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This Technote describes how to build a 3D application

using RAVE to perform rasterization and hidden surface
removal. Texture management, clipping, notification
methods and other common RAVE issues are addressed.
Overall, performance tuning is discussed to be a primary
goal.

This technote is useful both to application programmers
and RAVE engine designers.

 

3D Application Design
Designing a high-performance 3D application requires a lot of work. Large world-spaces and high polygon
counts are becoming the rule, rather than the exception. A successful application needs to deal with a number
of different types of operations, including:

1) Visibility determination -- Determining which polygons are visible, given the current location of the camera.
Objects outside the viewing frustum or obscured by other polygons should be clipped efficiently.

2) Level of Detail -- Distant objects can be modeled with fewer polygons than close objects.

3) Hidden Surface Removal -- Drawing the polygons to ensure that the depth ordering of polygons is correct.

4) Rasterization -- How to quickly draw the final list of polygons and minimize pixel redraw.

Hardware acceleration changes the rules when building a 3D application. Rasterization is usually handled
exclusively in hardware, and can be done asynchronously with other operations. Hardware z-buffering can be



used to perform hidden surface removal faster than software-based solutions. Developers should focus on
visibility determination and level of detail when building applications designed to take advantage of 3D
acceleration. What follows are a few suggestions for areas of study when building a hardware-based
application.

3D accelerators are very efficient pixel pipelines, but there is a certain amount of overhead which can be
measured per polygon, scanline, and individual pixels. Often, the selected filtering mode affects the drawing
overhead; for example, trilinear filtering requires eight times as many texels to be fetched as point sampling. In
addition to the overhead of transferring the polygon data over the PCI bus, early accelerators performed much
of the triangle setup in software, increasing the per-polygon setup time by hundreds of cycles.

The net result is that the total time to render a small polygon might end up being larger than it would have taken
to render it in a software-only solution. At least one developer reported that a large percentage of the polygons
rendered by their application were four pixels or smaller in size. In this case, creating a model with a lower
level of detail reduces the total number of polygons sent to the hardware, paying a small price in image quality.

Visibility Determination

When you start creating larger worlds, a significant portion of the polygons will probably never be visible
from the camera position. Some fall completely outside the viewing frustum. Others are completely occluded
by other polygons. Applications should organize their data to allow polygons to be culled efficiently, rather
than simply blasting them to the hardware and expecting it to draw fast enough. Worse, each polygon you
draw might result in a texture being loaded. Texture thrashing causes noticeable drops in performance and will
be discussed in detail later in this note. Here are a couple of algorithms that developers have used in the past:
details are left as an exercise for the reader, although they are both discussed in detail in the bibliography.

Quake uses a BSP tree to organize the world information. One advantage of a BSP tree is that an entire subtree
can be culled in a single test against the viewing frustrum, allowing large numbers of polygons to be culled
efficiently. In addition, Quake pre-calculates a loose set of visible polygons at each leaf of the tree. When it
renders a frame, Quake only considers the polygons in the current leaf's PVS, drastically reducing the number
of polygons it needs to examine.

Portals are another method used to cull polygons efficiently. If you were in a closed, opaque room with a
single open doorway, only polygons on the other side of the doorway would be visible. The doorway
becomes the "portal" to the next room. To render using portals, you draw all the polygons in the current room,
then determine which portals are visible in the current viewing frustum, and recursively draw the rooms
attached to them through the smaller viewing area formed by the portal. 

Clipping

Some hardware performs clipping automatically on every pixel that is rendered. This is known as a scissor clip
in OpenGL. A huge triangle could result in thousands of pixels being tested and thrown out by the hardware. A
better solution would be to clip the polygon algorithmically in software. RAVE assumes that engines perform
no clipping, so applications must pre-clip all polygons to the context before submitting them to RAVE.

Z -Buffering

Hardware z-buffering is very useful for hidden surface removal, but typically takes up as much memory as the
actual buffer you are rendering into. A two- megabyte 2D/3D card, with a 640x480 front, back and z-buffer,
has less than a quarter of a megabyte of VRAM for textures. Applications that intend to run on a 2-megabyte
card might need to consider software HSR algorithms in order to leave enough VRAM for textures.

Some pieces of hardware perform certain z-buffering operations more efficiently than others. If some polygons
in the scene are already presorted (e.g., a BSP tree), the order you send the polygons to the hardware can
affect performance. For example, if the hardware performs z writes faster than z tests, turn z testing off and



render the sorted polygons back to front. Similarly, if z tests are more efficient than z writes, leave the testing
on and render from front to back. Note that RAVE does not provide any sort of API to look for these features,
so testing your application on multiple pieces of hardware may help you discover these attributes.

