Friday, October 30, 1998 TN 1145: Living in a Dynamic TCP Page: 1
Environment

Technote 1145

Living in a Dynamic TCP/I P Environment

By Quinn " The Eskimo!"
Apple Worldwide Developer Technical Support

CONTENTS T
his Technote describes some of the intricacies of
dealing with TCP/IP in a dynamic environment, such as

Dynamic TCP/IP Fundamentals

P Address Notes that provided by Open Transport. Specificaly, it
_ describes how to write Open Transport code which
No Nuisance Calls, Please correctly handles multiple | P addresses, dial-up links,
sleep and wakeup on PowerBooks, modem
Be Prepared for aClose disconnection, and user reconfiguration.
Server Efiquette This Noteis directed at all developers using Open

Talking to Y ourself Transport TCP/IP services.

Summary
Downloadables

file:///Monster500/Apple/
Week%200f%2010%3A26/

Friday, October 30, 1998 TN 1145: Living in a Dynamic TCP Page: 2
Environment

Dynamic TCP/IP Fundamentals

Many TCP/IP programs make fal se assumptions about the TCP/IP environment. While assumptions like
"this machine has TCP/IP, therefore it must have an IP address’ and "the | P address won't change”" were
valid for workstations on a university Ethernet, they do not hold for a PowerBook running Mac OS
connected via PPP. Specifically, the following are non-obvious consequences of Mac OS's dynamic
TCP/IP environment:

1. The computer does not have an I P address until it has acquired one. For example, if the
computer is configured to obtain an address via Dynamic Host Configuration Protocol (DHCP),
it does not obtain the address until the TCP/IP stacks loads.

2. The computer's | P address can change over time. For example, if the computer's DHCP |lease
expires, the TCP/IP will negotiate for a new address, which may not be the same as the old
address.

3. Theuser can configure dial-up links (such as ARA, OT/PPP, and most others) to "Connect
automatically when starting TCP/IP applications'. If your application creates TCP/IP providers
without an explicit user request, the user may be startled to find their modem dialing
unexpectedly.

4. 1If the TCP/IP stack unloads, any TCP/IP providers will be automatically closed. The TCP/IP
stack unloadsin avariety of circumstances, including when the underlying link shuts down (for
example, a PPP disconnect), when the user commits changes in the TCP/IP control panel, and
when a PowerBook goes to sleep.

This Technote discusses some high-level approaches you can use to cope with these consequences.
Before you start, however, you need to know some important rules about Open Transport's current
TCP/IP implementation:

e The act of opening a TCP/IP provider will load the TCP/IP stack.
e Loading the TCP/IP stack may cause the modem to dial.
e If TCP/IP isusing the modem, the TCP/IP stack will unload when the modem

disconnects.
e When the TCP/IP stack unloads, it closes all TCP/IP providers.

IMPORTANT:
This Technote only discusses Open Transport's native TCP/IP interface. It does not discuss MacTCP,

or Open Transport's MacTCP interface. The MacTCP programming interface isinsufficient to handle all
of the cases described in this note. For this and other reasons, DTS strongly recommends that
developers adopt the Open Transport programming interface.

Note:
Although this Technote focuses on TCP/IP, some of the recommendations are important for AppleTalk

aswell. Specifically, AppleTalk programs should Be Prepared for a Close.

|P Address Notes

With Open Transport's support for reconfiguration without reboot and "on demand" address acquisition
(for example, DHCP), you must be careful not to assume that the machine has asingle static IP address.

Specificaly:

1. If OTI net Get I nt er f acel nf o returns an error when you passit an index of 0, the TCP/IP stack
isnot currently loaded. In this state, the computer does not have an | P address. You can
force the machine to acquire an | P addresses by |oading the TCP/IP stack, but this may have
adverse conseguences. SeeNo Nuisance Calls, Please

2. Themachine may have mor e than one I P address. A computer running stock Mac OS can
currently only have more than one | P address in the "single link multi-homing" case (multiple IP

file:///Monster500/Apple/
Week%200f%2010%3A26/

Friday, October 30, 1998 TN 1145: Living in a Dynamic TCP
Environment
addresses on the same physical interface), although future versions of Open Transport may
support multi-link multi-homing, and you can enable multi-link multi-homing today using third-
party software. Y ou can determinethe list of 1P addresses for the machine using the calls
OTGet | nt er f acel nf o and OTI net Get Secondar yAddr esses, as shown in the code snippet
below.

