TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM

| echnote 1171

LaserWriter 8.6: How to Write a Converter Plug-in for the
Download M anager
By David Gelphman and Ingrid Kelly

Revised by Dave Polaschek
Apple Worldwide Developer Technical Support

CONTENTS T
. his document describes in detail how to write a
Overview _ ]
plug-in converter module for use with the Download
Reguirements Manager under PrintingLib version 8.6 (included with
LaserWriter 8 version 8.6) and later. It contains
Other Details information about the pieces a plug-in must have,
discussion of asample plug-in, and tips for plug-in
Sample Code Overview developers.

Introduction to the Sample Code

Structure

Summary

Note: This document refers to Download Manager
plug-ins as low-level convertersto avoid confusion with
other types of plug-ins available on the Mac OS. This
terminology matches that used in other Technotes related

N A to the Download Manager and its plug-ins.
ppendix

Appendix B

Appendix C
Downloadables

This Technote is directed at application developers who
wish to write plug-in converters.

Overview

A low-level converter is used by clients of the Download Manager to convert afile or stream of agiven
data type (or types) into PostScript output. For example, in Mac OS 8.5, the desktop printing softwareis a
Download Manager client that offers drag and drop printing of files to the targeted desktop printer

(DTP). When the target is a PostScript printer and alow-level converter is available to handle the
conversion, that low-level converter can be used to generate the PostScript code to be sent to the device,
without requiring a separate application. The Download Manager and its low-level converters are
described in more detail in Technote 1169, “Download Manager.”

Printing plug-in filesreside in the “ Printing Plug-ins” folder in the Extensions folder. Each plug-in file
can contain multiple plug-in libraries. Each plug-in file containsa *PLGN" resource indicating what shared
libraries are contained in that file and what plug-in type each library is. The PrintingLib fileitsalf
contains many plug-ins, including several low-level converters for the Download Manager.

Note:
PrintingLib isspecid in that the Download Manager |ocates plug-inswithin PrintingLib, even
though it isnot in the “Printing Plug-ins’ folder.

Figure 1 below gives an overview of the Download Manager’ s relationship to its clients and the

file:///Monster%20Boot/Apple/Week%200f%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

Page 1 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM
low-level converters.

Download
Manager
Clignt
e.qg. DTP

Download Manager

55 5

JPEG PSIEPS PICT
Comerter Comerter o COerter

W

Low Level Conventers

FIGURE 1

Back to top
Requirements

There are severa requirements for a plug-in to work with the Download Manager:

1. To be seen as a Download Manager low-level converter, a plug-in file must contain a *PLGN*®
resource with ID -8192. This resource contains the information which identifies what type of
plug-ins are contained inside the file as well as the name of the shared library containing agiven
plug-in. Details on this resource are documented in the *PLGN" Resource section of this
Technote.

2. For agiven plug-in shared library to be alow-level converter for use with the Download
Manager, it must export aminimum set of required routines. The Download Manager calls these
routines to determine whether a given low-level converter can handle a specific data type and, if
so, to call the plug-in to perform the conversion of the datainto PostScript outpuit.

3. Inaddition to the required exported routines, alow-level converter must provide a data structure
to advertise the types of data that the plug-in can handle. When asked whether it can download a
given file or stream of data, the Download Manager uses this information to reduce the set of
possible convertersto only those which might be able to handle the data. It then asks each of
those convertersdirectly if it can handle the dataand, if there is one, uses the best converter
found to proceed with the download.

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 2 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM

Back to top
The'PLGN' Resource

The Download Manager uses the Printing Plug-ins Manager to manage its plug-ins. For a Download
Manager converter to be seen by the Printing Plug-ins Manager, it must have aresource of type *PLGN*®
with ID number -8192. If the plug-in does not contain this resource, it cannot be used and is ignored.
Plug-ins are a so required to have a standard "cfrg" resource describing the code fragments in the data

fork of thefile. For developersinterested in using the Printing Plug-in Manager, more information is
availablein Technote 1170: “ The Printing Plug-ins Manager.”

The "PLGN" resource contains information about how many shared libraries are contained in thisfile and
for each shared library, the type of plug-in that it is, the subtype that the library handles and the library
name. To be used by the Download Manager, a plug-in must have atype of "down* and a subtype of
~22?2". There are no constraints on the library name beyond those imposed by the Code Fragment
Manager.

The "PLGN" resource is defined as follows (using Rez syntax):

type "PLGN" {
integer = $$Countof(PluginLiblinfo);
array PluginLibInfo {
literal longint; /* Type */
literal longint; /* subtype */
pstring; /* library name */
align word;
}:
}:

A ResEdit template resource (*TMPL ") for the *PLGN" resource is contained within PrintingLib versions
8.6 and later.

ThePluginLiblInfo structurein C syntax is:

typedef OSType SettingsDataType;
typedef OSType SettingsDataSubType;

short num; // the number of shared libraries this "PLGN" describes
PluginLibInfo libInfo[num];

typedef struct PluginLiblnfo{
SettingsDataType type;
SettingsDataSubType subtype;
unsigned char libraryName[]; // pascal string
// word aligned
}PluginLiblInfo;

e type isthetype of plug-inthat is described by thisPluginLiblInfo

® subtype isthe subtype of data that can be handled by the plug-in described by this
PluginLiblInfo

e libraryName isthe library name of the code fragment in the plug-in file described by this

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 3 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM
PluginLibInfo

Note: A singlefile can contain multiple plug-in libraries.
Back to top
Required Routines

This section describes each of the routines required by the Download Manager. All of the routines
described here are discussed in more detail in Technote 1169: “Download Manager.” The descriptions
here are intended to provide just an overview.

This discussion of the routines and the order in which a converter should call them istailored to the way
the Download Manager calls a converter in response to the Finder’ s desktop printing software. In
addition, this discussion assumes that the Download Manager client is downloading afile. This document
discusses the differences between downloading files and downloading data from other sourcesin the
section | nput Stream Types.

psLowGetConverter|nformation

Before it can determine which converters can handle a given download job, the Download Manager must
determine the capabilities of al the available converters. It does this by calling the

psLowGetConverter Information routine for each low-level converter. Thisroutine returns a pointer to a
ConverterDescription structure which provides alist of datatypes that a given converter can handle.
TheConverterDescription structure contains additional information which can be used to narrow the
search further. A sample ConverterDescription structureis described in detail later in this document in
the section Sample Converter Description.

Note:

The Download Manager cachesthe ConverterDescription structuresit obtains from each low-level
converter to improve performance. Thisis not an issue for users, but during development of alow-level
converter it does require a devel oper to do some specia handling of the plug-in files. Seethe Tips
section near the end of the document for more information.

psL owCanConvert

When the desktop printing software asks the Download Manager if it can handle agiven file, the
Download Manager checks the ConverterDescription structuresfor al of the low-level convertersto
obtain alist of candidate converters. For each low-level converter onitslist of candidates, the Download
Manager calls the converter’s psLowCanConvert routine. This alows the converter an opportunity to
examine the data to determine whether it can indeed be handled by the converter and if so, with what
“priority” it can handle the data.

Each converter returnsa“priority”, an indication of how well it can handle the given type of data. Itis
possible for multiple converters to handle data of a given type. If there are multiple low-level converters
which can handle the data, the converter which returns the highest priority is chosen to convert the data.

The datato convert is provided to the low-level converter as aPSStream structure which contains routines
to allow reading and writing of the data. The sample code demonstrates use of the PSStream structures.
Thereis also some additional discussion of the PSStream structure and the routines to read and write to
PSStreams in Appendix A.

psL owGetStreaml nfo

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 4 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM

If the data can be handled by alow-level converter, the Download Manager tells the desktop printing
software that it can download the file. At that point, the desktop printing software wants more information
about the type of datathat it is downloading. Since thefile is an opague object to both the desktop printing
software requesting the download and to the Download Manager itself, the Download Manager callsthe
converter’ spsLowGetStreamlInfo routine to obtain more information about the file, such as the number
of pages, the type of data, the number of copiesthat are being generated, whether the download job is
manual feed, and so forth. Thisinformation is used to provide information to the user about the
Download Manager print jobsin agiven DTP queue.

psL owPeekConvert

Once afile to be downloaded reaches the top of a DTP queue, the desktop printing software asks the
Download Manager to download thefile. In response, the Download Manager first calls the low-level
converter’ spsLowPeekConvert routine. This gives the converter an opportunity to look at the data and
record any information that might be useful when it converts the datainto PostScript output. For example,
the low-level converter built into PrintingLib which handles downloading of PostScript and EPS data
first parses the PostScript Document Structuring Conventions (DSC) comments in the PostScript file, and
records what fonts are required by the document. This allows the converter to request appropriate printer
gueries and to incorporate the query information during the generation of the PostScript output

psLowAddConverter Queries

After calling the psLowPeekConvert routine, the Download Manager calls the low-level converter’s
psLowAddConverterQueries routine. Thisalows alow-level converter to tell the Download Manager
what queriesit desires. The Download Manager is responsible for performing the queries. The sample
code demonstrates use of some of the queries, and Appendix B has more information about the available
queries.

psL owDoConvert

After the Download Manager performs the queries, it calls the low-level converter’s psLowDoConvert
routine to do the conversion. At this point, the low-level converter is required to convert the input into
PostScript output. The Download Manager itself generates no PostScript output as part of its operation; it
relies on the low-level converter to do this. It isthe responsibility of the low-level converter to generate all
the PostScript output for the download job, including any or all printer feature requests. Support for
handling feature code generation is available through the FeatureUti IsLib library built into
PrintingLib; however, it isup to agiven low-level converter to make the appropriate callsif it chooses
to utilize thislibrary. The sample code demonstrates use of the FeatureUtilsLib library. Appendix C
has more information about FeatureUti IsLib.

The dataiis provided to the low-level converter as an input PSStream structure which contains aroutine to
read the data. The generated PostScript output is written to an output PSStream structure which contains a
routine to write the data to the output device. The sample code demonstrates use of the PSStream
structures. Thereis also additional discussion of the routines to read and write to PSStreams in Appendix
A.

In addition to generating all the PostScript output and writing it to the output stream, it isthe

responsibility of the low-level converter to read data from the output stream and write it back to the input
stream. Data read from the output stream consists of data returned from a PostScript output device. This
can be error information or other types of statusinformation. Writing such data back to the input stream
allows the Download Manager to process this information appropriately.

psLowGetConverterVersion

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 5 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM

Onefinal routine must be supplied by alow-level converter to provide version information. The routine
psLowGetConverterVersion alowsacaller to determine CFM version information for agiven low-level
converter.

Back to top
Other Detalls

This section discusses some low-level converter issuesin additional detail. The sample low-level
converter code addresses each issue in depth, and there is sample code to support the discussion points.

The ConverterDescription Structure

Thelow-level converter routine psLowGetConverterInformation returns a pointer to a
ConverterDescription structure. The purpose of the ConverterDescription structureisto advertise
the types of datathat alow-level converter can handle. The ConverterDescription structure isloosely
modeled after the DriverDescription structure used for PCI Drivers. The ConverterDescription
structureis defined as follows:

typedef struct ConverterDescription {
OSType converterDescSignature;
ConverterDescVersion converterDescVersion;
ConverterType converterType;
ConverterService converterService;
}ConverterDescription;

TheconverterDescSignature field in the ConverterDescription structureisrequired to be a
signature long word designating thisto be a converter description structure. The value of this signatureis:

enum {
kTheConverterDescriptionSignature = "dhwu*
/*first long word of ConverterDescription*/

};

TheconverterDescVersion field (long word) of the ConverterDescription structure indicates the
version of the structure being used. Thisis used to distinguish different versions of converter descriptions
which have the same signature but different values. Thisis defined asfollows:

typedef UInt32 ConverterDescVersion;
enum {
kInitialConverterDescriptor = 0
/* the initial version of ConverterDescription
supported by the Download Manager
*/
}:

The next field of the ConverterDescription istheconverterType. This structure contains name and
information string data as well as the converter module version information. It is defined as:

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 6 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM

typedef struct ConverterType{
Str31 name;
Str255 info;
NumVersion version;
}ConverterType;

typedef struct NumVersion{
UInt8 majorRev; /*1st part of version number in BCD*/
UInt8 minorAndBugRev; /*2nd and 3rd part of version
number share a byte*/
UInt8 stage; /*stage code: dev, alpha, beta, final*/
UInt8 nonRelRev; /*rev level of nonreleased version*/
INumVersion;

Thefina field in the ConverterDescription structureisacConverterService structure which contains
information about what types of data the converter can handle. Thisis defined as:

typedef struct ConverterService{
UuInt32 nTypes;
ConverterTypelnfo typelnfo[l];

}ConverterService;

typedef struct ConverterTypelnfo{
OSType type;

Fixed priority;

Str15 matchString;
}ConverterTypelnfo;

A converter may be able to handle files or streams of different datatypes. The nTypes field is the number
of different ConverterTypelInfo structures contained in the ConverterService.

Thetypefield of the ConverterTypelnfo structure isthe 0SType of data described by the
ConverterTypelnfo. If the converter can handle any type, it should include the type =***** (i.e., the
wildcard type) with the appropriate matchString.

ThematchString field isaPascal string of at most 15 bytes (plus alength byte) corresponding to any
identification bytes the converter requires at the beginning of the data. For example, a PostScript
converter requires the identification data ‘%!’ to be the first 2 bytes of data. A converter informsthe
Download Manager what types of dataiit can convert by supplying the data type and the matchString.
For agiven converter, if there is no unique matchString for the0SType of the ConverterTypelnfo, the
length of the string should be set to 0. Thisindicates to the Download Manager that this 0SType does not

have a magic identification string. An example of thiskind of converter isthe PICT converter, since the
first 512 bytes of a PICT datafile can contain any data.

The Download Manager uses the ConverterType Info datato determine the list of low-level converters
which can possibly be used to download the data. It does this by looking at the first 15 bytes of dataand
uses the ConverterTypelInfo datato determine which low-level converters may support the data. After
paring down the list with thisinformation, it normally calls the psLowCanConvert routine of each of the
possible low-level convertersto alow further examination of the data.

In some cases the Download Manager cannot call the psLowCanConvert routine of the candidate
low-level converters. Thisisthe case where the datais supplied from a PSStream which cannot be

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 7 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM

repositioned or randomly accessed since reading the data in psLowCanConvert would prevent the data
from being downloaded later. In these cases, the Download Manager uses the priority field of the
ConverterTypelnfo datato determine whether the low-level converter can handle the data. See the

section Input Stream Types for more information about the handling of stream types which cannot be
randomly accessed.

