Technote 1179
PostScript Output Filters For LaserWriter 8.7

by David Gelphman
Apple Worldwide Developer Technical Support

CONTENTS L
. aserWriter 8 version 8.7 introduces the concept of

Organization i) .) o
PostScript output filters and their use during printing.

Filter Basics PostScript output filters are code fragments that live in
the data fork of files that reside within the “Printing

Filter Output APls Plug-ins’ folder contained in the Extensions folder.
These code fragments can intercept the PostScript output

User Interface APIs data stream generated by LaserWriter 8 and add, remove,
or modify the data before it is transmitted to the output

Sample Code device. Through this type of modification, a PostScript
output filter can implement customized control of features

Summary for a specific printer model or can implement new user
features across arange of PostScript printers without

Downloadables requiring changesto LaserWriter 8. The remainder of
this document refers to PostScript output filters as

Appendix A “filters” or “plug-ins.”

In addition to filtering the PostScript output data stream,
afilter can adso present auser interface in the LaserWriter
8 Print Dialog for configuring thefilter’s print job
parameters. The filter’ s user interface can consist of one
or more panels with functionality similar to the built-in
panels already present, including the ability to save
different settings for each printer.

Organization

This document is organized into several major sections. The section Filter Basics discusses how filters
work with LaserWriter 8. Thisincludes discussion of the user interface for enabling and manipulating
filters, information about the operation of afilter when it filters the PostScript output data, and what the
user interface for a specific filter might look like.

The section Filter Output APIs discusses the filter routines that are called by LaserWriter 8 and
PrintingLib as part of the generation of the PostScript language output. All filtersimplement at least one
required routine; otherwise, the filter serves no useful purpose and is not given an opportunity to filter
output.

The section User Interface APl s discusses the filter routines that LaserWriter 8 calls as the user interacts
with the Print Dialog.

The section Sample Code discusses the two sample filters provided as part of this technote.

Appendix A: PSPosition Data Details provides detailed information about how the PostScript output
datathat filters receive istagged.

Back to top
Filter Basics

Basic User Interaction

Usersinstall filtersin MacOS 8.5 and later by dragging them onto the System Folder. Thefileis
autorouted to the “Printing Plug-ins” folder in the “ Extensions’ folder. When one or morefiltersis
installed, the LaserWriter 8.7 Print Dialog adds a new panel titled “ Plug-In Preferences’ which displays
all of the PostScript output filters contained in the “ Printing Plug-ins’ folder (see Figure 1 for an
example). Aswith all of the LaserWriter 8 settings in the Print Dialog, the settings in this panel are saved
on a printer-by-printer basis.

2.7
Printer: | Behind Gelphman s | Destination: | Printer | 4|
| Plug-In Preferences s |
w [Print Time Filters % [
J 4 SampleFilter |
J M SectionReport H|

| Save Settings | | Cancel | |Pm'.'t|

| Save Settings | | Cancel | |F'wr.'i5|

Figure 1 - The Plug-1n Preferences Panel

Users can enable or disable each filter using the checkbox associated with that filter. By default, all filters
are disabled for each printer. In addition to enabling and disabling each filter individually, users can
disable all filters by unchecking the top-most checkbox labeled Print Time Filters. When thisbox is
unchecked, al filter controls become inactive. Checking this box enables the controls for the filters but
does not ater their on/off state. Each filter aso has an information button, which brings up amodal dialog
displaying filter version information and a textual description of thefilter. The order of thefiltersin this
panel can be altered by dragging the “gripper” at the left of the filter name. Filters execute in the order they
are listed in this panel. The meaning of this order is described in the next section.

The set of active filters and the ordering of the filters affect the current print job. The user can save this set
and order using the Save Settings button on the dialog. Doing this saves the set and order for the
currently chosen desktop printer.

Filter Ul Basics

A filter can have a user interface in the Print Dialog for controlling its settings. Once the filter is enabled in
the Plug-In Preferences panel, LaserWriter 8 calls the exported routines, which control the filter’s user
interface. Thefilter can examine the conditions it is running under and determine whether LaserWriter 8
should display its user interface. A given filter can specify that its user interface be displayed in one or
more panels.

The namesin the panels menu are listed in three sections. The first section lists those panels which are
built into LaserWriter 8. Thisisfollowed by a section of panels which correspond to printer-specific
features for the current printer as specified by the PostScript Printer Description (PPD) file. The last
section of the menu consists of any panels added by PostScript output filters. A given filter can add zero
or more panels.

Figure 2 isa screen shot of the LaserWriter 8.7 Print Dialog with an output filter enabled that has one
custom panel whose menu istitled “ Sample Filter Settings.” The menu item “Imaging Options’
corresponds to a panel generated for the PostScript Printer Description (PPD) file for the current printer.

2.7
Printer: | Behind Gelphman = Destination: | Printer 4 |

~ General =
Background Printing
Color Matching 1 Collated
Cover Page
Font Setlings
Job Logging To:
Layout
Paper Handlin
P::’g-m Prefergn ces oS from: [Auto Select Y

Save as File ige from: | Cassette (Standard)
Imaging Options ling from: | Cassette (Standard)

- Sample Filter Settings

[Cave Setimae | rancel 1 [T print 1l |

NEREF g N AFrdl. R F P L L RaTLEIINIIT W F | |

Sample Filter Settings

| Save Settings | | Cancel | |F'wr.'i5|

Figure 2 - The Print Dialog Panels Menu

Selecting the menu item corresponding to afilter’s panel displaysthat panel. A ssmple example of afilter’'s
panel is shown in Figure 3. A filter has control over the layout and look of the contents of the panel within
the area between the panel popup menu and the line above the buttons at the bottom of the dialog. The
filter handles the user interaction with its controls and saves its configuration into the print job datathat is
passed to it when it isfiltering PostScript data. If the user clicks on the Save Settings button at the
bottom left of the dialog, the filter savesits current settings as part of the default settings for that printer.

Details of the User Interface portion of the API for filters can be found in the section User Interface APIs
below.

27
Printer: | Behind Gelphman + | Destination: | Printer % |

| Sample Filter Settings :]

Replacement Text for | sample text
wEFor Comment:

[+ Generate Custom Header Comment

Special Pages Comments:
@ None

_» Page 1 Only
_» All Pages

| Save Settings | | cancel |

Figure 3 - A Sample Filter Panel

Back to top

Filter Output APIs

This section describes the filter APIsthat are called at the time a communication channel with a PostScript
output device is established and during the emission of the PostScript data into the communication
channel. Thisisthe point where afilter plug-in actually has the chance to filter the PostScript output data.
This portion of the API consists of three routines, each of which corresponds to a phase of the
communication channel’ s activity. The remainder of this document will use the phrase “filter output

execution” to refer to these parts of afilter’s execution. The phrase “filter output routines’ refersto these
routines.

Thefirst phase occurs when the communication channel is being opened and the chain of output filtersis
being constructed. At this point, afilter's psOutputFilterPreFlight routineiscalled to allow afilter
to initidize itself. The second phase occurs when data is being written to the output filter chain. Each
write to a PostScript output filter generates acall to afilter’ spsOutputFilterWrite routine. Thefinal
phase occurs when the communication channel to the output device is closed and thefilter chainistorn
down. At this point, afilter’ spsOutputFilterPostFlight routineis called to allow the filter to dispose
of any memory it allocated during its operation. A filter is only required to export the routine
psOutputFilterWrite in order to be added to thefilter chain asit is being created; the other two
routines are optional .

psOutputFilter PreFlight

If afilter exports apsOutputFilterPreFlight routing, itiscaled asthefilter chainis created for a
print job, allowing thefilter to initialize itself. It is not arequired routine, athough it islikely that most
filters will implement and export thisroutine. Thisroutine is called only once per print job. The prototype
for thisroutineis:

OSStatus psOutputFilterPreFlight(PSOutputFilterRef filter,
Collection joblInfo, Handle papaH, void **refconP);

e filter isthePSOutputFilterRef corresponding to thisfilter. A PSOutputFilterRef isan
opaque structure used to reference a given PostScript output filter. Thisreference is a parameter
to severa routines that afilter calls as part of its operation.

e joblnfo isaCollection Manager collection containing information about the print job whichis
in progress. (See the section Further References for more information on the Collection
Manager.) The jobInfo collection contains collection items that are used to configure the
settings of the current print job. The collection items LaserWriter 8 uses are described by the
header file “Hints.h” which is provided as part of the sample code. In addition to the collection
items used for configuring the usual print job parameters, the jobInfo collection also contains
any datathat afilter's user interface provides. Thisis described in the section Filter Job
Collection below.

e papaH isaHandleto the "PAPA*" data corresponding to the target output device. The SettingsLib
library built into PrintingLib contains routines for obtaining information about the "PAPA™ data.
See the section Further References for more information on the "PAPA* dataand SettingsLib.

e refconP isapointer toa(void *) parameter. A preflight routine can alocate its private data
and return a pointer to that datain *refconp. Thisdatawill be passed to other filter output
routines as they are called. Thisallows afilter to avoid having global datarelated to aprint job.

The call to psOutputFilterPreFlight() can be used for severa purposes. The jobInfo collection and
papaH handle can be examined to determine whether afilter actually wantsto operate for this print job

and to configure the filter if it should. psOutputFilterPreFlight() isaso the place to alocate private
data for this print job.

If afilter exports the psOutputFilterPreFlight routine, thisroutine must return noErr; otherwise, the
filter isnot added to thefilter chain. Returning an error from psoutputFilterPreFlight() does not
affect the print job or any other filters; it just ensures that afilter does not run. If
psOutputFilterPreFlight() returns an error, neither psoutputFilterPostFlight() nor
psOutputFilterWrite() iscaled for this print job

ThepsOutputFilterPreFlight routineis called before the communication channel with the output
deviceisfully established. This means that no data can be written during execution of
psOutputFilterPreFlight(). Because the communication channel isn't established and no job queries
have been generated, the communication channel characteristics aren’t fully known. Specifically, it is not

known at this point whether binary communication is supported for this job.

Note:
The knowledge as to whether the communication channel supportsClean7Bit, Clean8Bit, Or Binary
communication isn't available until after any query job completes.

psOutputFilter PostFlight

ThepsoutputFilterPostFlight routine, if it isexported by afilter, is called as the filter chainistorn
down at the end of the print job, and it allows the filter to dispose of any memory allocated during its
preflight and filter output execution. It isnot arequired routine, although most filters will implement and
export thisroutine. Any filter that allocates memory during a preflight routine should export this routine.
The psoutputFilterPostFlight routineis called only once per print job and is called only if the
psOutputFilterPreFlight routine returned noErr. The prototype for thisroutineis.

