Technote 1147

Pending Update Perils

By C.K. Haun
Revised by Mark Cookson
Apple Worldwide Developer Technical Support

CONTENTS T
| . his Technote discusses potentia problemswhen
ntroduction
pending update events for windows behind modal dialogs
The Update and Mbdal D al og are not serviced.

Y uck, that's nasty!

If you do some, you have to do alittle
more...

Conclusion

| ntroduction

Modal dialog boxes have always caused some problems with windows behind dialog windows. Since
Modal Di al og hasits own event loop which does not by default cooperate with your application event
loop you have always had the potential for not knowing that updates have occured for the other
windows in your application when you arein aMdal Di al og loop.

If you've ever written afilter procedure for amodal dialog, you've probably seen thisfor yourself.
Your filter will get acontinual stream of update events. These events are not for the dialog, but are for
the window behind the dialog, which has not been updated since the modal dialog came up. The event
has not come through your normal event loop, and you have probably not serviced the update since you
are only concerned about events for your dialog. This causes the update event to keep getting re-sent.
The only way for the update to be stopped is for the update region of the affected window to be cleared
by theBegi n/ EndUpdat e callsin your drawing routine (see Handling Update Eventsin Inside

M acintosh:Mactintosh Toolbox Essentials).

This situation is exacerbated by screen savers and Balloon Help. If a screen saver becomes active while
amodal dialog isup, or if your user has Balloon help on and part of awindow behind the dialog is
obscured by a balloon, then an update event will be generated for the window.

TN 1147: Pending Update Perils Page: 1

The Update and Mdal Di al og

If there is an update event pending for your application, no other applications, drivers, control panels, or
anything else, will get time.

Updates pending for other applications do not generally cause a problem (unless they too are suffering
from pending updates). They will be handled normally by the application in the background. Updates
must be serviced or other processes will not get time.

Thisisapotential Bad Thing. Many pieces of code need time to keep living, to maintain network
connections, or just to look good.

A smple example is the Chooser. Open the Chooser, then launch an application that you know has a
modal dialog. Position the Chooser so you can seeit, and you'll notice that it refreshesitslists even
whileit's in the background.

Now make sure there is adocument window open in the frontmost application. Turn on Balloon Help
from the Help menu.

Open amodal dialog in the application (the About box in most applications will work). Now move the
cursor over the window behind the modal dialog. A balloon will appear saying something like"This
window is not active because adialog box is up....", and a piece of the window will be blasted by the
balloon. Now look at the Chooser. It has stopped running. The window that got zapped by the balloon
now has an update pending for it, that update is going through the Modal Di al og trap, and not through
the program's event loop, so it is not being serviced. Time stops for all other applications.

Note:
Thisonly happensif the update is for the same application as the dialog box. If you blast awindow in
another application (like the Finder) then that update will be processed normally.

Yuck, that's nasty!

Y ou have two choices in your application to prevent this from happening. The first isto have no other
open windows in your application when you open amodal dialog. Obvioudly, thisisn't aways a
realistic solution.

The second, saner, solution isto provide yourself a mechanism to refresh all your windows from within
your modal dialog.

A filter procedure (described in Writing an Event Filter Function for Alert and Modal Dialog Boxesin
Inside Macintosh:Macintosh Toolbox Essentials) is the proper tool to use to fix this problem. You'll
need to add asimplefilter procedure to every dialog or alert you bring up in your application. And, in
most cases, it can be the same filter for every dialog, so it's not agreat deal of extra code.

However, you're going to have to do alittle preparation to do this. Y our filter proc needs to have away
to call the drawing procedure for any of your windows. There are many ways to do this, dictated by the
specific needs of your application and your own programming style. Y ou may want to create a window
control object that contains a pointer to your drawing routine, you may want to include the same check

and dispatch you have in your main event loop, or use another method which you are comfortable with.

The simplest, bare bones method, would be to include aflag for your drawing procedure in your

window record r ef Con, and have your drawing routine vector based on the value in ther ef Con, as
shown here:

TN 1147: Pending Update Perils Page: 2

/* W ndow drawi ng proc, defined sonewhere el se*/
Bool ean MyDr awProc (W ndowPtr w ndowToDr aw) {
Bool ean returnVal = true;

/* switch off the value you've stored in*/
/*your wi ndow earlier*/
swi tch (Get WRef Con(wi ndowToDr aw)) {
case kMyd i pboard: /*draw my cli pboard*/
Drawd i p (wi ndowToDr aw) ;
br eak;
case kMyDocunent: [/*docunent content*/
Dr awMyDoc (w ndowToDr aw) ;

br eak;
defaul t: /*do nothing for anything else, to prevent draw ng w ndow+/
returnVal = fal se;
[*that isn't mne*/
br eak;

