Technote 1141
Extending and Controlling Sherlock

By John Montbriand
Apple Worldwide Developer Technical Support

CONTENTS M
. ac OS 8.5 includes several enhanced searching
Internet Search Plug-ins capabilities, known collectively as Sherlock.
Previoudly, the Mac OS Find application allowed users
Search Plug-in Files to search mounted disk volumes for files based on
An Example information such as name, modification date, and file
Internet Search and XML Search type. Sherlock retains this functionality, but also extends
Results the user’ s search options to include both the content of
Ti ps for Search Site files and the Internet.
Administrators
Internet Search Interface Sherlock 2 adds a number of new features to the array of
Language BNF search options presented to the user. To accommodate
AppleScript Support those new features, some additions have been made to
the Internet Search Plug-in language, new applescript
Searching the Internet commands have been added, and an additional routine
Selecting Search Sites has been added to the FindByContent suite. Where
Searching Files appropriate, these new features are described in this
Indexing Volumes document.
Indexing Containers
Search Channels Find by Content library information formerly found in
The Optional KAEOpenDocuments this note has been moved to Technote TN1180
App|e Event Parameter “Sherlock’s Find By Content Li brary.”

Change History
Acknowledgments

Overview

To perform an Internet search, the Sherlock application sends query information to one or more Internet
search sites. The information returned by the search sitesis interpreted by the Sherlock application and
then displayed for perusal. As each Internet search site hasits own particular format for query and
response information, the Sherlock application uses plug-ins that describe data formats expected and
provided by individual Internet search sites for formatting queries and parsing response data. Internet
search site providersinterested in building their own Internet search site plug-inswill find directions for
doing so in theInternet Search Plug-ins section.

AppleScript commands for accessing the new content-based search and Internet search facilities
provided by the Sherlock application are available. These include commands for searching by content, a
command for indexing volumes, and commands for performing Internet searches. These commands are
discussed in greater detail in the AppleScript Support section.

The Sherlock application, when asked to open afile that was found by way of a content-oriented
search, attaches information about the search and why the file was selected to the 'odoc’ Apple event it
passes to the Finder. The Finder passes this information along to applications as a property associated
with the *odoc*® Apple event. Applications can access thisinformation and use it to perform further
search and display actionswhen it isfound in the *odoc* event. More information can be found in the
kA EOpenDocuments section.

Find By Content is anew system-level facility implemented as a Code Fragment Manager library. The
Sherlock applicationisaclient of Find By Content and utilizes its search facilities for performing
content-based searches. Devel opers interested in using the Find By Content services from within their
applications may do so by linking against the PowerPC Code Fragment Manager library named “Find
By Content” (without the quotes). Routine descriptions and examples are provided in the Find By
Content section below.

I nternet Search Plug-ins

The “ Search Internet” feature in the Sherlock application alows usersto perform Internet searches using
one or more Internet search engines. The Sherlock application itself contains no information about the
exact data formats expected or generated by individua Internet search engines, when accessing any
particular Internet search site, the Sherlock application uses a search plug-in file that describes the data
formats both expected by the site for queries and produced by the site in its responses to queries.
Internet Search Interface Language (1SIL) isthe language used in search plug-in files so that Internet
search site administrators may provide their own search plug-in files.

ASCII text describing the search siteis contained in a search plug-in’s data fork. The resource fork may
be used for custom icons, Finder strings, et cetera. Search plug-in files have the creator code " fndf*
and thefile type "issp™ and will be only recognized by the Sherlock application when they residein the
“Internet Search Sites’ Folder (FindFolder type = "issf"). When dropped onto the System Folder’s
(closed) icon, files of type "issp™ are autorouted to the “ Internet Search Sites’ folder.

ISIL ismodeled closely after the HTML it is used to describe, so HTML authors familiar with the
syntax should have little or no trouble creating their own search plug-in files. An exact specification of
the language can be found in the Internet Search Interface L anguage BNF section, and the sections that
follow discuss the language in greater detail.

To create asearch plug-in file, you will need atext editor program—Simple Text will do—and a utility
that will allow you to change the plug-in’sfile type. The basic steps for editing a search plug-in file are:

Open or create and then edit the file using your text editor program.
Save any changes you make and close thefile.

Change thefile type of thefilefrom "TEXT" to "issp”.

A 0w NP

Test your file (now a Sherlock plug-in) using the Sherlock application.
If satisfied, you're done: stop.

o

Change the file type of the search plug-in from "issp” to "TEXT".
6. Gotothefirst stepinthislist.

If your text editor edits any file regardless of type and does not change the types of thefilesit edits, you
can skip steps 3 and 5.

The Sherlock application scansthe “Internet Search Sites’ only once when it is starting up. Y ou should
restart the Sherlock application each time you would like to test your search sitefile.

Back to top

Search Plug-in Files

Search plug-in files contain ASCII text formatted similarly to the HTML text used to define web pages.
Accordingly, terminology used to describe HTML is used in this document’ s description of ISIL
syntax. Information describing an Internet search site is contained in a block labeled with the SEARCH
tag. Thisblock is used to describe how the Sherlock application sends queries to an Internet search site,
and it includes information such as the site’ s URL, the HT TP command used to send a query, and
query parameters. Listing 1 illustrates the typical layout for a SEARCH block.

