
Saturday, July 11, 1998 TN 1104: Interrupt-Safe Routines Page: 1

fi le:// /Monster500/Apple_Web/
Week%20of%207%3A6%3A98/

Technote 1104
Interrupt-Safe Routines

By Brian Bechtel and Quinn "The Eskimo"
Revised by Quinn "The Eskimo!"

Apple Worldwide Developer Technical Support

CONTENTS

Introduction

Execution Levels

Execution Levels in Other Documentation

What Interrupt Routines Can't Do

Interrupt-Safe Routines by Manager

Summary of Interrupt-Safe Routines

The traditional Mac OS has a badly defined set of

heterogeneous programming environments. In some of
these environments, your code can access some system
services but not others. Furthermore, the names given to
these environments are often overloaded and confusing.
This results in a lot of programmer confusion.

This Technote attempts to clear up this confusion by
assigning each of the execution levels a unique name,
describing how and why your code might find itself
running at a particular execution level, and outlining the
restrictions your code might face when running at that
level.

This Technote is important for anyone programming any
Mac OS code that might run at "interrupt time," and vital
for anyone doing system-level programming under the
traditional Mac OS.

Saturday, July 11, 1998 TN 1104: Interrupt-Safe Routines Page: 2

fi le:// /Monster500/Apple_Web/
Week%20of%207%3A6%3A98/

Introduction
There has been much confusion about which Mac OS routines can be used at interrupt time and which
cannot. This Technote lists the Mac OS routines which can be used at interrupt time.

This Technote list routines which are safe at interrupt time, rather than those that are unsafe. As the
system evolves, more routines are added, and it may become necessary to do more work in existing
routines. So routines that just happen to be interrupt-safe may become otherwise. Thus, any list of
interrupt-unsafe routines will grow over time, and consequently is hard to maintain. A list of routines that
are safe is more likely to remain accurate.

DTS recommends that you assume all routines absent from this list are unsafe to call at interrupt time.
This is a general defensive programming guideline, not a definitive pronouncement. If you know of a
routine which you always considered to be interrupt-safe that is not listed here, please let us know. As an
example of how your feedback is valuable to us, the first version of this technote failed to mention that
SetCursor was interrupt-safe. This was an obvious omission which has now been corrected, and it's
likely that there are others.

A interrupt-safe routine can become unsafe if it is patched inappropriately. When you patch a routine
which is interrupt-safe, you should assume that your patch is running at interrupt time and avoid doing
things that are illegal at interrupt time.

Note:
DTS still recommends against patching, as it has always has. The above comments reflect the pragmatic
attitude that, if you're going to patch, you should do it correctly.

The old Inside Macintosh, volume 6, appendix B had a list of routines which can be called at interrupt
time. This Technote is an updated list of those routines, along with comments as appropriate. Do not rely
on the list of interrupt-safe routines in Inside Macintosh, volume 6, appendix B.

Execution Levels
The traditional Mac OS supports the following execution levels:

Hardware Interrupt
Deferred Task
System Task

In addition, the native device driver model defines the following execution levels:

Native-Hardware Interrupt
Secondary Interrupt
Task
Software Interrupt

Since these execution levels are modeled after the execution levels supported by Copland, their
implementation on the traditional Mac OS is somewhat imprecise. In broad terms, the following analogies
apply:

native-hardware interrupt is like hardware interrupt
secondary interrupt is like deferred task
task is like system task
software interrupt is not supported

Saturday, July 11, 1998 TN 1104: Interrupt-Safe Routines Page: 3

fi le:// /Monster500/Apple_Web/
Week%20of%207%3A6%3A98/

However, the distinction between these analogous pairs is important in certain circumstances, as
explained later in this note.

Note:
You can read more about native device driver execution levels in Designing PCI Cards and Drivers for
Power Macintosh Computers, page 67.

IMPORTANT:
This Technote does not discuss the PowerPC hardware interrupt mechanism. On PowerPC computers
running the traditional Mac OS, PowerPC hardware interrupts are handled by a nanokernel, which
routes the interrupt through the 68K emulator. Where this note references 68K-specific concepts, you
can safely assume that this behavior is emulated by the low-level PowerPC system software on
machines with PowerPC processors.

IMPORTANT:
The execution level is largely independent of the processor interrupt mask, i.e., the value stored in the
680x0 SR register. In some cases, interrupts can be enabled during an interrupt (e.g., while running a
deferred task); in other cases, interrupts can be disabled at system task time (e.g., Enqueue disables
interrupts to guarantee mutual exclusion). The interrupt mask is not a reliable way to detect whether you
are at "interrupt time."

This remainder of this section describes each of the execution levels in detail.

Hardware Interrupt

What is it?

Hardware interrupt-level execution happens as a direct result of a hardware interrupt request. Software
executed at hardware interrupt level includes installable interrupt handlers for NuBus and other devices,
as well as interrupt handlers supplied by Apple.

How do you get there?