The priority field in aConverterTypeInfo structure is aFixed number which isthe priority estimate of
the converter for handling the type of data described by the type field and the matchString. This priority
is used by the Download Manager when only the matchString and type of the data being downloaded
are available for determining whether a converter can handle the download. In al other cases, the
Download Manager callsthe psLowCanConvert function with a stream that the low-level converter can
use to determine whether it can handle the data. For this reason, the priority specified here should be the
priority that the converter can guarantee based only on the 0SType and thematchString data. If a
matchString of Ois provided, the priority should probably be 0xo (i.e., cannot convert without |ooking
at more data). If the converter cannot handle a stream which cannot be randomly accessed, it should
assign apriority of 0xo0 for that 0SType in theConverterTypelInfo.

Note:

A given low-level converter may have more than one ConverterTypelnfo for agiven type. Thiswould
occur if there was more than one priority and matchString pair appropriate for agiven datatype. An
example would be a converter which can handle both G1F87a and G1F89a. These files have the same
type, but would have different matchStrings.

A sample ConverterDescription structureis part of the sample cde discussed later in the Sample
Converter Description section.

Back to top
Input Stream Types

The datato be converted by alow-level converter is provided viaaPSStream structure. The PSStream
structure isaunion of anumber of different types of streams.

There are currently two types of PSStream structures which can be provided to low-level converters as
input streams:

1. Thetype of PSStream used when downloading filesis of type kPSRandomAccessStream. This
type of stream represents data that can be accessed randomly, i.e., the position where the next
read from the stream occurs can be changed. All low-level converters must be able to read data
from this type of stream.

2. The other type of PSStream that low-level converters might seeiskPSSerialStream. Thistype
of stream does not have the ability to position the next read; instead, the datais only availablein a
sequentia fashion. Thistype of stream will not be seen when converting files with desktop
printing, but may instead be seen when the Download Manager is called by other clients. For data
generated by a Download Manager client on the fly, there may be no way to position the read
mark within the data stream.

The psLowCanConvert routineis not called by the Download Manager for streams which cannot be
rewound since there would be no point in doing so. See the ConverterDescription discussion above
regarding the Download Manager selection of low-level convertersin this case. In addition, the Download
Manager does not call alow-level converter’s psLowPeekConvert routineif the input streamis of type
kPSSerialStream since such a stream can, by definition, only be read once.

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 8 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM

A given low-level converter should be able to operate with either type of stream. When processing data
types that don’t require random access, this should be fairly straightforward. Ideally, peeking at the data
isnot required and will only improve the quality of the PostScript output.

Writing the PostScript Language Output

During execution of its psLowDoConvert routine, alow-level converter writes its PostScript output to
the output stream. The ssimplest way to do thisisto make a cal to the write procedure on the output
stream with the data to be written. The mgjor disadvantage of this approach is that the Download Manager
client (such as the desktop printing software) gets no detailed status information about the progress of the
conversion. For example, thereis no information about what page is currently being printed since only
the low-level converter has this information.

To alow for the communication of status information about the data being written to a stream, the
PSStream structure for the types kPSRandomAccessStream and kPSSerialStream contains a

PSPosi tion structure which allows alow-level converter to tag the data it is writing with additional
information. Thistag information isloosely designed around the PostScript Document Structuring
Conventions. The intent isthat low-level converters tag the portions of the PostScript output which
correspond to the various DSC comments. This alows the Download Manager and its clients to track the
progress of the download and other information about the PostScript outpuit.

Thelibrary PSUtiIsLib inPrintingLib contains routines that may be useful to low-level converters.
Some of these routines are helpful for generating the tagged output. In addition, PSUti IsLib contains
routines which are useful for generating formatted output (Similar to printf in the standard C library).

Appendix A has more information about the PSStream and PSPosi tion structures, as well asthe

routinesin the PSutiIsLib library which can be used for generating formatted output and tagging that
output.

Reading the Back Channel

During the conversion process in the psLowDoConvert routine, alow-level converter is expected to read
data from the output stream and write that data back to the input stream. This allows the Download
Manager and its clients to detect any PostScript errors or status messages that come back from the output
device. The conversion process of the psLowDoConvert routine resembles Figure 2 below:

| ot
Inpuidat | &y &l

cofyerter chann&l o
FSin Froc I PEOUIPTOC Cﬂnﬁr
ComerEion
B e — — o~ —
input i i::[LTfpu’[_ P Oupu 1 Dece
| stream uriing ot prntar _siredm _
T e e ] e i Y
NP4 ¥eam m;‘m"nﬂ
FIGURE 2

Private Data Hints

7 L e e T i J [t B PR (R

- - _r
file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 9 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM
IVIOST OT Tne Iow-1evel converter routings nave a Lollection parameter passed 10 tnem. | ne purpose or

passing a Collection to alow-level converter routine isto pass hints about the job requirements and to
provide a container for arbitrary datato or from the routine’ s caller.

A low-level converter which gathers information during its peek phase (psLowPeekConvert) may want
that information to be available during the conversion phase (psLowDoConvert) of the download. The
only reliable way to pass data from one routine to the other is through the Collection which is passed into
both routines. Note that global datais not appropriate to use for this purpose, since the converter module
may be unloaded between the callsto psLowPeekConvert and psLowDoConvert.

The sample code described later in this document demonstrates passing collections to low-level routines.
It also demonstrates the appropriate way of using private data hints to pass data from the peek phase to the
conversion phase.

Warning and Error Logging

A low-level converter operates without an explicit user interface and should not display any dialogs or
alertsto the user. To communicate warning or error conditions, the low-level converter should use the

PSPosition portion of the PSStream structure used for the conversion.

In particular, the PSSubsections of kSubLogErrorData and kSubLogWarningData are used to tag
Messages as error or warning messages, respectively. Warnings are non-fatal conditions that might be
used to alert auser. Errors are considered fatal. After awarning is generated, the converter should
proceed normally. If an error is generated, the converter should terminate its conversion immediately after
writing the tagged error message.

More information about the use of these subsectionsis contained in Technote 1169: “ The Download
Manager.” Additionally the sample code uses kSubLogErrorData as needed.

When alow-level converter reports these conditions, the Download Manager passes the information to

its client (such as the desktop printing software). In addition, the Download Manager has the ability to log
this datato alog file. Normally this feature is disabled, but it can be enabled by a sophisticated user or
developer. See the Tips portion of this document to see how to enable logging and how it might be

useful during testing and devel opment.

Back to top
Sample Code Overview

Most of the remainder of this document discusses a sample low-level converter which converts
JPEG/JFIF datainto PostScript output suitable for transmission to PostScript Level 2 and PostScript 3
output devices. The sample codeis structured in away that is intended to make it straightforward for
developers to modify it to support conversion of graphics formats that are output as a single page.
Examplesinclude PNG and GIF. The sample code should aso be relatively straightforward to modify to
support multiple-page documents.

The discussion about the sample code is divided into a number of sections. The section Sample JPEG
Converter Specification provides ahigh level discussion of the sample code features. Thisisintended to
provide an overview of the goals of this sample low-level converter. Within that specification is
information about implementation. This information does not contain anything about the structure of the
sample code, but is simply to provide an overview of the implementation.

The section I ntroduction to the Sample Code Structure discusses the sample code’ s structure in some
detail. In particular, it discusses the way the sample code is broken out into a* shell” which providesthe
support for printer feature handling, for the DSC structure of the PostScript output, and for the tagging of

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 10 of 48




TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM
the output so that the Download Manager and its clients can report status. This“shell” code isusable as
isfor low-level converters other than a JPEG converter, particularly those that generate 1 page of output.

The section JPEG Converter Specific Code discusses the portion of the sample code which has been
tailored for handling JPEG output. This portion of the sample code relies on the ‘shell’ codeto call it
appropriately. This code is the guts of what makes this particular low-level converter a“JPEG” low-level
converter.

The low-level converter Shell Code section describesthe “shell” code in some detail. Thisdiscussion is
for those who want to understand everything about the sample code and/or for those who wish to create
alow-level converter that handles more than a single page of outpui.

Note:
Y ou should download <link> the sample code before continuing with this section.

Back to top
Sample JPEG Converter Specification

This portion of the document describes the sample JPEG converter module for use with the Download
Manager. Thismoduleis aso-called ‘low-level converter,” which ssimply meansthat it is a plug-in module
that the Download Manager can call to ‘ convert’ astream of data of a certain type into a PostScript output
stream. In the case of the sample JPEG converter modul e described here, conversion of the datainto a
PostScript stream means transformation of the raw JPEG or JFIF data into a stream more suited to the
target PostScript output device.Some details are:

e PostScript output devices supporting PostScript Language Leve 2 or higher can be sent the
JPEG data asis, without performing any image compression. This sample code does not support
generation of output suitable for a PostScript Level 1 output device.

e The converter centers the JPEG image on the page and orients the image so that the longest edge
of theimage is paralld to the longest edge of the paper. This means that images whose width is
greater than the height are printed in landscape orientation. In addition, if theimage islarger than
the imageable area of the page, the image is uniformly scaled so that it fitsin the imageable area
of the page. If the image is smaller than the page in both dimensions, no scaling adjustment is
done.

e Thereissupport for desktop printers which are “ Saveto File” printers. If the target output
device advertisesitself as requiring an EPS stream to be generated, the JPEG converter
generates EPS data into the output stream. There is no screen preview generated, but the datais
EPS, including the bounding box.

e For non-EPS output, most print time features from the Print dialog are invoked. The feature
settings are chosen from the saved defaults for the target output device.

One significant goal of the JPEG converter moduleis that the output it produces conforms to the DSC.
The converter module generates the necessary and appropriate DSC comments into the output stream.

Overall Strategy

The basic strategy of the sample JPEG converter module isto determinefirst if the data stream is JPEG
datathat it can handle. The JPEG converter can handle raw JPEG dataaswell as JFIF data. The only
known case of valid JPEG data that the converter cannot handle is* progressive JPEG,” an extension to
the original JPEG specification. Progressive JPEG data cannot be handled by a PostScript Level 2 or
PostScript 3 output device directly. If the datais either invalid JPEG dataor is* progressive JPEG” data,
the JPEG converter reports that it cannot handle the data.

Since this sample code cannot handle printing to Level 1 printers, the sample code checks the target
lanquace level and, if itisLevel 1 or includes Level 1 (such as“Save asLevel 1 Compatible™), it reportsit

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 11 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM
cannot handle thefile.

When the JPEG converter can handle the data, it merely adds DSC header comments and a small
PostScript “wrapper” around the JPEG dataitself. For target output requiring support for ASCII data, the
JPEG dataistransformed into ASCII85 data on the host. In this case, the decompressed data is wrapped
with adightly different PostScript wrapper to ensure that it prints correctly.

Print Dialog Feature Support

The JPEG converter attempts to support most of the print dialog features normally associated with a
standard print job. Since the user does not normally get a print dialog to select print time features when
using the Download Manager or the JPEG converter module, the default features for the target desktop
printer or output device are used. That is, the user gets the same result asif they had brought up the print
dialog and clicked Print without adjusting any settings in the print dialog.

Note:

These statements assume that the client invoking the original download has used the Download

Manager routine psCreatebDMJobCol lection to create the hints collection passed to the Download
Manager downloading routines. Thisistrue for drag and drop desktop printing in Mac OS 8.5 and later.

The saved defaults for these features are used as the print time values by the JPEG converter:

Number of copies.

Paper source.

Cover Page Handling.

Duplex (if available).

Error Handling: PostScript and Tray Switching.

Saveto File defaults, including whether to default to savetofile.
Any PPD features available for the target output device.

Saveto disk DTP support.

Note:

If the user has not saved defaults for this desktop printer, the standard print dialog defaults apply for
non-printer specific features (1 copy, no cover page, no PostScript error handling, and so forth). In this
case, printer specific features are treated as “ Printer’s Default”, no PostScript code is sent to activate
those features and the current printer configuration is used. Finally, the paper handling is treated as
Automatic Feed for the default paper size as specified in the PPD file.

When printing to a“Saveto Disk” DTP or to a printer which has“Saveto File” asitsdefault, adisk fileis
written instead of output being sent to the printer. The JPEG converter configures itself as described by
the user’ s saved defaults for the Print dialog save panel. The user’s choice of “PostScript Job” or EPSis
respected; although no EPS previews are created. In addition, the LanguageLevel, ASCII/Binary
selection and font inclusion defaults are specified (of course, JPEG files have no fonts, but other
converters may need to include fonts).

Note:
There is currently no support for “ Save as PDF’. Currently, if “ Save as PDF’ isthe default, the
Download Manager requests PostScript Job instead.

Some features from the Print Dialog are ignored. These features are:

e Print Time: foreground/background makes little sense and users requiring a special print time
handling must use the desktop printing software to set it.

e Calibrated Color settings.

e N-up Printina. Anv settinas are ianored so the default values of 1 sheet per paoe with no border

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 12 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th.. 6/718/99 1:50 PM

,,,,, o -

are always used, regardless of the user’ s saved defaullts,

One sticky point isthe issue of paper size. For normal print jobs through the Printing Manager, the paper
sizeisbased on the print record, which in turn is based on the Page Setup dialog choices and the default
print record. Since the user has no way of choosing these through the Download Manager, the default
paper size isthe default as given in the *Defaul tPageSize keyword in the PPD file assigned to the target
output device.

One additional feature isthat any *DeviceAdjustMatrix Or *PatchCode entriesin the target PPD file are
utilized properly.

I mplementation Details

This section describes how the JPEG converter, as a plug-in for the Download Manager, implements each
of itsrequired routines.

psL owGetConverterInfor mation

The JPEG converter returns a pointer to aConverterDescription structure which reflectsits
capabilities. The name of the JPEG Converter is* Sample JPEG Downloader.” The info string for the
converter is obtained from a "STR#" resource with id value JPEGCONVERTERSTRINGS_ID and the string

number kJPEGConverter InfoString. Thisresourceis defined in sample LangEnglish.r.

