TN 1154: Debugging Java Code With MacsBug 2/26/99 3:31 PM

Technote 1154
Debugging Java Code With MacsBug

By Jens Alfke
Apple Java Team

CONTENTS I\/I
acsBug, the low-level debugger for the Mac OS,

MacsBug In a Nutshell _)
seems unlikely to be useful for debugging avery

The *mrj" dcmd high-level language like Java. Au contraire! The MRJ
plug-in *demd* for MacsBug adds a number of
Basic Commands commands that can help you debug everything from

deadlocks to memory leaks.

Commands Available In the Debug
Build

Inspecting Objects

Interpreting Stack Crawls and Thread
Dumps

Switching Contexts

Further References

MacsBug In a Nutshell

Before you can start using MacsBug to debug Java, you need to install MacsBug and learn the basics of
how to useit. If you' ve already been developing Mac software, thisis a non-issue since you' re almost
certainly aready familiar with MacsBug, and you can skip to the next section.

However, there are alot of people developing or testing Java on the Macintosh who are not otherwise
Mac developers and don’t know an A-trap from “Takethe A Train.” This section isfor them, so it
presumes alot less Mac technical knowledge than most technotes do.

What's MacsBug?

MacsBug is Apple s assembly-level 680x0 and PowerPC debugger for Mac OS. It can be used to debug
code running in most execution environments, from applications to drivers, and everything in between.
It's often used as a bug-reporting tool by many third-party developers, aswell as Mac OS system
software developers.

MacsBug knows nothing about source code, only assembly-language instructions, and its support for
high-level data structuresis primitive. But it’s great for examining the exact machine state.

Unlike debuggers on most other platforms, MacsBug is always resident once installed, and can take over
instantly when a crash occurs or when you press a hot-key, even if the machine is otherwise frozen.

file:///Monster%20Boot/Apple/Week%200f%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html Page 1 of ©

TN 1154: Debugging Java Code With MacsBug 2/26/99 3:31 PM
bownload & Installation

MacsBug is available from Apple s devel oper Web site. As befits atweaky developer tool, it spends
most of itstimein one prerelease state or another, and the latest and greatest version is nearly aways
marked as alphaor beta. Nonetheless, it's still usually best to install the latest prerelease; they’ ve proven
to be pretty stable. (Note in particular that as of thiswriting, only prerelease versions are compatible with
0S8.5)

Thereare alot of filesin the download, but the only one you need is MacsBug itself, which you'll find
inthe “into System folder” folder. Drag it into your System folder (not the Extensions folder!) and
restart. Y ou should see the message “Debugger Installed” appear below “Welcome To Mac OS’ in the
Mac OS splash screen as the system begins to boot.

A Very Brief Overview

TheMacsBug manud is also available online, but it’slarge and intimidating (not to mention dightly
obsolete) and actually overkill for the Java-only developer. Here' savery brief introduction:

MacsBug loads itself into memory very early in the boot process and hides out invisibly until it’s needed.
(It does consume a bit of RAM.) Three different circumstances will cause MacsBug to appear:

1. A CPU exception or asystem error occurs -- both are usually referred to as “crashes.” If these
occur and MacsBug is not installed, then depending on the severity, you get either an
“Unexpectedly quit” alert or adread bomb box.

2. The system routines Debugger or DebugStr are caled. MacsBug will report a* user break,”
usually with amessage. This lets software report messages to the user -- usually warnings of
dangerous or unexpected situations. Only specia debug versions of software should contain
user breaks.

3. You explicitly invoke MacsBug by holding down the Command (* cloverleaf”) key and pressing
the Power key (the one with the triangle that you use to turn your system on). Y ou can do this
even if the computer is otherwise hung or frozen; if it doesn’t work, things are in really bad
shape and your only option isto force arestart by pressing Command-Control-Power, the dread
“three-finger salute.”

When MacsBug appears, it completely takes over the screen and the CPU. No other application or OS
software can run while MacsBug is visible. This explains why MacsBug' s user interfaceis so
completely non-Mac-like -- it can’t use any of the Toolbox.