<SEARCH
name = "'<search engine name>"
method = [''get™ | "post']
action = "<url to address>"
[update = *<url containing update file>"]
[updateCheckDays = *'<days between update pings>'"]
[description = *“<human-readable-description”>]
[bannerimage = *“<url containing banner image>'"7]
[bannerLink = *"'<url to load when banner clicked>"]>
<INPUT
name = "<input name>"
value = "<value>"
[mode = *"results]>
<INPUT
name = "<input name>"
value = "<value>"
[mode = *“browser™] >
<INPUT
name = "<input name>"
user>
<INTERPRET
[bannerStart = “<text>"]
[bannerEnd = "<text>"]
[relevanceStart = "<text>"]
[relevanceEnd = "<text>"]

[resultListStart = "<text>"]
[resultListEnd = "<text>"]
[resultltemStart = "<text>"]
[resultltemEnd = "<text>"]
[skipLocal=true]

[charset = "<text>"]

[resultEncoding = <integer>]
[resultTranslationEncoding = <integer>]
[resultTranslationFont = "<text>"]>

</SEARCH>

Listing 1. Typical layout for a SEARCH block in a search plug-in file.

Search blocks begin with the <SEARCH> tag (containing a number of attributes, as described in
Table 1) and end with a</SEARCH> tag. Within atypical search block describing an Internet search
site, there will be one or more INPUT tags and an INTERPRET tag. The SEARCH block attributes
describe the search site, how it isto be accessed, and where updates to the search plug-in file can be

found.

Table 1. SEARCH block attributes.

Attribute
Name

Description

name

method

action

update

dateCheckDays

description

bannerlImage

bannerLink

Thisis a human-readable name for the search plug-in.

Themethod attribute specifies the type of HT TP command that should be used
for communications with the HT TP server. Currently, either “GET” or ““POST”
can be specified as the communi cations method.

Specifiesthe full URL to access the search server. Any relative linksin the
result list will be localized using this URL.

Thisisan optional attribute specifying where the most recent version of the
search plug-in fileis kept. If provided, the Sherlock application will
periodically check thisURL for changes. If thefile at this URL isfound to be
more recent than the one that is currently installed, the Sherlock application will
prompt the user to download the new file and automatically install it. Thefile
located at this URL should bein BinHex format (but not otherwise compressed
or encoded).

Thisisan optional attribute specifying the number of days between times when
theupdate URL is checked for more recent versions of the search plug-in file.
If this attribute is not present, the default value of 30 daysis used.

Thisisan optional attribute containing text describing the search engine, its
capabilities, and the content type of the search results. This text may be used
for display in user interface facilities.

Thisisan optional attribute specifying an URL for an image that will be
displayed in the details pane when any result from a query using this search
plug-in is selected. Note: the banner properties of the INTERPRET tag will
override this setting when thereis a conflict.

Thisis an optional attribute specifying an URL that will be loaded when the
banner image is clicked. Note: the banner properties of the INTERPRET tag will
override this setting when thereis a conflict.

Additional SEARCH block attributes for Sherlock 2

routeType

Specifies which Channel the internet search site plug-in belongsin. The System
will route internet search site plug-ins to the “Internet Search Sites” folder of
the System Folder. Sherlock 2 will move plug-ins from the “Internet Search
Sites’ folderto the appropriate Channel folder. If a plug-in does not have a
routeType attribute, then it will be move the “My Channel” Channdl. If a
plug-in has arouteType attribute, then it will be moved to the appropriate
channel. Route types for the default Channels are as follows:

routeType Specification Channel

routeType="internet” Internet

routeType="people’ People
routeType="apple”’ Apple
routeType="reference’ Reference
routeType="“news’ News
routeType="shopping” Shopping

The INPUT tags are used to construct the data field used in the GET or POST command sent to the
HTTP server. The datafield is constructed using the HTTP syntax and the method field determinesthe
method that is used to query the server. A search block may contain one or more INPUT tags, but only
one of the INPUT tags can be aUSER INPUT tag.

INPUT tags may specify an optional mode attribute. The Sherlock application will send two types of
gueries. one when it isretrieving results and another when it sends aquery URL to abrowser. INPUT
tags specifying the “results” mode (the default) are used by the Sherlock application when it sends
gueriesto search sites that will be displayed in the list of search resultsin the Sherlock application’s
window. INPUT tags specifying “browser” will be included in query URL s sent to browser applications
for display. For example, the following two INPUT tags may be present in a search plug-in file:

"results'>
"browser'>

<input name="'sv" value="AP" mode
<input name="'sv" value="IS" mode

Here, &sv=AP will be sent to the server when the Sherlock application will be used to display the
results, and & sv=IS will be sent to the server when aweb browser will be used to display the results.

The INTERPRET tag describes the format of the information returned from search queries sent to the site.
Thisinformation allows the Sherlock application to extract individual search results from aquery and
format them into alist. Table 2 describes the various attributes that may be specified for an INTERPRET
tag. Each attribute specified in the INTERPRET tag specifies atext pattern occurring in the result page
delimiting some specific part of the results. When available, the Sherlock application will use these text
patterns to extract search result information from the result pages returned by Internet search sites and
build lists of items for display.