TheConverterDescription for the JPEG converter reports that the JPEG converter can handle three
types of data: "JPEG", "JFIF" and "????". For each of these data types, the ConverterDescription
for the JPEG converter requiresthe first two bytes of the file to be 0xFFD8. The priority for each of these
typesin the ConverterDescription iSzero, meaning that the JPEG converter cannot handle the data
unlessit can read more than the first 15 bytes of data to determineif itisvalid JPEG data. Thisisa
conservative approach since without reading the data, the sample converter can’t be sure that it has valid
JPEG data, or whether it is of aformat (progressive JPEG) that it can not handle.

psLowCanConvert

Thisroutine isrequired to determine if the JPEG converter can handle the data stream and if so, with what
priority. To determine this, the JPEG converter first determines if the output device requiresLevel 1
support. If it does require Level 1 support or has unknown PostScript support, the JPEG converter
reports that it cannot convert thefile.

Note:

The language level information available at the time psLowCanConvert is called may be more
conservative than the true output LanguagelLevel. That is, if the user has not set up her printer, the
LanguageLevel isconsidered unknown. If thisis the case, this sample converter cannot support the
data, even though the printer may support Level 2 PostScript. Use a LanguageLevel 2 printer and set
up that printer in the Chooser to test this sample converter.

If the PostScript LanguageLevel of the output device is LanguageLevel 2 or greater, the JPEG
converter looks at the stream of data and determinesif it isvalid JPEG datathat it can handle. If so, it
obtains the width, height, and depth of the JPEG data. If the datais valid JPEG datathat it can handle,
i.e., the width and height are non-zero and the depth is either 8 bit or 24 bit, it returns a priority of 10. If
not, it returnsa priority of 0, meaning that it cannot handle the data.

psLowGetStreamlInfo

Thhimuvaidimmaliatimnd Ll A Al Aaind ba mAdk Ammm A rmrbl b mn Al L mvimn bl an AlnAai i dlaAa AdAad Al AamdAd A A b sina Al A

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 13 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM
LTS TOUUTIE IS USEU DY dUllETIL LU yet SUTIE TTITTTa O Natun aduut U ie uovwilvaueu Udla Ly pe,; diiu SU

forth. The JPEG converter reports the following:

e Download datatype: “JFIF".

e Number of pages:. 1.

e Manual feed is determined by calling the routine psRequi resManual Feed in FeatureUtilsLib
for non-EPS stream creation. When creating an EPS output stream, manual feed is aways false.

e Number of copies: When creating a non-EPS output stream, the number of copiesis that
requested as the print time default. When creating an EPS output stream, the number of copiesis
1.

These are the only pieces of information that the JPEG converter reports. Any other pieces of
information requested are reported as Unknown.

psL owPeek Convert

The JPEG converter does not need to peek at the data, so its psLowPeekConvert routine merely returns
without peeking.

psLowAddConverter Queries
The JPEG converter adds queries for the PostScript LanguageLevel and the channel characteristics.

The PostScript LanguageLevel query is used, at conversion time, to determine what the PostScript
LanguageLevel redly is. Thisalowsthe converter to verify at print time whether it can really support the
target output device. The only situations where this could fail after the converter checked the language
leve in psLowCanConvert are when:

e the caller requesting the download changed the target output device between its callsto
psCanDownloadFi le and psDownloadFile and the new device requires Level 1 support

e thetarget output device changed between the time of printer setup and the time of the print job
and the new device requires Level 1 support

e The queries about the channel are used to determine whether the JPEG converter must generate
binary or ASCII data.

The query hints used for these queries are:

e® For LanguagelLevel: kHintLanguagelLevelTag, kHintLanguageLevel Id, default Unknown.
e For channel characteristics. kHintEighthBitTag, kHintEighthBitld, default 7bit;
kHintTransparentChannelTag, kHintTransparentChannel 1d, default notTransparent.

psLowDoConvert

The purpose of the psLowDoConvert cal isto generate the PostScript data to the output device. During
this process, the converter reads the input stream and writesit to the output stream. In addition, it reads
the output stream for data being echoed from the output device and writes such data to the input stream.
During the reading and writing of the PostScript data, the JPEG converter module tailors its output stream
to the target output device and provides status information to the client which has called it.

The JPEG converter first allocates its buffers for reading data from the input stream and for reading data
from any back channel that might exist. It then readsitsfirst buffer of datafrom the stream and verifies
that the data is valid JPEG data. It does thisto obtain the width, height, and depth of the stream it isto
convert. If, for any reason, the data cannot be handled, the converter reports this by writing alog
message kJPEGBadDataMsg. Thisisdiscussed in detail in the section Generating Error Messages. If the
data cannot be handled. the converter returns the error errcantHandleThisDownloadData.

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 14 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM

The converter then evaluates the query results. If the query for LanguageLevel indicatesLevel 1
compatible output is required, the JPEG converter cannot download the data and returns the error
errCantHandleThisDownloadData. This should rarely happen.

The query for the channel allows the converter to configure whether it can write binary output.

If the converter can handle the data but the output stream requires ASCII data, the compressed JPEG data
is encoded with ASCI185 encoding on the host before being written to the output stream. Note that in
this case the converter uses the ASC1 185Decode filter in combination with the DCTDecode filter in the
PostScript wrapper. Once the JPEG data has been written to the output stream, the finishing PostScript
wrapper iswritten.

Notethat if the source JPEG data is one component, a grayscale image is produced regardless of the color
capabilities of the target device.

Generating Error Messages

The JPEG converter module generates error messages when it detects problems with the conversion.
These error messages are in addition to any provided by the Download Manager itself, such as

PostScript errors or other error conditions in the output device. The error messagesinitiated by the JPEG
converter are those relating to its ability to convert the JPEG data into PostScript output for the current
output device. They are provided to the downloading client and ultimately may be provided to the user in a
useful form.

There are two cases where error messages are generated. The first occursif, after acall to
psLowCanConvert determines that the JPEG data can be handled by the JPEG converter, but during
psLowDoConvert, the JPEG converter determines that the JPEG datais not properly formed, it generates
an error message corresponding to kJPEGBadDataMsg. Currently this error message, found in sample

LangEnglish.r, is“The image data depth or size cannot be supported by the sample JPEG converter.”
This condition should not occur, but the JPEG converter is prepared to handleiit if it does.

The second case where the sample JPEG converter initiates an error messageis if during
psLowDoConvert, it determines that output compatible with a PostScript LanguageLevel 1 deviceis
required, it generates the error message corresponding to JPEGNoLeve I 1SupportMsg. Currently this
error message, found in sample LangEnglish.r, is“Generating Level 1 Compatible PostScript output with
the sample JPEG converter is not possible.”. This should happen rarely, if at all. It should only happen

if the user does a Chooser setup and the target output device reports to be LanguageLevel 2 and later the
user changes the actual target output device to one that only supports LanguageLevel 1 output.

Back to top
Introduction to the Sample Code Structure

The sample JPEG converter is structured in amanner that isintended to make it easy for developersto
create anew low-level converter to convert data formats that generate a single page of graphics. Evenif a
given dataformat generates more than a single page, the structure of the sample code islikely to easethe
creation of new low-level converters.

The structure of the sample code consists of two parts. Thefirst part isa*®shell” portion which provides
the support for printer feature handling, for the DSC structure of the PostScript language output, and for
the tagging of the output so that the Download Manager and its clients can report status. This “shell”
code is not specific to any datatype and hopefully has very few assumptions about what the output of a

niven Inw-laval converter chnilld ha Tha “chall” rode rond ot nf tha filec camnla ConverterShall e
file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 15 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug |n for th.. 6/18/99 1:50 PM

Y VML IUVY TUV L VUV U LU DIV VU TS o (VI VIVEVIVIRIG B TO RV V) M1 NIV U LU A T T ey

sample ConverterShell.h, Utilities.c and Utilities.h. Thiscodeis deﬂ:rlbed in deta|l in the section
low-level converter “Shell” Code.

The shell code is specifically written to make the creation of one-page graphic converters especially easy
but does contain a significant amount of code that would make more extensive converters straightforward
to write. The existing structure expects that thereis only one page, and it is hard coded as such. The code
is commented to indicate where the single page assumptions are and developers are free to use this code
as abasisfor making a converter that handles more than one page.

The second part of the sample code is the part which is specific to the sample JPEG converter. It iswhat
makes this low-level converter a JPEG converter as compared to a converter for GIF, FAX data, or other
types of data. The files which comprise this portion of the code are sample JPEGConverterLib.c, sample
JPEGConverterLib.h, sample JPEGConverterLib.r, and sample LangEnglish.r. The details of this
portion of the implementation are described in the section JPEG Converter Specific Code.

The remainder of this section provides basic information about what the shell code does and what a user
of the shell code needs to provide to use the shell code without modification.

Shell Basics

The shell code supplies al the routines that need to be exported by alow-level converter for use by the
Download Manager. This should make it easier to build alow-level converter that meetsadl the
requirements of the Download Manager. The routines exported by the shell code call special routines
which are supplied by the non-shell code. The term “shell client code” will be used to refer to this
non-shell portion of alow-level converter that uses the shell code.

The shell code handles a set of basic queries and gives the shell client code an opportunity to add
additional queries should they be required. The basic queriesit handles include:

e PostScript language level.

e ASCII/Binary.

e Color output device.

e Whether the output deviceis configured to generate color separations.

In addition to specifying these queries, the shell code handles the results of the query to create information
in aform useful to shell client code.

For example, the color output device query and color separations query are used to compute the Boolean
canDoGrayOnHost that is passed to the shell client code. This Boolean lets the shell client know whether
it is safe to downsample any color data on the host to grayscale data. For some output types, thiswould
allow a substantial performance benefit. For example, the JPEG converter built into PrintingLib knows
how to handle PostScript Level 1 output devices and, when generating Level 1 compatible output and
canDoGrayOnHost istrue, it downsamples the uncompressed JPEG data on the host to reduce the amount
of transmitted data by 2/3.

Shell client code doesn’t have to worry about generating any feature code, cover pages, or document level
DSC comments: these are handled by the shell code. Since the shell code also handles the initial portions
of the page level DSC comments, shell client code does not need to generate any DSC comments other
than those necessary for the PostScript stream to draw a given page.

The shell code creates and uses a StreamlnfoData data structure. It also passes this structure to the client
shell routinesthat it callsto emit PostScript code into the output stream. The StreamInfoData structure
contains information about the output stream and its characteristics, such as whether it supports the low
32 charactersin the 7-bit data range (transparent) and whether it supports datain the 8-bit character range.
This structure is the structure which is passed to many of the PSUti IsLib output routines that are

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 16 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM
available for use to write data into the PostScript output stream. Some of the routinesin PSUtiIsLib can
write formatted output (similar to printf in the standard C library) and they take into account the
channel characteristics when they generate output. For more information on PSUti IsLib see Appendix A.

Before calling the shell client code to draw the actua page, the shell code performs scaling of the
PostScript coordinate system so that the bounding box of the graphic is centered on the page and scaled to
fit on the page, if appropriate. This generally gives attractive results for 1-page graphics formats that
might have not fit on a single page or that would have been clipped by the imageable area. This‘auto
scaling’ may not be appropriate for some data types or graphics formats. This request for auto scaling
may be removed from the shell codeif agiven low-level converter does not want this functionality.

Note:
The auto scaling PostScript is not emitted if the Download Manager job requests an EPSjob or if the
Download Manager job contains the kHintDoAutoScal ingTag hint with the value false.

Details on how the shell code performsits duties are described in the section low-level converter “ Shell”
Code.

Crucial Note:

The sample code builds alibrary which is marked as using shared global data. What this meansis that
no matter how many simultaneous users of agiven plug-in there are, they al share the same global
data. For this sample converter, that is perfectly reasonable since it has no global datathat maintains its
current state; having shared global data saves memory.

Using shared global data does have at |east one side effect that is reflected in the source code. In
particular, accessing the resource fork of the plug-in file must be done carefully. The approach taken in
the sample code is to access the resource fork by opening and closing it each time the converter needsto
access data from the resource fork. Another approach isto open it at the beginning of the relevant routine
and close it before ending that routine. An approach which does not work with shared global dataisto
open the resource fork in the library fragment initialization routine and expect that resource fork to be
availableto al clients. This does not work because the resource fork is only in the resource chain of the
application which first loads the plug-in. Other uses of the plug-in after it has been loaded do not call the
library fragment initiaization routine if the library is marked with shared global data. Attemptsto usethe
resource fork in this situation fail.

Shell Usage

The .cfile called “sample ConverterShell.c” contains the shell code. Thisfileisnormally not modified by a
user of the shell code. It consists of the exported routines needed by the Download Manager. It
implements those exported routines by doing as much asit can in ageneric fashion, while calling specific
routines to be implemented by alow-level converter.

The routines to be implemented by alow-level converter that uses the shell code and which are called by
the shell code are:

converterGetConverterl nfoPtr
converterCanConvert
converterGetConverterDocType
converterPeekConvert
converterGetVersion
converterAddAdditional Queries
converterGetConverterName
converterlnitDoConvertClientData
converterDisposeDoConvertClientData
converterGetBBox

N N LT LI PN

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 17 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM
@ Luliver e ciiurtuiuy

e converterEmitPageData
Here are the descriptions of these routines called by the shell code:

converter GetConverterl nfoPtr

OSStatus converterGetConverterInfoPtr(const ConverterDescription
**thePtr);

Thisroutine is used by the shell code during psLowGetConverterlnformation to obtain the
ConverterDescriptionPtr to pass back to the Download Manager. A converter should storeits

ConverterDescriptionPtr in *thePtr

converter CanConvert

OSStatus converterCanConvert(PSSerialStream *readStream,
PSStream *inputStream, Collection hints,
LowConverteriInfo *datalnfo, Fixed *downloadability);

Thisroutine is used by the shell code during psLowCanConvert to ask alow-level converter whether it
can convert the data represented by inputStream. For convenience, the shell code passes the following
parameters:

® readStream iSapointer to aPSSerialStream from which aclient can read the data.

® inputStream isapointer to aPSStream corresponding to the input data. Thisform of the input
stream isneeded if a client needsto rewind or position the stream. Note that not all streams can
br(]e repositioned so a client must first look at the stream type of inputStream if it needsto position
the stream.

e hints isthe collection provided to supply information about the features requested for the
download.

e datalnfo isinformation about the Finder type associated with the stream data.

e downloadabi lity iSapointer to aFixed number. The converter is expected to indicate its
ability to download the data. A return value of O reports that the converter cannot download the
data. The larger the number, the more suitable the converter is to download the data. A value of
10.0 (Fixed) isthe largest value returned by the converters within PrintingLib.

converter GetConverter DocType

OSStatus converterGetConverterDocType(PSSerialStream *readStream,
PSStream *inputStream, Collection hints, OSType *theType);

Thisroutineis called by the shell code as part of psLowGetStreamInfo to obtain the ‘type’ of document
to which the data corresponds. Thisroutine isonly called after a converter has indicated that it can handle
the data.

