
Technote 1154
Debugging Java Code With MacsBug

By Jens Alfke
Apple Java Team

CONTENTS

MacsBug In a Nutshell

The 'mrj' dcmd

Basic Commands

Commands Available In the Debug
Build

Inspecting Objects

Interpreting Stack Crawls and Thread
Dumps

Switching Contexts

Further References

M acsBug, the low-level debugger for the Mac OS,

seems unlikely to be useful for debugging a very
high-level language like Java. Au contraire! The MRJ
plug-in 'dcmd' for MacsBug adds a number of
commands that can help you debug everything from
deadlocks to memory leaks.

MacsBug In a Nutshell

Before you can start using MacsBug to debug Java, you need to install MacsBug and learn the basics of
how to use it. If you’ve already been developing Mac software, this is a non-issue since you’re almost
certainly already familiar with MacsBug, and you can skip to the next section.

However, there are a lot of people developing or testing Java on the Macintosh who are not otherwise
Mac developers and don’t know an A-trap from “Take the A Train.” This section is for them, so it
presumes a lot less Mac technical knowledge than most technotes do.

What’s MacsBug?

MacsBug is Apple’s assembly-level 680x0 and PowerPC debugger for Mac OS. It can be used to debug
code running in most execution environments, from applications to drivers, and everything in between.
It’s often used as a bug-reporting tool by many third-party developers, as well as Mac OS system
software developers.

MacsBug knows nothing about source code, only assembly-language instructions, and its support for
high-level data structures is primitive. But it’s great for examining the exact machine state.

Unlike debuggers on most other platforms, MacsBug is always resident once installed, and can take over
instantly when a crash occurs or when you press a hot-key, even if the machine is otherwise frozen.

Download & Installation

2/26/99 3:31 PMTN 1154: Debugging Java Code With MacsBug

Page 1 of 9file:///Monster%20Boot/Apple/Week%20of%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html

Download & Installation

MacsBug is available from Apple’s developer Web site. As befits a tweaky developer tool, it spends
most of its time in one prerelease state or another, and the latest and greatest version is nearly always
marked as alpha or beta. Nonetheless, it’s still usually best to install the latest prerelease; they’ve proven
to be pretty stable. (Note in particular that as of this writing, only prerelease versions are compatible with
OS 8.5.)

There are a lot of files in the download, but the only one you need is MacsBug itself, which you’ll find
in the “into System folder” folder. Drag it into your System folder (not the Extensions folder!) and
restart. You should see the message “Debugger Installed” appear below “Welcome To Mac OS” in the
Mac OS splash screen as the system begins to boot.

A Very Brief Overview

The MacsBug manual is also available online, but it’s large and intimidating (not to mention slightly
obsolete) and actually overkill for the Java-only developer. Here’s a very brief introduction:

MacsBug loads itself into memory very early in the boot process and hides out invisibly until it’s needed.
(It does consume a bit of RAM.) Three different circumstances will cause MacsBug to appear:

1. A CPU exception or a system error occurs -- both are usually referred to as “crashes.” If these
occur and MacsBug is not installed, then depending on the severity, you get either an
“Unexpectedly quit” alert or a dread bomb box.

2. The system routines Debugger or DebugStr are called. MacsBug will report a “user break,”
usually with a message. This lets software report messages to the user -- usually warnings of
dangerous or unexpected situations. Only special debug versions of software should contain
user breaks.

3. You explicitly invoke MacsBug by holding down the Command (“cloverleaf”) key and pressing
the Power key (the one with the triangle that you use to turn your system on). You can do this
even if the computer is otherwise hung or frozen; if it doesn’t work, things are in really bad
shape and your only option is to force a restart by pressing Command-Control-Power, the dread
“three-finger salute.”

When MacsBug appears, it completely takes over the screen and the CPU. No other application or OS
software can run while MacsBug is visible. This explains why MacsBug’s user interface is so
completely non-Mac-like -- it can’t use any of the Toolbox.

