Technote 1182

NewGWorlds in VRAM and AGP Memory

By Geoff Stahl and Mike Marinkovich

Apple Worldwide Developer Technical Support

CONTENTS

The New NewGWorldNewGWorld ()

Using the New NewGWorldNewGWorld ()

A Sample | mplementation

Summary

TTechnote describes the changesin

NewGWor 1dNewGWor Id with the release of Mac
0So9.

TheNewGWor IdNewGWor Id routine now
supports allocation of offscreen GWorld’'sin
AGP memory and VRAM. This alowsthe
application programmer much more flexibility
in deciding how to allocate their off-screen
images. It aso adds more complexity and can,
if used incorrectly, result in significantly
poorer application performance.

This Technote describes the new selectors,
coverstheir basic use, then goes on to
illustrate some of the basic problems
associated with their use. Finally, the note
discusses basic performance figures from a
sample implementation.

The New NewGWorldNewGWorld ()

NewGWorldNewGWorld

Use the NewGWor 1dNewGWor I d function to create an offscreen graphics world.

QDErr NewGWorldNewGWorld
short

const Rect
CTabHandle
GDHandle

GWorldFlags

offscreenGWorld

(GWorldPtr

offscreenGWorld,

pixelDepth,

boundsRect,

cTable, /* can be NULL */
aGDevice, /* can be NULL */
flags)

offscreenGWorld isapointer to the offscreen graphics world created by this routine.

pixelDepth

pixelDepth isthe pixel depth of the offscreen world; possible depthsare 1, 2, 4, 8,
16, and 32 hits per pixel. The NewGWor IdNewGWor Id function uses the pixel depth of

the screen with the greatest pixel depth from among all screens whose boundary
rectangles intersect the rectangle that you specify in the boundsRect parameter. If you
specify zero in this parameter, NewGWor 1dNewGWor I d also uses theGDevice record
from this device instead of creating a new GDevice record for the offscreen world. If
you use NewGWor IdNewGWor Id on a computer that supports only basic QuickDraw, you
may specify only zero or onein this parameter.

boundsRect

cTable

boundsRect isthe boundary rectangle and port rectangle for the offscreen pixel map.
This becomes the boundary rectangle for the GDevice record, if NewGWor IdNewGWor Id
creates one. If you specify zero in the pixelDepth parameter, NewGWor IdNewGWor Id
interprets the boundariesin global coordinates that it uses to determine which screens
intersect the rectangle. (NewGWor IdNewGWor Id then uses the pixel depth, color table,
and GDevice record from the screen with the greatest pixel depth from among all
screens whose boundary rectangles intersect this rectangle.) Typically, your application
supplies this parameter with the port rectangle for the onscreen window into which your
application will copy the pixel image from this offscreen world.

cTable ishandleto aColorTable record. If you pass NILNULL in this parameter,
NewGWor IdNewGWor Id uses the default color table for the pixel depth that you specify in
thepixelDepth parameter. If you set the pixelDepth parameter to 0,

NewGWor IdNewGWor Id ignores thecTable parameter, and instead copies and uses the
color table of the graphics device with the greatest pixel depth among all graphics
devices whose boundary rectanglesintersect the rectangle that you specify in the
boundsRect parameter. If you useNewGWor IdNewGWor Id on acomputer that supports
only basic QuickDraw, you may specify only NILNULL in this parameter.

aGDevice

flags

aGDevice isahandleto aGbevice record that is used in only two cases. First, when
you specify the noNewDevice flag in the flags parameter, in which case

NewGWor IdNewGWor Id attaches this GDevi ce record to the new offscreen graphics
world. Second, when you specify useDistantHdwrMem and/or useLocalHdwrMem
flagsin the flags parameter, in which case NewGWor Id uses this GDevice’SVRAM or
AGP memory to store the GWor Id. If you set the pixelDepth parameter to zero, or if
you do not set the noNewDevice, noNewDevice flag,useDistantHdwrMem, and/or
useLocalHdwrMem flag(s), NewGWor IdNewGWor Id ignores theaGDevice parameter, so
you should set it to NILNULL. If you set the pixelDepth parameter to zero,

