



Preliminary Working Draft, Revision 21

10/26/98
Technical Publications
© Apple Computer, Inc. 1998



Driver Developer Kit

Mac OS USB DDK API
Reference

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98



Apple Computer, Inc.
© 1998 Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except in the normal use of the
software or to make a backup copy
of the software or documentation.
The same proprietary and copyright
notices must be afÞxed to any
permitted copies as were afÞxed to
the original. This exception does not
allow copies to be made for others,
whether or not sold, but all of the
material purchased (with all backup
copies) may be sold, given, or loaned
to another person. Under the law,
copying includes translating into
another language or format. You
may use the software on any
computer owned by you, but extra
copies cannot be made for this
purpose.
Printed in the United States of
America.
The Apple logo is a trademark of
Apple Computer, Inc. Use of the
ÒkeyboardÓ Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is

accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
1 InÞnite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, LaserWriter,
and Macintosh are trademarks of
Apple Computer, Inc., registered in
the United States and other
countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.
Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Intel is a registered trademark of
Intel Corporation.
Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON
MEDIA AND REPLACEMENT

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR
REPRESENTATION, EITHER
EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR

PURPOSE. AS A RESULT, THIS
MANUAL IS PROVIDED ÒAS IS,Ó
AND YOU, THE DEVELOPER,
ARE ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND
REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU
OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent,
or employee is authorized to make
any modiÞcation, extension, or
addition to this warranty.

Some states do not allow the
exclusion or limitation of implied
warranties or liability for incidental
or consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty
gives you speciÞc legal rights, and
you may also have other rights
which vary from state to state.

Contents

Figures and Tables 9

Preface About This Note 11

Contents of This Note 12
Supplemental Reference Documents 12
Mac OS USB Resources 13
Apple Developer Connection Web Site 13

Chapter 1 Overview 15

Introduction to USB 16
Why Incorporate USB Into the Macintosh Architecture? 16

Better Device Expansion Model 16
Compact Connectors and Cables 17
Use of Standard Hardware 17
Lower Cost Than Comparable Non-USB Peripherals 18

Wide Selection of USB Devices 18
Device Classes 18
Low- and High-Speed Devices 19
USB Hub Devices 19
The USB Root Hub 20

Compatibility Issues 20
USB Software Gestalt Selectors 21
ADB, Serial/LocalTalk, and USB 21
Macintosh-To-Macintosh USB Connections 21
USB Storage Devices 22
Keyboard Requirements 22
USB Data Transfer Types Supported 22
USB Controller Support 22
3
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

Chapter 2 USB Topology and Communication 25

USB Bus Topology 26
Host Software 26
Physical Topology 27
Logical Topology 27

Communication Over the USB 28
USB Interface 29
USB Devices 29
Endpoints 29

Endpoint 0 30
Non-0 Endpoints 30

Pipes 30
A Look At USB Devices with USB Prober 30

Chapter 3 USB Software Components 33

Mac OS Software for USB Devices 34
USB Software Presence and Version Attributes 36
USB Interface Module (UIM) 36
USB Manager 37
Hub Driver 38
USB Class Drivers 38
USB Services Library (USL) 39

Chapter 4 USB Services Library Reference 41

USB Services Library (USL) 42
Errors And Error Reporting Conventions 42

Device Access Errors 43
Errors on the USB Bus 43
Incorrect Command Errors 44
Driver Logic Errors 44
PCI Bus Busy Errors 44

USB References 44
The USBPB Parameter Block 45
Required USB Parameter Block Fields 47
4
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

Standard Parameter Block Errors 48
Asynchronous Call Support 48
Polling Versus Asynchronous Completion (Important) 50

USL Functions 51
USB ConÞguration Functions 51

Opening An Interface 55
ConÞguring The Device Interface(s) 56
Finding A Pipe 58
Getting Information About an Open Interface or Pipe 59

Generalized USB Device Request Function 62
USB Transaction Functions 65
Pipe State Control Functions 70

Data Toggle Synchronization 71
USB Management Services Functions 76
USB Time Utility Functions 78
USB Memory Functions 81
Byte Ordering (Endianism) Functions 83
USL Logging Services Functions 84
USB Descriptor Functions 85
Opening a Pipe 90
Device Management Functions 93

Constants and Data Structures 97
USB Constants 97

Parameter Block Constants 97
Endpoint Type Constants 97
usbBMRequest Direction Constants 98
usbBMRequestType Type Constants 98
usbBMRequest Recipient Constants 98
usbBRequest Constants 98
Interface Constants 99
Interface Protocol Constants 99
Driver Class Constants 99
Descriptor Type Constants 99
Pipe State Constants 100
USB Power and Bus Attribute Constants 100
Driver File and Resource Types 100

USB Data Structures 100
Driver Plug-in Dispatch Table Structure 100
5
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

Device Descriptor Structure 101
ConÞguration Descriptor Structure 102
Interface Descriptor Structure 102
Endpoint Descriptor Structure 102
HID Descriptor Structure 103
HID Report Descriptor Structure 103
Hub Port Status Structure 103

USL Error Codes 104

Chapter 5 USB Manager Reference 107

Overview 108
USB Manager API 109

Topology Database Access Functions 109
Getting Device Descriptors 110
Getting Interface Descriptors 110
Finding The Driver For A Device By Class 111
Getting The Connection ID For Class Driver 113
Getting The Bus Reference For a Device 113

Callback Routine for Device NotiÞcation 113
Device NotiÞcation Callback Routine 114
Device NotiÞcation Parameter Block 114
Installing The Device Callback Request 115
Removing The Device Callback Request 116

Appendix A Changes In Mac OS USB Version 1.1 117

Major Feature Updates In Version 1.1 117
Improved Bus Enumeration 118
Multiple USB Bus Support 118
Driver NotiÞcation Messages 118
Isochronous Transfer Support 118
Improved Functionality For USB Control Requests 119
The Isochronous Version Of The USBPB 119
Using the USBPB For Isochronous Transactions 121

Code Changes Required To Support The Version 1.1 USBPB 123
6
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

Appendix B Conventions and Abbreviations 125

Conventions 125
Abbreviations 125

Appendix C USB Terminology 127

Index 133
7
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

8
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

Figures and Tables

Chapter 1 Overview 15

Table 1-1 Examples of USB device classes 18

Chapter 2 USB Topology and Communication 25

Figure 2-1 USB physical topology 27
Figure 2-2 USB communication flow 28
Figure 2-3 USB Prober view of a USB device 31

Chapter 3 USB Software Components 33

Figure 3-1 USB architecture 35

Chapter 4 USB Services Library Reference 41

Table 4-1 Standard parameter block errors 48
Table 4-2 Error definitions 104

Chapter 5 USB Manager Reference 107

Figure 5-1 Device addition event sequence on the USB 108
9
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

10
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

P R E F A C E

About This Note

This document provides a high-level introduction to the features of the
Universal Serial Bus (USB). It also describes the Apple Macintosh software
components and programming interfaces that support USB device hardware.

This document is intended for experienced hardware and software developers
interested in creating USB device drivers for the Macintosh platform. Hardware
and software developers reading this document should be familiar with the
information in the PCI Driver Development Kit, available on the Developer CD
Series, and have a copy of the current Universal Serial Bus SpeciÞcation, which
can be found at <http://www.usb.org/developers>.

If you are not familiar with the terminology used to describe the elements that
make up the USB architecture, see Appendix C, ÒUSB Terminology,Ó page 127
before moving on to the rest of the material in this document.

If you are interested in Þnding about about the features USB provides and want
to get a basic desription of the elements that make up the USB topology, you
should read the introductory material in Chapter 1, ÒOverview,Ó and Chapter 2,
ÒUSB Topology and Communication.Ó .

If you already understand the features and topology of the USB architecture
and want to get to work developing a Mac OS compatible device driver for
your USB device, see the material in Chapter 3, ÒUSB Software Components,Ó
and the reference material in Chapter 4, ÒUSB Services Library Reference,Ó and
Chapter 5, ÒUSB Manager Reference.Ó In addition, look at the example code
provided in the Mac OS USB Device Driver Kit.

Every attempt is made at keeping the information in this document concurrent
with the latest revision of the Mac OS USB software. Major differences between
versions of the software are noted in Appendix A, ÒChanges In Mac OS USB
Version 1.1,Ó page 117. In particular, this draft includes information related to
changes between version 1.0/1.0.1 and version 1.1 of the Mac OS USB software.

IMPORTANT

The information in this note is subject to change; no
representation or guarantee is made about its accuracy or
completeness. ▲
11
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

P R E F A C E

Contents of This Note 0

The information is arranged in four chapters and three Appendices:

■ Chapter 1, ÒOverview,Ó provides an introduction to the USB architecture.

■ Chapter 2, ÒUSB Topology and Communication,Ó provides a high level
overview of the topology of the USB and how the host software
communicates with devices over the USB.

■ Chapter 3, ÒUSB Software Components,Ó is an overview of the components
that make up the Macintosh USB software architecture.

■ Chapter 4, ÒUSB Services Library Reference,Ó describes the Mac OS USB
system software libraries that developers use to support programming USB
class drivers for their USB devices.

■ Chapter 5, ÒUSB Manager Reference,Ó describes the Mac OS USB Manager
library that provides service to the Mac OS and extension clients.

■ Appendix A, ÒChanges In Mac OS USB Version 1.1,Ó provides information
about the differences that developers need to be aware of in version 1.1 of the
Mac OS USB software.

■ Appendix B, ÒConventions and Abbreviations,Ó provides a list of standard
abbreviations used in Apple technical documentation.

■ Appendix C, ÒUSB Terminology,Ó deÞnes many of the terms that are
commonly used in discussion related to the USB hardware and software
architecture.

Supplemental Reference Documents 0

For technical documentation describing the USB speciÞcation, see the Universal
Serial Bus SpeciÞcation, which can be found at

http://www.usb.org/developers

Technical speciÞcations for USB device classes can also be found at the USB web
site.
12

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

P R E F A C E

For information about PCI expansion cards, refer to
Designing PCI Cards and Drivers for Power Macintosh Computers.

Developers should also have copies of the relevant books of the Inside Macintosh
series, available in technical bookstores and on the World Wide Web at

http://developer.apple.com/techpubs/mac/

Mac OS USB Resources 0

For late-breaking information, technical notes, and sample code for developing
USB device drivers for the Macintosh platform, visit the Mac OS USB web site:

http://developer.apple.com/dev/usb/

For developers getting started with the Macintosh platform, see the
Introduction to Macintosh Programming web site at:

http://developer.apple.com/macos/intro.html

For developers creating Macintosh software for gaming devices, see the
Macintosh Game Sprockets web site where you will Þnd information about
Input Sprockets version 1.3, which supports writing Input Sprockets for USB
gaming devices.

http://developer.apple.com/dev/games/

Apple Developer Connection Web Site 0

The Apple Developer Connection Web site is the one-stop source for Þnding
technical and marketing information speciÞcally for developing successful
Macintosh-compatible software and hardware products. Developer Connection
is dedicated to providing developers with up-to-date Apple documentation for
existing and emerging Macintosh technologies. Developer World can be
reached at

<http://developer.apple.com/programs/>
13
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

P R E F A C E
14

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 1

Figure 1-0
Listing 1-0
Table 1-0
Overview 1
15
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 1

Overview

This chapter provides a high-level introduction to the features of the Universal
Serial Busª (USB).

Introduction to USB 1

This section describes the beneÞts of incorporating USB into the Macintosh
hardware architecture. It also provides information about the selection of
devices supported by the USB architecture.

Why Incorporate USB Into the Macintosh Architecture? 1

The motivation behind the selection of USB for the Macintosh architecture is
simple.

■ USB is a low-cost, medium-speed peripheral expansion architecture that
provides data transfer rates up to 12 Mbps.

■ The USB is a synchronous protocol that supports isochronous and
asynchronous data and messaging transfers.

■ USB provides considerably faster data throughput for devices than does the
Apple Desktop Bus (ADB) and the Macintosh modem and printer ports. This
makes USB an excellent replacement solution for not only the existing slower
RS-422 serial channels in the Macintosh today, but also the Apple Desktop
Bus, and in some cases slower speed SCSI devices.

In addition to the obvious performance advantages, USB devices are hot
pluggable and as such provide a true plug and play experience for computer
users. USB devices can be plugged into and unplugged from the USB anytime
without having to restart the system. The appropriate USB device drivers are
dynamically loaded and unloaded as necessary by the Macintosh USB system
software to support hot plugging and unplugging.

Better Device Expansion Model 1

The USB speciÞcation includes support for up to 127 simultaneously available
devices on a single computer system. (One device ID is taken by the root hub.)
To connect and use USB devices, it isnÕt necessary to open up the system and
add additional expansion cards. Device expansion is accomplished with the
16 Introduction to USB

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 1

Overview

addition of external USB multiport hubs. Hubs can also embedded in USB
devices like keyboards and monitors, which provide device expansion in much
the same way that the Apple Desktop Bus (ADB) is extended for the addition of
a mouse through the keyboard or monitor. However, the USB implementation
doesnÕt have the device expansion or speed limitations that ADB does.

Compact Connectors and Cables 1

USB devices utilize a compact 4-pin connector rather than the larger 8- to 25-pin
connectors typically found on RS-232 and RS-422 serial devices. This results in
smaller cables with less bulk. The compact USB connector provides two pins for
power and two for data I/O. Power on the cable relieves hardware
manufacturers of low-power USB devices from having to develop both a
peripheral device and an external power supply, thereby reducing the cost of
USB peripheral devices for manufacturers and consumers.

The cables for high-speed and low-speed devices differ in construction.
High-speed USB device cables require shielding and two pairs of twisted-pair
wires inside. One twisted pair provides power, nominally +5V (4.3 to 5.3 V at
100ma) for devices connected directly to the host, and ground. A powered hub
can provide up to 500ma of +5V per port. (See ÒUSB Hub DevicesÓ (page 1-19)
for a description of the services a hub provides on the USB.) The other pair of
wires is for data I/O signals. (Low-speed cables are untwisted and do not
require shielding.)

High-speed cables are most common, and appear as patch cables to attach hubs
to hubs, or attach high-speed devices to a hub. Low-speed cable length can be
up to 3 meters, and high-speed cable length up to 5 meters. Both high-speed
and low-speed cables can be used on the same system bus.

USB cables are directional, the upstream connector is mechanically different
from the downstream connector. The upstream connector has a small nearly
square shape with a stacked pinout and the downstream connector has
rectangular shape with an in-line pinout. This prevents users from connecting
cables in a way that would create a loopback connection at a hub.

Use of Standard Hardware 1

Devices that are designed in accordance with the USB standard should not
require any modiÞcation to run on a Macintosh computer or other hardware
platforms. The only changes that developers need be concerned with to support
Introduction to USB 17
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 1

Overview

the Macintosh market are the changes involved in the development of
Macintosh USB device drivers and applications.

Lower Cost Than Comparable Non-USB Peripherals 1

Low-power USB devices are less expensive than their serial or parallel interface
counterparts, because of the elimination of the power supply and because the
USB standard is also incorporated into PC systems developed around the PC
Õ98 hardware architecture. Future versions of the PC Ô98 compliant operating
systems will also include built-in driver support for a wide variety of USB
devices. Together these factors mean that a larger customer base will form for
USB peripheral devices, resulting in lower retail costs of USB devices for all
personal computer users.

Wide Selection of USB Devices 1

The USB speciÞcation supports lower-speed devices, such as a keyboards, mice,
joysticks, and gamepads, at 1.5 Megabits per second and higher speed devices,
such as removable storage devices, scanners, or digital cameras, at up to 12
Megabits per second (high-speed is referred to as full speed signalling in the USB
speciÞcation).

Device Classes 1

USB devices are categorized by class. Table 1-1 lists a few examples of USB
device classes.

Table 1-1 Examples of USB device classes

USB device class USB devices in class

Audio class Speakers, microphones

Communication class Modem, speakerphone, internet phone

Composite class A single device that supports multiple functions,
mice, keyboards, and others

HID class Keyboards, mice, joysticks, drawing tablets, and
other pointing devices
18 Introduction to USB

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 1

Overview

Low- and High-Speed Devices 1

Low-speed devices, which may include keyboards, mice, drawing tablets and
others, are typically in a USB class called the Human Interface Device (HID)
class. There is generally some cost reduction in low-speed devices because the
cabling is less expensive than cabling for high-speed devices.

Low-speed devices support only short messaging and do not support bulk and
isochronous transfers.

High-speed devices generally include communications devices, printing
devices, bulk storage devices, audio devices, and others.

There is nothing to prevent USB devices from being in either a high-speed or
low-speed category. However, some classes of devices, those that require bulk
or isochronous transfer services, cannot be part of the low-speed category.

Note
High speed in the case of USB is not comparable to
high-speed devices on a FireWire bus. USB is a
complementary technology to FireWire, not a competing
technology. USB enables the use of affordable higher-speed
consumer grade peripherals on Macintosh computers.

USB Hub Devices 1

Hubs are also USB devices and provide attachment points to the USB for other
devices or hubs. Hubs can be embedded into other USB devices (this is known
as a compound class device). For example, a hub can reside in a keyboard,

Hub class Hubs provide additional attachment points for
extending the USB

Mass storage class Floppy drives, other removable storage devices.

Printing class Printers

Vendor speciÞc A device that doesnÕt Þt into any other
predeÞned class, or one that doesnÕt use the
standard protocols for an existing class

Table 1-1 Examples of USB device classes (continued)

USB device class USB devices in class
Introduction to USB 19
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 1

Overview

monitor, or printer to provide attachment points for other (typically) low-power
devices.

Hubs are also in the form of standalone multi-port hubs that provide
attachment points to the USB for other USB devices. Multiport-hubs are
generally categorized as bus-powered and self-powered. Bus-powered hubs can
request a total of 500ma from the USB and provide no more than 100ma of
power at each port on the hub. Even though a bus-powered hub may request
500ma, it may not get the power depending on the devices connected upstream
on the USB. Self-powered hubs (hubs that include a source of power external to
the USB) can supply additional power to the USB, and are required to provide
up to 500ma at each port on the hub.

While it is physically possible to connect two bus-powered hubs together in-line
without damaging any devices on the USB, it should not be done because there
isnÕt enough power on the USB to support such an attachment. If sufÞcient
power isnÕt available for the downstream device, the USB software will not be
able to properly conÞgure the deviceÕs power requirements. The downstream
hub most likely will not function. However, a self-powered hub and
bus-powered hub can be connected together in-line.

See Chapter 11 of the Universal Serial Bus SpeciÞcation for additional
information about USB hubs.

The USB Root Hub 1

There is also a hub referred to as the root hub. The root hub is a software
simulation of a hub with hardware controller support. It acts as part of the host
hardware environment on the main logic board or on an I/O expansion card.
The root hub is similar to the other hubs, in that it provides an attachment point
or points to extend the USB from the host, however it is the initial connection
point and parent of the bus at which all signals originate. A simple diagram of
the USB topology is shown in Figure 2-1 (page 2-27).

Compatibility Issues 1

This section describes issues related to compatibility with legacy Macintosh
ADB, serial/LocalTalk, and storage devices. In addition, it describes some
fundamental differences in how USB works as a serial communications channel
in the Macintosh environment.
20 Compatibility Issues

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 1

Overview

USB Software Gestalt Selectors 1

There are four gestalt selectors deÞned for determining the version attributes of
the USB software. To use the gestalt selectors you must understand how to use
the Gestalt Manager, which is deÞned in Inside Macintosh: Overview. The gestalt
selectors for USB software are deÞned in Chapter 3, ÒUSB Software Presence
and Version Attributes.Ó

ADB, Serial/LocalTalk, and USB 1

You cannot physically connect legacy ADB devices or serial/LocalTalk devices
to USB ports.

It is currently not possible to use a USB keyboard to access OpenFirmware if the
keyboard is connected to a PCI USB controller card in a Macintosh. Essentially,
keystrokes are not recognized early enough in the boot sequence to allow boot
keyboard access to OpenFimware. Other keyboard key combinations, such as
turning off system extensions with the Shift key down, do function as expected.

Macintosh-To-Macintosh USB Connections 1

USB is a serial communications channel, but does not replace LocalTalk
functionality on Macintosh computers. You cannot connect two Macintosh
computers together using the USB like you can in a LocalTalk serial network for
a couple of reasons.

■ The USB cable connectors are designed in such a way that it should be
impossible to attach two upstream devices together. A standard USB cable
has one upstream connector and one downstream connector. The root hub in
the Macintosh computer is the Þrst device on the USB, and as such it is
always an upstream device in the USB topology.

■ The USB uses a master/slave communication model in which the Macintosh
host controls all communication and is the master of the bus. There cannot be
two masters on the same bus.

The most cost efÞcient method for networking USB enabled Macintosh
computers together is through the built-in Ethernet port.
Compatibility Issues 21
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 1

Overview
USB Storage Devices 1

Version 1.0 of the Apple USB software does not support booting from any USB
storage device.

Keyboard Requirements 1

Apple provides a HID class driver for the Apple USB keyboard, which supports
the USB boot protocol. Keyboards intended for use on the Macintosh platform
must support the HID boot protocol, as deÞned in the USB Device Class
DeÞnition for Human Interface Devices (HIDs).

USB Data Transfer Types Supported 1

There are four data transfer types deÞned by the USB speciÞcation. They are

■ Bulk transfers which offer guaranteed delivery of data. This may include
retrying transmissions at the hardware level. Bulk data transactions are best
suited for printers, scanners, modems, and devices that require accurate
delivery of data with relaxed timing constraints.

■ Interrupt transfers, which allow a device to signal the host. Interrupt data
transactions do not use up CPU cycles unless the device has data ready.
Interrupt transactions are used for HID class devices like keyboards, mice,
joysticks, as well as devices that want to report status changes, such as serial
or parallel adaptors and modems.

■ Isochronous transfers for one time delivery of data. Isochronous data
transactions are best suited for audio or video data streams.

■ Control transfers for device conÞguration and initialization.

Version 1.0 of the Mac OS USB software provides functions that support only
control, bulk, and interrupt transfer types. Version 1.1 supports control, bulk,
interrupt, and isochronous transfers types.