The stream and hints information is passed to allow a converter to examine the data, should it need to read
the data stream to determine the ‘type’ of data. A converter that only handles one type of data should not
read the data, but simply return the supported type in *theType parameter.

T T I

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 18 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM
converter reekeonvert

OSStatus converterPeekConvert(PSSerialStream *readStream,
PSStream *inputStream, Collection hints);

Thisroutineis called by the shell code during the psLowPeekConvert cal to alow aconverter to peek at
the input stream and record any hints about the data which would be useful during conversion.

® readStreamisapointer to aPSSerialStream from which aclient can read the data.

e inputStreamisapointer to aPSStream corresponding to the input data. Thisform of the input
stream isneeded if a client needsto rewind or position the stream. Note that not all streams can
be repositioned so a client must first look at the stream type of inputStrean if it needsto
position the stream.

e hints isthe collection provided to supply information about the features requested for the
download and allow the low-level converter to record hints obtained during the peek phase.

converter GetVersion

OSStatus converterGetVersion(struct CFMVersion *version);

Called by the shell code as part of psLowGetConverterVersion to alow aclient to determine the CFM
version data of the low-level converter.

converter AddAdditionalQueries

OSStatus converterAddAdditionalQueries(Collection hints,
Collection query);

Called by the shell code during psLowAddConverterQueries to allow alow-level converter to add
additional query hints. The shell code always adds the queries:

® kHintLanguagelLevelTag: the PostScript language level.
e kHintEighthBitTag: whether the channel is 8 bit clean.
e kHintTransparentChannelTag: whether the channel is transparent to the low 32 characters.

® kHintColorDeviceTag: Whether the output device isacolor device.
e kHintColorSepTag: whether the output deviceis configured to do color separations.

If aconverter wantsto add additional query hints, it should add them to the query collection parameter.

converter GetConverter Name

OSStatus converterGetConverterName(Str255 converterName);

Thisroutineis called by the shell code during psLowDoConvert to obtain the name of the converter. This
allows the shell code to use the proper “application name’ for the DSC comments relating to the document
creator. It al'so allows any generated cover page to correctly reflect the converter's name.

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 19 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM

converterlinitDoConvertClientData
OSStatus converterlnitDoConvertClientData(void **clientData,
PSSerialStream *readStream, PSStream *inputStream,

PSStream *outputStream, Collection hints,

unsigned char *backChannelDataBuffer,

SInt32 backChannelDataBufferSize,

UInt32 *LanguagelLevel, Boolean doBinary,

Boolean canDoGrayOnHost, Boolean isNotEPS);

e converterinitDoConvertClientData is caled during the psLowDoConvert phase of
conversion to allow a converter to create and configure any client data that it needs for the
cogversi on process. Thisroutineis called before any PostScript data is generated by the shell
code.

e clientData isapointer to a(void *) that can be supplied by the client. clientData is passed

to each of the other routines called by the shell code during the psLowDoConvert phase of the

conversion.

readStream isapointer to aPSSerialStream from which aclient can read the data.

e inputStream isapointer to aPSStream corresponding to the input data. This form of the input
stream isneeded if a client needsto rewind or position the stream. Note that not all streams can
bhe repositioned so aclient must first ook at the stream type of inputStream if it needsto position
the stream.

® outputStream isapointer to aPSStream to which aclient should write the generated
PostScript language data.

e hints isacollection provided to supply information about the features requested for the
download and allow the low-level converter to obtain hints recorded during the peek phase.

® backChannelDataBuffer isabuffer (or NULL) allocated by the shell code for use by the
converterEmitPageData routine to read the back channel datainto. Typically, this buffer is
not read directly by aconverter but isinstead passed to ReadWr i teBackChannel as described in
the section Shell Utility Routines.

® backChannelDataBufferSize isthe size of the backChannelDataBuffer data buffer.
Typicaly thisvalueis not used directly by a converter, but is instead passed to
ReadWriteBackChannel as described in the section Shell Utility Routines.

e Languagelevel isapointer to aulnt32 indicating the target language level for output. The

converter supplied routine should put the minimum LanguageLevel required to support the

generated output. This lets the shell code generate the proper %%LanguageLevel: DSC
comment.

doBinary isaBoolean indicating whether the destination can accept binary data.

e canDoGrayOnHost isaBoolean indicating whether the converter can downsample grayscale
output from color input. Thisisonly trueif it is known that the output device is not color
capable and is not generating color separations.

@ isNotEPS isaBoolean indicating whether the generated output should be EPS output. If the
generated output is not supposed to be EPS, thisvalueistrue. If the output is supposed to be
EPS, thisvalueisfase.

Shell client code should not write to the output stream during the call to
converterlnitDoConvertClientData. Thisroutine should only be used to configure the shell client
code appropriately.

converter DisposeDoConvertClientData

OSStatus converterDisposeDoConvertClientData(void *clientData);

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 20 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM
Thisroutineis called by the shell code during psLowDoConvert to alow the low-level converter to
dispose of any clientData it allocated during converterinitDoConvertClientData

converter GetBBox

OSStatus converterGetBBox(kHintEPSBBoxVar *bbox,
void *clientData);

Thisroutineis called by the shell code during psLowDoConvert to obtain the appropriate bounding box
information for the data being downloaded.

converter EmitProlog

OSStatus converterEmitProlog(StreamlnfoData comm,
void *clientData);

Thisroutineis called by the shell code during psLowDoConvert to alow the low-level converter to emit
its prolog code into the output stream. The shell code generates the appropriate %%BeginProlog and
%%EndProlog comments around the prolog code emitted by converterEmitProlog.

e comm isaStreamlnfoData corresponding to the output stream.
e clientData isthe client datafilled in by the converter when
converterlnitDoConvertClientData was called.

converter EmitPageData

OSStatus converterEmitPageData(StreamlnfoData comm,
void *clientData);

Thisroutineis called by the shell code during psLowbDoConvert to allow the low-level converter to emit
the PostScript code to render the page into the output stream. Thisis where the bulk of the PostScript
code emitted by the low-level converter should be generated. The shell code generates the showpage
command as well as the appropriate comments after the page and job.

The PostScript coordinate system in force at the time this call is made has been set by the shell code to be
the default PostScript coordinate system as modified by any device adjust matrix and any autoscaling
necessary to center and scale the bounding box reported by converterGetBBox. A low-level converter
should emit PostScript code to render the page so that it has a bounding box as reported by
converterGetBBox.

e comm isaStreamlnfoData corresponding to the output stream.
e clientData istheclient datafilled in by the converter when
converterlnitDoConvertClientData was called.

Resour ces

Once these routines have been implemented, the C code is complete, but the converter isnot. A converter
module must also have the appropriate resources, in particular the *PLGN" resourceit requires as a
Download Manager blua-in. The samble code sample JPEGConverterLib.r file containsa *PLGN "

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 21 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... = 6/18/99 1:50 PM

resource with ID number -8192. A converter MUST contain this resource and the I |braryName field of
thePluginLiblnfo resource must have the name of the converter module library in place of that for the
sample.

resource "PLGN®" (-8192,

#iT gNames
"Plug-In Info",
#endif
purgeable) {
{
"down®, "????", "YourConverterModulelLibName"
}
};
Note:

Without a proper "PLGN" resource, alow-level converter will not be recognized by the Download
Manager.

The name “Y ourConverterModuleLibName” above should be replaced with the name used for the
converter code fragment.

That should be it. Once the converter module is built correctly (get that library name to match in both the
"cfrg" resource and the "PLGN" resource!), you can drop an alias of that library into your “Printing
Plug-ins’ folder in your Extensions folder. Y ou should now be able to test drag and drop printing in the
Finder in Mac OS 8.5 or later using your plug-in.

Y ou can use the shell code asis. If so, you should also read section JPEG Converter Specific Code.
Those not using the shell approach or those who want to know more about the shell approach should read
section low-level converter “ Shell” Code to understand better what the shell codeis doing.

Shell Utility Routines

In addition to calling the routines that are supplied by the converter shell client, the shell code makes
available some routines that are useful to the converter. Descriptions of these functions follow.

openLowLibraryResFile

OSErr openLowLibraryResFile(short *fRef);

Thisroutine is used to open the library resource file so that resources can be used. The caller of this
routine must close the resource fork when finished. Thefileis opened read only.

e fTRef isapointer to ashort that openLowLibraryResFile fillsin with the file reference number
of the library resource fork opened.

ReadWriteBackChannel

OSStatus ReadWriteBackChannel (PSStream *streamToClient,
PSWriteProc writeProc,
PSStream *streamToPrlnter PSReadProc readProc,

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 22 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM
unsigned char *backChannelButTer,

SInt32 backChannelBufferSize);

Thisroutineisto be called by a converter so that any data coming up the back channel from a PostScript
output deviceis properly passed back to the Download Manager so it can look for errors or status
messages. This routine should be called regularly by aconverter asit iswriting data out. Thisroutineis
only for use during the converterEmitPageData and converterEmitProlog procedures (see the

section Shell Usage).

e streamToClient istheinputStream passed to the low-level converter’s
converterlnitDoConvertClientData procedure

e writeProc isthewrite procedure on the streamToClient Stream.

® streamToPrinter istheoutputStream passed to the low-level converter's
converterlnitDoConvertClientData procedure

e readProc istheread procedure on the streamToPrinter stream.

® backChannelBuffer isthe databuffer passed to the low-level converter’s
converterlnitDoConvertClientData procedure

® backChannelBuffersSize isthe size of the backChanne lBuffer as passed to the low-level
converter’ sconverter InitDoConvertClientData procedure.

writeL ogM sg

OSStatus writeLogMsg(PSStream *streamOut, PSSubsection subsection,
void *info, SInt32 stringsliD,
SInt32 msglD, Boolean isError);

Thisroutineis called by a converter to log any error or warning messages which are appropriate during
the data conversion.

® streamOut iStheoutputStream passed to the low-level converter’s
converterlnitDoConvertClientData procedure

® subsection isthePSSubsection to which the error pertains. Use kSubAnon if thereisno
appropriate subsection.

e info isapointer to astructure appropriate for the subsection being reported or iSNULL.

e stringslDisthelD of a*STR#" resource containing the message string list for the converter.
The converter library resource fork is opened (and closed) by writeLogMsg to obtain the
"STR#" resource, so aclient need not open the library resource fork before calling writeLogMsg.

e msglD isthelist number of the target message within the *STR#" resource referenced by
stringsliD.

e isError isthe constant LOGERROR if the caller wants the message to be reported as an error as
opposed to awarning. The constant LOGWARNING is used to report the message as awarning.

JPEG Converter Specific Code

Thefilesin the sample code which cause this sample low-level converter to be a JPEG converter are the
files sasmple JPEGConverterLib.r, sample JPEGConverterLib.c, and sample LangEnglish.r.

Sample '"PLGN' Resource

The file sample JPEGConverterLib.r provides the *PLGN*" resource for this converter module:

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 23 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM

resource “PLGN® (-8192,
purgeable) {

{

“down®, "??7??", "sampleJPEGConverterLib"

}
};

Specifically this "PLGN" resource indicates that the file contains one plug-in and that the type of plug-inis
“down” with subtype =??2??". These are the download manager plug-in types. The final piece of
information indicates that the plug-in library nameis sampleJPEGConverterLib. Thisnameisthe same
as the name of the code fragment to load for this plug-in.

For this sample converter, the sample LangEnglish.r file contains a "STR#" resource definition of a
string list of message strings used by the sample JPEGConverterLib.c file. Y our C code may require a
similar *STR#" list or other resources.

Sample Converter Description

The shell code doesn’'t know anything about what types of data an actual low-level converter can handle,
so “shell client code” must supply a converter description. The sample code declares a new type of data
MyConverterDescription Which parallelsthe ConverterDescription datatype but is concrete in the
number of ConverterService structures it contains.

HereistheConverterDescription used for the sasmple JPEG converter:

MyConverterDescription gTheConverterDescription =

{

// signature information

kTheConverterDescriptionSignature, // signature always first
kInitialConverterDescriptor, // version data

// ConverterType

{
"\pJPEG Converter'", // name
"\p", // our real info string data comes from rsrc fork
kMajorRev, kMinorRev, kReleaseStage, kNonRelease,

}1
// Converter Services

kNumHandledTypes, // # of ConverterTypelnfo structures

{

{
"JPEG", // file type for JPEG data

CANTDOWNLOAD, // priority hint - we can’t
// handle if we can’t look at
// more than the first 15
// bytes of data to verify it
// is JPEG data we can handle

"\p\xFF\xD8" // the first 2 bytes of
// JPEG/JFIF data

bl

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 24 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM
]J

{
"JFIF", // fTile type for JFIF data

CANTDOWNLOAD, // priority hint - we can’t
// handle if we can’t look at
// more than the first 15
// bytes of data to verify it
// is JPEG data we can handle

"\p\xFF\xD8" // the first 2 bytes of
// JPEG/JFIF data
3
{

77", // file type for unknown data
CANTDOWNLOAD, // priority hint - we can’t
// handle 1f we can’t look at
// more than the first 15
// bytes of data to verify it
// is JPEG data we can handle

"\p\xFF\xD8" // the first 2 bytes of
// JPEG/JFIF data

}
}
}
};

There are acouple of pointsthat are worth noting. First, the info field of the converterType field of the
ConverterDescription isazero-length Pascal string. The sample code takes care of filling in thisfield
with data from sample LangEnglish.r so that the info string can be internationalized.

For our sample converter, kNumHandledTypes iS 3, that is, there are three types of data which the
converter wants to handle. The 0STypes that are handled are *JPEG®, "JFIF" and the unknown type
*2???". The ConverterTypelInfo for each type has the same priority and matchString data.

ThematchString supplied isthat corresponding to the first two bytes of JPEG data. By specifying these
asthefirst two bytes of the data stream, the Download Manager does not call this converter for files (or
streams) which match the specified types but do not have these two characters at the beginning of the
stream.

The priority supplied for each type is CANTDOWNLOAD which isthe value O. The priority value in the
ConverterTypelnfo for each typeis used only in the case where the Download Manager must assign a
priority to the low-level converter but it can’t call the psLowCanConvert routine to obtain a priority. This
only happensif the input stream being downloaded cannot be repositioned, such as datathat is being

generated on thefly. Thisis never the case for file downloads from the desktop printing software in the
Finder.

