TN 1150: HFS Plus Volume Format

Technote 1150

HFS Plus Volume For mat

By
Apple Worldwide Developer Technical Support

3/724/99 5:45 PM

CONTENTS

HFS Plus Basics

Core Concepts
Volume Header

B-Trees

Catdog File
Extents Overflow File

Allocation File
Attributes File

Startup File
Unicode Subtleties

HFS Wrapper

Volume Consistency Checks

Summary

This Technote describes the on-disk format for an

HFS Plus volume. It does not describe any
programming interfaces for HFS Plus volumes.

Thistechnote is directed at developers who need to work
with HFS Plus at avery low level, below the abstraction
provided by the File Manager programming interface.
Thisincludes devel opers of disk recovery utilitiesand
programmers implementing HFS Plus support on other
platforms.

This technote assumes that you have a conceptual
understanding of the HFS volume format, as described in
Inside Macintosh: Files.

HFS Plus Basics

HFS Plusis anew volume format for Mac OS. HFS Plus was introduced with Mac OS 8.1. HFS Plus
isarchitecturaly very similar to the HFS, although there have been a number of changes. The following
table summarizes the important differences.

Table 1 HFS and HFS Plus Compared

Feature |HFS |HFS Plus |Benefit/Comment
User visible Mac OS
name Mac OS Standard Extended
Number of) e
. . - Radical decrease in disk space used on large
gllggg on 16 bitsworth 32 bits worth volumes, and alarger number of files per volume.
I nnn fila | | IAvi A e 1iear hanafit: alen imnrmyvoe ~race_nl atfAarm |

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html

Page 1 of 42

TN 1150: HFS

I_UIIU nieo

Plus Volume Format

31 characters

255 characters

3/24/99 5:45 PM

MVIUVUOD UJDC1 YUl Gl L, oy IIIIPIUVU\)\JI U\);J_PI(.ALIUIIII

names compatibility
File name . Allowsfor international-friendly file names,
encoding MacRomezn Unicode including mixed script names
Support for fixed ||Allows for
File/folder ||size attributes future Future systems may use metadata for aricher Finder
attributes (FInfo and meta-data experience
FXInfo) extensions
Also supports
OS startup : May help non-Mac OS systems to boot from HFS
support System Folder ID Stgre'ﬂg?%leg Plus volumes
Maintains efficiency in the face of the other changes.
catalod node (Thislarger catalog node sizeis due to the much
Sze o9 512 bytes 4KB longer file names [512 bytes as opposed to 32
bytes], and larger catalog records (because of
more/larger fields)).
Maximum Obvious user benefit, especially for multimedia
filesize 231 bytes 203 bytes content creators.

The extent to which these HFS Plus features are avail able through a programming interface is OS
dependent. Currently (version 8.5), Mac OS does not provide programming interfaces for any HFS
Plus-specific features.

To summarize, the key goals that guided the design of the HFS Plus volume format were:

e efficient use of disk space,

e international-friendly file names,

e future support for named forks, and

e ease booting on non-Mac OS operating systems.

The following sections describes these goals, and the differences between HFS and HFS Plus required to
meet these goals.

Efficient Use of Disk Space

HFS divides the total space on avolume into equal-sized pieces called allocation blocks. It uses 16-bit

fields to identify a particular allocation block, so there must be less than 216 (65,536) allocation blocks on
an HFS volume. The size of an alocation block istypically the smallest multiple of 512 such that there are
less than 65,536 allocation blocks on the volume (i.e., the volume size divided by 65,535, rounded up to a
multiple of 512). Any non-empty fork must occupy an integral number of allocation blocks. This means
that the amount of space occupied by afork isrounded up to a multiple of the allocation block size. As
volumes (and therefore allocation blocks) get bigger, the amount of allocated but unused space increases.

HFS Plus uses 32-bit values to identify allocation blocks. This allows up to 2 32 (4,294,967,296)
allocation blocks on avolume. More alocation blocks means a smaller allocation block size, especialy on
volumes of 1 GB or larger, which in turn means less average wasted space (the fraction of an allocation
block at the end of afork, where the entire allocation block is not actually used). It also meansyou can
have more files, since the available space can be more finely distributed among a larger number of files.
This changeis especidly beneficia if the volume contains alarge number of small files.

International-Friendly File Names

HFS uses 31-byte strings to store file names. HFS does not store any kind of script information with the
fila namae tn indirate hnw it dhniild ha intarnrated File nameec ara rnmnared anAd enrted 11dnn a rni tinea that

Page 2 of 42

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html

TN 1150: HFS Plus Volume Format 3/24/99 5 45 PM

IO I IRAT I LU 1T IV IV 1L WA VAU MO 1L TIC 1T D W O WU T DU WU WU U DU LU U T Ty WL UL

assumes a Roman script, wreaking havoc for nam& that use some other script (such as Japan&ee)
Worsg, this algorithm is buggy, even for Roman scripts. The Finder and other applications interpret the
file name based on the script system in use at runtime.

Note:

The problem with using non-Roman scripts in an HFS file name is that HFS compares file namesin a
case insengitive fashion. The case-insensitive comparison agorithm assume a MacRoman encoding.
When presented with non-Roman text, this algorithm fails in strange ways. The upshot is that HFS
decidesthat certain non-Roman file names are duplicates of other file names, even though they are not
duplicates in the source encoding.

HFS Plus uses up to 255 Unicode characters to store file names. Allowing up to 255 characters makes it
easier to have very descriptive names. Long names are especially useful when the nameis
computer-generated (such as Java class names).

The HFS catalog B-tree uses 512-byte nodes. An HFS Plus file name can occupy up to 512 bytes
(including the length field). Since a B-tree index node must store at least two keys (plus pointers and node
descriptor), the HFS Plus catalog must use alarger node size. The typical node size for an HFS Plus
catalog B-treeis 4 KB.

In the HFS catalog B-tree, the keys stored in an index node always occupy afixed amount of space, the
maximum key size. In HFS Plus, the keys in an index node may occupy a variable amount of space
determined by the actual size of the key. This allows for less wasted space in index nodes and creates, on
typical disks, asubstantialy larger branching factor in the tree (requiring fewer node accesses to find any
given record).

Future Support for Named Forks

Files on an HFS volume have two forks: adata fork and aresource fork, either of which may be empty
(zero length). Files and directories also contain a small amount of additional information (known as
catalog information or metadata) such as the modification date or Finder info.

Apple software teams and third-party devel opers often need to store information associated with particul ar
filesand directories. In some cases (e.g., custom icons for files), the data or resource fork is

appropriate. But in other cases (e.g., custom icons for directories, or File Sharing access privileges),
using the data or resource fork is not appropriate or not possible.

A number of products have implemented special-purpose solutions for storing their file- and
directory-related data. But because these are not managed by the file system, they can become inconsi stent
with the file and directory structure.

HFS Plus has an attribute file, another B-tree, that can be used to store additional information for afile or
directory. Sinceit is part of the volume format, this information can be kept with the file or directory as
isit moved or renamed, and can be deleted when the file or directory is deleted. The contents of the
attribute file's records have not been fully defined yet, but the goal isto provide an arbitrary number of
forks, identified by Unicode names, for any file or directory.

Note:

Because the attributes file has not been fully defined yet, current implementations are unable to delete
named forks when afile or directory is deleted. Future implementations that properly delete named forks
will need to check for these orphaned named forks and delete them when the volume is mounted. The

lastMountedVersion field of the volume header can be used to detect when such a check needs to take
place.

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 3 Of 42

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM
Whenever possible, an application should delete named forks rather than orphan them.

Easy Startup of Alternative Operating Systems

HFS Plus defines a special startup file, an unstructured fork that can be found easily during system
startup. The location and size of the startup file is described in the volume header. The startup file is
especialy useful on systems that don't have HFS or HFS Plus support in ROM. In many respects, the
startup file is ageneralization of the HFS boot blocks, one that provides a much larger, variable-sized
amount of storage.

Note:
The startup file is not currently used by Mac OS.

Back to top

Core Concepts

HFS Plus uses a number of interrelated structures to manage the organization of data on the volume.
These structures include:

the volume header
thecatadogfile

the extents overflow file
the attributesfile

the alocation file (bitmap)

thestartup file

Each of these complex structures is described in its own section. The purpose of this sectionisto give an
overview of the volume format, describe how the structuresfit together, and define the primitive data
types used by HFS Plus.

Terminology

HFS Plusis a specification of how avolume (files that contain user data, along with the structure to
retrieve that data) existson adisk (the medium on which user datais stored). The disk isdivided into
512 byte logical blocks of data, known as sector s. Sectors are identified by asector number, starting
at 0 and continuing to the last sector on the disk (whose number isthe disk size divided by 512 minus 1).

HFS Plus allocates sectorsin groups called allocation blocks; an allocation block is ssimply agroup of
consecutive sectors. The size (in bytes) of an alocation block is a power of two, greater than or equal to
512, which is set when the volume isinitialized. This value cannot be easily changed without reinitializing
the volume. Allocation blocks are identified by a 32-bit allocation block number, so there can be at

most 232 allocation blocks on avolume. Future implementations of the file system will be optimized for
4K alocation blocks.

All of the volume's structures, including the volume header, are part of one or more allocation blocks.
This differsfrom HFS, which has several structures (including the boot blocks, master directory block,
and bitmap) which are not part of any alocation block.

Y ou can find the first sector of an allocation block by ssimply multiplying the alocation block number by
the allocation block size and dividing by the sector size (512).

Thic rlean manninn hehaieen an allneatinn hlnele anAd a certar i miiddied hv the nneaihilityv Af an HES
file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 4 Of 42

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM

[RTRC R R O 3MULVVWIWIWI\JMIUII”IU\II\WI\JI MLULUL TU T IUMMIE WU Uy U I USAA T T LY

W apper. H FS PI us sectors are always considered to start at the beginning of the disk embeddecllll n the
wrapper, which may not be the start of the real disk.

To promote file contiguity and avoid fragmentation, disk space istypically allocated to filesin groups of
allocation blocks, or clumps. The clump sizeis aways amultiple of the allocation block size. The
default clump sizeis specified in the volume header.

IMPORTANT:
The actual agorithm used to extend filesis not part of this specification. The implementation is not
required to act on the clump valuesin the volume header or file catalog records; it merely provides space

to store those values.

Note:

The current non-contiguous algorithm in Mac OS will begin allocating at the next free block it finds. It
will extend its allocation up to a multiple of the clump sizeif there is sufficient free space contiguous
with the end of the requested allocation. Space is not allocated in contiguous clump-sized pieces.

Every HFS Plus volume must have avolume header . The volume header contains sundry information
about the volume, such as the date and time of the volume's creation and the number of files on the
volume, aswell as the location of the other key structures on the volume. The volume header is aways
located at sector 2.

A copy of the volume header, known asthe alter nate volume header, is stored in the second to last
sector of the volume (starting 1024 bytes before the end of the volume). Sectors 0 and 1, and the last
sector on the volume, are reserved. The actual number of allocation blocks occupied by the volume header
and the aternate volume header varies depending on the allocation block size.

