
Technote 1117
Open Transport STREAMS FAQ

By Quinn "The Eskimo!"
Apple Developer Technical Support

CONTENTS

Getting Started

STREAMS Modules and Drivers

Messages and Memory Allocation

Transport Provider Interface (TPI)

Data Link Provider Interface (DLPI)

Summary

This Technote contains collected lore on writing

STREAMS modules and drivers for use with Open
Transport.

It is structured as a series of question and answer pairs,
that answer Frequently Asked Questions about Open
Transport STREAMS. However, this isn't just a
collection of Q&As; a lot of the material is tutorial in
nature.

This Technote is directed at developers who are writing
OT kernel level plug-ins, such as protocol stacks,
networking device drivers, and filtering and encryption
software.

Getting Started

Q What is STREAMS?

A When written in upper case, STREAMS refers to a standard environment for loadable networking
modules. This environment was first introduced as part of AT&T UNIX [UNIX is a registered trademark
of UNIX Systems Laboratory, Inc., in the U.S. and other countries], but has since been ported to many
platforms.

Q So what is Open Transport?

A Open Transport is an implementation of STREAMS on the Mac OS. OT contains a number of
enhancements vis-a-vis a traditional STREAMS environment, but STREAMS lives at its core.

Q What is Mentat Portable Streams?

A Mentat Portable Streams (MPS) is a fast, portable implementation of STREAMS that is licensed
to system vendors by Mentat. While MPS is compliant with the AT&T UNIX STREAMS at the API
level, it contains many enhancements, both internal and external. Open Transport's STREAMS

2/11/99 3:09 PMTN 1117: Open Transport STREAMS FAQ

Page 1 of 19file:///Karl's%20Loaner/Apple/tn1117_3.gif%20Folder/tn1117.html

level, it contains many enhancements, both internal and external. Open Transport's STREAMS
environment is based on MPS.

Q I'm just getting started with STREAMS. What should I read?

A There are a number of useful references that explain the STREAMS architecture in general:

Programmer's Guide: STREAMS, UNIX System V Release 4, UNIX Press, ISBN
0-13-02-0660-1
STREAMS Modules and Drivers, UNIX System V Release 4.2, UNIX Press, ISBN
0-13-066879-6
UNIX System V Network Programming, Stephen Rago, Addison-Wesley, ISBN 0-20-156318-5

The "Open Transport Module Developer Note" (part of the OT Module SDK) describes the differences
between a standard UNIX STREAMS implementation and the one provided by Open Transport. In
general, the OT implementation is very close to UNIX, so if you're an experienced UNIX STREAMS
programmer you will be in familiar territory.

Open Transport Advanced Client Programming explains many of the low-level client programming
interfaces required to test and plumb your STREAMS plug-ins under Open Transport.

Another reference I find useful is UNIX man pages. If you have access to a UNIX machine that supports
STREAMS, you might find that the STREAMS "man" pages are installed. To test this out, try typing man
putmsg on the UNIX command line.

You should also keep on eye on the Open Transport web page, which contains news and information for
Open Transport developers. In addition, there are a number of non-Apple STREAMS-related sites on the
Internet, including:

the Mentat home page.
Sun Microsystems' STREAMS Programming Guide.
Dennis Ritchie's original STREAMS paper.
The Digital UNIX STREAMS Programmer's Guide.

Finally, you should join the OT mailing list, which is a mailing list dedicated to solving Open Transport
programming questions, at all levels of experience. See the OT web page for instructions on how to join.

Q What's the relationship between STREAMS and XTI?

A XTI is a standard API for accessing network services. STREAMS is a standard way of implementing
networking services. Traditionally machines running STREAMS support an XTI API, although it is
possible to support other types of APIs. For example, Open Transport supports a standard XTI interface,
an asynchronous XTI interface, and classic networking backward compatibility, all on top of STREAMS.
Also, UNIX STREAMS implementations commonly support a Berkeley Sockets API on top of
STREAMS.

Q Isn't STREAMS slow?

A A poorly implemented STREAMS framework can slow down STREAMS-based protocol stacks. This
is not true of MPS. Actual detailed performance measurements of MPS on multiple platforms have shown
MPS's overhead to be negligible, and have shown that Mentat's STREAMS-based TCP outperforms

2/11/99 3:09 PMTN 1117: Open Transport STREAMS FAQ

Page 2 of 19file:///Karl's%20Loaner/Apple/tn1117_3.gif%20Folder/tn1117.html

MPS's overhead to be negligible, and have shown that Mentat's STREAMS-based TCP outperforms
various BSD-based TCP implementations.

STREAMS Modules and Drivers

Q I'm reading the STREAMS Modules and Drivers book described above and I can't make head or tail
of it. Any suggestions?

A I must admit that it wasn't until my third attempt at reading that book that I made any sense out of it.
My secret? I found that if you print out a copy of the mistream.h header file and have it at hand while
you're reading, it helps a lot.

Q What is a "stream"?

A In the most general definition, a stream (in lower case) is a connection oriented sequence of bytes sent
between two processes. However, in the STREAMS environment, a stream normally refers to a
connection between a client process and a network provider. For example, when you open a URL in a web
browser, it creates a stream to the TCP module to transport connection information and data.

A stream carries the implication of instance. For example, there is only one Ethernet driver but it can
support many different streams. One stream might be used by AppleTalk, one by TCP, and yet another by
a network sniffing program.

Finally, a stream also implies a chain of modules, starting at the stream head and terminated at a driver. For
example, if you open an endpoint "adsp,ddp,enet0", the system creates a new stream that looks like the
one shown below.

Any data that you write to that endpoint starts at the stream head and proceeds first to the "adsp" module.
That module can pass the data downstream (in this case towards the "ddp") with or without modifying it,
or swallow the data completely, or reply to the data with a message sent upstream.

Q

2/11/99 3:09 PMTN 1117: Open Transport STREAMS FAQ

Page 3 of 19file:///Karl's%20Loaner/Apple/tn1117_3.gif%20Folder/tn1117.html

Q What is the stream head?