NewGWor IdNewGWor I d uses the GDevii ce record for the graphics device with the
greatest pixel depth among al graphics devices whose boundary rectangles intersect the
rectangle that you specify in the boundsRect parameter. Y ou should passNILNULL in
this parameter if the computer supports only basic QuickDraw. Generally, your
application should never create GDevice records for offscreen graphics worlds. Lastly,
if you set useDistantHdwrMem and/or useLocalHdwrMem flags you should always
specify aGDevi ce, otherwise the behavior and device associated with the Gworld, is
indeterminate.

flags describes options available to your application. Y ou can set almost any
combination of the flags pixPurge, noNewDevice, useTempMem, keepLocal,
useDistantHdwrMem, and useLocalHdwrMem. If you don’t wish to use any of these
flags, pass 0 in this parameter, in which case you get the default behavior for
NewGWor IdNewGWor Id—that is, it creates an offscreen graphics world where the base

address for the offscreen pixel imageis unpurgeable, it uses an existing GDevice record
(if you pass 0 in the depth parameter) or creates a new GDevice record, it uses memory
in your application heap, and it alows graphics accelerators to cache the offscreen pixel
image. Y ou should not use keepLocal with either useDistantHdwrMem or
useLocalHdwrMem, the results are in determinate. The available flags are described

here:

enum

{
pixPurge = 1L << pixPurgeBit,
noNewDevice = 1L << noNewDeviceBit,
useTempMem = 1L << useTempMemBit,
keepLocal = 1L << keepLocalBit,
useDistantHdwrMem = 1L << useDistantHdwrMemBit,
uselLocalHdwrMem = 1L << uselLocalHdwrMemBit,

};

typedef unsigned longGWorldFlags;

pixPurge

M akes base address for offscreen pixel image purgeable.
noNewDevice

Stops the creation of an offscreen GDevice record.
useTempMem

Create base address for offscreen pixel image in temporary memory.
keepLocal

K eeps offscreen pixel image in main memory where it cannot be cached to a graphics
accelerator card.

useDistantHdwrMem
Attempts to create the offscreen pixel imagein VRAM.
uselLocalHdwrMem

Attempts to create the offscreen pixel image in AGP memory.

DESCRIPTION

TheNewGWor IdNewGWor Id function creates an offscreen graphics world with the pixel depth you specify
in thepixelDepth parameter, the boundary rectangle you specify in the boundsRect parameter, the
color table you specify in the cTable parameter, and the options you specify in the flags parameter.
TheNewGWor 1dNewGWor Id function returns a pointer to the new offscreen graphics world in the
offscreenGWor ld parameter. Y ou use this pointer when referring to this new offscreen world in other
routines described in this chapter.

Typically, you pass 0 in the pixelDepth parameter, awindow’s port rectangle in the boundsRect
parameter, NILNULL in thecTable and aGDevice parameters, and—in the flags parameter—an empty

set ([]) for Pascal code or O for C code. This provides your application with the default behavior of
NewGWor IdNewGWor Id, and it supports computers running basic QuickDraw. Thisaso allows
QuickDraw to optimize the CopyBits, CopyMask, and CopyDeepMask procedures when your application
copies the image in an offscreen graphics world into an onscreen graphics port.

TheNewGWor 1dNewGWor Id function allocates memory for an offscreen graphics port and its pixel map.
On computers that support only basic QuickDraw, NewGWor 1dNewGWor Id creates a 1-bit pixel map that
your application can manipulate using other relevant routines described in this chapter. Y our application
can copy this 1-bit pixel map into basic graphics ports.

Unless you specify zero in the pixelDepth parameter--or pass the noNewDevice flag in the flags
parameter and supply aGDevice record in the aGDevice parameter--NewGWor 1dNewGWor Id also
allocates a new offscreen GDevi ce record.

When creating an image, your application can use the NewGWor 1dNewGWor Id function to create an
offscreen graphics world that is optimized for an image’ s characteristics--for example, its best pixel
depth. After creating the image, your application can then use the CopyBits, CopyMask, Or
CopyDeepMask procedure to copy that image to an onscreen graphics port. Color QuickDraw
automatically renders the image at the best available pixel depth for the screen. Creating animagein an
offscreen graphics port and then copying it to the screen in this way prevents the visua choppiness that
would otherwise occur if your application were to build a complex image directly onscreen.