Table 2. INTERPRET tag attributes.
Attribute Name Description

resultListStart Specifies the text pattern present at the beginning of the list of
search results in the result page returned by the server. If
resultListStart isnot specified, then the Sherlock
application will assume the result list begins at the top of the
result page.

resultListEnd Specifies the text pattern present at the end of the list of search
resultsin the result page returned by the server. If
resultListEnd isnot specified, then the Sherlock application
will assume the result list ends at the bottom of the result page.
TheresultListStart and resultListEnd attributes are used
to define text patterns delimiting the list of results.

resultltemStart Specifies atext pattern present at the beginning of each
individua item in the list of results. When the text specified is
matched in the result page, only links immediately following the
text pattern will be included in thelist of results displayed for the
user.

resultltemEnd

bannerStart

bannerEnd

relevanceStart

relevanceEnd

skipLocal

charset

resultEncoding

resultTranslationEncoding

resultTranslationFont

Specifies atext pattern present at the end of the text used to
describe an itemin the list of results. Text between aresult’s
link and this text pattern will be presented in the details pane.
TheresultltemStart and resultltemEnd attributes are used
to define text patterns delimiting individual itemsin thelist of
results returned by the server.

Specifies atext pattern used to locate the banner image to be
displayed for the search results. Thefirst link following the text
pattern will be used as the bannerLink and the first image
following the text pattern will be used asthe bannerimage. If
thebannerStart attribute is specified and the text patternis
matched, then the bannerLink and bannerImage will override
those attributes specified in the SEARCH tag.

Specifies atext pattern marking the end of the banner
information. The search for abanner Image and bannerLink
will not proceed beyond this text pattern in the result page. The
text patterns defined in the bannerStart and bannerEnd
attributes are used to delimit the banner information that may be
present in the result page. If banner information isfound in the
result page, then it will be used instead of any banner
information specified in the SEARCH tag; otherwise, if no banner
information is found, then the default banner information
specified in the SEARCH tag will be used.

Specifies atext pattern marking the beginning of the relevance
information provided for each item in the list of results. When
present, the first numeric text found after the pattern will be
Interpreted as the relevance of the item. Note: the numbers used
to represent relevance scores should be between 0 and 100.

Specifies atext pattern marking the end of the relevance
information. The search for relevance information will not
proceed beyond thistext pattern. The text patterns defined in the
relevanceStart and relevanceEnd attributes are used to
delimit the relevance score for each individua search result.
Note: the numbers used to represent relevance scores should be
between 0 and 100.

skipLocal isaboolean attribute. If skipLocal istrue, then the
Sherlock application will ignore links that refer to the same host
as specified in the ACTION attribute in the SEARCH tag.

The expected encoding of the HTML results. This attribute may
be set to any value appropriate for the charset HTML metatag.

The encoding that the HTML results are in. This may be any
integer constant defined in <TextCommon . h>.

The encoding that the HTML results should be trand ated to.
Thismay be any integer constant defined in <TextCommon . h>.

the preferred font for the trandated text

Additional INTERPRET tag attributes for Sherlock 2

priceStart

Specifies atext pattern marking the beginning of the price
information provided for each itemin the list of results. When
present, the first numeric text found after the pattern will be

priceEnd

availStart

avai lEnd

dateStart

dateEnd

nameStart

nameEnd

langauge

country

interpreted as the price of theitem. This attribute is only
supported when the plug-inisin a*“ Shopping” channel.

Specifies atext pattern marking the end of the price information.
The search for price information will not proceed beyond this
text pattern. The text patterns defined in the priceStart and
priceEnd attributes are used to extract the price for each
individual search result.

Specifies atext pattern marking the beginning of the availability
information provided for each item in the list of results. When
present, the text found after the pattern will be interpreted as the
price of the item. This attribute is only supported when the
plug-inisina*“Shopping” channel.

Specifies atext pattern marking the end of the availability
information. The search for availability information will not
proceed beyond this text pattern. The text patterns defined in the
availStart and avail End attributes are used to extract the
availability for each individual search result.

Specifies atext pattern marking the beginning of the date
information provided for each itemin the list of results. When
present, the text found after the pattern will be interpreted asthe
date of the item. This attribute is only supported when the
plug-inisina“News’ channel.

Specifies atext pattern marking the end of the date information.
The search for date information will not proceed beyond this text
pattern. The text patterns defined in the dateStart and dateEnd
attributes are used to extract the date for each individual search
result.

Specifies atext pattern marking the beginning of the date
information provided for each item in the list of results. When
present, the text found after the pattern will be interpreted asthe
date of the item. By default, the information of that appearsin
the Name column for each result item isthe first html anchor that
appears in the text between the delimited by the resultitemStart
and resultitemEnd attributes. To have the information from
another anchor appear in the name column, use the nameStart
and nameEnd attributes.

Specifies atext pattern marking the end of the name information.
The search for date information will not proceed beyond this text
pattern. The text patterns defined in the nameStart and nameEnd
attributes are used to extract the name for each individual search
result.