USB Controller Support 1

The Apple Macintosh USB system software supports controllers compatible
with the Open Host Controller Interface (OHCI) speciÞcation. It does not
support Universal Host Controller Interface (UHCI) controllers.
22 Compatibility Issues

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 1

Overview
Some early USB devices (most notably keyboards) canÕt interoperate with an
OHCI controller. These devices will not be supported by the Apple USB system
software.
Compatibility Issues 23
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 1

Overview
24 Compatibility Issues

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 2

Figure 2-0
Listing 2-0
Table 2-0
USB Topology and
Communication 2
25
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 2

USB Topology and Communication
This chapter introduces the topology of the USB and how the host software
communicates with devices over the USB. This is only a high-level introduction.
For the complete details of the USB topology and communication model, see
the Universal Serial Bus SpeciÞcation, which can be found at
<http://www.usb.org/developers>.

USB Bus Topology 2

This section brießy describes the topology and communication model for the
USB architecture.

The USB architecture has a well deÞned physical and logical bus topology,
which is fully described in the Universal Serial Bus SpeciÞcation. The physical
topology deÞnes how USB devices are connected together. The logical topology
deÞnes how the various components that make up the physical topology are
viewed by the host software.

Host Software 2

The client software, the USB management software, and the USB host controller
together make up the host software in the USB logical topology.

The host plays a special role as the arbiter of all activity on the USB. A USB
device can only gain access to the bus through the host by supplying a device
descriptor that includes the information necessary to manage the device
according to its features and class identiÞers. See Chapter 4, ÒUSB Services
Library Reference,Ó for additional information about the contents of the device
conÞguration descriptor structure.

The host interacts with USB devices through the host controller. The host is
responsible for:

■ Monitoring the attachment and removal of USB devices

■ Managing control and data ßow between the host and USB devices

■ Maintaining device status and activity information

■ Providing a limited amount of power to the USB
26 USB Bus Topology

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 2

USB Topology and Communication
Physical Topology 2

An example of the USB physical topology is shown in Figure 2-1. The system
software has to know about the physical topology to perform bandwidth
measurements in order to optimize bit time requirements for the USB as it
grows with additional hubs and devices. Device drivers do not have to know
about the physical topology. The USB speciÞcation states that the host can
handle up to six levels of hub support.

Figure 2-1 USB physical topology

Logical Topology 2

The logical topology is how the host software views and communicates with
devices in the physical topology. From the host software perspective, the USB is

Device

Device

Device

Device

Telephony
device

Host

Keyboard
with hub

Printer
device

Scanner
device

Mouse
device

bus-
powered

hub

self-
powered

hub

Root hub
USB Bus Topology 27
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 2

USB Topology and Communication
seen as a linear addressing space.The host is aware of the physical topology so
that it can accurately support connection and disconnection on hubs with
attached devices.

Communication Over the USB 2

This section provides an abridged description of the logical communication
model on USB. Refer to the Universal Serial Bus SpeciÞcation for complete
technical details. A simpliÞed diagram of the USB communication ßow is
shown in Figure 2-2.

The USB driver software maintains an abstract view of the logical and physical
topology of the bus when it communicates with USB devices. Drivers look for
the interface(s) of interest that are available in devices on the USB.

Figure 2-2 USB communication flow

Client Software

Interface

USB logical device

Host

Buffers

Control pipe

Bulk pipes

Interrupt pipe

Isochronous
pipes

Endpoints

Client Software

Interface
28 Communication Over the USB

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 2

USB Topology and Communication
USB Interface 2

Interfaces are a means of determining the functionality a device can provide to
the host and the means by which the device is controlled. For example, a device
which provides a bulk interface function to the host would be controlled by an
driver that understands the interface for the bulk transaction protocol.

Physical devices may contain multiple interfaces, which logically appear as
device functions within devices. Each device has one interface for each function
is supports.

The logical device is identiÞed through an interface. Drivers use the USB
Manager APIs to open interfaces to device functions (capabilities). The deviceÕs
function(s) are deÞned by the interface class, subclass, and protocol values in
the interface descriptor for the device.

A logical USB device is a collection of endpoints, grouped into endpoint sets,
which implement a logical interface. USB software manages the interface using
a pipe or pipe bundles. (Pipe bundles are used for bulk and isochronous
transfers.) Data is packetized in a USB-deÞned structure by the host controller
and moved across the USB between a software serial interface engine on the
host and an endpoint on the device.

USB Devices 2

Every USB devices is accessed by a unique USB address, which is assigned by
the USB host software after initial device recognition and conÞguration takes
place. Each USB device additionally supports one or more endpoints with
which the host may communicate. All USB devices must support a specially
designated Endpoint 0 to which the USB deviceÕs default control pipe is
attached during device initialization.

Endpoints 2

Endpoints are the terminus of a communication ßow between a USB device and
the host. Endpoints are a logical point inside the USB device to which the host
may attach a pipe to initiate communication with a USB device. Endpoints
represent a speciÞc data connection where interfaces represent a larger
functional connection.
Communication Over the USB 29
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 2

USB Topology and Communication
Endpoint 0 2

Endpoint 0 has a special responsibility. It is used for USB device initialization
and conÞguration. All USB devices must support a default endpoint 0.
Endpoint 0 supports control transfers which provide control pipe access to
device descriptors and control requests to modify the deviceÕs behavior.

Non-0 Endpoints 2

Non-0 endpoints are endpoints greater than 0. Low speed functions are limited
to two optional endpoints beyond the required endpoint 0. Higher speed
devices can have additional endpoints. However, no more than 16 input
endpoints and 16 output endpoints. Endpoint 0 is used as both an input and
output endpoint, which leaves a total of 15 each for input and output endpoints
(0 through 15 = 16).

A non-0 endpoint is not available for use until it is conÞgured by the startup
conÞguration process when the device is attached to the USB.

Non-0 endpoints are not unique across device conÞgurations. Endpoint
numbers are deÞned by the device vendor in a conÞguration descriptor for the
device. The associated interface or function associated with an endpoint
number may be different for the same endpoint number in different devices.
You should not count on endpoint numbers being identical from device to
device for a given interface.

Pipes 2

A pipe represents the communication link between a USB device endpoint and
the host software. Data moves to and from the USB device through the pipe.
Pipes have two communication modes, stream and message, and four transfer
types, control, isochronous, interrupt, and bulk.

For a detailed descriptions of USB interfaces, endpoints, pipes, communication
modes, and transfer types see the Universal Serial Bus SpeciÞcation, which can
be found at <http://www.usb.org>.

A Look At USB Devices with USB Prober 2

The USB Prober application, which is part of the Mac OS USB Device Driver
Kit, is a utility for examining devices on the USB. Figure 2-3 is a screen capture
taken from the USB Prober application. The example shows the various
30 Communication Over the USB

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 2

USB Topology and Communication
descriptors that deÞne a USB keyboard class device. You can see that the
keyboard is a composite class device, that has a HID interface with a keyboard
protocol, and has a single endpoint that supports the interrupt transfer type.

Additional details about how to access the information that deÞnes a USB
device can be found in ÒUSB Services Library Reference.Ó

Figure 2-3 USB Prober view of a USB device
Communication Over the USB 31
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 2

USB Topology and Communication
32 Communication Over the USB

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 3

Figure 3-0
Listing 3-0
Table 3-0
USB Software Components 3
33
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 3

USB Software Components
This chapter is in preliminary overview of the components that make up the
Macintosh USB software architecture.

Mac OS Software for USB Devices 3

The software that supports USB devices in the Mac OS environment includes a
USB Interface Module (UIM), a USB Manager, a USB Services Library (USL),
and USB class drivers.

■ The UIM, pronounced whim, communicates with the USB controller
hardware and provides a hardware abstraction layer for the USL and USB
Manager.

■ The USB Manager is the API provided to the Mac OS, or extensions that need
information related to the USB.

■ The USL is the API that USB device drivers use to add device functionality to
the USB on Macintosh computers. The API is deÞned in the USB.h Þle and
Chapter 4, ÒUSB Services Library Reference.Ó

■ Device class drivers in version 1. 0 of the Macintosh USB system software
include a USB composite device class driver to support USB HIDs, such as
keyboards and mice, and a hub class driver to support hubs attached to the
USB.

The Mac OS USB system software components are available as system
extensions for Macintosh systems that do not include built-in USB ports. This
generally applies to Macintosh computers that have USB ports on PCI cards.
Macintosh computers that have USB ports designed into the main logic board,
like the iMac computer, have all of the USB software components, excluding the
class drivers, in the Macintosh system ROM.

Figure 3-1 shows the components that make up the USB software architecture
on the Macintosh computer. Release version 1.0 of the Macintosh USB software
provides only class driver support for a USB keyboard, mouse, and hub.
34 Mac OS Software for USB Devices

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 3

USB Software Components
Figure 3-1 USB architecture

USB Hardware

Software

Mac OS layer

USB Manager

Chooser
extension

ADB
Manager

Comm
Toolbox

File
System

MouseKeyboard

CDM shimADB shim

Other

Composite class driver

Printer
class
driver

Comm
class
driver

Mass
Storage
driver

PCI
cards

UIM
(future)

OpenHCI
Controller

OpenHCI UIM

Root hub
simulation

Devices

USB class
driver layer

Card
bus

UIM
(future)

DevicesDevices

USB Services

Hardware abstraction
layer

USB Interface Module
(UIM)

connectors
on computer

Application

USB Services Library (USL)

Root hub

Other

Hub
driver
Mac OS Software for USB Devices 35
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 3

USB Software Components
USB Software Presence and Version Attributes 3

Applications can obtain information about the presence, version, and attributes
of USB software on Macintosh computers by using the Gestalt Manager
routines and USB gestalt selectors. The Gestalt Manager is deÞned in Inside
Macintosh: Overview.

The gestaltUSBAttr, gestaltUSBPresent, gestaltUSBHasIsoch, and
gestaltUSBVersionGestalt selectors are deÞned for Macintosh USB software as
follows:

gestaltUSBAttr = ‘usb ‘ USB attributes
gestaltUSBPresent = 0 Bit 0 is set if USB software is present
gestaltUSBHasIsoch = 1 Bit 1 is set is USB software supports

isochronous transfers
gestaltUSBVersion = ‘usbv‘ USB version number

The gestaltUSBVersion selector returns the version of the USB software in a
32-bit format as follows:

MMmmRRss

MM The most signiÞcant byte containing the major version number.
The current value for the major version number is 1. This
number will increment with each major release.

mm The next byte contains the minor version number. The current
value for the minor version number is 1.

RR The next byte contains the release stage. The release stage is
deÞned as: 0x02 = development, 0x04 = alpha, 0x06 = beta, and
0x08 = Þnal. If the software was at the beta release stage, this
number would be 0x06.

ss The least signiÞcant byte is the sequence number of the release,
and it changes with every build of the USB software.

USB Interface Module (UIM) 3

The UIM provides the upper layers of the USB software with a hardware
abstraction layer to the USB host controller interface hardware. The UIM
communicates directly with the USB controller hardware to set up the
36 Mac OS Software for USB Devices

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 3

USB Software Components
appropriate communication links with the USB devices on the bus. The UIM
also provides root hub simulation.

The UIM is a native driver 'ndrv' code fragment, as deÞned in ÒDesigning
Macintosh PCI Cards and Drivers.Ó In addition to supporting the data export
guidelines for ndrvs, the UIM provides USB speciÞc data exports that deÞne the
UIM driver entry points and descriptor structures built for devices on the USB.

OpenFirmware builds a Name Registry entry for the host controller and
matching UIM during hardware bring up time, prior to booting the operating
system. The USB Manager uses the information in the Name Registry to
communicate with the UIM. Once the UIM is loaded and begins hub
simulation, the USB Manager determines that a hub is present and loads the
hub driver. At this point, the hub driver begins monitoring all USB device
activity at the USB hub simulation provided by the UIM.

A UIM is required for every USB bus controller implementation installed in the
host. For example, multiple UIMs would be required on a host which has both a
built-in USB host controller interface and a USB controller interface on a PCI
card. Developers designing PCI, Card Bus, or any other controller interface to
the USB may need to provide a UIM for their card interface. For information
regarding the APIs needed for UIM software development, send email to the
Apple USB evangelist at USB@apple.com.

USB Manager 3

The USB Manager performs driver matching and loading services and
communicates internally with other components of the Macintosh USB host
software to identify devices on the USB. The USB Manager also provides
services that Mac OS and applications use to determine the status of devices,
handle power management tasks, and notify the user or other applications
about USB devices being attached to or removed from the USB.

An example of a service that the USB Manager can provide for a client is when
a client makes a request to Þnd a keyboard. The USB Manager determines if a
keyboard is installed and returns the appropriate response. If a keyboard is
installed, the client can ask where the class driver is for that keyboard. The USB
Manager then points to the code fragment that contains the class driver for
keyboards. The client then communicates with the keyboard through the class
driver. The keyboard class driver communicates with the keyboard interface
through the USB Services Library. The API for the USB Manager is included in
Chapter 5, ÒUSB Manager Reference.Ó.
Mac OS Software for USB Devices 37
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 3

USB Software Components
Hub Driver 3

The hub driver provides support for the USB software architecture by
monitoring the connection and removal of devices on the USB at a hub. This
process is referred to as device enumeration. When the hub driver recognizes
that a device has been plugged into the bus at a given port ID on a hub, it
notiÞes the USL. The USL notiÞes the USB Manager, which in turn builds the
Name Registry entry for the device and binds the appropriate class driver with
that device. When the hub driver Þnds a device, it notiÞes the USB Manager
that a device has been found. The USB Manager loads the appropriate class
driver based on the class and subclass and other information found in the
device conÞguration or interface conÞguration descriptor for the device.

Additional information about the process of bus enumeration is described in
Chapter 9 of the Universal Serial Bus SpeciÞcation.

USB Class Drivers 3

A USB device must have a USB class driver or drivers for every interface
(function) the device supports to operate properly on the Macintosh computer.
Macintosh USB class drivers are ÒndrvÓ native code fragments and as such
follow the guidelines speciÞed for creating Macintosh native drivers in the
Designing Macintosh PCI Cards and Drivers. USB class drivers provide a driver
descriptor structure that the USB Manager uses to match with a device or
interface.

The USB Manager matches drivers to device interfaces by initially examining
the product ID and vendor ID Þelds in the device descriptor for the device. To
ensure proper device and driver matching, additional information regarding
the device is examined if none or more than one driver matches the product ID
and vendor ID values for the device. Detailed information about how USB class
driver and device matching is accomplished is in the Universal Serial Bus
Common Class SpeciÞcation which can be found at <http://www.usb.org>.

There are several classes of drivers deÞned by various USB speciÞcations, and
new classes are being proposed all the time. The Macintosh USB software
includes HID class drivers for the HID interfaces in the USB keyboard and
mouse. The keyboard and mouse drivers are loaded by a composite class driver,
which is loaded by the hub driver when the keyboard and mouse are found on
the USB.

A USB device includes an interface or interfaces, which are deÞned in
descriptor data structures associated with the device. The interfaces are like sub
38 Mac OS Software for USB Devices

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 3

USB Software Components
devices within the device, each having a function speciÞed by numerical class
and sub class identiÞers. The functions provide device capabilities to the host
system. Interfaces also deÞne how a function in a device is accessed by the host
system. The functional features of the device are accessed by the USL when
given an interface reference.

The Macintosh system software maintains a driver dispatch table for USB class
drivers that deÞnes among other things the driver initialization routine, driver
gestalt, and the driver callback completion routine. For more information, see
the driver descriptor structure deÞned in the USB.h Þle.

USB Services Library (USL) 3

The USB Services library is the programming interface that USB device drivers
use to communicate with the USB on a Macintosh computer. The USL provides
the services necessary to Þnd a device with the appropriate interface, open an
interface to the device, open the device, instantiate the appropriate pipe
connections, determine device status, and perform read and write transactions
with the device. For additional information about the USL, see Chapter 4, ÒUSB
Services Library Reference.Ó
Mac OS Software for USB Devices 39
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 3

USB Software Components
40 Mac OS Software for USB Devices

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

Figure 4-0
Listing 4-0
Table 4-0
USB Services Library Reference 4
41
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
This chapter describes the APIs in the Mac OS USB Services Library that
support software development of USB class drivers.

The Mac OS USB DDK provides source code for building examples of USB class
drivers. The driver sources illustrate how to use the USL for USB class driver
development. The USB.h Þle contains the current application programming
interfaces to the USL. Future class driver compatibility requires adhering to the
interfaces deÞned in the USL libraries. The Mac OS USB DDK and other
valuable resources for developers can be found at:

http://developer.apple.com/dev/usb/devinfo.htm

The Mac OS USB DDK includes a folder called Writing a USB Driver. The
USBDriversTechnote.html Þle in that folder describes how to write a USB class
driver, and discusses how Mac OS processes communicate with the device via
the class driver.

The Mac OS USB DDK ReadMe Þle in the Mac OS USB DDK folder provides
the instructions for setting up your Macintosh development system and target
environments.

Mac OS USB Compatibility Notes Þle contains information about ADB, serial
port, and USB gaming device compatibility and software support issues.

USB Services Library (USL) 4

The USB Services Library is the programming interface that USB device drivers
use to communicate with the USB on a Macintosh computer. The USL provides
all of the control and status functions necessary to Þnd a device with the
appropriate interface, open an interface to the device, open the device,
instantiate the appropriate pipe connections, determine device status, and
perform read and write transactions with the device.

Errors And Error Reporting Conventions 4

The USB software uses a Òreturn errors, set referencesÓ convention. In this
convention, all APIs return a common OSStatus type. PipeRef, DeviceRef,
InterfaceRef, and endpointRef reference numbers are all in a Þeld of the
parameter block passed to the function. No reference variables do double duty.
That is, they do not report both error codes and reference numbers (refnums).
42 USB Services Library (USL)

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
There is one exception to this however, a reference number of nil is an
indication that the reference number has not been set properly.

Error codes returned by the USL are in the range -6900 to -6999 and are listed in
ÒUSL Error CodesÓ (page 4-104).

The following discussion deals with common causes of errors returned by the
USL

Device Access Errors 4

Any function that accesses a device may give one of the transfer mode errors.
Transfer mode errors cause a pipe stall on non-default pipes. The transfer errors
are in the range -6901 through -6915 as follows:

The kUSBNotRespondingError most often occurs when a device is unplugged. A
driver should prepare to be deleted, if it gets this error. This error may occur
when a device is hung, or when a bus error occurs.

Errors on the USB Bus 4

Errors on the USB bus occur when a device is behaving erratically or there are
bad cables or connectors. USB bus errors include:

kUSBCRCErr -6913 Pipe stall, bad CRC
kUSBBitstufErr -6914 Pipe stall, bitstufÞng
kUSBDataToggleErr -6913 Pipe stall, bad data toggle
kUSBEndpointStallErr -6912 Device didn't understand
kUSBNotRespondingErr -6911 Pipe stall, no device, device hung
kUSBPIDCheckErr -6910 Pipe stall, PID CRC error
kUSBWrongPIDErr -6909 Pipe stall, bad or wrong PID
kUSBOverRunErr -6908 Packet too large or more data than

allocated buffer
kUSBUnderRunErr -6907 Less data than buffer
kUSBBufOvrRunErr -6904 Host hardware failure on data in, PCI

busy?
kUSBBufUnderRunErr -6903 Host hardware failure on data out,

PCI busy?
kUSBNotSent1Err -6902 Transaction not sent
kUSBNotSent2Err -6901 Transaction not sent

kUSBCRCErr -6913 Pipe stall, bad CRC
kUSBBitsufErr -6914 Pipe stall, bitstufÞng
kUSBDataToggleErr -6913 Pipe stall, bad data toggle
kUSBPIDCheckErr -6910 Pipe stall, PID CRC error
kUSBWrongPIDErr -6909 Pipe stall, bad or wrong PID
USB Services Library (USL) 43
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
The USB bus errors are uncommon and should rarely be seen.

Incorrect Command Errors 4

When a device receives an incorrect command or a command it cannot comply
with, it stalls the pipe and returns a kUSBEndpointStallErr.

Driver Logic Errors 4

The kUSBOverRunErr and kUSBUnderRunErr are usually caused by logic errors in
the driver. In most cases, the driver and the device are not in agreement as to
how much data is to be transferred.

An over run error occurs most often when a buffer is not an exact multiple of
the maximum packet size (maxPacketSize), and the controller determines that
the last packet will overßow the end of the buffer. This also occurs if a packet is
sent that is larger than the maximum packet size. This is often a protocol error
and the sign of a bad device.

In version 1.0 of the USB Services Library software, this error can occur if the
transfer buffer is not aligned to the maximum packet size of the endpoint. This
problem will be addressed in a later revision of the Mac OS USB software.

Under run errors occur when a packet shorter that the maximum packet size is
received. It is the pipe policy to treat this situation as an error. In version 1.0
underrun errors are usually not generated. Short packets always cause a normal
completion. The option to make short packets an error will be addressed in a
later revision of the USB software.

PCI Bus Busy Errors 4

Errors may be generated if the PCI bus is busy for extended periods of time.
These errors include kUSBBufOverRunErr and kUSBBufUnderRunErr.

USB References 4

All references to the USB are made on the basis of a USB reference. The USB
references are of type USBReference. USBDeviceRef, USBInterfaceRef, USBPipeRef,
and USBEndPointRef are USB references that you pass into or obtain from the
USL functions. The USB reference is an opaque reference maintained by the
USB Services Library.
44 USB Services Library (USL)

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
A device reference is obtained when the class or interface driver is initialized,
since it is passed as a parameter to the initialization procedure. The USB
reference for a particular USB device can be found in the device entry in the
Name Registry and vice-versa by calling the USB Manager. See ÒTopology
Database Access FunctionsÓ (page 5-109) for a description of the functions
available for obtaining information about USB devices.

The USBPB Parameter Block 4

The majority of calls to the USL are made with a parameter block of type
USBPB. The USBPB parameter block contains all the necessary parameters to
facilitate host communication with the device interface or device interface
communication with the USB. The parameter block also includes a pointer to a
callback completion routine for support of asynchronous calls.

There are currently two version of the USBPB parameter block, the version 1.0
parameter block (kUSBCurrentPBVersion), deÞned in this section, and the version
1.1 parameter block (kUSBIsocPBVersion), deÞned in Appendix A, that supports
isochronous transfers. Version 1.1 of the Mac OS USB software accepts function
calls made with both parameter blocks. For information about converting
existing code to use the 1.1 USBPB, see ÒCode Changes Required To Support
The Version 1.1 USBPBÓ (page A-123).

Parameters for the USBPB parameter block that are not speciÞed as required in
the USL function descriptions are ignored by the USL. Parameters that are not
speciÞed as output values are not altered, except for the Reserved, usbWValue,
and usbWIndex Þelds.