TheNewGWor IdNewGWor Id function initializes the offscreen graphics port by calling the openCPort
function. TheNewGWor IdNewGWor Id function sets the offscreen graphics port’svisible region to a
rectangular region coincident with its boundary rectangle. The NewGWor 1dNewGWor Id function generates
an inverse table with the Color Manager procedure Make I Table, unless one of the GDevice records for
the screens has the same color table as the GDeviice record for the offscreen world, in which case
NewGWor IdNewGWor Id uses the inverse table from that GDevi ce record.

The address of the offscreen pixel image is not directly accessible from the PixMap record for the
offscreen graphics world. However, you can use the GetPixBaseAddr function (described in Inside
Macintosh, pages 6-38) to get a pointer to the beginning of the offscreen pixel image.

For purposes of estimating memory use, you can compute the size of the offscreen pixel image by using
thisformula

rowBytes * (boundsRect.bottom - boundsRect.top)

In the flags parameter, you can specify several options that are defined by the Gwor 1dFlags data type.
If you don’t wish to use any of these options, pass zero here.

If you specify the pixPurge flag, NewGWor IdNewGWor Id stores the offscreen pixel imagein a purgeable
block of memory. In this case, before drawing to or from the offscreen pixel image, your application
should call the LockPixels function (described in Inside Macintosh: Imaging With QuickDraw) and
ensurethat it returns TRUE. If LockPixels returns FALSE, the memory for the pixel image has been
purged, and your application should either call UupdateGWorld to reallocate it and then reconstruct the
pixel image, or draw directly in awindow instead of preparing the image in an offscreen graphics world.
Never draw to or copy from an offscreen pixel image that has been purged without reallocating its
memory and then reconstructing it. If you specify the noNewDevice flag, NewGWor 1dNewGWor 1d does
not create a new offscreen GDevice record. Instead, it uses the GDevice record that you specify in the
aGDevice parameter—and its associated pixel depth and color table—to create the offscreen graphics
world. (If you set the pixelIDepth parameter to 0, NewGWor IdNewGWor Id uses the GDevice record for
the screen with the greatest pixel depth among all screens whose boundary rectangles intersect the
rectangle that you specify in the boundsRect parameter—even if you specify the noNewDevice flag.)
TheNewGWor IdNewGWor Id function keeps areference to the GDevice record for the offscreen graphics
world, and the SetGWorld procedure (described in Inside Macintosh: Imaging With QuickDraw) uses

that record to set the current graphics device. If you set the useTempMem flag, NewGWor IdNewGWor Id
creates the base address for an offscreen pixel image in temporary memory. Y ou generally would not use
this flag, because you should use temporary memory only for fleeting purposes and only with the
AllowPurgePixels procedure (described in Inside Macintosh: Imaging With QuickDraw). If you
specify the keepLocal flag, your offscreen pixel image is kept in Macintosh main memory and is not
cached to agraphics accelerator card. Use thisflag carefully, asit negates the advantages provided by
any graphics acceleration card that might be present. Specifying useDistantHdwrMem and/or
useLocalHdwrMem attempts to alocate the offscreen pixel imagein VRAM or AGP memory
respectively. If both flags are specified NewGWor 1dNewGWor Id will first attempt to allocate in AGP
memory, if that fails, it will attempt to alocate in VRAM. When using useDi stantHdwrMem,
useLocalHdwrMem or both and NewGWor IdNewGWor Id cannot allocate the offscreen pixel imagein the
requested area of memory NewGWor IdNewGWor Id will fail and return amemFul IErr error code.

Asitsfunction result, NewGWor IdNewGWor Id returns one of four result codes enumerated below. noErr
will always be returned from successful calls to NewGWor 1dNewGWor Id any other returns values should
be considered afailure to alocate the requested offscreen pixel image.

SPECIAL CONSIDERATIONS

If you supply ahandleto aColorTable record in the cTable parameter, NewGWor IdNewGWor 1d makes a
copy of the record and storesits handle in the offscreen PixMap record. It is your application’s
responsibility to make sure that the ColorTable record you specify in the cTable parameter isvalid for
the offscreen graphics port’s pixel depth.