An HFS Plus volume contains five special files, which store the file system structures required to
access the file system payload: folders, user files, and attributes. The special files are the catalog file,
the extents overflow file, the allocation file, the attributes file and the startup file. Special files only have
asingle fork (the data fork) and the extents of that fork are described in the volume header.

Thecatalog file isaspecia file that describes the folder and file hierarchy on avolume. The catalog file
contains vital information about al the files and folders on avolume, aswell asthe catal og
information, for the filesand folders that are stored in the catalog file. The catalog file is organized as a
B-tree (or "balanced tree") to allow quick and efficient searches through alarge folder hierarchy.

The catalog file stores the file and folder names, which consist of up to 255 Unicode characters, as
described below.

Note:
The B-Trees section contains an in-depth description of the B-trees used by HFS Plus.

Theattributes file isanother specid file which contains additional datafor afile or folder. Like the
catalog file, the attributes file is organized as a B-tree. In the future, it will be used to store information
about additional forks. (Thisissimilar to the way the catal og file stores information about the data and
resource forks of afile.)

HFS Plus tracks which allocation blocks belong to afork by maintaining alist of the fork's extents. An
extent isacontiguous range of allocation blocks allocated to some fork, represented by a pair of
numbers: the first allocation block number and the number of allocation blocks. For a user file, the first
eight extents of each fork are stored in the volume's catalog file. Any additional extents are stored in the
extents overflow file, which isaso organized as a B-tree.

The extents overflow file also stores additional extents for the special files except for the extents
overflow fileitsdf However_ if the gartiin file rentlires mare than the einht extents in the \/ oliime Header

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 5 Of 42

TN 1150: HFS Plus VOIume Format _..3/24/99 5:45 PM

(and thus requires additional extentsin the extents overflow fl'lle) it would be much harder to access, “and
defeat the purpose of the startup file. So, in practice, a startup file should be allocated such that it doesn't
need additional extentsin the extents overflow file.

Theallocation fileisaspecia file which specifies whether an allocation block isused or free. This
performs the same role as the HFS volume bitmap, although making it afile adds flexibility to the volume
format.

Thestartup file isanother special file which facilitates booting of non-Mac OS computers from HFS
Plus volumes.

Finally, thebad block file prevents the volume from using certain allocation blocks because the portion
of the mediathat stores those blocks is defective. The bad block fileis neither a special file nor a user
file; thisis merely convention used in the extents overflow file. See Bad Block File for more details.

Broad Structure
The bulk of an HFS Plus volume consists of seven types of information or areas:

user fileforks,

the allocation file (bitmap),
the catalog file,

the extents overflow file,
the attributesfile,

the startup file, and
unused space.

NogohswbhE

The genera structure of an HFS Plus volumeisillustrated in Figure 1.

Figure 1 Organization of an HFS Plus VVolumes

Wolume Header [always third zector]

Allocation File [allozated frorm allo cation bladks))

Extents Cwverflaw Rle [allocated frorn allocation blacks)

Catalog Ale [allocated from allocation blocks)
Filz Crata

nr

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 6 Of 42

TN 1150: HFS Plus Volume Format 3/724/99 5:45 PM

Startup File (allazated from allocation blod:s)

Atemate Volume Header | ahways second to last sector)

The volume header is always at a fixed location (sector 2). However, the specia files can appear
anywhere between the volume header block and the alternate volume header block. Thesefiles can
appear in any order and are not necessarily contiguous.

The information on HFS Plus volumesiis organized solely in alocation blocks. Allocation blocks are
simply a means of grouping sectors into more convenient parcels. The size of an alocation block isa
power of two, and at least 512. The allocation block size is a volume header parameter whose valueis set
when the volume isinitialized; it cannot be changed easily without reinitializing the volume.

Note:
The allocation block size is a classic speed-versus- space tradeoff. Increasing the allocation block size

decreases the size of the alocation file, and often reduces the number of separate extents that must be
manipulated for every file. It also tendsto increase the average size of adisk 1/0, which decreases
overhead. Decreasing the allocation block size reduces the average number of wasted bytes per file,
making more efficient use of the volume's space.

WARNING:

While HFS Plus disks with an allocation block size smaller than 4 KB are legal, DTS recommends that
you always use aminimum 4 KB allocation block size. Disks with asmaller alocation block size will be
markedly slower when used on systems that do 4 KB clustered 1/0O, such as Mac OS X Server.

Primitive Data Types

This section describes the primitive data types used on an HFS Plus volume. All data structuresin this
volume are defined in the C language. The specification assumes that the compiler will not insert any
padding fields. Any necessary padding fields are explicitly declared.

IMPORTANT:

The HFS Plus volume format is largely derived from the HFS volume format. When defining the new
format, it was decided to remove unused fields (primarily legacy MFSfields) and arrange all the
remaining fields so that similar fields were grouped together and that al fields had proper alignment
(using PowerPC alignment rules).

Reserved and Pad Fields

In many places this specification describes afield, or bit within afield, as reserved. This has adefinite
meaning, namely:

e \When creating a structure with areserved field, an implementation must set the field to zero.
e When reading existing structures, an implementation must ignore any value in the field.
e \When modifying a structure with areserved field, an implementation must preserve the value of

the reserved field.

This definition allows for backward-compatible enhancements to the volume format.

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 7 Of 42

TN 1150: HFS Plus Volume Format 3/724/99 5:45 PM

Pad fields have exactly the same semantics as areserved field. The different name merely reflects the
designer's goals when including the field, not the behavior of the implementation.

Integer Types

All integer values are defined by one of the following primitive types: UInt8, SInt8, UInt16, SIntl16,
UInt32, SInt32, UInt64, and SInt64. These represent unsigned and signed (2's complement) 8-bit,
16-bit, 32-bit, and 64-bit numbers.

All multi-byte integer values are stored in big-endian format. That is, the bytes are stored in order from
most significant byte through least significant byte, in consecutive bytes, at increasing offset from the
start of a block.

HFS Plus Names

File and folder names on HFS Plus consist of up to 255 Unicode characters with a preceding 16-bit
length, defined by the type HFSUNi Str255.

struct HFSUniStr255 {
Uulntl6é Ilength;
UniChar unicode[255];
}:
typedef struct HFSUniStr255 HFSUniStr255;
typedef const HFSUniStr255 *ConstHFSUniStr255Param;

UniChar isaUlnt16 that represents a character as defined in the Unicode character set defined by The
Unicode Sandard, Version 2.0 [Unicode, Inc. ISBN 0-201-48345-9].

HFS Plus stores strings fully decomposed and in canonical order. HFS Plus compares stringsin a
case-insensitive fashion. Strings may contain Unicode characters that should be ignored by this
comparison. For more details on these subtleties, see Unicode Subtleties.

Text Encodings

Current Mac OS programming interfaces pass filenames as Pascal strings (either asaStringPtr or asa
str63 embedded in an FSSpec). The characters in those strings are not Unicode; the encoding varies
depending on how the system software was localized and what language kits are installed. Identical
sequences of bytes can represent vastly different Unicode character sequences. Similarly, many Unicode
characters belong to more than one Mac OS text encoding.

HFS Plus includes two features specifically designed to help Mac OS handle the conversion between Mac
OS-encoded Pascal strings and Unicode. Thefirst feature isthe textEncoding field of the file and

folder catalog records. Thisfield is defined as a hint to be used when converting the record's Unicode
name back to aMac OS- encoded Pascal string.

Thevalid values for the textEncoding field are defined in Table 2.

Table 2 Text Encodings

|Encoding Name [value |[Encoding Name [Value |
|MacRoman o [MacThai [21 |
|MacJapanese 1 [MacLaotian [22 |
MacChineseTrad 2 MacGeorgian [23 |

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 8 Of 42

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM
MacKorean I3 [MacArmenian |24 |
MacArabic 4 [MacChineseSimp 25 |
MacHebrew 5 [MacTibetan 26 |
MacGreek |6 [MacMongolian 27 |
MacCyrillic 7 [MacEthiopic 28 |
MacDevanagari 9 |[MacCentral EurRoman 29 |
MacGurmukhi 10 [MacVietnamese |30 |
MacGujarati 11 [MacExtArabic 31 |
MacOriya 12 [MacSymbol 133 |
MacBengali 13 [MacDingbats 34 |
MacTamil |14 [MacTurkish 135 |
MacTelugu |15 [MacCroatian |36 |
MacK annada |16 [Maclcelandic 137 |
MacMaayaam 117 [MacRomanian 38 |
MacSinhalese 18 [MacFarsi 140 (49) |
MacBurmese 19 [MacUkrainian 152 (48) |
MacKhmer 20

IMPORTANT:

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html

Non-Mac OS implementations of HFS Plus may choose to simply ignore the textEncoding field. In
this case, the field should be treated as areserved field.

Note:

Mac OS uses the textEncoding field in the following way. When afile or folder is created or
renamed, Mac OS converts the supplied Pascal string to aHFSUniStr255. It stores the source text
encoding in the textEncoding field of the catalog record. When Mac OS needs to create a Pascal string
for that record, it uses the textEncoding as a hint to the text conversion process. This hint ensures a
high-degree of round-trip conversion fidelity, which in turn improves compatibility.

The second use of text encodingsin HFS Plusisthe encodingsBitmap field of the volume header. For
each encoding used by a catal og node on the volume, the corresponding bit in the encodingsBitmap field
must be set. Bit O isthe least significant bit; bit 63 is the most significant bit.

It is acceptable for abit in this bitmap to be set even though no names on the volume use that encoding.
This means that when an implementation deletes or renames an object, it does not have to clear the
encoding bit if that was the last name to use the given encoding.

IMPORTANT:

The text encoding value is used as the number of the bit to set in encodingsBitmap to indicate that the
encoding is used on the volume. However, encodingsBitmap isonly 64 bits long, and thus the text
encoding values for MacFars and MacUKkrainian cannot be used as bit numbers. Instead, another bit
number (shown in parenthesis) is used.

Note:

Mac OS uses the encodingsBitmap field to determine which text encoding conversion tables to load
when the volume is mounted. Text encoding conversion tables are large, and loading them unnecessarily
isawaste of memory. Most systems only use one text encoding, so thereis a substantial benefit to
recording which encodings are required on a volume-by-volume basis.

Page 9 of 42

TN 1150: HFS Plus Volume Format 3/724/99 5:45 PM

WARNING:
Non-Mac OS implementations of HFS Plus must correctly maintain the encodingsBitmap field.

Specificaly, if the implementation sets the textEncoding field a catalog record to a text-encoding value,
it must ensure that the corresponding bit is set in encodingsBitmap to ensure correct operation when
that disk is mounted on a system running Mac OS.

HFES Plus Dates

HFS Plus stores dates in several data structures, including the volume header and catalog records. These
dates are stored in unsigned 32-bit integers (UInt32) containing the number of seconds since midnight,
January 1, 1904, GMT. Thisis dightly different from HFS, where the value represents local time.

