
Friday, October 30, 1998 Technote 1095 - Apple's Object Support 
Library

Page: 1

file:///Monster500/Apple/
Week%20of%2010%3A26/

TECHNOTE 1095
Object Support Library Version History

By Andy Bachorski
Apple Developer Technical Support (DTS)

CONTENTS

In the Beginning of OSL

The World As We Know It

Known Bugs in the OSL

Download OSL 1.2 

This Technote is an attempt to clarify the version history of Apple's

Object Support Library (OSL). This library provides routines that
applications can use to support the Open Scripting Architecture (OSA)
object model.

OSL was originally released as a 68K static library. With the
introduction of Power Macintosh systems, OSL was repackaged as a
shared library. When the Code Fragment Manager 68K Runtime
Enabler (CFM-68K) was released, it became a fat library containing
both Power PC and CFM-68K versions of OSL.

This Technote lists all versions of OSL that are currently available,
along with a brief history and description of each one, and
recommendations as to which versions to use (and not use).

If you develop Macintosh applications that provide OSA object model
support, or need to use applications that do, you should read this
Technote.



Friday, October 30, 1998 Technote 1095 - Apple's Object Support 
Library

Page: 2

file:///Monster500/Apple/
Week%20of%2010%3A26/

In the Beginning of OSL
When the OSL was first released, it was a 68K static library (AEObjectSupportLib.o) that was
statically linked into applications that supported the OSA object model. This is still the case for classic
68K applications.

With the release of the Power Macintosh and the accompanying CFM shared library application model,
it was decide that a shared library version of the OSL (ObjectSupportLib), rather than an ".o" file,
should be provided for PowerPC-native applications. This would allow native applications to take
advantage of the shared library application model.

The OSL PowerPC shared library was released as version 1.0.2. It was included with the first Power
Macintosh system software (version 7.1.2) and the AppleScript SDK version 1.1. It is currently still
available on the Mac OS SDK CDs. This version of the OSL has a number of known bugs in its
handling of whose clauses. (These bugs are listed in the Known Bugs in the OSL section of this
Technote.)

This first shared library introduced the first OSL-shared library problem. The OSL was written in
Pascal, but there were no PowerPC Pascal compilers, so it contained a small PowerPC-native library
that loaded a 68K code resource containing the OSL.

But this loading was not done properly; the ObjectSupportLib's resource file often ended up in the
middle of an application's resource chain. This problem was worked around in system 7.5.2 by forcing
the Finder to load the OSL when it started up, thus forcing OSL's resource file to be located in the
system, where it did no harm. This work-around masked the problem for all system versions after
7.5.2, but the problem is still there for earlier system versions.

After the introduction of the Power Macintosh, work began to convert the OSL source code from Pascal
to C. This conversion was needed in order to provide a shared library containing both PowerPC and
CFM-68K code. The converted fat OSL was released as version 1.0.4, which was included on the
E.T.O. CD-ROM releases until recently.

There were a number of problems, however, with this version of the OSL, the worst of which was that
a Gestalt selector installed by version 1.0.2 was not being installed by version 1.0.4. This prevented
applications that tested for this Gestalt selector from detecting the presence of the OSL shared library.

Note: A Gestalt selector is not the best method for detecting the presence of the OSL, but this decision
was made early in the development of the code fragment model, and the liabilities of using Gestalt were
not yet well understood. The preferred method would have been to have developers compare a symbol
in the library to kUnresolvedCFragSymbolAddress. (For details of this process, see Technote 1083:
"Weak-Linking to a Code Fragment Manager-based Shared Library".)

The other major problem with this version of the OSL was a number of bugs in the code that handled
whose clause resolution (in addition to those previously mentioned). These bugs would cause an
application to return incorrect results and/or error messages when they were presented with valid
requests. Because of the missing Gestalt selector which prevented this version's use, the whose clause
resolution bugs were not discovered until much later.