MacsBug is a command-line environment like DOS or a Unix shell. It shows one fixed-size window in
the middle of the screen, with garbage pixels outside the window. There’s an input line at the bottom, a
few lines of machine code disassembly above it, and a large scrolling output area above that. On the left
side is a register and stack display.

You type commands into the input line at the bottom and press Return to run them. You can’t use the
mouse to select text, but most standard editing keystrokes work (arrow keys, delete and forward-delete,
option- and Command- arrow, etc.) You can also press Cmd-V to copy the previous command into the
input line.

Some essential commands

The most vital MacsBug commands are:

help -- Displays a list of help topics. You can get more info by entering “help” followed by
the name of a topic or command.
g -- “Go.” Attempts to resume normal operation. This will only work if you entered MacsBug
on purpose via Command-Power or after a user break: if the system is crashed, you can’t

2/26/99 3:31 PMTN 1154: Debugging Java Code With MacsBug

Page 2 of 9file:///Monster%20Boot/Apple/Week%20of%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html

on purpose via Command-Power or after a user break: if the system is crashed, you can’t
continue normally.
es -- “Exit to Shell.” Attempts to force the currently active application to quit. This is just like
the Command-Option-Escape panic button that non-MacsBug-users use. This may or may not
succeed, depending on how damaged the system is and exactly where you were at the point you
entered MacsBug. If it succeeds, restart ASAP. If not, use...
rs -- “ReStart.” Attempts to restart/reboot the system after some clean-up (for instance, flushing
the disk cache). This is friendlier than Command-Control-Power or pulling out the power cord,
and less likely to cause disk damage.
stdlog -- dumps a text file to your desktop, containing a lot of information about the current
machine state. We ask you to submit one of these when reporting any crash or user-break
involving MRJ.
log -- If you put a filename after the log command, all subsequent MacsBug output will be
written to that file. (The file usually appears in the same folder as the current application.) “log”
with no filename turns off logging.

Back to top

The 'mrj' dcmd

We’ve written a plug-in (called a “dcmd”) for MacsBug that adds a new command, mrj . Actually it
adds many new commands, invoked by name on the command line after the “mrj” part. For instance,
“mrj sc” dumps a Java stack crawl.

The dcmd is available as part of the MRJ SDK, in the folder “Tools: Other Tools: MRJ dcmd for PPC:”.
Just put the file “MRJ dcmd” into the MacsBug Preferences folder of the Preferences folder of your
System folder, and restart.

To use the dcmd, you must have a Java application or applet running. Most of the dcmd’s commands are
not available, and make no sense, otherwise.

Important:
Almost all of the commands described below work only with MRJ 2.1. MRJ 2.0’s SDK included an
earlier version of the dcmd with only two or three commands. Make sure you install the dcmd from the
MRJ 2.1 SDK.

Disclaimer:
This technote describes MRJ 2.1. It is quite likely that the dcmd’s feature set and details of its
commands may change in the future as the JVM is improved. Some commands or features of
commands may not be available depending on how the corresponding area of the JVM is
reimplemented.

Back to top

Basic Commands

Here’s information about the most commonly used commands. (Many of the other commands are for
querying internal data structures and are only of use for debugging MRJ itself.)

If you invoke the dcmd without any command (by typing just “mrj”) it will display a brief list of
commands:

Java log (mrjlog)

2/26/99 3:31 PMTN 1154: Debugging Java Code With MacsBug

Page 3 of 9file:///Monster%20Boot/Apple/Week%20of%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html

Java log (mrjlog)

This is the Java equivalent of stdlog -- it writes a text file to your desktop that contains a lot of
information about the current Java state. Note that there is no space in “mrjlog”! This is really a macro
that opens a log file and runs several mrj dcmd commands that write to it.

Stack crawl (mrj sc)

Displays information about the current thread and its Java stack, with the current stack frame listed first.
The details are described below.

Thread dump (mrj threads)

Displays information about all active threads, including their stacks. Each thread also tells what
monitors it’s acquired (what object it’s currently synchronized against, in Java parlance) and at the end of
the listing is a dump of the cache of the most recently used monitors and who owns them or is waiting
for them.

