Technote 1180
Sherlock’s Find By Content Library

By John Montbriand
Apple Worldwide Developer Technical Support

CONTENTS T
. his Technote describes the Find by Content
Overview o ,
Determining if Find By Content is libraries used by Sherlock for searching the
Avallable contents of files.
Working with Search Sessions
Setting up a Search Session The Find by Content libraries export afull suite of
Performing Searches routines and functions allowing applications to
Retrieving Information from a Search perform content based searches of files.
Session
Find By Content Reference With MacOS 8.6, Text Extractor Plug-ins were
introduced. These allow Find By Content to extract
Data Types textual information from binary filesfor inclusionin
Allocation and Initialization of Search index files. Text Extractor Plug-ins are documented
Sessions in Technote TN1181, “Find by Content Text
Configuring Search Sessions Extractor Plug-ins.”
Executing a Search
Getting Information About Hits This Note is directed at application developers who
Summarizing Text wish to access the Find By Content library directly
Getting Information About VVolumes from their app“cdu)nsl

Indexing VVolumes, Folders, and Files
Reserving Heap Space
Application-Defined Routine

Find By Content C Summary

Overview

The Find By Content (FBC) facilities provided in Mac OS 8.6 are implemented in a PowerPC Code
Fragment Manager library that residesin the “ Extensions” folder. The Sherlock application is aclient of
FBC, accessing FBC services through this shared library. Devel oper applications can also access the
search facilities provided by this library. This section describes how devel opers can create products that
access the new FBC facilities through this shared library.

Compiler interfacesto FBC are found in the C header file “ FindByContent.h.” And, for linking
purposes, the Code Fragment Manager library implementing FBC is named ” Find By Content” (without
the quotes). Developers using the FBC routines described herein should weak-link against thislibrary,
and then check the Gestalt selectors from within their application before calling any of these routines.

Determining if Find By Content is Available

FBC defines two Gestal t selectors. Clients of FBC must verify that correct version of the
implementation is available before making any of these calls, and will want to check the FBC indexing
state before performing any searches.

enum {
gestaltFBCVersion = “fbecv®,
gestal tFBCCurrentVersion = 0x0011

};

Thegestal tFBCVersion selector returns the version of FBC that isinstalled on the computer.
Developers can compare this version with the version of the interface with which they have compiled
their programs using the gestal tFBCCurrentVersion to determineif it is safe to make any callsto
FBC. If gestaltFBCVersion produces some version other than the version of the interface your
application has been compiled to run with, then your application should not make any callsto FBC.

enum {
gestaltFBCIndexingState = “fbci”,
gestaltFBCindexingSafe =0,
gestaltFBCindexingCritical =1

Thegestal tFBCIndexingState selector returns information about the current indexing status of FBC.
At any given time, the indexing status will be either gestal tFBCindexingSafe or
gestaltFBCindexingCritical. If the statusis gestal tFBCindexingCritical, then any search will
result in a synchronous wait until the state returns to gestal tFBCindexingSafe. When the FBC
indexing state returned is gestal tFBCindexingSafe, then al searcheswill execute immediately. To
avoid synchronous waits, developers should check the gestal tFBCIndexingState Selector and only
make callsto FBC when the indexing state returned is gestal tFBCindexingSafe.

Back to top

Working with Search Sessions

FBC alows client applications to open and close a“search session.” A search session contains all of the
information about a search, including the list of matched files after the search is complete. Clients of
FBC can obtain references to search sessions, modify them, and query their state using the routines
defined in this section. References to search sessions are defined as an opague pointer type owned by
the FBC library.

typedef struct OpaqueFBCSearchSession* FBCSearchSession;

Developers should only access the search session structure using the routines defined herein. This
includes using the appropriate FBC routines for duplicating and disposing of search sessions. Search
sessions are complex memory structures that contain pointers to other data that may need to be copied
when a search session is duplicated or disposed of when a search session is deallocated.

The normal sequence of actions one takes when using the FBC library isto create a search session,
configure the search session to target specific volumes, perform the search, query the search results,
and dispose of the search. Other possibilities for searches include the ability to reinitialize asearch
session and use it over again for another search, to provide backtracking by cloning search sessions and
performing additional searches using the clones, or to limit search resultsto files found in particular
directories.

Back to top

Setting up a Search Session

Creating a new session and preparing it for a search, as shown in Listing 6, requires at least two calls to
the FBC library. In this example, anew search session is created and it is configured to search al local
volumes that contain index files. The call to FBCAddAI IVolumesToSession automatically configures
the search session to search all indexed volumes.