OSStatus psOutputFilterPostFlight(PSOutputFilterRef filter,
void *refcon);

e filter isthePSOutputFilterRef corresponding to thisfilter. A PSOutputFilterRef isan
opaque structure used to reference a given PostScript output filter.

e refcon isthe datathat was returned by the filter's psoutputFilterPreFlight routine. This
data should be disposed of appropriately.

psOutputFilterWrite

A PostScript output filter must export a psOutputFilterWrite routinein order to be inserted into the
chain of output filters. Once afilter is successfully in the chain of output filters, the
psOutputFilterWrite routineis called for every write of PostScript datato the output filter. The
psOutputFi lterWrite routine must write the appropriate data to the next filter in the chain using the
routinepsWriteNextFilter which isexported by the shared library PSuti IsLib built into PrintingLib.
This process will be described shortly.

The prototype for the psOutputFi IterWrite routine that must be exported by afilter is:

OSStatus psOutputFilterWrite(PSOutputFilterRef filter, void *refcon,
const void *data, long nBytes, const struct PSPosition *posP);

e filter isthePSOutputFilterRef corresponding to thisfilter. A PSOutputFilterRef isan
opaque structure used to reference a given PostScript output filter.

e refcon isthe datathat was returned by afilter'spsOutputFilterPreFlight routine. If afilter
has no psoutputFilterPreFlight routine, refcon iSNULL.

e data isapointer to the datathat is being written to the filter. data may be NULL in some cases.

e nBytes isthe number of bytes pointed to by data being written to the filter. nBytes may be
FLUSHWRITE (-1) in some cases.

® posP isapointer to aPSPosi tion structure that describes or tags the data passed to this
invocation of psOutputFilterWrite(). Thetagging of dataand the PSPosi tion structure are
described below in the section Tagged Data.

The simplest thing afilter can do isto forward al PostScript data to the next filter in the chain. Doing
only that would pass the data unmodified to the next filter and would insert no additional data. If all
filtersin thefilter chain behaved like this, the PostScript output data sent to the output device would be

unmodified and would be exactly the same asiif there were no filters.

Another simple thing that afilter could do isto not pass any data to the next filter in the chain. If any filter
in thefilter chain faillsto write a piece of datato the next filter, that datais not sent to the PostScript
output device. Clearly, filters must carefully handle the data written to them or else the print job will
produce incorrect results.

psWriteNextFilter

A filter writes data to the next filter in the chain by calling the psWriteNextFi I'ter routine. Thisroutine
should only be called from afilter’ s psOutputFi I terWrite routine. Its prototypeis.

OSStatus psWriteNextFilter(PSOutputFilterRef filter,
const void *data, long nBytes,
const struct PSPosition *posP);

e Tilter isthePSoutputFilterRef corresponding to thefilter calling pswWriteNextFilter().
A PSOutputFi l'terRef is an opaque structure used to reference a given PostScript output filter.

e data isapointer to the datato write to the next filter in the chain.

e nBytes isthe number of bytes pointed to by datato write to the next filter. nBytes may be
FLUSHWRITE (-1) if thefilter isforwarding data passed to it from the previous filter.

® posP isapointer to aPSPosi tion structure that describes or tags the data being passed to this
invocation of psWriteNextFilter(). Thetagging of data and the PSPosi tion structure are
described below in the section Tagged Data.

Filtering Data

There are anumber of operationsthat afilter' s psOutputFi l'terWrite routine might perform on agiven
cdl:

Pass the data on unaltered, without adding additional PostScript data to the output stream.
Insert data into the output stream before writing the data passed to it.

Insert data into the output stream after writing the data passed to it.

Ignore the data passed and not forward it to the next filter. Any piece of data not forwarded to
the next filter is not sent to the PostScript output device.

Modify the data passed it prior to writing it to the next filter in the chain. Note that any
modifications made to the data passed to afilter must be made to a copy of that data.

If afilter wantsto omit PostScript from the stream, it should not call psWriteNextFilter() with that
data but should instead return noErr. To add datato the stream, afilter cals psWriteNextFilter()
with the data to be added to the stream. All of the scenarios listed above are demonstrated in the sample
code provided with this technote and are described in the Sample Code section below.

The most likely action taken by afilter isto insert data into the PostScript output stream at a certain point
in the job stream; however, the filter output API is powerful enough to allow significant changesto the
output stream asit isbeing filtered.

Tagged Data

A filter receives PostScript output as the data parameter passed to its psOutputFi lterWrite routine.
Without any additional information, afilter would have to parse this data to determine its contents. To
reduce or eliminate the need to parse data, the parameter posP is also passed in. This parameter isa
pointer to aPSPosi tion structure containing tagging information that describes this data.

PSPosition Structure

A PSPosi tion structure allows generators of PostScript output to communicate structural information
about the data they are writing. When PostScript generators properly use the PSPosition structure, it
allows software clients to acquire knowledge of the data being written, without them having to parse the
PostScript data. An example of thisisthe way the LaserWriter 8 driver reports status during printing by
looking at the PSPosi tion data written to the output stream by the PrintingLib routines which convert
QuickDraw drawing into PostScript data. Another example is the status that the Download Manager and
its clients report as alow-level converter module generates its PostScript data. (The Download Manager
is discussed further in the section Printing Without A Print Dialog and in the section Further References.)
Thistagging information is loosely designed around Adobe’' s PostScript Document Structuring
Conventions (DSC) comments.

The PSPosition structure is defined as:

typedef struct PSPosition{
/// The section of the document the caller is currently emitting.
PSSection section;

/// The subsection of the document the caller is currently emitting.
PSSubsection subsection;

/// More information about the current section:subsection
void *info;

/// A numeric i1dentifier for this PSPosition
SInt32 id;
}PSPosition;

Thesection field is of type PSSection and identifieswhat “major” part of the job isin progress. The
values of thisfield can be kSectAnon, kSectQueryJob, kSectCoverPage, kSectJob, and kSectPeek.
These sections correspond to the different parts of the job, as controlled by the PostScript generator,
typically LaserWriter 8 PrintingL.ib.

Thesubsection field is of type PSSubsection and details the PostScript output corresponding to the
datawrite call. PSSubsection valuestypically correspond to DSC data, but there are additional values
which suit some specialized needs.

Theinfo field is either aNULL pointer or a pointer to data whose type is specified for the PSSubsection
value in the subsection field. The data (if any) pointed to by the info value coincides with the data being
written to the output stream.

For example, when writing the data “ %%Pages. 4” to the print stream, the writer puts the PSSubsection
valuekSubPages into the subsection field of the PSPosition, and theinfo field is either NULL or points
to an SInt32 with the value 4. Appendix A: PSPosition Data Details discusses the possible
PSSubsection vaues and their corresponding info fields in more detail. The header file
“PSStreaminfo.h” containsthe list of PSSubsection values and the proper data type of theinfo field for
each PSSubsection.

Note:
ThesectionReport filter provided in the Sample Code portion of this document generates areport of
thePSPosi tion info data generated as part of each print job.

ThelD fieldisan sInt32. Thisisused by PostScript generators to emit output for a given subsection
over aseries of writes, yet till identify the data as one conceptua block of data. Thisis done by
performing the consecutive writes with the same subsection, info, and ID vaues. When the data being

written corresponds to a new subsection, the ID value is then updated. Doing writes in this fashion
allows software clients looking at the ID field to notice when the PSPosi tion data may have changed
without having to look at any other fields in the structure. For example, a client (such asthe LaserWriter
8 status code) monitoring the position information being written to the stream has atest smilar to the
following:

if(Jobstatus->lastPosld !'= positionP->id){
. process the new position we are now seeing

// update the our notion of the last position we saw
jobstatus->lastPosld = positionP->id;

}

The ID field of the PSPosition isof particular importanceto filter writers. Frequently afilter wants to
inject some data before or after a particular point in the PostScript output stream. Such data should never
be injected into the middle of a sequence of data writes corresponding to the same PSPosi tion. For this
reason, it isimportant to track the ID field appropriately. Thisissue is addressed in detail by the sample
filters provided as part of this technote.

psFilter SetPSPosition

Filters frequently inject new data into the PostScript output stream and, when doing so, they call the
psWriteNextFi l'ter routine exported by the PSuti IsLib library in PrintingLib. Careful readers will
note that the psWriteNextFi I ter routine also takes a pointer to aPSPosi tion structure. When
forwarding existing data passed to afilter, the PSPosi tion structure should also be forwarded.
However, if afilter isadding or modifying data, it needs to reflect the new data by properly providing a
PSPosi tion structure that describes this new data. In almost al cases, the data has the same PSSection
value asthe original datawrite but it may correspond to a different PSSubsection value and therefore to
different info dataand 1D values.

When inserting data into the PostScript output stream, it isimportant that the PSPosi tion used to tag the
data be uniquely identified; otherwise, filters later in the chain and other portions of the output
communication code can confuse newly inserted data with other data. To create unique PSPosition data,
filters usethe PSUti IsLib routinepsFi lterSetPSPosition. Thisroutineis defined as:

OSStatus psFilterSetPSPosition(PSOutputFilterRef filter,
PSPosition *posP,
PSSection section,
PSSubsection subsection,
void *info);

Thisfunction is used by an output filter to prepare aPSPosi tion structure for writing a new piece of
data corresponding to a new section, subsection, and/or info data. psFi IterSetPSPosition() setsthe
PSPosition pointed to by posP to the section, subsection, and info data passed in, and setsthe ID field
in thePSPosi tion structure to aunique value in preparation for afilter write (or sequence of writes)
corresponding to the new subsection/info value. Filters must use this routine to identify the data that they
write as new and unique.

Filter Job Collection

Itislikely that the features supported by a PostScript output filter will have a user interface associated
with those features. The user interface programming interface for filtersis described in detail in the
section User Interface APIs. The user interface code can store settings into the job collection which is
passed as the jobInfo collection to psOutputFilterPreFlight(). Thisdiscussion does not apply to

filters without any user interface or job specific settings.

To avoid conflicts between filters, the user interface code requires each filter to have a unique 4-byte
signature. (This signature is not necessarily the same as the Finder creator for the plug-in, but it can be.)
The user interface code uses this signature to ensure that afilter’ s Ul settings are saved as a unique
collection itemin the jobInfo collection. Specifically, each filter hasits own private Collection
Manager collection in which to store the job settings from its Ul code. The LaserWriter 8 Print Dialog
code stores each filter’ s private collection as aflattened handle into the job collection with the collection
tag value kHintPlugInCol 1 Tag and uses the filter' s unique 4-byte signature as the collection ID.