A The stream head is part of the STREAMS kernel. It is responsible for managing all interaction
between the client and the modules. It works in concert with client side libraries that implement the actual
networking APIs.

There are two keys areas of interaction: signals and memory copying.

Signals are a mechanism whereby the kernel can inform client code of certain events. Typically this is
used for events like the arrival of data, but it is possible for modules to generate signals directly by sending
the M_SIG message upstream. Obviously there is a connection between signals and OT's API-level
notifiers.

Memory copying is the other main duty of the stream head. When you call an API routine (such as OTSnd),
you're actually calling the Open Transport client-side libraries. These libraries take the contents of your call
(i.e. the data you want to send, or the address you want to connect to, etc.) and package it up into an
STREAMS message. The client then calls the kernel to pass this messages to the stream head, and the
stream head passes it down the stream. Once the data is packaged up into messages, no further data
copying is done as these messages are passed around inside the kernel.

Because all data is transmitted between client and kernel using messages, there is only one point of entry
between the client and the kernel. This means that STREAMS modules are not required to deal with client
address spaces. This central location where the kernel accesses client memory decreases the risk of a
protection violation on a protected memory system, and allows STREAMS modules to run in response to
an interrupt without requiring a context switch.

Of course, there are some complications. For example, some API routines (especially OTIoctl) pass client
addresses in message blocks. Modules can only gain access to the memory pointed to by these addresses
by sending special messages up to the stream head. Remember, it's the stream head that does all of the
interaction between client and kernel.

Q What's the difference between a module and a driver?

I asked this question when I was learning STREAMS and got the answer "A module can only be pushed,
and a driver can only be opened." This answer is fundamentally correct, but it didn't help a lot at the time.

The real answer is that there isn't a lot of difference between the two; modules and drivers have a very
similar structure. In most cases, STREAMS documentation says "module" when it mean "module or
driver".

The big difference between a module and a driver is that a driver is the base of a stream. Streams pass
through modules, but terminate at drivers. Thus modules must be pushed on top of an existing stream
(because they need someone downstream of them), whereas drivers are always opened directly.

The following picture shows multiple AppleTalk streams all based on top of one Ethernet driver.

2/11/99 3:09 PMTN 1117: Open Transport STREAMS FAQ

Page 4 of 19file:///Karl's%20Loaner/Apple/tn1117_3.gif%20Folder/tn1117.html

This is complicated by the existence of multiplexing drivers. Multiplexing drivers have both upper and
lower interfaces. The upper interface looks like a driver, that is, it can be opened multiple times for multiple
streams and appears to be the end of those streams. However you can also send a special ioctl call to the
driver (I_LINK) to connect streams to the lower interface. At the lower interface, the multiplexing driver
appears to be the stream head for those connected streams.

For example, you might implement the IP module as a multiplexing driver. IP has multiple upper streams
(i.e. client processes using IP) and multiple lower streams (i.e. hardware interfaces over which IP is
running) but there is no one-to-one correspondence between these streams. IP uses one algorithm (routing)
to determine the interface on which to forward outgoing packets. IP uses a second algorithm (protocol
types) to determine which upper stream should receive incoming IP packets.

The following picture shows three TCP streams connected to a IP multiplexing driver, which is in turn
connected to link layer ports, one run directly through an Ethernet driver, and the other through another
stream that connects a SLIP module to a serial port.

NOTE:
In Open Transport, IP is not structured as a multiplexing driver, primarily for efficiency reasons. The
above is just an example of how to think about multiplexing drivers. The next question explains how IP
is really done.

2/11/99 3:09 PMTN 1117: Open Transport STREAMS FAQ

Page 5 of 19file:///Karl's%20Loaner/Apple/tn1117_3.gif%20Folder/tn1117.html

Q I've noticed Open Transport has an "ip" driver and an "ipm" module. Why do some modules also
appear as drivers?

A This is an implementation decision on the part of the module writer. In some cases, it's convenient to
access a module as a module, and in other cases it's convenient to access it as a driver.

In this specific case, the MPS IP module behaves differently depending on whether it is opened as a
module or a driver. When OT is bringing up the TCP/IP networking stack, it first opens the "ip" driver.
IP recognizes that this first connection, known as the control stream, is special, and responds to it in a
special way. Later, when OT is bringing up interfaces under IP (e.g. an Ethernet card and a PPP link), it
first opens the link-layer driver and then pushes the "ipm" module on top of it. Each time OT does this,
the IP module recognizes this special case and prepares itself to handle this new interface. Finally, when a
client process actually wants to access IP services, OT opens the "ip" driver to create a new stream to it for
the client.

STREAMS gives you a lot of flexibility, and the designers of MPS IP chose to use it.

Q What is this q parameter that's passed into each of my routines?

A The q parameter (which points to a queue_t data structure) is the fundamental data structure within
STREAMS. Each time a stream is opened, STREAMS allocates a pair of queues (a queue pair) for each
module in the stream. It then hangs all the stream-specific information off the queue pair.

One queue is designated the write-side queue. Data that the client sends to the stream is handled on the
write-side queue. The other queue is the read-side queue. Data that the stream generates and sends to the
client is handled on the read-side queue.

Each queue has a put routine, which is called whenever a message is sent to the module. The put routine
has the choice of sending the message on to the next module (with or without modification), temporarily
queuing the message on the queue for processing later, replying to the message by queuing the reply on the
other queue in the queue pair, or freeing the message.

Each queue also has an optional service routine that is called when there is queued data to be
processed. The service routine is optional because the module's put routine may be written in such a way
that it never queues messages for later processing.

Because these routines are specific to a queue, modules tend to contain two routines of each type, one for
the read side and one for the write side. These routines are known as the read put routine, read
service routine, write put routine, and write service routine.

In addition, multiplexing drivers can have both upper and lower queue pairs, implying a total of eight
entry points.

When called, each of these routines is passed a q parameter. The read-side routines are always passed the
read queue and the write side routines are always passed the write queue. It's important to remember that
each queue denotes a specific connection to your module and that queues are always created in pairs. So
the q parameter passed to your module is really just a way of distinguishing stream instances.