You get to hardware interrupt level as the direct result of a installing a hardware interrupt handler (e.g., a
NuBus handler installed with SIntInstall or by changing the interrupt vector tables in low memory) or
by being called by something that is directly invoked by a hardware interrupt handler (e.g., a SCSI
Manager 4.3 completion routine). Note that Time Manager tasks and VBLs are also executed at hardware
interrupt level.

What can you do there?

Hardware interrupts are considered "interrupt time" as defined by the toolbox, Virtual Memory Manager,
and Open Transport. The associated restrictions are described later in this document.

In addition, you should make every attempt to minimize the amount of time you spend at hardware
interrupt level. Hardware interrupt level requires that all interrupts with lower interrupt priority be
disabled for the duration of the hardware interrupt handler. The longer you spend in your hardware
interrupt handler, the longer the interrupt latency of the computer will be. Increased interrupt latency may
result in a poor user experience -- such as sound breakup or mouse tracking problems -- or worse. If you
need to do extended processing at interrupt time, you should schedule a deferred task (using DTInstall)
to perform the operation.

Is paging safe?

Paging is not safe at hardware interrupt level unless the interrupt has been deferred using DeferUserFn .

Saturday, July 11, 1998 TN 1104: Interrupt-Safe Routines Page: 4

fi le:// /Monster500/Apple_Web/
Week%20of%207%3A6%3A98/

Some system interrupt handlers (Device Manager completion routines, VBLs, slot VBLs, Time Manager
tasks) automatically defer their operation until VM-safe time, but other hardware interrupt handlers must
be sure not to cause page faults. If you need to access memory that might page fault, you should defer
that operation using DeferUserFn .

Note:
Do not confuse the semantics of DeferUserFn , which defers a hardware interrupt until paging is safe,
with those of DTInstall , which schedules a deferred task to be executed when interrupts are
re-enabled.

Deferred Task

What is it?

A deferred task is a mechanism whereby hardware interrupt-level code can schedule a routine to be
executed when interrupts have been re-enabled, but before the return from the interrupt. Hardware
interrupt handlers do this in order to minimize the amount of time spent in the hardware interrupt handler,
and thereby minimize system interrupt latency.

How do you get there?

The most common way to get to deferred task level is to have your hardware interrupt handler call
DTInstall to schedule a routine, which the system calls back at deferred task time. The interrupt system
executes deferred tasks just before returning from interrupts, but after re-enabling interrupts.

You can also get to deferred task level by being called by something that is executing at deferred task
level. A good example of this are Open Transport notifier functions, which are often called at deferred
task level.

What can you do there?

Deferred tasks are considered "interrupt time" as defined by the toolbox. The associated restrictions are
described later in this document.

Is paging safe?

Paging is safe at deferred task level.

Special Considerations

Another useful feature of deferred tasks is that they are serialized. The system will not interrupt a deferred
task in order to run another deferred task. This makes a really neat mutual exclusion mechanism.

System Task

What is it?

System task level is the level at which most application code runs.

The name is derived from an obsolete Mac OS system call, SystemTask . Prior to the introduction of
MultiFinder (now known as the Process Manager), applications were required to call SystemTask at
regular intervals to allow device drivers time to do things that could not be done at interrupt time.

Saturday, July 11, 1998 TN 1104: Interrupt-Safe Routines Page: 5

fi le:// /Monster500/Apple_Web/
Week%20of%207%3A6%3A98/

Note:
The SystemTask routine itself is now obsolete because WaitNextEvent automatically calls it for you.
However, the name lives on as a testament to those hardy Mac OS pioneers who actually had to call it.

How do you get there?

An application's main entry point is called at system task level. Cooperatively scheduled Thread Manager
threads also run at system task level. For other types of code, Technote 1033: "Interrupts in Need of (a
Good) Time" describes how to get to system task level from interrupt level.

What can you do there?

Code running at system task level is not considered "interrupt time" by anything. You can do virtually
anything at system task level.

Is paging safe?

By default paging is safe at system task level. The exceptions occur when your code is accessing some
resource that the system needs to support paging. For example, if you obtain exclusive access to the
SCSI bus using SCSIGet , you must not cause a page fault even at system task level.

Native Hardware Interrupt

What is it?

Native hardware interrupt level is virtually identical to normal hardware interrupt level except that it only
comes into play on machines that have the native driver architecture.

Note:
The native in the name of this level does not imply fully native-interrupt processing. Under the
traditional Mac OS, the nanokernel vectors all interrupts through the 68K emulator in order to ensure
68K interrupt priorities and instruction atomicity. Therefore, even native hardware interrupts involve
Mixed Mode Manager switches.

How do you get there?

You get to native hardware interrupt level by installing a hardware interrupt handler using the native
Interrupt Manager, or by being called by something that is directly invoked by such a handler.

What can you do there?

Native hardware interrupts are considered "interrupt time" as defined by the toolbox, Virtual Memory
Manager and Open Transport. The associated restrictions are described later in this document.

As with code running at hardware interrupt level, you should make every attempt to minimize the amount
of time you spend at native hardware interrupt level. If you need to do extended processing in response to
a native hardware interrupt, you should schedule a secondary interrupt (using
QueueSecondaryInterruptHandler) to continue the interrupt processing.