The maximum representable date is February 6, 2040 at 06:28:15 GMT.

The date values do not account for leap seconds. They do include aleap day in every year that is evenly
divisible by four. Thisis sufficient given that the range of representable dates does not contain 1900 or

2100, neither of which have leap days.

The implementation is responsible for converting these times to the format expected by client software.
For example, the Mac OS File Manager passes datesin local time; the Mac OS HFS Plus implementation

converts dates between local time and GMT as appropriate.

Note:
It should be noted that the creation date stored in the VVolume Header is NOT stored in GMT; it is stored

inlocal time. The reason for thisis that many applications (including backup utilities) use the volume's
creation date as arelatively unique identifier. If the date was stored in GMT, and automatically converted
to local time by an implementation (like Mac OS), the value would appear to change when the local time
zone or daylight savings time settings change (and thus cause some applications to improperly identify
the volume). The use of the volume's creation date as a unique identifier outweighs its use as a date.
This change was introduced late in the Mac OS 8.1 project.

HFS Plus Permissions

For each file and folder, HFS Plus maintains a record containing access permissions, defined by the
HFSPlusPermissions structure. This structure isintended as a placeholder. Future specifications may

define away to layer POSIX or AFP permissions onto the HFS Plus volume format.

IMPORTANT:
The details of this structure have not been finalized and are subject to change; however, the size of the

structure will not change.

struct HFSPlusPermissions {
Uulnt32 ownerlD;
Ulnt32 grouplD;
UInt32 permissions;
UInt32 specialDevice;
}:

typedef struct HFSPlusPermissions HFSPlusPermissions;
The fields have the following meaning:

ownerliD
An implementation must treat thisas areserved field. Thisfield isintended to hold a number uniquely

identifying the owner of thefile or folder.
arouplD
Page 10 of 42

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html

TN 1150: HFS Plus Volume Format 3/724/99 5:45 PM

An implementation must treat thisas areserved field. Thisfield isintended to hold a number uniquely
identifying the group of thefile or folder.

permissions
An implementation must treat thisas areserved field. Thisfield isintended to hold the access rights
for the owner, group, and all other users.

specialDevice
An implementation must treat thisas areserved field. Thisfield isintended for use by POSI X -based
systemsto hold extrainformation that would typically be held in aPOSIX file system.

Note:
Mac OS handles the permission structure as defined in this specification, that is, as areserved field.

Fork Data Structure

HFS Plus maintains information about the contents of afile using the HFSP1usForkData structure. Two
such structures -- one for the resource and one for the datafork -- are stored in the catalog record for
each user file. In addition, the volume header contains afork data structure for each special file.

An unused extent descriptor in an extent record would have both startBlock and blockCount Set to

zero. For example, if agiven fork occupied three extents, then the last five extent descriptors would be all
Zeroes.

struct HFSPlusForkData {

ulnt64 logicalSize;
ulnt32 clumpSize;
ulnt32 totalBlocks;
HFSPlusExtentRecord extents;

}:
typedef struct HFSPlusForkData HFSPlusForkData;

typedef HFSPlusExtentDescriptor HFSPlusExtentRecord[8];
The fields have the following meaning:

logicalSize
The size, in bytes, of the valid datain the fork.

clumpSize
The clump size for the fork in bytes. Thisis ahint to the implementation as to the size by which a
growing file should be extended.

totalBlocks
The total number of allocation blocks used by all the extentsin thisfork.

extents
An array of extent descriptors for the fork. This array holds the first eight extent descriptors. If more
extent descriptors are required, they are stored in the extents overflow file.

IMPORTANT:
TheHFSPlusExtentRecord is aso the data record used in the extents overflow file (the extent record).

TheHFSPlusExtentDescriptor structureis used to hold information about a specific extent.

struct HFSPlusExtentDescriptor {
ulnt32 startBlock;
ulnt32 blockCount;

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 11 Of 42

TN 1150: HFS Plus Volume Format

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html

}:
typedef struct HFSPlusExtentDescriptor HFSPlusExtentDescriptor;

The fields have the following meaning:

startBlock

Thefirst dlocation block in the extent.
blockCount

The length, in alocation blocks, of the extent.

Back to top

Volume Header

Each HFS Plus volume contains a volume header at sector 2. The volume header -- analogous to the
master directory block (MDB) for HFS -- contains information about the volume as awhole, including
the location of other key structures in the volume. The implementation is responsible for ensuring that this
structure is updated before the volume is unmounted.

A copy of the volume header, the alternate volume header, is stored in the second to last sector of the
volume (starting 1024 bytes before the end of the volume). The implementation should only update this
copy when the length of one of the special files changes. The alternate volume header isintended for use
solely by disk repair utilities.

Thefirst two sectors (before the volume header) and the last sector (after the alternate volume header) are
reserved.

Note:

The first two sectors are reserved for use as boot blocks; the Mac OS Finder will write to them when
the System Folder changes. The boot block format is outside the scope of this specification. It is defined
in Inside Macintosh: Files.

The last sector is used during Apple's CPU manufacturing process.

The alocation blocks containing these five sectors (sectors 0 through 2, and the last two sectors) are
marked as used in the allocation file (see the Allocation File section).

The volume header is described by the HFSPlusVolumeHeader type.

struct HFSPlusVolumeHeader {

ulntl6 signature;
ulntl6 version;
ulnt32 attributes;
ulnt32 lastMountedVersion;
ulnt32 reserved;
Uulnt32 createDate;
ulnt32 modifyDate;
ulnt32 backupDate;
ulnt32 checkedDate;
ulnt32 fileCount;
ulnt32 folderCount;

1m e~ e _r A=

3/724/99 5:45 PM

Page 12 of 42

TN 1150: HFS Plus Volume Format 3/724/99 5:45 PM

uINTsZ DIOCKSHZE;
ulnt32 totalBlocks;
ulnt32 freeBlocks;
Uulnt32 nextAllocation;
ulnt32 rsrcClumpSize;
ulnt32 dataClumpSize;
HFSCatalogNodelD nextCataloglD;
ulnt32 writeCount;
ulnt64 encodingsBitmap;
uint8 finderinfo[32];
HFSPlusForkData allocationFile;
HFSPlusForkData extentsFile;
HFSPlusForkData catalogFile;
HFSPlusForkData attributesFile;
HFSPlusForkData startupFile;

}:
typedef struct HFSPlusVolumeHeader HFSPlusVolumeHeader;

The fields have the following meaning:

sighature
The volume signature, which must be kHFSPIusSigWord ("H+") for an HFS Plus volume,

version
The version of the volume format, which is currently 4 (kHFSPlusVersion).

attributes
Volume attributes, as described below.

lastMountedVersion
A value which uniquely identifies the implementation that last mounted this volume for writing. This
value can be used by future implementations to detect volumes that were last mounted by ol der
implementations and check them for deficiencies. When a volume has been mounted for writing, the
implementation should update this field with its own unique value. Third-party implementations of
HFS Plus should place aregistered creator code in thisfield. The value used by Mac OS 8.1 is
"8.10" (kHFSPlusMountVersion).

Note:

It isvery important for implementations (and utilities that directly modify the volume!) to set the
lastMountedVersion. It isaso important to choose different values when non-trivial changes are made
to an implementation or utility. If abug isfound in an implementation or utility, and it setsthe
lastMountedVersion correctly, it will be much easier for other implementations and utilities to detect
and correct any problems.

reserved
An implementation must treat this asareserved field.
createDate
The date and time when the volume was created. See HFS Plus Dates for a description of the format.
modi fyDate
;I'he date and time when the volume was last modified. See HFS Plus Dates for a description of the
ormat.
backupDate
The date and time when the volume was last backed up. The volume format requires no specia action
on thisfield; it smply defines the field for the benefit of user programs. See HES Plus Dates for a

Ammnviimtl Aain Af b A fnvinn At

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 13 Of 42

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM
uESLHIPUUIT Ul UIE TUTTTIAL.

checkedDate
The date and time when the volume was last checked for consistency. Disk checking tools, such as
Disk First Aid, must set thiswhen they perform a disk check. A disk checking tool may use this date
to perform periodic checking of avolume.

fileCount

The total number of files on the volume. The fileCount field does not include the specid files. It
should equal the number of file records found in the catalog file.

folderCount
The total number of folders on the volume. ThefoldercCount field does not include the root folder. It
should equal the number of folder recordsin the catalog file, minus one (since the root folder has a
folder record in the catalog file).

blockSize
The dlocation block size, in bytes.

totalBlocks
Thetotal number of allocation blocks on the disk. Remember that all sectors on the disk are included
in an alocation block, including the volume header and aternate volume header.

freeBlocks
The total number of unused allocation blocks on the disk.

nextAllocation

Start of next allocation search. The nextAllocation field isused by Mac OS as a hint for where to
start searching for free allocation blocks when alocating space for afile. It contains the allocation
block number where the search should begin. An implementation that doesn't want to use this kind of
hint can just treat the field as reserved. [Implementation details: the current implementation for Mac
OS 8typicaly setsit to thefirst allocation block of the extent most recently allocated. It is not set to
the allocation block immediately following the most recently allocated extent because of the likelihood
of that extent being shortened when thefileis closed (since awhole clump may have been alocated
but not actually used).] See Allocation File section for details.

rsrcClumpSize
The default clump size for resource forks, in bytes. Thisis a hint to the implementation as to the size
by which a growing file should be extended.

dataClumpSize
The default clump size for dataforks, in bytes. Thisisahint to the implementation as to the size by
which a growing file should be extended.

nextCataloglD
The next unused catalog ID. See Catalog File for adescription of catalog IDs.
writeCount

Thisfield isincremented every time avolume is mounted. This allows an implementation to keep the
volume mounted even when the mediais gjected (or otherwise inaccessible). When the mediais
re-inserted, the implementation can check thisfield to determine when the media has been changed
whileit was gected. It is very important that an implementation or utility change thewriteCount
field if it modifies the volume's structures directly. Thisis particularly important if it adds or deletes
items on the volume.

encodingsBitmap
Thisfield keeps track of the text encodings used in the file and folder names on the volume. This
bitmap enables some performance optimizations for implementations that don't use Unicode names
directly. See the Text Encoding sections for details.

finderlinfo
Thisfield contains information used by the Mac OS Finder. It'sformat is not part of the HFS Plus
specification.

allocationFile
Information about the location and size of the alocation file. See Fork Data Structure for a description
of theHFSPlusForkData type

extentsFile

Information about the location and size of the extentsfile. See Fork Data Structure for a description of
thaHEQDLIiIcEArlkNata fvna
file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 14 Of 42

TN 1150: HFS Plus Volume Format 3/724/99 5:45 PM

AU Arddvalivitl
catalogFile
Information about the location and size of the catalog file. See Fork Data Structure for a description of
theHFSPlusForkData type.
attributesFile
Information about the location and size of the attributes file. See Fork Data Structure for a
description of the HFSPlusForkData type.
startupFile
Information about the location and size of the startup file. See Fork Data Structure for a description of
the HFSPlusForkData type.