Deadlock detection (mrj dl)

Looks for a classic deadlock -- two threads, each one blocked waiting for a monitor owned by the other
thread. If it finds one, it will list information about the threads and the monitors.

Synchronization check (mrj sync)

Looks for other possible synchronization problems besides deadlocks, and displays information about
them if it finds any. These include:

Thread holding any monitor (synchronized against anything) while blocked in Object.wait
Thread blocked on a monitor while holding another monitor
Thread suspended (via Thread.suspend) while holding a monitor

These are all technically legal situations but can often lead to deadlock and are thus suspicious if they turn
up.

Redirect output (mrj redirect filename)

Redirects System.out and System.err to the given filename, which should be a full path. If no
filename is given, output is disabled entirely.

The redirection does not take effect immediately -- some Java code needs to be called, and the JVM is
usually not in the right state to do this at the moment that MacsBug was invoked, so the request is
queued until the next time the main thread runs.

Java heap usage (mrj chunks)

Displays the total, used and free space in the Java object heap, and in the handle heap which is associated
with it. Also displays info about each memory “chunk” in the heap, which is generally not of interest.

MRJ non-Java heap usage (mrj alloch)

Displays the amount of memory used by MRJ for things other than objects. These include data loaded
from .class files and internal data structures associated with classes, threads and other things.

2/26/99 3:31 PMTN 1154: Debugging Java Code With MacsBug

Page 4 of 9file:///Monster%20Boot/Apple/Week%20of%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html

Find monitor (mrj fm monitor)

Given a monitor ID (as reported as the “mon:” value in an mrj sc or mrj threads dump) this locates
the object the monitor is associated with, giving its classname and handle. You can then use the handle
with object inspection commands like mrj do to get more information about the object.

Execute a method (mrj exec classname methodname)

Waits for the MRJ main thread to get control, then calls a single parameterless static void method. The
classname needs to be fully qualified with package names separated by “/”s. The method name is
separated by a space, not a “.”!

This isn’t too useful out of the box, but you can turn it into a powerful debugging tool by adding such
methods to your app. For instance, you could add a Debug class in the default/root package, and give it
static void methods like dumpState or startLogging. Then at any moment you can press
Command-Power to enter MacsBug, type “mrj exec Debug dumpState”, and get all kinds of useful
info printed to the console.

Find references (mrj fr handle)

Searches moderately hard for things that point to the given object. This can be useful if you’re trying to
figure out why objects aren’t being garbage collected. I say “moderately hard” because this command
searches the object heap and JNI global references, but not thread stacks, so it may not find all
references.

The references will be listed one per line and described as “instance field,” “array element,” etc. The
handle of the object containing the reference will be given, which you can use as the argument to
another mrj fr command if you want to trace further.

A more sophisticated reference-finder is mrj graphrefs, but it’s only available in the debug build.

Instruction listing (mrj il methodname)

Disassembles the bytecodes of a method. The method has to be named in the usual internal format:

Fully qualified classname with packages separated by “/”s
“.”,
method name
“.”
Encoded parameter types in parentheses
Encoded return type

For example:

il java/lang/Thread.join.()V
 disassembly from $659ed84 java.lang.Thread.join(Thread.java:873)

 [0] 2A aload_0
 [1] 9 lconst_0
 [2] E2 invokevirtual_quick_w Method: "java/lang/Thread.join(J)V"
 [5] B1 return

2/26/99 3:31 PMTN 1154: Debugging Java Code With MacsBug

Page 5 of 9file:///Monster%20Boot/Apple/Week%20of%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html

Back to top

Commands Available Only In the Debug Build

The debug build of MRJ enables extra commands in the MRJ dcmd. (They’re not in the regular build
because supporting them makes MRJ slower or use more memory or both.)

The debug build also has a limited form of deadlock-checking built into the thread scheduler: in the case
of a classic two-thread deadlock it will automatically drop into MacsBug with a user break warning about
a deadlock. You should immediately use “mrj dl” to get more information.

