Technote 1128

Under standing Open Transport Memory M anagement

By Quinn " The Eskimo!"
Apple Worldwide Developer Technical Support

CONTENTS T
his Technote describes how Open Transport's

Introducing OT Memory Management
interrupt-safe memory management system works, and

Using OT Memory Effectively how you can use it for best effect in your software.
Advanced Topics This Technoteis directed at advanced programmers

—— writing Open Transport client or kernel code.

Introducing OT Memory Management

Open Transport provides many different interrupt-safe memory allocation routines. These include

OTAl | ocMem OTAIl | oc, OTAl | ocShar edd i ent Memand OTAI | ocPor t Mem In order to know which
routines to use in which circumstances -- and how using these routines affects the memory available to
Open Trangport and the rest of Mac OS -- you need to understand the OT memory management system.

Pools of Power
OT memory management is layered on top of four classes of memory pools:

1. A client pool isalocated for each program that calls| ni t OpenTr ansport (or
I nitpenTransport Wilities).Itisusedto satisfy OT memory allocations for that program
and it is destroyed when that program callsd oseenTr ansport (either explicitly or by an
application quitting).

2. The shared client pool (also known as the native pool) is allocated when the first program
calsi ni t OpenTransport (typically thisisthe AppleTalk protocol stack, early in the boot
sequence). This pool is used by the OT client-side libraries for the bulk of their allocation.

3. Thekernel pool isalocated thefirst timethe OT kernel isloaded. It is used by the OT kernel
and its plug-ins (for example, STREAMS modules and drivers).

4. Theport pool isalocated the first time aprogram cals | ni t OpenTr ansport or
I nit QpenTransport Utilities. Thepool isused to hold information about ports. It is distinct
from the kernel pool, because port scanners can run without loading the kernel, hence without
creating the kernel pool.

Open Transport memory pools are implemented by the Apple Shared Library Manager (ASLM)
TSt andar dPool class and inherit some attributes from that class:

1. A pool isaways allocated within aMac OS Memory Manager zone.
2. Each pool startswith aninitial size.
3. Memory pools are interrupt-safe. Y ou can allocate memory from the OT memory pools at any

time. However, the pool can only grow at system task time. If you allocate memory at interrupt
time, the allocation may fail even though there is enough memory in the zone to grow the pool to
meet the request.

4. When the pool runslow on memory, the pool expands by alocating memory from the Mac OS
Memory Manager at system task time. The pool grows by a percentage factor, known as the
grow by factor. The amount grown is bounded below by the minimum grow amount.

5. The pool startsto grow when the amount of free space in the pool drops below the low mark.
There isaso ahigh mark, which defines when the pool should start to shrink. Thisfeatureis
used only by the kernel pool.

Note:
Y ou can read more about the ASLM memory pool classesin the ASLM Developer's Guide, available as
part of the ASLM SDK on the Mac OS SDK CDs.

Pool Parameters

The following tables gives the basic parameters of the various Open Tranpsort memory pools.

\Pool Type ||Zone ||Initial ||Grow By |[Min Grow ||[Low Mark ||High Mark |
Client [1] || Appl ||2K 1|20% 12K |1K ||infinite |
Client [2] |System [|IK ||20% 12K 512 ||infinite |
'Shared |System ||2K 1|20% ||4K [2K+1 ||infinite |
\Kernel |System [3] [[2K ||20% 134K |[34K+1 |[4] |
Port |System ||2K 1|20% 11K |1K+1 ||infinite |
Notes:

1. Thisrow isfor client programs that link with the OT application libraries (those whose names
end with "App") and who have not called I ni t Li br ar yManager .

2. Thisrow isfor client programsthat link with the OT extension libraries (those whose names end
with "Extn") and who have not called I ni t Li br ar yManager .

3. OT explicitly holds (in the virtual memory sense) the memory in the kernel pool. OT does not
guarantee to hold the memory in the other pools.

4. The OT kernel pool shrinks and grows depending on a number of factors, which are described
below.

Using OT Memory Effectively
This section describes various hints and tips for using the OT memory management system effectively.

OT Routines and their Pool Usage

The following table is a summary of the common OT routines that allocate memory, the amount of
memory they allocate, and the pool from which they alocate.