3. Themachine'slist of IP addresses may change over time. Currently thereis no way to detect this
change, so you must avoid caching the list of local | P addresses for extended
periods. Your software should not get the machine's | P address once it's launched and use the
same address until it quits. Instead, it must reacquire the address each time it's needed.

4. The"correct" IP address for the machine may depend on whom you're talking
to. Thissituation is described in detail in alater section.

Getting a List of All IP Addresses

The following code snippet shows how to determine the list of |P addresses for the machine using the
callsOrGet I nt er f acel nf o and OTI net Get Secondar yAddr esses.

enum

kOTI PSi ngl eLi nkMul ti hormi ngVer si on = 0x01300000

b
static OSStatus Printl| PAddresses(void)
{
CSSt at us err;
Bool ean havel PSi ngl eLi nkMul ti homi ng;
NumVer si onVari ant ot Ver si on;
Bool ean done;
Sl nt 32 i nterfacel ndex;
I netinterfacelnfo info;
havel PSi ngl eLi nkMul ti homi ng =
(Gestalt(gestaltOpenTptVersions, (long *) &otVersion) == noErr
&& (ot Version.whole >=
kOTI PSi ngl eLi nkMul ti hom ngVer si on)
&& (OTl net Get Secondar yAddr esses ! =
(void *) kUnresol vedCFr agSynbol Addr ess));
err = nofrr;
i nterfacel ndex = 0;
do {
done = (OTlnetGetlnterfacelnfo(& nfo, interfacelndex) != noErr);
if (! done) {
printf("fAddress = %98l x\n", info.fAddress);
i f (havel PSi ngl eLi nkMul ti homing) {
err = PrintSecondaryAddresses(& nfo, interfacel ndex);
}
i nterfacel ndex += 1;
}
} while (err == noErr && !done);
return err;
}

file:///Monster500/Apple/
Week%200f%2010%3A26/

Page: 3

Friday, October 30, 1998 TN 1145: Living in a Dynamic TCP

Environment

IMPORTANT:

OTl net Get Secondar yAddr esses iSnot implemented prior to Open Transport 1.3. To work correctly
with systems prior to that, you must weak- link with the OpenTpt I nt er net Li b and check for its
existence by comparing its address to kUnr esol vedCFr agSynbol Addr ess. For more information about
weak-linking, you should read Technote 1083: Weak-Linking to a Code Fragment Manager-based

Shared Library.

static OSStatus PrintSecondaryAddresses(lnetlnterfacel nfo* interfacelnfo,

{

SInt32 interfacel ndex)

OSSt atus err;

| net Host *secondar yAddr essBuf f er;

Ul nt 32 nunber Of Secondar yAddr esses;
Ul nt 32 addr essl ndex;

secondar yAddressBuffer = nil;
number Of Secondar yAddr esses = i nterfacel nfo->fl PSecondar yCount ;
if (err == noErr && nunber O Secondar yAddresses > 0) {

/1l Allocate a buffer for the secondary address info.

secondar yAddr essBuf fer =
(I'netHost *) OTAI |l ocMen(nunber O Secondar yAddr esses
* sizeof (I netHost));
i f (secondaryAddressBuffer == nil) {
err = KENOVEMErTr;
}

/1 Ask OT for the list of secondary addresses on this interface.

if (err == noErr) {
err = OTl net Get Secondar yAddr esses(secondar yAddr essBuf f er,
&number O Secondar yAddr esses,
i nterfacel ndex);

}

/] Start a server for each secondary address.

for (addresslndex = 0; addresslndex < nunber Of Secondar yAddr esses;
addr essl ndex++)
printf("secondaryAddressBuffer[% d] = %08l x\ n",
addr essl ndex,
secondar yAddr essBuf f er [addr essl ndex]) ;

}
/1 O ean up.

i f (secondaryAddressBuffer !'=nil) {
OTFr eeMen(secondar yAddr essBuf fer);
}

return err;

Multi-homing and I P Addresses

file:///Monster500/Apple/
Week%200f%2010%3A26/

Page: 4

Friday, October 30, 1998 TN 1145: Living in a Dynamic TCP Page: 5
Environment

On amulti-link multi-homed computer, it's possible for the "correct” IP address of the machine to depend
on the | P address of the machine you're communicating with.

