
Technote 1179
PostScript Output Filters For LaserWriter 8.7

by David Gelphman
Apple Worldwide Developer Technical Support

CONTENTS

Organization

Filter Basics

Filter Output APIs

User Interface APIs

Sample Code

Summary

Downloadables

Appendix A

LaserWriter 8 version 8.7 introduces the concept of

PostScript output filters and their use during printing.
PostScript output filters are code fragments that live in
the data fork of files that reside within the “Printing
Plug-ins” folder contained in the Extensions folder.
These code fragments can intercept the PostScript output
data stream generated by LaserWriter 8 and add, remove,
or modify the data before it is transmitted to the output
device. Through this type of modification, a PostScript
output filter can implement customized control of features
for a specific printer model or can implement new user
features across a range of PostScript printers without
requiring changes to LaserWriter 8. The remainder of
this document refers to PostScript output filters as
“filters” or “plug-ins.”

In addition to filtering the PostScript output data stream,
a filter can also present a user interface in the LaserWriter
8 Print Dialog for configuring the filter’s print job
parameters. The filter’s user interface can consist of one
or more panels with functionality similar to the built-in
panels already present, including the ability to save
different settings for each printer.

Organization

This document is organized into several major sections. The section Filter Basics discusses how filters
work with LaserWriter 8. This includes discussion of the user interface for enabling and manipulating
filters, information about the operation of a filter when it filters the PostScript output data, and what the
user interface for a specific filter might look like.

The section Filter Output APIs discusses the filter routines that are called by LaserWriter 8 and
PrintingLib as part of the generation of the PostScript language output. All filters implement at least one
required routine; otherwise, the filter serves no useful purpose and is not given an opportunity to filter
output.

The section User Interface APIs discusses the filter routines that LaserWriter 8 calls as the user interacts
with the Print Dialog.

The section Sample Code discusses the two sample filters provided as part of this technote.

Appendix A: PSPosition Data Details provides detailed information about how the PostScript output
data that filters receive is tagged.

Back to top

Filter Basics

Basic User Interaction

Users install filters in MacOS 8.5 and later by dragging them onto the System Folder. The file is
autorouted to the “Printing Plug-ins” folder in the “Extensions” folder. When one or more filters is
installed, the LaserWriter 8.7 Print Dialog adds a new panel titled “Plug-In Preferences” which displays
all of the PostScript output filters contained in the “Printing Plug-ins” folder (see Figure 1 for an
example). As with all of the LaserWriter 8 settings in the Print Dialog, the settings in this panel are saved
on a printer-by-printer basis.

Figure 1 - The Plug-In Preferences Panel

Users can enable or disable each filter using the checkbox associated with that filter. By default, all filters
are disabled for each printer. In addition to enabling and disabling each filter individually, users can
disable all filters by unchecking the top-most checkbox labeled Print Time Filters. When this box is
unchecked, all filter controls become inactive. Checking this box enables the controls for the filters but
does not alter their on/off state. Each filter also has an information button, which brings up a modal dialog
displaying filter version information and a textual description of the filter. The order of the filters in this
panel can be altered by dragging the “gripper” at the left of the filter name. Filters execute in the order they
are listed in this panel. The meaning of this order is described in the next section.

The set of active filters and the ordering of the filters affect the current print job. The user can save this set
and order using the Save Settings button on the dialog. Doing this saves the set and order for the
currently chosen desktop printer.

Filter UI Basics

A filter can have a user interface in the Print Dialog for controlling its settings. Once the filter is enabled in
the Plug-In Preferences panel, LaserWriter 8 calls the exported routines, which control the filter’s user
interface. The filter can examine the conditions it is running under and determine whether LaserWriter 8
should display its user interface. A given filter can specify that its user interface be displayed in one or
more panels.

The names in the panels menu are listed in three sections. The first section lists those panels which are
built into LaserWriter 8. This is followed by a section of panels which correspond to printer-specific
features for the current printer as specified by the PostScript Printer Description (PPD) file. The last
section of the menu consists of any panels added by PostScript output filters. A given filter can add zero
or more panels.

Figure 2 is a screen shot of the LaserWriter 8.7 Print Dialog with an output filter enabled that has one
custom panel whose menu is titled “Sample Filter Settings.” The menu item “Imaging Options”
corresponds to a panel generated for the PostScript Printer Description (PPD) file for the current printer.

Figure 2 - The Print Dialog Panels Menu

Selecting the menu item corresponding to a filter’s panel displays that panel. A simple example of a filter’s
panel is shown in Figure 3. A filter has control over the layout and look of the contents of the panel within
the area between the panel popup menu and the line above the buttons at the bottom of the dialog. The
filter handles the user interaction with its controls and saves its configuration into the print job data that is
passed to it when it is filtering PostScript data. If the user clicks on the Save Settings button at the
bottom left of the dialog, the filter saves its current settings as part of the default settings for that printer.

Details of the User Interface portion of the API for filters can be found in the section User Interface APIs
below.

Figure 3 - A Sample Filter Panel

Back to top

Filter Output APIs

This section describes the filter APIs that are called at the time a communication channel with a PostScript
output device is established and during the emission of the PostScript data into the communication
channel. This is the point where a filter plug-in actually has the chance to filter the PostScript output data.
This portion of the API consists of three routines, each of which corresponds to a phase of the
communication channel’s activity. The remainder of this document will use the phrase “filter output

execution” to refer to these parts of a filter’s execution. The phrase “filter output routines” refers to these
routines.

The first phase occurs when the communication channel is being opened and the chain of output filters is
being constructed. At this point, a filter’s psOutputFilterPreFlight routine is called to allow a filter
to initialize itself. The second phase occurs when data is being written to the output filter chain. Each
write to a PostScript output filter generates a call to a filter’s psOutputFilterWrite routine. The final
phase occurs when the communication channel to the output device is closed and the filter chain is torn
down. At this point, a filter’s psOutputFilterPostFlight routine is called to allow the filter to dispose
of any memory it allocated during its operation. A filter is only required to export the routine
psOutputFilterWrite in order to be added to the filter chain as it is being created; the other two
routines are optional.

psOutputFilterPreFlight

If a filter exports a psOutputFilterPreFlight routine, it is called as the filter chain is created for a
print job, allowing the filter to initialize itself. It is not a required routine, although it is likely that most
filters will implement and export this routine. This routine is called only once per print job. The prototype
for this routine is:

OSStatus psOutputFilterPreFlight(PSOutputFilterRef filter,
Collection jobInfo, Handle papaH, void **refconP);

filter is the PSOutputFilterRef corresponding to this filter. A PSOutputFilterRef is an
opaque structure used to reference a given PostScript output filter. This reference is a parameter
to several routines that a filter calls as part of its operation.
jobInfo is a Collection Manager collection containing information about the print job which is
in progress. (See the section Further References for more information on the Collection
Manager.) The jobInfo collection contains collection items that are used to configure the
settings of the current print job. The collection items LaserWriter 8 uses are described by the
header file “Hints.h” which is provided as part of the sample code. In addition to the collection
items used for configuring the usual print job parameters, the jobInfo collection also contains
any data that a filter’s user interface provides. This is described in the section Filter Job
Collection below.
papaH is a Handle to the 'PAPA' data corresponding to the target output device. The SettingsLib
library built into PrintingLib contains routines for obtaining information about the 'PAPA' data.
See the section Further References for more information on the 'PAPA' data and SettingsLib.
refconP is a pointer to a (void *) parameter. A preflight routine can allocate its private data
and return a pointer to that data in *refconP. This data will be passed to other filter output
routines as they are called. This allows a filter to avoid having global data related to a print job.

The call to psOutputFilterPreFlight() can be used for several purposes. The jobInfo collection and
papaH handle can be examined to determine whether a filter actually wants to operate for this print job
and to configure the filter if it should. psOutputFilterPreFlight() is also the place to allocate private
data for this print job.

If a filter exports the psOutputFilterPreFlight routine, this routine must return noErr; otherwise, the
filter is not added to the filter chain. Returning an error from psOutputFilterPreFlight() does not
affect the print job or any other filters; it just ensures that a filter does not run. If
psOutputFilterPreFlight() returns an error, neither psOutputFilterPostFlight() nor
psOutputFilterWrite() is called for this print job.

The psOutputFilterPreFlight routine is called before the communication channel with the output
device is fully established. This means that no data can be written during execution of
psOutputFilterPreFlight(). Because the communication channel isn’t established and no job queries
have been generated, the communication channel characteristics aren’t fully known. Specifically, it is not

known at this point whether binary communication is supported for this job.

Note:
The knowledge as to whether the communication channel supports Clean7Bit, Clean8Bit, or Binary
communication isn’t available until after any query job completes.

psOutputFilterPostFlight

The psOutputFilterPostFlight routine, if it is exported by a filter, is called as the filter chain is torn
down at the end of the print job, and it allows the filter to dispose of any memory allocated during its
preflight and filter output execution. It is not a required routine, although most filters will implement and
export this routine. Any filter that allocates memory during a preflight routine should export this routine.
The psOutputFilterPostFlight routine is called only once per print job and is called only if the
psOutputFilterPreFlight routine returned noErr. The prototype for this routine is:

OSStatus psOutputFilterPostFlight(PSOutputFilterRef filter,
 void *refcon);

filter is the PSOutputFilterRef corresponding to this filter. A PSOutputFilterRef is an
opaque structure used to reference a given PostScript output filter.
refcon is the data that was returned by the filter’s psOutputFilterPreFlight routine. This
data should be disposed of appropriately.

psOutputFilterWrite

A PostScript output filter must export a psOutputFilterWrite routine in order to be inserted into the
chain of output filters. Once a filter is successfully in the chain of output filters, the
psOutputFilterWrite routine is called for every write of PostScript data to the output filter. The
psOutputFilterWrite routine must write the appropriate data to the next filter in the chain using the
routine psWriteNextFilter which is exported by the shared library PSUtilsLib built into PrintingLib.
This process will be described shortly.