/* SimpleSetUpSession allocates a new search session and
returns a FBCSearchSession value in the *session
parameter. if an error occurs, *session is left
untouched. */

OSErr SimpleSetUpSession(FBCSearchSession* session) {
OSErr err;
FBCSearchSession newsession;

/* set up our local variables */
err = noErr;
newsession = NULL;
if (session == NULL) return paramErr;

/* create the new session */
err = FBCCreateSearchSession(&newsession);
if (err !'= noErr) goto bail;

/* search all available local volumes */
err = FBCAddAIlVolumesToSession(newsession, false);
if (err !'= noErr) goto bail;

/* store our result and leave */
*session = newsession;
return noErr;

bail:
if (newsession != NULL)
FBCDestroySearchSession(newsession);
return err;

Listing 6. Setting up a search session to search all local, indexed volumes.

FBC provides acomplete set of routines for devel opers wanting more control over what volumes will
be searched by the search session. Listing 7 illustrates how a new search session could be configured to
search aparticular set of volumes.

/* SetUpVolumeSession allocates a new search session and
returns a FBCSearchSession value in the *session parameter.
if vCount is not zero, then vRefNums points to an array of
volume reference numbers for volumes that are to be searched.
if any of the vRefNums refer to a volume without an index,
paramErr is returned. */

OSErr SetUpVolumeSession (FBCSearchSession* session,
Ulntl6 vCount, SIntl6 *vRefNums) {
OSErr err;
Ulntl6 1i;
FBCSearchSession newsession;

/* set up our local variables */
err = noErr;
newsession = NULL;
if (vCount == 0) return paramkErr;
if (session == NULL) return paramErr;
if (vRefNums == NULL) return paramErr;

/* create the new session */
err = FBCCreateSearchSession(&newsession);
if (err !'= noErr) goto bail;

/* search the volumes specified in vRefNums */
for (i=0; i<vCount; i++) {

if (IFBCVolumelslndexed(vRefNums[i])) {
err = paramkrr;

goto bail;
3} else {
err = FBCAddVolumeToSession(nhewsession,

vRefNums[i]);
if (err !'= noErr) goto bail;

/* store our result and leave */
*session = newsession;
return noErr;

bail:
if (newsession != NULL)
FBCDestroySearchSession(newsession);
return err;

Listing 7. Setting up a session to search a particular set of volumes.

In this example, the FBCAddVolumeToSession routine is used to add volumes to the search session.
Other routines for querying what volumes are currently targeted by a search session and removing
volumes from that list are provided.

Once a search session has been configured to search a number of volumes, it can be used again after a
search has been conducted without having to reconfigure its target volumes. After performing a search
and examining the results, the search session can be prepared for another search by calling the routine
FBCReleaseSessionHits. Thisroutine releases all of the search results from the last search while
leaving the list of target volumes intact.

Making a copy of a search session using the routine FBCCloneSearchSession will copy thelist of
target volumes to the duplicate search session.

Back to top

Performing Sear ches

When FBC performs a search, it will generate alist of filesthat were matched. Thislist isreferred to as
the ”hits,” and it is stored inside of the search session. FBC can be asked to perform a content-based
search using a query string containing alist of words, asimilarity search based on one or more hits
obtained in a previous search, or asimilarity search based on alist of examplefiles. Listing 8 illustrates
how a query-based search can be performed. Here, the query is used to search for matching files on all
local indexed volumes.

OSErr SimpleFindByQuery (char *query, FBCSearchSession *session) {
OSErr err;
FBCSearchSession newsession;

/* set up locals, check parameters... */
if (query[0] == 0) return paramErr;
if (session == NULL) return paramErr;

newsession = NULL;

/* allocate a new search session */
err = SimpleSetUpSession(&newsession);
if (err '= noErr) goto bail;

/* Here is the call that does the actual search,
storing the results in the search session. */
err = FBCDoQuerySearch(newsession, query,
NULL, O, 100, 100);
if (err !'= noErr) goto bail;

/* save the results and return */
*session = newsession;
return noErr;

bail:
if (newsession != NULL)
FBCDestroySearchSession(newsession);
return err;

Listing 8. A Query based search of all local, indexed volumes.

Searches conducted using either the routine FBCDoExamp leSearch or the routine
FBCBI indExampleSearch can be used to locate files that are similar to other files. Similarity searches
will locate files with similar content to the files specified as examples. Examples can be specified as

indexes referring to hits obtained from previous searches, or as alist of FSSpec records referring to
fileson disk.