What Does RAVE expect?

RAVE is a very thin layer over the hardware. When you call a RAVE routine, in most circumstances you are
calling directly into the RAVE driver, with no overhead imposed by RAVE itself.

By default, when you start a frame (by calling QARenderStart), the engine initializes the back buffer to the
color specified in the RAVE context, and the z-buffer to a distance of 1.0. The application then submits
polygons to the engine, each of which must be pre-clipped to the viewable area. When the application calls
QARenderEnd, any remaining commands are flushed to the hardware, and the frame is copied to the front
buffer asynchronously in hardware. Early versions of RAVE (and many early engines) synchronize inside of
QARenderEnd.

It is useful to understand what values RAVE engines will expect to see, so we'll examine the typical values
stored in the textured vertex structure (TQAVTexture). Gouraud-shaded polygons are very similar.

The x and y values are floating point values in screen coordinates. For a 640x480 context, the values range
from 0 <= x < 640 and 0 <= y < 480. Note that the bottom and right limits are not inclusive. Debug versions
of RAVE will catch any polygons that write outside this bounding box.

Z values range from 0 to 1. Most current 3D hardware supports 16-bit z-buffers, so you want to maximize the
range available in the z-buffer. The hither plane should be placed at 0. Because the z-buffer starts out initialized
to 1.0, if you place the yon plane exactly at 1.0, any pixels on or near the yon plane will not be drawn.
Instead, you want to move the yon plane in just close enough to make all points inside the frustrum visible.
The engine provides two tag variables that will let you calculate this value (kQATag_ZMinScale and
kQATag_ZMinOffset).

The value of invW is 1/w , where w  is the correction factor used for perspective viewing. In RAVE, invW can
usually be simplified to be 1/z. However, this won't work if we placed the hither plane at z=0. If the hither
plane is at some value larger than 0, then you can use 1/z and everything just works, at a slight loss of some
portion of the z-buffer space. Otherwise, you must calculate invW before adjusting the z values to fit between 0
and 1.

The texture coordinates u and v should be multiplied by invW to allow for perspective-corrected texture
mapping. A (u,v) coordinate of 0,0 is in the lower left corner of the texture map.

Optionally, the application should fill in the color values -- they are only needed if the application is using a
special texturing mode. The Apple 3D accelerator always performs some of these modes (even if you try to
disable them), so always fill in the modulation and highlight values when rendering to Apple hardware.

Texture modulation is useful for lighting effects, while decal effects can be used to simulate fogging by
blending the texture with a lighting value, choosing an alpha value based on the z coordinate. Hardware-based
fogging is becoming more common and that will be directly supported in a future version of RAVE.

For developers who already have a 3D application, the previous information might be enough to convert it to
call RAVE. Developers at many of the early game kitchens found that adding RAVE support could be done in
as little as an hour for gouraud-shaded triangles. Textured triangles, because of the need for texture
management, takes longer.

One method to speed up development of a RAVE conversion is to add a second monitor with a 3D accelerated
video card. All of the software rendering code can initially be left intact, with mirrored calls to the RAVE
monitor. This has the added benefit of allowing you to compare the software and hardware-rendered versions



of the application.

Eventually, the code needs to switch between calls to the software rasterizer and RAVE. RAVE is a fairly thin
API, so one easy option is to build the software rasterers as a RAVE engine and register it when the application
launches. Your own engine then replaces the Apple software engine when no hardware is available. The Apple
software engine produces high-quality results, but is not optimized for game performance.

Building a 3D Application
If you've never written a 3D Application before, this section introduces some of the concepts and a lot of the
math associated with building one. Many books have been written on the subject -- some of those books are
listed in the original RAVE documentation, while others are listed in the bibliography at the end of this note.

Everything to be rendered is based on a camera (which has a position and orientation in our 3D world), and a
viewing plane, which represents the location of the screen in the viewed area. A clipping frustum is built
around this viewing plane, and all objects that we render are clipped to this frustum.

We're going to introduce a coordinate system and some definitions, and follow with the rendering pipeline that
a typical application will follow. This doesn't cover more sophisticated forms of hidden surface removal and
object culling, as those are subjects for entire books!

Our application will use a left-handed coordinate system, with x going from left to right, y moving from
bottom to top, and z going into the screen.

Local Coordinates

Local coordinates are the untransformed coordinates of a model. The model is centered around the origin,
facing into the z-axis.

Each object has its own position and orientation which are used to transform the local coordinates into world
coordinates.

