TN 1169: The Download Manager 5/23/99 11:19 AM

Technote 1169

The Download Manager

By David Gelphman
Revised by David Gelphman & Dave Polaschek
Apple Worldwide Developer Technical Support

CONTENTS T
his Technote is divided into two sections. Section 1

discusses the Download Manager API that Download
Section 1 - Download Manager Client Manager clientswould use to call the Download Manager
APls to cause afile, or other data, to be downloaded to a
PostScript printer. (The Desktop Printing software is an
example of aDownload Manager client that uses this
API.) Writers of low-level converters should read
Section 1 to get an overview of the environment in which
their converter will operate.

Introduction

Downloading Files

The Status-Idle Procedure

Utility Functions For A Client’s Use
of the Download Manager
Downloading Streams

Additional Utility Functions

Section 2 - Low-level Converter
Interface

Streams Information

Additional Functions For
Random-Access Streams
Low-level Converting Routines
Getting Information For A Client
Peeking At The Data

Queries

Doing The Conversion
Converter Capabilities

Section 2 discusses the APIs that the Download
Manager usesto call the low-level converters. This
material isintended for the writers of the low-level
converters which are called by the Download Manager.

In addition to downloading files to a PostScript output
device, it ispossible for a client to provide the data from
a source other than afile or to obtain the PostScript
output dataitself rather have it transmitted it to adevice.
Programmers who wish to create a Download Manager
client that suppliesthe datato convert and/or a client that
receives the Download Manager generated PostScript
output should read the discussion of streamsin Section
2.

Utility Functions

Errors Moreoever, programmers who wish to create a

Logging Download Manager client that only downloadsfilesto a
PostScript output device need not read Section 2.

Summary

Downloadables

| ntroduction

PrintingLib version 8.6, which isincluded with LaserWriter 8 version 8.6, adds new functionality. One
part of thisfunctiondity isthe Download Manager, which allows clients to print data to PostScript
printers without launching a separate application. LaserWriter 8.6 also added the Printing Plug-ins
Manager and Custom Hose support. These other features will be described in separate Technotes.

The Download Manager alows aclient, such as Desktop Printing, to print documents directly to a
PostScript printer without launching a separate application. There are severa benefits to printing the data
directly. Since applications tend to be memory intensive and relatively slow to launch, the Download

Manager can call aconverter nluo-in and start the iob orintina more auicklv. Rather than havina an
file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 1 of 28

TN 1169: The Download Manager

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1

application convert the data to QuickDraw and then have the printer driver convert the QuickDraw data to
PostScript, the Download Manager alows the image data to be converted directly to PostScript. This
lowers the overhead involved with converting a data format to PostScript, and also allows more efficient
PostScript code to be generated. An extra benefit to this processis that the user need not necessarily have
an application which can open and print the document.

Here' s how it works: the user drags a given file onto a desktop printer. The Desktop Printing software
then asks the Download Manager whether it knows how to download thisfile. If the Download Manager
says yes, the Desktop Printing software calls the Download Manager to download thefile. If the
Download Manager cannot handle the file, Desktop Printing opens the application with a print event as it
did before the Download Manager existed and the user can print the document from the application.

Note:
The Download Manager is not restricted to use by the Desktop Printing software and can be used by
other clients.

The design of the Download Manager is intended to be modular, so that it can download new data types
without being changed itself. It does this by using converter module plug-ins, referred to here as
“low-level converters.” These components are the functional units which convert a given data typeinto
PostScript language code appropriate for sending to a PostScript printer. These low-level converters are
shared libraries which conform to the interface required by the Download Manager.

The Download Manager currently provides several built-in converters together with the ability to drop
new low-level convertersinto aspecial folder so they are available for use with the Download Manager.
PrintingLib version 8.6 and later provide convertersto handle PostScript and EPSfiles, PICT datafiles,
and non-progressive JPEG images.

To provide an idea how this all ties together in Mac OS 8.5, Desktop Printing isaclient of the Download
Manager. The Download Manager uses the Printing Plug-ins Manager to manage its plug-ins, which
include low-level converters and custom hoses. Low-level converterstake afile of agiven type and
convert it directly to PostScript, without going through an application or adriver. The Download Manager
then sends the generated PostScript to the printer using a custom hose, which is specified by the Desktop
Printer.

Download
Manager
Clignt
e.q. DTP)

v

Download Manager h ‘Custom

'5/23/99 11:19 AM

Page 2 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM
Coyerter Coyerter Converter

1'hﬁﬂh““ﬂahitgb;ﬂﬁ##”;#’r

Low Level Convenrers

Back to top

Section 1

This section discusses the calls that a Download Manager client uses to download data through the
Download Manager. Most Download Manager clients can ignore Section 2, which discussesthe APIs
that the Download Manager itself usesto call the low-level converters. The section File Download
Exampleis an example of using the Download Manager to download afile. Thisis the approach that the
Desktop Printing software uses.

Download Manager APIls

The Download Manager APIs allow aclient to determine whether the Download Manager, together with
the current set of low-level converter modules available, can convert and download a given piece of data.
This datamay be the datafork of afile, or it may be supplied by the client via a stream mechanism which
is defined below. Once the client has determined if the Download Manager can handle the data, it calls
the Download Manager routine to invoke the processes of conversion and downloading.

Back to top
Downloading Files

This section of the document describes the high-level APIsthat a client of the Download Manager, such
as the Desktop Printing software, would call to download fi les. First, the client calls the
psCanDownloadFi le routine

psCanDownloadFile

OSStatus psCanDownloadFile(const FSSpec *fileSpecP,
Collection hints, Handle papaHandle,
Boolean *canDownloadP,
DownloaderInfo *downloaderInfoP, Str255 errReason);

psCanDownloadFi le asks the Download Manager whether it can download the file represented by
fileSpecP.

fileSpecP isapointer to an FSSpec corresponding to the file to be downl oaded.

hints isa Collection containing information about the destination output device and possibly user
requests for how the data should be converted and downloaded.

papaHandle isahandle to aPAPA for the target output destination.

canDownloadP isapointer to a Boolean that is set to true or false depending on whether the file can be
downloaded by one of the low-level converters available to the Download Manager.

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 3 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM

downloader InfoP isapointer to abownloader Info structure that the client usesto call the
psDownloadFi le routine of the Download Manager (described below). The Downloader Info structure
is defined as follows:

typedef struct DownloaderInfo{
unsigned char converterlID[256];
}Downloaderinfo;

The Download Manager routine psCanDown loadFi le writesinformation into the DownloaderInfo
structure, which it can later use to select which low-level converter to use for the download.

TheerrReason argument to psCanDownloadFi le iSapointer to aStr255 which may befilled in with a
text string message should an error occur during this call. Thisis supplied to facilitate reporting problems
back to clients of the Download Manager.

Note:
Even if an error occurs, errReason may contain a zero-length string.

Note that whether the Download Manager can handle agiven file may be dependent on the hints
collection and papaHandl e passed to psCanDownloadFi le. If the target device changes,

psCanDown loadFi Ie should be called again to ensure that indeed the Download Manager can download
the file to the new target device. It is possible that this will not be the case, or, the Downloader Info

returned will differ from that originally obtained. This comment is specifically directed to clients such as
the Desktop Printing software, where dragging files from one DTP queue to another must be considered.

Once a client determines that the document can be downloaded by the Download Manager, it can cal the
routine psGetbownloadDocumentlInfo to obtain information (such as number of pages) about the
document. The structure DownloadDocumentInfo (described shortly) isfilled in by this call with
information determined by the Download Manager and the low-level converter.

psGetDownloadDocumentinfo

OSStatus psGetDownloadDocumentInfo(const FSSpec *fileSpecP,
Collection hints,
const DownloaderiInfo *downloaderiInfoP,
DownloadDocumentinfo *downloadDoclnfoP,
Str255 errReason);

psGetDown loadDocumentInfo asks the Download Manager to gather document information about afile.
fileSpecP isapointer to an FSSpec corresponding to the file for which the information is requested.

hints isa Collection containing information about the destination output device and possibly user
requests for how the data should be converted and downloaded.

downloader InfoP isapointer to the data returned by psCanDownloadFi le when it can download the
file. This allows the Download Manager to find the converter which it determined can handle the
download during the psCanDownloadFi le call.

Note that the DownloaderInfo data returned by psCanDownloadFi le can be stored and reused at alater

time Thereisnothina in the Downlnaderinfa Sriictiire that can’t he 1ised acronss rehnnts It isnnssihle
file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 4 of 28

TN 1169: The Download ‘Manager 5/23/99 11:19 AM

R i I I

that the Iow Ievel converter referenced in the Downloader Info structure may not be available at alater
time due to user actions such as deleting the converter. Download Manager clients should be prepared for
the error errInval idDownloaderInfo if asaved DownloaderInfo structureisused. An additional
disadvantage of saving the Downloader Info structure isthat alow-level converter later added to the
system will not be used, even if it is better able to handle the data.

downloadDoc InfoP isapointer to aDownloadDocumentinfo structure. The DownloadDocumentinfo
isastructure to receive the data and is defined shortly.

errReason isapointer to astr255 which may befilled in with atext string message should an error

occur during thiscall. Thisis supplied to facilitate reporting problems back to clients of the Download
Manager.