To extract its settings at filter output execution time, the filter must obtain its flattened collection from
the joblnfo collection passed to psOutputFi lterPreFlight(), and then the collection must be
unflattened. At that point, the filter can access any collection itemsit may have stored in its private
collection. The sample code provided with this technote demonstrates the way to store settingsin the
user interface code and how to extract them at filter output execution time.

General Considerations During Filtering

Filters must always be careful to pass any errors returned from their filter writes back to their caler. By
doing so, any errors generated during the filter operation bubble back up the filter chain and back to the
software initiating the write of the PostScript output. If afilter failsto do so, errorswill be lost; this can
have many undesirable results.

A filter must be well behaved should any datathat it is expecting in the output stream not be present.
There are anumber of reasons why the data passed to afilter might differ from what is normally
expected. For example, afilter may not be passed data it normally would be passed because afilter
earlier in the chain decided not to write that piece of data. A situation where afilter may see datathat is
unexpected is when the Download Manager is generating the PostScript output data. The PostScript
data generated by the Download Manager and its plug-ins can differ significantly from that generated by
LaserWriter 8 for standard print jobs.

Itismost likely that afilter would use the PSPosi tion data passed to the psOutputFilterWrite
routine to determine what the datais, however, afilter isfree to parse the data passed in, should that be
appropriate to afilter’ sfunction. Note, however, that for some writes to afilter, the data parameter
passed to psOutputFilterWrite() may beNULL. Filters must be careful to skip parsing of the datain
thissituation. Similarly, there are cases where the nBytes parameter passed to
psOutputFilterWrite() isnegative. Not only must filters detect this and avoid parsing datain this
case, but it isimportant to detect the case where the nBytes parameter is the constant FLUSHWRITE
(-1), since such writes must always be forwarded to the next filter and any errors returned
appropriately.

During filter output execution, filters have no direct way to give up time to other processes on the
system; their only way to give up timeisto call psWriteNextFilter() which ultimately callsthe
printing application’sidle procedure. Filters must limit the amount of time they spend inside agiven call
to psOutputFilterWrite() So that the user’sinteractivity with their computer during printing is
maintained. Filters aren’t appropriate for computationally intensive tasks or for tasks which require
gathering large amounts of data over a network connection.

Some filters may want to modify the PostScript data passed to them. If afilter wants to modify the data
before writing it to the next filter, it must first copy the data passed to it and modify its copy of the data.

Filter Plug-In Requirements

LaserWriter 8 uses the Printing Plug-ins Manager to manage PostScript output filters. In order to be
used with the Printing Plug-ins Manager, afilter must have aresource of type

kPluginResourcelnfoType and ID kPluginResourcelnfolD. If the filter does not contain this
resource, it cannot be used and isignored. Filters are aso required to have a standard "cfrg* resource

describing the code fragments in the data fork of thefile.

ThekPluginResourcelnfoType resource contains information about how many shared libraries are
contained in the file, and, for each shared library, the type of plug-in that it is, the subtype that the
library handles and the library name. PostScript filters have the type field of this resource set to
kPSOutputFilterPluginType and the subtype set to kPSOutputFi lterSubtype. Note that the type
referred to here is not the Finder type but the field of the kPluginResourcelnfoType resource. There
are no constraints on the library name beyond those imposed by the Code Fragment Manager.

ThekPluginResourcelnfoType resourceis defined as follows (using Rez syntax):

type "PLGN" {
integer = $$Countof(PluginLiblnfo);
array PluginLibInfo {
literal longint; /* Type */
literal longint; /* subtype */
pstring; /* library name */
align word;
}:
}:

A ResEdit Resourcerer® template resource (> tMPL*") for the kPluginResourceInfoType resource is
contained within PrintingLib versions 8.6 and later.

ThePluginLiblnfo structurein C syntax is:

typedef OSType SettingsDataType;
typedef OSType SettingsDataSubType;

short num; // the number of shared libraries this "PLGN" describes
PluginLibInfo libInfo[num];

typedef struct PluginLiblnfo{

SettingsDataType type;
SettingsDataSubType subtype;
unsigned char libraryName[]; // pascal string

// word aligned
}PluginLiblInfo;

e type isthetype of plug-in that is described by thisPluginLibinfo.

® subtype isthe subtype of datathat can be handled by the plug-in described by this
PluginLiblInfo.

e libraryName isthe library name of the code fragment in the plug-in file described by this
PluginLiblInfo.

Note:
A single file can contain multiple plug-in libraries. Because of this, the libraryName provided in the

kPluginResourcelnfoType resource isthe name shown for a PostScript output filter in the Plug-In
Preferences panel in the Print Dialog (Figure 1).

Printing Plug-ins Folder

Asdescribed earlier, filter plug-insfor LaserWriter 8.7 reside in the “Printing Plug-ins” folder in the
Extensions folder. It is recommended that these plug-ins have a Finder type of "bird" sincefiles of this
type are autorouted on most recent system configurations. The system configurations which support
auto-routing for the "bird" filetype are MacOS 8.5 and later with PrintingLib 8.6.5 or later installed and
Desktop Printing enabled. For these systems, the “ Printing Plug-ins” folder is known to the Folder

Manager astype "pplg-.

For those systems where the Folder Manager does not recognize the “ Printing Plug-ins’ folder, the
Printing Plug-ins Manager provides routines for obtaining the name and location of the folder. See the
section Further References for information on the Printing Plug-ins Manager.

Back to top

User Interface APIls

This section describes the User Interface portion of afilter’s APl and relates only to the filter’ s execution
while the Print Dialog box is displayed to the user. This aspect of thefilter’s execution will be referred to
here as the “filter Ul execution.” Some filters do not have auser interface in the Print Dialog, and this
section does not apply to them.

The Ul APIsbreak down into afew general categories.

Criteriaroutines: psPanelSetCriteria and psPanelPluglnLibKeepRunning.
psPanelSetCriteria() alowsafilter to set criteriaasto when to run. If afilter is enabled by the user
but thepsPanelSetCriteria routine indicates afilter should not run, the remaining routines listed here
are not executed. The psPanelPluglnLibKeepRunning routine allows arunning filter to determine
whether to continue running if the user switches printersin the Print Dial og.

Plug-in initialization and finalization routines: psPanelPluglnLiblnitData and
psPanelPluglnLibCloseData. The psPanelPluglnLiblnitData routine allows afilter to register its
unique signature with the LaserWriter 8 Print Dialog code and to initidize itself. The
psPanelPluglnLibCloseData routine alows afilter to clean up beforeit is unloaded.

Panel registration routines: psPanelRegister and psPanelAddMenu. psPanelRegister() alows

afilter to register one or more panels to appear in the Print Dialog, and psPanelAddMenu() specifiesa
menu name for each panel that is registered.

Panel-specific routines that are called for each panel, independent of the panel’s
visibility: psPanel InitData, psPanelPrSpecificlnitData, psPanelPrSpecificCloseData, and
psPanelCloseData. Theseroutines allow afilter to properly initialize and dispose of its panel-specific
data, some of which may be related to a given printer and some of which may not.

The routines containing “PrSpecific” in their name are called for the initialy selected printer and again
when the user changes from one printer to another in the Print Diaog.

Panel-specific routines that are called when a panel becomes visible or was visible and goes away:
psPanel Init, psPanelPrSpecificlnit, psPanelPrSpecificClose, and psPanelClose. These
routines alow afilter to set the user interface itemsin a panel to reflect the underlying data settings. The
routines containing “PrSpecific” intheir name are caled for the initially selected printer and again when
the user changes from one printer to another while the panel isvisible.

Routines called during user interaction with agiven panel: psPanel I'tem and psPanelFilter.
psPanel Item() is called when the user clickson an itemin afilter’ s panel. psPanelFilter() iscaled
from LaserWriter 8's Print Dialog filter function when the user interacts with afilter’s panel.

A routine that is called to check datarangesfor apanel: psPanelCheckRange. psPanelCheckRange() IS

called when the panel is about to go away (e.g., the user switches between panels or the Print Dialog is
about to go away) or the user clicksthe Save Settings button. This routine allows afilter to verify its
settings before they are saved or the panel Ul is going to go away.

A routine that is called when the user wantsto save defaults. psPanelSaveButton. When the user
chooses “ Save Settings’, afilter's psPanelSaveButton procedure is called, regardless of whether or not
thefilter's panel isvisible.

Note:
These routines are only called when the LaserWriter 8.7 Print Dialog is present. They are not called
during filter output execution.

Note:
The Ul API routines described here are not necessarily called for al print jobs. See the section Printing
Without a Print Dialog which describes how this can happen.

psPanelSetCriteria

Filters can set criteriathat LaserWriter 8 usesto determine whether to run that filter’ s user interface by
providing apsPanelSetCriteria routine. The prototype for the psPanelSetCriteria routineis:

OSStatus psPanelSetCriteria(LWRef IwRef, Collection col,
short resFRef);

e IwRef isan opague reference to the LaserWriter driver that is currently executing the filter.
e col isacollection that may befilled in with thefilter’ s running criteria.
e resFRef isthe fRef corresponding to the filter’ s resource fork.

A given filter can specify certain criteriato determine whether it should be run.
There currently are two criteriathat can optionally be specified:

ThePCFileName of atarget PPD file that must be the current PPD file for the target printer. For example,
if afilter requiresthat the *PCFi IeName main keyword in the PPD file must have the value
“APLW320.PPD”, the filter can specify this requirement by adding a collection item with tag value
kHintPanelPCFileNameTag and ID kHintPane IPCFi leNameId with the data“ APLW320.PPD” and a
data length of 11 bytes.

The minimum LaserWriter driver version that afilter requires. Thiscriteriaisrealy for future
expandability since the only LaserWriter driver version as of thiswriting which supports PostScript
output filter plug-insis LaserWriter 8.7. This requirement is specified with the collection item tag, ID
given by kHintPanelDriverVersTag and kHintPanelDriverVersld.

Failure to add either or both of these collection itemsis equivalent to saying that these criteria are not
important for that filter. For example, the sample code does not specify the kHintPaneIPCFi leNameTag
sinceit does not restrict itself to a specific PPD. This ability isintended to allow printer manufacturers to
target afilter to a specific hardware product.

ThepsPanelSetCriteria routineis caled before any other filter routine except for any CFM shared
library initialization routine a plug-in has.

psPanelPluglnLibKeepRunning

If the user changes printers while a given filter isloaded and running and the defaults for the new printer
indicate thefilter is enabled, that filter' s psPanelPlugInLibKeepRunning routineis caled to allow it to
determine whether to continue running. This routine allows the plug-in to look at the current execution
environment to determine whether to continue to run.