Volume Attributes

Theattributes field of avolume header istreated as a set of one-bit flags. The definition of the bitsis
given by the constants listed below. Bit O isthe least significant bit; bit 31 isthe most significant bit.

enum {
/* Bits 0-6 are reserved */
kHFSVolumeHardwarelLockBit
kHFSVolumeUnmountedBit
kHFSVolumeSparedBlocksBit
kHFSVolumeNoCacheRequiredBit
kHFSBootVolumelnconsistentBit
/* Bits 12-14 are reserved */
kHFSVolumeSoftwareLockBit

B
R O ®©Oom~

Il
[N
a1

}:
The bits have the following meaning:

bits 0-7
An implementation must treat these asreserved fields.

kHFSVolumeUnmountedBit (bit 8)
Thishit isset if the volume was correctly flushed before being unmounted or gected. An
implementation must clear this bit on the media when it mounts a volume for writing. An
implementation must set this bit on the media as the last step of unmounting awritable volume, after
all other volume information has been flushed. If an implementation is asked to mount a volume
wherethisbit is clear, it must assume the volume isinconsistent, and do appropriate consistency
checking before using the volume.

kHFSVolumeSparedBlocksBit (bit 9)
Thisbit isset if there are any records in the extents overflow file for bad blocks (belonging to file ID
kHFSBadBlockFilelD). See Bad Block File for details.
kHFSVolumeNoCacheRequiredBit (bit 10)
Thisbit is set if the blocks from this volume should not be cached. For example, aRAM or ROM

disk is actually stored in memory, so using additional memory to cache the volume's contents would
be wasteful.

kHFSBootVolumelnconsistentBit (bit 11)
Thisbit is similar to kHFSVolumeUnmountedBi t, but inverted in meaning. An implementation must
set this bit on the mediawhen it mounts a volume for writing. An implementation must clear this bit
on the media asthe last step of unmounting a writable volume, after all other volume information has
been flushed. If an implementation is asked to mount a volume where thisbit is set, it must assume
the volume isinconsistent, and do appropriate consistency checking before using the volume.

bits 12 through 14
An implementation must treat these asreserved fields.

kHFSVolumeSoftwarelLockBit (bit 15)
Thishitisset if the volume iswrite-protected due to a software setting. Any implementations must

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 15 Of 42

TN 1150: HFS Plus Volume Format 3/724/99 5:45 PM
reruse to write to avolume witn thisnit set. 1 nistiag IS especially userul Tor write-protecting a

volume on amediathat cannot be write-protected otherwise, or for protecting an individual partition
on a partitioned device.

Note:

An implementation may keep a copy of the attributesin memory and use bits 0-7 for its own runtime
flags. As an example, Mac OS uses bit 7, kHFSVolumeHardwareLockBit, to indicate that the volumeis
write-protected due to some hardware setting.

Note:

The existence of two volume consistency bits (kHFSVolumeUnmountedBit and
kHFSBootVolumeInconsistentBit) deserves an explanation. Macintosh ROMs check the consistency
of aboot volume if kHFSVolumeUnmountedBit is clear. The ROM-based check is very slow,
annoyingly so. This checking code was significantly optimized in Mac OS 7.6. To prevent the ROM
check from being used, Mac OS 7.6 (and higher) leaves the original consistency check bit
(kHFSVolumeUnmountedBit) Set at all times. Instead, an dternative flag
(kHFSBootVolumelnconsistentBit) isused to signal that the disk needs a consistency check.

Note:

For the boot volume, the kHFSBootVolume InconsistentBit should be used as described but
kHFSVolumeUnmountedBit should remain set; for al other volumes, use the
kHFSVolumeUnmountedBit as described but keep the kHFSBootVolumelnconsistentBit clear. Thisis
an optimization that prevents the Mac OS ROM from doing a very slow consistency check when the boot
volume is mounted since it only checks kHFSVolumeUnmountedBit, and won't do a consistency check;
later on, the File Manager will see the kHFSBootVolume InconsistentBit Set and do a better, faster
consistency check. (It would be OK to always use both bits at the expense of a slower Mac OS boot.)

Back to top
B-Trees

Note:
For a practical description of the algorithms used to maintain a B-tree, seeAlgorithmsin C, Robert
Sedgewick, Addison-Wesley, 1992. ISBN: 0201514257.

Many textbooks describe B-trees in which an index node contains N keys and N+1 pointers, and where
keyslessthan key #X liein the subtree pointed to by pointer #X, and keys greater than key #X liein
the subtree pointed to by pointer #X+1. (The B-tree implementor defines whether to use pointer #X or
#X+1 for equal keys.)

HFS and HFS Plus are dlightly different; in a given subtree, there are no keys less than the first key of
that subtree's root node.

This section describes the B-tree structure used for the catalog, extents overflow, and attributes files. A
B-treeis stored in file data fork. Each B-tree has aHFSPlusForkData structure in the volume header that
describes the size and initial extents of that data fork.

Note:

Specia files do not have aresource fork because there is no place to store itsHFSPlusForkData in the
volume header. However, it's still important that the B-tree isin the data fork because the fork is part of
the key used to store B-tree extents in the extents overflow file.

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 16 Of 42

TN 1150: HFS Plus Volume Format 3/724/99 5:45 PM

A B-treefileisdivided up into fixed-size nodes, each of which contains r ecor ds, which consist of a
key and some data. The purpose of the B-tree isto efficiently map akey into its corresponding data. To
achieve this, keys must be ordered, that is, there must be awell-defined way to decide whether one key is
smaller than, equal to, or larger than another key.

Thenode size (which is expressed in bytes) must be power of two, from 512 through 32,768,
inclusive. The node size of a B-tree is determined when the B-tree is created. Thelogical length of a
B-treefileisjust the number of nodes times the node size.

There are four kinds of nodes.

e Each B-tree containsasingle header node. The header node is always the first node in the
B-tree. It contains the information needed to find other any other node in the tree.

e Map nodes contain map recor ds, which hold any allocation data (a bitmap that describes the
free nodes in the B-tree) that overflows the map record in the header node.

e Index nodes hold pointer records that determine the structure of the B-tree.

e L eaf nodes hold data recor ds that contain the data associated with a given key. The key for
each data record must be unique.

All nodes share a common structure, described in the next section.

Node Structure

Nodes are indicated by number. The node's number can be calculated by dividing its offset into the file by
the node size. Each node has the same general structure, consisting of three main parts: a node descriptor
at the beginning of the node, alist of record offsets at the end of the node, and alist of records. This
structure is depicted in Figure 2.

Figure 2 The structure of anode

Mode descriptor
el
Recornd O
= =
Record 1
o
Free space

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 17 Of 42

TN 1150: HFS Plus Volume Format 3/724/99 5:45 PM

Thenode descriptor contains basic information about the node as well as forward and backward links
to other nodes. TheBTNodeDescriptor datatype describes this structure.

struct BTNodeDescriptor {
ulnt32 fLink;
ulnt32 bLink;

SInt8 kind;

ulnt8 height;
ulntl6 numRecords;
ulntl6 reserved;

}:
typedef struct BTNodeDescriptor BTNodeDescriptor;

Thefields have the following meaning:

fLink
The node number of the next node of thistype, or O if thisisthe last node.

bLink
The node number of the previous node of thistype, or O if thisisthe first node.

kind
The type of this node. There are four node kinds, defined by the constants listed below.

height
Thelevel, or depth, of this node in the B-tree hierarchy. For the header node, this field must be zero.
For leaf nodes, this field must be one. For index nodes, thisfield is one greater than the height of the
child nodes it points to. The height of a map node is zero, just like for a header node. (Think of map
nodes as extensions of the map record in the header node.)

numRecords
The number of records contained in this node.

reserved
An implementation must treat thisas areserved field.

A node descriptor isaways 14 (which is sizeof(BTNodeDescriptor)) byteslong, so thelist of
recor ds contained in a node always starts 14 bytes from the start of the node. The size of each record can
vary, depending on the record's type and the amount of information it contains.

The records are accessed using the list of record offsets at the end of the node. Each entry in thislist
isaulntl6 which contains the offset, in bytes, from the start of the node to the start of the record. The
offsets are stored in reverse order, with the offset for the first record in the last two bytes of the node, the
offset for the second record is in the previous two bytes, and so on. Since the first record is always at
offset 14, the last two bytes of the node contain the value 14.

IMPORTANT:

Thelist of record offsets always contains one more entry than there is records in the node. This entry
contains the offset to the first byte of free space in the node, and thus indicates the size of the last record
in the node. If there is no free space in the node, the entry contains its own byte offset from the start of
the node.

Thekind field of the node descriptor describes the type of a node, which indicates what kinds of records
it contains and, therefore, its purpose in the B-tree hierarchy. There are four kinds of node types given by
the following constants:

enum {
kBTLeafNode = -1,
kBT IndexNode = 0,

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 18 Of 42

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM
kBTHeaderNode 1,
kBTMapNode 2

};

It'simportant to realise that the B-tree node type determines the type of records found in the node. L eaf
nodes always contain data records. Index nodes always contain pointer records. Map nodes always
contain map records. The header node always contains a header record, areserved record, and a map
record. The four node types and their corresponding records are described in the subsequent sections.

Header Nodes

Thefirst node (node 0) in every B-treefileis a header node, which contains essential information about
the entire B-tree file. There are three recordsin the header node. The first record is the B-tree header
record. The second is areserved record that is always 128 bytes long. The last record is the B-tree map
record; it occupies al of the remaining space between the reserved record and the record offsets. The
header node is shown in Figure 3.

Figur e 3 Header node structure

Mode dezcriptor

ol
B-tres header record
o]
Unu=ad record
i

B-trea rmap record

Offzet 1o free space :I

Offzet to record 2

Offzet to record 1

Offzet to record O

ThefLink field of the header node's node descriptor contains the node number of the first map node, or 0
if there are no map nodes. The bLink field of the header node's node descriptor must be set to zero.

Header Record

The B-tree header record contains general information about the B-tree such asits size, maximum key
length, and the location of the first and last |eaf nodes. The data type BTHeaderRec describes the structure
of aheader record.

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 19 Of 42

TN 1150: HFS Plus Volume Format 3/724/99 5:45 PM

struct BTHeaderRec {

ulntl6 treeDepth;
uilnt32 rootNode;
uilnt32 leafRecords;
uilnt32 firstLeafNode;
uilnt32 lastlLeafNode;
ulntl6 nodeSize;
ulntl6 maxKeyLength;
uilnt32 totalNodes;
uilnt32 freeNodes;

ulntl6 reservedl;

ulnt32 clumpSize; // misaligned

uint8 btreeType;

ulnt8 reserved2;

ulnt32 attributes; // long aligned again

ulnt32 reserved3[16];
}:
typedef struct BTHeaderRec BTHeaderRec;

Note:

The root node can be aleaf node (in the case where thereis only asingle leaf node, and therefore no
index nodes, as might happen with the catalog file on anewly initialized volume). If atree has no |leaf
nodes (like the extents overflow file on anewly initialized volume), the firstLeafNode,
lastLeafNode, and rootNode fieldswill al be zero. If thereisonly one leaf node (as may be the case
with the catal og file on anewly initialized volume), firstLeafNode, lastLeafNode, and rootNode
will al have the same value (i.e., the node number of the sole leaf node). The firstLeafNode and
lastLeafNode fieldsjust make it easy to walk through al the leaf nodes by just following
fLink/bLink fields.

