
Technote 1109
Optimizing QuickDraw3D 1.5.3 Applications For

Maximum Performance
By Scott Kuechle

Apple Developer Technical Support (DTS)
devsupport@apple.com

CONTENTS

Introduction

Techniques For Optimizing QD3D 1.5.3
Applications For Maximum Performance

Using 3D Accelerators To Boost
Performance

Summary

There are a number of techniques not discussed in the

QuickDraw3D (QD3D) documentation which a developer
can use to boost performance in a typical QD3D
application. This Technote presents these techniques.
This Technote assumes you are familiar with 3D graphics
fundamentals and QD3D programming as described in the
book 3D Graphics Programming With QuickDraw 3D by
Addison-Wesley.

Introduction
3D software developers continue to add more and more powerful features to their applications.
However, as these applications become more and more complex, their overall performance may suffer
as well. The current QD3D documentation contains no discussion of how to improve performance in a
typical QD3D application. This Technote present some techniques for doing so. Also included is a
discussion of what affect 3D accelerators can have on application performance.

Techniques For Optimizing QD3D 1.5.3 Applications For
Maximum Performance
There are a number of things QD3D application developers can do to get maximum performance out of
their applications:

Use The TriMesh Geometry

TriMesh Performance

The trimesh geometry was first introduced with QD3D 1.5 (refer to Philip Schneider's article "New
QuickDraw3D Geometries" in develop issue 28 for a good discussion of the various QD3D geometries,
and to the document "Trimesh.pdf" on the QD3D 1.5.3 SDK for a discussion of the trimesh). With
QD3D 1.5.3, performance of the trimesh geometry when used in immediate mode with the interactive
renderer is quite good. If you care about speed, you'll definitely want to consider using the trimesh.
Depending on your needs, many of the other QD3D geometries may work just as well - but if speed is
important, consider using the trimesh. Future versions of QD3D will address performance of the other
geometries too.

Also, if you are going to use the trimesh, be sure and use it correctly to achieve maximum performance.
Don't try building one giant trimesh with 10 different texture attributes - that won't work (see the next
section discussing materials in trimesh objects).

Use Only One Texture Per TriMesh Object

In general you'll get better performance if you use only one texture per trimesh object. The texture
attribute should be in the trimesh data's triMeshAttributeSet. Don't attempt to apply a texture to
individual triangles or vertices.

Supply A Bounding-Box For The TriMesh

The trimesh geometry contains an optional bounding-box parameter (see the bBox parameter in the
TQ3TriMeshData data structure) that can be provided to accelerate culling/clipping. Do specify a
bounding-box when creating the trimesh geometry and you'll get better performance (however, make
sure the bounding box you specify is correct, or a crash may result).

Apply Only the Normal & UV Coordinate Vertex Attributes

Apply only the following vertex attributes to a given object if you want better performance: normal
(kQ3AttributeTypeNormal) & UV Coordinate (kQ3AttributeTypeSurfaceUV &
kQ3AttributeTypeShadingUV).

Reuse As Many Vertices As Possible

Reuse as many vertices as possible. Vertices with duplicate coordinates may have different normals
meaning you'll have to make a wasteful duplicate of the vertex. In such cases, you should consider
averaging the normals and removing the duplicate. This will usually result in a smoothing effect on the
geometry, but it will make things go faster.

Use the Triangle/Face Attribute Face Normal

With the current implementation of QD3D version 1.5.3, you'll want to use the face normal triangle/face
attribute, and even then there are cases where you might not want to do this. If you do not supply a face
normal, QD3D will calculate one for you every time you render. In many cases, this will cause QD3D to
slow down, since calculating a normal is slow. However, if you have a lot of data, and it's unlikely

your arrays of normals stay in the L1 or L2 cache between renderings, then it can be faster to *not*
provide the face normal.

A cache miss can cost more cycles than just letting QD3D recalculate the normal. In most cases, you'll
want to provide the face normal, but run some tests and see if your application works better without
them.

Also, it's best if you make sure the vertices for each triangle are stored in the counterclockwise
direction. Refer to the document "Trimesh.pdf" on the QD3D 1.5.3 SDK for more details.

Do Your Own Object Culling

Do your own object culling? QD3D's object culling uses bounding box culling, which is fairly accurate
and is really the only way to go for a general purpose library like QD3D, but it's very slow. You should
implement your own object culling function which does spherical culling.

Also, use backface culling for closed objects (when appropriate), as this rendering style is likely to be
significantly faster than the other backfacing styles (refer to Chapter 6, "Style Objects", of 3D Graphics
Programming With QuickDraw 3D for the details).

Minimize Other Processing While Rendering

Applications may perform many other activities while rendering, such as drawing a wireframe view of a
scene into another window, updating the coordinates of a geometry, updating non-QD3D structures,
etc. All these activities can have an effect on rendering. If you can reduce the amount of time spent on
these activities at rendering time, you'll see a performance improvement in your application.

Minimize Time Given To Background Applications

Many applications give too much time (via the WaitNextEvent function) to background applications
while rendering, so no matter how much QD3D acceleration is available, there are always a few ticks
delay between redraws during rendering. If you can minimize the amount of time spent servicing
background applications, your application will be that much faster.