All three of the search routines— FBCDoExampleSearch, FBCBI indExampleSearch, and
FBCDoQuerySearch—provide support for limiting the search resultsto files residing in one or more
directories. To do this, clients provide alist of FSSpec records referring to target directories. The
examplein Listing 9 illustrates how to limit the results of a search to a particular set of directories.

enum {
kMaxVols = 20,
maxHits = 10,
maxHitTerms = 10

3

OSErr RestrictedFindByQuery (char *query, Ulntl6 dirCount,
FSSpec* dirList,
FBCSearchSession* session) {
Uulntlé vCount, i;
SIntl6 vRefNums[kMaxVols], normalVol;
FBCSearchSession newsession;

vCount = O;

newsession = NULL;

if (dirList == NULL |] dirCount == 0) return paramkrr;
if (query == NULL) return paramErr;

if (*query == 0) return paramkrr;

if (session == NULL) return paramErr;

/* collect all of the unique volume reference numbers

from the list of FSSpecs provided in the parameters. */
for (i=0; i<dirCount; i++) {

Boolean found;

HParamBlockRec pb;

/* ensure the vRefNum is a volume

reference number */
pb.volumeParam. ioVRefNum dirList[i].-vRefNum;
pb.volumeParam. ioNamePtr NULL ;
pb.volumeParam.ioVollndex = 0;
if ((err = PBHGetVInfoSync(&pb)) != noErr) goto bail;
normalVol = pb.volumeParam.ioVRefNum;

/* make sure it’s not already in the list */
for (found = false, j=0; j<vCount; j++)
it (vRefNums[j] == normalVol) {
found = true;
break;

¥

/* add the volume to the list */
if (Ifound && vCount < kMaxVols)
vRefNums[vCount++] = normalVol;

/* set up a session to use the volumes we found */
err = SetUpVolumeSession(&newsession, vCount, vRefNums);
if (err !'= noErr) goto bail;

/* Here is the call that does the actual search,
storing the results in the search session. */
err = FBCDoQuerySearch(newsession, (char*)queryTxt,
dirList, dirCount, maxHits, maxHitTerms);
if (err !'= noErr) goto bail;

/* save the result and return */
*session = newsession;
return noErr;

bail:
if (newsession != NULL)
FBCDestroySearchSession(newsession);
return err;

Listing 9. Searching a particular set of directories.

Here, volume reference numbers extracted from the array of FSSpec records referring to target
directories provided as a parameter are used to configure the volumes that will be searched by the search
session. Then, thelist of target directoriesis passed to the FBCDoQuerySearch.

Back to top

Retrieving Information from a Sear ch Session

After asearch is conducted using a search session, the search session may contain information about
one or more matching files. Clients can access information about individua hitsincluding thefile's
FSSpec record, the words that were matched in thefile, the “score” assigned to the file during the last
search operation, and additional information about thefile. Listing 10 illustrates how one could obtain
information about each hit returned by a search.

typedef OSErr (*HitProc) (FSSpec theDoc,
float score,
Ulnt32 nTerms,
FBCWordList hitTerms);

/* SampleHandleHits can be called after a search to enumerate
the search results. For each search hit, the hitFileProc
function parameter is called with information describing
the target. */

OSErr SampleHandleHits (FBCSearchSession session,

HitProc hitFileProc) {
OSErr err;
UInt32 hitCount, 1i;
FSSpec targetDoc;
float targetScore;
FBCWordList targetTerms;
Ulnt32 numTerms;

/* set up locals, check parameters */
targetTerms = NULL;
if (hitFileProc == NULL) return paramkrr;
if (session == NULL) return paramErr;

/* count the number of hits in this session */
err = FBCGetHitCount(session, &hitCount);
if (err !'= noErr) goto bail;

/* iterate through the hits */
for (i = 0; 1 < hitCount; i++) {

/* get the target document’s FSSpec */
err = FBCGetHitDocument(session, i, &targetDoc);
if (err !'= noErr) goto bail;

/* get the score for this document */
err = FBCGetHitScore(session, 1, &targetScore);
if (err !'= noErr) goto bail;

/* get a list of the words matched in
this document */
numTerms = maxHitTerms;
err = FBCGetMatchedWords(session, i, &numTerms,
&targetTerms);
if (err !'= noErr) goto bail;

/* call the call back routine provided as a
parameter to do something with the information. */
err = hitFileProc(&targetDoc, score, numTerms,
targetTerms);
if (err !'= noErr) goto bail;

/* clean up before moving to the next iteration. */
FBCDestroyWordList(targetTerms, numTerms);
targetTerms = NULL;

+

return noErr;
bail:
if (targetTerms != NULL)

FBCDestroyWordList(targetTerms, numTerms);
return err;

Listing 10. Enumerating all of the files found in a search session.

Back to top

Find By Content Reference

This section provides a description of the CFM-based interfaces to the PowerPC FBC library.
PowerPC applications using these routines link against the library named “Find By Content” (without
the quotes).

Data Types

FBC provides the following data types. Storage management for these typesis provided by the FBC
library. Clients should not attempt to allocate or deall ocate these structures using calls to the Memory
Manager.