/[* this return value is used to tell the D al og

/* Manager if you've handled the update or not when
/* this is called fromyour filter. 1In normal uses
/* (i.e., in response to an updateEvent in your main
/* event |oop) the boolean is unnecessary, but it
/*doesn't do any harnt/

return (returnval);

Install the flag when you create a window:

nmyW ndowPt r = Get NewW ndow (KMyW ndowi D, nil, (W ndowPtr)-1);
Set WRef Con (nyW ndowPtr, (1 ong)myDraw ngProcFl ag) ;

In your filter, the update handling would look something like this:

/* if the update is for the dialog box, ignore it since the regul ar Mdal D al og

will redraw it as necessary*/
i f(theEvent|n->what == updateEvt && theEventln->nmessage != nyDialogPtr) {
/* go to my drawing routine, window will be redrawn if | own it*/
return (MyDrawProc ((W ndowPtr)theEventl n->message));
}
In MPW Pascal:

TN 1147: Pending Update Perils

Page: 3

The function's result is used to tell the Dialog Manager if you' ve handl ed the)
update or not when this is called fromyour filter. In normal uses (i.e., in)
response to an updateEvent in your nmamin event |oop) the boolean is unnecessary,)

but it doesn't do any harm The w ndow drawi ng procedure is defined sonewhere el se.}

FUNCTI ON MyDr awPr oc(wi ndowToDr aw W ndowPt r): BOOLEAN,

BEG N
CASE Get WRef Con(w ndowPtr) OF

kMyCl i pboar d:
BEG N
Dr awyd i pboar d(wi ndowToDr aw) ;
MyDr awPr oc : = TRUE;
END;

kMyDocunent :
BEG N
Dr awMyDocunent (wi ndowToDr aw) ;
MyDr awPr oc : = TRUE;
END;

OTHERW SE
MyDr awPr oc : = FALSE;

END; { CASE}
END;

Install the flag when you create awindow:

nyW ndowPtr : = Get NewW ndow(KMyW ndowi D, NI L, WndowPtr(-1));
Set WRef Con(myW ndowPt r, myDr awi ngPr ocFl ag) ;

In your filter, the update handling would look something like this:

FUNCTION MyFilter(currentDi al og: Di al ogPtr; VAR theEventln: EventRecord;
VAR theltem | NTECGER): BOOLEAN,

{ if the update is for the dialog box, ignore it since the regular Moddal D al og

{ function will redraw it as necessary }
BEG N
| F (theEvent | n.what = updat eEvt AND t heEvent|n. nessage <> currentDi al og)
BEG N
MyFilter := MyDrawProc(currentDi al og);
END;
END;

TN 1147: Pending Update Perils Page: 4

|f you do some, you haveto do a little more...

The only downside to adding your own filter procedure to adiaog isthat the Dialog Manager then
assumes that you are handing more than just updates. Specifically, the Dialog Manager assumes that you
are handling the standard "return key aliasesto item 1" filtering. So, you need to write keystroke
handling in the filter yourself.

The Dialog Manager in System 7 has some new calls you can make to ease the load on your programin
this situation. These calls were created and tested too late in System 7's devel opment cycle to be
documented in Inside Macintosh, so they are presented in Technote 1148: Dialog Manager Helper
Functions. They alow you to call on the services of the System to track standard keystrokes in your
diaog.

The System 6 Way

Of course, under pre-System 7 applications, you can't use the new calls, so you have to do it yourself.
Here's a sample System 6.0.x filter proc that does roughly the same thing that a System 7 filter will do.

/* Pre-system 7 dialog filter*/
#defi ne kMyButtonDel ay 8

/* declared as “pascal' since it's called by the tool box*/
pascal Bool ean MyFilter (DialogPtr currentD al og,
Event Record *t heEventln, short *theDial oglten) {

Bool ean returnVal = fal se

| ong wai t Ti cks;

short i tenKind,; /* sonme tenporary variables for GetDltem use*/
Handl e i tenHandl e;

Rect itemRect;

i f (theEventl|n->what == updateEvt && theEventl|n->nessage != nyDial ogPtr) {

/* nyDialogPtr is defined where you created the dial og
if the update is for the dialog box, ignore it since
the regul ar Modal Di al og function will redraw it as necessary*/

returnVal = MyDrawProc (theEventl| n->nessage); /* go to nmy drawi ng routine*/
} else {
/* it wasn't an update, see if it was a keystroke. Check for the return or
enter key, and alias that as item 1. | also included a check here for the
escape key aliasing as item 2, you may not want to use that*/

if ((theEventln->what == keyDown) || (theEventl|n->what == aut oKey)) {
/* it was a key*/

switch (theEventl n->nmessage & char CodeMask) {
case kReturnKey:
case kEnterKey:
t heDi al ogltem = ok; / change whatever the current itemis to
the OK itemok is #defined in Dialogs.h
as now we need to invert the button so
the user gets the right feedback*/
GetDIitem (currentDi al og, ok, & tenKind, & tenHandle, &itenRect);
HiliteControl ((Control Handle)itenmHandl e, inButton); /* invert the button*/
Del ay (kMyButtonDel ay, &waitTicks); /* wait about 8 ticks so they can see it*/
HiliteControl ((ControlHandle)itenHandl e, false); /* and back to nornmal */

returnVal = true; /* tell the Dialog Manager we handl ed this event*/
br eak;