Thefields have the following meaning:

treeDepth
The current depth of the B-tree. Always equal to the height field of the root node.
rootNode
The node number of the root node, the index node that acts as the root of the B-tree. See Index
Nodes for details. Thereis apossibility that the rootNode is aleaf node. Seelnside Macintosh: Files,
pp. 2-69 for details.
leafRecords
The total number of records contained in al of the leaf nodes.
firstLeafNode
The node number of the first leaf node. This may be zero if there are no leaf nodes.
lastLeafNode
The node number of the last leaf node. This may be zero if there are no leaf nodes.
nodeSize
The size, in bytes, of anode. Thisisapower of two, from 512 through 32,768, inclusive.
maxKeyLength
The maximum length of akey in anindex or leaf node. HFSV olumes.h has the maxKeyLength
values for the catalog and extents files for both HFS and HFS Plus
(kHFSP lusExtentKeyMaximumLength, kHFSExtentKeyMaximumLength,
kHFSPlusCatalogKeyMaximumLength, kHFSCatalogKeyMaximumLength). The maximum key
length for the attributes B-tree will probably be alittle larger than for the catalog file. In generdl,
maxKeyLength hasto be small enough (compared to nodeSize) so that a single node can fit two keys
of maximum size plus the node descriptor and offsets.

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 20 Of 42

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM

totalNodes
The total number of nodes (be they free or used) in the B-tree. The length of the B-tree fileisthis
vaue timesthe nodeSize.

freeNodes
The number of unused nodes in the B-tree.

reservedl
An implementation must treat this asareserved field.

clumpSize
Ignored for HFS Plus B-trees. The clumpSize field of the HESPlusForkData record is used instead.
For maximum compatibility, an implementation should probably set the clumpSize in the node
descriptor to the same value as the clumpSi ze in theHFSPlusForkData when initializing avolume.
Otherwise, it should treat the header records's clumpSize as reserved.

btreeType
Must be O for HFS Plus B-trees.

reserved?2
An implementation must treat thisas areserved field.

attributes

A set of bits used to describe various attributes of the B-tree. The meaning of these bitsis given
below.

reserved3
An implementation must treat this asareserved field.

The following constants define the various bits that may be set in the attributes field of the header
record.

enum {
kBTBadCloseMask = 0x00000001,
kBTBigKeysMask = 0x00000002,
kBTVariablelndexKeysMask = 0x00000004

}:
The bits have the following meaning:

kBTBadCloseMask
Thisbit indicates that the B-tree was not closed properly and should be checked for consistency. This
bit is not used for HFS Plus B-trees. An implementation must treat this as reserved.
kBTBigKeysMask
If thisbit is set, thekeyLength field of the keysinindex and leaf nodesisuint16; otherwise, itisa
UInt8. Thisbit must be set for al HFS Plus B-trees.
kBTVariablelndexKeysMask
If this bit is set, the keys in index nodes occupy the number of bytesindicated by their keyLength
field; otherwise, the keys in index nodes aways occupy maxKeylLength bytes. This bit must be set
for the HFS Plus Catalog B-tree, and cleared for the HFS Plus Extents B-tree.

Bits not specified here must be treated as reserved.
Reserved Record

The second record in a header node is always 128 bytes long. It is not used by HFS Plus B-trees. An
implementation must treat the contents of this record as areserved field.

Map Record

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 21 Of 42

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM
The remaining space in the header node is occupied by athird record, the map record. It is abitmap that
indicates which nodesin the B-tree are used and which are free. The bits are interpreted in the same way
asthe bitsin the dlocation file.

All tolled, the node descriptor, header record, reserved record, and record offsets occupy 256 bytes of the
header node. So the size of the map record (in bytes) isnodeSize minus 256. If there are more nodesin
the B-tree than can be represented by the map record in the header node, map nodes are used to store
additional allocation data.

Map Nodes

If the map record of the header node is not large enough to represent al of the nodes in the B-tree, map
nodes are used to store the remaining allocation data. In this case, the fLink field of the header node's
node descriptor contains the node number of the first map node.

A map node consists of the node descriptor and a single map record. The map record is a continuation of
the map record contained in the header node. The size of the map record is the size of the node, minus

the size of the node descriptor (14 bytes), minus the size of two offsets (4 bytes), minus two bytes of free
space. That is, the size of the map record is the size of the node minus 20 bytes; this keeps the length of
the map record an even multiple of 4 bytes. Note that the start of the map record is not aligned to a4-byte
boundary: it startsimmediately after the node descriptor (at an offset of 14 bytes).

The B-tree uses as many map nodes as needed to provide allocation datafor al of the nodesin the
B-tree. The map nodes are chained through the fLink fields of their node descriptors, starting with the
header node. The fLink field of the last map node's node descriptor is zero. The bLink field is not used
for map nodes and must be set to zero for all map nodes.

Note:
Not using thebLink field is consistent with the HFS volume format, but not really consistent with the
overall design.

Keyed Records

Therecordsinindex and leaf nodes share acommon structure. They contain akeyLength, followed by
thekey itself, followed by the record data.

Thefirst part of the record, keyLength, iseither auint8 or aulnt16, depending on theattributes
field in the B-tree's header record. If the kBTBigKeysMask bit isset in attributes, the keyLength isa
UIntle; otherwise, it'saulnt8. Thelength of the key, as stored in thisfield, does not include the size of
thekeyLength field itself.

IMPORTANT:
All HFS Plus B-trees use aulint16 for their key length.

Immediately following the keyLength isthe key itself. The length of the key is determined by the node
type and the B-tree attributes. In leaf nodes, the length is dways determined by keyLength. In index
nodes, the length depends on the value of the kBTVariablelndexKeysMask bit in the B-tree attributesin
the header record. If the bit is clear, the key occupies a constant number of bytes, determined by the
maxKeyLength field of the B-tree header record. If the bit is set, the key length is determined by the
keyLength field of the keyed record.

Following the key is the record's data. The format of this data depends on the node type, as explained in
the next two sectinons However the data is alwavs alinned on a twao-hvte hot indarv and ocelinies an evven

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 22 Of 42

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM

number of bytes To meet the first alignment requwement apad byte must be inserted between the key
and the dataif the size of the keyLength field plus the size of the key is odd. To meet the second
alignment requirement, a pad byte must be added after the dataif the datasizeis odd.

Index Nodes

Therecordsin an index node are called pointer records. They contain akeyLength, akey, and a node
number, expressed aUlnt32. The node whose number isin apointer record is called achild node of
the index node. An index node has two or more children, depending on the size of the node and the size
of the keysin the node.

Note:
A root node does not need to exist (if the tree is empty). And even if one does not exist, it need not be an
index node (i.e., it could be aleaf node -- if all the recordsfit in asingle node).

L eaf Nodes

The bottom level of aB-treeis occupied exclusively by leaf nodes, which containdata recor ds
instead of pointer records. The data records contain a keyLength, akey, and the data associated with
that key. The data may be of variable length.

In an HFS Plus B-tree, the datain the data record is the HFS Plus volume structure (such as a
CatalogRecord, ExtentRecord, Or AttributeRecord) associated with the key.

Sear ching for Keyed Records

A B-treeis highly structured to allow for efficient searching, insertion, and removal. This structure
primarily affects the keyed records (pointer records and data records) and the nodes in which they are
stored (index nodes and leaf nodes). The following are the ordering requirements for index and |eaf
nodes:

e Keyed records must be placed in anode such that their keys are in ascending order.

e All thenodesin agiven level (whose height field isthe same) must be chained viatheir fLink
and bLink field. The node with the smallest keys must be first in the chain and itsbLink field
must be zero. The node with the largest keys must be last in the chain and its fLink field must be
zero.

e For any given node, all the keysin the node must be less than all the keys in the next node in the
chain (pointed to by fLink). Smilarly, al the keysin the node must be greater than all the keys

in the previous node in the chain (pointed to by bLink).

Keeping the keys ordered in thisway makes it possible to quickly search the B-tree to find the data
associated with a given key. Figure 4 shows a sample B-tree containing hypothetical keys (in this case,
the keys are ssimply integers).

When an implementation needs to find the data associated with a particular sear ch key, it begins
searching at the root node. Starting with the first record, it searches for the record with the greatest key
that isless than or equa to the search key. In then moves to the child node (typically an index node) and
repeats the same process.

This process continues until aleaf node is reached. If the key found in the leaf node is equal to the search
key, the found record contains the desired data associated with the search key. If the found key is not
equal to the search key, the search key is not present in the B-tree.

—' __ .. _ A A __ ___l_ ™~ T __

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 23 Of 42

TN 1150: HFS Plus Volume Format 3/724/99 5:45 PM
Flgure 4 A sanpie s-iree

isthatfnods roat ncde lsst Lo o
Healdar wods pon b pointer polnber

! |
hdsx nodex lr
|3| poinir |'|E-| ponttr |

Y t

[&] ponter [13] pcintr | [18] poinver [B0] ponter [25] ponte |

¥]1r

[&] &w [10] data | [15] daw [15] datm | 18] daw | {20] daw JE2] dsm | [23] dam |

Liaf modes

HFS and HFS Plus B-Trees Compar ed

The structure of the B-trees on an HFS Plus volume is a closely related to the B-tree structure used on an
HFES volume. There are three principal differences: the size of nodes, the size of keys within index nodes,
and the size of akey length (UInt8 vs. UInt16).

Node Sizes

In an HFS B-tree, nodes always have afixed size of 512 bytes.

In an HFS Plus B-tree, the node size is determined by afield (nodeSize) in the header node. The node
size must be a power from 512 through 32,768. An implementation must use the nodeSi ze field to
determine the actual node size.

Note:
The header node is always located at the start of the B-tree, so you can find it without knowing the

B-tree node size.

HFS Plus uses the following default node sizes:

e 4 KB for the catalog file
e 1 KB for the extents overflow file
e 4 KB for the attributesfile

These sizes are set when the volumeisinitialized and cannot be easily changed. It islegal to initialize an
HFS Plus volume with different node sizes, but the node sizes must be large enough for an index node
to contain two keys of maximum size (plus the other overhead such as a node descriptor, record offsets,

and pointersto children).

IMPORTANT:
The node size of the catalog file must be at |east kHFSPlusCatalogMinNodeSize (4096).

IMPORTANT:
The node size of the attributes file must be at least kHFSPIusAttrMinNodeSize (4096).