The sample code doesn’t have to reposition the stream and this would allow it to work both with streams
which allow positioning (kPSRandomAccessStream) and streams which do not alow positioning
(kPSserialStream). Unfortunately there are restrictions on the type of data that the sample code can

handle; there are JPEG data typesit can’'t handle (Progressive JPEG) and it cannot handle PostScript
Level 1 output.

Because the sample JPEG converter can’t always support downloading streams that begin with our
matchString datawithout looking at the data further, it must advertise a priority of O.

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 25 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM
converter GetConverterInfoPtr Routine

The converterGetConverterInfoPtr routine supplied by the “shell client code” isresponsible for
returning a pointer to the ConverterDescription structure described above. As mentioned earlier, the
info field of this structureisfilled in with data that can be localized and livesin the low-level converter’s
resource fork. To access this data, the sample code opens the library resource fork, copies the appropriate
string data into our structure and closes the library resource fork. The resource fork ishandled in this
manner because, as discussed earlier, our plug-in shared library has shared global data and this approach
properly allows multiple clients to use the resource fork of the converter.

TheopenLowLibraryResFile routine is used to access the resource fork of the low-level converter. This
routine is provided by the shell code to simplify access to the resource fork by the shell client code. The
shell client isresponsible for closing the resource fork onceit is done. Note that closing the resource fork
unloads any resources which have not been copied or detached from the resource fork.

converterlnitDoConvertClientData Routine

Thisroutine allows the shell client code to allocate and initialize any datathat it needs to perform the
conversion. One important point is that the shell code passes in a pointer to the LanguageLevel that
reflects the job request. The shell client should update the LanguageLevel data pointed to by this pointer
so that it reflects the minimum PostScript LanguageLevel that is generated by this converter. The shell
code uses the data returned to generate any %%LanguageLevel DSC comment.

converter PeekConvert Routine

Our sample code has no need to peek at the data since it can obtain al the data it needs by reading the
header of the JPEG data stream. Normally the sample code simply returns from the

converterPeekConvert routine without doing anything.

To aid those devel opers who might wish to collect data during the peek phase and access that data during
the conversion phase, the sample code has some conditionally compiled code to give an example of how
to store private hints corresponding to data collected during the peek phase. There is aso corresponding
conditionally compiled code contained in the conversion phase code to access the stored private hints.
Remember from the earlier Private Data Hints section that the converter might be unloaded between the

converterPeekConvert cal and the converterInitboConvertClientData cal, so global data cannot
be used.

The reason for being careful about how private hints are stored is because any collection tags added to
the hints collection may conflict with hints that are stored in that collection by the Download Manager or
other portions of the code path. To overwrite such hints could produce unpredictable behavior. To avoid
this problem, the collection tag value kHintAppPrivateTag ("APPL") isreserved for third party’s use.
When using thistag, a developer can ensure it has a private ID value by using the signature assigned to
the converter. A converter developer should register this signature with DTS, just as when developing an
application.

In principle, thisonly allows a single piece of datato be stored by each developer. The data stored is
private and need not be in any specific format. It may be convenient to have the private dataitself be a
collection, and the sample code demonstrates how to accomplish this.

To store a collection, one must flatten it into a handle and then store that handle. To access the stored data,
one must get the collection item handle and unflatten it back into a collection. The conditionally compiled
sample code does just this. It first creates a“ private” collection and stores the data for afew fake “ private”
hints. It then flattens the private collection and stores that with the kHintAppPrivateTag tag value and an
ID formed by using the appropriate signature. The code to access this private collection isin the sample
shell client code routine converterInitDoConvertClientData.

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 26 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM
converter EmitProlog Routine

The shell code client’ s converterEmitProlog routineis called by the shell code to generate the prolog
code into the output stream. For the sample code, al the prolog codeis contained in asmall single Pascal
string psPrologL2 which issimply global data. The PSUti IsLib routinepsoutPStr iscalled to write
this Pascal string to the output stream represented by the comm StreaminfoData structure passed to the
converterEmitProlog routine.

This approach isfine for converters which have small prologs, but if your converter has alarge prolog, it
may be preferable to store it as a resource and to load the resource and send it when needed. This hasthe
advantage of requiring less memory during the entire conversion, since global dataisin memory
whenever a converter isloaded (ignoring virtual memory considerations) and resource datais only
loaded upon request.

However, having the prolog in the resource fork requires each instance of alow-level converter to load its
prolog rather than using the shared global data. This means that the total memory used by all instances of a
low-level converter will be larger for this case. Y ou should keep these tradeoffs in mind when deciding
where to store your prolog.

After writing the prolog code, converterEmitProlog calsthe ReadWriteBackChannel routine to read
the output device back channel and write any data it reads back to the input stream. This alowsthe
Download Manager to look at the data coming back from the output device and properly report
PostScript errors and status information. The Readwr i teBackChannel routine is supplied by the shell
code for use by the shell client code.

converter EmitPageData Routine

The converterEmitPageData routine is where the bulk of the PostScript code specific to this document
is generated by the shell client code. Most of the code is pretty straightforward but there are afew
comments that might be helpful.

To emit the portion of the PostScript code which parameterizes the call to the PostScript image operator,
the sample code calls the psOutFormat routinein PSUti IsLib. Thisis one of the routines which can
output data while formatting it. The call used is:

psOutFormat(comm, pslmageDictSetupl, width,
height, numComponents);

The string being output is ps ImageDictSetupl, which begins something like:

static const unsigned char pslmageDictSetupl[] =
"\pZiwidth ~d def/iheight ~d def/components ~d def ...";

Theuse of ‘Ad’ within astring is similar to the use of *%d’ in aformat string for printf. That is, when
the psImageDictSetupl string is scanned by the psOutFormat routine, it substitutes the first ~d in the
format string with the first parameter passed after the format string in its arguments. Thisis handled
similarly for al the arguments and formatting charactersin the outpuit.

Note:
Theuse of "" instead of "%" in these format strings isto avoid interference with the legitimate use of a

.
file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 27 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM
Y0 Character 1N sucn rormat Strings, Since tne %o~ CnaraCter Nas semantc meaning 1N FosStSCript

language outpuit.

To write the JPEG data to the output stream, the sample converter uses the psoutBlock routine in
PSUti IsLib. Thisroutine simply writes a data block of a specified number of bytes to the output stream.

For more information on the formatting routinesin PSuti IsLib, see Appendix A.

While writing the JPEG data, the converterEmitPageData routine calls the ReadWriteBackChannel
routine to read the output device back channel and write any datait reads back to the input stream. It does
thisasit writes significant blocks of data to the output stream so that it detects any data coming back
from the output device in atimely manner. There is no point spending time consuming computations or
sending lots of data to the output device just so it can be flushed by the output device's PostScript
interpreter because there was a PostScript error in the output device.

Calling ReadWriteBackChannel alowsthe Download Manager to look at the data coming back from the
output device, and properly report PostScript errors and status information. The
ReadWriteBackChannel routineis supplied by the shell code for use by the shell client code.

Use of WriteL ogM sg

The sample code uses the wri teLogMsg routine provided by the shell code. It uses this routine to generate
error or warning messages that are available for processing by the Download Manager or the application
client which invoked the Download Manager. In addition, these messages can be saved into alog file. See
the Tips section for additional information about logging that might be useful for debugging alow-level
converter.

Back to top
low-level converter “Shell” Code

This section describes the operation of the shell codein more detail. In principle, only those who want a
deeper understanding of the shell code or who need to modify it need to read this section. In practice,
since the shell code is compiled into your low-level converter, you might want to understand it better even
if you don’'t plan to modify it.

The biggest limitation of the shell code asimplemented for the sample JPEG converter isthat it is
currently hard coded to generate one page of output. The shell code’ s psLowGetStreamlnfo routine
explicitly uses 1 for the number of pagesit reports, regardless of whether EPS output is being generated.
It treats the bounding box data as if there is only one page being generated. It also uses 1 for the number
of pages it generates for the %Pages: comment in the document header and for the page number it
generates for the w%Page: comment on thefirst (and only) page. It only calls converterEmitPageData
once and doesn’'t pass the current page number since the assumption isthat there is only one page. In
addition, there are several places where a pointer to the current page number is passed to the
doOutputPosition routine (discussed in the section DSC Comments and Feature Code).

psL owGetStreamlInfo

Thisroutineisimplemented in a generic fashion since the only data required from the shell client codeis
the type of datathat is actually contained in the file. Since the datain the stream is opaque to the caller of
the Download Manager, the low-level converter which can perform the download is the only entity that
can authoritatively determine the data type. The shell code calls the shell client code's
converterGetConverterDocType routine to determine what the datatypeis. The shell client code can
scan the data to determine this, or, in the case of the sample JPEG converter, it smply returns the data

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 28 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM
type since there is only one type of datathat the sample converter can handle. Since the only way a
low-level converter’s psLowGetStreamlnfo—and therefore its converterGetConverterDocType
routine—can be caled isif the converter has already agreed that it can handle the data through the
psLowCanConvert routine, it doesn’t have to scan the data unless it supports multiple data types.

The shell code determines whether an EPS or PostScript language download job is requested. If it is
EPS, the shell code knows the number of copiesisalways 1; otherwise, it looks for the job hint which
indicates the number of copiesto generate and returnsthat value. If the job is not EPS, it calls the routine

pslsJobManualFeed in theFeatureUtiIsLib library to determine if the hints collection correspondsto a
manual feed job. If thejob is EPS, it is never amanual feed job.

As described above, the shell code always reports 1 for the number of pages.
psLowDoConvert

The shell version of this routine takes care of the bulk of the generation of the DSC comments, the feature
code, and the invocation of the shell client code’ s routines for generating the PostScript output into the
stream.

It begins by alocating a buffer for reading the back channel data that might be returned by the output
device back to the hogt. It does this so that both the shell client and the shell code itself can use this
buffer to read the back channdl.

The shdll code calls the routine psSetupStreamlnfoData to obtain a StreamlInfoData structure that can
be used with the output routines contained in the PSuti IsLib library. The resulting comm variableis
passed to those shell client routines that are likely to emit code. If there are other routines that need the
comm structure, the shell code must be modified accordingly.

Back to top
DSC Comments and Feature Code

The shell code adds a number of hints that, on the surface, don’t seem to be used anywhere. These hints
include: kHintEPSBBoxTag, kHintAppNameTag, kHintClientNameTag, and kHintClientVersionTag.
These hints are used by the code which generates the feature invocations; that code is contained in the
FeatureUtilsLib library. For example, when a cover page is generated, some of these hints are used to
obtain datato fill in cover page information.

The shell code emits anumber of DSC comments into the stream by using the doOutputPosition
routine. This routine combines the generation of the DSC comments into the output stream (with the
appropriate tagging) and the request for various features.

The routine doOutputPosition isactualy amacro which resultsin acall to the routine OutputPosition.
TheoutputPosition routine uses the routines psWriteSubsectionFeature, psOutFormatPosition
and psOutFormatPositionlInfo in astylized fashion that is appropriate to discuss here. Hereisthe
routine:

static OSStatus OutputPosition(StreamlnfoData comm,
Collection hints, const SubsectionStr *subsectionStr,
void *info, Boolean isNOtEPS)

{

OSStatus err = noErr;

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 29 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM

err = psWriteSubsectionFeature(comm, hints,
subsectionStr->subsection, info,
kBeforeSubsection, isSNOtEPS);
if(lerr){
if(info)
err = psOutFormatPositionlnfo(comm,
subsectionStr, info);
else
err = psOutFormatPosition(comm, subsectionStr);

}

if(lerr)err = psWriteSubsectionFeature(comm, hints,
subsectionStr->subsection, info,
kAfterSubsection, isNotEPS);

return err;

}

TheoutputPosition routinefirst cals psWriteSubsectionFeature with the correct subsection and
with the value kBeforeSubsection. It then writes the comment by making a call to
psOutFormatPosition Of psOutFormatPositionInfo depending on whether theinfo datapassed inis
NULL or not. Finally, it callspswriteSubsectionFeature with the correct subsection and with the
valuekAfterSubsection.

psWriteSubsectionFeature isaroutinein FeatureUti IsLib that usesits knowledge of job feature
reguests contained in the hints collection passed to it, and combines that knowledge with the information
about what portion of the document is currently being generated. When thisroutineis called, it is passed a
PSSubsection which indicates which DSC comment is going to be written or was just written. A
psSubsectionLocation isaso passed to psWriteSubsectionFeature and indicates whether this call
to psWriteSubsectionFeature isbefore or after the DSC comment which is being written.

By passing this information about the document structure to psWriteSubsectionFeature, it isableto
intelligently generate the feature code needed at the appropriate point of the job stream. What feature code
to generate depends on the features requested in the hints collection passed to it. For example, when acall
iIsmade to psWriteSubsectionFeature with the subsection value kSubPSAdobe and
psSubsectionLocation vauekBeforeSubsection, psWriteSubsectionFeature Knowsto determine
whether a cover page should be emitted and if so, emits the cover page code into the stream. The call
returns and the caller normally generates the %!PS-Adobe-3.0 DSC comment. It then calls
psWriteSubsectionFeature With the subsection value kSubPSAdobe and psSubsectionLocation
valuekAfterSubsection and psWriteSubsectionFeature Writes nothing to the output stream.

This stylized way of using psWriteSubsectionFeature alows feature code to be generated
corresponding to the feature requests in the hints collection. The feature invocation code is generated into
the job stream in the appropriate place, aslong as the caller gives the psWriteSubsectionFeature
routine a chance to write its feature data at the appropriate points in the DSC job stream. The shell code
does this so that neither the shell code nor the shell client code need to know anything about the features
that the job requires. At the same time, the shell and its clients have to do little work to support those
features. There is nothing that says alow-level converter must use the feature generation ability of the
code inFeatureUtilsLib. However, by using thislibrary as shown in the sample code, the user will
obtain the requested print time features.

FeatureUti IsLib isdescribed in more detail in Appendix C.

ThepsOutFormatPosition and psOutFormatPositionlnfo functions mentioned above are availablein
PSUti IsLib and are used to tag the output written into the stream so that the Download Manager or its
callers who wish to track the proaress of the iob can do so bv lookina at thetaos. This ‘tacced’ datais

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 30 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th.. _6/18/99 1:50 PM

actualy part of the stream itsdlf in the form of the PSPosi tion structure which is part of a
PSSerialStream structure.

