneDrawProc first obtains the
control rectangle, then supplies the control rectangle and a color to QuickDraw
to draw the frame. However, an editable text frame drawn in this manner
maintains a “fixed” look in any appearance and cannot adapt to a theme switch.

If the Appearance Manager is present, MyEditTextFrameControlUserPaneDrawProc
calls the MyAppearanceSavvyEditTextFrameControlUserPaneDrawProc function.
MyAppearanceSavvyEditTextFrameControlUserPaneDrawProc then passes the
appropriate Appearance Manager constant for the drawing state
(kThemeStateActive or kThemeStateInactive) to the function
DrawThemeEditTextFrame (page 97). DrawThemeEditTextFrame draws the frame
appropriately for the activity state and the current theme. And, when a theme
switch occurs, the frame automatically takes on a look consistent with the
current theme.

Listing 3-5 Drawing a control user pane that is theme-compliant

static pascal void MyClassicEditTextFrameControlUserPaneDrawProc (
ControlHandle control,
SInt16 /* part */)

{
Rect contrlRect = (**control).contrlRect;
InsetRect (&contrlRect,-1,-1);
// We’re pre-Appearance Mgr here, so always draw in black...
PenNormal ();
// unless the control part code value in contrlHilite indicates
// that the control is inactive (or disabled); if so, draw in gray
if ((**control).contrlHilite >= 254)

PenPat (&(qd.gray));
FrameRect (&contrlRect);

}

static pascal void MyAppearanceSavvyEditTextFrameControlUserPaneDrawProc (
ControlHandle control,
SInt16 /* part */)

{
Rect contrlRect = (**control).contrlRect;
DrawThemeEditTextFrame (&contrlRect,

((**control).contrlHilite < 254) ?
Case Studies for Making Custom Interface Elements Theme-Compliant 51
4/21/99  Apple Computer, Inc.

C H A P T E R 3

Using the Appearance Manager
kThemeStateActive : kThemeStateInactive);
}

static pascal void MyEditTextFrameControlUserPaneDrawProc (
ControlHandle control,
SInt16 part)

{
OSStatus err = noErr;

Boolean haveAppearance;

if (!(err = MyIsAppearancePresent (&haveAppearance)))
{

if (haveAppearance)
MyAppearanceSavvyEditTextFrameControlUserPaneDrawProc (control, part);

else
MyClassicEditTextFrameControlUserPaneDrawProc (control, part);

}
}

Making a Custom Definition Function Theme-Compliant 3

The MyEditTextFrameControlDefProc function, shown in Listing 3-6, draws a
frame for an editable text field that is defined as a custom control definition
function. The MyEditTextFrameControlDefProc function calls the
MyIsAppearancePresent function, described in “Becoming a Client of the
Appearance Manager” (page 41), to determine whether the Appearance
Manager is present. Depending upon the presence of the Appearance Manager,
MyEditTextFrameControlDefProc branches between two functions to draw the
frame.

If the Appearance Manager is not present, MyEditTextFrameControlDefProc calls
the non-theme-compliant function, MyClassicEditTextFrameControlDefProc.
MyClassicEditTextFrameControlDefProc first obtains the control rectangle, then
supplies the control rectangle and a color to QuickDraw to draw the frame.
However, an editable text frame drawn in this manner maintains the same
“fixed” look in any appearance, and it cannot adapt to theme switches.

If the Appearance Manager is present, however, MyEditTextFrameControlDefProc
calls the MyAppearanceSavvyEditTextFrameControlDefProc function.
52 Case Studies for Making Custom Interface Elements Theme-Compliant

4/21/99  Apple Computer, Inc.

C H A P T E R 3

Using the Appearance Manager
MyAppearanceSavvyEditTextFrameControlDefProc then passes the appropriate
Appearance Manager constant for the drawing state (kThemeStateActive or
kThemeStateInactive) to the function DrawThemeEditTextFrame (page 97).
DrawThemeEditTextFrame draws the frame appropriately for the activity state and
the current theme. And, when a theme switch occurs, the frame automatically
takes on a look consistent with the current theme.

Listing 3-6 Drawing a custom definition function that is theme-compliant

static pascal SInt32 MyClassicEditTextFrameControlDefProc (
SInt16 /* varCode */,
ControlHandle control,
ControlDefProcMessage message,
SInt32 /* param */)

{
Rect contrlRect;

switch (message)
{

case drawCntl :

contrlRect = (**control).contrlRect;
InsetRect (&contrlRect,-1,-1);
// We’re pre-Appearance Mgr here, so always draw in black...
PenNormal ();
// unless the control part code value in contrlHilite indicates
// that the control is inactive (or disabled); if so, draw in gray
if ((**control).contrlHilite >= 254)

PenPat (&(qd.gray));
FrameRect (&contrlRect);
break;

default :

// other cases omitted for simplicity
break;

}

return 0;
}

Case Studies for Making Custom Interface Elements Theme-Compliant 53
4/21/99  Apple Computer, Inc.

C H A P T E R 3

Using the Appearance Manager
static pascal SInt32 MyAppearanceSavvyEditTextFrameControlDefProc (
SInt16 /* varCode */,
ControlHandle control,
ControlDefProcMessage message,
SInt32 /* param */)

{
Rect contrlRect;

switch (message)
{

case drawCntl :

contrlRect = (**control).contrlRect;
DrawThemeEditTextFrame (&contrlRect,

((**control).contrlHilite < 254) ?
kThemeStateActive : kThemeStateInactive);

break;

default :

// other cases omitted for simplicity
break;

}

return 0;
}

static pascal SInt32 MyEditTextFrameControlDefProc (
SInt16 varCode,
ControlHandle control,
ControlDefProcMessage message,
SInt32 param)

{
OSStatus err = noErr;

Boolean haveAppearance;

if (!(err = MyIsAppearancePresent (&haveAppearance)))
{

if (haveAppearance)
54 Case Studies for Making Custom Interface Elements Theme-Compliant

4/21/99  Apple Computer, Inc.

C H A P T E R 3

Using the Appearance Manager
err = MyAppearanceSavvyEditTextFrameControlDefProc (
varCode,
control,
message,
param);

else
err = MyClassicEditTextFrameControlDefProc (

varCode,
control,
message,
param);

}

return err;
}

Drawing Tracks 3

The Appearance Manager provides a variety of functions that you can use to
make your program’s tracks—that is, its scroll bars, sliders, and progress bars—
theme-compliant. You can use the Appearance Manager to handle most aspects
of drawing, obtaining values for, and checking for mouse-down events on
tracks and their related parts (such as the indicator on a scroll bar or slider, a
scroll bar’s arrows, or the tick marks on a slider).

Your application can use the function DrawThemeTrack (page 110) to draw a
theme-compliant slider, progress bar, or scroll bar. If you use DrawThemeTrack to
draw a scroll bar, use the function DrawThemeScrollBarArrows (page 104) to draw
the scroll bar’s arrows; see Listing 3-7 for an example of using these two
functions together to draw a complete scroll bar. If you use DrawThemeTrack to
draw a slider, use DrawThemeTrackTickMarks (page 111) if you need to draw tick
marks for the slider.

Listing 3-7 Drawing a scroll bar with arrows

Rect bounds;
ThemeTrackDrawInfo drawInfo;
OSStatus err;

SetRect (&bounds, 10, 10, 200, 26);
Case Studies for Making Custom Interface Elements Theme-Compliant 55
4/21/99  Apple Computer, Inc.

C H A P T E R 3

Using the Appearance Manager
/* Draw the arrows and pass the actual track rect into the
drawInfo structure for DrawThemeTrack to use */
err = DrawThemeScrollBarArrows (&bounds, kThemeTrackActive, 0, true, &drawInfo.bounds);

if (err == noErr)
{

drawInfo.kind = kThemeScrollBar;
/* drawInfo.bounds is set to the modified bounds, with the arrows removed,
on exit from DrawThemeScrollBarArrows */
drawInfo.min = 0;
drawInfo.max = 100;
drawInfo.value = 65;
drawInfo.attributes = kThemeTrackHorizontal | kThemeTrackShowThumb;
drawInfo.enableState = kThemeTrackActive;
drawInfo.trackInfo.scrollbar.viewsize = 0;
drawInfo.trackInfo.scrollbar.pressState = 0;

err = DrawThemeTrack (&drawInfo, NULL, NULL, 0);
}

Creating Custom Themes 3

There are two common cases where you may wish to create a custom theme.
The first is to set up a custom theme environment for your program, to be used
only when your program is active. This is useful for some programs, such as
games, that need to control the entire user environment while they are active.
The second is to create a theme environment that you want to be user-selectable
and to have systemwide effect.

In the first case, if you set up a custom theme environment for your application,
you don’t need the theme you create to show up in the Appearance control
panel (that is, to be user-selectable). The steps to create a custom theme that is
not user-selectable are as follows:

1. Create a collection, using the Collection Manager function NewCollection.

2. Using theme collection tags and Collection Manager functions, add collection
items describing attributes of the theme to the collection. Note that you do
56 Creating Custom Themes

4/21/99  Apple Computer, Inc.

C H A P T E R 3

Using the Appearance Manager
not need to add collection items for every tag defined by the Appearance
Manager; you need to include collection items only for those attributes that
you want to change. See “Theme Collection Tags” (page 190) for descriptions
of available tag values.

3. Call the function GetTheme (page 70) to get a collection containing a copy of
the data for the theme that is currently running.

4. Call SetTheme to set your collection as the current theme.

5. After you have finished using the custom theme environment for your
program, restore the previous theme by calling SetTheme. Pass SetTheme a
reference to the collection for the previous theme, which you obtained with
your call to GetTheme in Step 3.

6. Dispose of the collection and its contents when you are done.

In the second case, if you want the theme to be user-selectable and to have
systemwide effect, you need the theme to show up in the Appearance control
panel and must therefore follow these steps:

1. Create a collection, using the Collection Manager function NewCollection.

2. Using theme collection tags and Collection Manager functions, add collection
items describing attributes of the theme to the collection. Note that you do
not need to add collection items for every tag defined by the Appearance
Manager; you need to include collection items only for those attributes that
you want to change. See “Theme Collection Tags” (page 190) for descriptions
of available tag values.

3. Flatten the collection to a handle, using the Collection Manager function
FlattenCollectionToHdl.

4. Use the Resource Manager to save the flattened collection as a resource of
type 'scen'. Save the 'scen' resource into a custom theme file (that is, in a
file of type 'scen') in the Theme Files folder; see “Appearance Manager File
Type Constants” (page 179) for a description of the 'scen' file type. See More
Macintosh Toolbox for a discussion of the Resource Manager and how
resources are added to files and released.

5. Dispose of the collection and its contents when you are done.
Creating Custom Themes 57
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Contents

4/21/99  Apple Computer, Inc.

Contents

Figure 5-0
Listing 5-0
Table 5-0
Figure 4-0
Listing 4-0
Table 4-0
4 Appearance Manager Reference
Gestalt Constants 65
Functions 66

Registering With the Appearance Manager 67
IsAppearanceClient 67
RegisterAppearanceClient 68
UnregisterAppearanceClient 69

Accessing Theme Information 69
GetTheme 70
GetThemeFont 71
IsValidAppearanceFileType 72
IterateThemes 73
SetTheme 73
UseThemeFont 74

Using Theme-Compliant Colors and Patterns 75
ApplyThemeBackground 76
DisposeThemeDrawingState 78
GetThemeAccentColors 78
GetThemeBrushAsColor 79
GetThemeDrawingState 80
GetThemeTextColor 81
IsThemeInColor 82
NormalizeThemeDrawingState 83
SetThemeBackground 83
SetThemeDrawingState 84
SetThemePen 85
SetThemeTextColor 86

Playing Theme Sounds 87
59

C H A P T E R 4
BeginThemeDragSound 88
EndThemeDragSound 88
PlayThemeSound 89

Specifying Theme-Compliant Cursors 90
SetAnimatedThemeCursor 90
SetThemeCursor 91

Drawing Theme-Compliant Controls 92
DrawThemeButton 94
DrawThemeChasingArrows 96
DrawThemeEditTextFrame 97
DrawThemeFocusRect 98
DrawThemeFocusRegion 99
DrawThemeGenericWell 100
DrawThemeListBoxFrame 100
DrawThemePlacard 101
DrawThemePopupArrow 102
DrawThemePrimaryGroup 103
DrawThemeScrollBarArrows 104
DrawThemeSecondaryGroup 105
DrawThemeSeparator 106
DrawThemeTab 107
DrawThemeTabPane 109
DrawThemeTickMark 109
DrawThemeTrack 110
DrawThemeTrackTickMarks 111
GetThemeButtonBackgroundBounds 113
GetThemeButtonContentBounds 114
GetThemeButtonRegion 115
GetThemeCheckBoxStyle 116
GetThemeScrollBarArrowStyle 116
GetThemeScrollBarThumbStyle 117
GetThemeScrollBarTrackRect 118
GetThemeTabRegion 119
GetThemeTrackBounds 120
GetThemeTrackDragRect 121
GetThemeTrackLiveValue 122
GetThemeTrackThumbPositionFromOffset 123
GetThemeTrackThumbPositionFromRegion 124
60 Contents

4/21/99  Apple Computer, Inc.

C H A P T E R 4
GetThemeTrackThumbRgn 124
HitTestThemeScrollBarArrows 125
HitTestThemeTrack 127

Drawing Theme-Compliant Windows 128
DrawThemeModelessDialogFrame 129
DrawThemeScrollBarDelimiters 130
DrawThemeStandaloneGrowBox 131
DrawThemeStandaloneNoGrowBox 132
DrawThemeTitleBarWidget 133
DrawThemeWindowFrame 135
DrawThemeWindowHeader 136
DrawThemeWindowListViewHeader 137
GetThemeStandaloneGrowBoxBounds 138
GetThemeWindowRegion 139
GetThemeWindowRegionHit 140
SetThemeTextColorForWindow 142
SetThemeWindowBackground 143

Drawing Theme-Compliant Menus 144
DrawThemeMenuBackground 145
DrawThemeMenuBarBackground 146
DrawThemeMenuItem 146
DrawThemeMenuSeparator 148
DrawThemeMenuTitle 149
GetThemeMenuBackgroundRegion 150
GetThemeMenuBarHeight 151
GetThemeMenuItemExtra 152
GetThemeMenuSeparatorHeight 153
GetThemeMenuTitleExtra 154

Application-Defined Functions 154
MyMenuItemDrawingProc 155
MyMenuTitleDrawingProc 156
MyThemeButtonDrawProc 157
MyThemeEraseProc 159
MyThemeIteratorProc 160
MyThemeTabTitleDrawProc 161
MyWindowTitleDrawingProc 162

Data Types 164
ThemeDrawingState 165
Contents 61
4/21/99  Apple Computer, Inc.

C H A P T E R 4
ThemeButtonDrawInfo 165
ThemeTrackDrawInfo 166
ScrollBarTrackInfo 167
SliderTrackInfo 168
ProgressTrackInfo 169
ThemeWindowMetrics 169
ThemeIteratorUPP 171
ThemeEraseUPP 171
ThemeTabTitleDrawUPP 172
ThemeButtonDrawUPP 173
WindowTitleDrawingUPP 174
MenuTitleDrawingUPP 175
MenuItemDrawingUPP 175

Constants 176
Appearance Manager Apple Event Constants 177
Appearance Manager File Type Constants 179
Theme Background Kind Constants 179
Theme Brush Constants 180
Theme Button Adornment Constants 186
Theme Button Kind Constants 187
Theme Button Value Constants 189
Theme Checkbox Style Constants 190
Theme Collection Tags 190
Theme Cursor Constants 194
Theme Drag Sound Constants 197
Theme Draw State Constants 199
Theme Font ID Constants 200
Theme Menu Bar State Constants 200
Theme Menu Item Type Constants 201
Theme Menu State Constants 203
Theme Menu Type Constants 203
Theme Pop-Up Arrow Orientation Constants 204
Theme Pop-Up Arrow Size Constants 205
Theme Scroll Bar Arrow Style Constants 205
Theme Scroll Box Style Constants 206
Theme Size Box Direction Constants 206
Theme Slider Indicator Direction Constants 207
Theme Sound Constants 208
62 Contents

4/21/99  Apple Computer, Inc.

C H A P T E R 4
Theme Sound Mask Constants 223
Theme Tab Direction Constants 223
Theme Tab Style Constants 224
Theme Text Color Constants 225
Theme Title Bar Item Constants 230
Theme Track Attributes Constants 231
Theme Track Enable State Constants 231
Theme Track Kind Constants 232
Theme Track Press State Constants 233
Theme Window Attribute Constants 235
Theme Window Type Constants 236

Result Codes 238
Contents 63
4/21/99  Apple Computer, Inc.

C H A P T E R 4
Appearance Manager Reference 4

This chapter describes the Appearance Manager application programming
interface (API) through Appearance Manager 1.1, as follows:

■ “Gestalt Constants” (page 65)

■ “Functions” (page 66)

■ “Application-Defined Functions” (page 154)

■ “Data Types” (page 164)

■ “Constants” (page 176)

■ “Result Codes” (page 238)

Gestalt Constants 4

Before calling any functions dependent upon the Appearance Manager’s
presence, your application should pass the selector gestaltAppearanceAttr to
the Gestalt function to determine whether the Appearance Manager is present.
To determine which version of the Appearance Manager is installed, your
application should check for the presence of the Gestalt selector
gestaltAppearanceVersion.

enum {
gestaltAppearanceAttr = 'appr',
gestaltAppearanceVersion = 'apvr',
gestaltAppearanceExists = 0,
gestaltAppearanceCompatMode = 1

};

Constant descriptions

gestaltAppearanceAttr
The Gestalt selector passed to determine whether the
Appearance Manager is present. Produces a 32-bit value
whose bits you should test to determine which Appearance
Manager features are available.

gestaltAppearanceVersion
The Gestalt selector passed to determine which version of
the Appearance Manager is installed. If this selector exists,
Gestalt Constants 65
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
Appearance Manager 1.0.1 (or later) is installed. The
version number of the currently installed Appearance
Manager is returned in the low-order word of the result in
binary code decimal format (for example, version 1.0.1
would be 0x0101). If this selector does not exist but
gestaltAppearanceAttr does, Appearance Manager 1.0 is
installed.

gestaltAppearanceExists
If this bit is set, Appearance Manager functions are
available. To determine which version of the Appearance
Manager is installed, check for the presence of the Gestalt
selector gestaltAppearanceVersion. If this bit is not set,
Appearance Manager functions are not available.

gestaltAppearanceCompatMode
If this bit is set, systemwide platinum appearance is off.
When systemwide platinum appearance is off, the
Appearance Manager does not auto-map standard System
7 definition functions to their Mac OS 8 equivalents (for
those applications that have not called
RegisterAppearanceClient). If this bit is not set, systemwide
platinum appearance is on, and the Appearance Manager
auto-maps standard System 7 definition functions to their
Mac OS 8 equivalents for all applications.

Functions 4

The Appearance Manager provides functions in the following areas:

■ “Registering With the Appearance Manager” (page 67)

■ “Accessing Theme Information” (page 69)

■ “Using Theme-Compliant Colors and Patterns” (page 75)

■ “Playing Theme Sounds” (page 87)

■ “Specifying Theme-Compliant Cursors” (page 90)

■ “Drawing Theme-Compliant Controls” (page 92)

■ “Drawing Theme-Compliant Windows” (page 128)
66 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
■ “Drawing Theme-Compliant Menus” (page 144)

Registering With the Appearance Manager 4
The Appearance Manager provides the following registration functions:

■ RegisterAppearanceClient (page 68) registers your program with the
Appearance Manager.

■ UnregisterAppearanceClient (page 69) informs the Appearance Manager that
your program is no longer its client.

■ IsAppearanceClient (page 67) returns whether a given process is currently
registered as a client of the Appearance Manager.

IsAppearanceClient 4
Returns whether a given process is currently registered as a client of the
Appearance Manager.

pascal Boolean IsAppearanceClient (
const ProcessSerialNumber *process);

process A pointer to a value of type ProcessSerialNumber. Pass the serial
number of the process to examine.

function result A value of type Boolean. If true, the specified process is
currently registered as a client of the Appearance Manager;
otherwise, false.

DISCUSSION

Applications typically do not need to call the IsAppearanceClient function. A
plug-in could call IsAppearanceClient to determine whether the process in
which it is running is a registered Appearance Manager client. To register with
the Appearance Manager, call the function RegisterAppearanceClient (page 68).

VERSION NOTES

Available with Appearance Manager 1.1 and later.
Functions 67
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
RegisterAppearanceClient 4
Registers your program with the Appearance Manager.

pascal OSStatus RegisterAppearanceClient (void);

function result A result code. The result code appearanceProcessRegisteredErr
indicates that your program was already registered when you
called the RegisterAppearanceClient function. For other possible
result codes, see “Result Codes” (page 238).

DISCUSSION

The RegisterAppearanceClient function must be called at the beginning of your
program, prior to initializing or drawing any onscreen elements or invoking
any definition functions, such as the menu bar.

You should call RegisterAppearanceClient in order to receive Appearance
Manager Apple events. Under Appearance Manager 1.1 and later, when the
user changes the current appearance (that is, when a theme switch occurs), the
Appearance Manager sends Apple events to all running applications that are
registered as clients of the Appearance Manager and which are high-level event
aware. Because typical results of a theme switch might include a change in
menu bar height or window structure dimensions, as well as changes to the
system fonts, colors, and patterns currently in use, you should listen for and
respond to the Appearance Manager Apple events under most circumstances.
See “Appearance Manager Apple Event Constants” (page 177) for more details.

When your program calls RegisterAppearanceClient, the Appearance Manager
also automatically maps standard pre–Appearance Manager definition
functions to their theme-compliant equivalents for your program, whether or
not systemwide appearance is active; see “Definition Function Mapping and
Program Registration” (page 32) for more details on this process.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

The function UnregisterAppearanceClient (page 69).
68 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
UnregisterAppearanceClient 4
Informs the Appearance Manager that your program is no longer its client.

pascal OSStatus UnregisterAppearanceClient (void);

function result A result code. The result code
appearanceProcessNotRegisteredErr indicates that your program
was not registered when you called the
UnregisterAppearanceClient function. For other possible result
codes, see “Result Codes” (page 238).

DISCUSSION

The UnregisterAppearanceClient function is automatically called for you when
your program terminates. While you do not typically need to call this function,
you might want to call UnregisterAppearanceClient if you are running a plug-in
architecture, and you know that a given plug-in is not theme-compliant. In this
case you would bracket your use of the plug-in with calls to
UnregisterAppearanceClient (before the plug-in is used) and
RegisterAppearanceClient (after the plug-in is used), so that the Appearance
Manager is turned off for the duration of the plug-in’s usage.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

The function RegisterAppearanceClient (page 68).

Accessing Theme Information 4
The Appearance Manager provides the following functions for working with
theme and appearance files:

■ IsValidAppearanceFileType (page 72) returns whether the system can
interpret files of a given file type as appearance files.

■ GetTheme (page 70) obtains a collection containing data describing the current
theme.
Functions 69
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
■ SetTheme (page 73) sets a specified collection as the current theme.

■ IterateThemes (page 73) iterates over all themes installed on a system.

The Appearance Manager provides the following functions for working with
theme fonts:

■ GetThemeFont (page 71) obtains information about a system font in the current
theme.

■ UseThemeFont (page 74) sets the font of the current graphics port to one of the
current theme’s system fonts.

GetTheme 4
Obtains a collection containing data describing the current theme.

pascal OSStatus GetTheme (
Collection ioCollection);

ioCollection A value of type Collection. Pass a reference to a collection
object, such as that created by calling the Collection Manager
function NewCollection. On return, the collection contains data
describing attributes of the current theme. See Inside Macintosh:
QuickDraw GX Environment and Utilities for a description of
NewCollection.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The GetTheme function obtains a collection containing a copy of the data for the
current theme. The theme data is in the form of collection items, each
corresponding to an attribute of the theme. For a given theme, the actual
number of collection items may vary, depending upon how fully the theme’s
attributes are specified. See “Theme Collection Tags” (page 190) for descriptions
of the possible theme collection items.

Your application can use theme collection tags, along with various Collection
Manager functions, to access the data in the collection.
70 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
VERSION NOTES

Available with Appearance Manager 1.1 and later.

SEE ALSO

The function SetTheme (page 73).

GetThemeFont 4
Obtains information about a system font in the current theme.

pascal OSStatus GetThemeFont (
ThemeFontID inFontID,
ScriptCode inScript,
StringPtr outFontName,
SInt16 *outFontSize,
Style *outStyle);

inFontID A value of type ThemeFontID. Pass a constant specifying the kind
of font (that is, the current large, small, or small emphasized
system fonts or the views font) for which you wish to retrieve
the current font name, size, and style in use. See “Theme Font ID
Constants” (page 200) for descriptions of possible values.

inScript A value of type ScriptCode. Pass a script code identifying the
script system for which you wish obtain font information. You
may pass the metascript code smSystemScript to specify the
system script.

outFontName A value of type StringPtr. Pass a pointer to a Pascal string. On
return, the string contains the name of the font in use. Pass NULL
if you do not wish to obtain this information.

outFontSize A pointer to a signed 16-bit integer. On return, the integer value
specifies the size of the font in use. Pass NULL if you do not wish
to obtain this information.

outStyle A pointer to a value of type Style. On return, the value specifies
the style of the font in use. Pass NULL if you do not wish to obtain
this information.

function result A result code; see “Result Codes” (page 238).
Functions 71
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
DISCUSSION

Your application can call the GetThemeFont function to obtain the precise font
settings (font name, size, and style) used by a system font under the current
theme.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

SEE ALSO

The function UseThemeFont (page 74).

IsValidAppearanceFileType 4
Returns whether the system can interpret files of a given file type as appearance
files.

pascal Boolean IsValidAppearanceFileType (
OSType fileType);

fileType A four-character code. Pass the file type to be examined.

function result A value of type Boolean. If true, files of the specified file type
can be used as appearance files; otherwise, false.

DISCUSSION

Under Appearance Manager 1.1, only the 'thme' and 'pltn' file types,
described in “Appearance Manager File Type Constants” (page 179), are valid
appearance file types. Your application typically does not need to call this
function.

VERSION NOTES

Available with Appearance Manager 1.1 and later.
72 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
IterateThemes 4
Iterates over all themes installed on a system.

pascal OSStatus IterateThemes (
ThemeIteratorUPP inProc,
void *inUserData);

inProc A value of type ThemeIteratorUPP (page 171). Pass a universal
procedure pointer to an application-defined function such as
that described in MyThemeIteratorProc (page 160). IterateThemes
calls the specified function for each theme found installed in the
system.

inUserData A pointer to data of any type. Provide any data to be passed in
to the inUserData parameter of the callback function specified in
the inProc parameter. Pass NULL, if you do not wish to provide
any data.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The IterateThemes function continues to iterate until the function specified in
the inProc parameter returns false or until there are no more themes.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

SetTheme 4
Sets a specified collection as the current theme.

pascal OSStatus SetTheme (
Collection ioCollection);

ioCollection A value of type Collection. Pass a reference to a collection
object, such as that created by calling the Collection Manager
function NewCollection. Before calling SetTheme, set the
Functions 73
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
collection to contain theme data that you wish to use for the
current theme. The theme data is in the form of collection items,
each corresponding to an attribute of the theme. For a given
theme, the actual number of collection items may vary,
depending upon how fully the theme’s attributes are specified.
Your application can use theme collection tags, along with
various Collection Manager functions, to access the data in the
collection. See “Theme Collection Tags” (page 190) for
descriptions of the possible theme collection items. See Inside
Macintosh: QuickDraw GX Environment and Utilities for a
discussion of collections.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The SetTheme function sets the attributes of the current theme. You may use
SetTheme to set up a custom theme environment for your application, to be used
only when your application is active. You may also use SetTheme to create a
theme environment that you want to be user-selectable and to have systemwide
effect. See “Creating Custom Themes” (page 56) for more details on these
processes.

Your application can use the GetTheme (page 70) function to obtain a collection
containing a copy of the data for the current theme.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

UseThemeFont 4
Sets the font of the current graphics port to one of the current theme’s system
fonts.

pascal OSStatus UseThemeFont (
ThemeFontID inFontID,
ScriptCode inScript);
74 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
inFontID A value of type ThemeFontID. Pass a constant specifying the kind
of font (that is, the current large, small, or small emphasized
system fonts or the views font) to be applied to the current port.
See “Theme Font ID Constants” (page 200) for descriptions of
possible values.

inScript A value of type ScriptCode. Pass a script code specifying the
script system for which you wish to set the current font; you
may pass the metascript code smSystemScript to specify the
system script.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

Your application can call the UseThemeFont function to draw text in one of the
current theme’s system fonts.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

SEE ALSO

The function GetThemeFont (page 71).

Using Theme-Compliant Colors and Patterns 4
The Appearance Manager provides the following functions for working with
the drawing state of the current graphics port:

■ GetThemeDrawingState (page 80) obtains the drawing state of the current
graphics port.

■ SetThemeDrawingState (page 84) sets the drawing state of the current graphics
port.

■ DisposeThemeDrawingState (page 78) releases the memory associated with a
reference to a graphics port’s drawing state.

■ NormalizeThemeDrawingState (page 83) sets the current graphics port to a
default drawing state.
Functions 75
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
The Appearance Manager provides the following functions for setting the
foreground or background of the current graphics port:

■ ApplyThemeBackground (page 76) sets the background color or pattern of the
current port to be consistent with that of an embedding object.

■ SetThemeBackground (page 83) applies a theme-compliant color or pattern to
the background of the current port.

■ SetThemePen (page 85) applies a theme-compliant color or pattern to the
foreground of the current port.

The Appearance Manager provides the following functions for working with
text colors:

■ GetThemeTextColor (page 81) obtains the text color used for a specified
element under the current theme.

■ SetThemeTextColor (page 86) sets the current text color to be consistent with
that of a specified element.

The Appearance Manager provides the following functions for obtaining theme
color information:

■ GetThemeAccentColors (page 78) obtains a copy of a theme’s accent colors.

■ GetThemeBrushAsColor (page 79) obtains the color that corresponds to a given
theme brush type under the current theme.

■ IsThemeInColor (page 82) returns whether the current theme would draw in
color in the given environment.

ApplyThemeBackground 4
Sets the background color or pattern of the current port to be consistent with
that of an embedding object.

pascal OSStatus ApplyThemeBackground (
ThemeBackgroundKind inKind,
const Rect *bounds,
ThemeDrawState inState,
SInt16 inDepth,
Boolean inColorDev);
76 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
inKind A value of type ThemeBackgroundKind. Pass a constant specifying
the type of embedding object. See “Theme Background Kind
Constants” (page 179) for descriptions of possible values.

bounds A pointer to a structure of type Rect. Before calling
ApplyThemeBackground, set the rectangle to a size and position
that contains the embedding object, in local coordinates.

inState A value of type ThemeDrawState. Pass a constant specifying the
current state of the embedding object. See “Theme Draw State
Constants” (page 199) for descriptions of possible values.

inDepth A signed 16-bit integer. Pass a value specifying the bit depth (in
bits per pixel) of the current graphics port.

inColorDev A value of type Boolean. Pass true to indicate that you are
drawing on a color device, or false for a monochrome device.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The ApplyThemeBackground function sets the background color or pattern of the
current port to match the background of an embedding object, such as a placard
or tab control. Your application should call ApplyThemeBackground before erasing
the background of your application’s content to ensure that the content
background matches that of the object in which it is visually embedded.

ApplyThemeBackground aligns patterns based on the rectangle passed in the
bounds parameter. This is in contrast to the function SetThemeBackground
(page 83), which aligns patterns based on the origin of the current port.

You do not need to call ApplyThemeBackground if your content is an embedded
part within a control hierarchy and is logically as well as visually embedded in
its container; in this case, the Control Manager automatically requests the
embedding control to set up the background before drawing the embedded
control.

If you have a custom control definition function that erases its background
before drawing, you should use the Control Manager function
SetUpControlBackground before erasing. SetUpControlBackground calls
ApplyThemeBackground if necessary.
Functions 77
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
VERSION NOTES

Available with Appearance Manager 1.1 and later.

DisposeThemeDrawingState 4
Releases the memory associated with a reference to a graphics port’s drawing
state.

pascal OSStatus DisposeThemeDrawingState (
ThemeDrawingState inState);

inState A value of type ThemeDrawingState (page 165). Pass a value
specifying the previous drawing state for the current graphics
port. You may obtain this value from the outState parameter of
GetThemeDrawingState (page 80).

function result A result code; see “Result Codes” (page 238).

VERSION NOTES

Available with Appearance Manager 1.1 and later.

SEE ALSO

The function SetThemeDrawingState (page 84).

GetThemeAccentColors 4
Obtains a copy of a theme’s accent colors.

pascal OSStatus GetThemeAccentColors (
CTabHandle *outColors);

outColors A pointer to a value of type CTabHandle. On return, the handle
refers to a ColorTable structure containing the current accent
colors.
78 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
function result A result code; see “Result Codes” (page 238).
GetThemeAccentColors returns the result
appearanceThemeHasNoAccents if the current theme has no accent
colors.

SPECIAL CONSIDERATIONS

Note that the Appearance Manager does not currently define semantics for any
indexes into the color table produced by the GetThemeAccentColors function.

VERSION NOTES

Available with Appearance Manager 1.0.1 and later.

GetThemeBrushAsColor 4
Obtains the color that corresponds to a given theme brush type under the
current theme.

pascal OSStatus GetThemeBrushAsColor (
ThemeBrush inBrush,
SInt16 inDepth,
Boolean inColorDev,
RGBColor *outColor);

inBrush A value of type ThemeBrush. Pass a constant specifying the theme
brush type for which you wish to obtain a color; see “Theme
Brush Constants” (page 180) for descriptions of possible values.

inDepth A signed 16-bit integer. Pass a value specifying the bit depth (in
bits per pixel) of the current graphics port.

inColorDev A value of type Boolean. Pass true to indicate that you are
drawing on a color device. Pass false for a monochrome device.

outColor A pointer to a structure of type RGBColor. On return, the
structure contains a color corresponding to the color or pattern
used by the specified theme brush under the current theme.
Functions 79
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
function result A result code; see “Result Codes” (page 238).

