

Using Project Builder to Build and
Debug a Carbon Application
This document describes how to build and debug a Carbon application on
Mac OS X. The Þrst two sections describe how to create a Mach-O Carbon
application that you can debug in Project Builder, AppleÕs development
environment for Mac OS X. These sections tell you how to proceed through the rest
of the document:

■ Building a Mach-O Carbon Application in Project Builder describes how to build a
Carbon project in Project Builder. This is best if your application will take
advantage of features available only in Mac OS X and will run only under
Mac OS X.

■ Using a CodeWarror Carbon Project in Project Builder describes how to use
CodeWarrior to build a Carbon application that you can debug in Project
Builder. This is best if you eventually want to create an application that runs
under both Mac OS 8 and Mac OS X. This method requires that you run Project
Builder in Mac OS X and run CodeWarrior in either the Blue Box or in Mac OS 8.

If your application requires CFM (for example, it uses plug-ins), see this section:

■ Debugging a CFM Application with GDB describes a work-around that lets you
debug a CFM application with GDB. Note that you will be able to perform
low-level debugging only. You cannot view the symbol names in your
application or step through your application line-by-line.

If you have access to two machines networked to each other, one running Mac OS 8
and the other running Mac OS X, you may be able to use CodeWarrior both to build
and to debug your application. For more information, contact Metrowerks.

C H A P T E R

Using Project Builder to Build and Debug a Carbon Application

Building a Mach-O Carbon Application in Project
Builder

You can both build and debug a Mach-O Carbon application in Project Builder,
AppleÕs development environment for Mac OS X.

Creating a Carbon application in Project Builder is best if youÕre creating an
application that will be used only under Mac OS X and that will take advantage of
the features that are only found in Mac OS X. You wonÕt need to use the Blue Box or
switch between Mac OS 8 and Mac OS X. Note that Project Builder cannot currently
create Mac OS 8 applications.

To import a CodeWarrior project:

1. Import it using Creating a Project Builder Project from a CodeWarrior Project.

2. Edit your code until you can compile it under Project Builder. For more
information on Project Builder and its compiler, choose Help > Project Builder
Help, and follow the link for ÒUsing the Tools.Ó

3. Debug it using the Debugging A Mach-O Carbon Application

To create a new Carbon project:

1. Launch Project Builder, choose Project > New and choose Carbon Application as
the Project Type.

2. Write your application. For more information on Project Builder and its
compiler, choose Help > Project Builder Help, and follow the link for ÒUsing the
Tools.Ó

3. Debug it using the Debugging A Mach-O Carbon Application
6 Building a Mach-O Carbon Application in Project Builder

C H A P T E R

Using Project Builder to Build and Debug a Carbon Application

Using a CodeWarror Carbon Project in Project Builder

This section describes how to create a CodeWarrior Carbon project that you can
debug with Project Builder. To do this, youÕll use both CodeWarrior and Project
Builder. Your CodeWarrior and Project Builder projects will use the same source
code and reside in the same folder.

These are the steps youÕll follow:

Step 1: Preparing Your CodeWarrior Project

Step 2: Creating a Debuggable Mach-O Application

Step 3: Creating a Project Builder Project from a CodeWarrior Project

Step 4: Debugging A Mach-O Carbon Application

Preparing Your CodeWarrior Project

Before you start, port your project to Carbon following the directions in ÒThe
Carbon Porting Guide.Ó Then, follow these recommendations, which ensure that
Project Builder and CodeWarrior will be able to share the same source Þles:

■ Remove any spaces from the names of the folders and volumes that lead up to
your project. For example, if your project is in the sub-folder ÒMy Carbon AppÓ
in the folder ÒMy ProjectsÓ on the hard disk ÒMac HDÓ, youÕll need to change
the names to something like ÒMyCarbonAppÓ, ÒMyProjectsÓ, and ÒMacHDÓ.

■ If possible, remove any spaces and non-alpha-numeric characters from the
names of the Þles and folders that the project contains.

If any spaces or non-alpha-numeric characters remain in a Þle name, Project
Builder will create a symbolic link to that item. The linkÕs name will be the same
as the originalÕs name with the offending characters changed to underscores (_).

Caution: If the names of two items differ only by non-alpha-numeric characters,
Project Builder will treat them as the same item.
Using a CodeWarror Carbon Project in Project Builder 7

C H A P T E R

Using Project Builder to Build and Debug a Carbon Application

Note that a symbolic link is not an alias. Under Mac OS 8, a symbolic link looks
like an ordinary Þle and does not point to the original item.

■ Organize your project so related Þles are in the same folder. You may even
consider putting all the Þles in the same folder.

Unlike CodeWarrior, Project Builder always shows your source Þles in their
folders. You cannot see Þles from different folders in the same list.