Key Sizein an Index Node

limn ~m IO P dvmn All Af blhAa i iAalin A tmdAs tmAadAa Adarvai s A s Ad AmmaAr adk A mnamAr Hla A imm Al imar saa |

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 24 Of 42

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM
HdlNFD D-UEE, di Ul LIEKEYS Il HTIUEX 110UE ULCUPY d HIXEU el [TUUIIL U1 SPaCe. Ui HTIAXITTIUNTT Key

length for that B-tree. This simplifies the algorithms for inserting and deleting records because, within an
index node, one key can be replaced by another key without worrying whether there is adequate room
for the new key. However, it is also somewhat wasteful when the keys are variable length (such asin the
catalog file, where the key length varies with the length of the file name).

In an HFS Plus B-tree, the keysin an index node are allowed to vary in size. This complicates the
algorithms for inserting and deleting records, but reduces wasted space when the length of akey can

vary (such asinthe catalog file). It also means that the number of keysin an index node will vary with the
actual size of the keys.

Back to top

Catalog File

HFS Plus uses a catal og file to maintain information about the hierarchy of files and folders on avolume. A
catalog file is organized as a B-treefile, and hence consists of a header node, index nodes, leaf nodes,

and (if necessary) map nodes. The location of the first extent of the catalog file (and hence of thefile's
header node) is stored in the volume header. From the catalog fil€'s header node, an implementation can
obtain the node number of the root node of the B-tree. From the root node, an implementation can search
the B-tree for keys, as described in the previous section.

The B-Trees chapter defined a standard rule for the node size of HFS Plus B-trees. Asthe catalog fileis
aB-tree, it inherits the requirements of thisrule. In addition, the node size of the catalog file must be at
least 4 KB (kHFSPlusCatalogMinNodeSize).

Each file or folder in the catalog file is assigned a unique catalog node ID (CNID). For folders, the CNID
isthefolder |1 D, sometimes called adirectory ID, or dirID; for files, it'sthefile I D. For any givenfile
or folder, the parent ID isthe CNID of the folder containing the file or folder, known as the parent folder.

The catalog node ID is defined by the CatalogNode 1D datatype.

typedef UInt32 HFSCatalogNodelD;

Thefirst 16 CNIDs are reserved for use by Apple Computer, Inc., and include the following standard
assignments:

enum {
kHFSRootParentlID
kHFSRootFolderlID
kHFSExtentsFilelD
kHFSCatalogFilelD
kHFSBadBlockFilelD
kHFSAllocationFilelD
kHFSStartupFilelD
kHFSAttributesFilelD
kHFSBogusExtentFilelD
kHFSFirstUserCatalogNodelD

PRPO~NOOPAWNLERE

o Ol

}:
These constants have the following meaning:

kHFSRootParentlD
Parent ID of the root folder.

[N el p RV R A DA oY

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 25 Of 42

TN 1150: HFS Plus Volume Format 3/724/99 5:45 PM

KororuouLruruer 1v

Folder ID of the root folder.
kHFSExtentsFilelD

File 1D of the extents overflow file.
kHFSCatalogFilelD

File 1D of the catalog file.
kHFSBadBlockFilelD

File ID of the bad block file. The bad block fileis not afilein the same sense as a special fileand a

user file. See Bad Block File for details.
kHFSAllocationFilelD

File 1D of the alocation file (introduced with HFS Plus).
kHFSStartupFilelD

File ID of the startup file (introduced with HFS Plus).
kHFSAttributesFilelD

File 1D of the attributesfile (introduced with HFS Plus).
kHFSBogusExtentFilelD

Used temporarily during ExchangeFi les operations.
kHFSFirstUserCatalogNodelD

First CNID available for use by user files and folders.

In addition, the CNID of zero is never used and serves as anil value.

The implementation must store a number greater than the largest CNID used by any file or folder on the
volume in the nextCataloglD field of the volume header. Typically CNIDs are allocated sequentially,
starting at kHFSFirstUserCatalogNode ID. When the CNID reaches its maximum ($FFFFFFFF), the disk
isout of CNIDs and no new files or folders can be created.

Asthe catalog fileis a B-treefile, it inheritsits basic structure from the definition in B-Trees Beyond
that, you need to know only two things about an HFS Plus catalog file to interpret its data:

1. theformat of the key used both in index and leaf nodes, and
2. theformat of the leaf node data records (file, folder, and thread records).

Catalog File Key

For agivenfile, folder, or thread record, the catalog file key consists of the parent folder's CNID and the
name of thefile or folder. This structure is described using the HFSPIusCatalogKey type.

struct HFSPlusCatalogKey {

ulntl6 keyLength;
HFSCatalogNodelD parentliD;
HFSUNniStr255 nodeName;

}:
typedef struct HFSPlusCatalogKey HFSPlusCatalogKey;

Thefields have the following meaning:

keyLength
ThekeyLength field isrequired by all keyed recordsin a B-tree. The catalog file, in common with all
HFS Plus B-trees, uses alarge key length (UInt16).

parentlD

For file and folder records, thisis the folder containing the file or folder represented by the record.
For thread records, thisisthe CNID of the file or folder itself.

nodeName

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 26 Of 42

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM
Thisfield contains Unicode characters, fully decomposed and in canonical order. For file or folder
records, thisisthe name of thefile or folder inside the parent 1D folder. For thread records, thisis
the empty string.

IMPORTANT:

The length of the key varies with the length of the string stored in the nodeName field; it occupies only
the number of bytes required to hold the name. The keyLength field determines the actua length of the
key; it varies between kHFSPlusCatalogKeyMinimumLength (6) to

kHFSP lusCatalogKeyMaximumLength (516).

Note:

The catalog file key mirrors the standard way you specify afile or folder with the Mac OS File Manager
programming interface, with the exception of the volume reference number, which determines which
volume's catal og to search.

Catalog file keys are compared first by parentiD and then by nodeName. The parentlD is compared as
an unsigned 32-bit integer. The nodeName should be compared in a case-insensitive way, as described in
the String Comparison Algorithm section.

For more information about how catalog keys are used to find file, folder, and thread records within the
catalog tree, see Catalog Tree Usage.

Catalog File Data
A catalog file leaf node can contain four different types of datarecords:

A folder record containsinformation about a single folder.

A file record contains information about asinglefile.

A folder thread record providesalink between afolder and its parent folder, and lets you
find afolder record given just the folder ID.

Afilethread record providesalink between afile and its parent folder, and lets you find afile
record given just the file ID. (In both the folder thread and the file thread record, the thread record
is used to map thefile or folder ID to the actual parent directory 1D and name.)

> wbdhe

Each record startswith a recordType field, which describes the type of catalog datarecord. The
recordType field contains one of the following values:

enum {
kHFSPlusFolderRecord = 0x0001,
kHFSPlusFileRecord = 0x0002,
kHFSPlusFolderThreadRecord = 0x0003,
kHFSPlusFileThreadRecord = 0x0004

}:
The values have the following meaning:

kHFSPlusFolderRecord

Thisrecord isafolder record. Y ou can use theHFSPlusCatalogFolder typeto interpret the data.
kHFSPlusFileRecord

Thisrecord isafilerecord. You can use theHFSPlusCatalogFi le typeto interpret the data.
kHFSPlusFolderThreadRecord

Thisrecord isafolder thread record. Y ou can use theHFSPlusCatalogThread typeto interpret the
data.

LHERPLiicFi laThreaadRarnrd
file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 27 Of 42

TN 1150: HFS Plus Volume Format 3/724/99 5:45 PM

Thisrecord isafilethread record. Y ou can use theHFSPlusCatalogThread typeto interpret the
data.

The next three sections describe the folder, file, and thread records in detail .

Note:
The position of the recordType field, and the constants chosen for the various record types, are
especialy useful if you're writing common code to handle HFS and HFS Plus volumes.

In HFS, the record type field is one byte, but it's always followed by a one-byte reserved field whose
value is aways zero. In HFS Plus, the record type field is two bytes. Y ou can use the HFS Plus
two-byte record type to examine an HFS record if you use the appropriate constants, as shown below.

enum {
kHFSFolderRecord = 0x0100,
kHFSFileRecord = 0x0200,
kHFSFolderThreadRecord = 0x0300,
kHFSFileThreadRecord = 0x0400

};
The values have the following meaning:

kHFSFolderRecord
Thisrecord isan HFS folder record. Y ou can use the HFSCatal ogFolder type to interpret the data.
kHFSFileRecord
Thisrecord is an HFS file record. Y ou can use the HFSCatal ogFi le type to interpret the data.
kHFSFolderThreadRecord
Thisrecord is an HFS folder thread record. Y ou can use the HFSCatalogThread type to interpret
the data.
kHFSFileThreadRecord

Thisrecord isan HFSfile thread record. Y ou can use the HFSCatalogThread type to interpret the
data.

Catalog Folder Records

The catalog folder record is used in the catalog B-tree file to hold information about a particular folder on
the volume. The data of the record is described by the HFSPlusCatalogFolder type.

struct HFSPlusCatalogFolder {

SIntl6 recordType;
uintl6 flags;

Uulnt32 valence;
HFSCatalogNodelD folderlD;
Uulnt32 createDate;
Uulnt32 contentModDate;
Uulnt32 attributeModDate;
Uulnt32 accessDate;
ulnt32 backupDate;
HFSPlusPermissions permissions;
DInfo userlinfo;
DXInfo finderinfo;
ulnt32 textEncoding;
Uulnt32 reserved;

0 -
file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 28 Of 42

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM
typedef struct HFSPlusCatalogFolder HFSPlusCatalogFolder;

Thefields have the following meaning:

recordType

The catalog data record type. For folder records, thisis always kHFSPlusFolderRecord.

flags
Thisfield contains bit flags about the folder. No bits are currently defined for folder records. An
Implementation must treat this as areserved field.

valence
The number of files and folders directly contained by thisfolder. Thisis equal to the number of file
and folder records whose key's parentlID is equal to thisfolder's folderID.

IMPORTANT:

The current Mac OS File Manager programming interfaces require folders to have a valence less than
32,767. An implementation must enforce thisrestriction if it wants the volume to be usable by Mac OS.
Values of 32,768 and larger are problematic; 32,767 and smaller are OK. It's an implementation
restriction for the older Mac OS APIs; items 32,768 and beyond would be unreachable by
PBGetCatlInfo. Asapractica matter, many programs are likely to fails with anywhere near that many
itemsin asingle folder. So, the volume format alows more than 32,767 itemsin afolder, but it's
probably not agood ideato exceed that limit right now.

folderlID
The CNID of thisfolder. Remember that the key for afolder record contains the CNID of the folders
parent, not the CNID of the folder itself.

createDate
The date and time the folder was created. See HFES Plus Dates for a description of the format. Again,
the createDate of the Volume Header isNOT stored in GMT; it islocal time. (Further, if the
volume has an HFS wrapper, the creation date in the MDB should be the same as the createDate in
the Volume Header).

contentModDate
The date and time the folder's contents were last changed. Thisis the time when afile or folder was

created or deleted inside this folder, or when afile or folder was moved in or out of thisfolder. See
HFES Plus Dates for a description of the format.