Is paging safe?

Paging is not safe at native hardware interrupt level.

Secondary Interrupt

Saturday, July 11, 1998 TN 1104: Interrupt-Safe Routines Page: 6

fi le:// /Monster500/Apple_Web/
Week%20of%207%3A6%3A98/

What is it?

The native driver model provides secondary interrupts -- which are much like deferred tasks -- allowing
native drivers to defer complex processing in order to minimize interrupt latency.

How do you get there?

You can get to secondary interrupt level by having your native hardware interrupt handler call
QueueSecondaryInterruptHandler to schedule a routine which the system calls back at secondary
interrupt level. The interrupt system executes secondary interrupts after re-enabling interrupts but before
running deferred tasks and returning from the interrupt handler.

You can also execute a secondary interrupt handler directly from task level using
CallSecondaryInterruptHandler2 .

What can you do there?

Secondary interrupts are considered "interrupt time" as defined by the toolbox, Virtual Memory Manager
and Open Transport. The associated restrictions are described later in this document.

Is paging safe?

Paging is not safe at secondary interrupt level.

Task

What is it?

Under the traditional Mac OS, the native driver model defines task level to be any code that's not at native
hardware interrupt level and not at secondary interrupt level.

How do you get there?

The most common source of task level execution is standard system task level execution, i.e., normal
application code. However, other execution levels that are traditionally considered to be interrupt levels,
such as non-native hardware interrupts and deferred tasks, are also considered to be task level.
Remember that under the traditional Mac OS, task level is defined as either non- native interrupt level or
secondary interrupt level.

What can you do there?

The environment restrictions of task level are defined by the underlying execution level that's really being
executed.

Is paging safe?

The native driver model defines that paging is always safe at task level. However, on the traditional Mac
OS, paging is only safe at task level if the underlying execution level defines it to be safe.

Software Interrupt

What is it?

The native driver model defines the concept of a software interrupt, the ability to force a task to
immediately execute a routine in the context of that task. This is distinct from, but commonly confused
with, secondary interrupt level.

Saturday, July 11, 1998 TN 1104: Interrupt-Safe Routines Page: 7

fi le:// /Monster500/Apple_Web/
Week%20of%207%3A6%3A98/

How do you get there?

Software interrupts are not supported under Mac OS. This is clearly stated in Designing PCI Cards and
Drivers for Power Macintosh Computers, page 262:

Currently, SendSoftwareInterrupt calls the user back at the same execution level. In
future versions of Mac OS it can be used to force execution of code that can't be called at
interrupt time.

This means is that if you call SendSoftwareInterrupt at execution level X, the software interrupt will
run at execution level X. This makes software interrupts effectively useless on the traditional Mac OS.

What can you do there?

Software interrupts are defined to run at task level, in the context of the task to which the software
interrupt was sent.

Is paging safe?

The native driver model defines that paging is always safe at software interrupt level.

Note:
When the native driver model was designed, it was designed with Copland in mind. The goal was that a
native driver (binary, not source) would run without modification on both the traditional Mac OS and
Copland. A lot of effort was put into both operating systems to support this goal.

In general, the support for the native driver model on the traditional Mac OS is acceptable. However, in
some cases, it is just not possible to support features of Copland under the traditional Mac OS. The
most obvious of these is software interrupts. These require significant microkernel support and were not
implemented on the traditional Mac OS.

Given that Copland is dead, software interrupts linger on in name only, the vestigial appendix on the
intestine that is the native driver model.

Saturday, July 11, 1998 TN 1104: Interrupt-Safe Routines Page: 8

fi le:// /Monster500/Apple_Web/
Week%20of%207%3A6%3A98/

Execution Levels in Other Documentation
In general, the following execution levels are considered to be "interrupt time."

Hardware Interrupt
Deferred Task
Native Hardware Interrupt
Secondary Interrupt

However, the use of the term "interrupt time" can vary from manager to manager. This section
documents some of the more confusing cases.

Toolbox

Most toolbox routines cannot be called at "interrupt time," as it is defined above.

There are many different reasons why toolbox routines cannot be called at interrupt time. Some
routines, like all of the Memory Manager, rely on global data structures that are not interrupt-safe. Other
routines might move or purge unlocked handles, which is equivalent to calling the Memory Manager.
Still others, like synchronous calls to the File Manager, are architecturally inaccessible. Finally, some
routines, like ReadDateTime , rely on interrupts in order to complete, and hence cannot be called when
interrupts are disabled.

The fact that a routine doesn't move or purge memory does not mean it is interrupt-safe.

Virtual Memory Manager

The Virtual Memory Manager documentation (chapter 3 of Inside Macintosh: Memory and Technote
ME 09: "Coping with VM and Memory Mappings") says that page faults are not allowed at "interrupt
time." This has caused a lot of confusion among programmers who have heard that, for example,
Device Manager completion routines are "interrupt time," and hence assume that paging is unsafe in
MacTCP completion routines. In the light of the above description, it's easy to clear up that confusion.