The prototype for the psOutputFilterWrite routine that must be exported by a filter is:

OSStatus psOutputFilterWrite(PSOutputFilterRef filter, void *refcon,
 const void *data, long nBytes, const struct PSPosition *posP);

filter is the PSOutputFilterRef corresponding to this filter. A PSOutputFilterRef is an
opaque structure used to reference a given PostScript output filter.
refcon is the data that was returned by a filter’s psOutputFilterPreFlight routine. If a filter
has no psOutputFilterPreFlight routine, refcon is NULL.
data is a pointer to the data that is being written to the filter. data may be NULL in some cases.
nBytes is the number of bytes pointed to by data being written to the filter. nBytes may be
FLUSHWRITE (-1) in some cases.
posP is a pointer to a PSPosition structure that describes or tags the data passed to this
invocation of psOutputFilterWrite(). The tagging of data and the PSPosition structure are
described below in the section Tagged Data.

The simplest thing a filter can do is to forward all PostScript data to the next filter in the chain. Doing
only that would pass the data unmodified to the next filter and would insert no additional data. If all
filters in the filter chain behaved like this, the PostScript output data sent to the output device would be

unmodified and would be exactly the same as if there were no filters.

Another simple thing that a filter could do is to not pass any data to the next filter in the chain. If any filter
in the filter chain fails to write a piece of data to the next filter, that data is not sent to the PostScript
output device. Clearly, filters must carefully handle the data written to them or else the print job will
produce incorrect results.

psWriteNextFilter

A filter writes data to the next filter in the chain by calling the psWriteNextFilter routine. This routine
should only be called from a filter’s psOutputFilterWrite routine. Its prototype is:

OSStatus psWriteNextFilter(PSOutputFilterRef filter,
 const void *data, long nBytes,
 const struct PSPosition *posP);

filter is the PSOutputFilterRef corresponding to the filter calling psWriteNextFilter().
A PSOutputFilterRef is an opaque structure used to reference a given PostScript output filter.
data is a pointer to the data to write to the next filter in the chain.
nBytes is the number of bytes pointed to by data to write to the next filter. nBytes may be
FLUSHWRITE (-1) if the filter is forwarding data passed to it from the previous filter.
posP is a pointer to a PSPosition structure that describes or tags the data being passed to this
invocation of psWriteNextFilter(). The tagging of data and the PSPosition structure are
described below in the section Tagged Data.

Filtering Data

There are a number of operations that a filter’s psOutputFilterWrite routine might perform on a given
call:

Pass the data on unaltered, without adding additional PostScript data to the output stream.
Insert data into the output stream before writing the data passed to it.
Insert data into the output stream after writing the data passed to it.
Ignore the data passed and not forward it to the next filter. Any piece of data not forwarded to
the next filter is not sent to the PostScript output device.
Modify the data passed it prior to writing it to the next filter in the chain. Note that any
modifications made to the data passed to a filter must be made to a copy of that data.

If a filter wants to omit PostScript from the stream, it should not call psWriteNextFilter() with that
data but should instead return noErr. To add data to the stream, a filter calls psWriteNextFilter()
with the data to be added to the stream. All of the scenarios listed above are demonstrated in the sample
code provided with this technote and are described in the Sample Code section below.

The most likely action taken by a filter is to insert data into the PostScript output stream at a certain point
in the job stream; however, the filter output API is powerful enough to allow significant changes to the
output stream as it is being filtered.

Tagged Data

A filter receives PostScript output as the data parameter passed to its psOutputFilterWrite routine.
Without any additional information, a filter would have to parse this data to determine its contents. To
reduce or eliminate the need to parse data, the parameter posP is also passed in. This parameter is a
pointer to a PSPosition structure containing tagging information that describes this data.

PSPosition Structure

PSPosition Structure

A PSPosition structure allows generators of PostScript output to communicate structural information
about the data they are writing. When PostScript generators properly use the PSPosition structure, it
allows software clients to acquire knowledge of the data being written, without them having to parse the
PostScript data. An example of this is the way the LaserWriter 8 driver reports status during printing by
looking at the PSPosition data written to the output stream by the PrintingLib routines which convert
QuickDraw drawing into PostScript data. Another example is the status that the Download Manager and
its clients report as a low-level converter module generates its PostScript data. (The Download Manager
is discussed further in the section Printing Without A Print Dialog and in the section Further References.)
This tagging information is loosely designed around Adobe’s PostScript Document Structuring
Conventions (DSC) comments.

The PSPosition structure is defined as:

typedef struct PSPosition{
/// The section of the document the caller is currently emitting.
PSSection section;

/// The subsection of the document the caller is currently emitting.
PSSubsection subsection;

/// More information about the current section:subsection
void *info;

/// A numeric identifier for this PSPosition
SInt32 id;

 }PSPosition;

The section field is of type PSSection and identifies what “major” part of the job is in progress. The
values of this field can be kSectAnon, kSectQueryJob, kSectCoverPage, kSectJob, and kSectPeek.
These sections correspond to the different parts of the job, as controlled by the PostScript generator,
typically LaserWriter 8 PrintingLib.

The subsection field is of type PSSubsection and details the PostScript output corresponding to the
data write call. PSSubsection values typically correspond to DSC data, but there are additional values
which suit some specialized needs.

The info field is either a NULL pointer or a pointer to data whose type is specified for the PSSubsection
value in the subsection field. The data (if any) pointed to by the info value coincides with the data being
written to the output stream.

For example, when writing the data “%%Pages: 4” to the print stream, the writer puts the PSSubsection
value kSubPages into the subsection field of the PSPosition, and the info field is either NULL or points
to an SInt32 with the value 4. Appendix A: PSPosition Data Details discusses the possible
PSSubsection values and their corresponding info fields in more detail. The header file
“PSStreamInfo.h” contains the list of PSSubsection values and the proper data type of the info field for
each PSSubsection.

Note:
The SectionReport filter provided in the Sample Code portion of this document generates a report of
the PSPosition info data generated as part of each print job.

The ID field is an SInt32. This is used by PostScript generators to emit output for a given subsection
over a series of writes, yet still identify the data as one conceptual block of data. This is done by
performing the consecutive writes with the same subsection, info, and ID values. When the data being

written corresponds to a new subsection, the ID value is then updated. Doing writes in this fashion
allows software clients looking at the ID field to notice when the PSPosition data may have changed
without having to look at any other fields in the structure. For example, a client (such as the LaserWriter
8 status code) monitoring the position information being written to the stream has a test similar to the
following:

if(jobstatus->lastPosId != positionP->id){
 ... process the new position we are now seeing
 ...
 // update the our notion of the last position we saw
 jobstatus->lastPosId = positionP->id;
 }

The ID field of the PSPosition is of particular importance to filter writers. Frequently a filter wants to
inject some data before or after a particular point in the PostScript output stream. Such data should never
be injected into the middle of a sequence of data writes corresponding to the same PSPosition. For this
reason, it is important to track the ID field appropriately. This issue is addressed in detail by the sample
filters provided as part of this technote.

psFilterSetPSPosition

Filters frequently inject new data into the PostScript output stream and, when doing so, they call the
psWriteNextFilter routine exported by the PSUtilsLib library in PrintingLib. Careful readers will
note that the psWriteNextFilter routine also takes a pointer to a PSPosition structure. When
forwarding existing data passed to a filter, the PSPosition structure should also be forwarded.
However, if a filter is adding or modifying data, it needs to reflect the new data by properly providing a
PSPosition structure that describes this new data. In almost all cases, the data has the same PSSection
value as the original data write but it may correspond to a different PSSubsection value and therefore to
different info data and ID values.

When inserting data into the PostScript output stream, it is important that the PSPosition used to tag the
data be uniquely identified; otherwise, filters later in the chain and other portions of the output
communication code can confuse newly inserted data with other data. To create unique PSPosition data,
filters use the PSUtilsLib routine psFilterSetPSPosition. This routine is defined as:

OSStatus psFilterSetPSPosition(PSOutputFilterRef filter,
 PSPosition *posP,
 PSSection section,
 PSSubsection subsection,
 void *info);

This function is used by an output filter to prepare a PSPosition structure for writing a new piece of
data corresponding to a new section, subsection, and/or info data. psFilterSetPSPosition() sets the
PSPosition pointed to by posP to the section, subsection, and info data passed in, and sets the ID field
in the PSPosition structure to a unique value in preparation for a filter write (or sequence of writes)
corresponding to the new subsection/info value. Filters must use this routine to identify the data that they
write as new and unique.

Filter Job Collection

It is likely that the features supported by a PostScript output filter will have a user interface associated
with those features. The user interface programming interface for filters is described in detail in the
section User Interface APIs. The user interface code can store settings into the job collection which is
passed as the jobInfo collection to psOutputFilterPreFlight(). This discussion does not apply to

filters without any user interface or job specific settings.

To avoid conflicts between filters, the user interface code requires each filter to have a unique 4-byte
signature. (This signature is not necessarily the same as the Finder creator for the plug-in, but it can be.)
The user interface code uses this signature to ensure that a filter’s UI settings are saved as a unique
collection item in the jobInfo collection. Specifically, each filter has its own private Collection
Manager collection in which to store the job settings from its UI code. The LaserWriter 8 Print Dialog
code stores each filter’s private collection as a flattened handle into the job collection with the collection
tag value kHintPlugInCollTag and uses the filter’s unique 4-byte signature as the collection ID.

To extract its settings at filter output execution time, the filter must obtain its flattened collection from
the jobInfo collection passed to psOutputFilterPreFlight(), and then the collection must be
unflattened. At that point, the filter can access any collection items it may have stored in its private
collection. The sample code provided with this technote demonstrates the way to store settings in the
user interface code and how to extract them at filter output execution time.

