
Technote 1171
LaserWriter 8.6: How to Write a Converter Plug-in for the
Download Manager

By David Gelphman and Ingrid Kelly
Revised by Dave Polaschek
Apple Worldwide Developer Technical Support

CONTENTS

Overview

Requirements

Other Details

Sample Code Overview

Introduction to the Sample Code
Structure

Summary

Appendix A

Appendix B

Appendix C

Downloadables

This document describes in detail how to write a

plug-in converter module for use with the Download
Manager under PrintingLib version 8.6 (included with
LaserWriter 8 version 8.6) and later. It contains
information about the pieces a plug-in must have,
discussion of a sample plug-in, and tips for plug-in
developers.

Note: This document refers to Download Manager
plug-ins as low-level converters to avoid confusion with
other types of plug-ins available on the Mac OS. This
terminology matches that used in other Technotes related
to the Download Manager and its plug-ins.

This Technote is directed at application developers who
wish to write plug-in converters.

Overview

A low-level converter is used by clients of the Download Manager to convert a file or stream of a given
data type (or types) into PostScript output. For example, in Mac OS 8.5, the desktop printing software is a
Download Manager client that offers drag and drop printing of files to the targeted desktop printer
(DTP). When the target is a PostScript printer and a low-level converter is available to handle the
conversion, that low-level converter can be used to generate the PostScript code to be sent to the device,
without requiring a separate application. The Download Manager and its low-level converters are
described in more detail in Technote 1169, “Download Manager.”

Printing plug-in files reside in the “Printing Plug-ins” folder in the Extensions folder. Each plug-in file
can contain multiple plug-in libraries. Each plug-in file contains a 'PLGN' resource indicating what shared
libraries are contained in that file and what plug-in type each library is. The PrintingLib file itself
contains many plug-ins, including several low-level converters for the Download Manager.

Note:
PrintingLib is special in that the Download Manager locates plug-ins within PrintingLib, even
though it is not in the “Printing Plug-ins” folder.

Figure 1 below gives an overview of the Download Manager’s relationship to its clients and the

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 1 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

low-level converters.

FIGURE 1

Back to top

Requirements

There are several requirements for a plug-in to work with the Download Manager:

1. To be seen as a Download Manager low-level converter, a plug-in file must contain a 'PLGN'
resource with ID -8192. This resource contains the information which identifies what type of
plug-ins are contained inside the file as well as the name of the shared library containing a given
plug-in. Details on this resource are documented in the 'PLGN' Resource section of this
Technote.

2. For a given plug-in shared library to be a low-level converter for use with the Download
Manager, it must export a minimum set of required routines. The Download Manager calls these
routines to determine whether a given low-level converter can handle a specific data type and, if
so, to call the plug-in to perform the conversion of the data into PostScript output.

3. In addition to the required exported routines, a low-level converter must provide a data structure
to advertise the types of data that the plug-in can handle. When asked whether it can download a
given file or stream of data, the Download Manager uses this information to reduce the set of
possible converters to only those which might be able to handle the data. It then asks each of
those converters directly if it can handle the data and, if there is one, uses the best converter
found to proceed with the download.

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 2 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

Back to top

The 'PLGN' Resource

The Download Manager uses the Printing Plug-ins Manager to manage its plug-ins. For a Download
Manager converter to be seen by the Printing Plug-ins Manager, it must have a resource of type 'PLGN'
with ID number -8192. If the plug-in does not contain this resource, it cannot be used and is ignored.
Plug-ins are also required to have a standard 'cfrg' resource describing the code fragments in the data
fork of the file. For developers interested in using the Printing Plug-in Manager, more information is
available in Technote 1170: “The Printing Plug-ins Manager.”

The 'PLGN' resource contains information about how many shared libraries are contained in this file and
for each shared library, the type of plug-in that it is, the subtype that the library handles and the library
name. To be used by the Download Manager, a plug-in must have a type of 'down' and a subtype of
'????'. There are no constraints on the library name beyond those imposed by the Code Fragment
Manager.

The 'PLGN' resource is defined as follows (using Rez syntax):

type 'PLGN' {
 integer = $$Countof(PluginLibInfo);
 array PluginLibInfo {
 literal longint; /* Type */
 literal longint; /* subtype */
 pstring; /* library name */
 align word;
 };
};

A ResEdit template resource ('TMPL') for the 'PLGN' resource is contained within PrintingLib versions
8.6 and later.

The PluginLibInfo structure in C syntax is:

typedef OSType SettingsDataType;
typedef OSType SettingsDataSubType;

short num; // the number of shared libraries this 'PLGN' describes
PluginLibInfo libInfo[num];

typedef struct PluginLibInfo{
 SettingsDataType type;
 SettingsDataSubType subtype;
 unsigned char libraryName[]; // pascal string
 // word aligned
}PluginLibInfo;

type is the type of plug-in that is described by this PluginLibInfo
subtype is the subtype of data that can be handled by the plug-in described by this
PluginLibInfo
libraryName is the library name of the code fragment in the plug-in file described by this
PluginLibInfo

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 3 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

PluginLibInfo

Note: A single file can contain multiple plug-in libraries.

Back to top

Required Routines

This section describes each of the routines required by the Download Manager. All of the routines
described here are discussed in more detail in Technote 1169: “Download Manager.” The descriptions
here are intended to provide just an overview.

This discussion of the routines and the order in which a converter should call them is tailored to the way
the Download Manager calls a converter in response to the Finder’s desktop printing software. In
addition, this discussion assumes that the Download Manager client is downloading a file. This document
discusses the differences between downloading files and downloading data from other sources in the
section Input Stream Types.

psLowGetConverterInformation

Before it can determine which converters can handle a given download job, the Download Manager must
determine the capabilities of all the available converters. It does this by calling the
psLowGetConverterInformation routine for each low-level converter. This routine returns a pointer to a
ConverterDescription structure which provides a list of data types that a given converter can handle.
The ConverterDescription structure contains additional information which can be used to narrow the
search further. A sample ConverterDescription structure is described in detail later in this document in
the section Sample Converter Description.

Note:
The Download Manager caches the ConverterDescription structures it obtains from each low-level
converter to improve performance. This is not an issue for users, but during development of a low-level
converter it does require a developer to do some special handling of the plug-in files. See the Tips
section near the end of the document for more information.

psLowCanConvert

When the desktop printing software asks the Download Manager if it can handle a given file, the
Download Manager checks the ConverterDescription structures for all of the low-level converters to
obtain a list of candidate converters. For each low-level converter on its list of candidates, the Download
Manager calls the converter’s psLowCanConvert routine. This allows the converter an opportunity to
examine the data to determine whether it can indeed be handled by the converter and if so, with what
“priority” it can handle the data.

Each converter returns a “priority”, an indication of how well it can handle the given type of data. It is
possible for multiple converters to handle data of a given type. If there are multiple low-level converters
which can handle the data, the converter which returns the highest priority is chosen to convert the data.

The data to convert is provided to the low-level converter as a PSStream structure which contains routines
to allow reading and writing of the data. The sample code demonstrates use of the PSStream structures.
There is also some additional discussion of the PSStream structure and the routines to read and write to
PSStreams in Appendix A.

psLowGetStreamInfo

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 4 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

psLowGetStreamInfo

If the data can be handled by a low-level converter, the Download Manager tells the desktop printing
software that it can download the file. At that point, the desktop printing software wants more information
about the type of data that it is downloading. Since the file is an opaque object to both the desktop printing
software requesting the download and to the Download Manager itself, the Download Manager calls the
converter’s psLowGetStreamInfo routine to obtain more information about the file, such as the number
of pages, the type of data, the number of copies that are being generated, whether the download job is
manual feed, and so forth. This information is used to provide information to the user about the
Download Manager print jobs in a given DTP queue.

psLowPeekConvert

Once a file to be downloaded reaches the top of a DTP queue, the desktop printing software asks the
Download Manager to download the file. In response, the Download Manager first calls the low-level
converter’s psLowPeekConvert routine. This gives the converter an opportunity to look at the data and
record any information that might be useful when it converts the data into PostScript output. For example,
the low-level converter built into PrintingLib which handles downloading of PostScript and EPS data
first parses the PostScript Document Structuring Conventions (DSC) comments in the PostScript file, and
records what fonts are required by the document. This allows the converter to request appropriate printer
queries and to incorporate the query information during the generation of the PostScript output

psLowAddConverterQueries

After calling the psLowPeekConvert routine, the Download Manager calls the low-level converter’s
psLowAddConverterQueries routine. This allows a low-level converter to tell the Download Manager
what queries it desires. The Download Manager is responsible for performing the queries. The sample
code demonstrates use of some of the queries, and Appendix B has more information about the available
queries.

psLowDoConvert

After the Download Manager performs the queries, it calls the low-level converter’s psLowDoConvert
routine to do the conversion. At this point, the low-level converter is required to convert the input into
PostScript output. The Download Manager itself generates no PostScript output as part of its operation; it
relies on the low-level converter to do this. It is the responsibility of the low-level converter to generate all
the PostScript output for the download job, including any or all printer feature requests. Support for
handling feature code generation is available through the FeatureUtilsLib library built into
PrintingLib; however, it is up to a given low-level converter to make the appropriate calls if it chooses
to utilize this library. The sample code demonstrates use of the FeatureUtilsLib library. Appendix C
has more information about FeatureUtilsLib.

The data is provided to the low-level converter as an input PSStream structure which contains a routine to
read the data. The generated PostScript output is written to an output PSStream structure which contains a
routine to write the data to the output device. The sample code demonstrates use of the PSStream
structures. There is also additional discussion of the routines to read and write to PSStreams in Appendix
A.

In addition to generating all the PostScript output and writing it to the output stream, it is the
responsibility of the low-level converter to read data from the output stream and write it back to the input
stream. Data read from the output stream consists of data returned from a PostScript output device. This
can be error information or other types of status information. Writing such data back to the input stream
allows the Download Manager to process this information appropriately.

psLowGetConverterVersion

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 5 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

psLowGetConverterVersion

One final routine must be supplied by a low-level converter to provide version information. The routine
psLowGetConverterVersion allows a caller to determine CFM version information for a given low-level
converter.

Back to top

Other Details

This section discusses some low-level converter issues in additional detail. The sample low-level
converter code addresses each issue in depth, and there is sample code to support the discussion points.

The ConverterDescription Structure

The low-level converter routine psLowGetConverterInformation returns a pointer to a
ConverterDescription structure. The purpose of the ConverterDescription structure is to advertise
the types of data that a low-level converter can handle. The ConverterDescription structure is loosely
modeled after the DriverDescription structure used for PCI Drivers. The ConverterDescription
structure is defined as follows:

 typedef struct ConverterDescription {
 OSType converterDescSignature;
 ConverterDescVersion converterDescVersion;
 ConverterType converterType;
 ConverterService converterService;
 }ConverterDescription;

The converterDescSignature field in the ConverterDescription structure is required to be a
signature long word designating this to be a converter description structure. The value of this signature is:

 enum {
 kTheConverterDescriptionSignature = 'dhwu'
 /*first long word of ConverterDescription*/
 };

The converterDescVersion field (long word) of the ConverterDescription structure indicates the
version of the structure being used. This is used to distinguish different versions of converter descriptions
which have the same signature but different values. This is defined as follows:

 typedef UInt32 ConverterDescVersion;
 enum {
 kInitialConverterDescriptor = 0
 /* the initial version of ConverterDescription
 supported by the Download Manager
 */
 };

The next field of the ConverterDescription is the converterType. This structure contains name and
information string data as well as the converter module version information. It is defined as:

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 6 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

 typedef struct ConverterType{
 Str31 name;
 Str255 info;
 NumVersion version;
 }ConverterType;

 typedef struct NumVersion{
 UInt8 majorRev; /*1st part of version number in BCD*/
 UInt8 minorAndBugRev; /*2nd and 3rd part of version
 number share a byte*/
 UInt8 stage; /*stage code: dev, alpha, beta, final*/
 UInt8 nonRelRev; /*rev level of nonreleased version*/
 }NumVersion;

The final field in the ConverterDescription structure is a ConverterService structure which contains
information about what types of data the converter can handle. This is defined as:

 typedef struct ConverterService{
 UInt32 nTypes;
 ConverterTypeInfo typeInfo[1];
 }ConverterService;

 typedef struct ConverterTypeInfo{
 OSType type;
 Fixed priority;
 Str15 matchString;
 }ConverterTypeInfo;

A converter may be able to handle files or streams of different data types. The nTypes field is the number
of different ConverterTypeInfo structures contained in the ConverterService.

The type field of the ConverterTypeInfo structure is the OSType of data described by the
ConverterTypeInfo. If the converter can handle any type, it should include the type '****' (i.e., the
wildcard type) with the appropriate matchString.

The matchString field is a Pascal string of at most 15 bytes (plus a length byte) corresponding to any
identification bytes the converter requires at the beginning of the data. For example, a PostScript
converter requires the identification data ‘%!’ to be the first 2 bytes of data. A converter informs the
Download Manager what types of data it can convert by supplying the data type and the matchString.
For a given converter, if there is no unique matchString for the OSType of the ConverterTypeInfo, the
length of the string should be set to 0. This indicates to the Download Manager that this OSType does not
have a magic identification string. An example of this kind of converter is the PICT converter, since the
first 512 bytes of a PICT data file can contain any data.

The Download Manager uses the ConverterTypeInfo data to determine the list of low-level converters
which can possibly be used to download the data. It does this by looking at the first 15 bytes of data and
uses the ConverterTypeInfo data to determine which low-level converters may support the data. After
paring down the list with this information, it normally calls the psLowCanConvert routine of each of the
possible low-level converters to allow further examination of the data.

In some cases the Download Manager cannot call the psLowCanConvert routine of the candidate
low-level converters. This is the case where the data is supplied from a PSStream which cannot be

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 7 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

low-level converters. This is the case where the data is supplied from a PSStream which cannot be
repositioned or randomly accessed since reading the data in psLowCanConvert would prevent the data
from being downloaded later. In these cases, the Download Manager uses the priority field of the
ConverterTypeInfo data to determine whether the low-level converter can handle the data. See the
section Input Stream Types for more information about the handling of stream types which cannot be
randomly accessed.

