Wednesday, December 2, 1998 TN 1119: Serial Port Apocrypha Page: 1

Technote 1119
Serial Port Apocrypha

By Quinn " The Eskimo!"
Apple Developer Technical Support

CONTENTS T
Notesfor Bath APIs his Technote describes a number of problems often
encountered by devel opers when dealing with seria ports
Just The Facts: Classic Serial under Mac OS. Mogt of thisinformation is available from
_ other sources, but those sources are obscure and
Just The Facts: OT Seridl commonly overlooked.

A Tale of Two Arbitrators

Specificaly, this Note describes the correct techniques for
finding, opening, closing, and yielding seria ports under
the classic seriad APl and the Open Transport seria API.
In addition, this Note describes the theory and practice of
the original and Open Transport seria port arbitrators.

Summary

This Technote isdirected at al Mac OS developers who
use seria ports.

Notes for Both APIs

Mac OS provides two APIsfor accessing the serial port: the classic serial APl based on Device Manager
' DRVR s, described in Inside Macintosh:Devices , and the Open Transport serial API, described in
Inside Macintosh: Open Transport . This section contains notes which are relevant to both serial APIs.

Open and Close on Demand

A serid port is anon-sharable resource. If your application has the port open, no other application can
open it. For this reason, you should always open and close the serial port on demand.

For example, if your application only uses the serial port as part of its registration process, you open the
port when you commence the registration and close the port immediately after you are done.

Yielding

Yielding isthe process by which a passive serial program can yield the serial port to an active serid
program, and regain the serial port after the active seria program is done.

For example, if you set Apple Remote Access (version 2.1 and lower) to wait for an incoming call, you
can still make outgoing PPP connections using FreePPP. Thisis because the passive seria program
(ARA) yieldsthe seria port to the active serial program (FreePPP). When FreePPP closes the serial
port, ARA will resume ownership and continue waiting for an incoming call.

file:///Monster500/Apple/
TN1119%20%C4/

Wednesday, December 2, 1998 TN 1119: Serial Port Apocrypha Page: 2

Just The Facts: Classic Serial

The classic serid architecture is based on Device Manager ' DRVR s, as described in Inside
Macintosh:Devices . This section describes the correct way to find, open, close, and yield serial ports
under the classic seria architecture.

Finding All Serial Ports

The correct way to find al the seria ports under Mac OSis to use the Communications Resource Manager
(CRM) routine CRvBear ch (part of the Communications Toolbox). Unfortunately, the book that
documents the Communi cations Resource Manager (Inside the Macintosh Communications Toolbox) is
not available in electronic form, so it can be hard to find documentation for CRvsear ch. The following
sampleisincluded to make up for this deficiency:

static void PrintlnfoAbout All Seri al Ports(void)
/1 Prints a list of all the serial ports on the
/1 machine, along with their corresponding i nput
/1 and output driver nanes, to stdout. Typically
/1 you would use a routine like this to populate a
/1 popup nmenu of the available serial ports.

CRMRec comRecor d;
CRMRecPt r t hi sConmRecor d;
CRvseri al Ptr serial Ptr;

(void) InitCRM);

/1l First set up comrRecord to specify that
/! we're interested in serial devices.

comRecor d. cr mDevi ceType
comRecor d. crnDevi cel D

= crnBeri al Devi ce;
= 0,

/1 Now repeatedly call CRMSearch to iterate
/1 through all the serial ports.

t hi sCommRecord = &commRecor d;

do {
t hi sConmRecord = (CRMRecPtr) CRMSearch((CRVMRecPtr) thisConmRecord);
if (thisCommRecord !'= nil) {

/1 Once we a have a CRMRec for the serial port,

/1 we must cast the crmAttributes field to

/1 a CRMSerial Ptr to access to serial-specific

/1 fields about the port.

serial Ptr = (CRMSerial Ptr) thisCommRecord->crmAttri butes;
/1 Print the information about the port.