If when using NewGWor 1dNewGWor Id you specify a pixel depth, color table, or GDevice record that
differs from those used by the window into which you copy your offscreen image, the CopyBi ts,
CopyMask, and CopyDeepMask procedures require extratime to complete. These will likely cause buffers
allocated in AGP memory or VRAM to be unable to utilize hardware blitting acceleration, possibly
resulting in extremely poor copy performance.

There are two important things to note about Gwor 1d’ s allocated in VRAM. First, the base address
retrieved through GetPixBaseAddr or read directly from the PixMap structure can become invalid
anytime memory is allocated in VRAM. This can occur either by explicit allocations, such as callsto
NewGWor IdNewGWor Id, or by implicit ones, such as those associated with the internal texture allocation
of OpenGL. The stored pixel images themselves will still be valid but may have been moved in VRAM,
thus rendering any stored base addresses invalid. Y ou should never store an image’ s base address for
longer than is necessary and especially never across calls to NewGWor IdNewGWor Id or texture-creation
routines.

Secondly, an offscreen pixel image allocated in VRAM can be purged at system task time by the display
driver. This means any time your application yields time such by calling wai tNextEvent or
SystemTask you can lose your VRAM GWorld contents. While this happens infrequently, usually
associated with display resolution or pixel depth changes you must code for this eventuality. This purge
can occur whether or not the Gwor1d islocked or not. A return value of false from LockPixels, a
NULL return value from GetPixBaseAddr or NULL in the baseAddr field of the PixMap mean that the
pixel image has been purged. To reallocate it you can either call UpdateGWorld or Dispose your current
GWor Id through DisposeGWor Id and reallocate it viaNewGWor 1dNewGWor Id. Either way you must then
rebuild the pixel image.

To use acustom color table in an offscreen graphics world, you need to create the associated offscreen
GDevice record, because Color QuickDraw needsitsinversetable.

Currently, NewGWor 1d does not do exhaustive error checking on the combination of parameters you
supply toit. It assumes these parameters make sense. Thisis especially true when working with the new
flag parameters. For example, you could legally pass keepLocal, useDistantHdwrMem, and
useLocalHdwrMem in flags and NULL in aGDevice, athough this makes no sense and the behavior is

undefined. Y ou must ensure the flags and other parameters supplied to NewGWor Id actually work
together and not rely on the OS checking these kinds of errors.

TheNewGWor 1dNewGWor Id function may move or purge memory blocks in the application heap. Y our
application should not call thisfunction at interrupt time.

RESULT CODES

noErr 0 No error

paramErr -50 [llega parameter
memFul IErr -108 Out of memory error
cDepthErr -157 Invalid pixel depth

See also Inside Macintosh: Imaging With QuickDraw.

Listing 6-1 on page 6-5 and Listing 6-2 on page 6-10 illustrate how to use NewGWor IdNewGWor 1d to
create offscreen graphics worlds.

If your application needs to change the pixel depth, boundary rectangle, or color table for an offscreen
graphics world, use the UpdateGWworld function, described on pages 6-23 of Inside Macintosh.

Using the New NewGWor IdNewGWorld Q)

The basics of using the new NewGWor 1dNewGWor Id remain the same. The two additional flags
useDistantHdwrMem and useLocalHdwrMem alow the user to control where the offscreen pixel image
isalocated. If you use either useDistantHdwrMem Or useLocalHdwrMem by themselves,

NewGWor IdNewGWor I d will attempt to allocate the image on the device specified in aGDevice in only
VRAM or AGP memory respectively. If thisallocation fails, NewGWor 1dNewGWor Id will fail and return a
memFul IErr error. If both useDistantHdwrMem and useLocalHdwrMem are specified,

NewGWor IdNewGWor Id will first attempt to allocate in VRAM firgt, then AGP memory of the device
specified in aGDevice. If both fail, NewGWor 1dNewGWor 1d will fail and return amemFul 1IErr error.
aGDevice should never beNuLL when alocating in AGP memory or VRAM since the device used for
the allocation will be indeterminate, which is almost never what the devel oper intended.