The priority field in a ConverterTypeInfo structure is a Fixed number which is the priority estimate of
the converter for handling the type of data described by the type field and the matchString. This priority
is used by the Download Manager when only the matchString and type of the data being downloaded
are available for determining whether a converter can handle the download. In all other cases, the
Download Manager calls the psLowCanConvert function with a stream that the low-level converter can
use to determine whether it can handle the data. For this reason, the priority specified here should be the
priority that the converter can guarantee based only on the OSType and the matchString data. If a
matchString of 0 is provided, the priority should probably be 0x0 (i.e., cannot convert without looking
at more data). If the converter cannot handle a stream which cannot be randomly accessed, it should
assign a priority of 0x0 for that OSType in the ConverterTypeInfo.

Note:
A given low-level converter may have more than one ConverterTypeInfo for a given type. This would
occur if there was more than one priority and matchString pair appropriate for a given data type. An
example would be a converter which can handle both GIF87a and GIF89a. These files have the same
type, but would have different matchStrings.

A sample ConverterDescription structure is part of the sample cde discussed later in the Sample
Converter Description section.

Back to top

Input Stream Types

The data to be converted by a low-level converter is provided via a PSStream structure. The PSStream
structure is a union of a number of different types of streams.

There are currently two types of PSStream structures which can be provided to low-level converters as
input streams:

1. The type of PSStream used when downloading files is of type kPSRandomAccessStream. This
type of stream represents data that can be accessed randomly, i.e., the position where the next
read from the stream occurs can be changed. All low-level converters must be able to read data
from this type of stream.

2. The other type of PSStream that low-level converters might see is kPSSerialStream. This type
of stream does not have the ability to position the next read; instead, the data is only available in a
sequential fashion. This type of stream will not be seen when converting files with desktop
printing, but may instead be seen when the Download Manager is called by other clients. For data
generated by a Download Manager client on the fly, there may be no way to position the read
mark within the data stream.

The psLowCanConvert routine is not called by the Download Manager for streams which cannot be
rewound since there would be no point in doing so. See the ConverterDescription discussion above
regarding the Download Manager selection of low-level converters in this case. In addition, the Download
Manager does not call a low-level converter’s psLowPeekConvert routine if the input stream is of type
kPSSerialStream since such a stream can, by definition, only be read once.

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 8 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

A given low-level converter should be able to operate with either type of stream. When processing data
types that don’t require random access, this should be fairly straightforward. Ideally, peeking at the data
is not required and will only improve the quality of the PostScript output.

Writing the PostScript Language Output

During execution of its psLowDoConvert routine, a low-level converter writes its PostScript output to
the output stream. The simplest way to do this is to make a call to the write procedure on the output
stream with the data to be written. The major disadvantage of this approach is that the Download Manager
client (such as the desktop printing software) gets no detailed status information about the progress of the
conversion. For example, there is no information about what page is currently being printed since only
the low-level converter has this information.

To allow for the communication of status information about the data being written to a stream, the
PSStream structure for the types kPSRandomAccessStream and kPSSerialStream contains a
PSPosition structure which allows a low-level converter to tag the data it is writing with additional
information. This tag information is loosely designed around the PostScript Document Structuring
Conventions. The intent is that low-level converters tag the portions of the PostScript output which
correspond to the various DSC comments. This allows the Download Manager and its clients to track the
progress of the download and other information about the PostScript output.

The library PSUtilsLib in PrintingLib contains routines that may be useful to low-level converters.
Some of these routines are helpful for generating the tagged output. In addition, PSUtilsLib contains
routines which are useful for generating formatted output (similar to printf in the standard C library).

Appendix A has more information about the PSStream and PSPosition structures, as well as the
routines in the PSUtilsLib library which can be used for generating formatted output and tagging that
output.

Reading the Back Channel

During the conversion process in the psLowDoConvert routine, a low-level converter is expected to read
data from the output stream and write that data back to the input stream. This allows the Download
Manager and its clients to detect any PostScript errors or status messages that come back from the output
device. The conversion process of the psLowDoConvert routine resembles Figure 2 below:

FIGURE 2

Private Data Hints

Most of the low-level converter routines have a Collection parameter passed to them. The purpose of

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 9 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

Most of the low-level converter routines have a Collection parameter passed to them. The purpose of
passing a Collection to a low-level converter routine is to pass hints about the job requirements and to
provide a container for arbitrary data to or from the routine’s caller.

A low-level converter which gathers information during its peek phase (psLowPeekConvert) may want
that information to be available during the conversion phase (psLowDoConvert) of the download. The
only reliable way to pass data from one routine to the other is through the Collection which is passed into
both routines. Note that global data is not appropriate to use for this purpose, since the converter module
may be unloaded between the calls to psLowPeekConvert and psLowDoConvert.

The sample code described later in this document demonstrates passing collections to low-level routines.
It also demonstrates the appropriate way of using private data hints to pass data from the peek phase to the
conversion phase.

Warning and Error Logging

A low-level converter operates without an explicit user interface and should not display any dialogs or
alerts to the user. To communicate warning or error conditions, the low-level converter should use the
PSPosition portion of the PSStream structure used for the conversion.

In particular, the PSSubsections of kSubLogErrorData and kSubLogWarningData are used to tag
messages as error or warning messages, respectively. Warnings are non-fatal conditions that might be
used to alert a user. Errors are considered fatal. After a warning is generated, the converter should
proceed normally. If an error is generated, the converter should terminate its conversion immediately after
writing the tagged error message.

More information about the use of these subsections is contained in Technote 1169: “The Download
Manager.” Additionally the sample code uses kSubLogErrorData as needed.

When a low-level converter reports these conditions, the Download Manager passes the information to
its client (such as the desktop printing software). In addition, the Download Manager has the ability to log
this data to a log file. Normally this feature is disabled, but it can be enabled by a sophisticated user or
developer. See the Tips portion of this document to see how to enable logging and how it might be
useful during testing and development.

Back to top

Sample Code Overview

Most of the remainder of this document discusses a sample low-level converter which converts
JPEG/JFIF data into PostScript output suitable for transmission to PostScript Level 2 and PostScript 3
output devices. The sample code is structured in a way that is intended to make it straightforward for
developers to modify it to support conversion of graphics formats that are output as a single page.
Examples include PNG and GIF. The sample code should also be relatively straightforward to modify to
support multiple-page documents.

The discussion about the sample code is divided into a number of sections. The section Sample JPEG
Converter Specification provides a high level discussion of the sample code features. This is intended to
provide an overview of the goals of this sample low-level converter. Within that specification is
information about implementation. This information does not contain anything about the structure of the
sample code, but is simply to provide an overview of the implementation.

The section Introduction to the Sample Code Structure discusses the sample code’s structure in some
detail. In particular, it discusses the way the sample code is broken out into a “shell” which provides the
support for printer feature handling, for the DSC structure of the PostScript output, and for the tagging of

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 10 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

the output so that the Download Manager and its clients can report status. This “shell” code is usable as
is for low-level converters other than a JPEG converter, particularly those that generate 1 page of output.

The section JPEG Converter Specific Code discusses the portion of the sample code which has been
tailored for handling JPEG output. This portion of the sample code relies on the ‘shell’ code to call it
appropriately. This code is the guts of what makes this particular low-level converter a “JPEG” low-level
converter.

The low-level converter Shell Code section describes the “shell” code in some detail. This discussion is
for those who want to understand everything about the sample code and/or for those who wish to create
a low-level converter that handles more than a single page of output.

Note:
You should download <link> the sample code before continuing with this section.

Back to top

Sample JPEG Converter Specification

This portion of the document describes the sample JPEG converter module for use with the Download
Manager. This module is a so-called ‘low-level converter,’ which simply means that it is a plug-in module
that the Download Manager can call to ‘convert’ a stream of data of a certain type into a PostScript output
stream. In the case of the sample JPEG converter module described here, conversion of the data into a
PostScript stream means transformation of the raw JPEG or JFIF data into a stream more suited to the
target PostScript output device.Some details are:

PostScript output devices supporting PostScript Language Level 2 or higher can be sent the
JPEG data as is, without performing any image compression. This sample code does not support
generation of output suitable for a PostScript Level 1 output device.
The converter centers the JPEG image on the page and orients the image so that the longest edge
of the image is parallel to the longest edge of the paper. This means that images whose width is
greater than the height are printed in landscape orientation. In addition, if the image is larger than
the imageable area of the page, the image is uniformly scaled so that it fits in the imageable area
of the page. If the image is smaller than the page in both dimensions, no scaling adjustment is
done.
There is support for desktop printers which are “Save to File” printers. If the target output
device advertises itself as requiring an EPS stream to be generated, the JPEG converter
generates EPS data into the output stream. There is no screen preview generated, but the data is
EPS, including the bounding box.
For non-EPS output, most print time features from the Print dialog are invoked. The feature
settings are chosen from the saved defaults for the target output device.

One significant goal of the JPEG converter module is that the output it produces conforms to the DSC.
The converter module generates the necessary and appropriate DSC comments into the output stream.

Overall Strategy

The basic strategy of the sample JPEG converter module is to determine first if the data stream is JPEG
data that it can handle. The JPEG converter can handle raw JPEG data as well as JFIF data. The only
known case of valid JPEG data that the converter cannot handle is “progressive JPEG,” an extension to
the original JPEG specification. Progressive JPEG data cannot be handled by a PostScript Level 2 or
PostScript 3 output device directly. If the data is either invalid JPEG data or is “progressive JPEG” data,
the JPEG converter reports that it cannot handle the data.

Since this sample code cannot handle printing to Level 1 printers, the sample code checks the target
language level and, if it is Level 1 or includes Level 1 (such as “Save as Level 1 Compatible”), it reports it

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 11 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

language level and, if it is Level 1 or includes Level 1 (such as “Save as Level 1 Compatible”), it reports it
cannot handle the file.

When the JPEG converter can handle the data, it merely adds DSC header comments and a small
PostScript “wrapper” around the JPEG data itself. For target output requiring support for ASCII data, the
JPEG data is transformed into ASCII85 data on the host. In this case, the decompressed data is wrapped
with a slightly different PostScript wrapper to ensure that it prints correctly.

Print Dialog Feature Support

The JPEG converter attempts to support most of the print dialog features normally associated with a
standard print job. Since the user does not normally get a print dialog to select print time features when
using the Download Manager or the JPEG converter module, the default features for the target desktop
printer or output device are used. That is, the user gets the same result as if they had brought up the print
dialog and clicked Print without adjusting any settings in the print dialog.

Note:
These statements assume that the client invoking the original download has used the Download
Manager routine psCreateDMJobCollection to create the hints collection passed to the Download
Manager downloading routines. This is true for drag and drop desktop printing in Mac OS 8.5 and later.

The saved defaults for these features are used as the print time values by the JPEG converter:

Number of copies.
Paper source.
Cover Page Handling.
Duplex (if available).
Error Handling: PostScript and Tray Switching.
Save to File defaults, including whether to default to save to file.
Any PPD features available for the target output device.
Save to disk DTP support.

Note:
If the user has not saved defaults for this desktop printer, the standard print dialog defaults apply for
non-printer specific features (1 copy, no cover page, no PostScript error handling, and so forth). In this
case, printer specific features are treated as “Printer’s Default”, no PostScript code is sent to activate
those features and the current printer configuration is used. Finally, the paper handling is treated as
Automatic Feed for the default paper size as specified in the PPD file.

When printing to a “Save to Disk” DTP or to a printer which has “Save to File” as its default, a disk file is
written instead of output being sent to the printer. The JPEG converter configures itself as described by
the user’s saved defaults for the Print dialog save panel. The user’s choice of “PostScript Job” or EPS is
respected; although no EPS previews are created. In addition, the LanguageLevel, ASCII/Binary
selection and font inclusion defaults are specified (of course, JPEG files have no fonts, but other
converters may need to include fonts).

Note:
There is currently no support for “Save as PDF”. Currently, if “Save as PDF” is the default, the
Download Manager requests PostScript Job instead.

Some features from the Print Dialog are ignored. These features are:

Print Time: foreground/background makes little sense and users requiring a special print time
handling must use the desktop printing software to set it.
Calibrated Color settings.
N-up Printing. Any settings are ignored so the default values of 1 sheet per page with no border

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 12 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

N-up Printing. Any settings are ignored so the default values of 1 sheet per page with no border
are always used, regardless of the user’s saved defaults.

One sticky point is the issue of paper size. For normal print jobs through the Printing Manager, the paper
size is based on the print record, which in turn is based on the Page Setup dialog choices and the default
print record. Since the user has no way of choosing these through the Download Manager, the default
paper size is the default as given in the *DefaultPageSize keyword in the PPD file assigned to the target
output device.

One additional feature is that any *DeviceAdjustMatrix or *PatchCode entries in the target PPD file are
utilized properly.

Implementation Details

This section describes how the JPEG converter, as a plug-in for the Download Manager, implements each
of its required routines.

psLowGetConverterInformation

The JPEG converter returns a pointer to a ConverterDescription structure which reflects its
capabilities. The name of the JPEG Converter is “Sample JPEG Downloader.” The info string for the
converter is obtained from a 'STR#' resource with id value JPEGCONVERTERSTRINGS_ID and the string
number kJPEGConverterInfoString. This resource is defined in sample LangEnglish.r.

The ConverterDescription for the JPEG converter reports that the JPEG converter can handle three
types of data: 'JPEG', 'JFIF' and '????'. For each of these data types, the ConverterDescription
for the JPEG converter requires the first two bytes of the file to be 0xFFD8. The priority for each of these
types in the ConverterDescription is zero, meaning that the JPEG converter cannot handle the data
unless it can read more than the first 15 bytes of data to determine if it is valid JPEG data. This is a
conservative approach since without reading the data, the sample converter can’t be sure that it has valid
JPEG data, or whether it is of a format (progressive JPEG) that it can not handle.

psLowCanConvert

This routine is required to determine if the JPEG converter can handle the data stream and if so, with what
priority. To determine this, the JPEG converter first determines if the output device requires Level 1
support. If it does require Level 1 support or has unknown PostScript support, the JPEG converter
reports that it cannot convert the file.

