
Technote 1123
Start Manager Extension Table Mechanism

By Andy Bachorski, Douglas Clarke, & Jim Luther
Apple Developer Technical Support (DTS)

devsupport@apple.com

Version 1.0

CONTENTS

Introduction

Monitoring System Extension
Loading and Execution

Controlling System Extension
Loading and Execution

Extension Table Manager Reference

Summary of the Extension Table
Manager

Acknowledgments

The Start Manager was revised in Mac OS 8.1 to add a

mechanism for monitoring and controlling the loading of
system extensions during system startup.

This Technote describes how the Start Manager was
changed, and shows how a program can monitor or take
control of the system extension loading process.

Introduction
Prior to Mac OS 8.1, system extensions were loaded and executed from three folders in order: the Extensions
folder, Control Panels folder, and the System Folder. The system extensions in each folder were loaded and
executed in the order they were found on the disk. On an HFS volume (also known as Mac OS Standard) item
names are stored using ASCII characters. Items are stored in the catalog file in RelString order, i.e., in the
order the names would be in if sorted by the RelString function. Because of this, the File Manager's
GetFInfo routine returns files in RelString order.

With the introduction of Mac OS 8.1, a new bootable disk format, HFS Plus (also known as Mac OS
Extended), was introduced. On HFS Plus volumes item names are stored using Unicode, rather than ASCII
characters. Items are stored in the catalog file in a different order than they would be on an HFS volume.
Details on the sorting order for HFS Plus volumes can be found in the HFS Plus Volume Format
documentation.

Note:
Applications should never rely on the order in which files are stored on a volume. Each volume format
is free to sort item in any order, or to not sort items at all.

On systems using the Roman script system, files on HFS Plus volumes are returned by GetFInfo in a
similar, but not exactly the same, order as RelString. However, on systems running non-Roman script
systems, GetFInfo may return files in a radically different order.

Note:
Apple has always maintained that system extensions cannot depend on a particular load order; however,
many system extensions do require specific loading orders.

To prevent problems for our users, and to ensure that system extensions load and execute in the same order
regardless of the volume format and script system used, the system extension mechanism was revised to be
table driven. The Start Manager builds a single table of system extensions, sorted using RelString, from the
system extensions found in each folder. Then, each system extension is loaded and executed, in order, from
the table. The result is that system extensions are loaded and executed in the same order regardless of which
type of volume the system is booting from and what script system the system is running.

The Start Manager was revised to allow other programs access to the system extension loading mechanism.
Programs can either monitor or control the system extension loading and execution process.

Monitor and Control

A program can install an ExtensionNotificationProc to monitor the system extension loading process.
Each ExtensionNotificationProc is called before the first system extension is loaded and executed, both
before and after each system extension is loaded and executed, and after the last system extension is loaded
and executed. When called, an extension notification routine can perform some action such as drawing an
icon, playing a sound, displaying the system extension's name, or saving the system extension's name in a
file to help debug system extension crashes or document system extension loading order. An
ExtensionNotificationProc cannot change the order that system extensions load and execute. Any number
of ExtensionNotificationProcs can be installed.

A program can install an ExtensionTableHandlerProc to control the system extension loading process. The
ExtensionTableHandlerProc is called before the first system extension is loaded and executed, both before
and after each system extension is loaded and executed, and after the last system extension is loaded and
executed. Unlike an ExtensionNotificationProc, the ExtensionTableHandlerProc owns the extension
table and has complete control over the order that system extensions load and execute. A program that installs
an ExtensionTableHandlerProc can also prevent some system extensions from loading and load system
extensions from other than the default folders. Only one ExtensionTableHandlerProc can be installed.

If no ExtensionTableHandlerProc is installed, the Start Manager uses its own default extension table
handler. This default extension table handler mimics the behavior of the File Manager under previous versions
of Mac OS (i.e., if the contents of a folder used to build the extension table changes, then the extension table
is rebuilt and execution is resumed where it would have if the Start Manager were calling GetFInfo).