DISCUSSION

The GetThemeBrushAsColor function obtains a color that corresponds to that
which is in use for a specified theme brush. If, in the current theme, the
specified brush draws with a pattern instead of a color, a theme-specified
approximate color is obtained. Your application should call
GetThemeBrushAsColor only when you must use an RGBColor value for a specific
operation; typically, your application should call the functions
SetThemeBackground (page 83) and SetThemePen (page 85) for greatest fidelity
with the current theme.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

GetThemeDrawingState 4
Obtains the drawing state of the current graphics port.

pascal OSStatus GetThemeDrawingState (
ThemeDrawingState *outState);

outState A pointer to a value of type ThemeDrawingState (page 165). On
return, GetThemeDrawingState sets the outState parameter to
point to a copy of the drawing state for the current graphics
port.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

Your application may call the GetThemeDrawingState function before performing
an operation that modifies the drawing state of a graphics port. To return the
graphics port to its previous drawing state and release the memory allocated for
the drawing state reference, your application should call SetThemeDrawingState
(page 84), providing the reference obtained in the outState parameter of
80 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
GetThemeDrawingState. You can also call DisposeThemeDrawingState (page 78) to
release the allocated memory.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

GetThemeTextColor 4
Obtains the text color used for a specified element under the current theme.

pascal OSStatus GetThemeTextColor (
ThemeTextColor inColor,
SInt16 inDepth,
Boolean inColorDev,
RGBColor *outColor);

inColor A value of type ThemeTextColor. Pass a constant specifying the
element for which you wish to obtain the current text color; see
“Theme Text Color Constants” (page 225) for descriptions of
possible values.

inDepth A signed 16-bit integer. Pass a value specifying the bit depth (in
bits per pixel) of the current graphics port.

inColorDev A value of type Boolean. Pass true to indicate that you are
drawing on a color device. Pass false for a monochrome device.

outColor A pointer to a structure of type RGBColor. On return, the
structure contains the text color used for the specified element
under the current theme.

function result A result code; see “Result Codes” (page 238).

VERSION NOTES

Available with Appearance Manager 1.1 and later.
Functions 81
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
SEE ALSO

The function SetThemeTextColor (page 86).

IsThemeInColor 4
Returns whether the current theme would draw in color in the given
environment.

pascal Boolean IsThemeInColor (
SInt16 inDepth,
Boolean inIsColorDevice);

inDepth A signed 16-bit integer. Pass a value specifying the bit depth (in
bits per pixel) of the current graphics port.

inIsColorDevice
A value of type Boolean. Pass true to indicate that you are
drawing on a color device, or false for a monochrome device.

function result A value of type Boolean. IsThemeInColor returns true if, given
the depth and color device information, the theme would draw
in color; otherwise, false.

DISCUSSION

To be consistent with the current theme, your application can call the
IsThemeInColor function to determine whether or not the Appearance Manager
is drawing the theme in color or black and white. If the function returns true,
you should draw in color; if it returns false, you should draw in black and
white. Note that the Appearance Manager may draw a theme in black and
white not only because of the current bit depth or device type, but also because
the theme may have defined black-and-white elements, such as the “Black &
White” accent color in the platinum appearance.

VERSION NOTES

Available with Appearance Manager 1.0.1 and later.
82 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
NormalizeThemeDrawingState 4
Sets the current graphics port to a default drawing state.

pascal OSStatus NormalizeThemeDrawingState (void);

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The NormalizeThemeDrawingState function sets the background of a graphics
port to white; the pen of the port to a size of 1 pixel by 1 pixel, a pattern mode
of patCopy, and a pattern of black; and the text mode of the port to srcOr.
NormalizeThemeDrawingState also flushes from memory any color foreground or
background patterns saved in the port’s GrafPort.pnPat or GrafPort.bkPat
fields, respectively.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

SetThemeBackground 4
Applies a theme-compliant color or pattern to the background of the current
port.

pascal OSStatus SetThemeBackground (
ThemeBrush inBrush,
SInt16 inDepth,
Boolean inIsColorDevice);

inBrush A value of type ThemeBrush. Pass a constant specifying the theme
brush to which to set the background; see “Theme Brush
Constants” (page 180) for descriptions of possible values.

inDepth A signed 16-bit integer. Pass a value specifying the bit depth (in
bits per pixel) of the current graphics port.

inIsColorDevice
A value of type Boolean. Pass true to indicate that you are
drawing on a color device. Pass false for a monochrome device.
Functions 83
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
function result A result code. The result code appearanceBadBrushIndexErr
indicates that the brush constant passed was not valid. For other
possible result codes, see “Result Codes” (page 238).

DISCUSSION

Your application should call the SetThemeBackground function each time you
wish to draw in a specified brush type. Note that the SetThemeBackground
function aligns patterns with 0,0 in the current port. To align a pattern
independently of the port origin, use the function ApplyThemeBackground
(page 76).

Because the constant in the inBrush parameter can specify a color or pattern,
depending on the current theme, your application must save and restore the
current drawing state of the graphics port around calls to SetThemeBackground.
Under Appearance Manager 1.1 and later, you can use the functions
GetThemeDrawingState (page 80) and SetThemeDrawingState (page 84) to do this.

Prior to Appearance Manager 1.1, you must save and restore the pnPixPat and
bkPixPat fields of your graphics port when saving the text and background
colors. Because patterns in the bkPixPat field override the background color of
the window, call the QuickDraw function BackPat to set your background
pattern to a normal white pattern. This ensures that you can use RGBBackColor to
set your background color to white, call the QuickDraw function EraseRect, and
get the expected results.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SetThemeDrawingState 4
Sets the drawing state of the current graphics port.

pascal OSStatus SetThemeDrawingState (
ThemeDrawingState inState,
Boolean inDisposeNow);

inState A value of type ThemeDrawingState (page 165). Pass a
ThemeDrawingState value such as that produced in the outState
parameter of GetThemeDrawingState (page 80).
84 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
inDisposeNow A value of type Boolean. Pass a value of true to release the
memory allocated for the drawing state reference. Pass false if
you wish to continue using the drawing state and do not want
to dispose of the memory at this time; you must call
DisposeThemeDrawingState (page 78) to dispose of the memory
any time before your application terminates.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

Your application can save the port state by calling the function
GetThemeDrawingState (page 80) and restore the port state by calling the function
SetThemeDrawingState, supplying the value obtained in the outState parameter
of GetThemeDrawingState, after you have completed all of your drawing.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

SetThemePen 4
Applies a theme-compliant color or pattern to the foreground of the current
port.

pascal OSStatus SetThemePen (
ThemeBrush inBrush,
SInt16 inDepth,
Boolean inIsColorDevice);

inBrush A value of type ThemeBrush. Pass a constant specifying the theme
brush type to which to set the pen; see “Theme Brush
Constants” (page 180) for descriptions of possible values.

inDepth A signed 16-bit integer. Pass a value specifying the bit depth (in
bits per pixel) of the current graphics port.

inIsColorDevice
A value of type Boolean. Pass true to indicate that you are
drawing on a color device. Pass false for a monochrome device.
Functions 85
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
function result A result code. The result code appearanceBadBrushIndexErr
indicates that the brush constant passed in was not valid. For
other possible result codes, see “Result Codes” (page 238).

DISCUSSION

Your application should call the SetThemePen function each time you wish to
draw an element in a specified brush constant.

Because the constant in the inBrush parameter can represent a color or pattern,
depending on the current theme, your application must save and restore the
current drawing state of the graphics port around calls to SetThemePen. Under
Appearance Manager 1.1 and later, you can use the functions
GetThemeDrawingState (page 80) and SetThemeDrawingState (page 84) to do this.
Prior to Appearance Manager 1.1, you must save and restore the pnPixPat and
bkPixPat fields of your graphics port when saving the text and background
colors. Because patterns in the pnPixPat field override the foreground color of
the window, call the QuickDraw function PenPat to set your foreground pattern
to a normal white pattern. This ensures that you can use RGBForeColor to set
your foreground color to white, call the QuickDraw function PaintRect, and get
the expected results.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SetThemeTextColor 4
Sets the current text color to be consistent with that of a specified element.

pascal OSStatus SetThemeTextColor (
ThemeTextColor inColor,
SInt16 inDepth,
Boolean inIsColorDevice);

inColor A value of type ThemeTextColor. Pass a constant specifying an
interface element. SetThemeTextColor sets the current text color
to be the same as the color of that element’s text. See “Theme
Text Color Constants” (page 225) for descriptions of possible
values.
86 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
inDepth A signed 16-bit integer. Pass a value specifying the bit depth (in
bits per pixel) of the current graphics port.

inIsColorDevice
A value of type Boolean. Pass true to indicate that you are
drawing on a color device. Pass false for a monochrome device.

function result A result code. The result code appearanceBadTextColorIndexErr
indicates that the text color index passed was not valid. For
other possible result codes, see “Result Codes” (page 238).

DISCUSSION

Your application typically uses the SetThemeTextColor function inside a
DeviceLoop drawing procedure to set the foreground color to a theme-compliant
value.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

SEE ALSO

The function GetThemeTextColor (page 81).

Playing Theme Sounds 4
The Appearance Manager provides the following functions for playing theme
sounds:

■ PlayThemeSound (page 89) plays an asynchronous sound associated with the
specified state change.

■ BeginThemeDragSound (page 88) continuously plays a theme-specific sound
associated with the user’s movement of a given interface object.

■ EndThemeDragSound (page 88) terminates the playing of a sound associated
with the user’s movement of a given interface object.
Functions 87
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
BeginThemeDragSound 4
Continuously plays a theme-specific sound associated with the user’s
movement of a given interface object.

pascal OSStatus BeginThemeDragSound (
ThemeDragSoundKind kind);

kind A value of type ThemeDragSoundKind. Pass a constant specifying
the sound to play; see “Theme Drag Sound Constants”
(page 197) for descriptions of possible values.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The Appearance Manager automatically plays drag sounds for standard user
interface elements and for Drag Manager drag actions. Your application may
call BeginThemeDragSound, typically upon detecting a drag initiation, to play a
drag sound for a custom element. BeginThemeDragSound plays the specified
sound in a continuous loop until your application calls the function
EndThemeDragSound (page 88), typically upon receiving a mouse-up event.

Note that the BeginThemeDragSound function automatically tracks the current
mouse position and handles any panning or variations in pitch for the sound.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

EndThemeDragSound 4
Terminates the playing of a sound associated with the user’s movement of a
given interface object.

pascal OSStatus EndThemeDragSound (void);

function result A result code; see “Result Codes” (page 238).
88 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
DISCUSSION

The Appearance Manager automatically starts and stops drag sounds for
standard user interface elements and for Drag Manager drag actions. Your
application may call BeginThemeDragSound (page 88), typically upon detecting a
drag initiation, to play a drag sound for a custom element. Call the
EndThemeDragSound function to turn off a drag sound when the drag is
completed, typically upon receipt of a mouse-up event.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

PlayThemeSound 4
Plays an asynchronous sound associated with the specified state change.

pascal OSStatus PlayThemeSound (
ThemeSoundKind kind);

kind A value of type ThemeSoundKind. Pass a constant specifying the
sound to play; see “Theme Sound Constants” (page 208) for
descriptions of possible values.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The Appearance Manager automatically plays theme sounds for standard user
interface elements. Your application can call the PlayThemeSound function to play
a theme sound for a custom element. The sound plays asynchronously until
complete, stopping automatically.

VERSION NOTES

Available with Appearance Manager 1.1 and later.
Functions 89
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
Specifying Theme-Compliant Cursors 4
The Appearance Manager provides the following functions for specifying
theme-compliant cursors:

■ SetThemeCursor (page 91) sets the cursor to a version of the specified cursor
type that is consistent with the current theme.

■ SetAnimatedThemeCursor (page 90) animates a version of the specified cursor
type that is consistent with the current theme.

SetAnimatedThemeCursor 4
Animates a version of the specified cursor type that is consistent with the
current theme.

pascal OSStatus SetAnimatedThemeCursor (
ThemeCursor inCursor,
UInt32 inAnimationStep);

inCursor A value of type ThemeCursor. Pass a constant specifying the type
of cursor to set; see “Theme Cursor Constants” (page 194) for a
description of the possible values. Note that only cursors
designated as able to be animated should be used for this
function. If you specify an unanimatable cursor type,
SetAnimatedThemeCursor returns the error
themeBadCursorIndexErr (–30565).

inAnimationStep
An unsigned 32-bit value. Pass a value specifying the current
animation step of the cursor. To animate the cursor, increment
the value by 1 with each call to SetAnimatedThemeCursor.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

Appearance Manager 1.1 introduces cursors that can change appearance with a
theme change. In order to be theme-compliant, your program should use these
theme-specific cursors whenever possible, instead of the classic black-and-white
cursors.
90 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
Your application should call the SetAnimatedThemeCursor function to ensure that
its animated cursors are theme-compliant, rather than using any QuickDraw
cursor utilities functions such as SetCursor, SetCCursor, SpinCursor, or
RotateCursor. If you wish a non-animated cursor to be theme-compliant, call the
function SetThemeCursor (page 91).

Because these are color cursors, they currently cannot be set from interrupt
time. Therefore, if you support animated cursors that are changed at interrupt
time you should continue to use your own cursors for now.

SPECIAL CONSIDERATIONS

Do not call SetAnimatedThemeCursor at interrupt time.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

SEE ALSO

The function SetThemeCursor (page 91).

SetThemeCursor 4
Sets the cursor to a version of the specified cursor type that is consistent with
the current theme.

pascal OSStatus SetThemeCursor (
ThemeCursor inCursor);

inCursor A value of type ThemeCursor. Pass a constant specifying the type
of cursor to set; see “Theme Cursor Constants” (page 194) for a
description of possible values.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

Appearance Manager 1.1 introduces cursors that can change appearance with a
theme change. In order to be theme-compliant, your program should use these
Functions 91
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
theme-specific cursors whenever possible, instead of the classic black-and-white
cursors. Because these are color cursors, they currently cannot be set from
interrupt time.

Your application should call the SetThemeCursor function to ensure that its
cursors are theme-compliant, rather than the QuickDraw cursor utilities
functions SetCursor or SetCCursor. If you wish an animatable cursor to be
theme-compliant, call the function SetAnimatedThemeCursor (page 90).

SPECIAL CONSIDERATIONS

Do not call SetThemeCursor at interrupt time.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

Drawing Theme-Compliant Controls 4
The Appearance Manager provides the following functions for drawing
theme-compliant buttons:

■ DrawThemeButton (page 94) draws a button.

■ DrawThemePopupArrow (page 102) draws a pop-up arrow.

■ GetThemeButtonBackgroundBounds (page 113) obtains the rectangle that
contains a button.

■ GetThemeButtonContentBounds (page 114) obtains the rectangle where content
can be drawn for a button.

■ GetThemeButtonRegion (page 115) obtains the region occupied by a button.

The Appearance Manager provides the following functions for drawing
theme-compliant tabs:

■ DrawThemeTab (page 107) draws a tab.

■ DrawThemeTabPane (page 109) draws a tab pane.

■ GetThemeTabRegion (page 119) obtains the region occupied by a tab.

The Appearance Manager provides the following functions for drawing
theme-compliant tracks, such as sliders and scroll bars:
92 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
■ DrawThemeTrack (page 110) draws a track.

■ DrawThemeTrackTickMarks (page 111) draws tick marks for a track.

■ DrawThemeTickMark (page 109) draws a tick mark.

■ DrawThemeScrollBarArrows (page 104) draws scroll bar arrows consistent with
the current system preferences.

■ GetThemeTrackBounds (page 120) obtains the bounding rectangle of a track.

■ GetThemeTrackDragRect (page 121) obtains the area in which the user may
drag a track’s indicator.

■ GetThemeTrackLiveValue (page 122) obtains the current value of a track’s
indicator, given its relative position.

■ GetThemeTrackThumbPositionFromOffset (page 123) obtains the relative
position of a track’s indicator, given an offset from its prior position.

■ GetThemeTrackThumbPositionFromRegion (page 124) obtains the relative
position of a track’s indicator, given its current position.

■ GetThemeTrackThumbRgn (page 124) obtains the region containing a track’s
indicator.

■ GetThemeScrollBarTrackRect (page 118) obtains the area containing the track
portion of a scroll bar.

■ HitTestThemeTrack (page 127) returns whether the user clicked upon the
specified track.

■ HitTestThemeScrollBarArrows (page 125) returns whether the user clicked
upon the specified scroll bar’s arrows.

The Appearance Manager provides the following functions for determining the
current system preferences for control style settings:

■ GetThemeCheckBoxStyle (page 116) obtains the system preference for the type
of mark to use in a checkbox.

■ GetThemeScrollBarArrowStyle (page 116) obtains the system preference for
the type of scroll bar arrows to be used.

■ GetThemeScrollBarThumbStyle (page 117) obtains the system preference for
the type of scroll box to be used.

The Appearance Manager provides the following other functions for drawing
theme-compliant custom controls:
Functions 93
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
■ DrawThemeChasingArrows (page 96) draws an asynchronous arrows indicator.

■ DrawThemeEditTextFrame (page 97) draws an editable text frame.

■ DrawThemeFocusRect (page 98) draws or erases a focus ring around a specified
rectangle.

■ DrawThemeFocusRegion (page 99) draws or erases a focus ring around a
specified region.

■ DrawThemeGenericWell (page 100) draws an image well frame.

■ DrawThemeListBoxFrame (page 100) draws a list box frame.

■ DrawThemePlacard (page 101) draws a placard.

■ DrawThemePrimaryGroup (page 103) draws a primary group box frame.

■ DrawThemeSecondaryGroup (page 105) draws a secondary group box frame.

■ DrawThemeSeparator (page 106) draws a separator line.

DrawThemeButton 4
Draws a button.

pascal OSStatus DrawThemeButton (
const Rect *inBounds,
ThemeButtonKind inKind,
const ThemeButtonDrawInfo *inNewInfo,
const ThemeButtonDrawInfo *inPrevInfo,
ThemeEraseUPP inEraseProc,
ThemeButtonDrawUPP inLabelProc,
UInt32 inUserData);

inBounds A pointer to a structure of type Rect. Pass a rectangle specifying
the boundary of the button, in local coordinates.

inKind A value of type ThemeButtonKind. Pass a constant specifying the
type of button to draw. See “Theme Button Kind Constants”
(page 187) for descriptions of possible values.

inNewInfo A pointer to a structure of type ThemeButtonDrawInfo (page 165).
Before calling DrawThemeButton, set the structure to contain the
new state, value, and adornment for the button. DrawThemeButton
uses the information passed in the inNewInfo and inPrevInfo
94 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
parameters to apply transitional animation or sound effects as
the button state changes, if such are specified under the current
theme.

inPrevInfo A pointer to a structure of type ThemeButtonDrawInfo (page 165).
If the button state is changing, set the structure to contain the
previous state, value, and adornment for the button, to allow
DrawThemeButton to apply any transitional effects. If the button
state is not changing, you can pass NULL.

inEraseProc A value of type ThemeEraseUPP (page 171). If you have a custom
background, pass a universal procedure pointer to an
application-defined function such as that described in
MyThemeEraseProc (page 159). DrawThemeButton calls that function
to erase the background before drawing the button. If you pass
NULL, no erasing occurs.

inLabelProc A value of type ThemeButtonDrawUPP (page 173). If you pass a
universal procedure pointer to an application-defined function
such as that described in MyThemeButtonDrawProc (page 157),
DrawThemeButton calls that function to draw the label of the
button. If you pass NULL, no label is drawn.

inUserData An unsigned 32-bit integer. Provide any data to be passed in to
the callback functions specified in the inLabelProc and
inEraseProc parameters. Pass NULL if you do not wish to provide
any data.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemeButton function draws a theme-compliant button. If a
ThemeEraseProcPtr is specified in the inEraseProc parameter, DrawThemeButton
uses that function to erase the background of the button before drawing the
button. After the button is drawn, if a ThemeButtonDrawProcPtr is specified in the
inLabelProc parameter, DrawThemeButton calls that function to draw the button’s
label.

Note that DrawThemeButton also draws any appearance adornments for the
button and that these can extend beyond the button’s basic bounding rectangle,
as specified in the inBounds parameter, and may be of variable shape. You may
therefore wish to call the function GetThemeButtonBackgroundBounds (page 113) to
Functions 95
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
obtain the actual rectangle containing the pixels belonging to a button under the
current theme.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

DrawThemeChasingArrows 4
Draws an asynchronous arrows indicator.

pascal OSStatus DrawThemeChasingArrows (
const Rect *bounds,
UInt32 index,
ThemeDrawState state,
ThemeEraseUPP eraseProc,
UInt32 eraseData);

bounds A pointer to a structure of type Rect. Before calling
DrawThemeChasingArrows, set the rectangle to contain the
asynchronous arrows, in local coordinates.

index An unsigned 32-bit value. Pass a value specifying the current
animation step of the arrows. To animate the arrows, increment
the initial value by 1 with each call to DrawThemeChasingArrows.

state A value of type ThemeDrawState. Pass a constant specifying the
state in which to draw the asynchronous arrows indicator; see
“Theme Draw State Constants” (page 199). The asynchronous
arrows indicator can be drawn as active or inactive; passing
kThemeStatePressed produces an error.

eraseProc A value of type ThemeEraseUPP (page 171). If you have a custom
background, pass a universal procedure pointer to an
application-defined function such as that described in
MyThemeEraseProc (page 159). DrawThemeChasingArrows calls that
function to erase the background before drawing the
asynchronous arrows. If you pass NULL, no erasing occurs.

eraseData An unsigned 32-bit integer. Provide any data to be passed in to
the eraseData parameter of the callback function specified in the
eraseProc parameter.
96 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemeChasingArrows function draws a theme-compliant asynchronous
arrows (also known as “chasing arrows”) indicator.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

DrawThemeEditTextFrame 4
Draws an editable text frame.

pascal OSStatus DrawThemeEditTextFrame (
const Rect *inRect,
ThemeDrawState inState);

inRect A pointer to a structure of type Rect. Before calling
DrawThemeEditTextFrame, set the rectangle to the position around
which to draw the editable text frame, in local coordinates.

inState A value of type ThemeDrawState. Pass a constant specifying the
state in which to draw the editable text frame; see “Theme Draw
State Constants” (page 199). The frame can be drawn as active
or inactive; passing kThemeStatePressed produces an error.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemeEditTextFrame function draws a theme-compliant frame for an
editable text field. The frame is a maximum of 2 pixels thick and is drawn
outside the specified rectangle. You should not use this function to draw frames
for items other than editable text fields.

To ensure that you get an appropriate focus ring for your editable text field, you
should pass the same rectangle that you use with DrawThemeEditTextFrame
function to the function DrawThemeFocusRect (page 98).
Functions 97
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
VERSION NOTES

Available with Appearance Manager 1.0 and later.

DrawThemeFocusRect 4
Draws or erases a focus ring around a specified rectangle.

pascal OSStatus DrawThemeFocusRect (
const Rect *inRect,
Boolean inHasFocus);

inRect A pointer to a structure of type Rect. Before calling
DrawThemeFocusRect, set the rectangle to the position around
which to draw the focus ring, in local coordinates. The focus
ring is drawn outside the rectangle that is passed in, and it can
be outset a maximum of 3 pixels.

inHasFocus A value of type Boolean. Pass true to draw the focus ring. Pass
false to erase the focus ring.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

Your application can use the DrawThemeFocusRect function to draw a
theme-compliant focus ring. The presence of a focus ring indicates whether an
item has keyboard focus.

SPECIAL CONSIDERATIONS

If you are drawing a focus ring around an element for which you have drawn a
frame using DrawThemeEditTextFrame (page 97) or DrawThemeListBoxFrame
(page 100), you must coordinate your drawing sequence to achieve the correct
look. When drawing the element, your application should first call
DrawThemeEditTextFrame or DrawThemeListBoxFrame and then call
DrawThemeFocusRect, passing the same rectangle in the inRect parameter. If you
use DrawThemeFocusRect to erase the focus ring around an editable text frame or
list box frame, you must redraw the editable text frame or list box frame after
calling DrawThemeFocusRect, because there is typically an overlap.
98 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
VERSION NOTES

Available with Appearance Manager 1.0 and later.

DrawThemeFocusRegion 4
Draws or erases a focus ring around a specified region.

pascal OSStatus DrawThemeFocusRegion (
RgnHandle inRegion,
Boolean inHasFocus);

inRegion A value of type RgnHandle. Before calling DrawThemeFocusRegion,
set the region to the position around which to draw the focus
ring, in local coordinates. The focus ring is drawn outside the
region that is passed in, and it can be outset a maximum of 3
pixels.

inHasFocus A value of type Boolean. Pass true to draw the focus region. Pass
false to erase the focus region.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

Your application can use the DrawThemeFocusRegion function to draw a
theme-compliant focus ring. The presence of a focus ring indicates whether an
item has keyboard focus.

VERSION NOTES

Available with Appearance Manager 1.0.1 and later.
Functions 99
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
DrawThemeGenericWell 4
Draws an image well frame.

pascal OSStatus DrawThemeGenericWell (
const Rect *inRect,
ThemeDrawState inState,
Boolean inFillCenter);

inRect A pointer to a structure of type Rect. Before calling
DrawThemeGenericWell, set the rectangle to the position around
which to draw the image well frame, in local coordinates.

inState A value of type ThemeDrawState. Pass a constant specifying the
state in which to draw the image well frame; see “Theme Draw
State Constants” (page 199). The well can be drawn as active or
inactive; passing kThemeStatePressed produces an error.

inFillCenter A value of type Boolean. Set to true to fill the image well frame
with white; otherwise, false.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemeGenericWell function draws a theme-compliant image well frame.
You can specify that the center of the well be filled in with white.

VERSION NOTES

Available with Appearance Manager 1.0.1 and later.

DrawThemeListBoxFrame 4
Draws a list box frame.

pascal OSStatus DrawThemeListBoxFrame (
const Rect *inRect,
ThemeDrawState inState);
100 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
inRect A pointer to a structure of type Rect. Before calling
DrawThemeListBoxFrame, set the rectangle to the position around
which to draw the list box frame, in local coordinates.

inState A value of type ThemeDrawState. Pass a constant specifying the
state in which to draw the list box frame; see “Theme Draw
State Constants” (page 199). The frame can be drawn as active
or inactive; passing kThemeStatePressed produces an error.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemeListBoxFrame function draws a theme-compliant list box frame.
The frame is a maximum of 2 pixels thick and is drawn outside the specified
rectangle. To ensure that you get an appropriate focus ring for your list box, you
should pass the same rectangle that you use with the DrawThemeListBoxFrame
function to the function DrawThemeFocusRect (page 98).

VERSION NOTES

Available with Appearance Manager 1.0 and later.

DrawThemePlacard 4
Draws a placard.

pascal OSStatus DrawThemePlacard (
const Rect *inRect,
ThemeDrawState inState);

inRect A pointer to a structure of type Rect. Before calling
DrawThemePlacard, set the rectangle to a size and position that
contains the placard, in local coordinates.

inState A value of type ThemeDrawState. Pass a constant specifying the
state in which to draw the placard; see “Theme Draw State
Constants” (page 199). The placard can be drawn as active,
inactive, or pressed.

function result A result code; see “Result Codes” (page 238).
Functions 101
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
DISCUSSION

The DrawThemePlacard function draws a theme-compliant placard inside the
specified rectangle.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

DrawThemePopupArrow 4
Draws a pop-up arrow.

pascal OSStatus DrawThemePopupArrow (
const Rect *bounds,
ThemeArrowOrientation orientation,
ThemePopupArrowSize size,
ThemeDrawState state,
ThemeEraseUPP eraseProc,
UInt32 eraseData);

bounds A pointer to a structure of type Rect. Before calling
DrawThemePopupArrow, set the rectangle to contain the arrow, in
local coordinates. DrawThemePopupArrow positions the arrow
relative to the top left corner of the rectangle.

orientation A value of type ThemeArrowOrientation. Pass a constant
specifying the direction in which the pop-up arrow points. See
“Theme Pop-Up Arrow Orientation Constants” (page 204) for
descriptions of possible values.

size A value of type ThemePopupArrowSize. Pass a constant specifying
the size of the pop-up arrow to draw. See “Theme Pop-Up
Arrow Size Constants” (page 205) for descriptions of possible
values.

state A value of type ThemeDrawState. Pass a constant specifying the
current state of the button containing the pop-up arrow. See
“Theme Draw State Constants” (page 199) for descriptions of
possible values.
102 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
eraseProc A value of type ThemeEraseUPP (page 171). If you have a custom
background, pass a universal procedure pointer to an
application-defined function such as that described in
MyThemeEraseProc (page 159). DrawThemePopupArrow calls that
function to erase the background before drawing the pop-up
arrow. If you pass NULL, no erasing occurs.

eraseData An unsigned 32-bit integer. Provide any data to be passed in to
the eraseData parameter of the callback function specified in the
eraseProc parameter.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemePopupArrow function draws a theme-compliant pop-up arrow. A
pop-up arrow is an image drawn onto another control to indicate that when the
control is clicked, you get a pop-up menu. A pop-up arrow is not a separate
button itself. Typically, a pop-up arrow is used in conjunction with a button,
such as a push button or bevel button. Bevel button controls automatically
draw a pop-up arrow if a menu is associated with the control.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

DrawThemePrimaryGroup 4
Draws a primary group box frame.

pascal OSStatus DrawThemePrimaryGroup (
const Rect *inRect,
ThemeDrawState inState);

inRect A pointer to a structure of type Rect. Before calling
DrawThemePrimaryGroup, set the rectangle to the bounds of the
primary group box frame, in local coordinates.
Functions 103
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
inState A value of type ThemeDrawState. Pass a constant specifying the
state in which to draw the primary group box frame; see
“Theme Draw State Constants” (page 199). The frame can be
drawn as active or inactive; passing kThemeStatePressed
produces an error.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemePrimaryGroup function draws a theme-compliant primary group
box frame. The primary group box frame is drawn inside the specified rectangle
and is a maximum of 2 pixels thick.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

DrawThemeScrollBarArrows 4
Draws scroll bar arrows consistent with the current system preferences.

pascal OSStatus DrawThemeScrollBarArrows (
const Rect *bounds,
ThemeTrackEnableState enableState,
ThemeTrackPressState pressState,
Boolean isHoriz,
Rect *trackBounds);

bounds A pointer to a structure of type Rect. Before calling
DrawThemeScrollBarArrows, set the rectangle to contain the scroll
bar for which to draw arrows, in local coordinates. Typically, the
rectangle you specify is the entire base control rectangle—that is,
the value contained in the contrlRect field of the scroll bar’s
ControlRecord structure.

enableState A value of type ThemeTrackEnableState. Pass a constant
specifying the current state of the scroll bar; see “Theme Track
Enable State Constants” (page 231) for descriptions of possible
values.
104 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
pressState A value of type ThemeTrackPressState. Pass a constant
specifying what is pressed in an active scroll bar or 0 if nothing
is pressed. The press state is ignored if the scroll bar is not
active. See “Theme Track Press State Constants” (page 233) for
descriptions of possible values.

isHoriz A value of type Boolean. Pass true if the scroll bar is horizontal;
pass false if it is vertical.

trackBounds A pointer to a structure of type Rect. On return, the rectangle is
set to the bounds of the track portion of the scroll bar; this
rectangle excludes the area containing the scroll bar arrows. Pass
NULL if you do not wish to obtain this information.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemeScrollBarArrows function draws a set of theme-compliant scroll
bar arrows for the scroll bar whose position and dimensions are specified in the
bounds parameter. Depending upon the current system preferences,
DrawThemeScrollBarArrows draws the arrows in one of the following
configurations:

■ one arrow at either end of the scroll bar

■ two arrows at the same end of the scroll bar

As shown in Listing 3-7 in “Drawing Tracks” (page 55), your application can
use DrawThemeScrollBarArrows in conjunction with the function DrawThemeTrack
(page 110) to draw a complete scroll bar.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

DrawThemeSecondaryGroup 4
Draws a secondary group box frame.

pascal OSStatus DrawThemeSecondaryGroup (
const Rect *inRect,
ThemeDrawState inState);
Functions 105
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
inRect A pointer to a structure of type Rect. Before calling
DrawThemeSecondaryGroup, set the rectangle to the bounds of the
secondary group box frame to be drawn, in local coordinates.

inState A value of type ThemeDrawState. Pass a constant specifying the
state in which to draw the secondary group box frame; see
“Theme Draw State Constants” (page 199). The frame can be
drawn as active or inactive; passing kThemeStatePressed
produces an error.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemeSecondaryGroup function draws a theme-compliant secondary
group box frame. The secondary group box frame is drawn inside the specified
rectangle and is a maximum of 2 pixels thick. Note that a secondary group box
frame is typically nested within a primary group box frame.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

DrawThemeSeparator 4
Draws a separator line.

pascal OSStatus DrawThemeSeparator (
const Rect *inRect,
ThemeDrawState inState);

inRect A pointer to a structure of type Rect. Before calling
DrawThemeSeparator, set the rectangle to contain the separator
line, in local coordinates. The orientation of the rectangle
determines where the separator line is drawn. If the rectangle is
wider than it is tall, the separator line is horizontal; otherwise it
is vertical.
106 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
inState A value of type ThemeDrawState. Pass a constant specifying the
state in which to draw the separator line; see “Theme Draw
State Constants” (page 199). The separator line can be drawn as
active or inactive; passing kThemeStatePressed produces an
error.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemeSeparator function draws a theme-compliant separator line. The
separator line is a maximum of 2 pixels thick and is drawn inside the specified
rectangle.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

DrawThemeTab 4
Draws a tab.

pascal OSStatus DrawThemeTab (
const Rect *inRect,
ThemeTabStyle inStyle,
ThemeTabDirection inDirection,
ThemeTabTitleDrawUPP labelProc,
UInt32 userData);

inRect A pointer to a structure of type Rect. Before calling
DrawThemeTab, set the rectangle to the bounds of the tab, in local
coordinates. There are two standard sizes (or heights) for tabs
that should be used in your calculation of the tab rectangle—
these are measured by the distance the tabs protrude from the
pane. Small tabs have a height of 16 pixels; large tabs have a
height of 21 pixels. (The widths of tabs are variable.)
Additionally, the distance that the tab overlaps the pane must be
included in the tab rectangle; this overlap distance is always 3
Functions 107
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
pixels, although the 3-pixel overlap is only drawn for the front
tab. The tab rectangle should reflect the orientation of the tab
that is specified in the inDirection parameter.

inStyle A value of type ThemeTabStyle. Pass a constant specifying the
relative position (front or non-front) and state of the tab. See
“Theme Tab Style Constants” (page 224) for descriptions of
possible values.

inDirection A value of type ThemeTabDirection. Pass a constant specifying
the direction in which to orient the tab. See “Theme Tab
Direction Constants” (page 223) for descriptions of possible
values.

labelProc A value of type ThemeTabTitleDrawUPP (page 172). Pass a
universal procedure pointer to an application-defined function
such as that described in MyThemeTabTitleDrawProc (page 161).
DrawThemeTab calls your function to draw the title of the tab. If
you pass NULL, no drawing occurs.

userData An unsigned 32-bit integer. Provide any data to be passed in to
the userData parameter of the callback function specified in the
labelProc parameter.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemeTab function draws a theme-compliant tab. A tab control consists
of two basic components: multiple tabs that label the various content pages that
can be displayed and a single pane upon which the content for each tab is
drawn. Use the function DrawThemeTabPane (page 109) to draw the tab pane. The
Appearance Manager coordinates the appearance of the pane and frontmost tab
automatically.

