



November 20, 1998

Technical Publications
© Apple Computer, Inc. 1998



Programming With
Navigation Services 1.1



Apple Computer, Inc.
© 1997, 1998Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe is a trademark of Adobe
Systems Incorporated or its
subsidiaries and may be registered in
certain jurisdictions.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures, Tables, and Listings 5

About Navigation Services 6

Introduction 6
Requirements 7
User Interface 8

Browser List 10
Navigation Options 11
Keyboard Equivalents 16
Persistence 17

Using Navigation Services 18

Basic Tasks 18
Opening Files 18
Choosing File Objects 26
Saving Files 31
Saving Changes 37

Advanced Tasks 39
Setting Custom Features 39
Setting the Default Location 40
Obtaining Object Descriptions 41
Filtering File Objects 41
Providing Document Previews 45
Customizing Type Pop-up Menus 45
Adding Custom Controls 46

Creating Application-Defined Functions 48
Handling Events 49
Filtering File Objects 50
Drawing Custom Previews 52
3
 Apple Computer, Inc. 11/20/98

Reference for Navigation Services 53

Functions for Navigation Services 53
Identifying Navigation Services Availability 53
Setting up Navigation Services 55
Choosing Files, Folders and Volumes 57
Saving Files 70
Handling Events and Customizing Dialog Boxes 77

Data Types for Navigation Services 83
Constants for Navigation Services 93

Configuration Option Constants 93
Custom Control Setting Constants 96
Discard Changes Action Constants 102
Event Message Constants 103
File Sorting Constants 106
Menu Item Selection Constants 106
Object Filtering Constants 107
Save Changes Action Constants 108
Save Changes Request Constants 109
Sort Order Constants 109
Translation Option Constants 110

Result Codes for Navigation Services 110

Glossary 112

Index 116
4
Draft. Confidential.  Apple Computer, Inc. 11/20/98

5

Draft. Confidential.



 Apple Computer, Inc. 11/20/98

Figures, Tables, and Listings

Figure 1

Standard dialog box elements 9

Figure 2

Browser list 10

Figure 3

Navigation options 11

Figure 4

Location pop-up menu in closed and open states 12

Figure 5

Shortcuts pop-up menu 13

Figure 6

Favorites pop-up menu 14

Figure 7

Recent pop-up menu 15

Figure 8

Open dialog box 19

Figure 9

A Show pop-up menu with file translation options 20

Listing 1

A sample file-opening function 22

Listing 2

A sample file-opening function using Apple events 24

Figure 10

Choose a File dialog box 27

Figure 11

Choose a Folder dialog box 28

Figure 12

Choose a Volume dialog box 29

Figure 13

Choose Object dialog box 30

Figure 14

New Folder dialog box 31

Figure 15

Save dialog box 32

Figure 16

Format pop-up menu 33

Figure 17

Stationery Option dialog box 34

Listing 3

A sample file-saving function 36

Figure 18

Standard Save Changes alert box 38

Figure 19

Custom Save Changes alert box 38

Figure 20

Discard Changes alert box 39

Figure 21

A Show pop-up menu without a translatable file section 43

Figure 22

A Show pop-up menu with a translatable files section 44

Listing 4

Adding a custom 'DITL' resource 47

Listing 5

Adding a single custom control 48

Listing 6

A sample event-handling function 49

Listing 7

A sample filter function 51

About Navigation Services 0

Introduction 0

This chapter provides an overview of Navigation Services, a new suite of file
browsing services for the Mac OS. You should read this chapter if you develop
Mac OS applications which open or save files. You will find that Navigation
Services is useful in new applications and updates of existing applications.

Navigation Services is an application programming interface that allows your
application to provide a user interface for navigating, opening, and saving Mac
OS file objects. Navigation Services is provided as a Carbon-compliant
replacement for and enhancement to the Standard File Package, which was
introduced with the original Macintosh System. Prior to Navigation Services,
file browsing in the Mac OS was often confusing to users in light of the
differences between Standard File Package dialog boxes and the Finder’s file
interface. Also, users must navigate much larger volumes than those which
existed when the Standard File Package was developed. These large data spaces
require extended functionality.

Navigation Services provides tools for you to implement a greatly enhanced
user experience in the area of document management. One enhancement is the
ability for users to select and open multiple files simultaneously. There are
buttons that let users easily select mounted storage volumes, choose recently
opened files and folders, or build their own list of favorite items. You can take
advantage of translation services offered by the Translation Manager or opt for
deferred translation, which gives your application the ability to save interim
changes in a file’s native format and avoid the time-consuming task of
translation until the user closes the document.

The enhanced functionality of Navigation Services is easy to adopt. Functions
are simple and flexible; they are designed to help you avoid writing custom
code. Navigation Services also provides automatic support for the Appearance
Manager’s extended suite of dialog boxes and user controls to ensure a more
consistent and comprehensible user interface across applications.
Introduction 6
  Apple Computer, Inc. 11/20/98

About Navigation Services

Requirements 0

Navigation Services 1.1 is built into Mac OS 8.5. Navigation Services 1.0
requires the Navigation shared library, Appearance Manager 1.0.1 or later, and
Mac OS 7.5.5, 7.6.1, or 8.1.

IMPORTANT

The Navigation shared library is instantiated on a
per-context basis. Fragments with global shared-data
sections should never import from per-context code
fragments. For more information about code fragments, see
Inside Macintosh: Mac OS Runtime Architectures. ▲

Some extended features of Navigation Services require other components, as
follows:

■ QuickTime for viewing and creating previews of graphic documents. If
QuickTime is not installed, the preview option is disabled unless you
provide your own preview function.

■ Systems prior to Mac OS 8.5 require Macintosh Easy Open for document
translation. (Mac OS 8.5 has translation services built-in.)

■ AppleGuide or Apple Help for online help.

On 680x0 systems, Navigation Services 1.0 requires the CFM-68K Runtime
Enabler. However, Navigation Services functions are available to both classic
68K and CFM-68K applications.

The Standard File Package is supported in Mac OS 8.X. You will obtain greater
functionality and compatibility, however, by taking advantage of Navigation
Services in lieu of the Standard File Package. Using Navigation Services is
required for you to make your applications compatible with Mac OS X, which
will not support the Standard File Package.
Requirements 7
  Apple Computer, Inc. 11/20/98

About Navigation Services

User Interface 0

Navigation Services provides an improved user interface for opening and
saving documents. This user interface includes a host of easy-to-use features for
browsing and managing the file system. Navigation Services dialog boxes
include

■ Open

■ Save

■ Choose a File

■ Choose a Folder

■ Choose a Volume

■ Choose a File Object

■ Create New Folder

Navigation Services provides two types of alert boxes:

■ Save Change

■ Discard Changes

All Open, Save, and Choose dialog boxes share some basic user interface
elements. These include:

■ a browser list

■ a Location pop-up menu button

■ Shortcuts, Favorites, and Recent bevel buttons

■ a default (“action”) button

■ a Cancel button

■ a sort order button

■ an optional size box

Figure 1 shows these elements used in an Open dialog box.
8 User Interface

  Apple Computer, Inc. 11/20/98

About Navigation Services

Figure 1 Standard dialog box elements

Note
Minor changes were made in the user interface elements of
Navigation Services dialog boxes between version 1.0 and
version 1.1. Figures in this document have been updated
for Navigation Services version 1.1 if appropriate. ◆

Location pop-up menu Shortcuts button

Favorites button

Recent button

Browser
list

Cancel button

Default button

Size boxShow pop-up menu
(open dialog box only)

Show Preview button
(open dialog box only)

Sort
order
button
User Interface 9
  Apple Computer, Inc. 11/20/98

About Navigation Services

Browser List 0

Navigation Services provides the browser list as the primary user access to the
file system. The browser list contains a list box, sort buttons, and a scrolling list
of files and folders in the directory currently being displayed (the current
location). The browser list is similar to the Finder’s list view in Mac OS 8, as
shown in Figure 2.

Figure 2 Browser list

When your application first displays a Navigation Services dialog box, the
browser list shows the Desktop location unless you provide a default location.
Each type that dialog box is opened afterwards, the browser list defaults (or
rebounds) to the directory location in use when that particular dialog box was
last closed. If a file or folder was selected when the dialog box was last closed,
the selection is shown, if possible. If multiple files were selected when an Open
dialog box was last closed, the first file in the selection becomes the default
selection when the dialog box is next opened.

In the browser list, either the Name or Date field can be used as sort keys; the
user chooses the sort key by clicking the appropriate bevel button in the list
header. The sort order (either ascending or descending) can be toggled by
clicking the arrow button at the far right of the header. Navigation Services
remembers the sort key and sort ordering for each type of dialog box used by
each application.

Sort key buttonsCurrently selected item

Disclosure triangles

Sort order
button
10 User Interface

  Apple Computer, Inc. 11/20/98

About Navigation Services

When the user expands the dialog box by using the size box, the browser list
expands proportionally. The dates displayed in the browser list provide more
information as the browser list expands:

■ The smallest size uses the format <MM/DD/YY> (for US systems); for
example, 7/16/97.

■ If more space is available, the format expands to <DayOfWeek, MMM DD,
YY, Time>; for example, Wed, Jul 16, 1997, 9:05 AM.

■ The widest format features fully spelled-out names; for example, Wednesday,
July 16, 1997, 9:05 AM.

Navigation Services can open multiple files from within the Open dialog box.
Users can select multiple files by Shift-clicking within the browser list or using
the Select All command. Navigation Services allows multiple selections of files
only; folders or volumes are not eligible. If the user tries to extend a selection to
include anything but files, Navigation Services treats the attempt as a simple
selection; that is, the new object is selected and all previous selections are
deselected.

Navigation Options 0

The Location pop-up menu button and the Shortcut, Favorites, and Recent
bevel buttons, shown in Figure 3, provide quick navigation tools.

Figure 3 Navigation options

Location pop-up menu Shortcuts button

Favorites button

Recent button
User Interface 11
  Apple Computer, Inc. 11/20/98

About Navigation Services

Location Button 0

The Location pop-up menu displays the current location and provides a
familiar way to navigate the file system hierarchy. Figure 4 shows the pop-up
menu in its open and closed states.

Figure 4 Location pop-up menu in closed and open states

Shortcuts Button 0

The Shortcuts bevel button activates a pop-up menu that allows quick
navigation to any mounted volume or directly to the desktop. If ejectable
volumes are mounted, an Eject command (one for each volume) appears at the
bottom of the menu, as shown in Figure 5.

Closed

Open
12 User Interface

  Apple Computer, Inc. 11/20/98

About Navigation Services
Figure 5 Shortcuts pop-up menu

Navigation Services 1.1 adds two network connection options to the Shortcuts
menu. The Network command displays all available AppleTalk zones in the
browser list. The Connect to Server command displays a dialog box that
prompts the user to enter a network address for an AppleShare server. The
address can be entered as an IP address (“XXX.XXX.XXX.XXX”) or as a domain
name (“sample.apple.com”).

Note
Navigation Services 1.1 supports directly opening a new
connection to an AppleShare IP server through the Connect
to Server command, but does not support direct
connections to AppleTalk servers. Your application should
not make any assumptions about what type of connections
are available, however, since this may change in future
versions of Navigation Services. ◆

Favorites Button 0

The Favorites bevel button activates a pop-up menu of the user’s favorite
documents, folders, and volumes, as shown in Figure 6.
User Interface 13
  Apple Computer, Inc. 11/20/98

About Navigation Services
Figure 6 Favorites pop-up menu

The Favorites pop-up menu is divided into three sections. The top section
contains two commands:

■ Add to Favorites allows the user to add the item or items currently selected
in the browser list to the Favorites menu. Items may be files, folders,
volumes, servers or AppleTalk zones.

■ Remove From Favorites opens a dialog box which allows the user to remove
an item from the Favorites menu.

The second section contains a list of favorite documents set by the user. The
third section contains a list of user-set favorite folders, volumes, and AppleTalk
zones. These lists are available to all applications that use Navigation Services.

In an Open dialog box, Navigation Services displays favorite files and folders,
but in a Save dialog box, only folders are displayed.

In an Open dialog box, the user can add an item to the Favorites menu by using
the Add to Favorites command or by dragging the file or folder from the
browser list or desktop to the Favorites bevel button. Users can remove items
from the list with the Remove From Favorites command.

Recent Button 0

The Recent bevel button activates a pop-up menu of recently accessed
documents, folders, and volumes, as shown in Figure 7.

Commands

Folders and
Volumes

Documents
14 User Interface

  Apple Computer, Inc. 11/20/98

About Navigation Services
Figure 7 Recent pop-up menu

The Recent menu is divided into two sections; the first displays documents and
the second displays folders and volumes. In an Open dialog box, Navigation
Services displays favorite files and folders, but in a Save dialog box, only
folders are displayed. The number of items in each section of the Recent menu
will not exceed the number set in the Remember Recently Used Items section of
the Apple Menu Options dialog box.

Files

Folders and
volumes
User Interface 15
  Apple Computer, Inc. 11/20/98

About Navigation Services
Keyboard Equivalents 0

Navigation Services supports Standard File Package keyboard equivalents, as
well as some new ones. Navigation Services keyboard equivalents and the
actions they perform are listed below.

■ Command-A: Select all (if Edit menu is enabled).

■ Command-D or Shift–Command–Up Arrow: Changes current location to
desktop.

■ Command-N: Creates a new folder.

■ Command-O: Opens the selected item.

■ Option-Command-O (or press Option while clicking the Open button):
Selects the referenced original of an alias item.

■ Command-S: Activates Save button if present.

■ Up Arrow, Down Arrow: Moves selection up or down in the currently
selected scrolling list.

■ Shift–Up Arrow and Shift–Down Arrow: Extends the current selection when
multiple selection is enabled.

■ Command–Up Arrow: Moves to the parent directory of the current location.

■ Command–Down Arrow: Opens selected folder or volume.

■ Command–Right Arrow: Opens disclosure triangle of selected folder or
volume.

■ Command–Left Arrow: Closes disclosure triangle of selected folder or
volume.

■ Option–Left Arrow: Displays previous location in historical sequence; similar
to a Web browser’s “Back” command.

■ Option–Right Arrow: Displays next location in historical sequence; similar to
a Web browser’s “Forward” command.

■ Return key, Enter key: Activates the default button (usually Save or Open).

■ Tab: Moves to the next keyboard focus item.

■ Escape or Command-period: Cancels and closes the dialog box.

■ Home: Moves to the top of the scrolling list.

■ End: Moves to the bottom of the scrolling list.
16 User Interface

  Apple Computer, Inc. 11/20/98

About Navigation Services
■ Page-Up: Scrolls the browser list up one screen.

■ Page-Down: Scrolls the browser list down one screen.

Persistence 0

Persistence is the ability of Navigation Services to store information, such as the
last directory location visited and the size and position of dialog boxes. This
information is maintained on a per-application basis. For example, this allows
the user to set an Open dialog box’s position and size differently for a
word-processing application than for a spreadsheet, for example.

Navigation Services separates preferences for Open and Save dialog boxes so
that each dialog box’s preferences are unique for each application. This allows a
user to open documents from one folder and save new documents in another
folder without any added navigation. Dialog boxes also remember the last
document opened and makes this the default selection the next time the dialog
box is used.

Note
If no location has been stored for a dialog box or if the
directory itself is not available (its volume is unmounted,
for example), the desktop becomes the default location. ◆

If the user navigates to the parent directory of the default location through the
browser list or by using the location pop-up menu, the default location becomes
the current selection.

Note
If the user navigates to the parent directory of the current
location by using shortcuts and takes an indirect route to
the parent directory, the browser list may display a
different default selection. ◆

The size, position, sort key, and sort order of dialog boxes are stored for each
application. If a dialog box’s position has not been previously set or can’t be
shown, the dialog box is displayed in the center of the main screen — that is,
the one with the menu bar. Alert boxes do not store default locations or alert
box size information.
User Interface 17
  Apple Computer, Inc. 11/20/98

Using Navigation Services
Using Navigation Services 0

This chapter describes how you can use Navigation Services for tasks like
opening and saving files and choosing file objects, and how you can implement
custom features in Navigation Services dialog boxes. You should read this
chapter to learn how to incorporate Navigation Services into your application.

Basic Tasks 0

Navigation Services is designed to provide a simple, flexible way for
applications to open and save files. The primary way to open files is to call the
NavGetFile function. The primary way to save files is to call the NavPutFile
function.

Opening Files 0

The function NavGetFile (page 58) displays an Open dialog box that prompts
the user to select one or more files to open, as shown in Figure 8.
18 Basic Tasks

  Apple Computer, Inc. 11/20/98

Using Navigation Services
Figure 8 Open dialog box

For a description of the elements of an Open dialog box, see “User Interface”
(page 8).

Note
You are strongly encouraged to make all Navigation
Services dialog boxes movable by providing an
event-handling function. For more information, see
“Handling Events” (page 49). ◆

Providing File Opening Options 0

The Open dialog box’s Show pop-up menu allows the user to choose the file
types displayed by the browser list. The list of available file types is built from
information provided by your application when it calls the NavGetFile function
and by the Translation Manager. If you don’t want the Show pop-up menu
button to be displayed, specify the kNavNoTypePopup constant in the
dialogOptionFlags field of a structure of type NavDialogOptions (page 85) when
you pass this structure in the dialogOptions parameter of a file-opening
function such as NavGetFile (page 58).

Navigation Services uses the Translation Manager to produce a list of file types
that your application is capable of translating and displays the list to the user
Basic Tasks 19
  Apple Computer, Inc. 11/20/98

Using Navigation Services
through an expanded Show pop-up menu. Figure 9 shows an example of a
Show pop-up menu with file translation options.

Figure 9 A Show pop-up menu with file translation options

The first section of the Show menu contains an item called “All Readable
Documents.” If the user selects this item, the browser list displays all files of the
types shown in the second and third sections of the menu.

The second section of the Show menu contains an item called “All <app name>
Documents” followed by your application’s “native” file types. Native file
types are those types you provide in the typeList parameter of the file-opening
function. This parameter has the same format as an 'open' resource and may be
loaded from a resource or passed in as a structure created on the fly.

Note
Navigation Services will not automatically load an 'open'
resource. Your application must pass a pointer to it in the
typeList parameter of the file-opening function. ◆

Your application must also contain a 'kind' resource with entries for each type
of file that you want to include in the typeList parameter. If you don’t provide
an entry for a file type, Navigation Services returns a result of
kNavMissingKindStringErr (-5699). For more information on 'kind' resources,
see Inside Macintosh: More Macintosh Toolbox.

Listing a file type in the typeList parameter generally limits you to displaying
only those files created by your application. If you specify the
20 Basic Tasks

  Apple Computer, Inc. 11/20/98

Using Navigation Services
kNavSelectAllReadableItem constant in the dialogOptionFlags field of the
NavDialogOptions structure you pass in the dialogOptions parameter, or if the
user selects All Readable Items from the Show menu, Navigation Services will
ignore the application signature specified in the typeList parameter and display
all documents of the specified types. If you choose not to specify file types in
the typeList parameter, you can show all files of a particular type in the
browser list by using an application-defined filter function. Using a filter
function would, for example, allow you to show all text files, regardless of
which application created them. For more information on filter functions, see
“Filtering File Objects” (page 50).

The third section of the expanded Show pop-up menu contains a list of
translatable file types provided by the Translation Manager. Typical names for
these entries describe an application document type, such as “MoviePlayer
document” in Figure 9. Navigation Services automatically opens and translates
file types recognized by the Translation Manager unless you supply the
kNavDontAutoTranslate constant in the dialogOptionFlags field of the
NavDialogOptions structure you pass in the dialogOptions parameter.