Another handy feature of the debug build is that it will display a cursor shaped like a little bulldozer while
it garbage-collects. This can help you tell whether long pauses in your app are actually caused by garbage
collection (as can the mrj tracegc command described below.)

Count class instances (mrj extant)

Lists every class currently loaded, in alphabetical order, plus the current and maximum number of
instances. If you add a numeric argument to this command, it displays only classes with at least that
many current instances.

Trace object allocation (mrj tracealloc value)

A value of 1 turns on tracing of object allocations, 0 turns it off. This writes a line of output to the
console whenever an object is allocated, giving the name of the object’s class. This can be very verbose
(it’s scary to see just how many String and StringBuffer objects the most seemingly simple code can
generate!) but can also be very useful for checking how efficient your code is at using objects.

Trace garbage collection (mrj tracegc value)

A value of 1 turns on tracing of garbage collection, 0 turns it off. This will write a bunch of detailed info
about garbage collection whenever it occurs. Almost none of this information will be of any use to you,
but it can be helpful to see visual evidence that garbage collection is occurring.

Method tracing (mrj tracem value)

A value of 1 turns on method tracing, 0 turns it off. Method tracing writes a line of output to the console
whenever any method is entered or exited. This results in reams of output -- you should first use mrj
redirect to write to a file, not the console window! -- but can be quite useful for examining the flow
of execution without stopping the program or when no high-level debugger is available.

Instruction tracing (mrj trace value)

A value of 1 turns on instruction tracing, 0 turns it off. Instruction tracing writes a line of output to the
console for every Java bytecode instruction that’s executed. This is very rarely useful, and produces
staggering amounts of output -- use mrj redirect first to write to a file. It also has no effect when
running JITted code, so you probably want to disable the JIT before launching MRJ if you plan on using
this.

In MRJ 2.1 not all bytecodes executed get displayed. We plan to fix this in the next release.

Graph references (mrj graphrefs handle)

2/26/99 3:31 PMTN 1154: Debugging Java Code With MacsBug

Page 6 of 9file:///Monster%20Boot/Apple/Week%20of%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html

The debug build of MRJ enables extra commands in the MRJ dcmd. (They’re not in the regular build
because supporting them makes MRJ slower or use more memory or both.)

The debug build also has a limited form of deadlock-checking built into the thread scheduler: in the case
of a classic two-thread deadlock it will automatically drop into MacsBug with a user break warning about
a deadlock. You should immediately use “mrj dl” to get more information.

Another handy feature of the debug build is that it will display a cursor shaped like a little bulldozer while
it garbage-collects. This can help you tell whether long pauses in your app are actually caused by garbage
collection (as can the mrj tracegc command described below.)

Count class instances (mrj extant)

Lists every class currently loaded, in alphabetical order, plus the current and maximum number of
instances. If you add a numeric argument to this command, it displays only classes with at least that
many current instances.

Trace object allocation (mrj tracealloc value)

A value of 1 turns on tracing of object allocations, 0 turns it off. This writes a line of output to the
console whenever an object is allocated, giving the name of the object’s class. This can be very verbose
(it’s scary to see just how many String and StringBuffer objects the most seemingly simple code can
generate!) but can also be very useful for checking how efficient your code is at using objects.

Trace garbage collection (mrj tracegc value)

A value of 1 turns on tracing of garbage collection, 0 turns it off. This will write a bunch of detailed info
about garbage collection whenever it occurs. Almost none of this information will be of any use to you,
but it can be helpful to see visual evidence that garbage collection is occurring.

Method tracing (mrj tracem value)

A value of 1 turns on method tracing, 0 turns it off. Method tracing writes a line of output to the console
whenever any method is entered or exited. This results in reams of output -- you should first use mrj
redirect to write to a file, not the console window! -- but can be quite useful for examining the flow
of execution without stopping the program or when no high-level debugger is available.