As far as the Virtual Memory Memory is concerned, "interrupt time" means any hardware interrupt that
hasn't been deferred by VM itself or using DeferUserFn . So it is safe to take page faults from Device
Manager completion routines, even though other documentation might refer to that execution level as
"interrupt time."

For the full story about virtual memory on the traditional Mac OS, check out Technote 1094: "Virtual
Memory Application Compatibility".

Open Transport

The original Open Transport documentation caused much confusion by saying that Open Transport
could not be called at "interrupt time." This means that you can only call Open Transport from system
task level or deferred task level. So you can call Open Transport at execution levels that would normally
be considered "interrupt time" (specifically, from a deferred task) as long as you don't call it from
hardware interrupt level (or native hardware or secondary interrupt levels).

This confusion has been cleared up in the latest release of Inside Macintosh: Networking with Open
Transport, which has an extensive table of which Open Transport routines can be called from which
execution levels.

Saturday, July 11, 1998 TN 1104: Interrupt-Safe Routines Page: 9

fi le:// /Monster500/Apple_Web/
Week%20of%207%3A6%3A98/

What Interrupt Routines Can't Do
Code running at "interrupt time" cannot do everything that system task code can do. The following list
summarizes the operations that interrupt routines should not perform. An interrupt routine which
violates any of these rules may cause a system crash:

An interrupt routine must not allocate, move, or purge memory using the Mac OS Memory
Manager.
An interrupt routine cannot rely on the state of any unlocked handle.
An interrupt routine must not call any Memory Manager routine which sets the low memory
global MemErr.
An interrupt routine must not call any Mac OS routines that violate the above.
An interrupt routine must not do synchronous I/O. This includes File Manager, Device
Manager, PPC Toolbox, and Open Transport I/O.
For 68K code, an interrupt routine cannot access application global variables unless it sets up
the application's A5 world properly. This technique is explained in the Accessing Application
Globals in a VBL Task section of Inside Macintosh: Memory.
For 68K code, an interrupt routine cannot call a routine from another code segment unless the
segment is loaded in memory and linked into the code's jump table. In addition, the code must
established the correct A5 world before calling across segments at interrupt time.
As a special case of the above, some of the routines described in Inside Macintosh (for
example, BitAnd , HiWord) are actually implemented as glue that is statically linked to your
program. It's important to remember that this glue may be in another segment and, even though
the routine itself does not move memory, the act of calling it might.
CFM-68K code must comply with the requirements outlined in Technote 1084: "Running
CFM-68K Code at Interrupt Time: Is Your Code at Risk?"

Interrupt-Safe Routines by Manager
This section describes various interrupt-safe routines, grouped by manager.

IMPORTANT:
This list is intended only to document those routines which should always be safe to call at interrupt
time. There may be other routines, not documented here, which are safe by virtue of their current
implementation. You should not rely on such routines continuing to be interrupt-safe.

Memory Manager

There are very few Memory Manager routines that you can safely call at interrupt time. The most common
exceptions are BlockMove (including BlockMoveData and other variants) and StripAddress ; these two
routines may be safely made at all execution levels. At interrupt time, you cannot allocate, move, or purge
memory (either directly or indirectly). You should never rely on the validity of handles to unlock blocks.

There are some routines documented in Inside Macintosh: Memory that are safe. The entire suite of
debugger routines are interrupt-safe. This includes DebuggerEnter , DebuggerExit , DebuggerGetMax ,
DebuggerLockMemory , DebuggerPoll , PageFaultFatal , DebuggerUnlockMemory , SwapMMUMode, and
Translate24to32 .

The Virtual Memory Manager routines GetPageState , GetPhysical , DeferUserFN , UnholdMemory , and
UnlockMemory are interrupt-safe.

The Virtual Memory Manager routines HoldMemory , LockMemory , LockMemoryContiguous , and
LockMemoryForOutput are interrupt-safe if you guarantee that either page faults are allowed or, if paging
is unsafe, that the routines will not cause a page fault. For example, it's safe to call LockMemory on

Saturday, July 11, 1998 TN 1104: Interrupt-Safe Routines Page: 10

fi le:// /Monster500/Apple_Web/
Week%20of%207%3A6%3A98/

memory that you can guarantee is held.

No other Memory Manager routines are interrupt-safe, for one or more of the following reasons:

1. They clear the low-memory global MemErr, which is returned by the Memory Manager call
MemError . Applications regularly use MemError to examine the result of the previous Memory
Manager operation and may not properly detect a memory error if MemErr changes at interrupt
time.

2. They allocate, move, or purge memory, or rely on the state of unlocked handles.
3. They examine data structures that can be in an inconsistent state at interrupt time.

IMPORTANT:
Developers sometimes think "Calling a routine that doesn't move memory (like DisposeHandle) should
be safe as long as I save and restore the value of MemErr." This is not true because of point 3 above.

Specifically, do not call StackSpace at interrupt time. StackSpace operates by comparing two low
memory globals in the current process low memory globals. At interrupt time you are not guaranteed that
you are even in a valid process. StackSpace also clears the low memory global MemErr, which is returned
by the Memory Manager call MemError . Applications regularly uses MemError to examine the result of the
previous Memory Manager operation, and may not properly detect a memory error if MemErr changes at
interrupt time.