Note
The translatable files section does not appear if you supply
the kNavDontAddTranslateItems constant in the
dialogOptionFlags field of the NavDialogOptions structure
you pass in the dialogOptions parameter. ◆

The last section of the pop-up menu is reserved for the “All Documents” menu
item. This item appears if your application supplies the kNavAllFilesInPopup
constant in the dialogOptionFlags field of the NavDialogOptions structure you
pass in the dialogOptions parameter. This option allows the display of all files,
regardless of your application’s ability to translate or open them directly. A
resource editing application, for example, might take advantage of this option.

Translating Files on Open 0

If the user selects a file type that is not passed in the typeList parameter, the
chosen file must be translated. If the user opens a file called “Doc1” that
requires translation, Navigation Services creates a new file called “Doc1
(converted)” with the appropriate file type, in the same directory as the original
file. The NavGetFile function automatically performs the translation before
returning. However, you can disable this feature by supplying the
kNavDontAutoTranslate constant in the dialogOptionFlags field of the structure
of type NavDialogOptions (page 85) you pass in the dialogOptions parameter of
Basic Tasks 21
  Apple Computer, Inc. 11/20/98

Using Navigation Services
the file-opening function. If you disable automatic translation, it is left to your
application to call the function NavTranslateFile (page 62) as needed.

You can obtain translation information from the structure of type
NavReplyRecord (page 83) that you passed in the reply parameter of the
file-opening function. When the file-opening function returns, the
fileTranslation field of the NavReplyRecord structure points to an array of
translation records. This array contains one translation record for each file
selection identified in the selection field of the NavReplyRecord structure. If you
disable automatic translation, you can use the translation records to provide
your own translation.

Note
If a file described in the selection field of the
NavReplyRecord structure does not require translation, its
corresponding translation record will be empty. ◆

A Sample File-Opening Function 0

Listing 1 shows a sample function illustrating one way to call the function
NavGetFile (page 58). This listing shows how to get default options, modify the
options, use an 'open' resource, and open multiple files.

Note
This listing and other code samples in this document show
how to handle an Apple event descriptor of type 'typeFSS'.
Your application should not assume that Navigation
Services returns descriptors of any particular type. ◆

Listing 1 A sample file-opening function

OSErr MyOpenDocument(const FSSpecPtr defaultLocationfssPtr)
{

NavDialogOptions dialogOptions;
AEDesc defaultLocation;
NavEventUPP eventProc = NewNavEventProc(myEventProc);
NavObjectFilterUPP filterProc =

NewNavObjectFilterProc(myFilterProc);
OSErr anErr = noErr;
22 Basic Tasks

  Apple Computer, Inc. 11/20/98

Using Navigation Services
// Specify default options for dialog box
anErr = NavGetDefaultDialogOptions(&dialogOptions);
if (anErr == noErr)
{

// Adjust the options to fit our needs
// Set this option
dialogOptions.dialogOptionFlags |= kNavSelectDefaultLocation;
// Clear this one
dialogOptions.dialogOptionFlags ^= kNavAllowPreviews;

anErr = AECreateDesc(typeFSS, defaultLocationfssPtr,
 sizeof(*defaultLocationfssPtr),
 &defaultLocation);

if (anErr == noErr)
{

// Get 'open' resource. A nil handle being returned is OK,
// this simply means no automatic file filtering.
NavTypeListHandle typeList = (NavTypeListHandle)GetResource(

'open', 128);
NavReplyRecord reply;

anErr = NavGetFile (&defaultLocation, &reply, &dialogOptions,
eventProc, nil, filterProc,
typeList, nil);

if (anErr == noErr && reply.validRecord)
{

// Deal with multiple file selection
long count;

anErr = AECountItems(&(reply.selection), &count);
if (anErr == noErr)
{

longindex;

for (index = 1; index <= count; index++)
{

AEKeyword theKeyword;
DescType actualType;
Size actualSize;
FSSpec documentFSSpec;
Basic Tasks 23
  Apple Computer, Inc. 11/20/98

Using Navigation Services
anErr = AEGetNthPtr(&(reply.selection), index,
typeFSS, &theKeyword,
&actualType,&documentFSSpec,
sizeof(documentFSSpec),
&actualSize);

if (anErr == noErr)
{

anErr = DoOpenFile(&documentFSSpec);
}

}
}
// Dispose of NavReplyRecord, resources, descriptors
anErr = NavDisposeReply(&reply);

}
if (typeList != NULL)
{

ReleaseResource((Handle)typeList);
}
(void) AEDisposeDesc(&defaultLocation);

}
}
DisposeRoutineDescriptor(eventProc);
DisposeRoutineDescriptor(filterProc);
return anErr;

}

Listing 2 illustrates how your application can open a list of documents by
sending itself Apple events.

Listing 2 A sample file-opening function using Apple events

static void MyOpenWithEvent(FSSpecPtr defaultLocationfssPtr)
{

AEDesc defaultLocation;
NavReplyRecord navReply;
NavDialogOptions dialogOptions;
NavTypeListHandle typeList;
NavEventUPP eventProc = NewNavEventProc(myEventProc);
NavObjectFilterUPP filterProc =
24 Basic Tasks

  Apple Computer, Inc. 11/20/98

Using Navigation Services
NewNavObjectFilterProc(myFilterProc);
OSErr anErr = noErr;

// Specify default options for dialog box
anErr = NavGetDefaultDialogOptions(&dialogOptions);
if (anErr == noErr)
{

// Adjust options to fit our needs
// Set this option
dialogOptions.dialogOptionFlags |= kNavSelectDefaultLocation;
// Clear this option
dialogOptions.dialogOptionFlags ^= kNavAllowPreviews;

anErr = AECreateDesc(typeFSS, defaultLocationfssPtr,
 sizeof(*defaultLocationfssPtr),
 &defaultLocation);

if (anErr == noErr)
{

// Get 'open' resource. A nil handle being returned is OK,
// this simply means no automatic file filtering.
typeList = (NavTypeListHandle) GetResource('open', 128);

anErr = NavGetFile(&defaultLocation, &navReply,
&dialogOptions, eventProc,
nil, filterProc, typeList, nil);

if (anErr == noErr && navReply.validRecord)
{

ProcessSerialNumber processSN = {0, kCurrentProcess};
AEAddressDesc targetAddress = {typeNull, nil};
AppleEvent theEvent = {typeNull, nil};
AppleEvent theReply = {typeNull, nil}
// This is an event targeted at the current application
anErr = AECreateDesc(typeProcessSerialNumber, &processSN,

 sizeof(ProcessSerialNumber),
 &targetAddress);

if (anErr == noErr)
{

// Create an open documents Apple event
anErr = AECreateAppleEvent(kCoreEventClass, kAEOpenDocuments,

&targetAddress,
Basic Tasks 25
  Apple Computer, Inc. 11/20/98

Using Navigation Services
kAutoGenerateReturnID,
kAnyTransactionID, &theEvent);

(void) AEDisposeDesc(&targetAddress);
}
if (anErr == noErr)
{

// Put file list into open document Apple event
anErr = AEPutParamDesc(&theEvent, keyDirectObject,

&(navReply.selection));
}
if (anErr == noErr)
{

// Send open doc event to our app and dispose of descriptors
anErr = AESend(&theEvent, &theReply, kAENoReply,

kAENormalPriority,
kAEDefaultTimeout, nil, nil);

(void) AEDisposeDesc(&theEvent);
(void) AEDisposeDesc(&theReply);

}
(void) NavDisposeReply(&navReply);

}
return;

}

Choosing File Objects 0

Navigation Services provides functions that prompt the user to select file
objects (files, folders, or volumes) or create a new folder.

Choosing a File 0

The function NavChooseFile (page 60) displays a dialog box that prompts the
user to choose a file for some action other than opening. The file could be a
preference file, dictionary, or other specialized file. Figure 10 shows an example
of this dialog box.
26 Basic Tasks

  Apple Computer, Inc. 11/20/98

Using Navigation Services
Figure 10 Choose a File dialog box

Since this is a simplified function, no built-in translation is available and no
Show menu is available. By default, Navigation Services performs no filtering
on the files it displays in the browser list. You need to provide file types in the
typeList parameter or implement an application-defined filter function if you
want to affect the file types displayed in the browser list. The NavChooseFile
function ignores the signature field of the NavTypeList structure, so all files of
the types specified in the typeList parameter will be shown, regardless of their
application signature. For more information on filtering options, see “Filtering
File Objects” (page 41).

You can provide a message or “banner” in the Choose File dialog box by
supplying a string in the message field of the structure of type NavDialogOptions
(page 85) that you pass in the dialogOptions parameter of the NavChooseFile
function. This string is displayed below the browser list. If you do not supply a
string, no message is displayed.

Choosing a Folder 0

The function NavChooseFolder (page 65) displays a dialog box that prompts the
user to choose a folder, as shown in Figure 11. This could be useful when
performing installations, for example.
Basic Tasks 27
  Apple Computer, Inc. 11/20/98

Using Navigation Services
Figure 11 Choose a Folder dialog box

The browser list in a Choose a Folder dialog box displays folders and volumes
only.

One possible source of confusion to users who wish to use keyboard
equivalents in a list-based file system browser is the purpose of the Enter or
Return keys: do they select a folder or do they open it? Navigation Services
resolves this issue by mapping the Return and Enter keys to the Open button,
which is used to navigate into folders. After navigating to the desired location,
the user clicks the Choose button to select the folder.

Note
If the user navigates to the desktop, deselects the current
selection by shift-clicking and presses the Choose button,
NavChooseFolder identifies the desktop as the folder
chosen. ◆

You can provide a message or “banner” in the Choose a Folder dialog box by
supplying a string in the message field of the structure of type NavDialogOptions
(page 85) that you pass in the dialogOptions parameter of the NavChooseFolder
function. This string is displayed below the browser list. In Figure 11, for
example, the application supplies the string, “Please select a folder.” If you do
not supply a string, no message is displayed.
28 Basic Tasks

  Apple Computer, Inc. 11/20/98

Using Navigation Services
Choosing a Volume 0

The function NavChooseVolume (page 64) displays a dialog box that prompts the
user to choose a volume, as shown in Figure 12.

Figure 12 Choose a Volume dialog box

This function is useful when you want the user to select a volume or storage
device.

You can provide a message or “banner” in the Choose a Volume dialog box by
supplying a string in the message field of the structure of type NavDialogOptions
(page 85) that you pass in the dialogOptions parameter of the NavChooseVolume
function. This string is displayed below the browser list. For example, a disk
repair utility might supply a message like “Please choose a volume to repair.” If
you do not supply a string, no message is displayed.

Choosing a File Object 0

The function NavChooseObject (page 67) displays a dialog box that prompts the
user to select a file object, as shown in Figure 13.
Basic Tasks 29
  Apple Computer, Inc. 11/20/98

Using Navigation Services
Figure 13 Choose Object dialog box

This function is useful when you need the user to select an object that might be
one of several different types. If you need to have the user select an object of a
specific type, you should use the function appropriate to that type. For example,
if you know the object is a file, use the function NavChooseFile (page 60).

Note
The NavChooseObject function does not allow the user to
choose zones or servers. ◆

You can provide a message or “banner” in the Choose Object dialog box by
supplying a string in the message field of the structure of type NavDialogOptions
(page 85) that you pass in the dialogOptions parameter of the NavChooseObject
function. This string is displayed below the browser list. In Figure 13, for
example, the application supplies the string, “Please choose a file object.” If you
do not supply a string, no message is displayed.

Creating a New Folder 0

The function NavNewFolder (page 68) displays a dialog box that prompts the
user to create a new folder, as shown in Figure 14.
30 Basic Tasks

  Apple Computer, Inc. 11/20/98

Using Navigation Services
Figure 14 New Folder dialog box

You can provide a message or “banner” in the New Folder dialog box by
supplying a string in the message field of the structure of type NavDialogOptions
(page 85) that you pass in the dialogOptions parameter of the NavNewFolder
function. This string is displayed below the browser list. For example, the
Sampler installer might provide a message like “Create a folder to install
Sampler.” If you do not supply a string, no message is displayed.

Saving Files 0

The function NavPutFile (page 70) displays a Save dialog box, as shown in
Figure 15.
Basic Tasks 31
  Apple Computer, Inc. 11/20/98

Using Navigation Services
Figure 15 Save dialog box

Note
You are strongly encouraged to make all Navigation
Services dialog boxes movable by providing updates via an
event-handling function. For more information, see
“Handling Events” (page 49). ◆

Users can create a new folder for saving a document by using the New Folder
button.

When the user selects a folder, the default button title toggles from Save to
Open. When the user selects the editable text field (by clicking or keyboard
selection), the default button title reverts to Save.

Save dialog boxes display a focus ring to indicate whether the browser list or
the editable text field has keyboard focus (that is, the area that receives all

Location
pop-up menu Shortcuts button

Favorites button

Recent button

Browser
list

New Folder
button

Sort order
button

Cancel
button

Default button

Size boxFormat
pop-up
menu

Filename
edit field
32 Basic Tasks

  Apple Computer, Inc. 11/20/98

Using Navigation Services
keystrokes.) When no filename is displayed in the editable text field, the Save
button is disabled.

IMPORTANT

Always call the function NavCompleteSave (page 76) after
calling the NavPutFile function, even if your application
doesn’t need automatic translations. Future versions of
Navigation Services may provide additional features to
your application when it calls the NavCompleteSave
function. ▲

Providing File Format Options 0

The function NavPutFile (page 70) provides the Format pop-up menu button to
allow users to choose how a new document or a copy of a document is to be
saved. Figure 16 shows an example of this menu.

Figure 16 Format pop-up menu

Note
If you specify the kNavNoTypePopup constant in the
dialogOptionFlags field of the structure NavDialogOptions
(page 85) that you pass in the dialogOptions field of the
NavPutFile function, the Format button does not appear in
the Save dialog box. ◆

The first item in the Format pop-up menu is defined by the document type
specified by your application in the fileType and fileCreator parameters of the
NavPutFile function. The name of the menu item is obtained from the
Translation Manager. After setting this item, Navigation Services calls the
Translation Manager to determine whether to display subsequent menu items
Basic Tasks 33
  Apple Computer, Inc. 11/20/98

Using Navigation Services
describing alternative file types. For more information, see “Translating Files on
Save” (page 34).

The last item in the menu is the Stationery Option command. This displays the
Stationery Option dialog box, shown in Figure 17, which lets the user specify
whether a new document or a copy of a document should be saved as a
document or as stationery.

Figure 17 Stationery Option dialog box

Note
If you clear the kNavAllowStationery constant in the
dialogOptionFlags field of the structure NavDialogOptions
(page 85) that you pass in the dialogOptions field of the
NavPutFile function, the Stationery Option menu item does
not appear. ◆

Translating Files on Save 0

Your application supplies its default file type and creator for saved files to the
function NavPutFile (page 70). Navigation Services uses this information to
build a pop-up menu of available translation choices obtained from the
Translation Manager. If the user selects an output file type that is different from
the native type, Navigation Services prepares a translation specification and
supplies a handle to it in the fileTranslation field of a structure of type
NavReplyRecord (page 83). If you choose to provide your own translation,
Navigation Services informs you that translation is required by setting the
translationNeeded field of the NavReplyRecord structure to true.
34 Basic Tasks

  Apple Computer, Inc. 11/20/98

Using Navigation Services
IMPORTANT

The function NavTranslateFile (page 62) is intended to be
used only while opening files. Always call the function
NavCompleteSave (page 76) to provide automatic translation
and complete a save operation. ▲

When saving a document for the first time, your application should wait until
the user closes the document before calling the NavCompleteSave function. This
allows your application to save the file in a native format as the user works
with the file. When saving a copy of a document, your application should call
the NavCompleteSave function immediately after returning from the NavPutFile
function.

The NavCompleteSave function provides any necessary translation. If you wish to
turn off automatic translation during a save operation, set the value of the
translationNeeded field of the NavReplyRecord structure to false before you
call the NavCompleteSave function.

Note
You do not need to set the value of the translationNeeded
field of the NavReplyRecord structure to false if the user
creates a new document that requires translation, but closes
it without saving any data. ◆

Once the save is completed, your application must dispose of the
NavReplyRecord structure by calling the function NavDisposeReply (page 57).

By default, the NavPutFile function saves translations as a copy of the original
file. Your application can direct Navigation Services to replace the original with
the translation by passing the kNavTranslateInPlace constant, described in
“Translation Option Constants” (page 110), in the howToTranslate parameter of
the NavCompleteSave function.

A Sample File-Saving Function 0

Listing 3 illustrates how to save files by using the function NavPutFile (page 70).
The sample listing also shows how to set options and register your
event-handling function. Note that this function uses a DoSafeSave function to
ensure that the save is completed without error before an existing file is deleted.
Basic Tasks 35
  Apple Computer, Inc. 11/20/98

Using Navigation Services
Listing 3 A sample file-saving function

OSErr MySaveDocument(WindowPtr theDocument)
{

OSErr anErr = noErr;
NavReplyRecord reply;
NavDialogOptions dialogOptions;
OSType fileTypeToSave = 'TEXT';
OSType creatorType = 'xAPP';
NavEventUPP eventProc = NewNavEventProc(myEventProc);

anErr = NavGetDefaultDialogOptions(&dialogOptions);
if (anErr == noErr)
{

// One way to get the name for the file to be saved.
GetWTitle(theDocument, dialogOptions.savedFileName);

anErr = NavPutFile(nil, &reply, &dialogOptions, eventProc, nil,
fileTypeToSave, creatorType);

if (anErr == noErr && reply.validRecord)
{

AEKeyword theKeyword;
DescType actualType;
Size actualSize;
FSSpec documentFSSpec;

anErr = AEGetNthPtr(&(reply.selection), 1, typeFSS,
&theKeyword, &actualType,
&documentFSSpec, sizeof(documentFSSpec),
&actualSize);

if (anErr == noErr)
{

if (reply.replacing)
{

// Make sure you save a temporary file
// so you can check for problems before replacing
// an existing file. Once the save is confirmed,
// swap the files and delete the original.
anErr = DoSafeSave(&documentFSSpec, creatorType,

fileTypeToSave, theDocument);
}

36 Basic Tasks

  Apple Computer, Inc. 11/20/98

Using Navigation Services
else
{

anErr = WriteNewFile(&documentFSSpec, creatorType,
 fileTypeToSave, theDocument);

}

if (anErr == noErr)
{

// Always call NavCompleteSave() to complete
anErr = NavCompleteSave(&reply,

kNavTranslateInPlace);
}

}
(void) NavDisposeReply(&reply);

}
DisposeRoutineDescriptor(eventProc);

}
return anErr;

}

Saving Changes 0

Navigation Services allows you to display a standard alert box for saving
changes or quitting an application, and to customize this alert box for other
uses.

Note
You are strongly encouraged to make all Navigation
Services dialog boxes movable by providing updates via an
event-handling function. For more information, see
“Handling Events” (page 49). ◆

Displaying a Standard Save Changes Alert Box 0

To display a standard Save Changes alert box, your application passes its name
and the document title to the function NavAskSaveChanges (page 72), which
displays the alert box shown in Figure 18.
Basic Tasks 37
  Apple Computer, Inc. 11/20/98

Using Navigation Services
Figure 18 Standard Save Changes alert box

After the user closes the Save Changes alert box, Navigation Services tells your
application which button the user clicked by returning one of the
NavAskSaveChangesResult constants, as described in “Save Changes Action
Constants” (page 108).