Note:
Even if an error occurs, errReason may contain a zero-length string.

DownloadDocumentlnfo structure

TheDownloadDocumentInfo structure filled in by psGetDownloadDocumentInfo isdefined as.

typedef struct DownloadDocumentlnfo{

SInt32 version; // caller must set to 1

OSType type;

Boolean isManualFeed; //true if job is manual feed,else false.

SInt32 pages; // Unknown = -1
SInt32 copies; // Unknown = -1
Str255 creator; // unknown for most converters use '"\p"
Str255 title; // unknown for most converters use '"\p"

}DownloadDocumentinfo;

Theversion field should be set to the version of the structure that the caller of
psGetDown loadDocumentinfo supplies. Thisallows for the ability in the future to supply a pointer to a
larger structure that potentially provides additional data. The only version defined at thistimeisversion 1.

The type field of this structure isthe type of document being downloaded. The type of data may in some
cases not be known by the Macintosh Finder TYPE information, but instead might be only known to a
low-level converter that knows how to handle the data. The type returned here is available for aclient to
use as it wishes; for example, aclient could have a special icon for different document types. Thelist of
types which might be returned by this call is unlimited since new converter modules can be added via
Plug-Ins. The types which have been defined to date are:

'EPSF': Encapsulated PostScript File

'PSDC'": PostScript file, claimsto be DSC 3.0 conformant or greater
'PSUN': PostScript file, does not claim to be DSC 3.0 conformant or greater
'‘JFIF': JPEG datafile

'PICT": Macintosh PICT datafile

TIFF: TIFF datafile

TEXT": Plain text file to be treated as unformatted text

'PDF Adobe Systems’ PDF document format

The isManualFeed field allows the Download Manager to notify the caller that this download job
requests manual feed. This allows a client, such as the Desktop Printing software, to notify the user when
amanual feed iob beains. Note that it is possible that the orint iob reauests manual feed. but it isa

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 5 of 28

TN 1169: The Download Manager .~ . 5/23/99 11:19 AM
save-to-disk jdb. In this case, it would be inappropriate to alert the user that amanual feed job is starting
sinceadisk fileisbeing written and isnot a print job to alive printer. A routineisavailable in
FeatureUtilsLib caled ps1sJobPrintToDisk which Download Manager clients can cal if
isManualFeed is Set to true.

The pages field of the DownloadDocumentInfo isthe number of pagesin the document. For some types

of documents handled by the Download Manager it may be unknown and thisisindicated by use of the
value-1.

Thecopies field of the DownloadDocumentinfo isthe number of copies of the document which will be
printed. (Thisistypically 1, but there are some situations where it might be different. For many

low-level converters' handling of features, this reflects the default number of copies that the user has as
their saved defaults for the Print Dialog. If the user has a different saved default for the number of copies,
many converters respect that and report it here.) Currently thereis no straightforward way to know the
number of copies for most PostScript files and thisisindicated by the value -1 for the number of copies.

Thecreator field of the DownloadbocumentInfo isatext string indicating the name of the application
used to create the original file. Thisis unknown for many document types, but for PostScript files
containing the %%Creator comment, the application creating the document may be available. If the
document creator is not available, the creator field of the DownloadDocumentinfo isa zero-length string.

Thetitle field of the DownloadDocumentInfo iSatext string which indicates what the origina file
name was when creating thisfile. Thisis unknown for many document types, but for PostScript files
containing the %%Title comment, the name of the original document may be available. If the original
document title is not available, thetitle field of the DownloadDocumentinfo is azero-length string.

psDownloadFile

Once the Download Manager client has determined that the file can be handled by the Download Manager,
it callsthe psDownloadFi le routine to perform the download:

OSStatus psDownloadFile(const FSSpec *fileSpecP,
Collection hints, Handle papaHandle,
const DownloaderInfo *DownloaderinfoP,
StatusldleProcUPP idleProc, void *clientldleParams,
Str255 errReason);

psDownloadFi le causes the Download Manager to download the file represented by fi leSpecP using
the converter specified in downloader InfoP.

fileSpecP isapointer to an FSSpec corresponding to the file to be downloaded by psbownloadFile.

hints isaCollection containing information about the destination output device and possibly user
requests for how the data should be converted and downloaded.

papaHandle isahandle to aPAPA for the target output destination.

Downloader InfoP isa pointer to the data returned by psCanDownloadFi le when it can download the
file. This allows the Download Manager to find the converter which it determined can handle the
download during a prior psCanDownloadFile cal.

Note:

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 6 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM
TheDownloaderInfo datareturned by psCanDownloadFi le can be stored and reused at alater time.

There is nothing in the Downloader Info structure that can’t be used across reboots; however, it is
possible that the low-level converter referenced in the Downloader Info structure isnot available at a
later time due to user actions such as deleting the converter. Download Manager clients should be
prepared for errors when a saved Downloader Info structure is used.

idleProc isaUniversal Proc Pointer to aroutine supplied by the caller of psbownloadFile, i.e., the
Download Manager client. The Download Manager callsthis idleProc routine with status information

during the download. The idleProc routine is responsible for giving time to other applications, reporting
status information to the user and handling user interactions with the client as the download proceeds.

clientldleParams isapointer to data supplied by the Download Manager client. This pointer is
supplied as part of the data passed to each call of the idleProc during the download.

Note:
Theresource chain at thetimethe idleProc iscalled is not guaranteed. The Download Manager and its

low-level converters may open resource files and add them to the resource chain during their execution.
Clients whose idleProc routines regquire resources from their resource files should take care to ensure
that any additional open resource files are not in the way. The most straightforward way for a client to
dothisisto have afield in their clientldleParams structure which isthe current resource file at the

timethey cal psbownloadFile. In addition, an idleProc muse preserve the resource chain. If you
change the resource chain in your idleProc, you must save and restore the resource chain using

CurResFile and UseResFile.

TheerrReason argument to psDownloadFi le isapointer to astr255 which may befilled in with atext
string message should adownload fail. Thisis supplied to facilitate reporting problems back to clients of
the Download Manager.

Note:
Even if an error occurs, errReason may contain a zero-length string.

The error value errCantHandleThisDownloadData (defined in DownloadMgrLib.h) is a specia error
value that may be returned by the psbownloadFile cal if aconverter module determinesthat, even
though it previoudy reported that it could download afile, it has now determined that it can’t download
that file. This should be arare occurrence.

Back to top

Page 7 of 28

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1

TN 1169: The Download Manager
The Status-ldle Procedure

5/23/99 11:19 AM

The idleProc supplied to the call psbownloadFi le isaUniversal Proc Pointer containing a procedure
of typeStatuslidleProc. Thisis defined as follows:

typedef pascal OSStatus(*StatusldleProc)(Downloadldlelnfo *param);

This procedure is called with a pointer to a Downloadldlelnfo structure.

This structure
typedef struct Downloadldlelnfo{

is defined as follows:

void *clientldleParams; /*the client®s IdleParam data */
long currentPage; /* -1 means Unknown */
long totalPages; /* -1 means Unknown */
short percentageDownloaded; /* -1 means Unknown, otherwise
/* ranges from O to 100 */

PSSection section; /* one of the PSSection

values from PSSectioninfo.h */
PSSubsection subsection; /* one of the PSSubsection

values from PSSectionlnfo.

void *statusinfoP; /*
for this download
See PSSectionInfo.h for
details.
*/

}Downloadldlelnfo;

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1

h */
pointer to data appropriate

idle call.

Page 8 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM

ThestatusldleProc issupplied by the client and is called by the Download Manager during the
download. clientldleParanms isthe data pointer supplied by the client astheclientlidleParams
parameter to the psbownloadFile call.

ThecurrentPage and totalPages fields arefilled in if and when the Download Manager can determine
this data.

The percentageDownloaded field reflects the progress of the download. The Download Manager uses
the percentage of the input data read by the converter during the download as its way of reporting
progress.

Note:

If alow-level converter does not read the file data in a sequential fashion, the Download Manager will
set thepercentageDownloaded field to “Unknown” and no longer update the percentageDownloaded
field during that download. Since thisfield may be “Unknown,”” a status bar should properly change its
indicator to ““Unknown’” accordingly.

The section field indicates which phase of the download is currently in progress. Currently the possible
section values are kSectCoverPage, kSectAnon, kSectPeek, kSectQueryJob, and kSectJob.

The subsection field contains Document Structuring Conventions information or other section information
about the PostScript data being downloaded (see the heading Downloadldlelnfo Section, Subsection and
Statusinfo below).

The statusInfoP field contains a pointer to information corresponding to the current subsection. For
example, if the subsection is kSubStatusSection, theinformation in statusInfoP isapointer to a
Pascal string containing a status message from the printer and should be treated accordingly. If the
subsection iskSubBeginFont, the statusInfoP contains a pointer to abSChata structure describing the
font being downloaded. If the subsection iskSubPrinterErrorSection, the statusInfoP containsa

pointer to a Pascal string describing a printer error condition, such as out of paper, that requires user
intervention.