Instruction tracing (mrj trace value)

A value of 1 turns on instruction tracing, 0 turns it off. Instruction tracing writes a line of output to the
console for every Java bytecode instruction that’s executed. This is very rarely useful, and produces
staggering amounts of output -- use mrj redirect first to write to a file. It also has no effect when
running JITted code, so you probably want to disable the JIT before launching MRJ if you plan on using
this.

In MRJ 2.1 not all bytecodes executed get displayed. We plan to fix this in the next release.

Graph references (mrj graphrefs handle)

A more involved reference tracker than mrj fr, this transitively searches for chains of references from
roots (like static variables) that point to the given object and thus keep it from being garbage collected.

2/26/99 3:31 PMTN 1154: Debugging Java Code With MacsBug

Page 7 of 9file:///Monster%20Boot/Apple/Week%20of%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html

Warning:
This command was written in a hurry (Steve Zellers needed to squash some memory leaks) and has been
only minimally tested in MRJ 2.1. It does not work in Apple Applet Runner, and (ironically) can leak
memory into the application heap.

This command waits for the main MRJ thread to get control, does its work,
then writes the results to System.out. Here’s the beginning of some typical output:

mrj graphrefs $6b11f18
 recursively searching for references to $6b11f18
 References to: $6b11f18
 instance field: $6b11aa8 java/lang/
 Thread.target(Ljava/lang/Runnable;)
 instance field: $6b126c8 com/apple/mrj/console/Console$ConsoleArea.this$0(Lcom/
 apple/mrj/console/Console;)
 instance field: $6b13628 com/apple/mrj/
 console/Console$1.this$0(Lcom/apple/mrj/console/Console;)
 java thread var ref $6b11f18 at $x (tid $68ef584,)

References to: $6b11aa8
array element: $6b11ea8 [1]
c thread found $6b11aa8 at $680f2fc (tid $6adda7c, ConsoleThread)
c thread found $6b11aa8 at $680f34c (tid $6adda7c, ConsoleThread)
c thread found $6b11aa8 at $680f370 (tid $6adda7c, ConsoleThread)
c thread found $6b11aa8 at $680f3e8 (tid $6adda7c, ConsoleThread)
java thread var ref $6b11aa8 at $x (tid $68ef558,)

Traces are separated by blank lines. Each trace starts with “References to:” followed by the handle of
the object it’s tracing, and then lists all references to that object, such as instance variables in other
objects, static variables, and local variables of current stack frames.

The first trace is for the object you requested. Subsequent traces are for objects found in previous traces.
The result, if you follow from one trace to another, lets you find out exactly what chains of references are
keeping an object from being garbage collected.

This output is pretty hard to read and cries out for a nice tool to interpret it. For now all we can suggest is
pasting the output into a good programmer’s editor and using the Find command to find matching hex
values.

Back to top

Inspecting Objects

You can examine the fields of Java objects and the elements of arrays if you know the object/array’s
handle. This is a 32-bit object ID. There are three ways to find a handle:

1. Many dcmd commands display object handles. For instance, mrj sc displays the handle of the
Thread and of the receiver (“this”) of every stack frame.

2. The method Object.hashCode happens to return the object’s handle shifted right 3 bits. So to
print foo’s handle to the console you can use:
System.out.println(Integer.toHexString(foo.hashCode()<<3));
This will not work if the object’s class overrides hashCode to return a different value! So it’s
useless on Strings and Points, for instance. But for most classes you can use this in your
logging code to dump the handles of useful objects to the console.

2/26/99 3:31 PMTN 1154: Debugging Java Code With MacsBug

Page 8 of 9file:///Monster%20Boot/Apple/Week%20of%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html

logging code to dump the handles of useful objects to the console.
This behavior may obviously change in the future if we re-implement the JVM.