VERSION NOTES

Available with Appearance Manager 1.1 and later.
108 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
DrawThemeTabPane 4
Draws a tab pane.

pascal OSStatus DrawThemeTabPane (
const Rect *inRect,
ThemeDrawState inState);

inRect A pointer to a structure of type Rect. Before calling
DrawThemeTabPane, set the rectangle to the bounds of the tab
pane, in local coordinates.

inState A value of type ThemeDrawState. Pass a constant specifying the
state in which to draw the tab pane; see “Theme Draw State
Constants” (page 199). The tab pane can be drawn as active or
inactive; passing kThemeStatePressed produces an error.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemeTabPane function draws a theme-compliant tab pane. A tab control
consists of two basic components: multiple tabs that label the various content
pages that can be displayed and a single pane upon which the content for each
tab is drawn. Use the function DrawThemeTab (page 107) to draw the tab. The
Appearance Manager coordinates the appearance of the pane and frontmost tab
automatically.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

DrawThemeTickMark 4
Draws a tick mark.

pascal OSStatus DrawThemeTickMark (
const Rect *bounds,
ThemeDrawState state);
Functions 109
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
bounds A pointer to a structure of type Rect. Before calling
DrawThemeTickMark, set the rectangle to the position that contains
the tick mark, in local coordinates. Note that tick marks are of a
fixed—3 pixel by 8 pixel—size.

state A value of type ThemeDrawState. Pass a constant specifying the
state in which to draw the tick mark; see “Theme Draw State
Constants” (page 199). The tick mark can be drawn as active or
inactive; passing kThemeStatePressed produces an error.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemeTickMark function draws a single theme-compliant tick mark. To
draw a complete set of tick marks for a track, call the function
DrawThemeTrackTickMarks (page 111).

VERSION NOTES

Available with Appearance Manager 1.1 and later.

DrawThemeTrack 4
Draws a track.

pascal OSStatus DrawThemeTrack (
const ThemeTrackDrawInfo *drawInfo,
RgnHandle rgnGhost,
ThemeEraseUPP eraseProc,
UInt32 eraseData);

drawInfo A pointer to a structure of type ThemeTrackDrawInfo (page 166).
Before calling DrawThemeTrack, set the structure to contain the
current visual characteristics of the track.

rgnGhost A value of type RgnHandle. If the track is of a type that contains
an indicator, such as a scroll bar or slider, you may pass a handle
to the region where DrawThemeTrack is to draw a ghost image of
110 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
the track indicator. Your application should only use a ghost
image with the indicator when a track does not support live
feedback. Pass NULL if you do not want to draw a ghost image.

eraseProc A value of type ThemeEraseUPP (page 171). If you have a custom
background, pass a universal procedure pointer to an
application-defined function such as that described in
MyThemeEraseProc (page 159). DrawThemeTrack calls that function
to erase the background before drawing the track. If you pass
NULL, no erasing occurs.

eraseData An unsigned 32-bit integer. Provide any data to be passed in to
the callback function specified in the eraseProc parameter.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

Your application may use the DrawThemeTrack function to draw a
theme-compliant slider, progress bar, or scroll bar. If you use DrawThemeTrack to
draw a scroll bar, use the function DrawThemeScrollBarArrows (page 104) to draw
the scroll bar’s arrows; see Listing 3-7 in “Drawing Tracks” (page 55) for an
example of using these two functions together to draw a complete scroll bar. If
you use DrawThemeTrack to draw a slider, use DrawThemeTrackTickMarks
(page 111) to draw any tick marks for the slider.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

DrawThemeTrackTickMarks 4
Draws tick marks for a track.

pascal OSStatus DrawThemeTrackTickMarks (
const ThemeTrackDrawInfo *drawInfo,
ItemCount numTicks,
ThemeEraseUPP eraseProc,
UInt32 eraseData);
Functions 111
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
drawInfo A pointer to a structure of type ThemeTrackDrawInfo (page 166).
Before calling DrawThemeTrackTickMarks, set the structure to
describe the current visual characteristics of the track. Because,
under Appearance Manager 1.1, sliders are the only track type
to support tick marks, you should set the kind field of the
ThemeTrackDrawInfo structure to kThemeSlider and fill out the
remainder of the structure appropriately for a slider track. You
should set the bounds field of the ThemeTrackDrawInfo structure to
the boundary of the track itself, not including the area that
contains the tick marks; you can obtain the actual bounding
rectangle of the track by calling the function
GetThemeTrackBounds (page 120). DrawThemeTrackTickMarks draws
the tick marks outside the track’s bounding rectangle, above or
below the track depending on the thumb direction indicated by
the drawInfo.trackInfo.slider.thumbDir field.

numTicks A value of type ItemCount. Pass an unsigned 32-bit value
specifying the number of tick marks to be drawn.

eraseProc A value of type ThemeEraseUPP (page 171). If you have a custom
background, pass a universal procedure pointer to an
application-defined function such as that described in
MyThemeEraseProc (page 159). DrawThemeTrackTickMarks calls that
function to erase the background before drawing tick marks. If
you pass NULL, no erasing occurs.

eraseData An unsigned 32-bit integer. Provide any data to be passed in to
the callback function specified in the eraseProc parameter.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

Your application can call the DrawThemeTrackTickMarks function to draw
theme-compliant tick marks for a slider control. (Under Appearance Manager
1.1, sliders are the only track type that supports tick marks.) To draw a track
control, call the function DrawThemeTrack (page 110). To draw a single tick mark,
call the function DrawThemeTickMark (page 109).

VERSION NOTES

Available with Appearance Manager 1.1 and later.
112 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
GetThemeButtonBackgroundBounds 4
Obtains the rectangle that contains a button.

pascal OSStatus GetThemeButtonBackgroundBounds (
const Rect *inBounds,
ThemeButtonKind inKind,
const ThemeButtonDrawInfo *inDrawInfo,
Rect *outBounds);

inBounds A pointer to a structure of type Rect. Before calling
GetThemeButtonBackgroundBounds, set the rectangle to the
boundary of the button without any adornments, in local
coordinates.

inKind A value of type ThemeButtonKind. Pass a constant specifying the
type of button being examined. See “Theme Button Kind
Constants” (page 187) for descriptions of possible values.

inDrawInfo A pointer to a structure of type ThemeButtonDrawInfo (page 165).
Before calling GetThemeButtonBackgroundBounds, set the structure
to contain the state, value, and adornment for the button.

outBounds A pointer to a structure of type Rect. On return, the rectangle
contains the actual boundary of the button, including any
adornments, in local coordinates.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

Appearance adornments can extend beyond the basic bounding rectangle of a
button and may be of variable shape. Your application may call the
GetThemeButtonBackgroundBounds function to obtain the actual rectangle
containing the pixels belonging to a button under the current theme.

VERSION NOTES

Available with Appearance Manager 1.1 and later.
Functions 113
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
GetThemeButtonContentBounds 4
Obtains the rectangle where content can be drawn for a button.

pascal OSStatus GetThemeButtonContentBounds (
const Rect *inBounds,
ThemeButtonKind inKind,
const ThemeButtonDrawInfo *inDrawInfo,
Rect *outBounds);

inBounds A pointer to a structure of type Rect. Before calling
GetThemeButtonContentBounds, set the rectangle to contain the
boundary of the button, in local coordinates.

inKind A value of type ThemeButtonKind. Pass a constant specifying the
type of button being examined. See “Theme Button Kind
Constants” (page 187) for descriptions of possible values.

inDrawInfo A pointer to a structure of type ThemeButtonDrawInfo (page 165).
Before calling GetThemeButtonContentBounds, set the structure to
contain the state, value, and adornment for the button.

outBounds A pointer to a structure of type Rect. On return, the rectangle
contains the actual boundary, in local coordinates, of the area of
the button’s face in which content can be drawn.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The GetThemeButtonContentBounds function obtains the rectangle where content
can be drawn for a button under the current theme.

VERSION NOTES

Available with Appearance Manager 1.1 and later.
114 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
GetThemeButtonRegion 4
Obtains the region occupied by a button.

pascal OSStatus GetThemeButtonRegion (
const Rect *inBounds,
ThemeButtonKind inKind,
const ThemeButtonDrawInfo *inNewInfo,
RgnHandle outRegion);

inBounds A pointer to a structure of type Rect. Before calling
GetThemeButtonRegion, set the rectangle to the boundary of the
button without any adornments, in local coordinates.

inKind A value of type ThemeButtonKind. Pass a constant specifying the
type of button being examined. See “Theme Button Kind
Constants” (page 187) for descriptions of possible values.

inNewInfo A pointer to a structure of type ThemeButtonDrawInfo (page 165).
Before calling GetThemeButtonRegion, set the structure to contain
the state, value, and adornment for the button.

outRegion A value of type RgnHandle. On return, the region contains the
actual dimensions and position of the button and any
adornments, in local coordinates.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

Appearance adornments can extend beyond the basic bounding rectangle of a
button and may be of variable shape. Your application may call the
GetThemeButtonRegion function to obtain the exact area covered by pixels
belonging to a specific button under the current theme.

VERSION NOTES

Available with Appearance Manager 1.1 and later.
Functions 115
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
GetThemeCheckBoxStyle 4
Obtains the system preference for the type of mark to use in a checkbox.

pascal OSStatus GetThemeCheckBoxStyle (
ThemeCheckBoxStyle *outStyle);

outStyle A pointer to a value of type ThemeCheckBoxStyle. On return, the
value specifies the type of mark being used. See “Theme
Checkbox Style Constants” (page 190) for descriptions of
possible values.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

Because international systems may specify the use of one type of mark to use in
checkboxes over another, your application should call GetThemeCheckBoxStyle to
obtain the correct type of mark to use on the current system.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

GetThemeScrollBarArrowStyle 4
Obtains the system preference for the type of scroll bar arrows to be used.

pascal OSStatus GetThemeScrollBarArrowStyle (
ThemeScrollBarArrowStyle *outStyle);

outStyle A pointer to a value of type ThemeScrollBarArrowStyle. On
return, the value specifies the type of scroll bar arrows being
used. See “Theme Scroll Bar Arrow Style Constants” (page 205)
for descriptions of possible values.

function result A result code; see “Result Codes” (page 238).
116 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
DISCUSSION

Because the user can specify varying types of scroll bar arrows on a
theme-specific basis, your application should call GetThemeScrollBarArrowStyle
to obtain the preferred style under the current theme.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

GetThemeScrollBarThumbStyle 4
Obtains the system preference for the type of scroll box to be used.

pascal OSStatus GetThemeScrollBarThumbStyle (
ThemeScrollBarThumbStyle *outStyle);

outStyle A pointer to a value of type ThemeScrollBarThumbStyle. On
return, the value specifies the type of scroll box being used. See
“Theme Scroll Box Style Constants” (page 206) for descriptions
of possible values.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

Because the user can specify either proportional or fixed-size scroll boxes (also
known as “scroll indicators” or “thumbs”) on a theme-specific basis, your
application should call GetThemeScrollBarThumbStyle to obtain the preferred
style under the current theme.

VERSION NOTES

Available with Appearance Manager 1.1 and later.
Functions 117
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
GetThemeScrollBarTrackRect 4
Obtains the area containing the track portion of a scroll bar.

pascal OSStatus GetThemeScrollBarTrackRect (
const Rect *bounds,
ThemeTrackEnableState enableState,
ThemeTrackPressState pressState,
Boolean isHoriz,
Rect *trackBounds);

bounds A pointer to a structure of type Rect. Before calling
GetThemeScrollBarTrackRect, set the rectangle to the boundary
of the scroll bar, in local coordinates. Typically, the rectangle you
specify is the entire base control rectangle—that is, the value
contained in the contrlRect field of the track’s ControlRecord
structure.

enableState A value of type ThemeTrackEnableState. Pass a constant
specifying the current state of the scroll bar; see “Theme Track
Enable State Constants” (page 231) for descriptions of possible
values.

pressState A value of type ThemeTrackPressState. Pass a constant
specifying what is pressed in an active scroll bar or 0 if nothing
is pressed; the press state is ignored if the scroll bar is not active.
See “Theme Track Press State Constants” (page 233) for
descriptions of possible values.

isHoriz A value of type Boolean. Pass true if the scroll bar is horizontal;
pass false if it is vertical.

trackBounds A pointer to a structure of type Rect. On return, the structure
contains the rectangle that bounds the track portion of the scroll
bar. Note that the rectangle produced does not include in its
bounds any tick marks that a track (such as a slider) might have;
tick marks are drawn outside the track rectangle. Similarly, for a
scroll bar, the rectangle produced does not contain the scroll bar
arrows, just the track itself.

function result A result code; see “Result Codes” (page 238).
118 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
DISCUSSION

Your application may call the GetThemeScrollBarTrackRect function to obtain
the actual rectangle containing the track portion of a scroll bar under the current
theme.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

GetThemeTabRegion 4
Obtains the region occupied by a tab.

pascal OSStatus GetThemeTabRegion (
const Rect *inRect,
ThemeTabStyle inStyle,
ThemeTabDirection inDirection,
RgnHandle ioRgn);

inRect A pointer to a structure of type Rect. Before calling
GetThemeTabRegion, set the rectangle to the boundary of the tab,
in local coordinates.

inStyle A value of type ThemeTabStyle. Pass a constant specifying the
relative position (front or non-front) and state of the tab to be
examined. See “Theme Tab Style Constants” (page 224) for
descriptions of possible values.

inDirection A value of type ThemeTabDirection. Pass a constant specifying
the direction in which the tab is oriented. See “Theme Tab
Direction Constants” (page 223) for descriptions of possible
values.

ioRgn A value of type RgnHandle. On return, the region contains the
actual dimensions and position of the tab, in local coordinates.

function result A result code; see “Result Codes” (page 238).
Functions 119
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
DISCUSSION

Because a tab can have a non-rectangular shape, your application should call
GetThemeTabRegion to get the actual region containing the tab under the current
theme, in order to perform accurate hit testing.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

GetThemeTrackBounds 4
Obtains the bounding rectangle of a track.

pascal OSStatus GetThemeTrackBounds (
const ThemeTrackDrawInfo *drawInfo,
Rect *bounds);

drawInfo A pointer to a structure of type ThemeTrackDrawInfo (page 166).
Before calling GetThemeTrackBounds, set the structure to describe
the current visual characteristics of the track. Typically, the
rectangle you specify in ThemeTrackDrawInfo.bounds is the
proposed bounding rectangle for the track. GetThemeTrackBounds
examines this rectangle to determine the actual bounds that the
track would occupy. Depending on the track type, the actual
bounding rectangle for a track might contain an absolute or
fixed value (as for the height of a progress bar, which is always
14 pixels). Or, the track bounds might scale (as for a scroll bar) to
fit the proposed bounds.

bounds A pointer to a structure of type Rect. On return, the rectangle
contains the actual boundary of the track, in local coordinates.
Note that the rectangle produced does not include in its bounds
any tick marks that a track (such as a slider) might have; tick
marks are drawn outside the track rectangle. Similarly, for a
scroll bar, the rectangle produced does not contain the scroll bar
arrows, just the track itself.

function result A result code; see “Result Codes” (page 238).
120 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
DISCUSSION

Your application may call the GetThemeTrackBounds function to obtain the actual
rectangle containing a track under the current theme.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

GetThemeTrackDragRect 4
Obtains the area in which the user may drag a track’s indicator.

pascal OSStatus GetThemeTrackDragRect (
const ThemeTrackDrawInfo *drawInfo,
Rect *dragRect);

drawInfo A pointer to a structure of type ThemeTrackDrawInfo (page 166).
Before calling GetThemeTrackDragRect, set the structure to
contain the current visual characteristics of the track.

dragRect A pointer to a structure of type Rect. On return, the rectangle
contains the actual boundary of the indicator’s drag rectangle,
in local coordinates.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

Because of varying indicator geometries and theme designs, the draggable area
for an indicator is not typically exactly the same as the track rectangle. Your
application should call GetThemeTrackDragRect to obtain the actual area within a
track where an indicator can be dragged under the current theme.

VERSION NOTES

Available with Appearance Manager 1.1 and later.
Functions 121
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
GetThemeTrackLiveValue 4
Obtains the current value of a track’s indicator, given its relative position.

pascal OSStatus GetThemeTrackLiveValue (
const ThemeTrackDrawInfo *drawInfo,
SInt32 relativePosition,
SInt32 *value);

drawInfo A pointer to a structure of type ThemeTrackDrawInfo (page 166).
Before calling GetThemeTrackLiveValue, set the structure to
contain the current visual characteristics of the track.

relativePosition
A signed 32-bit value. Pass the distance, in pixels, between the
minimum end of the track and the near side of the indicator. You
may obtain this value by calling either of the functions
GetThemeTrackThumbPositionFromOffset (page 123) or
GetThemeTrackThumbPositionFromRegion (page 124).

value A pointer to a signed 32-bit value. On return, this value contains
the new value of the indicator.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

Your application can use the GetThemeTrackLiveValue function to respond to the
posCntl and kControlMsgCalcValueFromPos control definition message.

VERSION NOTES

Available with Appearance Manager 1.1 and later.
122 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
GetThemeTrackThumbPositionFromOffset 4
Obtains the relative position of a track’s indicator, given an offset from its prior
position.

pascal OSStatus GetThemeTrackThumbPositionFromOffset (
const ThemeTrackDrawInfo *drawInfo,
Point thumbOffset,
SInt32 *relativePosition);

drawInfo A pointer to a structure of type ThemeTrackDrawInfo (page 166).
Before calling GetThemeTrackThumbPositionFromOffset, set the
structure to contain the current visual characteristics of the
track.

thumbOffset A structure of type Point. Pass the point (in coordinates local to
the control’s window) that specifies the vertical and horizontal
offset, in pixels, by which the indicator has moved from its
current position. Typically, this is the offset between the
locations where the cursor was when the user pressed and
released the mouse button while dragging the indicator.

relativePosition
A pointer to a signed 32-bit value. On return, this value contains
the new distance, in pixels, between the minimum end of the
track and the near side of the indicator.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

Your application can use the GetThemeTrackThumbPositionFromOffset function to
respond to the posCntl control definition message.

VERSION NOTES

Available with Appearance Manager 1.1 and later.
Functions 123
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
GetThemeTrackThumbPositionFromRegion 4
Obtains the relative position of a track’s indicator, given its current position.

pascal OSStatus GetThemTrackThumbPositionFromRegion (
const ThemeTrackDrawInfo *drawInfo,
RgnHandle thumbRgn,
SInt32 *relativePosition);

drawInfo A pointer to a structure of type ThemeTrackDrawInfo (page 166).
Before calling GetThemeTrackThumbPositionFromRegion, set the
structure to contain the current visual characteristics of the
track.

thumbRgn A value of type RgnHandle. Before calling
GetThemeTrackThumbPositionFromRegion set the region to contain
the actual dimensions and position of the indicator, in local
coordinates.

relativePosition
A pointer to a signed 32-bit value. On return, this value contains
the new distance, in pixels, between the minimum end of the
track and the near side of the indicator.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

Your application can use the GetThemeTrackThumbPositionFromRegion function to
respond to the kControlMsgCalcValueFromPos control definition message.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

GetThemeTrackThumbRgn 4
Obtains the region containing a track’s indicator.

pascal OSStatus GetThemeTrackThumbRgn (
const ThemeTrackDrawInfo *drawInfo,
RgnHandle thumbRgn);
124 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
drawInfo A pointer to a structure of type ThemeTrackDrawInfo (page 166).
Before calling GetThemeTrackThumbRgn, set the structure to
contain the current visual characteristics of the track.

thumbRgn A value of type RgnHandle. On return, the region contains the
actual dimensions and position of the indicator, in local
coordinates.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

Your application can use the GetThemeTrackThumbRgn function to obtain the
indicator region for tracks that have indicators, such as sliders and scroll bars.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

HitTestThemeScrollBarArrows 4
Returns whether the user clicked upon the specified scroll bar’s arrows.

pascal Boolean HitTestThemeScrollBarArrows (
const Rect *scrollBarBounds,
ThemeTrackEnableState enableState,
ThemeTrackPressState pressState,
Boolean isHoriz,
Point ptHit,
Rect *trackBounds,
ControlPartCode *partcode);

scrollBarBounds
A pointer to a structure of type Rect. Before calling
HitTestThemeScrollBarArrows, set the rectangle to the boundary
of the scroll bar, in local coordinates. Typically, the rectangle you
specify is the entire base control rectangle—that is, the value
contained in the contrlRect field of the scroll bar’s
ControlRecord structure.
Functions 125
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
enableState A value of type ThemeTrackEnableState. Pass a constant
specifying the current state of the scroll bar; see “Theme Track
Enable State Constants” (page 231) for descriptions of possible
values.

pressState A value of type ThemeTrackPressState. Pass a constant
specifying what is pressed in an active scroll bar or 0 if nothing
is pressed; the press state is ignored if the scroll bar is not active.
See “Theme Track Press State Constants” (page 233) for
descriptions of possible values.

isHoriz A value of type Boolean. Pass true if the scroll bar is horizontal;
pass false if it is vertical.

ptHit A structure of type Point. Pass the point, specified in local
coordinates, where the mouse-down event occurred. Your
application may retrieve this value from the where field of the
event structure.

trackBounds A pointer to a structure of type Rect. On return, the rectangle
contains the bounds of the track portion of the scroll bar; this
rectangle excludes the area containing the scroll bar arrows. Pass
NULL if you do not wish to obtain this information.

partcode A pointer to a value of type ControlPartCode. On return, this
value specifies the arrow in which the mouse-down event
occurred.

function result A value of type Boolean. If true, the mouse-down event
occurred inside the scroll bar arrows; otherwise, false.

DISCUSSION

Your application may use the HitTestThemeScrollBarArrows function to test
whether a given mouse-down event occurred on a scroll bar’s arrows. If not,
you may then use the rectangle produced in the trackBounds parameter of
HitTestThemeScrollBarArrows as the bounds of the track for the function
HitTestThemeTrack (page 127), in order to determine whether the mouse-down
event occurred in the track part of the scroll bar.

VERSION NOTES

Available with Appearance Manager 1.1 and later.
126 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
HitTestThemeTrack 4
Returns whether the user clicked upon the specified track.

pascal Boolean HitTestThemeTrack (
const ThemeTrackDrawInfo *drawInfo,
Point mousePoint,
ControlPartCode *partHit);

drawInfo A pointer to a structure of type ThemeTrackDrawInfo (page 166).
Before calling HitTestThemeTrack, set the structure to contain the
current visual characteristics of the track.

mousePoint A structure of type Point. Pass the point, specified in local
coordinates, where the mouse-down event occurred. Your
application may retrieve this value from the where field of the
event structure.

partHit A pointer to a value of type ControlPartCode. On return, this
value specifies the part of the track in which the mouse-down
event occurred.

function result A value of type Boolean. If true, the mouse-down event
occurred inside the track; otherwise, false.

DISCUSSION

The HitTestThemeTrack function checks to see whether a given track contains
the specified point at which a mouse-down event occurred.

For a scroll bar–type track, your application should also check to see whether
the mouse-down event occurred in the scroll bar’s arrows, which are not
considered part of the track and are not tested by this function. To do this, your
application should first use the function HitTestThemeScrollBarArrows
(page 125) to test whether a given mouse-down event occurred on a scroll bar’s
arrows. If not, you may then use the rectangle produced in the rTrack
parameter of HitTestThemeScrollBarArrows as the bounds of the track for
HitTestThemeTrack, in order to determine whether the mouse-down event
occurred in the track part of the scroll bar.

VERSION NOTES

Available with Appearance Manager 1.1 and later.
Functions 127
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
Drawing Theme-Compliant Windows 4
The Appearance Manager provides the following functions for applying
theme-compliant colors and patterns to windows:

■ SetThemeWindowBackground (page 143) associates a theme-compliant color or
pattern with the background of a window.

■ SetThemeTextColorForWindow (page 142) sets a window’s foreground color to a
theme-compliant color.

The Appearance Manager provides the following functions for drawing
theme-compliant windows:

■ DrawThemeModelessDialogFrame (page 129) draws a beveled outline inside the
content area of a modeless dialog box.

■ DrawThemeScrollBarDelimiters (page 130) outlines a window’s scroll bars.

■ DrawThemeStandaloneGrowBox (page 131) draws a size box.

■ DrawThemeStandaloneNoGrowBox (page 132) draws a fill image for use in the
corner space between scroll bars.

■ DrawThemeTitleBarWidget (page 133) draws a close box, zoom box, or collapse
box.

■ DrawThemeWindowFrame (page 135) draws a window frame.

■ DrawThemeWindowHeader (page 136) draws a window header.

■ DrawThemeWindowListViewHeader (page 137) draws a window list view header.

The Appearance Manager provides the following functions for obtaining
window region information:

■ GetThemeStandaloneGrowBoxBounds (page 138) obtains the bounds of a size
box.

■ GetThemeWindowRegion (page 139) obtains the specified window region.

■ GetThemeWindowRegionHit (page 140) obtains the part of the window that the
user clicked upon.
128 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
DrawThemeModelessDialogFrame 4
Draws a beveled outline inside the content area of a modeless dialog box.

pascal OSStatus DrawThemeModelessDialogFrame (
const Rect *inRect,
ThemeDrawState inState);

inRect A pointer to a structure of type Rect. Before calling
DrawThemeModelessDialogFrame, set the rectangle to the boundary
of the window’s content area (that is, its port rectangle), inset by
1 pixel on each side, in local coordinates.

inState A value of type ThemeDrawState. Pass a constant specifying the
state in which to draw the modeless dialog box frame; see
“Theme Draw State Constants” (page 199) for descriptions of
possible values. The frame can be drawn as active or inactive;
passing kThemeStatePressed produces an error.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemeModelessDialogFrame function draws a beveled frame, no more
than 2 pixels wide, that bounds the window’s content area. You can use this
function to make a custom modeless dialog box theme-compliant; the Dialog
Manager automatically draws the interior frame for standard dialog boxes.

SPECIAL CONSIDERATIONS

If you use DrawThemeModelessDialogFrame to draw a frame for a modeless dialog
box, your application must explicitly invalidate and redraw the frame area if
the dialog box is resized.

VERSION NOTES

Available with Appearance Manager 1.0.1 and later.
Functions 129
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
DrawThemeScrollBarDelimiters 4
Outlines a window’s scroll bars.

pascal OSStatus DrawThemeScrollBarDelimiters (
ThemeWindowType flavor,
const Rect *inContRect,
ThemeDrawState state,
ThemeWindowAttributes attributes);

flavor A value of type ThemeWindowType. Pass a constant specifying the
type of window for which to draw scroll bar delimiters. See
“Theme Window Type Constants” (page 236) for descriptions of
possible values.

inContRect A pointer to a structure of type Rect. Before calling
DrawThemeScrollBarDelimiters, set the rectangle to the boundary
of the content rectangle of the window, in local coordinates.

state A value of type ThemeDrawState. Pass a constant—either
kThemeStateActive or kThemeStateInactive—appropriate to the
current state of the window. The scroll bar delimiters can be
drawn as active or inactive; passing kThemeStatePressed
produces an error. See “Theme Draw State Constants”
(page 199) for descriptions of these values.

attributes A value of type ThemeWindowAttributes. Pass one or more
constants corresponding to the window’s current visual
attributes. See “Theme Window Attribute Constants” (page 235)
for descriptions of possible values. Pass 0 if the window has
none of the enumerated attributes.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemeScrollBarDelimiters function draws theme-compliant outlines
for both the horizontal and vertical scroll bars in a given window. The scroll
bars are each assumed to cover the full length of their respective sides of the
window’s content region; if the scroll bars for which you wish delimiters to be
drawn are not full length, or if only one scroll bar exists for a given window,
DrawThemeScrollBarDelimiters should not be used.
130 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
VERSION NOTES

Available with Appearance Manager 1.1 and later.

DrawThemeStandaloneGrowBox 4
Draws a size box.

pascal OSStatus DrawThemeStandaloneGrowBox (
Point origin,
ThemeGrowDirection growDirection,
Boolean isSmall,
ThemeDrawState state);

origin A structure of type Point. Pass the origin point of the size box
rectangle. For example, the origin point of the size box for an
object that can grow downward and to the right is the size box’s
upper-left corner. Typically, you use the coordinates of the
corner of whatever object owns the size box for the origin value.
For example, if you are drawing a scrolling list that can grow
downward and to the right, the origin value would be the
coordinates of the bottom-right corner of the list.

growDirection A value of type ThemeGrowDirection. Pass a constant specifying
the direction(s) in which the resizeable object can grow. See
“Theme Size Box Direction Constants” (page 206) for
descriptions of possible values. The Appearance Manager uses
the growDirection parameter to establish which corner of the
size box is the origin.

isSmall A value of type Boolean. Pass a value of true to specify a small
size box (typically for use with small scroll bars) or false to
specify a standard size box.

state A value of type ThemeDrawState. Pass a constant—either
kThemeStateActive or kThemeStateInactive—appropriate to the
current state of the size box; the size box cannot be drawn as
pressed. See “Theme Draw State Constants” (page 199) for
descriptions of these values.

function result A result code; see “Result Codes” (page 238).
Functions 131
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
DISCUSSION

The DrawThemeStandaloneGrowBox function draws a theme-compliant size box
that is suitable for use inside the content area of a window. The image is
designed to fit between scroll bars and does not have to be abutted with the
window frame.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

SEE ALSO

The function DrawThemeStandaloneNoGrowBox (page 132).

DrawThemeStandaloneNoGrowBox 4
Draws a fill image for use in the corner space between scroll bars.

pascal OSStatus DrawThemeStandaloneNoGrowBox (
Point origin,
ThemeGrowDirection growDirection,
Boolean isSmall,
ThemeDrawState state);

origin A structure of type Point. Pass the origin point of the rectangle
in which to draw the image. Typically, you use the coordinates
of the corner of whatever object owns the image for the origin
value. For example, if you are drawing the image in the
bottom-right corner of a window between the scroll bars of a
non-resizeable scrolling list, the origin value would be the
coordinates of the bottom-right corner of the list.

growDirection A value of type ThemeGrowDirection. See “Theme Size Box
Direction Constants” (page 206) for descriptions of possible
values. The Appearance Manager uses the growDirection
parameter to establish which corner of the rectangle that
contains the image is the origin.
132 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
isSmall A value of type Boolean. Pass a value of true to specify a small
image (for use with small scroll bars) or false to specify a large
image (for use with standard scroll bars).

state A value of type ThemeDrawState. Pass a constant—either
kThemeStateActive or kThemeStateInactive—appropriate to the
current state of the window containing the fill image; the image
cannot be drawn as pressed. See “Theme Draw State Constants”
(page 199) for descriptions of these values.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemeStandaloneNoGrowBox function draws a theme-compliant image for
use as filler in the corner space between scroll bars that

■ abut the frame of a window that is not resizeable and which therefore lacks a
size box to fill the intervening space

■ do not abut the window frame

VERSION NOTES

Available with Appearance Manager 1.1 and later.

SEE ALSO

The function DrawThemeStandaloneGrowBox (page 131).

DrawThemeTitleBarWidget 4
Draws a close box, zoom box, or collapse box.

pascal OSStatus DrawThemeTitleBarWidget (
ThemeWindowType flavor,
const Rect *contRect,
ThemeDrawState state,
const ThemeWindowMetrics *metrics,
ThemeWindowAttributes attributes,
ThemeTitleBarWidget widget);
Functions 133
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
flavor A value of type ThemeWindowType. Pass a constant specifying the
type of window for which to draw a title bar item. See “Theme
Window Type Constants” (page 236) for descriptions of possible
values.

contRect A pointer to a structure of type Rect. Before calling
DrawThemeTitleBarWidget, specify the rectangle for which you
wish to draw a title bar item, in coordinates local to the current
port. This rectangle is typically the content rectangle of a
window.

state A value of type ThemeDrawState. Pass a constant—
kThemeStateActive, kThemeStateInactive, or
kThemeStatePressed—appropriate to the current state of the title
bar item. See “Theme Draw State Constants” (page 199) for
descriptions of these values.

metrics A pointer to a structure of type ThemeWindowMetrics (page 169).
Before calling DrawThemeTitleBarWidget, set the structure to
contain information describing the window for which you wish
to draw a title bar item.

attributes A value of type ThemeWindowAttributes. Pass one or more
constants corresponding to the window’s current visual
attributes. See “Theme Window Attribute Constants” (page 235)
for descriptions of possible values. Pass 0 if the window has
none of the enumerated attributes.

widget A value of type ThemeTitleBarWidget. Pass a constant—
kThemeWidgetCloseBox, kThemeWidgetZoomBox, or
kThemeWidgetCollapseBox—appropriate to the type of title bar
item you wish to draw. See “Theme Title Bar Item Constants”
(page 230) for descriptions of these values.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemeTitleBarWidget function draws theme-compliant title bar items.
Your application should not typically need to call this function;
DrawThemeTitleBarWidget is typically of use only for applications that need to
draw title bar items of simulated windows. Note that while the
DrawThemeWindowFrame function automatically draws all title bar items, your
134 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
application must call the DrawThemeTitleBarWidget function during tracking, to
ensure that the title bar items’ states are drawn correctly.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

DrawThemeWindowFrame 4
Draws a window frame.

pascal OSStatus DrawThemeWindowFrame (
ThemeWindowType flavor,
const Rect *contRect,
ThemeDrawState state,
const ThemeWindowMetrics *metrics,
ThemeWindowAttributes attributes,
WindowTitleDrawingUPP titleProc,
UInt32 titleData);

flavor A value of type ThemeWindowType. Pass a constant specifying the
type of window for which to draw a frame. See “Theme
Window Type Constants” (page 236) for descriptions of possible
values.

contRect A pointer to a structure of type Rect. Before calling
DrawThemeWindowFrame, specify the rectangle for which you wish
to draw a window frame, in coordinates local to the current
port. This rectangle is typically the content rectangle of a
window.

state A value of type ThemeDrawState. Pass a constant—either
kThemeStateActive or kThemeStateInactive—appropriate to the
current state of the window. See “Theme Draw State Constants”
(page 199) for descriptions of these values.

metrics A pointer to a structure of type ThemeWindowMetrics (page 169).
Before calling DrawThemeWindowFrame, set the structure to describe
the window for which to draw a frame.
Functions 135
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
attributes A value of type ThemeWindowAttributes. Pass one or more
constants corresponding to the window’s current visual
attributes. See “Theme Window Attribute Constants” (page 235)
for descriptions of possible values. Pass 0 if the window has
none of the enumerated attributes.

titleProc A value of type WindowTitleDrawingUPP (page 174). If you pass
the value kThemeWindowHasTitleText in the attributes
parameter, you should pass a universal procedure pointer to an
application-defined function such as that described in
MyWindowTitleDrawingProc (page 162) in the titleProc
parameter. DrawThemeWindowFrame calls that function to draw the
window’s title. Pass NULL if there is no title to be drawn.

titleData An unsigned 32-bit integer. Provide any data to be passed in to
the userData parameter of the callback function specified in the
titleProc parameter.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemeWindowFrame function draws a window frame appropriate to the
specified window type. You may use DrawThemeWindowFrame to make a custom
window theme-compliant.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

DrawThemeWindowHeader 4
Draws a window header.

pascal OSStatus DrawThemeWindowHeader (
const Rect *inRect,
ThemeDrawState inState);

inRect A pointer to a structure of type Rect. Before calling
DrawThemeWindowHeader, specify the rectangle containing the
window header, in local coordinates.
136 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
inState A value of type ThemeDrawState. Pass a constant specifying the
state in which to draw the window header; see “Theme Draw
State Constants” (page 199). The header can be drawn as active
or inactive; passing kThemeStatePressed produces an error.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemeWindowHeader function draws a theme-compliant window header,
such as that used by the Finder.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

DrawThemeWindowListViewHeader 4
Draws a window list view header.

pascal OSStatus DrawThemeWindowListViewHeader (
const Rect *inRect,
ThemeDrawState inState);

inRect A pointer to a structure of type Rect. Before calling
DrawThemeWindowListViewHeader, specify the rectangle in which
to draw the window list view header, in local coordinates.

inState A value of type ThemeDrawState. Pass a constant specifying the
state in which to draw the window list view header; see “Theme
Draw State Constants” (page 199). The header can be drawn as
active or inactive; passing kThemeStatePressed produces an
error.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemeWindowListViewHeader function draws a theme-compliant window
list view header, such as that used by the Finder. A window list view header is
Functions 137
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
drawn without a line on its bottom edge, so that bevel buttons can be placed
against it without overlapping.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

GetThemeStandaloneGrowBoxBounds 4
Obtains the bounds of a size box.

pascal OSStatus GetThemeStandaloneGrowBoxBounds (
Point origin,
ThemeGrowDirection growDirection,
Boolean isSmall,
Rect *bounds);

origin A structure of type Point. Pass the origin point of the size box
rectangle. For example, the origin point of the size box for an
object that can grow downward and to the right is the size box’s
upper-left corner. Typically, you use the coordinates of the
corner of whatever object owns the size box for the origin value;
for instance, if you are drawing a scrolling list that can grow
downward and to the right, the origin value would be the
coordinates of the bottom-right corner of the list.

growDirection A value of type ThemeGrowDirection. For a size box, pass a
constant specifying the direction(s) in which the window can
grow. See “Theme Size Box Direction Constants” (page 206) for
descriptions of possible values. The Appearance Manager uses
the growDirection parameter to establish which corner of the
size box is the origin.

isSmall A value of type Boolean. Pass a value of true to specify a small
size box or fill image. Pass false to specify a large size box or fill
image.

bounds A pointer to a structure of type Rect. On return, the rectangle
contains the boundary of the size box or fill image.

function result A result code; see “Result Codes” (page 238).
138 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
DISCUSSION

The GetThemeStandaloneGrowBoxBounds function obtains the bounds of a size box
under the current theme. Note that you can also use
GetThemeStandaloneGrowBoxBounds to obtain the bounds of the fill image drawn
by the function DrawThemeStandaloneNoGrowBox (page 132).