I SO 639 language code of the result page.*
I SO 3166 country code of the result page.*

* An internet search source plug-in can specify language and country codesin the interpret portion
of the a search source. Thisinformation helps Sherlock 2 determine region information. For
Sherlock 2 thisinformation is only used to help determine the price column of a Shopping Channels
search results. In Sherlock 1 thisinformation isignored.

The attributes charset, resultEncoding, resultTranslationEncoding, and
resultTranslationFont arefor interpreting results returned with different character encodings. If the
result page containsthe HTML metatag “charset,” then the Sherlock application will use the Text
Encoding Converter to trand ate the document into a Macintosh encoding.

It is possible, though, that the Sherlock application will not be able to recognize atext encoding by
name. For these cases, search plug-in creators can explicitly specify the character encoding that will be
used in responses to queries by using the resul tEncoding attribute. The value specified for the
resultEncoding attribute can be any integer constant defined in the file <TextCommon .h>. Similarly,
resultTranslationEncoding isused to specify the text encoding that the document should be

trand ated into before processing continues. The value used for this attribute is also an integer constant
from <TextCommon . h>.

For example, if aresult page returned from a search site was encoded using the “euc-jp” character set
(in <TextCommon_h> “euc-jp” isdefined as kTextEncodingEUC_JP = 2336) and we would prefer that
it be trandated to Mac Japanese (defined as kTextEncodingMacJapanese = 1 in <TextCommon . h>)

and displayed using the “Osaka’ font, then the following character trandation values would be specified:

<interpret

resultEncoding = 2336
resultTranslationEncoding = 1
resultTranslationFont = "Osaka'>

INTERPRET tags are optional, and all of the attributes within an INTERPRET tag are optional aswell. If a
SEARCH block does not contain an INTERPRET tag, then every link found in the result page will be
treated as a result and the Sherlock application will present the entire list to the user as the results of her

query

With Sherlock 2, a plug-in can support multiple INTERPRET tagsin a search tag. Multiple INTERPRET
tags can be used when a given site can return result pagesin anumber of different formats or results
may be returned on the same page in anumber of different sections. With older versions of Sherlock,
only thefirst interpret tag will be used.

Back to top

An Example

In thisexample, it is assumed that the Internet search site that we are writing the search plug-in file for
islocated at the URL <http://clarus.apple.com>. (As of thiswriting, this site does not exist, although
the following text iswritten asiif the site does exi<t. If the site did exist, it would presumably enable
visitors to search for information regarding Clarus the Dogcow. An explanation of how visitors other
than dogcattle would make use of the search resultsis beyond the scope of this document and isleft as
an exercise for the reader.)

Step 1: Describe the site in the opening SEARCH tag.

Using your web browser, go to the search site and view the HTML source for the web page.
Somewherein the HTML, you should find a FORM tag as follows:

<form action="http://clarus.apple.com/Titles" method="'get" name="'Search">

Or, it ispossible that the action may be specified asalocal string asfollows:

<form action="/Titles" method="'get" name="Search">

If the action is specified as aloca string, then prefix it with the address in the SEARCH tag’ s action
attribute. Using the information found here, we can construct the opening SEARCH tag for the search
block:

<search
name=""Clarus"
description = "The Clarus Search Site"
action="http://clarus.apple.com/Titles/"
method=get>

From the HTML source, we were able to determine that the action is
http://clarus.apple.com/Titles/ and the method appropriate for communicating with the siteis
get. The name of the site and the description are values we set ourselves.

Step 2: Definethe INPUT tags.

There are two ways to determine what inputs are expected by an Internet search site. Thefirst method is
to manually perform aquery and look at the URL that is sent to the server. The second isto pick
through the HTML to discover the information.

The Query Method. Looking at the query information is the simplest method. For example, if we go
to the search site in our web browser and type the query string “ coffee” and start a search, then we may
observe aURL that lookslike this:

http://clarus.apple.com/Titles?qt=coffee&nh=10

From which, we can locate the inputs. The inputs come after the “?’ and are separated by ampersand
characters[&]. In this query, the inputs are as follows:

qt=coffee
nh=10

Using this information, we can construct the following two INPUT tags:

<input name="qt" user>
<input name="nh" value="10">

There may be some optional parameters available on a search site, so trying different options and
queries may yield more useful information.

TheHTML Method. If theinputs are not present in the URL then they must be determined by
looking at the HTML source. Here, we look for the INPUT tags present in the search site’' sweb page to
determine what will be used to describe the inputs. For example, suppose the first few lines of the
HTML for a search site were formatted as follows:

<form action="/Titles" method="'get" name="Search'>

<table width="100%" cellspacing=0 cellpadding=3 border=0>
<tr><td colspan=4>

Search</td>

<td align=center>Tips
</td></tr>

<tr><td colspan=5>

<input type=""text" name="gt" value="" size="25" MAXLENGTH=255>
</td></tr>

<INPUT TYPE=hidden NAME="nh" VALUE="10"">

</table>

</form>

Between the <form> and </form> tags, there are the two inputs relevant to accessing this search engine:

<input type=""text" name="gt" value="" size="25" MAXLENGTH=255>
<INPUT TYPE=hidden NAME="nh" VALUE="10"">

Again, thisinformation can be used to construct the following two INPUT tags:

<input name="qt" user>
<input name="nh" value="10">

Experimenting with these input parameters and writing different types of query URLSs can provide
useful information about their meaning and use. For instance, after writing several variations of the
query URL, we discovered that nh specifies the number of hits that should be returned in aresponse to
aquery. Rather than 10 hits at atime, we would prefer to see 25 hits, so we change the inputs as
follows:

<input name="qt" user>
<input name="nh" value="25">

Now that the inputs have been determined, there is enough information to put together a complete
search plug-infile:

<search
name=""Clarus Test"
description = "The Clarus Search Site"
action="http://clarus.apple.com/Titles/"
method=get>

<input name="qt" user>

<input name="nh" value="25">

</search>

However, in thisform, although it will be possible for queriesto be sent and results to be displayed, the
lack of an INTERPRET tag means that the results may not be displayed correctly. To ensure that they are,
an INTERPRET tag should be added.

Step 3: Describethe resultsin the INTERPRET tag.

Determining the text delimiters located in the responses returned by Internet search engines requires
examination of the HTML source returned as the response to one or more queries. From this data, we
can determine text patterns delimiting interesting parts of the response information. For example,
suppose the following were returned as aresponse to a query:

<HTML>
<HEAD><TITLE>Sample Results</TITLE></HEAD>
<BODY>

<IMG SRC="http://www.apple.com/main/elements/apple.gif"
ALT="Apple Computer"*

<pP>

<SMALL>90%</SMALL>

Hot News
Apple Hot News - http://www.apple.com/hotnews

Apple Computer
</P>

<pP>

<SMALL>85%</SMALL>

Apple Products

Apple - Products - http://www.apple.com/products

Apple Computer
</P>

</BODY>

</HTML>

Listing 2. A sample HTML response to aquery.

From this information, we can see that the banner section is delimited by the text patterns“<BODY >”
and “<P>" asfollows:

bannerStart=""<BODY>""
bannerEnd=""<p>"

The List of results are delimited by the text patterns "" and "</BODY >":

resultListStart=""
resultListEnd="'</BODY>"

Eachiteminthelist of resultsis bracketed by the text patterns "<P>" and "</P>":

resultltemStart=""<p>"
resultltemEnd=""</P>""

And, the relevance score for each item is bracketed by the text patterns "<SMALL>" and "</SMALL>":

relevanceStart=""<SMALL>""
relevanceEnd=""</SMALL>"

Putting this all together, the complete search plug-in file would have the following contents:

<search
name=""Clarus Test"
description = "The Clarus Search Site"

action="http://clarus._apple.com/Titles/"
method=get>
<input name="qt" user>
<input name="nh" value="25">
<interpret
bannerStart="<BODY>"
bannerEnd=""<p>"
resultListStart=""
resultListEnd=""</BODY>"
resultltemStart=""<p>"
resultltemEnd=""</P>"
relevanceStart=""<SMALL>"
relevanceEnd=""</SMALL>"">
</search>

Back to top

Internet Search and XML Search Results

Itis possible that a search engine may provide a separate machine-readable interface such as Extensible
Markup Language (XML).

<searchResponse>

<advertisement>

</advertisement>

<searchResults>
<resultltem>
<relevance>67%</relevance>
<link>Title</link>

<summary>Summary</summary>
</resultltem>
</searchResults>
</searchResponse>

Listing 3. A sample XML document.

At the time of this document’ s creation, the XML specification is still under devel opment; however,
using the current state of the standard, the Internet Search Interface can be easily configured to interpret

XML result lists. For example, the INTERPRET tag shown below illustrates how a search plug-in could
be set up to interpret the XML document shown in Listing 3.

<interpret

bannerStart = "<advertisement>"
bannerEnd = "'</advertisement>"
resultListStart = "<searchResults>"
resultListEnd = "</searchResults>"
resultltemStart = "<resultltem>"
resultltemEnd = "</resultltem>"
relevanceStart = "<relevance>"
relevanceEnd = "'</relevance>">

Back to top

Tipsfor Search Site Administrators
Comment-style Delimiters

The Sherlock application uses information provided by search plug-in files to extract information from
HTML results returned from Internet search sites. Specifically, information in search plug-infilesis
used to find delimitersin the response information for the banner information and the search results.
The question of the Sherlock application being able to find and display results consistently depends
entirely on the search site remaining in sync with the formats specified in the search plug-in file. When
the formats specified in the search plug-in file are based on anecdotal properties found in one or two
search resultsfiles asin the example above, this sort of desynchronization can occur quite easily
whenever small formatting changes are made in the result pages generated by a search site.

To avoid this problem, it is suggested that search site administrators include comments delimiting the
interesting parts of response pages. By doing so, search plug-in files can be built to use the comment
text as delimiters, and HTML formatting information included in result pages can be modified without
risk of invalidating search plug-in files that have been built to access the search site. For example, the
INTERPRET tags given below could be used to interpret the HTML response information shown in
Listing 4.

bannerStart=""<1-- BANNER START -->"
bannerEnd=""<!1-- BANNER END -->"
resultListStart="<!-- RESULT LIST START -->"
resultListEnd=""<1-- RESULT LIST END -->"
resultltemStart=""<!1-- RESULT ITEM START -->"
resultltemgEnd=""<1-- RESULT ITEM END -->"
relevanceStart=""<!-- RELEVANCE START -->"
relevanceEnd=""<!-- RELEVANCE END -->"

Using these text delimiters, the search provider can freely add additional formatting information to their
response pages without being concerned about invalidating any search plug-in files currently in use.
This approach is strongly recommended for all search site providers creating search plug-in files.