Note:
Unfortunately, there is some shipping software that calls StackSpace at interrupt time. Even more
unfortunately, Apple has -- in the past -- shipped software that calls StackSpace at interrupt time.

Apple is committed to eliminating bugs like this from its system software, and DTS recommends that
developers continue to rely on the results of MemError . However, the paranoid developer may wish to
implement a wrapper for common Memory Manager routines, as shown below:

static OSErr MyNewHandle(Size byteCount, Handle *result)
{
 OSErr err;

 Assert(result != nil);
 err = noErr;
 *result = NewHandle(byteCount);
 if (*result == nil) {
 err = MemError();
 Assert(err != noErr);
 if (err == noErr) {
 err = memFullErr;
 }
 }
 return err;
}

Operating System Utilities

Enqueue and Dequeue are interrupt-safe, and may be used at any time. FormatRecToString (formerly
Format2Str), StringToExtended (formerly FormatX2Str), and ExtendedToString (formerly
FormatStr2X) are interrupt-safe as well.

Saturday, July 11, 1998 TN 1104: Interrupt-Safe Routines Page: 11

fi le:// /Monster500/Apple_Web/
Week%20of%207%3A6%3A98/

Note:
Do not call ReadLocation at interrupt time. ReadLocation needs to get information from the parameter
RAM (PRAM), using the poorly documented ReadXPRAM routine. Some Mac OS computers
communicate with parameter RAM via interrupts. If you call ReadXPRAM, or any routine which calls
ReadXPRAM, at interrupt time, the call may hang your system.

Device Manager

The core Device Manager traps (_Open, _Read, _Write , _Control , _Status , _Close) are interrupt-safe
in some cases. Some of these traps (_Open, _Read, _Write , _Close) are shared with the File Manager and
the behavior is slightly different for Device Manager requests versus File Manager requests. The following
rules summarize the situation:

Synchronous routines are never interrupt-safe.
Asynchronous routines are interrupt-safe, if they are legal at all.
Immediate routines are interrupt-safe if the receiving driver is prepared to handle immediate
requests at interrupt time. Immediate routines are never legal for files.
You should always open and close device drivers with OpenDriver and CloseDriver , which
must be called at system task time.
You should always open a file with one of the "OpenDF" routines (FSpOpenDF, PBOpenDF,
PBHOpenDF). Asynchronous variants of these routines are interrupt-safe.
Asynchronous variants of the other "Open" routines (PBOpen, PBHOpen) are interrupt-safe when
applied to files. However, you should avoid these routines because they might unexpectedly open
a device driver. For example, if you attempt to open a file called ".Sony", these routines might
open the floppy device driver rather than the file.

The next section gives details on File Manager routines that are not shared with Device Manager.

If you're patching the Device Manager traps described above, you must ensure that your patch correctly
handles interrupt-time requests. Your patch should not do interrupt-unsafe things unless it determines that
the request is synchronous.

When implementing a device driver, you receive three types of requests: synchronous, asynchronous, and
immediate. If the driver can be called asynchronously, you must implement both
synchronous and asynchronous requests as if they were asynchronous, and not do things
that are illegal at interrupt time. [This point is discussed in great detail in Technote 1067: "Traditional
Device Drivers: Sync or Swim".] On the other hand, immediate requests always execute at the execution
level at which the request was made, so if you know that your client made the request at system task time,
you know you are running at system task time.

As a special case of this last point, a driver is always sent accRun control routines as an immediate request
at system task time, so your driver can move or purge memory in response to an accRun call.

File Manager

All asynchronous File Manager routines are interrupt-safe. For example, PBOpenDFAsync can be called at
interrupt time.

File System Manager

The File System Manager service routines GetFSInfo and SetFSInfo are interrupt-safe. Other File
System Manager service routines (InstallFS , RemoveFS, InformFSM , InformFFS) are documented as
not being interrupt-safe.

A File System Manager plug-in should assume that it is running at interrupt time, and not violate the

Saturday, July 11, 1998 TN 1104: Interrupt-Safe Routines Page: 12

fi le:// /Monster500/Apple_Web/
Week%20of%207%3A6%3A98/

provisions of this Technote except where noted in the File System Manager documentation. As a
consequence, most File System Manager utility routines must be interrupt-safe. The routines documented
not to be interrupt-safe are UTAllocateVCB and UTDisposeVCB . Other File System Manager utility
routines (for example, UTCacheReadIP) are interrupt-safe but have other documented environmental
restrictions.

Driver Services

The native driver support library (DriverServicesLib) provides a large number of routines that are
"interrupt- safe." The execution level at which these routines may be called is defined in Designing PCI
Cards and Drivers for Power Macintosh Computers, Table 9-2, starting on page 283.

When reading this table, you should note a number of important caveats:

The column labelled "Software interrupt level" should be labelled "Secondary interrupt level."
To work in the context of this technote, the column labelled "Hardware interrupt level" should be
labelled "Native Hardware Interrupt Level."
Routines that are labelled as allocating memory must be called at task level, and the underlying
execution level must be system task level.
Routines callable from native hardware interrupt level are also callable from hardware interrupt
level.