FBCSearchSession

typedef struct OpaqueFBCSearchSession* FBCSearchSession;

Search sessions created by FBC are referenced through pointer variables of this type.
Theinterna format of the data referred to by this pointer isinternal to the FBC library.
Clients should not attempt to access or modify this data directly.

FBCWordIltem

typedef char* FBCWordltem;

An ordinary C string. Thistype is used when retrieving information about hits from a
search session.

FBCWordList

typedef FBCWordltem* FBCWordList;

An array of Wordltems. Thistypeisused when retrieving information about hits from
a search session.

Back to top

Allocation and Initialization of Search Sessions
The following routines can be used to alocate and dispose of search sessions. Storage
occupied by search sessionsis owned by the FBC library, and these are the only
routines that should be used to allocate, copy, and dispose of search sessions.

FBCCreateSearchSession

OSErr FBCCreateSearchSession(
FBCSearchSession* searchSession);
searchSession pointsto avariable of type FBCSearchSession.

FBCCreateSearchSession alocates anew search session and returns areferenceto it
in the variable pointed to by searchSession.

FBCDestroySearchSession

OSErr FBCDestroySearchSession(
FBCSearchSession theSession);
theSession iSapointer to a search session.
FBCDestroySearchSession reclams the storage occupied by a search session. This
will include any volume configuration information and hits associated with the search
Session.

FBCCloneSearchSession

OSErr FBCCloneSearchSession(
FBCSearchSession original,
FBCSearchSession* clone);
original isapointer to a search session.
clone pointsto avariable of type FBCSearchSession.
FBCCloneSearchSession creates anew search session and stores apointer toit in the
variable pointed to by the clone parameter. Information from the original search

session that is copied to the new session includes the volumes targeted by the search
session and all of the hits that may have been found in previous searches.

Back to top

Configuring Sear ch Sessions

Search sessions can be configured to limit searchesto a particular set of volumes. These routines allow
clients access to the set of volumes that will be searched by FBC.

FBCAddAIIVolumesToSession

OSErr FBCAddAIIVolumesToSession(
FBCSearchSession theSession,
Boolean includeRemote);
theSession iSapointer to a search session.
includeRemote iSaBoolean value
FBCAddAI IVolumesToSession configures a search session to search al mounted
volumes that have been indexed. If includeRemote istrue, then remote volumes will

be included in the search session’slist of target volumes. Volumes that are not indexed
are not added to search session’s list of target volumes.

FBCSetSessionVolumes

OSErr FBCSetSessionVolumes(
FBCSearchSession theSession,
const SIntl6 *vRefNums,
Ulntl6 numVolumes);

theSession isapointer to a search session.
vRefNums is an pointer to an array of volume reference numbers (16-bit integers).

numVo lumes is an integer value containing the number of volume reference numbersin
the array vRefNums.

FBCSetSessionVolumes alows clientsto add several volumesto thelist of volumes
targeted by a search sessioninasinglecall.

FBCAddVolumeToSession

OSErr FBCAddVolumeToSession(
FBCSearchSession theSession,
SIntl6 vRefNum);
theSession isapointer to a search session.

vRefNum is avolume reference number.

FBCAddVolumeToSession adds avolume to the list of volumesthat will be searched
by the search session. If the volume is not indexed, it will not be added to the list.

FBCRemoveVolumeFromSession

OSErr FBCRemoveVolumeFromSession(
FBCSearchSession theSession,
SIntl6 vRefNum);

theSession iSapointer to a search session.

vRefNum is avolume reference number.

FBCRemoveVo lumeFromSession removes the specified volume from the list of
volumes that will be searched by the search session.

FBCGetSessionVolumeCount

OSErr FBCGetSessionVolumeCount(
FBCSearchSession theSession,
Ulntl6* count);

theSession isapointer to a search session.

count isapointer to a 16-bit integer where the result is to be stored.

FBCGetSessionVolumeCount returns, in *count, the number of volumesin thelist of

volumes that will be searched by the search session.

FBCGetSessionVolumes

OSErr FBCGetSessionVolumes(
FBCSearchSession theSession,
SIntl6 *vRefNums,
Ulntl6* numVolumes);

theSession isapointer to a search session.
vRefNums isapointer to an array of volume reference numbers (16-bit integers).
*numVo lumes isapointer to a 16-bit integer. On input, this will be the number of

elements that can be stored in vRefNums, and on output it will be the number of
elements actually stored in vRefNums.

FBCGetSessionVolumes returnsthelist of volumesthat will be searched by the search

session in the array pointed to by vRefNums. *numVolumes is Set to the number of
volume reference numbers returned in the array.

Back to top

Executing a Search

FBC provides three different routines for conducting searches that are described in this section.