For example, consider a machine with two Ethernet cards, one connected to the public Internet and one
connected to a private network. Each card has an | P address but the machine does not forward | P packets
between the cards. Thissituation isillustrated bel ow:

Publiz Internet
Private Metwork

— 17100557
J| B

17.200.37 41

r

Now consider an FTP client running on this computer. One of the (mis)features of the FTP protocol is
that, when it opens adata connection, the FTP client must open a port on the local machine and send
(through thecontr ol connection) the port number and the local |P address to the server in a PORT
command. However, machines on the public Internet can only communicate with 17.100.55.7, and
machines on the private network can only communicate with 17.200.37.41. So how does the FTP client
work out which | P address to send?

The answer isthat the OTGet Pr ot Addr ess call will return the correct local |P address for a connected
endpoint. So the FTP client can call OTGet Pr ot Addr ess on the control connection to determine the
correct local address to use for the data connection.

The following code snippet uses OTGet Pr ot Addr ess to find the correct local |P address to send based on
a connected endpoint.

static OSStatus CetlLocal | PAddressFor Connecti on(Endpoi nt Ref ep,
I net Address *I| ocal Addr)

{
OSSt atus err;
TBi nd | ocal Bi nd;
OTAssert (" Get Local | PAddr essFor Connection: Only works whil e connected",

OTGet Endpoi nt St at e(ep) == T_DATAXFER);

OTrMenzer o(& ocal Bi nd, sizeof (TBi nd));
| ocal Bi nd. addr. buf = (U nt8 *) | ocal Addr;
| ocal Bi nd. addr . maxl en = si zeof (I net Addr ess);
err = OTCGet Prot Address(ep, & ocal Bind, nil);
return err;

}

file:///Monster500/Apple/
Week%200f%2010%3A26/

Friday, October 30, 1998 TN 1145: Living in a Dynamic TCP Page: 6
Environment

Note:
This routine asserts that the endpoint isin the T_DATAXFER state because, if the endpoint is not
connected, OTGet Pr ot Addr ess will simply return the address to which the endpoint was bound, which

isgeneraly not at al helpful.

IMPORTANT:
Due to limitations in the current Open Transport architecture, the | P address returned by the above may
not beinthelist of all IP addresses generated by the code in the previous section.

No Nuisance Calls, Please

Y our software must be careful to create a TCP/IP provider only when it actually needs to use the network.
Thisis because many users have a dial-up network connection configured to "dial on demand". The act of
you opening a TCP/IP provider will cause the TCP/IP stack to load, and hence the modem to dia, even if
you don't send any network traffic.

Note:
In OT/PPP and ARA 3., the "dial on demand" feature is controlled by a checkbox in the Options dialog
labeled " Connect automatically when starting TCP/IP applications’.

Dia on demand works best if applications open TCP/IP providers only in direct response to a user
operation. For example, if the user requests information from the net, your application isfree to trigger a
dial because the user is expecting it. In this Technote, these requests are referred to as solicited
operations.

Dia on demand works badly for applications that access the Internet "in the background.” For example,
your application may want to periodically update aloca database with information from the network.
Triggering adial for such anunsolicited operations isgoing to annoy the user.

Y our application can avoid dialing the modem for unsolicited operations by smply calling

OTl net Get | nt er f acel nf o before starting the network operation. If OTI net Get I nt er f acel nf o
indicates that the TCP/IP stack isloaded, the modem (if any) has aready been dialed and your application
can safely use the network. The following snippet shows how to use OTI net Get | nt er f acel nf o tO
determineif the TCP/IP stack is loaded.

static Bool ean | sTCPSt ackLoaded(voi d)
I netlnterfacel nfo info;

return (OllnetCetlnterfacelnfo(& nfo, 0) == noErr);

On the other hand, if the TCP/IP stack is not loaded, your application isfaced with a dilemma: the
computer may be on anon-dia-up link (such as Ethernet) where loading the TCP/IP stack is not a serious
inconvenience, or the computer may be on adial-up link where loading the TCP/IP stack will cause a
"nuisance call." In many cases, you can ignore this dilemma entirely and unilaterally decide to avoid
unsolicited operations while TCP/IP is unloaded. A magjority of desktop users are regularly using the
Internet for solicited operations, which keeps the TCP/IP stack loaded, ready to handle unsolicited
operations, so thisisn't realy a problem.

However, some devel opers have found this heuristic to be insufficiently rigorous for their taste. If you
fall into this category, you can take further stepsto ensure that your unsolicited operations get to the
network. Specifically:

file:///Monster500/Apple/
Week%200f%2010%3A26/

Friday, October 30, 1998 TN 1145: Living in a Dynamic TCP Page: 7
Environment

1. You can usethe Network Setup library (introduced with Mac OS 8.5) to read the TCP/IP
preferences to determine whether TCP/IP is configured to use adial-up link. The DTS sample
code "OTTCPWilIDia" shows how to do this.