Note:

The current Mac OS APIs use the contentModDate When getting and setting the modification date. The
current Mac OS APIstreat attributeModDate as areserved field.

attributeModDate
TheattributeModDate is Set when anamed fork (attribute) -- other than the data and resource fork
-- iswritten to. ThecontentModDate is used for the data and resource forks, and when
adding/removing items in a directory. An implementation which doesn't use named forks should treat
theattributeModDate as reserved.

accessDate

The date and time the folder's contents were last read. Thisfield has no analog in the HFS catalog
record. It represents the last time the folder's contents were read. Thisfield exists to support POSIX
semantics when the volume is mounted on non-Mac OS platforms. See HES Plus Dates for a
description of the format.

IMPORTANT:

Tha Mar NQ imnlamantatinn nf HEQ Dliic Anoe nnt maintain tha a~r~rAacana+a fialA Nlandv crroatod filoce
file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 29 Of 42

TN 1150: HFS Plus Volume Format

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html

1Hic ivicss U\JIIIIPIUIIU NCLIVITIUIL 111 DI TUOUULCOITIUL TTIUATILAT L LT IO AauLuTOoOOoOUraenc 1i1uiu. I‘lCV\lly viooacu 111vo

or folders have an accessDate of zero.

backupDate
The date and time the folder was last backed up. The volume format requires no special action on
thisfield; it smply definesthe field for the benefit of user programs. See HES Plus Dates for a
description of the format.

permissions
Thisfield contains folder permissions, similar to those defined by POSIX or AFP. See HES Plus
Permissions for a description of the format.

IMPORTANT:

The Mac OS implementation of HFS Plus does not use the permissions field. Folders created by Mac
OS have the entirefield set to 0.

userlinfo
Thisfield contains information used by the Mac OS Finder. Itsformat is not part of the HFS Plus
specification.

finderinfo
Thisfield contains information used by the Mac OS Finder. Itsformat is not part of the HFS Plus
specification.

textEncoding
A hint asto text encoding from which the folder name was derived. This hint can be used to improve
the quality of the conversion of the name to aMac OS-encoded Pascal string. See Text Encodings
for details.

reserved
An implementation must treat this as areserved field.

Catalog File Records

The catalog file record is used in the catalog B-tree file to hold information about a particular file on the
volume. The data of the record is described by the HFSP1usCatalogFi le type.

struct HFSPlusCatalogFile {

SIntl6 recordType;
ulntl6 flags;

Uulnt32 reservedl;
HFSCatalogNodelD filelD;

Uulnt32 createDate;
Uulnt32 contentModDate;
Uulnt32 attributeModDate;
Uulnt32 accessDate;
ulnt32 backupDate;
HFSPlusPermissions permissions;
Finfo userlinfo;
FXInfo finderinfo;
ulnt32 textEncoding;
Uulnt32 reserved?2;
HFSPlusForkData dataFork;
HFSPlusForkData resourcefFork;

}:
typedef struct HFSPlusCatalogFile HFSPlusCatalogFile;

ThhnmnflAlda lha imadlaa Al Al ma smm Al ta A

3/24/99 5:45 PM

Page 30 of 42

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM
ITIE TEIUS [TAVE U IE TUHUWITIY TTIEA T IY.

recordType
The catalog data record type. For files records, thisis aways kHFSPlusFi leRecord.

flags
Thisfield contains bit flags about the file. The currently defined bits are described below. An
implementation must treat undefined bits as reserved.

reservedl
An implementation must treat thisas areserved field.

filelD
The CNID of thisfile.

createDate
The date and time the file was created. See HFS Plus Dates for a description of the format.

contentModDate
The date and time the file€'s contents were last changed by extending, truncating, or writing either of
the forks. See HFS Plus Dates for a description of the format. The contentModDate is set when the
data or resource forks are extended, truncated, or written to. The attributeModDate is set when any
other named fork (attribute) is extended, truncated, or written to. Since the current Mac OS APIs
don't support the other named forks, it treats attributeM odDate as reserved.

attributeModDate
The date and time the fil€'s attributes were last changed. The attributeModDate is set when any
other named fork (attribute) is extended, truncated, or written to. Since the current Mac OS APIs
don't support the other named forks, it treats attributeModDate as reserved (see the Attributes File
section). See HFS Plus Dates for a description of the format.

accessDate
The date and time the file's contents were last read. Thisfield has no analog in the HFS catalog
record. It represents the last time either of afile'sforkswasread. Thisfield exists to support POSIX
semantics when the volume is mounted on non-Mac OS platforms. See HFS Plus Dates for a
description of the format.

IMPORTANT:
The Mac OS implementation of HFS Plus does not maintain the accessDate field. Newly created files
or folders have an accessbate of zero.

backupDate
The date and time the file was last backed up. The volume format requires no specia action on this
field; it smply definesthe field for the benefit of user programs. See HES Plus Dates for a
description of the format.

permissions
Thisfield contains file permissions, similar to those defined by POSIX. See HFS Plus Permissions
for adescription of the format.

IMPORTANT:
The Mac OS implementation of HFS Plus does not use the permissions field. Files created by Mac
OS have the entirefield set to 0.

userlinfo
Thisfield contains information used by the Mac OS Finder. Itsformat is not part of the HFS Plus
specification.

finderinfo
Thisfield contains information used by the Mac OS Finder. Itsformat is not part of the HFS Plus
specification.

textEncoding
A hint asto text encoding from which the file name was derived. This hint can be used to improved

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 31 Of 42

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM
the quality of the conversion of the name to aMac OS encoded Pascal string. See Text Encodings for
details.

reserved2
An implementation must treat thisas areserved field.

dataFork
Information about the location and size of the data fork. See Fork Data Structure for a description of
theHFSPlusForkData type

resourceFork
Information about the location and size of the resource fork. See Fork Data Structure for a description
of theHFSPlusForkData type

For each fork, the first eight extents are described by the HFSPlusForkData field in the catalog file
record. If afork is sufficiently fragmented to require more than eight extents, the remaining extents are
described by extent records in the extents overflow file.

The following constants define bit flags in the file record's flags field:

enum {
kHFSFileLockedBit = 0x0000,
kHFSFi leLockedMask = 0x0001,
kHFSThreadExistsBit = 0x0001,
kHFSThreadExistsMask = 0x0002

}:
The values have the following meaning:

kHFSFileLockedBit, kHFSFi leLockedMask
If kHFSFileLockedBit is set, then none of the forks may be extended, truncated, or written to. They
may only be opened for reading (not for writing). The catalog information (like finderInfo and
user Info) may still be changed.

kHFSThreadExistsBit, kHFSThreadExistsMask
This tt);t incidates that the file has a thread record. As all filesin HFS Plus have thread records, this bit
must be set.

Catalog Thread Records

The catal og thread record is used in the catalog B-tree fileto link a CNID to thefile or folder record using
that CNID. The data of the record is described by the HFSPlusCatalogThread type.

IMPORTANT:
In HFS, thread records were required for folders but optional for files. In HFS Plus, thread records are
required for both files and folders.

struct HFSPlusCatalogThread {

SIntl6 recordType;
SIntl6 reserved;
HFSCatalogNodelD parentliD;
HFSUNniStr255 nodeName;

}:
typedef struct HFSPlusCatalogThread HFSPlusCatalogThread;

Thefields have the following meaning:

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 32 Of 42

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM
recordType
The catalog data record type. For thread records, thisis kHFSP1usFi leRecord oOr
kHFSPlusFolderRecord, depending on whether the thread record refersto afile or afolder. Both
types of thread record contain the same data.
reservedl
An implementation must treat thisas areserved field.

parentlD
The CNID of the parent of the file or folder referenced by this thread record.

nodeName
The name of the file or folder referenced by this thread record.

The next section explains how thread records can be used to find afile or folder using just its CNID.

Catalog Tree Usage

File and folder records always have a key that contains a non-empty nodeName. The file and folder
records for the children are al consecutive in the catalog, since they al have the same parentlID in the

key, and vary only by nodeName.

The key for athread record isthefil€'s or folder's CNID (not the CNID of the parent folder) and an
empty (zero length) nodeName. This allows afile or folder to by found using just the CNID. The thread
record contains the parent 1D and nodeName field of the file or folder itsalf.

Finding afile or folder by its CNID is atwo-step process. The first step isto use the CNID to look up the
thread record for the file or folder. Thisyieldsthefile or folder's parent folder ID and name. The second
step isto use that information to look up the real file or folder record.

Since files do not contain other files or folders, there are no catalog records whose key has aparentiD
equal to afile's CNID and nodeName with non-zero length.These unused key values are reserved.

Back to top

Extents Overflow File

HFS Plus tracks which allocation blocks belong to afile's forks by maintaining alist of extents
(contiguous allocation blocks) that belong to that file, in the appropriate order. Each extent is represented
by apair of numbers: the first alocation block number of the extent and the number of allocation blocksin
the extent. Thefile record in the catalog B-tree contains arecord of the first eight extents of each fork. If
there are more than eight extentsin afork, the remaining extents are stored in the extents overflow file.

Note:
Fork Data Structure discusses how HFS Plus maintains information about a fork.

Likethe catalog file, the extents overflow file is B-tree However, the structure of the extents overflow
fileisrelatively smple compared to that of a catalog file. The extents overflow file has asimple, fixed
length key and a single type of datarecord.

Extents Overflow File Key

The structure of the key for the extents overflow file is described by the HFSPlusExtentKey type.

struct HFSPlusExtentKey {

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 33 Of 42

TN 1150: HFS Plus Volume Format 3/724/99 5:45 PM

uintl6 keyLength;
uint8 forkType;
ulnt8 pad;
HFSCatalogNodelD filelD;
Uulnt32 startBlock;

}:
typedef struct HFSPlusExtentKey HFSPlusExtentKey;

The fields have the following meaning:

keyLength
ThekeyLength field isrequired by all keyed recordsin a B-tree. The extents overflow file, in
common with al HFS Plus B-trees, uses alarge key length (UInt16). Keysin the extents overflow
file dways have the same length, kHFSP lusExtentKeyMaximumLength (10).

forkType
Thetype of fork for which this extent record applies. This must be either O for the data fork or $FF
for the resource fork.

pad
An implementation must treat thisas apad field.

filelD
The CNID of the file for which this extent record applies.

startBlock
The offset, in alocation blocks, into the fork of the first extent described by this extent record. The

startBlock field lets you directly find the particular extents for a given offset into afork.

NOTE:
Typicaly, an implementation will keep a copy of theinitial extents from the catalog record. When trying

to access part of the fork, they see whether that position is beyond the extents described in the catalog
record; if so, they use that offset (in allocation blocks) to find the appropriate extents B-tree record. See
Extents Overflow File Usage for more information.

Two HFSP lusExtentKey structures are compared by comparing their fields in the following order:
filelD, forkType, startBlock. Thus, all the extent records for a particular fork are grouped together in
the B-tree, right next to all the extent records for the other fork of thefile.

Extents Overflow File Data

The datarecords for an extents overflow file (the extent recor ds) are described by the
HFSPlusExtentRecord type, which is described in detail in Fork Data Structure.