FBCGetSessionVolumeCount

OSErr FBCDoQuerySearch(
FBCSearchSession theSession,
char* queryText,
const FSSpec targetDirs[],
UInt32 numTargets,
UInt32 maxHits,
UInt32 maxHitWords);

theSession isapointer to a search session.
queryText refersto a C-style string containing the search terms.

targetDirs pointsto an array of FSSpec records that refer to directories. If
numTargets IS zero, then this parameter can be set to NULL.

numTargets contains the number FSSpec recordsin the array pointed to by
targetDirs.

maxHi ts the maximum number of hits that should be returned.
maxHitWords the maximum number of hit words that will be reported.

FBCDoQuerySearch performs a search based on the search terms found in queryText.
If the targetDirs parameter is present (numTargets is not zero), then only files
residing in the directories specified in targetDirs will beincluded in the hits found
by the search.

FBCDoExampleSearch

OSErr FBCDoExampleSearch(
FBCSearchSession theSession,
const UInt32* exampleHitNums,
UInt32 numExamples,
const FSSpec targetDirs[],
Ulnt32 numTargets,

UInt32 maxHits,
UInt32 maxHitWords);

theSession contains a pointer to a search session. This session must contain a hit list
generated by a previous search.

exampleHitNums pointsto an array of 32 bit integers.

numExamples contains the number of integersin the array pointed to by
exampleHitNums.

targetDirs pointsto an array of FSSpec records that refer to directories. If
numTargets iS zero, then this parameter can be set to NULL.

numTargets contains the number FSSpec recordsin the array pointed to by
targetDirs.

maxHi ts the maximum number of hits that should be returned.
maxHi tWords the maximum number of hit words that will be reported.

FBCDoExampleSearch performs an example-based or “similarity” search using hits
found in a previous search as examples. exampleHitNums pointsto an array of long
integers containing the indexes of one or more of the hitsthat are to be used as example
files. If the targetDirs parameter is present (numTargets is not zero), then only files
residing in the directories specified in targetDirs will beincluded in the hits found

by the search.

FBCBI indExampleSearch

OSErr FBCBIindExampleSearch(
FSSpec examples[1],
Ulnt32 numExamples,
const FSSpec targetDirs[],
UInt32 numTargets,
UInt32 maxHits,
Ulnt32 maxHitWords,
Boolean alllndexes,
Boolean includeRemote,
FBCSearchSession* theSession);

examples isapointer to an array of FSSpec records that refer to files. FBC will search
for filesthat are similar to thesefiles.

numExamples contains the number of FSSpec records in the array pointed to by
examples.

targetDirs pointsto an array of FSSpec records referring to directories. If
targetDirs isnot NULL and numTargets is not zero, then only filesresiding in these
directorieswill beincluded in the hit list returned by the search.

targetDirs pointsto an array of FSSpec records that refer to directories. If
numTargets IS zero, then this parameter can be set to NULL.

numTargets contains the number FSSpec recordsin the array pointed to by
targetDirs.

maxHits the maximum number of hits that should be returned.
maxHitWords the maximum number of hit words that will be reported.
includeRemote iSaBoolean value

theSession pointsto avariable of type FBCSearchSession that will be created by
this routine.

FBCBI indExampleSearch creates a new search session and conducts a similarity
search using the filesreferred to in the array of FSSpec records provided in the
examples parameter. If the targetDirs parameter is present (numTargets is not
zero), then only filesresiding in the directories specified in targetDirs will be
included in the hits found by the search. If includeRemote istrue, then remote
volumes will be included in the search session’ s list of target volumes.

If any of the example files are not indexed, then the search will proceed with the
remainder of the files, and the error code kFBCsomeFi lesNotIndexed will be
returned. In this case, the search session will be created and areference to it will be
returned in *theSession.

Back to top

Getting Information About Hits

Once a search is complete, a search session will contain alist of hits that were found during the search.
The routines described in this section allow clients to access information about hits stored in a search
session. Hit records are indexed 0 through count-1.

FBCGetHitCount

OSErr FBCGetHitCount(
FBCSearchSession theSession,
Ulnt32* count);
theSession isapointer to a search session.
count isapointer to a 32-bit integer.

FBCGetHitCount setsthe variable pointed to by count to the number of hitsin the
search session. Hit records are indexed O through count-1.

FBCGetHitDocument

OSErr FBCGetHitDocument(
FBCSearchSession theSession,
UInt32 hitNumber,
FSSpec* theDocument);

theSession isapointer to a search session.

hitNumber isan index value referring to a hit record in the search session.
theDocument isapointer to aFSSpec record.

FBCGetHitDocument returns theFSSpec record for the hit in the search session whose

index ishitNumber.

FBCGetHitScore

OSErr FBCGetHitScore(
FBCSearchSession theSession,
UInt32 hitNumber,
float* score);

theSession isapointer to a search session.
hitNumber isan index value referring to a hit record in the search session.
score isapointer to avariable of type float.