Be Careful When Using Group Objects

QD3D group objects are convenient for storing and managing objects. However, many developers fail
to realize each group will push and pop the graphics state at execution time because by default, the
group inline flag (kQ3DisplayGroupStateMaskIsInline) is not set (see Chapter 10 "Group Object"
of 3D Graphics Programming With QuickDraw 3D for the details). Pushing and popping of the
graphics state at execution time for each group object can affect performance in a bad way.

If you need to push and pop the graphics state manually, use the Q3Push_Submit and Q3Pop_Submit
functions. Developers instead, may want to implement their own data structures to handle the
management of large numbers of objects.

Retained vs. Immediate Mode

Depending upon your particular needs, using immediate mode may be faster than retained mode. For
example, if you are dealing with sphere or cone geometries with the constant subdivision style set you
will probably see a performance improvement when immediate mode is used.

You'll really need to experiment to see which mode works best for you. In general, if most of a model
remains unchanged from frame to frame, you'll probably want to use retained mode imaging to create

and draw the model. If, however, many parts of the model do change from frame to frame, you might
consider using immediate mode imaging, creating and rendering of a model on a shape-by-shape basis.
You can, of course, use a combination of retained and immediate mode imaging: you can create retained
objects for the parts of a model that remain static and draw quickly changing objects in immediate mode.
Refer to Chapter 1 of 3D Graphics Programming With QuickDraw3D for a discussion of both retained
and immediate modes.

Don't Use Q3View_Sync, TQ3ViewEndFrameMethod Unless Necessary

It's best you not use the Q3View_Sync or TQ3ViewEndFrameMethod functions unless absolutely
necessary when using the interactive renderer. These functions essentially put the renderer into
synchronous mode. Try to avoid doing so, and you'll get better performance.

Using 3D Accelerators To Boost Performance
There's been an increase lately in the number of 3D graphics accelerator boards which support QD3D.
These accelerators are designed to also improve performance for most QD3D applications. However,
many developers are disappointed to find their applications don't exhibit much in the way of improved
performance with these boards installed on their systems. One reason for this is many developers are
not using the techniques discussed in the previous section for obtaining maximum performance with
their QD3D applications.

When looking at the performance of a given 3D accelerator, it is important you understand most cards
accelerate the 3D graphics rasterization process. As you know, rasterization is one process (usually
towards the end) in the rendering pipeline. It follows, then, if you are using a geometry in your program
which is computationally expensive, such as a NURB geometry, and your code and geometry
calculations take up a great deal of time, even if a given accelerator could "instantaneously" render
polygons you wouldn't see much of a speed improvement in your program.

It is also likely that at a certain point (application/geometry/complexity), an application will wind up
performing at the same speed whether a software renderer or a 3D accelerator board is being used.
Developers can experiment to see where exactly this tradeoff takes place.

If you make rasterization more "expensive", for example by adding high quality (tri-linear mip mapped)
texturing, transparency, and/or CSG operations, then you will see a large performance and quality gain
over a software renderer (of course this is very much dependent on the 3D accelerator card in use). To
really take advantage of a given 3D accelerator card, you need to tailor your application to take
advantage of the specific card's features.

Most cards will, with varying degrees, accelerate QD3D applications, and will often improve
substantially the appearance of textures. However, it is possible to bog a card down, as many cards
don't properly handle all of the complexity that general purpose applications generate in a scene.

Summary
If you follow the above guidelines, you'll see a big performance boost in your QD3D application. If you
don't believe us, and you would like to see how much the above techniques help speed up your
application, there is a retail product called 3DMF Optimizer from Pangea Software
(http://www.realtime.net/~pangea) which uses many of the techniques discussed in this note and let's
you see the speed boosts we're talking about. A demo version of 3DMF Optimizer is available at the
URL listed above.

Further References

3D Graphics Programming With QuickDraw 3D , Addison-Wesley
"New QuickDraw3D Geometries" by Philip Schneider, develop magazine issue 28
(http://www.realtime.net/~pangea) 3D Optimizer, from Pangea Software

Acknowledgments

Special thanks to Philip Schneider, Nick Thompson, Brian Greenstone.

Send feedback to devsupport@apple.com
Updated: 31-October-97

Tech Support
Technotes

Previous Technote | Next Technote | Contents

Main | Page One | What's New | Apple Computer, Inc. | Find It | Contact Us | Help

	Technote 1109
	Introduction
	Techniques for Optimizing QD3D 1.5.3 Apps For Maximum Performance
	Use The TriMesh Geometry
	TriMesh Performance
	Use Only One Texture Per TriMesh Object
	Supply A Bounding-Box For The TriMesh
	Apply Only the Normal & UV Coordinate Vertex Attributes
	Reuse As Many Vertices As Possible
	Use the Triangle/Face Attribute Face Normal
	Do Your Own Object Culling
	Minimize Other Processing While Rendering
	Minimize Time Given To Background Apps
	Be Careful When Using Group Objects
	Retained vs. Immediate Mode
	Don't Use Q3View_Sync, TQ3ViewEndFrameMethod Unless Necessary

	Using 3D Accelerators To Boost Performance
	Summary
	Further References
	Acknowledgments