Customizing the Save Changes Alert Box 0

You can display a customized Save Changes alert box by using the function
NavCustomAskSaveChanges (page 73). Figure 19 shows an example of a
customized Save Changes alert box.

Figure 19 Custom Save Changes alert box

You must provide the message to be displayed in a custom Save Changes alert
box.

Displaying a Discard Changes Alert Box 0

If your application has a Revert to Saved or similar item in its File menu,
Navigation Services provides an alert box to handle this situation, as shown in
38 Basic Tasks

  Apple Computer, Inc. 11/20/98

Using Navigation Services
Figure 20. This alert box is created by calling the function NavAskDiscardChanges
(page 75).

Figure 20 Discard Changes alert box

After the user closes the alert box, Navigation Services tells your application
which button the user clicked by returning one of the
NavAskDiscardChangesResult constants, as described in “Discard Changes
Action Constants” (page 102).

Advanced Tasks 0

Setting Custom Features 0

You can add or change a number of features in Navigation Services dialog
boxes.

■ You can provide a user prompt or banner, which describes the action
performed by the dialog box.

■ You can change the action button title.

■ You can change the Cancel button title.

■ You can preset a dialog box’s location on screen.

■ You can change the window title of the dialog box.

■ You can provide an application-defined event-handling function (to provide
movable and resizable dialog boxes).
Advanced Tasks 39
  Apple Computer, Inc. 11/20/98

Using Navigation Services
■ You can provide an application-defined filter function (to determine which
file objects are displayed in pop-up menus or the browser list).

■ You can provide an application-defined file preview function.

You can set dialog box options by setting values in a structure of type
NavDialogOptions (page 85).

Setting the Default Location 0

Navigation Services maintains default location information for dialog boxes.
The default location is the folder or volume whose contents will be displayed
in the browser list when a dialog box is first displayed. You can override the
default location and selection of any Navigation Services dialog box by passing
a pointer to an Apple event descriptor (AEDesc) structure for the new location in
the defaultLocation parameter of the appropriate function. This AEDesc
structure will normally be of type 'typeFSS' and describe a file, folder, or
volume.

To select the default location instead of displaying it, supply the
kNavSelectDefaultLocation constant in the dialogOptionFlags field of the
structure of type NavDialogOptions (page 85) you specify in the dialogOptions
parameter of a Navigation Services function such as NavGetFile (page 58). For
example, if you pass an AEDesc structure describing the System Folder in the
defaultLocation parameter of the NavGetFile function, Navigation Services
displays an Open dialog box with the System Folder as the default location. If
you pass the same value to the NavGetFile function and supply the
kNavSelectDefaultLocation constant in the dialogOptionFlags field of the
NavDialogOptions structure, the Open dialog box shows the startup volume as
the default location with the System Folder selected.

If you pass NULL for the AEDesc structure, or attempt to pass an invalid AEDesc
structure, Navigation Services 1.1 displays the desktop as the default location.

IMPORTANT

If you pass NULL for the AEDesc structure describing a
default location, or attempt to pass an invalid AEDesc
structure, and specify the kNavSelectDefaultLocation
constant as described above, Navigation Services 1.0 will
crash. ▲
40 Advanced Tasks

  Apple Computer, Inc. 11/20/98

Using Navigation Services
Obtaining Object Descriptions 0

Several Navigation Services functions return AEDesc structures describing
objects from the network or the file system. You must not assume that an AEDesc
structure is of any particular type. If your application needs the structure to be a
particular type, you should attempt to coerce the structure using the Apple
Event Manager function AECoerceDesc. For more information on coercing Apple
event descriptors, see Inside Macintosh: Interapplication Communication.

When Navigation Services passes you an AEDesc structure of type
'typeCString', the structure describes a network object by using a Uniform
Resource Locator (URL). Network objects can be AppleTalk zones or
AppleShare servers. For example, an AppleTalk zone called “Building 1 - 3rd
floor” would be represented by a URL of 'at://Building 1 - 3rd floor'. An
AppleShare server called “Mac Software” in the same zone would be
represented by a URL of 'afp:/at/Mac Software:Building 1 - 3rd floor'.

If Navigation Services passes you an AEDesc structure of descriptor type
'typeFSS' describing a directory, the directory’s file specification contains an
empty name field and its parID field contains the directory ID. If an AEDesc
structure of type 'typeFSS' describes a file, its file specification’s name field
contains the filename and its parID field contains the directory ID of the file’s
parent directory. This means you can use the name field to determine whether an
object is a file or a folder.

If you need to determine the ID of a directory’s parent directory, use the File
Manager function PBGetCatInfo, described in Inside Macintosh: Files.

Filtering File Objects 0

The process of choosing which files, folders, and volumes to display in the
browser list or the pop-up menus is known as object filtering. If your
application needs simple, straightforward object filtering, pass a pointer to a
structure of type NavTypeList (page 91) to the appropriate Navigation Services
function. If you desire more specific filtering, Navigation Services lets you
implement an application-defined filter function. Filter functions give you more
control over what can and can’t be displayed; for example, your function can
filter out non-HFS objects. You can use both a NavTypeList structure and a filter
function if you wish, but keep in mind that your filter function is directly
affected by the NavTypeList structure. For example, if the NavTypeList structure
contains only 'TEXT' and 'PICT' types, only files of those types are passed into
your filter function. Also, your filter function can filter out file types that are
Advanced Tasks 41
  Apple Computer, Inc. 11/20/98

Using Navigation Services
defined in your NavTypeList structure. Make sure you don’t accidentally
exclude items you wish to display.

Navigation Services tells you which dialog box control was used for each call to
your filter function, so you can implement different criteria for each control.
You might choose to limit the Desktop button to displaying specific volumes,
for example, or to restrict navigation through the Location pop-up menu. The
default location and selections can also be filtered. For more information, see
“Filtering File Objects” (page 50).

The function NavGetFile (page 58) displays a Show pop-up menu that lists your
application's native types as well as translatable file types. If the user chooses a
translatable file type, Navigation Services ignores your NavTypeList structure
and responds only to your filter function. For more information on the Show
pop-up menu, see “Providing File Opening Options” (page 19).

The function NavPutFile (page 70) displays a Format pop-up menu that displays
the save format options, the application’s native types, and the file types that
can translated. This pop-up menu selection does not affect filtering of the
browser list; it determines the file format used to save the final document.

Object Filtering Scenarios 0

This section gives some examples to help explain how filtering works in the
Show pop-up menu. For purposes of illustration, assume the following:

■ The application Sampler can open files of type 'TEXT' and 'PICT'.

■ Sampler passes to the NavGetFile function a structure of type NavTypeList
(page 91) that contains these two file types as well as Sampler’s application
signature.

■ Sampler implements a kind string for each of these native file types.

■ Sampler specifies the kNavDontAddTranslateItems constant in the
dialogOptions field in the structure of type NavDialogOptions (page 85) that it
passes in the dialogOptions parameter of the NavGetFile function.

The Show pop-up menu contains the items shown in Figure 21. Note that the
menu does not contain a translatable file section.
42 Advanced Tasks

  Apple Computer, Inc. 11/20/98

Using Navigation Services
Figure 21 A Show pop-up menu without a translatable file section

The user can select the All Readable Documents command to display all of
Sampler’s native file types at once.

If Sampler specifies the kNavNoTypePopup constant in the dialogOptions field, no
Show pop-up menu appears and Sampler’s NavTypeList structure and filter
function determine any filtering. If Sampler passes NULL to the NavGetFile
function in place of a reference to the NavTypeList structure, the Show pop-up
menu won’t appear (regardless of the dialog options) and Sampler’s
application-defined filter function is the only determining filter. If Sampler
doesn’t provide a filter function, all files are displayed.

Note
Under Navigation Services 1.1, if your application passes a
NavTypeList structure to the NavGetFile function and
specifies the kNavNoTypePopup constant, Navigation Services
will display all files of the types described in the
NavTypeList structure, even if they were created by a
different application. ◆

In the next example, assume the following:

■ The application Portal can open files of type 'TEXT', 'PICT', and 'MooV'.

■ Portal has a structure of type NavTypeList (page 91) containing these three file
types as well as its application signature.

■ Portal provides kind strings for each of these native file types.

■ Portal supplies the kNavAllFilesInPopup constant in the dialogOptions field
of the NavDialogOptions structure. This adds the All Documents item at the
bottom of the menu.

■ Portal does not supply the kNavDontAddTranslateItems constant in the
dialogOptions field of the NavDialogOptions structure.
Advanced Tasks 43
  Apple Computer, Inc. 11/20/98

Using Navigation Services
In this case, the Show pop-up menu appears as shown in Figure 22.

Figure 22 A Show pop-up menu with a translatable files section

The third section of the Show menu shows file types that the Translation
Manager can translate into one of Portal’s three native file types.

Under Navigation Services 1.1, if the user chooses the All Readable Documents
menu item, Navigation Services displays all native and translatable file types,
regardless of which application created them. If the user chooses the All
Documents menu item, the browser list shows all file types, regardless of
whether Portal has identified them as translatable or not.

Refreshing the Browser List 0

If your application needs to refresh the list of file objects in the browser before
exiting a Navigation Services function such as NavGetFile (page 58), follow
these steps:

1. Supply the kNavCtlGetLocation constant in the selector parameter of the
function NavCustomControl (page 81) to obtain the current location.

2. Pass the current location in the parms parameter of NavCustomControl and
supply the kNavCtlSetLocation constant in the selector parameter of
NavCustomControl.

Getting and setting the current location causes Navigation Services to rebuild
the browser list. For more information on these constants, see “Custom Control
Setting Constants” (page 96).
44 Advanced Tasks

  Apple Computer, Inc. 11/20/98

Using Navigation Services
Providing Document Previews 0

Navigation Services provides a preview area in all dialog boxes that open files.
This area can be toggled on or off by the user. If the preview area is visible,
Navigation Services will automatically display a preview of any file that
contains a valid QuickTime component of type 'pnot'. You can request
automatic preview display by setting the kNavAllowPreviews constant in the
dialogOptionFlags field of the structure of type NavDialogOptions (page 85) that
you pass in the dialogOptions parameter of the file-opening function. You can
provide your own previews and add custom controls to the preview area, as
well. For more information on preview functions, see “Drawing Custom
Previews” (page 52). For more information on 'pnot' resources, see Inside
Macintosh: QuickTime Components.

Customizing Type Pop-up Menus 0

The Show pop-up menu displayed in Open dialog boxes and the Format
pop-up menu displayed in Save dialog boxed are known collectively as type
pop-up menus. If your application needs to add its own menu items to one of
the type pop-up menus, use a structure of type NavMenuItemSpec (page 87) to
describe each menu item to add. This allows you to add specific document
types to be opened or saved, or different ways of saving a file (with or without
line breaks, as HTML, and so forth). To set your menu items, add a handle to
one or more NavMenuItemSpec structures to the popupExtension field in the
structure of type NavDialogOptions (page 85) that you pass in the dialogOptions
parameter of the appropriate function. If you provide a NavMenuItemSpec
structure, you must also provide an event-handling function and an object
filtering function. Navigation Services will not handle your custom menu items,
so if you do not provide these application-defined functions and attempt to use
a NavMenuItemSpec structure, Navigation Services functions return a result of
paramErr (-50). For more information, see “Creating Application-Defined
Functions” (page 48).

You do not have to provide a value in the menuItemName field of the
NavMenuItemSpec structure, but Navigation Services uses this value, if it is
available, as a search key. If you choose not to provide a value for this field,
make sure to set it to an empty string.

To handle and examine a selected pop-up menu item, respond to the
kNavCBPopupMenuSelect message constant, described in “Custom Control Setting
Constants” (page 96), when Navigation Services calls your application’s
event-handling function. Navigation Services provides information about the
Advanced Tasks 45
  Apple Computer, Inc. 11/20/98

Using Navigation Services
selected menu item in a structure of type NavCBRec (page 89) passed in the
callBackParms parameter of your event-handling function. The param field of the
NavCBRec structure points to a structure of type NavMenuItemSpec (page 87)
describing the menu item. Your application can respond to a particular menu
item by comparing the type and creator fields, for example.

It is possible to set the Show or Format pop-up menus so that they display only
custom items.

■ Define your custom menu items by using structures of type NavMenuItemSpec
(page 87).

■ Specify a handle to the NavMenuItemSpec structures in the popupExtension field
of the structure of type NavDialogOptions (page 85) that you pass in the
dialogOptions parameter.

■ Pass NULL in the typeList parameter. If you pass any file types in the typeList
parameter, Navigation Services will place its own items in the pop-up menu.

■ Set your filter function to display only your custom items in the pop-up
menu.

■ Ensure that your event-handling function takes care of any selection made
from the pop-up menu.

If your application tries to extend the type pop-up menu and does not provide
an event-handling function, Navigation Services functions return a result of
paramErr (-50). If you add menu items that require filtering, you must
implement a filter function. For more information, see “Filtering File Objects”
(page 50).

Adding Custom Controls 0

The Navigation Services programming interface handles most common
situations that demand interface customization when using the Standard File
Package. If you look through all the features and find that you still need to
provide custom controls in a Navigation Services dialog box, perform the
following steps:

1. Implement an event-handling function to communicate with Navigation
Services while Open or Save dialog boxes are open. For more information,
see “Handling Events” (page 49).

2. Respond to the kNavCBCustomize constant, described in “Event Message
Constants” (page 103), which your application can obtain from the param
46 Advanced Tasks

  Apple Computer, Inc. 11/20/98

Using Navigation Services
field of the structure of type NavCBRec (page 89) pointed to in the
callBackParms parameter of your event-handling function. The customRect
field of the NavCBRec structure defines a rectangle in the local coordinates of
the window; the top-left coordinates define the anchor point for the
customization rectangle, which is the area Navigation Services provides for
your application to add custom dialog box items. Your application responds
by setting the values which complete the dimensions of the customization
rectangle you require in the customRect field of the NavCBRec structure. After
your application responds and exits from the event-handling function,
Navigation Services inspects the customRect field to determine if the
requested dimensions result in a dialog window that can fit on the screen. If
the resulting window dimensions are too large, then Navigation Services
responds by setting the rectangle to the largest size that can be
accommodated and notifying your application with the kNavCBCustomize
constant again. Your application can continue to negotiate with Navigation
Services by examining the customRect field and requesting a different size
until Navigation Services provides an acceptable rectangle value.
The minimum dimensions for the customization area are 400 pixels wide by
40 pixels high on a 600 x 400 pixel screen. If you are designing for a
minimum screen size of 640 x 480 or larger, you can assume a larger
minimum customization area.

3. After a customization rectangle has been established, your application must
check for the kNavCBStart constant in the param field of the NavCBRec structure.
This constant indicates that Navigation Services is opening the dialog box.
After you obtain this constant, you can add your interface elements to the
customization rectangle. The simplest way to do this is to provide a 'DITL'
resource (in local coordinates, relative to the anchor point of the
customization rectangle) and pass the kNavCtlAddControlList constant in the
selector parameter of the function NavCustomControl (page 81). Listing 4
illustrates one way to do this.

Listing 4 Adding a custom 'DITL' resource

gDitlList = GetResource ('DITL', kControlListID);
theErr = NavCustomControl (callBackParms->context,

kNavCtlAddControlList, gDitlList);

The advantage of using a 'DITL' resource is that the Dialog Manager handles
all control movement and tracking.
Advanced Tasks 47
  Apple Computer, Inc. 11/20/98

Using Navigation Services
You can also draw a single control by calling the Control Manager function
NewControl and passing the kNavCtlAddControl constant, described in “Custom
Control Setting Constants” (page 96), in the selector parameter of the function
NavCustomControl (page 81). Listing 5 illustrates this approach.

Listing 5 Adding a single custom control

gCustomControl = NewControl (callBackParms->window, &itemRect,
"\pcheckbox", false, 1, 0, 1, checkBoxProc, NULL);

theErr = NavCustomControl (callBackParms->context, kNavCtlAddControl,
gCustomControl);

If you call NewControl, you must track the custom control yourself.

4. Navigation Services supplies the kNavCBTerminate constant in the param field
of the NavCBRec structure after the user closes the dialog box. Make sure you
check for this constant, which is your signal to dispose of your control or
resource.

Creating Application-Defined Functions 0

You can implement application-defined functions to intercept and handle
events, provide custom view filtering, and draw custom previews.

IMPORTANT

During the execution of any application-defined function,
do not assume that your application is at the top of the
resource chain or that the current heap zone belongs to
your application. Use the Resource Manager function
UseResFile if you need to set the resource chain. Use the
Memory Manager function SetZone if you need to set the
current heap zone. For more information on the UseResFile
function, see Inside Macintosh: More Macintosh Toolbox. For
more information on the SetZone function, see Inside
Macintosh: Memory. ▲
48 Creating Application-Defined Functions

  Apple Computer, Inc. 11/20/98

Using Navigation Services
Handling Events 0

To respond to events generated by the user and Navigation Services, you can
create an event-handling function, described in this document as MyEventProc
(page 77). You register your event-handling function by passing a Universal
Procedure Pointer (UPP) in the eventProc parameter of a Navigation Services
function such as NavGetFile (page 58). You obtain this UPP by calling the macro
NewNavEventProc and passing a pointer to your event-handling function. If an
event occurs while the Open dialog box is displayed, for example, the
NavGetFile function will call your event-handling function. In the callBackParms
parameter of your event-handling function, NavGetFile supplies a structure of
type NavCBRec (page 89). This structure contains the information your
application needs to respond to the event. For instance, your application can
obtain the event record describing the event to be handled from the pointer in
the event field of the NavCBRec structure.

Navigation Services will pass update events that apply only to your windows.
When calling your event-handling function, Navigation Services passes
mouse-down events only when they occur in the preview or customization
areas.

You are strongly encouraged to provide at least a simple function to handle
update events. If you do this, Navigation Services dialog boxes automatically
become movable and resizable. Listing 6 shows an example of such a function.

Listing 6 A sample event-handling function

pascal void myEventProc(NavEventCallbackMessage callBackSelector,
NavCBRecPtr callBackParms,
NavCallBackUserData callBackUD)

{
WindowPtr window =

(WindowPtr)callBackParms->eventData.event->message;
switch (callBackSelector)
{

case kNavCBEvent:
switch (callBackParms->eventData.event->what)
{

case updateEvt:
MyHandleUpdateEvent(window,

(EventRecord*)callBackParms->eventData.event);
Creating Application-Defined Functions 49
  Apple Computer, Inc. 11/20/98

Using Navigation Services
break;
}
break;

}
}

In your event-handling function, you can also call the function
NavCustomControl (page 81) to control various aspects of dialog boxes. For
example, the following line shows how you can determine whether the preview
area is currently showing:

NavCustomControl(context, kNavCtlIsPreviewShowing, &isShowing);

If you extend the type pop-up menus with custom menu items, Navigation
Services expects your event-handling function to respond to these items. For
more information, see “Customizing Type Pop-up Menus” (page 45).