World Coordinates

World coordinates are the standard coordinate system into which all objects are placed. In order to be rendered
to the screen, we need to pick a point of observation, an orientation for the camera, and a distance that the
viewing plane will be drawn. We always assume that the viewing rectangle is perpendicular to the orientation
vector, which simplifies the application design.



Camera Coordinates
Given the camera's position and orientation, we can calculate a transformation matrix that moves the point of
observation to the origin and then rotates the coordinate system so that the camera is pointed down the z-axis,
with the y-axis as the "up" direction for the camera. This gives us a coordinate system that easily allows us to
do z-perspective correction.

Later, we'll also modify the camera transform to optimize clipping; this also affects the screen transforms, but
does not affect the final result.

Screen Coordinates
These are the actual coordinates passed to the RAVE engine -- x and y are in pixels, while z ranges from 0 to
1.

The 3D Rendering Pipeline
Each object to be rendered will be passed through our rendering pipeline. The complete pipeline is presented
here, and individual pieces will be touched on later as the math is introduced. A few sections (lighting,
backfacing) are not covered here, but can be found in some of the books in the bibliography. We assume that
all polygons are convex, since a non-convex polygon can be tessellated into multiple -convex polygons.

1. Determine if the object is completely inside the frustum, completely outside the frustum, or partially inside
the frustum. Objects outside the frustum are culled.

2. Calculate the object's transformation matrix and convert the object to camera coordinates.

3. Determine lighting (which is not covered in this note).

4. Remove all backfacing polygons (not covered in this note).

5. For each remaining polygon in the object: 

a) If the object intersected the frustum, clip to the frustum.
b) Project the polygon to screen coordinates
c) Render the polygon.

Projecting a Point

We're going to skip all of the matrix math, as it is covered in most 3D books, and go right to projecting a point
from camera space to screen space.

In camera space, our camera is placed at the origin and is looking down the z-axis, where we have placed a
viewing plane perpendicular to the z-axis at some distance, zview. Given any point (x0, y0,z0), we want to
project that point onto the viewing plane by calculating the intersection of the viewing plane with a ray
projected from the origin through our point.



The calculation is the same for either the x or y coordinate, so we'll only do the math for the x coordinate. 

We have two similar triangles, one from (0,0,0) to (0,0,Z0) to (X0,0,Z0), the other from (0,0,0) to
(0,0,Zview) to (Xview,0,Zview). One property of similar triangles is that the proportions of any two sides
must be identical:

Xview/Zview = X0/Z0

Solving for Xview, the projection calculations become: 

Xview = X0 * zview / z0
Yview = Y0 * zview / z0

Choosing the Viewing Distance

We need to choose the correct distance to place the viewing plane. We want to center the context's viewing
rectangle around the z-axis. We should choose a depth that gives a field of view for human vision. Given a
triangle from (0,0,0) to (0,0,Zview) to (XView, 0,ZView), we can calculate the angle for half of the viewing
area, and then double it.

In this case, XView is half the width of the context (in pixels).

tan (angle) = Xview/Zview;
angle = tan-1 (Xview/Zview);

So the complete viewing angle is twice that, or 2tan-1 (Xview/Zview). Similarly, the vertical field of view is
2tan-1 (Yview/Zview). 

Alternatively, we can take a particular field of view and use it to determine the distance our plane needs to be
from the origin. A good viewing angle seems to be about 110 degrees horizontal.

Zview = Xview/tan(horizontal angle/2)
or
Zview = Yview/tan(vertical angle/2)

If your application needs to run at multiple context sizes, it doesn't make any sense to tie all of the model data



We must quickly be able to cull pieces of polygons that fall outside the viewing frustum. The four clipping
planes that make up the side of the frustum are calculated based on the size of the view rectangle and the
distance of the viewing plane. 

Because our projection formula divides by z, we also need to ensure that points with z<= 0 are not projected.
We do this by specifying a hither plane (z=hither). Similarly, we specify a yon-clipping plane (z=yon), to cull
objects very distant from the camera.

Before we define the six clipping planes, we should actually talk about how to clip points, lines, and convex
polygons against a 3D plane. An arbitrary plane is traditionally defined by the equation:

Ax + By + Cz - D = 0. 

(A,B,C) turns out to be the plane's normal. If (A,B,C) is a unit vector, then D measures the distance from the
origin to the plane.

Clipping a Point to an Arbitrary Plane in 3D

We have a plane normal, and a point on the Plane, P0.

Normal, N = Ai + Bj + Ck
Point, P0 = (X0,Y0,Z0)

We pick a second, arbitrary point P, on the plane, and draw a line L from P0 to P.

P = (X,Y,Z)
L = (X-X0)i + (Y-Y0)j + (Z-Z0)k

We know that N is perpendicular to any line in the plane, so the dot product of the two vectors is 0.