The types associated with the version 1.0 USBPB parameter block structure and
the USBPB structure are deÞned as follows:

typedef SInt32 USBReference;
typedef USBReference USBDeviceRef;
typedef USBReference USBInterfaceRef;
typedef USBReference USBPipeRef;
typedef USBReference USBBusRef;
typedef UInt32 USBPipeState;
typedef UInt32 USBCount;
typedef UInt32 USBFlags;
typedef UInt8 USBRequest;
typedef UInt8 USBDirection;
typedef UInt8 USBRecipient;
USB Services Library (USL) 45
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
typedef UInt8 USBRqType;
typedef UInt16 USBRqIndex;
typedef UInt16 USBRqValue;

typedef void (*USBCompletion)(USBPB *pb);

The version 1.0 USBPB parameter block is deÞned as:

struct USBPB{

void* qlink;
UInt16 qType;
UInt16 pbLength; /* Length of parameter block */
UInt16 pbVersion; /* Parameter block version number */
UInt16 reserved1; /* Reserved */
UInt32 reserved2; /* Reserved */

OSStatus usbStatus; /* Completion status of the call */
USBCompletion usbCompletion; /* Completion routine */
UInt32 usbRefcon; /* For use by the completion routine */
USBReference usbReference; /* Device, pipe, interface, endpoint */

/* reference as appropriate */

void* usbBuffer; /* Pointer to the data to be sent */
/* to or received from the device */

USBCount usbReqCount; /* Length of usbBuffer */
USBCount usbActCount; /* Number of bytes sent or received */
USBFlags usbFlags; /* Miscellaneous flags */

UInt8 usbBMRequestType; /* For control transactions, */
/* the bmRequestType field */

UInt8 usbBRequest; /* Specific control request */
USBRqValue usbWValue; /* For control transactions, the */

/* Value field of the setup packet */
USBRqIndex usbWIndex; /* For control transactions, the */

/* Index field of the setup packet */
UInt16 reserved4; /* Reserved */
UInt32 usbFrame; /* Reserved for future use */
46 USB Services Library (USL)

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
UInt8 usbClassType; /* Class for interfaces, */
/* transfer type for endpoints */

UInt8 usbSubclass; /* Subclass for interfaces */
UInt8 usbProtocol; /* Protocol for interfaces */
UInt8 usbOther; /* General-purpose value */
UInt32 reserved6; /* Reserved */
UInt16 reserved7; /* Reserved */
UInt16 reserved8; /* Reserved */

}USBPB;

During asynchronous calls, before the callback, no Þelds in the parameter block
are valid other than the usbRefcon Þeld. The usbRefcon Þeld is never altered and
is free for use by class drivers.

The USBPB parameter block has to be at least the minimum size. The size can be
extended; the pbLength Þeld should contain the extended size.

The current version of the parameter block is represented as a binary-coded
decimal number. For version 1.0 it is of the form 0x010. It is subject to change at
any time. Use the constant kUSBCurrentPBVersion to make sure you have the
version of the parameter block described by the latest revision of this document.
The isochronous variant of the parameter block is version 1.1
(kUSBIsocPBVersion). The version 1.1 parameter block is deÞned in ÒChanges In
Mac OS USB Version 1.1Ó (page A-117).

The values passed in the usbBMRequestType Þeld require a speciÞc format, which
can be derived by using the USBMakeBMRequestType function (page 4-62).

Required USB Parameter Block Fields 4

All calls to the USL that require a USBPB parameter block must supply the these
Þelds:

pbLength Length of the USBPB parameter block, including any client
additions

pbVersion Version number of USBPB in binary-coded decimal,
currently 1.1, initialize to kUSBCurrentPBVersion or
kUSBIsocPBVersion for isochronous call support. See
ÒChanges In Mac OS USB Version 1.1Ó (page A-117) for
additional information about how it use the isochronous
variant of the USB parameter block.
USB Services Library (USL) 47
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference

et
usbCompletion Completion routine
usbRefcon For client use
usbFlags Unless otherwise speciÞed in the function description,

should be set to 0
The listed Þelds may not explicitly be referenced in all the call descriptions in
this document, but they are required.

Standard Parameter Block Errors 4

All of the functions that use the parameter block return errors when a bad value
was passed in the parameter block. The standard parameter block errors are
listed in Table 4-1.

Asynchronous Call Support 4

As a general rule, function calls to the USL complete asynchronously, with the
exception of the functions listed here:

USBGetPipeStatusByReference
USBAbortPipeByReference
USBResetPipeByReference
USBClearPipeStallByReference

Table 4-1 Standard parameter block errors

Error constant Error code Definition

kUSBPBVersionError -6986 The pbVersion Þeld of the parameter
block contains an incorrect version
number.

kUSBPBLengthError -6985 The pbLength Þeld of the parameter
block contains a value that is smaller
than the sizeof(USBPB)

kUSBCompletionError -6984 The usbCompletion pointer is nil or is s
to kUSBNoCallBack and the function
does not support this behavior

kUSBFlagsError -6983 An unspeciÞed ßag has been set
48 USB Services Library (USL)

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
USBSetPipeIdleByReference
USBSetPipeActiveByReference
USBGetFrameNumberImmediate
USBFindNextEndpointDescriptorImmediate
USBFindNextInterfaceDescriptorImmediate

Since most USL functions complete asynchronously, itÕs important to allocate a
parameter block in memory that will be available until the call completes, either
with a call back or with an immediately returned error. Unless there is an
immediate error, the parameter block cannot be reused until the completion
routine is called. You can force the completion routine to be called for pipe
transactions by calling the USBAbortPipeByReference function.

Asynchronous calls to the USL are supported by a completion routine
mechanism. You pass a pointer to a completion routine in the USBPB parameter
block. The completion routine is invoked when the USL function call completes,
informing the driver of the calls completion.

The USB completion routine is of this form:

typedef void (*USBCompletion)(USBPB *pb);

The Þelds required in the USBPB parameter block for all USL functions that
return asynchronously are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the completion

routine
During the call to the completion routine, these Þelds are valid:

--> usbStatus Status information
--> usbRefcon General-purpose value passed back to the completion

routine
--> Any other call-speciÞc Þelds marked as output from the

call
--> Any other call-speciÞc Þelds used as input to and not

output from the call
When the completion routine is called, the processing of the parameter block is
complete and the parameter block is again available for use. The completion
USB Services Library (USL) 49
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
routine may use the same parameter block to make a new call to the USL.
Polling the usbStatus Þeld is not supported.

The execution level that the completion routine may be called back at is not
guaranteed, unless otherwise speciÞed in the individual routine speciÞcation.
Completion usually occurs at secondary interrupt level, or at system task level.
If the execution context is important to the operation of the code, the driver
services call CurrentExecutionLevel can be used to discover the current
execution level.

The driver services function CallSecondaryInterruptHandler2 can be used to
continue execution at secondary interrupt level. The USBDelay* function can be
used to effect a transition to task level. Note system task level is not the same as
application task level, it may not be safe to make some Mac OS calls,
particularly Þle system calls at system task level. Unless otherwise speciÞed, all
of the USL functions are safe to be called from either secondary interrupt level
or from system task level.

*This functionality is missing in the USBDelay function in USB software versions
1.0 and 1.0.1, it does works as described with USB version 1.1 and higher. For
USB versions earlier that 1.1, the NotiÞcation Manager can be used to effect a
transition to task level.

Polling Versus Asynchronous Completion (Important) 4

The Mac OS USB Service Library (USL) allows class drivers to poll for the
completion of USL function calls by polling the usbRefcon Þeld of the parameter
block. In general, it is strongly advised to use asynchronous completion via the
call back mechanism deÞned in ÒAsynchronous Call Support,Ó instead of
polling. Polling the usbRefcon Þeld is discouraged and should only be
implemented under exceptional circumstances.

The primary concern with polling lies with code that is designed to use the
asynchronous USL call mechanism, and then enters a tight code loop where
little happens except to check the usbRefcon Þeld, and only exits the loop when
the usbRefcon Þeld changes. This form of polling robs time from the system,
because nothing useful can happen while the code runs in the tight loop.

USB time scales are on the order of milliseconds. A tight polling loop represents
and eternity of time wasted, when the system could be doing useful work.
Some devices have very slow completion times. Completion times on the order
of 100ms are not uncommon. If a driver polled for this length of time, the user
would notice the pause, and system performance could suffer. In fact, there are
50 USB Services Library (USL)

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
circumstances in which polling the parameter block can cause the system to
hang. These circumstances and some guidelines for avoiding them are further
deÞned below:

Never poll from secondary interrupt time. Secondary interrupts are queued,
and most I/O including the USL completes at secondary interrupt time. If you
poll within secondary interrupt time, USL calls will never get a chance to
complete, and the poll will never complete.

If you poll from task time the system may still hang. In order to guard against
this you should either:

1). Give time back to the system by calling waitnext event.

2). Only poll for a limited time.

Option 1 is usually only practical from an application. Applications should not
be making USL calls. Only class drivers should make USL calls. The use of USL
calls by an application, is not supported.

Option 2 can be used by class drivers. The USB standard calls for a 5 second
timeout on all transactions. However, this is not currently implemented by the
USL. The polling software should make frequent calls to
USBGetFrameNumberImmediate to determine the elapsed time. If the elapsed time
becomes too great, the attempt should be abandoned with the
USBAbortPipeByReference call.

In general, it is best to use asynchronous completion routines wherever
possible.

USL Functions 4

This section describes the functions in the USB Services Library.

USB ConÞguration Functions 4

To make a connection to a USB device, the class driver must Þnd an interface
function that meets its requirements, and then conÞgure the USB device for
subsequent operations. The functions described in this section provide Mac OS
USB conÞguration services.
USL Functions 51
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
The Þrst thing a class driver needs to do when conÞguring a device is Þnd the
function in a device conÞguration on which the driver is to operate and set the
conÞguration. The function the driver is interested in is represented in the USB
device hierarchy by an interface inside of a conÞguration. The programmatic
view of the USB hierarchy is devices-> conÞgurations-> interfaces-> endpoints.

USBFindNextInterface 4

The USBFindNextInterface function is used to Þnd an interface and its parent
conÞguration. The USBFindNextInterface function searches through all
conÞgurations for interfaces matching the USB class, subclass, and protocol
input parameters and returns both the number of the conÞguration it found the
interface in, and the number of the matching interface. The interface numbers
are returned in the order in which they appear in the conÞguration descriptor.
You can iterate through the list of both conÞgurations and interfaces until you
Þnd the interface you are looking for. The returned conÞguration information is
used in the USBOpenDevice function call to set the device conÞguration
containing the interface.

OSStatus USBFindNextInterface(USBPB *pb);

Required Þelds in the USBPB parameter block for the USBFindNextInterface
function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference Device reference
-- usbBuffer Should be set to 0 (0 returned); reserved in this call
-- usbActCount Should be set to 0 (0 returned); reserved in this call
-- usbReqCount Should be set to 0 (0 returned); reserved in version 1.0 of

the USBPB. Version 1.1 and later of the USB software
supports passing in a maximum power requirement for the
conÞguration, or 0 if not interested in the power
52 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
requirement. If the conÞguration requires more power than
speciÞed, the kUSBDevicePowerProblem error is returned.

--> usbFlags Should be set to 0 (0 returned); reserved in this call
<--> usbClassType --> Class, 0 matches any class

<-- Class value for interface found
<--> usbSubclass --> Subclass, 0 matches any subclass

<-- Subclass value for interface found
<--> usbProtocol --> Protocol, 0 matches any protocol

<-- Protocol value for interface found
<--> usbWValue ConÞguration number; start with 0
<--> usbWIndex --> Interface number; start with 0

<-- Interface number
<--> usbOther Alternate interface, set to 0xff to Þnd Þrst alternate only
For alternate interface settings, the usbOther Þeld provides a method for getting
details about a speciÞc alternate interface or all of the alternate interfaces as a
set. For example, the compound class driver would Þnd all the interfaces in a
device and load drivers for those interfaces. It would, however, treat the set of
alternates as one interface and load only one driver for the alternate. That
alternate driver would then have to determine what alternate settings were
appropriate and choose the appropriate driver for those settings.

To support Þner granularity search criteria when looking for a speciÞc interface
in a device, and to avoid matching an interface that requires too much power,
the usbReqCount Þeld supports passing a value for the maximum power
supported by the conÞguration. A driver can look for an interface with a
speciÞc class, subclass, and protocol in a conÞguration that supports less than a
speciÞed amount of power. It the appropriate amount of power is not available
for the device, an error of kUSBDevicePowerProblem is retuned. The driver can
choose to notify the user or continue looking for an interface that satisÞes all the
parameters.

If a driver chooses not to pass the power requirement in the usbReqCount Þeld
when looking for an interface, the USL matches interfaces with the other
parameters even though they require more power than is available. When the
conÞguration for a device that requires more power than is available is passed
in with the USBOpenDevice function, the USL generates a power alert to the USB
Manager.

The value of 0 for usbClass, usbSubclass, or usbProtocol is a wildcard value that
indicates the caller is interested in whatever information can be found for those
USL Functions 53
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
parameters in the search. The actual values for any interface found are returned
in those Þelds. If a driver wants to make a subsequent call using wildcards for
the class, subclass, and protocol values, a 0 value must be explicitly passed in
for the usbClass, usbSubclass, and usbProtocol Þelds, since the actual values for
the interface found during the last call are returned in those Þelds of the
parameter block.

The usbWValue and usbWIndex Þelds should be set to 0 upon Þrst entry of the
USBFindNextInterface function to indicate the search should start at the
beginning of the conÞguration descriptors. For subsequent calls to the
USBFindNextInterface function, the values returned in the usbWValue and
usbWIndex Þelds should be passed back in without modiÞcation. The next
interface matching the speciÞed values will be found.

Errors returned by the USBFindNextInterface function include

USBOpenDevice 4

Once a suitable interface is found, the device is opened with the conÞguration
speciÞed in the USBOpenDevice function.

OSStatus USBOpenDevice(USBPB *pb);

Required Þelds in the USBPB parameter block for the USBOpenDevice function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine

paramErr usbBuffer pointer, usbReqCount, or
usbActCount Þelds are not set to 0

kUSBDevicePowerProblem -6976 an interface was found that matches
the class, subclass, and protocol, but
failed the power requirements.

kUSBUnknownDeviceErr -6998 usbReference does not refer to a
current device

kUSBInternalErr,
paramErr

-6999 internal conÞguration descriptor
cache corrupted

kUSBNotFound -6987 interface or conÞguration speciÞed is
not in conÞguration descriptors
54 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
--> usbRefcon General-purpose value passed back to the
completion routine

--> usbReference Device reference
-- usbBuffer Should be set to 0 (0 returned); reserved in this call
-- usbActCount Should be set to 0 (0 returned); reserved in this call
-- usbReqCount Should be set to 0 (0 returned); reserved in this call
--> usbWValue ConÞguration number
--> usbFlags Should be set to 0
<-- usbOther Number of interfaces in conÞguration
The conÞguration number is an arbitrary number assigned by the device to
label the conÞgurations. The number is usually sequential 1,2,3 and so on, but
not guaranteed to be so.

Errors returned by the USBOpenDevice function include

Opening An Interface 4

The USBNewInterfaceRef function performs the Þrst step in opening an interface.
The USBConfigureInterface function (page 4-57) completes the process by
setting up the interface for further communication.

USBNewInterfaceRef 4

The USBNewInterfaceRef function generates a new reference number that allows
the interface in the speciÞed device to be referred to. The interface reference can
be used in most circumstances where a device reference can be used. An

paramErr usbBuffer pointer, usbReqCount, or
usbActCount Þelds are not set to 0

kUSBUnknownDeviceErr -6998 usbReference does not refer to a current
device

kUSBDevicePowerProblem -6976 the device requires more power than is
currently available.

kUSBDeviceBusy -6977 the device is already being conÞgured
kUSBInternalErr,
paramErr

-6999 internal conÞguration descriptor cache
corrupted

kUSBNotFound -6987 interface or conÞguration speciÞed is
not in conÞguration descriptors
USL Functions 55
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
interface reference is required to be passed to the function
USBExpertInstallInterfaceDriver (page 4-77).

OSStatus USBNewInterfaceRef(USBPB *pb);

Required Þelds in the USBPB parameter block for the USBNewInterfaceRef
function are

--> pbLength Length of parameter block

--> pbVersion Parameter block version number

--> usbCompletion The completion routine

--> usbRefcon General-purpose value passed back to the
completion routine

<--> usbReference --> Device reference of device being conÞgured
<-- Interface reference returned

-- usbBuffer Should be set to 0 (0 returned); reserved in this call
-- usbActCount Should be set to 0 (0 returned); reserved in this call
-- usbReqCount Should be set to 0 (0 returned); reserved in this call

--> usbWIndex Interface number

--> usbFlags Should be set to 0

If you create an interface reference, the interface reference must be disposed of
in the driver Þnalize routine.

Errors returned by the USBNewInterfaceRef function include

ConÞguring The Device Interface(s) 4

ConÞguring the interface or interfaces of a device is done with the
USBConfigureInterface function.

paramErr usbBuffer pointer, usbReqCount, or
usbActCount Þelds are not set to 0

kUSBUnknownDeviceErr -6998 usbReference does not refer to a
current device

kUSBDeviceBusy -6977 the device is already being conÞgured
kUSBNotFound -6987 interface or conÞguration speciÞed is

not in conÞguration descriptor
kUSBOutOfMemoryErr -6988 ran our of internal structures
56 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
USBConÞgureInterface 4

The USBConfigureInterface function sets the interface on the device, and opens
each pipe in the interface. The number of pipes opened is returned. It can also
be used to set an alternate interface on the device.

This function does not currently operate as deÞned above. It does not set the
device interface, it will in the future. At this time, the class driver must call the
USBDeviceRequest function and make a set_interface device request to set the
device interface. The driver can then call USBConfigureInterface to open the
pipes in the interface and get the number of pipes. If required, an alternate
interface can be speciÞed upon entry in the usbOther Þeld.

OSStatus USBConfigureInterface(USBPB *pb);

Required Þelds in the USBPB parameter block for the USBConfigureInterface
function are

--> pbLength Length of parameter block

--> pbVersion Parameter block version number

--> usbCompletion The completion routine

--> usbRefcon General-purpose value passed back to the
completion routine

--> usbReference Interface reference obtained from USBNewInterfaceRef

-- usbBuffer Should be set to 0 (0 returned); reserved in this call
-- usbActCount Should be set to 0 (0 returned); reserved in this call
-- usbReqCount Should be set to 0 (0 returned); reserved in this call

--> usbFlags Should be set to 0

<--> usbOther --> Alternate interface; <-- Number of pipes in interface

If information about an individual pipe or other element is needed, a device
request has to be made.

ConÞguring an already opened interface is not an error. This sets the alternate
and ßags settings for the interface. It also invalidates any pipe references you
are using.
USL Functions 57
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
Errors returned by the USBConfigureInterface function include

Finding A Pipe 4

After the functions used to open the interface have completed, you need to
work out which already open pipe in the interface is the one you want to
communicate through.

USBFindNextPipe 4

The USBFindNextPipe function can be used to either Þnd a speciÞc pipe, as
speciÞed by the direction in the usbFlags Þeld and type in the usbClassType
Þeld, or to search through the available pipes.

OSStatus USBFindNextPipe(USBPB *pb);

Required Þelds required the USBPB parameter block for the USBFindNextPipe
function are

--> pbLength Length of parameter block

--> pbVersion Parameter block version number

--> usbCompletion The completion routine

--> usbRefcon General-purpose value passed back to the
completion routine

<--> usbReference --> Interface or pipe reference
<-- Pipe reference

kUSBUnknownInterfaceErr -6978 usbReference does not refer to a
current interface

kUSBUnknownDeviceErr -6998 usbReference does not refer to a
current device

paramErr usbBuffer pointer, usbReqCount, or
usbActCount Þelds are not set to 0

kUSBInternalErr,
paramErr

-6999 internal conÞguration descriptor
cache corrupted

kUSBNotFound -6987 interface or conÞguration speciÞed
is not in conÞguration descriptor

kUSBIncorrectTypeErr -6995 interface has control endpoints
kUSBTooManyPipesErr -6996 ran out of internal structures
58 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
-- usbBuffer Should be set to 0 (0 returned); reserved in this call
-- usbActCount Should be set to 0 (0 returned); reserved in this call
-- usbReqCount Should be set to 0 (0 returned); reserved in this call
<--> usbFlags --> SpeciÞc direction of pipe (kUSBIn or kUSBOut) or

kUSBAnyDirn as a wildcard
<-- Direction of input or output pipe

<--> usbClassType --> SpeciÞc endpoint type (kUSBControl, kUSBInterrupt, or
kUSBBulk) or kUSBAnyType as a wildcard
<-- Endpoint type

<-- usbWValue Maximum packet size of endpoint
This function takes either an interface or pipe reference in the usbReference
Þeld. To Þnd the Þrst pipe, make a call to the function with an interface
reference. To Þnd the next pipe, enter the pipe reference returned by the
previous call.

The usbFlags Þeld takes either a speciÞed endpoint direction or a wildcard of
kUSBAnyDirn. The usbClassType Þeld takes either a speciÞed endpoint type or a
wildcard of kUSBAnyType. For example, if you specify values for an input
interrupt pipe, the function returns only the input interrupt pipes found. If a
wildcard is used, all pipes of any type and direction found are returned.

Errors returned by the USBFindNextPipe function include

Getting Information About an Open Interface or Pipe 4

Information about an opened interface or pipe is contained within the interface
and pipe descriptors, and other descriptors associated with them.

paramErr usbBuffer pointer, usbReqCount, or
usbActCount Þelds are not set to 0

kUSBUnknownDeviceErr -6998 usbReference does not refer to a current
device

kUSBUnknownPipeErr -6997 pipe reference speciÞed is unknown
kUSBNotFound -6987 interface or conÞguration speciÞed is not

in conÞguration descriptor
USL Functions 59
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
USBFindNextAssociatedDescriptor 4

You use the USBFindNextAssociatedDescriptor function to Þnd a speciÞc
interface or pipe descriptor, or any descriptor associated with the interface or
endpoint. For example, a HID interface driver could use this function to Þnd
HID descriptors.