OSStatus psPanelPluglnLibKeepRunning(LWRef IwRef,

Collection col,
Boolean *keepRunningP,
void *libDataP);

e IwRef isan opaque reference to the LaserWriter driver that is currently executing the filter.

e col isacollection containing items specifying the PPD *PCFi leName and driver version. The
meaning of these collection itemsisidentical to those discussed in the description of
psPanelSetCriterial).

® keepRunningP isapointer to aBoolean. The value returned in *keepRunningP determines
whether afilter wishesto continue to run.

e libDataP pointsto the library private data returned by the plug-in's
psPanelPluglnLiblnitData routine (discussed below). Note that
psPanelPluglnLibKeepRunning() isonly called when afilter is aready loaded and running.
Thereforeits psPanelPluglinLiblInitData routine has aready been caled and the libDataP

data exists.

Note:
Thecol collection parameter may or may not contain any specific collection item. Aswith al collections

provided to the any of the filter APIs, afilter must be prepared that a given collection item will not exist
and GetCollectionltem() or GetCollectionltemHdl () Will return col lectionltemNotFoundErr.

psPanelPluginLiblnitData

The LaserWriter 8 Print Dialog code calls afilter’ spsPanelPluglnLiblnitData routine once after a
filter has been loaded for usein the Print Dialog. A filter returns its unique 4-byte signature and can

initialize itself.

OSStatus psPanelPluginLiblnitData(LWRef IwRef, void **libDataH,
short resFRef, unsigned long *libSignatureP);

e IwRef isan opague reference to the LaserWriter driver that is currently executing the filter.

e libDataH isapointer to a(void *) that can befilled in with any library specific data. The data
returned in *1ibDataH will be passed to the psPanelRegister,
psPanelPluglnLibKeepRunning, and psPanelPluglnLibCloseData procedures.

e resFRef isthefRef of the library’s open resource fork.

libSignatureP must be filled in with the filter’ s unique 4-byte signature. This signature must be unique
to the plug-in to distinguish it from other plug-ins. It is used to store afilter’s private hints collection into

the job collection and printer defaults collection.

Note:
Filter signatures must be unique or else afilter may conflict with another filter with the same signature

(as described in the section Filter Private Collection Issues). To ensure that afilter has aunique
signature, it is necessary that devel opers register the 4-byte signature using the standard method for
registering Finder creator codes. See the section Further References for Apple’s Creator Code

Registration web page.

psPanelPluglinLibCloseData

The LaserWriter 8 Print Dialog code cals afilter’ s psPanelPluglnLibCloseData routine immediately
before the plug-in is unloaded by the Print Dialog. The filter can be unloaded for several reasons: the
Print Dialog is going away, the user has switched printers and thisfilter is not enabled for the new
printer, or the filter's psPane IPlugInLibKeepRunning routine indicates it should no longer run.

void psPanelPluglInLibCloseData(LWRef IwRef, void *libDataP,

Collection joblInfo, Boolean *doltP);

e IwRef isan opague reference to the LaserWriter driver that is currently executing thefilter.

e libDataP isapointer to thefilter datareturned by psPanelPluginLiblnitData() inits
*1ibDataH parameter.

e joblInfo isthefully formed job collection representing the user settings from the Print Dialog.
'(Ij'hi_s collection is not the private collection containing only the filter’ s collection items added

urin

e its exgcuti on, but isinstead the full job collection containing all the job configuration data
specified in the Print Dialog.

e doltP isapointer to aBoolean indicating the reason for unloading the filter. If *doItP IS true,
the library is being unloaded because the user clicked on the Print or Save button to dismiss the
Print Dialog. If *do1tP is false, thefilter is being unloaded for other reasons. A filter can
change the value in *do1tP to false to cause the dialog to be canceled if that is appropriate. A
filter might change the value in *do1tP in response to an aert the filter presents while the dialog
isgoing away. The sample code provided with this technote demonstrates this.

psPanelRegister

Once afilter’s criteria have been passed, thefilter isloaded and has the opportunity to add one or more
panelsto the Print Dialog. To accomplish this, LaserWriter 8 calls the filter' s psPane IRegister routine
repeatedly until the filter indicates it wants to stop adding panels. Thisroutine also requires afilter to
specify the data needed for each panel.

OSStatus psPanelRegister(LWRef IwRef, PanelRef panelRef,
Collection col, Boolean *addPanelP,
const Rect *panelRectP, short *ditlIDP,

Handle *ditlHP, void **dataH, void *libDataP);

e IwRef isan opague reference to the LaserWriter driver that is currently executing thefilter.

e panelRef isauniquePanelRef corresponding to thiscall of psPanelRegister(). Thisalows
aplug-in with multiple panels to distinguish which panel is being referenced by a given routine
call, such aspsPanelAddMenu().

e col isacollection specifying the current PPD *PCFi leName and driver version as described
above for the routine psPanelPlugInLibKeepRunning.

e addPanelP pointsto aBoolean. A filter should set *addPanelP to true if it wishesto add this
panel. If afilter sets *addPanelP to true, the panel is added and psPanelRegister() iscalled
again to see whether to add additional panels. When the filter is done adding panels, it should set
*addPanelP to false.

e panelRectP pointsto aRect that contains the bounds of the areathat a panel has available for

any dialog items that afilter may be adding dynamically. The panel’s supplied DI1TL (0,0)
coordinate is mapped by LaserWriter 8 to the left, top corner of thisRect.

e ditlIDPisapointer toabITL ID corresponding to the DITL for the panel being added. If the
DITL for the panel corresponding to panelRef isbeing specified by aDITL ID, *ditl1DP
should be set to the DITL ID for thispanelRef. If the DITL isbeing specified directly asanin
memory handleinstead, *dit11DP should not be changed.

e ditlHP isapointer to aHandle corresponding to the DITL for the panel being added. If the
DITL isbeing specified directly as an in memory handle, afilter should set *di tIHP to the
handle corresponding to the DITL for thispanelRef. If instead the filter is specifyingaDITL ID
in*ditl1DP, *ditlHP should not be changed.

e dataH isapointer to a(void *) that can befilled in with any panel-specific data appropriate for
thispanelRef. It isfrequently convenient to allocate private data for each panel. A panel should
return any private datait allocates for thispanelRef in *dataH. This private panel datais passed
to each of the routines that are specific to agiven panel.

e libDataP isthefilter's private dataasreturned in *1ibDataH by
psPanelPluglinLibInitData().

psPanelAddM enu

The LaserWriter 8 Print Dialog code calls psPanelAddMenu() for each panel that afilter adds. It iscalled
when the panel menu gets built the first time, and each time the printer is changed and the filter continues
to run.

OSStatus psPanelAddMenu(LWRef IwRef, PanelRef panelRef,
void *dataP, StringPtr panelName,

unsigned long bufSize, Boolean *addIltP);

IwRef is an opaque reference to the LaserWriter driver that is currently executing the filter.

panelRef isthe panel reference value for the panel to which this call corresponds.

dataP isthe panel’ s private data, as returned by psPanelRegister() for thispanelRef.

panelName isapointer to a buffer to receive the text specifying the name for the panel menu

item. A filter should fill in paneIName with a Pascal string corresponding to the menu name. It

should store at most bufSize bytesin this buffer, including the length byte.

e bufSize isthelength of the pane IName buffer. A filter should never store more than this
number of bytesinto the pane IName buffer.

e addltP isapointer to aBoolean indicating whether to add a menu for this panel. Returning

true in*add1tP causes a menu item to be added. Returning false in *add 1 tP removes any

menu associated with this pane IRef. Returning false may make senseif the user chooses a

new printer and afilter continues to run but a particular panel should not appear for the new

printer.

psPanellnitData
The LaserWriter 8 Print Dialog code calls psPanel InitData() once for each panel that has been

registered by psPanelRegister(). LaserWriter 8 callsthis routine to allow the filter to configure itself
for the print job diaog.

OSStatus psPanellnitData(LWRef IwRef, PanelRef panelRef,

void *dataP, Collection pluglnHints);

IwReT is an opagque reference to the LaserWriter driver that is currently executing the filter.
panelRef isthe panel reference value for the panel to which this call corresponds.

dataP isthe pand’s private data, as returned by psPanelRegister() for thispanelRef.
pluglnHints isafilter’s private collection representing the current job. This collection
potentially contains any job-specific hints that the filter has saved the last time this print job was
generated, or may be empty indicating that the current print job has no saved initia job
configuration.

Note:
ThepluglnHints collection passed to psPanel InitData() does not contain the saved defaults for the

current printer but may contain any saved defaults for the current print job.

psPanelCloseData

The LaserWriter 8 Print Dialog code calls psPanelCloseData() once for each panel asthefilter is
unloaded. Thisisthe last panel-specific routine to be called before the filter is unloaded and isthe last

opportunity for afilter to dispose of any panel-specific private data.

OSStatus psPanelCloseData(LWRef IwRef, PanelRef panelRef,
void *dataP, Boolean dolt);

e IwRef isan opaque reference to the LaserWriter driver that is currently executing the filter.

e panelRef isthe panel reference value for the panel to which this call corresponds.

e dataP isthe panel’s private data, as returned by psPanelRegister() for thispanelRef. This
panel private data should be disposed of in psPanelCloseData().

e doltistrue if theuser isdismissing the dialog with Print or Save button, and false if the
filter is being unloaded for any other reason.

psPanel Pr SpecificlnitData

The LaserWriter 8 Print Dialog code calls psPanelPrSpecificlnitbata() onceinitialy for each panel
after the filter isloaded, and again each time the user changesto anew printer and the filter continuesto

run.

OSStatus psPanelPrSpecificlnitData(LWRef IwRef, PanelRef panelRef,
void *dataP, Collection pluglnPrinfo);

IwReT is an opagque reference to the LaserWriter driver that is currently executing the filter.
panelRef isthe panel reference value for the panel to which this call corresponds.

dataP isthe pandl’s private data, as returned by psPanelRegister() for thispanelRef.
pluglnPrinfo isacollection that contains only hints that have been previously saved for this
printer by thisfilter. This collection represents the settings previously saved by a plug-in when
the user chose Save Settings. It should be used to initialize the panel settings for the current
printer if there are no saved job defaultsin the plugInHints collection passed to

psPanel InitData().

psPanel Pr SpecificCloseData

The LaserWriter 8 Print Dialog code calls psPanelPrSpecificCloseData() for each panel eachtimea
printer is deselected (i.e., anew printer is selected) or the dialog is dismissed.