Q I'm executing in a read-side routine (either a put or service routine) and I need access to the write-side
queue. How do I find it?

2/11/99 3:09 PMTN 1117: Open Transport STREAMS FAQ

Page 6 of 19file:///Karl's%20Loaner/Apple/tn1117_3.gif%20Folder/tn1117.html

A Queue structures are actually allocated in memory as pairs, butted up right next to each other, with the
read queue immediately preceding the write queue. Given that q is a pointer to the read queue, you can
derive the write queue using the C construct &q[1]. However an even better solution is to use the macros
RD, WR and OTHERQ defined in "mistream.h".

Q How do I store global data in my module?

The best way to store globals in your module is just to declare global variables. Because modules are
shared libraries, you don't need to do anything special to access these globals. Note that these globals are
shared across all instances of your module, i.e. all streams that run through your module.

NOTE:
There is one exception to the above statement. If you have two PCI (or PC Card 3.0) cards installed, OT
will create a separate instance of the CFM-based driver for each card. So the driver will have a copy of
it's global variables for each installed card. The driver distinguishes which card its driving by
RegEntryID, passed as a parameter to its InitStreamModule routine.

If you want to store globals on a per-stream basis, you have to do a little more. The following snippet
demonstrates the recommended technique.

// First declare a data structure that holds all of the
// data you need on a per-stream basis.

struct MyLocalData
{
 OSType magic; // 'ESK1' for debugging
 long currentState; // TS_UNBND etc.
 [...]
};
typedef struct MyLocalData MyLocalData, *MyLocalDataPtr;

// Then declare a global variable that acts as the head of
// the list of all open streams.

static char* gModuleList = nil;

// In your open routine, call mi_open_comm to create
// a copy of the global data for this new stream.

static int MyOpen(queue_t* rdq,
 dev_t* dev, int flag,
 int sflag, cred_t* creds)
{
 MyLocalDataPtr locals;

 [...]
 err = mi_open_comm(&gModuleList,
 sizeof(MyLocalData),
 rdq,
 dev, flag,
 sflag, creds);
 if (err == noErr) {

 // mi_open_comm has put a pointer to our per-stream

2/11/99 3:09 PMTN 1117: Open Transport STREAMS FAQ

Page 7 of 19file:///Karl's%20Loaner/Apple/tn1117_3.gif%20Folder/tn1117.html

 // mi_open_comm has put a pointer to our per-stream
 // data in the q_ptr field of both the read-side
 // and write-side queue.

 locals = (MyLocalDataPtr) rdq->q_ptr;
 locals->magic = 'ESK1';
 locals->currentState = TS_UNBND;
 [...]
 }
 [...]
}

// In your close routine, use mi_close_comm to destroy
// the per-stream globals. Note that, if you have
// any pointers in your data, you must make sure to
// dispose of those before calling mi_close_comm.
//
// As an alternative to mi_close_comm, you might want to
// use mi_detach and mi_close_detached.

static int MyClose(queue_t* rdq, int flags, cred_t* credP)
{
 [...]
 (void) mi_close_comm(&gModuleList, rdq);
 [...]
}

// If you find that you need to loop through all the
// streams open through your module, use the mi_next_ptr
// routine as shown below.

static void MyForEachStream([...])
{
 MyLocalDataPtr aStreamLocals;

 aStreamLocals = (MyLocalDataPtr) gModuleList;
 while (aStreamLocals != nil) {
 [...]
 aStreamLocals = (MyLocalDataPtr) mi_next_ptr((char *) aStreamLocals);
 }
}

The Open Transport Module Developer Note has a full description of the routines used in the above
snippet.

Q How do I synchronize access to my global data?

A MPS provides support for synchronizing access to global or per-stream data. When you install your
module, you must fill out the install_info structure. One of the fields in this structure is
install_sqlvl, which you set to control your module's reentrancy.

NOTE:
When reading this description, it's important to keep the following abbreviations in mind. In the context
of MPS, "SQ" stands for synchronization queue, which is the key data structure that MPS uses to
guard against reentrancy. Also, "SQLVL" stands for synchronization queue level, which is the
degree of mutual exclusion needed by a module.

2/11/99 3:09 PMTN 1117: Open Transport STREAMS FAQ

Page 8 of 19file:///Karl's%20Loaner/Apple/tn1117_3.gif%20Folder/tn1117.html

degree of mutual exclusion needed by a module.

The legal values for the sync queue level are:

SQLVL_QUEUE
Your module can be entered once per read or write queue. This means that you must guard your global
data from access by multiple threads running in you module, and you must guard your per-stream
data from access by threads running on the read and write sides of the stream simultaneously.

SQLVL_QUEUEPAIR
Your module can be entered once per queue pair. You must still guard your global data from access
by multiple threads running in your module, but your per-stream data is safe from simultaneous access
by the read and write sides.

SQLVL_SPLITMODULE
[This sync queue level is not yet supported in Open Transport, and is documented here for
completeness only.] Your module can be entered once from an upper queue and once from a lower
queue. With this sync queue level, the mps_become_writer function is relatively cheap, and this is the
recommended sync queue level for network and link-layer drivers.

SQLVL_MODULE
Your module can only be entered once, no matter which instance of the module is entered.

SQLVL_GLOBAL
Between all modules that use SQLVL_GLOBAL, only one will be entered at a time.

In the above list, sync queue levels are given from least exclusive (SQLVL_QUEUE) to most exclusive
(SQLVL_GLOBAL). In general, the least exclusive sync queue level also yields the best system performance,
while the most exclusive value leads to the worst system performance. However this is not guaranteed. If,
by setting your sync queue level to SQLVL_QUEUE, you are forced to make a significant number of calls to
mps_become_writer, you may find better performance with a more exclusive sync queue level.

NOTE:
If your module is using sync queue levels SQLVL_QUEUE, SQLVL_QUEUEPAIR, or SQLVL_SPLITMODULE,
you can use the mps_become_writer function to ensure that only one thread of execution is inside a
particular part of your module at any given time. See the Open Transport Module Developer Note for a
description of mps_become_writer.