<HTML>
<HEAD><TITLE>Sample Results</TITLE></HEAD>
<BODY>

<I-- BANNER START -->

<IMG SRC="http://www.apple.com/main/elements/apple.gif"
ALT="Apple Computer"

<I-- BANNER END -->

<I-- RESULT LIST START -->

<I-- RESULT ITEM START -->

<pP>

<SMALL>

<I-- RELEVANCE START -->

90%

<I-- RELEVANCE END -->

</SMALL>

Hot News
Apple Hot News - http://www.apple.com/hotnews

Apple Computer
</P>

<I-- RESULT ITEM END -->

<I-- RESULT ITEM START -->

<pP>

<SMALL>

<I-- RELEVANCE START -->

85%

<I-- RELEVANCE END -->

</SMALL>

Apple Products

Apple - Products - http://www.apple.com/products

Apple Computer
</P>

<I-- RESULT ITEM END -->

<I-- RESULT LIST END -->

</BODY>
</HTML>

Listing 4. A smple HTML response to a query that includes delimiting comments.

Banner Advertisements

The Sherlock application usesthe first HTML anchor (that includes a hypertext jump and an image)
found in the banner section as the banner image. For best results, banner advertisements should be
enclosed in an HTML anchor that includes both an hypertext jump (HREF attribute) and an IMG tag
that includes a SRC attribute and, preferably, an ALT attribute. For example, the HTML anchor shown
below illustrates the suggested format for banner advertisements:

<IMG SRC="http://www.apple.com/main/elements/apple.gif"
ALT="Apple Computer"

Result Lists

When interpreting search results, the Sherlock application identifies results by looking for HTML
anchors containing hypertext jump attributes. At least one anchor including an hypertext jump (HREF
attribute) should occur between the text patterns specified in resultltemStart and resultltemEnd or
resultltemStart. The Sherlock gpplication will attempt to interpret HTML results between these text
patterns and expects to find at least one such anchor.

Back to top

Internet Search Interface Language BNF
All tags are case-insensitive and white space isignored.

<search-interface> ::= <search-start> <input-interp-list> <search-end>

<search-start> ::= <left-angle-bracket> search

<search-attr-list> <right-angle-bracket>
<search-attribute> <search-attr-list> |
<search-attribute> | <empty>

<left-angle-bracket> /search <right-angle-bracket>
<name> | <method> | <action> | <update> |
<updateCheckDays> | <description> |

<banner-link> | <banner-image> | <route-type>

<search-attr-list>

<search-end>
<search-attribute>

<banner-link>
<banner-image>
<route-type>

bannerlink <attrib-assign>
bannerimage <attrib-assign>
routeType <white-space> = <white-space> <channel>

<name> = name <attrib-assign>

<method> = method <attrib-assign>

<action> = action <attrib-assign>

<update> = update <attrib-assign>
<updateCheckDays> = updateCheckDays <attrib-assign>
<description> = description <attrib-assign>

<input-interp-list>
<iip-list-item>
<input>

<iip-list-item> <input-interp-list> | <iip-list-item>
<interpret> | <input>
<left-angle-bracket> input

<input-attr-list> <right-angle-bracket>
<input-attribute> <input-attr-list> |
<input-attribute> | <empty>

<name> | <value> | <user-select>

value <attrib-assign>

user

<input-attr-list>

<input-attribute>
<value>
<user-select>

<interpret> ::= <left-angle-bracket> interpret
<interpret-attr-list> <right-angle-bracket>

<interpret-attr-list>::= <interpret-attribute> <interpret-attr-list> |
<interpret-attribute> | <empty>

<interpret-attribute>::= <rl-start> | <rl-end> | <ri-start> | <ri-end>

<banner-start> | <banner-end> | <rel-start> |
<rel-end> | <skip-local> | <new-interpret-attr>
resultListStart <attrib-assign>

<rl-start>

<rl-end> = resultListEnd <attrib-assign>
<ri-start> = resultltemStart <attrib-assign>
<ri-end> = resultltemEnd <attrib-assign>

<banner-start>
<banner-end>
<rel-start>
<rel-end>
<skip-local>

bannerStart <attrib-assign>
bannerEnd <attrib-assign>
relevanceStart <attrib-assign>
relevanceEnd <attrib-assign>
skipLocal

<new-interpret-attr> ::= <price-start> | <price-end> |
<avail-start> | <avail-end> |
<date-start> | <date-end> |
<name-start> | <name-end>

= priceStart <attrib-assign>

= priceEnd <attrib-assign>

= availStart <attrib-assign>

= availEnd <attrib-assign>

= dateStart <attrib-assign>

= dateEnd <attrib-assign>

= nameStart <attrib-assign>

= nameEnd <attrib-assign>

<price-start>
<price-end>
<avail-start>
<avail-end>
<date-start>
<date-end>
<name-start>
<name-end>

