
Thursday, June 18, 1998 TN 1118: Unlocking GDHandles 
Considered Harmful

Page: 1

fi le:// /Monster500/Apple_Web/
Week%20of%206-15/

 

Technote 1118
Unlocking GDHandles  Considered Harmful

by Pete Gontier
Revised by Pete Gontier

Apple Developer Technical Support

 

CONTENTS

The Symptoms

The Problem

The Solutions

Summary

Recently, Apple became aware of problems in Mac

OS and in third-party code which can cause a crash.

The problem occurs when a program inadvertently
unlocks one or more QuickDraw data structures. The
crash typically occurs elsewhere, when the system
accesses one of these data structures under the
assumption that it is locked.

This Technote is addressed to two audiences: developers
whose products make any use of the GDHandle  data
structure, and users who seek more information on
certain intermittent crashes reported in other media.

The Symptoms
The problem manifests most often as a crash in StdText  (MacsBug reports the crash in NQDStdText , which
is the PowerPC version of StdText ). The crash occurs when a half-dereferenced GDHandle  is accessed after a
call which can (and does) move memory.

It should be noted that a crash could theoretically appear in a number of places as a result of the problem. The
problem generally does not occur near the site of the crash. One of the more insidious potential examples of
this is in the cursor drawing routines, which are executed at interrupt time. An unlocked GDHandle  could be
accessed while it is being moved by the Memory Manager, although this is considered a rare, if at all extant,
symptom.

The Problem
NewGDevice  locks a GDHandle  immediately after creating it, and the rest of QuickDraw assumes it will stay
locked. The problem is that some programs, including numerous third-party applications and some versions
of Apple's Monitors & Sound control panel (including the version in Mac OS 8) contain code like this:

   // begin problematic code
   GDHandle  gdh = GetMainDevice  ( );
   HLock  ((Handle)gdh);



Thursday, June 18, 1998 TN 1118: Unlocking GDHandles 
Considered Harmful

Page: 2

fi le:// /Monster500/Apple_Web/
Week%20of%206-15/

   // do something with or to gdh
   // which moves memory (requires gdh to be locked)
   HUnlock  ((Handle)gdh); 
   // this is the problem line
   // end problematic code

The above code assumes that the GDHandle  is unlocked before the code executes, and unlocks it as the code
ends. (Ironically, there was never any need to lock this GDHandle .)

Notes:

Versions of Monitors & Sound which shipped in Mac OS 8.1 and later do not have this problem.

There has always been a requirement that a GDHandle  in the system's graphic device list remain locked.
The requirement is present in the first-released implementation of Color QuickDraw (the Mac II ROMs)
and the original source code contains comments to the effect that a GDHandle  in the system's graphic
device list must never be unlocked.

Thus, the potential for the problem has always been present, though the symptoms have only recently
been isolated. Because of the complex way in which relocatable Memory Manager blocks move over time,
programs which cause the problem have not necessarily also caused the symptoms, and when they have
caused the symptoms, the symptoms have not always been easily reproducible. (The offending programs
have been "getting away with it.")

An exhaustive search of Apple's previous documentation turned up no instances of explicit prohibitions
against unlocking a GDHandle  in the system's graphic device list. Informally communicated Mac OS
programming lore has always held that you should be careful when changing the state of a handle not
created by your own code. We are now making this rule formal and explicit. (See the Developer Solution
section, below, for details.)

The Solutions
The previous version of this Technote claimed there would be a solution which users could apply. In fact,
there is only a developer solution.

Developer Solution

You should make sure none of your code unlocks a GDHandle  in the system's graphic device list. Use code
like the following if you need to make sure a GDHandle  is locked while you access it:

GDHandle  gdh = GetMainDevice  ( );
SInt8 hState = HGetState  ((Handle) gdh);
   HLock  ((Handle)gdh);
    // do something with or to gdh
    // which moves memory (requires gdh to be locked)
   HSetState  ((Handle)gdh,hState);

This code saves the handle's state, locks the handle, and restores the handle's previous state. This means that
if the handle is locked before this code runs, it will stay locked afterward, and if the handle is unlocked before
this code runs, it will be unlocked afterward.

In a perfect world, you would not need to lock or unlock any GDHandle , because it would always be locked
before your program ever saw it. However, the possibility that other programs may erroneously unlock a
GDHandle  in the system's graphic device list is real. The above code shows one proper way to protect



Thursday, June 18, 1998 TN 1118: Unlocking GDHandles 
Considered Harmful

Page: 3

fi le:// /Monster500/Apple_Web/
Week%20of%206-15/

yourself  from that possibili ty.

Another technique would be to avoid locking a GDHandle  entirely and, instead, copy its fields into local
variables as necessary. Most fields of the GDHandle  are small and should not be inconvenient to copy.

Apple has not found any cases in which you need to keep any GDHandle  which is not in the system's graphic
device list locked. For example, a GDHandle  created by NewGWorld is unlocked.

If your program needs to lock any GDHandle , the easiest and safest thing to do is save and restore the state of
the GDHandle  in order to work properly, regardless of whether the GDHandle  is in the system's graphic device
list.

Notes:

This solution does not solve the problem completely with respect to binaries that have already been
deployed. If a GDHandle  is ever unlocked by an existing binary program, the potential for a crash begins
immediately because system code, such as NQDStdText , will not be altered to lock a GDHandle  before
accessing it. This solution only keeps new programs from causing the problem and keeps them from
crashing if they ever encounter an unexpectedly unlocked GDHandle  in the system's graphic device list.
The system, however, may still crash when it encounters such a GDHandle .

An exhaustive search of Apple's previous documentation produced no clear directions for when to use
HUnlock  and when to use HGetState  and HSetState . As a result, DTS has produced a separate
Technote treating this issue in detail.

User Solution

The previous version of this Technote claimed Apple would be releasing a system extension that masks this
problem. Since this Technote's publication, however, Apple has chosen not to release this extension.

Summary

No GDHandle  in the system's graphic device list should ever be unlocked. Some programs, both from Apple
and from third parties, unlock at least one GDHandle  in the system's graphic device list. This can cause a
crash. Developers should preserve the state of any GDHandle  in the system's graphic device list, which needs
to be locked by calling HGetState  and HSetState . There is no solution users can apply.

Further References

The Memory Manager chapter in Inside Macintosh: Memory 
The Graphics Devices chapter in Inside Macintosh: Imaging with QuickDraw 
Technote 1122: "Locking and Unlocking Handles" 
Understanding the Mercutio-GDevice Problem 

Downloadables

 Acrobat version of this Note

Change History

Originally written in February 1998 by Pete Gontier. 



Thursday, June 18, 1998 TN 1118: Unlocking GDHandles 
Considered Harmful

Page: 4

fi le:// /Monster500/Apple_Web/
Week%20of%206-15/

In June 1998, this Technote was updated (version 1.01) by Pete Gontier to remove the description of
the user-level solution. 

Acknowledgments

Extra special thanks to Quinn "The Eskimo!" and Tim Swihart. Thanks to Andy Bachorski, Ernie Beernink,
Cameron Esfahani, Bo3b Johnson, Jim Mensch, Matt Mora, Jim Reekes, and George Warner.

To contact us, please use the Contact Us page.
Updated: 15-June-98

Technotes
Previous Technote | Next Technote | Contents