So, what does this mean in practical terms? Before OT calls your module (either the put routine or the
service routine), it checks to see whether there is a thread of execution already running in your module. If
there is, it checks the sync queue level of the module to see whether calling your module would be valid at
this time. It uses these two factors to decide whether to call your module immediately, or queue the call for
some later task to execute.

The sync queue levels fall into two categories:

1. Queue-based sync queue levels (i.e. SQLVL_QUEUE and SQLVL_QUEUEPAIR) are centred around
the queue pairs associated with each stream that's opened to your module. If you use
SQLVL_QUEUE, your module can be reentered as long as the put or service routine for that queue
isn't already running. If you use SQLVL_QUEUEPAIR, your module can be reentered as long as a
put or service routine for that queue pair (i.e. the stream) isn't already running

2. Module-based sync queue levels (SQLVL_SPLITMODULE, SQLVL_MODULE and SQLVL_GLOBAL)
work on a module-by-module basis. For the moment, you can ignore SQLVL_SPLITMODULE. With
SQLVL_MODULE, your module cannot be reentered at all. With SQLVL_GLOBAL, your module is
mutually excluded against all other module that are marked as SQLVL_GLOBAL. [This can be useful
if you're trying to bring up a suite of modules that talk to each other.]

Of course, these mutual exclusion guarantees are for when STREAMS calls you, i.e. your open, close, put

2/11/99 3:09 PMTN 1117: Open Transport STREAMS FAQ

Page 9 of 19file:///Karl's%20Loaner/Apple/tn1117_3.gif%20Folder/tn1117.html

Of course, these mutual exclusion guarantees are for when STREAMS calls you, i.e. your open, close, put
and service routines. If you are called by other sources (such as a hardware interrupts), you have to take
additional measures to ensure data coherency. Of course, OT provides support for this too. See the Open
Transport Module Developer Note for a description of the routines you can call from your hardware
interrupt handler.

In general, I recommend that you first use SQLVL_MODULE in order to get your module working. Then,
once you understand the data coherence issues in the final code, analyze the code to see if you can use a
better sync queue level.

IMPORTANT:
If your are pushing your module into an existing protocol stack, you should be sure to check the sync
queue level of the other modules in the stack. If the existing modules have a very exclusive sync queue
level, there is nothing to gain by engineering your module to have a non-exclusive level. Conversely, if
the existing modules have a non-exclusive sync queue level, you could affect the performance of the
entire protocol stack by adopting a very exclusive level.

Q I'm confused by the qinit structures. I need to have two qinit structures, one for the read side and
one for the write side, but that implies two open and close routines. Two open routines seems like a recipe
for confusion. What the full story?

A For the open and close routines, STREAMS only looks at the read-side qinit structure.

Q How should I structure my STREAMS module?

STREAMS modules have two primary entry points, the put routine and the service routine. In general, you
should try to do all the work you can in your put routine. This is contradictory to most of the STREAMS
documentation, and is an important factor in making your modules fast.

Every time you use putq to put a message on your queue, STREAMS must schedule a task to run your
service routine in order to service that message. While OT's internal task scheduler is fast, it still takes
time.

The alternative is to process the message in your put routine and then immediately send the message on to
the next module (using putnext) or reply to the message (using qreply). This can make your put routine
complicated. If you find that your put routine is getting too complicated, simply break it up into
subroutines. The cost a subroutine call is much less than the cost of scheduling your service routine.

Of course you can still use putq in flow control conditions because, if you're flow controlled, you don't
really care about speed.

Q How does flow control work?

STREAMS flow control is quite hard to understand. The basic tenets of STREAMS flow control are:

Your module either takes part in flow control, or it doesn't. If it doesn't take part in flow control
(i.e. it's a simple filter module), you should let STREAMS know by having no service routine.
You can then ignore the other rules given below.
High priority messages are not subject to flow control. It's important that your module avoid
enqueuing them because of flow control because this can cause a deadlock situations (i.e. you
can't flush the messages out of a stream because the stream is flow controlled).

2/11/99 3:09 PMTN 1117: Open Transport STREAMS FAQ

Page 10 of 19file:///Karl's%20Loaner/Apple/tn1117_3.gif%20Folder/tn1117.html

Flow control is governed by two values in the queue, the high and low water marks. If the number
of bytes of messages stored on a queue is greater than the high water mark, the queue is flow
controlled. The queue stays flow controlled until the number of bytes of messages enqueued falls
below the low water mark.
Bytes go on to your queue when you call putq. This has the side effect of scheduling your service
routine. [You can also schedule your service routine directly using qenable.] Your service routine
only gets run once regardless of how many times you schedule it.
Bytes come off your queue when you call getq in your service routine. When you get a message
like this, you should call canputnext to see if it's possible to put the data on the next queue that
has a service procedure. If it is, call putnext to put it on the next queue. If it isn't, call putbq
("put back on queue") to return the message to your queue. Calling putbq puts the data back on
to your queue without rescheduling your service routine.
Because your service routine can only be scheduled once, it is critical that your service routine
finish either by calling putbq or by completely draining the queue (i.e. getq returns nil). A sample
service routine is shown below.

// A standard read service routine that follows the
// above guidelines.

static int MyReadService(queue_t* q)
{
 mblk_t *mp;

 while ((mp = getq(q)) != nil) {

 // Never putbq a high-priority message.

 if ((mp->b_datap->db_type < QPCTL) && !canputnext(q)) {
 putbq(q, mp);
 return (0);
 }

 // Handle the message then put it on the next queue

 [...]

 putnext(q, mp);
 }

 return (0);
}

When your queue is flow controlled, the previous module's read service routine will stop being
able to put messages on your queue (because its calls to canputnext will return false). This
causes that module to call putbq, which puts the data on their queue without scheduling their read
service routine. Eventually this causes the number of bytes in their queue to exceed their high
water mark, which causes them to be flow controlled as well. This process proceeds up the stream
until you get to the stream head or the driver.
When the stream head gets flow controlled, it stops accepting data from the client, and the client
blocks waiting for data to be sent.
When the driver gets flow controlled, it either

a) starts dropping packets (for unreliable services, such as Ethernet), or
b) it raises the link-layer flow control (for reliable services, such as serial).