■ You may want to change your application so it always opens an untitled
document when launched. Carbon applications currently do not appear in
Mac OS XÕs Application menu, so the only way to bring a Carbon application to
the front is to click one of its windows.

Creating a Debuggable Mach-O Application

To debug your application in Project Builder, you need to set certain options before
building it. This section explains how.

1. Open your project in CodeWarrior, and select the Mach-O target.

2. Choose Project > Enable Debugger.

3. Open the Settings dialog for your Mach-O target, and in the PPC Mach-O Linker
panel, turn off the ÒEmit full path in Stab debug infoÓ option. Click Save and
close the dialog

4. Choose Project > Remove Object Code.

5. Choose Project > Make.

Creating a Project Builder Project from a CodeWarrior
Project

This section explains how to import your CodeWarrior project into Project Builder.
When youÕre done, youÕll have both CodeWarrior and Project Builder projects in
your project folder.

1. Open Project Builder. ItÕs in /System/Developer/Applications.
8 Creating a Project Builder Project from a CodeWarrior Project

C H A P T E R

Using Project Builder to Build and Debug a Carbon Application

2. Choose Project > New from Source. The New from Source dialog appears.

3. In ÒLocate Project Path,Ó click Browse, and choose the folder that contains your
CodeWarrior project. When youÕre Þnished, click Next.

4. In ÒDeÞne Project Types,Ó make sure that Project Builder chose the correct
projects types for your project and its folders, as follows:

■ The topmost project folder should be ÒCarbon Application.Ó

■ Any library should be ÒLibrary.Ó

■ Any subfolder that contains source Þles should be ÒCarbon Component.Ó

■ Any subfolder that doesnÕt contain source Þles should be Ò(Ignored).Ó

When youÕre Þnished, click Next.

5. In ÒLocate the directories that contain header Þles,Ó choose the folders that
contain header Þles, and turn on the ÒAlso look for header Þles in
subdirectoriesÓ option.

All the folders that contain headers for your application should be in the bottom
list. To move a folder from the top list to the bottom list, double click it. To add
a folder that isnÕt listed, click the Browse button.

When youÕre Þnished, click Next.

6. In ÒChoose PreÞx File,Ó enter the name of your projectÕs preÞx Þle. This Þeld
needs a value only if you plan to build your application within Project Builder.
You can Þnd your projectÕs preÞx Þle in CodeWarrior. Open the Settings dialog
for your project, go to the C/C++ Language panel, and look at the ÒPreÞx FileÓ
Þeld.

7. In ÒLocate the executables created by this project,Ó double-click the Mach-O
debuggable executable that CodeWarrior created, so it moves to the bottom list.
When youÕre Þnished, click Next.

8. When Project Builder has Þnished importing your project, click Finish. In the
conÞrmation dialog that appears, click Yes.

Note: If the New from Source dialog disappears, choose Project Builder from the
Application menu. It should re-appear.
Creating a Project Builder Project from a CodeWarrior Project 9

C H A P T E R

Using Project Builder to Build and Debug a Carbon Application

Debugging A Mach-O Carbon Application

This section describes how to run your application in Project BuilderÕs debugger,
GDB. To debug an application:

1. Open the Launch Panel.

In the Project window, click the Launch Panel button.

2. Make sure the proper executable and source directories are selected.

In the Launch panel, click the Launch Options button.

In the top view, select the debuggable Mach-O executable. If you canÕt see it in
the list, use the Add button.

In the bottom list, click the Sources tab and make sure all your source directories
are listed. If you canÕt see them, use the Add button.

3. In the Launch Panel, click the Debug button to start the debugger.

The Launch Panel expands to show three views:

■ The stack view lists your programÕs stack frames. Click a frame to view its
source code.

■ The source view displays the source code for the currently selected frame.

■ The GDB Command view displays GDBÕs status. Anytime the debugger is
running, you can enter a GDB command here. For a list of GDB help topics,
10 Debugging A Mach-O Carbon Application

C H A P T E R

Using Project Builder to Build and Debug a Carbon Application

enter help. For more information on a GDB command, enter
help <command-name>

Project Builder loads the GDB debugger and displays its status in the GDB
Command view. When you see the Ò(gdb)Ó prompt, the debugger has Þnished
loading but hasnÕt started your application yet.

4. Set some breakpoints.

In this version, the Suspend button doesnÕt always work. ItÕs especially useful to
set a breakpoint right at the beginning of your applicationÕs main routine. For
more information, see Using Breakpoints.

5. Click the Start button, to start your application.

If the debugger cannot run your application, the application may not have
executable privileges set. In the Workspace Manager, select your application,
choose Tools > Inspector > Access, and make sure each of the Execute boxes have
checkmarks in them. Close the Inspector window and press the Start button
again.