General Considerations During Filtering

Filters must always be careful to pass any errors returned from their filter writes back to their caller. By
doing so, any errors generated during the filter operation bubble back up the filter chain and back to the
software initiating the write of the PostScript output. If a filter fails to do so, errors will be lost; this can
have many undesirable results.

A filter must be well behaved should any data that it is expecting in the output stream not be present.
There are a number of reasons why the data passed to a filter might differ from what is normally
expected. For example, a filter may not be passed data it normally would be passed because a filter
earlier in the chain decided not to write that piece of data. A situation where a filter may see data that is
unexpected is when the Download Manager is generating the PostScript output data. The PostScript
data generated by the Download Manager and its plug-ins can differ significantly from that generated by
LaserWriter 8 for standard print jobs.

It is most likely that a filter would use the PSPosition data passed to the psOutputFilterWrite
routine to determine what the data is; however, a filter is free to parse the data passed in, should that be
appropriate to a filter’s function. Note, however, that for some writes to a filter, the data parameter
passed to psOutputFilterWrite() may be NULL. Filters must be careful to skip parsing of the data in
this situation. Similarly, there are cases where the nBytes parameter passed to
psOutputFilterWrite() is negative. Not only must filters detect this and avoid parsing data in this
case, but it is important to detect the case where the nBytes parameter is the constant FLUSHWRITE
(-1), since such writes must always be forwarded to the next filter and any errors returned
appropriately.

During filter output execution, filters have no direct way to give up time to other processes on the
system; their only way to give up time is to call psWriteNextFilter() which ultimately calls the
printing application’s idle procedure. Filters must limit the amount of time they spend inside a given call
to psOutputFilterWrite() so that the user’s interactivity with their computer during printing is
maintained. Filters aren’t appropriate for computationally intensive tasks or for tasks which require
gathering large amounts of data over a network connection.

Some filters may want to modify the PostScript data passed to them. If a filter wants to modify the data
before writing it to the next filter, it must first copy the data passed to it and modify its copy of the data.

Filter Plug-In Requirements

LaserWriter 8 uses the Printing Plug-ins Manager to manage PostScript output filters. In order to be
used with the Printing Plug-ins Manager, a filter must have a resource of type
kPluginResourceInfoType and ID kPluginResourceInfoID. If the filter does not contain this
resource, it cannot be used and is ignored. Filters are also required to have a standard 'cfrg' resource

describing the code fragments in the data fork of the file.

The kPluginResourceInfoType resource contains information about how many shared libraries are
contained in the file, and, for each shared library, the type of plug-in that it is, the subtype that the
library handles and the library name. PostScript filters have the type field of this resource set to
kPSOutputFilterPlugInType and the subtype set to kPSOutputFilterSubtype. Note that the type
referred to here is not the Finder type but the field of the kPluginResourceInfoType resource. There
are no constraints on the library name beyond those imposed by the Code Fragment Manager.

The kPluginResourceInfoType resource is defined as follows (using Rez syntax):

type 'PLGN' {
 integer = $$Countof(PluginLibInfo);
 array PluginLibInfo {
 literal longint; /* Type */
 literal longint; /* subtype */
 pstring; /* library name */
 align word;
 };
 };

A ResEdit Resourcerer® template resource (’tMPL') for the kPluginResourceInfoType resource is
contained within PrintingLib versions 8.6 and later.

The PluginLibInfo structure in C syntax is:

 typedef OSType SettingsDataType;
 typedef OSType SettingsDataSubType;

 short num; // the number of shared libraries this 'PLGN' describes
 PluginLibInfo libInfo[num];

 typedef struct PluginLibInfo{
 SettingsDataType type;
 SettingsDataSubType subtype;
 unsigned char libraryName[]; // pascal string
 // word aligned
 }PluginLibInfo;

type is the type of plug-in that is described by this PluginLibInfo.
subtype is the subtype of data that can be handled by the plug-in described by this
PluginLibInfo.
libraryName is the library name of the code fragment in the plug-in file described by this
PluginLibInfo.

Note:
A single file can contain multiple plug-in libraries. Because of this, the libraryName provided in the
kPluginResourceInfoType resource is the name shown for a PostScript output filter in the Plug-In
Preferences panel in the Print Dialog (Figure 1).

Printing Plug-ins Folder

As described earlier, filter plug-ins for LaserWriter 8.7 reside in the “Printing Plug-ins” folder in the
Extensions folder. It is recommended that these plug-ins have a Finder type of 'bird' since files of this
type are autorouted on most recent system configurations. The system configurations which support
auto-routing for the 'bird' file type are MacOS 8.5 and later with PrintingLib 8.6.5 or later installed and
Desktop Printing enabled. For these systems, the “Printing Plug-ins” folder is known to the Folder
Manager as type 'pplg'.

For those systems where the Folder Manager does not recognize the “Printing Plug-ins” folder, the
Printing Plug-ins Manager provides routines for obtaining the name and location of the folder. See the
section Further References for information on the Printing Plug-ins Manager.

Back to top

User Interface APIs

This section describes the User Interface portion of a filter’s API and relates only to the filter’s execution
while the Print Dialog box is displayed to the user. This aspect of the filter’s execution will be referred to
here as the “filter UI execution.” Some filters do not have a user interface in the Print Dialog, and this
section does not apply to them.

The UI APIs break down into a few general categories:

Criteria routines: psPanelSetCriteria and psPanelPlugInLibKeepRunning.
psPanelSetCriteria() allows a filter to set criteria as to when to run. If a filter is enabled by the user
but the psPanelSetCriteria routine indicates a filter should not run, the remaining routines listed here
are not executed. The psPanelPlugInLibKeepRunning routine allows a running filter to determine
whether to continue running if the user switches printers in the Print Dialog.

Plug-in initialization and finalization routines: psPanelPlugInLibInitData and
psPanelPlugInLibCloseData. The psPanelPlugInLibInitData routine allows a filter to register its
unique signature with the LaserWriter 8 Print Dialog code and to initialize itself. The
psPanelPlugInLibCloseData routine allows a filter to clean up before it is unloaded.

Panel registration routines: psPanelRegister and psPanelAddMenu. psPanelRegister() allows
a filter to register one or more panels to appear in the Print Dialog, and psPanelAddMenu() specifies a
menu name for each panel that is registered.

Panel-specific routines that are called for each panel, independent of the panel’s
visibility: psPanelInitData, psPanelPrSpecificInitData, psPanelPrSpecificCloseData, and
psPanelCloseData. These routines allow a filter to properly initialize and dispose of its panel-specific
data, some of which may be related to a given printer and some of which may not.

The routines containing “PrSpecific” in their name are called for the initially selected printer and again
when the user changes from one printer to another in the Print Dialog.

Panel-specific routines that are called when a panel becomes visible or was visible and goes away:
psPanelInit, psPanelPrSpecificInit, psPanelPrSpecificClose, and psPanelClose. These
routines allow a filter to set the user interface items in a panel to reflect the underlying data settings. The
routines containing “PrSpecific” in their name are called for the initially selected printer and again when
the user changes from one printer to another while the panel is visible.

Routines called during user interaction with a given panel: psPanelItem and psPanelFilter.
psPanelItem() is called when the user clicks on an item in a filter’s panel. psPanelFilter() is called
from LaserWriter 8’s Print Dialog filter function when the user interacts with a filter’s panel.

A routine that is called to check data ranges for a panel: psPanelCheckRange. psPanelCheckRange() is

called when the panel is about to go away (e.g., the user switches between panels or the Print Dialog is
about to go away) or the user clicks the Save Settings button. This routine allows a filter to verify its
settings before they are saved or the panel UI is going to go away.

A routine that is called when the user wants to save defaults: psPanelSaveButton. When the user
chooses “Save Settings”, a filter’s psPanelSaveButton procedure is called, regardless of whether or not
the filter’s panel is visible.

Note:
These routines are only called when the LaserWriter 8.7 Print Dialog is present. They are not called
during filter output execution.

Note:
The UI API routines described here are not necessarily called for all print jobs. See the section Printing
Without a Print Dialog which describes how this can happen.

psPanelSetCriteria

Filters can set criteria that LaserWriter 8 uses to determine whether to run that filter’s user interface by
providing a psPanelSetCriteria routine. The prototype for the psPanelSetCriteria routine is:

OSStatus psPanelSetCriteria(LWRef lwRef, Collection col,
short resFRef);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter.
col is a collection that may be filled in with the filter’s running criteria.
resFRef is the fRef corresponding to the filter’s resource fork.

A given filter can specify certain criteria to determine whether it should be run.

There currently are two criteria that can optionally be specified:

The PCFileName of a target PPD file that must be the current PPD file for the target printer. For example,
if a filter requires that the *PCFileName main keyword in the PPD file must have the value
“APLW320.PPD”, the filter can specify this requirement by adding a collection item with tag value
kHintPanelPCFileNameTag and ID kHintPanelPCFileNameId with the data “APLW320.PPD” and a
data length of 11 bytes.

The minimum LaserWriter driver version that a filter requires. This criteria is really for future
expandability since the only LaserWriter driver version as of this writing which supports PostScript
output filter plug-ins is LaserWriter 8.7. This requirement is specified with the collection item tag, ID
given by kHintPanelDriverVersTag and kHintPanelDriverVersId.

Failure to add either or both of these collection items is equivalent to saying that these criteria are not
important for that filter. For example, the sample code does not specify the kHintPanelPCFileNameTag
since it does not restrict itself to a specific PPD. This ability is intended to allow printer manufacturers to
target a filter to a specific hardware product.

The psPanelSetCriteria routine is called before any other filter routine except for any CFM shared
library initialization routine a plug-in has.

psPanelPlugInLibKeepRunning

If the user changes printers while a given filter is loaded and running and the defaults for the new printer
indicate the filter is enabled, that filter’s psPanelPlugInLibKeepRunning routine is called to allow it to
determine whether to continue running. This routine allows the plug-in to look at the current execution
environment to determine whether to continue to run.