Note:
An ExtensionNotificationProc or ExtensionTableHandlerProc can be installed at any point in
the startup process and will begin receiving messages from that point forward. An
ExtensionTableHandlerProc can control the loading and execution of system extensions that have
not already been installed.

The Extension Table

The extension table is a relocatable block in the system heap containing an ExtensionTable structure. An
ExtensionTable consists of an ExtensionTableHeader followed by an array of ExtensionElements. The
ExtensionTableHeader contains the version field which indicates the version of both the ExtensionTable
and the ExtensionElement records, an index into the ExtensionElements which indicates which system
extension is currently loading and executing, the size of an ExtensionElement, and the number of
ExtensionElements in the table. Each ExtensionElement in the ExtensionTable contains information
used to identify which system extensions will be loaded and executed by the Start Manager.

Each installed ExtensionNotificationProc will be passed a copy of the ExtensionElement for the system

extension which is currently being loaded and executed.

The ExtensionTableHandlerProc controlling the system extension loading process will be passed the
ExtensionTable each time it is called. This handler can control the loading of system extensions by
modifying the ExtensionTable.

The Boot Process

The Start Manager installs the APIs for installing and removing ExtensionTableHandlerProc and
ExtensionNotificationProcs early in the boot process (after MacsBug has loaded but before before
MacsBug dcmdSecondaryINIT time).

Before system extensions are to be loaded and executed, the Start Manager creates an extension table.

Before the first system extension is loaded and executed, the ExtensionTableHandlerProc and each
ExtensionNotificationProc will be called with the extNotificationBeforeFirst message indicating
that the system extension loading process is about to begin. The ExtensionTableHandlerProc is always
called with the extNotificationBeforeFirst message before any ExtensionNotificationProc.

The Start Manager then loads and executes each system extension in order from the extension table. Before
each system extension is loaded and executed, the ExtensionTableHandlerProc and all
ExtensionNotificationProcs are called with the extNotificationBeforeCurrent message. After each
system extension is loaded and executed, all ExtensionNotificationProcs and the
ExtensionTableHandlerProc are called with the extNotificationAfterCurrent message. The
ExtensionTableHandlerProc is always called with the extNotificationBeforeCurrent message before
any ExtensionNotificationProcs, and the ExtensionTableHandlerProc is always called with the
extNotificationAfterCurrent message after any ExtensionNotificationProcs.

After all system extensions have been loaded all ExtensionNotificationProcs and the
ExtensionTableHandlerProc are called with the extNotificationAfterLast message indicating that the system
extension loading process is complete. The ExtensionTableHandlerProc is always called with the
extNotificationAfterLast message after the last ExtensionNotificationProc.

In all cases, the relative order in which ExtensionNotificationProcs are called is not defined.

Monitoring System Extension Loading
An INIT, or a program executed before system extensions are loaded, can monitor the system extension
loading process by calling InstallExtensionNotificationProc to install an
ExtensionNotificationProc. Once installed, this handler will be called:

Before the first system extension is loaded and executed (if installed before the system extension load
and execute process).
Before each system extension is loaded and executed.
After each system extension has been loaded and executed.
After the last system extension has been loaded and executed.

An ExtensionNotificationProc receives an ExtensionElementPtr which points to a copy of the
ExtensionElement for the system extension currently being loaded.

Note:
The data in the ExtensionElement is read-only. While you can change it, you'll only be changing a
copy of the ExtensionElement. Any changes will be discarded when the
ExtensionNotificationProc returns.

There can be any number of ExtensionNotificationProcs installed.

Controlling System Extension Loading
An INIT, or a program executed before system extensions are loaded, can take control of the system extension
loading process by calling InstallExtensionTableHandlerProc to install a
ExtensionTableHandlerProc. InstallExtensionTableHandlerProc returns the default
ExtensionTable created by the Start Manager.

There can only be one ExtensionTableHandlerProc installed.