6. Debug your application.

You can Þnd help in these sections:

Navigating Code

Using Breakpoints

Controlling Execution

Setting and Viewing Data

7. When youÕre done, click the Stop button.

8. Revise your application and debug it again.

Note: Carbon applications currently do not appear in the Application menu. To
bring a Carbon application to the front, click one of its windows. If your application
isnÕt displaying a window, you cannot bring it to the front.
Debugging A Mach-O Carbon Application 11

C H A P T E R

Using Project Builder to Build and Debug a Carbon Application

Using CodeWarrior in the Blue Box, revise and rebuild your application, then
return to Project Builder to debug it again.

Navigating Code

This section describes how to Þnd functions and code in Project Builder.

To Þnd a source Þle in your project folder:

■ In the project windowÕs browser, click Sources, then click your ÞleÕs name.

To Þnd a source Þle in a subfolder within your project folder:

■ In the project windowÕs browser, click Subprojects, click the subfolderÕs name,
click Sources, then click your ÞleÕs name.

To search your project for a function or variable deÞnition:

■ Press Command-Shift-F, choose DeÞnitions from the pop-up menu, and enter
the symbolÕs name.

You can also Þnd Mac OS Toolbox declarations this way. However, at this time,
you cannot Þnd C++ methods.

To search your project for a string:

■ Press Command-Shift-F, choose Textually from the pop-up-menu, and enter the
string.

To go to the function or method for a frame in your applicationÕs stack:

■ Click the frame in the Stack view.

Note: If you add or remove Þles from your CodeWarrior project, youÕll have to
update your Project Builder project as well. Project Builder does not update it
automatically. To add a Þle, choose Project > Add File, choose the ÞleÕs type, and
then choose the Þle. To remove a Þle, select it and choose Project > Remove Files. If
you need to make many changes, it may be easier to re-import the project, as
described in Creating a Project Builder Project from a CodeWarrior Project
12 Debugging A Mach-O Carbon Application

C H A P T E R

Using Project Builder to Build and Debug a Carbon Application

Using Breakpoints

This section describes how to set regular breakpoints, temporary breakpoints, and
conditional breakpoints. Take note of the following:

■ Project Builder does not save breakpoint information. Each time you start the
debugger, re-set your breakpoints.

■ When the debugger pauses at a breakpoint, there may be a signiÞcant pause
before it brings Project Builder to the front.

To set a breakpoint:

■ In a source code view, double-click in the gray bar beside the line. (If there is no
gray bar, the debugger isnÕt running. See Debugging A Mach-O Carbon
Application.)

To remove a breakpoint:

■ Drag the breakpointÕs arrow out of the gray bar.

OR

■ Click the Task Inspector button, and use the Breakpoints tab view.

To view, enable, or disable breakpoints:

■ Click the Task Inspector button, and use the Breakpoints tab view.

To see complete information on your breakpoints, including their ID numbers, the
number of times theyÕve been hit, and the conditions or commands that are attached
to them:

■ In the GDB Command view, enter info breakpoints.

To ignore a breakpoint for a speciÞed number of times:

■ In the GDB Command view, enter ignore <bp-id> <count>.
Debugging A Mach-O Carbon Application 13

C H A P T E R

Using Project Builder to Build and Debug a Carbon Application

<bp-num> is the breakpointÕs ID number, which you can Þnd in the Task Inspector.
<count> is the number of times to ignore it before pausing at it again. For example,
ignore 3 10 ignores breakpoint number 3 the next 10 times itÕs reached, and then
pauses at it on the 11th time.

To set a temporary breakpoint, which GDB pauses at once and then removes:

■ In the GDB Command view, enter tbreak <spec>.

<spec> is either a function name or a Þlename and line number, separated by a
colon. For example, tbreak main.c:10 breaks at the tenth line of main.c, and
tbreak PrintStatus breaks at the Þrst line of the function PrintStatus.

To attach a condition to a breakpoint, so GDB pauses at it only when the condition
is true:

■ In the GDB Command view, enter condition <bp-id> <cond>.

<bp-id> is the breakpointÕs ID number, which you can Þnd in the Task Inspector.
<cond> is a valid boolean expression in the language youÕre debugging. For
example, condition 3 (ptr==nil) stops at the breakpoint number 3 only if ptr is nil.

To attach GDB commands to a breakpoint, so GDB executes them whenever it
reaches the breakpoint:

■ In the GDB Command view, enter command <bp-id> , your commands, and then
end.

<bp-id> is the breakpointÕs ID number, which you can Þnd in the Task Inspector.
The commands can be any valid GDB commands. Enter each one on a separate
line. Some useful ones are print, to print an expressionÕs value, and continue, to
continue without pausing. If silent is the Þrst command, GDB prints only your
commandsÕ output and nothing else.