When flow control is lifted (this happens when the number of bytes in the flow controlled queue
drops below the low water mark -- for the read side, this is because the client reads some data; for
the write side, it happens when the driver transmits some data), STREAMS automatically

2/11/99 3:09 PMTN 1117: Open Transport STREAMS FAQ

Page 11 of 19file:///Karl's%20Loaner/Apple/tn1117_3.gif%20Folder/tn1117.html

the write side, it happens when the driver transmits some data), STREAMS automatically
reschedules the service procedure of the previous queue that has a service routine. Like the
propagation of flow control, this back enabling continues until it reaches the beginning of the
stream.

Finally, there is one important hint for using flow control. In certain special case situations, such as
constructing a sequence of messages, it may be extremely inconvenient to deal with flow control. At times
like this, you always have the option of ignoring it. While not strictly legal, this will work and is unlikely
to get you into trouble. But it is important that you deal with flow control in the general case, otherwise
messages will pile up on queues, and STREAMS will run out of memory.

Q Which should I use, canputnext or putnext(q->q_next)?

A STREAMS Modules and Drivers contains a number of code samples that look like:

#ifdef MP
if (canputnext(q, mp)) {

#else
if (putq(q->q_next, mp)) {

#endif

This is an anachronism from UNIX STREAMS's support of multi-processor (MP) systems. MPS
STREAMS has full support for MP built-in, so canputnext is always available. In addition, MPS
automatically handles synchronization across multiple processors using sync queues (see the question How
do I synchronize access to my global data?), so you do not have to worry about MP issues in your OT
modules.

Q I've notice that some STREAMS routines return int even though there is no defined returned value.
When I check the returned values, I find that they are random. What's going on?

A The STREAMS internal routines were imported wholesale from UNIX and, in some cases, the
prototypes do not match the semantics. In these cases, you should make sure to ignore the returned value.

Q STREAMS Modules and Drivers talks a lot about bands. Is this of any use?

A Not really. Some protocol modules (such as TCP and ADSP) have the concept of expedited data and
typically these are supported using band 0 (normal data) and band 1 (expedited data). No one has ever
found a use for all 255 bands!

Also, note the band structures inside STREAMS are allocated as an array, so if you use more than one
band, make sure you allocate them sequentially from 0. Otherwise you might find yourself using a lot more
memory than you expect.

Finally, you should remember that bands only affect the order in which messages are queued, and hence
the order in which they are returned by getq to the service routine. As an efficient STREAMS protocol
stack will rarely queue messages, bands are rarely useful. One case where they have a significant effect is
on the stream head, where the band affects the order in which data is delivered to the client. However, this
effect may not be the effect you are looking for!

2/11/99 3:09 PMTN 1117: Open Transport STREAMS FAQ

Page 12 of 19file:///Karl's%20Loaner/Apple/tn1117_3.gif%20Folder/tn1117.html

Q What fields of the queue_t structure can I modify?

A There are a number of rules related to the fields in a queue:

You should only modify your own queues. You should not modify the queue of another module.
The q_ptr field is specifically reserved for the module's own use. The module can read or write
that value at any time. Note, however, that if you use mi_open_comm (which I strongly
recommend), the q_ptr field of both queues in the queue pair contains a pointer to your
per-stream data, and you should not use if for anything else.
Although it is normally OK to just read the queue's fields directly, you really should read them
using strqget. This avoids some possible synchronization issues.
You must modify any fields (other than q_ptr) using strqset.

strqget and strqset are defined with the following prototypes in "mistream.h":

extern int strqget(queue_t*, qfields_t what, uchar_p pri, long* valp);
extern int strqset(queue_t*, qfields_t what, uchar_p pri, long val);

strqget is used to read a field, putting the value in the long pointed to by valp. strqset is used to set a
field. The field that is modified is determined by the what parameter, whose value can be:

qfields_t field in queue_t read-only?
QHIWAT q_hiwat no
QLOWAT q_lowat no
QMAXPSZ q_maxpsz no
QMINPSZ q_minpsz no
QCOUNT q_count yes
QFIRST q_first yes
QLAST q_last yes
QFLAG q_flag yes

The pri parameter determines which priority band is used. A band of 0 indicates the value held in the
queue itself, a higher value refers to the band data structure referenced by the queue.

The functions can return the following errors:

ENOENT if an invalid what is specified
EINVAL if the specified band is not currently defined
EPERM if you are not allowed to modify the specified field

IMPORTANT:
You should not modify fields that are marked as read-only in the above table. While it may seem like a
convenient shortcut, it will cause you problems in the long run. This warning applies specifically to the
q_flag field.

Q The standard UNIX STREAMS books do not contain any information about the routines that begin
with the prefix mi_, for example mi_open_comm. Where are these documented?

2/11/99 3:09 PMTN 1117: Open Transport STREAMS FAQ

Page 13 of 19file:///Karl's%20Loaner/Apple/tn1117_3.gif%20Folder/tn1117.html

A These are utilities routines provided by Mentat to make STREAMS programming easier. They are
documented in the Open Transport Module Developer Note. I strongly recommend that you use these
routines because they help cut down on silly programming errors.

Messages and Memory Allocation

Q Can I modify the message blocks that are passed to my module?

A Yes, as long as you are careful. To start with, you must distinguish between message blocks (mblk_t)
and data blocks (dblk_t). Message blocks are always wholely owned by you. STREAMS passes you the
message block, and you are expected to remember it, free it, or pass it on. No one else has a reference to
that message block. For this reason, you are always allowed to modify the fields in the message block,
even if you aren't allowed to modify the data block.

The following fields of the mblk_t are commonly modified: b_cont, b_rptr, b_wptr. You should not
directly change the other fields in the mblk_t; there are STREAMS routines that let you change them
indirectly.