MacsBug is a command-line environment like DOS or a Unix shell. It shows one fixed-size window in
the middle of the screen, with garbage pixels outside the window. There's an input line at the bottom, a
few lines of machine code disassembly above it, and alarge scrolling output area above that. On the left
sideisaregister and stack display.

Y ou type commands into the input line at the bottom and press Return to run them. Y ou can't use the
mouse to select text, but most standard editing keystrokes work (arrow keys, delete and forward-del ete,
option- and Command- arrow, etc.) Y ou can aso press Cmd-V to copy the previous command into the
input line.

Some essential commands
The most vital MacsBug commands are:

e help -- Displaysalist of help topics. Y ou can get more info by entering “help” followed by
the name of atopic or command.
e g -- “Go.” Attempts to resume normal operation. Thiswill only work if you entered MacsBug

on purpose via Command-Power or after a user break: if the svstem is crashed. vou can't
file:///Monster%20Boot/Apple/Week%200f%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html Page 2 of 9

777777 . 2/26/99 3:31 PM
continue normally.

e es -- “Exitto Shell.” Attemptsto force the currently active application to quit. Thisisjust like
the Command-Option-Escape panic button that non-MacsBug-users use. This may or may not
succeed, depending on how damaged the system is and exactly where you were at the point you
entered MacsBug. If it succeeds, restart ASAP. If not, use...

e rs -- “ReStart.” Attempts to restart/reboot the system after some clean-up (for instance, flushing
the disk cache). Thisisfriendlier than Command-Control-Power or pulling out the power cord,
and lesslikely to cause disk damage.

e stdlog -- dumpsatext fileto your desktop, containing alot of information about the current
machine state. We ask you to submit one of these when reporting any crash or user-break
involving MRJ.

e log -- If you put afilename after the log command, all subsequent MacsBug output will be

written to that file. (The file usually appears in the same folder as the current application.) “log”
with no filename turns off logging.

- -, -

Back to top
The'mrj' demd

We' ve written aplug-in (caled a“demd”) for MacsBug that adds a new command, mrj . Actualy it
adds many new commands, invoked by name on the command line after the “mrj” part. For instance,
“mrj sc” dumps aJava stack crawl.

Thedcmd isavailable as part of the MRJ SDK, in the folder “Tools: Other Tools: MRJ dcmd fJr. PPC:

Just put thefile“MRJ demdinto the MacsBug Preferendekder of the Preferencefolder of your
System folder, and restart.

To use thedcmd, you must have a Java application or applet running. Most of the demd’ s commands are
not available, and make no sense, otherwise.

I mportant:

Almost all of the commands described below work only with MRJ 2.1. MRJ 2.0's SDK included an
earlier version of the demd with only two or three commands. Make sure you install the demd from the
MRJ 2.1 SDK.

Disclaimer:

This technote describes MRJ 2.1. It is quite likely that the demd’ s feature set and details of its
commands may change in the future as the VM isimproved. Some commands or features of
commands may not be available depending on how the corresponding area of the VM is
reimplemented.

Back to top

Basic Commands

Here' sinformation about the most commonly used commands. (Many of the other commands are for
guerying internal data structures and are only of use for debugging MRJ itself.)

If you invoke the demd without any command (by typing just “mrj”) it will display abrief list of
commands:

file:///Monster%20Boot/Apple/Week%200f%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html Page 3 0of9

TN 1154: Debugging Java Code With MacsBug 2/26/99 3:31 PM
Java log (mrjlog)

Thisisthe Javaequivaent of stdlog -- it writes atext file to your desktop that contains alot of

information about the current Java state. Not e that thereisno spacein “mrjlog”! Thisisreally amacro
that opens alog file and runs several mrj demd commands that writeto it.

Stack crawl (mrj sc)

Displays information about the current thread and its Java stack, with the current stack frame listed first.
The details are described bel ow.

Thread dump (mrj threads)
Displays information about all active threads, including their stacks. Each thread also tells what
monitorsit’sacquired (what object it’s currently synchronized againgt, in Java parlance) and at the end of

thelisting is a dump of the cache of the most recently used monitors and who owns them or iswaiting
for them.

