Technote 1148

Dialog Manager Helper Functions

By C.K. Haun
Revised by Mark Cookson
Apple Worldwide Developer Technical Support

CONTENTS T
Introduction his Technote discusses Dialog Manager calls
available since System 7.0 which can ease the work of
System 7 Dialog Manager Call Interfaces managing dialogs. They alow you to call on the services
, of the System to track the mouse cursor (i.e., changeto
Using the calls and from the I-beam cursor) and handle the standard
Conclusion keystrokes for accept and cancel in your dialog.

| ntroduction

With the introduction of System 7.0 some new Dialog Manager calls were added to make creating
standard dialog functionality simpler for the developer.

The functionality that has been smplified is:

e Setting the default button (aliases the return and enter keys and draws the default ring around it)
e Setting the cancel button (aliasesto the esc and command-. keys)
e Tracking the cursor for changesto and from the cursor and I-beam

TN 1148: Dialog Manager Helper Functions Page: 1

System 7 Dialog Manager Call Interfaces

Thenew calsare

[* These are copied from Universal Headers 3.1 */

EXTERN_API (Bool ean)

StdFilterProc (Di al ogPtr t heDi al og,
Event Record * event,
Di al ogl tem ndex * itemHi t);

EXTERN_API (CSErr)

Get StdFilterProc (Modal Fil ter UPP * t heProc);

EXTERN_API (CSErr)

Set Di al ogDefaul t1tem (Di al ogPtr t heDi al og,
Di al ogl t em ndex newi tem;

EXTERN_API (CSErr)

Set Di al ogCancel I tem (Di al ogPtr t heDi al og,
Di al ogl t em ndex newl tem;

EXTERN_API (CSErr)

Set Di al ogTr acksCur sor (Di al ogPtr t heDi al og,
Bool ean tracks);

Set Di al ogDef aul t I t emsets the default button, the one that responds to the Return and Enter key. It
also puts the default ring around the button.

Set Di al ogCancel | t emsets the cancel button, which can be the same as the default button. The cancel
button responds to the esc key and the command-period (or sequence-that-produces-the-period).

Set Di al ogTracksCur sor tellsthe Dialog Manager if it should track the cursor to changeit from the
arrow cursor to the I-beam cursor (or vice-versa) when it goes into (or out of) atext edit field.

TheGet StdFil terProc and St dFi | t er Proc calswork together alowing you to delegate most of the
work of managing a dialog back to the Dialog Manager. You call the st dFi | t er Pr oc function
whenever you want the default behavior of the Dialog Manager.

NOTE: Youmust cal the standard filter proc for these calls to work properly. Automatic cursor
tracking, default button bordering, and keystroke aliasing for OK and Cancel will only be active if
you call the standard filter procedure. Also, these calls are System 7 specific. Y ou cannot use themin
previous system versions.

TN 1148: Dialog Manager Helper Functions Page: 2

Using the calls

Using these calls requires alittle preparation on your part. After you create your dialog, you need to tell
the Dialog Manager which items you want as the default and cancel items. The button selected asthe
cancel item will be toggled by the Escape key or by a Command-. keypress. The button specified as the
default will be toggled by the Return or Enter key, and also will have the standard heavy black border
drawn around it. The buttons will also be hilited when the correct key is hit.

Set Di al ogTracksCur sor tellsthe Dialog Manager that it should set the cursor on behalf of your
application according to what part of the dialog the mouse is hovering over. When you passa't r ue’
valuetothe Set Di al ogTr acksCur sor call the Dialog Manager will constantly check cursor position in
your dialog, and change the cursor to an I-Beam when the cursor is over an edit line. Otherwise, Dialog
Manager sets the cursor to the standard arrow.

Hereisasnippet of code showing how to call the functions described in this Technote:

/* Before we go into a Mbdal Dialog loop, do a little preparation */
Modal Fi | t er UPP filterProcUPP;

nmyDi al ogPtr = Get NewDi al og (kMyDi al ogl D, nil, (WndowPtr)-1);

/* Tell the Dialog Manager that the OK button is the default */
myErr = Set Di al ogDefaul tltem (nyDi al ogPtr, ok);

/* Tell the Dialog Manager the cancel button is the cancel itent/
myErr = Set Di al ogCancel Item (nmyDi al ogPtr, cancel);

/* W have an edit itemin our dialog, so tell the Dial og Manager
to change the cursor to an |I-Beamwhen it's over the edit line */
myErr = Set Di al ogTracksCursor (nyDi al ogPtr, true);

filterProcUPP = Newibdal FilterProc (Mddal Di al ogFilter);

do {
Modal Di al og (filterProcUPP, &hitltem;
switch (hitltem {
case ...:
br eak;
case ...:
br eak;
defaul t:

}
} while (hitltem!= ok & hitltem!= cancel);

Di sposeRouti neDescriptor (filterProcUPP);

Y our modal dialog filter will look something like this:

TN 1148: Dialog Manager Helper Functions Page: 3

Bool ean Modal Di al ogFilter (D al ogPtr theD al og,
Event Record *theEvent, short *itenmHit) {

Bool ean result = fal se;
CSEr r err = noErr;
Modal Fi |l t er UPP st andar dPr oc;

if ((theEvent->what == updateEvt) &&
(WndowPt r)t heEvent - >message ! = thebDi al og) {
err = Di spat chW ndowUpdate ((W ndowPtr)theEvent->nessage);
} else if ((theEvent->what == activateEvt) &&
(W ndowPt r)t heEvent - >message ! = theDi al og) {
DoActi vate (theEvent, true);
} else {
err = CGetStdFilterProc (&standardProc);
if (err == noErr) {
result = Call Mddal FilterProc (standardProc, theD alog, theEvent, itenmHit);

}
}
return result;
}
Conclusion

By using these Dialog Manager calls (even when you're not using afilter) you give your dialog amore
consistent user interface and can save yourself afair amount of work over doing it all yourself.

Further References

o |nside Macintosh:Macintosh Toolbox Essentias, Chapter 2 - Event Manager
o |nside Macintosh:Macintosh Toolbox Essentials, Chapter 4 - Window Manager
o |nside Macintosh:M acintosh Toolbox Essentials, Chapter 6 - Dialog M anager

Downloadables

Acrobat version of this Note (how many K?)

Change History

e Origindly written in October 1991, as Technote TB 37 -- Title by C.K. Haun.
e Accompanying code written and revised by C.K. Haun (1991) and Mark Cookson (1999).

e In January 1999, this Technote was updated to better organize the ideas presented.

Acknowledgments

Thanks to Pete Gontier.

TN 1148: Dialog Manager Helper Functions

Page: 4

TN 1148: Dialog Manager Helper Functions Page: 5

TN 1148: Dialog Manager Helper Functions Page: 6