'Routine ||Pool |Approximate Amount |
OTAl	ocvem[1]	Client	/dependsonsi ze parameter		
OTAl	ocvem[1]	Kernel		dependsonsi ze parameter	
OTAl	oc		Client		dependsonref andfi el ds parameters
OTAI	ocShar edCl i ent Mem		Shared		dependson si ze parameter
OTAl	ocPor t Mem		Port		depends on si ze parameter
Client 16 bytes					
OTOpenEndpoi nt Shared 150 bytes					
Port 1KB					
OT'St r eantOpen Ehe?;]eeld AlloKbgteS					
OTCr eat eConf i gurat i on		Shared	/100 bytes[2]		
OTSnd		Kerne			nbyt es [3]
IMPORTANT:

These amount are approximate. The values vary depending on the relative complexity of the protocol
being used and between versions of Open Transport. These values are only meant as a guide
for analyzing your program's memory needs.

Notes:

1. OTAl | ocMembehaves differently depending on the libraries with which you link. If you link with
the OT client libraries (for example, OpenTr anspor t Li b), OTAl | oc Memallocates memory from
the client pool. If you link with the OT kernel libraries (for example, QpenTpt Modul eLi b),

OTAl | ocMemallocates memory from the kernel pool.

2. The exact size depends on the complexity of the configuration. Thisvalueis alower bound,
based on asimple call to OTCr eat eConf i guration("serial").

3. Thismemory is consumed only if the endpoint is copying sent data (i.e., ack sendsif off),
which is the default setting. If no-copy sends are enabled, the routine alocates a much smaller
amount of housekeeping memory.

Examining Memory Pools in MacsBug

The above analysis was done empirically, by calling each routine repeatedly while recording the effect on
each memory pool. While OT provides no programming interface for measuring the usage of its memory
pools, you can easily find the poolsin MacsBug.

First, you will need to find the debug version of Open Transport -- available via links on the OT web
page -- and extract the "OT Debugger Prefs’ file, included as part of theinstall package:

Qpen Tpt Debug Installer
Qpen Transport Installer

Qpen Transport Files

Or Debugger Prefs

Y ou should copy the"OT Debugger Prefs’ file to your MacsBug Preferences folder, then restart your
machine.

IMPORTANT:

Itisvital that you usethe "OT Debugger Prefs' file from adebug install of OT whose version number
matches the version of OT you have installed. The "OT Debugger Prefs’ file contains MacsBug
templates that are automatically generated by the OT build system to match the layout of the fieldsin the
OT data structures. This layout changes from version to version of OT. If you have the wrong version
of the "OT Debugger Prefs’, you will not get accurate results in MacsBug.

Once you have the "OT Debugger Prefs’ file installed, you can useit to find and display the various OT
memory pools. Thefirst step isto dump the OT globals. Thisis done differently on 68K and PowerPC,
and is explained in the following sections.

Dumping OT Globals on PowerPC

On PowerPC, you can dump the OT globals using the following command:

>>> dm _ gOId obal OTd obal
Di spl ayi ng OTrd obal at 0006BDAO

0006BDA0 f Gest al t Val ue 0000003F
0006BDA4 f 68KDef err edProc 00000000
0006BDA8 f Versi on 01308000

... other stuff deleted ...]
0006BF04 fd ientd obal
0006BF04 fdientList

0006BF04 f Head 005F1714
... other stuff deleted ...]
0006BF30 f Nat i vePool 00095320

[... other stuff deleted ...]

0006BF8C f Ker nel d obal

0006BF8C f Ker nel Pool 0039A4A0
0006BF90 f Ker nel Pool MaxSi ze #13421772
[... other stuff deleted ...]

0006BFD4 f Por t Pool 0037AA90
[... other stuff deleted ...]

OT exports the address of the OT globalsasa CFM symbol, _ gOrd obal . The above command dumps
that address using the OTd obal template from the "OT Debugger Prefs’ file. Asfar as memory usageis
concerned, there are three fields of interest:

1. fNati vePool -- Thisisthe address of the shared client pool.

2. fKernel Pool -- Thisisthe address of the kernel pool.

3. fdientlList.fHead-- Thisisthe head of the OT client list. Y ou can dump out thefirst client
using the command:
>>> dm 5f 1714 Regi steredd i ent

Di spl ayi ng Regi steredClient at 005F1714
005F1714 fLink

005F1714 f Next 005F15BC
O05F1718 f Providers

005F1718 f Head 005F13D0
005F171C f Streans

005F171C f Head 00000000
005F1720 fWhoAnl 070A7134

[... other stuff deleted ...]