Deadlock detection (mrj dl)

Looksfor aclassic deadlock -- two threads, each one blocked waiting for a monitor owned by the other
thread. If it finds one, it will list information about the threads and the monitors.

Synchronization check (mrj sync)

Looksfor other possible synchronization problems besides deadlocks, and displays information about
them if it finds any. These include:

e Thread holding any monitor (synchronized against anything) while blocked in Object.wait
e Thread blocked on amonitor while holding another monitor
e Thread suspended (via Thread . suspend) while holding a monitor

These are dl technically legal situations but can often lead to deadlock and are thus suspiciousiif they turn
up.

Redirect output (mrj redirect filename)

Redirects System.out and System.err to the given filename, which should be afull path. If no
filenameis given, output is disabled entirely.

The redirection does not take effect immediately -- some Java code needs to be called, and the VM is
usualy not in the right state to do this at the moment that MacsBug was invoked, so the request is
gueued until the next time the main thread runs.

Java heap usage (mrj chunks)

Displaysthetotal, used and free space in the Java object heap, and in the handle heap which is associated
with it. Also displaysinfo about each memory “chunk” in the heap, which is generally not of interest.

MRJ non-Java heap usage (mrj alloch)

Displays the amount of memory used by MRJfor things other than objects. These include dataloaded
from _class filesand internal data structures associated with classes, threads and other things.

file:///Monster%20Boot/Apple/Week%200f%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html Page 4 of 9

TN 1154: Debugging Java Code With MacsBug 2/26/99 3:31 PM

Find monitor (mrj fm monitor)

Given amonitor ID (asreported asthe “mon:” valueinanmrj sc or mrj threads dump) thislocates
the object the monitor is associated with, giving its classname and handle. Y ou can then use the handle
with object inspection commands likemrj do to get more information about the object.

Execute a method (mrj exec classname methodname)

Waits for the MRJ main thread to get control, then calls a single parameterless static void method. The
classname needsto be fully qualified with package names separated by “/”s. The method nameis

separated by aspace, nota“.”!

Thisisn’t too useful out of the box, but you can turn it into a powerful debugging tool by adding such
methods to your app. For instance, you could add a Debug class in the default/root package, and give it
static void methods like dumpState or startLogging. Then at any moment you can press
Command-Power to enter MacsBug, type “mrj exec Debug dumpState”, and get al kinds of useful
info printed to the console.

Find references (mrj fr handle)

Searches moderately hard for things that point to the given object. This can be useful if you'retrying to
figure out why objects aren’t being garbage collected. | say “moderately hard” because this command
searches the object heap and NI global references, but not thread stacks, so it may not find all
references.

The references will be listed one per line and described as “instance field,” “array element,” etc. The
handle of the object containing the reference will be given, which you can use as the argument to

another mrj fr command if you want to trace further.

A more sophisticated reference-finder ismrj graphrefs, but it'sonly available in the debug build.
Instruction listing (mrj il methodname)

Disassembles the bytecodes of a method. The method has to be named in the usua internal format:

Fully qualified classname with packages separated by “/”s

rﬁefhod name
E-ncoded parameter typesin parentheses
Encoded return type

For example:

il java/lang/Thread.join.(QV
disassembly from $659ed84 java.lang.Thread.join(Thread. java:873)
[0] 2A aload O
[1] 9 lconst O
[2] E2 invokevirtual_quick_w Method: "java/lang/Thread.join(J)V"
[51 Bl return

file:///Monster%20Boot/Apple/Week%200f%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html Page 5 o0f 9

TN 1154: Debugging Java Code With MacsBug 2/26/99 3:31 PM
Back to top

Commands Available Only In the Debug Build

The debug build of MRJ enables extra commands in the MRJ dcmd. (They’re not in the regular build
because supporting them makes MRJ slower or use more memory or both.)

The debug build also has alimited form of deadlock-checking built into the thread scheduler: in the case
of aclassic two-thread deadlock it will automatically drop into MacsBug with a user break warning about
adeadlock. You should immediately use“mrj d1” to get more information.