L • N = 0
A(X-X0) + B(Y-Y0) + C(Z-Z0) = 0
AX + BY + CZ = AX0 + BY0 + CZ0

P • N = P0 • N

The dot product of any point in the plane with the normal gives the same value, which is actually the distance
D.

Given a point, we can calculate the dot product of that point with the plane's normal (giving us the distance
along that normal). If that distance is greater than D, then the point lies inside the plane, and is not clipped.
Less than this value, and it lies outside the plane and is clipped. Clipping a point costs one dot product and one
comparison.

Clipping a Line to the 3D Plane

Clipping a line is almost as easy. Calculate the distances for both points of the line. If both lie inside the plane,
the entire line is inside the plane and is not clipped. If both lie outside the plane, the line is clipped completely.
If they lie on either side of the plane, we need to calculate the intersection point of the line and our clipping
plane, and clip the portion that lies outside the plane.

We know that the point on the clipping plane will have a dot product equal to D. Given a line from P1
(X1,Y1,Z1) to P2 (X2,Y2,Z2), we can write the parametric equation of the line, where a point P varies from



P1 to P2 as we increase t from 0 to 1.

P = P1 + t(P2-P1)

We can then calculate the value of t that results in P • N = D.

P • N = D
(P1 + t(P2-P1) • N = D
P1 • N + t(P2 • N - P1 • N) = D

D1 = P1 • N
D2 = P2 • N

D1 + t(D2-D1) = D

(D-D1)
t = -------
(D2-D1)

D1 and D2 are the two dot products we already determined to clip the line, and D was precalculated for the
plane. We can plug this value of T back into the parametric equation to determine the value of P.

Clipping a Convex Polygon against the Plane

Clipping a convex polygon against the plane means walking the list of lines and clipping each against the
plane. This will always result in another convex polygon, although it may gain or lose vertices in the process.
(The only exception occurs when the polygon is culled completely.)

A simple algorithm to do this is walk the list of vertices in the polygon. For each pair of points, if the first
point lies inside the plane, add it to the output. If the points are on opposite sides of the plane, add the
intersection point to the output.

The Clipping Frustum
Now that we understand how to clip the polygons against a plane, we can calculate the equations for each
plane in the clipping frustum. As before, our view point is the origin, and our viewing rectangle lies at some
distance, Zview.

Xview = view width/2
Yview = view height/2
Zview = view plane distance

Now that we understand how to clip polygons against the plane, we need to calculate the equations for each
plane in the clipping frustum. We assume the view point is the origin, and that the viewing rectangle is
centered at (0,0,distance). We also need distances for the hither- and yon-clipping planes.

Now we can calculate the six clipping planes. The hither and yon planes are the easiest, since they are both
perpendicular to the z axis.

The hither and yon plane are the easiest to determine.

Hither plane: normal = (0,0,1), distance = hither
Yon plane: normal = (0,0,-1), distance = -yon



The other four planes all pass through the origin, so their distances will always be 0. The horizontal clipping
planes can be determined by choosing the normal that is perpendicular to the lines from the origin to (X0,0,Z0)
and (-X0,0,Z0)

X plane: normal = (-Z0,0,X0), distance = 0
X plane: normal = (Z0, 0,X0), distance = 0

The Y  coordinates can be determined similarly.

Y plane: normal = (0,-Z0,Y0), distance = 0
Y plane: normal = (0, z0,Y0), distance = 0

For the distances to actually make sense, these normals should all be normalized to a length of 1.0.

Choosing Hither and Yon Values

The hither value should be chosen such that it is shorter than the closest distance any object can appear to the
camera. Essentially, terrain and objects should be collision-detected so that they cannot appear closer than this
distance. If this does not happen, then it is possible to find yourself inside an object, or to see through a piece
of terrain by mistake. This is a fairly common bug in 3D games.

The yon plane generates an unusual effect: a piece of terrain visible near the edges of the screen can disappear
when it is moved toward the center (and crosses the z plane). The object disappears when you turn to face it.
Using a larger yon value, and adding other effects (fog!) can make objects appear more smoothly and avoid the
flash-in when objects cross the yon plane.

Clipping Optimization
Since we have to clip every polygon, we need to make clipping as fast as possible. Ideally, we wish to
minimize the calculations we perform on an object, and cull it at the earliest point possible. This section is
specifically devoted to clipping objects. Other pieces, such as terrain, could probably be clipped more
efficiently using BSP trees and other algorithms.

Optimizing Out the Hither Plane

If you can accept slightly closer clipping near the edges of the screen, you can eliminate the hither plane and
move the focal point of the four x and y clipping planes from the origin to (0,0,hither). 