OSStatus psPanelPlugInLibKeepRunning(LWRef lwRef,
Collection col,
Boolean *keepRunningP,
void *libDataP);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter.
col is a collection containing items specifying the PPD *PCFileName and driver version. The
meaning of these collection items is identical to those discussed in the description of
psPanelSetCriteria().
keepRunningP is a pointer to a Boolean. The value returned in *keepRunningP determines
whether a filter wishes to continue to run.
libDataP points to the library private data returned by the plug-in’s
psPanelPlugInLibInitData routine (discussed below). Note that
psPanelPlugInLibKeepRunning() is only called when a filter is already loaded and running.
Therefore its psPanelPlugInLibInitData routine has already been called and the libDataP
data exists.

Note:
The col collection parameter may or may not contain any specific collection item. As with all collections
provided to the any of the filter APIs, a filter must be prepared that a given collection item will not exist
and GetCollectionItem() or GetCollectionItemHdl() will return collectionItemNotFoundErr.

psPanelPlugInLibInitData

The LaserWriter 8 Print Dialog code calls a filter’s psPanelPlugInLibInitData routine once after a
filter has been loaded for use in the Print Dialog. A filter returns its unique 4-byte signature and can
initialize itself.

OSStatus psPanelPlugInLibInitData(LWRef lwRef, void **libDataH,
short resFRef, unsigned long *libSignatureP);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter.
libDataH is a pointer to a (void *) that can be filled in with any library specific data. The data
returned in *libDataH will be passed to the psPanelRegister,
psPanelPlugInLibKeepRunning, and psPanelPlugInLibCloseData procedures.
resFRef is the fRef of the library’s open resource fork.

libSignatureP must be filled in with the filter’s unique 4-byte signature. This signature must be unique
to the plug-in to distinguish it from other plug-ins. It is used to store a filter’s private hints collection into
the job collection and printer defaults collection.

Note:
Filter signatures must be unique or else a filter may conflict with another filter with the same signature
(as described in the section Filter Private Collection Issues). To ensure that a filter has a unique
signature, it is necessary that developers register the 4-byte signature using the standard method for
registering Finder creator codes. See the section Further References for Apple’s Creator Code
Registration web page.

psPanelPlugInLibCloseData

The LaserWriter 8 Print Dialog code calls a filter’s psPanelPlugInLibCloseData routine immediately
before the plug-in is unloaded by the Print Dialog. The filter can be unloaded for several reasons: the
Print Dialog is going away, the user has switched printers and this filter is not enabled for the new
printer, or the filter’s psPanelPlugInLibKeepRunning routine indicates it should no longer run.

void psPanelPlugInLibCloseData(LWRef lwRef, void *libDataP,

Collection jobInfo, Boolean *doItP);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter.
libDataP is a pointer to the filter data returned by psPanelPlugInLibInitData() in its
*libDataH parameter.
jobInfo is the fully formed job collection representing the user settings from the Print Dialog.
This collection is not the private collection containing only the filter’s collection items added
during
its execution, but is instead the full job collection containing all the job configuration data
specified in the Print Dialog.
doItP is a pointer to a Boolean indicating the reason for unloading the filter. If *doItP is true,
the library is being unloaded because the user clicked on the Print or Save button to dismiss the
Print Dialog. If *doItP is false, the filter is being unloaded for other reasons. A filter can
change the value in *doItP to false to cause the dialog to be canceled if that is appropriate. A
filter might change the value in *doItP in response to an alert the filter presents while the dialog
is going away. The sample code provided with this technote demonstrates this.

psPanelRegister

Once a filter’s criteria have been passed, the filter is loaded and has the opportunity to add one or more
panels to the Print Dialog. To accomplish this, LaserWriter 8 calls the filter’s psPanelRegister routine
repeatedly until the filter indicates it wants to stop adding panels. This routine also requires a filter to
specify the data needed for each panel.

OSStatus psPanelRegister(LWRef lwRef, PanelRef panelRef,

Collection col, Boolean *addPanelP,

const Rect *panelRectP, short *ditlIDP,

Handle *ditlHP, void **dataH, void *libDataP);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter.
panelRef is a unique PanelRef corresponding to this call of psPanelRegister(). This allows
a plug-in with multiple panels to distinguish which panel is being referenced by a given routine
call, such as psPanelAddMenu().
col is a collection specifying the current PPD *PCFileName and driver version as described
above for the routine psPanelPlugInLibKeepRunning.
addPanelP points to a Boolean. A filter should set *addPanelP to true if it wishes to add this
panel. If a filter sets *addPanelP to true, the panel is added and psPanelRegister() is called
again to see whether to add additional panels. When the filter is done adding panels, it should set
*addPanelP to false.
panelRectP points to a Rect that contains the bounds of the area that a panel has available for

any dialog items that a filter may be adding dynamically. The panel’s supplied DITL (0,0)
coordinate is mapped by LaserWriter 8 to the left, top corner of this Rect.
ditlIDP is a pointer to a DITL ID corresponding to the DITL for the panel being added. If the
DITL for the panel corresponding to panelRef is being specified by a DITL ID, *ditlIDP
should be set to the DITL ID for this panelRef. If the DITL is being specified directly as an in
memory handle instead, *ditlIDP should not be changed.
ditlHP is a pointer to a Handle corresponding to the DITL for the panel being added. If the
DITL is being specified directly as an in memory handle, a filter should set *ditlHP to the
handle corresponding to the DITL for this panelRef. If instead the filter is specifying a DITL ID
in *ditlIDP, *ditlHP should not be changed.
dataH is a pointer to a (void *) that can be filled in with any panel-specific data appropriate for
this panelRef. It is frequently convenient to allocate private data for each panel. A panel should
return any private data it allocates for this panelRef in *dataH. This private panel data is passed
to each of the routines that are specific to a given panel.
libDataP is the filter’s private data as returned in *libDataH by
psPanelPlugInLibInitData().

psPanelAddMenu

The LaserWriter 8 Print Dialog code calls psPanelAddMenu() for each panel that a filter adds. It is called
when the panel menu gets built the first time, and each time the printer is changed and the filter continues
to run.

OSStatus psPanelAddMenu(LWRef lwRef, PanelRef panelRef,

void *dataP, StringPtr panelName,

unsigned long bufSize, Boolean *addItP);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter.
panelRef is the panel reference value for the panel to which this call corresponds.
dataP is the panel’s private data, as returned by psPanelRegister() for this panelRef.
panelName is a pointer to a buffer to receive the text specifying the name for the panel menu
item. A filter should fill in panelName with a Pascal string corresponding to the menu name. It
should store at most bufSize bytes in this buffer, including the length byte.
bufSize is the length of the panelName buffer. A filter should never store more than this
number of bytes into the panelName buffer.
addItP is a pointer to a Boolean indicating whether to add a menu for this panel. Returning
true in *addItP causes a menu item to be added. Returning false in *addItP removes any
menu associated with this panelRef. Returning false may make sense if the user chooses a
new printer and a filter continues to run but a particular panel should not appear for the new
printer.

psPanelInitData

The LaserWriter 8 Print Dialog code calls psPanelInitData() once for each panel that has been
registered by psPanelRegister(). LaserWriter 8 calls this routine to allow the filter to configure itself
for the print job dialog.

OSStatus psPanelInitData(LWRef lwRef, PanelRef panelRef,

void *dataP, Collection plugInHints);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter.
panelRef is the panel reference value for the panel to which this call corresponds.
dataP is the panel’s private data, as returned by psPanelRegister() for this panelRef.
plugInHints is a filter’s private collection representing the current job. This collection
potentially contains any job-specific hints that the filter has saved the last time this print job was
generated, or may be empty indicating that the current print job has no saved initial job
configuration.

Note:
The plugInHints collection passed to psPanelInitData() does not contain the saved defaults for the
current printer but may contain any saved defaults for the current print job.

psPanelCloseData

The LaserWriter 8 Print Dialog code calls psPanelCloseData() once for each panel as the filter is
unloaded. This is the last panel-specific routine to be called before the filter is unloaded and is the last
opportunity for a filter to dispose of any panel-specific private data.

OSStatus psPanelCloseData(LWRef lwRef, PanelRef panelRef,

void *dataP, Boolean doIt);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter.
panelRef is the panel reference value for the panel to which this call corresponds.
dataP is the panel’s private data, as returned by psPanelRegister() for this panelRef. This
panel private data should be disposed of in psPanelCloseData().
doIt is true if the user is dismissing the dialog with Print or Save button, and false if the
filter is being unloaded for any other reason.

psPanelPrSpecificInitData

The LaserWriter 8 Print Dialog code calls psPanelPrSpecificInitData() once initially for each panel
after the filter is loaded, and again each time the user changes to a new printer and the filter continues to
run.

OSStatus psPanelPrSpecificInitData(LWRef lwRef, PanelRef panelRef,

void *dataP, Collection plugInPrInfo);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter.
panelRef is the panel reference value for the panel to which this call corresponds.
dataP is the panel’s private data, as returned by psPanelRegister() for this panelRef.
plugInPrInfo is a collection that contains only hints that have been previously saved for this
printer by this filter. This collection represents the settings previously saved by a plug-in when
the user chose Save Settings. It should be used to initialize the panel settings for the current
printer if there are no saved job defaults in the plugInHints collection passed to
psPanelInitData().

psPanelPrSpecificCloseData

The LaserWriter 8 Print Dialog code calls psPanelPrSpecificCloseData() for each panel each time a
printer is deselected (i.e., a new printer is selected) or the dialog is dismissed.

