
Thursday, June 4, 1998 TN 1132: Version Territory Page: 1

fi le:// /Monster500/Apple_Web/
Week%20of%206%3A1/

Technote 1132
Version Territory

Written by Darin Adler
Revised by Andy Bachorski and Rich Collyer

Apple Worldwide Developer Technical Support

CONTENTS

Version Number Contents

Apple's Version Number Scheme

Comparing Version Numbers

'vers' Resource Structure

Finder 6.1 introduced version ('vers') resources as a

way to allow the creator of a file to identify the version of
a file, as well as the version of a set of files which
includes this file. The format of this resource is described
in Inside Macintosh: Macintosh Toolbox Essentials.

This Note, originally Technote OV 12- Version
Territory , clarifies the format of data in the NumVersion
structure used in a version resource, and provides
guidelines for the use of version resources based on the
version numbering scheme used at Apple.

All Mac OS programmers who distribute program files of
any type should include version resources in their files.

Thursday, June 4, 1998 TN 1132: Version Territory Page: 2

fi le:// /Monster500/Apple_Web/
Week%20of%206%3A1/

Version Number Contents
While the version resource structure is described in Inside Macintosh, it does not clearly describe the
format for the data in all the fields of the NumVersion structure, which is the data type for the
numericVersion field in a version resource. The comments in MacTypes.h from Universal Interfaces
3 aren't any more helpful, which has lead to different interpretation of the content of the fields in the
NumVersion structure.

A NumVersion structure is defined as containing four UInt8 values. This allows a NumVersion value to
be used as a structure to access individual fields, or cast to an unsigned long for the purpose of
comparing version numbers. There is a problem you should be aware of when comparing version
number as unsigned long values.

The values in the majorRev and minorAndBugRev fields are stored in binary-coded decimal (BCD)
format where each digit has a range of 0 - 9 (normal binary digits have a range of 0 - 15). The
majorRev field contains two BCD digits for the major revision level. The MinorAndBugRev field
contains two values, each stored as a single BCD digit -- the minor revision level and the bug revision
level. This means that a version number can range from 0.0.0 to 99.9.9.

The value in the nonRelRev field is stored as an unsigned binary integer value. This give the
nonRelRev field a range of 0 - 255. This is the field that is most often interpreted incorrectly, that is, as
a BCD value rather than as a binary value.

Consequences of Using BCD for nonRelRev Values

As long as version resources are consistently created the same way the only consequence to using BCD
values is that there are fewer nonRelRev values available: 100 using BCD and 256 using binary.
Consistency is important, since BCD and binary values won't compare as equal even though they
represent the same value. For example, a BCD revision 10 is 0x10 and a binary revision 10 is 0x0A .

Since most comparisons of version numbers are done by first casting the numericVersion field to an
unsigned long, the use of BCD values for the nonRelRev field does not affect this comparison if the
versions resource being compared were created the same way, whether as BCD or binary values.

There have been some applications, notably ResEdit, which have interpreted the nonRelRev as BCD.
Resorcerer was changed in version 2.0 to correctly interpret the nonRelRev field as an unsigned binary
value.

Thursday, June 4, 1998 TN 1132: Version Territory Page: 3

fi le:// /Monster500/Apple_Web/
Week%20of%206%3A1/

Apple's Version Number Scheme
Apple uses a version numbering scheme for its software products which you might want to adopt. Table
1 summarizes the scheme, which involves three numbers, each separated by periods.

Event Version

First released version 1.0

First revision 1.1

First bug fix to the first revision 1.1.1

First major revision or rewrite 2.0

Table 1-Apple's Version Numbering Scheme

Note that Apple increments the first number when it releases a major revision, the second number when
it releases a minor revision, and the third number when it releases a version to address bugs (the third
number is omitted if it is zero).

During product development, Apple uses a version number followed by a suffix which indicates the
stage of development. Table 2 presents a few examples.

Event Version Stage

First version 1.0d1, 1.0d2, ... development

Product feature defined (begin testing)1.0a1, 1.0a2, ... alpha

Product is stable (begin final testing) 1.0b1, 1.0b2, ... beta

Final candidate (almost ready to ship)1.0fc1, 1.0fc2, ... final

First revision shipped 1.0 final

First revision 1.1d1,...,1.1a1,...,1.1b1,...,1.1

First bug fix to first revision 1.1.1d1,...,1.1.1a1,...,1.1.1b1,...,1.1.1

First major revision 2.0d1,...,2.0a1,...,2.0b1,...,2.0

Table 2-Development Version Numbering

Thursday, June 4, 1998 TN 1132: Version Territory Page: 4

fi le:// /Monster500/Apple_Web/
Week%20of%206%3A1/

Comparing Version Numbers
A problem can arise when comparing version numbers by casting them to unsigned longs. When
compared this way, Golden Master (GM) version numbers will compare as being older than any of the
final candidate versions.