useDistantHdwrMem is useful to allocate pixel images that are set once (or few) and used many times. It
isrelatively sow to writeto a VRAM pixel image from system memory, but it isvery quick to do a
hardware copy from VRAM to VRAM or VRAM to the screen. Since there is currently no mechanism to
determine if a copy operation will use hardware acceleration, it is recommended that all pixel images
allocated in VRAM be the same bit depth and have the same color table as the screen. Additionally, you
should use simple copy operations that do not use masks or resizing to maximize the possibility of a
specific copy being accelerated.

useLocalHdwrMem attempts to allocate the pixel image in AGP memory. If the system does not have an
AGP graphics system or NewGWor IdNewGWor Id is unable to allocate the pixel image, the allocation will
fail, returning amemFul IErr error. Since AGP alocations are in system memory, these do not suffer
from the same problems associated with pixel images allocated in VRAM. AGP memory can however
have some limitations, such as being uncacheable, that make it dightly slower than regular system
memory in copies to and other system memory. While thisis minor, developers should be aware of the
dlight performance degradation.

It isvery important to understand where all ocations happen and the general caveats (described in the
preceding paragraphs) associated with allocations in other than standard system memory. The key to
improving an application’ s performance using offscreen Gwor 1d’ s with useDistantHdwrMem or

useLocalHdwrMem flagsisidentifying which pixel images are used often and can be transferred with
hardware accelerated copies. Images used very often and modified infrequently can be placed in VRAM
to optimize their copy performance. For general purposes, you can use AGP memory. Since the amount
of AGP memory islimited and other graphics services, such as OpenGL, useit, care should be used to
allocate more frequently used images first. In addition, note that AGP memory is not swapped out to
disk by the virtual memory system and the amount available may vary with the amount of physical
memory installed on a system.

To recap, if acopy does not use hardware accel eration, performance from AGP memory to the screen
can be expected at best to be equal to system memory. In the same non-accelerated case performance
from VRAM to the screen will be significantly slower than from system memory. So allocate you images
carefully and use AGP memory and VRAM judicioudly.

Asafina note, when NewGWor 1 d alocates memory outside of your application heap (i.e., in AGP
memory space or VRAM) it is extremely important that you properly dispose of that memory with
DisposeGWor Id prior exiting your application. Failure to do so will leak memory, making either the
VRAM or AGP memory unavailable for future use. In many cases, this leaked memory will only be
recovered at restart.

One more reminder: when developing your implementation, ensure you note the above specia
considerations for Gworld’salocated in VRAM. It iscritical that you handle moved and purged pixe
images for Gwor1d’sin VRAM correctly, ensuring you will not display garbage or accessinvalid
memory when trying to use VRAM GWorld’s.

A Sample Implementation

Implementing thisis actually very easy. Below is some simple code that will assist you. First, we will
test for the availability of the new flags. In this case, we just need to look at the system version (since
there are no specific selectors for the new version of NewGWor IdNewGWor Id). If the Mac OSinuseis
later than 8.6, we can expect useDistantHdwrMem and useLocalHdwrMem to be available.

Boolean gNewNewGWorld = false;
long versionSystem;
// this will only work with Mac OS later than 8.6
Gestalt (°sysv®, &versionSystem);
ifT (0x00000860 < (versionSystem & OxO0000FFFF))
gNewNewGWorld = true; // system iIs greater than version 8.6

Next, we want to encapsul ate the functions required to alocate and reallocate our Gworld. We can use
the same logic for both, checking the Gwor 1dPtr, then checking the pixel image’ sbaseAddr and finally
checking to seeif the window’ sGDevice is still the same as the offscreen’ sGbevice. When allocating
the GWor 1d we take the location input parameter and use this to determine in which memory space to
alocate (VRAM, AGP memory, or application heap). If an alocation fails, we fall through to the next
type. Obviously, you can modify this behavior to suit your needs. The function returnstrue if the
Gworld isallocated or reallocated and falseif the existing Gworld isvalid. Thisis shown in the
following listing.