VERSION NOTES

Available with Appearance Manager 1.1 and later.

GetThemeWindowRegion 4
Obtains the specified window region.

pascal OSStatus GetThemeWindowRegion (
ThemeWindowType flavor,
const Rect *contRect,
ThemeDrawState state,
const ThemeWindowMetrics *metrics,
ThemeWindowAttributes attributes,
WindowRegionCode winRegion,
RgnHandle rgn);

flavor A value of type ThemeWindowType. Pass a constant specifying the
type of window to be examined. See “Theme Window Type
Constants” (page 236) for descriptions of possible values.

contRect A pointer to a structure of type Rect. Before calling
GetThemeWindowRegion, set the rectangle to the content area of the
window, specified in coordinates local to the current port.

state A value of type ThemeDrawState. Pass a constant—either
kThemeStateActive or kThemeStateInactive—appropriate to the
current state of the window. See “Theme Draw State Constants”
(page 199) for descriptions of these values.

metrics A pointer to a structure of type ThemeWindowMetrics (page 169).
Before calling GetThemeWindowRegion, set the structure to contain
information describing the window.
Functions 139
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
attributes A value of type ThemeWindowAttributes. Pass one or more
constants corresponding to the window’s current visual
attributes. See “Theme Window Attribute Constants” (page 235)
for descriptions of possible values. Pass 0 if the window has
none of the enumerated attributes.

winRegion A value of type WindowRegionCode. Pass a constant specifying the
region of the window whose dimensions you wish to obtain.

rgn A value of type RgnHandle. Pass a handle to a valid region. On
return, the region represents the actual region requested.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The GetThemeWindowRegion function obtains the dimensions of the specified
window region under the current theme.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

GetThemeWindowRegionHit 4
Obtains the part of the window that the user clicked upon.

pascal Boolean GetThemeWindowRegionHit (
ThemeWindowType flavor,
const Rect *inContRect,
ThemeDrawState state,
const ThemeWindowMetrics *metrics,
ThemeWindowAttributes inAttributes,
Point inPoint,
WindowRegionCode *outRegionHit);

flavor A value of type ThemeWindowType. Pass a constant specifying the
type of window to be examined. See “Theme Window Type
Constants” (page 236) for descriptions of possible values.
140 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
inContRect A pointer to a structure of type Rect. Before calling
GetThemeWindowRegionHit, set rectangle to the content area of the
window, specified in coordinates local to the current port.

state A value of type ThemeDrawState. Pass a constant—either
kThemeStateActive or kThemeStateInactive—appropriate to the
current state of the window. See “Theme Draw State Constants”
(page 199) for descriptions of these values.

metrics A pointer to a structure of type ThemeWindowMetrics (page 169).
Before calling GetThemeWindowRegionHit, set the structure to
contain information describing the window.

inAttributes A value of type ThemeWindowAttributes. Pass one or more
constants corresponding to the window’s current visual
attributes. See “Theme Window Attribute Constants” (page 235)
for descriptions of possible values. Pass 0 if the window has
none of the enumerated attributes.

inPoint A structure of type Point. Pass the point, specified in specified in
coordinates local to the current port, where the mouse-down
event occurred. Your application may retrieve this value from
the where field of the event structure.

outRegionHit A pointer to a value of type WindowRegionCode. On return, the
value is set to the region code of the window part in which the
point passed in the inPoint parameter is located.

function result A value of type Boolean. If true, the mouse-down event
occurred inside the window; otherwise, false.

DISCUSSION

Your window definition function should call the GetThemeWindowRegionHit
function to determine where a specified mouse-down event occurred.

VERSION NOTES

Available with Appearance Manager 1.1 and later.
Functions 141
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
SetThemeTextColorForWindow 4
Sets a window’s foreground color to a theme-compliant color.

pascal OSStatus SetThemeTextColorForWindow (
WindowPtr window,
Boolean isActive,
SInt16 depth,
Boolean isColorDev);

window A value of type WindowPtr. Pass a pointer to the window for
which to set the text color.

isActive A value of type Boolean. Pass true if the window is currently
active; otherwise, false.

depth A signed 16-bit integer. Pass the bit depth (in bits per pixel) of
the current graphics port.

isColorDev A value of type Boolean. Set to true to indicate that you are
drawing on a color device. Set to false for a monochrome
device.

function result A result code; see “Result Codes” (page 238). If the specified
window does not currently have a theme brush associated with
its background or if the associated theme brush is not
translatable into a text color, SetThemeTextColorForWindow
returns an error.

DISCUSSION

The SetThemeTextColorForWindow function determines whether the specified
window has a theme brush associated with its background and, if so, applies
the correct foreground color given the theme brush, the window’s activity state,
and the current drawing environment. This foreground color is applied to any
text drawn after the call to SetThemeTextColorForWindow. Note that
SetThemeTextColorForWindow only applies a custom foreground color when the
window has a theme brush associated with it or if the window is a Dialog
Manager dialog box. If your window is not managed by the Dialog Manager,
you must use the function SetThemeWindowBackground (page 143) to associate a
theme brush with the window before calling SetThemeTextColorForWindow.

For example, you can call SetThemeWindowBackground to associate the active alert
background theme brush with a window:
142 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
SetThemeWindowBackground (myWindow, kThemeBrushAlertBackgroundActive,
true)
// ...
SetThemeTextColorForWindow (myWindow, true, 16, true)

Then, when you call SetThemeTextColorForWindow, the result is that the
window’s foreground color is automatically set to the color appropriate for an
active alert in the specified drawing environment. In this case, the foreground
color that the Appearance Manager would use is that corresponding to the
theme text color constant kThemeTextColorAlertActive.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

SetThemeWindowBackground 4
Associates a theme-compliant color or pattern with the background of a
window.

pascal OSStatus SetThemeWindowBackground (
WindowPtr inWindow,
ThemeBrush inBrush,
Boolean inUpdate);

inWindow A value of type WindowPtr. Pass a pointer to the window for
which to set the background.

inBrush A value of type ThemeBrush. Pass a constant representing the
pattern or color to which to set the window background; see
“Theme Brush Constants” (page 180) for descriptions of possible
values.

inUpdate A value of type Boolean. Pass true to invalidate the content
region of the window and erase the window. If you pass false,
the window background is set but no drawing occurs on screen.

function result A result code. The result code appearanceBadBrushIndexErr
indicates that the brush constant passed was not valid. For a list
of other result codes, see “Result Codes” (page 238).
Functions 143
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
DISCUSSION

The SetThemeWindowBackground function sets the color or pattern to which the
Window Manager erases the window background.

Because the constant in the inBrush parameter can represent a color or pattern,
depending on the current theme, your application must save and restore the
current drawing state of the graphics port around calls to
SetThemeWindowBackground. Under Appearance Manager 1.1 and later, you can
use the functions GetThemeDrawingState (page 80) and SetThemeDrawingState
(page 84) to do this. Prior to Appearance Manager 1.1, you must save and
restore the pnPixPat and bkPixPat fields of your graphics port when saving the
text and background colors. Because patterns in the bkPixPat field override the
background color of the window, call the QuickDraw function BackPat to set
your background pattern to a normal white pattern. This ensures that you can
use RGBBackColor to set your background color to white, call the QuickDraw
function EraseRect, and get the expected results.

VERSION NOTES

Available with Appearance Manager 1.0 and later.

Drawing Theme-Compliant Menus 4
The Appearance Manager provides the following functions for drawing
theme-compliant menus:

■ DrawThemeMenuBackground (page 145) draws a menu background.

■ GetThemeMenuBackgroundRegion (page 150) obtains the background region for
a menu.

The Appearance Manager provides the following functions for drawing
theme-compliant menu titles:

■ DrawThemeMenuTitle (page 149) draws a menu title.

■ GetThemeMenuTitleExtra (page 154) obtains a measurement of the space to
either side of a menu title.

The Appearance Manager provides the following functions for drawing
theme-compliant menu items:

■ DrawThemeMenuItem (page 146) draws a menu item.
144 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
■ DrawThemeMenuSeparator (page 148) draws a menu item separator line.

■ GetThemeMenuItemExtra (page 152) obtains a measurement of the space
surrounding a menu item.

■ GetThemeMenuSeparatorHeight (page 153) obtains the height of a menu
separator line.

The Appearance Manager provides the following functions for drawing
theme-compliant menu bars:

■ DrawThemeMenuBarBackground (page 146) draws a menu bar background.

■ GetThemeMenuBarHeight (page 151) obtains the optimal height of a menu bar.

DrawThemeMenuBackground 4
Draws a menu background.

pascal OSStatus DrawThemeMenuBackground (
const Rect *inMenuRect,
ThemeMenuType inMenuType);

inMenuRect A pointer to a structure of type Rect. Before calling
DrawThemeMenuBackground, set the rectangle to contain the entire
menu, in global coordinates.

inMenuType A value of type ThemeMenuType. Pass a constant specifying the
type of menu for which to draw a background; see “Theme
Menu Type Constants” (page 203) for descriptions of possible
values.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemeMenuBackground function draws a theme-compliant menu
background in the specified rectangle.

VERSION NOTES

Available with Appearance Manager 1.0.1 and later.
Functions 145
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
DrawThemeMenuBarBackground 4
Draws a menu bar background.

pascal OSStatus DrawThemeMenuBarBackground (
const Rect *inBounds,
ThemeMenuBarState inState,
UInt32 inAttributes);

inBounds A pointer to a structure of type Rect. Before calling
DrawThemeMenuBarBackground, set the rectangle to specify the
menu bar’s initial size and location, in global coordinates.

inState A value of type ThemeMenuBarState. Pass a constant specifying
the state (active or selected) in which to draw the menu bar; see
“Theme Menu Bar State Constants” (page 200).

inAttributes Reserved. Pass 0.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemeMenuBarBackground function draws a theme-compliant menu bar
background in the specified rectangle.

VERSION NOTES

Available with Appearance Manager 1.0.1 and later.

DrawThemeMenuItem 4
Draws a menu item.

pascal OSStatus DrawThemeMenuItem (
const Rect *inMenuRect,
const Rect *inItemRect,
SInt16 inVirtualMenuTop,
SInt16 inVirtualMenuBottom,
ThemeMenuState inState,
146 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
ThemeMenuItemType inItemType,
MenuItemDrawingUPP inDrawProc,
UInt32 inUserData);

inMenuRect A pointer to a structure of type Rect. Before calling
DrawThemeMenuItem, set the rectangle to contain the entire menu,
in global coordinates. This is the actual menu rectangle as used
in your menu definition function.

inItemRect A pointer to a structure of type Rect. Before calling
DrawThemeMenuItem, set the rectangle to contain the menu item, in
global coordinates. The menu item’s background is drawn in the
rectangle passed in the inItemRect parameter. You should
calculate the size of the menu item’s content and then call
GetThemeMenuItemExtra (page 152) to get the amount of padding
surrounding menu items in the current theme; the width and
height of the menu item rectangle are determined by adding
these values together.

inVirtualMenuTop
A signed 16-bit integer. Pass a value representing the actual top
of the menu. Normally this value is the top coordinate of the
rectangle supplied in the inMenuRect parameter. This value
could be different, however, if a menu is scrolled or bigger than
can be displayed in the menu rectangle. You typically pass the
value of the global variable TopMenuItem into this parameter if
you are writing a custom menu definition function.

inVirtualMenuBottom
A signed 16-bit integer. Pass a value representing the actual
bottom of the menu. Typically this value is the bottom
coordinate of the rectangle supplied in the inMenuRect
parameter. This value could be different, however, if a menu is
scrolled or bigger than can be displayed in the menu rectangle.
You typically pass the value of the global variable AtMenuBottom
into this parameter if you are writing a custom menu definition
function.

inState A value of type ThemeMenuState. Pass a constant specifying the
state (active, selected, or disabled) in which to draw the menu
item; see “Theme Menu State Constants” (page 203).
Functions 147
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
inItemType A value of type ThemeMenuItemType. If you pass
kThemeMenuItemScrollUpArrow or kThemeMenuItemScrollDownArrow,
then you should pass NULL for the inDrawProc parameter, since
there is no content to be drawn. If you pass
kThemeMenuItemHierarchical, the hierarchical arrow is drawn for
you. See “Theme Menu Item Type Constants” (page 201) for
descriptions of possible values.

inDrawProc A value of type MenuItemDrawingUPP (page 175). Pass a universal
procedure pointer to a menu item drawing function such as
MyMenuItemDrawingProc (page 155). The value of the inDrawProc
parameter can be a valid universal procedure pointer or NULL.

inUserData An unsigned 32-bit integer. Provide any data to be passed in to
the inUserData parameter of MyMenuItemDrawingProc (page 155).

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemeMenuItem function draws a theme-compliant menu item.

VERSION NOTES

Available with Appearance Manager 1.0.1 and later.

DrawThemeMenuSeparator 4
Draws a menu item separator line.

pascal OSStatus DrawThemeMenuSeparator (const Rect *inItemRect);

inItemRect A pointer to a structure of type Rect. Before calling
DrawThemeMenuSeparator, set the rectangle to contain the menu
item separator to be drawn, in global coordinates. The rectangle
should be the same height as the height returned by the function
GetThemeMenuSeparatorHeight (page 153).

function result A result code; see “Result Codes” (page 238).
148 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
DISCUSSION

The DrawThemeMenuSeparator function draws a theme-compliant menu item
separator line.

VERSION NOTES

Available with Appearance Manager 1.0.1 and later.

DrawThemeMenuTitle 4
Draws a menu title.

pascal OSStatus DrawThemeMenuTitle (
const Rect *inMenuBarRect,
const Rect *inTitleRect,
ThemeMenuState inState,
UInt32 inAttributes,
MenuTitleDrawingUPP inTitleProc,
UInt32 inTitleData);

inMenuBarRect A pointer to a structure of type Rect. Before calling
DrawThemeMenuTitle, set the rectangle to contain the entire menu
bar in which the title is to be drawn, in global coordinates. The
menu bar background is drawn in the rectangle passed in the
inMenuBarRect parameter. Your application can call
GetThemeMenuBarHeight (page 151) to get the height of the menu
bar.

inTitleRect A pointer to a structure of type Rect. Before calling
DrawThemeMenuTitle, set the rectangle to contain the menu title,
in global coordinates. The title background is drawn in the
rectangle passed in the inTitleRect parameter. The width of this
rectangle is determined by calculating the width of the menu
title’s content and then calling GetThemeMenuTitleExtra
(page 154) to get the amount of padding between menu titles in
the current theme; these two values are added together and
added to the left edge of where the title should be drawn. The
top and bottom coordinates of this rectangle should be the same
as those of the inMenuBarRect parameter.
Functions 149
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
inState A value of type ThemeMenuState. Pass a constant specifying the
state (active, selected, or disabled) in which to draw the menu
title; see “Theme Menu State Constants” (page 203).

inAttributes Reserved. Pass 0.

inTitleProc A value of type MenuTitleDrawingUPP (page 175). Pass a
universal procedure pointer to a menu title drawing function
such as MyMenuTitleDrawingProc (page 156), defining how to
draw the contents of the menu title. The value of the
inTitleProc parameter can be a valid universal procedure
pointer or NULL.

inTitleData An unsigned 32-bit integer. Provide any data to be passed in to
the inUserData parameter of MyMenuTitleDrawingProc (page 156).

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The DrawThemeMenuTitle function draws a theme-compliant menu title.

VERSION NOTES

Available with Appearance Manager 1.0.1 and later.

GetThemeMenuBackgroundRegion 4
Obtains the background region for a menu.

pascal OSStatus GetThemeMenuBackgroundRegion (
const Rect *inMenuRect,
ThemeMenuType menuType,
RgnHandle Region);

inMenuRect A pointer to a structure of type Rect. Before calling
GetThemeMenuBackgroundRegion, set the rectangle to contain the
entire menu, in global coordinates.
150 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
menuType A value of type ThemeMenuType. Pass a constant specifying the
type of menu (pull-down, pop-up, or hierarchical) whose
background you wish to obtain; see “Theme Menu Type
Constants” (page 203) for descriptions of possible values.

Region A value of type RgnHandle. Pass a region handle created by your
application. On return, the region is set to that of the rectangle
specified in the inMenuRect parameter, that is, the menu’s
background region.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The GetThemeMenuBackgroundRegion function obtains the background region that
a menu occupies under the current theme.

VERSION NOTES

Available with Appearance Manager 1.0.1 and later.

GetThemeMenuBarHeight 4
Obtains the height of a menu bar.

pascal OSStatus GetThemeMenuBarHeight (SInt16 *outHeight);

outHeight A pointer to a signed 16-bit integer. On return, the integer value
represents the height (in pixels) of the menu bar.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The GetThemeMenuBarHeight function obtains the specified height of a menu bar
in the current theme. This is in contrast to the Menu Manager function
GetMBarHeight, which obtains the actual space that the menu bar is currently
occupying on the screen. In most instances, the values produced by these two
functions are the same. But, when the menu bar is hidden, GetMBarHeight
produces a value of 0, and GetThemeMenuBarHeight still provides the “ideal”
menu bar height.
Functions 151
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
SPECIAL CONSIDERATIONS

Because menu bar heights may vary among appearances by one or more pixels,
you should check the current menu bar height after a theme switch. Specifically,
your application should respond to the theme-switch Apple event,
kAEAppearanceChanged, by checking the current menu bar height. See
“Appearance Manager Apple Event Constants” (page 177) for more details on
kAEAppearanceChanged.

It is important to check the menu bar height before positioning any windows.
Failure to do so may result in the menu bar overlapping your application’s
windows.

VERSION NOTES

Available with Appearance Manager 1.0.1 and later.

GetThemeMenuItemExtra 4
Obtains a measurement of the space surrounding a menu item.

pascal OSStatus GetThemeMenuItemExtra (
ThemeMenuItemType inItemType,
SInt16 *outHeight,
SInt16 *outWidth);

inItemType A value of type ThemeMenuItemType. Pass a constant identifying
the type of menu item for which you are interested in getting a
measurement. See “Theme Menu Item Type Constants”
(page 201).

outHeight A pointer to a signed 16-bit integer. On return, the integer value
represents the total amount of padding between the content of
the menu item and the top and bottom of its frame (in pixels).
Your content’s height plus the measurement provided by the
outHeight parameter equals the total item height.

outWidth A pointer to a signed 16-bit integer. On return, the integer value
represents the total amount of padding between the content of
the menu item and the left and right limits of the menu (in
pixels). Your content’s width plus the measurement provided by
the outWidth parameter equals the total item width.
152 Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
function result A result code; see “Result Codes” (page 238).

DISCUSSION

Your application should call the GetThemeMenuItemExtra function when you are
writing your own menu definition function and wish to be theme-compliant.
Once you have determined the height and width of the content of a menu item,
call GetThemeMenuItemExtra to get a measurement in pixels of the space
surrounding a menu item, including any necessary inter-item spacing, in the
current theme. By combining the values for your menu item’s content and the
extra padding needed by the theme, you can derive the size of the rectangle
needed to encompass both the content and the theme element together.

VERSION NOTES

Available with Appearance Manager 1.0.1 and later.

GetThemeMenuSeparatorHeight 4
Obtains the height of a menu separator line.

pascal OSStatus GetThemeMenuSeparatorHeight (SInt16 *outHeight);

outHeight A pointer to a signed 16-bit integer. On return, the integer value
represents the height (in pixels) of the menu separator line.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

The GetThemeMenuSeparatorHeight function obtains the height of a menu
separator line under the current theme. Your application should call the
GetThemeMenuSeparatorHeight function when you are writing your own menu
definition function and wish to calculate a menu rectangle for a separator to
match the current theme.

VERSION NOTES

Available with Appearance Manager 1.0.1 and later.
Functions 153
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
GetThemeMenuTitleExtra 4
Obtains a measurement of the space to either side of a menu title.

pascal OSStatus GetThemeMenuTitleExtra (
SInt16 *outWidth,
Boolean inIsSquished);

outWidth A pointer to a signed 16-bit integer. On return, the integer value
represents the horizontal distance (in pixels) between the menu
title and the bounds of its containing rectangle.

inIsSquished A value of type Boolean. If all the titles do not fit in the menu bar
and you wish to condense the menu title’s spacing to fit, pass
true. If you pass false, the menu title is not condensed.

function result A result code; see “Result Codes” (page 238).

DISCUSSION

Once you have determined the height and width of the content of a menu title,
call GetThemeMenuTitleExtra to get the space surrounding the menu title in the
current theme.

VERSION NOTES

Available with Appearance Manager 1.0.1 and later.

Application-Defined Functions 4

The Appearance Manager supports the following application-defined functions:

■ MyThemeIteratorProc (page 160) performs a custom response to an iteration
over themes installed on a system.

■ MyThemeButtonDrawProc (page 157) draws a button label.

■ MyThemeEraseProc (page 159) draws a background.

■ MyThemeTabTitleDrawProc (page 161) draws a tab title.

■ MyWindowTitleDrawingProc (page 162) draws a window title.
154 Application-Defined Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
■ MyMenuItemDrawingProc (page 155) draws a menu item.

■ MyMenuTitleDrawingProc (page 156) draws a menu title.

MyMenuItemDrawingProc 4
Draws a menu item.

Here’s how to declare a menu item drawing function, if you were to name the
function MyMenuItemDrawingProc:

pascal void (MyMenuItemDrawingProc)
(const Rect *inBounds,
SInt16 inDepth,
Boolean inIsColorDevice,
SInt32 inUserData);

inBounds A pointer to a structure of type Rect. You are passed a rectangle
specifying the dimensions and position in which you should
draw your menu item content. Your menu item drawing
function is called clipped to the rectangle in which you are
allowed to draw your content; do not draw outside this region.

inDepth A signed 16-bit integer. You are passed the bit depth (in bits per
pixel) of the current graphics port.

inIsColorDevice
A value of type Boolean. You are passed true to indicate that you
are drawing on a color device; inIsColorDevice is false for a
monochrome device.

inUserData You are passed data specifying how to draw the menu item
content from the inUserData parameter of DrawThemeMenuItem
(page 146).

DISCUSSION

At the time your menu item drawing function is called, the foreground text
color and mode is already set to draw in the correct state (enabled, selected,
disabled) and correct color for the theme. You do not need to set the color unless
you have special drawing needs. If you do have special drawing needs, you
should supply the inDepth value and the value of the inIsColorDevice
Application-Defined Functions 155
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
parameter to the function IsThemeInColor to determine whether or not you
should draw the menu item content in color.

Note that the Appearance Manager calls your MyMenuItemDrawingProc function
for every device that the inBounds rectangle intersects.

SPECIAL CONSIDERATIONS

The Appearance Manager draws the background of the menu item prior to
calling your menu item drawing function, so you should not erase the item’s
background from this function.

VERSION NOTES

Available with Appearance Manager 1.0.1 and later.

MyMenuTitleDrawingProc 4
Draws a menu title.

Here’s how to declare a menu title drawing function, if you were to name the
function MyMenuTitleDrawingProc:

pascal void (MyMenuTitleDrawingProc)
(const Rect *inBounds,
SInt16 inDepth,
Boolean inIsColorDevice,
SInt32 inUserData);

inBounds A pointer to a structure of type Rect. You are passed a rectangle
specifying the dimensions and position in which you should
draw your menu title content. Your menu title drawing function
is called clipped to the rectangle in which you are allowed to
draw your content; do not draw outside this region.

inDepth A signed 16-bit integer. You are passed the bit depth (in bits per
pixel) of the current graphics port.

inIsColorDevice
A value of type Boolean. You are passed true to indicate that you
are drawing on a color device; inIsColorDevice is false for a
monochrome device.
156 Application-Defined Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
inUserData You are passed data specifying how to draw the menu title
content from the inTitleData parameter of DrawThemeMenuTitle
(page 149).

DISCUSSION

At the time your menu title drawing function is called, the foreground text color
and mode is already set to draw in the correct state (enabled, selected, disabled)
and correct color for the theme. You do not need to set the color unless you have
special drawing needs. If you do have special drawing needs, you should
supply the inDepth value and the value of the inIsColorDevice parameter to the
function IsThemeInColor to determine whether or not you should draw the
menu title content in color.

Note that the Appearance Manager calls your MyMenuTitleDrawingProc function
for every device that the inBounds rectangle intersects.

SPECIAL CONSIDERATIONS

The Appearance Manager draws the background of the menu title prior to
calling your menu title drawing function, so you should not erase the title’s
background from this function.

VERSION NOTES

Available with Appearance Manager 1.0.1 and later.

MyThemeButtonDrawProc 4
Draws a button label.

Here’s how to declare a button label drawing function, if you were to name the
function MyThemeButtonDrawProc:

pascal void MyThemeButtonDrawProc (
const Rect *bounds,
ThemeButtonKind kind,
ThemeButtonDrawInfo *info,
Application-Defined Functions 157
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
UInt32 userData,
SInt16 depth,
Boolean isColorDev);

bounds A pointer to a structure of type Rect. The rectangle you are
passed is set to the area in which you should draw your content.
Your button label drawing function is called clipped to the
rectangle in which you are allowed to draw your content; do not
draw outside this region. Note that if a right-to-left adornment
is specified in the ThemeButtonDrawInfo structure passed into the
info parameter, you may need to accommodate this orientation
when placing your content.

kind A value of type ThemeButtonKind. You are passed a constant
specifying the button type. See “Theme Button Kind Constants”
(page 187) for descriptions of possible values.

info A pointer to a structure of type ThemeButtonDrawInfo (page 165).
The structure is set to contain the current state, value, and
adornment for the button.

userData An unsigned 32-bit value. You are passed data specifying how
to draw the content, from the inUserData parameter of
DrawThemeButton (page 94).

depth A signed 16-bit value. You are passed the bit depth (in bits per
pixel) of the current graphics port.

isColorDev A value of type Boolean. If true, indicates that you are drawing
on a color device; a value of false indicates a monochrome
device.

DISCUSSION

At the time your button label drawing function is called, the foreground text
color and mode is already set to draw in the correct state (active or inactive) and
correct color for the theme. You do not need to set the color unless you have
special drawing needs. If you do have special drawing needs, you should
supply the depth value and the value of the isColorDevice parameter to the
function IsThemeInColor to determine whether or not you should draw your
content in color. Note that the Appearance Manager calls your
MyThemeButtonDrawProc function for every device that the bounds rectangle
intersects.
158 Application-Defined Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
SPECIAL CONSIDERATIONS

The Appearance Manager draws the button background prior to calling your
button label drawing function, so you should not erase the button background
from your label drawing function.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

MyThemeEraseProc 4
Draws a background.

Here’s how to declare a background drawing function, if you were to name the
function MyThemeEraseProc:

pascal void MyThemeEraseProc (
const Rect *bounds,
UInt32 eraseData,
SInt16 depth,
Boolean isColorDev);

bounds A pointer to a structure of type Rect. The rectangle you are
passed is set to the area in which you should draw. Your
drawing function is called clipped to the rectangle in which you
are allowed to draw; do not draw outside this region.

eraseData An unsigned 32-bit value. You are passed data specifying how
to draw, from the eraseData parameter of
DrawThemeChasingArrows (page 96), DrawThemePopupArrow
(page 102), DrawThemeTrack (page 110), or
DrawThemeTrackTickMarks (page 111) or from the inUserData
parameter of DrawThemeButton (page 94).

depth A signed 16-bit value. You are passed the bit depth (in bits per
pixel) of the current graphics port.

isColorDev A value of type Boolean. If true, indicates that you are drawing
on a color device; a value of false indicates a monochrome
device.
Application-Defined Functions 159
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
DISCUSSION

At the time your drawing function is called, the foreground text color and mode
is already set to draw in the correct state (active or inactive) and correct color
for the theme. You do not need to set the color unless you have special drawing
needs. If you do have special drawing needs, you should supply the depth
value and the value of the isColorDevice parameter to the function
IsThemeInColor to determine whether or not you should draw in color. Note
that the Appearance Manager calls your MyThemeEraseProc function for every
device that the bounds rectangle intersects, so your application does not need to
call the DeviceLoop function itself.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

MyThemeIteratorProc 4
Performs a custom response to an iteration over themes installed on a system.

Here’s how to declare a theme iteration function, if you were to name the
function MyThemeIteratorProc:

pascal Boolean MyThemeIteratorProc (
ConstStr255Param inFileName,
SInt16 resID,
Collection inThemeSettings,
void *inUserData);

inFileName A value of type ConstStr255Param. You are passed the name of
the file containing the theme being iterated upon.

resID A signed 16-bit integer. You are passed the resource ID of the
theme.

inThemeSettings
A value of type Collection. You are passed a reference to a
collection that contains data describing attributes of the theme.
Note that the Appearance Manager owns this collection, and
that your application should not dispose of it.
160 Application-Defined Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
inUserData A pointer to data of any type. You are passed the value specified
in the inUserData parameter of the function IterateThemes
(page 73).

function result A value of type Boolean. If you return true, IterateThemes
continues iterating. Set to false to terminate the iteration.

SPECIAL CONSIDERATIONS

Your application should not open and close theme files during this call.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

MyThemeTabTitleDrawProc 4
Draws a tab title.

Here’s how to declare a tab title drawing function, if you were to name the
function MyThemeTabTitleDrawProc:

pascal void MyThemeTabTitleDrawProc (
const Rect *bounds,
ThemeTabStyle style,
ThemeTabDirection direction,
SInt16 depth,
Boolean isColorDev,
UInt32 userData);

bounds A pointer to a structure of type Rect. The rectangle you are
passed is set to the area in which you should draw your tab title
content. Your tab title drawing function is called clipped to the
rectangle in which you are allowed to draw your content; do not
draw outside this region.

style A value of type ThemeTabStyle. You are passed a constant
specifying the relative position (front or non-front) and state of
the tab. See “Theme Tab Style Constants” (page 224) for
descriptions of possible values.
Application-Defined Functions 161
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
direction A value of type ThemeTabDirection. You are passed a constant
specifying the direction in which the tab is oriented. See “Theme
Tab Direction Constants” (page 223) for descriptions of possible
values.

depth A signed 16-bit value. You are passed the bit depth (in bits per
pixel) of the current graphics port.

isColorDev A value of type Boolean. If true, indicates that you are drawing
on a color device; a value of false indicates a monochrome
device.

userData An unsigned 32-bit value. You are passed data specifying how
to draw the tab title content, from the userData parameter of
DrawThemeTab (page 107).

DISCUSSION

At the time your tab title drawing function is called, the foreground text color
and mode is already set to draw in the correct state (active or inactive) and
correct color for the theme. You do not need to set the color unless you have
special drawing needs. If you do have special drawing needs, you should
supply the depth value and the value of the isColorDevice parameter to the
function IsThemeInColor to determine whether or not you should draw the tab
title content in color. Note that the Appearance Manager calls your
MyThemeTabTitleDrawProc function for every device that the bounds rectangle
intersects.

SPECIAL CONSIDERATIONS

The Appearance Manager draws the tab background prior to calling your tab
title drawing function, so you should not erase the tab background from your
title drawing function.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

MyWindowTitleDrawingProc 4
Draws a window title.
162 Application-Defined Functions

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
Here’s how to declare a window title drawing function, if you were to name the
function MyWindowTitleDrawingProc:

pascal void MyWindowTitleDrawingProc (
const Rect *bounds,
SInt16 depth,
Boolean colorDevice,
SInt32 userData);

bounds A pointer to a structure of type Rect. The rectangle you are
passed is set to the area in which you should draw your
window title content. Your window title drawing function is
called clipped to the rectangle in which you are allowed to draw
your content; do not draw outside this region.

depth A signed 16-bit value. You are passed the bit depth (in bits per
pixel) of the current graphics port.

colorDevice A value of type Boolean. If true, indicates that you are drawing
on a color device; a value of false indicates a monochrome
device.

userData A signed 32-bit value. You are passed data specifying how to
draw the window title content, from the titleData parameter of
DrawThemeWindowFrame (page 135).

DISCUSSION

At the time your window title drawing function is called, the foreground text
color and mode is already set to draw in the correct window state (active or
inactive) and correct color for the theme. You do not need to set the color unless
you have special drawing needs. If you do have special drawing needs, you
should supply the depth value and the value of the colorDevice parameter to
the function IsThemeInColor to determine whether or not you should draw the
window title content in color. Note that the Appearance Manager calls your
MyWindowTitleDrawingProc function for every device that the bounds rectangle
intersects.
Application-Defined Functions 163
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
SPECIAL CONSIDERATIONS

The Appearance Manager draws the background of the window title prior to
calling your window title drawing function, so you should not erase the
background from this function.