FBCGetHitScore returns relevance score assigned to the hit in the search session
whose index ishitNumber. The scoreis adirect measure of the document’ s relevance
to the search criteriain the context of this particular search. Scores are normalized to
therange 0.0 - 1.0, and the most relevant hit from every search always has a score of
1.0.

FBCGetMatchedWords

OSErr FBCGetMatchedWords(
FBCSearchSession theSession,
UInt32 hitNumber,
UInt32* wordCount,

FBCWordList* list);

theSession iSapointer to a search session.

hitNumber isan index value referring to a hit record in the search session.
wordCount iSapointer to a 32-bit integer.

list isapointer to avariable of type FBCWordList.

FBCGetMatchedWords returns alist of matched words for the hit in the search session
whose index ishitNumber. Thislist of wordsillustrates why the hit was returned. On
return, *1ist will contain apointer to aword list structure and *wordCount will be set
to the number of entriesin that structure. Be sure to call FBCDestroyWordList to
dispose of the structure when you are done with it.

The matched words for a hit are stored in the hit itself, so retrieving them isfast.

FBCGetTopicWords

OSErr FBCGetTopicWords(
FBCSearchSession theSession,
Ulnt32 hitNumber,
Ulnt32* wordCount,
FBCWordList* list);

theSession iSapointer to a search session.

hitNumber isan index value referring to a hit record in the search session.
wordCount iSapointer to a 32-bit integer.

list isapointer to avariable of type FBCWordList.

FBCGetTopicWords returns alist of topical words for the hit in the search session
whose index ishitNumber. Thislist of words provides a clue about “what the
document is about.” On return, *1ist will contain apointer to aword list structure and
*wordCount will be set to the number of entriesin that structure. Be sureto call
FBCDestroyWordList to dispose of the structure when you are done with it.
Thelist of topical wordsfor a particular hit must be generated through the index file,
so this call issignificantly slower than FBCGetMatchedWords.

FBCDestroyWordList

OSErr FBCDestroyWordList(
FBCWordList thelList,
Ulnt32 wordCount);
theList isapointer to aword list.
wordCount isthe number of wordsin thelist.

FBCDestroyWordList disposes of aword list allocated by either
FBCGetMatchedWords Or FBCGetTopicWords.

FBCReleaseSessionHits

OSErr FBCReleaseSessionHits(
FBCSearchSession theSession);

theSession isapointer to a search session. This session may contain hits generated
by a search.

FBCReleaseSessionHits dealocates any information stored regarding hits from the
last search from the search session. VVolume configuration information is retained and
once this call completes, the search session is ready to perform another search.

Back to top

Summarizing Text

This call produces a summary containing the “most relevant” sentences found in the input text.

FBCSummarize

OSErr FBCSummarize(
void* inBuf,
UInt32 inLength,
void* outBuf,
Ulnt32* outLength,
UInt32* numSentences);

inBuf points to the text to be summarized.
inLength isthelength of the text pointed to by inBuf.
outBuf pointsto a buffer where the summary should be stored.

outLength isapointer to a 32-bit integer. On input, this value is set to the size of the
buffer pointed to by outBuf. On output, it is set to the actual length of the data stored
in the buffer pointed to by outBuf.

numSentences isapointer to a 32-bit integer. On input, this value is the maximum
number of sentences desired in the summary. On output, it is set to the actual number
of sentences generated. If numSentences is0 on input, FBC takes the number of
sentences in the input buffer and divides by 10. If theresult is O, thenthevalue 1is
used as the maximum; otherwise, if the result is greater than 10, then thevalue 10 is
used as the maximum.

Back to top

Getting Information About Volumes

FBC provides the following utility routines for accessing information about volumes.

FBCVolumelslndexed

Boolean FBCVolumelslndexed (SIntl6 theVRefNum);
theVRefNum is avolume reference number.

FBCVolumelslIndexed returns true if the indicated volume has been indexed.

FBCVolumelsRemote

Boolean FBCVolumelsRemote(SIntl6 theVRefNum);
theVRefNum is avolume reference number.

FBCVolume IsRemote returns true if theindicated volumeislocated on aremote
server. Clients may want to exclude networked volumes from searches to avoid
network delays.

FBCVolumelndexTimeStamp

OSErr FBCVolumelndexTimeStamp(SIntl6 theVRefNum,
UInt32* timeStamp);

theVRefNum is avolume reference number.

timeStamp iSapointer to an unsigned 32 hit integer.

FBCVolume IndexTimeStamp Will return the time when the volume' sindex was last
updated. The value returned in timeStamp iSthe same format as values returned by

GetDateTime.

FBCVolumelndexPhysicalSize

OSErr FBCVolumelndexPhysicalSize(SIntl6 theVRefNum,
Ulnt32* size);

theVRefNum is avolume reference number.

size isapointer to an unsigned 32 bit integer.