For the GM release of a file, the version resource will have the stage field set to final and the
nonRelRev field set to zero. Most final candidate releases will contain a version resource, which has the
stage field set to final and the nonRelRev field set to some value greater than zero. The problem here
is that when the version numbers are cast to unsigned longs, the nonzero value in the nonRelRev field
of final candidate version resources causes it to compare as greater than--and thus newer than--the GM
version, which is in fact the newest version available.

In the past, this is most often a problem during installations when installing the GM version of a
package over a perviously installed final candidate version of the same package. The installer would
complain that you are trying to replace newer versions of the files in the package when this is clearly not
the case. The Apple installer (and most other installers) avoid this problem by comparing the individual
fields of version resources.

The following function will properly compare two NumVersion values:

pascal SInt16 CompareVersions(NumVersion *vers1, NumVersion *vers2)
{
 UInt16 nonRelRev1, nonRelRev2;

 if (vers1->majorRev > vers2->majorRev) return 1;
 if (vers1->majorRev < vers2->majorRev) return -1;
 if (vers1->minorAndBugRev > vers2->minorAndBugRev) return 1;
 if (vers1->minorAndBugRev < vers2->minorAndBugRev) return -1;
 if (vers1->stage > vers2->stage) return 1;
 if (vers1->stage < vers2->stage) return -1;

 nonRelRev1 = vers1->nonRelRev;
 nonRelRev2 = vers2->nonRelRev;

 if (vers1->stage == finalStage) {
 if (vers1->nonRelRev == 0) nonRelRev1 = 0xFFFF;
 if (vers2->nonRelRev == 0) nonRelRev2 = 0xFFFF;
 }

 if (nonRelRev1 > nonRelRev2) return 1;
 if (nonRelRev1 < nonRelRev2) return -1;

 return 0;
}

'vers' Resource Structure
The structure of a 'vers' resource is defined in MacTypes.r (from Universal Interfaces 3.1) as:

type 'vers' {
 hex byte; /* Major revision in BCD*/
 hex byte; /* Minor revision in BCD*/
 hex byte development = 0x20, /* Release stage */
 alpha = 0x40,

Thursday, June 4, 1998 TN 1132: Version Territory Page: 5

fi le:// /Monster500/Apple_Web/
Week%20of%206%3A1/

 beta = 0x60,
 final = 0x80, /* or */ release = 0x80;
 hex byte; /* Non-final release # */
 integer; /* Region code */
 pstring; /* Short version number */
 pstring; /* Long version number */
};

The structure of the corresponding VersRec type is defined in MacTypes.h (from Universal Interfaces
3.1) as:

struct VersRec {
 /* 'vers' resource format */
 NumVersion numericVersion; /* encoded version number */
 short countryCode; /* country code from intl utilities */
 Str255 shortVersion; /* version number string
 - worst case */
 Str255 reserved; /* longMessage string packed
 after shortVersion*/
};
typedef struct VersRec VersRec;
typedef VersRec * VersRecPtr;
typedef VersRecPtr * VersRecHndl;

The structure of the NumVersion type is defined in MacTypes.h (from Universal Interfaces 3.1) as:

struct NumVersion {
 /* Numeric version part of 'vers' resource */
 UInt8 majorRev; /* 1st part of version number in BCD*/
 UInt8 minorAndBugRev; /* 2nd & 3rd part of version number
 share a byte*/
 UInt8 stage; /* stage code:
 dev, alpha, beta, final*/
 UInt8 nonRelRev; /* revision level of non-released
 version*/
};
typedef struct NumVersion NumVersion;

The structure of the NumVersionVariant type is defined in MacTypes.h (from Universal Interfaces
3.1) as:

union NumVersionVariant {
 /* NumVersionVariant is a wrapper so
 NumVersion can be accessed as a 32-bit value */
 NumVersion parts;
 unsigned long whole;
};
typedef union NumVersionVariant NumVersionVariant;

Mention of third-party sites and third-party products is for informational purposes only, and constitutes
neither an endorsement nor a recommendation. Apple assumes no responsibility with regard to the selection,
performance, or use of these vendors or products.

Further References

Inside Macintosh: Providing Version Resources

Thursday, June 4, 1998 TN 1132: Version Territory Page: 6

fi le:// /Monster500/Apple_Web/
Week%20of%206%3A1/

Downloadables

 Acrobat version of this Note

 Acrobat version of Inside Macintosh: Macintosh Toolbox Essentials

 Universal Interfaces 3.1

Change History

Originally written in April 1988 by Darin Adler.

Revised by Rich Collyer in October 1990, as Technote OV 12 -- Version Territory to reflect the
changes in MPW C 3.1

In June 1998, this Technote was updated by Andy Bachorski to clarify the use of the NumVersion
structure.

Acknowledgments

Thanks to Mark Cookson, Pete Gontier, and Quinn.

To contact us, please use the Contact Us page.
Updated: 01-June-98

Technotes
Previous Technote | Contents