Friday, October 30, 1998 Technote 1095 - Apple's Object Support 
Library

Page: 3

file:///Monster500/Apple/
Week%20of%2010%3A26/

No Code Changes, Just Version Changes

Somewhere between versions 1.0.2 and 1.0.4, a mistake was made in the build process for the
AppleScript 1.1 SDK, which led to version 1.0.2 of the OSL being released as version 1.1. There is no
difference in the actual code, only a new version number.

This meant we now had a 1.1 version which is really older than version 1.0.4. But installers complain
when you try to install v1.0.4 over 1.1 because they think you are replacing a newer version with an
older one. So when Apple shipped the Apple Telecom software version of OSL, 1.0.4 was changed to
1.1.1. This allowed the installer to replace the old version with the new. Again, no code changes, just a
version change. (All the old problems, of course, were still there.)

This is the point where many people started having problems; we now had a situation where a
(generally) well-behaved version 1.1 was being replaced with a broken version 1.1.1.

A Valiant Attempt To Fix Things

The AppleScript team, at this point, decided that enough was enough -- it was time to move forward and
fix things. They released a version that fixed the Gestalt selector problem and called it 1.1.1. But no one
had told them about the Apple Telecom OSL version 1.1.1, so they changed the version to 1.1.2. But,
again, someone else had already made a limited release of an OSL version 1.1.2.

This was unfortunate, but not a major problem -- they just incremented the version to 1.1.3. This
version, which contained the fixed Gestalt selector, got a limited developer release. Now the
applications which couldn't load it before due to the Gestalt selector bug could use the OSL. But when
these applications loaded the OSL, they revealed all sorts of interesting behaviors resulting from the
OSL's inability to resolve whose clauses. (Remember that no one had actually executed this code before
the Gestalt bug was fixed.)



Friday, October 30, 1998 Technote 1095 - Apple's Object Support 
Library

Page: 4

file:///Monster500/Apple/
Week%20of%2010%3A26/

Back to the Drawing Board

The AppleScript team started looking at the 1.0.4/1.1.1 code stream in more detail and, after
considering what a fix might mean to the stability of existing applications, it was decided that the risk of
further trouble was too great. The decision was made to return to the older 1.0.2/1.1 code stream for the
next release of the OSL.

As a result, the resource-loading source stream in version 1.0.2 was revised so it could be compiled as a
native PowerPC and CFM-68K library. The resource-loading bug was also addressed. This revised
library was tested, sent to a small group of developers for further testing, and then approved for final
build as version 1.1.4.

Along the way, though, there was a new wrinkle added to this story. In order to fit in with the Mac OS
reference release strategy, the file's creator type got changed, along with with its version number, which
changed to 1.1.6.

Note:
Version 1.1.4 appears on the Developer CD Series and the Mac OS SDK CD, while version 1.1.6
appears on certain E.T.O. CDs.

But we still have more to our story. It seems that the test suite used to validate the OSL tested for the
presence of the Gestalt selector, but did not determine if it was properly installed. Basically, native OSL
resource-loading code wasn't doing the right thing when it installed its Gestalt selector, which could
lead to crashes in certain situations.

In the meantime, Version 1.1.6 was included as part of the Harmony (Mac OS 7.6) f3 build that was
seeded to developers. When this latest OSL problem was discovered, the decision was made to take the
version 1.0.2 of OSL and reversion it (again) as version 1.1.8. This is the version of OSL that is
included in the GM version of Mac OS 7.6.

The biggest problem with this version is that it isn't fat, as it doesn't contains CFM-68K code (recall
that 1.0.2 didn't, either). This wasn't an immediate problem, since Mac OS 7.6 shipped without
support for CFM-68K. In fact, 7.6 explicitly checks for the presence of the current CFM-68K extension
and disables it to prevent its loading with this version of the system. If you can't run CFM-68K, you
don't need a fat OSL.

A New Hope

Thanks to the efforts of a number of engineers, the OSL got a more thorough rewrite which fixed both
the Gestalt selector and resource file bugs. The testing was completed and the problems were resolved.
This time, the OSL was released as version 1.2, which now generally works as expected. It still
contains the bugs related to whose clause resolution, but they are not fatal and are easy for developers to
work around (see Known Bugs in the OSL).