printf("We have a port called: '%s'\n", *(serial Ptr->nane));

printf (" i nput driver naned: "%#s'\n", *(serial Ptr->inputDriverNane));
printf(" output driver naned: '%s'\n", *(serial Ptr->outputDriverNane));
printf("\n");

/1 Now ensure that CRMSearch finds the next device.

file:///Monster500/Apple/
TN1119%20%C4/

Wednesday, December 2, 1998 TN 1119: Serial Port Apocrypha Page: 3

comrRecord. crmDevi cel D = t hi sConmRecor d- >cr nDevi cel D,

}
} while (thisComRecord !'=nil);

NOTE:

The CRM isavailablein System 7.0 and later. It is an installable option under System 6. If your product
runs under System 6, you should check for the presence of the CRM by calling Gest al t with the

gest al t CRMAt t r selector and checking that the gest al t CRVMPr esent bit is set in the response.

IMPORTANT:

Ports registered with the CRM are supposed to "work like" the standard built-in seria ports. However,
in some cases (both Apple and third party), it's just not possible to implement the API of the built-in
seria ports exactly. When dealing with CRM-registered ports, your application should handle cases
where this emulation breaks down. For example, if your application uses the externally clocked
quasi-MIDI mode (csCode 15), it should gracefully fail if aseria driver returns an error when asked to
engage this mode.

Opening a Serial Port

The correct way to open a seria port has been documented for many years as part of the ARA API
document, currently available on the Mac OS SDK Developer CDs. However, this source is somewhat
obscure (and the enclosed sample code is somewhat out of date), so the information is repeated here for
your convenience.

The processis very easy to describe in English:
If aserial port arbitrator isinstalled, aways cal GpenDri ver to open the serid port;
otherwise, walk the unit table to determine whether the driver is already open, and open
itonly if itisn't.

This high-level agorithm is captured in the following routines for opening both the input and output serial
drivers:

file:///Monster500/Apple/
TN1119%20%C4/

Wednesday, December 2, 1998 TN 1119: Serial Port Apocrypha

static OSErr OpenOneSeri al Driver (Const Str255Param dri ver Nane, short *ref Nunm
/1 The one true way of opening a serial driver. This routine
/1 tests whether a serial port arbitrator exists. |If it does,
/1 it relies on the SPAto do the right thing when QpenDriver is called.
/1 1f not, it uses the old nmechanism which is to walk the unit table
/1 to see whether the driver is already in use by another program

CSErr err;

if (SerialArbitrationExists()) {
err = OpenDriver(driverName, refNunj;
} else {
if (DriverlsOpen(driverNane)) {
err = portlnUse;
} else {
err = QpenDriver(driverNane, refNum;
}
}

return err;

}

static OSErr OpenSeri al Drivers(Const Str255Param i nNane, Const Str255Par am out Nane,
SInt16 *inRef Num SIntl6 *out Ref Num
/1 Opens both the input and output serial drivers, and returns their
/1 refNuns. Both refNums come back as an illegal value (0) if we
/1 can't open either of the drivers.

CSErr err;

err = OpenOneSeri al Driver (out Nane, out Ref Num ;
if (err == noErr) {
err = OpenOneSerial Driver (i nNane, i nRef Nunj;
if (err !'= noErr) {
(void) C oseDriver(*outRef Nunj;
}

if (err !'=noErr) {
*i nRef Num = 0;
*out Ref Num = 0;

}

return err;

The above code opens the output seria driver before opening the input serial driver. Thisisthe
recommended order for the built-in serial drivers, and consequently for other CRM-registered serial
drivers. Thisis because the output driver isthe one that reserves system resources and actually checks for
the availability of the port. For the built-in serial ports, if you successfully open the output driver, you
should always be able to open the input driver. Not all CRM-registered serial drivers work thisway,
however, so your code should always check the error result from both opens.

The code for determining whether a seria port arbitrator isinstalled is shown below:

file:///Monster500/Apple/
TN1119%20%C4/

Page: 4

Wednesday, December 2, 1998 TN 1119: Serial Port Apocrypha Page: 5

enum {
gestaltSerial PortArbitratorAttr = "arb ',
gestaltSerial PortArbitratorExists =0
1

static Bool ean Serial Arbitrati onExi sts(void)
/] Test Gestalt to see if serial arbitration exists
// on this machine.