OSStatus USBFindNextAssociatedDescriptor(USBPB *pb);

Required Þelds required the USBPB parameter block for the
USBFindNextAssociatedDescriptor function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference Interface or pipe reference
<--> usbWIndex Descriptor index start at zero
--> usbBuffer Descriptor buffer
--> usbReqCount Size of buffer
<-- usbActCount Size of the descriptor returned
<--> usbOther Descriptor type (a value of 0 matches any)
The USBFindNextAssociatedDescriptor function steps through the descriptors
following the relevant interface or endpoint descriptor, and returns the
descriptors matching the given parameters. If usbReference is an interface
reference, all the descriptors are returned until the next interface descriptor is
found, or until the end of the conÞguration descriptor is reached. If
usbReference is a pipe reference, all of the descriptors are returned until the next
endpoint or interface descriptor is found, or until the end of the conÞguration
descriptor is reached.

The usbWIndex Þeld provides an index into all the available descriptors. A value
of 1 describes the interface or endpoint descriptor itself, so passing 0 allows the
interface or endpoint descriptor to be returned. If usbWIndex is passed back in
the next call untouched, the function returns the next available matching
descriptor.

The usbOther Þeld contains a descriptor type to match. If searching for any type
(usbOther set to 0) all descriptors are matched. To use this method of search
60 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
again for all descriptors, the usbOther Þeld has to be set to 0 each time the
function is called.

The errors returned by the USBFindNextAssociatedDescriptor function include:

USBDisposeInterfaceRef 4

The USBDisposeInterfaceRef function closes the speciÞed interface currently
opened. The interface reference obtained with the USBNewInterfaceRef function
for this interface is no longer valid after the call USBDisposeInterfaceRef call
completes.

OSStatus USBDisposeInterfaceRef(USBPS *pb);

Required Þelds in the USBPB parameter block for the USBDisposeInterfaceRef
function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference Interface reference for the interface to close.
--> usbFlags Should be set to 0
If the usbCompletion Þeld is set to kUSBNoCallBack, the call back mechanism is
not invoked. This is useful for Þnalization routines which need to clean up
immediately and canÕt wait for a callback routine to complete.

If the no call back option (kUSBNoCallBack) is used, the parameter block is free as
soon as the USBDisposeInterfaceRef call returns.

kUSBUnknownInterfaceErr -6978 usbReference does not refer to a
current interface or pipe

kUSBInternalErr,
paramErr

-6999 internal conÞguration descriptor
cache corrupted

kUSBNotFound -6987 interface or conÞguration speciÞed
is not in conÞguration descriptor
USL Functions 61
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
Errors returned by the USBDisposeInterfaceRef function include

Generalized USB Device Request Function 4

The USB standard speciÞes one of the Þelds of a control request as a
BMRequestType. This Þeld is a bit-mapped byte that tells the USB function about
the request. Information about the request includes direction of data ßow, how
the function is deÞned (standard, class, or vendor speciÞc) and what logically is
the recipient of the request.

USBMakeBMRequestType 4

The USBMakeBMRequestType function formats device and control request type
parameters into the bmRequestType format, which are passed to the USL in the
usbBMRequestType Þeld of the USBDeviceRequest function.

The USBMakeBMRequestType function returns a UInt8 or 0xff if one or more of the
parameters is incorrect. A value of 0xff is not a legal value and is not accepted
by the subsequent control call.

OSStatus USBMakeBMRequestType(UInt8 direction, UInt8 type,
UInt8 recipient);

direction Direction of data ßow, kUSBOut, kUSBIn, or kUSBNone

type DeÞnition of the request, kUSBStandard, kUSBClass, or
kUSBVendor

recipient Part of the device receiving the request, kUSBDevice,
kUSBInterface, kUSBEndpoint, or kUSBOther

All USB devices respond to requests from the host on the deviceÕs default pipe.
These requests are made using control transfers. The request and the requestÕs
parameters are sent to the device in the setup packet.

kUSBUnknownInterfaceErr -6978 usbReference does not refer to a
current interface
62 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
USBDeviceRequest 4

The USBDeviceRequest function performs control transactions to default pipe 0
(zero) of a device.

OSStatus USBDeviceRequest(USBPB *pb);

Required Þelds in the USBPB parameter block for the USBDeviceRequest function
are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference The device reference passed to the driver when it is

loaded
--> usbBMRequestType The usbBMRequestType Þeld is made up of the direction,

type, and recipient values
direction One of the following:

kUSBIn Data will be transferred to the host.
kUSBOut Data will be transferred to the device.
kUSBNone No data will be transferred. The length

and buffer parameters are ignored.
type One of the following:

kUSBStandard A request deÞned in the USB
standard.

kUSBClass A request deÞned in a class
standard.

kUSBVendor A vendor unique request type.
recipient One of the following:
 kUSBDevice The request is to the whole device.
 kUSBInterface The request is to a speciÞc interface

in the device.
 kUSBEndpoint The request is to a speciÞc pipe

endpoint in a device.
 kUSBOther The request is going somewhere else.
USL Functions 63
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
--> usbBRequest DeÞned by the USB standard, deÞned by a class driver
standard, or vender unique. See “usbBRequest
Constants” (page 4-98)

--> usbWValue General parameter unique to the transaction request.
This value is in host endian format, and will be
swapped if necessary when it is sent to the device.

--> usbWIndex General parameter unique to the transaction request.
This value is in host endian format, and will be
swapped if necessary when it is sent to the device.

--> usbReqCount SpeciÞes the size of the data to transfer. If this is set to 0,
no transfer occurs

--> usbBuffer Points to the data to be transferred (kUSBOut request) or
where data will end up (kUSBIn request). The buffer
should be at least as big as the size speciÞed in the
usbReqCount Þeld. If usbBuffer is set to nil, no data is
transferred regardless of the value of length

<-- usbActCount SpeciÞes the actual amount of data transferred on
completion

--> usbFlags Should be set to 0, or kUSBAddressRequest for control
transactions addressed to an interface or endpoint

The request is sent to the default pipe 0 and the relevant data is transferred.

The ßag kUSBAddressRequest supports USB control transactions addressed to an
interface or endpoint of a device. The kUSBAddressRequest ßag allows the control
call to be made without the driver explicitly knowing the number of the
endpoint or interface before the call is made. The USL Þlls in the interface or
endpoint number in the setup packet based on the pipe or interface reference
that is passed in with the call.

To use the addressed device request feature, speciÞy the kUSBAddessRequest ßag
in the usbFlags Þeld. If the recipient Þeld of the BMRequestType is an endpoint
or interface, the relevant endpoint or interface number is derived from the pipe
or interface reference that is passed in the usbReference Þeld. The interface or
endpoint number is put into the WIndex Þeld of the setup packet before the
control transaction call takes place.

For additional information about the parameters speciÞed for control
transactions, see section 9 of the USB SpeciÞcation.
64 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
If the request is a set_config request, the USBDeviceRequest function returns the
same errors as those for the USBOpenDevice function. Other errors returned by
the USBDeviceRequest function include

USB Transaction Functions 4

There are four transaction types supported by the USL, control, interrupt, bulk,
or isochronous. When making isochronous calls, you set the pbVersion Þeld in
the USBPB parameter block to kUSBIsocPBVersion, and use the isochronous
variant of the USBPB parameter block, described in ÒThe Isochronous Version Of
The USBPBÓ (page A-119).

When making function calls that are not a direct result of a call to the Device
Manager, such as the USB transaction functions, class drivers should arrange to
hold the memory for the data buffer used in the usbBuffer Þeld. The driver can
do this with either the PrepareMemoryForIO function described in ÒDesigning PCI
Cards & Drivers for Power Macintosh Computers,Ó or the older HoldMemory function
described in the Virtual Memory Manager section of ÒInside Macintosh:Memory.Ó

The PrepareMemoryForIO and HoldMemory functions are only safe to call at task
level (any non-secondary interrupt time). One way to safely prepare the
memory is to create and hold a single buffer at driver initialization time, which
occurs at task level. You then use this buffer to make all transaction requests.
The USB Manager holds the driver code and globals automatically when the
driver is loaded. Therefore, declaring a buffer in the global space guarantees the
memory will be held before requesting a transaction.

USBIntRead 4

The USBIntRead function queues an interrupt transaction on the speciÞed pipe.
The device is periodically polled and the transaction completes when the device

kUSBUnknownDeviceErr -6998 usbReference does not refer to a
current device

kUSBRqErr -6994 the value in the bmRequestType Þeld is
not valid

kUSBUnknownRequestErr -6993 request code for a standard USB call is
not recognized
USL Functions 65
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
returns some data. This is a read operation only. Version 1.0 of the USB
speciÞcation does not deÞne an interrupt write function.

OSStatus USBIntRead(USBPB *pb);

Required Þelds in the USBPB parameter block for the USBIntRead function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference The pipe reference returned by the USBFindNextPipe

function
--> usbReqCount SpeciÞes the size of the data to transfer. If this is set to 0,

anything but a zero length packet causes an error
--> usbBuffer Points to a buffer to which the incoming data is transferred
<-- usbActCount SpeciÞes the actual amount of data transferred on

completion
--> usbFlags Should be set to 0
In order to avoid the loss of data when transferring data from a device,
usbBuffer and usbReqCount should be a multiple of the value of the
MaxPacketSize Þeld, in the deviceÕs endpoint descriptor.

Errors returned by the USBIntRead function include

USBBulkRead 4

The USBBulkRead function can be used to request multiple bulk transactions on
an inbound bulk pipe to fulÞll the size of request speciÞed, or for the entire
transfer.

OSStatus USBBulkRead(USBPB *pb);

kUSBUnknownPipeErr -6997 pipe reference speciÞed is unknown
kUSBIncorrectTypeErr -6995 pipe is not an interrupt pipes
kUSBPipeIdleErr -6980 speciÞed pipe is in the idle state
kUSBPipeStalledErr -6979 speciÞed pipe is stalled
66 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
Required Þelds in the USBPB parameter block for the USBBulkRead function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference The pipe reference returned by the USBFindNextPipe

function
--> usbReqCount SpeciÞes the size of the data to transfer. Must be a multiple

of the packet size. If it is not a multiple of the packet size,
the last packet my overrun. If set to 0, any non-zero size
transfer causes an error

--> usbBuffer Points to a buffer to which the incoming data is transferred
<-- usbActCount SpeciÞes the actual amount of data transferred on

completion
--> usbFlags Should be set to 0
In order to avoid the loss of data when transferring data from a device,
usbBuffer and usbReqCount should be a multiple of the endpoint MaxPacketSize
in the deviceÕs endpoint descriptor.

Errors returned by the USBBulkRead function include

USBBulkWrite 4

The USBBulkWrite function requests multiple bulk out transactions on an
outbound bulk pipe to fulÞll the size of request speciÞed.

OSStatus USBBulkWrite(USBPB *pb);

Required Þelds in the USBPB parameter block for the USBBulkWrite function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number

kUSBUnknownPipeErr -6997 pipe reference speciÞed is unknown
kUSBIncorrectTypeErr -6995 pipe reference is not a bulk-in pipe
kUSBPipeIdleErr -6980 speciÞed pipe is in the idle state
kUSBPipeStalledErr -6979 speciÞed pipe is stalled
USL Functions 67
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference The pipe reference returned by the USBFindNextPipe or

USBOpenPipe functions
--> usbReqCount SpeciÞes the size of the data to transfer. If this is set to 0, no

data transfer occurs, but the device senses a 0 length bulk
transaction

--> usbBuffer Points to the data to be transferred. The buffer should be at
least as big as the size speciÞed in the usbReqCount Þeld. If
the buffer is set to nil, no data is transferred regardless of
the value of usbReqCount

<-- usbActCount SpeciÞes the actual amount of data transferred on
completion

--> usbFlags Should be set to 0
Errors returned by the USBBulkWrite function include

USBIsocRead 4

The USBIsocRead function is deÞned as follows:

OSStatus USBIsocRead(USBIsocPB *pb);

Required Þelds in the isochronous version of the USBPB parameter block for the
USBIsocRead function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version, must be kUSBIsocPBVersion

for isochronous function calls
<--usbStatus Aggregate status, see discussion in ÒThe Isochronous

Version Of The USBPBÓ (page A-119)
--> usbCompletion The completion routine

kUSBUnknownPipeErr -6997 pipe reference speciÞed is unknown
kUSBIncorrectTypeErr -6995 pipe reference is not a bulk-out pipe
kUSBPipeIdleErr -6980 speciÞed pipe is in the idle state
kUSBPipeStalledErr -6979 speciÞed pipe is stalled
68 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
--> usbRefcon General-purpose value passed back to the
completion routine

--> usbReference The isochronous pipe reference returned by the
USBFindNextPipe function

--> usbReqCount SpeciÞes the size of the data to transfer. May be any
size, but no less than the sum of the individual
packets sizes. If set to 0, any non-zero size transfer
causes an error.

--> usbBuffer Points to a buffer to which the incoming data is
transferred

<-- usbActCount SpeciÞes the actual amount of data transferred on
completion

--> usbFlags Should be set to 0
--> usb.isoc.FrameList Pointer to the list of frame structures

--> frReqCount Number of bytes requested for
each packet

<-- frStatus Status returned by packet
<-- frActCount Actual bytes transferred by packet

--> usb.isoc.NumFrames Number of frames to attempt transfers in
--> usbFrame Frame number of the Þrst frame to transfer data

USBIsocWrite 4

The USBIsocWrite function is deÞned asfollows:

USBIsocWrite(USBIsocPB *pb);

Required Þelds in the isochronous version of the USBPB parameter block for the
USBIsocWrite function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version, must be kUSBIsocPBVersion

for isochronous function calls
<--usbStatus Aggregate status, see discussion in ÒThe Isochronous

Version Of The USBPBÓ (page A-119)
--> usbCompletion The completion routine
USL Functions 69
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
--> usbRefcon General-purpose value passed back to the
completion routine

--> usbReference The isochronous pipe reference returned by the
USBFindNextPipe or USBOpenPipe functions

--> usbReqCount SpeciÞes the size of the data to transfer. If this is set
to 0 in the frReqCount Þeld in the frame structure,
the call sends a packet size of 0.

--> usbBuffer Points to the data to be transferred. The buffer
should be at least as big as the size speciÞed in the
usbReqCount Þeld. If the buffer is set to nil, no data is
transferred regardless of the value of usbReqCount

<-- usbActCount SpeciÞes the actual amount of data transferred on
completion

--> usbFlags Should be set to 0
--> usb.isoc.FrameList Pointer to the list of frame structures

--> frReqCount Number of bytes requested for
each packet

<-- frStatus Status returned by packet
<-- frActCount Actual bytes transferred by packet

--> usb.isoc.NumFrames Number of frames to attempt transfers in
--> usbFrame Frame number of the Þrst frame to transfer data

Pipe State Control Functions 4

A pipeÕs state is governed by two factors:

■ the state of the deviceÕs endpoint

■ the USLÕs state

The USL state can be one of the following:

■ Active: The pipe is open and can transmit data.

■ Stalled: An error occurred on the pipe, no new transactions are accepted until
the stall is cleared.

■ Idle: The pipe will not accept any transactions.
70 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
A transaction error (errors -6915 to -6901) causes the pipe to enter the stalled
state. The class driver can change the state of the pipe using the functions in this
section.

Note that the pipe and interface control functions differ from most other USL
calls in these two ways:

■ They do not take a parameter block as a parameter.

■ They complete synchronously. There is no facility for asynchronous
completion.

Also note that pipe 0 to a device cannot be stalled. If a communication error
happens on pipe 0, the stall is automatically cleared before the call completes.
Thus some of these functions can affect a deviceÕs default pipe 0 and some canÕt.
Those functions that operate on both the default pipe 0 and pipes other than
pipe 0, take a device reference for the default pipe or a pipe reference for a
speciÞc pipe. Those functions that canÕt affect the default pipe, take only a pipe
reference.

These calls can be used on a deviceÕs default pipe 0:

USBGetPipeStatusByReference
USBAbortPipeByReference
USBResetPipeByReference

These calls cannot be used on a deviceÕs default pipe 0:

USBClearPipeStallByReference
USBSetPipeIdleByReference

Except for entering the stalled state on an error, the USL does not keep track of
the state of the deviceÕs endpoint. The class driver must keep track of the state
of the endpoint.

Data Toggle Synchronization 4

When a pipe is reset, aborted, or had a stall cleared, the expected data toggle on
that pipeÕs endpoint is reset to data0. This means that the next packet read on
that pipe may be discarded unless the device is told to synchronize its endpoint
data toggle.
USL Functions 71
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
The method of synchronizing the endpoint for the device is device speciÞc. In
general, it should be possible to perform endpoint data toggle synchronization
with a call to the USBDeviceRequest function addressed to the endpoint in
question. A USB device request command of CLEAR_FEATURE and a feature
selector of ENDPOINT_STALL should complete the required data toggle
synchronization.

USBGetPipeStatusByReference 4

The USBGetPipeStatusByReference function returns status on a speciÞed pipe or
the deviceÕs default pipe 0.

OSStatus USBGetPipeStatusByReference(USBReference ref,
USBPipeState *state);

ref Pipe reference.

state Returns the pipe state, it can be one of these constants:
kUSBActive Pipe can accept new transactions
kUSBIdle Pipe cannot accept new transactions
kUSBStalled An error occurred on the pipe

Errors returned by the USBGetPipeStatusByReference function include:

In version 1.0 of the USB Services software the USBGetPipeStatusByReference
function does not operate as deÞned above. If the pipe is not active, it returns
an error and the state is not set. The USBGetPipeStatusByReference function does
work as deÞned in version 1.0.1 and later of the USB Services software. If noErr
is returned, the state is returned correctly. If this call returns an error, the error
should be examined to see what state the pipe is in.

Errors returned by the USBGetPipeStateByReference function include:

kUSBUnknownPipeErr -6997 pipe reference speciÞed is unknown

noErr 0 speciÞed pipe is active
kUSBPipeIdleErr -6980 speciÞed pipe is in the idle state
kUSBPipeStalledErr -6979 speciÞed pipe is stalled
72 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
USBAbortPipeByReference 4

The USBAbortPipeByReference function aborts operations on a speciÞed pipe or
the deviceÕs default pipe 0.

OSStatus USBAbortPipeByReference(USBReference ref);

ref Pipe reference, or device reference for implicit default pipe 0.

All outstanding transactions on the pipe are returned with a kUSBAborted status.
The state of the pipe is not affected.

After this function is called, the deviceÕs endpoint needs to be synchronized
with the hostÕs endpoint. See ÒData Toggle SynchronizationÓ (page 4-71) for
information about how to accomplish endpoint data toggle synchronization.

Errors returned by the USBAbortPipeByReference function include:

USBResetPipeByReference 4

The USBResetPipeByReference function resets the speciÞed pipe or the deviceÕs
default pipe 0.

OSStatus USBResetPipeByReference(USBReference ref);

ref Pipe reference, or device reference for implicit default pipe 0.

All outstanding transactions on the pipe are returned with a kUSBAborted status.
The pipe status is set to active. The stalled and idle state are cleared.

After this function is called, the deviceÕs endpoint needs to be synchronized
with the hostÕs endpoint. See ÒData Toggle SynchronizationÓ (page 4-71) for
information about how to accomplish endpoint data toggle synchronization.

kUSBUnknownPipeErr -6997 pipe reference speciÞed is unknown
USL Functions 73
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
IMPORTANT

For USB parameter block version 1.0, the implementation
of USBResetPipeByReference does nothing if passed a real
pipe reference. However, if the function is passed a
non-existant pipe reference, it will corrupt low memory.
Version 1.0.1 and later of the USB Services software corrects
this problem.

Errors returned by the USBRestPipeByReference function include:

In version 1.0 of the USB Services software, the pipe may or may not have been
made active, depending on whether the pipe was previously stalled or not, and
the kUSBPipeIdleErr is returned. If an idle pipe was not stalled, it is not affected.
If an idle pipe was stalled, it is made active. In version 1.0.1 and later of the USB
Services software this behavior is corrected.

In version 1.0 of the USB Services software, the kUSBPipeStalledErr is returned
if the pipe was previously idle and the call succeeded despite the error. This
behavior is not an error and noErr is returned in verions 1.0.1 and later of the
USB Services software.

USBClearPipeStallByReference 4

The USBClearPipeStallByReference function clears a stall on the speciÞed pipe.
This call can only be used on a pipe, not on a deviceÕs default pipe 0.

OSStatus USBClearPipeStallByReference(USBPipeRef ref);

ref Pipe reference.

All outstanding transactions on the pipe are returned with a kUSBAborted status.
The pipe status is set to active; if the pipe was previously idle it is set back to
idle. The stalled state is cleared, idle is not.

A call to this function does not clear a deviceÕs endpoint stall. The class driver
has to take care of that by using USB standard device commands, such as
CLEAR_ENDPOINT_STALL. The class driver may need to take other remedial actions.

kUSBUnknownPipeErr -6997 pipe reference speciÞed is unknown

kUSBPipeStalledErr -6979 pipe stalled, pipe is reset despite the
error
74 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
After this function is called, the deviceÕs endpoint needs to be synchronized
with the hostÕs endpoint. See ÒData Toggle SynchronizationÓ for information
about how to accomplish endpoint data toggle synchronization.

Errors returned by the USBClearPipeStallByReference function include:

USBSetPipeIdleByReference 4

The USBSetPipeIdleByReference function sets a speciÞed pipe to the idle state.
This call can be used only on a speciÞed pipe, not on a deviceÕs default pipe 0.

OSStatus USBSetPipeIdleByReference(USBPipeRef ref);

ref Pipe reference.

The state of the pipe is set to idle. No outstanding transactions are affected.

Errors returned by the USBSetPipeIdleByReference function include:

In version 1.0 of the USB Services software, the following errors are returned if
the pipe is not currently active. In these instances, the call has succeeded despite
the returned error. This behavior is not an error and noErr is returned in verions
1.0.1 and later of the USB Services software.

USBSetPipeActiveByReference 4

The USBSetPipeActiveByReference function sets the state of a speciÞed pipe to
active.

OSStatus USBSetPipeActiveByReference(USBPipeRef ref);

ref Pipe reference.

kUSBUnknownPipeErr -6997 pipe reference speciÞed is unknown
kUSBPipeIdleErr -6980 speciÞed pipe is in the idle state

kUSBUnknownPipeErr -6997 pipe reference speciÞed is unknown

kUSBPipeIdleStalled -6979 pipe was stalled, pipe is still active
despite error

kUSBPipeIdleErr -6980 speciÞed pipe is in the idle state
USL Functions 75
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
The pipe status is set to active if the pipe is not stalled. The idle state is cleared,
stalled is not.