Another handy feature of the debug build isthat it will display acursor shaped like alittle bulldozer while
it garbage-collects. This can help you tell whether long pausesin your app are actually caused by garbage
collection (ascanthemrj tracegc command described below.)

Count class instances (mrj extant)

Lists every class currently loaded, in alphabetical order, plus the current and maximum number of
instances. If you add a numeric argument to this command, it displays only classes with at least that
many current instances.

Trace object allocation (mrj tracealloc value)

A valueof 1 turnson tracing of object allocations, O turnsit off. Thiswrites aline of output to the
console whenever an object is allocated, giving the name of the object’s class. This can be very verbose
(it sscary to seejust how many String and StringBuffer objects the most seemingly ssmple code can
generate!) but can also be very useful for checking how efficient your codeis at using objects.

Trace garbage collection (mrj tracegc value)

A valueof 1 turnson tracing of garbage collection, O turnsit off. Thiswill write a bunch of detailed info
about garbage collection whenever it occurs. Almost none of this information will be of any use to you,
but it can be helpful to see visual evidence that garbage collection is occurring.

Method tracing (mrj tracem value)

A valueof 1 turns on method tracing, O turnsit off. Method tracing writes aline of output to the console
whenever any method is entered or exited. Thisresultsin reams of output -- you should first use mrj

redirect to writeto afile, not the console window! -- but can be quite useful for examining the flow
of execution without stopping the program or when no high-level debugger is available.

Instruction tracing (mrj trace value)

A valueof 1 turnson instruction tracing, O turnsit off. Instruction tracing writes aline of output to the
console for every Java bytecode instruction that’s executed. Thisis very rarely useful, and produces
staggering amounts of output -- usemrj redirect first to write to afile. It aso has no effect when

running JiTted code, so you probably want to disable the J T before launching MRJ if you plan on using
this.

In MRJ 2.1 not all bytecodes executed get displayed. We plan to fix thisin the next release.

Graph references (mrj graphrefs handle)

file:///Monster%20Boot/Apple/Week%200f%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html Page 6 of 9

TN 1154: Debugging Java Code With MacsBug 2/26/99 3:31 PM

The debug build of MRJ enables extra commandsin the MRJ demd. (They’re not in the regular build
because supporting them makes MRJ slower or use more memory or both.)

The debug build aso has alimited form of deadlock-checking built into the thread scheduler: in the case
of aclassic two-thread deadlock it will automatically drop into MacsBug with a user break warning about
adeadlock. You should immediately use “mrj d1” to get more information.

Another handy feature of the debug build isthat it will display acursor shaped like alittle bulldozer while
it garbage-collects. This can help you tell whether long pausesin your app are actually caused by garbage
collection (ascanthemrj tracegc command described below.)

Count class instances (mrj extant)

Lists every class currently loaded, in aphabetical order, plus the current and maximum number of
instances. If you add a numeric argument to this command, it displays only classes with at least that
many current instances.

Trace object allocation (mrj tracealloc value)

A valueof 1 turnson tracing of object allocations, O turnsit off. Thiswrites aline of output to the
console whenever an object is allocated, giving the name of the object’s class. This can be very verbose
(it' s scary to seejust how many String and StringBuffer objects the most seemingly smple code can
generate!) but can also be very useful for checking how efficient your codeis at using objects.

Trace garbage collection (mrj tracegc value)

A valueof 1 turns on tracing of garbage collection, O turns it off. Thiswill write a bunch of detailed info
about garbage collection whenever it occurs. Almost none of thisinformation will be of any useto you,
but it can be helpful to see visua evidence that garbage collection is occurring.

Method tracing (mrj tracem value)

A valueof 1 turns on method tracing, O turnsit off. Method tracing writes aline of output to the console
whenever any method is entered or exited. This resultsin reams of output -- you should first use mrj

redirect to write to afile, not the console window! -- but can be quite useful for examining the flow
of execution without stopping the program or when no high-level debugger is available.