{
Bool ean result;
| ong r esponse,;
result = (Gestalt(gestaltSerial PortArbitratorAttr, &response) == noErr &&
(response & (1 << gestaltSerial PortArbitratorExists) !=0) != 0)
return result;
}

Thefina part of the puzzleistheroutineDri ver I sOpen, which walks the unit table to see if the driver
serial driver is present and open. Remember that this routine -- which isinherently evil because it accesses
low memory globals -- isonly used if aserial port arbitrator is not installed.

static Bool ean DriverlsQpen(Const Str255Param dri ver Nane)
// Wal ks the unit table to determ ne whether the
/1 given driver is marked as open in the table.
/! Returns false if the driver is closed, or does
/] not exist.

{
Bool ean f ound;
Bool ean i sOpen;
short unit;

DCt | Handl e dceHandl e;
StringPtr namePt r

found = fal se
i sOpen = fal se;

unit = 0;
while (! found & (unit < LMzet UnitTabl eEntryCount())) {

/1 Get handle to a device control entry. GetDQtIEntry
/1 takes a driver refNum but we can convert between
/1 a unit nunber and a driver refNum using bitw se not.

dceHandl e = GetDCtI Entry(~unit);
if (dceHandle != nil && (**dceHandle).dCtIDriver !'=nil) {

// If the driver is RAM based, dCtIDriver is a handl e,
/] otherwise it's a pointer. W have to do sone fancy
/1 casting to handl e each case. This would be so nuch
/! easier to read in Pascal)-:

if (((**dceHandl e).dCt| Fl ags & dRAMBasedMask) !'= 0)

nanmePtr = & (**((DRVRHeader Handl e) (**dceHandl e).dCt I Driver)).drvrNane[O0];
} else {

nanePtr = & (*((DRVRHeaderPtr) (**dceHandl e).dCt|IDriver)).drvrNane[O0];

file:///Monster500/Apple/
TN1119%20%C4/

Wednesday, December 2, 1998 TN 1119: Serial Port Apocrypha Page: 6

}

/1 Now that we have a pointer to the driver name, conpare
/1 it to the name we're looking for. If we find it,

/1 then we can test the flags to see whether it's open or
/1 not.

if (Equal String(driverName, namePtr, false, true)) {
found = true;
i sOpen = ((**dceHandl e).dC | Fl ags & dOpenedMask) != O;

}
b
unit += 1,
}
return i sCpen;
}
NOTE:

The low memory accessor routine LMGet Uni t Tabl eEnt r yCount isdefined in "LowMem.h" but is not
exported by I nt er f aceLi b. If you call thisroutine from CFM code built with Universal Interfaces 2.x,
you will get alink error. To work around this, either write your own version of the function which
accesses low memory directly, or upgrade to Universal Interfaces 3.x, which defines a C macro to
cover this case.

Closing a Serial Port

If you successfully open aserial port, you should make sure to close it again when you're done. You
should alwaysuse C oseDri ver to close aseria port. Remember to close both the input and output
drivers. The following code illustrates the correct way to close the serial driver:

static OSErr Cl oseSerial Drivers(SInt1l6 i nRef Num SIntl16 outRef Num

{
OSErr err;

(void) KilllQinRef Num;

err = Cl oseDriver (i nRef Num ;

if (err == noErr) {
(void) KilllQoutRefNum ;
(void) d oseDriver(outRef Num ;

}

return err;

It'simportant that you close the serial driver, even if your application quits abnormally. If you fail to
close the seria driver when you quit, it will be unavailable for other applications until the computer is
restarted.