Errors returned by the USBSetPipeActiveByReference function include:

In version 1.0 of the USB Services software, the following error is returned if the
pipe was previously idle. In this instance the call has succeeded despite the
returned error. This behavior is not an error and noErr is returned in verions
1.0.1 and later of the USB Services software.

USB Management Services Functions 4

The USL provides an interface to services provided by the USB Manager. These
services make it so class drivers need only link against the USB Services library
or driver services library.

The errors returned by the USB Management functions include:

USBExpertInstallDeviceDriver 4

The USBExpertInstallDeviceDriver function notiÞes the USB Manager that there
is a device that needs a driver matched and loaded. Typically only hub drivers
need the service provided by this function.

OSStatus USBExpertInstallDeviceDriver(USBDeviceRef ref,
USBDeviceDescriptorPtr *desc
USBReference hubRef,
UInt32 port,
UInt32 busPowerAvailable);

The ref parameter can be a device reference or an interface reference. Similarly
the desc parameter can be a device or interface descriptor.

kUSBUnknownPipeErr -6997 pipe reference speciÞed is unknown
kUSBPipeIdleStalled -6979 pipe was stalled, pipe is set idle

kUSBPipeIdleErr -6980 pipe was previously idle, pipe is
still made active

kUSBBadDispatchTable -6950 improper driver dispatch table
kUSBUnknownNotification -6949 notiÞcation type not deÞned
kUSBQueueFull -6948 internal queue full
76 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
ref Device reference of the new device.

desc Device descriptor of the device to Þnd a driver for.

hubRef The device reference of the parent hub of this device.

port The parent port of this device.

busPowerAvailable How much current is available from the bus for the
device, in 2 milliamperes (mA) units. This should have
one of two values, 100mA for a bus-powered hub parent
and 500mA for a self-powered parent.

USBExpertRemoveDeviceDriver 4

The USBExpertRemoveDeviceDriver function notiÞes the USB Manager that a
device has been removed from the bus and that the class driver for that device
needs to be terminated. Typically only hub drivers need the service provided by
this function.

OSStatus USBExpertRemoveDeviceDriver(USBDeviceRef ref);

The ref parameter can be a device reference or an interface reference.

ref Device reference of the device removed from the bus.

USBExpertInstallInterfaceDriver 4

The USBExpertInstallInterfaceDriver function notiÞes the USB Manager that a
class driver needs to be loaded for the given interface of the given device. This
function is used by class drivers that select conÞgurations and interfaces. The
drivers that use this functionality are typically composite class drivers.

OSStatus USBExpertInstallInterfaceDriver(USBDeviceRef ref,
USBDeviceDescriptor *desc,
USBInterfaceDescriptor *interface,
USBReference hubRef,
UInt32 busPowerAvailable);
USL Functions 77
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
ref Device reference of device containing the interface. (Note
that this will eventually become an interface reference.)

desc Device descriptor of the interface to Þnd a driver for.

interface Interface descriptor of interface to Þnd a driver for.

hubRef The device reference for the device containing this
interface. Usually a device reference of a hub.

busPowerAvailable How much current is available from the bus for the
device, in 2 milliamperes (mA) units. This should have
one of two values, 100mA for a bus-powered hub parent
and 500mA for a self-powered parent.

USBExpertRemoveInterfaceDriver 4

The USBExpertRemoveInterfaceDriver Function notiÞes the USB Manager that a
device has been removed from the bus and that the class driver needs to be
disposed.

OSStatus USBExpertRemoveInterfaceDriver(USBInterfaceRef ref);

ref Interface reference from the removed device

USB Time Utility Functions 4

This section describes the functions for managing time within the context of
USB frames. A USB frame is approximately a 1 ms unit of time. Approximately,
because it may vary a few bit times.

USBDelay 4

The USBDelay function calls back through the normal completion mechanism
when the speciÞed number of frames have passed. There is up to an extra one
frame delay to accommodate synchronizing with USB frames. For example, 0
78 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
frames delay means after the current frame, which could be up to 1 ms plus any
other system delays.

OSStatus USBDelay(USBPB *pb);

Required Þelds in the USBPB parameter block for the USBDelay function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference A device, interface, or pipe reference which associates the

call with a device
--> usbReqCount Number of frames to delay
<-- usbActCount Frame number at completion of delay
--> usbFlags Callback at task time (kUSBTaskTimeFlag)
The usbFlags parameter can be used to request a call back at task time. A
requested delay of kUSBNoDelay causes the call back to occur as soon as possible
during system task time (as opposed to secondary interrupt time). Thus
effecting a transition to task time.

There must be a valid USBReference passed in the usbReference Þeld of the
parameter block. If a nil value or a reference that does not match an existing
device interface or pipe is passed in, the call returns immediately with an
unknown device error.

If the device associated with this call is unplugged and its driver removed while
this function call is pending, the function will not complete.

The USBDelay function returns the following error:

USBGetFrameNumberImmediate 4

The USBGetFrameNumberImmediate function returns the current frame number for
the speciÞed device. The function completes synchronously and is the

kUSBUnknownDeviceErr -6998 usbReference does not refer to a
current device
USL Functions 79
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
recommended function to use for making time calculations for a class driver. It
can be called at any execution level. This function also supports multiple USB
bus implementations.

OSStatus USBGetFrameNumberImmediate(USBPB *pb);

Required Þelds in the USBPB parameter block for the
USBGetFrameNumberImmediate function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference Device, interface, or endpoint reference
--> usbReqCount Size of buffer (0 or size of UInt64)
--> usbBuffer Nil or pointer to a UInt64 structure for full 64 bits of frame

data.
<-- usbActCount Size of data returned
<-- usbFrame Low 32 bits of the current frame number
In multiple USB bus conÞgurations, each bus has an independent frame count.
The USBGetFrameNumberImmediate function takes any device, interface, or
endpoint reference as input and returns the current frame number for the bus
on which that device, interface, or endpoint is connected.

The frame count for each bus is maintained internally by the USB software as a
64 bit value. The USBGetNextFrameNumberImmediate function allows a driver to
get either the low 32 bits of this value in the parameter block, or the full 64 bit
value in a UInt64 structure. To get the low 32 bits, specify a value of nil in
usbBuffer and a value of 0 in usbReqCount. To get the full 64 bits, specify the size
of the UInt64 structure in the usbReqCount Þeld and pointer to an address of the
structure in usbBuffer.

This function does not call the completion routine. However, a value is required
in the usbCompletion Þeld. kUSBNoCallBack can be speciÞed as the completion
routine.

The USBGetNextFrameNumberImmediate function returns the following error:

kUSBUnknownDeviceErr -6998 usbReference does not refer to a
current device
80 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
USB Memory Functions 4

The memory functions allow USB class drivers to allocate and deallocate
memory. Since memory allocation must typically occur at task time, the
memory functions will queue the request until task time is available, then
allocate the memory and return asynchronously. These functions are the
preferred way of specifying memory requirements, because they relieve the
class driver from monitoring execution levels when performing memory
management functions.

USBAllocMem 4

The USBAllocMem function allocates a speciÞed amount of memory.

OSStatus USBAllocMem(USBPB *pb);

Required Þelds in the USBPB parameter block for the USBAllocMem function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference A device, interface, or pipe reference which associates the

call with a device
--> usbReqCount Amount of memory required to be allocated
<-- usbActCount Amount of memory actually allocated
<-- usbBuffer Memory allocated
--> usbFlags Should be set to 0
There must be a valid USBReference passed in the usbReference Þeld of the
parameter block. If a nil value or a reference that does not match an existing
device, interface, or pipe is passed in, the call returns immediately with an
unknown device error.

If the device associated with this call is unplugged and its driver removed while
this function call is pending, the function will not complete.
USL Functions 81
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
The USBAllocMem function returns the following error:

USBDeallocMem 4

The USBDeallocMem function deallocates the memory allocated with the
USBAllocMem function.

OSStatus USBDeallocMem(USBPB *pb);

Required Þelds in the USBPB parameter block for the USBDeallocMem function are:

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference A device, interface, or pipe reference which associates the

call with a device

<--> usbBuffer --> previously allocated memory to be deallocated
<-- pointer set to nil

--> usbFlags Should be set to 0
You can pass kUSBNoCallBack as the usbCompletion Þeld parameter to notify the
USL that you want the operation to complete immediately if at task time. It is
an error to specify no call back, if the current execution level is not task time.

If the usbCompletion Þeld is set to kUSBNoCallBack, the call back mechanism is
not invoked. This is useful for Þnalization routines which need to clean up
immediately and canÕt wait for a callback routine to complete.

There must be a valid USBReference passed in the usbReference Þeld of the
parameter block. If a nil value or a reference that does not match an existing
device, interface, or pipe is passed in, the call returns immediately with an
unknown device error.

If the device associated with this call is unplugged and its driver removed while
this function call is pending, the function will not complete.

kUSBUnknownDeviceErr -6998 usbReference does not refer to a
current device
82 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
The USBDeAllocMem function returns the following error:

Byte Ordering (Endianism) Functions 4

There are two functions to deal with the differences in byte ordering between
the Intel platform and Mac OS platform. The USB uses Intel byte ordering
(called little endian) on all multibyte Þelds, which is reversed from the Mac OS
byte ordering (called big endian, because the most signiÞcant byte appears at
the lowest memory address). These functions are of endian neutral form. Using
these functions correctly allows the code to be recompiled on an Intel endian
platform and still work as expected.

All parameters and parameter block elements are automatically swapped by the
USB Services Library. These functions need be used only for data that the USL
has no knowledge of. This includes all descriptors returned from the descriptor
functions.

If you need to embed a 16-bit USB constant in your code, you can use this
macro:

USB_CONSTANT16(x)

x The USB constant

This macro is only useful for the C or C++ programming languages.

HostToUSBWord 4

The HostToUSBWord function changes the byte order of a value from big endian
to little endian.

UInt16 HostToUSBWord(UInt16 value)

kUSBUnknownDeviceErr -6998 usbReference does not refer to a
current device

kUSBCompletionError -6984 kUSBNoCallBack was speciÞed and
current execution level is not task
time
USL Functions 83
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
USBTOHostWord 4

The USBToHostWord function changes the byte order of a value from little endian
to big endian.

UInt16 USBToHostWord(UInt16 value)

If you need to embed a 16-bit USB constant in your code, you can use this
macro:

USB_CONSTANT16(x)

x The USB constant

This macro is only useful for the C or C++ programming languages.

USL Logging Services Functions 4

The USB Manager provides services to log status messages from drivers to aid
in debugging and software development. The USL provides an interface to this
service. When one of these messages is sent, it currently ends up in a buffer that
the USB Prober utility knows how to read. Choose the USB Expert Log menu
item in the USB Prober Window menu to look at the message.

USBExpertStatus 4

The USBExpertStatus function sends a general message out to the user. No
weight is attached to this message by the operating system.

OSStatus USBExpertStatus(USBDeviceRef ref, void *pointer, UInt32 value);

ref Device reference for the device driver giving notiÞcation.

pointer A pointer to a string to display.

value An arbitrary number to display.
84 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
USBExpertFatalError 4

The USBExpertFatalError function is intended to inform the system of
nonrecoverable errors in a class driver. Currently no action is taken when this
message is received. In the future it may cause a driver to be unloaded.

OSStatus USBExpertFatalError(USBDeviceRef ref, OSStatus status, void
*pointer, UInt32 value);

ref Device reference for the device driver giving notiÞcation.

status The error status that explains the failure.

pointer A pointer to a error status string to display.

value An arbitrary number to display.

USB Descriptor Functions 4

All of the USB conÞguration services were not fully implemented in earlier
versions of the USL. USB conÞguration had to be performed manually by the
class driver. To make this process less cumbersome, conÞguration descriptor
parsing functions were provided. These functions are still available, and some
sample drivers may use them, but it is recommended that you use the
conÞguration services described in ÒUSL FunctionsÓ (page 4-51).

The immediate functions (those that end with Immediate in the function name)
may be used repeatedly with the same parameter block to search for interface
and endpoint descriptors.

USBGetFullConÞgurationDescriptor 4

The USBGetFullConfigurationDescriptor function returns the entire block of
conÞguration data from the speciÞed device and any associated descriptors,
which includes interface and endpoint descriptors, and all of the information
that pertains to them. The conÞguration data returned by the
USBGetFullConfigurationDescriptor function is suitable for use with the
USL Functions 85
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
USBFindNextInterfaceImmediate and the USBFindNextEndpointImmediate
functions.

OSStatus USBGetFullConfigurationDescriptor(USBPB *pb)

Required Þelds in the USBPB parameter block for the
USBGetFullConfigurationDescriptor function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbFlags Should be set to 0
--> usbReference Device reference
--> usbWValue ConÞguration index
<-- usbBuffer Points to a conÞguration descriptor structure
<-- usbActCount Size of descriptor returned
The USBGetFullConfigurationDescriptor function determines the size of a full
conÞguration descriptor, including all interface and endpoint descriptors for a
given conÞguration, allocates memory for the conÞguration descriptor, and
reads all the descriptors in.

You donÕt pass the USBGetFullConfigurationDescriptor function a buffer
pointer, the function allocates one and passes a pointer back in the usbBuffer
Þeld of the parameter block. The memory for the conÞguration descriptor must
be deallocated when the information is no longer needed. The USBDeallocMem
function should be used in the class driverÕs Þnalize routine for deallocating
memory and disposing of the descriptor.

The USBGetFullConfigurationDescriptor function is unusual in that it takes a
conÞguration index in the usbWValue Þeld rather than a conÞguration value. The
conÞguration value is found in the conÞguration descriptor, and is not available
until the descriptor has been read. The conÞguration index refers to the 1st, 2nd,
3rd, or greater conÞguration descriptor in a device by specifying 0, 1, 2, or
greater respectively. The conÞguration index is independent of the
conÞguration value found in the conÞguration descriptor. The conÞguration
value is used as an input parameter to set the conÞguration for a device.

Currently there are no other functions in the USB conÞguration services that
provide the same functionality as the USBGetFullConfigurationDescriptor
86 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
function. ConÞguration descriptors can be retrieved using the
USBGetConfigurationDescriptor function, but the driver has to Þnd the length of
the conÞguration descriptor and allocate the memory for the descriptor when
calling the function. SpeciÞc types of descriptors can be found with the
USBFindNextAssociatedDescriptor function.

Once you have obtained the conÞguration descriptor, you need to Þnd the
interface youÕre interested in within the conÞguration descriptor by using the
USBFindNextInterfaceDescriptorImmediate function.

USBFindNextInterfaceDescriptorImmediate 4

The USBFindNextInterfaceDescriptorImmediate function returns the address to
the next interface descriptor in a speciÞed conÞguration descriptor.

OSStatus USBFindNextInterfaceDescriptorImmediate(USBPB *pb)

Required Þelds in the USBPB parameter block for the
USBFindNextInterfaceDescriptorImmediate function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
<--> usbBuffer --> ConÞguration descriptor

<-- Interface descriptor
--> usbFlags Should be set to 0
<-- usbActcount Length of interface descriptor found
<--> usbReqCount --> 0, This should be set to 0 the Þrst time the call is made.

Otherwise, the value from the last call should be left alone.
<-- Offset of this descriptor from the start of
the conÞguration descriptor

<--> usbClassType --> Class; 0 matches any class
<-- Class value for interface found

<--> usbSubclass --> Subclass; 0 matches any subclass
<-- Subclass value for interface found
USL Functions 87
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
<--> usbProtocol --> Protocol; 0 matches any protocol
<-- Protocol value for interface found

<--> usbWValue --> 0
ConÞguration number: If more than one interface is
described in the conÞguration descriptor, this Þeld
speciÞes the absolute number of the interface in the list.

<-- usbWIndex Interface number
<-- usbOther Alternate interface
The usbReqCount Þeld should be set to 0 for the Þrst iteration of this call. For
each subsequent call to the USBFindNextInterfaceDescriptorImmediate function,
usbReqCount contains the offset of the current interface descriptor from the
beginning of the conÞguration descriptor.

The usbBuffer Þeld should be assigned the address of the start of the
conÞguration descriptor obtained from a call to the
USBGetFullConfigurationDescriptor function. This must be the full
conÞguration descriptor returned by USBGetFullConfigurationDescriptor. The
usbBuffer is assigned a pointer to the next interface descriptor within the
speciÞed conÞguration for each subsequent call to the
USBFindNextInterfaceDescriptorImmediate function.

The usbClass, usbSubclass, and usbProtocol Þelds should contain either speciÞc
class, subclass, and protocol numbers, or contain 0 to use for a wildcard search
if the caller wants to Þnd an interface regardless of these Þelds. Upon return,
these Þelds contain the class, subclass, and protocol values for the next interface
found. If the caller wants to perform a wildcard search again, the wildcard
values must be reset, because these Þelds are Þlled in with the returned values
from the last call.

Once youÕve found an interface in the device, you need to Þnd the endpoints
that make up that interface.

If no interface is found that matches the requested interface, kUSBNotFound is
returned.

The errors returned by the USBFindNextInterfaceDescriptorImmediate function
include:

kUSBNotFound interface speciÞed is not in conÞguration
kUSBInternalErr,
paramErr

not a valid conÞguration descriptor
88 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
USBFindNextEndpointDescriptorImmediate 4

The USBFindNextEndpointDescriptorImmediate function returns the address to
the next endpoint descriptor in a conÞguration descriptor that follows a
speciÞed interface descriptor. This is a synchronous call.

OSStatus USBFindNextEndpointDescriptorImmediate(USBPB *pb)

Required Þelds in the USBPB parameter block for the
USBFindNextEndpointDescriptorImmediate function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
<--> usbFlags --> Direction of endpoint (kUSBIn, kUSBOut, or kUSBAnyDirn)

<-- Direction is returned here if kUSBAnyDirn is used in the
usbClassType Þeld. Note that if kUSBAnyDirn is speciÞed,
this Þeld is altered on the calls return. If you want to make
another call to Þnd an endpoint of any direction,
kUSBAnyDirn must be speciÞed again. Direction is also
returned if kUSBIn or kUSBOut are speciÞed. It will however,
be the same value as that passed in.

<--> usbBuffer --> Interface descriptor on the Þrst call, points to an
endpoint descriptor on subsequent calls
<-- Endpoint descriptor

<--> usbReqCount Offset of interface or endpoint descriptor in conÞguration
descriptor

<-- usbActcount Length of endpoint descriptor found
<--> usbClassType --> SpeciÞc endpoint type, or kUSBAnyType as wildcard

<-- Endpoint type
<--> usbOther --> Endpoint number, always pass 0 unless you want to

match a speciÞc endpoint number.
<-- Next matching endpoint is returned

<-- usbWValue Maximum packet size of endpoint
The usbBuffer should be assigned the address of the start of the interface
descriptor obtained from a call to the USBFindNextInterfaceDescriptorImmediate
USL Functions 89
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
function. For each subsequent call to USBFindNextEndpointDescriptorImmediate,
usbBuffer is assigned a pointer to the next endpoint descriptor within the
speciÞed interface.

The errors returned by the USBFindNextEndpointDescriptorImmediate function
include:

Opening a Pipe 4

In order to communicate with an endpoint you must Þrst open a pipe to an
individual endpoint. The USBOpenPipe function provides a mechanism for
opening a pipe.

Note
Normally the open pipe operation would be performed
with the USBConfigureInterface function and the pipe
discovered with the USBFindNextPipe function. However, if
you are reading descriptors yourself, you may need to use
the USBOpenPipe function. This method of opening a pipe is
discouraged for future compatibility.

IMPORTANT

The USBOpenPipe and USBClosePipe functions should only be
used in conjunction with the functions described in ÒUSB
Descriptor Functions,Ó not in conjunction with other
conÞguration services.

USBOpenPipe 4

The USBOpenPipe function veriÞes that a speciÞed device has the speciÞed
endpoint and then sets up a connection to that endpoint. It also determines the
type of endpoint (control, isochronous, interrupt, or bulk). A reference
(USBPipeRef) to this connection is returned. This reference is passed to the USB

kUSBNotFound -6987 endpoint speciÞed is not in
conÞguration

kUSBInternalErr,
paramErr

-6999 not a valid conÞguration
descriptor
90 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
on all subsequent data transactions for this pipe. See the ÒUSB Transaction
FunctionsÓ (page 4-65) for information about performing data transactions.

OSStatus USBOpenPipe(USBPB *pb);

Required Þelds in the USBPB parameter block for the USBOpenPipe function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
<--> usbReference --> Device reference of device to be opened

<-- Reference to the pipe opened
--> usbClassType Type of endpoint (kUSBBulk, kUSBInterrupt, kUSBIsoc)
--> usbOther The endpoint number within the device to open a pipe to,

the endpoint number from the endpoint descriptor
--> usbWValue maxPacketSize

--> usbFlags Indicates whether the direction of the endpoint to be
opened is in or out (kUSBIn, kUSBOut)

Note
At present there is little error checking performed by this
function.

The errors returned by the USBOpenPipe function include:

USBClosePipeByReference 4

The USBClosePipeByReference function closes the speciÞed pipe currently
opened. The pipe reference is deleted and no further reference can be made to

kUSBUnknownDeviceErr -6998 usbReference does not refer to a
current device

kUSBIncorrectTypeErr -6995 tried to open a control or
isochronous pipe

kUSBTooManyPipesErr -6996 ran out of internal structures
USL Functions 91
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
it. All outstanding transactions on the speciÞed pipe are returned with a
kUSBAborted status.

OSStatus USBClosePipeByReference(USBPipeRef ref);

--> ref Pipe reference for the pipe to close

The USBClosePipeByReference function is similar to the pipe state control
functions described later in this document. This function does not require a
parameter block and does not complete asynchronously.

See also the USBFindNextPipe and USBOpenPipe functions.

The errors returned by the USBClosePipeByReference function include:

The kUSBPipeStalledErr and kUSBPipeIdleErr are also returned if the pipe is not
currently active. In this instance, the call has failed and the pipe will have to be
activated again before it can be closed. This behavior will be changed to return
noErr and succeed in a later release of the USB software.

USBGetConÞgurationDescriptor 4

The USBGetConfigurationDescriptor function gives class drivers access to the
USB conÞguration descriptor.

The USBGetConfigurationDescriptor function returns conÞguration descriptors
that deÞne the contents of the conÞguration data for the device. The
conÞguration descriptor is 9 bytes, and is followed by all the interface
descriptors complete with their associated endpoint descriptors as well as any
class or vendor speciÞc descriptors. The USBGetConfigurationDescriptor
function returns as much of this data for one conÞguration as requested.