Data blocks are slightly different. A single data block can be referenced by multiple message blocks, so
you are only allowed to modify the fields in the data block (or indeed its contents) if you are the sole owner
of the block. You determine this by looking at the db_ref field of the data block. If it is set to 1, you are
free to modify the data block and its contents. If it is greater than one, some other message block has a
reference to this data block, and you should avoid modifying the data block or its contents.

If you wish to write to a read-only data block, you should copy the block using one of the allocation
functions described below.

The only field of the dblk_t that is commonly modified is db_type. You should not directly change the
other fields in the dblk_t, although there are STREAMS routines that let you change them indirectly.

Q How do I allocate new messages within my module?

A There are a lot of techniques. If you just want to allocate a raw message along with its data block, use
the STREAMS function allocb. Given a size, allocb will create a message that pointers to a data buffer
of at least that size.

copyb returns a new message block that's identical to the input message block. The data block that the
message block points to is also copied.

copymsg returns a new message that's identical to the input message. Like copyb, it also copies the data
that the message block points to. In addition, it copies all of the message blocks linked to this message
through the b_cont field, and all their data blocks.

dupb duplicates the message block you passed into it without copying the data block that the message
points to. The new message continues to reference the old data block. The function also increments the
db_ref field of the data block to record the new copy.

dupmsg duplicates the message block you passed into it without copying the data block that the message

2/11/99 3:09 PMTN 1117: Open Transport STREAMS FAQ

Page 14 of 19file:///Karl's%20Loaner/Apple/tn1117_3.gif%20Folder/tn1117.html

 duplicates the message block you passed into it without copying the data block that the message
points to. In addition, it duplicates all of the message blocks linked to this message through the b_cont
field.

esballoc creates a message block that references a data block which you provide. You also pass in a
function that will be called when the message is freed. This allows DMA-based network drivers to
implement no-copy receives by passing their real DMA buffers upstream. See Open Transport Module
Developer Note for more hints and tips on esballoc.

There are also a number of utilities routines for allocating TPI messages that you might find useful. These
include:

mi_tpi_conn_con mi_tpi_uderror_ind

mi_tpi_conn_ind mi_tpi_unitdata_ind

mi_tpi_conn_req mi_tpi_unitdata_req

mi_tpi_data_ind mi_tpi_exdata_ind

mi_tpi_data_req mi_tpi_exdata_req

mi_tpi_discon_ind mi_tpi_ordrel_ind

mi_tpi_discon_req mi_tpi_ordrel_req

mi_tpi_info_req

See the Open Transport Module Developer Note for more details on these routines.

Q Why do I get a link error when I try to use mi_tpi_data_ind from my module?

A It appears that someone forgot to export that routine. Fortunately, it's very easy to write you own
version:

static mblk_t* qmi_tpi_data_ind(mblk_t* trailer_mp, int flags, long type)
{

mblk_t* mp;

mp = mi_tpi_data_req(trailer_mp, flags, type);
if (mp)

((struct T_data_ind *)mp->b_rptr)->PRIM_type = T_DATA_IND;
return mp;

}

Q How do I reuse an existing message?

A In writing a module, you often find yourself in the situation where you want to free a message and then
allocate a new message in reply to the original message. In these cases, it's much better to reuse the first
message rather than suffer the overhead of the freeing one message and allocating another.

You can reuse a message block as long as both of the following conditions are true:

You are the sole owner of the message, i.e. the messages's data block field db_ref is 1.
The message is big enough for your needs.

2/11/99 3:09 PMTN 1117: Open Transport STREAMS FAQ

Page 15 of 19file:///Karl's%20Loaner/Apple/tn1117_3.gif%20Folder/tn1117.html

STREAMS guarantees that all control messages generated by putmsg (typically M_PROTO and M_PCPROTO)
reference data blocks that are at least 64 bytes long.

OT provides utility routines for reusing messages. The most general purpose one is:

mblk_t* mi_reuse_proto(mblk_t* toReuse,
 size_t sizeDesired,
 boolean_p keepOnError);

This routine attempts to reuse the message pointed to by toReuse, making sure that the message can
contain sizeDesired bytes. It return a pointer to the new message, or nil if it fails. If keepOnError is
false, toReuse is freed regardless of whether we fail or not. Otherwise, toReuse is preserved if we fail.

There are also a number of utilities routines specific to TPI that you might find useful including:

mi_tpi_ack_alloc mi_tpi_err_ack_alloc

mi_tpi_ok_ack_alloc

See the Open Transport Module Developer Note for more details on these routines.

WARNING:
All of these reuse routines can return nil if you run out of memory. The reason is that the message
you're trying to reuse may be read-only, in which case the routine is required to create a copy of the
message. This copy can fail if you run out of memory. You must be prepare for these routines to fail.

Q How much data is in a message?

A If you just want to know how much data there is in a single message block, you can simply calculate
b_wptr - b_rptr. If you want to find the total size of all the messages in a chain, use the STREAMS
function msgdsize. Note that this function returns the number of data bytes in the message, and does not
take into account M_PROTO and M_PCPROTO message blocks.

Q How much space is there in a message?

A If you just want to know how much space is available in a single message block, you can simply
calculate db_lim - db_base. As far as I know, there is no way to calculate this for all the messages in a
chain.

Q Are there any invariants that I can use to keep my message blocks straight?

A Yes. The invariants are that:

mp->b_datap->db_base < mp->b_datap->db_lim
mp->b_datap->db_base <= mp->b_rptr < mp->b_datap->db_lim
mp->b_datap->db_base <= mp->b_wptr <= mp->b_datap->db_lim
mp->b_rptr <= mp->b_wptr

2/11/99 3:09 PMTN 1117: Open Transport STREAMS FAQ

Page 16 of 19file:///Karl's%20Loaner/Apple/tn1117_3.gif%20Folder/tn1117.html

These invariants imply that:

there is always at least one byte of space in a message
the read and write pointers always point within the data
the amount of valid data in the message is always non-negative

Q A lot of STREAMS allocation functions (e.g. allocb) take a buffer allocation priority value. What
should I use?

