
Technote 1164
Native Scripting Additions

By Andy Bachorski
Apple Worldwide Developer Technical Support

CONTENTS

Classic Scripting Additions

Accelerated Scripting Additions

Native Scripting Additions

Runtime Environment

Downloadables

This Technote describes the native scripting additions

mechanism for AppleScript introduced in Mac OS 8.6.

The native scripting additions mechanism described here
addresses limitations in the classic code-resource-based
mechanism, and provides a way to package the handlers
in a scripting addition as a single shared library. This
packaging allows the sharing of code and the ability to
maintain persistent state between calls.

This Technote is directed at application developers who
create scripting additions.

5/2/99 12:10 PMTN 1164: Native Scripting Additions

Page 1 of 5file:///Monster%20Boot/Apple/Mac%20OS%208.6%20stuff/tn1164%20new%20AndyB/tn1164.html

Classic Scripting Additions

AppleScript provides a mechanism for extending the syntax of the language through the use of scripting
additions (also called osaxen). This classic scripting addition mechanism was designed in the days when
the Mac OS ran only on 68K machines, and so is based on code resources. These code resources are of
type 'osax' (hence, the name osaxen), each containing the code for a single handler in the scripting
addition.

At startup time, AppleScript installs an event handler in the system dispatch table, which is responsible
for loading scripting additions and gathering their terminologies. This handler scans the Scripting
Additions folder looking for files of type 'osax'. When AppleScript finds one, it scans the file's
resource fork for 'osax' resources and loads any it finds as handlers. After startup, AppleScript checks
the modification date of the Scripting Additions folder every time a script is compiled. If the modification
date changes, AppleScript will rescan the Scripting Additions folder and load any new scripting additions
it finds.

Note:
The Scripting Additions folder scanning mechanism will only load, or reload, handlers for scripting
additions added to, or replaced in, the folder. If a scripting addition is removed from the Scripting
Additions folder, its handlers can only be removed by restarting the system.

The 'osax' resources found are not directly installed as handlers, but rather are indirectly called by
AppleScript's master loader. A special dispatch handler is installed for each scripting addition handler
installed by AppleScript. It is the dispatch handler's job to ensure that when a scripting addition handler is
called, the required 'osax' resource is loaded and ready to be called. The 'osax' resources are loaded
in the system heap, and are marked as purgeable to help reduce AppleScript's memory footprint.

The handler in the 'osax' resource is identified by its resource name, which encodes the type of handler
(event or coercion) and the ID codes needed to install the handler. A source of difficulty when building
scripting additions is keeping the resource name and the handler's terminology in sync. You also need to
be concerned about resource ID conflicts and other packaging issues. See the AppleScript Scripting
Additions Guide: Writing Scripting Additions for more information about the format of 'osax' resource
names.

Being resource-based, the classic scripting addition mechanism has a number of limitations which restrict
how scripting additions can be written and what they can do. Since 'osax' resources are marked as
unlocked and purgeable when they are not in use, they can move around or be purged between uses. This
means that each 'osax' resource needs to be completely self-contained. Furthermore, since the
resources can, and will, be purged from memory, it is more difficult to maintain persistent state between
calls.

5/2/99 12:10 PMTN 1164: Native Scripting Additions

Page 2 of 5file:///Monster%20Boot/Apple/Mac%20OS%208.6%20stuff/tn1164%20new%20AndyB/tn1164.html

Accelerated Scripting Addition

In the classic scripting addition mechanism, the only way to create a native scripting addition is to
package it as an accelerated code resource (ACR). This method has its own complications and does not
address any of the limitations of the classic mechanism. Because of the complications accelerated code
resource cause, we strongly discourage anyone from writing an ACR-based scripting addition.

The problem with ACRs is caused by the way AppleScript loads and prepares 'osax' resources. The
classic scripting addition mechanism looks only for 68K 'osax' resources, and since each of these must
be self-contained, AppleScript doesn't need to worry about what happens when they are purged. It only
cares that the 'osax' resource is in memory before it's called.

It is this lack of concern for what happens when an 'osax' resource is unloaded that is at the root of the
ACR problem. Since AppleScript doesn't know about ACRs, it doesn't do anything special when the
ACR is unloaded. This means that any connections the ACR has to other CFM libraries it uses are never
closed. When the ACR is reloaded by AppleScript, it will open a new connection to the CFM libraries it
needs. This causes a small (8-byte) leak in the system heap each time the accelerated code resource is
unloaded and reloaded. If the ACR-based scripting addition is used frequently, this leak can cause the
system to run out of memory.