OSStatus USBGetConfigurationDescriptor(USBPB *pb);

Required Þelds in the USBPB parameter block for the
USBGetConfigurationDescriptor function are

--> pbLength Length of parameter block

kUSBUnknownPipeErr -6997 pipe reference not recognized

kUSBPipeStalledErr -6979 pipe is stalled, pipe not closed
kUSBPipeIdleErr -6980 pipe is idle, pipe not closed
92 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference Device reference
--> usbWValue ConÞguration number
--> usbReqCount Amount of conÞguration data requested
--> usbBuffer --> Pointer to the address to store the data in
<-- usbActCount Actual amount of data returned
--> usbFlags Should be set to 0
The USBGetConfigurationDescriptor function differs from the
USBGetFullConfigurationDescriptor function in that it allows the calling driver
to specify how much conÞguration data the function should return.
USBGetConfigurationDescriptor allows the caller to get either the 9-byte
conÞguration descriptor (USBConfigurationDescriptor), a descriptor speciÞed in
usbWValue, or as much of the conÞguration data as requested.

The USBGetConfigurationDescriptor function requires the caller to allocate the
memory for the returned data and pass a pointer to the address of the allocated
memory block in usbBuffer. The caller must also specify how many bytes of the
conÞguration data to return to the buffer in the usbReqCount Þeld.

The usbReqCount Þeld speciÞes the largest amount of data that you want
returned. If the descriptor has less data, less data is returned. If the descriptor
has more data, only the requested amount of data is returned. This is not an
error condition.

Device Management Functions 4

The functions here provide a mechanism for the hub driver to inform the USB
Manager of the addition of a new device to a speciÞed USB and to retrieve the
USB device ID of the new USB device. The USB hub driver tasks include
assigning the device address and preparing the deviceÕs default pipe for use.
This is the process of enumerating a device for use on the USB.

The functions in this section are called in a speciÞc sequence to perform proper
device enumeration on the USB. The function calling sequence is as follows:

1. Call the USBHubAddDevice function
USL Functions 93
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
2. When USBHubAddDevice completes, the hub driver is clear to reset the device.

3. Reset the port for that device

4. Obtain the port status from the hub to get the speed of the device.

5. Call USBHubConfigurePipeZero to set the device speed and packet size.

6. Perform any necessary communication with the device.

7. Call the USBHubSetAddress function to set the address of the device which is
used for future communication by the hub driver and other drivers
interested in the device.

USBHubAddDevice 4

The USBHubAddDevice function informs the USB that the hub driver has a new
device that needs to be added to the USB.

At the time the device Þrst appears on the USB, it has not yet been reset. When
the completion routine for this function is called, it is safe for the hub driver to
reset the device. The hub driver should then read the device descriptor to get
the endpoint and maxpacket size. The driver must then call the
USBHubSetAddress function, even if an error occurs. There is a 1 second timeout
allowed, if USBHubSetAddress is not called, it will be called for you. This is done
to prevent the bus enumeration mechanism from halting further system activity.

OSStatus USBHubAddDevice(USBPB *pb);

Required Þelds in the USBPB parameter block for the USBHubAddDevice function
are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
<-- usbReference Device reference
The device reference can be used to address the device while it is device 0. This
reference becomes invalid as soon as it is addressed with the USBHudSetAddress
function.
94 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
There must be a valid USBReference passed in the usbReference Þeld of the
parameter block. If a nil value or a reference that does not match an existing
device, interface, or pipe is passed in, the call returns immediately with an
unknown device error.

If the device associated with this call is unplugged and its driver removed while
this function call is pending, the function will not complete.

USBHubConÞgurePipeZero 4

The USBHubConfigurePipeZero function must be called after a device is reset, and
before any attempt is made to communicate with the device at its default
address zero.

OSStatus USBHubConfigurePipeZero(USBPB *pb);

Required Þelds in the USBPB parameter block for the USBHubConfigurePipeZero
function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference Device zero reference returned from the

USBHubAddDevice function.
--> usbFlags Device speed 0 or 1: slow (1 indicates a low speed device)
--> usbWValue maxPacketSize, obtained from the device descriptor

USBHubSetAddress 4

The USBHubSetAddress function addresses the currently unaddressed device
(The device has been reset and is responding as device 0.) and creates a device
USL Functions 95
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
reference for it. After this function completes, the device can be addressed with
device requests using the new device reference.

OSStatus USBHubSetAddress(USBPB *pb);

Required Þelds in the USBPB parameter block for the USBHubSetAddress function
are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
<--> usbReference --> Reference from USBHubAddDevice call

<-- New device reference
--> usbFlags 0 or 1: (1 indicates a low speed device)
--> usbWValue maxPacketSize of endpoint 0, obtained from the device

descriptor

USBHubDeviceRemoved 4

The USBHubDeviceRemoved function causes all pipes open to the speciÞed device
to be closed, thus removing the device.

OSStatus USBHubDeviceRemoved(USBPB *pb);

Required Þelds in the USBPB parameter block for the USBHubDeviceRemoved
function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference Device reference
--> usbFlags Should be set to 0
96 USL Functions

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
The hub driver should also call the USBExpertRemoveDeviceDriver function
(page 4-77) to inform the USB Manager. This removes the class driver associated
with the device. If the device is a hub, the hub driver should make the device
removal calls for all devices attached to the hub. The USB Manager is
responsible for determining what if any downstream devices are connected to
the hub and disconnecting them to remove that hubÕs tree of devices.

Constants and Data Structures 4

This section lists the constants and data structures used by the USL. Always
check the USB.h header Þle for the current version of the constants and
structures that support Mac OS USB driver development.

USB Constants 4

The constants recognized by the USL are listed in this section.

Parameter Block Constants 4

kUSBCurrentPBVersion = 0x0100 /* version 1.00*/
kUSBIsocPBVersion = 0x0109 /* version 1.10*/

Endpoint Type Constants 4

kUSBControl = 0
kUSBIsoc = 1
kUSBBulk = 2
kUSBInterrupt = 3
kUSBAnyType = 0xff
Constants and Data Structures 97
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
usbBMRequest Direction Constants 4

kUSBOut = 0
kUSBIn = 1
kUSBNone = 2
kUSBAnyDirn = 3

usbBMRequestType Type Constants 4

kUSBStandard = 0
kUSBClass = 1
kUSBVendor = 2

usbBMRequest Recipient Constants 4

kUSBDevice = 0
kUSBInterface = 1
kUSBEndpoint = 2
kUSBOther = 3

usbBRequest Constants 4

kUSBRqGetStatus = 0
kUSBRqClearFeature = 1
kUSBRqReserved1 = 2
kUSBRqSetFeature = 3
kUSBRqReserved2 = 4
kUSBRqSetAddress = 5
kUSBRqGetDescriptor = 6
kUSBRqSetDescriptor = 7
kUSBRqGetConfig = 8
kUSBRqSetConfig = 9
kUSBRqGetInterface = 10
kUSBRqSetInterface = 11
kUSBRqSyncFrame = 12
98 Constants and Data Structures

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
Interface Constants 4

kUSBHIDInterfaceClass = 0x03
kUSBNoInterfaceSubClass = 0x00
kUSBBootInterfaceSubClass = 0x01

Interface Protocol Constants 4

kUSBNoInterfaceProtocol = 0x00
kUSBKeyboardInterfaceProtocol = 0x01
kUSBMouseInterfaceProtocol = 0x02

Driver Class Constants 4

kUSBCompositeClass = 0,
kUSBAudioClass = 1
kUSBCOMMClass = 2,
kUSBHIDClass = 3,
kUSBDisplayClass = 4,
kUSBPrintingClass = 7
kUSBMassStorageClass = 8
kUSBHubClass = 9,
kUSBDataClass = 10
kUSBVenderSpecificClass = 0xFF

};

Descriptor Type Constants 4

kUSBDeviceDesc = 1
kUSBConfDesc = 2
kUSBStringDesc = 3
kUSBInterfaceDesc = 4
kUSBEndpointDesc = 5
kUSBHIDDesc = 0x21
kUSBReportDesc = 0x22
kUSBPhysicalDesc = 0x23
kUSBHUBDesc = 0x29
Constants and Data Structures 99
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
Pipe State Constants 4

kUSBActive = 0, /* Pipe can accept new transactions*/
kUSBIdle = 1, /* Pipe cannot accept new transactions*/
kUSBStalled = 2 /* An error occured on the pipe*/

USB Power and Bus Attribute Constants 4

kUSB100mAAvailable = 50
kUSB500mAAvailable = 250
kUSB100mA = 50
kUSBAtrBusPowered = 0x80
kUSBAtrSelfPowered = 0x40
kUSBAtrRemoteWakeup = 0x20

Driver File and Resource Types 4

kServiceCategoryUSB = FOUR_CHAR_CODE('usb ')
kUSBTypeIsHub = FOUR_CHAR_CODE('hubd')
kUSBTypeIsHID = FOUR_CHAR_CODE('HIDd')
kUSBTypeIsDisplay = FOUR_CHAR_CODE('disp')
kUSBTypeIsModem = FOUR_CHAR_CODE('modm')
kUSBDriverFileType = FOUR_CHAR_CODE('ndrv')
kUSBDriverRsrcType = FOUR_CHAR_CODE('usbd')
kUSBShimRsrcType = FOUR_CHAR_CODE('usbs')
kTheUSBDriverDescriptionSignature = FOUR_CHAR_CODE('usbd')

USB Data Structures 4

These are the data structures deÞned by the USL for USB device descriptors.
The current deÞnitions can also be found in the USB.h Þle.

Driver Plug-in Dispatch Table Structure 4

The driver dispatch table used to match and initialize the appropriate driver
with a device is of the form shown here. This structure is Þlled in by the class
driver.
100 Constants and Data Structures

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
struct USBClassDriverPluginDispatchTable {
UInt32 pluginVersion;

/* Version number of this */
/* plugin for the dispatch table */

USBDValidateHWProcPtr validateHWProc;
/* Pointer to */
/* the procedure the driver */
/* uses to verify that device is */
/* the proper hardware */

USBDInitializeDeviceProcPtr initializeDeviceProc;
/* Pointer to */
/* the procedure that initializes */
/* the class driver */

USBDInitializeInterfaceProcPtr initializeInterfaceProc;
/* Pointer to procedure that */
/* initializes a particular */
/* interface in the class driver.*/

USBDFinalizeProcPtr finalizeProc;
/* Pointer to the procedure that */
/* finalizes the class driver */

USBDDriverNotifyProcPtr notificationProc;
/* Pointer to the procedure that */
/* passes notifications to */
/* the driver */

Device Descriptor Structure 4

The USB device descriptor is of this form:

struct USBDeviceDescriptor {
UInt8 length;
UInt8 descType;
UInt16 usbRel;
UInt8 deviceClass;
UInt8 deviceSubClass;
UInt8 protocol;
UInt8 maxPacketSize;
UInt16 vendor;
UInt16 product;
UInt16 devRel;
UInt8 manuIdx;
Constants and Data Structures 101
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
UInt8 prodIdx;
UInt8 serialIdx;
UInt8 numConf;
UInt16 descEnd;

};

Configuration Descriptor Structure 4

The USB device conÞguration descriptor is of this form:

struct USBConfigurationDescriptor {
UInt8 length;
UInt8 descriptorType;
UInt16 totalLength;
UInt8 numInterfaces;
UInt8 configValue;
UInt8 configStrIndex;
UInt8 attributes;
UInt8 maxPower;

};

Interface Descriptor Structure 4

The USB device interface descriptor is of this form:

struct USBInterfaceDescriptor {
UInt8 length;
UInt8 descriptorType;
UInt8 interfaceNumber;
UInt8 alternateSetting;
UInt8 numEndpoints;
UInt8 interfaceClass;
UInt8 interfaceSubClass;
UInt8 interfaceProtocol;
UInt8 interfaceStrIndex;

};

Endpoint Descriptor Structure 4

The USB device endpoint descriptor is of this form:
102 Constants and Data Structures

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
struct USBEndPointDescriptor {
UInt8 length;
UInt8 descriptorType;
UInt8 endpointAddress;
UInt8 attributes;
UInt16 maxPacketSize;
UInt8 interval;

};

HID Descriptor Structure 4

The USB HID descriptor is of this form:

struct USBHIDDescriptor {
UInt8 descLen;
UInt8 descType;
UInt16 descVersNum;
UInt8 hidCountryCode;
UInt8 hidNumDescriptors;
UInt8 hidDescriptorType;
UInt8 hidDescriptorLengthLo;
UInt8 hidDescriptorLengthHi;

};

HID Report Descriptor Structure 4

The USB HID report descriptor is of this form:

struct USBHIDReportDesc {
UInt8 hidDescriptorType;
UInt8 hidDescriptorLengthLo;
UInt8 hidDescriptorLengthHi;

};

Hub Port Status Structure 4

The hub port status structure is of this form:
Constants and Data Structures 103
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
struct USBHubPortStatus {
UInt16 portFlags; /* Port status flags */
UInt16 portChangeFlags; /* Port changed flags */

};

USL Error Codes 4

Error codes returned by the USL are in the range -6900 to -6999 as listed in
Table 4-2.

Table 4-2 Error definitions

Error constant Number Definition

kUSBNoErr 0 No error occurred

kUSBInternalErr -6999 Internal error

kUSBUnknownDeviceErr -6998 Device reference not recognized

kUSBUnknownPipeErr -6997 Pipe reference not recognized

kUSBTooManyPipesErr -6996 Too many pipes

kUSBIncorrectTypeErr -6995 Incorrect type speciÞed

kUSBRqErr -6994 Request error

kUSBUnknownRequestErr -6993 Unknown request

kUSBTooManyTransactionsErr -6992 Too many transactions

kUSBAlreadyOpenErr -6991 Device already open

kUSBNoDeviceErr -6990 No device

kUSBDeviceErr -6989 Device error

kUSBOutOfMemoryErr -6988 Out of memory

kUSBNotFound -6987 USB not found

kUSBPBVersionError -6986 Wrong parameter block version

kUSBPBLengthError -6985 pbLength too small
104 USL Error Codes

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
kUSBCompletionError -6984 No completion routine speciÞed

kUSBFlagsError -6983 Flags not initialized to 0

kUSBAbortedError -6982 Pipe aborted

kUSBNoBandwidthError -6981 Not enough bandwidth available

kUSBPipeIdleError -6980 Pipe is idle; it cannot accept
transactions

kUSBPipeStalledError -6979 Pipe has stalled; it cannot be
used until the error is cleared
with a
USBClearPipeStallByReference
call

kUSBUnknownInterfaceErr -6978 Interface reference not
recognized

kUSBDeviceBusy -6977 Device is already being
conÞgured

kUSBDevicePowerProblem -6976 Device has a power problem

kUSBLinkErr -6916 Link error

kUSBCRCErr -6915 Pipe stall: bad CRC

kUSBBitstufErr -6914 Pipe stall: bitstufÞng

kUSBDataToggleErr -6913 Pipe stall: bad data toggle

kUSBEndpointStallErr -6912 Device didnÕt understand

kUSBNotRespondingErr -6911 Pipe stall, no device, or device
hung

kUSBPIDCheckErr -6910 Pipe stall: PID CRC error

kUSBWrongPIDErr -6909 Pipe stall: Bad or wrong PID

kUSBOverRunErr -6908 Packet too large or more data
than buffer

kUSBUnderRunErr -6907 Less data than buffer

kUSBBufOvrRunErr -6904 Host hardware failure on data in

Table 4-2 Error definitions

Error constant Number Definition
USL Error Codes 105
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 4

USB Services Library Reference
kUSBBufUnderRunErr -6903 Host hardware failure on data
out

kUSBNotSent1Err -6902 Transaction not sent

kUSBNotSent2Err -6901 Transaction not sent

Table 4-2 Error definitions

Error constant Number Definition
106 USL Error Codes

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 5

Figure 5-0
Listing 5-0
Table 5-0
USB Manager Reference 5
107
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 5

USB Manager Reference
The USB Manager API is described in this chapter.

Overview 5

The USB Manager maintains a database of all the currently connected devices
that communicate using the USB protocol. Whenever a device is added to the
USB, it is the responsibility of the USB Manager to register the device with the
Name Registry and load the deviceÕs driver software. In the event of a device
being removed, the USB Manager must ensure that the driver is removed
cleanly from the system and all references to the device in the Name Registry
are removed.

Figure 5-1 depicts the sequence of events that the USB Manager participates in
when a device is added to the USB.

Figure 5-1 Device addition event sequence on the USB

Device
driver

Device

USB Services Library
(USL)

USB Bus

Hub
driver

USB
Manager

2. Hub driver
 is notified of
 bus change

3. USB Manager is informed
 of bus change (Hub driver
 supplies device info)

4. USB Manager
 creates name
 registry entry for
 device

5. USB Manager
 loads driver

6. Driver begins using the USL
 to communicate with the USB device

1. Device is attached
108 Overview

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 5

USB Manager Reference
The USB Manager consists of native code fragments wrapped in a Þle of type
'expt'. During the Macintosh boot sequence, the USB Manager is loaded
immediately following all native drivers ('ndrv') and before generic INIT Þles.
The USB Manager resides in the Extensions folder.

The USB Manager is responsible for the following services which support the
USB architecture.

■ Maintain USB topology in database: keep updated information about the
USB in the Name Registry and dynamically update the information as
devices are added or removed from the bus.

■ Provide access functions for database information: Device information
needed by either the USL or a device driver should be accessible via the USB
Manager.

■ Generate unique opaque bus reference, a USBBusRef deÞned is a
USBReference (SInt32), when a root hub is detected/loaded. For possible
future use, a unique bus reference is generated by the USB Manager for each
instantiated root hub. Every device record stores the bus reference of the bus.

USB Manager API 5

This section describes the data structures and functions supported by the USB
Manager API. In this chapter functions refers to the function declarations for the
APIs rather than functions within USB devices.

Prototypes for all functions and deÞnitions of other related data types are in the
USB.h header Þle. The Þle is typically found in the includes folder.

Topology Database Access Functions 5

The functions for getting information about the USB topology are deÞned in
this section.
USB Manager API 109
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 5

USB Manager Reference
Getting Device Descriptors 5

The USBGetDeviceDescriptor function returns a pointer to the device descriptor
of the speciÞed device reference.

OSStatus USBGetDeviceDescriptor (
USBDeviceRef *deviceRef,
USBDeviceDescriptor *deviceDescriptor,
UInt32 size);

--> deviceRef A pointer to the allocated device reference for which
you want the device descriptor.

<-- deviceDescriptor A pointer to the device descriptor.

--> size Size of the descriptor. If the descriptor that is
returned is larger than the requested size, a
kUSBOverRunErr is returned and only the Þrst size
bytes of the descriptor are Þlled in.

Getting Interface Descriptors 5

The USBGetInterfaceDescriptor function returns a pointer to the interface
descriptor of supplied device reference.

OSStatus USBGetInterfaceDescriptor (
USBInterfaceRef *interfaceRef,
USBInterfaceDescriptor *InterfaceDescriptor,
UInt32 size);

--> interfaceRef A pointer to the allocated interface reference for
which you want the interface descriptor.

<-- interfaceDescriptor A pointer to the device interface descriptor.

--> size Size of the descriptor. If the descriptor that is
returned is larger than the requested size, a
kUSBOverRunErr is returned and only the Þrst size
bytes of the descriptor are Þlled in.
110 USB Manager API

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 5

USB Manager Reference
Finding The Driver For A Device By Class 5

The USBGetNextDeviceByClass function returns a class driver reference for the
class driver matching the speciÞed device class and optionally the device
subclass for that device. This function also works with interface references.

OSStatus USBGetNextDeviceByClass (
USBDeviceRef *deviceRef,
CFragConnectionID *connID,
UInt16 theClass,
UInt16 theSubClass,
UInt16 theProtocol);

<--> deviceRef A pointer to the device or interface driver reference for
the device or interface class speciÞed.

<-- connID A pointer to the device connection ID.

--> theClass A number representing the device or interface class for
which you want a compatible class driver. You can pass
in kUSBAnyClass as a wildcard value. See the USB
SpeciÞcation for the device and interface class
descriptions and identiÞers.

--> theSubClass A number representing the device or interface sub class
for which you want a compatible class driver. You can
pass in kUSBAnySubClass as a wildcard value. See the
USB SpeciÞcation for the device and interface subclass
descriptions and identiÞers.

--> theProtocol A number representing the device or interface protocol
for which you want a compatible class driver. You can
pass in kUSBAnyProtocol as a wildcard value. See the
USB SpeciÞcation for the device and interface protocol
descriptions and identiÞers.

The USBGetNextDeviceByClass function returns a pointer to the next
usbDeviceRef for a class driver matching the speciÞed deviceClass and
(optionally) deviceSubClass and deviceProtocol parameters. Pass kNoDeviceRef
for the deviceRef parameter to begin, then pass the returned device reference
for subsequent searches.

An OSStatus error of -43 is returned if a device cannot be found with the
speciÞed parameters. The device reference, deviceRef, returns unchanged if no
subsequent match is made. The typical way to Þnd all similar devices is to keep
USB Manager API 111
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 5

USB Manager Reference
calling the USBGetNextDeviceByClass function until the status value changes
from noErr. At that point, the deviceRef is ofÞcially undeÞned.

The driver descriptor structure must have the same class and subclass codes as
the codes for the device that is speciÞed in the function call. This is particularly
important for vendor speciÞc devices, since the correct driver for the device
would not typically load if the class and subclass codes donÕt match those for
the device.

If you are developing a device and the USBGetNextDeviceByClass function isnÕt
Þnding the requested device, be sure that the driver descriptor structure for
your device driver has the same class and subclass codes as the device.

Constants are deÞned for the device class, subclass, protocol, vendor, and
product identiÞers which you can pass as wildcard values in the functions
USBGetNextDeviceByClass and USBInstallDeviceNotification (page 5-115).

Note
In USB version 1.0.1 (the iMac update 1.0) a bug prevented
correct searches if usbClass, usbSubclass, and usbProtocol
were equal 0 and kNoDeviceRef is used for the deviceRef.
This behavior is not present in version 1.1 and greater of
the Mac OS USB software.