Instruction tracing (mrj trace value)

A valueof 1 turnsoninstruction tracing, O turnsit off. Instruction tracing writes aline of output to the
console for every Java bytecode instruction that’s executed. Thisis very rarely useful, and produces
staggering amounts of output -- usemrj redirect first to write to afile. It aso has no effect when
running Ji Tted code, so you probably want to disable the JIT before launching MRJif you plan on using
this.

In MRJ 2.1 not all bytecodes executed get displayed. We plan to fix thisin the next release.

Graph references (mrj graphrefs handle)

A more involved reference tracker thanmrj fr, thistransitively searches for chains of references from
roots (like static variables) that point to the given object and thus keep it from being garbage collected.

file:///Monster%20Boot/Apple/Week%200f%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html Page 7 of 9

TN 1154: Debugging Java Code With MacsBug 2/26/99 3:31 PM
Warning:
This command was written in a hurry (Steve Zellers needed to squash some memory leaks) and has been
only minimally tested in MRJ 2.1. It does not work in Apple Applet Runner, and (ironically) can leak
memory into the application heap.

This command waits for the main MRJ thread to get control, does its work,
then writes the results to System. out. Here s the beginning of some typical outpuit:

mrj graphrefs $6b11f18
recursively searching for references to $6b11f18
References to: $6b11f18
instance field: $6bllaa8 java/lang/
Thread.target(Ljava/Zlang/Runnable;)
instance field: $6b126c8 com/apple/mrj/console/Console$ConsoleArea.this$0(Lcom
apple/mrj/console/Console;)
instance field: $6b13628 com/apple/mrj/
console/Console$l. this$0(Lcom/apple/mrj/console/Console;)
java thread var ref $6b11f18 at $x (tid $68ef584,)

References to: $6bllaa8

array element: $6bllea8 [1]

c thread found $6bllaa8 at $680f2fc (tid $6adda7c, ConsoleThread)
c thread found $6bllaa8 at $680Ff34c (tid $6adda7c, ConsoleThread)
c thread found $6bllaa8 at $680F370 (tid $6adda7c, ConsoleThread)
c thread found $6bllaa8 at $680Ff3e8 (tid $6adda7c, ConsoleThread)
java thread var ref $6bllaa8 at $x (tid $68ef558,)

Traces are separated by blank lines. Each trace starts with “References to:” followed by the handle of
the object it’ stracing, and then lists all references to that object, such as instance variablesin other
objects, static variables, and local variables of current stack frames.

Thefirst trace isfor the object you requested. Subsequent traces are for objects found in previous traces.
Theresult, if you follow from one trace to another, lets you find out exactly what chains of references are
keeping an object from being garbage collected.

This output is pretty hard to read and cries out for anicetool to interpret it. For now all we can suggest is
pasting the output into a good programmer’s editor and using the Find command to find matching hex
values.

Back to top
I nspecting Objects

Y ou can examine the fields of Java objects and the elements of arraysif you know the object/array’s
handle. Thisisa32-bit object ID. There are three ways to find a handle:

1. Many dcmd commands display object handles. For instance, mrj sc displaysthe handle of the
Thread and of thereceiver (“this”) of every stack frame.

2. Themethod Object.hashCode happensto return the object’s handle shifted right 3 bits. So to
print foo’ s handle to the console you can use:
System.out.printIn(Integer.toHexString(foo.hashCode()<<3));

Thiswill not work if the object’ s class overrides hashCode to return adifferent value! Soit’s
useless on Strings and Points, for instance. But for most classes you can use thisin your

lAamminAa AAAA +A A tha hanAl A AF DieAf il AT Ante +A HhA ~iAneAl A

file:///Monster%20Boot/Apple/Week%200f%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html Page 8 of 9

TN 1154: Debugging Java Code With MacsBug 2/26/99 3:31 PM

TUYYII 1y LUUC LU UUTT Y LT 1A TUITTSD U USTT Ul UYJTULD LU LT LUIIDUIC,

This behavior may obviously changein the future if we re-implement the VM.
Display Object (mrj do handle)