The psOutFormatPosition and psOutFormatPositionlInfo routines are passed the string datato be
written and the PSSubsection tag together in aSubsectionStr structure. This alows the data written

to be easily marked with the appropriate tag. The only difference between the two callsisthat acal to
psOutFormatPositioninfo suppliesa(void *) pointer to some information datathat is put into the info
field of the PSPosi tion structure on the stream. The call to psOutFormatPosition isequivaent to acall
to psOutFormatPositionInfo with the info parameter set to NULL. More information on these functions
isavailablein Appendix A.

Auto Scaling

It isimportant to point out again that the shell code does auto scaling so that the page of output is
centered and, if it would not fit on the page, is scaled to fit on the page. The orientation of the output
depends on the dimensions of the printed sheet and the bounding box of the data drawn. The drawing is
oriented on the page so that the longest dimension of the bounding box is aligned with the longest
dimension of the paper.

Thistype of scaling may not be appropriate for al types of converters. It isimplemented asacall to
psWriteSubsectionFeature With thekSubAutoScaling PSSubsection vaue. Clearly this data does
not correspond to a DSC comment, and there is no DSC comment written before or after this call to
psWriteSubsectionFeature. Thisisabit different than the use of psWriteSubsectionFeature
described above and is not associated with any DSC data written.

Thisis done in this manner for two reasons. First, not all users of psWriteSubsectionFeature are
interested in emitting the auto scaling code. In addition, the appropriate place to emit the auto scaling
code depends on the PostScript code being generated for drawing a given graphic. By not tying the auto
scaling code to a specific DSC section, the caller decides whether to include the code and if so, it can
decide exactly where to include it.

Device Adjust Matrix

The shell code generates a device adjust matrix adjustment which reflects the *DeviceAdjustMatrix
value (if any) in the PPD file representing the target output device. Thisisdoneasacall to

psWriteSubsectionFeature With thekSubDeviceAdjustMatrix PSSubsection vaue. The shell code
does not write aDSC comment before or after this call to psWriteSubsectionFeature. Again, thisisa
bit different than the use of psWriteSubsectionFeature described above, and is not associated with
any DSC data written. When psWriteSubsectionFeature writes any device adjust matrix code, it
generates %%BeginFeature and %%EndFeature around the code, just asit does for other PPD feature
codethat it generates.

Similar to the handling of kSubAutoScaling, the kSubDeviceAdjustMatrix PSSubsection has no
connection to a specific point in the structured document job stream. The appropriate place to emit the
device adjust matrix code depends on the PostScript code being generated for drawing a given graphic.
By not tying the device adjust matrix code to a specific DSC section, the caller decides whether to include
the code and if so, where exactly to includeit.

Note that the shell emits PostScript code surrounding the invocation of psWriteSubsectionFeature
with thePSSubsection valuekSubDeviceAdjustMatrix. Thisisdone so that if thereis no device
adjust matrix code generated, there is no adjustment. The code to use a device adjust matrix properly is
document dependent and therefore the program which uses the matrix needs to decide how to useit. The
feature code merely inserts the matrix (if thereis one) in the stream.

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 31 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM
Back to top

Tips

Converter Priorities

The Download Manager favors external converters over internal converters of the same priority. This
means that if the sample JPEG converter is placed in the “Printing Plug-ins’ folder it is favored over that
built into PrintingLib. Thisisfine for looking at the sample converter; however, to use the JPEG
converter built into PrintingLib, the sample JPEG converter must be removed from the “Printing
Plug-ins’ folder.

'"PLGN' Resource Editing

While not strictly necessary, a "PLGN" resource ResEdit templateisin PrintingLib 8.6 and later. To
look at the "PLGN™ resource inPrintingLib, just open it up. If you want to look at the "PLGN* resource
in the low-level converter you build, copy the appropriate *TMPL " resource into that converter and then
open the "PLGN" resource.

Caching I'ssues

The Download Manager resolves aliases placed in the “Printing Plug-ins’ folder. It is convenient to put an
aliasto alow-level converter in the “Printing Plug-ins’ folder during converter development. If thereisn’t
aready a“Printing Plug-ins’ folder in the Extensions folder, the Download Manager will create one
automatically when it is called for the first time. One way to cause this to happen by dragging any
document onto a desktop printer created by LaserWriter 8 when using Mac OS 8.5 or later.

To improve performance, the Download Manager caches both the list of convertersin the “Printing
Plug-ins’ folder and the ConverterDescription information it obtains from each low-level converter.
The Download Manager uses the folder modification date of the “Printing Plug-ins’ folder to determine
whether it needs to update its cached list of converters. This can be an issue during the development of a
low-level converter.

If the "PLGN" resource or the ConverterDescription information in aplug-in file changes, you want
the Download Manager to notice and take the new information into account. However, the system
software updates the folder modification date only when items are added or removed from afolder. If an
item is edited in place, the system does not change the folder modification date. This means that editing or
rebuilding aplug-in file directly in the “ Printing Plug-ins” folder, the folder modification date may not
change. Thisaso appliesto an adiasthat pointsto aplug-in file that is created in another directory.

This“problem” only manifestsitself when the *PLGN" resource or ConverterDescription is changing,
specifically, very early on in the development of a converter. Until the plug-in recognized by the
Download Manager and the ConverterDescription has been finalized, the new converter should be
manually copied it to the “ Printing Plug-ins” folder.

Note:
Thisis not a problem for users since there is no appropriate way to edit aplug-in file.

Initial Software Development

Getting Your Converter Seen by the Download M anager

I lntil +lha wni A e racArivan T e Aareant AnA Al vAarnirad A mmalhAl e ArA AArrAnthy AvaArtAA Hha NAmlAAA

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 32 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM

VIILL UIC FLUN ISoUUILT IDLuliItul A iu al ISyYUlitu Sy HTIDUID Al © LUTTTULLY TAPUI LT, U I LVUVWVIT TTUAGU
Manager will never call alow-level converter. Once these requirements have been met, the Download
Manager will call the psLowGetConverterInformation of the low-level converter when the user drags
and drops afile onto a desktop printer created by LaserWriter 8 (in Mac OS 8.5 and later) and the
modification date of the “Printing Plug-ins’ folder has changed since the last drag and drop. It iswise to
start converter development by making sure that the Download Manager detects the new low-level
converter.

The easiest way to do thisisto put a breakpoint on the converter’s psLowGetConverter Information
routine and dropping a document onto a desktop printer created by LaserWriter 8. If thisfails, either the
"PLGN" resource is not correctly formed or the low-level converter does not export all the required

functions. In order to retest, make sure the “Printing Plug-ins’ folder modification date has changed
before.

Getting Your Converter Called For Your Data Types

Once the converter is seen by the Download Manager, the next thing is to make sure that the converter is
being given a chance to convert al the files which have match the data types and matchString entriesin
the ConverterDescription. Thisisthe process of getting the ConverterDescription correct for a
low-level converter. The ssimplest way to make sure a converter is getting asked about all the data types
(and matchStrings) it expectsisto put a breakpoint on the psLowCanConvert routine and verify that
thisroutine is being called by the Download Manager. Once the psLowCanConvert routineis called as
expected, you are ready to do the real work of implementing all the routines and converting the data.

If the converter’s psLowCanConvert routine isn’t getting called as expected, but
psLowGetConverterInformation isbeing caled, the culprit isthe ConverterDescription being
returned by psLowGetConverterInformation.

Note:
Once your converter is being properly called for al your datatypes, the caching issues can usually be
ignored for the rest of your software development.

L ogging

A low-leve converter (and the Download Manager itself) can tag datathat it writes to a stream by setting
PSSubsection valuesin the PSPosi tion structure that is part of the stream (see Appendix A for more
information about the streams the Download Manager uses). When alow-level converter uses the
PSSubsection valueskSubLogErrorData and kSubLogWarningData, it iS passing error or warning
messages back to the Download Manager. The Download Manager givesits clients an opportunity to
report these messages to the user.

The Download Manager has the ability to write these error and warning messages to alog file. This ability
isturned off in the version of PrintingLib shipped with the system software, but it easily can be
enabled and tailored dightly by using ResEdit or Resorcerer to edit the PrintingLib file.

Using L ogging

Developers are encouraged to use the PSSubsection valuekSubLogWarningData to generate warning
messages that are useful to sophisticated users. For example, if, in the middle of aconversion, a
converter discovers that the data may have a problem but the problemisn’t fatal, that information could be
reported with awarning message. Of course, fatal errors should be reported using the PSSubsection

valuekSubLogErrorData.

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 33 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM
In addition, it may be useful to add warning messages as part of debug builds of alow-level converter.
This allows you and your testersto look at atrace of what is happening during the execution of your
converter. Thismay be useful as a supplement to the standard debugging strategies of setting breakpoints
or using debug strings.

Enabling L ogging

Note:
As always work with a copy and, to enable logging, you should reboot your computer after editing the
PrintingLib file

To turn on logging, edit the "PRF2* resource inPrintingLib (Version 8.6 and later). Thereisabit
labeled “ Generate Log File for Download Manager Errors and Warnings’ which is off by default. Turn
this bit on and save your changes. Reboot. From this point on, logging is enabled.

The logging ability does have a bit of flexibility that might be useful to some developers or sophisticated
users. It can be configured dlightly by editing the *LOGD" resource inPrintingLib. Open the *LOGD"
resource and you' Il see anumber of editable items:

e Themaximum log file size (default: 32000 bytes).

e How much of the existing log to preserve when the log file size exceeds its maximum (default
4000 bytes).

o The Creator and OSType of the log file by the Download Manager (default: MPW text type).

e Thename of the Log file (default: “Download Manager Log”).

When logging is enabled, the log file with the name specified by the *LOGD" resourceis created in the
“Printing Prefs’ folder in the Preferences folder.

Back to top
Summary

This Technote describes how to write alow-level converter for use with the Download Manager, part of
LaserWriter 8 and PrintingLib, Version 8.6 or later. If your application supports or definesafile

format which could easily be converted to PostScript without launching the application, you should
consider writing alow-level converter to support printing files of that format directly when the user dragsa
file to adesktop printer. This allows for faster printing since no application needs to be launched in order
to print. Since low-level converters output PostScript directly, writing a converter can offer you the
opportunity to optimize printing of your file formats on PostScript output devices.

Further References

e Technote 1169: The Download Manager

e Technote 1170: The Printing Plug-ins Manager

e Inside Macintosh: QuickDraw GX Environment and Utilities
e Inside Macintosh: PPC System Software (CFM)

Change History

e Originaly writtenin April 1998 by David Gelphman and Ingrid Kelly
e Revised in June 1999 by Dave Polaschek

Back to ton

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 34 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM

Appendix A: Useful PSUtilsLib Routines and Structures

Low-level converterswrite their generated PostScript data to procedures passed in a structure of type
PSStream. These procedures can be called to read from a data source or to write to an output device or
another data consumer. Because writing to streams is very common in the operation of both conventional
LaserWriter 8 driver printing and the operation of the Download Manager low-level converters, the
PSUtilIsLib library (contained in PrintingLib) exports a number of useful routines which handle
many of the details of writing to streams. This Appendix focuses on the details of writing to streams as
well as documenting some of the routines availablein PSuti IsLib and their usage.

PSStreams are discussed in further detail in Technote 1169, “ The Download Manager.” In addition, the
PSStreams.h header file contains the definition of the PSStream data type as well as the routines
described in this Appendix.

PSStream Structure

ThePSStream structure describes a number of stream types. The important stream types for alow-level
converter are those of type PSSerialStream and PSRandomAccessStream. The
PSRandomAccessStream Stream type alows read access to data in arandom way; the stream allows the
caller to position the stream mark randomly. This stream is used to represent files or data that can be
accessed asif it werein afile. Thistype of stream istypically used as an input stream to alow-level
converter. Other than the random access nature of these streams, they are identical to the
PSSerialStream 0 the remainder of this discussion will be about the PSSerialStream type of

PSStream.

ThePsSerialStream isdefined as follows:

typedef struct PSSerialStream{
PSWriteProc write;
PSReadProc read;
UInt32 reserved;
PSPosition pos;
}PSSerialStream;

The write proc of aPSSerialStrean is used to write PostScript data to a consumer of the data. The write
proc of an output stream typically writes data to a PostScript output device or datafile. The write proc (if
it exists) on an input stream writes data back to the Download Manager or similar client for further
processing. For example, it is appropriate to write data read from an output stream back to the input
stream so that the Download Manager can handle status or other data returning from the back channel of
an output device. It isimportant to test that the write proc is not NULL before calling it.

Theread proc of aPSSerialStream isused to read data from that stream. The read proc of an input
stream reads the data from the input stream. For alow-level converter, thisisthe datato convert. The read
proc (if it exists) of an output stream represents data coming back from a PostScript output device. It is
important to test that the read proc is not NULL before calling it.

Thereserved field in the PSSerial Stream structure is currently unused by alow-level converter.

ThePSPosition structure in the PSSerial Stream communicates structura information about the data
being written to astream. Thisisdiscussed in detail in the next section.

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 35 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM
PSPosition Structure

ThePsPosition structure allows generators of PostScript output to communicate structural information
about the data they are writing. When generators of PostScript output properly use the PSPosition
structure, it allows software clients to have knowledge of the data being written, without them having to
parse the PostScript dataitself. An example of thisisthe way the LaserWriter 8 driver reports status
during printing by looking at the PSPosi tion data written to the output stream by the PrintingLib
routines which convert QuickDraw drawing into PostScript data. Another example isthe status that the
Download Manager and its clients report as alow-level converter generates its PostScript data.

The PSPosition structure is defined as;

typedef struct PSPosition{
PSSection section;
PSSubsection subsection;
void *info;

SInt32 id;
}PSPosition;

The section field is of type PSSection and contains the identification of what “major” part of thejobisin
progress. The values of thisfield can be kSectAnon, kSectQueryJob, kSectCoverPage,

kSectJob, and kSectPeek. These correspond to the different parts of the job, as controlled by the
Download Manager and thisfield isfilled in by the Download Manager, not by the low-level converter.

The subsection field is of type PSSubsection and is used to describe the details of the PostScript output
corresponding to the data write call. PSSubsection vauestypically correspond to Document Structuring
Conventions (DSC) data but there are additional values which suit some speciaized needs.

Theinfo field iseither aNULL pointer or a pointer to data whose type is defined for the PSSubsection
value in the subsection. The data (if any) pointed to by the info value coincides with the data being written
to the output stream. For example, when calling the write routine with the data “%%Pages. 4", the caller
would put thePSSubsection valuekSubPages into the subsection field of the PSSerialStream and the
info field would point to an SInt32 with the value 4. See the header file PSStreaminfo.h for the list of
PSSubsection vaues and the proper data type for the info of each PSSubsection.