While it is installed, the ExtensionTableHandlerProc is responsible for all changes to the
ExtensionTable, except for incrementing extElementIndex field between system extensions. After an
ExtensionTableHandlerProc is installed, the system's default extension table handler no longer manages
the ExtensionTable.

Once installed, the ExtensionTableHandlerProc will be called:

Before the first system extension is loaded and executed (if installed before the system extension load
and execute process).
Before each system extension is loaded and executed.
After each system extension has been loaded and executed.
After the last system extension has been loaded and executed.

Unlike ExtensionNotificationProcs, the ExtensionTableHandlerProc receives a handle to the
ExtensionTable used by the Start Manager -- not a copy.

Note:
Once an installed ExtensionTableHandlerProc modifies the ExtensionTable, or the contents of the
folders controlled in the ExtensionTable are changed, the handler cannot be removed. Calling
RemoveExtensionTableHandlerProc after these changes will return a paramErr error.

The extElementIndex field in the ExtensionTable is always incremented to the next ExtensionElement
immediately after the ExtensionTableHandlerProc is called with the extNotificationAfterCurrent
message.

WARNING:
When controlling the loading of system extensions, the only safe time to change which
ExtensionElement is at ExtensionTable.extElements[extElementIndex] is when your
ExtensionTableHandlerProc is called with the extNotificationAfterCurrent message. You may
change the ExtensionTable or the extElementIndex at other times, but you must ensure that the
ExtensionElement at ExtensionTable.extElements[extElementIndex] stays the same.

Extension Table Manager Reference

This section discusses the techniques you can use to monitor or control the system extension loading and
execution process.

Extension Table Version (Gestalt)

You should call Gestalt with the gestaltExtensionTableVersion selector to determine the version of
ExtensionTable currently installed before installing any handlers for the extension table mechanism.

enum {
 gestaltExtensionTableVersion = FOUR_CHAR_CODE('etbl') /* ExtensionTable version */
};

The current (Mac OS 8.1) ExtensionTable version is 1.0.0.

enum {
 kExtensionTableVersion = 0x00000100 /* current ExtensionTable version (1.0.0) */
};

If gestaltExtensionTableVersion is not defined, it indicates that there is no extension table mechanism
present and that the associated extension table routines will be undefined.

When the major version number of kExtensionTableVersion and the value returned by
gestaltExtensionTableVersion are different, it indicates that the extension table mechanism has radically
changed and code that doesn't know about the new major version must not attempt to use the extension table
mechanism.

Changes to the minor version number of kExtensionTableVersion indicate that the definition of the
ExtensionElement structure has been extended, but the fields defined for previous minor versions of
kExtensionTableVersion have not changed.

ExtensionTable Structure

An ExtensionTable is an ExtensionTableHeader followed by an array of ExtensionElements. This
structure is built by the extension table mechanism when it scans for system extensions to be loaded and
executed at boot time.

struct ExtensionTable {
 ExtensionTableHeader extTableHeader; /* the ExtensionTableHeader */
 ExtensionElement extElements[1]; /* one element for each extension to load */
};
typedef struct ExtensionTable ExtensionTable;
typedef ExtensionTable * ExtensionTablePtr;
typedef ExtensionTablePtr * ExtensionTableHandle;

An ExtensionTableHandle containing the current ExtensionTable will be passed as a parameter to the
installed ExtensionTableHandlerProc when it is called.

ExtensionTableHeader Structure

An ExtensionTable begins with an ExtensionTableHeader.

struct ExtensionTableHeader {
 UInt32 extTableHeaderSize;
 UInt32 extTableVersion;
 UInt32 extElementIndex;
 UInt32 extElementSize;
 UInt32 extElementCount;
};

typedef struct ExtensionTableHeader ExtensionTableHeader;

extTableHeaderSize The size of ExtensionTableHeader. Equal to
offsetof(ExtensionTable,extElements[0])

extTableVersion The current ExtensionTable version. The same as the value returned by
gestaltExtensionTableVersion Gestalt selector

extElementIndex The current index into ExtensionElement[] (zero-based). Incremented
by the Start Manager after each system extension is loaded and executed

extElementSize The size of the ExtensionElements in this version of the
ExtensionTable

extElementCount The number of ExtensionElement records in the ExtensionTable

The ExtensionTableHandlerProc should check the minor version of the extTableVersion field. If it has
changed since the ExtensionTableHandlerProc was written, it indicates that the value of extElementSize
will be larger. If the ExtensionTableHandlerProc is only moving and deleting elements in the table it could
continue to run. However, if it wants to create new elements, it should remove itself because it will not know
how to create the new fields in the ExtensionElements.