2. 'You can time how long an unsolicited operation has been waiting to access the network. If the
operation has been waiting too long, you can request user interaction (probably using
AEI nt er act W t hUser) and ask the user whether they would like you to dial the modem to
complete this operation.

Be Prepared for a Close

As part of its normal operation, the TCP/IP stack may decide to close your provider. When it closes a
provider in thisway, Open Transport calls the provider's notifier with one of two events:

1. kOTProvi der Wi | d ose issent when OT isclosing your provider in a controlled fashion,
typically when the user is reconfiguring the TCP/IP stack. It is always sent at system task time.
Y ou may choose to put the provider in synchronous mode and shut down the network
connection cleanly.

2. kOTProvi der HasCl osed is sent when OT "force closes" your provider. Thisistypically done
when the underlying link layer shuts down. It may be sent at system task or deferred task time,
so you typically write your code to assume it's at deferred task time. The underlying provider
has aready been closed but you must call OTd osePr ovi der to avoid a(small) memory leak.

Regardless of the action of your notifier, the provider will always be closed when you return from your
notifier. Any operations on the provider after your notifier returns will return kOTBadRef er enceErr .

For TCP/IP providers on which you're actively working (for example, worker endpoints which are
actively transferring data), you can ignore these events. The next time you use the provider, you will get
akorBadRef er enceEr r error, which your generic error handling should respond to by closing the
provider. However, if you open a TCP/IP provider which you're not actively working on (such an

| net SvcRef which you use periodically for DNS lookups, or alistening endpoint in a server), you must
install anotifier which handles these events. The following code snippet is an example of how to do this.

static InetSvcRef glnetServices = kOTI nval i dProvi der Ref;

static pascal void Myl netServicesNotifier(void* contextPtr, OTlEvent Code code,
OTResult result, void* cookie)
{

switch (code) {
case kOTrSyncl dl eEvent:
[... yielding code renpved ...]
br eak;

case kOTProviderWI | d ose:

case kOTProviderl sC osed:
/1 OT is closing the provider out from underneath us.
/1 W renove our reference to it so the next tine
/'l someone calls MyStringToAddress, we'll reopen it.
(voi d) OTd oseProvi der (gl net Servi ces);
gl net Servi ces = kOTI nval i dProvi der Ref;
br eak;

defaul t:
/1 do nothing
br eak;

}
static OSStatus MyOpenl net Servi ces(voi d)

file:///Monster500/Apple/
Week%200f%2010%3A26/

Friday, October 30, 1998 TN 1145: Living in a Dynamic TCP

{

}

Environment

CSSt atus err;
OSSt at us j unk;

printf("M/Openl net Servi ces: Opening gl netServices.\n");

gl net Servi ces = OTQpenl nt er net Servi ces(kDefaul t1nternetServicesPath, 0, &err);

if (err == noErr) {
(voi d) OrsSet Bl ocki ng(gl net Servi ces);
(voi d) OrSet Synchronous(gl net Servi ces);
(void) Oflnstall Notifier(glnetServices, M/netServicesNotifier, nil);
(void) OTUseSyncl dl eEvent s(gl net Services, true);
}

return err;

static OSStatus MyStringToAddress(const char *string, |netHost *address)

{

OSSt atus err;
I net Host I nf o host | nf o;

/1 1f the DNS provider isn't currently open, open it.

err = noErr;
i f (glnetServices == kOTl nval i dProvi der Ref) {
err = MyQpenl net Servi ces();

/1 Now do the nane to address translation using the provider.

if (err == noErr) {
err = OTlnet StringToAddress(gl net Services, (char *) string, &hostlnfo);

if (err == noErr) {
/1l For this exanple, we just return the host's first |IP address.
*address = hostlnfo.addrs[O0];

}

return err;

The sample illustrates two important points:

1. Thegl net Servi ces provider isnot created until the program needs to convert anameto an
address. This sort of "lazy" creation prevents the program dialing the modem prematurely.