The client’s StatusidleProc isrequired to give time to other applications, handle user interactions with
the client and report status to the user. If StatusldleProc returns an error, the Download Manager
aborts the download.

Downloadldlel nfo Section, Subsection, and Statusl nfo

TheDownloadldlelInfo structure has fields which supply status information about the download to a
client’sStatusldleProc. Thefirst of thesefieldsis the section field which is of type PSSection. A
PSSection value provides overall information about what part of the download isin progress.
PSSection values consist of kSectAnon, kSectQueryJob, kSectCoverPage, kSectJob, and
kSectPeek. The definition of PSSection isin the “PSSectioninfo.h” header file. The Download
Manager is responsible for setting the section field of the Downloadldlelnfo structure and does this as
it processes the different sections of the download job.

ThePssection field corresponds to the various parts of adownload: the query, peeking at the datathat a
low-level converter can do as part of a download, the cover page (if thereis one) and the actua

download job itself. A converter doesn't start generating PostScript data until the kSectCoverPage or
kSectJob PSSection values are seen.

The subsection field is of type PSSubsection. A subsection value provides finer granularity in the

repnortina of proaress of the download iob. Tvnicallv the subsection values corresnond to Document
file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 9 of 28

TN 1169: The Download Manager =~~~ 5/23/99 11:19 AM
Structure Conventions (DSC) comments which have a well-defined meaning. A few subsection values
have been added to provide additional information. Each section can contain the same subsection values,
although most of the subsections apply only to the kSectJob, kSectCoverPage, and kSectPeek
sections.

The Download Manager generates status and error subsection values. Beyond that, each low-level
converter module is responsible for generating subsection values during the download. While any
subsection value from the list in “PSSectioninfo.h” is possible, Table 1 lists those most likely to be
generated by existing low-level converters. No one converter necessarily generates al of these
subsection values for each job.

TheDownloadldlelnfo structure contains astatus InfoP field which isdeclared as a (void*) field.
ThestatusInfoP field may be NULL in any subsection, meaning that the subsection value is being
reported without any additional information. If the datais non-NULL, it isa pointer to a data type that
depends on the subsection being reported in the DownloadldleInfo structure. The complete list of

subsections together with their info field structureislisted in "PSSectioninfo.h.” Table 1 below liststhe
ones most likely to be seen.

Note:
It isimportant for an idleProc to check that the statusinfoP field isnot NULL before attempting to
dereferenceit.

For example, the low-level PostScript converter module (which downloads PostScript and EPS input
data) generates the kSubPages subsection when the section is kSectJob or kSectPeek and it encounters
theuwPages DSC comment in the PostScript data. At that time, it reports the kSubPages subsection with
the statusInfoP field pointing to an SInt32 value that is the number of pages in the document.

Table 1

Subsection | DSC Comment | statusl nfo structure|
kSkSubPSAdobe || %! PS-Adobe-x.y || Fixed |
kSubPSA dobeEPS || %! PS-Adobe-x.y EPSF-a.b ||EPSFVersion |
kSubBoundingBox (| %6%6BoundingBox |[DSCBBox |
kSubDocData (| %6%DocumentData | DSCDocumentDatA |
kSubEndComments (| %6%EndComments [[none |
kSubLangLevel (| %6%6L anguagelevel [SInt32 |
kSubPages (| %6%Pages [SInt32 |
kSubContinue (| %66+ | DSCContinuationData |
kSubBeginProlog (| %6%6BeginProlog [[none |
kSubEndProlog (| %6%EndProlog [[none |
kSubBeginSetup || %6%6BeginSetup [[none |
kSubEndSetup || %6%EndSetup [[none |
kSubBeginPageSetup (| %6%6BeginPageSetup [SInt32 (page #) |
kSubEndPageSetup || %6%EndPageSetup [SInt32 |
kSubPage || %6%Page | DSCPage |
kSUbEOF (| %6%EOF [[none |
1.V PN A AR LA AP A LIRVZ V2 o VT | P T _ S | I o e VoY N 1

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 10 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM

KUV UL EeueurReES | 7070 0UCUI T IET ILIN EeueURESLUI LS | palbdda |
kSubDocSuppliedRes || %6%DocumentSuppliedResources | DSCData |
kSubDocFonts || %6%DocumentFonts || DSCData |
kSubDocNeededFonts || %6%DocumentNeededFonts || DSCData |
kSubDocSuppliedFonts || %%DocumentSuppliedFonts || DSCData |
kSubBeginFeature || %%6BeginFeature || DSCFeature |
kSubEndFeature || %%EndFeature [[none |
kSubl ncludeFeature || %%l ncludeFeature || DSCFeature |
kSubBeginFont || %%BeginFont || DSCData |
kSubEndFont || %%EndFont [[none |
kSubBeginBitmapFont || %RBI BeginBitmapFont || Str255 |
kSubEndBitmapFont || %RBI EndBitmapFont [[none |
kSubBeginTrueTypeFont (| %RBIBeginTrueTypeFont || Str255 |
kSubEndTrueTypeFont || %RBIENdTrueTypeFont [[none |
kSubBeginTrueTypeScaler || %RBIBeginFontRasterizer [[none |
kSubEndTrueTypeScaler || %RBIEndFontRasterizer [[none |
kSubl ncludeFont || %%l ncludeFont || DSCData |
kSubBeginResource || %%BeginResource || DSCData |
kSubEndResource (| %%EndResource [[none |
kSubl ncludeResource || %%l ncludeResource || DSCData |
kSubStatusSection || (see below) || Str255 |
kSubPrinterErrorSection || (see below) || Str255 |
kSubFatal PrinterErrorSection ||(see below) || Str255 |
kSubGiveUpTime || (see below) [[none |
kSubLogWarningData || (see below) || DSCLogData |
kSubL ogErrorData (see below) DSCLogData

A few of the subsections do not correspond to DSC comments but instead are used to convey information
to the client such as status data, printer error conditions, and error or warning messages from a converter.

The kSubStatusSection subsection contains the normal status during the download as reported from a
live printer or the save-to-disk process. Thisisnormally seen as a status narration line in the Download
Manager client’s downloading dialog.

ThekSubPrinterErrorSection subsection is used to report a printer error condition that should be
reported to the user. Usually aclient reports the error through a notification. This subsection is supplied
repeatedly until the printer error condition is cleared. These messages are strings such as “ out of paper”,
“cover open”, and “ paper jam”.

ThekSubFatalPrinterErrorSection subsection isused to report fatal printer errorsto the user. The
fatal printer error isusually a PostScript error.

ThekSubGiveUpTime subsection isused by alow-level converter when it has no data to write but wants
to give time to the Download Manager and its clients.

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.htmi-1 Page 11 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM

ThekSubLogWarningData subsection is used by alow-level converter to report warning conditionsto
the client. These are not fatal errors, but rather conditions which might lead to afailure in the download.
For example, the PostScript converter supplies awarning if the document being downloaded requires a
PostScript language level greater than the target output device supports. Thiswill very likely result in a
PostScript error during the download, but the warning itself does not result in an error. A savvy client
could warn the user, if it were so configured.

ThekSubLogErrorData subsection is used by alow-level converter to report an error condition to the
client. After reporting this error, the psbownloadFi le call will terminate with an error supplied by the
low-level converter. In this case, the errReason returned by psDownloadFi le isfilled in with atext
message supplied by the low-level converter.

Note:
Even if an error occurs, errReason may contain a zero-length string.

ThekSubLogWarningData and kSubLogErrorData subsections can supply apointer to aDSCLogData
structure as the statusInfoP structure. This structure is defined as:

typedef struct DSCLogData{
PSSubsection logSubsection;
void *info;

Str255 logMessage;
}DSCLogData;

The logSubsection field isaPSSubsection value and it is the subsection to which the warning or
error corresponds. It is kSubAnon if it doesn’t correspond to any other PSSubsection. Theinfofieldis
apointer to a structure which corresponds to the 1ogSubsection value. That is, if theinfo fieldina
DSCLogData structure iSnon-NULL, it points to whatever structure is appropriate for the PSSubsection
value of the logSubsection field, as described in Table 1 above. The logMessage field isaStr255
containing the actual text message.

For example, when the PostScript converter supplies awarning that the document being downloaded
requires a PostScript language level greater than the target output device supports, it supplies a

DSCLogData structure where the 1ogSubsection value iskSubLangLevel.The structure pointed to by
theinfo field isan sInt32 with the value of the document’ s language level requirement (which, in this

case, exceeds that of the target output device). It also supplies awarning text message in the logMessage
field.

Back to top
Utility Functions For A Client’s Use of the Download Manager
psCreateDM JobCollection

The Download Manager makes available aroutine called psCreatebMJobCol lection. This call

provides one-stop shopping for clients to prepare a collection for use with a given Download Manager
job. For example, the Desktop Printing software makes this call with information about the current driver,
the PAPA to use with that driver and a pointer to aFSSpec representing the file to download. If thereisno
error, psCreatebDMJobCol lection returns acollection to the caller which is appropriate for use with the
Download Manager routines psCanDownloadFi le and psDownloadFi le. The collection represents the
printer defaults and those collection items appropriate for this particular download.