Checking the Bounding Sphere Against the Frustum

Given an arbitrary object (consisting of a number of polygons), we can determine a bounding sphere for the
entire object, and cull the object as a whole. The radius of the sphere can be calculated by taking distance from
the origin to the most distant vertex.

If we take the dot product of the object's position with our plane, we know where the center of our sphere lies.
We'll call this Dcenter.

If (Dcenter + radius < Dplane), then the entire sphere lies outside this polygon, and we can cull the entire
object without any additional calculations.

If (Dcenter - radius > Dplane), then the entire sphere lies inside this clipping plane. We know that no polygons
in the object will intersect it, and we can set a flag for this object to avoid more expensive polygon clipping
later in the pipeline.



The best way to do this is probably to transform the frustum back into world coordinates, so you can work
directly with the object's position without calculating a transformation matrix. The reverse-transform only
needs to be calculated when the camera moves.

The maximum cost for this calculation is 6 dot products, which reduces the number of objects the pipeline will
deal with, and significantly reduces the amount of polygon clipping we'll need to perform. If most objects tend
to intersect the frustum, this technique will reduce performance.

Normalized Clipping Frustum
Every time we clip a polygon, we calculate one dot product per vertex for each plane we clip it to. For
example, even if no clipping actually happens, clipping five vertices against six plans results in 30 dot
products, with 90 multiplies and 60 adds. Clearly, even on a fast machine, it would be advantageous to reduce
this number.

If the horizontal and vertical clipping planes lie at 45-degree angles, the calculation for a dot product is reduced
to a single add with no multiplies. The plane equations look something like this:

X plane: normal = (-1,0,1), distance = 0
Y plane: normal = (1, 0,1), distance = 0

(The normals would be normalized to unit vectors).

If we dot a point P with the first normal, the distance is -Xp + Zp. The comparison can actually be done
without actually performing the add; if (Xp > Zp), the point will be clipped. If we find that a line needs to be
clipped, it can be calculated with a few adds and one divide.

We can take our existing camera matrix and apply an additional scaling matrix that places the x and y planes at
45-degree angles. At the same time, we can apply the z-coordinate transformation to place the z values between
0 and 1.

(Sx,Sy,Sz) = (Z0/Zyon * X0, z0/Zyon*Y0, 1/Zyon).

When the points are projected into screen space, we can apply a reverse transformation to scale the x and y
coordinates to their correct values.

(Sx,Sy,Sz) = (x0/z0, y0/z0, 1)

This transformation can be applied as part of the equations used to project the results into the RAVE
coordinates. Given (Xc, Yc, zc) in the scaled camera space, the final projection equations are:

InvW = 1/Zc;
Xp = Xc * X0 * invW;
Yp = Yc * Y0 * invW;
Zp = z
U/W = u * invW;
V/W = v * invW;

The current scaling value for z actually places the yon plane at z=1.0, so choosing a slightly larger value to
divide by will move all z values into the usable z-buffer space.

Texture Management 

RAVE has only minimal support for texture management. An application can pass in a flag
(kQATexture_Lock) suggesting to the engine that it permanently store this texture in onboard VRAM. This



should only be done for textures that are used constantly, since each texture that can't be swapped means less
memory to hold other textures.

In any case, the engine can choose to keep any texture in normal memory and only copy it to VRAM when that
texture is actually utilized for drawing, Then the engine could choose instead to disallow any textures to be
created if they won't fit into VRAM immediately. Applications must work to ensure that the textures they need
will be loaded into the RAVE engine. This is actually the largest set of code to be written when converting an
existing 3D application to call RAVE. 

We'll start by discussing an ideal situation for texture management, and then quickly shoot holes in it. We'll
follow up with suggestions that both applications and engines can follow to improve their texture management.

The "Ideal" RAVE Engine's Texture Management

The application creates a large set of textures (QATextureNew). The desired set of textures is larger than the
total amount of VRAM available to the system. The application renders all its polygons, setting the texture
(QASetPtr) and then sending some polygons for it. That same texture may be set multiple times while
rendering the scene. When the application finishes with a texture, it deletes it (QATextureDelete). Previously
submitted triangles render correctly, even though the texture has been deleted.

New textures are generated for every frame of animation. Animated textures or textures that combine texture
data with lightmaps are possible, so texture creation in the engine works efficiently.

The ideal engine renders this scene correctly, without crashing or accidently using a disposed texture by
mistake. The engine deals with texture creation and deletion efficiently, avoiding all unnecessary stalls.