OSStatus psPanelPrSpecificCloseData(LWRef IwRef, PanelRef panelRef,

void *dataP, Boolean dolt);

e IwRef isan opaque reference to the LaserWriter driver that is currently executing the filter.

e panelRef isthe panel reference value for the panel to which this call corresponds.

e dataP isthe panel’s private data, as returned by psPanelRegister() for thispanelRef.

e doltistrue if theuser isdismissing the dialog with the Print or Save button, and false if

the user cancels the Print Dialog or switches to another printer.

psPanellnit

When agiven pandl is selected in the LaserWriter 8 Print Dialog panel menu, it becomesvisible. As part
of making a panel visiblein the Print Dialog, LaserWriter 8 appends that panel’sDITL to the dialog.
Before making the panel visible, LaserWriter 8 calls psPanel Init(), allowing thefilter to initidize its
user interface settings to match those reflected by the job and printer defaults.

OSStatus psPanellnit(LWRef IwRef, PanelRef panelRef, void *dataP,

DialogPtr dp, short offset);

IwRe T is an opagque reference to the LaserWriter driver that is currently executing the filter.
panelRef isthe panel reference value for the panel to which this call corresponds.

dataP isthe pandl’s private data, as returned by psPanelRegister() for thispanelRef.

dp isthe dialog pointer for the Print Dialog.

offset isthe value which must be added to the dialog item numbersin the DITL in order to
access those items in the Print Dialog when the panel isvisible. As part of adding afilter’ sdialog
itemsto the Print Dialog, those items are renumbered.

For example, if afilter hasaTextEdit field asitem number 1 initsDITL, when the panel
appears visible, that item’s dialog item number is (offset + 1).

psPanelClose

The LaserWriter 8 Print Dialog code calls psPanelClose() each timethispanel’sDITL isabout to be
removed from the Print Dialog and the panel will no longer be visible.

OSStatus psPanelClose(LWRef IwRef, PanelRef panelRef, void *dataP,

DialogPtr dp, short offset);

IwRef is an opaque reference to the LaserWriter driver that is currently executing thefilter.
panelRef isthe panel reference value for the panel to which this call corresponds.

dataP isthe panel’ s private data, as returned by psPanelRegister() for thispanelRef.
dp isthe dialog pointer for the Print Dialog.

offset isthe value which must be added to the dialog item numbersin the DITL in order to
access those items in the Print Dialog when the panel isvisible.

psPanel Pr Specificl nit

The LaserWriter 8 Print Dialog code calls psPanelPrSpecificlnit() after psPanel Init() eachtime
this panel’ sDITL has been appended to the Print Dialog, but before the panel isvisible. It isalso called
each time anew printer is selected while the panel isvisible.

OSStatus psPanelPrSpecificlnit(LWRef IwRef, PanelRef panelRef,

void *dataP, DialogPtr dp, short offset);

e IwRef isan opague reference to the LaserWriter driver that is currently executing the filter.
e panelRef isthe panel reference value for the panel to which this call corresponds.

e dataP isthe panel’s private data, asreturned by psPanelRegister() for thispanelRef.
°

°

dp isthe dialog pointer for the Print Dialog.
offset isthe value which must be added to the dialog item numbersin the DITL in order to
access those items in the Print Dialog when the panel isvisible.

psPanel Pr SpecificClose

The LaserWriter 8 Print Dialog code calls psPanelPrSpecificClose() beforepsPanelClose() each
timethispanel’sDITL is about to be removed from the Print Dialog and will no longer be visible. Itis
also called each time a printer is deselected while the pand isvisible.

OSStatus psPanelPrSpecificClose(LWRef IwRef, PanelRef panelRef,
void *dataP, DialogPtr dp, short offset);

e IwRef isan opague reference to the LaserWriter driver that is currently executing thefilter.
e panelRef isthe panel reference value for the panel to which this call corresponds.

e dataP isthe panel’s private data, as returned by psPanelRegister() for thispanelRef.
[]

[J

dp isthe dialog pointer for the Print Dialog.
offset isthe value which must be added to dialog item numbersin the DITL in order to access

those items in the Print Dialog when the panel isvisible.

psPanelltem

psPanel I'tem gets called each timeModalDialog() reports an item hit in afilter’ s panel.

OSStatus psPanelltem(LWRef IwRef, PanelRef panelRef, void *dataP,

DialogPtr dp, short item, short offset, short ctlval);

IwRef is an opaque reference to the LaserWriter driver that is currently executing thefilter.
panelRef isthe panel reference value for the panel to which this call corresponds.

dataP isthe panel’ s private data, as returned by psPanelRegister() for thispanelRef.

dp isthe dialog pointer for the Print Dialog.

i tem isthe dialog item number of the item hit.

offset isthe value which must be added to dialog item numbersin the DITL in order to access
those items in the Print Dialog. To compare item with the item numbers stored in the DITL,

offset must first be subtracted from item.
ctlval isthe current value of the contral, if the item hit isacontrol.

psPanelFilter

psPanelFilter() getscaled from the Print Dialog's dialog filter function when this pandl isvisible.

OSStatus psPanelFilter(LWRef IwRef, PanelRef panelRef, void *dataP,

DialogPtr dp, short offset, EventRecord *eventP,

short *itemHitP, Boolean *weHandledltP);

e IwRef isan opague reference to the LaserWriter driver that is currently executing the filter.

e panelRef isthe pand reference value for the panel to which thiscall corresponds.

e dataP isthe panel’s private data, asreturned by psPanelRegister() for thispanelRef.

e dp isthedialog pointer for the Print Dialog.

e offset isthe value which must be added to dialog item numbersin the DITL in order to access
thoseitemsin the Print Dialog. To compare item with the values stored in the DI TL, offset must
first be subtracted from item.

® eventP isapointer to the EventRecord for the event passed to the LaserWriter 8 Print Dialog’'s
diaog filter function.

e itemHitP isapointer to the dialog item number hit. Its meaning is the norma meaning for a
dialog filter function passed to ModalDialog().

e weHandledItP isapointer to aBoolean indicating whether thisfilter function handled the
event. If theevent isfiltered

e by thiscal to psPanelFilter, *weHandledltP should be set to true; otherwise, it should be
set to false.

psPanelCheckRange

The LaserWriter 8 Print Dialog code calls psPane ICheckRange () when afilter’s pandl isvisible and the
user is changing to another panel, or if the panel is visible and the user pressesthe Print or Save button
in the Print Dialog. It isalso called when the panel isvisible and the user selectsthe Save Settings
button to save defaults for the current printer. A plug-in filter can inspect the current panel settings and
alert the user if any settings are out of the acceptable range, then halt any of the events which caused

psPanelCheckRange() to be called.

OSStatus psPanelCheckRange(LWRef IwRef, PanelRef panelRef,

void *dataP, DialogPtr dp, short offset, Boolean *doitP);

IwRef is an opaque reference to the LaserWriter driver that is currently executing thefilter.
panelRef isthe panel reference value for the panel to which this call corresponds.

dataP isthe panel’ s private data, as returned by psPanelRegister() for thispanelRef.

dp isthe dialog pointer for the Print Dialog.

offset isthe value which must be added to dialog item numbersin the DITL in order to access
those itemsin the Print Dialog.

doitP isapointer that indicates whether the data in the panel iswithin range. Returning true in
*doitP indicates that the datais OK; returning false indicates that the data needs to be corrected
before the panel is changed, the dialog is dismissed, or the settings can be saved.

psPanel SaveButton

The LaserWriter 8 Print Dialog code calls psPanelSaveButton() when the user hitsthe Save
Settings button in the Print Dialog to save the current settings as the new default settings for the current
printer. psPanelSaveButton() iscalled for all panels regardless of whether the panel isvisible at the
time the user selects Save Settings.

OSStatus psPanelSaveButton(LWRef IwRef, PanelRef panelRef,

void *dataP, Collection pluglnPrinfo);

e IwRef isan opague reference to the LaserWriter driver that is currently executing the filter.
e panelRef isthe panel reference value for the panel to which this call corresponds.
e dataP isthe panel’s private data, asreturned by psPanelRegister() for thispanelRef.

e pluglInPrinfo isthefilter’s private collection into which the filter should store its current
settings.

A Bit More On the Filter Panel Routines

The routines specific to agiven pand provide alot of flexibility and power in order to allow afilter to
configure itself and manage its user interface. To allow thisflexibility, there are a number of routines,
and, at first glance, it isn’t obvious when each routineis called. It may be helpful to clarify how some of
the routines associated with individual panels are called and in what order. This discussion assumes that

the examplefilter’ s criteriaindicate that it should run and keep running when the user changes printers
and that the user’ s configuration allows the filter to run with each printer.

Here’' swhat happens when the dialog comes up. This occurs once, regardless of whether afilter’ s panel
isvisble:
psPanel InitData

psPanelPrSpecificlnitData (with the current printer’s data)

Here' swhat happensif the printer gets changed and thefilter’ s panel is not visible:

psPanelPrSpecificCloseData
psPanelPrSpecificlnitData (for the new printer’s data)

Here' swhat happens when the filter’ s panel becomes visible:

psPanellInit
psPanelPrSpecificlnit

Here’' swhat happensiif the printer gets changed and the filter’s panel isvisible:

psPanelPrSpecificClose
psPanelPrSpecificCloseData

psPanelPrSpecificlnitData (for the new printer’s data)
psPanelPrSpecificlnit

Here' s what happens when the panel was visible but is now about to go away:

psPanelPrSpecificClose
psPanelClose

Here’' swhat happens when the dialog goes away and the filter’s panel isnot visible:

psPanelPrSpecificCloseData
psPanelCloseData

Here' swhat happens when the dialog goes away and thefilter’s panel isvisible:

psPanelPrSpecificClose

psPanelClose
psPanelPrSpecificCloseData

psPanelCloseData

LaserWriter 8 APIs Available To a Filter’s Ul Code

While the LaserWriter 8 Print Dialog is present, afilter can use the LWRef passed to the Ul routines
described above to access various pieces of data that may aid in configuring the filter or determining
whether to execute. These routines are described here and are collectively referred to as the Lw* routines.

Note:
TheLw* routines described in this section are only for use during afilter’s Ul execution, not during a

filter’s output execution.

LWGetPrintRec
LwWGetPrintRec() returns ahandle to the print record the application passed to PrJobDialog(),

bringing up the Print Dialog which is executing the filter. The handle returned is owned by LaserWriter 8
and should not be disposed of by the caller. The returned print record should be considered read-only.

Modifying this print record will generate unpredictable results.

struct TPrint **LWGetPrintRec(LWRef IwRef);

e IwRef isan opaque reference to the LaserWriter driver that is currently executing thefilter. This
is passed to each of the Ul routines which can call LwGetPrintRec().

L WGetBackground

LWGetBackground() returns aBoolean indicating whether the Print Dialog is currently configured for
background printing.