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 12 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM

Depending on how aclient operates, it may be appropriate to call psCreatebDMJobCol lection once per
download job. It is necessary to call psCreatebDMJobCol lection only once to obtain a collection for
passing to psCanDownloadFi le and the same collection can be passed to psDownloadFile if the

collection is used immediately. If the collection needs to be stored, the target driver or printer changes, or
thereis any chance that saved user defaults have changed, a client should call

psCreateDMJobCol lection again to obtain a collection for passing to psDownloadFi le.

OSStatus psCreateDMJobCollection(const FSSpec *driverFSSpecP,
Handle papaHandle, const FSSpec *theFileP,
Collection *hintsP);

driverFSSpecP isapointer to aFSSpec corresponding to the driver for the target Desktop Printer (DTP).
It does not have to be the current system printer driver. Calling psCreatebMJobCol lection does not
change the current system printer driver.

papaHandle isthePAPA to use for the target output device. It does not have to be the current PAPA in the
driver corresponding to driverFSSpecP, nor does this routine change the current PAPA for the driver
pointed to by driverFSSpecP.

theFileP isapointer to an FSSpec for the file to be downl oaded.

If thereis no error, psCreateDMJobCol lection returns a Collection corresponding to the default for the
current printer, updated appropriately with hints for a Download Manager job in *hintsP. This collection

isonly intended to be passed to the Download Manager and must not be used to update the any saved
defaults for agiven printer. The caller isresponsible for disposing of the collection properly.

File Download Example

For a Download Manager client such as the Desktop Printing software, downloading afileisfairly
straightforward. The following example illustrates the basics:

#include "DownloadMgrLib.h"
#include "ClientSample.h"™ // included with Sample code
OSStatus DownloadFile(const FSSpec *driverFSSpecP,
const FSSpec *fsSpecToDownloadP,
Handle papaHandle)

{
/*

driverFSSpecP isapointer to the FSSpec for the PostScript driver for the target DTP. It does NOT
have to be the current system printer driver.

fsSpecToDownloadP isapointer to the FSSpec for the file to download.
papaHandle isahandle to the PAPA for the target output device. It does not have to be the current PAPA

contained in the driver corresponding to driverFSSpecP, nor will this routine change that driver’s
current PAPA.

- s

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 13 of 28

TN 1169: The Download Manager
~/

OSStatus err = noErr;

Str255 errReason;

Collection hints = NULL;

Boolean canDownload;

DownloaderInfo downloaderinfo;
DownloadDocumentInfo downloadDocumentinfo;

/* We”ll get our hints collection for use with this job.

*/

err = psCreateDMJobCollection(driverFSSpecP, papaHandle,
fsSpecToDownloadP, &hints);

// check to see if the Download Manager can download the file

if(lerr)err = psCanDownloadFile(fsSpecToDownloadP, hints,
papaHandle, &canDownload, &downloaderinfo,
errReason);

// get the information about the document
if(lerr && canDownload){
downloadDocumentInfo.version = 1;
// set the version
err = psGetDownloadDocumentInfo(fsSpecToDownloadP,
hints, &downloaderinfo, &downloadDocumentinfo,
errReason);

if(lerr){
// do whatever we need with the document information
// we gathered in psGetDownloadDocumentinfo
}
}else
// DM couldn’t download the file so we’ll set our
// our client’s private iDMCantDownloadData error code
// to tell the caller of this routine that the DM
// couldn’t handle the data
err = iDMCantDownloadData;

if(lerr){
// idleProc is a Universal Proc Ptr to our status
// idle routine downloadldle
StatusldleProcUPP idleProc = MakeProcPtr(downloadldle,
StatusldleProcUPP);
DialogPtr dialog = GetNewDialog(STATUSDIALOG_ID, NULL,
(WindowPtr)-1);
if(dialog){
ShowWindow(dialog);
DrawDialog(dialog);
s
else
err = ResError();

if(lerr){
ClientParams ourldleParams;

ourldleParams.statusDialog = dialog;

err = psDownloadFile(fsSpecToDownloadP,
hints, papaHandle, &downloaderinfo,
idleProc, &ourldleParams, errReason);
file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.htmi-1

5/23/99 11:19 AM

Page 14 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM

}
if(dialog)DisposeDialog(dialog);

if(hints)DisposeCollection(hints);

// if we return the error code iDMCantDownloadData then
// the caller will assume that the DM couldn’t handle

// the data and will take alternative action, i.e. launch
// the application with a print event

return err;

}

The code example assumes that we' ve defined aroutine downloadldle to handle the statusidle calls and
that the routine MakeProcPtr creates a universal procedure pointer of type StatusidleProcUPP to be
used by the Download Manager to call the client’s downloadable routine.

The code example uses stack allocation for the errReason, downloaderInfo, and
downloadDocumentInfo variables. Developers who are concerned about stack space usage may wish to
allocate these variables dynamically.

Back to top
Downloading Streams

Some Download Manager clients may have datawhichisnot in afile, but isinstead supplied in another
fashion. Other clients may want to direct the output to something other than a Desktop Printer and receive
the converted PostScript output data directly. In these cases, the client provides an input stream for
reading the data to convert and an output stream to which the Download Manager and the low-level
converters write.

psCanDownloadStream

Note that the details of the PSStream data type are discussed in detail in the section Streams Information
in Section 2.

OSStatus psCanDownloadStream(PSStream *stream, OSType type,
Collection hints, Boolean *doDownload,
DownloaderInfo *downloaderInfoP, Str255 errReason);

This function is similar to the psCanbownloadFi le routine except that, instead of supplying an FSSpec,
the caller provides a stream for reading the data and the type of the data. Here, the type of the datais the
same as the Finder Type would beif the data were stored in afile. When using this call, the client
guarantees that the stream is a stream type that can be positioned by users of the stream (see the section
Streams Information in Section 2 for more information about positioning astream). That is, the
Download Manager and the converter modulesit calls are able to rewind or otherwise reposition the
stream as necessary.

Note:
Even if an error occurs, errReason may contain a zero-length string.

psCanDownloadData

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.htmi-1 Page 15 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM

If the client has data that allows it to be read only once, the psCanDown loadData routine must be used
instead:

OSStatus psCanDownloadData(Strl1l5 firstBytes, 0SType type,
Collection hints, Boolean *doDownload,

DownloaderInfo *downloaderInfoP, Str255 errReason);

Thisfunction issimilar to the psCanDownloadStream routine except that the caller providesthe first 15
bytes of the datain the FirstBytes parameter. The Download Manager uses firstBytes and the type of
data to determine which, if any, converter module best handles the download. This routine is provided for
clients who cannot provide a stream which can be repositioned. Note that a number of low-level
converters may be completely excluded when using this type of stream.

Note:
Even if an error occurs, errReason may contain a zero-length string.

psDownloadStream

OSStatus psDownloadStream(PSStream *inputStream,
PSStream *outputStream, Collection hints,

const DownloaderInfo *downloaderinfoP,

Str255 errReason);

Thisfunction issimilar to psbownloadFi le except the client is responsible for providing both the data
input stream and the output stream for the converted data. If inputStream is of atype that can be
rewound, the Download Manager calls the psLowPeekConvert routine of the low-level converter used
for the download; otherwise, it does not. The Download Manager queries the output stream using
outputStream only if the hints collection contains the kHintDownloaderDoQueryTag hint with value
true; if it doesn’t, the creator of the stream is responsible for handling any queries and supplying their
results in the hints collection. If the Download Manager does not perform the queries, alow-level
converter does not have the opportunity to specify any queries.

A careful reader will notice that the psCanDownloadStream call does not have StatusldleProc or
clientldleParams arguments. Because the Download Manager creates input and output streams for
psDownloadFi le, it knows how and when to extract data from those streams for the call to theclient’s
idleProc. Since the client supplies these streams to the psbownloadStream cal, the client isresponsible

for ensuring that the stream callback routines allow the client to giveitself status information and other
applications processing time.

Note:
Even if an error occurs, errReason may contain a zero-length string.

Note:

The Download Manager and its low-level converters may change the current port and gDevice at the
time of their operation. Therefore the current grafPort and gDevice at the time the client’s stream
routines are called is not guaranteed. Clients which require a specific grafPort and gDevice are

responsible for setting that port in their stream routine' s equivaent of the idleProc code. Thisalso
annliec tn tha rlirrent recniirce rchain: nan recni irce filec mav ha nnened and added tn the reeniirece rhain
file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 16 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM

AU A LU LI WU T U L T VAU WD U U T T IOV 1 AU WD T Ty MO UG DU WU U LBAUDU LU LTS T AU WS T T

by the Download Manager and its low-level converters. In addition, an idleProc must preserve the
resource chain. If you change the resource chain in your idleProc, you must save and restore the
resource chain using CurResFi le and UseResFile.

Note:

The streams passed into the psCanDownloadStream, psCanDownloadData and psDownloadStream
functions have functions which are called by the Download Manager and the low-level converters. The
callers of these functions are doing so using CFM-calling conventions and assume that the code they are
calling is of the same architecture as the machine. This forces the following constraint: these functions
must be PPC native on PPC machines and 68k code on 68k machines. More unusual is the requirement
that these routines must obey CFM-calling conventions on 68k machines, which means they must be
contained in a CFM library on both 68k and PPC machines.