Filtering File Objects 0

Navigation Services notifies you before displaying items in the following areas:

■ Location pop-up menu

■ browser list

■ Favorites menu

■ Recent menu

■ Shortcuts menu

You can take advantage of this notification process by creating a filter function,
described in this document as MyFilterProc (page 79), to determine which items
are displayed. Register your filter function by passing a Universal Procedure
Pointer (UPP) in the filterProc parameter of a Navigation Services function
such as NavGetFile (page 58). You obtain this UPP by calling the macro
NewNavObjectFilterProc and passing a pointer to your filter function. When
calling your filter function, Navigation Services provides detailed information
on HFS files and folders via a structure of type NavFileOrFolderInfo (page 87).
Your filter function specifies which file objects to display to the user by
returning true for each object you wish to display and false for each object you
do not wish to display. If your filter function does not recognize an object, it
should return true and allow the object to be displayed.
50 Creating Application-Defined Functions

  Apple Computer, Inc. 11/20/98

Using Navigation Services
IMPORTANT

Your filter function must not assume that the data passed to
it in the info parameter is a valid reference to a file
specification (that is, a structure of type FSSpec. This data is
not valid when Navigation Services 1.1 passes a non-HFS
file object to your filter function. If you intend to use the
data passed in the info parameter, you must first check the
Apple event descriptor (AEDesc) structure passed in the
theItem parameter. If the AEDesc structure cannot be coerced
into an FSSpec, the object is non-HFS and the data in the
info parameter is not a reference to a file specification. ▲

Listing 7 illustrates a sample filter function that allows only text files to be
displayed.

Listing 7 A sample filter function

pascal Boolean myFilterProc(AEDesc* theItem, void* info,
NavCallBackUserData callBackUD,
NavFilterModes filterMode)

{
OSErr theErr = noErr;
Boolean display = true;
NavFileOrFolderInfo* theInfo = (NavFileOrFolderInfo*)info;

if (theItem->descriptorType == typeFSS)
if (!theInfo->isFolder)

if (theInfo->fileAndFolder.fileInfo.finderInfo.fdType
!= 'TEXT')
display = false;

return display;
}

IMPORTANT

Navigation Services expects your filter function to return
true if an object is to be displayed. This is the opposite of
what Standard File expects from file filter functions. ▲

For more information on object filtering options, see “Filtering File Objects”
(page 41).
Creating Application-Defined Functions 51
  Apple Computer, Inc. 11/20/98

Using Navigation Services
Drawing Custom Previews 0

By default, Navigation Services draws a preview in the Open dialog box when a
file selected in the browser list contains a valid 'pnot' component. To override
how previews are drawn and handled, you can create a preview-drawing
function, as described in MyPreviewProc (page 78). You register your
preview-drawing function by passing a Universal Procedure Pointer (UPP) in
the previewProc parameter of a Navigation Services function such as NavGetFile
(page 58). You obtain this UPP by calling the macro NewNavPreviewProc and
passing a pointer to your preview-drawing function. When the user selects a
file, Navigation Services calls your preview-drawing function. Before you
attempt to create a custom preview, your application should determine whether
previews are enabled by specifying the kNavCtlIsPreviewShowing constant in the
NavCustomControlMessages parameter of the function NavCustomControl (page
81).

Your preview-drawing function obtains information from a structure of type
NavCBRec (page 89) specified in the callBackParms parameter of your
event-handling function. The NavCBRec structure contains the following
information:

■ The eventData field contains a structure of type NavEventData (page 90)
describing the file to be previewed. This structure provides an Apple event
descriptor list (AEDescList) that you must be able to coerce into a file
specification (FSSpec). If you cannot coerce the AEDescList into a valid FSSpec,
then the object is not a file and you should not attempt to create a preview.

■ The previewRect field describes the preview area, which is the section of the
dialog box reserved for preview drawing.

■ The window field identifies the window to draw in.

Once you have determined that previews are enabled, your preview-drawing
function should draw the custom preview in the specified area and return a
function result of true. If you don’t want to draw a preview for a given file, be
sure to return a function result of false.
52 Creating Application-Defined Functions

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
Reference for Navigation Services 0

This chapter describes the application programming interface to Navigation
Services. You should consult this chapter for specific information on how to use
Navigation Services functions, constants, and data types in your application.

Functions for Navigation Services 0

Navigation Services supplies functions to perform the following types of tasks:

■ “Identifying Navigation Services Availability” (page 53)

■ “Setting up Navigation Services” (page 55)

■ “Choosing Files, Folders and Volumes” (page 57)

■ “Saving Files” (page 70)

■ “Handling Events and Customizing Dialog Boxes” (page 77)

Identifying Navigation Services Availability 0

You should always use these functions to test for Navigation Services
availability and features. Navigation Services is a shared library, so calling the
Gestalt function does not reveal whether it is running.

■ NavServicesAvailable (page 54) determines whether the Navigation Services
library is available on the user’s system.

■ NavLibraryVersion (page 54) reports the currently installed version of the
Navigation Services library.
Functions for Navigation Services 53
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
NavServicesAvailable 0

Determines whether the Navigation Services library is available on the user’s
system.

Boolean NavServicesAvailable (void);

function result A Boolean value. This function returns true if Navigation
Services is available, false if not.

DISCUSSION

Use this function before attempting to use Navigation Services.

SPECIAL CONSIDERATIONS

There is a known problem with Navigation Services 1.0 that occurs if you call
NavServicesAvailable more than once without the Appearance Manager being
installed. Make sure that you check for the presence of the Appearance
Manager before calling NavServicesAvailable.

NavLibraryVersion 0

Reports the currently installed version of the Navigation Services shared library.

UInt32 NavLibraryVersion (void);

function result An unsigned 32-bit integer. This value represents the version
number (in binary-coded decimal) of Navigation Services
installed on the user’s system.

DISCUSSION

If you need to use Navigation Services features that are present only in version
1.1, use this function to determine which version of Navigation Services is
installed.
54 Functions for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
Setting up Navigation Services 0

These functions allow you to configure Navigation Services features.

■ NavLoad (page 55) pre-loads the Navigation Services library.

■ NavUnload (page 55) unloads the Navigation Services library.

■ NavGetDefaultDialogOptions (page 56) determines the default attributes or
behavior for dialog boxes.

■ NavDisposeReply (page 57) releases the memory used for the NavReplyRecord
structure after your application has finished using the structure.

NavLoad 0

Pre-loads the Navigation Services shared library.

OSErr NavLoad (void);

function result See “Result Codes for Navigation Services” (page 110) for a
list of result codes.

DISCUSSION

Use this function to pre-load the Navigation Services library. Pre-loading
increases the memory used by your application, but it provides the best
performance when using Navigation Services functions. If you don’t use the
NavLoad function, the Navigation Services shared library is not loaded until your
application calls one of the Navigation Services functions and unloads after the
call completes. If you use the NavLoad function, you must call the function
NavUnload (page 55) if you want to release reserved memory prior to quitting.

NavUnload 0

Unloads the Navigation Services shared library.

OSErr NavUnload (void);
Functions for Navigation Services 55
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
function result See “Result Codes for Navigation Services” (page 110) for a
list of result codes.

DISCUSSION

This function allows your application to unload the Navigation Services library
and release the memory reserved for it. If you use the function NavLoad
(page 55) to load the Navigation Services library, you must call the NavUnload
function if you want to release reserved memory prior to quitting.

NavGetDefaultDialogOptions 0

Determines the default attributes or behavior for dialog boxes.

OSErr NavGetDefaultDialogOptions (NavDialogOptions *dialogOptions);

dialogOptions A pointer to a structure of type NavDialogOptions (page 85).
On return, Navigation Services fills out the structure with
default option values that your application can change as
needed.

function result See “Result Codes for Navigation Services” (page 110) for a
list of result codes.

DISCUSSION

This function gives you a simple way to initialize a structure of type
NavDialogOptions (page 85) and set the default dialog box options before calling
one of the dialog box display functions. After you create the NavDialogOptions
structure, you can supply it with the NavDialogOptions constants, described in
“Configuration Option Constants” (page 93), to change the configuration
options.
56 Functions for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
NavDisposeReply 0

Releases the memory allocated for a NavReplyRecord structure after your
application has finished using the structure.

OSErr NavDisposeReply(NavReplyRecord *reply);

reply A pointer to a structure of type NavReplyRecord (page 83)
that your application has created.

function result See “Result Codes for Navigation Services” (page 110) for a
list of result codes.

DISCUSSION

If your application calls a Navigation Services function that uses a structure of
type NavReplyRecord (page 83), you must use the NavDisposeReply function
afterward to release the memory allotted for the NavReplyRecord structure.

Choosing Files, Folders and Volumes 0

Navigation Services provides functions to display dialog boxes that prompt the
user to select and open various types of file objects.

■ NavGetFile (page 58) displays an Open dialog box and prompts the user to
select a file or files to be opened.

■ NavChooseFile (page 60) displays a simple dialog box that prompts the user
to select a file.

■ NavTranslateFile (page 62) provides a means for files opened through
Navigation Services to be read from different file formats.

■ NavChooseVolume (page 64) displays a dialog box that prompts the user to
choose a volume.

■ NavChooseFolder (page 65) displays a dialog box that prompts the user to
choose a folder or volume.

■ NavChooseObject (page 67) displays a dialog box that prompts the user to
choose a file, folder or volume.
Functions for Navigation Services 57
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
■ NavNewFolder (page 68) displays a dialog box that prompts the user to create a
new folder.

NavGetFile 0

Displays an Open dialog box and prompts the user to select a file or files to be
opened.

OSErr NavGetFile (AEDesc *defaultLocation,
NavReplyRecord *reply,
NavDialogOptions *dialogOptions,
NavEventUPP eventProc,
NavPreviewUPP previewProc,
NavObjectFilterUPP filterProc,
NavTypeListHandle typeList,
void *callBackUD);

defaultLocation A pointer to an Apple event descriptor structure (AEDesc).
Before calling NavGetFile, you can set up a structure of
AEDesc type 'typeFSS' to specify a default location to be
viewed. If you pass NULL in this parameter, Navigation
Services defaults to the last location visited during a call to
the NavGetFile function. If the file system specification in
the AEDesc structure does not describe a directory or
volume, Navigation Services uses the desktop as the
default location.

reply A pointer to a structure of type NavReplyRecord (page 83).
Upon return, Navigation Services uses this structure to
provide data to your application about the results of your
NavGetFile call.

dialogOptions A pointer to a structure of type NavDialogOptions (page 85).
Before calling NavGetFile, set up this structure to specify
dialog box settings. If you pass NULL in this parameter,
Navigation Services uses the defaults for all options. See
“Configuration Option Constants” (page 93) for a
description of the default settings.

eventProc A Universal Procedure Pointer (UPP) of type
NavEventProcPtr (page 92) that points to your
58 Functions for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
application-defined event-handling function. Obtain this
UPP by calling the function NewNavEventProc. Implementing
an event-handling function allows your application to
update windows after the user moves or resizes the dialog
box. If you pass NULL in this parameter, the Open dialog box
is not movable or resizable. For more information, see
“Handling Events” (page 49) .

previewProc A Universal Procedure Pointer (UPP) of type
NavPreviewProcPtr (page 92) that points to your
application-defined preview function. Obtain this UPP by
calling the function NewNavPreviewProc. A preview function
allows your application to draw previews or to override
Navigation Services previews. For more information, see
“Drawing Custom Previews” (page 52).

filterProc A Universal Procedure Pointer (UPP) of type
NavFilterProcPtr (page 93) that points to your
application-defined filter function. Obtain this UPP by
calling the function NewNavObjectFilterProc. An
application-defined filter function determines if a volume,
directory, or file should be displayed in the browser list or
pop-up menus. For more information, see “Filtering File
Objects” (page 50).

typeList A handle to a structure of type NavTypeList (page 91).
Before calling, set up this structure to declare file types that
your application can open. For more information, see
“Providing File Format Options” (page 33).

callBackUD A pointer to a value set by your application. When the
NavGetFile function calls your event-handling function, the
callBackUD value is passed back to your application.

function result See “Result Codes for Navigation Services” (page 110) for a
list of result codes.

DISCUSSION

After your application calls the NavGetFile function to display an Open dialog
box and the user selects one or more files and clicks the Open button,
NavGetFile closes the dialog box and returns references to the files to be opened
in the NavReplyRecord structure. Your application should check the validRecord
field of the NavReplyRecord structure; if this field is set to true, your application
Functions for Navigation Services 59
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
should open the files specified in the selection field of the NavReplyRecord
structure.

SPECIAL CONSIDERATIONS

Always dispose of the NavReplyRecord structure after completing the file
opening operation by calling the function NavDisposeReply (page 57). Failure to
use the NavDisposeReply function causes memory used for the NavReplyRecord
structure to remain allocated.

If you use the Show pop-up menu in an Open dialog box, your application
must provide adequate kind strings to describe its native file types. For more
information, see “Providing File Format Options” (page 33). For more
information on kind strings, see Inside Macintosh: More Macintosh Toolbox.

SEE ALSO

For more information, see “Opening Files” (page 18).

For a sample code listing, see “A Sample File-Saving Function” (page 35).

NavChooseFile 0

Creates a simple dialog box that prompts the user to select a file.

OSErr NavChooseFile (AEDesc *defaultLocation,
NavReplyRecord *reply,
NavDialogOptions *dialogOptions,
NavEventUPP eventProc,
NavPreviewUPP previewProc,
NavObjectFilterUPP filterProc,
NavTypeListHandle typeList,
void *callBackUD);

defaultLocation A pointer to an Apple event descriptor structure (AEDesc).
Before calling NavChooseFile, you can set up a structure of
AEDesc type 'typeFSS' to specify a default location to be
viewed. If you pass NULL in this parameter, Navigation
Services displays the last location visited during a call to
60 Functions for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
the NavChooseFile function. If the file system specification
in the AEDesc structure does not describe a directory or
volume, Navigation Services uses the desktop as the
default location.

reply A pointer to a structure of type NavReplyRecord (page 83).
Upon return, Navigation Services uses this structure to
provide data to your application about the results of your
NavChooseFile call.

dialogOptions A pointer to a structure of type NavDialogOptions (page 85).
Before calling NavChooseFile, you can set up this structure
to specify dialog box settings. If you pass NULL in this
parameter, Navigation Services uses the defaults for all
options. See “Configuration Option Constants” (page 93)
for a description of the default settings.

eventProc A Universal Procedure Pointer (UPP) of type
NavEventProcPtr (page 92) that points to your
application-defined event-handling function. Obtain this
UPP by calling the function NewNavEventProc. Implementing
an event-handling function allows your application to
update windows after the user moves or resizes the dialog
box. If you pass NULL in this parameter, the Choose a File
dialog box is not movable or resizable. For more
information, see “Handling Events” (page 49) .

previewProc A Universal Procedure Pointer (UPP) of type
NavPreviewProcPtr (page 92) that points to your
application-defined preview function. Obtain this UPP by
calling the function NewNavPreviewProc. A preview function
allows your application to draw previews or to override
Navigation Services previews. For more information, see
“Drawing Custom Previews” (page 52).

filterProc A Universal Procedure Pointer (UPP) of type
NavFilterProcPtr (page 93) that points to your
application-defined filter function. Obtain this UPP by
calling the function NewNavObjectFilterProc. An
application-defined filter function determines if a volume,
directory, or file should be displayed in the browser list or
pop-up menus. For more information, see “Filtering File
Objects” (page 50).
Functions for Navigation Services 61
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
typeList A handle to a structure of type NavTypeList (page 91).
Before calling NavChooseFile, you can set up this structure
to declare file types that your application can open. For
more information, see “Providing File Format Options”
(page 33).

callBackUD A pointer to a value set by your application. When the
NavChooseFile function calls your event-handling function,
the callBackUD value is passed back to your application.

function result See “Result Codes for Navigation Services” (page 110) for a
list of result codes.

DISCUSSION

This function allows the user to choose a single file, such as a preferences file,
for an action other than opening. The NavChooseFile function is similar to the
NavGetFile function (page 58), but is limited to selecting a single file.

SPECIAL CONSIDERATIONS

The dialog box displayed by the NavChooseFile function does not display a
Show menu. If you wish to control the files displayed by the browser list or the
pop-up menus, you must specify a list of file types in the typeList parameter or
specify a filter function in the filterProc parameter. If you specify a list of file
types in the typeList parameter, the NavChooseFile function ignores the
signature field of the NavTypeList structure. This means that all files of the types
specified in the list of file types will be displayed, regardless of their application
signature.

NavTranslateFile 0

Provides a means for files opened through Navigation Services to be read from
different file formats.

OSErr NavTranslateFile (NavReplyRecord *translateInfo,
NavTranslateOptions howToTranslate);
62 Functions for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
translateInfo A pointer to a structure of type NavReplyRecord (page 83).
Upon return, Navigation Services uses this structure to
provide translation information about the selected files.

howToTranslate A value of type NavTranslationOptions. Pass one of these
constants to tell Navigation Services how to perform the
translation: either in-place or to a copy. For a description of
the constants, see “Translation Option Constants”
(page 110).

function result See “Result Codes for Navigation Services” (page 110) for a
list of result codes.

DISCUSSION

Under automatic file translation, Navigation Services calls the NavTranslateFile
function, if necessary, before returning from a file-opening function.

Your application can perform its own translation using the NavReplyRecord
structure you specified in the translateInfo parameter. The NavReplyRecord
structure contains a list of descriptors for the file or files to be opened. The
NavReplyRecord structure also contains a corresponding list of translation
specification records that can be passed to the Translation Manager. To
determine if your application has to translate a file, your application can
examine the NavReplyRecord structure to see if Navigation Services set the
translationNeeded field to true. (The translationNeeded field of the
NavReplyRecord structure is also set to true after returning from a NavGetFile call
during which automatic translation was performed.) If you want to turn off
automatic file translation, set the option kNavDontAutoTranslate in the
dialogOptionFlags field of the structure of type NavDialogOptions (page 85) that
you pass in the dialogOptions parameter of the file-opening function.

If your application uses the NavTranslateFile function after opening a file
without automatic translation, Navigation Services prompts the user to select a
location in which to save the translated file if the source location cannot accept a
new file (as occurs when the volume is locked or there is insufficient space). The
same prompt may occur when automatic translation is enabled in an Open
dialog box.

SEE ALSO

“Translating Files on Open” (page 21).
Functions for Navigation Services 63
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
NavChooseVolume 0

Displays a dialog box that prompts the user to choose a volume.

OSErr NavChooseVolume (AEDesc *defaultSelection,
NavReplyRecord *reply,
NavDialogOptions *dialogOptions,
NavEventUPP eventProc,
NavFilterUPP filterProc,
void *callBackUD);

defaultSelection A pointer to an Apple event descriptor structure (AEDesc).
Before calling NavChooseVolume, you can set up a structure
of AEDesc type 'typeFSS' to specify a default location to be
viewed. If you pass NULL in this parameter, Navigation
Services displays the last location visited during a call to
the NavChooseVolume function. If the file system
specification in the AEDesc structure does not describe a
directory or volume, Navigation Services uses the desktop
as the default location.

reply A pointer to a structure of type NavReplyRecord (page 83).
Upon return, Navigation Services uses this structure to
provide data to your application about the results of your
NavChooseVolume call.

dialogOptions A pointer to a structure of type NavDialogOptions (page 85).
Before calling, set up this structure to specify dialog box
settings. If you pass NULL in this parameter, Navigation
Services uses the defaults for all options. See
“Configuration Option Constants” (page 93) for a
description of the default settings.

eventProc A Universal Procedure Pointer (UPP) of type
NavEventProcPtr (page 92) that points to your
application-defined event-handling function. Obtain this
UPP by calling the function NewNavEventProc. Implementing
an event-handling function allows your application to
update windows after the user moves or resizes the dialog
box. If you pass NULL in this parameter, the Choose a
Volume dialog box is not movable or resizable. For more
information, see “Handling Events” (page 49) .
64 Functions for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
filterProc A Universal Procedure Pointer (UPP) of type
NavFilterProcPtr (page 93) that points to your
application-defined filter function. Obtain this UPP by
calling the function NewNavObjectFilterProc. An
application-defined filter function determines if a volume,
directory, or file should be displayed in the browser list or
pop-up menus. For more information, see “Filtering File
Objects” (page 50).

callBackUD A pointer to a value set by your application. When the
NavChooseVolume function calls your event-handling
function, the callBackUD value is passed back to your
application.

function result See “Result Codes for Navigation Services” (page 110) for a
list of result codes.