Note:
The language level information available at the time psLowCanConvert is called may be more
conservative than the true output LanguageLevel. That is, if the user has not set up her printer, the
LanguageLevel is considered unknown. If this is the case, this sample converter cannot support the
data, even though the printer may support Level 2 PostScript. Use a LanguageLevel 2 printer and set
up that printer in the Chooser to test this sample converter.

If the PostScript LanguageLevel of the output device is LanguageLevel 2 or greater, the JPEG
converter looks at the stream of data and determines if it is valid JPEG data that it can handle. If so, it
obtains the width, height, and depth of the JPEG data. If the data is valid JPEG data that it can handle,
i.e., the width and height are non-zero and the depth is either 8 bit or 24 bit, it returns a priority of 10. If
not, it returns a priority of 0, meaning that it cannot handle the data.

psLowGetStreamInfo

This routine is used by a client to get some minimal information about the downloaded data type, and so

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 13 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

This routine is used by a client to get some minimal information about the downloaded data type, and so
forth. The JPEG converter reports the following:

Download data type: 'JFIF'.
Number of pages: 1.
Manual feed is determined by calling the routine psRequiresManualFeed in FeatureUtilsLib
for non-EPS stream creation. When creating an EPS output stream, manual feed is always false.
Number of copies: When creating a non-EPS output stream, the number of copies is that
requested as the print time default. When creating an EPS output stream, the number of copies is
1.

These are the only pieces of information that the JPEG converter reports. Any other pieces of
information requested are reported as Unknown.

psLowPeekConvert

The JPEG converter does not need to peek at the data, so its psLowPeekConvert routine merely returns
without peeking.

psLowAddConverterQueries

The JPEG converter adds queries for the PostScript LanguageLevel and the channel characteristics.

The PostScript LanguageLevel query is used, at conversion time, to determine what the PostScript
LanguageLevel really is. This allows the converter to verify at print time whether it can really support the
target output device. The only situations where this could fail after the converter checked the language
level in psLowCanConvert are when:

the caller requesting the download changed the target output device between its calls to
psCanDownloadFile and psDownloadFile and the new device requires Level 1 support
the target output device changed between the time of printer setup and the time of the print job
and the new device requires Level 1 support
The queries about the channel are used to determine whether the JPEG converter must generate
binary or ASCII data.

The query hints used for these queries are:

For LanguageLevel: kHintLanguageLevelTag, kHintLanguageLevelId, default Unknown.
For channel characteristics: kHintEighthBitTag, kHintEighthBitId, default 7bit;
kHintTransparentChannelTag, kHintTransparentChannelId, default notTransparent.

psLowDoConvert

The purpose of the psLowDoConvert call is to generate the PostScript data to the output device. During
this process, the converter reads the input stream and writes it to the output stream. In addition, it reads
the output stream for data being echoed from the output device and writes such data to the input stream.
During the reading and writing of the PostScript data, the JPEG converter module tailors its output stream
to the target output device and provides status information to the client which has called it.

The JPEG converter first allocates its buffers for reading data from the input stream and for reading data
from any back channel that might exist. It then reads its first buffer of data from the stream and verifies
that the data is valid JPEG data. It does this to obtain the width, height, and depth of the stream it is to
convert. If, for any reason, the data cannot be handled, the converter reports this by writing a log
message kJPEGBadDataMsg. This is discussed in detail in the section Generating Error Messages. If the
data cannot be handled, the converter returns the error errCantHandleThisDownloadData.

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 14 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

data cannot be handled, the converter returns the error errCantHandleThisDownloadData.

The converter then evaluates the query results. If the query for LanguageLevel indicates Level 1
compatible output is required, the JPEG converter cannot download the data and returns the error
errCantHandleThisDownloadData. This should rarely happen.

The query for the channel allows the converter to configure whether it can write binary output.

If the converter can handle the data but the output stream requires ASCII data, the compressed JPEG data
is encoded with ASCII85 encoding on the host before being written to the output stream. Note that in
this case the converter uses the ASCII85Decode filter in combination with the DCTDecode filter in the
PostScript wrapper. Once the JPEG data has been written to the output stream, the finishing PostScript
wrapper is written.

Note that if the source JPEG data is one component, a grayscale image is produced regardless of the color
capabilities of the target device.

Generating Error Messages

The JPEG converter module generates error messages when it detects problems with the conversion.
These error messages are in addition to any provided by the Download Manager itself, such as
PostScript errors or other error conditions in the output device. The error messages initiated by the JPEG
converter are those relating to its ability to convert the JPEG data into PostScript output for the current
output device. They are provided to the downloading client and ultimately may be provided to the user in a
useful form.

There are two cases where error messages are generated. The first occurs if, after a call to
psLowCanConvert determines that the JPEG data can be handled by the JPEG converter, but during
psLowDoConvert, the JPEG converter determines that the JPEG data is not properly formed, it generates
an error message corresponding to kJPEGBadDataMsg. Currently this error message, found in sample
LangEnglish.r, is “The image data depth or size cannot be supported by the sample JPEG converter.”
This condition should not occur, but the JPEG converter is prepared to handle it if it does.

The second case where the sample JPEG converter initiates an error message is if during
psLowDoConvert, it determines that output compatible with a PostScript LanguageLevel 1 device is
required, it generates the error message corresponding to JPEGNoLevel1SupportMsg. Currently this
error message, found in sample LangEnglish.r, is “Generating Level 1 Compatible PostScript output with
the sample JPEG converter is not possible.”. This should happen rarely, if at all. It should only happen
if the user does a Chooser setup and the target output device reports to be LanguageLevel 2 and later the
user changes the actual target output device to one that only supports LanguageLevel 1 output.

Back to top

Introduction to the Sample Code Structure

The sample JPEG converter is structured in a manner that is intended to make it easy for developers to
create a new low-level converter to convert data formats that generate a single page of graphics. Even if a
given data format generates more than a single page, the structure of the sample code is likely to ease the
creation of new low-level converters.

The structure of the sample code consists of two parts. The first part is a “shell” portion which provides
the support for printer feature handling, for the DSC structure of the PostScript language output, and for
the tagging of the output so that the Download Manager and its clients can report status. This “shell”
code is not specific to any data type and hopefully has very few assumptions about what the output of a
given low-level converter should be. The “shell” code consists of the files sample ConverterShell.c,

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 15 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

given low-level converter should be. The “shell” code consists of the files sample ConverterShell.c,
sample ConverterShell.h, Utilities.c and Utilities.h. This code is described in detail in the section
low-level converter “Shell” Code.

The shell code is specifically written to make the creation of one-page graphic converters especially easy
but does contain a significant amount of code that would make more extensive converters straightforward
to write. The existing structure expects that there is only one page, and it is hard coded as such. The code
is commented to indicate where the single page assumptions are and developers are free to use this code
as a basis for making a converter that handles more than one page.

The second part of the sample code is the part which is specific to the sample JPEG converter. It is what
makes this low-level converter a JPEG converter as compared to a converter for GIF, FAX data, or other
types of data. The files which comprise this portion of the code are sample JPEGConverterLib.c, sample
JPEGConverterLib.h, sample JPEGConverterLib.r, and sample LangEnglish.r. The details of this
portion of the implementation are described in the section JPEG Converter Specific Code.

The remainder of this section provides basic information about what the shell code does and what a user
of the shell code needs to provide to use the shell code without modification.

Shell Basics

The shell code supplies all the routines that need to be exported by a low-level converter for use by the
Download Manager. This should make it easier to build a low-level converter that meets all the
requirements of the Download Manager. The routines exported by the shell code call special routines
which are supplied by the non-shell code. The term “shell client code” will be used to refer to this
non-shell portion of a low-level converter that uses the shell code.

The shell code handles a set of basic queries and gives the shell client code an opportunity to add
additional queries should they be required. The basic queries it handles include:

PostScript language level.
ASCII/Binary.
Color output device.
Whether the output device is configured to generate color separations.

In addition to specifying these queries, the shell code handles the results of the query to create information
in a form useful to shell client code.

For example, the color output device query and color separations query are used to compute the Boolean
canDoGrayOnHost that is passed to the shell client code. This Boolean lets the shell client know whether
it is safe to downsample any color data on the host to grayscale data. For some output types, this would
allow a substantial performance benefit. For example, the JPEG converter built into PrintingLib knows
how to handle PostScript Level 1 output devices and, when generating Level 1 compatible output and
canDoGrayOnHost is true, it downsamples the uncompressed JPEG data on the host to reduce the amount
of transmitted data by 2/3.

Shell client code doesn’t have to worry about generating any feature code, cover pages, or document level
DSC comments: these are handled by the shell code. Since the shell code also handles the initial portions
of the page level DSC comments, shell client code does not need to generate any DSC comments other
than those necessary for the PostScript stream to draw a given page.

The shell code creates and uses a StreamInfoData data structure. It also passes this structure to the client
shell routines that it calls to emit PostScript code into the output stream. The StreamInfoData structure
contains information about the output stream and its characteristics, such as whether it supports the low
32 characters in the 7-bit data range (transparent) and whether it supports data in the 8-bit character range.
This structure is the structure which is passed to many of the PSUtilsLib output routines that are

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 16 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

available for use to write data into the PostScript output stream. Some of the routines in PSUtilsLib can
write formatted output (similar to printf in the standard C library) and they take into account the
channel characteristics when they generate output. For more information on PSUtilsLib see Appendix A.

Before calling the shell client code to draw the actual page, the shell code performs scaling of the
PostScript coordinate system so that the bounding box of the graphic is centered on the page and scaled to
fit on the page, if appropriate. This generally gives attractive results for 1-page graphics formats that
might have not fit on a single page or that would have been clipped by the imageable area. This ‘auto
scaling’ may not be appropriate for some data types or graphics formats. This request for auto scaling
may be removed from the shell code if a given low-level converter does not want this functionality.

Note:
The auto scaling PostScript is not emitted if the Download Manager job requests an EPS job or if the
Download Manager job contains the kHintDoAutoScalingTag hint with the value false.

Details on how the shell code performs its duties are described in the section low-level converter “Shell”
Code.

Crucial Note:
The sample code builds a library which is marked as using shared global data. What this means is that
no matter how many simultaneous users of a given plug-in there are, they all share the same global
data. For this sample converter, that is perfectly reasonable since it has no global data that maintains its
current state; having shared global data saves memory.

Using shared global data does have at least one side effect that is reflected in the source code. In
particular, accessing the resource fork of the plug-in file must be done carefully. The approach taken in
the sample code is to access the resource fork by opening and closing it each time the converter needs to
access data from the resource fork. Another approach is to open it at the beginning of the relevant routine
and close it before ending that routine. An approach which does not work with shared global data is to
open the resource fork in the library fragment initialization routine and expect that resource fork to be
available to all clients. This does not work because the resource fork is only in the resource chain of the
application which first loads the plug-in. Other uses of the plug-in after it has been loaded do not call the
library fragment initialization routine if the library is marked with shared global data. Attempts to use the
resource fork in this situation fail.

Shell Usage

The .c file called “sample ConverterShell.c” contains the shell code. This file is normally not modified by a
user of the shell code. It consists of the exported routines needed by the Download Manager. It
implements those exported routines by doing as much as it can in a generic fashion, while calling specific
routines to be implemented by a low-level converter.

The routines to be implemented by a low-level converter that uses the shell code and which are called by
the shell code are:

converterGetConverterInfoPtr
converterCanConvert
converterGetConverterDocType
converterPeekConvert
converterGetVersion
converterAddAdditionalQueries
converterGetConverterName
converterInitDoConvertClientData
converterDisposeDoConvertClientData
converterGetBBox
converterEmitProlog

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 17 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

converterEmitProlog
converterEmitPageData

Here are the descriptions of these routines called by the shell code:

converterGetConverterInfoPtr

OSStatus converterGetConverterInfoPtr(const ConverterDescription
 **thePtr);

This routine is used by the shell code during psLowGetConverterInformation to obtain the
ConverterDescriptionPtr to pass back to the Download Manager. A converter should store its
ConverterDescriptionPtr in *thePtr.

converterCanConvert

OSStatus converterCanConvert(PSSerialStream *readStream,
 PSStream *inputStream, Collection hints,
 LowConverterInfo *dataInfo, Fixed *downloadability);

This routine is used by the shell code during psLowCanConvert to ask a low-level converter whether it
can convert the data represented by inputStream. For convenience, the shell code passes the following
parameters:

readStream is a pointer to a PSSerialStream from which a client can read the data.
inputStream is a pointer to a PSStream corresponding to the input data. This form of the input
stream is needed if a client needs to rewind or position the stream. Note that not all streams can
be repositioned so a client must first look at the stream type of inputStream if it needs to position
the stream.
hints is the collection provided to supply information about the features requested for the
download.
dataInfo is information about the Finder type associated with the stream data.
downloadability is a pointer to a Fixed number. The converter is expected to indicate its
ability to download the data. A return value of 0 reports that the converter cannot download the
data. The larger the number, the more suitable the converter is to download the data. A value of
10.0 (Fixed) is the largest value returned by the converters within PrintingLib.

converterGetConverterDocType

OSStatus converterGetConverterDocType(PSSerialStream *readStream,
 PSStream *inputStream, Collection hints, OSType *theType);

This routine is called by the shell code as part of psLowGetStreamInfo to obtain the ‘type’ of document
to which the data corresponds. This routine is only called after a converter has indicated that it can handle
the data.