OSStatus psPanelPrSpecificCloseData(LWRef lwRef, PanelRef panelRef,

void *dataP, Boolean doIt);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter.
panelRef is the panel reference value for the panel to which this call corresponds.
dataP is the panel’s private data, as returned by psPanelRegister() for this panelRef.
doIt is true if the user is dismissing the dialog with the Print or Save button, and false if
the user cancels the Print Dialog or switches to another printer.

psPanelInit

When a given panel is selected in the LaserWriter 8 Print Dialog panel menu, it becomes visible. As part
of making a panel visible in the Print Dialog, LaserWriter 8 appends that panel’s DITL to the dialog.
Before making the panel visible, LaserWriter 8 calls psPanelInit(), allowing the filter to initialize its
user interface settings to match those reflected by the job and printer defaults.

OSStatus psPanelInit(LWRef lwRef, PanelRef panelRef, void *dataP,

DialogPtr dp, short offset);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter.
panelRef is the panel reference value for the panel to which this call corresponds.
dataP is the panel’s private data, as returned by psPanelRegister() for this panelRef.
dp is the dialog pointer for the Print Dialog.
offset is the value which must be added to the dialog item numbers in the DITL in order to
access those items in the Print Dialog when the panel is visible. As part of adding a filter’s dialog
items to the Print Dialog, those items are renumbered.
For example, if a filter has a TextEdit field as item number 1 in its DITL, when the panel
appears visible, that item’s dialog item number is (offset + 1).

psPanelClose

The LaserWriter 8 Print Dialog code calls psPanelClose() each time this panel’s DITL is about to be
removed from the Print Dialog and the panel will no longer be visible.

OSStatus psPanelClose(LWRef lwRef, PanelRef panelRef, void *dataP,

 DialogPtr dp, short offset);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter.
panelRef is the panel reference value for the panel to which this call corresponds.
dataP is the panel’s private data, as returned by psPanelRegister() for this panelRef.
dp is the dialog pointer for the Print Dialog.
offset is the value which must be added to the dialog item numbers in the DITL in order to
access those items in the Print Dialog when the panel is visible.

psPanelPrSpecificInit

The LaserWriter 8 Print Dialog code calls psPanelPrSpecificInit() after psPanelInit() each time
this panel’s DITL has been appended to the Print Dialog, but before the panel is visible. It is also called
each time a new printer is selected while the panel is visible.

OSStatus psPanelPrSpecificInit(LWRef lwRef, PanelRef panelRef,

void *dataP, DialogPtr dp, short offset);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter.
panelRef is the panel reference value for the panel to which this call corresponds.
dataP is the panel’s private data, as returned by psPanelRegister() for this panelRef.
dp is the dialog pointer for the Print Dialog.
offset is the value which must be added to the dialog item numbers in the DITL in order to
access those items in the Print Dialog when the panel is visible.

psPanelPrSpecificClose

The LaserWriter 8 Print Dialog code calls psPanelPrSpecificClose() before psPanelClose() each
time this panel’s DITL is about to be removed from the Print Dialog and will no longer be visible. It is
also called each time a printer is deselected while the panel is visible.

OSStatus psPanelPrSpecificClose(LWRef lwRef, PanelRef panelRef,

void *dataP, DialogPtr dp, short offset);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter.
panelRef is the panel reference value for the panel to which this call corresponds.
dataP is the panel’s private data, as returned by psPanelRegister() for this panelRef.
dp is the dialog pointer for the Print Dialog.
offset is the value which must be added to dialog item numbers in the DITL in order to access
those items in the Print Dialog when the panel is visible.

psPanelItem

psPanelItem gets called each time ModalDialog() reports an item hit in a filter’s panel.

OSStatus psPanelItem(LWRef lwRef, PanelRef panelRef, void *dataP,

DialogPtr dp, short item, short offset, short ctlVal);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter.
panelRef is the panel reference value for the panel to which this call corresponds.
dataP is the panel’s private data, as returned by psPanelRegister() for this panelRef.
dp is the dialog pointer for the Print Dialog.
item is the dialog item number of the item hit.
offset is the value which must be added to dialog item numbers in the DITL in order to access
those items in the Print Dialog. To compare item with the item numbers stored in the DITL,

offset must first be subtracted from item.
ctlVal is the current value of the control, if the item hit is a control.

psPanelFilter

psPanelFilter() gets called from the Print Dialog’s dialog filter function when this panel is visible.

OSStatus psPanelFilter(LWRef lwRef, PanelRef panelRef, void *dataP,

DialogPtr dp, short offset, EventRecord *eventP,

short *itemHitP, Boolean *weHandledItP);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter.
panelRef is the panel reference value for the panel to which this call corresponds.
dataP is the panel’s private data, as returned by psPanelRegister() for this panelRef.
dp is the dialog pointer for the Print Dialog.
offset is the value which must be added to dialog item numbers in the DITL in order to access
those items in the Print Dialog. To compare item with the values stored in the DITL, offset must
first be subtracted from item.
eventP is a pointer to the EventRecord for the event passed to the LaserWriter 8 Print Dialog’s
dialog filter function.
itemHitP is a pointer to the dialog item number hit. Its meaning is the normal meaning for a
dialog filter function passed to ModalDialog().
weHandledItP is a pointer to a Boolean indicating whether this filter function handled the
event. If the event is filtered
by this call to psPanelFilter, *weHandledItP should be set to true; otherwise, it should be
set to false.

psPanelCheckRange

The LaserWriter 8 Print Dialog code calls psPanelCheckRange() when a filter’s panel is visible and the
user is changing to another panel, or if the panel is visible and the user presses the Print or Save button
in the Print Dialog. It is also called when the panel is visible and the user selects the Save Settings
button to save defaults for the current printer. A plug-in filter can inspect the current panel settings and
alert the user if any settings are out of the acceptable range, then halt any of the events which caused
psPanelCheckRange() to be called.

OSStatus psPanelCheckRange(LWRef lwRef, PanelRef panelRef,

void *dataP, DialogPtr dp, short offset, Boolean *doitP);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter.
panelRef is the panel reference value for the panel to which this call corresponds.
dataP is the panel’s private data, as returned by psPanelRegister() for this panelRef.
dp is the dialog pointer for the Print Dialog.
offset is the value which must be added to dialog item numbers in the DITL in order to access
those items in the Print Dialog.
doitP is a pointer that indicates whether the data in the panel is within range. Returning true in
*doitP indicates that the data is OK; returning false indicates that the data needs to be corrected
before the panel is changed, the dialog is dismissed, or the settings can be saved.

psPanelSaveButton

The LaserWriter 8 Print Dialog code calls psPanelSaveButton() when the user hits the Save
Settings button in the Print Dialog to save the current settings as the new default settings for the current
printer. psPanelSaveButton() is called for all panels regardless of whether the panel is visible at the
time the user selects Save Settings.

OSStatus psPanelSaveButton(LWRef lwRef, PanelRef panelRef,

void *dataP, Collection plugInPrInfo);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter.
panelRef is the panel reference value for the panel to which this call corresponds.
dataP is the panel’s private data, as returned by psPanelRegister() for this panelRef.
plugInPrInfo is the filter’s private collection into which the filter should store its current
settings.

A Bit More On the Filter Panel Routines

The routines specific to a given panel provide a lot of flexibility and power in order to allow a filter to
configure itself and manage its user interface. To allow this flexibility, there are a number of routines,
and, at first glance, it isn’t obvious when each routine is called. It may be helpful to clarify how some of
the routines associated with individual panels are called and in what order. This discussion assumes that
the example filter’s criteria indicate that it should run and keep running when the user changes printers
and that the user’s configuration allows the filter to run with each printer.

Here’s what happens when the dialog comes up. This occurs once, regardless of whether a filter’s panel
is visible:

psPanelInitData
psPanelPrSpecificInitData (with the current printer’s data)

Here’s what happens if the printer gets changed and the filter’s panel is not visible:

psPanelPrSpecificCloseData
psPanelPrSpecificInitData (for the new printer’s data)

Here’s what happens when the filter’s panel becomes visible:

psPanelInit
psPanelPrSpecificInit

Here’s what happens if the printer gets changed and the filter’s panel is visible:

psPanelPrSpecificClose
psPanelPrSpecificCloseData

psPanelPrSpecificInitData (for the new printer’s data)
psPanelPrSpecificInit

Here’s what happens when the panel was visible but is now about to go away:

psPanelPrSpecificClose
psPanelClose

Here’s what happens when the dialog goes away and the filter’s panel is not visible:

psPanelPrSpecificCloseData
psPanelCloseData

Here’s what happens when the dialog goes away and the filter’s panel is visible:

psPanelPrSpecificClose
psPanelClose
psPanelPrSpecificCloseData
psPanelCloseData

LaserWriter 8 APIs Available To a Filter’s UI Code

While the LaserWriter 8 Print Dialog is present, a filter can use the LWRef passed to the UI routines
described above to access various pieces of data that may aid in configuring the filter or determining
whether to execute. These routines are described here and are collectively referred to as the LW* routines.

Note:
The LW* routines described in this section are only for use during a filter’s UI execution, not during a
filter’s output execution.

LWGetPrintRec

LWGetPrintRec() returns a handle to the print record the application passed to PrJobDialog(),
bringing up the Print Dialog which is executing the filter. The handle returned is owned by LaserWriter 8
and should not be disposed of by the caller. The returned print record should be considered read-only.
Modifying this print record will generate unpredictable results.

struct TPrint **LWGetPrintRec(LWRef lwRef);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter. This
is passed to each of the UI routines which can call LWGetPrintRec().

LWGetBackground

LWGetBackground() returns a Boolean indicating whether the Print Dialog is currently configured for
background printing.

Boolean LWGetBackground(LWRef lwRef);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter. This
is passed to each of the UI routines which can call LWGetBackground().
The Boolean returned is true if the Print Dialog is currently configured for background printing
and false if the Print Dialog is currently configured for foreground printing.