TN 1147: Pending Update Perils Page: 5

/* This filters the escape key the sane as item 2 (the cancel button,usually)*/
case kEscKey:
t heDi al ogltem = cancel ; / cancel is #defined in Dialogs.h as 2*/
GetDIitem (currentDi al og, cancel, & tenKind, & tenHandl e, & tenRect);
HiliteControl ((Control Handle)itenHandl e, i nButton);
Del ay (kMyButtonDel ay, &waitTicks); /* wait about 8 ticks so they can see it*/
HiliteControl ((Control Handle)itenHandl e, false);

returnvVal = true; /* tell the D al og Manager we handl ed this event*/
br eak;
}
}
}
return (returnval);
}
MPW Pascal
{ Your filter for pre-System7 will |ook something like this: }

FUNCTI ON MyFilter(currentDi al og: Di al ogPtr; VAR theEventln:
Event Record; VAR theltem | NTEGER): BOCLEAN,

CONST
kMyBut t onDel ay = 8;
VAR
i tenKi nd : | NTEGER;
i temHandl e : Handl e;
i tenRect : Rect;
savePort : Gafbtr;
wai t Ti cks : LONG NT;
BEG N
{ if the update is for the dialog box, ignore it since the regular Modal D al og
{ function will redraw it as necessary }

| F (theEvent | n.what = updat eEvt AND t heEvent|n. nessage <> currentDi al og)
M/Filter := MyDrawProc(theEvent|n. nessage)
ELSE { it wasn't an update, see if it was a keystroke }

BEG N
{Check for the return or enter key, and alias that as item"ok". }
{1 also included a check here for the escape key aliasing as item "cancel", }

{you may not want to use that }
I F ((theEventIn.what = keyDown) OR (theEventl|n.what = autoKey))
BEAN{ it was a key }

CASE CHR(BANnd(t heEvent I n. nessage, char CodeMask)) OF

kRet ur nKey, KEnterKey:
BEG N
GetDitem(currentDi al og, ok, itenKind, itenHandl e, itenRect);
HiliteControl (Control Handl e(itenHandl e), TRUE);
Del ay(kMyButtonDel ay , waitTicks); {wait about 8 ticks so they can see it}
HiliteControl (Control Handl e(itenHandl e), FALSE); {and back to normal}

M/Filter := TRUE; {tell the D al og Manager we handl ed this event}
END;

kEscKey:
BEG N
theltem : = cancel;
GetDiten{currentDi al og, cancel, itenKind, itenmHandl e, itenRect);

TN 1147: Pending Update Perils Page: 6

HiliteControl (Control Handl e(itenHandl e), TRUE);

Del ay(kMyButtonDel ay , waitTicks); {wait about 8 ticks so they can see it}
HiliteControl (Control Handl e(itentHandl e), FALSE); {and back to nornmal}
MyFilter := TRUE; {tell the D al og Manager we handl ed this event}

END;

END;, { CASE}
END;
END;
END;

Conclusion

Never-ending updates are not anew problem. It isimperative that you do something about never-ending
updates. There isn't much extrawork involved; just add asimplefilter to al of your dialogs and alerts,
and put aflag to your drawing proc in your window structure.

The results will alow the system to continue to run smoothly, and as an added benefit your users will
always see your application’'s windows the way they should be, instead of windows with chunks bitten
out of them.

Further References

o Inside Macintosh:Macintosh Toolbox Essentials, Chapter 2 - Event Manager
o Inside Macintosh:Macintosh Toolbox Essentials, Chapter 4 - Window Manager
o |nside Macintosh:M acintosh Toolbox Essentials, Chapter 6 - Dialog Manager

Downloadables

Acrobat version of this Note (35K).

Change History

e Originally written in October 1991, as Technote TB 37 -- Title by C.K. Haun.
e Accompanying code written and revised by C.K. Haun (1991) and Mark Cookson (1999).

e InJanuary 1999, this Technote was updated to better organize the ideas presented.

Acknowledgments

Thanks to Pete Gontier.

To contact us, please use the Contact Us page.
Updated: 11-January-99

Technotes | Contents
Previous Technote | Next Technote

TN 1147: Pending Update Perils Page: 7