Boolean BuildOffscreen (GWorldPtr * ppGWorld, WindowPtr pWindow,
short * plocation)

{
GDHandle hgdWindow = NULL;

Boolean fMustRebuild = false;

if (NULL == *ppGWorld) // if GWorld passed in is not allocated
fMustRebuild = true;
else

PixMapHandle hPixmap = GetGWorldPixMap (*ppGWorld);

// if pixmap handle is NULL or pixmap base address is NULL

if ((NULL == hPixmap) || (!GetPixBaseAddr (hPixmap)))
fMustRebuild = true;

// if GWorld not on same device as window
else 1Tt (GetGWorldDevice(*ppGWorld) != GetWindowDevice (pWindow))
fMustRebuild = true;

}

it (fMustRebuild) // must rebuild

{
// window pixel depth
short wPixDepth = (C**((CGrafPtr)pWindow)->portPixMap).pixelSize;
GDHandle hgdWindow = GetWindowDevice (pWindow);// window GDevice
if (NULL != *ppGWorld) // if we have an allocated GWorld

{
DisposeGWorld (*ppGWorld);// dump our current GWorld
*ppGWorld = NULL;

}

switch (*plocation) // where to we want to put it

{

case kInVRAM:
if (noErr == NewGWorld (ppGWorld, wPixDepth, &pWindow->portRect,
NULL, hgdWindow,
noNewDevice | useDistantHdwrMem))
break;
// we failed with VRAM, signal that and drop to AGP
SysBeep (30);
*plocation = KInAGP;
case kInAGP:
if (noErr == NewGWorld (ppGWorld, wPixDepth, &pWindow->portRect,
NULL, hgdWindow,
noNewDevice | uselLocalHdwrMem))
break;
// we failed with AGP, signal that and drop to system memory
SysBeep (30);
*plocation = kInSystem;
case kInSystem:
default:
if (noErr = NewGWorld (ppGWorld, wPixDepth,
&pWindow->portRect, NULL, hgdWindow,
keepLocal | noNewDevice))

{

// we failed with system thus, we can’t allocate our GWorld,
// signal that, indicate no location and drop to debugger
SysBeep (30);
*plocation = kNoWhere;
DebugStr (‘*\pUnable to allocate off screen image™);
return false; // nothing was allocated

}

*plocation = klnSystem;

+

return true; // we rebuilt our GWorld
b

return false; // everything is okay

This previous function uses standard Macintosh Toolbox functions except the call to GetWwindowDevice
that determinesthe GDevice on which the mgjority of the window resides. Note that it is up to the
individual application developer to handle the case where windows span multiple devices.
GetWindowDevice islisted below.

GDHandle GetWindowDevice (WindowPtr pWindow)

{

Rect rectWind, rectSect;

short wFrameHeight, wTitleHeight;

long greatestArea, sectArea;

GDHandle hgdNthDevice, hgdZoomOnThisDevice;

rectWind = pWindow->portRect;

LocalToGlobal ((Point*)& rectWind.top); // convert to global coordinates
LocalToGlobal ((Point*)& rectWind.bottom);

// calculate height of window’s title bar

wFrameHeight = rectWind.left - 1 —
C*(((WindowPeek)pWindow)->strucRgn)) . rgnBBox. left;
rectWind.top - 1 —
C*(((WindowPeek)pWindow)->strucRgn)) - rgnBBox. top;
rectWind.top = rectWind.top - wTitleHeight;

hgdNthDevice = GetDevicelList ();

greatestArea = 0; // initialize to O

// check window against all gdRects iIn GDevice list and remember
// which gdRect contains largest area of window}

while (hgdNthDevice)

{

wTitleHeight

iT (TestDeviceAttribute (hgdNthDevice, screenDevice))

iT (TestDeviceAttribute (hgdNthDevice, screenActive))

{
// The SectRect routine calculates the intersection
// of the window rectangle and this GDevice
// rectangle and returns TRUE if the rectangles intersect,
// FALSE i1f they don’t.
SectRect(&rectWind, &(**hgdNthDevice).gdRect, &rectSect);
// determine which screen holds greatest window area
// fTirst, calculate area of rectangle on current device
sectArea = (long)(rectSect.right - rectSect.left) *

(rectSect.bottom - rectSect.top);

if (sectArea > greatestArea)

{

greatestArea = sectArea;// set greatest area so far
hgdZoomOnThisDevice = hgdNthDevice;// set zoom device

}
hgdNthDevice = GetNextDevice(hgdNthDevice);

}
} 7/ of while
return hgdZoomOnThisDevice;

Once we have the buffer allocated, we just need to fill it and blit it to our window. The processto do this
remains unchanged. The following listings demonstrate this. Note, Fi l I0ffscreen assumes the
GWorldPtr passed inisvalid, whileBlitTowindow is more general purpose and runs a check on the
GWorld.