Y ou can examine the next client by following thef Li nk. f Next field. Y our application will be
the one whose f WhoAm field pointsinto your application heap. One you've found your
application, you can display its connection to ASLM by dumping itsf WwhoAm pointer using the

TLi br ar yManager template, as shown below:

>>> dm 70a7134 TLi br aryManager
Di spl ayi ng TLi braryManager at 070A7134

070A7134 __vptr 003873B0
070A7138 f Pool 070A6780
070A713C fLibraryFile 00000000
070A7140 f Def aul t Pool 070A6780

[... other stuff deleted ...]
The address of your client pool isheld in the f Def aul t Pool field.
Given the address of apool, you can do a number of things with it:

e Thefollowing MacsBug command will display some basic information about the pool:

>>> dm 70a6780 TMenoryPoo
Di spl ayi ng TMenoryPool at 070A6780

070A6780 _ vptr 00386F40
070A6784 f Menli st 070A6770
070A6788 fSize #2408
070A678C f Lowiar k #1797
070A6790 f Hi ghMark #4294967295
070A6794 f MaxUsed #352
070A6798 f Cur Free #2056
070A679C f Zone 06F7CF00
070A67A0 f MeniType #1

[... other stuff deleted ...]

Thef si ze field isthe total amount of memory in the pool. The f cur Fr ee field isthe amount of
free memory left in the pool.

@ Thedunppool demd will display the list of memory blocks in the pool, for example:

>>> dunmppool 70a6780
Al |l ocated Menory
70a7000(#16) 70a7010(#16) 70a7020(#168)
70a70c8(#64) "!$plnt"
70a7108(#40) "!S$slst"
70a7130(#48) "!S$lngr"
Free Menory

70a67f 8(#2056)

e Thedunpr awpool demd will display amore detailed list, for example:

>>> dunprawpool 70a6780
Al |l ocated Menory
F 70a67f 8(#2056)
A 70a7000(#16) 70a7010(#16) 70a7020(#168)
A 70a70c8(#64) "!$plnt"
A 70a7108(#40) "!$slst"
A 70a7130(#48) "!$lngr"

Dumping OT Globals on 68K

On 68K, the procedure is dightly more complex. Thefirst step isto find the address of the OT global.
Y ou do this using the following MacsBug command:

IMPORTANT:
For thisto work you will need to install the debug version of OT so that MacsBug can find the
Fet chOTA obal symbol.

>>> hx 2800

The target heap is the System heap at 00002800
>>> || FetchOrd obal

Di sassenbling from Fet chOTd obal

Fet chOTd obal

+00000 0015D5E2 LI NK A6, #$0000 | 4E56 0000
+00004 0015D5E6 MOVE. L $00092434, DO | 2039 0009 2434
+0000A 0015D5EC UNLK A6 | 4E5E

+0000C 0015D5EE RTS | 4E75

[... other stuff deleted ...]

Thefirst command switches the current MacsBug target zone to the system heap. The next command
disassembles afunction that returns the address of the OT globals. Theline at Fet chOTd obal + 4
moves the address of the OT globalsinto register DO. In this case, the address of the OT globalsis stored
in memory location $00092434. Y ou can dump the globals using the following MacsBug command:

>>> dm 92434” OTd obal
Di spl ayi ng OIrd obal at 000B5050

000B5050 f Gestal t Val ue 0000000F
000B5054 f 68KDef err edPr oc 00238164
000B5058 f Version 01306007

[... other stuff deleted ...]

After dumping the OT globals, you can proceed as in the PowerPC case.

Controlling Client Pool Parameters

As described above, the OT client pool for an application is alocated in the application heap when you
call I ni t OpenTransport . The pool starts very small and grows on demand. However, this behavior is
not always optimal. Specificaly, if you want to exclusively use the OT memory allocatorsin your
application, you should dedicate your entire application heap to their use. Having the allocators consume
your application heap piecemeal is much less efficient than giving it to them in one big chunk.

Y ou can obtain more control over your client pool by using the ASLM programming interface. If you
have aready initialized a connection to ASLM, | ni t OpenTr anspor t will useit (and its client pool)
instead of creating its own. Y ou can use this to control how large your client pool is, whereitis
allocated, and how it grows.

Note:
To program with ASLM, you need the ASLM SDK from the Mac OS SDK CDs.