Back to top
Additional Utility Functions
psGetDownloadMgrLibVersion

The Download Manager provides an additional call for use by itsclients:

OSStatus psGetDownloadMgrLibVersion(CFMVersion *version);

The psGetDownloadMgrLibVersion routine alows clients and low-level converters to determine CFM
version datafor the Download Manager library. The CFMVersion structure is defined as follows:

typedef struct CFMVersion{
long definition;
long implementation;
long current;
}CFMVersion;

Readers familiar with the Code Fragment Manager will notice that this information mirrors the version
information built into a CFM library. Unfortunately, in some versions of the system software, the
GetDiskFragment routine has a bug that won't alow it to load alibrary unless the definition,
implementation, and current version numbers built into the library are all 0. To work around this bug, the
Download Manager must all have these version numbers set to zero. To make it possible for a client of the
Download Manager to determine the actual version information of the Download Manager, this call
returns the version information for the Download Manager.

The Download Manager API does not contain any information about how to determine the location of the
plug-ins folder that it uses for its plug-in converters. See Technote 1170: The Printing Plug-ins Manager
for more information about calls relating to the “ Printing Plug-ins” folder.

Back to top

Section 2

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.htmi-1 Page 17 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM

This section describes the public interface to the low-level converters that the Download Manager calls
to perform the data conversion portion of the download. Devel opers writing programs which only
invoke the Download Manager to download files to a desktop printer do not need to read this section to
understand how to call the Download Manager.

L ow-level Converter APIs

This section describes the APIs that the Download Manager uses to call the low-level convertersthat it
knows about. The Download Manager knows about the built-in converters (a set of shared libraries built
into PrintingLib) as well as converter modulesin the “Printing Plug-ins’ folder in the Extensions folder.
Files containing converter module plug-ins must contain aresource of type ‘PLGN’, ID -8192 with the
plug-in type ‘down’ and subtype ‘ ???? . Details of the PLGN resource are described in Technote 1170:
The Printing Plug-ins M anager.

Back to top
Streams I nfor mation

Low-level converters don’t know where the data they are converting comes from, nor do they know the
ultimate destination of their PostScript output data. Instead, they read the data from input procedures and
write data to output procedures. These procedures are packed into structures called streams.

PSStream structure

The low-level converters read and write data from stream structures of type PSStream. PSStream iS
defined as:

typedef struct PSStream{

PSStreamType type; // The type of Stream, used to pick

// from the union below.
void *reserved; // For use by the stream implementation.
union{

PSReservedStreamTypel null;
PSReservedStreamType2 spool;
PSSerialStream ps;
PSRandomAccessStream file;
Ju;
}PSStream;

The PSStreamType is defined as:
typedef enum{
kReservedStreamTypel,
kReservedStreamType2,
kPSSerialStream, //For streams that can not be positioned.
kPSRandomAccessStream //For streams that can be positioned.
}PSStreamType;

The PSSerialStream and PSRandomAccessStream are defined as:
typedef struct{

PSOutProc write; // output proc

PSInProc read; // input proc

UInt32 reserved; // reserved

PSPosition pos; // structural info about where we are

// in the PostScript stream

ANCC A Al A nn -

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 18 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM

JFEOO€l 1AdldLI edil,

typedef struct{
PSSerialStream serialStream;
PSGetPosProc getPos;
PSSetPosProc setPos;
PSGetEOFProc getEOF;

}PSRandomAccessStream;

ThePSRandomAccessStream stream has the same callbacks and data as the PSSerial Stream, but it also
has functions to get the current stream position, set the current stream position and get the size of thefile.

The read and write procedures of the PSSerialStream and PSRandomAccessStream types are used to
read data from and write data to the stream. They are declared asfollows:

typedef 0SStatus (*PSInProc)(PSStream *psStream,
void *data, SInt32 *nBytes);

Theread field of the PSSerialStream structure contains afunction of type PSInProc which is used to
read data from the stream. The psStream parameter is a pointer to the stream being read. The data
parameter is a pointer to a client-supplied buffer into which the dataisread. The caler sets *nBytes to the
number of bytesto read into the data buffer. It is up to the caller to ensure that the data buffer it supplies
has enough room for *nBytes of data. After the function call, *nBytes contains the number of bytes
actually read.

typedef 0SStatus (*PSOutProc)(PSStream *psStream,
const void *data, SInt32 nBytes);

Thewrite field of the PSSerialStream structure contains afunction of type PSoutProc which is used
to write data to the stream. The psStream parameter is a pointer to the stream being written to. The data

parameter is a pointer to the datato be written to the stream. The nBytes parameter specifies the number
of bytesto be written.

ThePsInProc routine of the input stream is used by the low-level converter to read and examine the data
to be converted to determine if it can handle this data stream. During the psLowPeekConvert and
psLowDoConvert calls (described below), the low-level converter callsthe PSoutProc routine of the
input stream to give time and status to the client. The PSPosi tion structure is used to pass Document
Structuring Conventions data and status information back to the client idleProc.

When actually converting data, alow-level converter is passed an output stream of type
kPSSerialStrean for it to write the converted data. The converter uses the PSoutProc of the output
stream to write its converted data to the output device (or file). It reads data returned from the output
device back channd viathe PSInProc of theoutput stream. It writes the data read from the back
channel to the PSOutProc of the input stream, allowing the Download Manager to report any status
information coming from the back channel.

Note that some output streams have no PSInProc routine (such as a print to file stream). The PSInProc
routine in an output stream should be tested for NULL before calling the procedure.

Back to top

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 19 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM
Additional functions for random-access str eams

Streams of type kPSRandomAccessStream have additional procedures available:

ThePsGetPosProc procedure determines the current position of the mark in the stream corresponding to
the file (or file-like stream). This position is based on the last data read from the stream, not the
underlying file since the data may be buffered. The prototype for thisfunction is:

typedef 0SStatus (*PSGetPosProc)(PSStream *psStream,
SInt32 *currentPos);

The psStream parameter points to the stream whose position you want to obtain; the value of
*currentPos returned is the current stream position.

The position value is zero-based; that is, the value of *currentpPos iSO if the stream position mark is
positioned at the beginning of the stream.

ThePssetPosProc procedure sets the position of the stream mark. The next dataread from the streamis
the first byte after the stream mark.

typedef OSStatus (*PSSetPosProc)(PSStream *psStream,
SInt32 positionMode, SInt32 posOffset);

For the PSSetPosProc call, thepositionMode isthe positioning mode and posOffset isthe positioning
offset. The positionMode parameter indicates how to position the mark; it must contain one of the
following values:

enum{

fsFromStart = 1, //set mark relative to beginning of stream
TsFromLEOF 2, [//set mark relative to logical end-of-stream
fsFromMark = 3 //set mark relative to current mark

};

ThepositionMode parameter works like the Macintosh file system call SetFPos. These supported values
of the positionMode constants are defined in the Macintosh header file “Files.h.” These constants let you
position the mark relative to either the beginning of the file, the logical end-of-file, or the current mark.

Y ou must also passin posOffset, abyte offset (either positive or negative) from the specified point. If
you specify fsFromLEOF, the value in posOffset must be less than or equal to 0.

Note:

If alow-level converter uses the PSSetPosProc to reposition the stream to a new position before that of
the previous stream position during the call psLowbDoConvert, the Download Manager cannot determine
the percentage progress of the download and it will report that the percentage progress is unknown for
the remaining duration of the download.

ThePSGetEOFProc procedure is used to determine the size of the stream. Not all streams which can be
positioned have a procedure which can determine the size. When using a stream of type
kPSRandomAccessStrean, it isimportant for the user of a stream to verify that the PSGetEOFProc

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 20 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM
procedure pointer isnot NULL before calling it.

typedef 0SStatus (*PSGetEOFProc)(PSStream *psStream,
SInt32 *streamSize);

Note:

low-level converters should be prepared to handle input streams that do not allow random access, i.e.,
are not of type kPSRandomAccessStrean. |f agiven converter cannot handle such a stream, it should
properly advertiseitself as unable to download such a stream. See the discussion for

psLowCanConvert and psLowGetConverter Information below.

One additional comment about the streams used by the Download Manager and the low-level convertersis
that they each call stream routines as native code, without using Cal IUniversalProc. In addition to
requiring the stream functions to be native code, this also means that these functions must obey
CFM-calling conventions, even on 68k machines.

Back to top

L ow-level Converting Routines

When aclient such as the Desktop Printing software calls the Download Manager routine
psCanDownloadFi le, the Download Manager uses the first 15 bytes of the file and its 0SType to see
which low-level converters can potentially handle the download. The Download Manager then calsthe
psLowCanConvert routine for each of those converters. This gives each of those converters an
opportunity to examine the input data and determine if the converter can handleiit.