Display Object (mrj do handle)

Displays the object with the given handle. The results might look like:

 java.lang.ThreadGroup@5D590C0/5D0A668
 SuperName: java/lang/Object
 # ClassName: java/lang/ThreadGroup
 parent.(Ljava/lang/ThreadGroup;) = $05d540a0
 name.(Ljava/lang/String;) = $05d590d0
 maxPriority.(I) = 10
 destroyed.(Z) = false
 daemon.(Z) = false
 vmAllowSuspension.(Z) = false
 nthreads.(I) = 3
 threads.([Ljava/lang/Thread;) = $05d59090
 ngroups.(I) = 1
 groups.([Ljava/lang/ThreadGroup;) = $05d5a948
 # ClassName: java/lang/Object

The first line shows the object’s class-name and handle. (The second number after the “/” is not
useful.) The second line shows the name of the superclass.

After that, follow blocks for the object’s class and each superclass. Each block starts with the classname
and then shows all variables declared in that class and their values for that object. (Static variables have
“[static]” at the end.)

Each variable entry shows its name, then its type in parentheses. The type follows the typical encoding
scheme used by the JVM: Single letters for primitive types (I for int, Z for boolean, etc.) and for object
types, “L” followed by the classname followed by “;”.

If a variable’s type is an object, the value shown is the object’s handle, so you can use a further mrj do
command to inspect that object.

Display array (mrj da handle)

Displays the contents of the array with the given handle. The first line shows the type of the array
elements and the length of the array; then, each element is listed on a separate line.

To list only a portion of an array, you can provide two extra parameters that specify the first item to
display and the item after the last one to display; for example:

mrj da 05d5a948 1 3
 java.lang.ThreadGroup[4]

 1: $00000000 -> NULL
 2: $00000000 -> NULL

Display string (mrj ds handle)

A convenient way to display the contents of a String object. (You could use do and da to find and dump
the char[] array in the String, but it’s awkward.)

2/26/99 3:31 PMTN 1154: Debugging Java Code With MacsBug

Page 9 of 9file:///Monster%20Boot/Apple/Week%20of%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html

This command doesn’t do very well with non-ASCII characters, since that would require higher level
translation services that aren’t available from within MacsBug.

Find a class (mrj fc name)

Locates a loaded class with the given name. You need to specify the complete name including packages,
and package names need to be separated with “/” instead of “.”; for historical reasons, that’s the way
classnames are represented internally.

If the class is found, the command will return the handle of its Class object. That object usually isn’t
very useful, but this command can still be handy to determine whether or not a particular class has been
loaded yet.

Dump class methods (mrj dcm classname)

Displays all the methods of a given class (including inherited ones.) The classname has to be fully
specified, with “/”s, as described above for mrj fc. The output format is similar to that of mrj do:

There’s a section for the class and each superclass. Each section shows the classname, then each
method introduced by that class. Each method is shown on a line containing:

1. The method’s name.
2. The method’s signature. The parameter types are shown in parentheses, then the return type.

The types follow the typical encoding scheme used by the JVM: Single letters for primitive types
(I for int, V for void, Z for boolean, etc.) and for object types, “L” followed by the classname
followed by “;”.

3. Modifiers like static and synchronized.

Dump object methods (mrj dom handle)

Similar to mrj dcm, but dumps the methods of the class of the object whose handle is given.

Back to top

Interpreting Stack Crawls and Thread Dumps

The mrj sc and mrj threads commands both display stack crawls, and there’s a lot of cryptic but
useful information packed into them. A typical stack crawl looks like:

 "QDPipeline"
 TID: $60a1bf8, prio: 5
 sys_thread: $5fe3200, priority: 5, saved_sp: $5fc5980
 state: WCV, mon: $727ec24, cq: $727ec30
 $60a1c20 -> java.lang.Object.wait(Object.java:315)
 $60a1c20 -> com.apple.mrj.internal.awt.QDPipeline.run(QDPipeline.java:289)
 $60a1bf8 -> java.lang.Thread.run(Thread.java:474)

The thread header

The first four lines display information about the thread:

“The thread’s name” In quotes on the first line. This is the String parameter passed to the thread’s

2/26/99 3:31 PMTN 1154: Debugging Java Code With MacsBug

Page 10 of 9file:///Monster%20Boot/Apple/Week%20of%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html

“The thread’s name” In quotes on the first line. This is the String parameter passed to the thread’s
constructor. If you don’t provide one, you get a default name like “Thread-7.” Giving your threads
meaningful names is quite useful when debugging.