A Dose of Reality

While a RAVE engine can come close to the ideal described above, the engine usually will not have adequate
information to schedule the loading and unloading of textures.

Assume the engine will let you create a working set of textures larger than will fit in VRAM. If you cycle
through these textures, either the engine needs to defer rendering a polygon, or it needs to copy that texture
into VRAM. One way, the engine isn't doing any drawing because it is hoping that more polygons will be
buffered to that same texture. The other way, the engine draws immediately but is also spending a large
amount of time copying textures into VRAM.

Many engines do not allow more textures to be allocated if they won't immediately fit into VRAM. This gives
immediate feedback to the application (QATextureNew fails), but results in a smaller set of working textures at
any particular moment. For example, a two megabyte 3D card with a 640x480, 16-bit front, back and z-buffer
has less than 250K of texture VRAM. Allocating a smaller context or losing the z-buffer will free up more
VRAM, but limits your other options.

What this means is that applications must expect QATextureNew calls to fail, and delete unnecessary textures to
make room for other textures to be loaded. However, some engines will delete the texture without checking to
see if all polygons for that texture have been rasterized. Since this RAM is usually been reused, garbage
renders by mistake. Calling QASync will complete all previously rendering, but eliminates many of the benefits
of asynchronous hardware. As hardware and RAVE engines spend more time rendering asynchronously,
calling QASync will result in larger speed penalties.

The Apple 3D accelerator requires all textures to be in VRAM when QARenderEnd is called. Deleting textures
on those cards doesn't work inside the render loop. In those cases, applications have few options left and have
to rely on the engine to do the right things.

Engine Texture Management Strategies



This section discusses one possible way that an engine could implement texture management. It allows more
textures than can safely fit into VRAM, and will safely allow textures to be deleted without causing
rasterization artifacts.

Engines designers should definitely consider allowing more textures than will fit in VRAM, especially if they
perform any significant calculations inside QATextureNew. For example, if the engine creates multiple levels of
mipmaps or compresses the texture in software, then repeating these calculations every time the texture is
loaded results in poor performance.

We assume that textures can be located in the application's memory, the engine's memory, and in VRAM.
Engine memory is probably allocated in the system heap, but could also be allocated in the application's heap if
necessary. Any copy of the texture in VRAM is just a copy; we can remove it at any time without losing the
texture. Finally, we want avoid synchronizing the engine as much as possible when allocating or deallocating
textures. The engine must also safely delete textures so that all previously submitted polygons are rendered
correctly.

Now for the design. First, we reference-count all textures. A texture is allocated with a reference count of 1.
Each time we submit a polygon, we increment the reference count; when it finishes rendering, we decrement it.
Finally, when the application calls QATextureDelete, we decrement the reference count. If the reference
count is still positive, we lock the texture in VRAM to prevent it from being disposed of prematurely.
Whenever the reference count hits 0, we remove the texture from VRAM, and also delete any copy the engine
may have made if the application detached the texture.

We also keep a global count of the number of textures that have been queued up to be deleted. We increment
this count in QATextureDelete, and decrement it when a texture is deleted by the renderer.

Whenever a drawing command hits the renderer, we check to see if that texture has been loaded into VRAM. If
the texture is not in VRAM, we look for an empty space large enough to hold the texture. If there isn't a large
enough space, when we find a texture of roughly the same size and remove it from VRAM. If Virtual Memory
is turned on, we must lock down textures to allow them to be copied at interrupt time.

Some engines don't have separate concepts of VRAM and engine memory. These engines usually create the
texture in VRAM and copy it when the texture is actually created (QATextureNew). To implement this, if
QATextureNew doesn't have enough memory to allocate the texture, it checks to see if we have any textures
queued up to be deleted. If we do, then it blocks until that count drops, and tries again. It tries until it allocates
the texture successfully, or until we've deleted all the textures that have already been queued up.

Finally, if the application asks for the total amount of available texture memory, we synchronize until all
textures are deleted, and return the appropriate amounts of memory.

Here's pseudo-code that describes how this works.

Calls that start with "QA" are the regular application calls.
Calls that start with "eng" are internal engine calls. Not all of these routines are defined below.
Calls that start with "int" are engine functions that might be running at interrupt time, or in an MP-task.

VRAM_ENGINE refers to engines that copy all textures to VRAM on allocation, without a separate section of
engine VRAM.