<chanel> T
<predefined-chanel> :
<predef-chanel-name> :

= <attrib> | <predefined-chanel>

= <predef-chanel-name>
= internet | people | apple | reference | news | shopping

<attrib-assign> = <white-space> = <white-space> <attrib>

<attrib> = <quotestr> | <doublequotestr> | <noquotestr>

<quotestr> = " one-or-more-letters-not-including-a-single-quote -
<doublequotestr> = " one-or-more-letters-not-including-a-double-quote *
<noquotestr> = one-or-more-letters-not-including-a-space-character

<white-space>
<space-character>
<left-angle-bracket>
<right-angle-bracket>
<empty>

= <space-character> <white-space> | <space-character>
= #0x20 | #0x09 | #O0x0D | #OxOA

<
= >

Back to top

AppleScript Support

The new search facilities provided by the Sherlock application can be accessed from A ppleScript
scripts. AppleScript scripts can ask the Sherlock application to perform an Internet search using one or
more Internet Search Sites or search for files with specific content on local or remote volumes. Each of
these commands returns the results of the search as a string that can be used el sewhere in your script.
Optionally, AppleScript scripts can ask the Sherlock application to display the results of the search.

Sear ching the I nter net

Internet based searches use the “search Internet” command. The “search Internet” command allows
AppleScript scripts to specify the Internet search sites that will be used in the search along with query
information. The query information can be provided as either a string or as areferenceto afile
containing the query information (but not both). Results of the search are returned asastring, and it is
possible to specify that the Sherlock application display the results. Definition 1 includes the “search
Internet” entry from the Sherlock application’s AppleScript dictionary.

search Internet: Search the Internet
sear ch I nter net string—the Internet sites to search, optional

[in channel string] —the channel to search*

[for string]—the text to look for...

[using alias|—...or asaved Find file containing the query

[display boolean]—Specifies whether or not to display the result (default is without display)

Result: string—the URL s that match the query

*Thenew in channel parameter is only availablein Sherlock 2.

Definition 1. The "search Internet" dictionary entry from the Sherlock application.

It isimportant to remember that the “for” and “using” parameters are mutually exclusive and cannot be
used together in one command. Either the query information is provided asastring or it is provided in a
file. If the display parameter istrue, then the Sherlock application will display the results of the search.

The*using” parameter allows query information stored in afile to be used rather than a query string. To
create such afile, use the “ Save Search Criteria’ command in the Sherlock application’s File menu.

The direct object to thiscommand isalist of Internet search site names. If thelist of Internet search site
names is not specified and the “for string” parameter is used, then the same sites that were used in the
last Internet search will be used in the search. Thelist of Internet sitesisignored when the “using dias’
parameter is specified.

Selecting Sear ch Sites

Sherlock provides a AppleScript command allowing you to select the search sites that will be used in the
next Internet search. With Sherlock 2, an additional parameter has been added to the select search sites
command allowing you to select a set of search sites that will be used within a particular channel.

select sear ch sites: Select the specified Internet search sites
select search sites names...—alist of strings
[in channel string]—in the specified channel*

*Thenew in channel parameter isonly availablein Sherlock 2.

Definition 2. The"search" dictionary entry from the Sherlock application.

Sear ching Files

Two AppleScript commands are provided for access to the Find by Content facilities in the Sherlock
application. The first command allows AppleScript scripts to perform searches based on contents of
files and the second allows A ppleScript scripts to create or update index files on particular volumes that
are used by Find By Content. The AppleScript dictionary entry for the “search” command is shown in
Definition 2 and the “index volumes” command is shown in Definition 3. The “search” command
allows AppleScript scriptsto perform searches based on file contents.

sear ch: Search disks or servers
sear ch alias—the volumes or folders to search, optional

[for string]—the text to look for...

[similar to alias]—...or file(s) containing text for Find by Content...

[using alias]—...or asaved Find file containing the query

[display boolean]—(default is without display) Specifies whether or not to display the result

Result: alias—the files that match the query

Definition 3. The "search" dictionary entry from the Sherlock application.

In the “ search” command, the parameters “for,” “similar to,” and “using” are mutually exclusive
parameters and may not be used together in the same command.

Asin the Internet search command, the “using” parameter allows query information stored in afileto be
used rather than aquery string. To create such afile, use the “ Save Search Criteria” command in the
Sherlock application’s File menu.

The direct object to the “search” command isalist of volumes or foldersto search. If no list of volumes
isprovided and either the “ search for” or the “search similar to” parameter is used, then the * search”
command will search al local, indexed volumes. When the “using” parameter is specified, the list of
volumesisignored.

Indexing Volumes

Before the Find By Content facilities can be used to search avolume, the volume must contain an index.
Index files are stored in an invisible folder called “ TheFindByContentFolder” located in avolume' s root
directory and they contain necessary information for performing content-based searches. A volume
cannot be searched by the Find By Content facilities unlessit contains an index. AppleScript scripts can
ask the Sherlock application to either update or create an index file for one or more volumes.

index volumes: Create or update the index(es) of the specified volume(s)
index volumes alias—Ilist of volumes to index

Definition 4. The"index volumes' dictionary entry from the Sherlock application.