Constant Value Description
kUSBAnyClass 0xffff Pass in as a wildcard in the deviceClass

parameter or usbClass Þeld in the device
notiÞcation parameter block.

kUSBAnySubClass 0xffff Pass in as a wildcard in the deviceSubClass
parameter or usbSubClass Þeld in the device
notiÞcation parameter block

kUSBAnyProtocol 0xffff Pass in as a wildcard in the deviceProtocol
parameter or usbProtocol Þeld in the device
notiÞcation parameter block

kUSBAnyVendor 0xffff Pass in as a wildcard in the usbVendor Þeld in
the device notiÞcation parameter block.

kUSBAnyClass 0xffff Pass in as a wildcard in the usbProduct Þeld
in the device notiÞcation parameter block
112 USB Manager API

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 5

USB Manager Reference
Getting The Connection ID For Class Driver 5

The USBGetDriverConnectionID function returns a pointer to the
CFragConnectionID of the driver referenced by the device reference.

OSStatus USBGetDriverConnectionID (
USBDeviceRef *deviceRef,
CFragConnectionID *connID);

--> deviceRef A pointer to the device reference for which you want
the connection ID.

<-- connID A pointer to the connection ID.

Getting The Bus Reference For a Device 5

The USBDeviceRefToBusRef function returns a pointer to the bus reference for the
device speciÞed with a device reference.

OSStatus USBDeviceRefToBusRef (
USBDeviceRef *deviceRef,
USBBusRef *busRef);

--> deviceRef A pointer to an already established device reference for
which you want the bus reference.

<-- busRef A pointer to the bus reference.

Callback Routine for Device Notification 5

The callback routine, callback routine parameter block, and callback notiÞcation
request functions used for device notiÞcation are listed in this section.

The device notiÞcation mechanism is used to inform clients when devices are
added and removed from the USB. Clients register for notiÞcation services
using the USBInstallDeviceNotification function and can request all
notiÞcations or a speciÞc notiÞcation type. Whenever a device or interface is
added or removed from the bus, all registered clients are called back with the
information about the device or interface.

Clients that register for notiÞcations must be sure to un-register with the
USBRemoveDeviceNotification function before their code fragment is unloaded.
USB Manager API 113
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 5

USB Manager Reference
The callback routine is always called at task time, and may allocate memory,
make toolbox calls, or perform other system maintenance operations.

Device Notification Callback Routine 5

The device notiÞcation callback routine declaration is deÞned as:

typedef void (USBDeviceNotificationCallbackProc)
(USBDeviceNotificationParameterBlockPtr pb);

typedef USBDeviceNotificationCallbackProc
*USBDeviceNotificationCallbackProcPtr;

Device Notification Parameter Block 5

The parameter block for the device notiÞcation callback routine is deÞned as:

/* Device Notification Parameter Block */
struct USBDeviceNotificationParameterBlock
{
UInt16 pbLength;
UInt16 pbVersion;
USBNotificationType usbDeviceNotification;
UInt8 reserved1;
USBDeviceRef usbDeviceRef;
UInt16 usbClass;
UInt16 usbSubClass;
UInt16 usbProtocol;
UInt16 usbVendor;
UInt16 usbProduct;
OSStatus result;
UInt32 token;
USBDeviceNotificationCallbackProcPtr callback;
UInt32 refcon;
};

Field descriptions
<--> usbDeviceNotification The type of notiÞcation

The following notiÞcations are deÞned:
kNotifyAnyEvent
kNotifyAddDevice
114 USB Manager API

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 5

USB Manager Reference
kNotifyAddInterface
kNotifyRemoveDevice
kNotifyRemoveInterface

<-- usbDeviceRef The device reference for the target device
<--> usbClass The class of the target device, use kUSBAnyClass

for any class
<--> usbSubClass The subclass of the target device, use

kUSBAnySubClass for any subclass
<--> usbProtocol The protocol of the target device, use

kUSBAnyProtocol for any protocol
<--> usbVendor The vendor ID of the target device, use

kUSBAnyVendor for any vendor
<--> usbProduct The product ID of the target device, use

kUSBAnyProduct for any product
<-- result The status of the call
<-- token The identiÞer for this notiÞcation request
--> callback A pointer to the callback routine to be called

when the notiÞcation criteria is satisÞed

Installing The Device Callback Request 5

The USBInstallDeviceNotification function installs the device notiÞcation
routine for the device speciÞed in the USBDeviceNotificationParameterBlock.
Pass in 0xffff or the wildcard constants as a wildcard for class, subclass,
protocol, vendor, and/or product. Pass in kNotifyAnyEvent (0xff) in the
usbDeviceNotification Þeld to be notiÞed for any change that occurs.

void USBInstallDeviceNotification(
USBDeviceNotificationParameterBlock *pb);

pb A pointer to the USBDeviceNotificationParameterBlock deÞned
on (page 5-114).

If a code fragment installs a device notiÞcation routine, the device notiÞcation
routine must be removed with the USBRemoveDeviceNotification function before
the code fragment is unloaded.
USB Manager API 115
Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

C H A P T E R 5

USB Manager Reference
Removing The Device Callback Request 5

The USBRemoveDeviceNotification function removes a previously installed
device notiÞcation routine.

OSStatus USBRemoveDeviceNotification (UInt32 token);

token NotiÞcation identiÞer from the previously installed device
notiÞcation routine.
116 USB Manager API

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

A P P E N D I X A
Changes In Mac OS USB Version 1.1 A

A general discussion of the features in version 1.1 of the Mac OS USB software
is provided in this appendix. It also lists and deÞnes the use of the version 1.1
parameter block that supports isochronous transfers.

There are signiÞcant differences in the features supported in version 1.1 of the
Mac OS USB software. To take advantage of the new features some modiÞcation
of existing code is required. For information about the required code changes to
support version 1.1, see ÒCode Changes Required To Support The Version 1.1
USBPBÓ (page 123).

Major Feature Updates In Version 1.1 A

The major feature enhancements included in version 1.1 of the Mac OS USB
software are:

■ Isochronous support, new parameter block (page 119)

■ Multiple bus support

■ Improved bus enumeration

■ Driver notiÞcation messages that support Mac OS sleep and wake

■ Improved functionality for USB control requests

IMPORTANT

It should be noted that although the features listed here are
supported by the version 1.1 USBPB parameter block, all
Macintosh computers that support USB may not include
the necessary ROM code to implement the features. Always
check the USB gestalt selectors, deÞned in ÒIsochronous
Transfer SupportÓ (page 118) and ÒUSB Software Presence
and Version AttributesÓ (page 36), rather than the version
number to ensure that the features you are interested in are
supported on the Macintosh your software is running on.
Major Feature Updates In Version 1.1 117
Preliminary Working Draft. Revision 21.  Apple Computer, Inc. 10/26/98

A P P E N D I X A

Changes In Mac OS USB Version 1.1
Improved Bus Enumeration A

Version 1.1 provides improved bus emueration at startup to support proper
USB driver loading before other system extensions are initialized. This is
accomplished by providing task time for the USB expert loader to process all
hub communications. When all hubs have reported that they have discovered
their devices, and the USB system software has completed the search for USB
class drivers, then the remainder of the booting process, loading extensions and
launching the Þnder, continues.

Multiple USB Bus Support A

The Mac OS USB version 1.1 software supports multiple USB buses on a
system. If you are looking through the name registry, you need to check every
USB controller node for attached hubs and devices.

Driver Notification Messages A

Additional messages have been deÞned for handling Mac OS power
management features. Version 1.1 of the Mac OS USB software notiÞes class
drivers through the USBDriverNotificationProcPtr with the following
messages:

These messages correspond to the Sleep procedure selector codes deÞned in the
Chapter 6, ÒPower Manager,Ó in Inside Macintosh, ÒDevices.Ó Your driver
should return an appropriate response to these messages as deÞned in ÒWriting
a Sleep ProcedureÓ Chapter 6, ÒPower Manager,Ó Inside Macintosh: Devices.

Isochronous Transfer Support A

Version 1.1 contains support for isochronous transfers. You can test for the
presence of isochronous support by checking the gestalt selector gestaltUSBAttr

Message constant name

kNotifyUSBSystemSleepRequest

kNotifyUSBSystemSleepDemand

kNotifyUSBSystemSleepWakeUp

kNotifyUSBSystemSleepRevoke
118 Major Feature Updates In Version 1.1

Preliminary Working Draft. Revision 21.  Apple Computer, Inc. 10/26/98

A P P E N D I X A

Changes In Mac OS USB Version 1.1
(‘usb ‘). If gestaltUSBHasIsoch (bit 1 = 0x02) is set, then isochronous support is
available in the form of two new calls:

OSStatus USBIsocWrite(USBPB *pb);
OSStatus USBIsocRead(USBPB *pb);

Improved Functionality For USB Control Requests A

A new ßag was added to the USBDeviceRequest function (page 63) to allow for
USB control transactions addressed to an interface or endpoint of a device. The
new feature allows the call to be made without the driver explicitly knowing
the number of the endpoint or interface before the call is made. The USL now
Þlls in the interface or endpoint number when an interface or pipe reference is
passed in with the call.

To use the new feature, you speciÞy the ßag kUSBAddessRequest in the usbFlags
Þeld of the USBDeviceRequest function. If the recipient Þeld in BMRequestType is
an endpoint or interface, the relevant endpoint or interface number is derived
from the pipe or interface reference passed in the usbReference Þeld. The
appropriate interface or endpoint number is put into the usbWIndex Þeld before
the control transaction call takes place.

The Isochronous Version Of The USBPB A

This section lists the isochronous version 1.1 USBPB parameter block, and
discusses things to be aware of when using the isochronous variant of the USBPB.

The isochronous version 1.1 USBPB structure is deÞned as:

struct USBIsocFrame {
OSStatus frStatus; /* Frame status information */
UInt16 frReqCount; /* Bytes to transfer */
UInt16 frActCount; /* Actual bytes transferred */

};

struct usbIsocBits {
USBIsocFrame *FrameList;
UInt32 NumFrames;

};
Major Feature Updates In Version 1.1 119
Preliminary Working Draft. Revision 21.  Apple Computer, Inc. 10/26/98

A P P E N D I X A

Changes In Mac OS USB Version 1.1
struct usbControlBits {
UInt8 BMRequestType; /* For control transactions */
UInt8 BRequest; /* Specific control request */
USBRqValue WValue; /* For control transactions, the */

/* value field of the setup packet */
USBRqIndex WIndex; /* For control transactions, the */

/* value field of the setup packet */
UInt16 reserved4; /* Reserved */

};

struct USBPB{

void *qlink;
UInt16 qType;
UInt16 pbLength; /* Length of parameter block */
UInt16 pbVersion; /* Parameter block version number */

/* kUSBIsocPBVersion for iscohronous */
/* version 1.1 USBPB */

UInt16 reserved1; /* Reserved */
UInt32 reserved2; /* Reserved */

OSStatus usbStatus; /* Completion status of the call */
USBCompletion usbCompletion; /* Completion routine */
UInt32 usbRefcon; /* For use by the completion routine */
USBReference usbReference; /* Device, pipe, interface, endpoint */

/* reference as appropriate */

void *usbBuffer; /* Pointer to the data to be sent */
/* to or received from the device */

USBCount usbReqCount; /* Length of usbBuffer */
USBCount usbActCount; /* Number of bytes sent or received */
USBFlags usbFlags; /* Miscellaneous flags */

UInt32 usbFrame; /* Start frame of transfer */

union{
usbControlBits cntl; /* usbControlBits struct */

/* used for control transactions */
usbIsocBits isoc; /* usbIsocBits frames structure */

}usb;
120 Major Feature Updates In Version 1.1

Preliminary Working Draft. Revision 21.  Apple Computer, Inc. 10/26/98

A P P E N D I X A

Changes In Mac OS USB Version 1.1
UInt8 usbClassType; /* Class for interfaces, */
/* transfer type for endpoints */

UInt8 usbSubclass; /* Subclass for interfaces */
UInt8 usbProtocol; /* Protocol for interfaces */
UInt8 usbOther; /* General purpose value */
UInt32 reserved6; /* Reserved */
UInt16 reserved7; /* Reserved */
UInt16 reserved8; /* Reserved */

}USBPB;

Using the USBPB For Isochronous Transactions A

This section deÞnes how to use the Þelds that support isochronous transactions
in the version 1.1 USBPB.

When making isochronous calls, you set the pbVersion Þeld in the USBPB
parameter block to kUSBIsocPBVersion, and use the isochronous variant of the
USBPB parameter block.

Isochronous transfers occur on a per frame basis. Mac OS USB version 1.1 does
not implement the per sample method suggested in Chapter 10 of the USB
SpeciÞcation 1.0. This may be added in a future release.

The isochronous transfer implementation requires managing data ßow in
speciÞc frames. An isochronous pipe has a maximum number of bytes that it
can transfer every frame. The pipe can transfer fewer bytes, but it can not
transfer more. Each frame can generate its own error code.

To support frames for isochronous transfers, the following new structure is
introduced:

typedef struct{
OSStatus frStatus;
UInt16 frReqCount
UInt16 frActCount;

}USBIsocFrame;

This structure encapsualates the transfer for one frame. On entry, the value of
the frReqCount Þeld is set to indicate how many bytes are to be transfered (in or
out) for this particular frame. (Note 16 bits is more than enough, the
maxpacketsize is 1023 bytes, 10 bits).
Major Feature Updates In Version 1.1 121
Preliminary Working Draft. Revision 21.  Apple Computer, Inc. 10/26/98

A P P E N D I X A

Changes In Mac OS USB Version 1.1
On completion, the frActCount Þeld indicates how many bytes were actually
transfered and the frStatus Þeld speciÞes the result of the attempt.

For input transfers the frStatus Þeld may return errors, such as:

In all of the above cases, there is data in the usbBuffer (it may not be very good
data) which the class driver can use as it pleases.

For output, the error code is less interesting, you only know that the packet was
launched onto the bus (or not as the case may be). There is not any indication
that the data packet was received correctly, or that anyone was listening to it at
all.

The usbStatus Þeld returns an overall status for the isochronous transaction. If
usbStatus returns with no error, then the status for all of the packets is also no
error. If usbStatus is returned with another status value, then all of the
individual packets should be examined for error codes. The usbStatus Þeld
contains a representitive error if there are multiple packet errors.

The usbBuffer Þeld points to the data, all of the packets to be sent or received
are layed end to end.

The usbReqCount and usbActCount Þelds specify the overall total of data for all
the packets sent or received.

The usbReference Þeld is a pipe reference to an isochronous pipe.

The FrameList Þeld (usb.isoc.FrameList) in the usbIsocBits structure is a
pointer to an array of USBIsocFrame structures that specify the individual
packets. The start of any individual packet is found by adding the values in the
frReqCount Þelds for all the preceding packets and adding that to usbBuffer. For
example, if the frReqCount values are (61, 62, 63, 64, and so on) and you want
the address for the packet to be sent in the third frame, start with the address of
usbBuffer and add 61 + 62.

The NumFrames Þeld (usb.isoc.NumFrames) is the number of frames pointed to by
the FrameList Þeld, and also deÞnes over how many frames the call will be
active.

The usbFrame Þeld speciÞes the frame number on which the transfers are to
start. A frame is speciÞed to be the nearest frame to the current frame with the

kUSBUnderRunErr -6907 Packet received was shorter than expected
kUSBOverRunErr

-6908
Packet too large or more data than buffer

kUSBCRCErr -6915 Pipe stall, bad CRC; packet was received
corrupt
122 Major Feature Updates In Version 1.1

Preliminary Working Draft. Revision 21.  Apple Computer, Inc. 10/26/98

A P P E N D I X A

Changes In Mac OS USB Version 1.1
speciÞed low 32 bits when the transfer is called. This method eliminates the
need for a 64-bit frame counter as long as the class driver has a latency of less
than 23 days.

Isochronous pipes are opened when a USBConfigureInterface function (page 56)
is called. During a call to USBConfigureInterface function, the available
bandwidth is checked. If bandwidth is insufÞcient, the call to open the
isochronous pipes could fail.

Code Changes Required To Support The Version 1.1 USBPB A

This section describes the changes you should be aware of if you are working
with code that supported the version 1.0 parameter block in USB.h and you
want to take advantage of the features in version 1.1 of the Mac OS USB
software.

The USBPB parameter block structure has been converted to include unions that
provide support for isochronous transfers. The change is binary compatible
(you can keep the same kUSBCurrentVersion value), but it is necessary to make
changes to existing source code in order to use the version 1.1 USB.h Þle.

At the simplest level, the necessary changes can be made by doing a search and
replace of the following strings in your code:

To aid with the conversion process, macros with the substitutions are available
in the version 1.1 USB.h Þle. To use the macros, add a deÞne for OLDUSBNAMES
before including USB.h. It is recommended that you make the actual string
changes in the source, because the macro facility is not guaranteed to be
available in later versions of the USB.h Þle.

The USBClassDriverPlugInDispatchTable has changed in version 1.1. If the
version of USBClassDriverPluginDispatchTable is set to

Old string New replacement string

usbBMRequestType usb.cntl.BMRequestType

usbBRequest usb.cntl.BRequest

usbWValue usb.cntl.WValue

usbWIndex usb.cntl.WIndex
Code Changes Required To Support The Version 1.1 USBPB 123
Preliminary Working Draft. Revision 21.  Apple Computer, Inc. 10/26/98

A P P E N D I X A

Changes In Mac OS USB Version 1.1
kUSBClassDriverPluginVersion it indicates that USBDriverNotifyProcPtr has the
following prototype:

OSStatus USBDriverNotifyProc(USBDriverNotification notification, void
*pointer, Uint32 refcon);
124 Code Changes Required To Support The Version 1.1 USBPB

Preliminary Working Draft. Revision 21.  Apple Computer, Inc. 10/26/98

A P P E N D I X B
Conventions and Abbreviations B

This developer note uses the following typographical conventions and
abbreviations.

Conventions 5

Computer-language textÑany text that is literally the same as it appears in
computer input or outputÑappears in Letter Gothic font.

Hexadecimal numbers are preceded by a zero x (0x). For example, the
hexadecimal equivalent of decimal 16 is written as 0x10.

Note
A note like this contains information that is of interest but
is not essential for an understanding of the text. ◆

IMPORTANT

A note like this contains important information that you
should read before proceeding. ▲

Abbreviations B

When unusual abbreviations appear in this developer note, the corresponding
terms are also spelled out. Standard units of measure and other widely used
abbreviations are not spelled out.

Here are the standard units of measure used in developer notes:

A amperes mA milliamperes

dB decibels µA microamperes

GB gigabytes MB megabytes

Hz hertz MHz megahertz

in. inches mm millimeters

k 1000 ms milliseconds
125
Preliminary Working Draft. Revision 21.  Apple Computer, Inc. 10/26/98

A P P E N D I X B

Conventions and Abbreviations

Figure A-0
Listing A-0
Table A-0
Other abbreviations that may be used in this note include:

K 1024 µs microseconds

KB kilobytes ns nanoseconds

kg kilograms Ω ohms

kHz kilohertz sec. seconds

kΩ kilohms V volts

lb. pounds W watts

$n hexadecimal value n

ADB Apple Desktop Bus

ATA advanced technology attachment

ATAPI advanced technology attachment packet interface

AV audiovisual

CD-ROM compact disc read-only memory

DIN Deutsche Industries Norm

EMI electromagnetic interference

GCR group code recording

IC integrated circuit

IDE integrated device electronics

I/O input/output

IR infrared

JEDEC Joint Electronics Devices Engineering Council

PCI Peripheral Component Interconnect

PIO parallel input output

SCSI Small Computer System Interface

SCC serial communications controller

USB Universal Serial Bus
126
Preliminary Working Draft. Revision 21.  Apple Computer, Inc. 10/26/98

A P P E N D I X C
USB Terminology C

The USB terminology used in this document is deÞned here:

asynchronous data Data transferred at irregular intervals with no speciÞc
latency requirements.

bandwidth The amount of data capable of being transmitted per
unit of time, typically bits per second (bps) or bytes per
second (Bps).

big endian A method of storing data that places the most
signiÞcant byte of multiple byte values at a lower
storage address. For example, a word stored in big
endian format places the least signiÞcant byte at the
higher address and the most signiÞcant byte at the
lower address. See also, little endian.

bps Transmission rate expressed in bits per second.

buffer Storage used to compensate for a difference in data
rates or time of occurrence of events, when transmitting
data from one device to another. The area in memory
where data is either stored or retrieved
programmatically.

bulk transfer Nonperiodic, large bursts of communication typically
used for a data transfer that can use any available
bandwidth and also be delayed until bandwidth is
available.

bus enumeration Detecting and identifying Universal Serial Bus devices.

class A group of devices or interfaces that have a set of
attributes or functions in common.

client Software resident on the host that interacts with host
software to arrange data transfer between a function in
a device and the host. The client is often the data
provider and consumer for transferred data.

conÞguration One of possibly several settings a device can be
programmed into. ConÞgurations may be constrained
by available power or bandwidth, or may be
differentiated by function. See also, function.
127
Preliminary Working Draft. Revision 21.  Apple Computer, Inc. 10/26/98

A P P E N D I X C

USB Terminology
conÞguring
software

The host software responsible for conÞguring a
Universal Serial Bus device. This may be a system
conÞgurator or software speciÞc to the device.

control pipe Same as a message pipe.

control transfer One of four Universal Serial Bus Transfer Types.
Control transfers support conÞguration/command/
status type communications between client and
function.

default address An address deÞned by the Universal Serial Bus
SpeciÞcation and used by a Universal Serial Bus device
when it is Þrst powered or reset. The default address is
0x0.

default pipe The message pipe created by Universal Serial Bus
system software to pass control and status information
between the host and a Universal Serial Bus deviceÕs
Endpoint 0. See also, pipe.

device A logical or physical entity that performs a function.
The actual entity described depends on the context of
the reference. At the lowest level, device may refer to a
single physical hardware component, as in a memory
device. At a higher level, it may refer to a collection of
hardware components that perform a particular
function, such as a Universal Serial Bus interface
device. At an even higher level, device may refer to the
function performed by an entity attached to the
Universal Serial Bus; for example, a data/FAX modem
device. Devices may be physical, electrical, addressable,
and logical.