IMPORTANT:
Tocal ASLM from 68K C or C++ code, you must be building with the 4-byte integers.

To use thistechnique, you must call | ni t Li br ar yManager before calling | ni t QpenTransport.In
addition, you must call d eanupLi br ar yManager after calling d oseQpenTr anspor t . The prototypes

for these routines are defined in "LibraryManager.h”, but they are given below for your convenience.

OSErr InitlLibraryManager(size_ t pool size, int zoneType, int nmenflype);
void C eanuplLi braryManager (void);

The additional parametersto | ni t Li br ar yManager alow you to specify theinitial size for your client
pool (in bytes), the location of the client pool (typically kSyst enzone, kAppl i cZone, Or kCur r ent Zone
), and the type of memory for the client pool (typically kNor mal Meror y; however, if you access the
memory when paging is unsafe, kHol dMeror y may be useful).

The following code snippet demonstrates this technique. It first creates a subsidiary zone within the
application heap (whose size is calculated to consume the entire heap, minus some memory for use by the
toolbox). It then calls| ni t Li br ar yManager to connect to ASLM (and establish the client pool in the
subsidiary zone) before calling | ni t QpenTr ansport .

static OSStatus | nitQpenTransportWthMenoryLimt(void)
{

CsSt atus err;

SInt 32 junkTot al Free;

SInt 32 conti gFree;

SInt 32 zonesi ze;

Ptr subsi di aryZone;

THz ol dZone;

/1l First call the system Menory Manager to determnine the |argest
/1 contiguous block in the heap.

Pur geSpace(& unkTot al Free, &conti gFree);
zoneSi ze = conti gFree - kBytesReservedFor Tool boxl nAppl i cati onZone;

/1 Allocate the nenory for our zone and create a zone in that

/1 block. Then init ASLM telling it to create a pool that

/1 takes up the entire zone (ninus the ASLM overhead factor)

/'l in the current zone, i.e., the zone we just created. Finally,
// initialize OI. OF will see that we've inited ASLM and use

/1l the pool that ASLM created (in the zone we created) for

/1 satisfying OTAI |l ocMem requests.

subsi di aryZone = NewPtr (zoneSi ze);
ol dZone = Get Zone();

/1 InitZone sets the current zone to the newy created zone,
/!l so | don't have to do it nyself.

I nitZone(nil, 16, subsidi aryZone + zoneSi ze, subsidi aryZone);
err = InitLi braryManager(zoneSi ze - 2048, kCurrentZone, kNormal Menory);
if (err == noErr) {

err = InitQpenTransport();

if (err !'=noErr) {

d eanuplLi br ar yManager () ;
}

}
Set Zone(ol dZone);

return err;

Note:
This code isasimplified version (less error checking) of the code used by the DTS sample code
Orst reanmiogVi ever . If you use this technique, you should get the real code from that sample.

Note:

The above technique is by no means the only one available to you using the ASLM API. Y ou should
read the AS_M Developer's Guide for more information.

Advanced Topics

This section describes some of the more advanced issues in the realm of OT memory management.
Specifically, the section describes how the OT shared client and kernel pools grow and shrink over time.
Before tackling this, you need to learn about another API call you can make to ater the behavior of the
OT memory system.

Note:
This section of the note isintended for those with an intimate knowledge of the Open Transport
architecture. Do not be alarmed if you do not understand it!

OTSet MemoryLimts

The OrSet Meror yLi mi t s routine alows software to directly affect the behavior of the OT memory
pools. The prototype for the routineis:

#i fdef __cplusplus
extern "C' {
#endi f

extern OSStatus OTSet MenoryLimts(size t growSi ze, size t maxSize);

#i fdef __cplusplus

}
#endi f

The gr owsi ze parameter isthe amount by which OT should grow the kernel pool right now. When you
call theroutine, OT immediately tries to grow the kernel pool by thisamount. The maxSi ze parameter is
the new maximum size of the kernel pool. OT will never grow the kernel pool larger than this amount.

OTSet Menor yLi ni t s aso implicitly setsan internal Open Transport variable called f Ser ver Mode. If you
call orset Menor yLi i t s with apositive gr owSi ze value, f Ser ver Mode isincremented. If you call it
with azero value, f Ser ver Mode isdecremented. If f Ser ver Mode is non-zero, OT will never downsize
the shared client or kernel pools. To be agood citizen, server software should call OrSet Mermor yLi nit's
with apositive gr owSi ze when it starts up, and a zero gr owSi ze when it shuts down.