TID: This is the handle of the Thread object. You can use this with object-inspection commands like mrj
do.

prio: The regular Java thread priority, from 1 to 10. You might notice that the “main” thread has
priority 11 -- this is impossible to do programmatically, but we can set it that way because we wrote the
JVM. The main thread needs to be able to pre-empt any other thread when a JManager call comes in.

sys_thread: Points to the native thread structure. You can use the mrj thd command to display lots
of cryptic information about it.

saved_sp: or *current thread* : The saved_sp points to the thread’s native stack; use it as the
argument to MacsBug’s regular stack crawl command sc7 to display the stack. (But sc7 stack crawls
aren’t very accurate and tend to display a lot of junk.) If you see *current thread* instead, that means
that this is the thread currently running; use sc or sc7 with no arguments to see its native stack.

priority: For historical reasons, this is a duplicate of the prio: field on the previous line.

state: The thread’s current state. RDY means “ready”: the thread is runnable, and is either running
now or will run when the scheduler gives it a chance. (It might still never get a chance to run if higher
priority threads are always busy.) WMON means “waiting on monitor”: this usually means that the thread
is blocked entering a synchronized method or statement because another thread is already synchronized
against that object. (Unfortunately, due to a bug in the dcmd, a runnable thread is sometimes incorrectly
listed as WMON.) WCV means “waiting on condition variable”: the thread is blocked in the Object.wait
method and hasn’t yet been woken up by an Object.notify or notifyAll call. SUSP means the
thread has been suspended via Thread.suspend.

mon: If the thread’s state is WMON, this field shows the ID of the monitor it’s blocked on. Monitors are
usually associated with objects, but a monitor ID is not an object handle, and there are monitors that don’t
correspond to objects. You can use the mrj fm command to find which Java object owns that monitor, or
possibly the mrj mon command to display cryptic information about the monitor itself.

cq: If the thread’s state is WCV, this field shows the ID of the condition queue it’s waiting on. This is an
internal data structure with no user-serviceable parts inside.

The stack crawl itself

After the thread header comes the Java stack crawl. This is mostly identical to the kind of stack crawl
you’re used to seeing when an exception is dumped to the console.

The stack frames are listed in reverse chronological order, so the current method is at the top.

There’s an additional hex number at the beginning of each line, which is the object handle of the “this”
variable (or receiver) of the method. You can use this in conjunction with object inspection commands
like mrj do.

After the object handle comes the name of the method. After that in parentheses is the name of the source
file and the exact line number.

Note:

2/26/99 3:31 PMTN 1154: Debugging Java Code With MacsBug

Page 11 of 9file:///Monster%20Boot/Apple/Week%20of%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html

The source file and line number will not be displayed if the line-number mapping table is not found in
the class file. (If you compiled your code with Metrowerks CodeWarrior, make sure the debugging dot
is turned on next to the source file in the project window.)

The source/line information will also be replaced with “(Compiled Code)” if the method has been
translated into native code by the JIT: the JIT isn’t able to perform the (very difficult) reverse mapping
of native instructions to Java bytecodes. You can prevent this by disabling the JIT: remove the “MRJ
PPC JITC” library from the MRJ Libraries folder.

The Monitor Cache Dump

Monitors are the primitives used to implement synchronization on objects. Monitors are not objects, but
an object is assigned a monitor when a thread synchronizes against it. (There are also special internal
monitors that are not associated with objects.)

As described above, the header of a stack crawl tells whether the thread is blocked on a monitor and, if
so, which one. The thing you probably want to know next is what object that monitor corresponds to.
Usually (not always) you can determine this by looking in the Monitor Cache Dump section in the “mrj
threads” dump. This section comes right after the last thread’s stack crawl, and lists the objects that
have most recently acquired monitors. A typical entry looks like this:

 "com.apple.mrj.JManager.AVDispatcherThread@60A09C8/618AD48"
 <unowned>
 Waiting to be notified:
 "AVGrp-com.apple.mrj.JManager.JMAWTContextImpl@c6ce6f-Disp" prio 4

The first line shows the object’s class. The hex number between the “@” and the “/” is the object’s
handle, which lets you inspect the object via commands like mrj do.