A At the moment, STREAMS is defined to ignore these values. There are two reasonable approaches:

1. Ignore priorities and always pass the unspecified priority, i.e. 0.
2. Analyze your buffer needs and set your priorities appropriately on the assumption that one day

someone will pay attention to them. For example, most data messages would default to BPRI_MED,
but high priority control messages like TPI ACKs should use BPRI_HI.

I recommend the first approach.

Q What do I do when an allocation fails?

A The approach you take depends on the type of module you are writing. If you are writing a module
that provides an unreliable service (such as a DLPI device driver), the best thing to do when you run out of
memory is to just drop the current packet on the floor. Because you are providing an unreliable service, the
upper-layer protocol is required to implement some error correction anyway, so there's no point
complicating your module with intricate error handling.

If you're writing a reliable service, you must be prepared to deal with running out of memory. Your
primary weapon should be the mi_bufcall routine. This routine allows you to stop your current operation
and schedule your queue's service routine to be called when a certain amount of memory is available. You
then have a flag in your per-stream data that allows your service routine to pick up the stalled operation
before continue on with its normal duties.

See the Open Transport Module Developer Note for more details on mi_bufcall.

IMPORTANT:
You should use mi_bufcall in preference to the more traditional bufcall. See the developer note for
the reasons why.

Transport Provider Interface (TPI)

Q I'm writing a STREAMS TPI module or driver. Where should I start?

A The best book to read is STREAMS Modules and Drivers. In terms of sample code, there are a
number of samples to look at:

TPIFile -- Available on the Developer CDs, this sample is a TPI device driver that allows you to
read a Mac OS file as if it was an OT serial port.

2/11/99 3:09 PMTN 1117: Open Transport STREAMS FAQ

Page 17 of 19file:///Karl's%20Loaner/Apple/tn1117_3.gif%20Folder/tn1117.html

read a Mac OS file as if it was an OT serial port.
StreamNOP -- Available on the Developer CDs, this is a cut down version of TPIFile that serves
as good starting point for new module development.
tilisten -- Part of the OT Module SDK, this sample contains the full source to the "tilisten" module
(a helper module used to simplify the listen/accept process for clients).

None of these samples are perfect, but they do give a flavour of what STREAMS programming is like.

Q I'm receiving a TPI message. Can I reuse that message to send the ACK?

A See the question How do I reuse an existing message?

Q I'm writing a TPI module and I successfully respond to a T_CONN_REQ message by sending a
T_OK_ACK message upstream, but my client code never leaves OTConnect. What did I do wrong?

A The short answer is that you need to send a connection confirmation message (T_CONN_CON) upstream
to indicate that the connection is in place.

The long answer is that you need to study the TPI specification more closely, paying special attention to the
state diagrams. When your module is in sta_3 (idle) and receives a conn_req event, it should proceed
to sta_5 (w_ack_c_req). When your module replies with the ok_ack1, it proceeds to sta_6
(w_con_c_req). At this point the client is still waiting for a connection confirmation message. To
complete the connection sequence, you need to issue a conn_con event and proceed to sta_9 (data_t).

I find it useful to think of the T_OK_ACK as simply saying that the primitive being acked was correctly
formed; it says nothing about whether the request worked. If a response is needed, TPI typically has a
different message (e.g., T_BIND_ACK or T_INFO_ACK). In the case where something needs to be done,
like connection setup, a distinct message T_CONN_CON is used to 'confirm' the connection is established.

Q The TPI specification says that the address to connect to is pointed to by the DEST_offset and
DEST_length fields of the T_CONN_REQ message. I know how to find the address of this information
(using mi_offset_paramc) but what is its format?

A There are two aspects to this question. First, how do Open Transport clients provide address
information. Second, how does Open Transport translate that client representation into a TPI message.

Open Transport uses a standard format for address information that's based on the OTAddress type. This
type is an abstract record that contains only one interesting field:

struct OTAddress
{
 OTAddressType fAddressType;
 UInt8 fAddress[1];
};

The fAddressType field is a two-byte quantity that determines the format of the remaining fields. All Open
Transport addresses are derived from this basic structure. For example, in the TCP/IP world, OT has two
different address formats, namely InetAddress and DNSAddress.

2/11/99 3:09 PMTN 1117: Open Transport STREAMS FAQ

Page 18 of 19file:///Karl's%20Loaner/Apple/tn1117_3.gif%20Folder/tn1117.html

struct InetAddress
{
 OTAddressType fAddressType; // always AF_INET
 InetPort fPort; // port number
 InetHost fHost; // host address in net byte order
 UInt8 fUnused[8]; // traditional unused bytes
};
struct DNSAddress
{
 OTAddressType fAddressType; // always AF_DNS
 InetDomainName fName; // ASCII DNS name
};

These are distinguished by the first two bytes. An InetAddress starts with AF_INET, while a
DNSAddress starts with AF_DNS. These type bytes are followed by an address-format specific number of
bytes of data. This general layout is common to all address formats under OT.

When you call an OT API routine and pass in an address like this, OT simply copies the entire address
into a message block without interpreting it. When the message reaches the appropriate TPI module, that
module is responsible for interpreting the specified address. It can determine that the address is in the
appropriate format simply by looking at the first two bytes of the address buffer. The snippet of code in the
next Q&A shows how to do this.

Q TPI messages often contain "offset" and "count" parameters to reference variable length data. Every
time I access these, I find myself dying the 'death of a thousand pointers'. Is there a better way?

A I'm glad you asked. MPS provides two useful utility routines that you can call to access these variable
length structures. There prototypes are:

UInt8* mi_offset_param(mblk_t* mp, long offset, long len);
UInt8* mi_offset_paramc(mblk_t* mp, long offset, long len);

If you have a simple TPI message (one with a single message block), you can call mi_offset_param to
get a pointer to the structure whose size is len at the given offset into the message data. The routine
returns nil if offset and len are inconsistent with the size of the message.

If there's a possibility that the data you're looking for is not in the first message block of the TPI message,
you can use mi_offset_paramc to look for it in the entire message chain.