This structure is used internally by the Start Manager, and is passed to the installed
ExtensionTableHandlerProc each time it is called.

ExtensionElement Structure

The ExtensionElement structure is used to hold information about each system extension that the Start
Manager will load and execute.

struct ExtensionElement {
 Str31 fileName; /* The file name */
 long parentDirID; /* the file's parent directory ID */
 /* everything after ioNamePtr in the HParamBlockRec.fileParam variant */
 short ioVRefNum; /* always the real volume reference number*/
 /* (not a drive, default, or working dirID) */
 short ioFRefNum;
 SInt8 ioFVersNum;
 SInt8 filler1;
 short ioFDirIndex; /* always 0 in table */
 SInt8 ioFlAttrib;
 SInt8 ioFlVersNum;
 FInfo ioFlFndrInfo;
 long ioDirID;
 unsigned short ioFlStBlk;
 long ioFlLgLen;
 long ioFlPyLen;
 unsigned short ioFlRStBlk;
 long ioFlRLgLen;
 long ioFlRPyLen;
 unsigned long ioFlCrDat;
 unsigned long ioFlMdDat;
};
typedef struct ExtensionElement ExtensionElement;
typedef ExtensionElement * ExtensionElementPtr;

The first two elements identify the individual file, while the rest of the elements are copied directly from the

fileParam variant of the HParamBlockRec.

An ExtensionElement is created for each system extension found by the Start Manager in the Extensions
folder, Control Panels folder, and System Folder. These ExtensionElements are collected into a
ExtensionTable.

An ExtensionElementPtr is passed as a parameter to each installed ExtensionNotificationProc when it
is called. The ExtensionElement it points to will contain a copy of the ExtensionElement for the system
extension that is currently being loaded and executed.

Extension Notification Message Codes

When an ExtensionNotificationProc or ExtensionTableHandlerProc is called, it will be passed a
message parameter containing one of the following values.

enum {
 extNotificationBeforeFirst = 0, /* Before any system extensions have loaded */
 extNotificationAfterLast = 1, /* After all system extensions have loaded */
 extNotificationBeforeCurrent = 2, /* Before system extension at */
 /* extElementIndex is loaded */
 extNotificationAfterCurrent = 3 /* After system extension at */
 /* extElementIndex is loaded */
};

ExtensionNotificationProc

pascal void MyExtensionNotificationProc(UInt32 message, void *reserved,
 ExtensionElementPtr extElement);

message input One of the 4 defined ExtensionNotification message codes
reserved Reserved for future use

extElement input Copy of the ExtensionElement for the system extension
currently being loaded and executed

Note:
extElement is not valid for the extNotificationBeforeFirst and extNotificationAfterLast
messages.

An ExtensionNotificationProc receives an ExtensionElementPtr which points to a copy of the
ExtensionElement for the system extension currently being loaded.

Note:
The data in the ExtensionElement is read-only. While you can change it, you'll only be changing a
copy of the ExtensionElement. Any changes will be discarded when the
ExtensionNotificationProc returns.

There can be any number of ExtensionNotificationProcs installed.

Note:
An ExtensionNotificationProc cannot call RemoveExtensionNotificationProc. If there is a
need need for an ExtensionNotificationProc to remove itself, the removal must be deferred by, for
example, installing a Notification Manager task and using the notification task to remove the
ExtensionNotificationProc.