The stream and hints information is passed to allow a converter to examine the data, should it need to read
the data stream to determine the ‘type’ of data. A converter that only handles one type of data should not
read the data, but simply return the supported type in *theType parameter.

converterPeekConvert

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 18 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

converterPeekConvert

OSStatus converterPeekConvert(PSSerialStream *readStream,
 PSStream *inputStream, Collection hints);

This routine is called by the shell code during the psLowPeekConvert call to allow a converter to peek at
the input stream and record any hints about the data which would be useful during conversion.

readStream is a pointer to a PSSerialStream from which a client can read the data.
inputStream is a pointer to a PSStream corresponding to the input data. This form of the input
stream is needed if a client needs to rewind or position the stream. Note that not all streams can
be repositioned so a client must first look at the stream type of inputStream if it needs to
position the stream.
hints is the collection provided to supply information about the features requested for the
download and allow the low-level converter to record hints obtained during the peek phase.

converterGetVersion

OSStatus converterGetVersion(struct CFMVersion *version);

Called by the shell code as part of psLowGetConverterVersion to allow a client to determine the CFM
version data of the low-level converter.

converterAddAdditionalQueries

OSStatus converterAddAdditionalQueries(Collection hints,
 Collection query);

Called by the shell code during psLowAddConverterQueries to allow a low-level converter to add
additional query hints. The shell code always adds the queries:

kHintLanguageLevelTag: the PostScript language level.
kHintEighthBitTag: whether the channel is 8 bit clean.
kHintTransparentChannelTag: whether the channel is transparent to the low 32 characters.
kHintColorDeviceTag: whether the output device is a color device.
kHintColorSepTag: whether the output device is configured to do color separations.

If a converter wants to add additional query hints, it should add them to the query collection parameter.

converterGetConverterName

OSStatus converterGetConverterName(Str255 converterName);

This routine is called by the shell code during psLowDoConvert to obtain the name of the converter. This
allows the shell code to use the proper “application name” for the DSC comments relating to the document
creator. It also allows any generated cover page to correctly reflect the converter‘s name.

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 19 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

converterInitDoConvertClientData
OSStatus converterInitDoConvertClientData(void **clientData,
 PSSerialStream *readStream, PSStream *inputStream,
 PSStream *outputStream, Collection hints,
 unsigned char *backChannelDataBuffer,
 SInt32 backChannelDataBufferSize,
 UInt32 *LanguageLevel, Boolean doBinary,
 Boolean canDoGrayOnHost, Boolean isNotEPS);

converterInitDoConvertClientData is called during the psLowDoConvert phase of
conversion to allow a converter to create and configure any client data that it needs for the
conversion process. This routine is called before any PostScript data is generated by the shell
code.
clientData is a pointer to a (void *) that can be supplied by the client. clientData is passed
to each of the other routines called by the shell code during the psLowDoConvert phase of the
conversion.
readStream is a pointer to a PSSerialStream from which a client can read the data.
inputStream is a pointer to a PSStream corresponding to the input data. This form of the input
stream is needed if a client needs to rewind or position the stream. Note that not all streams can
be repositioned so a client must first look at the stream type of inputStream if it needs to position
the stream.
outputStream is a pointer to a PSStream to which a client should write the generated
PostScript language data.
hints is a collection provided to supply information about the features requested for the
download and allow the low-level converter to obtain hints recorded during the peek phase.
backChannelDataBuffer is a buffer (or NULL) allocated by the shell code for use by the
converterEmitPageData routine to read the back channel data into. Typically, this buffer is
not read directly by a converter but is instead passed to ReadWriteBackChannel as described in
the section Shell Utility Routines.
backChannelDataBufferSize is the size of the backChannelDataBuffer data buffer.
Typically this value is not used directly by a converter, but is instead passed to
ReadWriteBackChannel as described in the section Shell Utility Routines.
LanguageLevel is a pointer to a UInt32 indicating the target language level for output. The
converter supplied routine should put the minimum LanguageLevel required to support the
generated output. This lets the shell code generate the proper %%LanguageLevel: DSC
comment.
doBinary is a Boolean indicating whether the destination can accept binary data.
canDoGrayOnHost is a Boolean indicating whether the converter can downsample grayscale
output from color input. This is only true if it is known that the output device is not color
capable and is not generating color separations.
isNotEPS is a Boolean indicating whether the generated output should be EPS output. If the
generated output is not supposed to be EPS, this value is true. If the output is supposed to be
EPS, this value is false.

Shell client code should not write to the output stream during the call to
converterInitDoConvertClientData. This routine should only be used to configure the shell client
code appropriately.

converterDisposeDoConvertClientData

OSStatus converterDisposeDoConvertClientData(void *clientData);

psLowDoConvert

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 20 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

This routine is called by the shell code during psLowDoConvert to allow the low-level converter to
dispose of any clientData it allocated during converterInitDoConvertClientData.

converterGetBBox

OSStatus converterGetBBox(kHintEPSBBoxVar *bbox,
 void *clientData);

This routine is called by the shell code during psLowDoConvert to obtain the appropriate bounding box
information for the data being downloaded.

converterEmitProlog

OSStatus converterEmitProlog(StreamInfoData comm,
 void *clientData);

This routine is called by the shell code during psLowDoConvert to allow the low-level converter to emit
its prolog code into the output stream. The shell code generates the appropriate %%BeginProlog and
%%EndProlog comments around the prolog code emitted by converterEmitProlog.

comm is a StreamInfoData corresponding to the output stream.
clientData is the client data filled in by the converter when
converterInitDoConvertClientData was called.

converterEmitPageData

OSStatus converterEmitPageData(StreamInfoData comm,
 void *clientData);

This routine is called by the shell code during psLowDoConvert to allow the low-level converter to emit
the PostScript code to render the page into the output stream. This is where the bulk of the PostScript
code emitted by the low-level converter should be generated. The shell code generates the showpage
command as well as the appropriate comments after the page and job.

The PostScript coordinate system in force at the time this call is made has been set by the shell code to be
the default PostScript coordinate system as modified by any device adjust matrix and any autoscaling
necessary to center and scale the bounding box reported by converterGetBBox. A low-level converter
should emit PostScript code to render the page so that it has a bounding box as reported by
converterGetBBox.

comm is a StreamInfoData corresponding to the output stream.
clientData is the client data filled in by the converter when
converterInitDoConvertClientData was called.

Resources

Once these routines have been implemented, the C code is complete, but the converter is not. A converter
module must also have the appropriate resources, in particular the 'PLGN' resource it requires as a
Download Manager plug-in. The sample code sample JPEGConverterLib.r file contains a 'PLGN'

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 21 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

Download Manager plug-in. The sample code sample JPEGConverterLib.r file contains a 'PLGN'
resource with ID number -8192. A converter MUST contain this resource and the libraryName field of
the PluginLibInfo resource must have the name of the converter module library in place of that for the
sample.

resource 'PLGN' (-8192,
#if qNames
 "Plug-In Info",
#endif
 purgeable) {
 {
 'down', '????', "YourConverterModuleLibName"
 }
};

Note:
Without a proper 'PLGN' resource, a low-level converter will not be recognized by the Download
Manager.

The name “YourConverterModuleLibName” above should be replaced with the name used for the
converter code fragment.

That should be it. Once the converter module is built correctly (get that library name to match in both the
'cfrg' resource and the 'PLGN' resource!), you can drop an alias of that library into your “Printing
Plug-ins” folder in your Extensions folder. You should now be able to test drag and drop printing in the
Finder in Mac OS 8.5 or later using your plug-in.

You can use the shell code as is. If so, you should also read section JPEG Converter Specific Code.
Those not using the shell approach or those who want to know more about the shell approach should read
section low-level converter “Shell” Code to understand better what the shell code is doing.

Shell Utility Routines

In addition to calling the routines that are supplied by the converter shell client, the shell code makes
available some routines that are useful to the converter. Descriptions of these functions follow.

openLowLibraryResFile

OSErr openLowLibraryResFile(short *fRef);

This routine is used to open the library resource file so that resources can be used. The caller of this
routine must close the resource fork when finished. The file is opened read only.

fRef is a pointer to a short that openLowLibraryResFile fills in with the file reference number
of the library resource fork opened.

ReadWriteBackChannel

OSStatus ReadWriteBackChannel(PSStream *streamToClient,
 PSWriteProc writeProc,
 PSStream *streamToPrinter, PSReadProc readProc,
 unsigned char *backChannelBuffer,

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 22 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

 unsigned char *backChannelBuffer,
 SInt32 backChannelBufferSize);

This routine is to be called by a converter so that any data coming up the back channel from a PostScript
output device is properly passed back to the Download Manager so it can look for errors or status
messages. This routine should be called regularly by a converter as it is writing data out. This routine is
only for use during the converterEmitPageData and converterEmitProlog procedures (see the
section Shell Usage).

streamToClient is the inputStream passed to the low-level converter’s
converterInitDoConvertClientData procedure.
writeProc is the write procedure on the streamToClient stream.
streamToPrinter is the outputStream passed to the low-level converter’s
converterInitDoConvertClientData procedure.
readProc is the read procedure on the streamToPrinter stream.
backChannelBuffer is the data buffer passed to the low-level converter’s
converterInitDoConvertClientData procedure.
backChannelBufferSize is the size of the backChannelBuffer as passed to the low-level
converter’s converterInitDoConvertClientData procedure.

writeLogMsg

OSStatus writeLogMsg(PSStream *streamOut, PSSubsection subsection,
 void *info, SInt32 stringsID,
 SInt32 msgID, Boolean isError);

This routine is called by a converter to log any error or warning messages which are appropriate during
the data conversion.

streamOut is the outputStream passed to the low-level converter’s
converterInitDoConvertClientData procedure.
subsection is the PSSubsection to which the error pertains. Use kSubAnon if there is no
appropriate subsection.
info is a pointer to a structure appropriate for the subsection being reported or is NULL.
stringsID is the ID of a 'STR#' resource containing the message string list for the converter.
The converter library resource fork is opened (and closed) by writeLogMsg to obtain the
'STR#' resource, so a client need not open the library resource fork before calling writeLogMsg.

msgID is the list number of the target message within the 'STR#' resource referenced by
stringsID.
isError is the constant LOGERROR if the caller wants the message to be reported as an error as
opposed to a warning. The constant LOGWARNING is used to report the message as a warning.

JPEG Converter Specific Code

The files in the sample code which cause this sample low-level converter to be a JPEG converter are the
files sample JPEGConverterLib.r, sample JPEGConverterLib.c, and sample LangEnglish.r.

Sample 'PLGN' Resource

The file sample JPEGConverterLib.r provides the 'PLGN' resource for this converter module:

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 23 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

resource 'PLGN' (-8192,
 purgeable) {
 {
 'down', '????', "sampleJPEGConverterLib"
 }
};

Specifically this 'PLGN' resource indicates that the file contains one plug-in and that the type of plug-in is
“down” with subtype '????'. These are the download manager plug-in types. The final piece of
information indicates that the plug-in library name is sampleJPEGConverterLib. This name is the same
as the name of the code fragment to load for this plug-in.

For this sample converter, the sample LangEnglish.r file contains a 'STR#' resource definition of a
string list of message strings used by the sample JPEGConverterLib.c file. Your C code may require a
similar 'STR#' list or other resources.

Sample Converter Description

The shell code doesn’t know anything about what types of data an actual low-level converter can handle,
so “shell client code” must supply a converter description. The sample code declares a new type of data
MyConverterDescription which parallels the ConverterDescription data type but is concrete in the
number of ConverterService structures it contains.

Here is the ConverterDescription used for the sample JPEG converter:

MyConverterDescription gTheConverterDescription =
{
 // signature information
 kTheConverterDescriptionSignature, // signature always first
 kInitialConverterDescriptor, // version data
 // ConverterType
 {
 "\pJPEG Converter", // name
 "\p", // our real info string data comes from rsrc fork
 kMajorRev, kMinorRev, kReleaseStage, kNonRelease,
 },

 // Converter Services
 {
 kNumHandledTypes, // # of ConverterTypeInfo structures
 {
 {
 'JPEG', // file type for JPEG data

 CANTDOWNLOAD, // priority hint - we can’t
 // handle if we can’t look at
 // more than the first 15
 // bytes of data to verify it
 // is JPEG data we can handle

 "\p\xFF\xD8" // the first 2 bytes of
 // JPEG/JFIF data
 },

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 24 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

 },
 {
 'JFIF', // file type for JFIF data
 CANTDOWNLOAD, // priority hint - we can’t
 // handle if we can’t look at
 // more than the first 15
 // bytes of data to verify it
 // is JPEG data we can handle

 "\p\xFF\xD8" // the first 2 bytes of
 // JPEG/JFIF data
 },
 {
 '????', // file type for unknown data
 CANTDOWNLOAD, // priority hint - we can’t
 // handle if we can’t look at
 // more than the first 15
 // bytes of data to verify it
 // is JPEG data we can handle

 "\p\xFF\xD8" // the first 2 bytes of
 // JPEG/JFIF data
 }
 }
 }
};

There are a couple of points that are worth noting. First, the info field of the converterType field of the
ConverterDescription is a zero-length Pascal string. The sample code takes care of filling in this field
with data from sample LangEnglish.r so that the info string can be internationalized.

For our sample converter, kNumHandledTypes is 3, that is, there are three types of data which the
converter wants to handle. The OSTypes that are handled are 'JPEG', 'JFIF' and the unknown type
'????'. The ConverterTypeInfo for each type has the same priority and matchString data.

The matchString supplied is that corresponding to the first two bytes of JPEG data. By specifying these
as the first two bytes of the data stream, the Download Manager does not call this converter for files (or
streams) which match the specified types but do not have these two characters at the beginning of the
stream.

The priority supplied for each type is CANTDOWNLOAD which is the value 0. The priority value in the
ConverterTypeInfo for each type is used only in the case where the Download Manager must assign a
priority to the low-level converter but it can’t call the psLowCanConvert routine to obtain a priority. This
only happens if the input stream being downloaded cannot be repositioned, such as data that is being
generated on the fly. This is never the case for file downloads from the desktop printing software in the
Finder.