The second line shows which thread owns (is currently holding) that monitor, or <unowned> if no
thread owns it.

If one or more other threads are blocked on that monitor, they will be listed after a line reading “Waiting
to be notified:”. Each thread is listed by name, followed by “@”, followed by the handle of the
thread object and its priority. You can of course find more info about the thread in its stack crawl above.

It’s worth pointing out two Java objects that often play a prominent role in synchronization problems.
com.apple.mrj.macos.toolbox.Toolbox is the Toolbox lock, which is used by the AWT peers and
other native or JDirect code to synchronize access to the Mac Toolbox. (It’s described in much more
detail in Technote 1153, Thread-Safe Toolbox Access From MRJ. And if you see a java.lang.Object
in the monitor cache, it’s probably the treeLock used by the public AWT classes (it’s declared in
java.awt.Component) to synchronize access to the component hierarchy. AWT-related deadlocks often
involve one or both of these.

The Registered Monitor Dump

The last section of the thread dump shows the list of registered monitors. These are monitors that are not
associated with objects but which are known to the JVM. These are used internally by things like the JIT,
the class loader, and the finalizer thread. Normally you don’t need to pay attention to these, but very
rarely you may encounter a deadlock that involves one or them (for instance, we once had a nasty bug
that could cause the JIT and the class loader to deadlock). If you encounter any problems involving these,
it’s almost certainly a bug in MRJ, which you should report at once, including a stdlog and an mrjlog.

2/26/99 3:31 PMTN 1154: Debugging Java Code With MacsBug

Page 12 of 9file:///Monster%20Boot/Apple/Week%20of%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html

Back to top

Switching Contexts

If only a single instance of MRJ is running, the mrj dcmd will automatically target it; it doesn’t matter
which application is active at the moment MacsBug was entered. But if you have two Java apps running
at the same time, you’ll need to disambiguate them.

To target a particular instance of MRJ, you need to know its CFM context ID. You can find this by using
the MacsBug “frags” command. The output shows a list of applications, and for each app the list of
libraries it’s instantiated. The header line for an app shows its context ID (with a “#” sign prepended to
show that it’s in decimal -- don’t forget to include the “#” sign when typing in the value.)

Switch contexts (mrj prf context)

Targets the instance of MRJ running in the given context. Subsequent commands will apply to this
instance of MRJ until you target a different one.

Tell context (mrj pr)

Indicates which CFM context is targeted, if any.

Back to top

Further References

Apple Computer. MacsBug Reference And Debugging Guide. 1995. The complete guide to
MacsBug -- not very tutorial-like, unfortunately, and certainly overkill unless you plan on
debugging or testing a lot of native code.
Lindholm, Tim. The Java Virtual Machine Specification. Addison-Wesley, 1996. The exact
specification for how the JVM operates. If you want to know the exact details of how thread
behavior is specified, look here. (It does not discuss implementation specific details of object
layout or thread scheduling, though.)

Downloadables

Acrobat version of this Technote (how many K?)

Back to top

Acknowlegments

I’d like to thank Mikey McDougall, Sue Manning, and Steve Zellers for their help in explaining to me the
intricate details of many of these commands, and Steve McGrath for further review.

To contact us, please use the Contact Us page.
Updated: 01-March-99

2/26/99 3:31 PMTN 1154: Debugging Java Code With MacsBug

Page 13 of 9file:///Monster%20Boot/Apple/Week%20of%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html

Technotes | Contents
Previous Technote | Next Technote

2/26/99 3:31 PMTN 1154: Debugging Java Code With MacsBug

Page 14 of 9file:///Monster%20Boot/Apple/Week%20of%202%2F22%2F99/tn%201154%20Jens%20new%202%2F18/tn1154.html