For example, this sample prints the value of i whenever it hits breakpoint
number 3. It prints nothing else and continues immediately.

command 3
silent
print i
continue
end
14 Debugging A Mach-O Carbon Application

C H A P T E R

Using Project Builder to Build and Debug a Carbon Application

Controlling Execution

To continue executing after a pause (such as hitting a breakpoint):

■ Click the Continue button. (If there is no Continue button, the application is
already executing.)

To step over a function or method:

■ Click the Step Over button.

To step into a function or method:

■ Click the Step Into button.

To step out of a function or method:

■ In the GDB Command view, enter Þnish.

Setting and Viewing Data

To print a variable that appears in source code:

■ Select the variable in a source view, and click the Print Value, Print Reference, or
Print Object button.

The Print Value button prints the variableÕs value.
Debugging A Mach-O Carbon Application 15

C H A P T E R

Using Project Builder to Build and Debug a Carbon Application

The Print Reference button prints the value that the variable points to.

The Print Object button prints the self-description for the variableÕs object. ItÕs
useful only when youÕre debugging Java or Objective-C code.

To print the value of any valid expression:

■ In the GDB Command view, enter print <expr>.

<expr> is a valid expression in the language youÕre debugging. For example,
print aRect.width and print *ptr.

Here are some useful functions:

■ GDBShowControlHierarchy displays the control hierarchy for the speciÞed
window. For example p GDBShowControlHierarchy(myWindow).

■ GDBShowControlInfo displays the contents of the speciÞed control. For example,
p GDBShowControlInfo(myButton).

■ GDBShowDialogInfo displays the contents of the speciÞed dialog. For example,
p GDBShowDialogInfo(myDialog).

■ GDBShowMenuList displays the standard and hierarchical menus currently
inserted in the menu bar. For example, p GDBShowMenuList().

■ GDBShowMenuInfo displays the contents of the speciÞed menu. For example, p
GDBShowMenuInfo(fontMenu).

■ GDBShowMenuItemInfo displays the contents of the speciÞed menu item. For
example, p GDBShowMenuItemInfo(editMenu, cutItem).

■ GDBShowPasteboardTypes displays the data types that are currently on the
pasteboard. For example, p GDBShowPasteboardTypes().
16 Debugging A Mach-O Carbon Application

C H A P T E R

Using Project Builder to Build and Debug a Carbon Application
To change the value of any variable:

■ In the GDB Command view, enter set <var> = <expr>.

<var> is the name of a variable in your program. <expr> is a valid expression in the
language youÕre debugging. For example, set i = 10 .

Debugging a CFM Application with GDB

Although GDB cannot directly debug a CFM application, there is a work-around
that lets you perform low-level debugging on a CFM application. YouÕll use GDB to
debug LaunchCFMApp, a Mach-O program that launches CFM applications.

This work-around has these features and limitations:

■ The application must be on a UFS volume. If you built your application on an
HFS or HFS+ volume, move it to a UFS volume using FTP.

■ You can set breakpoints at Mach-O functions. Since the Carbon library is
Mach-O code, you can set breakpoints at Carbon functions. However, you
cannot set breakpoints at CFM functions, including those in your application.

■ You can see a function backtrace, which includes both CFM and Mach-O
functions, with the bt command. Your CFM functions wonÕt have names
associated with them, though, since GDB cannot use the symbol names in a CFM
application.

■ You can examine the memory contents at any address with the x command.
However, you cannot view variables or expressions, since GDB cannot use the
symbol names in a CFM application.

■ You cannot step through your applicationÕs code.

To debug your CFM application:

1. Launch the Terminal application, in /System/Administration/Terminal.app.

2. Enter gdb /usr/Carbon/bin/LaunchCFMApp.

GDB loads the LaunchCFMApp program.

3. If you want, set breakpoints at any Carbon function with the br command.
Debugging a CFM Application with GDB 17

C H A P T E R

Using Project Builder to Build and Debug a Carbon Application
4. At the GDB prompt, enter r <app-pathname>, where <app-pathname> is the full
pathname for your CFM application.

LaunchCFMApp launches your application.

To pause your applicationÕs execution at any time, press Control-C in the
Terminal application. To continue your application, enter cont. For more
information on GDB, enter help.
18 Debugging a CFM Application with GDB

	Using Project Builder to Build and Debug a Carbon Application
	Building a Mach-O Carbon Application in Project Builder
	Using a CodeWarror Carbon Project in Project Builder
	Preparing Your CodeWarrior Project
	Creating a Debuggable Mach-O Application

	Creating a Project Builder Project from a CodeWarrior Project
	Debugging A Mach-O Carbon Application
	Navigating Code
	Using Breakpoints
	Controlling Execution
	Setting and Viewing Data

	Debugging a CFM Application with GDB