The following techniques are ways to ensure that you close the serial driver even if your application quits
abnormaly:

e If you'rea CFM application, use your CFM fragment's terminate procedure. See Inside
Macintosh:PowerPC System Software for details.
e If the Thread Manager is available, set aterminate procedure for your main thread using

file:///Monster500/Apple/
TN1119%20%C4/

Wednesday, December 2, 1998 TN 1119: Serial Port Apocrypha Page: 7

Set Thr eadTer mi nat or .
e If neither of the above apply, patch Exi t ToShel | .

NOTE:
Inside Macintosh 1 pp. 247-250 discusses the differences between the ROM and RAM serid drivers
and the routines RAMSDOpen and RAMSDC ose . Thisinformation is obsolete and should be ignored.

Yielding

The classic seria architecture has very limited support for yielding the seria port. Apple Remote Access
doesthisusing a private APl exported by the Link Tool Manager (part of ARA). This APl was never
published by Apple, and is not available to third parties.

If your application requires serial port yielding, you might want to investigate using the OT serial API.

Just The Facts: Open Transport Serial

Open Transport provides asecond API for serial on Mac OS, one that has much in common with the
network APIs provided by OT. In the current implementation of OT (version 1.3 at the time of writing),
the OT serid APl isimplemented as a shim layered on top of the classic serial drivers. Thisfact is
important because the way you usethe OT serial APl affects the availability of seria portsto the classic
API, and vice versa.

Inside Macintosh: Open Transport containsalot of background materia that you might find useful.

Finding All Serial Ports

If you are using the OT serial AP, the correct way to find all theinstalled serial portsisto repeatedly call
OrGet | ndexedPor t looking for al ports of typekOrSeri al Devi ce. The following sample demonstrates
this technique:

file:///Monster500/Apple/
TN1119%20%C4/

Wednesday, December 2, 1998 TN 1119: Serial Port Apocrypha

static OSStatus PrintSerial Portlnfo(const OTPortRecord *portRecord)

{

}

/1 Prints information about the port with the given portRecord.
St r 255 user Vi si bl eNane;

/] OTGet User Port NameFronPortRef is a little known routine

/1 from <QpenTpt Config. h> that allows you to get a user

/1 visible nane for an Open Transport port.

OrGet User Por t NaneFr onPor t Ref (port Recor d- >f Ref, user Vi si bl eNane) ;

printf("Found a serial port with port reference $%8I x:\n", portRecord->fRef);

printf(" User visible nane is "O8ts' .\ n", userVisibleNane);
printf(" String to pass to
OlCreateConfiguration is "' .\n", portRecord->fPortNane);

printf(" Nane of provider nodule is '9%'.\n", portRecord->fMdul eNane);
printf("\n");

return kOTNoErr or;

static OSStatus OTFi ndSeri al Ports(voi d)

{

/1 Lists all of the serial ports on the machi ne using Open Transport.

OSSt atus err;

Bool ean portVali d;
SI nt 32 port | ndex;

OrPort Record portRecord,;
U nt 16 devi ceType;

/] Start portlndex at 0 and call OTGetl ndexedPort unti
/1l we find there are no nore ports.

portlndex = O;

err = kOTNoError;

do {
portValid = OTCGet| ndexedPort (&port Record, portlndex);
if (portvalid) {

/1 For each valid port, get the deviceType and, if

/1 it's a serial port and not an alias, call PrintSerialPort

/1 to dunmp out its information. Note that you don't want

/1 to include aliases to the serial ports in the list, otherw se

/1 a standard machine will have 3 serial ports, "serial A", "serial B"
// and "serial".

devi ceType = OTGet Devi ceTypeFronPort Ref (port Record. f Ref) ;
if (deviceType == kOTSeri al Devi ce &&
(port Record. fI nfoFl ags & kOTPortlsAlias) == 0) {
err = PrintSerial Portlnfo(&portRecord);

}
}
portlndex += 1;
} while (portValid &% err == kOTNoError);

return err;

file:///Monster500/Apple/
TN1119%20%C4/

Page: 8

Wednesday, December 2, 1998 TN 1119: Serial Port Apocrypha Page: 9

IMPORTANT:
TheOTGet User Por t NameFr onPor t Ref routine is not available to 68K programs running on PowerPC
computers. See Technical Q& A NW 48 "68K Open Transport Code on Power Macintoshes' for details.