DISCUSSION

This function provides a way for your application to prompt the user to select a
volume. This might be useful for a disk repair utility, for example.

NavChooseFolder 0

Displays a dialog box that prompts the user to choose a folder or volume.

OSErr NavChooseFolder (AEDesc *defaultLocation,
NavReplyRecord *reply,
NavDialogOptions *dialogOptions,
NavEventUPP eventProc,
NavObjectFilterUPP filterProc,
void *callBackUD);

defaultLocation A pointer to an Apple event descriptor structure (AEDesc).
Before calling NavChooseFolder, you can set up a structure
of AEDesc type 'typeFSS' to specify a default location to be
viewed. If you pass NULL in this parameter, Navigation
Services displays the last location visited during a call to
the NavChooseFolder function. If the file system
specification in the AEDesc structure does not describe a
Functions for Navigation Services 65
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
directory or volume, Navigation Services uses the desktop
as the default location.

reply A pointer to a structure of type NavReplyRecord (page 83).
Upon return, Navigation Services uses this structure to
provide data to your application about the results of your
NavChooseFolder call.

dialogOptions A pointer to a structure of type NavDialogOptions (page 85).
Before calling NavChooseFolder, set up this structure to
specify dialog box settings. If you pass NULL in this
parameter, Navigation Services uses the defaults for all
options. See “Configuration Option Constants” (page 93)
for a description of the default settings.

eventProc A Universal Procedure Pointer (UPP) of type
NavEventProcPtr (page 92) that points to your
application-defined event-handling function. Obtain this
UPP by calling the function NewNavEventProc. Implementing
an event-handling function allows your application to
update windows after the user moves or resizes the dialog
box. If you pass NULL in this parameter, the dialog box is not
movable or resizable. For more information, see “Handling
Events” (page 49) .

filterProc A Universal Procedure Pointer (UPP) of type
NavFilterProcPtr (page 93) that points to your
application-defined filter function. Obtain this UPP by
calling the function NewNavObjectFilterProc. An
application-defined filter function determines if a volume,
directory, or file should be displayed in the browser list or
pop-up menus. For more information, see “Filtering File
Objects” (page 50).

callBackUD A pointer to a value set by your application. When the
NavChooseFolder function calls your event-handling
function, the callBackUD value is passed back to your
application.

function result See “Result Codes for Navigation Services” (page 110) for a
list of result codes.
66 Functions for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
DISCUSSION

This function provides a way for your application to prompt the user to select a
folder or volume. This might be useful if you need to install application files, for
example.

NavChooseObject 0

Displays a dialog box that prompts the user to choose a file, folder, or volume.

OSErr NavChooseObject (AEDesc *defaultLocation,
NavReplyRecord *reply,
NavDialogOptions *dialogOptions,
NavEventUPP eventProc,
NavObjectFilterUPP filterProc,
void *callBackUD);

defaultLocation A pointer to an Apple event descriptor structure (AEDesc).
Before calling NavChooseObject, you can set up a structure
of AEDesc type 'typeFSS' to specify a default location to be
viewed. If you pass NULL in this parameter, Navigation
Services displays the last location visited during a call to
the NavChooseObject function. If the file system
specification in the AEDesc structure does not describe a
directory or volume, Navigation Services uses the desktop
as the default location.

reply A pointer to a structure of type NavReplyRecord (page 83).
Upon return, Navigation Services uses this structure to
provide data to your application about the results of your
NavChooseObject call.

dialogOptions A pointer to a structure of type NavDialogOptions (page 85).
Before calling NavChooseObject, set up this structure to
specify dialog box settings. If you do not provide this
structure, Navigation Services uses the defaults for all
options. See “Configuration Option Constants” (page 93)
for a description of the default settings.

eventProc A Universal Procedure Pointer (UPP) of type
NavEventProcPtr (page 92) that points to your
application-defined event-handling function. Obtain this
Functions for Navigation Services 67
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
UPP by calling the function NewNavEventProc. Implementing
an event-handling function allows your application to
update windows after the user moves or resizes the dialog
box. If you pass NULL in this parameter, the dialog box is not
movable or resizable. For more information, see “Handling
Events” (page 49) .

filterProc A Universal Procedure Pointer (UPP) of type
NavFilterProcPtr (page 93) that points to your
application-defined filter function. Obtain this UPP by
calling the function NewNavObjectFilterProc. An
application-defined filter function determines if a volume,
directory, or file should be displayed in the browser list or
pop-up menus. For more information, see “Filtering File
Objects” (page 50).

callBackUD A pointer to a value set by your application. When the
NavChooseObject function calls your event-handling
function, the callBackUD value is passed back to your
application.

function result See “Result Codes for Navigation Services” (page 110) for a
list of result codes.

DISCUSSION

This function is useful when you need to display a dialog box that prompts the
user to choose a file object that might be a file, folder, or volume. If you want
the user to choose a specific type of file object, you should use the function
designed for that type of object; to select a file, for example, use the function
NavChooseFile (page 60).

NavNewFolder 0

Displays a dialog box that prompts the user to create a new folder.

OSErr NavNewFolder (AEDesc *defaultLocation,
NavReplyRecord *reply,
NavDialogOptions *dialogOptions,
NavEventUPP eventProc,
void *callBackUD);
68 Functions for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
defaultLocation A pointer to an Apple event descriptor structure (AEDesc).
Before calling NavNewFolder, you can set up a structure of
AEDesc type 'typeFSS' to specify a default location to be
viewed. If you pass NULL in this parameter, Navigation
Services displays the last location visited during a call to
the NavNewFolder function. If the file system specification in
the AEDesc structure does not describe a directory or
volume, Navigation Services uses the desktop as the
default location.

reply A pointer to a structure of type NavReplyRecord (page 83).
Upon return, Navigation Services uses this structure to
provide data to your application about the results of the
NavNewFolder function call.

dialogOptions A pointer to a structure of type NavDialogOptions (page 85).
Before calling NavNewFolder, set up this structure to specify
dialog box settings. If you pass NULL in this parameter,
Navigation Services uses the defaults for all options. See
“Configuration Option Constants” (page 93) for a
description of the default settings.

eventProc A Universal Procedure Pointer (UPP) of type
NavEventProcPtr (page 92) that points to your
application-defined event-handling function. Obtain this
UPP by calling the function NewNavEventProc. Implementing
an event-handling function allows your application to
update windows after the user moves or resizes the dialog
box. If you pass NULL in this parameter, the dialog box is not
movable or resizable. For more information, see “Handling
Events” (page 49) .

callBackUD A pointer to a value set by your application. When the
NavNewFolder function calls your event-handling function,
the callBackUD value is passed back to your application.

function result See “Result Codes for Navigation Services” (page 110) for a
list of result codes.

DISCUSSION

This function provides a way for your application to prompt the user to create a
new folder. This might be useful for creating a project folder, for example.
Functions for Navigation Services 69
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
Saving Files 0

Navigation Services provides functions to save documents and to query the
user about unsaved changes.

■ NavPutFile (page 70) displays a Save dialog box.

■ NavAskSaveChanges (page 72) displays a Save Changes alert box.

■ NavCustomAskSaveChanges (page 73) displays a Save Changes alert box with a
custom alert message.

■ NavAskDiscardChanges (page 75) displays an alert box that asks the user
whether to discard changes to a particular document.

■ NavCompleteSave (page 76) completes a save operation and performs any
needed translation on the file.

NavPutFile 0

Displays a Save dialog box.

OSErr NavPutFile (AEDesc *defaultLocation,
NavReplyRecord *reply,
NavDialogOptions *dialogOptions,
NavEventUPP eventProc,
OSType fileType,
OSType fileCreator,
void *callBackUD);

defaultLocation A pointer to an Apple event descriptor structure (AEDesc).
Before calling NavPutFile, you can set up a structure of
AEDesc type 'typeFSS' to specify a default location to be
viewed. If you pass NULL in this parameter, Navigation
Services displays the last location visited during a call to
the NavPutFile function. If the file system specification in
the AEDesc structure does not describe a directory or
volume, Navigation Services uses the desktop as the
default location.

reply A pointer to a structure of type NavReplyRecord (page 83).
Upon return, Navigation Services uses this structure to
70 Functions for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
provide data to your application about the results of your
NavPutFile call.

dialogOptions A pointer to a structure of type NavDialogOptions (page 85).
Before calling NavPutFile, you can set up this structure to
specify dialog box settings. If you pass NULL in this
parameter, Navigation Services uses the defaults for all
options. See “Configuration Option Constants” (page 93)
for a description of the default settings.

eventProc A Universal Procedure Pointer (UPP) of type
NavEventProcPtr (page 92) that points to your
application-defined event-handling function. Obtain this
UPP by calling the function NewNavEventProc. Implementing
an event-handling function allows your application to
update windows after the user moves or resizes the dialog
box. If you pass NULL in this parameter, the Save dialog box
is not movable or resizable. For more information, see
“Handling Events” (page 49) .

fileType A four-character code. Pass a file type code for the
document to be saved.

fileCreator A four-character code. Pass a file creator code for the
document to be saved.

callBackUD A pointer to a value set by your application. When the
NavPutFile function calls your event-handling function, the
callBackUD value is passed back to your application.

function result See “Result Codes for Navigation Services” (page 110) for a
list of result codes.

NOTE
If you specify the kNavDontResolveAliases constant as a
dialog box option, as described in “Configuration Option
Constants” (page 93), before calling the NavPutFile
function, Navigation Services returns a paramErr (-50). ◆

DISCUSSION

After your application calls the NavPutFile function to display a Save dialog box
and the user selects a location, enters a filename, and clicks OK, NavPutFile
closes the dialog box and returns references to the file to be saved in the
NavReplyRecord structure. Your application should check the validRecord field of
Functions for Navigation Services 71
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
the NavReplyRecord structure; if this field is set to true, your application should
save the file and call the function NavCompleteSave (page 76).

If you specify the Format pop-up menu in a dialog box displayed by the
NavPutFile function, your application must provide adequate kind strings to
describe the file types available. If the user uses the Format menu to save a file
to a format other than the file’s native format, Navigation Services translates the
file automatically. If you wish to turn off automatic translation, set to false the
value of the translationNeeded field of the NavReplyRecord structure you pass
in the reply parameter. If you turn off automatic translation, your application is
responsible for any required translation.

SEE ALSO

For a sample code listing, see “A Sample File-Saving Function” (page 35).

For more information on translation, see “Translating Files on Save” (page 34).

For more information on kind strings, see Inside Macintosh: More Macintosh
Toolbox.

NavAskSaveChanges 0

Displays a Save Changes alert box.

OSErr NavAskSaveChanges (NavDialogOptions *dialogOptions,
NavAskSaveChangesAction action,
NavAskSaveChangesResult *reply,
NavEventUPP eventProc,
void *callBackUD);

dialogOptions A pointer to a structure of type NavDialogOptions (page 85).
Before calling NavAskSaveChanges, set up this structure to
specify dialog box settings. In this case, the clientName and
savedFileName fields are the only two you must supply with
values.

action A value of type NavAskSaveChangesAction. Pass a constant
describing the user action that prompted the Save Changes
72 Functions for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
alert box. For a description of the constants, see “Save
Changes Request Constants” (page 109).

reply A pointer to a structure of type NavAskSaveChangesResult.
On return, the value describes the user’s response to the
Save Changes alert box. For a description of the constants
used to represent possible responses, see “Save Changes
Action Constants” (page 108).

eventProc A Universal Procedure Pointer (UPP) of type
NavEventProcPtr (page 92) that points to your
application-defined event-handling function. Obtain this
UPP by calling the function NewNavEventProc. Implementing
an event-handling function allows your application to
update windows after the user moves or resizes the dialog
box. If you pass NULL in this parameter, the Save Changes
alert box is not movable. For more information, see
“Handling Events” (page 49) .

callBackUD A pointer to a value set by your application. When the
NavAskSaveChanges function calls your event-handling
function, the callBackUD value is passed back to your
application.

function result See “Result Codes for Navigation Services” (page 110) for a
list of result codes.

DISCUSSION

This function is useful when your application needs to display an alert when
the user attempts to close a document or an application with unsaved changes.

NavCustomAskSaveChanges 0

Displays a Save Changes alert box with a custom alert message.

OSErr NavCustomAskSaveChanges (NavDialogOptions *dialogOptions,
NavAskSaveChangesResult *reply,
NavEventUPP eventProc,
void *callBackUD);
Functions for Navigation Services 73
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
dialogOptions A pointer to a structure of type NavDialogOptions (page 85).
Before calling NavCustomAskSaveChanges, set up this
structure to specify dialog box settings. In this case, the
message field is the only one you must supply with a value.

reply A pointer to a structure of type NavAskSaveChangesResult.
On return, the value describes the user’s response to the
Save Changes alert box. For a description of the constants
used to represent possible responses, see “Save Changes
Action Constants” (page 108).

eventProc A Universal Procedure Pointer (UPP) of type
NavEventProcPtr (page 92) that points to your
application-defined event-handling function. Obtain this
UPP by calling the function NewNavEventProc. Implementing
an event-handling function allows your application to
update windows after the user moves or resizes the dialog
box. If you pass NULL in this parameter, the Save Changes
alert box is not movable. For more information, see
“Handling Events” (page 49) .

callBackUD A pointer to a value set by your application. When the
NavCustomAskSaveChanges function calls your
event-handling function, the callBackUD value is passed
back to your application.

function result See “Result Codes for Navigation Services” (page 110) for a
list of result codes.

DISCUSSION

This function is similar to the function NavAskSaveChanges, except you provide a
custom alert message. This function is useful when you need to post a Save
Changes alert box at times other than quitting or closing a file. Your application
can display this alert box if a specified time interval has passed since the user
last saved changes, for example.
74 Functions for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
NavAskDiscardChanges 0

Displays an alert box that asks the user whether to discard changes to a
particular document.

OSErr NavAskDiscardChanges (NavDialogOptions *dialogOptions,
NavAskDiscardChangesResult *reply,
NavEventUPP eventProc,
void *callBackUD);

dialogOptions A pointer to a structure of type NavDialogOptions (page 85).
Before calling NavAskDiscardChanges, set up this structure to
specify dialog box settings. In this case, the savedFileName
field is the only one you must supply with a value.

reply A pointer to a structure of type NavAskDiscardChanges. On
return, the value describes the user’s response to the
Discard Changes alert box. For a description of the
constants used to represent possible responses, see
“Discard Changes Action Constants” (page 102).

eventProc A Universal Procedure Pointer (UPP) of type
NavEventProcPtr (page 92) that points to your
application-defined event-handling function. Obtain this
UPP by calling the function NewNavEventProc. Implementing
an event-handling function allows your application to
update windows after the user moves or resizes the dialog
box. If you pass NULL in this parameter, the Discard
Changes alert box is not movable. For more information,
see “Handling Events” (page 49) .

callBackUD A pointer to a value set by your application. When the
NavGetFile function calls your event-handling function, the
callBackUD value is passed back to your application.

function result See “Result Codes for Navigation Services” (page 110) for a
list of result codes.

DISCUSSION

If your application provides a Revert to Saved command, you can use the
NavAskDiscardChanges function to display a confirmation alert box when a user
selects Revert to Saved for a document with unsaved changes. Navigation
Functions for Navigation Services 75
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
Services uses the string you supply in the savedFileName field of the
NavDialogOptions structure you passed in the dialogOptions parameter to
display the alert message, “Discard changes to <savedFilename>?”.

NavCompleteSave 0

Completes a save operation and performs any needed translation on the file.

OSErr NavCompleteSave (NavReplyRecord *translateInfo,
NavTranslateOptions howToTranslate);

translateInfo A pointer to a structure of type NavReplyRecord (page 83).
Upon return, Navigation Services uses this structure to
provide data to your application about the results of your
NavCompleteSave call.

howToTranslate A pointer to a structure of type NavTranslationOptions.
Pass one of two values to specify how to perform any
needed translation. For a description of the constants you
can use to represent these values, see “Translation Option
Constants” (page 110). Translating in-place causes the
source file to be replaced by the translation. Translating to a
copy results in a file name followed by the string
“(converted)” to avoid unwanted replacement. If you call
the NavCompleteSave function in response to a Save a Copy
command, you should pass the kNavTranslateInPlace
constant in this parameter.

function result See “Result Codes for Navigation Services” (page 110) for a
list of result codes. Since this function performs any needed
translation, it may return a translation error.

DISCUSSION

You should always call NavCompleteSave to complete any file saving operation
performed with the NavPutFile function. NavCompleteSave performs any needed
translation, so you do not have to use the function NavTranslateFile (page 62)
when saving. If you wish to turn off automatic translation, set to false the value
of the translationNeeded field of the NavReplyRecord structure you pass in the
reply parameter of the NavPutFile function. If you turn off automatic
76 Functions for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
translation, your application is responsible for any required translation. For
more information, see “Saving Files” (page 31).

SEE ALSO

“Translating Files on Save” (page 34)

Handling Events and Customizing Dialog Boxes 0

You can use the following functions to handle events, draw custom previews,
filter file objects, and add custom controls to Navigation Services dialog boxes.

■ MyEventProc (page 77) describes an application-defined event-handling
function.

■ MyPreviewProc (page 78) describes an application-defined event-handling
function.

■ MyFilterProc (page 79) describes an application-defined event-handling
function.

■ NavCustomControl (page 81) allows your application to control various
settings in Navigation Services dialog boxes.

MyEventProc 0

Handles events such as window updating and resizing.

This is how your application would define its own event-handling function if
you chose to call it MyEventProc:

pascal void MyEventProc (NavEventCallbackMessage callBackSelector,
NavCBRecPtr callBackParms,
void *callBackUD);

callBackSelector One of the values specified by the NavEventCallbackMessage
data type indicating which type of event your function
must respond to. For a description of the constants that
represent these values, see “Event Message Constants”
(page 103).
Functions for Navigation Services 77
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
callBackParms A pointer to a structure of type NavCBRec (page 89). Your
application uses the data supplied in this structure to begin
processing the event.

callBackUD A pointer to a value set by your application when it calls a
Navigation Services function such as NavGetFile. When
Navigation Services calls your event-handling function, the
callBackUD value is passed back to your application in this
parameter.

DISCUSSION

Register your event-handling function by passing a Universal Procedure
Pointer (UPP) in the eventProc parameter of a Navigation Services function
such as NavGetFile (page 58). You obtain this UPP by calling the macro
NewNavEventProc and passing a pointer to your event-handling function. If you
determine that the event is appropriate for your event-handling function, you
can call other functions to handle custom control drawing, object filtering, or
custom previews. For more information, see “Creating Application-Defined
Functions” (page 48).

SPECIAL CONSIDERATIONS

When events involve controls, your event-handling function must respond to
events only for your application-defined controls. To determine which control is
affected by an event, pass the kNavCtlGetFirstControlID constant, described in
“Custom Control Setting Constants” (page 96), in the selector parameter of the
function NavCustomControl (page 81).

MyPreviewProc 0

Displays custom file previews. This is how your application would define its
own preview function if you chose to call it MyPreviewProc:

pascal Boolean MyPreviewProc (
NavCBRecPtr callBackParms,
void *callBackUD);
78 Functions for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
callBackParms A pointer to a structure of type NavCBRec (page 89).
Navigation Services uses this structure to provide data
needed for your function to draw the preview.

callBackUD A pointer to a value set by your application when it calls a
Navigation Services function such as NavGetFile. When
Navigation Services calls your preview function, the
callBackUD value is passed back to your application in this
parameter.

function result A Boolean value. Your application returns true if your
preview function successfully draws the custom file
preview. If your preview function returns false,
Navigation Services displays the preview if the file contains
a valid ‘pnot’ resource. If your preview function returns
false and a ‘pnot’ resource is not available, Navigation
Services displays a blank preview area. For more
information, see “Drawing Custom Previews” (page 52).