TheID field isan SInt32. Thisis used by generators of the PostScript output to generate output for a
given subsection over a series of writes, yet ill identify the data as one conceptua block of data. Thisis
done by performing the consecutive writes with the same subsection, info, and ID values. When the data
being written corresponds to a new subsection, then the ID value isincremented. Doing writesin this
fashion alows software clients looking at the structural data to notice when the PSPosi tion data may
have changed without having to look at any other fields in the structure. For example, a client (such asthe
Download Manager) monitoring the position information being written to the stream has atest like:

if(Jobstatus->lastPosld !'= stream->u.ps.pos.id ){
. process the new position we are now seeing

// update our the last position we saw
Jjobstatus->lastPosld = stream->u.ps.pos.id;

}

CQAimnla Fyvamnla nf \WWritinn tn a Qtraam
file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 36 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th...

U

llllPl\-’ I—I\MIIIPI\.&UI VVIILIIIH LU L4 LI valli

6/18/99 1:50 PM

Here is asimple code example to bring together the basic ideas presented on streams. The datais hard
coded into this routine to improve readability.

#
#

0
{

file:///Monster%20Boot/Apple/Week%200f%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html

include "DownloadMgrLib.h"
include "PSStreams.h"

SStatus writePages(PSStream *streamOut)

OSStatus err = noErr;
PSSerialStream *stream;

if(streamOut->type == kPSRandomAccessStream)
stream = &(streamOut->u.file.serialStream);
else{
if(streamOut->type == kPSSerialStream)
stream = &streamOut->u.ps;
else{
// we don’t know that type of stream!
err = errCantHandleThisDownloadData;

+
+

if(lerr && stream->write){
SInt32 pages = 4;
unsigned char *formatString = ""\p%%Pages: ";

// the subsection reflects the fact that
// we are writing kSubPages
stream->pos.subsection = kSubPages;

// the info field is a pointer to the number of pages
stream->pos.info = &pages;

// distinguish this write from any previous

stream->pos. id++;

// now go ahead and write the "%%Pages:

// of the comment

err = stream->write(streamOut, formatString +1,
formatString[0]);

portion

// now go ahead and write the value of the number
// of pages with the SAME id since it is part of
// the same DSC data we are emitting

if(lerr){

Strl1l5 pagesStr;

NumToString(pages, pagesStr);

err = stream->write(streamOut,

(unsigned char *)pagesStr + 1,

pagesStr[0]);
}
// now write the newline with the SAME id
if(lerr){
err = stream->write(streamOut, "\r', 1);
}

Page 37 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM

// reset the PSPosition data after our write call
stream->pos.subsection = kSubAnon;
stream->pos.info = NULL;

// we must bump the id so that consumers of this
// stream will know that we are done with the

// write of the Pages comment when the next write
// is done.

stream->pos. id++; }

return err;

}

Note:

Theid field of the PSPosition structure on the stream is updated before the first write of the Pages
comment and after the write of the last portion of the Pages comment. The last id increment is done so
that we ensure that any following write to the stream is distinguished from this write of the Pages
comment. Thisis more than a safety measure since many of the stream output routines do not modify the
PSPosi tion structure of the stream. Therefore, after our write, the stream should already reflect a new

id to distinguish future writes from the one just done.

Useful Stream Output Routines

Generating PostScript output for agiven print job typically involves emitting both constant data such as
theuwPages comment, as well as variable data such as the SInt32 value for the number of pagesasin the
example above. Sometimes the data needs to be formatted differently depending on the characteristics of
the output communications channel. The most obvious example of this occurs when generating PostScript
string data since there needs to be quoting of various characters, depending on whether the channel
supports the full range of binary data. The need to supply the PSPosi tion information while generating
output adds an additional requirement when generating output.

ThePsutilsLib library built into PrintingLib has routines which make generation of PostScript output
significantly simpler. PSuti IsLib contains routines that make it simple to generate formatted output with
and without positional information.

Relevant Structures

Before introducing the output routines, there are a couple of relevant data types that must be introduced
first.

Stream|nfoData

The StreamInfoData typeis apointer to an opaque data structure that is passed to the PSUti IsLib
stream output routines. This opaque structure contains information about the communications channel
which enables the stream formatting routines to generate proper PostScript output. There are routines for
creating and disposing of this structure.

typedef struct Streamlnfo *StreamlnfoData;

OSStatus psSetupStreamlnfoData(StreamlnfoData *comm,
PSStream *PSStreamP, Collection hints);

psSetunStreamlnfoData allocates and initializes a StreamInfoData structure corresbondina to the

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 38 of 48



TN 1171 LaserWriter 8.6: How to Write a Converter Plug-in for th.. 6/18/99 1:50 PM

PsstreanP and the hints col lection. It consults the hints collection for hintsindicati ng the capabl lities of
the communications channel (see Appendix B). The resulting StreamInfoData can then be passed to the
stream output routines described below to write to the stream represented by PSStreamP and generate
output properly formatted for that communications channel.

OSStatus psDisposeStreamlnfoData(StreamlnfoData *comm);

psDisposeStreamlnfoData disposes of the StreamInfoData structure that was created and returned
from psSetupStreamiInfoData. Upon return of thisroutine, *comm isNULL.

SubsectionStr

When generating PostScript output that is to be tagged with a given PSSubsection value, it isuseful to
group the PostScript output string together with an associated PSSubsection value. The data structure
SubsectionStr gathers these piecesin one place. The definition of SubsectionStr is:

typedef struct SubsectionStr{
StringPtr format;
PSSubsection subsection;

}SubsectionStr;

An example of aSubsectionStr for generating the %%Pages DSC comment would be:

const SubsectionStr psPages = {'"\p%%Pages: ~d\r",kSubPages};

The format field of the SubsectionStr isaPascal string that may contain formatting data. In the above
example the format uses the ~d formatting marker. Thiswill be described shortly.

Formatting Output Routines

The psoutFormat routines and its structured equivalents described below allow straightforward use of
output formatting similar to the printf routine in the standard C library. Because the ‘%’ character isa
significant character in PostScript data, these routines use the ‘N character as the format marker character.

OSStatus psOutFormat(StreamlnfoData comm,
ConstStr255Param format, ...);

The supported formats are:

b passin along and output “true” or “false”

d pass in along and output in decimal format.

M passin a16.16 fixed number and output in decimal with up to 3 places past the decimal.

AF passin a 16.16 fixed number and output in decimal with up to 4 places past the decimal.

H passin along and the long div 2 is output with apossible .5 (or you can think of it asa31.1
Fixed-point number)

s pass in apointer to a Pascal String. For use when generating PostScript strings, i.e., (S)

AS same as”s, but with control and extended ASCII characters always quoted. Typically used
for DSC comments which are alwaysin the range 0x20 - Ox7F

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 39 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM
"z same as s, but specified with explicit length (call with string pointer and long length).

NZ same as”'s, but generate (..) or <..> depending on which one takes the least space.

Al passin ashort and it is output in decimal format.

p same as”s, it outputs a Pascal string.

OSStatus psOutFormatPosition(StreaminfoData comm,
const SubsectionStr *format, ...);

psOutFormatPosition isjust like psOutFormat except that it takes a pointer to a SubsectionStr
structure rather than aformat string. The SubsectionStr structure provides both aformat string and a
PSSubsection value for that format string that will be passed to the stream’ s output routine to identify the
type of PostScript that is being written. psOutFormatPosition first inserts the PSSubsection vaueinto
the subsection field of the PSPosi tion in the stream and storesaNULL into the info field in the stream’s
PSPosition structure. It then writes the formatted output to the stream. This routine takes care of
ensuring that the PSPosi tion datais handled appropriately, i.e., in asimilar manner to that shown

above in the section Simple Example of Writing to a Stream.

OSStatus psOutFormatPositionInfo(StreamlnfoData comm,
const SubsectionStr *format, void *info, ...);

psOutFormatPositioninfo isjust like psoutFormatPosition except the info value passed to this
routine is stored in the PSPosi tion structure in the stream that is passed to the write routine prior to the
write. The info pointer provides additional information to the PostScript positional information provided
by format. After psoutFormatPositionlnfo returns, the info field of the steam’SPSPosition
structure is null.

Simple Formatted Example

OSStatus writeFormattedPages(StreamlnfoData comm)

{

OSStatus err = noErr;
const SubsectionStr psPages = {"\p%%Pages: ~d\r", kSubPages}; SInt32 pages = 4;

err = psOutFormatPositionlnfo(comm,
// the format
&psPages,

// now the info. For the kSubPages it is a
// pointer to an SInt32
&pages,

// now the data to satisfy the format. The ~d
// takes this long and writes the output

pages);

return err;

}

Additional Formatting Routines

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 40 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM

OSStatus psOutHexBlock(StreamlnfoData comm, Byte *block,
long nBytes, short *linePos);

psOutHexBlock writes nBytes from block to the stream represented by comm using the hex encoding
technique, regardless of the channel characteristics. The hex data generated is wrapped to avoid
excessively long lines. *1inePos represents the current length of thelineand isinitially passed as 0.
Upon return, *1inePos represents the length of the current line. Each sequential call to psOutHexBlock
should passin the value returned from the previous call. psoutHexBlock is useful when generating
image data when the output channel does not support binary dataand ASC1185 is not appropriate.

OSStatus psOutBlock(StreamlnfoData comm, const void *block,
long nBytes);

psOutBlock writesnBytes of datafrom block to the stream represented by comm without any additional
processing. psOutBlock isuseful for emitting binary image data or other output that requires no
additional formatting.

OSStatus psOutString(StreaminfoData comm, Byte *str, long length,
Boolean quoted, short *linePos);

psOutString writes length bytes of data pointed to by str assuming that it isgoing to beinside a
PostScript string. This function performs the quoting necessary for the channel and does line breaks as
necessary. If quoted is true, then bytes outside the printable ASCII character set are aways quoted,
regardless of the communications channel characteristics. If quoted isfalse, then bytes outside the
printable ASCII character set are quoted according to the needs of the communications channel. The string
data generated is wrapped to avoid excessively long lines. *1inePos represents the current length of the
lineandisinitialy passed as 0. Upon return, *1inePos represents the length of the current line. Each

sequentia call to psoutString should passin the value returned from the previous call.

OSStatus psOutPStr(StreamlnfoData comm, ConstStr255Param pstring);

psOutPStr writes the Pascal string pstring to the stream represented by comm. There is no quoting or
formatting done.

Back to top
Appendix B: Available Job Queries

Low-level converters can specify printer queries to help them to generate optimal PostScript data for the
target output device. The low-level converter usesits psLowAddConverterQueries routine to add hints
to aquery collection that can be used by the Download Manager to query information about the target
output device. This Appendix describes each available query hint in detail. The header file Hints.h
contains the actual tag and ID values as well as the definition of any structures that are used to store
query results.

Communications Channel Queries

The query hintskHintTransparentChannel Tag, kHintTransparentChannel Id, kHintEighthBitTag,
anA Ui neCianh+hDi+ 1A cnorifir niniaorioe ral otod tn tha ranahilitioe nf tha ~ammi ini cati nine channal
file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 41 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM

(@ NV ] I'\IIIIILI_IUIILIIIJI wiu \*JU\;II_Y bluCllU\JIC!uLW wvwu ICU(AIJUIJIIILIU\)UI Ui vullinimiv nucaIviIio vl i il .
Whether the communications channel can support full binary data or only a subset of such datais
important to generators of PostScript code. Generating full binary output is much more efficient but it is
not acceptable if the communications channel does not support it!

Normally alow-level converter will add both of these hints to the query collection with default values of
false to specify that the Download Manager supply the appropriate query for the channel characteristics.
The value for these hints after the query determines the channel characteristics.

If the value of the hint with tag value kHintEighthBitTag and ID value kHintEighthBitld istrue, the
output stream supports the data range 0x80-0xFF inclusive. If the value is false, the PostScript output
stream generated by the low-level converter should not contain these byte values.

If the value of the hint with tag value kHintTransparentChannelTag and ID vaue
kHintTransparentChannel Id istrue, the output stream supports the data range 0x00-0x1F inclusive. If
the value isfalse, the PostScript output stream generated by the low-level converter should not contain
these byte values.

Note:

A StreamlInfoData structure, described in Appendix A, is configured by these hints. Consequently, the
relevant stream output formatting procedures described in Appendix A then know how to format
PostScript output properly for the stream.

Output Device Characteristics

There are severa queries availableto alow alow-level converter to determine the inherent capabilities of a
given output device. Knowledge of thisinformation typically enables the generation of much more
efficient PostScript output.

PostScript Language L evel

To query for the PostScript language level of the output device, a converter adds the hint with tag value
kHintLanguagelLevelTag and ID kHintLanguageLevel Id. Thevauereturned isan SInt32. The
following enum describes the currently defined values.

enum PostScriptLevels{
/// L2 compatible
Level2and3 = -3,

/// L1 compatible
Levelland2 = -2,

/// unknown level
UnknownLevel = -1,
/// other level
OtherLevel = 0,

/// level 1

Levell = 1,

/// level 2

Level2 = 2,

/// level 3
Level3 = 3
}s

Positive values indicate a specific PostScript language level, for example the value 2 means that the target
nitni it devzica g innnrte lanniiane laval 2 In thic race thera ic nn need tn nenerata ni tniit comnatihlewith a
file:///Monster%20Boot/Apple/Week%200f%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 42 of 48



TN 1171: LaserWriter 8 6: How to Write a Converter Plug-in for th.. 6/18/99 1 50 PM

VULUL WUV WS DUV L T 1y (R R R S R YR TR RV VS VR T NIV R VR R R NIV NIV R o) uuluwuuunluun. Rl SO RS R A ]

PostScrl pt level 1 output devl ceand use of level 3 (or later!) operators will generate errors.

Negative values returned from this query are associated with either an Unknown response or indicate a
request for generating output compatible with a given minimum language level. If the language level
returned isUnknownLevel or Levelland2, then typically alow-level converter should generate output
compatible with PostScript language level 1. Such output may use language level 2 or language level 3
features but it must do so in away that also executes properly on alanguage level 1 output device. If the
value isLevel2and3, thisindicates that the generated PostScript must be compatible with alanguage level
2 output device. Such output may use PostScript 3 features but must do so in away that also executes
properly on alanguage level 2 output device.