NOTE:

Theroutine OTGet User Por t NameFr onPor t Ref is defined in the"OpenTptConfig.h" header file. This
fileisnot in Universal Interfaces, but it isincluded in the full OT SDK. Look for it in the "Open Tpt
Protocol Developer” folder.

OT 1.1.1 (and later) will automatically register any CRM seria port asan OT seria port, so this
technique will see built-in and third party seria ports. Y ou can determine the currently installed version
of OT using Gestalt, as described in Q& A NW 41 "Gestalt Selectors for Mac Networking."

Opening the Serial Port

Once you know which serial port to use, you can call OTGpenEndpoi nt to create an endpoint to that
seria port. However, OT does not actually open the underlying seria driver until you use that endpoint
to make an active or passive connection.

Y ou make an active connection by first calling orsi nd with agl en of 0 and then calling OrConnect .
The seria port is not actually opened until you do the OrConnect .

Y ou make a passive connection by calling oTBi nd with aqgl en of 1. The serial port is opened as part of
the binding process. Y our notifier will receiveaT_LI STEN event when the first characters arrive at the
serial port.

Y our program should be sure to register itself asan OT client (using OTRegi st er Asd i ent) SO that it
receives important notifications about the serial port it isusing. Specifically, you should be prepared to
handlethe kOTYi el dPor t Request notification, as described in the section on yielding. Also, your
endpoint's notifier should be prepared to handle the kOTPr ovi der | sDi sconnect ed and

kOTPr ovi der | sReconnect ed notifications.

Closing the Serial Port

Once you're done with the seria port, you should be sure to close it. The exact point at which the
underlying serial port is closed depends on how you opened it.

If you made an active connection, you can close the serial port by disconnecting (taking the endpoint to
stateT_I DLE), typically using the OTsndDi sconnect routine.

If you made a passive connection, you can close the serial port by using Orunbi nd to unbind the
endpoint.

Of course, if you close the endpoint (using OTd osePr ovi der), the seria port will aways be closed.
Unlike classic seria, Open Transport does keep track of which applications are using which serial ports.
If your application unexpectedly quits, OT will automatically close al of its endpoints and thereby close

any serial portsit had open. However, non-application code (like code resources and shared libraries)
must take care to always call d oseOpenTr ansport before they are unloaded from memory.

Yielding

file:///Monster500/Apple/
TN1119%20%C4/

Wednesday, December 2, 1998 TN 1119: Serial Port Apocrypha Page: 10

IMPORTANT:

This section describes how the OT seria port yielding process should work. Open Transport (version
1.3 at the time of writing) has bugs which prevent this from working in practice. From the application
perspective, these bugs result in OTYi el dPor t Request always returning kEBUSYEr r even if the passive
program allows the request.

Unlike classic seria, Open Transport does have apublic API for yielding serial ports. The basic
sequence of eventsruns.

1. The passive program opens the seria port by binding with agl en of 1. The passive program
will receive any incoming connections on the serial port.

2. Theactive program tries to open the seria port by calling OrConnect . Because the passive
program aready has the seria port open, OrConnect failswith an error, kEBUSYErr .

3. Theactive program noticesthis error and calls OTYi el dPor t Request for that port.

4. OT sendsakaOrYi el dPor t Request notification to any program which hasis registered with
OT (using OTRegi st er AsCl i ent) and has an endpoint using that port.

5. The passive program's notification can choose to yield the port, or return an error saying why
the request was denied.

6. If any registered client denies the request, the OTYi el dPor t Request function returns an error
and the active program cannot use the seria port. The OTYi el dPor t Request also returnsalist
of clients that refused the request and the reasons why. The active program can use this
information in its "port in use" error dialog.

7. If dl registered clients agree to yield the port, the port is handed over to the active program. The
active program has a short period of time (approximately 10 seconds) to open the port (by
binding with agl en of 1 or by calling OrConnect) before the port reverts back to the original
passive program.