DISCUSSION

Register your preview function by passing the resulting Universal Procedure
Pointer (UPP) in the previewProc parameter of a Navigation Services function,
such as NavGetFile (page 58). You obtain this UPP by calling the function
NewNavPreviewProc and passing a pointer to your preview-drawing function.
When the user selects a file, Navigation Services calls your preview-drawing
function. Your preview function, in turn, calls the function NavCustomControl
(page 81) to determine if the preview area is visible and, if so, what its
dimensions are. For more information, see “Drawing Custom Previews”
(page 52).

MyFilterProc 0

Determines whether file objects should be displayed in the browser list and
navigation menus. This is how your application would define its own filter
function if you chose to call it MyFilterProc:
Functions for Navigation Services 79
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
pascal Boolean MyFilterProc (AEDesc* theItem,
void* info,
void *callBackUD,
NavFilterModes filterMode);

theItem A pointer to an Apple event descriptor structure (AEDesc).
Navigation Services uses this structure to provide
information about the object being passed to your filter
function.

IMPORTANT
Always check the Apple event descriptor type before
deciding if an object needs to be filtered. Never assume that
objects are type 'typeFSS', because the browser or pop-up
menus may contain objects of other types. Make sure that
your function only returns false if it recognizes the object.
For more information, see “Obtaining Object Descriptions”
(page 41). ▲

info A pointer to a structure of type NavFileOrFolderInfo (page
87). Navigation Services uses this structure to provide file
or folder information about the item being passed to your
filter function. This information is not valid for objects
which are not HFS file objects.

callBackUD A pointer to a value set by your application when it calls a
Navigation Services function such as NavGetFile. When
Navigation Services calls your filter function, the
callBackUD value is passed back to your application in this
parameter.

filterMode A value representing which list of objects is currently being
filtered. For a description of the constants used to represent
these values, see “Object Filtering Constants” (page 107).

function result A Boolean value. If your application returns true,
Navigation Services displays the object. If your application
returns false, Navigation Services will not display the
object.
80 Functions for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
DISCUSSION

Register your filter function by passing a Universal Procedure Pointer (UPP) in
the filterProc parameter of a function such as NavGetFile (page 58). You obtain
this UPP by calling the macro NewNavObjectFilterProc and passing a pointer to
your filter function. Navigation Services calls your filter function to determine
whether a file object should be displayed in the browser list or the pop-up
menus.

If you use a filter function in conjunction with built-in translation, you should
provide a list of file types in the typeList parameter of a file-opening function
such as NavGetFile to inform Navigation Services which document types your
application can open. If you provide a list of file types in the typeList
parameter, take care to ensure that your filter function does not accidentally
filter out any document type described in the list. For more information, see
“Filtering File Objects” (page 50).

SPECIAL CONSIDERATIONS

If your filter function returns a result of true, Navigation Services displays the
object. This is the opposite of Standard File filter functions.

NavCustomControl 0

Allows your application to control various settings in Navigation Services
dialog boxes.

OSErr NavCustomControl (NavContext context,
NavCustomControlMessages selector,
void *parms);

context A value set by your application to provide context. When
Navigation Services processes your NavCustomControl call and,
in turn, calls your event-handling function, you can obtain this
value from the context field of the structure of type NavCBRec
(page 89) specified in the callBackParms parameter of your
event-handling function.
Functions for Navigation Services 81
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
selector A value of type NavCustomControlMessage. Pass one or more of
the constants representing the possible values used to control
various aspects of the active dialog box. For a description of
these constants, see “Custom Control Setting Constants”
(page 96).

parms A pointer to a configuration value. Some of the control setting
constants passed in the selector parameter require that you
provide an additional configuration value. For a description of
which constants require configuration values, see “Custom
Control Setting Constants” (page 96).

function result See “Result Codes for Navigation Services” (page 110) for a list
of result codes.

DISCUSSION

If you have provided an event-handling function and an event occurs in a
Navigation Services dialog box, Navigation Services calls your event-handling
function and specifies one of the constants described in “Event Message
Constants” (page 103) in the param field of the structure of type NavCBRec (page
89). Navigation Services specifies this structure in the callBackParms parameter
of your event-handling function. When Navigation Services supplies the
kNavCBStart constant in the param field, your application can call the
NavCustomControl function and pass one of the constants described in “Custom
Control Setting Constants” (page 96) to control various aspects of the active
Navigation Services dialog box. For example, your application can tell
Navigation Services to sort the browser list by date by calling the
NavCustomControl function and passing the kNavCtlSortBy constant in the
selector parameter and a pointer to the kNavSortDateField configuration
constant in the parms parameter. (Some of the NavCustomControlMessage
constants do not require a corresponding configuration constant.)

SPECIAL CONSIDERATIONS

Navigation Services does not accept calls to the NavCustomControl function until
an appropriate dialog box is fully initialized and displayed. Always check for
the kNavCBStart constant, described in “Event Message Constants” (page 103),
in the param field of the NavCBRec structure before calling the NavCustomControl
function.
82 Functions for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
Note that your application can call the NavCustomControl function from within
its event-handling function or its preview-drawing function.

SEE ALSO

“Adding Custom Controls” (page 46).

“Handling Events” (page 49).

Data Types for Navigation Services 0

NavReplyRecord 0

When your application calls a Navigation Services function that creates a dialog
box, you pass a pointer to a NavReplyRecord structure. Navigation Services, in
turn, uses this structure to provide your application with information about the
user’s interactions with the dialog box. When your application is through using
the structure, remember to dispose of it by calling the function NavDisposeReply
(page 57).

struct NavReplyRecord {
UInt16 version;
Boolean validRecord;
Boolean replacing;
Boolean isStationery;
Boolean translationNeeded;
AEDescList selection;
ScriptCode keyScript;
FileTranslationSpec **fileTranslation;

};

Field descriptions

version Identifies the version of this structure.
validRecord A Boolean value of true if the user closes a dialog box by

pressing Return or Enter, or by clicking the default button
Data Types for Navigation Services 83
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
in an Open or Save dialog box. If this field is false, all other
fields are unused and do not contain valid data.

replacing A Boolean value of true if the user chooses to save a file by
replacing an existing file (thereby necessitating the removal
or renaming of the existing file).

isStationery A Boolean value informing your application whether the
file about to be saved should be saved as a stationery
document.

translationNeeded A Boolean value indicating whether translation was or will
be needed for files selected in Open and Save dialog boxes.

selection An Apple event descriptor list (AEDescList) created from
references to items selected through the dialog box.
Navigation Services creates this list, which is automatically
disposed of when your application calls the function
NavDisposeReply (page 57). You can determine the number
of items in the list by calling the Apple Event Manager
function AECountItems. Some dialog boxes may return one
or more items; a Save dialog box will always return one.
Each selected HFS file object is described in an AEDesc
structure by the descriptor type typeFSS. You can coerce
this descriptor into an FSSpec structure to perform
operations such as opening the file. For more information,
see “Obtaining Object Descriptions” (page 41). For more
information on Apple event structures and functions, see
Inside Macintosh: Interapplication Communication. For more
information on FSSpec structures, see Inside Macintosh: Files.

keyScript The keyboard script system used for the filename. For
information on script codes, see Inside Macintosh: Text.

fileTranslation A handle to a Translation Manager structure of type
FileTranslationSpec. This structure contains a
corresponding translation array for each file reference
returned in the selection field. When opening files,
Navigation Services will perform the translation
automatically unless you set the kNavDontAutoTranslate
flag in the dialogOptionFlags field of the NavDialogOptions
structure (page 93). When Navigation Services performs an
automatic translation, the FileTranslationSpec structure is
strictly for the Translation Manager’s use. If you turn off
automatic translation, your application may use the
84 Data Types for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
FileTranslationSpec structure for your own translation
scheme. If the user chooses a translation for a saved file, the
FileTranslationSpec structure contains a single translation
reference for the saved file and the translationNeeded field
of the NavReplyRecord structure is set to true. The handle to
the FileTranslationSpec structure is locked, so you can
safely use dereferenced pointers. For more information, see
“Translating Files on Open” (page 21) and “Translating
Files on Save” (page 34). For information on the
FileTranslationSpec structure, see Inside Macintosh: More
Macintosh Toolbox.

NavDialogOptions 0

The NavDialogOptions structure contains dialog box configuration settings you
can pass to several Navigation Services functions.

struct NavDialogOptions {
UInt16 version;
NavDialogOptionFlags dialogOptionFlags;
Point location;
Str255 clientName;
Str255 windowTitle;
Str255 actionButtonLabel;
Str255 cancelButtonLabel;
Str255 savedFileName;
Str255 message;
UInt32 preferenceKey;
Handle popupExtension;

};

Field descriptions

version Identifies the version of this structure. Be sure to specify the
kNavDialogOptionsVersion constant in this field.

dialogOptionsFlags One of several constants defined by the
NavDialogOptionFlags data type as described in
“Configuration Option Constants” (page 93).
Data Types for Navigation Services 85
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
location The upper-left location of the dialog box (in global
coordinates). If you set the dialogOptionFlags field to NULL
or set this field to (-1,-1), then the dialog box appears in the
same location as when last closed. The size and location of
the dialog box is persistent, but defaults to opening in the
middle of the main screen if any portion is not visible when
opened at the persistent location and size. For more
information, see “Persistence” (page 17).

clientName A string that identifies your application in the dialog box
window title.

windowTitle A string that you can provide to override the default
window title.

actionButtonLabel An alternative button title for the dialog box’s action
button. If you do not specify a label, the button will use the
default label (Open or Save, for example.)

cancelButtonLabel An alternative button title for the Cancel button in dialog
boxes.

savedFileName The default filename for a saved file.
message The string for the banner, or prompt, below the browser

list. This message can provide more descriptive instructions
for the user. If you don’t provide a message string, the
browser list expands to fill that area.

preferenceKey An application-defined value that identifies which set of
dialog box preferences Navigation Services should use. If
your application maintains multiple sets of preferences for
a particular type of dialog box, you can determine which
set is active by specifying the appropriate value in the
preferenceKey field. For example, an application may allow
one set of preferences when it calls the function NavGetFile
(page 58) to open text files and a different set of preferences
when opening movie files. If you do not wish to provide a
preference key, specify zero for the preferenceKey value.

popupExtension A handle to one or more structures of type NavMenuItemSpec
(page 87) used to add extra menu items to the Show
pop-up menu in an Open dialog box or the Format pop-up
menu in Save dialog boxes. Using NavMenuItemSpec
structures allows your application to add additional
document types to be opened or saved, or different ways of
saving a file (with or without line breaks, for example).
86 Data Types for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
For more information, see “Customizing Type Pop-up
Menus” (page 45).

NavMenuItemSpec 0

Your application uses the NavMenuItemSpec structure to define additional items
in an Open dialog box’s Show pop-up menu or a Save dialog box’s Format
pop-up menu. For a description of how to add menu items, see “Customizing
Type Pop-up Menus” (page 45). For information about file creators and file
types, see Inside Macintosh: Macintosh Toolbox Essentials.

struct NavMenuItemSpec {
UInt16 version;
OSType menuCreator;
OSType menuType;
Str255 menuItemName;

};

Field descriptions

version Identifies the version of this structure. Be sure to specify the
kNavMenuItemSpecVersion constant in this field.

menuCreator A value set by your application. This is a unique tag that
Navigation Services passes back to your application to
identify the application type of the selected menu item.

menuType A value set by your application. This is a unique tag that
Navigation Services passes back to your application to
identify the file type of the selected menu item.

menuItemName The item name that appears in the pop-up menu.

NavFileOrFolderInfo 0

The NavFileOrFolderInfo structure contains file or folder information for use by
your application-defined filter function. For more information, see “Filtering
File Objects” (page 50). Your filter function can determine whether the currently
selected object is a file by checking the isFolder field of the NavFileOrFolderInfo
Data Types for Navigation Services 87
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
structure for the value false. After making this determination, you can obtain
more information about the object from the fileAndFolder structure.

Note
The information in this structure is valid only for HFS file
objects. ◆

struct NavFileOrFolderInfo {
UInt16 version;
Boolean isFolder;
Boolean visible;
UInt32 creationDate;
UInt32 modificationdate;
union {

struct {
Boolean locked; /* file is locked */
Boolean resourceOpen; /* resource fork is open */
Boolean dataOpen; /* data fork is open */
Boolean reserved1;
UInt32 dataSize; /* size of data fork */
UInt32 resourceSize; /* size of resource fork */
FInfo finderInfo;
FXInfo finderXInfo;

} fileInfo;
struct {

Boolean shareable; /* volume can be shared */
Boolean sharePoint; /* volume is being shared */
Boolean mounted; /* volume is mounted */
Boolean readable; /* volume is readable */
Boolean writeable; /* volume is writeable */
Boolean reserved2;
UInt32 numberOfFiles; /* number of files in folder */
DInfo finderDInfo;
DXInfo finderDXInfo;
char reserved3[214]; /*

} folderInfo
} fileAndFolder;

};

typedef struct NavFileOrFolderInfo NavFileOrFolderInfo;
88 Data Types for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
Field descriptions

version Identifies the version of this structure.
isFolder A Boolean value. If this value is set to true, the object being

described is a folder or volume; otherwise, the value is set
to false. An alias to a folder or volume returns true. Check
for the kIsAlias constant in the FInfo field to determine
whether an object is an alias.

visible A Boolean value. If this value is set to true, the object being
described is visible in the browser list; otherwise, the value
is set to false.

creationDate The creation date of the object being described.
modificationDate The modification date of the object being described.
fileAndFolder A union of the fileInfo and folderInfo fields.

NavCBRec 0

The NavCBRec structure provides customization information for your
application-defined functions.

struct NavCBRec {
UInt16 version;
NavContext context;
WindowPtr window;
Rect customRect;
Rect previewRect;
NavEventDataInfo eventData;

};

Field descriptions

version Identifies the version of this structure.
context A pointer to a value set by your application. Your

application passes this value in the context parameter of
the function NavCustomControl (page 81). When Navigation
Services calls your event-handling function, your
application can obtain this value from the context field.
Data Types for Navigation Services 89
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
window A pointer to the Navigation Services dialog box that
generated the call to your application-defined function.

customRect A local coordinate rectangle describing the customization
area available to your application. This determines how
much room your application has to install custom controls.
For more information on using this field, see “Adding
Custom Controls” (page 46).

previewRect A local coordinate rectangle describing the preview area
available to your application’s preview function. The
minimum size is 145 pixels wide by 118 pixels high.

eventData A structure of type NavEventData (page 90).

NavEventData 0

The NavEventData structure contains a structure of type NavEventDataInfo (page
91); in Navigation Services 1.1, the NavEventData structure also contains a field
describing the dialog box item last clicked by the user.

struct NavEventData {
NavEventDataInfo eventDataParms;
SInt16 itemHit; /* Nav Svcs 1.1 ONLY */

};

typedef struct NavEventData NavEventData

Field descriptions

eventDataParms A structure of type NavEventDataInfo (page 91).
itemHit A signed integer value. On return, this value represents the

item number of the dialog box item last clicked by the user.
If the user clicks something other than a valid Navigation
Services-generated control item, this value will be -1.
Use the function NavLibraryVersion (page 54) to ensure
Navigation Services 1.1 is installed before you attempt to
use this data.
90 Data Types for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
NavEventDataInfo 0

The NavEventDataInfo structure provides event-handling data to your
application.

union NavEventDataInfo {
EventRecord *event;
void *param;

};

typedef struct NavEventDataInfo NavEventDataInfo;

Field descriptions

event A pointer to the EventRecord structure describing an event
to be handled by your event-handling function.

param A pointer to additional event data. In most cases, this data
consists of an Apple event descriptor list (AEDescList) for
the file or files affected by the event described in the event
field. For example, if the event consists of the user making
a selection in the browser list, the AEDescList specifies the
file or files selected.

NavTypeList 0

Your application uses the NavTypeList structure to define a list of file types that
your application is capable of opening. Your application passes a pointer to this
list to Navigation Services functions that display Open or Save dialog boxes.
You may create this list dynamically or reference a Translation Manager 'open'
resource.

For a description of how to use the NavTypeList structure, see “Providing File
Opening Options” (page 19). For more information on the 'open' resource and
the Translation Manager, see the “Translation Manager” chapter in Inside
Macintosh: More Macintosh Toolbox.

struct NavTypeList {
OSType componentSignature;
short reserved;
Data Types for Navigation Services 91
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
short osTypeCount;
OSType osType[1];

};

Field descriptions

componentSignature Your application signature.
osTypeCount Number indicating how many file types are defined.
osType A list of file types your application can open.