FBCVolume IndexPhysicalSize returnsthe size of the volume' sindex file in bytes.

Back to top

Indexing Volumes, Folders, and Files

A new APl has been added to Find By Content allowing for the immediate indexing of new or altered
files. The new routine is declared as follows:

FBCIndexltems

OSErr FBCIndexlItems(
FSSpecArrayPtr theltems,
Ulnt32 itemCount);

theltems isapointer to an array of file specification records referring to the files to be
indexed.

i temCount isthe number of itemsin the array of file specification records.

FBCIndexItems indexes (or re-indexes) the filesreferred to in the array of file
specification records passed as a pointer in the first parameter. If the volume containing
afile aready has an index, the document is added or re-indexed; and, if the volume
does not contain an index, a new index is created.

Normally you will call FBCIndexltems after saving afile (or updating afile) ona
volume containing an index. Thiswill allow users to keep their indexes up to date
without any additional effort. For more information about how to determineif a
volume contains an index, refer to the Sherlock technote.

COMPATIBILITY NOTE

The symbol FBCIndexItems is not exported from the original version of the “Find By Content”
shared library. Applications wishing to use this routine should weak link to this symbol and then
test for it’ s presence before attempting to call it. Techniques for doing this are described in
Technote TN1083, “Weak-Linking to a CFM-based Shared Library.”

Back to top

Reserving Heap Space

Clients of FBC can reserve space in their heap zone for their callback routine before conducting a search.

FBCSetHeapReservation

void FBCSetHeapReservation(UInt32 bytes);

bytes isan integer value containing the number of bytes that should be reserved.

FBCSetHeapReservation Setsthe number of bytes FBC should guarantee are
availablein the client application’s heap whenever the client’s call back routineis caled
during searches. If you do not explicitly reserve heap space by calling this routine,
then 200K will be reserved for you.

Back to top

Application-Defined Routine

Clients can provide aroutine that will be called periodically during searches. This routine will provide
clients with both information about the status of a search, and opportunity to cancel a search beforeitis
complete.

Call back routines are defined as follows:

FBCCal lbackProcPtr

typedef Boolean (*FBCCallbackProcPtr)(
Ulntl6 phase,
float percentDone,
void *data);

phase isa 16-bit integer containing one of the following constants indicating the
current status of the search:

enum {
kFBCphSearching
kFBCphMakingAccessAccessor
kFBCphAccessWaiting
kFBCphSummarizing
kFBCphldle
kFBCphCanceling

P EP2O©0o~NO®

percentDone isaprogress valuein therange 0.0 - 1.0
data contains the same va ue provided to FBCSetCal Iback in the data parameter.

To avoid locking up the system while a search isin progress, the callback should either directly or
indirectly call waitNextEvent.

An ongoing search will be canceled if the call back function returns true.

FBCSetCal lback

void FBCSetCallback(FBCCallbackProcPtr fn, void* data);

fn isapointer to your call back function.
data isavalue passed through to your call back function.
FBCSetCal Iback setsthe call back function that will be called during searches. If a client does not

define a call back function, then the default callback function is used. The default call back function calls
WaitNextEvent and returns fal se.

Back to top

Find By Content C Summary

Constants
enum {
gestaltFBCIndexingState = "fbci”,
gestal tFBCindexingSafe =0,
gestaltFBCindexingCritical =1
}:
enum {
gestaltFBCVersion = "fbcv®,
gestal tFBCCurrentVersion = 0x0011
}:
enum { /* error codes */
kFBCvTwinExceptionErr = -30500,
/* miscellaneous error */
kFBCnolndexesFound = -30501,
kFBCal locFailed = -30502,
/*probably low memory*/
kFBCbadParam = -30503,
kFBCFileNotlndexed = -30504,
kFBCbadIndexFile = -30505,
/*bad FSSpec, or bad data in file*/
kFBCtokenizationFailed = -30512,
/*couldn™"t read from document or query*/
kFBCindexNotFound = -30518,
kFBCnoSearchSession = -30519,
kFBCaccessCanceled = -30521,
kFBCindexNotAvailable = -30523,
kFBCsearchFailed = -30524,
kFBCsomeFi lesNotlndexed = -30525,
kFBCillegalSessionChange = -30526,

/*tried to add/remove vols */
/*to a session that has hits*/

kFBCanalysisNotAvailable = -30527,
kFBCbadIndexFileVersion = -30528,
kFBCsummarizationCanceled = -30529,
kFBCbadSearchSession = -30531,
kFBCnoSuchHit = -30532

}:

enum { /* codes sent to the callback routine */
kFBCphSearching =6,
kFBCphMakingAccessAccessor = 7,
kFBCphAccessWaiting = 8,
kFBCphSummarizing =9,
kFBCphldle = 10,
kFBCphCanceling =11