LWGetPPDContext

The LaserWriter 8 Print Dialog code uses the PPDLib library built into PrintingLib to access the
PostScript Printer Description (PPD) data for the current printer. Filters may find it useful to have access
to the PPD data for the current printer and can obtain a pointer to the PPDContext for the current printer
by using the LWGetPPDContext routine.

struct PPDContextViel *LWGetPPDContext(LWRef lwRef);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter. This
is passed to each of the UI routines which can call LWGetPPDContext().
The value returned from the LWGetPPDContext call is a pointer to an opaque structure. This
pointer is appropriate for passing
to the exported routines available in the PPDLib library built into PrintingLib. See Further
References for more information about PPDLib.

LWGetJobCollection

The current print job collection is available to a filter through the LWGetJobCollection routine.

Collection LWGetJobCollection(LWRef lwRef);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter. This
is passed to each of the UI routines which can call LWGetJobCollection().
The return result from LWGetJobCollection() is the current job collection as maintained by the
Print Dialog code. This collection is owned by LaserWriter 8 and must not be disposed of by the
caller.

Note:
This job collection may not include all job settings since the Print Dialog code does not necessarily
update the job collection to reflect the current settings in the user interface until the Print Dialog is
dismissed.

LWGetPrInfoCollection

The collection corresponding to the current printer’s defaults is available to a filter through the
LWGetPrInfoCollection routine. The values in this collection may change during execution of the Print
Dialog since users can change the default settings. In addition, users can change printers in the Print
Dialog, and doing so changes the collection returned by LWGetPrInfoCollection() and disposes of

any collection returned by any previous calls to LWGetPrInfoCollection(). For these reasons, use of
the collection returned by LWGetPrInfoCollection() should be limited to the panel routine making the
call.

Collection LWGetPrInfoCollection(LWRef lwRef);

lwRef is an opaque reference to the LaserWriter driver that is currently executing the filter. This
is passed to each of the UI routines which can call LWGetPrInfoCollection().
The return result from LWGetPrInfoCollection() is the current printer’s default collection as
maintained by the Print Dialog code. This collection is owned by LaserWriter 8 and must not be
disposed of by the caller.

Special Considerations When Using the LW* Routines

The LW* routines described in this section are available only to the filter routines described in the section
User Interface APIs. The filter UI routines are each passed a LWRef argument, and that parameter is an
argument to each of the LW* routines.

The LW* routines are exported from the LW8UILib shared library contained in LaserWriter 8. This library
is only available while the LaserWriter 8 Print Dialog is present. This means that the LW* routines and
LW8UILib are not available during the filter’s execution at PostScript output time.

There are two approaches to allow a filter’s UI code to access the LW* routines. The simplest one is to
weak link to the “LaserWriter8.Lib” file (provided with the sample code) as part of building the filter. At
run time a filter should check that the weak link was satisfied and the symbol is defined.

For example:

if(LWGetPrInfoCollection != (void *)kUnresolvedCFragSymbolAddress)
prefs = LWGetPrInfoCollection(lwRef);

Note:
It is crucial to make the link weak because LW8UILib is not available during the filter’s execution at
PostScript output time. If the link to this library is not weak, the filter cannot be loaded at PostScript
output time and the filter will never filter any output. Debugging that situation will be difficult because
the filter cannot be loaded at filter output execution time if it has hard links to LW8UILib, and therefore
the filter output routines are not called.

A more complex approach to this issue is to satisfy the link to LW8UILib manually and do the symbol
resolution for the needed routine or routines using FindSymbol(). The sample code also demonstrates
this approach.

UI-Specific Resources

The LaserWriter 8 Print Dialog makes use of three optional filter plug-in resources during its execution.
The first two are the kPluginInfoType resource and vers resource. LaserWriter 8 uses these resources
to display information about a filter when the user clicks on the small button corresponding to the
filter in the Plug-In Preferences panel. Figure 4 below shows the information dialog for one of the
sample code filters.

Figure 4 - The Filter Information Dialog

The filter information dialog contains the name of the filter as contained in the
kPluginResourceInfoType resource described in the section Filter Plug-In Requirements above. Since
multiple filters may be contained in a single file and the filter name may have nothing to do with the name
of the file containing the filter, the file name containing the filter is also displayed. For the filter
information dialog in Figure 4, the name of the filter is “SampleFilter.debug,” and the file name is
“SampleFilter.debug.file”.

The filter information dialog also displays the version of the filter and some informative text describing
the filter. LaserWriter 8 obtains the displayed version information from the 'vers' resource ID number
1. It obtains the text for the information portion from the kPluginInfoType resource, ID
kPluginInfoID in the filter file. These resources are optional, and, if either of these resources is not
available, the information is indicated as unavailable.

kPanelDescriptionType Resource

When displaying a panel for a given filter, LaserWriter 8 can handle some of the management of the user
interface portion of the filter if it contains a kPanelDescriptionType resource describing the DITL ID.
The ID for the kPanelDescriptionType resource must match the ID of the DITL that it describes.

The kPanelDescriptionType resource lists which dialog items in the DITL are checkboxes and lists
each of the ranges of grouped radio buttons for that DITL. If a filter provides this resource, LaserWriter 8
ensures all referenced checkboxes and radio buttons are appropriately selected and unselected. This
resource is not required so, if a developer prefers to manage these aspects of the user interface, this
resource can be left out. The sample code provided with this technote supplies this resource.

Filter Private Collection Issues

Filters provide their settings for a given print job and their default settings for a given printer by
providing “hints” in the form of Collection Manager collection items. To avoid collisions between the
collection items used by different filters, the LaserWriter 8 Print Dialog code maintains a private
collection for each filter as described earlier in the section Filter Job Collection. LaserWriter 8 stores the

private collection corresponding to a filter’s job settings in the collection corresponding to the current job
as a collection item with tag kHintPlugInCollTag and uses the filter’s unique 4-byte signature as the
collection ID. The filter provides its unique 4-byte signature in the parameter *libSignatureP returned
from the routine psPanelPlugInLibInitData. Likewise, the filter’s printer specific defaults are stored
in a filter’s private collection that LaserWriter 8 adds to its collection specifying printer defaults using the
kHintPlugInCollTag tag and the filter’s unique 4-byte signature as the collection ID.

During the execution of the filter’s user interface code, LaserWriter 8 obtains the filter’s signature and
uses that signature to obtain the private job settings and printer default collections for that filter. When
LaserWriter 8 calls a filter’s psPanelInitData routine, the parameter plugInHints is the filter’s private
collection corresponding to the current job. A filter normally consults this collection for any print
job-specific defaults and adds collection items to this collection in order to configure the current print job.
Normally these collection items are added by a filter’s psPanelCloseData routine when the doIt
parameter passed to that routine is true, indicating that the user has clicked Print or Save in the Print
Dialog.

When LaserWriter 8 calls a filter’s psPanelSaveButton routine, the parameter plugInPrInfo passed is
the filter’s private collection corresponding to the current printer’s previously saved defaults. A filter
should add collection items to this collection in order to configure the current printer’s defaults
corresponding to the filter’s current UI settings.

Similarly, when LaserWriter 8 calls a filter’s psPanelPrSpecificInitData routine, the parameter
plugInPrInfo is the filter’s private collection corresponding to the current printer’s saved defaults. A
filter normally first consults the plugInHints collection (passed to psPanelInitData()) to determine if
there are any job specific settings and if there are not, it extracts printer default hints from the
plugInPrInfo collection and uses those defaults to configure its initial user interface.

Note:
Readers should be clear that the LaserWriter 8 Print Dialog code passes a given filter its own private
hints collection during UI execution time. However, it is up to the filter to obtain its own private
collection at filter output execution time, as described earlier in the section Filter Job Collection.

Note:
LaserWriter 8.7 does not prevent installation and execution of two or more copies of the same plug-in;
however, it does not properly manage separate collections for each instance since they share the same
signature. This also applies to two different plug-ins that have the same signature. In each of these
cases, LaserWriter 8 will store the filter’s private collection into the full job and printer default
collections using the collection tag value kHintPlugInCollTag and with the filter’s unique 4-byte
signature as the collection ID. In the case where two filters share the same 4-byte signature, when
LaserWriter 8 stores the private collection for filter B, it overwrites any already stored private collection
for filter A. A filter’s signature must be registered using Apple’s Creator Code Registration web page
given in the section Further References.

Printing Without a Print Dialog

A filter that has a user interface to allow a user to configure the printer for a given print job normally
expects that its private job collection providing the print job configuration is available at filter output
execution time. Since there are several ways a user can print without bringing up the Print Dialog, there
are situations where its private job collection may not be available. One way this can happen is when the
user selects the Print One menu item that many applications provide. This typically begins a print job
without bringing up the Print Dialog. In this situation, LaserWriter 8 extracts the saved private default
collection corresponding to a filter’s saved defaults for the target printer and copies it to the job collection
for this print job. If a filter has no saved defaults, there is no private collection for the filter’s signature in
the job collection for the print job. A filter should be prepared to handle this situation.

A similar situation exists when the user drags and drops a file onto a Desktop Printer and the Download

Manager handles the print job directly rather than launching an application. The Download Manager is a
new piece of the PostScript printing system added with MacOS 8.5 and LaserWriter/PrintingLib 8.6. The
Download Manager can handle some documents directly rather than requiring an application to do the
printing. When printing with the Download Manager, no Print Dialog is shown; instead, the print job is
configured using the default settings for the target printer. Again, filters need to be prepared to execute
when there is no saved private default collection corresponding to its filter signature. See the section
Further References for more information on the Download Manager.

Additional Filter User Interface Code Issues

A few additional issues involving the User Interface portion of the filter’s execution are worth
discussion.

Appearance Manager and Appearance Controls

LaserWriter 8.7 requires that the Appearance Manager is available in order to add the “Plug-In
Preferences” panel to the Print Dialog and execute any filter’s user interface code. This means that users
will not have the ability to enable filter plug-ins unless the Appearance Manager is available on their
System.