OSStatus psLowCanConvert(PSStream *inputStreamP,
Collection hints, LowConverterInfo *datalnfoP,
Fixed *priority);

The*inputStreamP parameter isapointer to astream of PSStreamType, kPSRandomAccessStream, Of
kPSSerialStream. The low-leve converter callsthe PSInProc of inputStreamP to obtain the data.

hints isacollection passed to the low-level converter for use during its attempt to determineif it can
download thefile. It may contain information about the “job” being downloaded that is useful for the
low-level converter. The low-level converter should not add or change any hints in the hints collection
during the psLowCanConvert cal since other low-level converters might be affected by such changes.

datalnfoP isapointer to aLowConverterInfo structure. It isused by the low-level converter to help
determine if the data/fileis atype that it can handle,

typedef struct LowConverterInfo{
Ulnt32 version;

OSType type;
}LowConverterinfo;

The version field of the LowConverterInfo structureis 1 for the first version of the Download
Manager. The typefield isthe 0SType of the data supplied to the low-level converter.

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 21 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM

*priority isafixed number filled in by the psLowCanConvert call. Vaues greater than zero indicate
that the converter can handle the stream. The larger the number, the more suitable the converter isfor the
data. Currently avalue of 10 (0x000A0000 Fixed) indicatesthe converter isthe best converter possible
for the given data. Since the Download Manager simply looks for the ' best” result, a new converter
could advertiseitself as having alarger value to become the favored converter for agiven type of data.
(Remember that Nigel’samplifier can be set to 11.)

Note:

The low-level convertersin the “Printing Plug-ins’ folder with a given priority are chosen over a
converter that is built into PrintingLib which claims the same priority. Thisalows an external converter
in the Printing Plug-in’ sfolder to override a built-in converter.

Note:

It is unfortunate that for some downloads we don’t always know about the output device when
psCanDownloadFile iscalled. For example a JPEG converter could always download non-progressive
JPEG datato aLevel 2 printer, even if QuickTimeisn't available on the host. Since we might not know
the PostScript level of the output device, we don’t know if we need QuickTime. If the client does know
the printer isaLevel 2 printer, specifying that would let the low-level converter know it doesn’'t need
QuickTime. The best we can do with thisdesign isfor the client to supply in the hints collection the best
information it has about the output device and let the low-level converter decide what it can do based on
that information plus the input stream data.

Once the Download Manager establishes the best converter for the job (i.e., the one returning the highest
priority), the psCanDownloadFi le routine returns and if the file is downloadabl e, the Download Manager
client callsthe Download Manager routine psbownloadFi e to download the file.

Note:
low-level converters should be prepared to handle input streams that do not allow random access, i.e.,
are not of type kPSRandomAccessStrean. If agiven converter cannot handle such a stream, it should

return a priority of O if psLowCanConvert is called with adifferent stream type.

Back to top
Getting Information For A Client

When a Download Manager client calls the Download Manager routine psGetDownloadDocument I nfo,
the Download Manager asks the low-level converter to obtain the document information by calling the
low-level converter’s psLowGetStreamlnfo routine.

OSStatus psLowGetStreamlnfo(PSStream *inputStreamP,
Collection hints, DownloadDocumentinfo *downloadDoclInfoP);

*inputStreamP represents the stream of data to gather information from. The low-level converter calls
thePSInProc of inputStreampP to obtain the data.

hints isacollection passed into the low-level converter for its use during the information gathering. It
may contain information about the “job” being downloaded that is useful for the low-level converter
during this phase. During acall to psLowGetStreamlnfo, alow-level converter can add or change hints
in the hints collection. Collection tag values used by LaserWriter 8/PrintingLib are reserved but can be
used by alow-level converter for their normal, intended purpose.

Note:

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 22 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM
If aconverter wantsto have private hints, it should use the collection tag ‘ APPL’ with a collection ID
valueidentical to its assigned application creator. This ensuresthat private hints will not collide with
other software’s hints.

The updated hints collection returned from psLowGetStreamlnfo may or may not be passed by the
Download Manager and its clients to the other low-level converter calls psLowPeekConvert,
psLowAddConverterQueries, and psLowDoConvert (see the description of
psGetDownloadDocumentinfo in Section 1). A low-level converter should not require any datait addsto
the hints collection in the psLowGetStreamInfo routine being available during any other low-level
converter call.

*downloadDoc InfoP isapointer to a DownloadDocumentInfo structure (described above in Section 1)
to befilled in by the low-level converter. This structure isinitialized by the Download Manager to
correspond to unknown values for each field. If the low-level converter does not know the information
corresponding to agiven field, it should not fill in that field.

Back to top
Peeking at the Data

When a Download Manager client calls the Download Manager routines psDownloadFi le or
psDownloadStream, the Download Manager determinesif it can allow the low-level converter the
opportunity to peek at the data before doing the conversion. If the stream is of atype that can be
repositioned (i.e., type kPSRandomAccessStream), the Download Manager callsthe
psLowPeekConvert routine of the low-level converter. With a stream that cannot be repositioned, the act
of peeking would prevent the stream from being converted.

Note:
If the client adds the hint kHintDownloaderPeekTag with avalue of false, the Download Manager will
not call psLowPeekConvert regardless of whether the stream supports peeking.

OSStatus psLowPeekConvert(PSStream *inputStreamP,
Collection hints);

Thisroutineis called by the Download Manager to alow the low-level converter an opportunity to look
at the data to be downloaded and thereby collect useful information. Such information might be collected
to provide information back to the Download Manager for reporting to the Download Manager client
(such asfonts used in a document, etc). Other information might be collected by the low-level converter
for passing back to itself when it islater asked to “convert” and download the document with the
psLowDoConvert cal (described in the section Doing the Conversion below). For example, a PostScript

converter might read DSC comments to determine what fonts the document requires as part of the
download.

*inputStreamP represents the stream of datato peek at. The low-level converter callsthe PSInProc of
inputStreampP to obtain the data.

hints isacollection passed into the low-level converter for its use during peeking. It may contain
information about the “job” being downloaded that is useful for the low-level converter during the peek
phase. During acall to psLowPeekConvert, alow-level converter can add or change hintsin the hints

collection. Collection tag values used by LaserWriter 8/PrintingLib are reserved but can be used by a
low-level converter for their normal. intended purpose.
file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 23 of 28

TN 1169: The Download Manager 5723799 11:19 AM

Note:

If aconverter wants to have private hints, it should use the collection tag ‘ APPL’ with acollection ID
value identical to their assigned application creator. This ensures that private hints will not collide with
other software’s hints.

The updated hints collection returned from psLowPeekConvert is passed by the Download Manager to
the low-level converter calls psLowAddConverterQueries and psLowDoConvert (described in the

sections Queries and Doing the Conversion respectively). By adding private hints to the collection during
the peek phase, alow-level converter can passitsdlf thisinformation when the Download Manager calls

the psLowAddConverterQueries and psLowDoConvert routines.
Examples of data put into the hints during the peek phase by alow-level converter might be:

e Font requirement data based on %%DocumentNeededResources commentsin a PSfile

e DSCinformation such as*“user”, “pages’, “creator”, etc.

e Information about the procedure sets required, such as those required by a PICT converter

e Bounding Box information for handling EPS data

While alow-level converter should always be prepared to handle the fact that a peek pass may not be
made, it may still find it useful to peek at the datawhen it is given the chance to do so. This means that a
low-level converter should be prepared to operate without data it would normally collect during a possible

psLowPeekConvert call.

Note:
While alow-level converter isrequired to implement apsLowPeekConvert routine, the implemented
routine can simply return without doing any examination of the data stream.

Back to top
Queries

When aclient makes a call to psbownloadFi le, the Download Manager is responsible for querying the
printer and providing the results from the queriesto the low-level converter. Prior to any queries
performed by the Download Manager, the low-level converter gets a chance to add its queriesto the set of
gueries which the Download Manager will make. A low-level converter can add any or all of the queries
currently available through PSutiIsLib.The low-level converter does not do the query itself, but instead
the Download Manager calls the routine psLowAddConverterQueries supplied by alow-level converter
to determine the queries the low-level converter needs.

OSStatus psLowAddConverterQueries(Collection hints,
Collection query);

Thisroutineis passed the hints collection for the current job. If the low-level converter routine
psLowPeekConvert was called, the hints collection as returned from that call is passed to
psLowAddConverterQueries. The psLowAddConverterQueries routine is aso passed a query
collection so that the low-level converter can add query hints for use by the Download Manager. The
low-level converter can use the hints collection to decide whether to add any queriesto the query
collection. When the psLowAddConverterQueries routine returns, the Download Manager uses the data
in the query collection to query the target output device. The Download Manager copiesthe results of the
queriesinto the hints collection that is used for the call to psLowDoConvert (see the section Doing the
Conversion below).

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 24 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM

Basic Queries

Most queriesfall into the category of basic queries. Examples of these queries are the PostScript language
level, PostScript version information, color or black and white device knowledge, and so forth. Such
gueries are generated by adding the appropriate hints to the query collection, with default values chosen
by the converter for its own conservative handling approach. For example, to cause the Download
Manager to query for the PostScript language level, the following codeis used:

kHintLanguageLevelVar langlevel = UnknownLevel;
err = AddCollectionltem(queryCollection, kHintLanguagelLevelTag,
kHintLanguagelLevelld, sizeof(langlevel), &langlevel);

Note here that the default value used is UnknownLevel so that, if the query is not done (see the section
Using Query Resultsbelow), getting this collection item later reflects this defauilt.