When used as a non-speciÞc reference, a Universal
Serial Bus device is either a hub or a function.

device address The address of a device on the Universal Serial Bus.
The device address is the default address when the
Universal Serial Bus device is Þrst powered or reset.
Hubs and functions are assigned a unique device
address by Universal Serial Bus software. See also, hub.

device driver A program responsible for interfacing to a hardware
device.
128
Preliminary Working Draft. Revision 21.  Apple Computer, Inc. 10/26/98

A P P E N D I X C

USB Terminology
device endpoint A uniquely identiÞable portion of a Universal Serial
Bus device that is the source or sink of information in a
communication ßow between the host and device. See
also, isochronous sink endpoint, and isochronous
source endpoint.

downstream The direction of data ßow from the host or away from
the host. A downstream port is the port on a hub
electrically farthest from the host that generates
downstream data trafÞc from the hub. Downstream
ports receive upstream data trafÞc.

endpoint See device endpoint.

endpoint address The combination of a Device Address and an Endpoint
Number on a Universal Serial Bus device.

endpoint number A number that identiÞes a unique pipe endpoint on a
Universal Serial Bus device.

frame The time from the start of one start of frame (SOF)
token to the start of the subsequent SOF token. A frame
is the master clock of the USB, and is typically 1ms
long. See also, SOF.

function A capability provided to the host by a Universal Serial
Bus device. For example, an ISDN connection, a digital
microphone, or speakers. A device may provide one or
more functions.

host The computer system in which the Universal Serial Bus
host controller is installed. This includes the host
hardware platform (CPU, bus, etc.) and the operating
system in use.

host controller The hostÕs Universal Serial Bus interface.

host controller
driver

The Universal Serial Bus software layer that abstracts
the host controller hardware. Host Controller Driver
provides an SPI for interaction with a host controller.
Host Controller Driver hides the speciÞcs of the host
controller hardware implementation. On the Macintosh
this is the Universal Serial Bus interface module (UIM),
which is pronounced whim.

hub A Universal Serial Bus device that provides additional
attachment points to the Universal Serial Bus.
129
Preliminary Working Draft. Revision 21.  Apple Computer, Inc. 10/26/98

A P P E N D I X C

USB Terminology
interface A collection of pipes which form a logical interface to
part or all of a device. USB devices all have an interface
or interfaces. Interfaces provide the deÞnitions of the
functions available within a device. The deviceÕs
function or functions are deÞned by the interfaces it
supports. See also, pipe.

isochronous data A stream of data whose timing is implied by its
delivery rate.

isochronous device An entity with isochronous endpoints, as deÞned in the
USB speciÞcation, that sources or sinks sampled analog
streams or synchronous data streams.

isochronous sink
endpoint

An endpoint that is capable of consuming an
isochronous data stream.

isochronous source
endpoint

An endpoint that is capable of producing an
isochronous data stream.

Isochronous
transfer

One of four Universal Serial Bus transfer types.
Isochronous transfers are used when working with
isochronous data. Isochronous transfers provide
periodic, continuous communication between host and
device.

little endian Method of storing data that places the least signiÞcant
byte of multiple byte values at lower storage addresses.
For example, a word stored in little endian format
places the least signiÞcant byte at the lower address
and the most signiÞcant byte at the higher address. The
USB standard uses little-endian format for multi-byte
Þelds. See also big endian.

message pipe A pipe that transfers data using a request/data/status
paradigm. The data has an imposed structure which
allows requests to be reliably identiÞed and
communicated. See also, pipe.

packet Data organized in a group for transmission. Packets
typically contain three elements: control information
(source, destination, and length), the data to be
transferred, and error detection and correction bits.

packet buffer The logical buffer used by a Universal Serial Bus device
for sending or receiving a single packet. This
determines the maximum packet size the device can
send or receive.
130
Preliminary Working Draft. Revision 21.  Apple Computer, Inc. 10/26/98

A P P E N D I X C

USB Terminology
packet ID (PID) A Þeld in a Universal Serial Bus packet that indicates
the type of packet, and by inference the format of the
packet and the type of error detection applied to the
packet.

physical device A device that has a physical implementation; for
example, speakers, microphones, and CD players.

pipe A logical abstraction representing the association
between an endpoint on a device and software on the
host. A pipe has several attributes; for example, a pipe
may transfer data as streams (stream pipe) or messages
(message pipe).

port Point of access to or from a system or circuit. For
Universal Serial Bus, the point where a Universal Serial
Bus device is attached.

root hub A Universal Serial Bus hub attached directly to the host
controller. The root hub is the origin (tier 0) of the USB,
and is a software simulation of a standard USB hub
device.

root port The upstream port on a hub.

SOF An acronym for Start of Frame. The SOF is the Þrst
transaction token in each frame. SOF allows endpoints
to identify the start of frame and synchronize internal
endpoint clocks to the host.

stream pipe A pipe that transfers data as a stream of samples with
no deÞned Universal Serial Bus structure.

synchronization
type

A classiÞcation that characterizes an isochronous
endpointÕs capability to connect to other isochronous
endpoints.

transaction The delivery of service to an endpoint; a complete
logical transfer with a beginning and end, consists of a
token packet, optional data packet, and optional
handshake packet. SpeciÞc packets are allowed/
required based on the transaction type.

transfer One or more bus transactions to move information
between a software client and its function.

transfer type Determines the characteristics of the data ßow between
a software client and its function. Four transfer types
are deÞned: control, interrupt, bulk, and isochronous.
131
Preliminary Working Draft. Revision 21.  Apple Computer, Inc. 10/26/98

A P P E N D I X C

USB Terminology

Figure B-0
Listing B-0
Table B-0
UIM The Universal Serial Bus Interface Module (UIM); the
low-level (controller speciÞc) software that provides the
upper layers of the USB management software with a
hardware abstraction layer to the USB host controller
interface hardware.

Universal Serial
Bus (USB)

A collection of Universal Serial Bus devices and the
software and hardware that allow them to connect the
capabilities provided by functions to the host.

USB software The host-based software responsible for managing the
interactions between the host and the attached
Universal Serial Bus devices. The USB drivers, USB
Manager, and UIM provide these software services on
the Macintosh computer.

USB driver The host-resident software entity responsible for
providing common services to clients that are
manipulating one or more functions on one or more
host controllers, hubs or devices.

upstream The direction of data ßow towards the host. An
upstream port is the port on a device electrically closest
to the host that generates upstream data trafÞc from the
hub. Upstream ports receive downstream data trafÞc.
132
Preliminary Working Draft. Revision 21.  Apple Computer, Inc. 10/26/98

Index
A

abbreviations 125 to 126
aborting a pipe 73
ADB compatibility 21
adding devices 93
adding devices on hubs 94
alternate interface 53
asynchronous calls 48

B

bulk transactions 66
bus busy errors 44
bus enumeration 118
bus errors 43
bus topology 26
byte ordering functions 83

C

cable length 17
class driver 34, 38
clearing a stall 74
closing an interface 61
code changes 123
communication ßow 28
compatibility issues 20
completion routine 39, 49
conÞguration descriptor data structure 102
conÞguration descriptors 92
conÞguring device interfaces 57
connectors 17
constants

descriptor type 99

direction 98
driver class 99
endpoint 97
interface 99
interface protocol 99
pipe state 100
power and bus attributes 100
recipient 98
type 98
usbBRequest 98

control transactions 63

D

data structures
USBClassDriverPluginDispatchTable 100
USBConÞgurationDescriptor 102
USBDeviceDescriptor 101
USBEndPointDescriptor 102
USBHIDDescriptor 103
USBHIDReportDesc 103
USBHubPortStatus 103
USBInterfaceDescriptor 102
USBPB 45

data toggle synchronization 71
data transfer types supported 22
default pipe 62
descriptors 60
descriptor type constants 99
device

address 96
packetsize 95
power 17
removal 96
speed 17, 95

device access errors 43
device address, setting 96
133
Preliminary Working Draft, Revision 21.  Apple Computer, Inc. 10/26/98

I N D E X
device callback request 115
device conÞguration 51
device descriptor data structure 101
device detection 108
device endpoint 60
device enumeration 93
device examples 18
device notiÞcation 76
device notiÞcation callback routine 113
device notiÞcation parameter block 114
device power requirements 53
device reference 45
device removal notiÞcation 77
device requests 62 to 65
devices 29
device status 93
direction constants 98
driver class constants 99
driver descriptor structure 39
driver dispatch table 39, 100
driver Þle and resource type 100
driver initialization routine 39
driver logic errors 44
driver matching 38
driver notiÞcation messages 118

E

endpoint 0 30
endpoint communication 90
endpoint constants 97
endpoint descriptor data structure 102
endpoints 29
errors

bus 43
bus busy 44
device access 43
driver logic 44
incorrect command 44
overrun 44
parameter block 48
underrun 44

expansion capabilities 16

F

Þle types 100
Þnding an interface 52 to 54
frActCount Þeld 122
FrameList Þeld 122
frames, isochronous transfers 121
frReqCount Þeld 121
frStatus Þeld 122
functions

USBAbortPipeByReference 73
USBAllocMem 81
USBBulkRead 66
USBBulkWrite 67
USBClearPipeStallByReference 74
USBClosePipeByReference 92
USBConÞgureInterface 57
USBDeallocMem 82
USBDelay 79
USBDeviceRequest 63
USBDisposeInterfaceRef 61
USBExpertFatalError 85
USBExpertInstallDeviceDriver 76
USBExpertInstallInterfaceDriver 77
USBExpertRemoveDeviceDriver 77
USBExpertRemoveInterfaceDriver 78
USBExpertStutus 84
USBFindNextAssociatedDescriptor 60
USBFindNextEndpointDescriptorImmediate 8

9
USBFindNextInterface 52
USBFindNextInterfaceDescriptorImmediate 87
USBFindNextPipe 58
USBGetConÞgurationDescriptor 92
USBGetFrameNumberImmediate 80
USBGetFullConÞgurationDescriptor 86
USBGetPipeStateByReference 72
USBGetPipeStatusByReference 72
USBHubAddDevice 94
USBHubConÞgurePipeZero 95
USBHubDeviceRemoved 96
USBHubSetAddress 96
USBIntRead 66
USBIsocRead 68
USBIsocWrite 69
134
Preliminary Working Draft, Revision 21.  Apple Computer, Inc. 10/26/98

I N D E X
USBMakeBMRequestType 62
USBNewInterfaceRef 56
USBOpenDevice 54
USBOpenPipe 91
USBResetPipeByReference 73
USBSetPipeActiveByReference 75
USBSetPipeIdleByReference 75

G

gestalt selectors 21
gestaltUSBHasIsoch selector 119
getting the pipe state 72

H

HID descriptor data structure 103
HID report descriptor data structure 103
high-speed device 19
holding data buffer memory 65
host software 26
HostToUSBWord function 83
hub device 19
hub driver 38, 93
hub port status descriptor data structure 103

I

incorrect command errors 44
interface 29, 51

alternate 53
closing 61

interface constants 99
interface descriptor 60
interface descriptor data structure 102
interface protocol constants 99
interface reference 39
interrupt data transfers 66
introduction to USB 16
isochronous calls 121

isochronous parameter block 119, 123
frActCount Þeld 122
FrameList Þeld 122
frReqCount Þeld 121
frStatus Þeld 122
NumFrames Þeld 122
packet error code 122
usbBuffer Þeld 122
usbFrame Þeld 123
usbReference Þeld 122
usbReqCount Þeld 122
usbStatus Þeld 122

isochronous pipes 123

K

keyboards supported 22
kNotifyUSBSystemSleepDemand 118
kNotifyUSBSystemSleepRequest 118
kNotifyUSBSystemSleepRevoke 118
kNotifyUSBSystemSleepWakeUp 118
kUSBCompletionError 48
kUSBFlagsError 48
kUSBPBLengthError 48
kUSBPBVersionError 48

L

loading an interface driver 77
logical topology 27
low-speed device 19
low-speed device cables 17

M

maximum packet size 44
maxpacketsize 44
memory functions 81 to 83
multiple bus support 80
mutiple USB controllers 118
135
Preliminary Working Draft, Revision 21.  Apple Computer, Inc. 10/26/98

I N D E X
N

Name Registry 37
network compatibility 21
non-0 endpoints 30
non-asynchronous calls 48
NumFrames Þeld 122

O

OLDBUSNAMES macro 123
OpenFirmware 37
opening a device 54
opening an interface 56
opening a pipe 90
over run errors 44

P

packet 44
packet size 44
packetsize 95
parameter block errors 48
physical topology 27
pipe descriptor 60
pipes 30
pipe state constants 100
pipe state control functions 70
polling Þelds 50
power and bus attribute constants 100
power features 20
power management features 118

R

recipient constants 98
references 44
removing an interface driver 78
removing device 96
removing devices 93

resetting a pipe 73
resource types 100
root hub 20

S

setting a pipe active 75
setting a pipe to idle 75
setting device address 96
setting device speed and packetsize 95
setting the conÞguration 54
sleep notiÞcation messages 118
storage devices 22

T

time functions 78 to 80
topology database access functions 109
transaction functions 65 to 68

U

UIM 34, 36
underrun errors 44
USB

bus topology 26
communication ßow 28
compatibility issues 20
connectors 17
device class examples 18
device expansion 16
devices 18, 29
endpoint 0 30
endpoints 29
gestalt selectors 21
high-speed device 19
host software 26
hub devices 19
interface 29
introduction to 16
136
Preliminary Working Draft, Revision 21.  Apple Computer, Inc. 10/26/98

I N D E X
logical topology 27
low-speed device 19
network compatibility 21
non-0 endpoints 30
parameter block 45
physical topology 27
pipes 30
power features 20
root hub 20
storage devices 22
supported controllers 22
supported data transfer types 22
supported keyboards 22

USBAbortPipeByReference function 73
USBAllocMem function 81
usbBMRequest

direction constants 98
recipient constants 98
type constants 98

usbBRequest constants 98
usbBuffer Þeld 65, 122
USBBulkRead function 66
USBBulkWrite function 67
USBClassDriverPlugInDispatchTable

structure 124
USBClassDriverPluginDispatchTable

structure 100
USB class drivers 38
USBClearPipeStallByReference function 74
USBClosePipeByReference function 92
USBConÞgurationDescriptor data structure 102
USB conÞguration services 51 to 62
USBConÞgureInterface function 57
USB constants 97
USB controllers supported 22
USB_CONTSTANT16 macro 83, 84
USBDeallocMem function 82
USBDelay function 79
USBDeviceDescriptor data structure 101
USBDeviceNotiÞcationCallbackProc function 114
USBDeviceRefToBusRef function 113
USBDeviceRequest function 63 to 65
USBDisposeInterfaceRef function 61
USBDriverNotiÞcationProcPtr sleep notiÞcation

messages 118

USBDriverNotifyProcPtr prototype 124
USBEndPointDescriptor data structure 102
USBExpertFatalError function 85
USBExpertInstallDeviceDriver function 76
USBExpertInstallInterfaceDriver function 77
USBExpertRemoveDeviceDriver function 77
USBExpertRemoveInterfaceDriver function 78
USBExpertStatus function 84
USBFindNextAssociatedDescriptor function 60
USBFindNextEndpointDescriptorImmediate

function 89
USBFindNextInterfaceDescriptorImmediate

function 87
USBFindNextInterface function 52
USBFindNextPipe function 58
usbFrame Þeld 123
USB frames 78
USB Gestalt selectores 36
USBGetConÞgurationDescriptor function 92
USBGetDeviceDescriptor function 110
USBGetDriverConnectionID function 113
USBGetFrameNumberImmediate function 80
USBGetFullConÞgurationDescriptor function 86
USBGetInterfaceDescriptor function 110
USBGetNextDeviceByClass function 111
USBGetPipeStateByReference function 72
USBGetPipeStatusByReference function 72
USBHIDDescriptor data structure 103
USBHIDReportDesc data structure 103
USBHubAddDevice function 94
USBHubConÞgurePipeZero function 95
USBHubDeviceRemoved function 96
USB hub driver 38
USBHubPortStatus data structure 103
USBHubSetAddress function 96
USBInterfaceDescriptor data structure 102
USB Interface Module 34, 36
USBIntRead function 66
USBIsocFrame structure 121
USBIsocRead function 68
USBIsocWrite function 69
USBMakeBMRequestType function 62
USB Manager 34, 37, 108

APIs 109
device notiÞcation parameter block 114
137
Preliminary Working Draft, Revision 21.  Apple Computer, Inc. 10/26/98

I N D E X
getting device descriptors 110
getting driver connection ID 113
getting drivers by class 111
getting interface descriptors 110
getting the device bus reference 113
responsibilites 109
topology database access functions 109

USB Manager data structures
USBDeviceNotiÞcationParameterBlock 114

USB Manager functions
USBDeviceNotiÞcationCallbackProc 114
USBDeviceRefToBusRef 113
USBGetDeviceDescriptor 110
USBGetDriverConnectionID 113
USBGetInterfaceDescriptor 110
USBGetNextDeviceByClass 111
USBInstallDeviceNotiÞcation 115
USBRemoveDeviceNotiÞcation 116

USBNewInterfaceRef function 56
USBOpenDevice function 54
USBOpenPipe function 91
USBPB, required Þelds 47
USBPB parameter block 45
USBPB pbLength Þeld 47
USBPB pbVersion Þeld 47
USBPB usbBMRequestType Þeld 47
USBPB usbCompletion Þeld 48
USBPB usbFlags Þeld 48
USBPB usbRefcon Þeld 48
USB Prober application 30
usbReference Þeld 122
USB reference types 44
usbReqCount Þeld 122
USBResetPipeByReference function 73
USB Services Library 34, 39, 42
USBSetPipeActiveByReference function 75
USBSetPipeIdleByReference function 75
USB software architecture 35
USB software components 34
usbStatus Þeld 122
USBToHostWord function 84
USB topology 26
USB transaction functions

setting up data buffer 65
usbWIndex Þeld 54

usbWValue Þeld 54
USL 34, 39, 42
USL data structures 100
USL error reporting 43
USL logging services 84 to 85
USL USB management services 76
USL utility functions 78

V

version 1.1 USB software 117 to 124
features 117
parameter block 119
USB.h Þle 123

virtual memory 65
138
Preliminary Working Draft, Revision 21.  Apple Computer, Inc. 10/26/98

I N D E X
139
Preliminary Working Draft, Revision 21.  Apple Computer, Inc. 10/26/98

T H E A P P L E P U B L I S H I N G S Y S T E M

Preliminary Working Draft, Revision 21. © Apple Computer, Inc. 10/26/98

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobeª Illustrator and
Adobe Photoshop.

Text type is Palatino¨ and display type is
Helvetica¨. Bullets are ITC Zapf
Dingbats¨. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITER
Steve Schwander

ILLUSTRATOR
Dave Arrigoni

Thanks to David Ferguson, Rich Kubota,
Barry Twycross, Esmond Lewis, Craig
Keithley, Tom Clark, Guillermo Gallegos,
Jai Chulani, and Mike Shebanek

	Mac OS USB DDK API Reference
	Contents
	Figures and Tables
	About This Note
	Contents of This Note
	Supplemental Reference Documents
	Mac OS USB Resources
	Apple Developer Connection Web Site

	Overview
	Introduction to USB
	Why Incorporate USB Into the Macintosh Architecture?
	Better Device Expansion Model
	Compact Connectors and Cables
	Use of Standard Hardware
	Lower Cost Than Comparable Non-USB Peripherals

	Wide Selection of USB Devices
	Device Classes
	Low- and High-Speed Devices
	USB Hub Devices
	The USB Root Hub

	Compatibility Issues
	USB Software Gestalt Selectors
	ADB, Serial/LocalTalk, and USB
	Macintosh-To-Macintosh USB Connections
	USB Storage Devices
	Keyboard Requirements
	USB Data Transfer Types Supported
	USB Controller Support

	USB Topology and Communication
	USB Bus Topology
	Host Software
	Physical Topology
	Logical Topology

	Communication Over the USB
	USB Interface
	USB Devices
	Endpoints
	Endpoint 0
	Non-0 Endpoints

	Pipes
	A Look At USB Devices with USB Prober

	USB Software Components
	Mac OS Software for USB Devices
	USB Software Presence and Version Attributes
	USB Interface Module (UIM)
	USB Manager
	Hub Driver
	USB Class Drivers
	USB Services Library (USL)

	USB Services Library Reference
	USB Services Library (USL)
	Errors And Error Reporting Conventions
	Device Access Errors
	Errors on the USB Bus
	Incorrect Command Errors
	Driver Logic Errors
	PCI Bus Busy Errors

	USB References
	The USBPB Parameter Block
	Required USB Parameter Block Fields
	Standard Parameter Block Errors
	Asynchronous Call Support
	Polling Versus Asynchronous Completion (Important)

	USL Functions
	USB Configuration Functions
	Opening An Interface
	Configuring The Device Interface(s)
	Finding A Pipe
	Getting Information About an Open Interface or Pipe

	Generalized USB Device Request Function
	USB Transaction Functions
	Pipe State Control Functions
	Data Toggle Synchronization

	USB Management Services Functions
	USB Time Utility Functions
	USB Memory Functions
	Byte Ordering (Endianism) Functions
	USL Logging Services Functions
	USB Descriptor Functions
	Opening a Pipe
	Device Management Functions

	Constants and Data Structures
	USB Constants
	Parameter Block Constants
	Endpoint Type Constants
	usbBMRequest Direction Constants
	usbBMRequestType Type Constants
	usbBMRequest Recipient Constants
	usbBRequest Constants
	Interface Constants
	Interface Protocol Constants
	Driver Class Constants
	Descriptor Type Constants
	Pipe State Constants
	USB Power and Bus Attribute Constants
	Driver File and Resource Types

	USB Data Structures
	Driver Plug-in Dispatch Table Structure
	Device Descriptor Structure
	Configuration Descriptor Structure
	Interface Descriptor Structure
	Endpoint Descriptor Structure
	HID Descriptor Structure
	HID Report Descriptor Structure
	Hub Port Status Structure

	USL Error Codes

	USB Manager Reference
	Overview
	USB Manager API
	Topology Database Access Functions
	Getting Device Descriptors
	Getting Interface Descriptors
	Finding The Driver For A Device By Class
	Getting The Connection ID For Class Driver
	Getting The Bus Reference For a Device

	Callback Routine for Device Notification
	Device Notification Callback Routine
	Device Notification Parameter Block
	Installing The Device Callback Request
	Removing The Device Callback Request

	Major Feature Updates In Version 1.1
	Improved Bus Enumeration
	Multiple USB Bus Support
	Driver Notification Messages
	Isochronous Transfer Support
	Improved Functionality For USB Control Requests
	The Isochronous Version Of The USBPB
	Using the USBPB For Isochronous Transactions

	Code Changes Required To Support The Version 1.1 USBPB
	Conventions
	Abbreviations

	Index