NavEventProcPtr 0

If you create an event-handling function, it must accept certain input
parameters, as defined by the NavEventProcPtr data type. For more information
on implementing an event-handling function, see MyEventProc (page 77). For a
sample code listing, see “A sample event-handling function” (page 49).

typedef pascal void (*NavEventProcPtr)
(NavEventCallbackMessage callBackSelector,

 NavCBRecPtr callBackParms,
void *callBackUD);

NavPreviewProcPtr 0

If you create a preview function, it must accept certain input parameters, as
defined by the NavPreviewProcPtr data type. For more information on
implementing a preview function, see MyPreviewProc (page 78).

typedef pascal Boolean (*NavPreviewProcPtr)
(NavCBRecPtr callBackParms,
void *callBackUD);
92 Data Types for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
NavFilterProcPtr 0

If you create a filter function, it must accept certain input parameters, as defined
by the NavFilterProcPtr data type. For more information on implementing a
filter function, see MyFilterProc (page 79). For a sample code listing, see “A
sample filter function” (page 51).

typedef pascal Boolean (*NavObjectFilterProcPtr)
(AEDesc *theItem,
void *info,
void *callBackUD,
NavFilterModes filterMode);

Constants for Navigation Services 0

Configuration Option Constants 0

In the dialogOptionFlags field of the structure of type NavDialogOptions (page
85), you can specify values for Navigation Services dialog box configuration
options. Use the constants defined by the NavDialogOptionFlags data type to
specify these values.

enum NavDialogOptionFlags {
kNavDefaultNavDlogOption = 0x000000E4,/* use default options */
kNavNoTypePopup = 0x00000001,/* don't show type pop-up*/
kNavDontAutoTranslate = 0x00000002,/* don't auto-translate */
kNavDontAddTranslateItems = 0x00000004,/* don't add translation

 choices */
kNavAllFilesInPopup = 0x00000010,/* add All Files

menu item */
kNavAllowStationery = 0x00000020,/* allow stationery files */
kNavAllowPreviews = 0x00000040,/* allow previews */
kNavAllowMultipleFiles = 0x00000080,/* allow mult. selection*/
kNavAllowInvisibleFiles = 0x00000100,/* show invisible objects*/
kNavDontResolveAliases = 0x00000200,/* don't resolve aliases */
kNavSelectDefaultLocation = 0x00000400,/* make default location
Constants for Navigation Services 93
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
the browser selection */
kNavSelectAllReadableItem = 0x00000800/* make All Readable Items

default selection */
};

Constant descriptions

kNavDefaultNavDlogOptions
Tells Navigation Services to use default configuration
options. These default options are
• no custom control titles

• no banner or prompt message

• automatic resolution of aliases

• support for file previews

• no display of invisible file objects

• support for multiple file selection

• support for stationery

kNavNoTypePopup Tells Navigation Services not to display the Show pop-up
menu in the Open dialog box or the Format pop-up menu
in the Save dialog box.

kNavDontAutoTranslate
Tells Navigation Services that your application will handle
file translation. Normally a file chosen in an Open dialog
box that requires translation is automatically translated.
Navigation Services informs your application that a file
needs translating by setting the translationNeeded field of
the structure NavReplyRecord (page 83) to true. A
translation specification array, specified in the
fileTranslation field of the NavReplyRecord structure,
contains the associated translation specification records.
When you set the kNavDontAutoTranslate flag, your
application is responsible for translation, either by calling
the function NavTranslateFile (page 62) or by performing
the translation itself. For more information, see
“Translating Files on Open” (page 21).

kNavDontAddTranslateItems
Tells Navigation Services not to display file translation
94 Constants for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
options in the Show pop-up menu. For more information,
see “Translating Files on Open” (page 21).

kNavAllFilesInPopup
Tells Navigation Services to add a pop-up menu item called
All Documents, so the user can see a display of all files in
the current directory.

kNavAllowStationery
Tells Navigation Services to display a Stationery Option
command in the Format pop-up menu of Save dialog
boxes, so users can choose to save a file as a document or as
stationery. This is a default option. For more information,
see “Providing File Format Options” (page 33).

kNavAllowPreviews Tells Navigation Services to provide previews, when
available, of selected files. This is a default option. See also
“Drawing Custom Previews” (page 52).

kNavAllowMultipleFiles
Tells Navigation Services to allow users to select and open
multiple files in the browser list by shift-clicking or using
the Select All command. If you don’t specify this constant,
users can select multiple files for drag-and-drop operations,
but the default button (normally titled Open) is disabled
when multiple items are selected.

kNavAllowInvisibleFiles
Tells Navigation Services to show invisible file objects in
the browser list.

kNavDontResolveAliases
Tells Navigation Services not to resolve any alias selected
by the user. If the user selects an alias with this option set,
the file system specification returned by Navigation
Services designates the alias file instead of its referenced
original. If you specify this constant before calling the
function NavPutFile (page 70), Navigation Services returns
a result code of paramErr (-50).

kNavSelectDefaultLocation
Tells Navigation Services to select the default location in
the browser list. By default, Navigation Services will open
the browser list with the default location displayed, not
selected. For example, if you define the System Folder as
the default location and specify the
Constants for Navigation Services 95
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
kNavSelectDefaultLocation constant, the System Folder
appears as the current selection in the browser list. Without
this constant, the browser list displays the contents of the
System Folder.

kNavSelectAllReadableItem
Tells Navigation Services to show All Readable Documents
as the default selection in the Show pop-up menu when the
Open dialog box is first displayed. If you do not specify
this constant, Navigation Services shows the All
<AppName> Documents menu item as the default
selection in the Show pop-up menu when the Open dialog
box is first displayed.

Custom Control Setting Constants 0

The NavCustomControlMessage data type defines constants that your application
can pass in the selector parameter of the NavCustomControl function (page 81)
to control various aspects of the active dialog box.

enum {
kNavCtlShowDesktop = 0,/* show desktop, parms = nil */
kNavCtlSortBy = 1,/* set sort key field,

parms->NavSortKeyField */
kNavCtlSortOrder = 2,/* set sort order,

parms->NavSortOrder */
kNavCtlScrollHome = 3,/* scroll list home,parms = nil */
kNavCtlScrollEnd = 4,/* scroll list end,parms = nil */
kNavCtlPageUp = 5,/* page list up,parms = nil */
kNavCtlPageDown = 6,/* page list down,parms = nil */
kNavCtlGetLocation = 7,/* get current location,

parms<-AEDesc */
kNavCtlSetLocation = 8,/* set current location,

parms->AEDesc */
kNavCtlGetSelection = 9,/* get current selection,

parms<-AEDescList */
kNavCtlSetSelection = 10,/* set current selection,

parms->AEDescList*/
kNavCtlShowSelection = 11,/* make selection visible,

parms = nil */
kNavCtlOpenSelection = 12,/* open view of selection,
96 Constants for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
parms = nil */
kNavCtlEjectVolume = 13,/* eject volume,parms->vRefNum */
kNavCtlNewFolder = 14,/* create a new folder,

parms->StringPtr */
kNavCtlCancel = 15,/* cancel dialog,parms = nil */
kNavCtlAccept = 16,/* accept default,parms = nil */
kNavCtlIsPreviewShowing = 17,/* get preview status,

parms<-Boolean */
kNavCtlAddControl = 18,/* add 1 control,

parms->ControlHandle */
kNavCtlAddControlList = 19,/* add control list to dialog,

parms->Handle (DITL rsrc) */
kNavCtlGetFirstControlID = 20,/* get 1st cntrl ID,parms<-UInt16 */
kNavCtlSelectCustomType = 21,/* select a custom menu item,

parms->NavMenuItemSpec */
kNavCtlSelectAllType = 22,/* select "All" menu item,

parms->SInt16 */
kNavCtlGetEditFileName = 23,/* get save filename,

parms<-StringPtr */
kNavCtlSetEditFileName = 24,/* set save filename,

parms->StringPtr */
kNavCtlSelectEditFileName = 25 /* select save filename,

parms->ControlEditTextSelectionRec
(v 1.1 only) */

};

typedef SInt32 NavCustomControlMessage;

Constant descriptions

kNavCtlShowDesktop Tells Navigation Services to change the browser list
location to the desktop.

kNavCtlSortBy Alerts Navigation Services that your application is setting a
sort key in the browser list. In addition to the
kNavCtlSortBy constant, your application passes one of the
NavSortKeyField constants in the parms parameter of the
function NavCustomControl (page 81). For a description of
the NavSortKeyField constants, see “File Sorting Constants”
(page 106).

kNavCtlSortOrder Alerts Navigation Services that your application is setting
sort order, either ascending or descending, in the browser
Constants for Navigation Services 97
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
list. In addition to passing the kNavCtlSortOrder constant,
your application must pass one of the NavSortOrder
constants in the parms parameter of the NavCustomControl
function. For a description of the NavSortOrder constants,
see “Sort Order Constants” (page 109).

kNavCtlScrollHome Tells Navigation Services to scroll the browser to the top of
the file list.

kNavCtlScrollEnd Tells Navigation Services to scroll the browser to the
bottom of the file list.

kNavCtlPageUp Tells Navigation Services to scroll the browser up one page
length as a result of the user clicking the scroll bar above
the scroll box.

kNavCtlPageDown Tells Navigation Services to scroll the browser down one
page length as a result of the user clicking the scroll bar
below the scroll box.

kNavCtlGetLocation Tells Navigation Services to return the current location.
When you specify this constant, the parms parameter of the
NavCustomControl function returns a pointer to an AEDesc
structure describing the current location. For more
information on parsing AEDesc structures, see “Obtaining
Object Descriptions” (page 41).

kNavCtlSetLocation Tells Navigation Services that your application wishes to
set the location being viewed in the browser list. In
addition to specifying the kNavCtlSetLocation constant,
your application passes a pointer to an AEDesc structure
describing the new location in the parms parameter of the
NavCustomControl function.

kNavCtlGetSelection
Tells Navigation Services to return the selected item or
items in the browser. When you specify this constant, the
parms parameter of the NavCustomControl function returns a
pointer to an AEDescList structure describing the selected
item(s). For more information on parsing AEDescList
structures, see “Obtaining Object Descriptions” (page 41). If
the user deselects the current selection, the AEDescList
returned by Navigation Services contains an empty
reference. You can account for this case by using the
function AECountItems and checking for a zero count.
98 Constants for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
kNavCtlSetSelection
Tells Navigation Services to change the browser list
selection. In addition to specifying the kNavCtlSetSelection
constant, your application must pass a pointer to an
AEDescList structure describing the selection in the parms
parameter of the NavCustomControl function. If you want to
deselect the current selection without making a new
selection, pass NULL for the pointer.

kNavCtlShowSelection
Tells Navigation Services to make the current selection
visible in the browser list if the selection has been scrolled
out of sight by the user.

kNavCtlOpenSelection
Tells Navigation Services to open the current selection.

kNavCtlEjectVolume Tells Navigation Services to eject a volume. In addition to
specifying this constant, you must pass a pointer to the
volume reference number (vRefNum) of the volume to be
ejected in the parms parameter of the NavCustomControl
function.

kNavCtlNewFolder Tells Navigation Services to create a new folder in the
current location. In addition to specifying the
kNavCtlNewFolder constant, your application passes a string
representing the name of the new folder in the parms
parameter of the NavCustomControl function.

kNavCtlCancel Tells Navigation Services to dismiss the Open or Save
dialog box as if the user had pressed the Cancel button.

kNavCtlAccept Tells Navigation Services to close the Open or Save dialog
box as if the user had pressed the Open or Save button.
Navigation Services does not act on this constant if there is
no current selection.

kNavCtlIsPreviewShowing
Asks Navigation Services if the preview area is currently
available. If you specify this constant, Navigation Services
returns a pointer to a Boolean value of true in the parms
parameter of the NavCustomControl function if the preview
area is available.

kNavCtlAddControl Tells Navigation Services to add one application-defined
control to Open or Save dialog boxes. In addition to
sending this message, your application passes a control
Constants for Navigation Services 99
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
handle in the parms parameter of the NavCustomControl
function. Design the control in local coordinates.

IMPORTANT
To avoid any unnecessary flickering or redrawing, ensure
the control is initially invisible before specifying this
constant. You may set the control to visible after Navigation
Services supplies the kNavCBStart constant, described in
“Event Message Constants” (page 103), in the param field of
the structure of type NavCBRec (page 89). If the user resizes
the dialog box, your application must move the control
because it is not maintained by Navigation Services. If you
use the kNavCtlAddControlList constant (described next)
and you supply a 'DITL' resource, you avoid the need to
move the control yourself. ▲

kNavCtlAddControlList
Tells Navigation Services to add a list of
application-defined dialog box items to Open or Save
dialog boxes. In addition to specifying this constant, your
application must pass a handle to a dialog box item list or
'DITL' resource in the parms parameter of the
NavCustomControl function. Design the 'DITL' resource in
local coordinates. Navigation Services will add the custom
items relative to the upper left corner of the customization
area. If the user resizes the dialog box, your custom items
are moved automatically.

kNavCtlGetFirstControlID
Asks Navigation Services to help you identify the first
custom control in the dialog box, in order to determine
which custom control item was selected by the user. The
parms parameter of the NavCustomControl function returns a
pointer to a 16-bit integer that indicates the item number of
the first custom control. In your event-handling function,
use the Dialog Manager function FindDialogItem to find out
which item was selected. The FindDialogItem function
returns 0 for the first item, 1 for the second and so on. To
get the proper item number, add 1 to the FindDialogItem
function result. The Open or Save dialog box’s standard
controls precede yours, so use the formula (itemHit -
yourFirstItem + 1) to determine which of your items was
100 Constants for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
selected. Your application should not depend on any
hardcoded value for the number of items, since this value is
likely to change in the future.

IMPORTANT
Take care to test the result from FindDialogItem to ensure
that it describes a control that you defined. Your
application must not respond to any controls that do not
belong to it. ▲

kNavCtlSelectCustomType
Tells Navigation Services to set one of your custom menu
items in the Show pop-up menu or the Format pop-up
menu as the default selection. This is useful if you want to
override the default pop-up menu selection. In addition to
specifying this constant, pass a pointer to a structure of
type NavMenuItemSpec (page 87) in the parms parameter of
the NavCustomControl function. This structure describes the
item you wish to have selected. For more information on
providing custom menu items, see “Customizing Type
Pop-up Menus” (page 45).

kNavCtlSelectAllType
Tells Navigation Services to override the default menu item
in the Type pop-up menu. By specifying one of the
NavPopupMenuItem constants, described in “Menu Item
Selection Constants” (page 106), in the parms parameter of
the function NavCustomControl (page 81), you can set the
default item to All <AppName> Documents, All Readable
Documents or All Documents.

kNavCtlGetEditFileName
Tells Navigation Services to return the name of the file to be
saved by the function NavPutFile (page 70). This would be
useful if you wanted to automatically add an extension to
the filename, for example. When you send this message,
the parms parameter of the NavCustomControl function
returns a StringPtr to a Pascal string containing the
filename.

kNavCtlSetEditFileName
Tells Navigation Services that your application wishes to
set the name of the file to be saved by the function
NavPutFile (page 70). Your application normally specifies
Constants for Navigation Services 101
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
the KNavCtlSetEditFileName constant after modifying the
filename obtained by specifying the
kNavCtlGetEditFileName constant. In addition to specifying
the kNavCtlSetEditFileName constant, your application
must pass a StringPtr to a Pascal string containing the
filename in the parms parameter of the NavCustomControl
function.

kNavCtlSelectEditFileName
(Navigation Services 1.1 ONLY)
Tells Navigation Services to display the name of the file to
be saved by the function NavPutFile (page 70) with some or
all of the filename string highlighted for selection. In
addition to specifying the kNavCtlSelectEditFileName
constant, your application passes a Control Manager
structure of type ControlEditTextSelectionRec in the parms
parameter of the NavCustomControl function in order to
specify which part of the filename string to highlight. For
more information on the ControlEditTextSelectionRec
structure, see Mac OS 8 Control Manager Reference.

Discard Changes Action Constants 0

In the reply parameter of the NavAskDiscardChanges function (page 74), your
application receives a value represented by one of the constants defined by the
NavAskDiscardChangesResult data type.

enum {
kNavAskDiscardChanges = 1,
kNavAskDiscardChangesCancel = 2

};
typedef UInt32 NavAskDiscardChangesResult;

Constant descriptions

kNavAskDiscardChanges
User clicked the Okay button.

kNavAskDiscardChangesCancel
User clicked the Cancel button.
102 Constants for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
Event Message Constants 0

Your application can provide an event-handling function to update application
windows and handle other events related to your Open and Save dialog boxes.
Navigation Services informs you of pertinent events by supplying event
message constants to your event-handling function via the param field of the
structure of type NavCBRec (page 89). These constants are defined in the
NavEventCallbackMessages data type. For more information, see “Handling
Events” (page 49).

enum {
kNavCBEvent = 0, /* event has occurred */

 kNavCBCustomize = 1, /* signal to negotiate
customization space */

 kNavCBStart = 2, /* nav dialog box starting up */
 kNavCBTerminate = 3, /* nav dialog box closing down */
 kNavCBAdjustRect = 4, /* nav dialog box being resized */
 kNavCBNewLocation = 5, /* user chose new location*/
 kNavCBShowDesktop = 6, /* user navigated to the desktop */
 kNavCBSelectEntry = 7, /* user made selection in browser */
 kNavCBPopupMenuSelect = 8, /* user made popup menu selection */
 kNavCBAccept = 9, /* user accepted nav dialog box */
 kNavCBCancel = 10, /* user cancelled nav dialog box */
 kNavCBAdjustPreview = 11 /* preview toggled or resized */
}
typedef UInt32 NavEventCallbackMessages;

Constant descriptions

kNavCBEvent Tells your application that an event has occurred (including
an idle event), which provides an opportunity for your
application to track controls, update other windows, and so
forth. Your application can obtain the event record
describing this event from the event field of the structure of
type NavCBRec (page 89). The kNavCBEvent constant is the
only message that needs to be processed by most
applications that do not customize Open and Save dialog
boxes.

kNavCBCustomize Tells your application to supply a dialog box customization
request. The customRect field of the NavCBRec structure
defines a rectangle in the local coordinates of the dialog
box; the top-left coordinates define the anchor point for a
Constants for Navigation Services 103
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
customization rectangle. If you want to customize the
dialog box, your application responds to the
kNavCBCustomize message by setting a value in the
customRect field that completes the dimensions of the
customization rectangle. After your application responds,
Navigation Services inspects the customRect field to
determine if the requested dimensions result in a dialog
box that can fit on the screen. If the dimensions are too
large, then Navigation Services responds by setting the
rectangle to the largest size that the screen can
accommodate. Your application can continue to “negotiate”
by examining the customRect field and requesting a
different size until Navigation Services provides an
acceptable rectangle value, at which time you should create
your custom control or item list. The minimum size for the
customization area is 400 pixels wide by 40 pixels high. For
more information, see “Adding Custom Controls”
(page 46).

NOTE
Don’t add new dialog box items until your application
receives the kNavCBStart event message constant. ◆

kNavCBStart Tells your application that a dialog box is ready to be
displayed. After receiving the kNavCBCustomize event
message constant, your event-handling function should
wait for the kNavCBStart event message constant to ensure
that your application can safely add dialog items. No
additional data is provided to your application with this
constant. For more information, see “Adding Custom
Controls” (page 46).

kNavCBTerminate Tells your application that the dialog box is about to be
closed, which means you must remove any user-interface
items that were created in response to the kNavCBStart
message. No additional data is provided to your
application with this constant.

kNavCBAdjustRect Tells your application that the dialog box has been resized
and the customization rectangle has been accordingly
resized. Use the customRect field from the structure of type
NavCBRec (page 89) to determine the new customization
rectangle size. Your application does not need to offset the
104 Constants for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
controls; Navigation Services moves them automatically.
Your application is responsible for any redrawing of the
controls or handling events beyond moving the controls,
however. For more information, see “Adding Custom
Controls” (page 46).

kNavCBNewLocation Tells your application that a new location is being viewed
in the dialog box. The param field of the NavCBRec structure
contains a pointer to an AEDesc structure of type 'typeFSS'
describing the new location. This pointer is valid only
during the execution of your event-handling function. For
more information on how to parse AEDesc structures, see
“Obtaining Object Descriptions” (page 41).

kNavCBShowDesktop Tells your application that the Open or Save dialog box is
showing the desktop view, consisting of the composite of
all desktop folders from all mounted volumes. The param
field of the NavCBRec structure contains a pointer to an
AEDescList structure identifying the desktop location. This
pointer is valid only during the execution of your
event-handling function. For more information on how to
parse AEDesc structures, see “Obtaining Object
Descriptions” (page 41).

kNavCBSelectEntry Tells your application that an entry in the browser list has
been selected or deselected by the user. The param field of
the NavCBRec structure contains a pointer to an AEDescList
record of type 'typeFSS' identifying the current selection. If
the user deselects the current selection, the AEDescList
record contains an empty reference. This pointer is valid
only during the execution of your event-handling function.
For more information on how to parse AEDesc structures,
see “Obtaining Object Descriptions” (page 41).

kNavCBPopupMenuSelect
Tells your application that a selection was made from the
Open dialog box’s Show pop-up menu or Save dialog box’s
Format pop-up menu. The param field of the NavCBRec
structure contains a pointer to a structure of type
NavMenuItemSpec (page 87) describing the pop-up menu
item selected. This data is valid only during the execution
of your event-handling function.

kNavCBAccept Tells your application that the user has pressed the Accept
button.
Constants for Navigation Services 105
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
kNavCBCancel Tells your application that the user has pressed the Cancel
button.

kNavCBAdjustPreview
Tells your application that the user has toggled the preview
area on or off. The param field of the NavCBRec structure
contains a pointer to a Boolean value of true if the preview
area is toggled on and false if toggled off. This information
is useful if your application creates custom controls in the
preview area. For more information, see “Drawing Custom
Previews” (page 52).