Friday, October 30, 1998 Technote 1095 - Apple's Object Support 
Library

Page: 5

file:///Monster500/Apple/
Week%20of%2010%3A26/

The World As We Know It
With all this said and done, you're probably scratching your head and wondering, "What version
should I be using, anyway?" At this time (October, 1998) the answer to that question is (drum roll,
please):

NOTE:
You should be using version 1.2 of the Object Support Library.

With the release of Mac OS 8.0, version 1.2 of the Object Support Library is now integrated in the
System file, and will be part of all future Mac OS System files. Any Object Support Library file found
in the Extensions folder will be ignored and not loaded unless its version is newer than 1.2.

For Mac OS versions prior to 8.0, if you don't have access to version 1.2 you should use 1.1.8 (or one
of its twins, versions 1.0.2 or 1.1). Keep in mind that these older versions are not fat
libraries, which means that they won't work with CFM-68K applications. If you need to run a
CFM-68K application, you must use version 1.2.

And, of course, you should install newer version of the OSL as they are released.

The History of OSL

Version Status

1.0.2 First PowerPC shared library, resource file bug

1.0.4 New code base, no Gestalt selector, other bugs

1.1 Really just 1.0.2 in disguise, new creator code

1.1.1 1.0.4's twin (warts and all)

1.1.2/1.1.3 Never publically released, so don't look for it

1.1.4 Doesn't work, but released on OS SDK CD

1.1.6 Version that shipped with Harmony f3

1.1.8 Version that shipped with Mac OS 7.6 (another 1.0.2 clone)

1.2 Shipped with CFM-68K 4.0; fixes all known crashing bugs. Included in Mac OS 8.0
system file.



Friday, October 30, 1998 Technote 1095 - Apple's Object Support 
Library

Page: 6

file:///Monster500/Apple/
Week%20of%2010%3A26/

Known Bugs in the OSL
There are still several known bugs in the OSL, but they all have workarounds.

Unlocked Handles Passed To Compare Functions

You can install an object comparison function for use when resolving whose clauses. When the OSL
calls your comparison function, it passes pointers to two AEDescs: one for the object being compared,
and one for the object or descriptor to compare to the first.

The problem here is that the memory blocks containing the descriptor records pointed to by the
parameters are located in relocatable blocks that are not locked and may move after the compare function
is called.

The workaround for this problem is to copy the descriptor records pointed to by the parameters to a
local variable as soon as you enter the object comparison routine.

There is a complication to this problem involving Classic 68K applications and the segment loader. If
the comparison function and the AEObjectSupportLib.o library are not in the same segment when you
build your application, it's possible for the descriptor records to move before they are copied if the
segment containing the OSL is not already loaded.

The workaround for this problem is to make sure that the comparison function and the
AEObjectSupportLib.o library are in the same segment when you build your application.

Memory Leak in Object Comparison Callback Function During whose
Clause Resolution

There is a memory leak when the OSL calls an application-supplied comparison callback function while
resolving whose clauses in object specifiers. When the OSL passes objects to the comparison callback
function, those objects will often be application-defined tokens that are created by object accessor
functions.

The problem is that the OSL calls AEDisposeDesc on these token objects rather than AEDisposeToken,
which causes a memory leak -- any data the application has attached to the token is not properly
disposed of.

This problem is further complicated by the unlocked handles bug described above. The workaround is
to combine the unlocked handles fix with disposing the tokens yourself. The example code below
shows the basic method used to work-around this problem, and also the unlocked handle problem
above:



Friday, October 30, 1998 Technote 1095 - Apple's Object Support 
Library

Page: 7

file:///Monster500/Apple/
Week%20of%2010%3A26/

Pascal version

function  MyCompareObjects( comparisonOperator:             DescType;
                            (CONST) VAR theObject:          AEDesc;
                            (CONST) VAR objOrDescToCompare: AEDesc;
                            VAR compareResult:              boolean): OSErr;
var
    theObjectCopy             : AEDesc;
    objOrDescToCompareCopy    : AEDesc;
         
begin
    { First make copies of the descriptors because the OSL has them pointing
      into a relocatable block, which can be moved by the code below. }
    theObjectCopy := theObject;
    objOrDescToCompareCopy := objOrDescToCompare;
         