Apple has historically found that some applications use private control definitions that conflict with the
Appearance control definitions. LaserWriter 8 takes special action to avoid these conflicts when
displaying the Print Dialog. If the application or another open file above the application in the resource
chain contains a CDEF resource with a resource ID in the range of 1-26 inclusive, LaserWriter 8 acts as if
the Appearance Manager is not available and does not add the “Plug-In Preferences” panel to the Print
Dialog. In this situation, a filter can be enabled based on printer defaults but its user interface is not
available to the user. If a filter is enabled but its UI is not available in the Print Dialog for this reason, the
filter executes as described in the section Printing Without a Print Dialog above. Because filters only
appear in the LaserWriter 8 Print Dialog when there are no CDEF conflicts, at filter UI execution time a
filter can use Appearance controls and the Appearance API without concerns about these conflicts.

Note that for compatibility reasons, the LaserWriter 8 Print Dialog does not use the Appearance control
hierarchy. Developers should be aware that some Appearance controls, such as the list control box, do
not work properly without the Appearance control hierarchy.

Note:
As of this writing, LaserWriter 8.7 has been qualified for MacOS 9.0 only and refuses to run on
MacOS prior to MacOS 8.1. The requirement that the Appearance Manager exists limits the execution
environment for filters further.

Resource ID Ranges

Filters execute as part of an application’s invocation of the Printing Manager and the LaserWriter 8 print
driver. Because of this, it is important that filters ensure that their resource IDs do not conflict with any
application or system resource IDs. Accordingly, a filter’s resource IDs must be in the range of
driver-owned resources (that is -8192 to -4097), but the resources provided as part of a filter should be
in the ID range 6500-6101 to avoid conflicts with future revisions of the LaserWriter driver.

Resource Fork Issues

During the execution of the filter’s user interface code, there are potentially many other filters providing a
user interface. There are no restrictions on the numbering of resources beyond those described in the
section Resource ID Ranges above. Because there are potentially many filters executing in the Print
Dialog and each filter’s resource fork is open simultaneously, LaserWriter 8 is careful when obtaining
resources from each filter’s resource fork. LaserWriter 8 does not manage the resource chain prior to
calling a filter’s UI routines so each filter must be careful to ensure that its resource fork is the current
resource file any time that it accesses its resources. A filter should use CurResFile() and

UseResFile() carefully to save and restore the resource chain around any filter’s access to its resource
fork. The sample code demonstrates how to do this properly.

Filter Defined Criteria

The psPanelSetCriteria routine allows a filter to provide some simple criteria for determining whether
to present a user interface. These criteria, described in the section psPanelSetCriteria, are relatively
limited, and some developers may have much more complex criteria. The routine psPanelRegister can
be used by a developer to establish more complex criteria to determine whether to display a user
interface. For example, the SampleFilter described in the Sample Code section can be configured to
display its user interface only if the PPD file for the current printer has a *PCFileName that starts with the
letters “APL”, i.e., only printers from Apple Computer.

Sample Code

To aid developers, this technote supplies two sample filters as sample code, one called SampleFilter
and the other called SectionReport. SampleFilter demonstrates how to generate a user interface and
perform some typical filtering operations on the PostScript output data. SectionReport provides an
introduction into the PSPosition data supplied to a filter at PostScript output time and can be used as a
diagnostic aid as well.

SampleFilter

The SampleFilter source code demonstrates how to generate a user interface in the LaserWriter 8 Print
Dialog and how to manage that user interface. SampleFilter configures its initial user interface to reflect
any saved printer defaults, allows the user to print using those settings, and saves its settings as the
current printer defaults when the user clicks the Save Settings button in the Print Dialog. The filter’s
psOutputFilterPreFlight routine uses the settings in the filter’s private job collection to configure the
filter’s output execution.

The filter operations demonstrated by the SampleFilter source include the following:

Inserting data into the output stream before a given PSSubsection.
Inserting data into the output stream after a given PSSubsection.
Removing data from the output stream corresponding to a given PSSubsection.
Replacing data in the output stream corresponding to a given PSSubsection.
Detecting a given page in the output stream.

SampleFilter does not generate a PostScript output stream that is likely to be considered noticeably
different than that usually generated by a print job. It provides no particular feature or benefit to a user
but is simply a demonstration of how to accomplish the typical functions an output filter might want to
perform.

One feature of the SampleFilter source code worthy of discussion is that it demonstrates some use of
the PSUtilsLib library built into PrintingLib to aid in generating PostScript output code. PSUtilsLib
contains routines similar to printf() that are useful for performing formatted writes of PostScript
output data. Appendix A of Technote 1171: LaserWriter 8.6: How to Write a Converter Plug-in for the
Download Manager documents the motivation behind and use of these routines.

SectionReport

The SectionReport sample filter demonstrates use of the PSPosition data passed to a filter’s
psOutputFilterWrite routine. (The PSPosition data is discussed in the section Tagged Data above
and also in Appendix A: PSPosition Data Details.) For each print job for which it is enabled, the
SectionReport filter generates an output log file containing the information passed to it in the
PSPosition structure. The output file is placed in the user’s preferred “Job Documentation Folder” as

specified in the Job Logging panel of the Print Dialog. By default, this folder is called “Printing Logs
Folder” and is placed on the root of the boot volume. The output file produced by the SectionReport
filter is titled “jobname.dsc” where jobname is the name of the print job.

The SectionReport filter is useful in two ways. One use is to look at the source code to gather a better
understanding of the section, subsection, and info fields of the PSPosition data structure. Of particular
interest is the type of data in the info field of the PSPosition structure for various PSSubsection
values. A second use of the filter is as a diagnostic tool to understand the filter chaining and output. This
filter is frequently useful in debugging as well. The data seen by the SectionReport filter and therefore
generated into its log file depends on its position in the output filter chain. For example, compare its
output when it appears before SampleFilter as opposed to after. As a reminder, filters can be reordered
in the Plug-In Preferences panel of the LaserWriter 8 Print Dialog by grabbing the “gripper” at the
left of each filter name and dragging that filter to its new place in the order. See Figure 1.

Note:
The SectionReport sample filter has no user interface and therefore no custom signature or private
collection. Filters that have no user interface do not need a custom signature.

Issues Relevant to the Provided Sample Code

The SectionReport filter is a CFM library that has its global data marked as shared. This means that the
filter is loaded only once and all instances of the filter share the CFM table of contents and global data.
This is a memory savings since only one instance of its globals need exist.

The SampleFilter filter is treated differently. SampleFilter is provided as a CodeWarrior project that
is configured so that the data section of the library generated is not shared among all instances of the
library. (This is set in the CodeWarrior project-specific Settings Menu: the PPC PEF panel; the
checkbox labeled Share Data Section. Unchecking the check box ensures each instance has private
global data.) This setting means that the library is loaded for each instance of the filter and the library’s
global data is not shared among instances.

This is important for the SampleFilter filter because it weak links to the LaserWriter8.Lib file as
described in the section Special Considerations When Using the LW* Routines above. If SampleFilter
used shared global data, the resolution of symbols would only be done once, when the library first loads.
If the library were to first load as part of a print job executing in background, any LW* routine links
would not be resolved because LW8UILib is not available at filter output execution time. If the Print
Dialog were then brought up for another print job at that point, the LW* routine links would remain
unresolved. By marking the global data so that it is not shared, the symbol resolution occurs each time
the library is loaded, and each instance of the library is independent.

Back to top

Summary

PostScript output filter plug-ins offer the ability to insert into, modify, or replace the PostScript
language output stream generated by LaserWriter and PrintingLib version 8.7. These filter plug-ins can
present a user interface in the LaserWriter 8 Print Dialog, offering an integrated way for users to choose
settings for each print job and to save defaults on a printer by printer basis. PostScript output filter
plug-ins in LaserWriter 8.7 provide a powerful mechanism for printer manufacturers and Third Party
developers to add support for printer specific features and add new functionality without any changes to
LaserWriter 8 itself.

Further References

Technote 1115: The Extended 'PAPA' Resource
Technote 1129: The Settings Library
Technote 1144: Writing Custom Hoses For LaserWriter 8.6
Technote 1169: The Download Manager
Technote 1170: The Printing Plug-ins Manager
Technote 1171: LaserWriter 8.6: How to Write a Converter Plug-in for the Download Manager
Inside Macintosh, The Collection Manager
Adobe Technical Note #5001, PostScript Language Document Structuring Conventions
Specification
Apple’s Creator Code Registration web page

Back to top

Acknowledgments

Thanks to John Blanchard, Richard Blanchard, Paul Danbold, Ingrid Kelly, Howard Miller, Dave
Polaschek, and Glenn Voloshin.

Downloadables

Acrobat version of this Note (how many K?)

Appendix A: PSPosition Data Details

Filters receive data through their psOutputFilterWrite routine. The data written to the filter is tagged
by a pointer to a PSPosition data structure. The PSPosition structure contains section, subsection,
info, and ID fields. The Tagged Data section above describes the PSPosition structure in some detail.
This Appendix discusses the connection between the subsection and info field in more detail.

The subsection field of the PSPosition structure is of type PSSubsection and describes the details of
the PostScript output corresponding to the data write call. PSSubsection values typically correspond to
Document Structuring Conventions (DSC) data, but there are additional values which suit some
specialized needs. The meaning of the PSSubsection values which correspond to DSC data will not be
discussed in detail here; readers are directed to Adobe’s Document Structuring Conventions document for
information about the DSC.

The info field is either a NULL pointer or a pointer to data whose type is defined for the PSSubsection
value in the subsection field. The data (if any) pointed to by the info field coincides with the data being
written to the output stream. For example, when writing the data “%%Pages: 4” to the print stream, the
writer puts the PSSubsection value kSubPages into the subsection field of the PSPosition and the info
field is either NULL or points to an SInt32 with the value 4. The header file “PSStreamInfo.h” contains
the list of PSSubsection values and the proper data type for the info field for each PSSubsection.