The sample code doesn’t have to reposition the stream and this would allow it to work both with streams
which allow positioning (kPSRandomAccessStream) and streams which do not allow positioning
(kPSSerialStream). Unfortunately there are restrictions on the type of data that the sample code can
handle; there are JPEG data types it can’t handle (Progressive JPEG) and it cannot handle PostScript
Level 1 output.

Because the sample JPEG converter can’t always support downloading streams that begin with our
matchString data without looking at the data further, it must advertise a priority of 0.

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 25 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

converterGetConverterInfoPtr Routine

The converterGetConverterInfoPtr routine supplied by the “shell client code” is responsible for
returning a pointer to the ConverterDescription structure described above. As mentioned earlier, the
info field of this structure is filled in with data that can be localized and lives in the low-level converter’s
resource fork. To access this data, the sample code opens the library resource fork, copies the appropriate
string data into our structure and closes the library resource fork. The resource fork is handled in this
manner because, as discussed earlier, our plug-in shared library has shared global data and this approach
properly allows multiple clients to use the resource fork of the converter.

The openLowLibraryResFile routine is used to access the resource fork of the low-level converter. This
routine is provided by the shell code to simplify access to the resource fork by the shell client code. The
shell client is responsible for closing the resource fork once it is done. Note that closing the resource fork
unloads any resources which have not been copied or detached from the resource fork.

converterInitDoConvertClientData Routine

This routine allows the shell client code to allocate and initialize any data that it needs to perform the
conversion. One important point is that the shell code passes in a pointer to the LanguageLevel that
reflects the job request. The shell client should update the LanguageLevel data pointed to by this pointer
so that it reflects the minimum PostScript LanguageLevel that is generated by this converter. The shell
code uses the data returned to generate any %%LanguageLevel DSC comment.

converterPeekConvert Routine

Our sample code has no need to peek at the data since it can obtain all the data it needs by reading the
header of the JPEG data stream. Normally the sample code simply returns from the
converterPeekConvert routine without doing anything.

To aid those developers who might wish to collect data during the peek phase and access that data during
the conversion phase, the sample code has some conditionally compiled code to give an example of how
to store private hints corresponding to data collected during the peek phase. There is also corresponding
conditionally compiled code contained in the conversion phase code to access the stored private hints.
Remember from the earlier Private Data Hints section that the converter might be unloaded between the
converterPeekConvert call and the converterInitDoConvertClientData call, so global data cannot
be used.

The reason for being careful about how private hints are stored is because any collection tags added to
the hints collection may conflict with hints that are stored in that collection by the Download Manager or
other portions of the code path. To overwrite such hints could produce unpredictable behavior. To avoid
this problem, the collection tag value kHintAppPrivateTag ('APPL') is reserved for third party’s use.
When using this tag, a developer can ensure it has a private ID value by using the signature assigned to
the converter. A converter developer should register this signature with DTS, just as when developing an
application.

In principle, this only allows a single piece of data to be stored by each developer. The data stored is
private and need not be in any specific format. It may be convenient to have the private data itself be a
collection, and the sample code demonstrates how to accomplish this.

To store a collection, one must flatten it into a handle and then store that handle. To access the stored data,
one must get the collection item handle and unflatten it back into a collection. The conditionally compiled
sample code does just this. It first creates a “private” collection and stores the data for a few fake “private”
hints. It then flattens the private collection and stores that with the kHintAppPrivateTag tag value and an
ID formed by using the appropriate signature. The code to access this private collection is in the sample
shell client code routine converterInitDoConvertClientData.

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 26 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

shell client code routine converterInitDoConvertClientData.

converterEmitProlog Routine

The shell code client’s converterEmitProlog routine is called by the shell code to generate the prolog
code into the output stream. For the sample code, all the prolog code is contained in a small single Pascal
string psPrologL2 which is simply global data. The PSUtilsLib routine psOutPStr is called to write
this Pascal string to the output stream represented by the comm StreamInfoData structure passed to the
converterEmitProlog routine.

This approach is fine for converters which have small prologs, but if your converter has a large prolog, it
may be preferable to store it as a resource and to load the resource and send it when needed. This has the
advantage of requiring less memory during the entire conversion, since global data is in memory
whenever a converter is loaded (ignoring virtual memory considerations) and resource data is only
loaded upon request.

However, having the prolog in the resource fork requires each instance of a low-level converter to load its
prolog rather than using the shared global data. This means that the total memory used by all instances of a
low-level converter will be larger for this case. You should keep these tradeoffs in mind when deciding
where to store your prolog.

After writing the prolog code, converterEmitProlog calls the ReadWriteBackChannel routine to read
the output device back channel and write any data it reads back to the input stream. This allows the
Download Manager to look at the data coming back from the output device and properly report
PostScript errors and status information. The ReadWriteBackChannel routine is supplied by the shell
code for use by the shell client code.

converterEmitPageData Routine

The converterEmitPageData routine is where the bulk of the PostScript code specific to this document
is generated by the shell client code. Most of the code is pretty straightforward but there are a few
comments that might be helpful.

To emit the portion of the PostScript code which parameterizes the call to the PostScript image operator,
the sample code calls the psOutFormat routine in PSUtilsLib. This is one of the routines which can
output data while formatting it. The call used is:

 psOutFormat(comm, psImageDictSetup1, width,
 height, numComponents);

The string being output is psImageDictSetup1, which begins something like:

static const unsigned char psImageDictSetup1[] =
"\p/iwidth ^d def/iheight ^d def/components ^d def ...";

The use of ‘^d’ within a string is similar to the use of ‘%d’ in a format string for printf. That is, when
the psImageDictSetup1 string is scanned by the psOutFormat routine, it substitutes the first ^d in the
format string with the first parameter passed after the format string in its arguments. This is handled
similarly for all the arguments and formatting characters in the output.

Note:
The use of "^" instead of "%" in these format strings is to avoid interference with the legitimate use of a
"%" character in such format strings, since the "%" character has semantic meaning in PostScript

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 27 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

"%" character in such format strings, since the "%" character has semantic meaning in PostScript
language output.

To write the JPEG data to the output stream, the sample converter uses the psOutBlock routine in
PSUtilsLib. This routine simply writes a data block of a specified number of bytes to the output stream.

For more information on the formatting routines in PSUtilsLib, see Appendix A.

While writing the JPEG data, the converterEmitPageData routine calls the ReadWriteBackChannel
routine to read the output device back channel and write any data it reads back to the input stream. It does
this as it writes significant blocks of data to the output stream so that it detects any data coming back
from the output device in a timely manner. There is no point spending time consuming computations or
sending lots of data to the output device just so it can be flushed by the output device’s PostScript
interpreter because there was a PostScript error in the output device.

Calling ReadWriteBackChannel allows the Download Manager to look at the data coming back from the
output device, and properly report PostScript errors and status information. The
ReadWriteBackChannel routine is supplied by the shell code for use by the shell client code.

Use of WriteLogMsg

The sample code uses the writeLogMsg routine provided by the shell code. It uses this routine to generate
error or warning messages that are available for processing by the Download Manager or the application
client which invoked the Download Manager. In addition, these messages can be saved into a log file. See
the Tips section for additional information about logging that might be useful for debugging a low-level
converter.

Back to top

low-level converter “Shell” Code

This section describes the operation of the shell code in more detail. In principle, only those who want a
deeper understanding of the shell code or who need to modify it need to read this section. In practice,
since the shell code is compiled into your low-level converter, you might want to understand it better even
if you don’t plan to modify it.

The biggest limitation of the shell code as implemented for the sample JPEG converter is that it is
currently hard coded to generate one page of output. The shell code’s psLowGetStreamInfo routine
explicitly uses 1 for the number of pages it reports, regardless of whether EPS output is being generated.
It treats the bounding box data as if there is only one page being generated. It also uses 1 for the number
of pages it generates for the %%Pages: comment in the document header and for the page number it
generates for the %%Page: comment on the first (and only) page. It only calls converterEmitPageData
once and doesn’t pass the current page number since the assumption is that there is only one page. In
addition, there are several places where a pointer to the current page number is passed to the
doOutputPosition routine (discussed in the section DSC Comments and Feature Code).

psLowGetStreamInfo

This routine is implemented in a generic fashion since the only data required from the shell client code is
the type of data that is actually contained in the file. Since the data in the stream is opaque to the caller of
the Download Manager, the low-level converter which can perform the download is the only entity that
can authoritatively determine the data type. The shell code calls the shell client code’s
converterGetConverterDocType routine to determine what the data type is. The shell client code can
scan the data to determine this, or, in the case of the sample JPEG converter, it simply returns the data

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 28 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

type since there is only one type of data that the sample converter can handle. Since the only way a
low-level converter’s psLowGetStreamInfo—and therefore its converterGetConverterDocType
routine—can be called is if the converter has already agreed that it can handle the data through the
psLowCanConvert routine, it doesn’t have to scan the data unless it supports multiple data types.

The shell code determines whether an EPS or PostScript language download job is requested. If it is
EPS, the shell code knows the number of copies is always 1; otherwise, it looks for the job hint which
indicates the number of copies to generate and returns that value. If the job is not EPS, it calls the routine
psIsJobManualFeed in the FeatureUtilsLib library to determine if the hints collection corresponds to a
manual feed job. If the job is EPS, it is never a manual feed job.

As described above, the shell code always reports 1 for the number of pages.

psLowDoConvert

The shell version of this routine takes care of the bulk of the generation of the DSC comments, the feature
code, and the invocation of the shell client code’s routines for generating the PostScript output into the
stream.

It begins by allocating a buffer for reading the back channel data that might be returned by the output
device back to the host. It does this so that both the shell client and the shell code itself can use this
buffer to read the back channel.

The shell code calls the routine psSetupStreamInfoData to obtain a StreamInfoData structure that can
be used with the output routines contained in the PSUtilsLib library. The resulting comm variable is
passed to those shell client routines that are likely to emit code. If there are other routines that need the
comm structure, the shell code must be modified accordingly.

Back to top

DSC Comments and Feature Code

The shell code adds a number of hints that, on the surface, don’t seem to be used anywhere. These hints
include: kHintEPSBBoxTag, kHintAppNameTag, kHintClientNameTag, and kHintClientVersionTag.
These hints are used by the code which generates the feature invocations; that code is contained in the
FeatureUtilsLib library. For example, when a cover page is generated, some of these hints are used to
obtain data to fill in cover page information.

The shell code emits a number of DSC comments into the stream by using the doOutputPosition
routine. This routine combines the generation of the DSC comments into the output stream (with the
appropriate tagging) and the request for various features.

The routine doOutputPosition is actually a macro which results in a call to the routine OutputPosition.
The OutputPosition routine uses the routines psWriteSubsectionFeature, psOutFormatPosition,
and psOutFormatPositionInfo in a stylized fashion that is appropriate to discuss here. Here is the
routine:

static OSStatus OutputPosition(StreamInfoData comm,
 Collection hints, const SubsectionStr *subsectionStr,
 void *info, Boolean isNotEPS)
{
 OSStatus err = noErr;

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 29 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

 err = psWriteSubsectionFeature(comm, hints,
 subsectionStr->subsection, info,
 kBeforeSubsection, isNotEPS);
 if(!err){
 if(info)
 err = psOutFormatPositionInfo(comm,
 subsectionStr, info);
 else
 err = psOutFormatPosition(comm, subsectionStr);
 }
 if(!err)err = psWriteSubsectionFeature(comm, hints,
 subsectionStr->subsection, info,
 kAfterSubsection, isNotEPS);
 return err;
}

The OutputPosition routine first calls psWriteSubsectionFeature with the correct subsection and
with the value kBeforeSubsection. It then writes the comment by making a call to
psOutFormatPosition or psOutFormatPositionInfo depending on whether the info data passed in is
NULL or not. Finally, it calls psWriteSubsectionFeature with the correct subsection and with the
value kAfterSubsection.

psWriteSubsectionFeature is a routine in FeatureUtilsLib that uses its knowledge of job feature
requests contained in the hints collection passed to it, and combines that knowledge with the information
about what portion of the document is currently being generated. When this routine is called, it is passed a
PSSubsection which indicates which DSC comment is going to be written or was just written. A
psSubsectionLocation is also passed to psWriteSubsectionFeature and indicates whether this call
to psWriteSubsectionFeature is before or after the DSC comment which is being written.

By passing this information about the document structure to psWriteSubsectionFeature, it is able to
intelligently generate the feature code needed at the appropriate point of the job stream. What feature code
to generate depends on the features requested in the hints collection passed to it. For example, when a call
is made to psWriteSubsectionFeature with the subsection value kSubPSAdobe and
psSubsectionLocation value kBeforeSubsection, psWriteSubsectionFeature knows to determine
whether a cover page should be emitted and if so, emits the cover page code into the stream. The call
returns and the caller normally generates the %!PS-Adobe-3.0 DSC comment. It then calls
psWriteSubsectionFeature with the subsection value kSubPSAdobe and psSubsectionLocation
value kAfterSubsection and psWriteSubsectionFeature writes nothing to the output stream.

This stylized way of using psWriteSubsectionFeature allows feature code to be generated
corresponding to the feature requests in the hints collection. The feature invocation code is generated into
the job stream in the appropriate place, as long as the caller gives the psWriteSubsectionFeature
routine a chance to write its feature data at the appropriate points in the DSC job stream. The shell code
does this so that neither the shell code nor the shell client code need to know anything about the features
that the job requires. At the same time, the shell and its clients have to do little work to support those
features. There is nothing that says a low-level converter must use the feature generation ability of the
code in FeatureUtilsLib. However, by using this library as shown in the sample code, the user will
obtain the requested print time features.

FeatureUtilsLib is described in more detail in Appendix C.

The psOutFormatPosition and psOutFormatPositionInfo functions mentioned above are available in
PSUtilsLib and are used to tag the output written into the stream so that the Download Manager or its
callers who wish to track the progress of the job can do so by looking at the tags. This ‘tagged’ data is

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 30 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

callers who wish to track the progress of the job can do so by looking at the tags. This ‘tagged’ data is
actually part of the stream itself in the form of the PSPosition structure, which is part of a
PSSerialStream structure.

