
Technote 1122
Locking and Unlocking Handles

Pete Gontier
Apple Developer Technical Support

devsupport@apple.com

CONTENTS

The Basics

The Problem

The Solution

Technique #1

Technique #2

Exceptions

Lock Unneeded

Exclusive Access

Summary

This Technote is addressed to developers who

manipulate Memory Manager handles, and in particular
those who lock and unlock them. It explains why and
when handles need to be locked and how and when to
preserve the state of a handle to avoid erroneously
unlocking it.

After the discovery of a subtle bug (in both Apple and third
party code) having to do with the erroneous unlocking of
handles, DTS recently conducted an exhaustive search of
developer documentation for an unequivocal and complete
statement about proper methods for locking and unlocking
handles. Since no such documentation could be found, this
Technote now serves as that statement.

Change history:

1.0 02/09/98 initial version

1.0.1 02/13/98 clarified examples of system calls
which move memory

The Basics
A handle refers to one kind of memory block created and maintained by the Memory Manager. Because a
handle is an indirect reference (namely, a pointer to a pointer) to a block, the Memory Manager is free to move
such blocks at certain well-defined times. The pointer to which a handle points is called a master pointer. When
a handle block moves, the Memory Manager changes the master pointer, not the handle. (For a more detailed
review, check the Heap Management section of the Introduction to Memory Management chapter of Inside
Macintosh: Memory).

There are times at which a handle needs to be locked. If a program needs to pass a master pointer (or a pointer
to bytes inside a handle block) to a routine which can move memory (that is, a routine which calls the Memory
Manager, directly or indirectly, in a way which might cause memory to move), the handle must be locked. A
simple example is the first parameter to PtrAndHand. A slightly more complex example is any call to
NewWindow. Finally, a subtle example of a routine which moves memory is one whose implementation does
not move memory but whose mere invocation does. Calling a routine which resides in an unloaded segment
resource may cause handle blocks to move when the segment loads. (For details, see the Loading Code

Segments section of the Introduction to Memory Management chapter of Inside Macintosh: Memory and the
Segment Manager chapter of Inside Macintosh: Processes.)

Since leaving a handle locked indefinitely may prevent the Memory Manager from relocating other blocks
optimally, it is desirable to unlock a handle when it is no longer necessary for the handle to be locked.
However, it's dangerous to unlock a handle without understanding all the implications, even in many simple
cases. It's more dangerous to unlock a handle your program does not own.

The Problem
The problem is that the Memory Manager does not track the number of times a handle has been locked. A
handle is either locked or unlocked. If a program locks a handle twice and then unlocks it once, the handle is
unlocked. This means that non-trivial programs cannot simply balance lock and unlock operations. Here's an
example of how not to maintain a lock on a handle:

static pascal OSErr Unsafe_DoSomethingToHandle (Handle h)
{
 OSErr err = noErr;

 HLock (h);

 if (!(err = MemError ()))
 {
 err = DoSomethingToPointer (*h);

 HUnlock (h); // Danger, Will Robinson!

 if (!err)
 err = MemError ();
 }

 return err;
}

If the caller of Unsafe_DoSomethingToHandle has locked the parameter handle and expects it to stay locked,
the program is in for a nasty surprise. Even though the caller has locked the handle it passes to
Unsafe_DoSomethingToHandle, the call to HUnlock in Unsafe_DoSomethingToHandle will undo the lock.

There are, of course, cases which are more difficult to debug. Sometimes the software that needs the handle to
stay locked is not the direct caller, but another function the caller calls, or even part of the system. For an
example of this last case, see Technote 1118, "Unlocking GDHandles Considered Harmful".

The Solution
The general solution is to make sure the handle state is preserved by the function (or code sequence within a
function).

Important:

If you always preserve the handle state, you will always be safe. There are times when preserving the
handle state may be unnecessary and sub-optimal. However, it's essential to precisely understand if and
why a given case is safe before you choose not to preserve a handle's state. (More about these exceptional
cases later. If you are a defensive programmer and would prefer to be in the habit of writing safe code
every time, feel free to ignore the exceptional cases.)

The handle state is a collection of bit flags maintained for each handle by the Memory Manager. One of the
state flags describes whether the handle is locked. Programs can obtain the state of a handle by calling
HGetState. All of the techniques listed below use HGetState in some way.

Technique #1

The simplest technique is to save the entire handle state, lock the handle, and then restore the entire handle
state. This means that the bit which represents whether the handle is locked has the same value before and after
the code runs, so if the handle is locked before the code runs, it stays locked, and if the handle is unlocked
before the code runs, it stays unlocked. Here's a typical sequence of calls:

static pascal OSErr SafeOne_DoSomethingToHandle (Handle h)
{
 OSErr err = noErr;

 SInt8 hState = HGetState (h);

 if (!(err = MemError ()))
 {
 HLock (h);

 if (!(err = MemError ()))
 {
 err = DoSomethingToLockedHandle (h);

 HSetState (h,hState);

 if (!err)
 err = MemError ();
 }
 }

 return err;
}

This technique is reasonably safe. The disadvantage is that it saves and restores the entire handle state. If the
function DoSomethingToLockedHandle changes any of the other handle state flags (for example, the flag
which controls the handle's purgeability), the call to HSetState will wipe out the change.