}:

Data Types

/* A collection of state information for searching*/

typedef struct OpaqueFBCSearchSession* FBCSearchSession;

/* An ordinary C string (used for hit/doc terms)*/
typedef char* FBCWordltem;

/* An array of Wordltems*/
typedef FBCWordltem* FBCWordList;

Allocation and I nitialization of Search Sessions

OSErr FBCCreateSearchSession(
FBCSearchSession* searchSession);
OSErr FBCDestroySearchSession(
FBCSearchSession theSession);
OSErr FBCCloneSearchSession(
FBCSearchSession original,
FBCSearchSession* clone);

Configuring Search Sessions

OSErr FBCAddAIIVolumesToSession(
FBCSearchSession theSession,
Boolean includeRemote);

OSErr FBCSetSessionVolumes(
FBCSearchSession theSession,
const SIntl6 vRefNums[],
Ulntl6 numVolumes);

OSErr FBCAddVolumeToSession(
FBCSearchSession theSession,
SIntl6 vRefNum);

OSErr FBCRemoveVolumeFromSession(
FBCSearchSession theSession,
SIntl6 vRefNum);

OSErr FBCGetSessionVolumeCount(
FBCSearchSession theSession,
Ulntl6* count);

OSErr FBCGetSessionVolumes(
FBCSearchSession theSession,
SIntl6 vRefNums[],
UIntl6* numVolumes);

Executing a Search

OSErr FBCDoQuerySearch(

FBCSearchSession theSession,
char* queryText,

const FSSpec targetDirs[],
UInt32 numTargets,

UInt32 maxHits,

UInt32 maxHitWords);

OSErr FBCDoExampleSearch(
FBCSearchSession theSession,
const UInt32* exampleHitNums,
Ulnt32 numExamples,
const FSSpec targetDirs[],
UInt32 numTargets,

UInt32 maxHits,
UInt32 maxHitWords);
OSErr FBCBIindExampleSearch(
FSSpec examples[],
UInt32 numExamples,
const FSSpec targetDirs[],
UInt32 numTargets,
Ulnt32 maxHits,

UInt32 maxHitWords,

Boolean alllndexes,

Boolean includeRemote,
FBCSearchSession* theSession);

Getting Information About Hits

OSErr FBCGetHitCount(
FBCSearchSession theSession,
Ulnt32* count);

OSErr FBCGetHitDocument(
FBCSearchSession theSession,
Ulnt32 hitNumber,
FSSpec* theDocument) ;

OSErr FBCGetHitScore(
FBCSearchSession theSession,
UInt32 hitNumber,
float* score);

OSErr FBCGetMatchedWords(
FBCSearchSession theSession,
Ulnt32 hitNumber,
UInt32* wordCount,
FBCWordList* list);

OSErr FBCGetTopicWords(
FBCSearchSession theSession,
Ulnt32 hitNumber,
UInt32* wordCount,
FBCWordList* list);

OSErr FBCDestroyWordList(
FBCWordList thelList,
UInt32 wordCount);

OSErr FBCReleaseSessionHits(
FBCSearchSession theSession);

Summarizing Text
OSErr FBCSummarize(
void* inBuf,
UInt32 inLength,
void* outBuf,
Ulnt32* outLength,
UInt32* numSentences);

Getting Infor mation About Volumes

Boolean FBCVolumelslndexed (SIntl6 theVRefNum);

Boolean FBCVolumelsRemote(SIntl6 theVRefNum);

OSErr FBCVolumelndexTimeStamp(SIntl6 theVRefNum,
Ulnt32* timeStamp);

OSErr FBCVolumelndexPhysicalSize(SIntl6 theVRefNum,
Ulnt32* size);

Indexing files, folders, and volumes

OSErr FBCIndexlItems(
FSSpecArrayPtr theltems,
Ulnt32 itemCount);

Reserving Heap Space
void FBCSetHeapReservation(UInt32 bytes);

Application-Defined Routine
typedef Boolean (*FBCCallbackProcPtr)(

Ulntl6 phase,
float percentDone,
void *data);
void FBCSetCallback(FBCCallbackProcPtr fn, void* data);

Back to top

Further References

o Technote TN1141, “Extending and Controlling Sherlock”
o Technote TN1181, “Sherlock’s Find by Content Text Extractor Plug-ins.”

Back to top

Downloadables

Acrobat version of this Note (98K).

Back to top

Acknowledgments

Thanks to David Casseres, Pete Gontier, Tim Holmes, Ingrid Kelly, Michael J. Kobb, Eric Koebler,
AliceLi, and Wayne L oofbourrow.

To contact us, please use the Contact Us page.
Updated: 05-October-1999

Technotes | Contents
Previous Technote | Next Technote