File Sorting Constants 0

Your application can determine the sort key for displayed files by passing the
kNavCtlSortBy constant, described in “Custom Control Setting Constants”
(page 96), in the selector parameter of the function NavCustomControl (page 81),
and passing one of the constants defined in the NavSortKeyField data type in
the parms parameter of the NavCustomControl function.

enum {
kNavSortNameField = 0,
kNavSortDateField = 1

};
typedef UInt16 NavSortKeyField;

Constant descriptions

kNavSortNameField Sort by filename.
kNavSortDateField Sort by modification date.

Menu Item Selection Constants 0

To set the default selection for the Show pop-up menu of an Open dialog box,
your application passes the kNavCtlSelectAllType constant, described in
“Custom Control Setting Constants” (page 96), in the selector parameter of the
NavCustomControl function (page 81) and passes one of the constants defined in
the NavPopupMenuItem data type in the parms parameter of the NavCustomControl
function.
106 Constants for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
enum {
kNavAllKnownFiles = 0,
kNavAllReadableFiles = 1,
kNavAllFiles = 2

};
typedef UInt16 NavPopupMenuItem;

Constant descriptions

kNavAllKnownFiles Tells Navigation Services to display all files identified as
readable or translatable by your application. For more
information on how to identify readable files, see
“Providing File Opening Options” (page 19). For more
information on how to specify file types for translation, see
“Translating Files on Open” (page 21).

kNavAllReadableFiles
Tells Navigation Services to display all files identified as
readable by your application. For more information on how
to identify readable files, see “Providing File Opening
Options” (page 19).

kNavAllFiles Tells Navigation Services to display all files.

Object Filtering Constants 0

Navigation Services passes one of the constants defined by the NavFilterModes
data type to the filterMode parameter of your application-defined filter
function to tell your application whether the browser list or one of the
navigation option pop-up menus contains the object currently being filtered.
For more information, see “Filtering File Objects” (page 50).

enum {
kNavFilteringBrowserList = 0,
kNavFilteringFavorites = 1,
kNavFilteringRecents = 2,
kNavFilteringShortCutVolumes = 3,
kNavFilteringLocationPopup = 4

};
typedef UInt32 NavFilterModes;
Constants for Navigation Services 107
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
Constant descriptions

kNavFilteringBrowserList
The browser list contains the object being filtered.

kNavFilteringFavorites
The Favorites pop-up menu contains the object being
filtered.

kNavFilteringRecents
The Recent pop-up menu contains the object being filtered.

kNavFilteringShortCutVolumes
The Shortcuts pop-up menu contains the object being
filtered.

kNavFilteringLocationPopup
The object being filtered is the path described by the
Location menu.

Save Changes Action Constants 0

In the reply parameter of the function NavAskSaveChanges (page 72), your
application receives a value represented by one of the constants defined by the
NavAskSaveChangesResult data type.

enum {
kNavAskSaveChangesSave = 1,
kNavAskSaveChangesCancel = 2,
kNavAskSaveChangesDontSave = 3

};
typedef UInt32 NavAskSaveChangesResult;

Constant descriptions

kNavAskSaveChangesSave
User clicked the Save button.

kNavAskSaveChangesCancel
User clicked the Cancel button.

kNavAskSaveChangesDontSave
User clicked the Don’t Save button.
108 Constants for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
Save Changes Request Constants 0

Your application requests a Save Changes alert box by specifying one of the
following constants, defined by the NavAskSaveChangesAction data type, in the
action parameter of the function NavAskSaveChanges (page 72).

enum {
kNavSaveChangesClosingDocument = 1,
kNavSaveChangesQuittingApplication = 2,
kNavSaveChangesOther = 0

};
typedef UInt32 NavAskSaveChangesAction;

Constant descriptions

kNavSaveChangesClosingDocument
Requests a Save Changes alert box that asks the user
whether to save changes when closing a document.

kNavSaveChangesQuittingApplication
Requests a Save Changes alert box that asks the user
whether to save changes when quitting your application.

kNavSaveChangesOther
Requests a Save Changes alert box that asks the user
whether to save changes at some time other than closing or
quitting. This is useful when your application prompts the
user to save documents at timed intervals, for example.

Sort Order Constants 0

Your application can specify the sort order for displayed files by passing the
kNavCtlSortOrder constant (page 97) in the selector parameter of the
NavCustomControl function (page 81) and passing one of the constants defined
in the NavSortOrder data type in the parms parameter of the NavCustomControl
function.

enum {
kNavSortAscending = 0,
kNavSortDescending = 1

};
typedef UInt16 NavSortOrder;
Constants for Navigation Services 109
  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
Constant descriptions

kNavSortAscending Sort in ascending order.
kNavSortDescending Sort in descending order.

Translation Option Constants 0

Your application passes one of the NavTranslationOptions constants to the
howToTranslate parameter to specify how files are to be translated by the
function NavTranslateFile (page 62).

enum {
kNavTranslateInPlace = 0,
kNavTranslateCopy = 1

};
typedef UInt32 NavTranslationOptions;

Constant descriptions

kNavTranslateInPlace
Tells Navigation Services to replace the source file with the
translation. This setting is the default for Save dialog boxes.

kNavTranslateCopy Tells Navigation Services to create a translated copy of the
source file. This setting is the default for Open dialog
boxes. The function NavGetFile (page 58) always uses this
setting under automatic translation.

Result Codes for Navigation Services 0

All Navigation Services functions return result codes. The codes specific to
Navigation Services are listed here. In addition, functions that communicate
110 Result Codes for Navigation Services

  Apple Computer, Inc. 11/20/98

Reference for Navigation Services
with other Mac OS managers, such as the File Manager or the Translation
Manager, may return result codes from those managers.

paramErr -50 Your application passed an invalid
parameter for dialog box options.

userCancelledErr -128 User cancelled the action.
kNavInvalidSystemConfigErr -5696 One or more Navigation

Services–required system
components is missing or out of
date.

kNavCustomControlMessageFailedErr -5697 Navigation Services did not accept
a control message sent by your
application.

kNavInvalidCustomControlMessageErr -5698 Your application sent an invalid
custom control message.

kNavMissingKindStringErr -5699 No kind strings were provided to
describe your application's native
file types. For more information, see
“Providing File Format Options”
(page 33).
Result Codes for Navigation Services 111
  Apple Computer, Inc. 11/20/98

Glossary
action button A button that initiates the
action associated with a dialog box; Save,
Open, and Choose are common examples.
The action button is often, but not always,
the default button. See also default button.

alert box A dialog box that appears on
screen to warn the user or to report an error.

Appearance Manager The part of Mac OS
that manages all aspects of user interface
appearance and themes, including controls,
sounds, and color data.

banner In a dialog box, an
application-defined static text field that
provides a specific prompt to the user.

bevel button A control that resembles a
square, beveled push button. It can take the
behavior of other controls, such as radio
buttons, checkboxes, push buttons, and
pop-up menus.

browser list A list box that displays file
objects for navigation and selection.

CFM-68K Runtime Enabler A Mac OS
system extension that provides Code
Fragment Manager services to
non–PowerPC-based systems.

control An onscreen object that the user
can manipulate by using the mouse or
keyboard equivalents in order to cause
instant action with visible results or change
settings to modify a future action.

current location The folder or volume
whose name appears as the title of the
Location button and whose contents are
being displayed in a dialog box’s browser
list.

customization rectangle The area in a
dialog box that is available for
application-defined items.

default button In an alert or dialog box, the
button whose action is invoked if the user
presses the Return key or the Enter key. The
Appearance Manager identifies the default
button by drawing a ring around it. The
default button should invoke the preferred
action which, whenever possible, should be
a “safe” action – that is, one that doesn’t
cause loss of data.

default location The folder or volume
whose contents are displayed in the browser
list when a dialog box is first opened.

deferred translation The process of saving a
file in native format and waiting to provide
translation until the user closes the file.

desktop The onscreen background upon
which all applications display their user
interface. The desktop is composed of the
objects in the startup volume’s desktop
folder plus the icons of all other mounted
volumes.
112
Draft. Confidential.  Apple Computer, Inc. 11/20/98

G L O S S A R Y
dialog box A box that appears on the screen
to solicit information from the user or to
report that the computer is waiting for a
process to complete.

disabled A menu item or control that cannot
be chosen; the item may appear dimmed.

disclosure triangle A control that expands a
view to disclose additional information
about the item being viewed.

drag region The frame of a window,
including the title bar and window outline,
but excluding the close box, zoom box and
size box. Dragging inside this region moves
the window to a new location and makes it
the active window (unless the user is
holding down the Command key).

editable text field A rectangular box inside a
dialog box in which the user enters text to
provide information to an application.

file object A file, folder, or volume.

focus ring A border that highlights the
currently active edit text field or scrolling
list in a dialog box in order to indicate to
user which item has keyboard focus. The
focus ring appears in the current accent
color. See also keyboard focus.

Help menu The menu that provides access
to on-screen help information.

highlight To make something visually
distinct, typically when it’s selected. This is
generally done by reversing black and white
or changing colors to provide a sharp
contrast.

invisible file A file that the Finder does not
normally display to the user.

keyboard equivalent Keystrokes that
invoke a corresponding menu command. A
keyboard equivalent is usually a
combination of one or more modifier keys
and a character key.

keyboard focus A property that determines
which control in a dialog box will receive all
keystrokes. The user can change keyboard
focus by using keyboard navigation or
clicking. See also focus ring.

keyboard navigation In a dialog box,
moving the keyboard focus by pressing the
Tab key. See also keyboard focus.

kind string The string displayed in the Kind
column in a Finder window’s list view.

list box A control that combines a
rectangular frame, one or two scroll bars,
and a scrolling list.

modal dialog box A dialog box that puts the
user in the state or “mode” of being able to
work only in the dialog box. The user cannot
move a modal dialog box; it can be
dismissed only by clicking its buttons.
Compare modeless dialog box, movable
modal dialog box.

modeless dialog box A dialog box that
resembles a document window without a
collapse box. The user can move a modeless
dialog box, make it inactive and active
again, and close it like a document window.
Compare modal dialog box, movable
modal dialog box.

movable alert box An alert box with a title
bar that allows the user to move the alert
box.
113
Draft. Confidential.  Apple Computer, Inc. 11/20/98

G L O S S A R Y
movable modal dialog box A modal dialog
box that has a title bar (with no close box)
that allows the user to move the dialog box.
Compare modal dialog box, modeless
dialog box.

multiple selection Selecting more than one
item in a scrolling list, usually by
Shift-clicking or Command-clicking.

Navigation Services An application
programming interface that allows your
application to provide a user interface for
navigating, opening, and saving Mac OS file
objects.

native file type A file type that an
application identifies as one it can open
without requesting additional translation.

object filtering The process of determining
whether a file object should be displayed to
the user.

'open' resource A Translation Manager
resource that declares which file types an
application can open.

persistence The ability to recall the user-set
properties of a dialog box after it has been
closed.

pop-up menu A menu that appears
somewhere other than the menu bar. A
pop-up menu opens when the user presses
the control that the menu is associated with,
which is usually a pop-up menu button or a
bevel button.

pop-up menu button A button that, when
pressed, presents a pop-up menu. The
button’s label indicates the current menu
setting.

preview area The area of an Open dialog
box reserved for drawing previews of files
selected in the browser list.

rebound The ability of a file browser to
recall the location last viewed. See also
default location.

scrolling list A list of user-selectable items
that can be scrolled if it is longer than the
available display area.

Shift-click To click while the Shift key is
down. The Shift key modifies what a simple
click does in a given situation – for example,
when a user is selecting items in a list,
Shift-clicking extends or shortens the
selection.

size box A box in the lower-right corner of
some active windows. Dragging the size box
resizes the window.

sort key Data associated with a file that can
be used to determine display order in a
browser list. Sort keys commonly include
filename, date, and kind. See also sort order.

sort order Determines whether files in a
browser list will be displayed in ascending
or descending order. See also sort key.

Standard File Package The part of the
Mac OS system files that provides a way for
users to identify files to open and save.
Starting with Mac OS 8.5, Standard File
Package is superseded by Navigation
Services.

type pop-up menus The collective name for
pop-up menu buttons appearing below the
browser list in Navigation Services dialog
boxes. Type pop-up menu buttons include
the Show button in Open dialog boxes and
the Format button in Save dialog boxes.
114
Draft. Confidential.  Apple Computer, Inc. 11/20/98

G L O S S A R Y
type selection The ability to select an item
from a list of items by typing the first
character or characters of the item’s name.

volume A portion of a storage device that is
formatted to contain files.
115
Draft. Confidential.  Apple Computer, Inc. 11/20/98

Index
A

Add to Favorites command 14
advanced tasks 39
All Documents menu item 21, 44
All Readable Documents menu item 20, 43
Appearance Manager 54
AppleGuide 7
Apple Menu Options 15
AppleShare IP 13
AppleShare servers 41
AppleTalk zones 13, 14, 41
automatic translation, disabling 35

B

basic tasks for Navigation Services 18
browser list 10, 44

C

CFM-68K Runtime Enabler 7
Connect to Server command 13
control, adding a custom 48
current location 10
custom control, adding a 48
custom features in Navigation Services dialog

boxes 39
customization rectangle 47
custom menu items 46

D

dates, in browser list 11

default location 17, 40
deferred translation 6
dialog box options 40, 56
'DITL' resource 47
drag-and-drop 14

E

ejectable volumes 12
event-handling function 77

F

Favorites button 13
file objects 26, 29
file reference, valid 51
files, multiple 10, 11
files, opening 18
files, saving 31
files, translating 34
file type options, providing 19
file types, native 20, 44
filter function 50, 79
filtering, Standard File 51
filtering scenarios 42
focus ring 32
folders, choosing 27
folders, creating 30
Format pop-up menu 33

H

heap zone, current 48
116
 Apple Computer, Inc. 11/20/98

I N D E X
K

keyboard equivalents 16, 28
keyboard focus 32
'kind' resource 20

L

Location button 12
locked volumes, saving files on 63

M

Macintosh Easy Open 7
Mac OS 8.5 7
Mac OS X 7
menu items, custom 46
mouse-down events 49
multiple files 10, 11

N

native file types 20, 44
NavAskDiscardChanges function 39, 75
NavAskSaveChanges function 37, 72
NavCBRec structure 89
NavChooseFile function 26, 60
NavChooseFolder function 27, 65
NavChooseObject function 29, 67
NavChooseVolume function 29, 64
NavCompleteSave function 35, 76
NavCustomAskSaveChanges function 38, 73
NavCustomControl function 81
NavDialogOptions enumeration 19
NavDialogOptions structure 85
NavDisposeReply function 57
NavEventDataInfo structure 91
NavEventData structure 90
NavFileOrFolderInfo structure 87
NavGetDefaultDialogOptions function 56

NavGetFile function 18, 22, 58
navigation options 11
Navigation shared library 7, 54, 55
NavLibraryVersion function 54
NavLoad function 55
NavMenuItemSpec structure 87
NavNewFolder function 30
NavPutFile function 31, 33, 34, 35, 70
NavReplyRecord structure 22, 83
NavServicesAvailable function 54
NavTranslateFile function 62
NavTypeList structure 91
NavUnload function 55
network connection options 13
NewControl function 48

O

object filter function 50, 79
opening files 18
'open' resource 20, 91

P

paramErr result 45, 46
persistence 17
preferences 17
preview area 52
preview function 52, 78
previews, automatic 45

Q

QuickTime 7

R

rebound 10
117
 Apple Computer, Inc. 11/20/98

I N D E X
Recent button 14
Recent menu 15
Remove From Favorites command 14
resource chain 48
Revert to Saved menu item 38

S

Save Changes alert box, customized 38
saving changes 37
Shortcuts button 12
Show pop-up menu 19
Show pop-up menu, expanded 20
sort keys 10
sort order 10
Standard File Package 7, 16
Stationery Option command 34

T

translating files, on Open 21
translating files, on Save 34
Translation Manager 19, 33, 63
translations, saving as a copy 35
'typeFSS' Apple event descriptor 22, 40
type pop-up menus 45

U

Uniform Resource Locator 41
user interface elements for Navigation Services 8

V

version checking 54
volumes, choosing 29

W

window, identifying active 52
118
 Apple Computer, Inc. 11/20/98

T H E A P P L E P U B L I S H I N G S Y S T E M

 Apple Compute r, Inc. 11/20/98

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobe™ Illustrator and
Adobe Photoshop.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITER
Otto Schlosser

DEVELOPMENTAL EDITORS
Donna S. Lee, Laurel Rezeau

ILLUSTRATOR
David Arrigoni

PRODUCTION EDITOR
Glen Frank

ACKNOWLEDGMENTS
Yan Arrouye, Andy Bachorski,
Gail DeCamp, Sean Findley, Tony Francis,
Gordon Garb, Pete Gontier, Tim Holmes,
Susan McGarry, Keith Mortensen, Quinn
“The Eskimo!”

	Programming With Navigation Services 1.1
	About Navigation Services
	Introduction
	Requirements
	User Interface
	Browser List
	Navigation Options
	Location Button
	Shortcuts Button
	Favorites Button
	Recent Button

	Keyboard Equivalents
	Persistence

	Using Navigation Services
	Basic Tasks
	Opening Files
	Providing File Opening Options
	Translating Files on Open
	A Sample File-Opening Function
	Listing�1 A sample file-opening function
	Listing�2 A sample file-opening function using Apple events

	Choosing File Objects
	Choosing a File
	Choosing a Folder
	Choosing a Volume
	Choosing a File Object
	Creating a New Folder

	Saving Files
	Providing File Format Options
	Translating Files on Save
	A Sample File-Saving Function
	Listing�3 A sample file-saving function

	Saving Changes
	Displaying a Standard Save Changes Alert Box
	Customizing the Save Changes Alert Box
	Displaying a Discard Changes Alert Box

	Advanced Tasks
	Setting Custom Features
	Setting the Default Location
	Obtaining Object Descriptions
	Filtering File Objects
	Object Filtering Scenarios
	Refreshing the Browser List

	Providing Document Previews
	Customizing Type Pop-up Menus
	Adding Custom Controls
	Listing�4 Adding a custom 'DITL' resource
	Listing�5 Adding a single custom control

	Creating Application-Defined Functions
	Handling Events
	Listing�6 A sample event-handling function

	Filtering File Objects
	Listing�7 A sample filter function

	Drawing Custom Previews

	Reference for Navigation Services
	Functions for Navigation Services
	Identifying Navigation Services Availability
	NavServicesAvailable
	NavLibraryVersion

	Setting up Navigation Services
	NavLoad
	NavUnload
	NavGetDefaultDialogOptions
	NavDisposeReply

	Choosing Files, Folders and Volumes
	NavGetFile
	NavChooseFile
	NavTranslateFile
	NavChooseVolume
	NavChooseFolder
	NavChooseObject
	NavNewFolder

	Saving Files
	NavPutFile
	NavAskSaveChanges
	NavCustomAskSaveChanges
	NavAskDiscardChanges
	NavCompleteSave

	Handling Events and Customizing Dialog Boxes
	MyEventProc
	MyPreviewProc
	MyFilterProc
	NavCustomControl

	Data Types for Navigation Services
	NavReplyRecord
	NavDialogOptions
	NavMenuItemSpec
	NavFileOrFolderInfo
	NavCBRec
	NavEventData
	NavEventDataInfo
	NavTypeList
	NavEventProcPtr
	NavPreviewProcPtr
	NavFilterProcPtr

	Constants for Navigation Services
	Configuration Option Constants
	Custom Control Setting Constants
	Discard Changes Action Constants
	Event Message Constants
	File Sorting Constants
	Menu Item Selection Constants
	Object Filtering Constants
	Save Changes Action Constants
	Save Changes Request Constants
	Sort Order Constants
	Translation Option Constants

	Result Codes for Navigation Services