ExtensionTableHandlerProc

pascal void MyExtensionTableHandlerProc(UInt32 message, void *reserved,
 ExtensionTableHandle extTableHandle);

message input One of the 4 defined
ExtensionNotification message codes

reserved Reserved for future use

extTableHandle input ExtensionTableHandle containing all
system extensions to be loaded

An ExtensionTableHandlerProc receives a handle to the ExtensionTable created at startup by the Start
Manager. When an ExtensionTableHandlerProc is installed, the system's default handler no longer
manages the ExtensionTable. While it is installed, the ExtensionTableHandlerProc is responsible for all
changes to the ExtensionTable, except for incrementing extElementIndex between system extensions.

Note:
If the ExtensionTable or the contents of the folders included in the ExtensionTable are changed after
installing an ExtensionTableHandlerProc, RemoveExtensionTableHandlerProc cannot be called.

The extElementIndex field is always incremented to point to the next system extension to be loaded
immediately after the ExtensionTableHandlerProc is called with the extNotificationAfterCurrent
message.

WARNING:
When controlling the loading of system extensions, the only safe time to change which
ExtensionElement is at ExtensionTable.extElements[extElementIndex] is when your
ExtensionTableHandlerProc is called with the extNotificationAfterCurrent message. You may
change the ExtensionTable or the extElementIndex at other times, but you must ensure that the
ExtensionElement at ExtensionTable.extElements[extElementIndex] stays the same.

The installed ExtensionTableHandlerProc is always the first handler called with
extNotificationBeforeFirst and extNotificationBeforeCurrent messages and the last handler called
with extNotificationAfterLast and extNotificationAfterCurrent messages.

There can only be one ExtensionTableHandlerProc installed.

InstallExtensionNotificationProc

OSErr InstallExtensionNotificationProc(ExtensionNotificationUPP extNotificationProc)

Parameters:

extNotificationProc input The ExtensionNotificationUPP to install

Results:

noErr 0 The ExtensionNotificationUPP was installed
paramErr -50 This ExtensionNotificationUPP has already been installed
memFullErr -108 Not enough memory to install the ExtensionNotificationUPP

Installs an ExtensionNotificationUPP.

Multiple ExtensionNotificationProcs may be installed.

RemoveExtensionNotificationProc

OSErr RemoveExtensionNotificationProc (ExtensionNotificationUPP
 extNotificationProc)

Parameters:

extNotificationProc input The ExtensionNotificationUPP to remove

Results:

noErr 0 The ExtensionNotificationUPP was installed
paramErr -50 This ExtensionNotificationUPP was not found, or

RemoveExtensionNotificationProc was called from within a
ExtensionNotificationProc

Removes an ExtensionNotificationUPP.

Note:
ExtensionNotificationProcs cannot call RemoveExtensionNotificationProc.

InstallExtensionTableHandlerProc

OSErr InstallExtensionTableHandlerProc(ExtensionTableHandlerUPP extMgrProc,
 ExtensionTableHandle * extTable)

Parameters:

extMgrProc input The ExtensionTableHandlerUPP to install
extTable input A pointer to an ExtensionTableHandle where

InstallExtensionTableHandlerProc will return the current
ExtensionTableHandle. You don't own the handle itself and
must not dispose of it, but you can change the extElementIndex.
the extElementCount, and the ExtensionElements in the table.

Results:

noErr 0 The ExtensionTableHandlerUPP was installed
paramErr -50 Another ExtensionTableHandlerUPP has already been installed
memFullErr -108 Not enough memory to install the ExtensionTableHandlerUPP

Installs an ExtensionTableHandlerUPP.

There can only be one ExtensionTableHandlerProc installed.

RemoveExtensionTableHandlerProc

OSErr RemoveExtensionTableHandlerProc(ExtensionTableHandlerUPP extMgrProc)

Parameters:

extMgrProc input The ExtensionTableHandlerUPP to remove

Results:

noErr 0 The ExtensionTableHandlerUPP was removed
paramErr -50 This ExtensionTableHandlerUPP was not installed,

or the ExtensionTable no longer matches
the original ExtensionTable.