VERSION NOTES

Available with Appearance Manager 1.1 and later.

Data Types 4

The Appearance Manager supplies the following data types:

■ ThemeDrawingState (page 165)

■ ThemeButtonDrawInfo (page 165)

■ ThemeTrackDrawInfo (page 166)

■ ScrollBarTrackInfo (page 167)

■ SliderTrackInfo (page 168)

■ ProgressTrackInfo (page 169)

■ ThemeWindowMetrics (page 169)

■ ThemeIteratorUPP (page 171)

■ ThemeEraseUPP (page 171)

■ ThemeTabTitleDrawUPP (page 172)

■ ThemeButtonDrawUPP (page 173)

■ WindowTitleDrawingUPP (page 174)

■ MenuTitleDrawingUPP (page 175)

■ MenuItemDrawingUPP (page 175)
164 Data Types

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
ThemeDrawingState 4
The ThemeDrawingState type is a reference to a private structure containing
information about the current state of a graphics port. You can use the
ThemeDrawingState type with the function GetThemeDrawingState (page 80) to
obtain the current graphics port’s drawing state and with the function
SetThemeDrawingState (page 84) to restore a port’s drawing state. You should
dispose of the memory allocated to contain a ThemeDrawingState reference by
calling DisposeThemeDrawingState (page 78) or passing a value of true in the
inDisposeNow parameter of SetThemeDrawingState. The ThemeDrawingState type is
available with Appearance Manager 1.1 and later.

typedef struct OpaqueThemeDrawingState* ThemeDrawingState;

ThemeButtonDrawInfo 4
A ThemeButtonDrawInfo structure describes the changeable visual characteristics
of a button. Your application can use a ThemeButtonDrawInfo structure, together
with a constant of type ThemeButtonKind, to fully describe the visual
characteristics of a given button type at a given point in time. See “Theme
Button Kind Constants” (page 187) for a description of ThemeButtonKind values.

Your application uses the ThemeButtonDrawInfo structure in the function
DrawThemeButton (page 94) to draw a theme-compliant button and in the
functions GetThemeButtonRegion (page 115) and GetThemeButtonContentBounds
(page 114) to obtain information about a specific button type. The
ThemeButtonDrawInfo structure is available with Appearance Manager 1.1 and
later.

struct ThemeButtonDrawInfo {
ThemeDrawState state;
ThemeButtonValue value;
ThemeButtonAdornment adornment;

};
typedef struct ThemeButtonDrawInfo ThemeButtonDrawInfo;
typedef ThemeButtonDrawInfo *ThemeButtonDrawInfoPtr;

Field descriptions

state A value of type ThemeDrawState, specifying the state of the
button, such as whether it is active, inactive, or pressed. See
Data Types 165
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
“Theme Draw State Constants” (page 199) for descriptions
of possible values.

value A value of type ThemeButtonValue, specifying the value of
the button, such as, in the case of checkbox, whether it is
drawn as on, off, or mixed. See “Theme Button Value
Constants” (page 189) for descriptions of possible values.

adornment A value of type ThemeButtonAdornment, specifying any
supplementary characteristics of the button, such as
whether it is drawn with a focus ring. See “Theme Button
Adornment Constants” (page 186) for descriptions of
possible values.

ThemeTrackDrawInfo 4
Your application fills out the applicable fields of a ThemeTrackDrawInfo structure
to fully describe any given track control. The ThemeTrackDrawInfo structure is
available with Appearance Manager 1.1 and later.

struct ThemeTrackDrawInfo {
ThemeTrackKind kind;
Rect bounds;
SInt32 min;
SInt32 max;
SInt32 value;
UInt32 reserved;

ThemeTrackAttributes attributes;
ThemeTrackEnableState enableState;
UInt8 filler1; // padding

union {
ScrollBarTrackInfo scrollbar;
SliderTrackInfo slider;
ProgressTrackInfo progress;

} trackInfo;
};
typedef struct ThemeTrackDrawInfo ThemeTrackDrawInfo;
166 Data Types

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
Field descriptions

kind A value of type ThemeTrackKind, specifying the type of track
to be drawn. See “Theme Track Kind Constants” (page 232)
for descriptions of possible values.

bounds A structure of type Rect specifying the dimensions and
position of the track, in local coordinates.

min A signed 32-bit integer specifying the minimum value for
the track.

max A signed 32-bit integer specifying the maximum value for
the track.

value A signed 32-bit integer specifying the current value for the
track.

reserved Reserved.
attributes A value of type ThemeTrackAttributes specifying additional

attributes of the track, such as whether the track has an
indicator. See “Theme Track Attributes Constants”
(page 231) for descriptions of possible values.

enableState A value of type ThemeTrackEnableState specifying the
current state of the track control; see “Theme Track Enable
State Constants” (page 231) for descriptions of possible
values.

trackInfo A union of the ScrollBarTrackInfo, SliderTrackInfo, and
ProgressTrackInfo structures. Your application fills in the
structure that is appropriate for the kind of track with
which you are working. See ScrollBarTrackInfo (page 167),
SliderTrackInfo (page 168), and ProgressTrackInfo
(page 169) for details on these structures.

ScrollBarTrackInfo 4
Your application uses the ScrollBarTrackInfo structure in the
ThemeTrackDrawInfo (page 166) structure to describe the scroll bar–specific
features of a given track control. The ScrollBarTrackInfo structure is available
with Appearance Manager 1.1 and later.
Data Types 167
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
struct ScrollBarTrackInfo {
SInt32 viewSize;
ThemeTrackPressState pressState;

};
typedef struct ScrollBarTrackInfo ScrollBarTrackInfo;

Field descriptions

viewSize A signed 32-bit integer, specifying the size of the content
being displayed. This value should be expressed in terms
of the same units of measurement as are used for the
minimum, maximum, and current settings of the scroll bar.

pressState A value of type ThemeTrackPressState, specifying what in
the scroll bar is currently pressed. See “Theme Track Press
State Constants” (page 233) for descriptions of possible
values. Pass 0 if nothing is currently pressed.

SliderTrackInfo 4
Your application supplies a SliderTrackInfo structure to the ThemeTrackDrawInfo
(page 166) structure to describe the slider-specific features of a given track
control. The SliderTrackInfo structure is available with Appearance Manager
1.1 and later.

struct SliderTrackInfo {
ThemeThumbDirection thumbDir;
ThemeTrackPressState pressState;

};
typedef struct SliderTrackInfo SliderTrackInfo;

Field descriptions

thumbDir A value of type ThemeThumbDirection, specifying the
direction in which the slider indicator points. See “Theme
Slider Indicator Direction Constants” (page 207) for
descriptions of possible values.

pressState A value of type ThemeTrackPressState, specifying the part
of the slider that is currently pressed. See “Theme Track
Press State Constants” (page 233) for descriptions of
possible values. Pass 0 if nothing is currently pressed.
168 Data Types

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
ProgressTrackInfo 4
Your application supplies a ProgressTrackInfo structure to the
ThemeTrackDrawInfo (page 166) structure to describe the progress bar–specific
features of a given track control. The ProgressTrackInfo structure is available
with Appearance Manager 1.1 and later.

struct ProgressTrackInfo {
UInt8 phase;

};
typedef struct ProgressTrackInfo ProgressTrackInfo;

Field description

phase A value ranging from 1 to 4, specifying the current
animation phase for an indeterminate progress bar;
increment this value to animate the progress bar. Set this
field to 0 for a determinate progress bar.

ThemeWindowMetrics 4
Your application uses the ThemeWindowMetrics structure to inform the
Appearance Manager of the dimensions of specific parts of your window. See
the functions discussed in “Drawing Theme-Compliant Windows” (page 128)
for specific uses of the ThemeWindowMetrics type. The ThemeWindowMetrics
structure is available with Appearance Manager 1.1 and later.

struct ThemeWindowMetrics {
UInt16 metricSize;
SInt16 titleHeight;
SInt16 titleWidth;
SInt16 popupTabOffset;
SInt16 popupTabWidth;
UInt16 popupTabPosition;

};
typedef struct ThemeWindowMetrics ThemeWindowMetrics;
typedef ThemeWindowMetrics *ThemeWindowMetricsPtr;

Field descriptions

metricSize A value specifying the size of the ThemeWindowMetrics
structure.
Data Types 169
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
titleHeight A measurement in pixels of the height of the title text in the
current system font, including any icon that may be present
in the title region. Set this field to 0 if the window does not
contain a title.

titleWidth A measurement in pixels of the width of the title text in the
current system font, including any icon that may be present
in the title region. Set this field to 0 if the window does not
contain a title.

popupTabOffset A measurement in pixels of the distance that the left edge
of a pop-up window’s tab is offset from the left edge of the
window. This value is used in conjunction with the value
passed in the popupTabPosition field to determine the
actual position of the tab. Set this field to 0 if the window is
not a pop-up window.

popupTabWidth A measurement in pixels of the width of a pop-up
window’s tab. Set this field to 0 if the window is not a
pop-up window.

popupTabPosition A value specifying the rule to apply when positioning a
pop-up window’s tab. Set this field to 0 if the window is
not a pop-up window.
A value of kThemePopupTabNormalPosition specifies that the
left edge of the tab is to be drawn at the position indicated
by the popupTabOffset field.
A value of kThemePopupTabCenterOnWindow specifies that the
tab is to be drawn centered on the window; the
popupTabOffset field is ignored.
A value of kThemePopupTabCenterOnOffset specifies that the
tab is to be drawn centered at the position indicated by the
popupTabOffset field.
170 Data Types

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
ThemeIteratorUPP 4
The Appearance Manager defines the type for an application-defined theme
iteration function as follows:

typedef pascal (Boolean, ThemeIteratorProcPtr) (
ConstStr255Param inFileName,
SInt16 resID,
Collection inThemeSettings,
void *inUserData);

The Appearance Manager defines the data type ThemeIteratorUPP to identify the
universal procedure pointer for an application-defined theme iteration function:

typedef ThemeIteratorProcPtr ThemeIteratorUPP;

You typically use the NewThemeIteratorProc macro like this:

ThemeIteratorUPP myThemeIteratorUPP;
myThemeIteratorUPP = NewThemeIteratorProc(MyThemeIteratorProc);

You typically use the CallThemeIteratorProc macro like this:

CallThemeIteratorProc(myThemeIteratorUPP, inFileName, resID,
inThemeSettings, inUserData);

To implement your own theme iteration function, see MyThemeIteratorProc
(page 160). The ThemeIteratorProcPtr type is available with Appearance
Manager 1.1 and later.

ThemeEraseUPP 4
The Appearance Manager defines the type for an application-defined
background drawing function as follows:

typedef pascal (void, ThemeEraseProcPtr) (
const Rect *bounds,
UInt32 eraseData,
SInt16 depth,
Boolean isColorDev);
Data Types 171
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
The Appearance Manager defines the data type ThemeEraseUPP to identify the
universal procedure pointer for an application-defined background drawing
function:

typedef ThemeEraseProcPtr ThemeEraseUPP;

You typically use the NewThemeEraseProc macro like this:

ThemeEraseUPP myThemeEraseUPP;
myThemeEraseUPP = NewThemeEraseProc(MyThemeEraseProc);

You typically use the CallThemeEraseProc macro like this:

CallThemeEraseProc(myThemeEraseUPP, bounds, eraseData, depth,
isColorDev);

To implement your own background drawing function, see MyThemeEraseProc
(page 159). The ThemeEraseProcPtr type is available with Appearance Manager
1.1 and later.

ThemeTabTitleDrawUPP 4
The Appearance Manager defines the type for an application-defined tab title
drawing function as follows:

typedef pascal (void, ThemeTabTitleDrawProcPtr) (
const Rect *bounds,
ThemeTabStyle style,
ThemeTabDirection direction,
SInt16 depth,
Boolean isColorDev,
UInt32 userData);

The Appearance Manager defines the data type ThemeTabTitleDrawUPP to
identify the universal procedure pointer for an application-defined tab title
drawing function:

typedef ThemeTabTitleDrawProcPtr ThemeTabTitleDrawUPP;

You typically use the NewThemeTabTitleDrawProc macro like this:
172 Data Types

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
ThemeTabTitleDrawUPP myThemeTabTitleDrawUPP;
myThemeTabTitleDrawUPP =
NewThemeTabTitleDrawProc(MyThemeTabTitleDrawProc);

You typically use the CallThemeTabTitleDrawProc macro like this:

CallThemeTabTitleDrawProc(myThemeTabTitleDrawUPP, bounds, style,
direction, depth, isColorDev, userData);

To implement your own tab title drawing function, see
MyThemeTabTitleDrawProc (page 161). The ThemeTabTitleDrawProcPtr type is
available with Appearance Manager 1.1 and later.

ThemeButtonDrawUPP 4
The Appearance Manager defines the type for an application-defined button
label drawing function as follows:

typedef pascal (void, ThemeButtonDrawProcPtr) (
const Rect *bounds,
ThemeButtonKind kind,
ThemeButtonDrawInfo *info,
UInt32 userData,
SInt16 depth,
Boolean isColorDev);

The Appearance Manager defines the data type ThemeButtonDrawUPP to identify
the universal procedure pointer for an application-defined button label drawing
function:

typedef ThemeButtonDrawProcPtr ThemeButtonDrawUPP;

You typically use the NewThemeButtonDrawProc macro like this:

ThemeButtonDrawUPP myThemeButtonDrawUPP;
myThemeButtonDrawUPP = NewThemeButtonDrawProc(MyThemeButtonDrawProc);

You typically use the CallThemeButtonDrawProc macro like this:
Data Types 173
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
CallThemeButtonDrawProc(myThemeButtonDrawUPP, bounds, kind, info,
userData, depth, isColorDev);

To implement your own button label drawing function, see
MyThemeButtonDrawProc (page 157). The ThemeButtonDrawProcPtr type is available
with Appearance Manager 1.1 and later.

WindowTitleDrawingUPP 4
The Appearance Manager defines the type for an application-defined window
title drawing function as follows:

typedef pascal (void, WindowTitleDrawingProcPtr) (
const Rect *bounds,
SInt16 depth,
Boolean colorDevice,
SInt32 userData);

The Appearance Manager defines the data type WindowTitleDrawingUPP to
identify the universal procedure pointer for an application-defined window
title drawing function:

typedef WindowTitleDrawingProcPtr WindowTitleDrawingUPP;

You typically use the NewWindowTitleDrawingProc macro like this:

WindowTitleDrawingUPP myWindowTitleDrawingUPP;
myWindowTitleDrawingUPP =
NewWindowTitleDrawingProc(MyWindowTitleDrawingProc);

You typically use the CallWindowTitleDrawingProc macro like this:

CallWindowTitleDrawingProc(myWindowTitleDrawingUPP, bounds, depth,
colorDevice, userData);

To implement your own window title drawing function, see
MyWindowTitleDrawingProc (page 162). The WindowTitleDrawingProcPtr type is
available with Appearance Manager 1.1 and later.
174 Data Types

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
MenuTitleDrawingUPP 4
The Appearance Manager declares the type for an application-defined menu
title drawing function as follows:

typedef pascal (void, MenuTitleDrawingProcPtr)(
const Rect *inBounds,
SInt16 inDepth,
Boolean inIsColorDevice,
SInt32 inUserData);

The Appearance Manager defines the data type MenuTitleDrawingUPP to identify
the universal procedure pointer for an application-defined menu title drawing
function:

typedef UniversalProcPtr MenuTitleDrawingUPP;

You typically use the NewMenuTitleDrawingProc macro like this:

MenuTitleDrawingUPP myMenuTitleDrawingUPP;
myMenuTitleDrawingUPP = NewMenuTitleDrawingProc(MyMenuTitleDrawingProc);

You typically use the CallMenuTitleDrawingProc macro like this:

CallMenuTitleDrawingProc(myMenuTitleDrawingUPP, inBounds, inDepth,
inIsColorDevice, inUserData);

See MyMenuTitleDrawingProc (page 156) for a discussion of how to declare a
menu title drawing function.

MenuItemDrawingUPP 4
The Appearance Manager declares the type for an application-defined menu
item drawing function as follows:

typedef pascal (void, MenuItemDrawingProcPtr)(
const Rect *inBounds,
SInt16 inDepth,
Boolean inIsColorDevice,
SInt32 inUserData);
Data Types 175
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
The Appearance Manager defines the data type MenuItemDrawingUPP to identify
the universal procedure pointer for an application-defined menu item drawing
function:

typedef UniversalProcPtr MenuItemDrawingUPP;

You typically use the NewMenuItemDrawingProc macro like this:

MenuItemDrawingUPP myMenuItemDrawingUPP;
myMenuItemDrawingUPP = NewMenuItemDrawingProc(MyMenuItemDrawingProc);

You typically use the CallMenuItemDrawingProc macro like this:

CallMenuItemDrawingProc(myMenuItemDrawingUPP, inBounds, inDepth,
inIsColorDevice, inUserData);

See MyMenuItemDrawingProc (page 155) for a discussion of how to declare a menu
item drawing function.

Constants 4

The following constants are available with the Appearance Manager:

■ “Appearance Manager Apple Event Constants” (page 177)

■ “Appearance Manager File Type Constants” (page 179)

■ “Theme Background Kind Constants” (page 179)

■ “Theme Brush Constants” (page 180)

■ “Theme Button Adornment Constants” (page 186)

■ “Theme Button Kind Constants” (page 187)

■ “Theme Button Value Constants” (page 189)

■ “Theme Checkbox Style Constants” (page 190)

■ “Theme Collection Tags” (page 190)

■ “Theme Cursor Constants” (page 194)

■ “Theme Drag Sound Constants” (page 197)
176 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
■ “Theme Draw State Constants” (page 199)

■ “Theme Font ID Constants” (page 200)

■ “Theme Menu Bar State Constants” (page 200)

■ “Theme Menu Item Type Constants” (page 201)

■ “Theme Menu State Constants” (page 203)

■ “Theme Menu Type Constants” (page 203)

■ “Theme Pop-Up Arrow Orientation Constants” (page 204)

■ “Theme Pop-Up Arrow Size Constants” (page 205)

■ “Theme Scroll Bar Arrow Style Constants” (page 205)

■ “Theme Scroll Box Style Constants” (page 206)

■ “Theme Size Box Direction Constants” (page 206)

■ “Theme Slider Indicator Direction Constants” (page 207)

■ “Theme Sound Constants” (page 208)

■ “Theme Sound Mask Constants” (page 223)

■ “Theme Tab Direction Constants” (page 223)

■ “Theme Tab Style Constants” (page 224)

■ “Theme Text Color Constants” (page 225)

■ “Theme Title Bar Item Constants” (page 230)

■ “Theme Track Attributes Constants” (page 231)

■ “Theme Track Enable State Constants” (page 231)

■ “Theme Track Kind Constants” (page 232)

■ “Theme Track Press State Constants” (page 233)

■ “Theme Window Attribute Constants” (page 235)

■ “Theme Window Type Constants” (page 236)

Appearance Manager Apple Event Constants 4
Under Appearance Manager 1.1 and later, when the user changes the current
appearance (that is, when a theme switch occurs), the Appearance Manager
Constants 177
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
may send any of the following Apple events to all running applications that are
high-level event aware and which are registered as clients of the Appearance
Manager. Your application registers itself with the Appearance Manager by
calling the function RegisterAppearanceClient (page 68).

Because typical results of a theme switch might include a change in menu bar
height or window structure dimensions, as well as changes to the system fonts,
colors, and patterns that are currently in use, applications should listen for and
respond to the Appearance Manager Apple events under most circumstances.
Note that none of the Appearance Manager Apple events have parameters and
that the return value for each is ignored.

enum {
kAppearanceEventClass = 'appr',
kAEAppearanceChanged = 'thme',
kAESystemFontChanged = 'sysf',
kAESmallSystemFontChanged = 'ssfn',
kAEViewsFontChanged = 'vfnt'

};

Constant descriptions

kAppearanceEventClass
The event class of Appearance Manager Apple events.

kAEAppearanceChanged
The ID of the event indicating the current appearance has
changed.

kAESystemFontChanged
The ID of the event indicating the current system font has
changed.

kAESmallSystemFontChanged
The ID of the event indicating the current small system font
has changed.

kAEViewsFontChanged
The ID of the event indicating the current views font has
changed.
178 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
Appearance Manager File Type Constants 4
Under Appearance Manager 1.1 and later, the following constants are used to
identify the various Appearance Manager file types.

enum {
kThemeDataFileType = 'thme',
kThemePlatinumFileType = 'pltn',
kThemeCustomThemesFileType = 'scen',
kThemeSoundTrackFileType = 'tsnd'

};

Constant descriptions

kThemeDataFileType
The file type of appearances other than the platinum
appearance.

kThemePlatinumFileType
The file type of the platinum appearance.

kThemeCustomThemesFileType
The file type of a file that contains user-defined themes. See
SetTheme (page 73) for a discussion of defining your own
theme.

kThemePlatinumFileType
The file type of a theme soundtrack.

Theme Background Kind Constants 4
You can pass a constant of type ThemeBackgroundKind to the function
ApplyThemeBackground (page 76) to specify that an embedded object have a
background consistent with the current theme and an object in which it is
visually embedded. The ThemeBackgroundKind constants are available with
Appearance Manager 1.1 and later.

enum {
kThemeBackgroundTabPane = 1,
kThemeBackgroundPlacard = 2,
kThemeBackgroundWindowHeader = 3,
kThemeBackgroundListViewWindowHeader = 4

};
typedef UInt32 ThemeBackgroundKind;
Constants 179
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
Constant descriptions

kThemeBackgroundTabPane
The background for a tab pane.

kThemeBackgroundPlacard
The background for a placard.

kThemeBackgroundWindowHeader
The background for a window header.

kThemeBackgroundListViewWindowHeader
The background for a window list view header.

Theme Brush Constants 4
The Appearance Manager provides the underlying support for RGB color data
and overrides System 7 color tables such as 'cctb' and 'mctb' with an abstract
mechanism that allows colors and patterns to be coordinated with the current
theme. You can pass constants of type ThemeBrush in the inBrush parameter of
SetThemeBackground (page 83), SetThemePen (page 85), and
SetThemeWindowBackground (page 143) to specify that the Appearance Manager
substitute whatever the appropriate color or pattern is for a given human
interface element in the current theme.

enum {
kThemeBrushDialogBackgroundActive = 1,
kThemeBrushDialogBackgroundInactive = 2,
kThemeBrushAlertBackgroundActive = 3,
kThemeBrushAlertBackgroundInactive = 4,
kThemeBrushModelessDialogBackgroundActive = 5,
kThemeBrushModelessDialogBackgroundInactive = 6,
kThemeBrushUtilityWindowBackgroundActive = 7,
kThemeBrushUtilityWindowBackgroundInactive = 8,
kThemeBrushListViewSortColumnBackground = 9,
kThemeBrushListViewBackground = 10,
kThemeBrushIconLabelBackground = 11,
kThemeBrushListViewSeparator = 12,
kThemeBrushChasingArrows = 13,
kThemeBrushDragHilite = 14,
kThemeBrushDocumentWindowBackground = 15,
kThemeBrushFinderWindowBackground = 16,
/* Brushes available in Appearance Manager 1.1 or later */
180 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeBrushScrollBarDelimiterActive = 17,
kThemeBrushScrollBarDelimiterInactive = 18,
kThemeBrushFocusHighlight = 19,
kThemeBrushPopupArrowActive = 20,
kThemeBrushPopupArrowPressed = 21,
kThemeBrushPopupArrowInactive = 22,
kThemeBrushAppleGuideCoachmark = 23,
kThemeBrushIconLabelBackgroundSelected = 24,
kThemeBrushStaticAreaFill = 25,
kThemeBrushActiveAreaFill = 26,
kThemeBrushButtonFrameActive = 27,
kThemeBrushButtonFrameInactive = 28,
kThemeBrushButtonFaceActive = 29,
kThemeBrushButtonFaceInactive = 30,
kThemeBrushButtonFacePressed = 31,
kThemeBrushButtonActiveDarkShadow = 32,
kThemeBrushButtonActiveDarkHighlight = 33,
kThemeBrushButtonActiveLightShadow = 34,
kThemeBrushButtonActiveLightHighlight = 35,
kThemeBrushButtonInactiveDarkShadow = 36,
kThemeBrushButtonInactiveDarkHighlight = 37,
kThemeBrushButtonInactiveLightShadow = 38,
kThemeBrushButtonInactiveLightHighlight = 39,
kThemeBrushButtonPressedDarkShadow = 40,
kThemeBrushButtonPressedDarkHighlight = 41,
kThemeBrushButtonPressedLightShadow = 42,
kThemeBrushButtonPressedLightHighlight = 43,
kThemeBrushBevelActiveLight = 44,
kThemeBrushBevelActiveDark = 45,
kThemeBrushBevelInactiveLight = 46,
kThemeBrushBevelInactiveDark = 47,
kThemeBrushBlack = -1,
kThemeBrushWhite = -2

};
typedef SInt16 ThemeBrush;

Constant descriptions

kThemeBrushDialogBackgroundActive
An active dialog box’s background color or pattern.
Constants 181
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeBrushDialogBackgroundInactive
An inactive dialog box’s background color or pattern.

kThemeBrushAlertBackgroundActive
An active alert box’s background color or pattern.

kThemeBrushAlertBackgroundInactive
An inactive alert box’s background color or pattern.

kThemeBrushModelessDialogBackgroundActive
An active modeless dialog box’s background color or
pattern.

kThemeBrushModelessDialogBackgroundInactive
An inactive modeless dialog box’s background color or
pattern.

kThemeBrushUtilityWindowBackgroundActive
An active utility window’s background color or pattern.

kThemeBrushUtilityWindowBackgroundInactive
An inactive utility window’s background color or pattern.

kThemeBrushListViewSortColumnBackground
The background color or pattern of the list view column
that is being sorted upon.

kThemeBrushListViewBackground
The background color or pattern of a list view column that
is not being sorted upon.

kThemeBrushIconLabelBackground
An icon label’s color or pattern.

kThemeBrushListViewSeparator
The color or pattern of the horizontal lines that separate
rows of items in list view columns.

kThemeBrushChasingArrows
Asynchronous arrows’ color or pattern.

kThemeBrushDragHilite
The color or pattern used to indicate that an element is a
valid drag-and-drop destination

kThemeBrushDocumentWindowBackground
A document window’s background color or pattern.

kThemeBrushFinderWindowBackground
A Finder window’s background color or pattern. Generally,
182 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
you should not use this constant unless you are trying to
create a window that matches a Finder window.

kThemeBrushScrollBarDelimiterActive
The color or pattern used to outline the sides of an active
scroll bar. Available with Appearance Manager 1.1 and
later.

kThemeBrushScrollBarDelimiterInactive
The color or pattern used to outline the sides of an inactive
scroll bar. Available with Appearance Manager 1.1 and
later.

kThemeBrushFocusHighlight
The color or pattern of the focus ring around an element
that is selected. Available with Appearance Manager 1.1
and later.

kThemeBrushPopupArrowActive
The color or pattern of the arrow on an active pop-up menu
button. Available with Appearance Manager 1.1 and later.

kThemeBrushPopupArrowPressed
The color or pattern of the arrow on a pop-up menu button
that is being clicked on by the user. Available with
Appearance Manager 1.1 and later.

kThemeBrushPopupArrowInactive
The color or pattern of the arrow on an inactive pop-up
menu button. Available with Appearance Manager 1.1 and
later.

kThemeBrushAppleGuideCoachmark
The color or pattern of an Apple Guide coachmark.
Available with Appearance Manager 1.1 and later.

kThemeBrushIconLabelBackgroundSelected
The color or pattern of the background of an icon’s label
area, when the icon is selected. Available with Appearance
Manager 1.1 and later.

kThemeBrushStaticAreaFill
The background color or pattern of an element that does
not support user interaction. Available with Appearance
Manager 1.1 and later.

kThemeBrushActiveAreaFill
The color or pattern of an element that supports user
Constants 183
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
interaction. Available with Appearance Manager 1.1 and
later.

kThemeBrushButtonFrameActive
The color or pattern that outlines an active button. Your
application should draw the button outline outside the
edge of the button. Available with Appearance Manager 1.1
and later.

kThemeBrushButtonFrameInactive
The color or pattern that outlines an inactive button. Your
application should draw the button outline outside the
edge of the button. Available with Appearance Manager 1.1
and later.

kThemeBrushButtonFaceActive
The color or pattern of the face of an active button.
Available with Appearance Manager 1.1 and later.

kThemeBrushButtonFaceInactive
The color or pattern of the face of an inactive button.
Available with Appearance Manager 1.1 and later.

kThemeBrushButtonFacePressed
The color or pattern of the face of a button that is being
clicked on by the user. Available with Appearance Manager
1.1 and later.

kThemeBrushButtonActiveDarkShadow
For an active button with a 2-pixel-wide edge, the color or
pattern of the bottom and right sides of the outer ring of
the edge. Available with Appearance Manager 1.1 and later.

kThemeBrushButtonActiveDarkHighlight
For an active button with a 2-pixel-wide edge, the color or
pattern of the top and left sides of the outer ring of the
edge. Available with Appearance Manager 1.1 and later.

kThemeBrushButtonActiveLightShadow
For an active button with a 2-pixel-wide edge, the color or
pattern of the bottom and right sides of the inner ring of
the edge. For an active button with a 1-pixel-wide edge, the
color or pattern of the bottom and right sides of the edge.
Available with Appearance Manager 1.1 and later.

kThemeBrushButtonActiveLightHighlight
For an active button with a 2-pixel-wide edge, the color or
pattern of the top and left sides of the inner ring of the
184 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
edge. For an active button with a 1-pixel-wide edge, the
color or pattern of the top and left sides of the edge.
Available with Appearance Manager 1.1 and later.

kThemeBrushButtonInactiveDarkShadow
For an inactive button with a 2-pixel-wide edge, the color
or pattern of the bottom and right sides of the outer ring of
the edge. Available with Appearance Manager 1.1 and later.

kThemeBrushButtonInactiveDarkHighlight
For an inactive button with a 2-pixel-wide edge, the color
or pattern of the top and left sides of the outer ring of the
edge. Available with Appearance Manager 1.1 and later.

kThemeBrushButtonInactiveLightShadow
For an inactive button with a 2-pixel-wide edge, the color
or pattern of the bottom and right sides of the inner ring of
the edge. For an inactive button with a 1-pixel-wide edge,
the color or pattern of the bottom and right sides of the
edge. Available with Appearance Manager 1.1 and later.

kThemeBrushButtonInactiveLightHighlight
For an inactive button with a 2-pixel-wide edge, the color
or pattern of the top and left sides of the inner ring of the
edge. For an inactive button with a 1-pixel-wide edge, the
color or pattern of the top and left sides of the edge.
Available with Appearance Manager 1.1 and later.

kThemeBrushButtonPressedDarkShadow
For a button with a 2-pixel-wide edge that is being clicked
on by the user, the color or pattern of the bottom and right
sides of the outer ring of the edge. Available with
Appearance Manager 1.1 and later.

kThemeBrushButtonPressedDarkHighlight
For a button with a 2-pixel-wide edge that is being clicked
on by the user, the color or pattern of the top and left sides
of the outer ring of the edge. Available with Appearance
Manager 1.1 and later.

kThemeBrushButtonPressedLightShadow
For a button with a 2-pixel-wide edge that is being clicked
on by the user, the color or pattern of the bottom and right
sides of the inner ring of the edge. For a button with a
1-pixel-wide edge that is being clicked on by the user, the
Constants 185
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
color or pattern of the bottom and right sides of the edge.
Available with Appearance Manager 1.1 and later.

kThemeBrushButtonPressedLightHighlight
For a button with a 2-pixel-wide edge that is being clicked
on by the user, the color or pattern of the top and left sides
of the inner ring of the edge. For a button with a
1-pixel-wide edge that is being clicked on by the user, the
color or pattern of the top and left sides of the edge.
Available with Appearance Manager 1.1 and later.

kThemeBrushBevelActiveLight
For an active bevel button, the color or pattern of the top
and left sides of the bevel. Available with Appearance
Manager 1.1 and later.

kThemeBrushBevelActiveDark
For an active bevel button, the color or pattern of the
bottom and right sides of the bevel. Available with
Appearance Manager 1.1 and later.

kThemeBrushBevelInactiveLight
For an inactive bevel button, the color or pattern of the top
and left sides of the bevel. Available with Appearance
Manager 1.1 and later.

kThemeBrushBevelInactiveDark
For an inactive bevel button, the color or pattern of the
bottom and right sides of the bevel. Available with
Appearance Manager 1.1 and later.

kThemeBrushBlack Black; this color does not change from theme to theme. You
may use this constant instead of specifying a direct RGB
value. Available with Appearance Manager 1.1 and later.

kThemeBrushWhite White; this color does not change from theme to theme. You
may use this constant instead of specifying a direct RGB
value. Available with Appearance Manager 1.1 and later.

Theme Button Adornment Constants 4
The ThemeButtonAdornment enumeration defines masks your application can use
in the ThemeButtonDrawInfo (page 165) structure to specify that button controls
are drawn with the appropriate human interface characteristics. The
186 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
ThemeButtonAdornment constants are available with Appearance Manager 1.1 and
later.

enum {
kThemeAdornmentNone = 0,
kThemeAdornmentDefault = (1 << 0),
kThemeAdornmentFocus = (1 << 2),
kThemeAdornmentRightToLeft = (1 << 4),
kThemeAdornmentDrawIndicatorOnly = (1 << 5)

};
typedef UInt16 ThemeButtonAdornment;

Constant descriptions

kThemeAdornmentNone
If no bits are set, the button is drawn with no adornment.

kThemeAdornmentDefault
If the bit specified by this mask is set, a default button ring
is drawn. This constant applies to push button controls
only.

kThemeAdornmentFocus
If the bit specified by this mask is set, a focus ring is drawn.

kThemeAdornmentRightToLeft
If the bit specified by this mask is set, the button is drawn
in a right-to-left orientation.

kThemeAdornmentDrawIndicatorOnly
If the bit specified by this mask is set, only the button is
drawn, not its label. This characteristic applies to radio
buttons, checkboxes, and disclosure triangles.