8. When the active program opens the port, the passive program receives a
kOTPr ovi der | sDi sconnect ed notification.

9. When the active program is done with the serial port and closesiit, the passive program receives
akOTProvi der | sReconnect ed.

This somewhat convoluted processis described in more detail in Inside Macintosh: Open Transport .

A Tale of Two Arbitrators

The Seria Port Arbitrator isone of the least understood components of the Mac OS, partly becauseitis
installed by Apple Remote Access and is not a core component of the system. This section explains why
seria port arbitration is necessary, and the features of the two serial port arbitrators.

The Original Problem

The original Mac OS Device Manager architecture has an interesting 'quirk’ in that, once adriver is
opened, any further callsto OpenDri ver just return the driver's reference number without calling the
driver at all. For most types of drivers (e.g. the floppy disk driver) thisisanon-issue, but serial drivers
can only support one client at atime and serial port ownership is an important user-level concept.

On pre-MultiFinder Macintoshes, this was never a problem because only one program could be running
at atime, and presumably it had control of the serial ports. However, with the advent of MultiFinder,
multiple applications could be running simultaneously, and so the serial port ownership became an issue.

The Original Solution

The original solution was fairly easy: if the serial port is aready open, it must be in use by another
application, and hence you should not try to useit. While this requires serial applications to poke around

file:///Monster500/Apple/
TN1119%20%C4/

Wednesday, December 2, 1998 TN 1119: Serial Port Apocrypha Page: 11

In the unit table, It was a perfectly serviceable solution.

The New Problem

The new problem arose with the advent of Apple Remote Access. ARA has amode in which it will
passively sit in the background waiting for calls. However, users were annoyed by the fact that ARA was
permanently using their seria port (and, more specifically, their modem), so they could not make
outgoing calls without first turning off ARA's answer mode.

This problem was hard to get around because of the original solution. A well-behaved application looked
in the unit table, noticed that the serial driver wasin use, and did not even attempt to call OpenDri ver. So
there was no way that ARA could shut down its answer mode when another application wanted the serid
port.

The New Solution

The solution to this new problem was twofold. First, the rules were changed for devel opers. The new
rule is the one described above: if aserial port arbitrator isinstalled, applications should ignore the unit
table and ways call penDri ver when they want the serial port.

Second, ARA shipped with the Serial Port Arbitrator . The Serial Port Arbitrator patches _pen and
_d ose looking for applications opening and closing the serial port. When an application opened the
serial port, Serial Port Arbitrator would tag the serial port as belonging to that application. If another
application attempts to open the same seria port, the Serial Port Arbitrator would fail the second open
request with aport I nUse error.

NOTE:

Theport I nUse error returned by the Seria Port Arbitrator isthe same error code that the built-in seria
driver returns when the serial hardware is being used by some other type of driver, for example by the
LocalTalk driver. Although it's the same error code, it's not exactly the same error condition. Serial Port
Arbitrator returnspor t | nUse when the serial port is being used for serial by some other process. The
serial driver returnspor t | nUse when the seria hardware is being used by some other driver.

The original Seria Port Arbitrator shipped as part of ARA 1.0. Its operation was intimately tied with the
ARA Link Tool Manager. The Link Tool Manager API, which ARA uses to open aseria port in passive
mode, was never publically documented.

The Newer Solution

Unfortunately, in computers, stability is death, and thisisastrue for ARA asit isfor any other part of
Mac OS. Part of the plan for ARA 3.0 wasto get rid of the Link Tool Manager, and its associated Serial
Port Arbitrator. However, by the time ARA 3.0 became aredlity, developers were used to the Seria Port
Arbitrator and were happily calling penDr i ver to open the seria port. If the ARA Serial Port Arbitrator
went away, they would no longer receive an error when other application were using the serial port, with
potentially disastrous consequences.