Finaly, if you grow the kernel pool by more than 20 KB, OTSet Menor yLi ni t s will also grow the
shared client pool by 10% of the gr owsSi ze value.

OTSet Memor yLi ni t s isonly of useto server software which must handle extremely "bursty’ connection
patterns or many connectionsin parallel. By increasing the maximum size of the kernel pool, the server
can handle more connectionsin parallel. By growing the kernel pool immediately (rather than as each
connection is created), the server can handle these parallel connections as soon asiit's started, rather than
waiting for the kernel pool to grow through usage. By never downsizing the kernel pool, the server can
handle many connections simultaneoudly even after along period of inactivity.

OTSet Menor yLi ni t s must be called at system task time and returns an error result if it can't grow the
kernel pool by the specified amount.

IMPORTANT:
Using OrSet Menor yLi mi t s Will never increase the performance of a single connection. It isonly useful
for software with dozens of parallel connections. DTS strongly recommends that client software never

call OrSet MenoryLimits.

Note:

The OTset Menor yLi mi t s routine does not appear in any Open Transport header files. If you use the
routine, you must declare the prototype yourself. Thisis a consequence of the above policy -- genera
application programs should not call this routine.

Note:
Thereisan earlier incarnation of OTSet MenoryLi mi t's, called OTSet Ser ver Mode. This routine has been

completely subsumed by OTSet MenoryLi nits.

Growing OT Memory Pools

When OT attemptsto grow apooal, it uses a binary back-off algorithm to do so. It starts by attempting to
grow the pool by getting one big block of memory from the Mac OS Memory Manager. If ablock of that
sizeisnot available, it halves the size requested and tries again. This process terminates when either OT
has grown the pool the requested amount, or the block size shrinks below 10 KB.

Shrinking OT Memory Pools

ASLM memory pools have the ability to shrink. A memory pool is made up of a number of
discontiguous memory blocks that have been alocated from the Mac OS Memory Manager. When a pool
isdownsized, each Mac OS memory block is examined to seeiif it isempty. If it is, that memory block
is released back to the Mac OS Memory Manager.

OT memory pools are downsized at the following points:

e Whenever aclient dies(it callsd osepenTr anspor t or an application quits without calling
Cl osepenTransport) and OT isnot in server mode, OT downsizes the shared client and
kernel pools.

e Whenever OT unloads the client libraries, it downsizes the shared client pool.

e Whenever OT unloads the kernel (which happens when there are no remaining clients who called
I ni t QpenTransport), it downsizesthe kernel pool if OT isnot in server mode.

e Whenever OT unloads the kernel utilities library (which happens when there are no remaining
clientswho called I ni t QpenTransport Utilities), OT downsizesthe port pool.

e OT downsizes the port pool after it runs port scanners.

e OT downsizesthe shared client pool immediately after it runsthrough the list of configurators
calling their OTSet upConf i gur at or Or OTSt ar t upConf i gur at or entry points.

More Kernel Pool Trivia

OT maintains a hard limit on the upper bound of the size of the kernel pool. Clients can set this limit
using the OTSet Menor yLi mi t s routine. This poses the question: What isthe initial value for thislimit?
Out of the box, OT setsthislimit to 10% of the physical memory on the machine (as returned by

gest al t Physi cal RAMBI ze). This strikes a balance between providing enough buffer space for
networking while preventing OT from consuming all the user's memory.

When the kernel isloaded for the first time, OT creates the kernel pool at the initial size specified above.
However, each time the kernel loads (including the first time), OT forces the kernel to grow to be at least
96 KB before finishing the load. This mechanism allows the kernel pool to be small while the kernel is
unloaded, but grow quickly when the kernel loads.

Summary

Open Transport provides areliable, flexible, and interrupt-safe memory management system. By
understanding how it works, you can avoid some common pitfalls and still write code that allocates
memory at interrupt time. Finally.

Further References

e |Inside Macintosh: Networking With Open Transport
e |nside Macintosh: Memory

o Apple Shared Library Manager Developer's Guide
e Open Transport Web Page

Downloadables

Acrobat version of this Note (152K).

Acknowledgments

Thanks to Mark Cookson, Steve Kalkwarf, Rich Kubota and Brad Suinn.

To send feedback, please use the Feedback page.
11-May-98

Technotes
Previous Technote | Contents | Next Technote