Theme Button Kind Constants 4
You can pass constants of type ThemeButtonKind to the function DrawThemeButton
(page 94) to draw a theme-compliant button of a specific type. You can also pass
ThemeButtonKind constants to the functions GetThemeButtonRegion (page 115) and
GetThemeButtonContentBounds (page 114) to retrieve information about a specific
button type. The ThemeButtonKind constants are available with Appearance
Manager 1.1 and later.
Constants 187
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
enum {
kThemePushButton = 0,
kThemeCheckBox = 1,
kThemeRadioButton = 2,
kThemeBevelButton = 3,
kThemeArrowButton = 4,
kThemePopupButton = 5,
kThemeDisclosureButton = 6,
kThemeIncDecButton = 7,
kThemeSmallBevelButton = 8,
kThemeMediumBevelButton = 3,
kThemeLargeBevelButton = 9

};
typedef UInt16 ThemeButtonKind;

Constant descriptions

kThemePushButton Identifies a push button.
kThemeCheckBox Identifies a checkbox.
kThemeRadioButton Identifies a radio button.
kThemeBevelButton Identifies a bevel button with a medium-width bevel; this

value is the same as kThemeMediumBevelButton.
kThemeArrowButton Identifies an arrow button. This button has the appearance

of a single button containing small upward- and
downward-pointing triangles drawn back to back; the
typical use of this button is with an editable text field to
create an editable pop-up menu. This button should not be
confused with an increment/decrement button.

kThemePopupButton Identifies a pop-up menu button. This button has the
appearance of a single button made of two parts: a menu
item text part and an arrow part.

kThemeDisclosureButton
Identifies a disclosure triangle.

kThemeIncDecButton Identifies an increment/decrement or “little arrows”
button. This button has the appearance of two separate
buttons—one containing an upward-pointing triangle and
the other containing a downward-pointing triangle—
placed back to back. This button should not be confused
with the arrow button.
188 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeSmallBevelButton
Identifies a bevel button with a small-width bevel.

kThemeMediumBevelButton
Identifies a bevel button with a medium-width bevel; this
value is the same as kThemeBevelButton.

kThemeLargeBevelButton
Identifies a bevel button with a large-width bevel.

Theme Button Value Constants 4
You can use constants of type ThemeButtonValue in the ThemeButtonDrawInfo
(page 165) structure to specify that button controls are drawn with the correct
values. The ThemeButtonValue constants are available with Appearance
Manager 1.1 and later.

enum {
kThemeButtonOff = 0,
kThemeButtonOn = 1,
kThemeButtonMixed = 2,
kThemeDisclosureRight = 0,
kThemeDisclosureDown = 1,
kThemeDisclosureLeft = 2

};
typedef UInt16 ThemeButtonValue;

Constant descriptions

kThemeButtonOff Identifies a button that is not selected.
kThemeButtonOn Identifies a button that is selected.
kThemeButtonMixed Identifies a button that is in the mixed state, indicating that

a setting is on for some elements in a selection and off for
others. This value typically applies to checkboxes and radio
buttons.

kThemeDisclosureRight
Identifies a disclosure triangle that is pointing to the right.

kThemeDisclosureDown
Identifies a disclosure triangle that is pointing down.

kThemeDisclosureLeft
Identifies a disclosure triangle that is pointing to the left.
Constants 189
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
Theme Checkbox Style Constants 4
You can call the function GetThemeCheckBoxStyle (page 116) to obtain the type of
checkbox mark being used in the current theme. The ThemeCheckBoxStyle
constants are available with Appearance Manager 1.1 and later.

enum {
kThemeCheckBoxClassicX = 0,
kThemeCheckBoxCheckMark = 1

};
typedef UInt16 ThemeCheckBoxStyle;

Constant descriptions

kThemeCheckBoxClassicX
An “X” type of checkbox mark.

kThemeCheckBoxCheckMark
A checkmark type of checkbox mark.

Theme Collection Tags 4
Your application may use the following collection tags with the functions
SetTheme (page 73) and GetTheme (page 70) to access aspects of a theme. The data
type contained in each of the collection items accessed is noted below. Theme
collection tags are available with Appearance Manager 1.1 and later. See Inside
Macintosh: QuickDraw GX Environment and Utilities for a discussion of
collections items.

enum {
kThemeNameTag = 'name',
kThemeAppearanceFileNameTag = 'thme',
kThemeVariantNameTag = 'varn',
kThemeSystemFontTag = 'lgsf',
kThemeSmallSystemFontTag = 'smsf',
kThemeViewsFontTag = 'vfnt',
kThemeViewsFontSizeTag = 'vfsz',
kThemeDesktopPatternNameTag = 'patn',
kThemeDesktopPatternTag = 'patt',
kThemeDesktopPictureNameTag = 'dpnm',
kThemeDesktopPictureAliasTag = 'dpal',
kThemeDesktopPictureAlignmentTag= 'dpan',
190 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeHighlightColorNameTag = 'hcnm',
kThemeHighlightColorTag = 'hcol',
kThemeExamplePictureIDTag = 'epic',
kThemeSoundsEnabledTag = 'snds',
kThemeSoundTrackNameTag = 'sndt',
kThemeSoundMaskTag = 'smsk',
kThemeUserDefinedTag = 'user',
kThemeScrollBarArrowStyleTag = 'sbar',
kThemeScrollBarThumbStyleTag = 'sbth',
kThemeSmoothFontEnabledTag = 'smoo',
kThemeSmoothFontMinSizeTag = 'smos',
kThemeDblClickCollapseTag = 'coll'

};

Constant descriptions

kThemeNameTag Identifies a collection item containing the name of the
theme, e.g. “Mac OS Default”. The Appearance Manager
only uses this collection item to identify themes within the
Appearance control panel, so the GetTheme function does
not return this collection item. To specify a theme name,
you must create a new collection item of this type before
calling the function SetTheme.
Collection data type: Str255

kThemeAppearanceFileNameTag
Identifies a collection item containing the name of the
appearance, e.g. “Apple platinum”.
Collection data type: Str255

kThemeVariantNameTag
Identifies a collection item containing the color variation
used for menus and controls in the theme.
Collection data type: Str255

kThemeSystemFontTag
Identifies a collection item containing the name of the large
system font for the theme.
Collection data type: Str255

kThemeSmallSystemFontTag
Identifies a collection item containing the name of the small
system font for the theme.
Collection data type: Str255
Constants 191
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeViewsFontTag
Identifies a collection item containing the name of the
views font for the theme.
Collection data type: Str255

kThemeViewsFontSizeTag
Identifies a collection item containing the size of the views
font for the theme.
Collection data type: SInt16

kThemeDesktopPatternNameTag
Identifies a collection item containing the name of the
desktop pattern for the theme.
Collection data type: Str255

kThemeDesktopPatternTag
Identifies a collection item containing a flattened version of
the desktop pattern for the theme.
Collection data type: variable-length data

kThemeDesktopPictureNameTag
Identifies a collection item containing the name of the
desktop picture for the theme.
Collection data type: Str255

kThemeDesktopPictureAliasTag
Identifies a collection item containing an alias handle for
the desktop picture for the theme.
Collection data type: AliasHandle

kThemeDesktopPictureAlignmentTag
Identifies a collection item containing a value specifying
how to position the desktop picture for the theme. Possible
values are kTiledOnScreen (the picture draws repeatedly),
kCenterOnScreen (the picture is its actual size, or clipped if
necessary, with the desktop pattern showing to the side of
the picture if it is smaller than the desktop), kFitToScreen
(the picture is reduced if necessary), kFillScreen (the
picture’s aspect ratio is altered if necessary), and
kUseBestGuess (the picture is automatically positioned).
Collection data type: UInt32

kThemeHighlightColorNameTag
Identifies a collection item containing the name of the text
highlight color for the theme.
Collection data type: Str255
192 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeHighlightColorTag
Identifies a collection item containing the text highlight
color for the theme.
Collection data type: an RGBColor structure

kThemeExamplePictureIDTag
Identifies a collection item containing the ID of the example
picture for the theme.
Collection data type: SInt16

kThemeSoundsEnabledTag
Identifies a collection item specifying whether theme
sounds are enabled for the theme.
Collection data type: Boolean

kThemeSoundTrackNameTag
Identifies a collection item containing the name of the
soundtrack for the theme.
Collection data type: Str255

kThemeSoundMaskTag
Identifies a collection item containing an unsigned 32-bit
integer whose bits are set to reflect the classes of sounds
that are enabled for a theme. Possibilities include sounds
for menus, windows, controls, and the Finder. See “Theme
Sound Mask Constants” (page 223) for descriptions of
possible sound mask values.
Collection data type: UInt32

kThemeUserDefinedTag
Identifies a collection item specifying whether the theme is
user-defined; the value contained in a
kThemeUserDefinedTag collection should always be true if
the kThemeUserDefinedTag collection is present. The
Appearance Manager uses this collection item to identify
themes that the user can delete. Note that the GetTheme
function does not return this collection item.
Collection data type: Boolean

kThemeScrollBarArrowStyleTag
Identifies a collection item containing a value of type
ThemeScrollBarArrowStyle identifying the type of scroll bar
arrows used in the theme.
Collection data type: ThemeScrollBarArrowStyle
Constants 193
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeScrollBarThumbStyleTag
Identifies a collection item containing a value of type
ThemeScrollBarThumbStyle identifying the type of scroll
boxes used in the theme.
Collection data type: ThemeScrollBarThumbStyle

kThemeSmoothFontEnabledTag
Identifies a collection item specifying whether font
smoothing is enabled in the theme.
Collection data type: Boolean

kThemeSmoothFontMinSizeTag
Identifies a collection item containing the minimum point
size at which font smoothing may be enabled in the theme.
Possible values range from 12 to 24, inclusive.
Collection data type: UInt16

kThemeDblClickCollapseTag
Identifies a collection item specifying whether the ability to
double-click to collapse a window is enabled for the theme.
Collection data type: Boolean

Theme Cursor Constants 4
You can pass constants of type ThemeCursor to the functions SetThemeCursor
(page 91) and SetAnimatedThemeCursor (page 90) to specify the category of
cursor to be displayed for your application. The Appearance Manager
substitutes the theme-specific instance of the cursor for the cursor category as is
appropriate. The ThemeCursor constants are available with Appearance Manager
1.1 and later.

enum {
kThemeArrowCursor = 0,
kThemeCopyArrowCursor = 1,
kThemeAliasArrowCursor = 2,
kThemeContextualMenuArrowCursor = 3,
kThemeIBeamCursor = 4,
kThemeCrossCursor = 5,
kThemePlusCursor = 6,
kThemeWatchCursor = 7,
kThemeClosedHandCursor = 8,
kThemeOpenHandCursor = 9,
kThemePointingHandCursor = 10,
194 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeCountingUpHandCursor = 11,
kThemeCountingDownHandCursor = 12,
kThemeCountingUpAndDownHandCursor = 13,
kThemeSpinningCursor = 14,
kThemeResizeLeftCursor = 15,
kThemeResizeRightCursor = 16,
kThemeResizeLeftRightCursor = 17

};
typedef UInt32 ThemeCursor;

Constant descriptions

kThemeArrowCursor The cursor identified by this constant is typically used as
the standard cursor.

kThemeCopyArrowCursor
The cursor identified by this constant is typically used
when the cursor is over a location where a drag action
would initiate a copy.

kThemeAliasArrowCursor
The cursor identified by this constant is typically used
when the cursor is over a location where a drag action
would create an alias or link.

kThemeContextualMenuArrowCursor
The cursor identified by this constant is typically used
when the Control key is being pressed and the cursor is
over a location where a contextual menu can be activated.

kThemeIBeamCursor The cursor identified by this constant is typically used
when the cursor is over an area where the user can select
text.

kThemeCrossCursor The cursor identified by this constant is typically used
when the cursor is over an area where the user can draw
graphics.

kThemePlusCursor The cursor identified by this constant is typically used
when the cursor is over an area where the user can select
table cells.

kThemeWatchCursor The cursor identified by this constant is typically used to
indicate that an operation is in progress. You can animate
this cursor so that a hand of the watch appears to move.

kThemeClosedHandCursor
The cursor identified by this constant is typically used to
Constants 195
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
indicate that an object has been grabbed and is being
moved by the user.

kThemeOpenHandCursor
The cursor identified by this constant is typically used to
indicate that an object may be grabbed or moved by the
user.

kThemePointingHandCursor
The cursor identified by this constant has the appearance of
a pointing hand. You would typically use this constant to
indicate that the user may select an object by pressing the
mouse button.

kThemeCountingUpHandCursor
The cursor identified by this constant is typically used to
indicate that an operation is in progress. You can animate
this cursor so that the fingers appear to open from the palm
one by one.

kThemeCountingDownHandCursor
The cursor identified by this constant is typically used to
indicate that an operation is in progress. You can animate
this cursor so that the fingers appear to fold into the palm
one by one.

kThemeCountingUpAndDownHandCursor
The cursor identified by this constant is typically used to
indicate that an operation is in progress. You can animate
this cursor so that the fingers appear to alternate between
opening from the palm one by one and folding into the
palm one by one.

kThemeSpinningCursor
The cursor identified by this constant is typically used to
indicate that an operation is in progress.

kThemeResizeLeftCursor
The cursor identified by this constant is typically used to
indicate that an object may be resized by dragging to the
left.

kThemeResizeRightCursor
The cursor identified by this constant is typically used to
indicate that an object may be resized by dragging to the
right.
196 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeResizeLeftRightCursor
The cursor identified by this constant is typically used to
indicate that an object may be resized in either direction
horizontally.

Theme Drag Sound Constants 4
Your application can pass constants of type ThemeDragSoundKind to the function
BeginThemeDragSound (page 88) to play a theme-specific sound when a user
drags an interface object or otherwise holds the mouse button down for an
extended action. Dragging sounds are looped for the duration of the drag and
cease when your application calls EndThemeDragSound (page 88) when the drag
has finished. Only one drag sound may occur at a time. The ThemeDragSoundKind
constants are available with Appearance Manager 1.1 and later.

enum {
kThemeDragSoundNone = 0,
kThemeDragSoundMoveWindow = 'wmov',
kThemeDragSoundGrowWindow = 'wgro',
kThemeDragSoundMoveUtilWindow = 'umov',
kThemeDragSoundGrowUtilWindow = 'ugro',
kThemeDragSoundMoveDialog = 'dmov',
kThemeDragSoundMoveAlert = 'amov',
kThemeDragSoundMoveIcon = 'imov',
kThemeDragSoundSliderThumb = 'slth',
kThemeDragSoundSliderGhost = 'slgh',
kThemeDragSoundScrollBarThumb = 'sbth',
kThemeDragSoundScrollBarGhost = 'sbgh',
kThemeDragSoundScrollBarArrowDecreasing = 'sbad',
kThemeDragSoundScrollBarArrowIncreasing = 'sbai',
kThemeDragSoundDragging = 'drag'

};
typedef OSType ThemeDragSoundKind;

Constant descriptions

kThemeDragSoundNone
Specifies that no drag sound is used.

kThemeDragSoundMoveWindow
Specifies a sound to be played when the user moves a
document window.
Constants 197
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeDragSoundGrowWindow
Specifies a sound to be played when the user resizes a
window by dragging the size box.

kThemeDragSoundMoveUtilWindow
Specifies a sound to be played when the user moves a
utility window.

kThemeDragSoundGrowUtilWindow
Specifies a sound to be played when the user resizes a
utility window by dragging the size box.

kThemeDragSoundMoveDialog
Specifies a sound to be played when the user moves a
dialog box.

kThemeDragSoundMoveAlert
Specifies a sound to be played when the user moves an
alert box.

kThemeDragSoundMoveIcon
Specifies a sound to be played when the user moves an
icon.

kThemeDragSoundSliderThumb
Specifies a sound to be played when the user drags the
indicator of a slider control that supports live feedback.

kThemeDragSoundSliderGhost
Specifies a sound to be played when the user drags the
indicator of a slider control that does not support live
feedback.

kThemeDragSoundScrollBarThumb
Specifies a sound to be played when the user drags a scroll
box belonging to a scroll bar that supports live feedback.

kThemeDragSoundScrollBarGhost
Specifies a sound to be played when the user drags a scroll
box belonging to a scroll bar that does not support live
feedback.

kThemeDragSoundScrollBarArrowDecreasing
Specifies a sound to be played when the user presses and
holds the mouse button while the cursor is over the scroll
bar arrow that decreases the scroll bar’s value.

kThemeDragSoundScrollBarArrowIncreasing
Specifies a sound to be played when the user presses and
198 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
holds the mouse button while the cursor is over the scroll
bar arrow that increases the scroll bar’s value.

kThemeDragSoundDragging
Specifies a sound to be played during a Drag Manager
drag.

Theme Draw State Constants 4
You can use constants of type ThemeDrawState with many Appearance Manager
functions to specify the state in which human interface elements are drawn.

enum {
kThemeStateInactive = 0,
kThemeStateActive = 1,
kThemeStatePressed = 2,
kThemeStatePressedUp = 2,
kThemeStatePressedDown = 3

};
typedef UInt32 ThemeDrawState;

Constant descriptions

kThemeStateInactive
The element is drawn in the inactive state.

kThemeStateActive
The element is drawn in the active state.

kThemeStatePressed
The element is drawn in the selected state.

kThemeStatePressedUp
For increment/decrement buttons (also known as “little
arrows” controls), the increment button is drawn in the
selected state. Available with Appearance Manager 1.1 and
later.

kThemeStatePressedDown
For increment/decrement buttons (also known as “little
arrows” controls), the decrement button is drawn in the
selected state. Available with Appearance Manager 1.1 and
later.
Constants 199
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
Theme Font ID Constants 4
Constants of type ThemeFontID identify the kinds of system fonts. Your
application may pass a ThemeFontID constant to the function UseThemeFont
(page 74) to apply a font of the specified kind to the current port, or it may pass
a ThemeFontID constant to the function GetThemeFont (page 71) to retrieve
information about the specified kind of font. The ThemeFontID constants are
available with Appearance Manager 1.1 and later.

enum {
kThemeSystemFont = 0,
kThemeSmallSystemFont = 1,
kThemeSmallEmphasizedSystemFont = 2,
kThemeViewsFont = 3

};
typedef UInt16 ThemeFontID;

Constant descriptions

kThemeSystemFont The current (large) system font.
kThemeSmallSystemFont

The current small system font.
kThemeSmallEmphasizedSystemFont

The current small, emphasized system font.
kThemeViewsFont The current views font.

Theme Menu Bar State Constants 4
You can pass constants of type ThemeMenuBarState in the inState parameter of
DrawThemeMenuBarBackground (page 146) to specify whether theme-compliant
menu bars are drawn as normal or selected. The ThemeMenuBarState constants
are available with Appearance Manager 1.0.1 and later.

enum{
kThemeMenuBarNormal = 0,
kThemeMenuBarSelected = 1

};
typedef UInt16 ThemeMenuBarState;
200 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
Constant descriptions

kThemeMenuBarNormal
Menu bar is drawn in its normal state.

kThemeMenuBarSelected
Menu bar is drawn in its selected state.

If you wish the menu bar to be drawn with square upper corners (as for a
laptop system) instead of rounded ones (as for a desktop system), your
application should set the bit for the attribute kThemeMenuSquareMenuBar.

enum {
kThemeMenuSquareMenuBar= (1 << 0)

};

Constant descriptions

kThemeMenuSquareMenuBar
Menu bar is drawn with square corners.

Theme Menu Item Type Constants 4
Constants of type ThemeMenuItemType identify types of menu items. Your
application may pass a ThemeMenuItemType constant to the function
DrawThemeMenuItem (page 146) to draw a menu item of the specified type, or it
may pass a ThemeMenuItemType constant to the function GetThemeMenuItemExtra
(page 152) to retrieve spatial information for the given menu item type under
the current theme.

enum {
kThemeMenuItemPlain = 0,
kThemeMenuItemHierarchical = 1,
kThemeMenuItemScrollUpArrow = 2,
kThemeMenuItemScrollDownArrow = 3,
kThemeMenuItemAtTop = 0x0100,
kThemeMenuItemAtBottom = 0x0200,
kThemeMenuItemHierBackground = 0x0400,
kThemeMenuItemPopUpBackground = 0x0800,
kThemeMenuItemHasIcon = 0x8000

};
typedef UInt16 ThemeMenuItemType;
Constants 201
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
Constant descriptions

kThemeMenuItemPlain
A plain menu item. Available with Appearance Manager
1.0.1 and later.

kThemeMenuItemHierarchical
A hierarchical menu item. Available with Appearance
Manager 1.0.1 and later.

kThemeMenuItemScrollUpArrow
A scroll-up arrow. Available with Appearance Manager
1.0.1 and later.

kThemeMenuItemScrollDownArrow
A scroll-down arrow. Available with Appearance Manager
1.0.1 and later.

kThemeMenuItemAtTop
This value may be added to other ThemeMenuItemType
constants to specify that the item being drawn appears at
the top of the menu. Available with Appearance Manager
1.1 and later.

kThemeMenuItemAtBottom
This value may be added to other ThemeMenuItemType
constants to specify that the item being drawn appears at
the bottom of the menu. Available with Appearance
Manager 1.1 and later.

kThemeMenuItemHierBackground
This value may be added to other ThemeMenuItemType
constants to specify that the item being drawn is located in
a hierarchical menu. Available with Appearance Manager
1.1 and later.

kThemeMenuItemPopUpBackground
This value may be added to other ThemeMenuItemType
constants to specify that the item being drawn is located in
a pop-up menu. Available with Appearance Manager 1.1
and later.

kThemeMenuItemHasIcon
This value may be added to the kThemeMenuItemPlain or
kThemeMenuItemHierarchical constants, to specify that an
icon is drawn along with the item text. This value may not
be used with the kThemeMenuItemScrollUpArrow and
202 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeMenuItemScrollDownArrow constants. Available with
Appearance Manager 1.1 and later.

Theme Menu State Constants 4
You can pass constants of type ThemeMenuState in the inState parameter of
DrawThemeMenuItem (page 146) and DrawThemeMenuTitle (page 149) to specify the
state in which theme-compliant menus are drawn. The ThemeMenuState
constants are available with Appearance Manager 1.0.1 and later.

enum{
kThemeMenuActive = 0,
kThemeMenuSelected = 1,
kThemeMenuInactive = 3

};
typedef UInt16 ThemeMenuState;

Constant descriptions

kThemeMenuActive Menu is drawn in its active state.
kThemeMenuSelected Menu is drawn in its selected state.
kThemeMenuInactive Menu is drawn in its inactive, disabled state.

Theme Menu Type Constants 4
You can pass constants of type ThemeMenuType in the inMenuType parameter of
GetThemeMenuBackgroundRegion (page 150) and DrawThemeMenuBackground
(page 145) to specify a type of menu.

enum {
kThemeMenuTypePullDown = 0,
kThemeMenuTypePopUp = 1,
kThemeMenuTypeHierarchical = 2,
kThemeMenuTypeInactive = 0x0100

};
typedef UInt16 ThemeMenuType;
Constants 203
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
Constant descriptions

kThemeMenuTypePullDown
A pull-down menu. Available with Appearance Manager
1.0.1 and later.

kThemeMenuTypePopUp
A pop-up menu. Available with Appearance Manager 1.0.1
and later.

kThemeMenuTypeHierarchical
A hierarchical menu. Available with Appearance Manager
1.0.1 and later.

kThemeMenuTypeInactive
An inactive menu. Add this value to any other menu type if
the entire menu is inactive. Available with Appearance
Manager 1.1 and later.

Theme Pop-Up Arrow Orientation Constants 4
You can use a constant of type ThemeArrowOrientation in the function
DrawThemePopupArrow (page 102) to specify the direction in which a pop-up
arrow is drawn on a button. The ThemeArrowOrientation constants are available
with Appearance Manager 1.1 and later.

enum {
kThemeArrowLeft = 0,
kThemeArrowDown = 1,
kThemeArrowRight= 2,
kThemeArrowUp = 3

};
typedef UInt16 ThemeArrowOrientation;

Constant descriptions

kThemeArrowLeft A left-pointing arrow.
kThemeArrowDown A downward-pointing arrow.
kThemeArrowRight A right-pointing arrow.
kThemeArrowUp An upward-pointing arrow.
204 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
Theme Pop-Up Arrow Size Constants 4
You can use a constant of type ThemePopupArrowSize in the function
DrawThemePopupArrow (page 102) to specify the size of the pop-up arrow that is
drawn on a button. The ThemePopupArrowSize constants are available with
Appearance Manager 1.1 and later.

enum {
kThemeArrow3pt = 0,
kThemeArrow5pt = 1,
kThemeArrow7pt = 2,
kThemeArrow9pt = 3

};
typedef UInt16 ThemePopupArrowSize;

Constant descriptions

kThemeArrow3pt Identifies a pop-up arrow with a 3-pixel base.
kThemeArrow5pt Identifies a pop-up arrow with a 5-pixel base.
kThemeArrow7pt Identifies a pop-up arrow with a 7-pixel base.
kThemeArrow9pt Identifies a pop-up arrow with a 9-pixel base.

Theme Scroll Bar Arrow Style Constants 4
You can call the function GetThemeScrollBarArrowStyle (page 116) to obtain the
type of scroll bar arrows being used in the current theme. The
ThemeScrollBarArrowStyle constants are available with Appearance Manager 1.1
and later.

enum {
kThemeScrollBarArrowsSingle = 0,
kThemeScrollBarArrowsLowerRight = 1

};
typedef UInt16 ThemeScrollBarArrowStyle;

Constant descriptions

kThemeScrollBarArrowsSingle
Specifies the use of a single arrow at each end of a scroll
bar.
Constants 205
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeScrollBarArrowsLowerRight
Specifies the use of double arrows at one end of a scroll bar.
For vertical scroll bars, the double arrows are located at the
lower end of the scroll bar. For horizontal scroll bars, the
double arrows are located at the right end of the scroll bar.

Theme Scroll Box Style Constants 4
You can call the function GetThemeScrollBarThumbStyle (page 117) to obtain the
type of scroll boxes (also known as “scroll indicators” or “thumbs”) being used
in the current theme. The ThemeScrollBarThumbStyle constants are available
with Appearance Manager 1.1 and later.

enum {
kThemeScrollBarThumbNormal = 0,
kThemeScrollBarThumbProportional = 1

};
typedef UInt16 ThemeScrollBarThumbStyle;

Constant descriptions

kThemeScrollBarThumbNormal
A classic scroll box.

kThemeScrollBarThumbProportional
A proportional scroll box.

Theme Size Box Direction Constants 4
The ThemeGrowDirection enumeration defines masks your application can use to
specify the directions in which a window may be resized. You may use
constants of type ThemeGrowDirection with the function
DrawThemeStandaloneGrowBox (page 131) to draw a size box and with the function
GetThemeStandaloneGrowBoxBounds (page 138) to obtain the bounding rectangle
of a size box. The constants may be combined to set more than one direction of
growth. The ThemeGrowDirection constants are available with Appearance
Manager 1.1 and later.

enum {
kThemeGrowLeft = (1 << 0),
kThemeGrowRight = (1 << 1),
206 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeGrowUp = (1 << 2),
kThemeGrowDown = (1 << 3)

};
typedef UInt16 ThemeGrowDirection;

Constant descriptions

kThemeGrowLeft If the bit specified by this mask is set, the object can grow to
the left.

kThemeGrowRight If the bit specified by this mask is set, the object can grow to
the right.

kThemeGrowUp If the bit specified by this mask is set, the object can grow
upward. Note: This functionality is not available with
Appearance Manager 1.1 or prior versions of Appearance.

kThemeGrowDown If the bit specified by this mask is set, the object can grow
downward.

Theme Slider Indicator Direction Constants 4
You can use constants of type ThemeThumbDirection in the SliderTrackInfo
(page 168) structure to identify the direction in which the indicator points in a
slider control. You may use these constants with either horizontal or vertical
sliders, and the Appearance Manager interprets the direction of the indicator
appropriately. The ThemeThumbDirection constants are available with
Appearance Manager 1.1 and later.

enum {
kThemeThumbPlain = 0,
kThemeThumbUpward = 1,
kThemeThumbDownward = 2

};
typedef UInt8 ThemeThumbDirection;

Constant descriptions

kThemeThumbPlain A plain indicator; that is, one that does not point in any
direction.

kThemeThumbUpward For a horizontal slider, an upward-pointing indicator. For a
vertical slider, a left-pointing indicator.
Constants 207
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeThumbDownward
For a horizontal slider, a downward-pointing indicator. For
a vertical slider, a right-pointing indicator.

Theme Sound Constants 4
Your application can pass constants of type ThemeSoundKind to the function
PlayThemeSound (page 89) to play a theme-specific sound for an interface object
when it changes state. Each sound plays asynchronously until complete, then
stops automatically. The ThemeSoundKind constants are available with
Appearance Manager 1.1 and later.

enum {
kThemeSoundNone = 0,
/* menu sounds */
kThemeSoundMenuOpen = 'mnuo',
kThemeSoundMenuClose = 'mnuc',
kThemeSoundMenuItemHilite = 'mnui',
kThemeSoundMenuItemRelease = ‘mnus’,
/* window sounds */
kThemeSoundWindowClosePress = 'wclp',
kThemeSoundWindowCloseEnter = 'wcle',
kThemeSoundWindowCloseExit = 'wclx',
kThemeSoundWindowCloseRelease = 'wclr',
kThemeSoundWindowZoomPress = 'wzmp',
kThemeSoundWindowZoomEnter = 'wzme',
kThemeSoundWindowZoomExit = 'wzmx',
kThemeSoundWindowZoomRelease = 'wzmr',
kThemeSoundWindowCollapsePress = 'wcop',
kThemeSoundWindowCollapseEnter = 'wcoe',
kThemeSoundWindowCollapseExit = 'wcox',
kThemeSoundWindowCollapseRelease = 'wcor',
kThemeSoundWindowDragBoundary = 'wdbd',
kThemeSoundUtilWinClosePress = 'uclp',
kThemeSoundUtilWinCloseEnter = 'ucle',
kThemeSoundUtilWinCloseExit = 'uclx',
kThemeSoundUtilWinCloseRelease = 'uclr',
kThemeSoundUtilWinZoomPress = 'uzmp',
kThemeSoundUtilWinZoomEnter = 'uzme',
kThemeSoundUtilWinZoomExit = 'uzmx',
208 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeSoundUtilWinZoomRelease = 'uzmr',
kThemeSoundUtilWinCollapsePress = 'ucop',
kThemeSoundUtilWinCollapseEnter = 'ucoe',
kThemeSoundUtilWinCollapseExit = 'ucox',
kThemeSoundUtilWinCollapseRelease = 'ucor',
kThemeSoundUtilWinDragBoundary = 'udbd',
kThemeSoundWindowOpen = ‘wopn’,
kThemeSoundWindowClose = 'wcls',
kThemeSoundWindowZoomIn = 'wzmi',
kThemeSoundWindowZoomOut = 'wzmo',
kThemeSoundWindowCollapseUp = 'wcol',
kThemeSoundWindowCollapseDown = 'wexp',
kThemeSoundWindowActivate = 'wact',
kThemeSoundUtilWindowOpen = ‘uopn’,
kThemeSoundUtilWindowClose = 'ucls',
kThemeSoundUtilWindowZoomIn = 'uzmi',
kThemeSoundUtilWindowZoomOut = 'uzmo',
kThemeSoundUtilWindowCollapseUp = 'ucol',
kThemeSoundUtilWindowCollapseDown = 'uexp',
kThemeSoundUtilWindowActivate = 'uact',
kThemeSoundDialogOpen = ‘dopn’,
kThemeSoundDialogClose = 'dlgc',
kThemeSoundAlertOpen = ‘aopn’,
kThemeSoundAlertClose = 'altc',
kThemeSoundPopopWindowOpen = 'pwop',
kThemeSoundPopupWindowClose = 'pwcl',
/* push button sounds */
kThemeSoundButtonPress = 'btnp',
kThemeSoundButtonEnter = 'btne',
kThemeSoundButtonExit = 'btnx',
kThemeSoundButtonRelease = 'btnr',
kThemeSoundDefaultButtonPress = 'dbtp',
kThemeSoundDefaultButtonEnter = 'dbte',
kThemeSoundDefaultButtonExit = 'dbtx',
kThemeSoundDefaultButtonRelease = 'dbtr',
kThemeSoundCancelButtonPress = 'cbtp',
kThemeSoundCancelButtonEnter = 'cbte',
kThemeSoundCancelButtonExit = 'cbtx',
kThemeSoundCancelButtonRelease = 'cbtr',
/* checkbox sounds */
kThemeSoundCheckboxPress = 'chkp',
Constants 209
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeSoundCheckboxEnter = 'chke',
kThemeSoundCheckboxExit = 'chkx',
kThemeSoundCheckboxRelease = 'chkr',
/* radio button sounds */
kThemeSoundRadioPress = 'radp',
kThemeSoundRadioEnter = 'rade',
kThemeSoundRadioExit = 'radx',
kThemeSoundRadioRelease = 'radr',
/* scroll bar sounds */
kThemeSoundScrollArrowPress = 'sbap',
kThemeSoundScrollArrowEnter = 'sbae',
kThemeSoundScrollArrowExit = 'sbax',
kThemeSoundScrollArrowRelease = 'sbar',
kThemeSoundScrollEndOfTrack = 'sbte',
kThemeSoundScrollTrackPress = 'sbtp',
/* slider sounds */
kThemeSoundSliderEndOfTrack = 'slte',
kThemeSoundSliderTrackPress = 'sltp',
/* help balloon sounds */
kThemeSoundBalloonOpen = 'blno',
kThemeSoundBalloonClose = 'blnc',
/* bevel button sounds */
kThemeSoundBevelPress = 'bevp',
kThemeSoundBevelEnter = 'beve',
kThemeSoundBevelExit = 'bevx',
kThemeSoundBevelRelease = 'bevr',
/* increment/decrement button sounds */
kThemeSoundLittleArrowUpPress = 'laup',
kThemeSoundLittleArrowDnPress = 'ladp',
kThemeSoundLittleArrowEnter = 'lare',
kThemeSoundLittleArrowExit = 'larx',
kThemeSoundLittleArrowUpRelease = 'laur',
kThemeSoundLittleArrowDnRelease = 'ladr',
/* pop-up button sounds */
kThemeSoundPopupPress = 'popp',
kThemeSoundPopupEnter = 'pope',
kThemeSoundPopupExit = 'popx',
kThemeSoundPopupRelease = 'popr',
/* disclosure triangle sounds */
kThemeSoundDisclosurePress = 'dscp',
kThemeSoundDisclosureEnter = 'dsce',
210 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeSoundDisclosureExit = 'dscx',
kThemeSoundDisclosureRelease = 'dscr',
/* tabs sounds */
kThemeSoundTabPressed = 'tabp',
kThemeSoundTabEnter = 'tabe',
kThemeSoundTabExit = 'tabx',
kThemeSoundTabRelease = 'tabr'
/* Drag Manager sounds */
kThemeSoundDragTargetHilite = 'dthi',
kThemeSoundDragTargetUnhilite = 'dtuh',
kThemeSoundDragTargetDrop = 'dtdr',
/* Finder sounds */
kThemeSoundEmptyTrash = 'ftrs',
kThemeSoundSelectItem = 'fsel',
kThemeSoundNewItem = 'fnew',
kThemeSoundReceiveDrop = 'fdrp',
kThemeSoundCopyDone = 'fcpd',
kThemeSoundResolveAlias = 'fral',
kThemeSoundLaunchApp = 'flap',
kThemeSoundDiskInsert = 'dski',
kThemeSoundDiskEject = 'dske',
kThemeSoundFinderDragOnIcon = 'fdon',
kThemeSoundFinderDragOffIcon = 'fdof'

};
typedef OSType ThemeSoundKind;

Constant descriptions

kThemeSoundNone Specifies that no sound is played.
kThemeSoundMenuOpen

Identifies a sound to be played when the user opens a
menu.