Font Queries

The Download Manager can query for aspecific list of fonts or obtain the entire list of fontsavailablein
the target output device. Both of these font queries are specified with the hint kHintIncludeFontsTag
with the ID value kHintIncludeFontsId. The data contained in this hint determines the type of query.
The datais aPSFontHandl ing structure, defined as:

typedef struct {
long tag;
unsigned char name[1]; //packed array of names,
//length O indicates end of list
}PSFontHandling;

and the following constants are defined:

enum{
kIncludeNoFontsOtherThan,

kIncludeAl IFontsBut

};

If the tag field of the PSFontHandling structure iskincludeAl IFontsBut, the query isfor the complete
list of fonts (the equivalent of the *?FontList query from the PPD file). For this flavor of the font query,
there should be one name specified whose length is zero. Upon return of the query, the name field will be
apacked array of Pascal strings corresponding to the fonts built into the output device. Thislist of names
will be terminated with a Pascal string whose length is zero.

If the tag field of the PSFontHand l ing Structure iskIncludeNoFontsOtherThan, the query isfor a
specified list of fonts (the equivalent of the *?FontQuery query from the PPD file). For thisflavor of the
font query, thelist of fontsto query for should be in the name field of the structure. Thelist is a packed
array of Pascal strings and isterminated with a Pascal string with a zero-length byte. After the query, the
name field is a packed array of Pascal strings corresponding to the fonts from the query list which were
not available, i.e., the fonts available in the output device are removed from the list. Again, thislist of
namesis terminated with a Pascal string with a zero-length byte.

Note:

It isauite possible that alow-level converter miaht reauest a auerv with ataa of
file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 25 of 28

TN 1169: The Download Manager - S 5/23/99 11:19 AM
kiIncludeAl IFontsBut and the query result may contain a query with atag of
kilncludeNoFontsOtherThan Or vice versa.

Communication Channel Queries

A second category of specia queriesisthat for the communication channel characteristics. Most low-level
converterswill generate different output data if the communication pathway to the target output device
supports binary data. There are two hints used to query for whether the output device supports binary
data and both should be consulted.

Thefirst isthe hint with tag value kHintEighthBitTag and ID value kHintEighthBitld. If the hint
value istrue, the output stream supports the data range 0x80-0xFF inclusive. If the valueisfalse, the
PostScript output stream generated by the low-level converter should not contain these byte values.

The second is the hint with the tag value kHintTransparentChannel Tag and ID value
kHintTransparentChannel Id. If the hint value is true, the output stream supports the data range

0x00-0x1F inclusive. If the value is false, the PostScript output stream generated by the low-level
converter should not contain these byte values.

Normally alow-level converter will add both of these hints to the query collection with default values of
false to specify that the Download Manager supply the appropriate query for the channel characteristics.
The value for these hints after the query determines the channel characteristics.

Using Query Results

A low-level converter receivesits query resultsin the hints collection supplied to the call
psLowDoConvert (see the section Doing the Conversion below).

A low-level converter should be prepared to operate without results from a query. Query results can be
unavailablein at least two ways. If the Download Manager isinvoked using the routine

psDownloadStream, the Download Manager only calls psLowAddConverterQueries and generates
queriesif the hints collection contains the kHintDownloaderDoQueryTag hint with value true. If the
Download Manager client handles queries, it would set the kHintDownloaderDoQueryTag hint to false.

Another case where queries may not be completed is when the download isto afile without a printer
involved or with any communication channel that does not support a backchannel, such asLPR. In that
case, some of the queries may be satisfied by PPD data, but others return a default value.

Back to top
Doing the Conversion

After the query phase, the Download Manager calls the psLowDoConvert routine of the low-level
converter. Thisroutine is defined as follows:

OSStatus psLowDoConvert(PSStream *inputStreamP,
PSStream *outputStreamP, Collection hints);

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 26 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM
It isthe responsibility of the low-level converter to read the data supplied in the stream pointed to by
inputStreamp, “convert” it into appropriate PostScript language output and write that output to the
stream pointed to by outputStreampP.

*inputStreamP represents the stream of datato “convert” into PostScript output. The low-level
converter callsthe PSInProc of inputStreamP to read the data from the stream to convert.

*outputStreamP represents the output stream. The “converted” PostScript output datais written to the
PSOutProc of outputStreamP. This may be a stream communicating with a PostScript printer viaPAP
or USB, a stream communicating using LPR, a stream to send data to a custom Desktop Printer for
further processing, or it may be a stream generating a PostScript output file. The kind of stream used for
output is determined by the Download Manager client and the Download Manager; the low-level
converter simply writes its PostScript output to this stream.

TheoutputStreamP stream may contain aread procedure of type PSInProc for returning error messages
or other data from a PostScript output device. The low-level converter isresponsible for reading this
returned data during the download and writing it to the PSOutProc of inputStreamP. The PSOutProc of
inputStreamP isresponsible for forwarding this data to the client for further processing. This data may
be error messages, return results from the PostScript output device, or device status messages returned
from the printer back channel instead of the status channel.

PSStreams Of typekPSSerialStream and PSRandomAccessStream have afield of type PSPosition.
This structure is defined as:

typedef struct PSPosition{

PSSection section; //filled in by DownloadMgr not converters

PSSubsection subsection; //for DSC data obtained by converters

void *info; //for DSC data obtained or generated by
//converters

SInt32 id; // to be updated appropriately by the caller

// filling in any of the other fields
}PSPosition;

While processing the data to be converted during psLowPeekConvert and psLowDoConvert, a
low-level converter usesthis structure to pass information about the data being written to (or read from)
from the stream. The Download Manager uses this data to pass information to the client’s
StatusldleProc S0 the client can report the status and progress of the download. If the Download
Manager client used the Download Manager function psbownloadStream and therefore supplied the
input and output stream, that client is responsible for handling statusin its streams’ read and write
procedures.

The hints collection passed to psLowDoConvert contains information which may be useful for a
low-level converter. It might contain information about the output stream characteristics (8-bit,
ASCII/binary), data stored into this collection by the low-level converter during the peek phase, query
results or other data about the download job that is useful for alow-level converter.

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 27 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM
Since calls to psLowDoConvert may or may not be preceded by calls to psLowPeekConvert or
psLowAddConverterQueries, the psLowDoConvert routine should not rely on hint data collected by
psLowPeekConvert or query resultsto operate successfully. If data collected by acall to

psLowPeekConvert is present in the hints, psLowDoConvert may work more efficiently or offer better
resultsthan if it isnot present, but it should work regardless.

The following figure attemptsto illustrate the way the input and output streams are used by alow-level
converter during the call to psLowDoConvert:

|ty
Inpuideia |evwel
converfer

channs
F&SIn Proc COUE T lon PSOUPIoC Cﬂrﬁa
input output PS OUfpu 1 Dece

uriAng of pAntsr strearm

Tocllen 8 T Psoutree [| bechchamel b | T | FoRAeS _f{"
5w dePmo prinier
InpuisTeam ba ch.char el

Back to top

Converter Capabilities

At various times, the Download Manager determines what low-level converters are available and then
determines what file types each low-level converter can potentially handle. It doesthis by calling the

psGetConverterInformation routine of each low-level converter.

OSStatus psLowGetConverterInformation(
const ConverterDescription* *theConverterDescription);

ThepsGetConverterInformation routine returns information about the converter. The
ConverterDescription structureisloosely modeled after the DriverDescription structure used for
PCI Drivers. The ConverterDescription structure is defined as follows:

typedef struct ConverterDescription {
0OSType converterDescSignature;
ConverterDescVersion converterDescVersion;
ConverterType converterType;
ConverterService converterService;

}ConverterDescription;

Thefirst field in the ConverterDescription structureis asignature long word designating thisto be a
converter description structure.

enum {
kTheConverterDescriptionSignature = "dhwu*®
/*First long word of ConverterDescription*/

};

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 28 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM

The second long word of the ConverterDescription structure indicates the version of the structure
being used. Thisis used to distinguish different versions of converter descriptions which have the same
signature but different values. Thisis defined as follows:

typedef UInt32 ConverterDescVersion;

enum {

kInitialConverterDescriptor = 0

/* the initial version of ConverterDescription
supported by the Download Manager

*/

}:

The next field of the ConverterDescription istheconverterType. This structure contains name and
information string data as well as the converter module version information. It is defined as:

typedef struct ConverterType{
Str31 name;
Str255 info;
NumVersion version;
}ConverterType;

typedef struct NumVersion{
UInt8 majorRev; /*1st part of version number in BCD*/
UInt8 minorAndBugRev; /*2nd and 3rd part of version number share a byte*/
UInt8 stage; /*stage code: dev, alpha, beta, final*/
UInt8 nonRelRev; /*rev level of nonreleased version*/
INumVersion;

Thefinal field inthe ConverterDescription structure isaConverterService structure which contains
information about what types of data the converter can potentially handle. Thisis defined as:

typedef struct ConverterService{
Ulnt32 nTypes;
ConverterTypelnfo typelnfo[l];

}ConverterService;

typedef struct ConverterTypelnfo{
OSType type;

Fixed priority;

Strl1l5 matchString;
}ConverterTypelnfo;

A given converter may be able to handle a number of different 0SType data and/or different data types.