Back to top

Native Scripting Additions

A native scripting addition, as the name implies, contains PowerPC code. This code must be in a single
PEF container in the data fork of the scripting addition file. The packaging of the executable code is the
only difference between a native and classic scripting addition file (other than the 'cfrg' resource). This
allows you to build a fat scripting addition by simply including both the classic 68K 'osax' resources
and the native code fragment.

Whether native or classic, scripting addition files will contain resources of other types. A terminology
resource (type 'aete') is required to provide the terminology for the handlers in the scripting addition.
The scripting addition file may also contain any other resources needed by its handlers. A scripting
addition size resource ('osiz') is not needed or used by native scripting additions, but may be included if
required for the 68K handlers in a fat scripting addition.

The changes needed to support native scripting additions also have the pleasant side effect of allowing
AppleScript to remove handlers for scripting additions that are removed from the Scripting Additions
folder. This benefit results from the way native scripting additions are written. See CFM termination
below for more information.

Note:
The ability to completely unload a scripting addition applies only to the new native scripting additions.
Classic scripting additions have the same limitations they've always had.

Back to top

Runtime Environment

A native scripting addition needs to provide routines for:

 CFM initialization

5/2/99 12:10 PMTN 1164: Native Scripting Additions

Page 3 of 5file:///Monster%20Boot/Apple/Mac%20OS%208.6%20stuff/tn1164%20new%20AndyB/tn1164.html

 CFM initialization
 Event and coercion handling
 CFM termination

Back to top

CFM Initialization

A native scripting addition needs to define a CFM initialization routine for the code fragment containing
the scripting addition's handlers. This initialization routine should check to ensure that any needed
services and system resources are available before installing any handlers. If requirements are met, the
scripting addition should install its handlers.

The scripting addition's handlers must be installed in the system dispatch table:

 Boolean isSysHandler = true;

 anErr = AEInstallEventHandler(theAEEventClass, theAEEventID,
 theHandlerUPP, refcon, isSysHandler);
 anErr = AEInstallCoercionHandler(fromType, toType, theHandlerUPP,
 refcon, fromTypeIsDesc, isSysHandler);

Note:
It is critical that no handlers be installed if anything but noErr is returned by the initialization routine. A
returned error will prevent the code fragment from being loaded, which means that if handlers are
installed there won't be any code around when they get called. When this happens, you will see a very
spectacular crash resulting in a visit to your friend, MacsBug. One way to ensure that handlers are
uninstalled would be to place the removal code in a common routine, which can then be called by both
the initialization and termination routines.

In the classic scripting addition model, a flag bit in the 'osiz' resource indicates to AppleScript that the
resource fork of the scripting addition file should be opened before any handler it contains is called. In the
native scripting addition model, it is the responsibility of the handler itself to open the scripting addition's
resource fork if needed.

The scripting addition's initialization routine should save the FSSpec passed to it in the CFragInitBlock
so the resource fork can be opened when needed. This FSSpec is for the library file itself, and can be
used later to open the scripting addition's resource fork.

Back to Runtime Environment

Event and Coercion Handling

Scripting additions are a packaging mechanism for event and coercion handlers used to extend the basic
capabilities of AppleScript. These handlers are written in basically the same way that handlers used
inside an application would be written. What differs between scripting additions and applications is the
packaging of the handlers.

In the classic scripting addition model, handlers need to be a self-contained 'osax' resource. Being
self-contained, there is no way to share code between handlers. This often lead to the duplication of
substantial amounts of code in each 'osax' resource.

With native scripting additions, duplication of code is no longer a problem. When a native scripting
addition contains more than one handler, those handlers can share common code. Native scripting

5/2/99 12:10 PMTN 1164: Native Scripting Additions

Page 4 of 5file:///Monster%20Boot/Apple/Mac%20OS%208.6%20stuff/tn1164%20new%20AndyB/tn1164.html

addition contains more than one handler, those handlers can share common code. Native scripting
additions are packaged as a single code fragment containing all handlers, which means there is no need to
duplicate code. It is often possible with the native scripting addition model to install the same handler for
multiple events or coercions, and vary the behavior as needed based on the input parameters.