Boolean LWGetBackground(LWRef IwRefT);

e lIwRef isan opaque reference to the LaserWriter driver that is currently executing thefilter. This

is passed to each of the Ul routines which can call LwGetBackground().
e TheBoolean returned istrue if the Print Dialog is currently configured for background printing

and false if the Print Dialog is currently configured for foreground printing.

LWGetPPDContext

The LaserWriter 8 Print Dialog code uses the PPDLi b library built into PrintingLib to access the
PostScript Printer Description (PPD) datafor the current printer. Filters may find it useful to have access
to the PPD data for the current printer and can obtain a pointer to the PPDContext for the current printer

by using the LWGetPPDContext routine.

struct PPDContextViel *LWGetPPDContext(LWRef IwRef);

e IwRef isan opaque reference to the LaserWriter driver that is currently executing thefilter. This
Is passed to each of the Ul routines which can call LWGetPPDContext().
e Thevauereturned from the LWGetPPDContext call isa pointer to an opaque structure. This

pointer is appropriate for passing
e to the exported routines available in the PPDLi b library built into PrintingLib. See Further

References for more information about PPDLib.

LW GetJobCollection

The current print job collection is available to afilter through the LWGetJobCol lection routine.

Collection LWGetJobCollection(LWRef IwRef);

e IwRef isan opague reference to the LaserWriter driver that is currently executing the filter. This

is passed to each of the Ul routines which can call LwGetJobCol lection().
e Thereturn result from LWwGetJobCol lection() isthe current job collection as maintained by the
Print Dialog code. This collection is owned by LaserWriter 8 and must not be disposed of by the

caller.

Note:
Thisjob collection may not include all job settings since the Print Dialog code does not necessarily

update the job collection to reflect the current settings in the user interface until the Print Dialog is
dismissed.

LWGetPriInfoCollection

The collection corresponding to the current printer’ s defaults is available to afilter through the
LWGetPriInfoCol lection routine. The valuesin this collection may change during execution of the Print
Dialog since users can change the default settings. In addition, users can change printersin the Print
Dialog, and doing so changes the collection returned by LwGetPrinfoCol lection() and disposes of

any collection returned by any previous callsto LWGetPrinfoCol lection(). For these reasons, use of
the collection returned by LwGetPriInfoCollection() should be limited to the panel routine making the
call.

Collection LWGetPrinfoCollection(LWRef IwRef);

e IwRef isan opague reference to the LaserWriter driver that is currently executing the filter. This
is passed to each of the Ul routines which can call LWwGetPrinfoCol lection().

e Thereturn result from LWGetPrinfoCol lection() isthe current printer’s default collection as
maintained by the Print Dialog code. This collection is owned by LaserWriter 8 and must not be
disposed of by the caller.

Special Considerations When Using the Lw* Routines

TheLw* routines described in this section are available only to the filter routines described in the section
User Interface APIs. Thefilter Ul routines are each passed a LWRef argument, and that parameter is an
argument to each of the Lw* routines.

TheLw* routines are exported from the LW8UILib shared library contained in LaserWriter 8. Thislibrary
isonly available while the LaserWriter 8 Print Dialog is present. This means that the Lw* routines and
LwsUILib are not available during the filter’ s execution at PostScript output time.

There are two approaches to allow afilter’s Ul code to access the Lw* routines. The ssimplest oneisto
weak link to the “LaserWriter8.Lib" file (provided with the sample code) as part of building the filter. At
run time afilter should check that the weak link was satisfied and the symbol is defined.

For example:

if(LWGetPrinfoCollection != (void *)kUnresolvedCFragSymbolAddress)
prefs = LWGetPrinfoCollection(IwRef);

Note:

Itiscrucia to make the link weak because LW8UILib isnot available during the filter’ s execution at
PostScript output time. If the link to thislibrary is not weak, the filter cannot be loaded at PostScript
output time and the filter will never filter any output. Debugging that situation will be difficult because
the filter cannot be loaded at filter output execution timeiif it has hard linksto LwW8UILib, and therefore
the filter output routines are not called.

A more complex approach to thisissue isto satisfy the link to LwguILib manually and do the symbol
resolution for the needed routine or routines using FindSymbol (). The sample code a so demonstrates
this approach.

Ul -Specific Resour ces

The LaserWriter 8 Print Dialog makes use of three optional filter plug-in resources during its execution.
Thefirst two are the kPluginInfoType resource and vers resource. LaserWriter 8 uses these resources
to display information about afilter when the user clicks on the small button [i] corresponding to the
filter in the Plug-1n Preferences panel. Figure 4 below shows the information dialog for one of the
sample code filters.

j SampleFilter _debug

File name : SampleFilter debug.file

Yersion: 1.0

This is a sample filter that illustrates how
to generate a user interface and do a
number of Post3cript output filtering
operations.

Figure 4 - The Filter Information Dialog

Thefilter information dialog contains the name of the filter as contained in the

kPluginResource InfoType resource described in the section Filter Plug-In Requirements above. Since
multiple filters may be contained in asinglefile and the filter name may have nothing to do with the name
of the file containing the filter, the file name containing the filter is also displayed. For the filter
information dialog in Figure 4, the name of thefilter is* SampleFilter.debug,” and thefile nameis
“Sampl eFilter.debug.file.

Thefilter information dialog a so displays the version of the filter and some informative text describing
thefilter. LaserWriter 8 obtains the displayed version information from the "vers*® resource ID number
1. It obtains the text for the information portion from the kPlugininfoType resource, 1D
kPluginInfolD inthefilter file. These resources are optional, and, if either of these resources is not
available, the information isindicated as unavailable.

kPanelDescriptionType Resour ce

When displaying apanel for agiven filter, LaserWriter 8 can handle some of the management of the user
interface portion of thefilter if it contains akPanelDescriptionType resource describing thediTL ID.
The ID for the kPanelDescriptionType resource must match the ID of theDITL that it describes.

ThekpPanelDescriptionType resource listswhich dialog itemsin the DITL are checkboxes and lists
each of the ranges of grouped radio buttons for that DITL. If afilter provides this resource, LaserWriter 8
ensures al referenced checkboxes and radio buttons are appropriately selected and unselected. This
resource is not required so, if adeveloper prefers to manage these aspects of the user interface, this
resource can be left out. The sample code provided with this technote supplies this resource.

Filter Private Collection I ssues

Filters provide their settings for a given print job and their default settings for a given printer by
providing “hints’ in the form of Collection Manager collection items. To avoid collisions between the
collection items used by different filters, the LaserWriter 8 Print Dialog code maintains a private
collection for each filter as described earlier in the section Filter Job Collection. LaserWriter 8 stores the

private collection corresponding to afilter’ s job settingsin the collection corresponding to the current job
asacollection item with tag kHintPlugInCol 1Tag and uses the filter’ s unique 4-byte signature as the
collection ID. Thefilter providesits unique 4-byte signature in the parameter *1ibSignatureP returned
from the routine psPanelPluglInLiblInitData. Likewise, thefilter’ s printer specific defaults are stored
in afilter’ s private collection that LaserWriter 8 addsto its collection specifying printer defaults using the
kHintPlugInCol 1Tag tag and the filter’ s unique 4-byte signature as the collection ID.

During the execution of thefilter’s user interface code, LaserWriter 8 obtains thefilter’ s signature and
uses that signature to obtain the private job settings and printer default collections for that filter. When
LaserWriter 8 callsafilter’ spsPanel InitData routine, the parameter pluglinHints isthefilter’ s private
collection corresponding to the current job. A filter normally consults this collection for any print
job-specific defaults and adds collection items to this collection in order to configure the current print job.
Normally these collection items are added by afilter’ s psPanelCloseData routine when the dolt
parameter passed to that routine istrue, indicating that the user has clicked Print or Save in the Print
Diaog.

When LaserWriter 8 calls afilter’ s psPanelSaveButton routine, the parameter plugInPrinfo passed is
the filter’ s private collection corresponding to the current printer’ s previously saved defaults. A filter
should add collection items to this collection in order to configure the current printer’ s defaults
corresponding to thefilter’s current Ul settings.

Similarly, when LaserWriter 8 calls afilter's psPanelPrSpecificlnitData routine, the parameter
pluginPrinfo isthefilter's private collection corresponding to the current printer’s saved defaults. A
filter normally first consultsthe pluglinHints collection (passed to psPanel InitData()) to determine if
there are any job specific settings and if there are not, it extracts printer default hints from the
plugInPrinfo collection and uses those defaults to configureitsinitial user interface.

Note:

Readers should be clear that the LaserWriter 8 Print Dialog code passes a given filter its own private
hints collection during Ul execution time. However, it is up to thefilter to obtain its own private
collection at filter output execution time, as described earlier in the section Filter Job Collection.

Note:

LaserWriter 8.7 does not prevent installation and execution of two or more copies of the same plug-in;
however, it does not properly manage separate collections for each instance since they share the same
signature. This also appliesto two different plug-ins that have the same signature. In each of these
cases, LaserWriter 8 will store the filter’ s private collection into the full job and printer default
collections using the collection tag value kHintPlugInCol 1Tag and with the filter' s unique 4-byte
signature as the callection ID. In the case where two filters share the same 4-byte signature, when
LaserWriter 8 stores the private collection for filter B, it overwrites any already stored private collection
for filter A. A filter’ s signature must be registered using Appl€e's Creator Code Registration web page
given in the section Further References.

Printing Without a Print Dialog

A filter that has a user interface to allow a user to configure the printer for a given print job normally
expects that its private job collection providing the print job configuration is available at filter output
execution time. Since there are several ways auser can print without bringing up the Print Dialog, there
are situations where its private job collection may not be available. One way this can happen iswhen the
user selectsthe Print One menu item that many applications provide. Thistypically beginsaprint job
without bringing up the Print Dialog. In this Situation, LaserWriter 8 extracts the saved private default
collection corresponding to afilter's saved defaults for the target printer and copiesit to the job collection
for thisprint job. If afilter has no saved defaults, thereis no private collection for thefilter' s signature in
the job collection for the print job. A filter should be prepared to handle this situation.

A similar situation exists when the user drags and drops a file onto a Desktop Printer and the Download

Manager handles the print job directly rather than launching an application. The Download Manager isa
new piece of the PostScript printing system added with MacOS 8.5 and LaserWriter/PrintingLib 8.6. The
Download Manager can handle some documents directly rather than requiring an application to do the
printing. When printing with the Download Manager, no Print Dialog is shown; instead, the print job is
configured using the default settings for the target printer. Again, filters need to be prepared to execute
when there is no saved private default collection corresponding to itsfilter signature. See the section
Further References for more information on the Download Manager.

Additional Filter User Interface Code I ssues

A few additional issuesinvolving the User Interface portion of the filter’ s execution are worth
discussion.