Remove an ExtensionTableHandlerUPP. Control is passed back to the default handler.

Note:
If the ExtensionTable or the contents of the folders included in the ExtensionTable are changed after
installing an ExtensionTableHandlerProc, RemoveExtensionTableHandlerProc cannot be called.

Summary of the Extension Table Manager

Note:
All definitions in this section are available in Universal Interfaces 3.1.

Constants

enum {
 gestaltExtensionTableVersion = FOUR_CHAR_CODE('etbl') /* ExtensionTable version */
};

enum {
 kExtensionTableVersion = 0x00000100 /* current ExtensionTable version (1.0.0) */
};

/* ExtensionNotification message codes */

enum {
 extNotificationBeforeFirst = 0, /* Before any system extensions have loaded */
 extNotificationAfterLast = 1, /* After all system extensions have loaded */
 extNotificationBeforeCurrent = 2, /* Before system extension at */
 /* extElementIndex is loaded */
 extNotificationAfterCurrent = 3 /* After system extension at */
 /* extElementIndex is loaded */
};

Data Types

struct ExtensionElement {
 Str31 fileName; /* The file name */
 long parentDirID; /* the file's parent directory ID */
 /* and everything after ioNamePtr */
 /* in the HParamBlockRec.fileParam variant */
 short ioVRefNum; /* always the real volume reference number */
 /* (not a drive, default, or working dirID) */
 short ioFRefNum;
 SInt8 ioFVersNum;
 SInt8 filler1;
 short ioFDirIndex; /* always 0 in table */

 SInt8 ioFlAttrib;
 SInt8 ioFlVersNum;
 FInfo ioFlFndrInfo;
 long ioDirID;
 unsigned short ioFlStBlk;
 long ioFlLgLen;
 long ioFlPyLen;
 unsigned short ioFlRStBlk;
 long ioFlRLgLen;
 long ioFlRPyLen;
 unsigned long ioFlCrDat;
 unsigned long ioFlMdDat;
};
typedef struct ExtensionElement ExtensionElement;
typedef ExtensionElement * ExtensionElementPtr;

struct ExtensionTableHeader {
 UInt32 extTableHeaderSize; /* size of ExtensionTable header (equal to */
 /* offsetof(ExtensionTable, extElements[0])) */
 UInt32 extTableVersion; /* current ExtensionTable version (same as */
 /* returned by gestaltExtensionTableVersion) */
 UInt32 extElementIndex; /* current index into ExtensionElement records */
 /* (zero-based) */
 UInt32 extElementSize; /* size of ExtensionElement */
 UInt32 extElementCount; /* number of ExtensionElement records */
 /* in table (1-based) */
};

typedef struct ExtensionTableHeader ExtensionTableHeader;

struct ExtensionTable {
 ExtensionTableHeader extTableHeader; /* the ExtensionTableHeader */
 ExtensionElement extElements[1]; /* 1 element per system ext. to load */
};
typedef struct ExtensionTable ExtensionTable;
typedef ExtensionTable * ExtensionTablePtr;
typedef ExtensionTablePtr * ExtensionTableHandle;

Routines

OSErr InstallExtensionNotificationProc(ExtensionNotificationUPP extNotificationProc)

OSErr RemoveExtensionNotificationProc(ExtensionNotificationUPP extNotificationProc)

OSErr InstallExtensionTableHandlerProc(ExtensionTableHandlerUPP extMgrProc,
 ExtensionTableHandle * extTable)

OSErr RemoveExtensionTableHandlerProc(ExtensionTableHandlerUPP extMgrProc)

Result Codes

noErr 0 The ExtensionNotificationUPP was removed.

paramErr -50 An error in the parameters prevented the
 normal execution of the routine.

memFullErr -108 Not enough memory to install the
 ExtensionTableHandlerUPP.

Acknowledgments
Special thanks to: Dave Evans, Rich Kubota and Quinn

Send feedback to devsupport@apple.com
Updated: 15-April-98

Technotes
Previous Technote | Contents