    { Now set the original desciptors to the null descriptor since we have
      to dispose of the objects below because of this OSL bug! }
    SetToNullDesc( theObject );
    SetToNullDesc( objOrDescToCompare );
    
    { Code to do the comparison goes here }
    MyCompareObjects := DoTheComparison( comparisonOperator, theObjectCopy,
                                         objOrDescToCompareCopy, compareResult );
    
    { These descriptors are supposed to be const, but the OSL never calls
      our dispose token callback function, so we dispose of them here in
      case one of them is an application-defined token. }
    MyDisposeToken( theObjectCopy );
    MyDisposeToken( objOrDescToCompareCopy );
end;
         

C version

pascal OSErr MyCompareObjects( DescType        comparisonOperator,
                               const AEDesc    *theObject,
                               const AEDesc    *objOrDescToCompare,
                               Boolean         *compareResult )
{
    AEDesc  theObjectCopy;
    AEDesc  objOrDescToCompareCopy;
    OSErr   anErr;
         
    theObjectCopy = *theObject;
    objOrDescToCompareCopy = *objOrDescToCompare;
         
    SetToNullDesc( const_cast<AEDesc*>( theObject ) );
    SetToNullDesc( const_cast<AEDesc*>( objOrDescToCompare ) );
         
    anErr = DoTheComparison( comparisonOperator, &theObjectCopy,
                             o&bjOrDescToCompareCopy, &compareResult );
         
    MyDisposeToken( &theObjectCopy );
    MyDisposeToken( &objOrDescToCompareCopy );
}
         



Friday, October 30, 1998 Technote 1095 - Apple's Object Support 
Library

Page: 8

file:///Monster500/Apple/
Week%20of%2010%3A26/

Memory Leak in marking Callback Functions During whose Clause
Resolution

There is a memory leak when the OSL calls application-provided marking functions during the
processing of whose clauses in object specifiers.

In the process of resolving an object specifier, a descriptor record is created and passed to the mark
token callback function (as the containerToken parameter) and object-marking callback function (as
the theToken parameter). The problem is that the OSL never disposes of this descriptor, either through
AEDisposeToken or AEDisposeDesc.

The problem can be avoided by having your application resolve all whose clauses it receives on its own.
This way it can avoid calling AEResolve. This can be advantageous, especially for the most common
types of object specifiers. However, you can potentially receive "uncommon" object specifiers that are
better handled by the OSL using your callback functions; if you handled them yourself you'd end up
duplicating most of the OSL.

Fortunately, the workaround for this problem is relatively simple: dispose of the descriptor record at the
end of the object-marking function and set it to a null descriptor. This fix should not cause problems if
this bug is fixed in a future release of the OSL, since it's always safe to dispose of a null descriptor
record.

Function to set descriptor record to null descriptor

void SetToNullDesc( AEDesc *theObject )
{
        theObject->descriptorType = typeNull;
        theObject->dataHandle = nil;
}
         

Further Reference

Technote 1083: Weak-Linking to a Code Fragment Manager-based Shared Library 

Downloadables

 Acrobat version of this Note

Change History

Originally written in February 1998 as Technote 1095.
In November 1998, this Technote was updated to reflect updated history and version recomendations.
Bugs in C sample code were fixed. 

Acknowledgments

Special thanks to Chris Espinosa, Roger Pantos, Bryn Oh, and Otto Schlosser.



Friday, October 30, 1998 Technote 1095 - Apple's Object Support 
Library

Page: 9

file:///Monster500/Apple/
Week%20of%2010%3A26/

To contact us, please use the Contact Us page.
Updated: 2-November-98

Technotes
Previous Technote | Contents | Next Technote