Indexing Containers

Sherlock 2 adds a new AppleScript feature allowing callers to re-index particular folders or files without
having to index an entire volume. Thisfeatureis not available with the original version of Sherlock.
Scripts attempting to use this feature with older versions of Sherlock will fail.

index containers: Create or update the index(es) of the specified volume(s)/folder(s)/file(s)
index containers alias—list of volume(s)/folder(s)/file(s) to index

Definition 5. The“index containers’ dictionary entry from the Sherlock 2 application.

Sear ch Channels

Sherlock 2 adds the concept of search channels. To alow script writers full access to this new facility, a
new “channel” class has been added to Sherlock’s AppleScript suite. Scripts can use this new classto
find out what channels are available, get and set the current channel, and refer to channelsin search
commands. Here are some examples of commands that can be used with channels:

count channels

exists channel "Internet”

get channels

get name of channels

get all search sites of channel "Internet"

get current channel
set current channel to channel "Internet"

Back to top

The Optional KAEOpenDocuments Apple Event Parameter

To provide applications with information useful in selecting and displaying parts of documentsin which
users are most likely interested, when the user opens afile that was located by way of a content-based
search from within one of the Sherlock application’ s windows, the Sherlock application will insert
information about the search that led to the file into the kAEOpenDocuments ("odoc™) Apple event that
is used to open the file. The Sherlock application opens files by sending kAEOpenDocuments Apple
events to the Finder. The Finder, when receiving the kAEOpenDocuments Apple event, launches the
application owning the document and passes the event to the application.

This type of kAEOpenDocuments Apple event contains an additional keyAEPropData (defined in
AERegistry.h) parameter. Among the propertiesin the keyAEPropData parameter thereis one
identified using the keyword ~srwd*" that contains the original query string used to locate the file. The
*srwd" property’ s datais formatted as a C-style string.

OSErr GetSearchWordsFromAppleEvent(AppleEvent* i1nAppleEvent,
char* theText, long *iolLength)
{

OSErr err;
DescType outType;
AERecord propData = {typeNull, NULL};

/* set up our variables */
if (ioLength == NULL || theText == NULL) return paramkrr;

/* get the property data from the Apple event */
err = AEGetParamDesc(inAppleEvent,
keyAEPropData, typeAERecord, &propData);

/* extract the search words information */
it (err == noErr)
err = AEGetKeyPtr(&propData, ’srwd®, typeChar,
&outType, theText, *ioLength, iolLength);

/* clean up and return */

AEDisposeDesc(&propData) ;
return err;

Listing 5. Retrieving the search words from and "odoc™ Apple event.

The Example shown in Listing 5 illustrates how an application may extract the query information from
an kAEOpenDocuments Apple event. Here, the routine attempts to retrieve the keyAEPropData
parameter and then it attempts to extract the *srwd*® information from the property data. If no problems
occur and the “srwd™ dataiis present, then the original query text will be returned in the buffer pointed
to by theText, whose length must be passed in ioLength. On return, *ioLength will be set to the length
of the string, and the function will return noErr.

Note: It is possible for GetSearchWordsFromAppleEvent to returnnoErr, but to have also returned
only aportion of the query text. Y ou should compare the size returned in ioLength to the origina value
passed in. If the value returned is larger than the original value, you should resize the buffer to the size
returned, and then call GetSearchWordsFromAppleEvent again.

The presence of this additional parameter will not affect the behavior of existing applications built
according to the guidelines set forth in the “Responding to Apple Events’ chapter of Inside Macintosh:
Interapplication Communication. However, devel opers may choose to take advantage of this new
information when it is present in an Apple event as a clue pointing to the part of the document that the
user would like to seefirst. (The presence of the srwd" information in an kAEOpenDocuments Apple
event implies that the user conducted a search by content and then selected and opened the document
from within the list of filesthat were found in the search.) For example, an application may choose to
highlight all occurrences of the words in the string, view the first occurrence of aword from the string,
or open its find window with one or more of the query terms.

In some cases, however, it is possible that some or all of the words in the query string may not appear
in the document being opened. In a normal search based on a query phrase, Find By Content will locate
filesthat contain one or more of the words in the query. But, when a user selects one or more
documents found in a previous search and requests “similar” documents, then it is possible that some of
the documents found may not contain any of the words from the query string specified in the original
search. Developers accessing the “srwd ™ property should plan for the possibility that some or al of the
keysin the query string may not be present in the document being opened.

Back to top

Further References

o Technote TN1180, “ Sherlock’s Find By Content Library.”
o Technote TN1181, “Sherlock’s Find by Content Text Extractor Plug-ins.”

Back to top

Downloadables

IEAcrobat version of this Note (129K).

Change History

e Originally written in September 1998 by John Montbriand.
e Revised in October 1999 by John Montbriand. The Find by Content library information

formerly found in this note has been moved to Technote TN1180, " Sherlock’s Find By
Content Library."

Back to top

Acknowledgments

Thanks to David Casseres, Pete Gontier, Tim Holmes, Ingrid Kelly, Michael J. Kobb, Eric Koebler,
Alice Li, and Wayne Loofbourrow.

To contact us, please use the Contact Us page.
Updated: 05-October-1999

Technotes | Contents
Previous Technote | Next Technote