The psOutFormatPosition and psOutFormatPositionInfo routines are passed the string data to be
written and the PSSubsection tag together in a SubsectionStr structure. This allows the data written
to be easily marked with the appropriate tag. The only difference between the two calls is that a call to
psOutFormatPositionInfo supplies a (void *) pointer to some information data that is put into the info
field of the PSPosition structure on the stream. The call to psOutFormatPosition is equivalent to a call
to psOutFormatPositionInfo with the info parameter set to NULL. More information on these functions
is available in Appendix A.

Auto Scaling

It is important to point out again that the shell code does auto scaling so that the page of output is
centered and, if it would not fit on the page, is scaled to fit on the page. The orientation of the output
depends on the dimensions of the printed sheet and the bounding box of the data drawn. The drawing is
oriented on the page so that the longest dimension of the bounding box is aligned with the longest
dimension of the paper.

This type of scaling may not be appropriate for all types of converters. It is implemented as a call to
psWriteSubsectionFeature with the kSubAutoScaling PSSubsection value. Clearly this data does
not correspond to a DSC comment, and there is no DSC comment written before or after this call to
psWriteSubsectionFeature. This is a bit different than the use of psWriteSubsectionFeature
described above and is not associated with any DSC data written.

This is done in this manner for two reasons. First, not all users of psWriteSubsectionFeature are
interested in emitting the auto scaling code. In addition, the appropriate place to emit the auto scaling
code depends on the PostScript code being generated for drawing a given graphic. By not tying the auto
scaling code to a specific DSC section, the caller decides whether to include the code and if so, it can
decide exactly where to include it.

Device Adjust Matrix

The shell code generates a device adjust matrix adjustment which reflects the *DeviceAdjustMatrix
value (if any) in the PPD file representing the target output device. This is done as a call to
psWriteSubsectionFeature with the kSubDeviceAdjustMatrix PSSubsection value. The shell code
does not write a DSC comment before or after this call to psWriteSubsectionFeature. Again, this is a
bit different than the use of psWriteSubsectionFeature described above, and is not associated with
any DSC data written. When psWriteSubsectionFeature writes any device adjust matrix code, it
generates %%BeginFeature and %%EndFeature around the code, just as it does for other PPD feature
code that it generates.

Similar to the handling of kSubAutoScaling, the kSubDeviceAdjustMatrix PSSubsection has no
connection to a specific point in the structured document job stream. The appropriate place to emit the
device adjust matrix code depends on the PostScript code being generated for drawing a given graphic.
By not tying the device adjust matrix code to a specific DSC section, the caller decides whether to include
the code and if so, where exactly to include it.

Note that the shell emits PostScript code surrounding the invocation of psWriteSubsectionFeature
with the PSSubsection value kSubDeviceAdjustMatrix. This is done so that if there is no device
adjust matrix code generated, there is no adjustment. The code to use a device adjust matrix properly is
document dependent and therefore the program which uses the matrix needs to decide how to use it. The
feature code merely inserts the matrix (if there is one) in the stream.

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 31 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

Back to top

Tips

Converter Priorities

The Download Manager favors external converters over internal converters of the same priority. This
means that if the sample JPEG converter is placed in the “Printing Plug-ins” folder it is favored over that
built into PrintingLib. This is fine for looking at the sample converter; however, to use the JPEG
converter built into PrintingLib, the sample JPEG converter must be removed from the “Printing
Plug-ins” folder.

'PLGN' Resource Editing

While not strictly necessary, a 'PLGN' resource ResEdit template is in PrintingLib 8.6 and later. To
look at the 'PLGN' resource in PrintingLib, just open it up. If you want to look at the 'PLGN' resource
in the low-level converter you build, copy the appropriate 'TMPL' resource into that converter and then
open the 'PLGN' resource.

Caching Issues

The Download Manager resolves aliases placed in the “Printing Plug-ins” folder. It is convenient to put an
alias to a low-level converter in the “Printing Plug-ins” folder during converter development. If there isn’t
already a “Printing Plug-ins” folder in the Extensions folder, the Download Manager will create one
automatically when it is called for the first time. One way to cause this to happen by dragging any
document onto a desktop printer created by LaserWriter 8 when using Mac OS 8.5 or later.

To improve performance, the Download Manager caches both the list of converters in the “Printing
Plug-ins” folder and the ConverterDescription information it obtains from each low-level converter.
The Download Manager uses the folder modification date of the “Printing Plug-ins” folder to determine
whether it needs to update its cached list of converters. This can be an issue during the development of a
low-level converter.

If the 'PLGN' resource or the ConverterDescription information in a plug-in file changes, you want
the Download Manager to notice and take the new information into account. However, the system
software updates the folder modification date only when items are added or removed from a folder. If an
item is edited in place, the system does not change the folder modification date. This means that editing or
rebuilding a plug-in file directly in the “Printing Plug-ins” folder, the folder modification date may not
change. This also applies to an alias that points to a plug-in file that is created in another directory.

This “problem” only manifests itself when the 'PLGN' resource or ConverterDescription is changing,
specifically, very early on in the development of a converter. Until the plug-in recognized by the
Download Manager and the ConverterDescription has been finalized, the new converter should be
manually copied it to the “Printing Plug-ins” folder.

Note:
This is not a problem for users since there is no appropriate way to edit a plug-in file.

Initial Software Development

Getting Your Converter Seen by the Download Manager

Until the 'PLGN' resource is correct and all required symbols are correctly exported, the Download

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 32 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

Until the 'PLGN' resource is correct and all required symbols are correctly exported, the Download
Manager will never call a low-level converter. Once these requirements have been met, the Download
Manager will call the psLowGetConverterInformation of the low-level converter when the user drags
and drops a file onto a desktop printer created by LaserWriter 8 (in Mac OS 8.5 and later) and the
modification date of the “Printing Plug-ins” folder has changed since the last drag and drop. It is wise to
start converter development by making sure that the Download Manager detects the new low-level
converter.

The easiest way to do this is to put a breakpoint on the converter’s psLowGetConverterInformation
routine and dropping a document onto a desktop printer created by LaserWriter 8. If this fails, either the
'PLGN' resource is not correctly formed or the low-level converter does not export all the required
functions. In order to retest, make sure the “Printing Plug-ins” folder modification date has changed
before.

Getting Your Converter Called For Your Data Types

Once the converter is seen by the Download Manager, the next thing is to make sure that the converter is
being given a chance to convert all the files which have match the data types and matchString entries in
the ConverterDescription. This is the process of getting the ConverterDescription correct for a
low-level converter. The simplest way to make sure a converter is getting asked about all the data types
(and matchStrings) it expects is to put a breakpoint on the psLowCanConvert routine and verify that
this routine is being called by the Download Manager. Once the psLowCanConvert routine is called as
expected, you are ready to do the real work of implementing all the routines and converting the data.

If the converter’s psLowCanConvert routine isn’t getting called as expected, but
psLowGetConverterInformation is being called, the culprit is the ConverterDescription being
returned by psLowGetConverterInformation.

Note:
Once your converter is being properly called for all your data types, the caching issues can usually be
ignored for the rest of your software development.

Logging

A low-level converter (and the Download Manager itself) can tag data that it writes to a stream by setting
PSSubsection values in the PSPosition structure that is part of the stream (see Appendix A for more
information about the streams the Download Manager uses). When a low-level converter uses the
PSSubsection values kSubLogErrorData and kSubLogWarningData, it is passing error or warning
messages back to the Download Manager. The Download Manager gives its clients an opportunity to
report these messages to the user.

The Download Manager has the ability to write these error and warning messages to a log file. This ability
is turned off in the version of PrintingLib shipped with the system software, but it easily can be
enabled and tailored slightly by using ResEdit or Resorcerer to edit the PrintingLib file.

Using Logging

Developers are encouraged to use the PSSubsection value kSubLogWarningData to generate warning
messages that are useful to sophisticated users. For example, if, in the middle of a conversion, a
converter discovers that the data may have a problem but the problem isn’t fatal, that information could be
reported with a warning message. Of course, fatal errors should be reported using the PSSubsection
value kSubLogErrorData.

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 33 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

In addition, it may be useful to add warning messages as part of debug builds of a low-level converter.
This allows you and your testers to look at a trace of what is happening during the execution of your
converter. This may be useful as a supplement to the standard debugging strategies of setting breakpoints
or using debug strings.

Enabling Logging

Note:
As always work with a copy and, to enable logging, you should reboot your computer after editing the
PrintingLib file.

To turn on logging, edit the 'PRF2' resource in PrintingLib (Version 8.6 and later). There is a bit
labeled “Generate Log File for Download Manager Errors and Warnings” which is off by default. Turn
this bit on and save your changes. Reboot. From this point on, logging is enabled.

The logging ability does have a bit of flexibility that might be useful to some developers or sophisticated
users. It can be configured slightly by editing the 'LOGD' resource in PrintingLib. Open the 'LOGD'
resource and you’ll see a number of editable items:

The maximum log file size (default: 32000 bytes).
How much of the existing log to preserve when the log file size exceeds its maximum (default
4000 bytes).
The Creator and OSType of the log file by the Download Manager (default: MPW text type).
The name of the Log file (default: “Download Manager Log”).

When logging is enabled, the log file with the name specified by the 'LOGD' resource is created in the
“Printing Prefs” folder in the Preferences folder.

Back to top

Summary

This Technote describes how to write a low-level converter for use with the Download Manager, part of
LaserWriter 8 and PrintingLib, Version 8.6 or later. If your application supports or defines a file
format which could easily be converted to PostScript without launching the application, you should
consider writing a low-level converter to support printing files of that format directly when the user drags a
file to a desktop printer. This allows for faster printing since no application needs to be launched in order
to print. Since low-level converters output PostScript directly, writing a converter can offer you the
opportunity to optimize printing of your file formats on PostScript output devices.

Further References

Technote 1169: The Download Manager
Technote 1170: The Printing Plug-ins Manager
Inside Macintosh: QuickDraw GX Environment and Utilities
Inside Macintosh: PPC System Software (CFM)

Change History

Originally written in April 1998 by David Gelphman and Ingrid Kelly
Revised in June 1999 by Dave Polaschek

Back to top

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 34 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

Back to top

Appendix A: Useful PSUtilsLib Routines and Structures

Low-level converters write their generated PostScript data to procedures passed in a structure of type
PSStream. These procedures can be called to read from a data source or to write to an output device or
another data consumer. Because writing to streams is very common in the operation of both conventional
LaserWriter 8 driver printing and the operation of the Download Manager low-level converters, the
PSUtilsLib library (contained in PrintingLib) exports a number of useful routines which handle
many of the details of writing to streams. This Appendix focuses on the details of writing to streams as
well as documenting some of the routines available in PSUtilsLib and their usage.

PSStreams are discussed in further detail in Technote 1169, “The Download Manager.” In addition, the
PSStreams.h header file contains the definition of the PSStream data type as well as the routines
described in this Appendix.

PSStream Structure

The PSStream structure describes a number of stream types. The important stream types for a low-level
converter are those of type PSSerialStream and PSRandomAccessStream. The
PSRandomAccessStream stream type allows read access to data in a random way; the stream allows the
caller to position the stream mark randomly. This stream is used to represent files or data that can be
accessed as if it were in a file. This type of stream is typically used as an input stream to a low-level
converter. Other than the random access nature of these streams, they are identical to the
PSSerialStream so the remainder of this discussion will be about the PSSerialStream type of
PSStream.

The PSSerialStream is defined as follows:

typedef struct PSSerialStream{
 PSWriteProc write;
 PSReadProc read;
 UInt32 reserved;
 PSPosition pos;
}PSSerialStream;

The write proc of a PSSerialStream is used to write PostScript data to a consumer of the data. The write
proc of an output stream typically writes data to a PostScript output device or data file. The write proc (if
it exists) on an input stream writes data back to the Download Manager or similar client for further
processing. For example, it is appropriate to write data read from an output stream back to the input
stream so that the Download Manager can handle status or other data returning from the back channel of
an output device. It is important to test that the write proc is not NULL before calling it.

The read proc of a PSSerialStream is used to read data from that stream. The read proc of an input
stream reads the data from the input stream. For a low-level converter, this is the data to convert. The read
proc (if it exists) of an output stream represents data coming back from a PostScript output device. It is
important to test that the read proc is not NULL before calling it.

The reserved field in the PSSerialStream structure is currently unused by a low-level converter.

The PSPosition structure in the PSSerialStream communicates structural information about the data
being written to a stream. This is discussed in detail in the next section.

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 35 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

PSPosition Structure

The PSPosition structure allows generators of PostScript output to communicate structural information
about the data they are writing. When generators of PostScript output properly use the PSPosition
structure, it allows software clients to have knowledge of the data being written, without them having to
parse the PostScript data itself. An example of this is the way the LaserWriter 8 driver reports status
during printing by looking at the PSPosition data written to the output stream by the PrintingLib
routines which convert QuickDraw drawing into PostScript data. Another example is the status that the
Download Manager and its clients report as a low-level converter generates its PostScript data.

The PSPosition structure is defined as:

 typedef struct PSPosition{
 PSSection section;
 PSSubsection subsection;
 void *info;
 SInt32 id;
}PSPosition;

The section field is of type PSSection and contains the identification of what “major” part of the job is in
progress. The values of this field can be kSectAnon, kSectQueryJob, kSectCoverPage,
kSectJob, and kSectPeek. These correspond to the different parts of the job, as controlled by the
Download Manager and this field is filled in by the Download Manager, not by the low-level converter.

The subsection field is of type PSSubsection and is used to describe the details of the PostScript output
corresponding to the data write call. PSSubsection values typically correspond to Document Structuring
Conventions (DSC) data but there are additional values which suit some specialized needs.

The info field is either a NULL pointer or a pointer to data whose type is defined for the PSSubsection
value in the subsection. The data (if any) pointed to by the info value coincides with the data being written
to the output stream. For example, when calling the write routine with the data “%%Pages: 4”, the caller
would put the PSSubsection value kSubPages into the subsection field of the PSSerialStream and the
info field would point to an SInt32 with the value 4. See the header file PSStreamInfo.h for the list of
PSSubsection values and the proper data type for the info of each PSSubsection.