Appearance Manager and Appearance Controls

LaserWriter 8.7 requires that the Appearance Manager is availablein order to add the “Plug-In
Preferences’ pand to the Print Dialog and execute any filter’s user interface code. This meansthat users
will not have the ability to enablefilter plug-ins unless the Appearance Manager is available on their
System.

Apple has historically found that some applications use private control definitions that conflict with the
Appearance control definitions. LaserWriter 8 takes special action to avoid these conflicts when
displaying the Print Dialog. If the application or another open file above the application in the resource
chain contains a CDEF resource with aresource ID in the range of 1-26 inclusive, LaserWriter 8 acts as if
the Appearance Manager is not available and does not add the “ Plug-1n Preferences’ panel to the Print
Diaog. Inthissituation, afilter can be enabled based on printer defaults but its user interface is not
available to the user. If afilter is enabled but its Ul is not available in the Print Dialog for this reason, the
filter executes as described in the section Printing Without a Print Dialog above. Because filters only
appear in the LaserWriter 8 Print Dialog when there are no CDEF conflicts, at filter Ul execution time a
filter can use Appearance controls and the Appearance APl without concerns about these conflicts.

Note that for compatibility reasons, the LaserWriter 8 Print Dialog does not use the Appearance control
hierarchy. Devel opers should be aware that some Appearance controls, such as thelist control box, do
not work properly without the Appearance control hierarchy.

Note:

Asof thiswriting, LaserWriter 8.7 has been qualified for MacOS 9.0 only and refuses to run on
MacOS prior to MacOS 8.1. The requirement that the Appearance Manager exists limits the execution
environment for filters further.

Resource | D Ranges

Filters execute as part of an application’ sinvocation of the Printing Manager and the LaserWriter 8 print
driver. Because of this, it isimportant that filters ensure that their resource IDs do not conflict with any
application or system resource IDs. Accordingly, afilter's resource IDs must be in the range of
driver-owned resources (that is -8192 to -4097), but the resources provided as part of afilter should be
inthe ID range 6500-6101 to avoid conflicts with future revisions of the LaserWriter driver.

Resource Fork Issues

During the execution of the filter’s user interface code, there are potentially many other filters providing a
user interface. There are no restrictions on the numbering of resources beyond those described in the
section Resource |D Ranges above. Because there are potentially many filters executing in the Print
Diaog and each filter’ sresource fork is open simultaneoudly, LaserWriter 8 is careful when obtaining
resources from each filter’ s resource fork. LaserWriter 8 does not manage the resource chain prior to
caling afilter’s Ul routines so each filter must be careful to ensure that its resource fork isthe current
resource file any time that it accessesits resources. A filter should use CurResFile() and

UseResFile() carefully to save and restore the resource chain around any filter’ s accessto its resource
fork. The sample code demonstrates how to do this properly.

Filter Defined Criteria

ThepsPanelSetCriteria routine allows afilter to provide some simple criteriafor determining whether
to present auser interface. These criteria, described in the section psPanelSetCriteria, arerdatively
limited, and some devel opers may have much more complex criteria. The routine psPanelRegister can
be used by a developer to establish more complex criteriato determine whether to display a user

interface. For example, the SampleFilter described in the Sample Code section can be configured to
display its user interface only if the PPD file for the current printer has a *PCFi IeName that starts with the
letters“APL”, i.e., only printers from Apple Computer.

Sample Code

To aid devel opers, this technote supplies two sample filters as sample code, one called SampleFilter
and the other called SectionReport. SampleFi lter demonstrates how to generate a user interface and
perform some typical filtering operations on the PostScript output data. SectionReport provides an
introduction into the PSPosi tion data supplied to afilter at PostScript output time and can be used asa
diagnostic aid as well.

SampleFilter

The SsampleFi I'ter source code demonstrates how to generate a user interface in the LaserWriter 8 Print
Diaog and how to manage that user interface. SampleFi lter configuresitsinitia user interface to reflect
any saved printer defaults, allows the user to print using those settings, and saves its settings as the
current printer defaults when the user clicksthe Save Settings button in the Print Dialog. Thefilter's
psOutputFi lterPreFlight routine uses the settings in the filter’ s private job collection to configure the
filter’ s output execution.

The filter operations demonstrated by the SampleFi I'ter source include the following:

Inserting data into the output stream before a given PSSubsection.

Inserting data into the output stream after agiven PSSubsection.

Removing data from the output stream corresponding to a given PSSubsection.
Replacing datain the output stream corresponding to a given PSSubsection.
Detecting a given pagein the output stream.

SampleFilter does not generate a PostScript output stream that is likely to be considered noticeably
different than that usually generated by a print job. It provides no particular feature or benefit to a user
but is ssmply a demonstration of how to accomplish the typical functions an output filter might want to
perform.

One feature of the SampleFi I'ter source code worthy of discussion isthat it demonstrates some use of
thePsuti IsLib library built into PrintingLib to aid in generating PostScript output code. PSUti IsLib
contains routines similar to printf() that are useful for performing formatted writes of PostScript
output data. Appendix A of Technote 1171. LaserWriter 8.6: How to Write a Converter Plug-in for the
Download Manager documents the motivation behind and use of these routines.

SectionReport

The SectionReport sample filter demonstrates use of the PSPosition data passed to afilter’'s
psOutputFilterWrite routine. (ThePSPosition datais discussed in the section Tagged Data above
and also in Appendix A: PSPosition Data Details.) For each print job for which it is enabled, the
SectionReport filter generates an output log file containing the information passed to it in the
PSPosition structure. The output fileis placed in the user’s preferred “ Job Documentation Folder” as

specified inthe Job L ogging panel of the Print Dialog. By default, thisfolder is called “ Printing Logs
Folder” and is placed on the root of the boot volume. The output file produced by the SectionReport
filter istitled “jobname.dsc” where jobname isthe name of the print job.

ThesectionReport filter isuseful in two ways. One useisto look at the source code to gather a better
understanding of the section, subsection, and info fields of the PSPosi tion data structure. Of particular
interest isthe type of datain the info field of the PSPosi tion structure for various PSSubsection
values. A second use of thefilter is as adiagnostic tool to understand the filter chaining and output. This
filter isfrequently useful in debugging as well. The data seen by the SectionReport filter and therefore
generated into itslog file depends on its position in the output filter chain. For example, compare its
output when it appears before SampleFi I ter as opposed to after. Asareminder, filters can be reordered
inthePlug-1n Prefer ences panel of the LaserWriter 8 Print Dialog by grabbing the “gripper” at the
left of each filter name and dragging that filter to its new place in the order. See Figure 1.

Note:
TheSectionReport samplefilter has no user interface and therefore no custom signature or private
collection. Filtersthat have no user interface do not need a custom signature.

I ssues Relevant to the Provided Sample Code

TheSectionReport filter isa CFM library that hasits global data marked as shared. This means that the
filter isloaded only once and al instances of the filter share the CFM table of contents and global data.
Thisisamemory savings since only one instance of its globals need exist.

ThesampleFilter filter istreated differently. SampleFilter isprovided as a CodeWarrior project that
is configured so that the data section of the library generated is not shared among al instances of the
library. (Thisis set in the CodeWarrior project-specific Settings Menu: the PPC PEF pandl; the
checkbox labeled Shar e Data Section. Unchecking the check box ensures each instance has private
global data.) This setting means that the library isloaded for each instance of thefilter and the library’s
global datais not shared among instances.

Thisisimportant for the SampleFi I ter filter because it weak links to the LaserWriter8.Lib file as
described in the section Special Considerations When Using the Lw* Routines above. If SampleFilter
used shared global data, the resolution of symbolswould only be done once, when the library first loads.
If the library wereto first load as part of a print job executing in background, any Lw* routine links
would not be resolved because LW8UILib isnot available at filter output execution time. If the Print
Diaog were then brought up for another print job at that point, the Lw* routine links would remain
unresolved. By marking the global data so that it is not shared, the symbol resolution occurs each time
thelibrary isloaded, and each instance of the library is independent.

Back to top

Summary

PostScript output filter plug-ins offer the ability to insert into, modify, or replace the PostScript
language output stream generated by LaserWriter and PrintingLib version 8.7. These filter plug-ins can
present a user interface in the LaserWriter 8 Print Dialog, offering an integrated way for users to choose
settings for each print job and to save defaults on a printer by printer basis. PostScript output filter
plug-insin LaserWriter 8.7 provide a powerful mechanism for printer manufacturers and Third Party
developers to add support for printer specific features and add new functionality without any changes to
LaserWriter 8 itself.

Further References

Technote 1115: The Extended 'PAPA' Resource

Technote 1129: The Settings Library

Technote 1144: Writing Custom Hoses For LaserWriter 8.6

Technote 1169: The Download Manager

Technote 1170: The Printing Plug-ins M anager

Technote 1171: LaserWriter 8.6: How to Write a Converter Plug-in for the Download Manager
Inside Macintosh, The Collection Manager

Adobe Technical Note #5001, PostScript Language Document Structuring Conventions
Specification

Appl€ s Creator Code Registration web page

Back to top
Acknowledgments

Thanks to John Blanchard, Richard Blanchard, Paul Danbold, Ingrid Kelly, Howard Miller, Dave
Polaschek, and Glenn Voloshin.

Downloadables

EACI’Ob&t version of this Note (how many K?)

Appendix A: PSPosition Data Details

Filtersreceive data through their psoutputFi lterWrite routine. The datawritten to the filter istagged
by a pointer to aPSPosi tion data structure. The PSPosi tion structure contains section, subsection,
info, and ID fields. The Tagged Data section above describes the PSPosi tion structure in some detail.
This Appendix discusses the connection between the subsection and info field in more detail.

The subsection field of the PSPosi tion structure is of type PSSubsection and describes the details of
the PostScript output corresponding to the data write call. PSSubsection vauestypically correspond to
Document Structuring Conventions (DSC) data, but there are additiona values which suit some
specialized needs. The meaning of the PSSubsection values which correspond to DSC data will not be
discussed in detail here; readers are directed to Adobe’ s Document Structuring Conventions document for
information about the DSC.

Theinfo field iseither aNULL pointer or a pointer to data whose type is defined for the PSSubsection
value in the subsection field. The data (if any) pointed to by theinfo field coincides with the data being
written to the output stream. For example, when writing the data “ %%Pages: 4" to the print stream, the
writer puts the PSSubsection valuekSubPages into the subsection field of the PSPosition and the info
field iseither NULL or points to anSInt32 with the value 4. The header file “ PSStreaminfo.h” contains
thelist of PSSubsection vaues and the proper data type for the info field for each PSSubsection.

