TN 1157: Don"t println to a Socket 2/26/99 3:33 PM

Technote 1157

Don't printlin to a Socket

By Jens Alfke
Apple Java Team

CONTENTS A
common cause of deadlocksin client-server Java

Does ThisRing aB€ll? o _
applications when running on Mac OS stems from

println Considered Harmful improper use of the println method when writing to an
OutputStream connected to a Socket. Here's why, and

The Easy Fix what you can do about it.

Downl oadables

Does This Ring A Bell?

Y ou've written a networked client application or applet that communicates with a server using either a
standard Internet protocol like HTTP or FTP, or a custom protocol that uses asimilar line-oriented
syntax. Y our application works fine on Windows and Unix, but when you run it on aMac, the client
gets stuck when it tries to receive a response from the server. If you check the server, you find that the
thread communicating with your app is smilarly blocked reading a command from the client.

Chances are you've just run into alittle-known Java networking gotcha (we've seen many reports of this
from developers.) The bad newsisthat it'sabug in your app, not in MRJ. The good newsisthat it's
easy to work around.

Back to top

file:///Monster%20Boot/Apple/Week%200f%202%2F22%2F99/tn%201157%20Jens%20new%202%2F18/1157.html Page 1 of 3



TN 1157: Don"t println to a Socket 2/26/99 3:33 PM

println Considered Har mful

The underlying problem is a confusion between different line-breaking conventions. Line-based Internet
protocols almost universally use CRLF asaline break -- that is, an ASCII carriage return (*\r= or hex
oD) followed by alinefeed (*\n" or hex 0A). If you're using Java's excellent stream classes to send

commands using such a protocol, the temptation isto use aPrintStream Of PrintWriter object and
cal itsprintln method to send commands, since println sendsaline break. Right?

The problemisthat printin was designed for use with file streams, and the line break it appendsisthe
local platform'sline break. On Windows thisisa CRLF, on Unix it'san LF, and on Mac OSit'saCR.
(The exact line break string is read from the system line.separator property.) Thisis clearly the right
thing to do when writing to alocal file, but it can cause problems when communicating with a server.
Here's what happens: Y our client calls

out.printIn(C"HELO foo@bar.com™);
When running in MRJ, this sends the bytes:

HELO foo@bar.com\r

The server receives the text and the CR, then expects a LF to follow the CR and waits to receive one.
Actualy, most servers are smart enough that if the character received following the CR isnot an LF,
they'll understand the nonstandard line break and treat the second character asthe start of the next line.
But in any case, the server typically waits for the second character before processing the command.

Meanwhile, the client waits to receive aresponse line from the server before sending any more text. Both
sides are blocked in InputStream. read calls ... aclassic case of deadlock.

Back to top

file:///Monster%20Boot/Apple/Week%200f%202%2F22%2F99/tn%201157%20Jens%20new%202%2F18/1157.html Page 2 0of 3



TN 1157: Don"t println to a Socket 2/26/99 3:33 PM

The Easy Fix

The lesson hereis not to use printin when you need to generate a specific line break sequence. Instead,
do it yourself. The above example should correctly have read:

out.print("HELO foo@bar.com\r\n™);

Thisis pretty simple, but unfortunately requires changing all of the printin callsin your code.

Thereally nice fix that won't work

There'sareally nicefix that is, unfortunately, not possible. If you look at the source to the
Java.awt.PrintStream and java.awt.PrintWriter classes, you'll note that they use anewLine
method to send the actual line break. It would be very elegant to make your own subclass of
PrintStream Or PrintWriter that overrode newLine to send an explicit CRLF. Unfortunately, dueto a
bit of misdesign, thenewLine method was made private, not protected, so it'simpossible to override.
Oh well.

Fixing the server

If you happen to be devel oping the server as well, and can make changes to its code, then there's an even
better fix you can make on the server side instead of changing the client. In the previous section, |
described how the server blocks waiting for a character to follow the CR so it can tell whether it'san LF
or not. A more intelligent way to handle nonstandard line breaksis for the server to process the input line
immediately once it receivesthe CR, but to set aflag that indicates that if the next character received is

an LF it should be ignored.

Thisway the server will not block after it receives the CR, will process the command and return a
response, and the client code will receive the response and continue running. No deadl ock.

Back to top

Downloadables

E Acrobat version of this Technote (how many K?)

Back to top
Acknowledgments

Thanks to the usual suspects.

To contact us, please use the Contact Us page.
Updated: 01-March-99

Technotes | Contents
Previous Technote

file:///Monster%20Boot/Apple/Week%200f%202%2F22%2F99/tn%201157%20Jens%20new%202%2F18/1157.html Page 3 0of3