The ID field is an SInt32. This is used by generators of the PostScript output to generate output for a
given subsection over a series of writes, yet still identify the data as one conceptual block of data. This is
done by performing the consecutive writes with the same subsection, info, and ID values. When the data
being written corresponds to a new subsection, then the ID value is incremented. Doing writes in this
fashion allows software clients looking at the structural data to notice when the PSPosition data may
have changed without having to look at any other fields in the structure. For example, a client (such as the
Download Manager) monitoring the position information being written to the stream has a test like:

 if(jobstatus->lastPosId != stream->u.ps.pos.id){
 ... process the new position we are now seeing
 ...
 // update our the last position we saw
 jobstatus->lastPosId = stream->u.ps.pos.id;
 }

Simple Example of Writing to a Stream

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 36 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

Simple Example of Writing to a Stream

Here is a simple code example to bring together the basic ideas presented on streams. The data is hard
coded into this routine to improve readability.

#include "DownloadMgrLib.h"
#include "PSStreams.h"

OSStatus writePages(PSStream *streamOut)
{
 OSStatus err = noErr;
 PSSerialStream *stream;

 if(streamOut->type == kPSRandomAccessStream)
 stream = &(streamOut->u.file.serialStream);
 else{
 if(streamOut->type == kPSSerialStream)
 stream = &streamOut->u.ps;
 else{
 // we don’t know that type of stream!
 err = errCantHandleThisDownloadData;
 }
 }

 if(!err && stream->write){
 SInt32 pages = 4;
 unsigned char *formatString = "\p%%Pages: ";

 // the subsection reflects the fact that
 // we are writing kSubPages
 stream->pos.subsection = kSubPages;

 // the info field is a pointer to the number of pages
 stream->pos.info = &pages;

 // distinguish this write from any previous
 stream->pos.id++;
 // now go ahead and write the '%%Pages: ' portion
 // of the comment
 err = stream->write(streamOut, formatString +1,
 formatString[0]);

 // now go ahead and write the value of the number
 // of pages with the SAME id since it is part of
 // the same DSC data we are emitting
 if(!err){
 Str15 pagesStr;
 NumToString(pages, pagesStr);
 err = stream->write(streamOut,
 (unsigned char *)pagesStr + 1,
 pagesStr[0]);
 }

 // now write the newline with the SAME id
 if(!err){
 err = stream->write(streamOut, "\r", 1);
 }

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 37 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

 // reset the PSPosition data after our write call
 stream->pos.subsection = kSubAnon;
 stream->pos.info = NULL;

 // we must bump the id so that consumers of this
 // stream will know that we are done with the
 // write of the Pages comment when the next write
 // is done.
 stream->pos.id++; }

 return err;
}

Note:
The id field of the PSPosition structure on the stream is updated before the first write of the Pages
comment and after the write of the last portion of the Pages comment. The last id increment is done so
that we ensure that any following write to the stream is distinguished from this write of the Pages
comment. This is more than a safety measure since many of the stream output routines do not modify the
PSPosition structure of the stream. Therefore, after our write, the stream should already reflect a new
id to distinguish future writes from the one just done.

Useful Stream Output Routines

Generating PostScript output for a given print job typically involves emitting both constant data such as
the %%Pages comment, as well as variable data such as the SInt32 value for the number of pages as in the
example above. Sometimes the data needs to be formatted differently depending on the characteristics of
the output communications channel. The most obvious example of this occurs when generating PostScript
string data since there needs to be quoting of various characters, depending on whether the channel
supports the full range of binary data. The need to supply the PSPosition information while generating
output adds an additional requirement when generating output.

The PSUtilsLib library built into PrintingLib has routines which make generation of PostScript output
significantly simpler. PSUtilsLib contains routines that make it simple to generate formatted output with
and without positional information.

Relevant Structures

Before introducing the output routines, there are a couple of relevant data types that must be introduced
first.

StreamInfoData

The StreamInfoData type is a pointer to an opaque data structure that is passed to the PSUtilsLib
stream output routines. This opaque structure contains information about the communications channel
which enables the stream formatting routines to generate proper PostScript output. There are routines for
creating and disposing of this structure.

typedef struct StreamInfo *StreamInfoData;

OSStatus psSetupStreamInfoData(StreamInfoData *comm,
 PSStream *PSStreamP, Collection hints);

psSetupStreamInfoData allocates and initializes a StreamInfoData structure corresponding to the

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 38 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

psSetupStreamInfoData allocates and initializes a StreamInfoData structure corresponding to the
PSStreamP and the hints collection. It consults the hints collection for hints indicating the capabilities of
the communications channel (see Appendix B). The resulting StreamInfoData can then be passed to the
stream output routines described below to write to the stream represented by PSStreamP and generate
output properly formatted for that communications channel.

OSStatus psDisposeStreamInfoData(StreamInfoData *comm);

psDisposeStreamInfoData disposes of the StreamInfoData structure that was created and returned
from psSetupStreamInfoData. Upon return of this routine, *comm is NULL.

SubsectionStr

When generating PostScript output that is to be tagged with a given PSSubsection value, it is useful to
group the PostScript output string together with an associated PSSubsection value. The data structure
SubsectionStr gathers these pieces in one place. The definition of SubsectionStr is:

typedef struct SubsectionStr{
 StringPtr format;
 PSSubsection subsection;
}SubsectionStr;

An example of a SubsectionStr for generating the %%Pages DSC comment would be:

const SubsectionStr psPages = {"\p%%Pages: ^d\r",kSubPages};

The format field of the SubsectionStr is a Pascal string that may contain formatting data. In the above
example the format uses the ^d formatting marker. This will be described shortly.

Formatting Output Routines

The psOutFormat routines and its structured equivalents described below allow straightforward use of
output formatting similar to the printf routine in the standard C library. Because the ‘%’ character is a
significant character in PostScript data, these routines use the ‘^’ character as the format marker character.

OSStatus psOutFormat(StreamInfoData comm,
 ConstStr255Param format, ...);

The supported formats are:

^b pass in a long and output “true” or “false”
^d pass in a long and output in decimal format.
^f pass in a 16.16 fixed number and output in decimal with up to 3 places past the decimal.
^F pass in a 16.16 fixed number and output in decimal with up to 4 places past the decimal.
^H pass in a long and the long div 2 is output with a possible .5 (or you can think of it as a 31.1
Fixed-point number)
^s pass in a pointer to a Pascal String. For use when generating PostScript strings, i.e., (^s)
^S same as ^s, but with control and extended ASCII characters always quoted. Typically used
for DSC comments which are always in the range 0x20 - 0x7F

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 39 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

^z same as ^s, but specified with explicit length (call with string pointer and long length).
^Z same as ^s, but generate (..) or <..> depending on which one takes the least space.
^i pass in a short and it is output in decimal format.
^p same as ^s, it outputs a Pascal string.

OSStatus psOutFormatPosition(StreamInfoData comm,
 const SubsectionStr *format, ...);

psOutFormatPosition is just like psOutFormat except that it takes a pointer to a SubsectionStr
structure rather than a format string. The SubsectionStr structure provides both a format string and a
PSSubsection value for that format string that will be passed to the stream’s output routine to identify the
type of PostScript that is being written. psOutFormatPosition first inserts the PSSubsection value into
the subsection field of the PSPosition in the stream and stores a NULL into the info field in the stream’s
PSPosition structure. It then writes the formatted output to the stream. This routine takes care of
ensuring that the PSPosition data is handled appropriately, i.e., in a similar manner to that shown
above in the section Simple Example of Writing to a Stream.

OSStatus psOutFormatPositionInfo(StreamInfoData comm,
 const SubsectionStr *format, void *info, ...);

psOutFormatPositionInfo is just like psOutFormatPosition except the info value passed to this
routine is stored in the PSPosition structure in the stream that is passed to the write routine prior to the
write. The info pointer provides additional information to the PostScript positional information provided
by format. After psOutFormatPositionInfo returns, the info field of the steam’s PSPosition
structure is null.

Simple Formatted Example

OSStatus writeFormattedPages(StreamInfoData comm)
{
 OSStatus err = noErr;
 const SubsectionStr psPages = {"\p%%Pages: ^d\r", kSubPages}; SInt32 pages = 4;

 err = psOutFormatPositionInfo(comm,
 // the format
 &psPages,

 // now the info. For the kSubPages it is a
 // pointer to an SInt32
 &pages,

 // now the data to satisfy the format. The ^d
 // takes this long and writes the output
 pages);

 return err;
}

Additional Formatting Routines

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 40 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

OSStatus psOutHexBlock(StreamInfoData comm, Byte *block,
 long nBytes, short *linePos);

psOutHexBlock writes nBytes from block to the stream represented by comm using the hex encoding
technique, regardless of the channel characteristics. The hex data generated is wrapped to avoid
excessively long lines. *linePos represents the current length of the line and is initially passed as 0.
Upon return, *linePos represents the length of the current line. Each sequential call to psOutHexBlock
should pass in the value returned from the previous call. psOutHexBlock is useful when generating
image data when the output channel does not support binary data and ASCII85 is not appropriate.

OSStatus psOutBlock(StreamInfoData comm, const void *block,
 long nBytes);

psOutBlock writes nBytes of data from block to the stream represented by comm without any additional
processing. psOutBlock is useful for emitting binary image data or other output that requires no
additional formatting.

OSStatus psOutString(StreamInfoData comm, Byte *str, long length,
 Boolean quoted, short *linePos);

psOutString writes length bytes of data pointed to by str assuming that it is going to be inside a
PostScript string. This function performs the quoting necessary for the channel and does line breaks as
necessary. If quoted is true, then bytes outside the printable ASCII character set are always quoted,
regardless of the communications channel characteristics. If quoted is false, then bytes outside the
printable ASCII character set are quoted according to the needs of the communications channel. The string
data generated is wrapped to avoid excessively long lines. *linePos represents the current length of the
line and is initially passed as 0. Upon return, *linePos represents the length of the current line. Each
sequential call to psOutString should pass in the value returned from the previous call.

OSStatus psOutPStr(StreamInfoData comm, ConstStr255Param pstring);

psOutPStr writes the Pascal string pstring to the stream represented by comm. There is no quoting or
formatting done.

Back to top

Appendix B: Available Job Queries

Low-level converters can specify printer queries to help them to generate optimal PostScript data for the
target output device. The low-level converter uses its psLowAddConverterQueries routine to add hints
to a query collection that can be used by the Download Manager to query information about the target
output device. This Appendix describes each available query hint in detail. The header file Hints.h
contains the actual tag and ID values as well as the definition of any structures that are used to store
query results.

Communications Channel Queries

The query hints kHintTransparentChannelTag, kHintTransparentChannelId, kHintEighthBitTag,
and kHintEighthBitId specify queries related to the capabilities of the communications channel.

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 41 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

and kHintEighthBitId specify queries related to the capabilities of the communications channel.
Whether the communications channel can support full binary data or only a subset of such data is
important to generators of PostScript code. Generating full binary output is much more efficient but it is
not acceptable if the communications channel does not support it!

Normally a low-level converter will add both of these hints to the query collection with default values of
false to specify that the Download Manager supply the appropriate query for the channel characteristics.
The value for these hints after the query determines the channel characteristics.

If the value of the hint with tag value kHintEighthBitTag and ID value kHintEighthBitId is true, the
output stream supports the data range 0x80-0xFF inclusive. If the value is false, the PostScript output
stream generated by the low-level converter should not contain these byte values.

If the value of the hint with tag value kHintTransparentChannelTag and ID value
kHintTransparentChannelId is true, the output stream supports the data range 0x00-0x1F inclusive. If
the value is false, the PostScript output stream generated by the low-level converter should not contain
these byte values.

Note:
A StreamInfoData structure, described in Appendix A, is configured by these hints. Consequently, the
relevant stream output formatting procedures described in Appendix A then know how to format
PostScript output properly for the stream.

Output Device Characteristics

There are several queries available to allow a low-level converter to determine the inherent capabilities of a
given output device. Knowledge of this information typically enables the generation of much more
efficient PostScript output.

PostScript Language Level

To query for the PostScript language level of the output device, a converter adds the hint with tag value
kHintLanguageLevelTag and ID kHintLanguageLevelId. The value returned is an SInt32. The
following enum describes the currently defined values.

 enum PostScriptLevels{
 /// L2 compatible
 Level2and3 = -3,
 /// L1 compatible
 Level1and2 = -2,
 /// unknown level
 UnknownLevel = -1,
 /// other level
 OtherLevel = 0,
 /// level 1
 Level1 = 1,
 /// level 2
 Level2 = 2,
 /// level 3
 Level3 = 3
 };

Positive values indicate a specific PostScript language level, for example the value 2 means that the target
output device supports language level 2. In this case there is no need to generate output compatible with a

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 42 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

output device supports language level 2. In this case there is no need to generate output compatible with a
PostScript level 1 output device and use of level 3 (or later!) operators will generate errors.

Negative values returned from this query are associated with either an Unknown response or indicate a
request for generating output compatible with a given minimum language level. If the language level
returned is UnknownLevel or Level1and2, then typically a low-level converter should generate output
compatible with PostScript language level 1. Such output may use language level 2 or language level 3
features but it must do so in a way that also executes properly on a language level 1 output device. If the
value is Level2and3, this indicates that the generated PostScript must be compatible with a language level
2 output device. Such output may use PostScript 3 features but must do so in a way that also executes
properly on a language level 2 output device.

Color Output Device

Prior to generating sampled image data, it may be useful to know whether the target output device
supports color. If it does not support color then in many cases it may be more efficient to downsample
any RGB or CMYK data into grayscale data as part of generating the PostScript language output. There
are two queries which relate to the output device’s ability to produce color output.