kThemeSoundMenuClose
Identifies a sound to be played when the user closes a
menu.

kThemeSoundMenuItemHilite
Identifies a sound to be played when the user highlights a
menu item.

kThemeSoundMenuItemRelease
Identifies a sound to be played when the user selects a
menu item.
Constants 211
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeSoundWindowClosePress
Identifies a sound to be played when the user presses the
mouse button while the cursor is over a window’s close
box.

kThemeSoundWindowCloseEnter
Identifies a sound to be played when the user moves the
cursor over a window’s close box after having moved the
cursor away from the close box without releasing the
mouse button.

kThemeSoundWindowCloseExit
Identifies a sound to be played when the user moves the
cursor away from a position over a window’s close box,
while the mouse button remains pressed.

kThemeSoundWindowCloseRelease
Identifies a sound to be played when the user releases the
mouse button while the cursor is over a window’s close
box.

kThemeSoundWindowZoomPress
Identifies a sound to be played when the user presses the
mouse button while the cursor is over a window’s zoom
box.

kThemeSoundWindowZoomEnter
Identifies a sound to be played when the user moves the
cursor over a window’s zoom box after having moved the
cursor away from the zoom box without releasing the
mouse button.

kThemeSoundWindowZoomExit
Identifies a sound to be played when the user moves the
cursor away from a position over a window’s zoom box,
while the mouse button remains pressed.

kThemeSoundWindowZoomRelease
Identifies a sound to be played when the user releases the
mouse button while the cursor is over a window’s zoom
box.

kThemeSoundWindowCollapsePress
Identifies a sound to be played when the user presses the
mouse button while the cursor is over a window’s collapse
box.
212 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeSoundWindowCollapseEnter
Identifies a sound to be played when the user moves the
cursor over a window’s collapse box after having moved
the cursor away from the collapse box without releasing
the mouse button.

kThemeSoundWindowCollapseExit
Identifies a sound to be played when the user moves the
cursor away from a position over a window’s collapse box,
while the mouse button remains pressed.

kThemeSoundWindowCollapseRelease
Identifies a sound to be played when the user releases the
mouse button while the cursor is over a window’s collapse
box.

kThemeSoundWindowDragBoundary
Identifies a sound to be played when the user drags a
window to the edge of the area where it can be dragged.
Note: This functionality is not available under Appearance
Manager 1.1 or prior versions of Appearance.

kThemeSoundUtilWinClosePress
Identifies a sound to be played when the user presses the
mouse button while the cursor is over a utility (floating)
window’s close box.

kThemeSoundUtilWinCloseEnter
Identifies a sound to be played when the user moves the
cursor over a utility (floating) window’s close box after
having moved the cursor away from the close box without
releasing the mouse button.

kThemeSoundUtilWinCloseExit
Identifies a sound to be played when the user moves the
cursor away from a position over a utility (floating)
window’s close box, while the mouse button remains
pressed.

kThemeSoundUtilWinCloseRelease
Identifies a sound to be played when the user releases the
mouse button while the cursor is over a utility (floating)
window’s close box.

kThemeSoundUtilWinZoomPress
Identifies a sound to be played when the user presses the
Constants 213
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
mouse button while the cursor is over a utility (floating)
window’s zoom box.

kThemeSoundUtilWinZoomEnter
Identifies a sound to be played when the user moves the
cursor over a utility (floating) window’s zoom box after
having moved the cursor away from the zoom box without
releasing the mouse button.

kThemeSoundUtilWinZoomExit
Identifies a sound to be played when the user moves the
cursor away from a position over a utility (floating)
window’s zoom box, while the mouse button remains
pressed.

kThemeSoundUtilWinZoomRelease
Identifies a sound to be played when the user releases the
mouse button while the cursor is over a utility (floating)
window’s zoom box.

kThemeSoundUtilWinCollapsePress
Identifies a sound to be played when the user presses the
mouse button while the cursor is over a utility (floating)
window’s collapse box.

kThemeSoundUtilWinCollapseEnter
Identifies a sound to be played when the user moves the
cursor over a utility (floating) window’s collapse box after
having moved the cursor away from the collapse box
without releasing the mouse button.

kThemeSoundUtilWinCollapseExit
Identifies a sound to be played when the user moves the
cursor away from a position over a utility (floating)
window’s collapse box, while the mouse button remains
pressed.

kThemeSoundUtilWinCollapseRelease
Identifies a sound to be played when the user releases the
mouse button while the cursor is over a utility (floating)
window’s collapse box.

kThemeSoundUtilWinDragBoundary
Identifies a sound to be played when the user drags a
utility (floating) window to the edge of the area where it
can be dragged. Note: This functionality is not available
214 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
under Appearance Manager 1.1 or prior versions of
Appearance.

kThemeSoundWindowOpen
Identifies a sound to be played when the user opens a
window.

kThemeSoundWindowClose
Identifies a sound to be played when the user closes a
window.

kThemeSoundWindowZoomIn
Identifies a sound to be played when the user zooms a
window in, that is, to the user state.

kThemeSoundWindowZoomOut
Identifies a sound to be played when the user zooms a
window out, that is, to the standard state.

kThemeSoundWindowCollapseUp
Identifies a sound to be played when the user collapses a
window.

kThemeSoundWindowCollapseDown
Identifies a sound to be played when the user uncollapses a
window.

kThemeSoundWindowActivate
Identifies a sound to be played when the user presses the
mouse button while the cursor is over an inactive window,
thus activating it.

kThemeSoundUtilWindowOpen
Identifies a sound to be played when the user opens a
utility (floating) window.

kThemeSoundUtilWindowClose
Identifies a sound to be played when the user closes a
utility (floating) window.

kThemeSoundUtilWindowZoomIn
Identifies a sound to be played when the user zooms a
utility (floating) window in, that is, to the user state.

kThemeSoundUtilWindowZoomOut
Identifies a sound to be played when the user zooms a
utility (floating) window out, that is, to the standard state.
Constants 215
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeSoundUtilWindowCollapseUp
Identifies a sound to be played when the user collapses a
utility (floating) window.

kThemeSoundUtilWindowCollapseDown
Identifies a sound to be played when the user uncollapses a
utility (floating) window.

kThemeSoundUtilWindowActivate
Identifies a sound to be played when the user presses the
mouse button while the cursor is over an inactive utility
(floating) window, thus activating it.

kThemeSoundDialogOpen
Identifies a sound to be played when a dialog box opens.

kThemeSoundDialogClose
Identifies a sound to be played when a dialog box closes.

kThemeSoundAlertOpen
Identifies a sound to be played when an alert box opens.

kThemeSoundAlertClose
Identifies a sound to be played when an alert box closes.

kThemeSoundPopopWindowOpen
Identifies a sound to be played when a pop-up window
opens.

kThemeSoundPopupWindowClose
Identifies a sound to be played when a pop-up window
closes.

kThemeSoundButtonPress
Identifies a sound to be played when the user presses the
mouse button while the cursor is over a push button.

kThemeSoundButtonEnter
Identifies a sound to be played when the user moves the
cursor over a push button after having moved the cursor
away from the button without releasing the mouse button.

kThemeSoundButtonExit
Identifies a sound to be played when the user moves the
cursor away from a position over a push button, while the
mouse button remains pressed.

kThemeSoundButtonRelease
Identifies a sound to be played when the user releases the
mouse button while the cursor is over a push button.
216 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeSoundDefaultButtonPress
Identifies a sound to be played when the user presses the
mouse button while the cursor is over a default button.

kThemeSoundDefaultButtonEnter
Identifies a sound to be played when the user moves the
cursor over a default button after having moved the cursor
away from the button without releasing the mouse button.

kThemeSoundDefaultButtonExit
Identifies a sound to be played when the user moves the
cursor away from a position over a default button, while
the mouse button remains pressed.

kThemeSoundDefaultButtonRelease
Identifies a sound to be played when the user releases the
mouse button while the cursor is over a default button.

kThemeSoundCancelButtonPress
Identifies a sound to be played when the user presses the
mouse button while the cursor is over a Cancel button.

kThemeSoundCancelButtonEnter
Identifies a sound to be played when the user moves the
cursor over a Cancel button after having moved the cursor
away from the button without releasing the mouse button.

kThemeSoundCancelButtonExit
Identifies a sound to be played when the user moves the
cursor away from a position over a Cancel button, while
the mouse button remains pressed.

kThemeSoundCancelButtonRelease
Identifies a sound to be played when the user releases the
mouse button while the cursor is over a Cancel button.

kThemeSoundCheckboxPress
Identifies a sound to be played when the user presses the
mouse button while the cursor is over a checkbox.

kThemeSoundCheckboxEnter
Identifies a sound to be played when the user moves the
cursor over a checkbox after having moved the cursor
away from the checkbox without releasing the mouse
button.

kThemeSoundCheckboxExit
Identifies a sound to be played when the user moves the
Constants 217
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
cursor away from a position over a checkbox, while the
mouse button remains pressed.

kThemeSoundCheckboxRelease
Identifies a sound to be played when the user releases the
mouse button while the cursor is over a checkbox.

kThemeSoundRadioPress
Identifies a sound to be played when the user presses the
mouse button while the cursor is over a radio button.

kThemeSoundRadioEnter
Identifies a sound to be played when the user moves the
cursor over a radio button after having moved the cursor
away from the radio button without releasing the mouse
button.

kThemeSoundRadioExit
Identifies a sound to be played when the user moves the
cursor away from a position over a radio button, while the
mouse button remains pressed.

kThemeSoundRadioRelease
Identifies a sound to be played when the user releases the
mouse button while the cursor is over a radio button.

kThemeSoundScrollArrowPress
Identifies a sound to be played when the user presses the
mouse button while the cursor is over a scroll bar arrow.

kThemeSoundScrollArrowEnter
Identifies a sound to be played when the user moves the
cursor over a scroll bar arrow after having moved the
cursor away from the arrow without releasing the mouse
button.

kThemeSoundScrollArrowExit
Identifies a sound to be played when the user moves the
cursor away from a position over a scroll bar arrow, while
the mouse button remains pressed.

kThemeSoundScrollArrowRelease
Identifies a sound to be played when the user releases the
mouse button while the cursor is over a scroll bar arrow.

kThemeSoundScrollEndOfTrack
Identifies a sound to be played when a scroll box arrives at
the end of a scroll bar and can go no further. Note: This
218 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
functionality is not available under Appearance Manager
1.1 or prior versions of Appearance.

kThemeSoundScrollTrackPress
Identifies a sound to be played when the user presses the
mouse button while the cursor is over the track part of a
scroll bar (this area does not include the scroll box or scroll
bar arrows).

kThemeSoundSliderEndOfTrack
Identifies a sound to be played when a slider indicator
arrives at the end of a slider track and can go no further.
Note: This functionality is not available under Appearance
Manager 1.1 or prior versions of Appearance.

kThemeSoundSliderTrackPress
Identifies a sound to be played when the user presses the
mouse button while the cursor is over the track part of a
slider (this area does not include the slider indicator).

kThemeSoundBalloonOpen
Identifies a sound to be played when a help balloon
appears.

kThemeSoundBalloonClose
Identifies a sound to be played when a help balloon
disappears.

kThemeSoundBevelPress
Identifies a sound to be played when the user presses the
mouse button while the cursor is over a bevel button.

kThemeSoundBevelEnter
Identifies a sound to be played when the user moves the
cursor over a bevel button after having moved the cursor
away from the bevel button without releasing the mouse
button.

kThemeSoundBevelExit
Identifies a sound to be played when the user moves the
cursor away from a position over a bevel button, while the
mouse button remains pressed.

kThemeSoundBevelRelease
Identifies a sound to be played when the user releases the
mouse button while the cursor is over a bevel button.
Constants 219
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeSoundLittleArrowUpPress
Identifies a sound to be played when the user presses the
mouse button while the cursor is over the upward-pointing
arrow of an increment/decrement button.

kThemeSoundLittleArrowDnPress
Identifies a sound to be played when the user presses the
mouse button while the cursor is over the
downward-pointing arrow of an increment/decrement
button.

kThemeSoundLittleArrowEnter
Identifies a sound to be played when the user moves the
cursor over an increment/decrement button after having
moved the cursor away from the button without releasing
the mouse button.

kThemeSoundLittleArrowExit
Identifies a sound to be played when the user moves the
cursor away from a position over an increment/decrement
button, while the mouse button remains pressed.

kThemeSoundLittleArrowUpRelease
Identifies a sound to be played when the user releases the
mouse button while the cursor is over the upward-pointing
arrow of an increment/decrement button.

kThemeSoundLittleArrowDnRelease
Identifies a sound to be played when the user releases the
mouse button while the cursor is over the
downward-pointing arrow of an increment/decrement
button.

kThemeSoundPopupPress
Identifies a sound to be played when the user presses the
mouse button while the cursor is over a pop-up menu
button.

kThemeSoundPopupEnter
Identifies a sound to be played when the user moves the
cursor over a pop-up menu button after having moved the
cursor away from the button without releasing the mouse
button.

kThemeSoundPopupExit
Identifies a sound to be played when the user moves the
220 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
cursor away from a position over a pop-up menu button,
while the mouse button remains pressed.

kThemeSoundPopupRelease
Identifies a sound to be played when the user releases the
mouse button while the cursor is over a pop-up menu
button.

kThemeSoundDisclosurePress
Identifies a sound to be played when the user presses the
mouse button while the cursor is over a disclosure triangle.

kThemeSoundDisclosureEnter
Identifies a sound to be played when the user moves the
cursor over a disclosure triangle after having moved the
cursor away from the disclosure triangle without releasing
the mouse button.

kThemeSoundDisclosureExit
Identifies a sound to be played when the user moves the
cursor away from a position over a disclosure triangle,
while the mouse button remains pressed.

kThemeSoundDisclosureRelease
Identifies a sound to be played when the user releases the
mouse button while the cursor is over a disclosure triangle.

kThemeSoundTabPressed
Identifies a sound to be played when the user presses the
mouse button while the cursor is over a tab.

kThemeSoundTabEnter
Identifies a sound to be played when the user places the
cursor over a tab.

kThemeSoundTabExit
Identifies a sound to be played when the user moves the
cursor over a tab after having moved the cursor away from
the tab without releasing the mouse button.

kThemeSoundTabRelease
Identifies a sound to be played when the user releases the
mouse button while the cursor is over a tab.

kThemeSoundDragTargetHilite
Identifies a sound to be played when the user drags an
object over a valid drag-and-drop destination.
Constants 221
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeSoundDragTargetUnhilite
Identifies a sound to be played when the user drags an
object away from a valid drag-and-drop destination.

kThemeSoundDragTargetDrop
Identifies a sound to be played when the user drops an
object on a valid drag-and-drop destination.

kThemeSoundEmptyTrash
Identifies a sound to be played when the Finder completes
emptying the Trash directory.

kThemeSoundSelectItem
Identifies a sound to be played when the user presses the
mouse button while the cursor is over an item in the Finder.

kThemeSoundNewItem
Identifies a sound to be played when the user creates a new
item.

kThemeSoundReceiveDrop
Identifies a sound to be played when a Finder object
changes parents, such as when the user drops an icon on a
folder.

kThemeSoundCopyDone
Identifies a sound to be played when the Finder completes
a copy operation.

kThemeSoundResolveAlias
Identifies a sound to be played when the Finder resolves an
alias.

kThemeSoundLaunchApp
Identifies a sound to be played when the Finder launches
an application.

kThemeSoundDiskInsert
Identifies a sound to be played when a disk is inserted.

kThemeSoundDiskEject
Identifies a sound to be played when a disk is ejected.

kThemeSoundFinderDragOnIcon
Identifies a sound to be played when the user drags an
object over an icon.

kThemeSoundFinderDragOffIcon
Identifies a sound to be played when the user drags an
object off of an icon.
222 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
Theme Sound Mask Constants 4
Theme sound mask constants define masks that are used to specify the classes
of sounds that are enabled for a theme. You can use these masks to operate
upon the unsigned 32-bit integer contained in the kThemeSoundMaskTag collection
item, which is described in “Theme Collection Tags” (page 190). Theme sound
mask constants are available with Appearance Manager 1.1 and later.

enum {
kThemeNoSounds = 0,
kThemeWindowSoundsMask = (1 << 0),
kThemeMenuSoundsMask = (1 << 1),
kThemeControlSoundsMask = (1 << 2),
kThemeFinderSoundsMask = (1 << 3)

};

Constant descriptions

kThemeNoSounds If no bits are set, no theme sounds are enabled.
kThemeWindowSoundsMask

If the bit specified by this mask is set, window sounds are
enabled.

kThemeMenuSoundsMask
If the bit specified by this mask is set, menu sounds are
enabled.

kThemeControlSoundsMask
If the bit specified by this mask is set, control sounds are
enabled.

kThemeFinderSoundsMask
If the bit specified by this mask is set, Finder sounds are
enabled.

Theme Tab Direction Constants 4
You can pass constants of type ThemeTabDirection to the function DrawThemeTab
(page 107) to draw theme-compliant tabs that are oriented in various directions.
You can also pass a ThemeTabDirection constant to the function
GetThemeTabRegion (page 119) to obtain the region containing a tab oriented in a
particular direction. The ThemeTabDirection constants are available with
Appearance Manager 1.1 and later.
Constants 223
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
enum {
kThemeTabNorth = 0,
kThemeTabSouth = 1,
kThemeTabEast = 2,
kThemeTabWest = 3

};
typedef UInt16 ThemeTabDirection;

Constant descriptions

kThemeTabNorth An upward-pointing tab.
kThemeTabSouth A downward-pointing tab.
kThemeTabEast A right-pointing tab.
kThemeTabWest A left-pointing tab.

Theme Tab Style Constants 4
You can pass a constant of type ThemeTabStyle to the function DrawThemeTab
(page 107) to draw a theme-compliant tab in a specific state. You can also pass a
ThemeTabStyle constant to the function GetThemeTabRegion (page 119) to obtain
the region containing a tab in a specific state. The ThemeTabStyle constants are
available with Appearance Manager 1.1 and later.

enum {
kThemeTabNonFront = 0,
kThemeTabNonFrontPressed = 1,
kThemeTabNonFrontInactive = 2,
kThemeTabFront = 3,
kThemeTabFrontInactive = 4

};
typedef UInt16 ThemeTabStyle;

Constant descriptions

kThemeTabNonFront An active tab that is not the frontmost in a tab control.
kThemeTabNonFrontPressed

A tab that is being clicked on by the user which is not the
frontmost tab in a tab control.

kThemeTabNonFrontInactive
An inactive tab that is not the frontmost in a tab control.
224 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
The tab may either be inactive because it has been
individually disabled or because the tab control as a whole
is currently inactive.

kThemeTabFront The frontmost tab in an active tab control.
kThemeTabFrontInactive

The frontmost tab in an inactive tab control.

Theme Text Color Constants 4
A constant of type ThemeTextColor identifies a particular context in which text is
used. You can pass a constant of type ThemeTextColor to the function
SetThemeTextColor (page 86) to specify that the Appearance Manager substitute
whatever the appropriate text color is for a given context under the current
theme. You can use the function GetThemeTextColor (page 81) to obtain the
actual color in use under the current theme for the specified ThemeTextColor
constant.

enum {
kThemeTextColorDialogActive = 1,
kThemeTextColorDialogInactive = 2,
kThemeTextColorAlertActive = 3,
kThemeTextColorAlertInactive = 4,
kThemeTextColorModelessDialogActive = 5,
kThemeTextColorModelessDialogInactive = 6,
kThemeTextColorWindowHeaderActive = 7,
kThemeTextColorWindowHeaderInactive = 8,
kThemeTextColorPlacardActive = 9,
kThemeTextColorPlacardInactive = 10,
kThemeTextColorPlacardPressed = 11,
kThemeTextColorPushButtonActive = 12,
kThemeTextColorPushButtonInactive = 13,
kThemeTextColorPushButtonPressed = 14,
kThemeTextColorBevelButtonActive = 15,
kThemeTextColorBevelButtonInactive = 16,
kThemeTextColorBevelButtonPressed = 17,
kThemeTextColorPopupButtonActive = 18,
kThemeTextColorPopupButtonInactive = 19,
kThemeTextColorPopupButtonPressed = 20,
kThemeTextColorIconLabel = 21,
kThemeTextColorListView = 22,
Constants 225
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
/* Text colors available in Appearance Manager 1.0.1 or later */
kThemeTextColorDocumentWindowTitleActive = 23,
kThemeTextColorDocumentWindowTitleInactive = 24,
kThemeTextColorMovableModalWindowTitleActive = 25,
kThemeTextColorMovableModalWindowTitleInactive = 26,
kThemeTextColorUtilityWindowTitleActive = 27,
kThemeTextColorUtilityWindowTitleInactive = 28,
kThemeTextColorPopupWindowTitleActive = 29,
kThemeTextColorPopupWindowTitleInactive = 30,
kThemeTextColorRootMenuActive = 31,
kThemeTextColorRootMenuSelected = 32,
kThemeTextColorRootMenuDisabled = 33,
kThemeTextColorMenuItemActive = 34,
kThemeTextColorMenuItemSelected = 35,
kThemeTextColorMenuItemDisabled = 36,
kThemeTextColorPopupLabelActive = 37,
kThemeTextColorPopupLabelInactive = 38,
/* Text colors available in Appearance Manager 1.1 or later */
kThemeTextColorTabFrontActive = 39,
kThemeTextColorTabNonFrontActive = 40,
kThemeTextColorTabNonFrontPressed = 41,
kThemeTextColorTabFrontInactive = 42,
kThemeTextColorTabNonFrontInactive = 43,
kThemeTextColorIconLabelSelected = 44,
kThemeTextColorBevelButtonStickyActive = 45,
kThemeTextColorBevelButtonStickyInactive = 46,
kThemeTextColorBlack = -1,
kThemeTextColorWhite = -2

};
typedef SInt16 ThemeTextColor;

Constant descriptions

kThemeTextColorDialogActive
Text color for an active dialog box.

kThemeTextColorDialogInactive
Text color for an inactive dialog box.

kThemeTextColorAlertActive
Text color for an active alert box.

kThemeTextColorAlertInactive
Text color for an inactive alert box.
226 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeTextColorModelessDialogActive
Text color for an active modeless dialog box.

kThemeTextColorModelessDialogInactive
Text color for an inactive modeless dialog box.

kThemeTextColorWindowHeaderActive
Text color for the window header of an active window.

kThemeTextColorWindowHeaderInactive
Text color for the window header of an inactive window.

kThemeTextColorPlacardActive
Text color for a placard in an active window.

kThemeTextColorPlacardInactive
Text color for a placard in an inactive window.

kThemeTextColorPlacardPressed
Text color for a placard that is being clicked on by the user.

kThemeTextColorPushButtonActive
Text color for an active push button.

kThemeTextColorPushButtonInactive
Text color for an inactive push button.

kThemeTextColorPushButtonPressed
Text color for a push button that is being clicked on by the
user.

kThemeTextColorBevelButtonActive
Text color for an active bevel button.

kThemeTextColorBevelButtonInactive
Text color for an inactive bevel button.

kThemeTextColorBevelButtonPressed
Text color for a bevel button that is being clicked on by the
user.

kThemeTextColorPopupButtonActive
Text color for the menu of an active pop-up menu button.

kThemeTextColorPopupButtonInactive
Text color for the menu of an inactive pop-up menu button.

kThemeTextColorPopupButtonPressed
Text color for the menu of a pop-up menu button that is
being clicked on by the user.

kThemeTextColorIconLabel
Text color for an icon label.
Constants 227
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeTextColorListView
Text color for the contents of a list view column.

kThemeTextColorDocumentWindowTitleActive
Text color for the title of an active document window.
Available with Appearance Manager 1.0.1 and later.

kThemeTextColorDocumentWindowTitleInactive
Text color for the title of an inactive document window.
Available with Appearance Manager 1.0.1 and later.

kThemeTextColorMovableModalWindowTitleActive
Text color for the title of an active movable modal window.
Available with Appearance Manager 1.0.1 and later.

kThemeTextColorMovableModalWindowTitleInactive
Text color for the title of inactive movable modal window.
Available with Appearance Manager 1.0.1 and later.

kThemeTextColorUtilityWindowTitleActive
Text color for the title of an active utility (floating) window.
Available with Appearance Manager 1.0.1 and later.

kThemeTextColorUtilityWindowTitleInactive
Text color for the title of an inactive utility (floating)
window. Available with Appearance Manager 1.0.1 and
later.

kThemeTextColorPopupWindowTitleActive
Text color for the title of an active pop-up window.
Available with Appearance Manager 1.0.1 and later.

kThemeTextColorPopupWindowTitleInactive
Text color for the title of an inactive pop-up window.
Available with Appearance Manager 1.0.1 and later.

kThemeTextColorRootMenuActive
Text color for an active menu bar title. Available with
Appearance Manager 1.0.1 and later.

kThemeTextColorRootMenuSelected
Text color for a menu bar title that is being selected by the
user. Available with Appearance Manager 1.0.1 and later.

kThemeTextColorRootMenuDisabled
Text color for a disabled menu bar title. Available with
Appearance Manager 1.0.1 and later.
228 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeTextColorMenuItemActive
Text color for an active menu item. Available with
Appearance Manager 1.0.1 and later.

kThemeTextColorMenuItemSelected
Text color for a menu item that is being selected by the user.
Available with Appearance Manager 1.0.1 and later.

kThemeTextColorMenuItemDisabled
Text color for a disabled menu item. Available with
Appearance Manager 1.0.1 and later.

kThemeTextColorPopupLabelActive
Text color for the label of an active pop-up menu button.
Available with Appearance Manager 1.0.1 and later.

kThemeTextColorPopupLabelInactive
Text color for the label of an inactive pop-up menu button.
Available with Appearance Manager 1.0.1 and later.

kThemeTextColorTabFrontActive
Text color for the front tab of an active tab control.
Available with Appearance Manager 1.1 and later.

kThemeTextColorTabNonFrontActive
Text color for an active tab that is not the frontmost of a tab
control. Available with Appearance Manager 1.1 and later.

kThemeTextColorTabNonFrontPressed
Text color for a tab that is not the frontmost of a tab control,
when the tab is being clicked on by the user. Available with
Appearance Manager 1.1 and later.

kThemeTextColorTabFrontInactive
Text color for the front tab of an inactive tab control.
Available with Appearance Manager 1.1 and later.

kThemeTextColorTabNonFrontInactive
Text color for an inactive tab that is not the frontmost of a
tab control. The tab may either be inactive because it has
been individually disabled or because the tab control as a
whole is currently inactive. Available with Appearance
Manager 1.1 and later.

kThemeTextColorIconLabelSelected
Text color for the label of an icon that is currently selected.
Available with Appearance Manager 1.1 and later.
Constants 229
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeTextColorBevelButtonStickyActive
Text color for an active bevel button that is currently on.
Available with Appearance Manager 1.1 and later.

kThemeTextColorBevelButtonStickyInactive
Text color for an inactive bevel button that is currently on.
Available with Appearance Manager 1.1 and later.

kThemeTextColorBlack
Black; this color does not change from theme to theme. You
may use this constant instead of specifying a direct RGB
value. Available with Appearance Manager 1.1 and later.

kThemeTextColorWhite
White; this color does not change from theme to theme. You
may use this constant instead of specifying a direct RGB
value. Available with Appearance Manager 1.1 and later.

Theme Title Bar Item Constants 4
You may pass constants of type ThemeTitleBarWidget to the function
DrawThemeTitleBarWidget (page 133) to draw specific types of window title bar
items. The Appearance Manager draws a theme-compliant version of the title
bar item type, as is appropriate. The ThemeTitleBarWidget constants are
available with Appearance Manager 1.1 and later.

enum {
kThemeWidgetCloseBox = 0,
kThemeWidgetZoomBox = 1,
kThemeWidgetCollapseBox = 2

};
typedef UInt16 ThemeTitleBarWidget;

Constant descriptions

kThemeWindowCloseBox
Identifies a close box.

kThemeWindowZoomBox
Identifies a zoom box.

kThemeWindowCollapseBox
Identifies a collapse box.
230 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
Theme Track Attributes Constants 4
The ThemeTrackAttributes enumeration defines masks your application can use
in the ThemeTrackDrawInfo (page 166) structure to specify various attributes of
track controls. The ThemeTrackAttributes constants are available with
Appearance Manager 1.1 and later.

enum {
kThemeTrackHorizontal = (1 << 0),
kThemeTrackRightToLeft = (1 << 1),
kThemeTrackShowThumb = (1 << 2)

};
typedef UInt16 ThemeTrackAttributes;

Constant descriptions

kThemeTrackHorizontal
If the bit specified by this mask is set, the track is
horizontally, not vertically, oriented.

kThemeTrackRightToLeft
If the bit specified by this mask is set, values for the track
increase from right to left if the track is horizontally
oriented, or from bottom to top if the track is vertically
oriented.

kThemeTrackShowThumb
If the bit specified by this mask is set, an indicator is drawn
for this track.

Theme Track Enable State Constants 4
You can use constants of type ThemeTrackEnableState in the ThemeTrackDrawInfo
(page 166) structure and in the functions GetThemeScrollBarTrackRect (page 118)
and HitTestThemeScrollBarArrows (page 125) to identify the state of track
controls. The ThemeTrackEnableState constants are available with Appearance
Manager 1.1 and later.

enum {
kThemeTrackActive = 0,
kThemeTrackDisabled = 1,
Constants 231
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeTrackNothingToScroll = 2
};
typedef UInt8 ThemeTrackEnableState;

Constant descriptions

kThemeTrackActive A track in the active state.
kThemeTrackDisabled

A track in the disabled state.
kThemeTrackNothingToScroll

For scroll bars, the window containing the track is
expanded to a sufficiently large state such that all the
content is viewable and there is nothing remaining to scroll.

Theme Track Kind Constants 4
You may use the following constants of type ThemeTrackKind to identify specific
kinds of track-based controls to the Appearance Manager. The ThemeTrackKind
constants are available with Appearance Manager 1.1 and later.

enum {
kThemeScrollBar = 0,
kThemeSmallScrollBar = 1,
kThemeSlider = 2,
kThemeProgressBar = 3,
kThemeIndeterminateBar = 4

};
typedef UInt16 ThemeTrackKind;

Constant descriptions

kThemeScrollBar A scroll bar.
kThemeSmallScrollBar

A small scroll bar.
kThemeSlider A slider bar.
kThemeProgressBar A progress bar.
kThemeIndeterminateBar

An indeterminate progress bar.
232 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
Theme Track Press State Constants 4
You can use constants of type ThemeTrackPressState in structures of type
ScrollBarTrackInfo (page 167) and SliderTrackInfo (page 168) to identify what
is pressed in an active scroll bar or slider; the press state is ignored if the control
is not active. The ThemeTrackPressState constants are available with Appearance
Manager 1.1 and later.

Note that some constants are undefined when the corresponding arrows do not
exist in the current visual appearance. Prior to using the ThemeTrackPressState
constants, your application should call the function
GetThemeScrollBarArrowStyle (page 116) to obtain the type of scroll bar arrows
currently being used.

enum {
kThemeLeftOutsideArrowPressed = 0x01,
kThemeLeftInsideArrowPressed = 0x02,
kThemeLeftTrackPressed = 0x04,
kThemeThumbPressed = 0x08,
kThemeRightTrackPressed = 0x10,
kThemeRightInsideArrowPressed = 0x20,
kThemeRightOutsideArrowPressed = 0x40,
kThemeTopOutsideArrowPressed = kThemeLeftOutsideArrowPressed,
kThemeTopInsideArrowPressed = kThemeLeftInsideArrowPressed,
kThemeTopTrackPressed = kThemeLeftTrackPressed,
kThemeBottomTrackPressed = kThemeRightTrackPressed,
kThemeBottomInsideArrowPressed = kThemeRightInsideArrowPressed,
kThemeBottomOutsideArrowPressed = kThemeRightOutsideArrowPressed

};
typedef UInt8 ThemeTrackPressState;

Constant descriptions

kThemeLeftOutsideArrowPressed
For a horizontal scroll bar containing a single pair of
arrows, with one arrow at each end, indicates that the
arrow on the left is selected.
For a horizontal scroll bar containing a single pair of
arrows, with both arrows on the right, this constant is
undefined and should not be used.

kThemeLeftInsideArrowPressed
For a horizontal scroll bar containing a single pair of
Constants 233
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
arrows, with one arrow at each end, this constant is
undefined and should not be used.
For a horizontal scroll bar containing a single pair of
arrows, with both arrows on the right, this constant is
undefined and should not be used.

kThemeLeftTrackPressed
For a horizontal scroll bar or slider, indicates that the end of
the track to the left of the scroll box or indicator is selected.

kThemeThumbPressed
Indicates that the scroll box or indicator is selected.

kThemeRightTrackPressed
For a horizontal scroll bar or slider, indicates that the end of
the track to the right of the scroll box or indicator is
selected.

kThemeRightInsideArrowPressed
For a horizontal scroll bar containing a single pair of
arrows, with one arrow at each end, this constant is
undefined and should not be used.
For a horizontal scroll bar containing a single pair of
arrows, with both arrows on the right, indicates that the
inner arrow at the right end of the scroll bar is selected.

kThemeRightOutsideArrowPressed
For a horizontal scroll bar containing a single pair of
arrows, with one arrow at each end, indicates that the
arrow on the right is selected.
For a horizontal scroll bar containing a single pair of
arrows, with both arrows on the right, indicates that the
outer arrow at the right end of the scroll bar is selected.

kThemeTopOutsideArrowPressed
For a vertical scroll bar containing a single pair of arrows,
with one arrow at each end, indicates that the arrow on the
top is selected.
For a vertical scroll bar containing a single pair of arrows,
with both arrows on the bottom, this constant is undefined
and should not be used.

kThemeTopInsideArrowPressed
For a vertical scroll bar containing a single pair of arrows,
with one arrow at each end, this constant is undefined and
should not be used.
234 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
For a vertical scroll bar containing a single pair of arrows,
with both arrows on the bottom, this constant is undefined
and should not be used.

kThemeTopTrackPressed
For a vertical scroll bar or slider, indicates that the end of
the track above the scroll box or indicator is selected.

kThemeBottomTrackPressed
For a vertical scroll bar or slider, indicates that the end of
the track beneath the scroll box or indicator is selected.

kThemeBottomInsideArrowPressed
For a vertical scroll bar containing a single pair of arrows,
with one arrow at each end, this constant is undefined and
should not be used.
For a vertical scroll bar containing a single pair of arrows,
with both arrows on the bottom, indicates that the inner
arrow at the bottom end of the scroll bar is selected.

kThemeBottomOutsideArrowPressed
For a vertical scroll bar containing a single pair of arrows,
with one arrow at each end, indicates that the arrow on the
bottom is selected.
For a vertical scroll bar containing a single pair of arrows,
with both arrows on the bottom, indicates that the outer
arrow at the bottom end of the scroll bar is selected.