2. When the naotifier isinformed that the provider has closed, it invalidates gl net Ser vi ces. The
next time My St ri ngToAddr ess iscalled, it will notice thisand re-create the provider.

file:///Monster500/Apple/
Week%200f%2010%3A26/

Page: 8

Friday, October 30, 1998 TN 1145: Living in a Dynamic TCP Page: 9
Environment

Server Etiquette

Handling the events described in the previous section is especialy important for servers. A server will
typically have one or more listening endpoints (listener s), which are waiting for connections from
clients. If the TCP/IP stack unloads, those listeners will close, and your notifier will receive an event to
this effect. If you don't handle these events properly, chances are that your server will keep running just
fine, except it will receive no more T_LI STEN events and will be "deaf" to its clients.

The standard response to the closing of alistener isto simply reopen the listener. Y ou must not attempt
to do thisdirectly in your notifier. Instead you should set aflag that causes your main event loop to
re-open the listener as soon as the TCP/IP has loaded. Y ou can determine this by checking the result of
OTl net Get | nt er f acel nf o, as described in No Nuisance Calls, Please.

Typically, opening alistener is an unsolicited operation and should be deferred if it would cause the
modem to dial. If your applicationislikely to be used in an environment where it should dial the modem
to open alistener, you may want to provide a user preference for this. An exampleis shown below.
Typically thefirst option would be the default.

Modem Control: @ Serve Requests Only While Dialed In
i3 Dial the Modem to Serve Requests

Talking to Your self

Talking to yourself may be thefirst sign of madness, but TCP/IP software often wantsto talk to other
software running on the same machine. For example, you might have a server administration tool that
configures your server over the network. It's reasonable for a user to run both the server and the
administration tool on the same machine.

OT supports this sort of loopback, including the standard 127.0.0.1 loopback address. However,
problems arise when you use this technique on a machine configured for a dial-up connection. Remember
that opening a TCP/IP provider causes the TCP/IP stack to load, and loading the TCP/IP stack may cause
the modem to dia. Thisistrue even if you're just using the endpoint to talk to yourself.

A future version of Open Transport may alleviate this problem as part of the multi-link multi-homing
solution but, for the moment, there is no good workaround. One less-than-ideal workaround isto
reconfigure TCP/IP to not connect via the modem. If no other suitable link is available, you can aways
configure TCP/IP to "MaclP" (with manual addressing) and configure AppleTalk to "Remote Only". The
following screen shots show what this might look like.

file:///Monster500/Apple/
Week%200f%2010%3A26/

Friday, October 30, 1998 TN 1145: Living in a Dynamic TCP

Environment
O - =TCP/IP {Local Test) =
Connect vis: | AppleTalk (MaclP) 2

— Set“p .. -1
| Configure: | Using MacIP Manually tl [setectHosteriie] !
i !
[MaclP o seryer zone: 4 curkent dppleTalk zone i
5 Implicit Search Path: !
i [pelestoons _! Starting dormain name .
: IF Address: [1.2.34
! a
i Ending dormain nanme {
! Router address: 123501 :
Additional i

Search domains ;

! Marne serwver adde.:
|
Options... |

It is possible to use the Network Setup library to programatically create and switch to these settings.

AppleTalk {(Local Test):

Connect via: [Femote Only

o Eetup ... -.!
|

E Current zone: <nozones available =

|

i

i AppleTalk address: D zer defined

i Maode: 1

i Metwork: O

E Metwork range: 0 to 65525

2/ Info j Options...

file:///Monster500/Apple/
Week%200f%2010%3A26/

Page: 10

Friday, October 30, 1998 TN 1145: Living in a Dynamic TCP Page: 11
Environment

Summary

TCP/IPisno longer limited to desktop machines on Ethernet. Y our code must avoid making false
assumptions about the TCP/IP environment, and must adapt to radical changesin the TCP/IP
environment as the user reconfigures and relocates their computer. Y our code must also strive to avoid
annoying users with dial-up connections by dialing their modem unexpectedly. The information in this
Technote will help you write software that is a pleasure to use in a dynamic TCP/IP environment.

Further References

o |nside Macintosh: Networking with Open Transport
e Technote 1083: Weak-Linking to a Code Fragment Manager-based Shared Library
e Internet STD 9 File Transfer Protocol (also RFC 959)

Downloadables

—
EAcrobat version of this Note (34K).

ﬁ‘ Binhexed Routine Descriptor Lib (179K).

Acknowledgments

Thanks to Richard Buckle, Stuart Cheshire, Mark Cookson, Rich Kubota, Peter N Lewis, Pete Resnick,
and Brad Suinn.

To contact us, please use the Contact Us page.
Updated: 2-November-98

Technotes
Previous Technote | Contents

file:///Monster500/Apple/
Week%200f%2010%3A26/