In addition, the valid execution levels for PrepareMemoryForIO is covered in DTS Q&A DV 32:
"PrepareMemoryForIO and Execution Levels."

Classic Networking

Classic AppleTalk is implemented as a set of device drivers, and hence may be called at interrupt time as
long as the calls are made asynchronously.

MacTCP is split into two parts. The core TCP, UDP, and ICMP support is implemented as a device driver,
and hence may be called at interrupt time as long as the calls are made asynchronously.

On the other hand, the Domain Name Resolver (DNR) is implemented as glue in your application. The
StrToAddr , AddrToName, HInfo , and MXInfo routines are safe at interrupt time under MacTCP.
However, these routines will fail (returning an error code) under Open Transport TCP/IP if they are first
called at interrupt time. For this reason, DTS recommends that you do not calls these routines at interrupt
time.

Open Transport

The latest release of Inside Macintosh: Networking with Open Transport has an extensive table of which
Open Transport routines can be called from which execution levels.

Power Manager

Installing and removing a sleep queue entry (using SleepQInstall and SleepQRemove) is safe, as are
BatteryStatus and SetWUTime.

Saturday, July 11, 1998 TN 1104: Interrupt-Safe Routines Page: 13

fi le:// /Monster500/Apple_Web/
Week%20of%207%3A6%3A98/

Note:
On some computers, your sleep queue entry may be called at a time when you are not in a current
process. This means that it is unsafe to implement any user interaction from a sleep queue entry. For
example, the sleep switch on the lid of some Duos and some PowerBooks gets noticed by a patch to the
Process Manager when it is in the middle of switching processes. If you call a routine such as
ModalDialog at this time, the Process Manager thinks that there is no current front process, so it fails to
post any events for the dialog. You will hang because your modal dialog filter will never receive any
events.

Notification Manager

You may call NMInstall and NMRemove at interrupt time.

Note:
A notification response procedure is called at system task time and hence it is safe to call most Toolbox
routines. However, putting up user interface is tricky because you are running in the context of the
front-most process.

Desktop Manager

All asynchronous Desktop Manager routines are interrupt-safe. For example, the PBDTAddAPPLAsync
routine can be called at interrupt time.

Gestalt

Inside Macintosh: Operating System Utilities has this to say about calling Gestalt at interrupt time:

When passed one of the Apple-defined selector codes, the Gestalt function does not
move or purge memory and therefore may be called at any time, even at interrupt time.
However, selector functions associated with non-Apple selector codes might move or
purge memory, and third-party software can alter the Apple-defined selector functions.

This statement is mostly correct. However, there are two important caveats:

1. Not all Apple-defined Gestalt selectors are interrupt-safe, and there is no hard-and-fast rules for
determining which are and which aren't.

2. Prior to Mac OS 8.5, the Gestalt Manager itself has a small concurrency hole (when it grows the
Gestalt table) during which it may return incorrect information. In theory this makes Gestalt
unsafe to call at interrupt time; in practice, the Gestalt table grows very rarely and Apple has not
yet seen a case where this has caused problems.

In summary, our advice is that you should:

avoid using Gestalt at interrupt time in new code,
attempt to remove any interrupt-time usage of Gestalt , as convenient, when revising old code.

We do not believe that it is necessary for you to revise your code just to address this issue.

Sound Manager

MACEVersion , SndGetSysBeepState , SndManagerStatus , SndPauseFilePlay , SndSetSysBeepState ,
and SndSoundManagerVersion are all interrupt-safe.

SndDoImmediate and SndDoCommand are interrupt-safe if the command issued is interrupt-safe.
Specifically, a bufferCmd is not interrupt-safe if it requires that the sound output channel be reconfigured.

Saturday, July 11, 1998 TN 1104: Interrupt-Safe Routines Page: 14

fi le:// /Monster500/Apple_Web/
Week%20of%207%3A6%3A98/

The sound output channel is reconfigured if the format of the sound changes from one buffer to the next
(i.e., the sound changed from mono to stereo [or the reverse], 8-bit to 16-bit [or the reverse], or its
compression format changed).

It is not safe (with one exception) to start playing a sound at interrupt time, but it is safe to continue playing
a sound at interrupt time. The exception is that you can start playing a sound at interrupt time, if you have
previously issued a soundCmd at task level on the same sound channel to allow the Sound Manager to
prepare the sound channel for the type of sound that you will be playing at interrupt time.

IMPORTANT:
SysBeep is not on the list. SysBeep can move or allocate memory. Do not call SysBeep at interrupt
time.

Process Manager

GetFrontProcess , GetCurrentProcess , GetNextProcess , SameProcess , and WakeUpProcess are
interrupt-safe.

Time Manager

InsTime , InsXTime , PrimeTime , and RmvTime are interrupt-safe.

Process to Process Communications Toolbox

All asynchronous PPC Toolbox routines are interrupt-safe.