Note:
Even for subsections for which there is an info data type defined, it is legal for the info field to be NULL
for that subsection. Filters examining the info field should first check that the info field is not NULL
before assuming that the info data points to a structure of the type listed.

Of particular importance is the subsection kSubAnon. kSubAnon tags PostScript code which is not one of
the other subsections and whose structure is unspecified. The only way to acquire further knowledge of
PostScript output tagged by this subsection is to parse the data. The bulk of a given print job consists of

data tagged by the subsection kSubAnon.

Table 1 below presents the connection between a subsection value and the info data for that
PSSubsection value. Table 1 presents this information for only those subsections that have a DSC
equivalent.

Table 1

Subsection DSC Comment info data points to

kSubPSAdobe %!PS-Adobe-x.y Fixed

kSubPSAdobeEPS %!PS-Adobe-x.y EPSF-a.b EPSFVersion

kSubBoundingBox %%BoundingBox DSCBBox

kSubCopyright %%Copyright Str255

kSubCreator %%Creator Str255

kSubDate %%CreationDate Str255

kSubDocData %%DocumentData DSCDocumentData

kSubEndComments %%EndComments none defined

kSubFor %%For Str255

kSubLangLevel %%LanguageLevel SInt32

kSubOrientation %%Orientation DSCOrientation

kSubPages %%Pages SInt32

kSubPageOrder %%PageOrder DSCPageOrder

kSubRouting %%Routing Str255

kSubTitle %%Title Str255

kSubContinue %%+ DSCContinuationData

kSubBeginProlog %%BeginProlog none defined

kSubEndProlog %%EndProlog none defined

kSubBeginSetup %%BeginSetup none defined

kSubEndSetup %%EndSetup none defined

kSubBeginPageSetup %%BeginPageSetup SInt32 (page #)

kSubEndPageSetup %%EndPageSetup SInt32 (page #)

kSubPage %%Page DSCPage

kSubPageBoundingBox %%PageBoundingBox DSCBBox

kSubPageOrientation %%PageOrientation DSCOrientation

kSubPageTrailer %%PageTrailer SInt32 (page #)

kSubTrailer %%Trailer none defined

kSubEOF %%EOF none defined

kSubDocMedia %%DocumentMedia DSCData

kSubDocNeededRes %%DocumentNeededResources DSCData

kSubDocSuppliedRes %%DocumentSuppliedResources DSCData

kSubDocFonts %%DocumentFonts DSCData

kSubDocNeededFonts %%DocumentNeededFonts DSCData

kSubDocSuppliedFonts %%DocumentSuppliedFonts DSCData

kSubProofMode %%ProofMode DSCProofMode

kSubBeginDoc %%BeginDocument DSCData

kSubEndDoc %%EndDocument none defined

kSubIncludeDoc %%IncludeDocument DSCData

kSubBeginFeature %%BeginFeature DSCFeature

kSubEndFeature %%EndFeature none defined

kSubIncludeFeature %%IncludeFeature DSCFeature

kSubBeginFile %%BeginFile Str255

kSubEndFile %%EndFile none defined

kSubIncludeFile %%IncludeFile Str255

kSubBeginFont %%BeginFont DSCData

kSubEndFont %%EndFont none defined

kSubIncludeFont %%IncludeFont DSCData

kSubBeginResource %%BeginResource DSCData

kSubEndResource %%EndResource none defined

kSubIncludeResource %%IncludeResource DSCData

kSubBeginColorspace %%BeginResource: ColorSpace <profilename> Str255

kSubDocProcessColors %%DocumentProcessColors DSCProcessColors

kSubPSAdobeQuery %!PS-Adobe-3.0 Query Fixed

kSubViewOrientation %%ViewingOrientation DSCViewingOrientation

kSubDocFontsAtEnd %%DocumentFonts: (atend) none defined

kSubDocNeededFontsAtEnd %%DocumentNeededFonts: (atend) none defined

kSubDocNeededResAtEnd %%DocumentNeededResources: (atend) none defined

kSubDocSuppliedFontsAtEnd %%DocumentSuppliedFonts: (atend) none defined

kSubDocSuppliedResAtEnd %%DocumentSuppliedResources: (atend) none defined

Table 2 presents the equivalent information for those subsections that have DSC comments that are
defined as part of the Open Structuring Conventions portion of the DSC specification. The prefix %ADO is
registered by Adobe Systems. The prefix %RBI is registered by RBI Software Systems. Apple has
created and uses a number of Open Structuring Comments based on these prefixes. These subsections
are fairly self-explanatory.

Table 2

Subsection %RBI DSC Comment info data points to

kSubBeginBitmapFont %RBIBeginBitmapFont Str255

kSubEndBitmapFont %RBIEndBitmapFont none defined

kSubBeginTrueTypeFont %RBIBeginTrueTypeFont Str255

kSubEndTrueTypeFont %RBIEndTrueTypeFont none defined

kSubBeginTrueTypeScaler %RBIBeginFontRasterizer none defined

kSubEndTrueTypeScaler %RBIEndFontRasterizer none defined

kSubRBINumCopies %RBINumCopies: SInt32 (-1 =unknown)

kSubRBINupNess %RBINupNess DSCNupNess

kSubRBIPCFileName %RBIPCFileName Str255

kSubRBIProduct %RBIPPDFileVersion Str255

kSubBeginPageSlotInvocation %RBIBeginPageSlotInvocation none defined

kSubEndPageSlotInvocation %RBIEndPageSlotInvocation none defined

kSubIncludePageSlotInvocation %RBIIncludePageSlotInvocation none defined

kSubRBIBeginNonPPDFeature %RBIBeginNonPPDFeature: main option DSCFeature

kSubRBIEndNonPPDFeature %RBIEndNonPPDFeature none defined

kSubRBIIncludeNonPPDFeature %RBIIncludeNonPPDFeature: mainoption DSCFeature

kSubIncludeStartNup %RBIIncludeStartnup DSCNupData

kSubRBIDocSuppliedFonts %RBIDocumentSuppliedFonts: DSCData

kSubRBIDocSuppliedFontsAtEnd %RBIDocumentSuppliedFonts: (atend) none defined

kSubADOImageableArea %ADO_ImageableArea: fixed fixed fixed fixed DSCFixedBBox

kSubAnnotateFontKey %RBIFontKey: (fontname) 10point bold DSCFontAnnotation

Table 3 lists a number of subsections that don’t correspond to any DSC comment at all. Each listed
subsection is discussed briefly after Table 3.

Table 3

Subsection code emitted info data points to

kSubStartNup ... startnup DSCNupData

kSubNupFinalPage finalpage none defined

kSubInfoTitle /Title(document name)def Str255

kSubInfoPages /Pages 22 def SInt32 (-1 = Unknown)

kSubInfoCreator /Creator(Finder: LaserWriter 8 8.7)def Str255

kSubInfoDate /CreationDate(1:52 PM Thursday, March 11, 1999)def Str255

kSubInfoFor /For(John Doe)def Str255

kSubPageSaveLevelSetup pmSVsetup none defined

kSubPageSaveLevelRestore endp none defined

kSubPSBegin psb none defined

kSubPSEnd pse none defined

kSubPSBeginNoSave no code emitted none defined

kSubPSEndNoSave no code emitted none defined

kSubSetJobStatusStr (username; page: 1 of 4)setjob DSCJobStatus

kSubPageGStateSetup initializepage none defined

kSubPageMTSMatrixSetup mTSsetup none defined

The subsection kSubStartNup tags code emitted when printing with N-up layout printing or printing
with 1-up layout with borders. The contents of any supplied DSCNupData data describe the layout
specified. The contents of the PostScript invocation code vary depending on what is being invoked.

The subsection kSubNupFinalPage tags code near the end of an N-up layout print job. The purpose of
this PostScript code is to ensure that any partially completed N-up page is ejected.

The subsections kSubInfoTitle, kSubInfoPages, kSubInfoCreator, kSubInfoDate, and
kSubInfoFor tag code that LaserWriter 8/PrintingLib emits to fill in a dictionary called dscInfo that it
creates after the header comments and before emitting its prolog code.

The subsection kSubPageSaveLevelSetup tags the code that creates the page save level.

The subsection kSubPageSaveLevelRestore tags the code that does the page-level restore.

The subsections kSubPSBegin and kSubPSBeginNoSave tag the execution of an application’s invocation
of the QuickDraw PicComments PostScriptBegin and PostScriptBeginNoSave, respectively. The
data stream after kSubPSBegin (or PostScriptBeginNoSave) and before kSubPSEnd (or
kSubPSEndNoSave) is application supplied PostScript language code, not code that is generated by
LaserWriter 8/PrintingLib. The kSubPSBegin subsection differs from the kSubPSBeginNoSave
subsection in that, with the former, the PostScript output contains code to create a PostScript-save level
so that when the application emits the PostScriptEnd PicComment the state prior to the
PostScriptBegin is restored.

The subsection kSubSetJobStatusStr tags code which defines the PostScript job name and other data
which become part of the status string returned by a printer when executing a print job.

The subsection kSubPageGStateSetup tags code which sets up the page’s QuickDraw coordinate
system for a given print job.

The subsection kSubPageMTSMatrixSetup tags code which ensures that the mTS matrix matches the
QuickDraw coordinate system for the page.

Note:
Apple reserves all section and subsection values not listed in the header file “PSSubsection.h” and may
define new section and subsection values in the future. Filters writers should be prepared to encounter
section or subsection values not defined to date and to act appropriately, typically by treating such data
as the section kSectAnon or the subsection kSubAnon.

Back to top

To contact us, please use the Contact Us page.

Updated: 05-October-1999

Technotes | Contents
Previous Technote | Next Technote