Displays the object with the given handle. The results might look like:

jJava.lang.ThreadGroup@5D590C0/5D0A668
SuperName: java/lang/Object
ClassName: java/lang/ThreadGroup
parent. (Ljava/lang/ThreadGroup;) = $05d540a0
name. (Ljava/lang/String;) = $05d590d0
maxPriority. (1) = 10
destroyed.(2) = false
daemon.(Z2) = false
vmAl lowSuspension. (Z2) = false
nthreads. (1) = 3
threads. ([Ljava/lang/Thread;) = $05d59090
ngroups.(l) =1
groups. ([Ljavaslang/ThreadGroup;) = $05d5a948
ClassName: java/lang/Object

Thefirst line shows the object’ s class-name and handle. (The second number after the “/” is not
useful.) The second line shows the name of the superclass.

After that, follow blocks for the object’ s class and each superclass. Each block starts with the classname
and then shows all variables declared in that class and their values for that object. (Static variables have

“[static]” at theend.)

Each variable entry shows its name, then its type in parentheses. The type follows the typical encoding
scheme used by the VM Single letters for primitive types (1 for int, z for boolean, etc.) and for object
types, “L” followed by the classname followed by “;”.

If avariable stypeisan object, the value shown is the object’ s handle, so you can use afurther mrj do
command to inspect that object.

Display array (mrj da handle)

Displays the contents of the array with the given handle. The first line shows the type of the array
elements and the length of the array; then, each element islisted on a separate line.

To list only aportion of an array, you can provide two extra parameters that specify thefirst item to
display and the item after the last one to display; for example:

mrj da 05d5a948 1 3

jJjava.lang.ThreadGroup[4]
1: $00000000 -> NULL
2: $00000000 -> NULL

Display string (mrj ds handle)

A convenient way to display the contents of a String object. (Y ou could use do and da to find and dump
thechar[] array in the String, but it's awkward.)

file:///Monster%20Boot/Apple/Week%200f%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html Page 9 of 9

TN 1154: Debugging Java Code With MacsBug 2/26/99 3:31 PM

This command doesn’t do very well with non-ASCII characters, since that would require higher level
trandation services that aren’'t available from within MacsBug.

Find a class (mrj fc name)

Locates aloaded class with the given name Y ou need to specify the complete name including packages,
and package names need to be separated with “/” instead of “.”; for historical reasons, that’s the way
classnames are represented internally.

If the classis found, the command will return the handle of its Class object. That object usually isn’t

very useful, but this command can till be handy to determine whether or not a particular class has been
loaded yet.

Dump class methods (mrj dcm classname)

Displays al the methods of a given class (including inherited ones.) The classname hasto be fully
specified, with “/”s, as described above for mrj fc. The output format is similar to that of mrj do:

There' sasection for the class and each superclass. Each section shows the classname, then each
method introduced by that class. Each method is shown on aline containing:

1. The method’s name.

2. Themethod’ s signature. The parameter types are shown in parentheses, then the return type.
The types follow the typical encoding scheme used by the VM : Single letters for primitive types
(1 for int, v for void, z for boolean, etc.) and for object types, “L” followed by the classname
followed by “;”.

3. Maodifierslike static and synchronized.

Dump object methods (mrj dom handle)

Similar tomrj dcm, but dumps the methods of the class of the object whose handleis given.

Back to top

Interpreting Stack Crawls and Thread Dumps

Themrj sc andmrj threads commands both display stack crawls, and there’salot of cryptic but
useful information packed into them. A typical stack crawl looks like:

"QDPipeline"
TID: $60albf8, prio: 5
sys_thread: $5fe3200, priority: 5, saved_sp: $5fc5980
state: WCV, mon: $727ec24, cq: $727ec30
$60alc20 -> java.lang.Object.wait(Object. java:315)
$60al1c20 -> com.apple.mrj.internal _awt.QDPipeline.run(QDPipeline.java:289)
$60albf8 -> java.lang.Thread.run(Thread. java:474)

The thread header
Thefirst four lines display information about the thread:

“Thethread’s name” In quotes on thefirst line. Thisisthe String parameter passed to the thread’s

file:///Monster%20Boot/Apple/Week%200f%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html Page 10 of 9

TN 1154: Debugging Java Code With MacsBug o _ 2/26/99 3:31 PM
constructor. If you don’t provide one, you get a default name like “ Thread-7.” Giving your threads
meaningful namesis quite useful when debugging.