Deferred Task Manager

Deferred task installation via DTInstall is interrupt-safe. A deferred task runs at interrupt time with
respect to most of the Mac OS toolbox and should follow the rules for interrupt time code.

Vertical Retrace Manager

SlotVInstall , VRemove, SlotVRemove , AttachVBL , DoVBLTask, and GetVBLQHdr are all interrupt-safe.

Libraries

SetupA5 , SetupA4 , SetCurrentA5 , SetCurrentA4 , and so on are interrupt-safe as long as the
implementations do not reside in an unloaded segment. You should check the code generated by your
development environment before using such routines at interrupt time.

Anything in PLStringFuncs.h is safe, as long as the implementations do not reside in an unloaded
segment.

Packages

Do not call any routine implemented in a package (List Manager, Disk Initialization, Standard File, SANE,
International Utilities, AppleEvent Manager, PPC Browser, Edition Manager, Color Picker, Database
Access Manager, Help Manager, and the Picture Utilities) at interrupt time. Package routines are not
interrupt-safe, since the package may not be in memory at that time.

Component Manager

Opening and closing a component is not safe to do at interrupt time, but many other component routines are

Saturday, July 11, 1998 TN 1104: Interrupt-Safe Routines Page: 15

fi le:// /Monster500/Apple_Web/
Week%20of%207%3A6%3A98/

interrupt safe. You should check the specifi cs of the component in question to determine exactly which
functions can be called at interrupt time.

Event Manager

The only interrupt-safe Event Manager routines are PostEvent and PPostEvent . Other routines,
specifically TickCount , are not interrupt-safe.

IMPORTANT:
TickCount is not interrupt-safe. This is because it supports the (long-obsolete) Journaling Mechanism,
as described in Inside Macintosh I , page 261. Interrupt time code should use LMGetTicks instead.

QuickDraw

Virtually none of QuickDraw is interrupt-safe. The exception is SetCursor , which is documented as
interrupt-safe. If you patch SetCursor , you should be sure that your patch is interrupt-safe because it can
and will be called at interrupt time.

IMPORTANT:
SetCCursor is not interrupt-safe and never will be. SetCCursor is not interrupt-safe because, amongst
other things, the CCrsr data structure contains unlocked handles. Apple cannot just define it to be
interrupt-safe, because on real world systems SetCCursor is patched by interrupt-unsafe third party
extensions.

Apple is aware of the demand for an interrupt-safe mechanism for setting color cursors and is working
on an alternate mechanism.

Do not be tricked into thinking that trivial QuickDraw routines -- such as SetRect or Random -- are
interrupt-safe: they are not! This is partly by definition and partly because it's possible for these routines to
reside in pageable code fragments. If you call these routines at any time paging is unsafe, they could cause
a fatal page fault.

Summary of Interrupt-Safe Routines
This is a summary list of routines which may be called at interrupt time. Those routines with an asterisk
(*) have restrictions on their use; see the main body of this Technote for details:

AddrToName *
AttachVBL
BatteryStatus
BlockMove
PBControlAsync
DebuggerEnter
DebuggerExit
DebuggerGetMax
DebuggerLockMemory
DebuggerPoll
DebuggerUnlockMemory
DeferUserFN
Dequeue
DoVBLTask
Enqueue
ExtendedToString
Format2Str
FormatRecToString

Saturday, July 11, 1998 TN 1104: Interrupt-Safe Routines Page: 16

fi le:// /Monster500/Apple_Web/
Week%20of%207%3A6%3A98/

FormatStr2X
FormatX2Str
GetCurrentProcess
GetFrontProcess
GetFSInfo
GetNextProcess
GetPageState
GetPhysical
GetVBLQHdr
HInfo *
HoldMemory *
InsTime
InsXTime
LockMemory *
LockMemoryContiguous *
LockMemoryForOutput *
MACEVersion
MXInfo *
NMInstall
NMRemove
Open Transport routines *
PBAllocContigAsync
PBAllocateAsync
PBCatMoveAsync
PBCatSearchAsync
PBCloseAsync *
PBCloseWDAsync
PBControlAsync
PBControlImmed *
PBCreateAsync
PBCreateFileIDRefAsync
PBDTAddAPPLAsync
PBDTAddIconAsync
PBDTDeleteAsync
PBDTFlushAsync
PBDTGetAPPLAsync
PBDTGetCommentAsync
PBDTGetIconAsync
PBDTGetIconInfoAsync
PBDTGetInfoAsync
PBDTRemoveAPPLAsync
PBDTRemoveCommentAsync
PBDTResetAsync
PBDTSetCommentAsync
PBDeleteAsync
PBDeleteFileIDRefAsync
PBDirCreateAsync
PBExchangeFilesAsync
PBFlushFileAsync
PBFlushVolAsync
PBGetAltAccessAsync
PBGetCatInfoAsync
PBGetEOFAsync
PBGetFCBInfoAsync
PBGetFInfoAsync
PBGetFPosAsync
PBGetForeignPrivsAsync
PBGetUGEntryAsync
PBGetVInfoAsync
PBGetVolAsync
PBGetWDInfoAsync