Color Output Device

Prior to generating sampled image data, it may be useful to know whether the target output device
supports color. If it does not support color then in many cases it may be more efficient to downsample
any RGB or CMYK datainto grayscale data as part of generating the PostScript language output. There
are two gueries which relate to the output device' s ability to produce color output.

The query specified with tag value kHintColorDeviceTag and ID value kHintColorDeviceld queries
for whether the output device is known to support color output. The value returned from this query is of
typeTriState.

enum TriState{
kTriFalse = 0,
KTriTrue,
KTriUnknown

}:
typedef enum TriState TriState;

If the value returned iskTriTrue then the output device supports color. If the value returned is
kTriUnknown then it is unknown whether the output device supports color. A low-level converter should
not do any downsampling of color datato grayscale for either of these cases.

If the value returned is kTriFalse then the output device does not support color and the color separation
query (just below) should be consulted to determine whether the output device is configured to generate
color separations. If ablack and white output device is generating color separations then color data should
be emitted so that the separations are generated properly.

The query specified with the tag value kHintColorSepTag and ID value kHintColorSepld queries for
whether the output device is known to be configured to generate color separations. The value returned
from this query is of type TriState.

If the value returned iskTriTrue then the output device is generating color separations. If the value
returned iskTriUnknown then it is unknown whether the output device is generating color separations. A
low-level converter should not do any downsampling of color datato grayscale for either of these cases.

If the value returned iskTriFalse, then the output device is not generating color separations. In this
case it would only be appropriate to generate downsampled grayscale dataif the output device is not
generating color separations and is known to not support color output.

Device Resolution

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 43 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM
I he query speciTied by thetag value kHintPrinterResTag and ID vValue kHintPrinterResld qUErIES

for the current device resolution at the time of the query. The data returned from the query is of type
PSResolution.

struct PSResolution{
long Xx;

long y;

}:

typedef struct PSResolution PSResolution;

The returned resolution datais in dots per inch (dpi) and may differin X and Y. If the resolution is
unknown, avalue of -1 isreturned for both X and Y. Note that generally it isamistake to use device
resolution data when generating PostScript output since doing so hampers a given output device' s ability
to produce the best quality output.

Printer Resources

TrueType Rasterizer

The query specified by thetag value kHintTTRasterizerTag and ID value kHintTTRasterizerld
gueries for the support level available for TrueType fonts. The value returned for this query isalong with
the following values defined:

enum TTRasterizerType {
kTTRasterizerUnknown = 0O,
kTTRasterizerNone = 1,
kTTRasterizerAccept68K = 2,

kTTRasterizerType42 = 3

};

If the value returned iskTTRasterizerType42 thisindicates that the target output device has built-in
support for FontType 42, i.e., TrueType, fonts. If the value returned is kTTRasterizerAccept68K, this
indicates that the output device has no built-in rasterizer but it can accept a downloaded rasterizer. If the
value returned iskTTRasterizerNone thisindicates that the output device has no support for TrueType
fonts and arasterizer cannot be downloaded. A value of kTTRasterizerUnknown meansthat the
availability of a TrueType rasterizer in the target PostScript output device is unknown.

Fonts

Low-level converters can request aquery for a specific list of fonts or request the entire list of fonts
available in the target output device. Both of these font queries are specified with the hint tag
kHintIncludeFontsTag with the ID value kHintIncludeFontsld. Theinitia data contained in this hint
determines the type of query. The datais aPSFontHandl ing structure, defined as:

typedef struct {
long tag;
unsigned char name[1]; //packed array of names as PStrings,
//length O indicates end of list
}PSFontHandling;

and the following tag values are defined:

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 44 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM

enum{
kIncludeNoFontsOtherThan,
kIncludeAl lFontsBut

};

If the tag field of the PSFontHandl ing structure iskincludeAl IFontsBut, the query isfor the complete
list of fonts (the equivalent of the *?FontList query from the PPD file). For thisflavor of the font query,
aconverter should passin one font name whose length is zero. Upon return of the query, the name field
will be apacked array of Pascal strings corresponding to the fonts built into the output device. Thislist

of nameswill be terminated with a zero-length Pascal string.

If the tag field of the PSFontHandl ing structure iskincludeNoFontsOtherThan, the query isfor a
specified list of fonts (the equivalent of the *?FontQuery query from the PPD file). For this flavor of the
font query, the list of fonts to query for should be in the name field of the structure. Thelist is a packed
array of Pascal strings and is terminated with a zero-length Pascal string. After the query, the namefield
isapacked array of Pascal strings corresponding to the fonts from the query list which were not
available, i.e., the fonts available in the output device are removed from the list. Again, thislist of names
is terminated with a zero length Pascal string.

Note:

Requesting either type of query can produce results in the other form. For example, arequest for all
fonts can result in alist of fontswhich are not available. A request for the availability of alist of fonts
canresultin alist of al fonts. This means, for example, that alow-level converter might request afont
query with atag of kincludeAl IFontsBut and the query result may contain a query with atag of
kIncludeNoFontsOtherThan. The value of the tag field returned reflects the results of the query and
the meaning of the list of names which follows.

Freevirtual memory

The query specified by that tag value kHintFreevMTag and ID value kHintFreeVMWReclaimld queries
for the amount of free Virtual Memory (virtual memory) in the output device. The result returned is an

SInt32 containing the number of bytes of virtual memory available. If the result is unknown, then -1 is
returned.

Miscellaneous

There are couple of additional queries available, but it is highly unlikely that alow-level converter would
need these queries or their results. They are given here for completeness.

Spooler Query

The query specified by the tag value kHintADOSpoolerTag and ID value kHintADOSpoolerld queries
for the presence of a spooler. The returned result is of type TriState. If the value iskTriTrue then the
output device isaspooler. If the valueis kTriFalse then the output device is not a spooler. If the
returned value is kTriUnknown, then it is unknown whether the job istargeted to a spooler.

PostScript Version Query

The query specified by the tag value kHintPSVersionTag with ID value kHintPSVersionld queriesfor
the PostScript language version and revision of the output device. The value returned is of type

PSVersion.

Page 45 of 48

file:///Monster%20Boot/Apple/Week%200f%206%2F14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM

struct PSVersion{

/// revision, -1 => unknown

long revision;

/// "\p" => unknown

Str63 version;
}s
typedef struct PSVersion PSVersion;

Therevision field isalong containing the PostScript revision number of the target output device. Thisis
the number normally returned by the PostScript revision operator. A vaue of —1 means unknown.

The version field isa Pascal string containing the PostScript version information as returned by the
PostScript version operator. A typical version string is something like "\p2013.106". If the version
string is unknown, the length of the string is zero.

Itisvery unlikely that a generator of PostScript code would request or use the results of the version
guery. This query is usually used to generate information for a user, although in rare circumstances it can
be useful. More typically, the PostScript language level query is used instead.

PostScript Product Query

The query specified by the tag value kHintProductTag and ID value kHintProductld queriesfor the
printer product string. The returned result is a Pascal string. The length of datareturned in thishint is
variable size. If the results for the query are unknown, then a zero length string is returned.

It isvery unlikely that a generator of PostScript code would request or use the results of the product
query. Thisquery is usually used to generate information for a user.

Back to top
Appendix C: Useful FeatureUtilsLib Routines

The Download Manager and its clients prepare a hints collection for use with each download. This hints
collection contains information about the feature requests for that download job. For example, these
features can include number of copies and cover page, aswell as printer specific features such as duplex,
image enhancement, paper tray selection and so forth.

Generators of PostScript output, such as Download Manager low-level converters, know how to generate
the device independent PostScript code to image a document, but typically know little or nothing about
printer features and how to invoke them. To simplify the task of handling printer specific features, the
shared library FeatureUti IsLib contained in PrintingLib, versions 8.6 and later, was born.

FeatureUti IsLib can take the hints collection which contains the job feature information and generate
the PostScript language feature code needed to invoke user requested features. This greatly relievesthe
burden on those clients who know how to generate device-independent PostScript code but would rather
not worry about the printer specific features.

Usually there are specific points in the PostScript stream where various printer feature invocations must
occur both from the point of view of Document Structuring Conventions (DSC) conformity aswell as
PostScript execution. For example, if a specific paper tray is used on the first page of a document, the
PostScript invocation code of that paper tray must appear outside any page level save/restore nesting on
that page, or else the output will be incorrect. Because only the generator of the PostScript page
description knows where it isin the process of generating the output stream, that generator must work
closaly with the FeatureUti IsLib code generation to ensure that the correct feature requests are emitted
at the proper point in the PostScript output stream.

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 46 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM

Generating Feature Code with psWriteSubsectionFeature

TheFeatureUti IsLib routinepsWriteSubsectionFeature makes the generation of feature code
straightforward. This routine relies on the concept of aPSSubsection asintroduced in the Download
Manager documentation aswell as in this document. A PSSubsection isaway of communicating DSC
and other structural information. psWriteSubsectionFeature knows the points it needs to generate the
pieces of feature code invocation data; it just needs to be notified by the caller wherethe caller isinits
generation of outpuit.

OSStatus psWriteSubsectionFeature(StreamInfoData comm,
Collection hints,
PSSubsection subsection,
void *info,
psSubsectionLocation subsectionlLocation,
Boolean isNotEPSOutput);

typedef enum psSubsectionlLocation{
kBeforeSubsection = false,
kAfterSubsection = true

}psSubsectionlLocation;

e comm represents the stream any generated PostScript code is emitted into. The StreamInfoData
typeisdescribed in Appendix A.

e hints isacollection representing the job being processed. This collection contains information
that psWriteSubsectionFeature USES to generate the proper feature code.

® subsection isthePSSubsection corresponding to the position in the output stream that the
caler iseither about to write or just wrote.

e info isapointer to a structure relevant to the subsection being written. The value may be NULL;
otherwise, it will be the data type assigned to the PSSubsection corresponding to subsection.
See the header file PSStreamlinfo.h for the list of PSSubsection vaues and the proper info data
type for each PSSubsection.

® subsectionLocation isether kBeforeSubsection or kAfterSubsection depending on
whether this call to psWriteSubsectionFeature isbeing made before the caller has written the
data corresponding to this subsection or after.

isNotEPSOutput isaBoolean indicating whether the caller is generating EPS data. Some of the
invocation code normally generated by psWriteSubsectionFeature iSnot appropriate when the caller is
generating EPS output. If isNotEPSOutput istrue, then the caller is not generating EPS dataand, if itis
false, the caller is generating EPS data.

A smple example clarifiesthis:

#include "PSStreams.h"
#include "FeatureUtilsLib.h"

#define DSC30Version 0x30000 // Fixed(3.0);
OSStatus doPercentBang(StreamlnfoData comm,Collection hints){
OSStatus err = noErr;

Fixed dscVersion = DSC30Version;
Boolean isNotEPS = true;

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 47 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th... 6/18/99 1:50 PM

SubsectionStr psVersion = {"\p%!PS-Adobe-3.0\r",
kSubPSAdobe} ;

/* we are about to write the “%!PS-Adobe-3.0> comment
beginning our PostScript generation so we first call
psWriteSubsectionFeature indicating this so that it can
generate any feature code that must appear before this comment.

*/

err = psWriteSubsectionFeature(comm, hints,

kSubPSAdobe, &dscVersion,
kBeforeSubsection, // BEFORE
iSNOtEPS);

/* Now we emit “%!PS-Adobe-3.0” into the stream. */
if(lerr)err = psOutFormatPositionlnfo(comm, &psVersion,

&dscVersion);

/* Now tell psWriteSubsectionFeature that we just wrote
the “%!PS-Adobe-3.0” comment. */
if(lerr)err = psWriteSubsectionFeature(comm, hints,
kSubPSAdobe, é&dscVersion,
kAfterSubsection, // AFTER
iSNOtEPS);

return err;

By using this stylized way of emitting PostScript output code into the output job stream, the sample code
automatically gets a cover page before the job, should the hints collection indicate that it is required. When
the code sample cals psWriteSubsectionFeature beforetheinitia %!PS-Adobe-3.0 emitted into the
print stream and indicates that it is about to write the subsection kSubPSAdobe, the routine examines the
supplied hints collection to seeif it indicates that a cover page should be generated before thejob. If a
cover page should be generated, then psWriteSubsectionFeature writesit into the output stream and
ends the cover page job so that when the above code fragment then emits%!PS-Adobe-3.0 into the
output stream, that is the first PostScript code appearing in the print job following the cover page. Note
that if isNotEPS isfalse, psWriteSubsectionFeature does not generate a cover page.

To use psWriteSubsectionFeature properly, the caller must carefully identify the different parts of the
PostScript output that it generates. This also encourages the generators of PostScript code to follow the
DSC guiddinesto emit structured PostScript code. The sample code supplied with this document

follows this approach and forms a good basis for starting any Download Manager converter module.

Detecting Manual Feed

A low-level converter needs to be able to respond to the call psLowGetStreaminfo to inform the caller
whether agiven print job requires manual feed. The FeatureUti IsLib routinepsRequiresManualFeed
isavailableto ad alow-level converter’ s effortsto respond. A low-level converter that uses the
psWriteSubsectionFeature described above to handle its feature code should use
psRequiresManualFeed to determineif the print job requires manual feed.

OSStatus psRequiresManualFeed(Collection jobHints,
Boolean *requiresManualFeedP);
e jobHints isaCollection corresponding to the job collection for the download job in question.
® requiresManualFeedP isapointer to aBoolean whichisfilled in by the call. If the iobHints

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 48 of 48



TN 1171: LaserWriter 8.6: How to Write a Converter Plug-in for th.. 6/18/99 1:50 PM

collection indicates that the jOb requires manual feed *requi resManual FeedP is set to true,
otherwise, it is set to false.

Note:
psRequi resManualFeed does not take into account whether an EPS job is being generated. Because of
this, it isimportant that alow-level converter determine whether EPS output is to be generated and, if

S0, it needn’t bother calling psRequi resManualFeed but instead can ssmply return that the job does not
require manual feed. The sample converter properly handles this situation.

Back to top

Downloadables

E Acrobat version of this Note (K).

W

Acknowledgments

Binhexed Routine Descriptor Lib (how many K?)

Thanks to Rich Blanchard, John Blanchard, Andreas Wickberg, Paul Danbold, and Howard Miller.

To contact us, please use the Contact Us page.
Updated: 21-June-1999

Technotes | Contents
Previous Technote

file:///Monster%20Boot/Apple/Week%200f%206%2F 14%2F99/DaveP%20tn1171%20new%206%2F11/Converter/tn1171.html Page 49 of 48