TID: Thisisthe handle of the Thread object. Y ou can use this with object-inspection commands like mr j
do.

prio: Theregular Javathread priority, from 1 to 10. Y ou might notice that the “main” thread has
priority 11 -- thisisimpossible to do programmatically, but we can set it that way because we wrote the
JVM. The main thread needs to be able to pre-empt any other thread when a JManager call comesin.

sys_thread: Pointsto the native thread structure. Y ou can usethemrj thd command to display lots
of cryptic information about it.

saved_sp: O *current thread* : Thesaved_sp pointsto the thread’ s native stack; useit asthe
argument to MacsBug' s regular stack crawl command sc7 to display the stack. (But sc7 stack crawls
aren’t very accurate and tend to display alot of junk.) If you see *current thread* instead, that means
that thisisthe thread currently running; use sc or sc7 with no arguments to see its native stack.

priority: For historical reasons, thisisaduplicate of the prio: field on the previousline.

state: Thethread'scurrent state. RDY means“ready”: the thread isrunnable, and is either running
now or will run when the scheduler givesit achance. (It might still never get achance to run if higher
priority threads are always busy.) WON means “waiting on monitor”: this usually means that the thread
is blocked entering asynchronized method or statement because another thread is already synchronized
againgt that object. (Unfortunately, due to abug in the demd, arunnable thread is sometimes incorrectly
listed aswmMON.) wcv means “waiting on condition variable’: the thread is blocked inthe Object.wait
method and hasn't yet been woken up by an Object.notify or notifyAll call. SUSP meansthe
thread has been suspended via Thread . suspend.

mon: If the thread' s state iswMON, thisfield shows the ID of the monitor it’s blocked on. Monitors are
usually associated with objects, but a monitor ID is not an object handle, and there are monitors that don’t
correspond to objects. You can usethemrj fm command to find which Java object owns that monitor, or
possibly themrj mon command to display cryptic information about the monitor itself.

cq: If thethread s stateiswcy, thisfield showsthe ID of the condition queue it’swaiting on. Thisisan
internal data structure with no user-serviceable parts inside.

The stack crawl itself

After the thread header comes the Java stack crawl. Thisis mostly identical to the kind of stack crawl
you’ re used to seeing when an exception is dumped to the console.

The stack frames are listed in reverse chronological order, so the current method is at the top.

There' s an additional hex number at the beginning of each line, which is the object handle of the“this”
variable (or receiver) of the method. Y ou can use thisin conjunction with object inspection commands
likemrj do.

After the object handle comes the name of the method. After that in parentheses is the name of the source
file and the exact line number.

Note:

file:///Monster%20Boot/Apple/Week%200f%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html Page 11 of ©

TN 1154: Debugging Java Code With MacsBug 2/26/99 3:31 PM
The source file and line number will not be displayed if the line-number mapping table is not found in
the classfile. (If you compiled your code with Metrowerks CodeWarrior, make sure the debugging dot
Is turned on next to the source file in the project window.)

The source/line information will also be replaced with “ (Compiled Code)” if the method has been
trandated into native code by the JIT: the JIT isn't able to perform the (very difficult) reverse mapping
of native instructions to Java bytecodes. Y ou can prevent this by disabling the J T: remove the“MRJ
PPC JTC” library from the MRJ Libraries folder.

The Monitor Cache Dump

Monitors are the primitives used to implement synchronization on objects. Monitors are not objects, but
an object is assigned amonitor when athread synchronizes against it. (There are also special internal
monitors that are not associated with objects.)