Saturday, July 11, 1998 TN 1104: Interrupt-Safe Routines Page: 17

fi le:// /Monster500/Apple_Web/
Week%20of%207%3A6%3A98/

PBGetXCatInfoAsync
PBHCopyFileAsync
PBHCreateAsync
PBHDeleteAsync
PBHGetDirAccessAsync
PBHGetFInfoAsync
PBHGetLogInInfoAsync
PBHGetVInfoAsync
PBHGetVolAsync
PBHGetVolParmsAsync
PBHMapIDAsync
PBHMapNameAsync
PBHMoveRenameAsync
PBHOpenAsync *
PBHOpenDFAsync
PBHOpenDenyAsync
PBHOpenRFAsync
PBHOpenRFDenyAsync
PBHRenameAsync
PBHRstFLockAsync
PBHSetDirAccessAsync
PBHSetFInfoAsync
PBHSetFLockAsync
PBHSetVolAsync
PBLockRangeAsync
PBMakeFSSpecAsync
PBOpenAsync *
PBOpenDFAsync
PBOpenRFAsync
PBOpenWDAsync
PBReadAsync
PBReadImmed *
PBRenameAsync
PBResolveFileIDRefAsync
PBRstFLockAsync
PBSetAltAccessAsync
PBSetCatInfoAsync
PBSetEOFAsync
PBSetFInfoAsync
PBSetFLockAsync
PBSetFPosAsync
PBSetFVersAsync
PBSetForeignPrivsAsync
PBSetVInfoAsync
PBSetVolAsync
PBStatusAsync
PBStatusImmed *
PBShareAsync
PBUnlockRangeAsync
PBUnshareAsync
PBWriteAsync
PBWriteImmed *
PBXGetVolInfoAsync
PageFaultFatal
PostEvent
PPostEvent
PrimeTime
RmvTime
SameProcess
SetCursor
SetFSInfo

Saturday, July 11, 1998 TN 1104: Interrupt-Safe Routines Page: 18

fi le:// /Monster500/Apple_Web/
Week%20of%207%3A6%3A98/

SetWUTime
SleepQInstall
SleepQRemove
SlotVInstall
SlotVRemove
SndDoCommand *
SndGetSysBeepState
SndManagerStatus
SndPauseFilePlay
SndSetSysBeepState
SndSoundManagerVersion
PBStatusAsync
StrToAddr *
StringToExtended
StripAddress
SwapMMUMode
Translate24to32
UnholdMemory
UnlockMemory
UTAllocateFCB
UTReleaseFCB
UTLocateFCB
UTLocateNextFCB
UTIndexFCB
UTResolveFCB
UTAddNewVCB
UTLocateVCBByRefNum
UTLocateVCBByName
UTLocateNextVCB
UTAllocateWDCB
UTReleaseWDCB
UTResolveWDCB
UTFindDrive
UTAdjustEOF
UTSetDefaultVol
UTGetDefaultVol
UTEjectVol
UTCheckWDRefNum
UTCheckFileRefNum
UTCheckVolRefNum
UTCheckPermission
UTCheckVolOffline
UTCheckVolModifiable
UTCheckFileModifiable
UTCheckDirBusy
UTParsePathname
UTGetPathComponentName
UTDetermineVol
UTGetBlock
UTReleaseBlock
UTFlushCache
UTMarkDirty
UTTrashVolBlocks
UTTrashFileBlocks
UTTrashBlocks
UTCacheReadIP
UTCacheWriteIP
UTBlockInFQHashP
UTVolCacheReadIP
UTVolCacheWriteIP
VRemove

Saturday, July 11, 1998 TN 1104: Interrupt-Safe Routines Page: 19

fi le:// /Monster500/Apple_Web/
Week%20of%207%3A6%3A98/

WakeUpProcess

Further References

Inside Macintosh: Memory
File System Manager SDK
Designing PCI Cards and Drivers for Power Macintosh Computers
Technote 1033: "Interrupts in Need of (a Good) Time"
Technote 1067: "Traditional Device Drivers: Sync or Swim"
Technote 1084: "Running CFM-68K Code at Interrupt Time: Is Your Code at Risk"
Technote 1094: "Virtual Memory Application Compatibility".
Technote ME 09: "Coping with VM and Memory Mappings"

Downloadables

Acrobat version of this Note (68K).

Change History

Originally written in February 1998 by Brian Bechtel and Quinn "The Eskimo!"
Updated July 1998 by Quinn "The Eskimo!" with new and revised material:

an expanded discussion of "interrupt time"
a note about CFM-68K
a discussion of software interrupt level
Open Transport information is now cross-referenced
complete rewrite of the Device Manager section
a new File System Manager section, with completely rewritten material
added Event Manager and QuickDraw sections
many stylistic improvements

Acknowledgments

Thanks to Tim Carroll, Mark Cookson, Cameron Esfahani, Pete Gontier, Rich Kubota, Steve Lemke, Peter
N. Lewis, Jim Luther, Dave Lyons, Matt Mora, and Jim Murphy.

To contact us, please use the Contact Us page.
Updated: 6-July-98

Technotes
Previous Technote | Contents | Next Technote