// Tills offscreen buffer with random bright color

void FillOffscreen (GWorldPtr pGWorld)

{

}

GDHandle hGDSave;

CGrafPtr pCGrafSave;

Rect rectSource = (pGWorld->portRect);
RGBColor rgbColor;

rgbColor.red
rgbColor.green
rgbColor.blue

(Random () + 32767) / 2 + 32767;
(Random () + 32767) / 2 + 32767;
(Random () + 32767) / 2 + 32767;

GetGWorld (&pCGrafSave, &hGDSave);
SetGWorld (pGWorld, NULL);
if (LockPixels (GetGWorldPixMap (pGWorld)))

{

// draw some background

EraseRect (&rectSource);

RGBForeColor (&rgbColor);

PaintRect (&rectSource);

UnlockPixels (GetGWorldPixMap (pGWorld));
}

SetGWorld (pCGrafSave, hGDSave);

// checks offscreen and blits it to the front

void BlitToWindow (GWorldPtr pGWorld, WindowPtr pWindow, short * plLocation)

{

Rect rectDest = ((GrafPtr)pWindow)->portRect;
Rect rectSource = ((GrafPtr)pWindow)->portRect;
GrafPtr pCGrafSave;

// check to ensure we have a valid offscreen and rebuild if required
if (BuildOffscreen (&pGWorld, pWindow, pLocation))
FillOffscreen (pGWorld);

// blit
GetPort (&pCGrafSave);
SetPort ((GrafPtr) pWindow);
if (LockPixels (GetGWorldPixMap (pGWorld)))
{
CopyBits (&((GrafPtr)pGWorld)->portBits,
&pWindow->portBits,

&rectSource, &rectDest, srcCopy, NULL);

}

UnlockPixels (GetGWorldPixMap (pGWorld));

}
SetPort (pCGrafSave);

Lastly, we need to ensure the memory allocated by NewGWor Id is disposed of properly. The follow code
demonstrates this.

// this is VERY important since the GWorld may not be in the application heap

if (pGWorld)

DisposeGWorld (pGWorld);

pGWorld = NULL;

Summary

Using the new NewGWor Id greatly enhances your options for creating performance-oriented applications.
By alocating pixel imagesin either VRAM or AGP memory space, one can achieve levels of graphics
performance previously unavailable. Using these new features though does impose some requirements
on the application developer to ensure their code functions properly under all conditions. A checklist to
consider when using the new NewGWorld is asfollows:

Check system version for availability of useDistantHdwrMem and useLocalHdwrMem flags.
Provide aGDevice when using useDistantHdwrMem and/or useLocalHdwrMem.

Check your return values for errors.

When retrieving your pixel image' s base address check for NULL.

Implement a restoration scheme to handle purged pixel images.

Do not cache base address across functions that yield time to the system or that could alocate or
dedllocate VRAM.

e EnsureGworlds are disposed of properly to prevent memory leaksin VRAM or AGP memory.

The flagsuseDi stantHdwrMem and useLocalHdwrMem provide the devel oper with more options for
handling offscreen graphics but must be used with complete understanding of the additional burdens
placed on the application.

Further References

e Apple sTechnote web Site
o Inside Macintosh: |maging With QuickDraw; Chapter 6: Offscreen Graphics Worlds

Back to top

Downloadables

@Acrobat version of this Note (how many K?)

Back to top
Acknowledgments

Thanksto Tim Carroll, Kent Miller, and Fernando Urbina.

To contact us, please use the Contact Us page.
Updated: 05-October-1999

Technotes | Contents
Previous Technote | Next Technote