QATextureNew
{

#if VRAM_ENGINE
 engReserveMemory();
#endif



 allocate a texture object
 set refcount to 1
#if VRAM_ENGINE
 intLoadTexture();
#elseif 
 if (texture has lock flag set)
  intLoadTexture();
#endif VRAM_ENGINE
}

QATextureDetach
{
#if !VRAM_ENGINE
 engReserveMemory();
 copy texture to engine memory
#endif
}

QATextureDelete
{
 decrement reference count of texture
 if (refCount == 0)
 {
  engDeleteFromEngineMemory()
  engDeleteFromVRAM() 
 }
 else
 {
  gNumberOfTexturesToDelete++;
  set the lock flag on the texture
  intLoadTexture();
 }
}

engReserveMemory
{
 while ( (gNumberOfTexturesToDelete > 0) and
   (not enough engine memory to copy the texture))
 {
  MPYield();
  YieldToAnyThread();
 }
}

QADrawTriTexture
{
 assert (texture isn't queued for deletion)
 increment reference count of texture
 queue the drawing command
}

intDrawTriTexture
{
#if !VRAM_ENGINE
 if texture isn't in VRAM
  intLoadTexture();
#endif
 draw the triangle
 decrement the texture refcount
 if (texture refcount == 0)
 {



  engDeleteFromEngineMemory()
  engDeleteFromVRAM()
  gNumberOfTexturesToDelete--;
 }
}

intLoadTexture
{
#if !VRAM_ENGINE
 if there isn't enough VRAM for texture
  delete unlocked textures until there is enough room
#endif
 copy texture to VRAM
}

When deleting textures from VRAM, we usually would delete a texture of the same size that hasn't been used
in a while (LRU caching).

In an ideal world, we could queue the polygons out of order in order to minimize the number of times we load
the texture into VRAM. The problem is in dealing with multiple polygons sharing the same z value. If they are
queued out of order, a different pixel value would be written than if they were drawn exactly in order.

VRAM engines may block when a new texture is allocated. Other engines rarely need to block (inside
QATextureDetach), but may also spend more time loading textures into VRAM, especially if the application
changes textures frequently. We'll now go into a discussion of what applications can do to minimize the hit on
texture allocation.

Application Texture Management Strategies

We'll assume in this discussion that you have more textures than will fit into VRAM, as that is the most
common situation these days. On the other hand, if you fit all the textures for a particular game level into
VRAM, and never need to change the texture set, you'll see awesome performance.

Many engines automatically mipmap your textures when you call QATextureNew. However, this increases the
time required to create a texture, so whenever possible you should pre-mipmap your textures. The
pre-mipmapped texture uses about 33% more RAM, but offers many useful benefits when managing a large
set of textures.

Downsampling a texture may allow it to fit into VRAM when the full-sized texture would not. Instead of
calling QATextureNew with the full-sized texture, you call it with the next smaller mipmap instead. In a more
sophisticated example, you could examine the list of polygons being rendered with that texture, and choose a
mipmap level based on the closest z coordinate. If the polygons drawn with a particular texture are small and
distant, you can use a smaller mip-map with a negligible effect on the rendered image. Replacing a 128x128
mipmap with a 32x32 mipmap will use about 95% less VRAM, which is a big win when VRAM is scarce.
You might also defer creating a larger texture when a smaller mipmap has already been created.

Rather than creating a large number of textures at once, you should consider spreading the work out over
multiple frames of animation. This will smooth out the drop in frame rate that usually comes with loading a
large number of textures. For example, if you are moving into an area that will require a large number of
textures, you can prefetch the textures over multiple frames, and have them all in memory when they are
actually needed to draw. You might also load smaller versions of the textures immediately and slowly bring in
the larger textures. Finally, if you don't have a suitable texture in memory, you can grab the color out of the
smallest mipmap level and use it to gouraud-shade the triangle instead.

One important performance optimization is to reduce the number of times you change the current texture. Many
engines load the texture into VRAM or perform other processing then you set the current texture. Even if the



software engine doesn't do this, many hardware accelerators use texel caches to improve performance, and
changing the texture flushes those caches. If you render larger batches of polygons with a single texture, you'll
see better performance.

Conceptually, this can be accomplished by organizing the application's data appropriately. For example, you
might apply a single texture as a skin over an entire model, and render all objects based on that texture at the
same time. This reduces the number of texture loads to one per model.

Preflighting Texture Allocation

A more drastic solution would be to calculate and store all of the polygon information before calling
QARenderStart. All of this might be happening while the hardware renders the previous frame, so you'll still
see benefits from asynchronous hardware. With that information, you can sort the polygon information and
determine the exact texture set required to render the scene, at the cost of memory to hold all of the
precalculated polygon data.

It might also be possible to quickly scan the available scene information and determine a list of all the textures
that would be needed. After loading those textures, you could then walk the lists again and actually submit
them to the renderer.