The query specified with tag value kHintColorDeviceTag and ID value kHintColorDeviceId queries
for whether the output device is known to support color output. The value returned from this query is of
type TriState.

 enum TriState{
 kTriFalse = 0,
 kTriTrue,
 kTriUnknown
 };
 typedef enum TriState TriState;

If the value returned is kTriTrue then the output device supports color. If the value returned is
kTriUnknown then it is unknown whether the output device supports color. A low-level converter should
not do any downsampling of color data to grayscale for either of these cases.

If the value returned is kTriFalse then the output device does not support color and the color separation
query (just below) should be consulted to determine whether the output device is configured to generate
color separations. If a black and white output device is generating color separations then color data should
be emitted so that the separations are generated properly.

The query specified with the tag value kHintColorSepTag and ID value kHintColorSepId queries for
whether the output device is known to be configured to generate color separations. The value returned
from this query is of type TriState.

If the value returned is kTriTrue then the output device is generating color separations. If the value
returned is kTriUnknown then it is unknown whether the output device is generating color separations. A
low-level converter should not do any downsampling of color data to grayscale for either of these cases.

If the value returned is kTriFalse, then the output device is not generating color separations. In this
case it would only be appropriate to generate downsampled grayscale data if the output device is not
generating color separations and is known to not support color output.

Device Resolution

The query specified by the tag value kHintPrinterResTag and ID value kHintPrinterResId queries

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 43 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

The query specified by the tag value kHintPrinterResTag and ID value kHintPrinterResId queries
for the current device resolution at the time of the query. The data returned from the query is of type
PSResolution.

 struct PSResolution{
 long x;
 long y;
 };
 typedef struct PSResolution PSResolution;

The returned resolution data is in dots per inch (dpi) and may differ in X and Y. If the resolution is
unknown, a value of -1 is returned for both X and Y. Note that generally it is a mistake to use device
resolution data when generating PostScript output since doing so hampers a given output device’s ability
to produce the best quality output.

Printer Resources

TrueType Rasterizer

The query specified by the tag value kHintTTRasterizerTag and ID value kHintTTRasterizerId
queries for the support level available for TrueType fonts. The value returned for this query is a long with
the following values defined:

 enum TTRasterizerType {
 kTTRasterizerUnknown = 0,
 kTTRasterizerNone = 1,
 kTTRasterizerAccept68K = 2,
 kTTRasterizerType42 = 3
 };

If the value returned is kTTRasterizerType42 this indicates that the target output device has built-in
support for FontType 42, i.e., TrueType, fonts. If the value returned is kTTRasterizerAccept68K, this
indicates that the output device has no built-in rasterizer but it can accept a downloaded rasterizer. If the
value returned is kTTRasterizerNone this indicates that the output device has no support for TrueType
fonts and a rasterizer cannot be downloaded. A value of kTTRasterizerUnknown means that the
availability of a TrueType rasterizer in the target PostScript output device is unknown.

Fonts

Low-level converters can request a query for a specific list of fonts or request the entire list of fonts
available in the target output device. Both of these font queries are specified with the hint tag
kHintIncludeFontsTag with the ID value kHintIncludeFontsId. The initial data contained in this hint
determines the type of query. The data is a PSFontHandling structure, defined as:

typedef struct {
 long tag;
 unsigned char name[1]; //packed array of names as PStrings,
 //length 0 indicates end of list
}PSFontHandling;

and the following tag values are defined:

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 44 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

and the following tag values are defined:
enum{
 kIncludeNoFontsOtherThan,
 kIncludeAllFontsBut
};

If the tag field of the PSFontHandling structure is kIncludeAllFontsBut, the query is for the complete
list of fonts (the equivalent of the *?FontList query from the PPD file). For this flavor of the font query,
a converter should pass in one font name whose length is zero. Upon return of the query, the name field
will be a packed array of Pascal strings corresponding to the fonts built into the output device. This list
of names will be terminated with a zero-length Pascal string.

If the tag field of the PSFontHandling structure is kIncludeNoFontsOtherThan, the query is for a
specified list of fonts (the equivalent of the *?FontQuery query from the PPD file). For this flavor of the
font query, the list of fonts to query for should be in the name field of the structure. The list is a packed
array of Pascal strings and is terminated with a zero-length Pascal string. After the query, the name field
is a packed array of Pascal strings corresponding to the fonts from the query list which were not
available, i.e., the fonts available in the output device are removed from the list. Again, this list of names
is terminated with a zero length Pascal string.

Note:
Requesting either type of query can produce results in the other form. For example, a request for all
fonts can result in a list of fonts which are not available. A request for the availability of a list of fonts
can result in a list of all fonts. This means, for example, that a low-level converter might request a font
query with a tag of kIncludeAllFontsBut and the query result may contain a query with a tag of
kIncludeNoFontsOtherThan. The value of the tag field returned reflects the results of the query and
the meaning of the list of names which follows.

Free virtual memory

The query specified by that tag value kHintFreeVMTag and ID value kHintFreeVMWReclaimId queries
for the amount of free Virtual Memory (virtual memory) in the output device. The result returned is an
SInt32 containing the number of bytes of virtual memory available. If the result is unknown, then -1 is
returned.

Miscellaneous

There are couple of additional queries available, but it is highly unlikely that a low-level converter would
need these queries or their results. They are given here for completeness.

Spooler Query

The query specified by the tag value kHintADOSpoolerTag and ID value kHintADOSpoolerId queries
for the presence of a spooler. The returned result is of type TriState. If the value is kTriTrue then the
output device is a spooler. If the value is kTriFalse then the output device is not a spooler. If the
returned value is kTriUnknown, then it is unknown whether the job is targeted to a spooler.

PostScript Version Query

The query specified by the tag value kHintPSVersionTag with ID value kHintPSVersionId queries for
the PostScript language version and revision of the output device. The value returned is of type
PSVersion.

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 45 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

 struct PSVersion{
 /// revision, -1 => unknown
 long revision;
 /// "\p" => unknown
 Str63 version;
 };
 typedef struct PSVersion PSVersion;

The revision field is a long containing the PostScript revision number of the target output device. This is
the number normally returned by the PostScript revision operator. A value of –1 means unknown.

The version field is a Pascal string containing the PostScript version information as returned by the
PostScript version operator. A typical version string is something like "\p2013.106". If the version
string is unknown, the length of the string is zero.

It is very unlikely that a generator of PostScript code would request or use the results of the version
query. This query is usually used to generate information for a user, although in rare circumstances it can
be useful. More typically, the PostScript language level query is used instead.

PostScript Product Query

The query specified by the tag value kHintProductTag and ID value kHintProductId queries for the
printer product string. The returned result is a Pascal string. The length of data returned in this hint is
variable size. If the results for the query are unknown, then a zero length string is returned.

It is very unlikely that a generator of PostScript code would request or use the results of the product
query. This query is usually used to generate information for a user.

Back to top

Appendix C: Useful FeatureUtilsLib Routines

The Download Manager and its clients prepare a hints collection for use with each download. This hints
collection contains information about the feature requests for that download job. For example, these
features can include number of copies and cover page, as well as printer specific features such as duplex,
image enhancement, paper tray selection and so forth.

Generators of PostScript output, such as Download Manager low-level converters, know how to generate
the device independent PostScript code to image a document, but typically know little or nothing about
printer features and how to invoke them. To simplify the task of handling printer specific features, the
shared library FeatureUtilsLib contained in PrintingLib, versions 8.6 and later, was born.

FeatureUtilsLib can take the hints collection which contains the job feature information and generate
the PostScript language feature code needed to invoke user requested features. This greatly relieves the
burden on those clients who know how to generate device-independent PostScript code but would rather
not worry about the printer specific features.

Usually there are specific points in the PostScript stream where various printer feature invocations must
occur both from the point of view of Document Structuring Conventions (DSC) conformity as well as
PostScript execution. For example, if a specific paper tray is used on the first page of a document, the
PostScript invocation code of that paper tray must appear outside any page level save/restore nesting on
that page, or else the output will be incorrect. Because only the generator of the PostScript page
description knows where it is in the process of generating the output stream, that generator must work
closely with the FeatureUtilsLib code generation to ensure that the correct feature requests are emitted
at the proper point in the PostScript output stream.

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 46 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

Generating Feature Code with psWriteSubsectionFeature

The FeatureUtilsLib routine psWriteSubsectionFeature makes the generation of feature code
straightforward. This routine relies on the concept of a PSSubsection as introduced in the Download
Manager documentation as well as in this document. A PSSubsection is a way of communicating DSC
and other structural information. psWriteSubsectionFeature knows the points it needs to generate the
pieces of feature code invocation data; it just needs to be notified by the caller where the caller is in its
generation of output.

 OSStatus psWriteSubsectionFeature(StreamInfoData comm,
 Collection hints,
 PSSubsection subsection,
 void *info,
 psSubsectionLocation subsectionLocation,
 Boolean isNotEPSOutput);

 typedef enum psSubsectionLocation{
 kBeforeSubsection = false,
 kAfterSubsection = true
 }psSubsectionLocation;

comm represents the stream any generated PostScript code is emitted into. The StreamInfoData
type is described in Appendix A.
hints is a collection representing the job being processed. This collection contains information
that psWriteSubsectionFeature uses to generate the proper feature code.
subsection is the PSSubsection corresponding to the position in the output stream that the
caller is either about to write or just wrote.
info is a pointer to a structure relevant to the subsection being written. The value may be NULL;
otherwise, it will be the data type assigned to the PSSubsection corresponding to subsection.
See the header file PSStreamInfo.h for the list of PSSubsection values and the proper info data
type for each PSSubsection.
subsectionLocation is either kBeforeSubsection or kAfterSubsection depending on
whether this call to psWriteSubsectionFeature is being made before the caller has written the
data corresponding to this subsection or after.

isNotEPSOutput is a Boolean indicating whether the caller is generating EPS data. Some of the
invocation code normally generated by psWriteSubsectionFeature is not appropriate when the caller is
generating EPS output. If isNotEPSOutput is true, then the caller is not generating EPS data and, if it is
false, the caller is generating EPS data.

A simple example clarifies this:

#include "PSStreams.h"
#include "FeatureUtilsLib.h"

#define DSC30Version 0x30000 // Fixed(3.0);

OSStatus doPercentBang(StreamInfoData comm,Collection hints){

 OSStatus err = noErr;
 Fixed dscVersion = DSC30Version;
 Boolean isNotEPS = true;

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 47 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

 Boolean isNotEPS = true;
 SubsectionStr psVersion = {"\p%!PS-Adobe-3.0\r",
 kSubPSAdobe};

 /* we are about to write the ‘%!PS-Adobe-3.0’ comment
 beginning our PostScript generation so we first call
 psWriteSubsectionFeature indicating this so that it can
 generate any feature code that must appear before this comment.
 */
 err = psWriteSubsectionFeature(comm, hints,
 kSubPSAdobe, &dscVersion,
 kBeforeSubsection, // BEFORE
 isNotEPS);
 /* Now we emit ‘%!PS-Adobe-3.0’ into the stream. */
 if(!err)err = psOutFormatPositionInfo(comm, &psVersion,
 &dscVersion);

 /* Now tell psWriteSubsectionFeature that we just wrote
 the ‘%!PS-Adobe-3.0’ comment. */
 if(!err)err = psWriteSubsectionFeature(comm, hints,
 kSubPSAdobe, &dscVersion,
 kAfterSubsection, // AFTER
 isNotEPS);

 return err;

}

By using this stylized way of emitting PostScript output code into the output job stream, the sample code
automatically gets a cover page before the job, should the hints collection indicate that it is required. When
the code sample calls psWriteSubsectionFeature before the initial %!PS-Adobe-3.0 emitted into the
print stream and indicates that it is about to write the subsection kSubPSAdobe, the routine examines the
supplied hints collection to see if it indicates that a cover page should be generated before the job. If a
cover page should be generated, then psWriteSubsectionFeature writes it into the output stream and
ends the cover page job so that when the above code fragment then emits %!PS-Adobe-3.0 into the
output stream, that is the first PostScript code appearing in the print job following the cover page. Note
that if isNotEPS is false, psWriteSubsectionFeature does not generate a cover page.

To use psWriteSubsectionFeature properly, the caller must carefully identify the different parts of the
PostScript output that it generates. This also encourages the generators of PostScript code to follow the
DSC guidelines to emit structured PostScript code. The sample code supplied with this document
follows this approach and forms a good basis for starting any Download Manager converter module.

Detecting Manual Feed

A low-level converter needs to be able to respond to the call psLowGetStreamInfo to inform the caller
whether a given print job requires manual feed. The FeatureUtilsLib routine psRequiresManualFeed
is available to aid a low-level converter’s efforts to respond. A low-level converter that uses the
psWriteSubsectionFeature described above to handle its feature code should use
psRequiresManualFeed to determine if the print job requires manual feed.

 OSStatus psRequiresManualFeed(Collection jobHints,
 Boolean *requiresManualFeedP);

jobHints is a Collection corresponding to the job collection for the download job in question.
requiresManualFeedP is a pointer to a Boolean which is filled in by the call. If the jobHints

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 48 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

requiresManualFeedP is a pointer to a Boolean which is filled in by the call. If the jobHints
collection indicates that the job requires manual feed *requiresManualFeedP is set to true,
otherwise, it is set to false.

Note:
psRequiresManualFeed does not take into account whether an EPS job is being generated. Because of
this, it is important that a low-level converter determine whether EPS output is to be generated and, if
so, it needn’t bother calling psRequiresManualFeed but instead can simply return that the job does not
require manual feed. The sample converter properly handles this situation.

Back to top

Downloadables

Acrobat version of this Note (K).

Binhexed Routine Descriptor Lib (how many K?)

Acknowledgments

Thanks to Rich Blanchard, John Blanchard, Andreas Wickberg, Paul Danbold, and Howard Miller.

To contact us, please use the Contact Us page.
Updated: 21-June-1999

Technotes | Contents
Previous Technote

6/18/99 1:50 PMTN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th…

Page 49 of 48file:///Monster%20Boot/Apple/Week%20of%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