Technique #2

A slightly more complicated technique involves testing the handle state to see if the handle is locked and then
locking and unlocking it only if needed. Here's a typical sequence of calls:

enum { kHandleLockMask = 0x80 }; // absent from <MacMemory.h> 3.0.1

static pascal OSErr SafeTwo_DoSomethingToHandle (Handle h)
{
 OSErr err = noErr;

 SInt8 hState = HGetState (h);

 if (!(err = MemError ()))
 {
 Boolean handleWasLocked =

 (kHandleLockMask & hState) ? true : false;

 if (!handleWasLocked)
 {
 HLock (h);
 err = MemError ();
 }

 if (!err)
 {
 err = DoSomethingToLockedHandle (h);

 if (!handleWasLocked)
 {
 HUnlock (h);

 if (!err)
 err = MemError ();
 }
 }
 }

 return err;
}

This sequence avoids the problem that a stale handle state might be restored following the call to
DoSomethingToLockedHandle. The disadvantage here is the relative complexity. This is the kind of code that
nobody likes to think carefully about (well, perhaps nobody but DTS geeks), and if you must lock and unlock
a lot of different handles, it's likely that bugs will creep in somewhere.

One way to avoid this kind of risky tedium is to wrap the logic up in a C++ class whose constructor locks the
handle (if necessary) and whose destructor unlocks the handle (if necessary). This extra layer of wrapping on
Technique #2 even relieves you of having to write code for error-handling and exceptions, since the handle
will be unlocked, if appropriate, whenever the lock object falls out of scope.

Exceptional Cases
There are, of course, cases in which you can avoid saving and restoring a handle's state. You may, during the
optimization phase of your development, want to look for cases in which you can do this, to avoid code bloat
and if you find you are making "too many" (whatever that means for your program) Memory Manager calls in
a tight loop. Be sure to measure before assuming you must optimize. Also: be safe, then fast.

Don't Lock the Handle

Sometimes you can avoid saving the handle state by not locking a handle. This seems like an obvious
statement, but, many times, code locks handles when it doesn't need to. Make sure you understand just when
the Memory Manager can move relocatable blocks (perhaps implicitly via some other Manager which calls
Memory Manager). For example, DTS commonly sees developer code which looks something like this:

static pascal OSErr UnnecessaryHandleLock (Handle h)
{
 OSErr err = noErr;

 SInt8 hState = HGetState (h);

 if (!(err = MemError ()))
 {

 HLock (h);

 if (!(err = MemError ()))
 {
 **h = 12; // we locked 'h' for this?

 HSetState (h,hState);
 err = MemError ();
 }
 }

 return err;
}

In addition to taking advantage of situations which don't require you to lock a handle, you can also deliberately
go out of your way to avoid locking it. If you need to modify a small portion of a handle block, you can copy
the appropriate bytes into a variable, modify the variable, and copy the variable back into place within the
handle. For example:

static pascal OSErr AvoidHandleLock (Handle h)
{
 OSErr err = noErr;

 char c = **h;

 err = DoSomethingToCharacter (&c);

 if (!err)
 **h = c;

 return err;
}

Exclusive Access

If a well-defined part of your code has exclusive access to a handle, that code can lock and unlock handles at
will.

Perhaps you have a code module which is responsible for managing some handle-based buffers which are
"hidden" from the module's callers inside an opaque data type. In this case, your code allocated the handles
and is solely responsible for them throughout their entire lifetime, thus your code can manipulate those handles
any way it likes.

Another example might be a function which needs to allocate a temporary buffer (and, to avoid the obvious
memory leak, dispose the buffer as the function exits). Since it's safe to pass a locked handle to
DisposeHandle, even though NewHandle produces an unlocked handle, a code sequence like this one is
perfectly acceptable:

static pascal OSErr SafeThree_DoSomethingToHandle (void)
{
 OSErr err = noErr;

 Handle h = NewHandle (12);

 if (!h)
 err = MemError ();
 else

 {
 HLock (h);
 err = MemError ();

 if (!err)
 err = DoSomethingToLockedHandle (h);

 DisposeHandle (h);

 if (!err)
 err = MemError ();
 }

 return err;
}

Summary
It's generally not safe to preserve a handle's lock state simply by balancing calls to HLock and HUnlock. In
most cases, you should instead preserve the handle state. In the remaining cases, you need to fully understand
the implications of not preserving the handle state. In fact, if safety is of utmost importance to you, you can't
go wrong by always using one of the handle state preservation techniques illustrated in this Technote.

Further References

the Memory Manager chapter in Inside Macintosh: Memory
the Segment Manager chapter of Inside Macintosh: Processes

Acrobat version of this Note (24K)

Acknowledgements

Special thanks to Mark Cookson. Thanks to Andy Bachorski, Tim Carroll, Bo3b Johnson, Ingrid Kelly, and
Quinn "The Eskimo!".

Major funding provided by the Handle State Preservation Society.

Send feedback to devsupport@apple.com
Updated: 15-April-98

Tech Support
Technotes

Previous Technote | Contents | Next Technote