The following snippet shows how you can use mi_offset_paramc to find the address in a T_CONN_REQ
message.

static void DoConnectRequest(queue_t* q, mblk_t* mp)
{
 T_conn_req *connReq;
 OTAddress *connAddr;

 [...]

 connReq = (T_conn_req *) mp->b_rptr;

 [...]

2/11/99 3:09 PMTN 1117: Open Transport STREAMS FAQ

Page 19 of 19file:///Karl's%20Loaner/Apple/tn1117_3.gif%20Folder/tn1117.html

 connAddr = (OTAddress *) mi_offset_paramc(mp,
 connReq->DEST_offset,
 connReq->DEST_length);
 if (connAddr == nil || connReq->DEST_length < sizeof(OTAddress)) {
 ReplyWithErrorAck(q, mp, TBADADDR, 0);
 return;
 }
 switch (connAddr->fAddressType) {
 [...]
 }

 [...]
}

Q In my TPI module I send data messages but they never arrive on the wire/at the client. Any ideas?

A You have most probably forgotten to set the b_wptr field of the message that you are sending. If you
allocate a new message block, the b_rptr and b_wptr both default to pointing at the start of the data block
(i.e. db_base). Given that the amount of valid data in the message is defined to be b_wptr - b_rptr, if
you forget to set the b_wptr on messages you will find that the receiver ignores them.

Data Link Provider Interface (DLPI)

Q I'm writing a STREAMS DLPI driver. Where should I start?

A The best book to read is STREAMS Modules and Drivers. The best sample code to look at is the DLPI
Template that ships as part of the OT Module SDK.

The DLPI template is targeted at people writing Ethernet-style device drivers. If you're writing an
Ethernet-style device driver (such as Ethernet, Token Ring, FDDI, Fibre Channel, etc.), you should
definitely base your driver on this sample. It significantly reduces the amount of work you have to do.

If you're writing something other than a Ethernet-style driver (such as PPP, SLIP, etc.), the DLPI
Template is still useful, but it is slightly less appropriate. If you're actively developing an OT native PPP or
SLIP, you should contact dts@apple.com because we have some (currently unfinished) documents that
you will need.

Q What's this stuff about connection-oriented DLPI drivers?

A I have no idea! As far as the OT mainstream is concerned, all DLPI drivers are connection-less
(DL_CLDLS). In fact, when OT needs a connection-oriented device driver (e.g. serial), it uses TPI instead
of DLPI. However, connection-oriented DLPI drivers may be useful in some environments, such as X.25
or ATM.

Q I'm writing the code to fill out the DL_INFO_ACK message, and I can't decide what to put in the
dl_provider_style field. I'd like to use DL_STYLE1 (because then I don't have to mess with Physical
Points of Attachment (PPAs)) but it seems I should be using the later DL_STYLE2. What do you

2/11/99 3:09 PMTN 1117: Open Transport STREAMS FAQ

Page 20 of 19file:///Karl's%20Loaner/Apple/tn1117_3.gif%20Folder/tn1117.html

Points of Attachment (PPAs)) but it seems I should be using the later DL_STYLE2. What do you
recommend?

A Unless you have an overriding reason to use PPAs, you should return DL_STYLE1 in your
DL_INFO_ACK message. This will make your life easier and there's little need for PPAs on the Mac OS.

Q What is this stuff about major and minor device numbers?

A The short answer is: an anachronism from UNIX. Major device numbers represent the device driver
controlling a device. This is traditionally an index into a table of drivers maintained internally by
STREAMS. Under Open Transport, drivers are loaded into this table on demand, so there's no way you
can know what major device number your driver is going to get.

Minor device numbers are used to distinguish between multiple functions controlled by a single device
driver, for example, multiple serial ports controlled by the serial port driver. However, this definition
breaks down in the face of networking, even on UNIX systems.

It turns out that minor device numbers are used to distinguish between different streams connected to a
driver. Each stream is given a unique minor device number by the driver's open routine. This is
accomplished by means of the sflag parameter. The three possible cases are:

0 -- This value indicates that the module is being opened as a driver. A specific minor device
number -- specified by the devp parameter -- is being opened.
CLONEOPEN -- This value indicates that the driver is being cloned, i.e. the driver should return a
unique minor device number. You can do this simply by calling mi_open_comm, which does this
automatically.
MODOPEN -- This value indicates that the module is being pushed; there is no minor device number
in this case.

So how does this affect you? It doesn't! If you call mi_open_comm in your module's open routine, it takes
care of all these details. Your open routine might also want to check that you are being opened as a module
(i.e. sflag == MODOPEN) or as a driver (sflag != MODOPEN), just to be paranoid. But, otherwise, you
should not worry about device numbers and distinguish your streams using the q parameter.

Summary

Open Transport is based on an industry standard STREAMS networking kernel. Open Transport
STREAMS is documented in a number of UNIX books. and in the Open Transport Module Developer
Note . This Note answers some Frequently Asked Questions about issues that are not adequately covered
in the other documentation.

Further References

2/11/99 3:09 PMTN 1117: Open Transport STREAMS FAQ

Page 21 of 19file:///Karl's%20Loaner/Apple/tn1117_3.gif%20Folder/tn1117.html

Programmer's Guide: STREAMS, UNIX System V Release 4, UNIX Press, ISBN
0-13-02-0660-1
STREAMS Modules and Drivers, UNIX System V Release 4.2, UNIX Press, ISBN
0-13-066879-6
"Open Transport Module Developer Note" (part of the OT Module SDK)
UNIX "man" pages for "putmsg", "getmsg", etc.
Open Transport web page
Open Transport programmers mailing list

Downloadables

Acrobat version of this Note

Acknowledgments

Thanks to Jim Krupp, Rich Kubota, and Vinnie Moscaritolo.

To contact us, please use the Contact Us page.
Updated: 15-February-98

Technotes
Previous Technote | Next Technote | Contents

2/11/99 3:09 PMTN 1117: Open Transport STREAMS FAQ

Page 22 of 19file:///Karl's%20Loaner/Apple/tn1117_3.gif%20Folder/tn1117.html