ThenTypes fied isthe number of different ConverterTypelnfo structures contained in the
ConverterService.

Thetypefield of the ConverterTypelnfo structure isthe 0SType of data described by the
ConverterTypelnfo. If the converter can handle any type, it should include the type “****~ (i.e., the
wildcard type) with the appropriate matchString.

Note:
A given low-level converter may have more than one ConverterTypelnfo for agiven type. Thiswould
occur if there was more than one priority, matchString pair appropriate for a given data type.

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 29 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM
ThematchString field isaPascal string of at most 15 bytes (plus alength byte) corresponding to any
identification bytes the converter requires at the beginning of the data. For example, a PostScript
converter requires the identification data“%!” to be thefirst 2 bytes of data to be downloaded. If, for a
given converter, none of thefirst (up to 15) bytes are distinctive for the 0SType of the
ConverterTypelnfo, the length of the matchstring should be set to 0. Thisindicates to the Download
Manager that this 0SType does not have a magic identification string.

The Download Manager usesthe ConverterTypeInfo datato pare down the list of candidate low-level
converters which can be used to download the data. It does this by looking at the first 15 bytes of data
and uses the ConverterTypelnfo datato determine which low-level converters may support the data.
After paring down the list with thisinformation, it normally calls the psLowCanConvert routine of the
candidate low-level convertersto allow further examination of the data.

In some cases the psLowCanConvert routine of the candidate low-level converters cannot be called. This
is the case where the datais supplied from a stream which cannot be repositioned or randomly accessed.
In these cases, the Download Manager uses the priority field of the ConverterTypelnfo datato
determine whether the low-level converter can handle the data.

Thepriority fieldin aConverterTypelnfo structure is aFixed number which isthe priority estimate
of the converter for handling the type of data described by the type field and thematchString. This
priority is used by the Download Manager when only the matchString and type of the data are available
for determining whether a converter can handle the download. In al other cases, the Download Manager
callsthe psLowCanConvert function with a stream that the low-level converter reads to determine whether
it can handle the data. For this reason, the priority returned here should be the priority that the converter
can guarantee based only on the 0SType and thematchString data. If aconverter requires more than the
15 bytesmatchString to be certain it can handle the dataor amatchString of O is provided, the

priority should be 0x0 (i.e., can’t convert without looking at more data).

Note:
If the converter cannot handle a stream which cannot be randomly accessed, it should assign a priority of
0x0 for that 0SType in theConverterTypelInfo.

Asan example, hereisasample ConverterDescription structure for a hypothetical converter module
which “converts’ a PostScript input stream to a PostScript output stream:

ConverterDescription TheConverterDescription =

{

// signature information
kTheConverterDescriptionSignature, // signature always first
kInitialConverterDescriptor, // version

// type information

{
"\pPostScript Downloader.", // name
"\pThis converter module sends PostScript code to a"
"PostScript printer.", // info string
0x1,0x0,0x40,0x2, // Rev 1.0.0a2
},

// ConverterServices

3. //# of ConverterTvoelnfo structures
file:///Monster%20Boot/Apple/Week%200f%205%2F 1 7%2F99/DaveP%20tn1169%20new/tn1169.htmi-1 Page 30 of 28

TN 1169: The Download Manager o 5723799 11:19 AM

{
{
"TEXT", // fTile type
0x000A0000, // priority hint
"\p%!"* // match string
3.
{
"EPSF*, // fTile type
0x000A0000, // priority hint
"\p%!"* // match string
3.
{
"RP?7, // file type
0x000A0000, // priority hint
"\p%!"* // match string
}
}
}

};

Note that by reporting anon-zero priority hint for each type, this hypothetical converter saysthat it can
operate on a stream that cannot be randomly accessed.

When the Download Manager calls psGetConverter Information, it expectsto get back apointer to a
ConverterDescription. Thisdatais owned by the converter module. If the Download Manager needs
to keep any of thisdata, it must first copy that data before closing the converter module. The pointer
returned is declared const indicating that the caller of psGetConverterInformation must not change
the ConverterDescription dataitself since that datais owned by the converter module.

The converter module is responsible for disposing of any memory it alocates as part of generating the
ConverterDescription returned by psGetConverteriInformation.

Back to top

Utility Functions

OSStatus psLowGetConverterVersion(CFMVersion *version);

The psLowGetConverterVersion reports the CFM version information for alow-level converter. This
information may be used by the Download Manager (or other callers of the low-level converters) to
determine version and interface information about a given low-level converter. Though thereisno
planned usage for thistoday we have found that it is useful to have thisinformation for other shared
libraries used by LaserWriter 8 and PrintingL.ib.

Readers familiar with the Code Fragment Manager will notice that this information mirrors the version
information built into a CFM library. Unfortunately, in some versions of the system software, the
GetDiskFragment routine has a bug that won't allow it to load alibrary unless the definition,
implementation and current version numbers built into the library are al 0. To work around this bug a
low-level converter must all have these version numbers set to zero. To make it possible for aclient of a
low-level converter to determine the actual version information of that converter, this call returnsthe
version information for that low-level converter.

Back to top

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 31 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM
Errors

errinvalidDownloaderInfo - Thiserror isreturned if the Download Manager is passed a
DownloaderInfo structure that is no longer valid. This can happen if aclient obtains aDownloader Info
structure from the Download Manager calls psCanDownloadFi le, psCanDownloadStream, Of
psCanDown loadData and later supplies this data to the Download Manager after the set of converter
modulesin the Printing Plug-ins Folder or PrintingLib itself has changed. This should be rare but could
happen if DownloaderInfo datais persistently stored over aperiod of time.

errCantMakeStreamForDTP - Thiserror occursif the client calls psbownloadFi le with atarget PAPA for
which PrintingLib cannot make a stream. This should only happen if the client faillsto call
psCanDownloadFi le with aPAPA for the device for which it later calls psDownloadFile.

errCantHandleThisDownloadData - Thiserror occursif at some point in downloading afile or stream,

the converter realizes that there is some problem with the data. This might be the Situation if the dataiis
corrupt, for example.

Note:
Other Mac OS errors can aso be returned.

Back to top

L ogging

The Download Manager can log errors and warnings that might be generated by alow-level converter.
ThePSSubsection values of kSubLogErrorData and kSubLogWarningData areto be used by a
low-level converter (and the Download Manager) to indicate fatal and non-fatal errors which occur
during the download process. The Download Manager is responsible for logging this data appropriately.
By default, thislogging is only turned on in the debug builds of PrintingLib. It can beturned onin a
release build by changing the value of the doDownloadMgrLogging bit in the printing preferences PRF2
resource in PrintingLib.

The amount of information logged is controlled by the LOGD resource. It is defined by default as:

resource kDownloadMgrLoggingType (kPreferencesliD,

#iT gNames

"Download Manager Logging Preferences',
#endif

purgeable) {

32000, // the maximum file size

4000, // the maximum amount to preserve

// when size is exceeded
"MPS ", // the log file creator
"TEXT®, // the log file type
"Download Manager Log"

// the log file name

};

When logging isturned on, the log file (default name “Download Manager Log”) is created in the user’s
Printing Prefs folder.

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 32 of 28

TN 1169: The Download Manager 5/23/99 11:19 AM

Back to top

Summary

The Download Manager allows Desktop Printing and other clients to quickly send documentsto a
PostScript printer. Applications which wish to bypass QuickDraw can call the Download Manager to
send data directly to the printer. Also, the types of documents handled by the Download Manager can be
extended by third parties creating new “low-level converters.” More information on writing low-level
converters will be provided in a separate Technote.

Back to top

Further References

Print Hints: The All-New LaserWriter Driver Version 8.4, develop 27
Technote 1112: Introducing the LaserWriter Driver Version 8.5.1
Technote 1143: Introducing the LaserWriter 8 Driver Version 8.6
Technote 1165: Introducing the LaserWriter 8 Driver Version 8.6.5
Technote 1170: The Printing Plug-ins Manager

Inside Macintosh, The Collection Manager

Change History

e Originally writtenin April 1998 by David Gelphman.
e Revised in May 1999 by David Gelphman and Dave Polaschek

Back to top

Downloadables

E Acrobat version of this Note (how many K?)

W

Back to top

Binhexed Routine Descriptor Lib (how many K?)

Acknowledgments

Thanks to Rich Blanchard, John Blanchard, Andreas Wickberg, Ingrid Kelly, Paul Danbold, and Howard
Miller.

To contact us, please use the Contact Us page.
Updated: 24-M ay-99

Technotes | Contents
Previous Technote | Next Technote

file:///Monster%20Boot/Apple/Week%200f%205%2F17%2F99/DaveP%20tn1169%20new/tn1169.html-1 Page 33 of 28