S0 ARA 3.0includes anew seria port arbitrator, the OpenTpt Serial Arbitrator, which includes the seria
port arbitration functionality of the original Serial Port Arbitrator. Like the origina Serial Port Arbitrator,
the OpenTpt Serial Arbitrator patches_Open and _C ose and remembers which applications opened
which seria ports. So the rule for how to open seria ports still stands.

NOTE:
Actualy, the OpenTpt Serial Arbitrator first made its appearance with OT/PPP 1.0. However, OT/PPP
isreally just acut down version of ARA 3.0, so | will consider them the same in this discussion.

file:///Monster500/Apple/
TN1119%20%C4/

Wednesday, December 2, 1998 TN 1119: Serial Port Apocrypha Page: 12

NOTE:

What happens when both seria port arbitrators are installed? It's easy to get into this situation with the
standard Mac OS 8.0 installer, by installing both the OT/PPP and ARA Client 2.1 software. The answer
isthat the Seria Port Arbitrator takes precedence over the OpenTpt Serial Arbitrator.

NOTE:

Early versions of the Seria Port Arbitrator and OpenTpt Serial Arbitrator would call the Process
Manager from their _Open patch without first checking whether the Process Manager was available. The
upshot of thisisthat system extensions that attempted to open the serial driver at startup would crash the
system with an Unimplement Trap system error. This bug has been fixed in the latest version of both
products.

The Latest Problems

Alas, Mac OS has still to achieve serial port arbitration nirvana. A number of serious deficiencies remain
inthe OpenTpt Serial Arbitrator:

e Seria port ownership istagged by ProcessSeri al Nunber (see Inside Macintosh: Processes
for details) -- Thisisa problem if you write a serial program that is not an application. For
example, say you have apatch on Syst enirask that opens the serial port, usesit for afew
minutes, and then closes it. When you open it, you might be running in application A's context,
but when you close it, you might be running in application B's context. This confuses the serial
port arbitrator and is generally a problem for system extension authors.

e Thereisnotiein between classic serial port arbitration (the Serial Port Arbitrator and the
OpenTpt Seria Arbitrator) and the OT serid port arbitration API -- This meansthat if an OT
program opens a passive serial connection and a classic client attempts to use the serial port (ie
callsopenDri ver), the OT program will not be notified to yield the port.

e For the above reason, if you have ARA 3.0 waiting for an incoming call, you can not use
Z-Term to make an outgoing connection to adial-up service.

e TheOT arhitration APl is currently broken. The good newsisthat calling the APl is safe, so OT
developers can till use the API on the assumption that it will eventually be fixed.

This note will be revised as these problems are addressed.

Summary

The Mac OS serial port is ashared resource, and the true owner of this resource -- the user -- gets upset
when their serial programs do not play well together. By following the guidelines outlined in this note,
your program will correctly find al the serial ports on the machine, use those serial ports in the most
co-operative way, and be adored by Macintosh users around the world!

Further References

file:///Monster500/Apple/
TN1119%20%C4/

Wednesday, December 2, 1998 TN 1119: Serial Port Apocrypha Page: 13

e Inside the Macintosh Communications Toolbox , Apple Computer, Inc., Addison-Wesley,
1991, ISBN 0201577755

Inside Macintosh: Devices

Inside Macintosh: Networking with Open Transport

ARA API , available on the Mac OS SDK Developer CD at the path "MacOS
SDK-1:Development Kits (Disc 1):Apple Remote Access API:Documentation:ARA API™
Technote 1018 "Understanding the Serial DMA Driver"

DV 25 - Setting Port Speed on a Modem Port

DV 555 - Serid Driver Q& A

HW 28 - PowerBook Miscellanea (Cold Serial in the Morning)

SerDemo sample code

Open Transport web page

Downloadables

P Acrobat version of this Note (44K)

Acknowledgments

Thanks to Brian Bechtel, Peter Gontier, Bo3b Johnson, Matt Mora, Roger Pantos, Craig Prouse, and George
Warner.

To contact us, please use the Contact Us page.
Updated: 15-April-98

Technotes
Previous Technote | Next Question | Contents

file:///Monster500/Apple/
TN1119%20%C4/