Theme Window Attribute Constants 4
The ThemeWindowAttributes enumeration defines masks your application can
use to specify the various interface elements that a given window contains. The
ThemeWindowAttributes constants are available with Appearance Manager 1.1
and later.

enum {
kThemeWindowHasGrow = (1 << 0),
kThemeWindowHasHorizontalZoom = (1 << 3),
kThemeWindowHasVerticalZoom = (1 << 4),
kThemeWindowHasFullZoom = kThemeWindowHasHorizontalZoom

 + kThemeWindowHasVerticalZoom,
kThemeWindowHasCloseBox = (1 << 5),
kThemeWindowHasCollapseBox = (1 << 6),
Constants 235
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
kThemeWindowHasTitleText = (1 << 7),
kThemeWindowIsCollapsed = (1 << 8)

};
typedef UInt32 ThemeWindowAttributes;

Constant descriptions

kThemeWindowHasGrow
If the bit specified by this mask is set, the window contains
a size box.

kThemeWindowHasHorizontalZoom
If the bit specified by this mask is set, the window contains
a horizontal zoom box.

kThemeWindowHasVerticalZoom
If the bit specified by this mask is set, the window contains
a vertical zoom box.

kThemeWindowHasFullZoom
If the bit specified by this mask is set, the window contains
a full (horizontal and vertical) zoom box.

kThemeWindowHasCloseBox
If the bit specified by this mask is set, the window contains
a close box.

kThemeWindowHasCollapseBox
If the bit specified by this mask is set, the window contains
a collapse box.

kThemeWindowHasTitleText
If the bit specified by this mask is set, the window contains
a title.

kThemeWindowIsCollapsed
If the bit specified by this mask is set, the window is
currently collapsed.

Theme Window Type Constants 4
You may use the following constants of type ThemeWindowType to identify
windows of specific visual categories to the Appearance Manager; see
“Drawing Theme-Compliant Windows” (page 128) for the functions that use
the ThemeWindowType constants. The ThemeWindowType constants are available with
Appearance Manager 1.1 and later.
236 Constants

4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
enum {
kThemeDocumentWindow = 0,
kThemeDialogWindow = 1,
kThemeMovableDialogWindow = 2,
kThemeAlertWindow = 3,
kThemeMovableAlertWindow = 4,
kThemePlainDialogWindow = 5,
kThemeShadowDialogWindow = 6,
kThemePopupWindow = 7,
kThemeUtilityWindow = 8,
kThemeUtilitySideWindow = 9

};
typedef UInt16 ThemeWindowType;

Constant descriptions

kThemeDocumentWindow
A document window.

kThemeDialogWindow
A modal dialog box.

kThemeMovableDialogWindow
A movable modal dialog box.

kThemeAlertWindow
An alert box.

kThemeMovableAlertWindow
A movable alert box.

kThemePlainDialogWindow
A plain modal dialog box. This window visually
corresponds to that produced by the plainDBox
pre–Appearance Manager window definition ID and does
not change appearance by theme.

kThemeShadowDialogWindow
A dialog box with shadowing.

kThemePopupWindow
A pop-up window.

kThemeUtilityWindow
A utility window.

kThemeUtilitySideWindow
A utility window with a side title bar.
Constants 237
4/21/99  Apple Computer, Inc.

C H A P T E R 4

Appearance Manager Reference
Result Codes 4

The most common result codes returned by Appearance Manager functions are
listed below.

noErr 0 No error
paramErr –50 Error in parameter list
memFullErr –108 Not enough memory
themeInvalidBrushErr –30560 Invalid brush color constant
themeProcessRegisteredErr –30561 Application already

registered as Appearance
Manager client

themeProcessNotRegisteredErr –30562 Application not registered
as Appearance Manager
client

themeBadTextColorErr –30563 Invalid text color constant
themeHasNoAccentsErr –30564 Theme does not support

accent colors
themeBadCursorIndexErr –30565 Invalid cursor constant
themeScriptFontNotFoundErr –30566 No font record for specified

script
themeMonitorDepthNotSupportedErr –30567 Theme cannot be supported

on all monitors at their
current bit depth
238 Result Codes

4/21/99  Apple Computer, Inc.

A P P E N D I X A

Figure 6-0
Listing 6-0
Table 6-0
Document Version History A

This document has had the following releases:

Table A-1 Programming With the Appearance Manager revision history

Version Notes

Apr. 21, 1999 The following changes were made from the prior (seed draft) version:

Added “Introduction,” “Using the Appearance Manager,” and “About the
Appearance Manager” chapters to contain programming discussions, code
listings, artwork, and conceptual material.

Aug. 13, 1998 Updated document for the Appearance Manager 1.1 API.

Removed “Appearance Manager Reference” chapter from the Mac OS 8
Toolbox Reference document. Inside Macintosh: Appearance Manager Reference is
seeded as an independent (draft) document.

Jan. 15, 1998 The following changes were made:

Noted information for Appearance Manager 1.0.2 where applicable.

Dec. 2, 1997 PDF formatting improved.

Nov. 3, 1997 First release of Mac OS 8 Toolbox Reference, which included the chapter
“Appearance Manager Reference.”
239
4/21/99  Apple Computer, Inc.

Index
A

Appearance control panel 13
appearances, defined 16
Apple event constants, for Appearance Manager

177
ApplyThemeBackground function 76

B

buttons, defined 26
BeginThemeDragSound function 88

C

case studies for theme-compliance 46
checklist for theme-compliance 39
client of Appearance Manager, becoming a 41
colors and patterns, making theme-compliant 43
colors and theme-compliance 30
controls, making theme-compliant 25
control user pane, making theme-compliant 50
cursors and theme-compliance 25
custom themes, creating 56

D

definition function, making theme-compliant 52
device color and depth, obtaining 45
dialog user item, making theme-compliant 48
DisposeThemeDrawingState function 78
drawing environment, saving and restoring 44
drawing tracks 55
DrawThemeButton function 94

DrawThemeChasingArrows function 96
DrawThemeEditTextFrame function 97
DrawThemeFocusRect function 98
DrawThemeFocusRegion function 99
DrawThemeGenericWell function 100
DrawThemeListBoxFrame function 100
DrawThemeMenuBackground function 145
DrawThemeMenuBarBackground function 146
DrawThemeMenuItem function 146
DrawThemeMenuSeparator function 148
DrawThemeMenuTitle function 149
DrawThemeModelessDialogFrame function 129
DrawThemePlacard function 101
DrawThemePopupArrow function 102
DrawThemePrimaryGroup function 103
DrawThemeScrollBarArrows function 104
DrawThemeScrollBarDelimiters function 130
DrawThemeSecondaryGroup function 105
DrawThemeSeparator function 106
DrawThemeStandaloneGrowBox function 131
DrawThemeStandaloneNoGrowBox function 132
DrawThemeTab function 107
DrawThemeTabPane function 109
DrawThemeTickMark function 109
DrawThemeTitleBarWidget function 133
DrawThemeTrack function 110
DrawThemeTrackTickMarks function 111
DrawThemeWindowFrame function 135
DrawThemeWindowHeader function 136
DrawThemeWindowListViewHeader function 137

E

EndThemeDragSound function 88
241
4/21/99  Apple Computer, Inc.

I N D E X
F

fonts and theme-compliance 23

G

Gestalt selector constants, for Appearance
Manager 65

gestaltAppearanceAttr constant 65
gestaltAppearanceCompatMode constant 66
gestaltAppearanceExists constant 66
gestaltAppearanceVersion constant 65
GetTheme function 70
GetThemeAccentColors function 78
GetThemeBrushAsColor function 79
GetThemeButtonBackgroundBounds function 113
GetThemeButtonContentBounds function 114
GetThemeButtonRegion function 115
GetThemeCheckBoxStyle function 116
GetThemeDrawingState function 80
GetThemeFont function 71
GetThemeMenuBackgroundRegion function 150
GetThemeMenuBarHeight function 151
GetThemeMenuItemExtra function 152
GetThemeMenuSeparatorHeight function 153
GetThemeMenuTitleExtra function 154
GetThemeScrollBarArrowStyle function 116
GetThemeScrollBarThumbStyle function 117
GetThemeScrollBarTrackRect function 118
GetThemeStandaloneGrowBoxBounds function

138
GetThemeTabRegion function 119
GetThemeTextColor function 81
GetThemeTrackBounds function 120
GetThemeTrackDragRect function 121
GetThemeTrackLiveValue function 122
GetThemeTrackThumbPositionFromOffset

function 123
GetThemeTrackThumbRgn function 124
GetThemeWindowRegion function 139
GetThemeWindowRegionHit function 140
GetThemTrackThumbPositionFromRegion

function 124

H

HitTestThemeScrollBarArrows function 125
HitTestThemeTrack function 127

I, J

IsAppearanceClient function 67
IsThemeInColor function 82
IsValidAppearanceFileType function 72
IterateThemes function 73

K, L

kAESmallSystemFontChanged constant 178
kAESystemFontChanged constant 178
kAEThemeSwitch constant 178
kAEViewsFontChanged constant 178
kAppearanceEventClass constant 178
kThemeAdornmentDefault constant 187
kThemeAdornmentDrawIndicatorOnly constant

187
kThemeAdornmentFocus constant 187
kThemeAdornmentNone constant 187
kThemeAdornmentRightToLeft constant 187
kThemeAlertWindow constant 237
kThemeAliasArrowCursor constant 195
kThemeAppearanceFileNameTag constant 191
kThemeArrow3pt constant 205
kThemeArrow5pt constant 205
kThemeArrow7pt constant 205
kThemeArrow9pt constant 205
kThemeArrowButton constant 188
kThemeArrowCursor constant 195
kThemeArrowDown constant 204
kThemeArrowLeft constant 204
kThemeArrowRight constant 204
kThemeArrowUp constant 204
kThemeBackgroundListViewWindowHeader

constant 180
kThemeBackgroundPlacard constant 180
242
4/21/99  Apple Computer, Inc.

I N D E X
kThemeBackgroundTabPane constant 180
kThemeBackgroundWindowHeader constant 180
kThemeBevelButton constant 188
kThemeBottomInsideArrowPressed constant 235
kThemeBottomOutsideArrowPressed constant

235
kThemeBottomTrackPressed constant 235
kThemeBrushActiveAreaFill constant 183
kThemeBrushAlertBackgroundActive constant

182
kThemeBrushAlertBackgroundInactive

constant 182
kThemeBrushAppleGuideCoachmark constant 183
kThemeBrushBevelActiveDark constant 186
kThemeBrushBevelActiveLight constant 186
kThemeBrushBevelInactiveDark constant 186
kThemeBrushBevelInactiveLight constant 186
kThemeBrushBlack constant 186
kThemeBrushButtonActiveDarkHighlight

constant 184
kThemeBrushButtonActiveDarkShadow constant

184
kThemeBrushButtonActiveLightHighlight

constant 184
kThemeBrushButtonActiveLightShadow

constant 184
kThemeBrushButtonFaceActive constant 184
kThemeBrushButtonFaceInactive constant 184
kThemeBrushButtonFacePressed constant 184
kThemeBrushButtonFrameActive constant 184
kThemeBrushButtonFrameInactive constant 184
kThemeBrushButtonInactiveDarkHighlight

constant 185
kThemeBrushButtonInactiveDarkShadow

constant 185
kThemeBrushButtonInactiveLightHighlight

constant 185
kThemeBrushButtonInactiveLightShadow

constant 185
kThemeBrushButtonPressedDarkHighlight

constant 185
kThemeBrushButtonPressedDarkShadow

constant 185
kThemeBrushButtonPressedLightHighlight

constant 186

kThemeBrushButtonPressedLightShadow
constant 185

kThemeBrushChasingArrows constant 182
kThemeBrushDialogBackgroundActive constant

181
kThemeBrushDialogBackgroundInactive

constant 182
kThemeBrushDocumentWindowBackground

constant 182
kThemeBrushDragHilite constant 182
kThemeBrushFinderWindowBackground constant

182
kThemeBrushFocusHighlight constant 183
kThemeBrushIconLabelBackground constant 182
kThemeBrushIconLabelBackgroundSelected

constant 183
kThemeBrushListViewBackground constant 182
kThemeBrushListViewSeparator constant 182
kThemeBrushListViewSortColumnBackground

constant 182
kThemeBrushModelessDialogBackgroundActive

constant 182
kThemeBrushModelessDialogBackgroundInacti

ve constant 182
kThemeBrushPopupArrowActive constant 183
kThemeBrushPopupArrowInactive constant 183
kThemeBrushPopupArrowPressed constant 183
kThemeBrushScrollBarDelimiterActive

constant 183
kThemeBrushScrollBarDelimiterInactive

constant 183
kThemeBrushStaticAreaFill constant 183
kThemeBrushUtilityWindowBackgroundActive

constant 182
kThemeBrushUtilityWindowBackgroundInactiv

e constant 182
kThemeBrushWhite constant 186
kThemeButtonMixed constant 189
kThemeButtonOff constant 189
kThemeButtonOn constant 189
kThemeCheckBox constant 188
kThemeCheckBoxCheckMark constant 190
kThemeCheckBoxClassicX constant 190
kThemeClosedHandCursor constant 195
243
4/21/99  Apple Computer, Inc.

I N D E X
kThemeContextualMenuArrowCursor constant
195

kThemeControlSoundsMask constant 223
kThemeCopyArrowCursor constant 195
kThemeCountingDownHandCursor constant 196
kThemeCountingUpAndDownHandCursor constant

196
kThemeCountingUpHandCursor constant 196
kThemeCrossCursor constant 195
kThemeCustomThemesFileType constant 179
kThemeDataFileType constant 179
kThemeDblClickCollapseTag constant 194
kThemeDesktopPatternNameTag constant 192
kThemeDesktopPatternTag constant 192
kThemeDesktopPictureAliasTag constant 192
kThemeDesktopPictureAlignmentTag constant

192
kThemeDesktopPictureNameTag constant 192
kThemeDialogWindow constant 237
kThemeDisclosureButton constant 188
kThemeDisclosureDown constant 189
kThemeDisclosureLeft constant 189
kThemeDisclosureRight constant 189
kThemeDocumentWindow constant 237
kThemeDragSoundDragging constant 199
kThemeDragSoundGrowUtilWindow constant 198
kThemeDragSoundGrowWindow constant 198
kThemeDragSoundMoveAlert constant 198
kThemeDragSoundMoveDialog constant 198
kThemeDragSoundMoveIcon constant 198
kThemeDragSoundMoveUtilWindow constant 198
kThemeDragSoundMoveWindow constant 197
kThemeDragSoundNone constant 197
kThemeDragSoundScrollBarArrowDecreasing

constant 198
kThemeDragSoundScrollBarArrowIncreasing

constant 198
kThemeDragSoundScrollBarGhost constant 198
kThemeDragSoundScrollBarThumb constant 198
kThemeDragSoundSliderGhost constant 198
kThemeDragSoundSliderThumb constant 198
kThemeExamplePictureIDTag constant 193
kThemeFinderSoundsMask constant 223
kThemeGrowDown constant 207
kThemeGrowLeft constant 207

kThemeGrowRight constant 207
kThemeGrowUp constant 207
kThemeHighlightColorNameTag constant 192
kThemeHighlightColorTag constant 193
kThemeIBeamCursor constant 195
kThemeIncDecButton constant 188
kThemeIndeterminateBar constant 232
kThemeLargeBevelButton constant 189
kThemeLeftInsideArrowPressed constant 233
kThemeLeftOutsideArrowPressed constant 233
kThemeLeftTrackPressed constant 234
kThemeMediumBevelButton constant 189
kThemeMenuActive constant 203
kThemeMenuBarNormal constant 201
kThemeMenuBarSelected constant 201
kThemeMenuInactive constant 203
kThemeMenuItemAtBottom constant 202
kThemeMenuItemAtTop constant 202
kThemeMenuItemHasIcon constant 202
kThemeMenuItemHierarchical constant 202
kThemeMenuItemHierBackground constant 202
kThemeMenuItemPlain constant 202
kThemeMenuItemPopUpBackground constant 202
kThemeMenuItemScrollDownArrow constant 202
kThemeMenuItemScrollUpArrow constant 202
kThemeMenuSelected constant 203
kThemeMenuSoundsMask constant 223
kThemeMenuSquareMenuBar constant 201
kThemeMenuTypeHierarchical constant 204
kThemeMenuTypeInactive constant 204
kThemeMenuTypePopUp constant 204
kThemeMenuTypePullDown constant 204
kThemeMovableAlertWindow constant 237
kThemeMovableDialogWindow constant 237
kThemeNameTag constant 191
kThemeNoSounds constant 223
kThemeOpenHandCursor constant 196
kThemePlainDialogWindow constant 237
kThemePlatinumFileType constant 179
kThemePlusCursor constant 195
kThemePointingHandCursor constant 196
kThemePopupButton constant 188
kThemePopupWindow constant 237
kThemeProgressBar constant 232
kThemePushButton constant 188
244
4/21/99  Apple Computer, Inc.

I N D E X
kThemeRadioButton constant 188
kThemeResizeLeftCursor constant 196
kThemeResizeLeftRightCursor constant 197
kThemeResizeRightCursor constant 196
kThemeRightInsideArrowPressed constant 234
kThemeRightOutsideArrowPressed constant 234
kThemeRightTrackPressed constant 234
kThemeScrollBar constant 232
kThemeScrollBarArrowsLowerRight constant

206
kThemeScrollBarArrowsSingle constant 205
kThemeScrollBarArrowStyleTag constant 193
kThemeScrollBarThumbNormal constant 206
kThemeScrollBarThumbProportional constant

206
kThemeScrollBarThumbStyleTag constant 194
kThemeShadowDialogWindow constant 237
kThemeSlider constant 232
kThemeSmallBevelButton constant 189
kThemeSmallEmphasizedSystemFont constant

200
kThemeSmallScrollBar constant 232
kThemeSmallSystemFont constant 200
kThemeSmallSystemFontTag constant 191
kThemeSmoothFontEnabledTag constant 194
kThemeSmoothFontMinSizeTag constant 194
kThemeSoundAlertClose constant 216
kThemeSoundAlertOpen constant 216
kThemeSoundBalloonClose constant 219
kThemeSoundBalloonOpen constant 219
kThemeSoundBevelEnter constant 219
kThemeSoundBevelExit constant 219
kThemeSoundBevelPress constant 219
kThemeSoundBevelRelease constant 219
kThemeSoundButtonEnter constant 216
kThemeSoundButtonExit constant 216
kThemeSoundButtonPress constant 216
kThemeSoundButtonRelease constant 216
kThemeSoundCancelButtonEnter constant 217
kThemeSoundCancelButtonExit constant 217
kThemeSoundCancelButtonPress constant 217
kThemeSoundCancelButtonRelease constant 217
kThemeSoundCheckboxEnter constant 217
kThemeSoundCheckboxExit constant 217
kThemeSoundCheckboxPress constant 217

kThemeSoundCheckboxRelease constant 218
kThemeSoundCopyDone constant 222
kThemeSoundDefaultButtonEnter constant 217
kThemeSoundDefaultButtonExit constant 217
kThemeSoundDefaultButtonPress constant 217
kThemeSoundDefaultButtonRelease constant

217
kThemeSoundDialogClose constant 216
kThemeSoundDialogOpen constant 216
kThemeSoundDisclosureEnter constant 221
kThemeSoundDisclosureExit constant 221
kThemeSoundDisclosurePress constant 221
kThemeSoundDisclosureRelease constant 221
kThemeSoundDiskEject constant 222
kThemeSoundDiskInsert constant 222
kThemeSoundDragTargetDrop constant 222
kThemeSoundDragTargetHilite constant 221
kThemeSoundDragTargetUnhilite constant 222
kThemeSoundEmptyTrash constant 222
kThemeSoundFinderDragOffIcon constant 222
kThemeSoundFinderDragOnIcon constant 222
kThemeSoundLaunchApp constant 222
kThemeSoundLittleArrowDnPress constant 220
kThemeSoundLittleArrowDnRelease constant

220
kThemeSoundLittleArrowEnter constant 220
kThemeSoundLittleArrowExit constant 220
kThemeSoundLittleArrowUpPress constant 220
kThemeSoundLittleArrowUpRelease constant

220
kThemeSoundMaskTag constant 193
kThemeSoundMenuClose constant 211
kThemeSoundMenuItemHilite constant 211
kThemeSoundMenuItemRelease constant 211
kThemeSoundMenuOpen constant 211
kThemeSoundNewItem constant 222
kThemeSoundNone constant 211
kThemeSoundPopopWindowOpen constant 216
kThemeSoundPopupEnter constant 220
kThemeSoundPopupExit constant 220
kThemeSoundPopupPress constant 220
kThemeSoundPopupRelease constant 221
kThemeSoundPopupWindowClose constant 216
kThemeSoundRadioEnter constant 218
kThemeSoundRadioExit constant 218
245
4/21/99  Apple Computer, Inc.

I N D E X
kThemeSoundRadioPress constant 218
kThemeSoundRadioRelease constant 218
kThemeSoundReceiveDrop constant 222
kThemeSoundResolveAlias constant 222
kThemeSoundScrollArrowEnter constant 218
kThemeSoundScrollArrowExit constant 218
kThemeSoundScrollArrowPress constant 218
kThemeSoundScrollArrowRelease constant 218
kThemeSoundScrollEndOfTrack constant 218
kThemeSoundScrollTrackPress constant 219
kThemeSoundSelectItem constant 222
kThemeSoundsEnabledTag constant 193
kThemeSoundSliderEndOfTrack constant 219
kThemeSoundSliderTrackPress constant 219
kThemeSoundTabEnter constant 221
kThemeSoundTabExit constant 221
kThemeSoundTabPressed constant 221
kThemeSoundTabRelease constant 221
kThemeSoundTrackNameTag constant 193
kThemeSoundUtilWinCloseEnter constant 213
kThemeSoundUtilWinCloseExit constant 213
kThemeSoundUtilWinClosePress constant 213
kThemeSoundUtilWinCloseRelease constant 213
kThemeSoundUtilWinCollapseEnter constant

214
kThemeSoundUtilWinCollapseExit constant 214
kThemeSoundUtilWinCollapsePress constant

214
kThemeSoundUtilWinCollapseRelease constant

214
kThemeSoundUtilWindowActivate constant 216
kThemeSoundUtilWindowClose constant 215
kThemeSoundUtilWindowCollapseDown constant

216
kThemeSoundUtilWindowCollapseUp constant

216
kThemeSoundUtilWindowOpen constant 215
kThemeSoundUtilWindowZoomIn constant 215
kThemeSoundUtilWindowZoomOut constant 215
kThemeSoundUtilWinDragBoundary constant 214
kThemeSoundUtilWinZoomEnter constant 214
kThemeSoundUtilWinZoomExit constant 214
kThemeSoundUtilWinZoomPress constant 213
kThemeSoundUtilWinZoomRelease constant 214
kThemeSoundWindowActivate constant 215

kThemeSoundWindowClose constant 215
kThemeSoundWindowCloseEnter constant 212
kThemeSoundWindowCloseExit constant 212
kThemeSoundWindowClosePress constant 212
kThemeSoundWindowCloseRelease constant 212
kThemeSoundWindowCollapseDown constant 215
kThemeSoundWindowCollapseEnter constant 213
kThemeSoundWindowCollapseExit constant 213
kThemeSoundWindowCollapsePress constant 212
kThemeSoundWindowCollapseRelease constant

213
kThemeSoundWindowCollapseUp constant 215
kThemeSoundWindowDragBoundary constant 213
kThemeSoundWindowOpen constant 215
kThemeSoundWindowZoomEnter constant 212
kThemeSoundWindowZoomExit constant 212
kThemeSoundWindowZoomIn constant 215
kThemeSoundWindowZoomOut constant 215
kThemeSoundWindowZoomPress constant 212
kThemeSoundWindowZoomRelease constant 212
kThemeSpinningCursor constant 196
kThemeStateActive constant 199
kThemeStateInactive constant 199
kThemeStatePressed constant 199
kThemeStatePressedDown constant 199
kThemeStatePressedUp constant 199
kThemeSystemFont constant 200
kThemeSystemFontTag constant 191
kThemeTabEast constant 224
kThemeTabFront constant 225
kThemeTabFrontInactive constant 225
kThemeTabNonFront constant 224
kThemeTabNonFrontInactive constant 224
kThemeTabNonFrontPressed constant 224
kThemeTabNorth constant 224
kThemeTabSouth constant 224
kThemeTabWest constant 224
kThemeTextColorAlertActive constant 226
kThemeTextColorAlertInactive constant 226
kThemeTextColorBevelButtonActive constant

227
kThemeTextColorBevelButtonInactive

constant 227
kThemeTextColorBevelButtonPressed constant

227
246
4/21/99  Apple Computer, Inc.

I N D E X
kThemeTextColorBevelButtonStickyActive
constant 230

kThemeTextColorBevelButtonStickyInactive
constant 230

kThemeTextColorBlack constant 230
kThemeTextColorDialogActive constant 226
kThemeTextColorDialogInactive constant 226
kThemeTextColorDocumentWindowTitleActive

constant 228
kThemeTextColorDocumentWindowTitleInactiv

e constant 228
kThemeTextColorIconLabel constant 227
kThemeTextColorIconLabelSelected constant

229
kThemeTextColorListView constant 228
kThemeTextColorMenuItemActive constant 229
kThemeTextColorMenuItemDisabled constant

229
kThemeTextColorMenuItemSelected constant

229
kThemeTextColorModelessDialogActive

constant 227
kThemeTextColorModelessDialogInactive

constant 227
kThemeTextColorMovableModalWindowTitleAct

ive constant 228
kThemeTextColorMovableModalWindowTitleIna

ctive constant 228
kThemeTextColorPlacardActive constant 227
kThemeTextColorPlacardInactive constant 227
kThemeTextColorPlacardPressed constant 227
kThemeTextColorPopupButtonActive constant

227
kThemeTextColorPopupButtonInactive

constant 227
kThemeTextColorPopupButtonPressed constant

227
kThemeTextColorPopupLabelActive constant

229
kThemeTextColorPopupLabelInactive constant

229
kThemeTextColorPopupWindowTitleActive

constant 228
kThemeTextColorPopupWindowTitleInactive

constant 228

kThemeTextColorPushButtonActive constant
227

kThemeTextColorPushButtonInactive constant
227

kThemeTextColorPushButtonPressed constant
227

kThemeTextColorRootMenuActive constant 228
kThemeTextColorRootMenuDisabled constant

228
kThemeTextColorRootMenuSelected constant

228
kThemeTextColorTabFrontActive constant 229
kThemeTextColorTabFrontInactive constant

229
kThemeTextColorTabNonFrontActive constant

229
kThemeTextColorTabNonFrontInactive

constant 229
kThemeTextColorTabNonFrontPressed constant

229
kThemeTextColorUtilityWindowTitleActive

constant 228
kThemeTextColorUtilityWindowTitleInactive

constant 228
kThemeTextColorWhite constant 230
kThemeTextColorWindowHeaderActive constant

227
kThemeTextColorWindowHeaderInactive

constant 227
kThemeThumbDownward constant 208
kThemeThumbPlain constant 207
kThemeThumbPressed constant 234
kThemeThumbUpward constant 207
kThemeTopInsideArrowPressed constant 234
kThemeTopOutsideArrowPressed constant 234
kThemeTopTrackPressed constant 235
kThemeTrackActive constant 232
kThemeTrackDisabled constant 232
kThemeTrackHorizontal constant 231
kThemeTrackNothingToScroll constant 232
kThemeTrackRightToLeft constant 231
kThemeTrackShowThumb constant 231
kThemeUserDefinedTag constant 193
kThemeUtilitySideWindow constant 237
kThemeUtilityWindow constant 237
247
4/21/99  Apple Computer, Inc.

I N D E X
kThemeVariantNameTag constant 191
kThemeViewsFont constant 200
kThemeViewsFontSizeTag constant 192
kThemeViewsFontTag constant 192
kThemeWatchCursor constant 195
kThemeWindowCloseBox constant 230
kThemeWindowCollapseBox constant 230
kThemeWindowHasCloseBox constant 236
kThemeWindowHasCollapseBox constant 236
kThemeWindowHasFullZoom constant 236
kThemeWindowHasGrow constant 236
kThemeWindowHasHorizontalZoom constant 236
kThemeWindowHasTitleText constant 236
kThemeWindowHasVerticalZoom constant 236
kThemeWindowIsCollapsed constant 236
kThemeWindowSoundsMask constant 223
kThemeWindowZoomBox constant 230

M

mapping of definition functions 32
memory usage 36
memFullErr result code 238
menus, making theme-compliant 29
MenuTitleDrawingUPP type 175, 176
MyMenuItemDrawingProc function 155
MyMenuTitleDrawingProc function 156
MyThemeButtonDrawProc function 157
MyThemeEraseProc function 159
MyThemeIteratorProc function 160
MyThemeTabTitleDrawProc function 161
MyWindowTitleDrawingProc function 163

N, O

noErr result code 238
NormalizeThemeDrawingState function 83

P

paramErr result code 238
PlayThemeSound function 89
ProgressTrackInfo type 169

Q

QuickDraw object, making theme-compliant 47

R

RegisterAppearanceClient function 68
registering your program 42

S

ScrollBarTrackInfo type 168
SetAnimatedThemeCursor function 90
SetTheme function 73
SetThemeBackground function 83
SetThemeCursor function 91
SetThemeDrawingState function 84
SetThemePen function 85
SetThemeTextColor function 86
SetThemeTextColorForWindow function 142
SetThemeWindowBackground function 143
SliderTrackInfo type 168
sounds and theme-compliance 24
systemwide appearance 32

T

ThemeArrowOrientation type 204
ThemeBackgroundKind type 179
themeBadCursorIndexErr result code 238
themeBadTextColorErr result code 238
theme brushes, using 43
248
4/21/99  Apple Computer, Inc.

I N D E X
ThemeBrush type 181
ThemeButtonAdornment type 187
ThemeButtonDrawInfo type 165
ThemeButtonDrawInfoPtr type 165
ThemeButtonDrawUPP type 173
ThemeButtonKind type 188
ThemeButtonValue type 189
ThemeCheckBoxStyle type 190
theme-compliance, defined 21
theme-compliance checklist 39
ThemeCursor type 195
ThemeDragSoundKind type 197
ThemeDrawingState type 165
ThemeDrawState type 199
ThemeEraseUPP type 172
ThemeFontID type 200
ThemeGrowDirection type 207
themeHasNoAccentsErr result code 238
themeInvalidBrushErr result code 238
ThemeIteratorUPP type 171
ThemeMenuBarState type 200
ThemeMenuItemType type 201
ThemeMenuState type 203
ThemeMenuType type 203
themeMonitorDepthNotSupportedErr result

code 238
ThemePopupArrowSize type 205
themeProcessNotRegisteredErr result code 238
themeProcessRegisteredErr result code 238
themes, creating custom 56
themes, defined 15
themeScriptFontNotFoundErr result code 238
ThemeScrollBarArrowStyle type 205
ThemeScrollBarThumbStyle type 206
ThemeSoundKind type 211
ThemeTabDirection type 224
ThemeTabStyle type 224
ThemeTabTitleDrawUPP type 172
theme text colors, using 44
ThemeTextColor type 226
ThemeThumbDirection type 207
ThemeTitleBarWidget type 230
ThemeTrackAttributes type 231
ThemeTrackDrawInfo type 166
ThemeTrackEnableState type 232

ThemeTrackKind type 232
ThemeTrackPressState type 233
ThemeWindowAttributes type 236
ThemeWindowMetrics type 169
ThemeWindowMetricsPtr type 169
ThemeWindowType type 237
tracks, defined 26

U

UnregisterAppearanceClient function 69
UseThemeFont function 74

V

versions of the Appearance Manager 34

W, X, Y, Z

windows, making theme-compliant 28
WindowTitleDrawingUPP type 174
249
4/21/99  Apple Computer, Inc.

T H E A P P L E P U B L I S H I N G S Y S T E M

4/21/99  Apple Computer, Inc.

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobe™ Illustrator and
Adobe Photoshop.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITER
Donna S. Lee

EDITOR
Laurel Rezeau

PRODUCTION EDITORS
Glen Frank and Gerri Gray

ILLUSTRATORS
Ruth Anderson, David Arrigoni, and
Karin Stroud

Acknowledgments to Guy Fullerton,
Pete Gontier, Brad Hochberg,
Eric Schlegel, Robert Ulrich, and Ed Voas.

	Programming With the Appearance Manager
	Contents
	Figures, Tables, and Listings
	Introduction
	About the Appearance Manager
	The Appearance Control Panel
	A Theme-Compliant User Interface
	Theme-Compliant Fonts
	Theme-Compliant Sounds
	Theme-Compliant Cursors
	Theme-Compliant Controls
	Theme-Compliant Windows
	Theme-Compliant Menus
	Theme-Compliant Colors and Patterns

	Definition Function Mapping and Program Registration
	Appearance Manager Versions
	Appearance Manager Memory Requirements

	Using the Appearance Manager
	A Checklist for Creating a Theme-Compliant Program
	Becoming a Client of the Appearance Manager
	Using Theme-Compliant Colors and Patterns
	Using Theme Brushes
	Using Theme Text Colors
	Saving and Restoring the Drawing Environment
	Obtaining Device Color and Depth Information

	Case Studies for Making Custom Interface Elements Theme-Compliant
	Making an Object Drawn With QuickDraw Theme-Compliant
	Making a Dialog User Item Theme-Compliant
	Making a Control User Pane Theme-Compliant
	Making a Custom Definition Function Theme-Compliant
	Drawing Tracks

	Creating Custom Themes

	Appearance Manager Reference
	Gestalt Constants
	Functions
	Registering With the Appearance Manager
	Accessing Theme Information
	Using Theme-Compliant Colors and Patterns
	Playing Theme Sounds
	Specifying Theme-Compliant Cursors
	Drawing Theme-Compliant Controls
	Drawing Theme-Compliant Windows
	Drawing Theme-Compliant Menus

	Application-Defined Functions
	Data Types
	Constants
	Appearance Manager Apple Event Constants
	Appearance Manager File Type Constants
	Theme Background Kind Constants
	Theme Brush Constants
	Theme Button Adornment Constants
	Theme Button Kind Constants
	Theme Button Value Constants
	Theme Checkbox Style Constants
	Theme Collection Tags
	Theme Cursor Constants
	Theme Drag Sound Constants
	Theme Draw State Constants
	Theme Font ID Constants
	Theme Menu Bar State Constants
	Theme Menu Item Type Constants
	Theme Menu State Constants
	Theme Menu Type Constants
	Theme Pop-Up Arrow Orientation Constants
	Theme Pop-Up Arrow Size Constants
	Theme Scroll Bar Arrow Style Constants
	Theme Scroll Box Style Constants
	Theme Size Box Direction Constants
	Theme Slider Indicator Direction Constants
	Theme Sound Constants
	Theme Sound Mask Constants
	Theme Tab Direction Constants
	Theme Tab Style Constants
	Theme Text Color Constants
	Theme Title Bar Item Constants
	Theme Track Attributes Constants
	Theme Track Enable State Constants
	Theme Track Kind Constants
	Theme Track Press State Constants
	Theme Window Attribute Constants
	Theme Window Type Constants

	Result Codes

	Document Version History
	Index