Note:
A native scripting addition must be built as a single code fragment contained in the data fork. The
loading mechanism assumes the data fork contains a single fragment. Data forks containing multiple
fragments will result in unpredictable behavior - most likely a crash.

In the classic scripting addition model, a flag bit in the 'osiz' resource indicates to AppleScript whether
or not the scripting addition should accept events from remote systems. This flag is used to provide a
level of security by preventing remote systems from performing potentially annoying or harmful actions.

For native scripting additions, each handler is responsible for detecting and rejecting events from remote
systems (if appropriate). A handler can determine the source of an event by examining the
keyEventSourceAttr attribute in the incoming event. An event from a remote system will have an
attribute value of kAERemoteProcess.

 DescType sourceAttr;
 DescType actualType;
 Size actualSize;

 anErr = AEGetAttributePtr(eventPtr, keyEventSourceAttr, typeType,
 &actualType, &sourceAttr,
 sizeof(sourceAttr), &actualSize);
 if (sourceAttr == kAERemoteProcess)
 {
 return errAEEventNotHandled;
 }

If the native scripting addition needs to open its resource fork, it must open it after a handler has been
called, and close it before the handler exits. It should also have save the FSSpec for the scripting addition
file, as describe in the CFM initialization section.

 SInt16 oldResFile;
 SInt16 osaxResRef;

 oldResFile = CurResFile();
 osaxResRef = FSpOpenResFile(iconFileFSSPtr, fsRdWrPerm);

 // Do your handler stuff here

 CloseResFile(osaxResRef);
 UseResFile(oldResFile);

Note:
When opening and closing a scripting addition's resource fork, it is important to restore the resource
chain to the same state it was in when the scripting addition was called. This means that you must save
and restore the current resource file around the opening and closing of the resource fork, as shown in the
above example.

Back to Runtime Environment

5/2/99 12:10 PMTN 1164: Native Scripting Additions

Page 5 of 5file:///Monster%20Boot/Apple/Mac%20OS%208.6%20stuff/tn1164%20new%20AndyB/tn1164.html

Back to Runtime Environment

CFM Termination

A native scripting addition needs to define a CFM termination routine for the code fragment containing the
scripting addition's handlers. The scripting addition's termination routine is called when AppleScript
closes its connection to the scripting addition. This closure will happen when the system is shutdown or
restarted. It will also happen when the scripting addition is removed from the Scripting Additions folder
by the user.

When the termination routine is called, it must perform any actions needed to close down the scripting
addition. One very important termination action is to uninstall any handlers, either event or coercion, that
the scripting addition has installed. Failure to do this will most likely result in a crash when a script
attempts to call a handler in the scripting addition, since the handler will no longer be available.

 Boolean isSysHandler = true;

 (void) AERemoveEventHandler(theAEEventClass, theAEEventID,
 theHandlerUPP, isSysHandler);
 (void) AERemoveCoercionHandler(fromType, toType, theHandlerUPP,
 fromTypeIsDesc, isSysHandler);

Note:
While it is legal to pass nil for the AEEventHandlerUPP parameter when calling
AERemoveEventHandler, and for the AECoercionHandlerUPP parameter when calling
AERemoveCoercionHandler, you should always pass the same UniversalProcPtr you used when
installing the handler. This allows the Apple Event Manager to do an extra level of sanity checking,
which helps ensure that your termination routine doesn't uninstall a handler that some other scripting
addition mistakenly installed over the top of yours.

Back to Runtime Environment

Back to top

Further References

Inside Macintosh: Mac OS Runtime Architectures / CFM-Based Runtime Architecture
AppleScript Scripting Additions Guide: Writing Scripting Additions

Back to top

Downloadables

Acrobat version of this Note (how many K?)

Acknowledgments

Thanks to Chris Espinosa, Steve Evangelou, Ingrid Kelly, Chris Nebel, and Quinn "The Eskimo!"

5/2/99 12:10 PMTN 1164: Native Scripting Additions

Page 6 of 5file:///Monster%20Boot/Apple/Mac%20OS%208.6%20stuff/tn1164%20new%20AndyB/tn1164.html

To contact us, please use the Contact Us page.
Updated: 10-May-99

Technotes | Contents
Previous Technote | Next Technote

5/2/99 12:10 PMTN 1164: Native Scripting Additions

Page 7 of 5file:///Monster%20Boot/Apple/Mac%20OS%208.6%20stuff/tn1164%20new%20AndyB/tn1164.html