As described above, the header of a stack crawl tells whether the thread is blocked on a monitor and, if
so, which one. The thing you probably want to know next is what object that monitor corresponds to.
Usually (not always) you can determine this by looking in the Monitor Cache Dump section in the “mrj

threads” dump. This section comes right after the last thread’ s stack crawl, and lists the objects that
have most recently acquired monitors. A typical entry looks like this:

"com.apple.mrj.JManager.AVDispatcherThread@60A09C8/618AD48""
<unowned>
Waiting to be notified:
"AVGrp-com.apple.mrj.JManager.JMAWTContextImpl@c6ce6fF-Disp' prio 4

Thefirst line shows the object’ s class. The hex number between the “@” and the“/” isthe object’s
handle, which lets you inspect the object viacommands likemrj do.

The second line shows which thread owns (is currently holding) that monitor, or <unowned> if no
thread ownsiit.

If one or more other threads are blocked on that monitor, they will be listed after aline reading “waiting

to be notified:”. Each thread islisted by name, followed by “@”, followed by the handle of the
thread object and its priority. Y ou can of course find more info about the thread in its stack crawl above.

I’ s worth pointing out two Java objects that often play a prominent role in synchronization problems.
com.apple.mrj.macos.toolbox.Toolbox istheToolbox lock, which is used by the AWT peers and
other native or JDi rect code to synchronize access to the Mac Toolbox. (It's described in much more
detall in Technote 1153, Thread-Safe Toolbox Access From MRJ. And if you seea java. lang.Object
in the monitor cache, it’s probably the treelLock used by the public AWT classes (it'sdeclared in

Jjava.awt.Component) to Synchronize access to the component hierarchy. AWT-related deadlocks often
involve one or both of these.

The Registered Monitor Dump

The last section of the thread dump shows the list of registered monitors. These are monitors that are not
associated with objects but which are known to the VM. These are used internally by things likethe JI T,
the class loader, and the finaizer thread. Normally you don’t need to pay attention to these, but very
rarely you may encounter a deadlock that involves one or them (for instance, we once had a nasty bug
that could cause the JIT and the class loader to deadlock). If you encounter any problemsinvolving these,
it'salmost certainly abug in MRJ, which you should report at once, including astdlog and anmrj log.

file:///Monster%20Boot/Apple/Week%200f%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html Page 12 of 9

TN 1154: Debugging Java Code With MacsBug 2/26/99 3:31 PM
Back to top

Switching Contexts

If only asingle instance of MRJisrunning, themrj dcmd will automatically target it; it doesn’t matter
which application is active at the moment MacsBug was entered. But if you have two Java apps running
at the same time, you' | need to disambiguate them.

To target a particular instance of MRJ, you need to know its CFM context ID. Y ou can find this by using
the MacsBug “frags” command. The output shows alist of applications, and for each app the list of
librariesit’sinstantiated. The header line for an app showsits context ID (with a“#’ sign prepended to
show that it’'sin decimal -- don’t forget to include the “#’ sign when typing in the value.)

Switch contexts (mrj prf context)

Targets the instance of MRJ running in the given context. Subsequent commands will apply to this
instance of MRJ until you target a different one.

Tell context (mrj pr)

Indicates which CFM context istargeted, if any.
Back to top

Further References

e Apple Computer. MacsBug Reference And Debugging Guide. 1995. The complete guide to
MacsBug -- not very tutorial-like, unfortunately, and certainly overkill unless you plan on
debugging or testing alot of native code.

e Lindholm, Tim. The Java Virtual Machine Specification. Addison-Wesley, 1996. The exact
specification for how the VM operates. If you want to know the exact details of how thread
behavior is specified, look here. (It does not discuss implementation specific details of object
layout or thread scheduling, though.)

Downloadables

E Acrobat version of this Technote (how many K?)

Back to top

Acknowlegments

I’d like to thank Mikey McDougall, Sue Manning, and Steve Zellersfor their help in explaining to me the
intricate details of many of these commands, and Steve McGrath for further review.

To contact us, please use the Contact Us page.
Updated: 01-March-99

file:///Monster%20Boot/Apple/Week%200f%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html Page 13 of 9

TN 1154: Debugging Java Code With MacsBug 2/26/99 3:31 PM
Technotes | Contents
Previous Technote | Next Technote

file:///Monster%20Boot/Apple/Week%200f%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html Page 14 of 9