Either way, this type of solution can result in the minimum number of calls to set the current texture,
significantly reducing the thrashing that takes place when loading and unloading textures into VRAM. You
walk the list of needed textures, and create any that aren't already loaded into the engine. Afterwards, you
render all polygons for any loaded textures. If you want to load more textures, you call QASync, delete some
textures, and load another batch to render. If you know that the engine automatically synchronizes on deletes,
you can avoid calling QASync, and improve performance. In any case, you continue to create and delete
textures until you run out of textures to render.

Alpha-blended textured polygons are generally rendered by the engine after all opaque triangles are rendered.
You should avoid deleting any textures for alpha-blended polygons until after that frame has been rendered.

Here's a few snippets of pseudo-code that describe the rendering loop:

RenderTextures() walks the list of loaded textures, and draws all triangles associated with those textures.

LoadTextures() walks the texture list and attempts to load any textures with unrendered triangles associated
with them. If we fail to load a texture, we delete some unneeded textures and try again. If all textures are
necessary to render the current scene, the routine terminates. LoadTextures returns false if there are textures
that it couldn't load into the engine. To deal with cards that can't delete textures, it should return true if it was
unable to create new textures twice in a row.

The rendering loop would look something like this:

QASync();
done = LoadTextures();

QARenderStart(...);
RenderTextures();

while (!done)
{
// complete the current rendered set, so that LoadTextures can delete them
 QASync();
 done = LoadTextures();
 RenderTextures();
}



QARenderEnd(...);

If engines perform their own synchronization, then all of the calls to QASync can be removed.

Tuning RAVE Performance
Performance tuning has been a big focus of this note, mostly because games are one of the most common
applications to be written using RAVE. So this section will mention a few things that can help tune RAVE
performance.

1) When you call QARenderStart, the RAVE engine resets all of the z-buffer locations to z=1.0, and fills all
pixels with the background color. If an initialization notification is attached to the context, the background
color is not filled; instead the initialization method is called. If the application knows it will always draw the
entire buffer every frame, it can attach an empty function as the initialization procedure, and save a few cycles.

2) Many applications have static data that never changes. If the engine supports drawing caches, draw all of the
static data in a cache, and use this to initialize each frame. Caches may use additional VRAM, but allow the
engine to quickly initialize a large amount of image and z-buffer information. Caches are a good choice for
hardware that supports fast z-testing, but aren't appropriate when VRAM is scarce. Keep in mind that any
textures you only use when rendering the cache aren't going to be loaded during your main graphics loop, so
some of this memory may be recovered.

3) If the application's polygons are already depth-sorted, create a non-z-buffered context. This provides
additional VRAM for textures, and saves time that might be spent writing unnecessary z-buffer information. 

If some of the polygons are sorted, test to see whether z-writes or z-testing is more efficient. If z-writes are
more efficient, change the kQATag_ZFunction tag to kQAZFunction_True and render all of the sorted
polygons back to front. Then set it back to normal and render the remaining polygons. If z-testing is faster,
leave the z-function alone and render the sorted polygons first, front to back.

4) If you need to do post-compositing on top of your RAVE image, consider putting all of this drawing into a
bitmap and drawing it using the QADrawBitMap call. The final composite can then happen in hardware, and
your bitmap can be drawn using the standard graphics routines.

5) Organize your data to minimize the number of texture switches you need to do. Set the lock flag on any
texture that is going to be used in every frame. Render your data to a single texture using strips or fans to
reduce the amount of bandwidth needed to go to the hardware accelerator. If you can't use strips, organize a
batch of triangles and submit them all at once using the kQAVertexMode_Tri flag.

6) Design your engine to take advantage of asynchronous hardware. When you call QARenderEnd, you should
immediately start calculating the next frame of animation. While the current versions of RAVE synchronize
inside QARenderEnd, future versions of RAVE and many RAVE engines will offer better opportunities to
overlap hardware rendering with your 3D application.

While RAVE does not presently support the multi-processor APIs, your application can do so. All calls to
RAVE must be made from the main thread, but your geometry calculations could run inside an MP-task. Even
on a single processor system, this allows your engine to receive time, even if the main task is blocked inside of
QASync.

Further References
The RAVE Documentation already lists a number of excellent sources on building 3D applications. Here are a
few books that specifically cover 3D Game design.



Zen of Graphics Programming, Michael Abrash, ISBN: 1883577896
Black Art of Game Programming, Andre Lamothe, ISBN: 1571690042
Black Art of Macintosh Game Programming, Kevin Tieskoetter, ISBN: 157169059

In addition, Game Developer Magazine has published many excellent articles covering 3D acceleration, engine
design and texture management. 
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 Acrobat version of this Note (68K).
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