Note:

Even for subsections for which thereis an info data type defined, it islegal for theinfo field to be NULL
for that subsection. Filters examining the info field should first check that the info field is not NULL
before assuming that the info data points to a structure of the type listed.

Of particular importance is the subsection kSubAnon. kSubAnon tags PostScript code which is not one of
the other subsections and whose structure is unspecified. The only way to acquire further knowledge of
PostScript output tagged by this subsection is to parse the data. The bulk of a given print job consists of

data tagged by the subsection kSubAnon.

Table 1 below presents the connection between a subsection value and the info data for that
PSSubsection vaue. Table 1 presents thisinformation for only those subsections that have aDSC

equivalent.
Table 1

Subsection | DSC Comment | info data pointsto |
kSubPSAdobe || %! PS-Adobe-x.y || Fixed |
kSubPSA dobeEPS || %! PS-Adobe-x.y EPSF-a.b | EPSFVersion |
kSubBoundingBox || %6%6BoundingBox | DSCBBox |
kSubCopyright || %6%Copyright || Str255 |
kSubCreator || ¥%6%Creator || Str255 |
kSubDate || %6%CrestionDate || Str255 |
kSubDocData || %6%DocumentData |DSCDocumentData |
kSubEndComments || %6%EndComments | none defined |
kSubFor || %6%6For || Str255 |
kSubLangLevel || %6%L anguagel_evel [SInt32 |
kSubOrientation || %6%Orientation || DSCOrientation |
kSubPages || %6%Pages [SInt32 |
kSubPageOrder || ¥%6¥6PageOrder || DSCPageOrder |
kSubRouting || %6%Routing || Str255 |
kSubTitle [e%Title |[Str255 |
kSubContinue || %600+ || DSCContinuationData |
kSubBeginProlog | %6%BeginProlog | none defined |
kSubEndProlog || %6%EndProlog | none defined |
kSubBeginSetup || %6%6BeginSetup | none defined |
kSubEndSetup || %6%EndSetup | none defined |
kSubBeginPageSetup || %6%6BeginPageSetup || SInt32 (page #) |
kSubEndPageSetup || %6%EndPageSetup || SInt32 (page #) |
kSubPage || %6%6Page | DSCPage |
kSubPageBoundingBox || %6%PageBoundingBox | DSCBBox |
kSubPageQOrientation || %6%PageQrientation || DSCOrientation |
kSubPageTrailer || ¥%6%PageTrailer || SInt32 (page #) |
kSubTrailer || %6%Trailer | none defined |
kSUbEOF || %6%EOF | none defined |
kSubDocMedia || %6%DocumentMedia || DSCData |
kSubDocNeededRes || %6%DocumentNeededResources || DSCData |
kSubDocSuppliedRes || %6%DocumentSuppliedResources || DSCData |
kSubDocFonts || %6%DocumentFonts || DSCData |
kSubDocNeededFonts || %6%DocumentNeededFonts || DSCData |

kSubDocSuppliedFonts || %6%6DocumentSuppliedFonts || DSCData |
kSubProofMode || %6%6ProofMode || DSCProofMode |
kSubBeginDoc || %6%6BeginDocument || DSCData |
kSubEndDoc || %6%EndDocument | none defined |
kSublncludeDoc || %661 ncludeDocument || DSCData |
kSubBeginFeature || %%6BeginFeature || DSCFeature |
kSubEndFeature || %6%EndFeature | none defined |
kSublncludeFeature || %% ncludeFeature || DSCFeature |
kSubBeginFile | %6%6BeginFile || Str255 |
kSubEndFile || %6%EndFile | none defined |
kSublncludeFile | %%l ncludeFile | Str255 |
kSubBeginFont || %6%6BeginFont || DSCData |
kSubEndFont || %6%EndFont | none defined |
kSubl ncludeFont || %%l ncludeFont || DSCData |
kSubBeginResource || %6%6BeginResource || DSCData |
kSubEndResource || %6%EndResource | none defined |
kSublncludeResource || %%l ncludeResource || DSCData |
kSubBeginColorspace || %6%6BeginResource: ColorSpace <profilename>|Str255 |
kSubDocProcessColors || %6%DocumentProcessColors |[DSCProcessColors |
kSubPSA dobeQuery || %! PS-Adobe-3.0 || Query Fixed |
kSubViewOrientation || %6%6ViewingOrientation || DSCViewingOrientation |
kSubDocFontsAtEnd || %6%DocumentFonts: (atend) | none defined |
kSubDocNeededFontsAtEnd | %%DocumentNeededFonts: (atend) | none defined |
kSubDocNeededResAtENnd || %%DocumentNeededResources: (atend) | none defined |
kSubDocSuppliedFontsAtEnd | %6%DocumentSuppliedFonts: (atend) | none defined |
kSubDocSuppliedResAtENd || %%DocumentSuppliedResources: (atend) none defined

Table 2 presents the equivalent information for those subsections that have DSC commentsthat are
defined as part of the Open Structuring Conventions portion of the DSC specification. The prefix %ADO is
registered by Adobe Systems. The prefix %RB1 is registered by RBI Software Systems. Apple has
created and uses a number of Open Structuring Comments based on these prefixes. These subsections

arefairly self-explanatory.

Table 2

Subsection

% RBI DSC Comment

info data pointsto

I I I
kSubBeginBitmapFont || %RBIBeginBitmapFont || Str255 |
kSubEndBitmapFont || %RBIEndBitmapFont |[none defined |
kSubBeginTrueTypeFont || %RBIBeginTrueTypeFont || Str255 |
kSUbEndTrueTypeFont || %RBIEndTrueTypeFont |[none defined |
kSubBeginTrueTypeScaler || %RBIBeginFontRasteri zer |[none defined |
kSUbEndTrueTypeScaler || %RBIEndFontRasterizer |[none defined |
kSubRBINumCopies || %RBINumCopies: |[SInt32 (-1 =unknown) |
kSubRBINupNess | %RBINupNess | DSCNupNess |
kSubRBIPCFileName || %RBIPCFileName || Str255 |
kSubRBIProduct | %RBIPPDFileVersion || Str255 |
kSubBeginPageSlotinvocation || %RBIBeginPageSlotinvocation |[none defined |
kSubEndPageSl otInvocation || %RBIEndPageS| otl nvocation |[none defined |
kSublncludePageSlotinvocation || %RBIIncludePageSlotinvocation |[none defined |
kSubRBIBeginNonPPDFeature || %RBIBeginNonPPDFeature: mainoption | DSCFeature |
kSubRBIEndNonPPDFeature (| %RBIEndNonPPDFeature |[none defined |
kSubRBIIncludeNonPPDFeature ||%RBIIncludeNonPPDFeature: mainoption | DSCFeature |
kSubl ncludeStartNup || %RBIIncludeStartnup [DSCNupData |
kSubRBIDocSuppliedFonts || %RBI DocumentSuppliedFonts: |DSCData |
kSubRBIDocSuppliedFontsAtEnd || %RBI DocumentSuppliedFonts: (atend) |[none defined |
kSubADOImagesbleArea | %ADO_ImagesbleArea: fixed fixed fixed fixed|| DSCFixedBBox |
kSubAnnotateFontK ey %RBIFontKey: (fontname) 10point bold DSCFontAnnotation

Table 3 lists a number of subsectionsthat don’t correspond to any DSC comment at all. Each listed
subsection is discussed briefly after Table 3.

Table 3

Subsection |

code emitted

info data points to |

kSubStartNup [|... startnup || DSCNupData |
kSubNupFinal Page		final page		none defined
kSublnfoTitle		/Title(document name)def		Str255
kSublnfoPages		/Pages 22 def		SInt32 (-1 = Unknown)
kSubl nfoCreator		/Creator(Finder: LaserWriter 8 8.7)def		Str255
kSublnfoDate		/CrestionDate(1:52 PM Thursday, March 11, 1999)def		Str255
kSublnfoFor		/For(John Doe)def		Str255
kSubPageSavel evelSetup		pmSV setup		none defined
kSubPageSavel evelRestore	endp		none defined	
kSubPSBegin		psb		none defined
kSubPSEnd		pse		none defined
kSubPSBeginNoSave		no code emitted	none defined	
kSubPSEndNoSave		no code emitted	none defined	
kSubSetJobStatusStr		(username; page: 1 of 4)setjob		DSCJobStatus
kSubPageGStateSetup	[initielizepage		none defined	
kSubPageM TSMatrixSetup ||mT Ssetup none defined

The subsection kSubStartNup tags code emitted when printing with N-up layout printing or printing
with 1-up layout with borders. The contents of any supplied DSCNupData data describe the layout
specified. The contents of the PostScript invocation code vary depending on what is being invoked.

The subsection kSubNupFinalPage tags code near the end of an N-up layout print job. The purpose of

this PostScript code is to ensure that any partially completed N-up page is gected.

The subsectionskSubInfoTitle, kSubInfoPages, kSubInfoCreator, kSublnfoDate, and
kSub InfoFor tag code that LaserWriter 8/PrintingLib emitsto fill in adictionary called dscinfo that it

creates after the header comments and before emitting its prolog code.

The subsection kSubPageSavel eve I Setup tags the code that creates the page save level.

The subsection kSubPageSavel eve IRestore tags the code that does the page-level restore.

The subsectionskSubPSBegin and kSubPSBeginNoSave tag the execution of an application’sinvocation
of the QuickDraw PicComments PostScriptBegin and PostScriptBeginNoSave, respectively. The
data stream after kSubPSBegin (Or PostScriptBeginNoSave) and beforekSubPSEnd (or
kSubPSEndNoSave) is application supplied PostScript language code, not code that is generated by
LaserWriter 8/PrintingLib. The kSubPSBegin subsection differs from the kSubPSBeginNoSave
subsection in that, with the former, the PostScript output contains code to create a PostScript-save level
so that when the application emits the PostScriptEnd PicComment the state prior to the
PostScriptBegin isrestored.

The subsection kSubSetJobStatusStr tags code which defines the PostScript job name and other data
which become part of the status string returned by a printer when executing a print job.

The subsection kSubPageGStateSetup tags code which sets up the page' s QuickDraw coordinate

system for agiven print job.

The subsection kSubPageMTSMatr ixSetup tags code which ensures that the mTS matrix matchesthe
QuickDraw coordinate system for the page.

Note:

Applereserves al section and subsection values not listed in the header file “PSSubsection.h” and may
define new section and subsection valuesin the future. Filters writers should be prepared to encounter

section or subsection values not defined to date and to act appropriately, typically by treating such data
as the section kSectAnon or the subsection kSubAnon.

Back to top

To contact us, please use the Contact Us page.

Updated: 05-October-1999

Technotes | Contents
Previous Technote | Next Technote