IMPORTANT:
Remember that the HFSPlusExtentRecord contains descriptors for eight extents. The first eight extents
inafork are held in its catalog file record. So the number of extent records for afork is ((number of

extents- 8+ 7) / 8).

Extents Overflow File Usage

The most important thing to remember about extents overflow fileisthat it is only used for forks with
more than eight extents. In most cases, forks have fewer extents, and al the extents information for the
fork isheld inits catalog file record. However, for more fragmented forks, the extra extents information

is stored in the extents overflow file.

When an implementation needs to map afork offset into a sector on disk; it first looks through the extent
/1 /Monsters20Bo0t/Every thingsk20sise/ Apple/Weelkih 200 203%2F222-99 /QuinTAZotm1 150w Zoupdatezoszra/mitso e Page 34 of 42

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM
recoras in tne Caraog tiie recora. IT tne1ork OrTSet 1S witnin one tnese extents, tne lImpiementarion can 1ina

the corresponding sector without consulting the extents overflow file.

If, on the other hand, the fork offset is beyond the last extent recorded in the catalog file record, the
implementation must look in the next extent record, which is stored in the extents overflow file. To find
this record, the implementation must form a key, which consists of information about the fork (the fork
type and thefile ID) and the offset info the fork (the start block).

Because extent records are partially keyed off the fork offset of the first extent in the record, the
implementation must have all the preceding extent recordsin order to know the fork offset to form the key
of the next extent record. For example, if the fork has two extent records in the extents overflow file, the
implementation must read the first extent record to calculate the fork offset for the key for the second
extent record.

However, you can use the startBlock in the extent key to go directly to the record you need. Here'sa
complicated example:

We've got afork with atotal of 23 extents (very fragmented!). The blockCounts for the extents, in
order, are asfollows. one extent of 6 alocation blocks, 14 extents of one allocation block each, two

extents of two allocation blocks each, one extent of 7 alocation blocks, and five more extents of one
alocation block each. The fork contains atotal of 36 allocation blocks.

The block counts for the catalog's fork dataare: 6, 1, 1, 1, 1, 1, 1, 1. Thereis an extent overflow record
whose startBlock is 13 (0+6+1+1+1+1+1+1+1), and has the following block counts: 1, 1,1, 1,1, 1, 1,
2. Thereis a second extent overflow record whose startBlock is 22 (13+1+1+1+1+1+1+1+2), and has
the following block counts: 2, 7, 1, 1, 1, 1, 1, 0. Note this last record only contains seven extents.

Suppose the allocation block size for the volume is 4K. Suppose we want to start reading from the file at
an offset of 108K. We want to know where the datais on the volume, and how much contiguous datais
there.

First, we divide 108K (the fork offset) by 4K (the allocation block size) to get 27, which is the number of
allocation blocks from the start of the fork. So, we want to know where fork allocation block #27 is. We

notice that 27 is greater than or equal to 13 (the number of alocation blocksin the catalog's fork data), so
we're going to have to look in the extents B-tree.

We construct a search key with the appropriate filelD and forkType, and set startBlock to 27 (the
desired fork allocation block number). We then search the extents B-tree for the record whose key isless
than or equal to our search key. We find the second extent overflow record (the one with
startBlock=22). It hasthe same filelD and forkType, S0 things are good. Now we just need to figure
out which extent within that record to use.

We compute 27 (the desired fork allocation block) minus 22 (the startBlock) and get 5. So, we want
the extent that is 5 alocation blocks "into" the record. We try the first extent. It's only two alocation
blocks long, so the desired extent is 3 allocation blocks after that first extent in the record. The next extent
is 7 alocation blocks long. Since 7 is greater than 3, we know the desired fork position iswithin this
extent (the second extent in the second overflow record). Further, we know that there are 7-3=4
contiguous alocation blocks (i.e., 16K).

We grab the startBlock for that second extent (i.e., the one whoseblockCount is 7); suppose this
number is 444. We add 3 (since the desired position was 3 allocation blocks into the extent we found).
S0, the desired position isin allocation block 444+3=447 on the volume. That is 447*4K=1788K from
the start of the HFS Plus volume. (Since the Volume Header always starts 1K after the start of the HFS
Plus volume, the desired fork position is 1787K after the start of the Volume Header.)

Rad RInrk File

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 35 Of 42

TN 1150: HFS Plus Volume Format 3/724/99 5:45 PM

el VA s I S

The extent overflow fileis aso used to hold information about the bad block file. The bad block fileis
used to mark areas on the disk as bad, unable to be used for storing data. Thisistypically used to map out
bad sectors on the disk.

Note:
All space on an HFS Plus volume is allocated in terms of allocation blocks. Typically, allocation blocks
are larger than sectors. If a sector isfound to be bad, the entire allocation block is unusable.

When an HFS Plus volume is embedded within an HFS wrapper (the way Mac OS normally initializes a
hard disk), the space used by the HFS Plus volume is marked as part of the bad block file within the HFS
wrapper itself. (This sounds confusing because you have a volume within another volume.)

The bad block fileis not afile in the same sense as a user file (it doesn't have afile record in the catalog)
or one of the special files (it's not referenced by the volume header). Instead, the bad block file usesa
specia CNID (kHFsBadBlockFi lelD) asthe key for extent records in the extents overflow file. When a
block is marked as bad, an extent with this CNID and encompassing the bad block is added to the extents
overflow file. The block is marked as used in the allocation file. These steps prevent the block from being
used for data by the file system.

IMPORTANT:

The bad block file is necessary because marking abad block as used in the alocation file is insufficient.
One common consistency check for HFS Plus volumesisto verify that all the allocation blocks on the
volume are being used by real data. If such a check were run on a volume with bad blocks that weren't
also covered by extents in the bad block file, the bad blocks would be freed and might be reused for file
system data.

Bad block extent records are aways assumed to reference the data fork. The forkType field of the key
must be 0.

Note:
Because an extent record holds up to eight extents, adding abad block extent to the bad block file does
not necessarily require the addition of a new extent record.

HFS uses a similar mechanism to store information about bad blocks. Thisfacility is used by the HES
Wrapper to hold an entire HFS Plus volume as bad blocks on an HFS disk.

Back to top

Allocation File

HFS Plus uses an alocation file to keep track of whether each alocation block in avolumeis currently
allocated to some file system structure or not. The contents of the allocation fileis abitmap. The bitmap
contains one bit for each alocation block in the volume. If abit is set, the corresponding allocation block
iscurrently in use by some file system structure. If abit is clear, the corresponding allocation block is
not currently in use, and is available for allocation.

Note:
HFS stores allocation information in a specia area on the volume, known asthe volume bitmap. The
alocation file mechanism used by HFS Plus has a number of advantages.

e Using afile alowsthe bitmap itself to be allocated from allocation blocks. This simplifiesthe
design, since volumes are now comprised of only one type of block -- the allocation block. The

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 36 Of 42

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM
HFS is dightly more complex because it uses sectors to hold the allocation bitmap and
allocation blocksto hold file data.

e Theallocation file does not have to be contiguous, which allows allocation information and user
datato be interleaved. Many modern file systems do thisto reduce head travel when growing
files.

e Theallocation file can be extended, which makesit significantly easier to increase the number of
allocation blocks on adisk. Thisis useful if you want to either decrease the allocation block size
on adisk, or increase the total disk size.

e Theallocation file may be shrunk. This makes it easy to create a disk images suitable for
volumes of varying sizes. The allocation file in the disk imageis sized to hold enough allocation
datafor the largest disk, and shrunk back when the disk is written to asmaller disk.

Each bytein the alocation file holds the state of eight allocation blocks. The byte at offset X into thefile
contains the alocation state of allocations blocks (X * 8) through (X * 8 + 7). Within each byte, the most
significant bit holds information about the allocation block with the lowest number, the least significant bit
holds information about the alocation block with the highest number. Listing 1 shows how you would
test whether an alocation block isin use, assuming that you've read the entire allocation file into memory.

Listing 1 Determining whether an alocation block isin use

static Boolean IsAllocationBlockUsed(UInt32 thisAllocationBlock,
Ulnt8 *allocationFileContents)

{
Ulnt8 thisByte;
thisByte = allocationFileContents[thisAllocationBlock / 8];
return (thisByte & (1 << (7 - (thisAllocationBlock % 8)))) != 0;
}

The size of the allocation file depends on the number of allocation blocks in the volume, whichin turn
depends both on the number of sectors on the disk and on the size of the volume's allocation blocks (the
number of sectors per alocation block). For example, avolume on a1l GB disk and having an allocation
block size of 4 KB needs an allocation file size of 256 Kbits (32 KB, or 8 allocation blocks). Since the
alocationfileitself is allocated using allocation blocks, it aways occupies an integral number of allocation
blocks (its size may be rounded up).

The alocation file may be larger than the minimum number of bits required for the given volume size.
Any unused bitsin the bitmap must be set to zero.

Note:
Since the number of alocation blocksis determined by a 32-bit number, the size of the allocation file can
beupto 512 MB insize, aradical increase over HFS's 8 KB limit.

IMPORTANT:

Because the entire volume is composed of alocation blocks, the volume header, alternate volume
header, and reserved sectors (the first two sectors and the last sector) must be marked as allocated in the
alocation file. The actual number of allocation blocks allocated for these sectors varies with the size of
the alocation blocks. Any alocation block that contains any of these sectors must be marked allocated.

For example, if 512-byte alocation blocks are used, the first three and last two allocation blocks are
alocated. With 1024-byte alocation blocks, the first two and the last allocation blocks are allocated.
For larger alocation block sizes, only thefirst and last alocation blocks are allocated for these sectors.

See the Volume Header section for a description of these sectors.

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 37 Of 42

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM
Back to top

Attributes File

The HFS Plus attributesfile is reserved for implementing named forks in the future. An attributesfileis
organized as a B-treefile. It aspecial file, described by an HFSPlusForkData record in the volume

header, with no entry in the catalog file. An attributes files has a variable length key and three data record
types, which makesit roughly as complex as the catalog file.

It is possible for avolume to have no attributesfile. If the first extent of the attributesfile (stored in the
volume header) has zero allocation blocks, the attributes file does not exist.

The B-Trees chapter defined a standard rule for the node size of HFS Plus B-trees. Asthe attributesfileis
aB-tree, it inherits the requirements of this rule. In addition, the node size of the attributes file must be at
least 4 KB (kHFSPlusAttrMinNodeSize).

IMPORTANT:
The exact organization of the attributes B-tree has not been fully designed. Specifically:

e the structure of the keysin the attribute B-tree has not been finalized and is subject to change,
and

e addition attribute's file data record types may be defined.

An implementation written to this specification may use the details that are final to perform basic
consistency checks on attributes. These checks will be compatible with future implementations written to
afina attributes specification. See Attributes and the Allocation File Consistency Check.

Attributes File Data

IMPORTANT:
Severd types of attributes file data records are defined. It is possible that additional record typeswill be

defined in future specifications. Implementations written to this specification must ignore record types
not defined here.

The leaf nodes of an attributes file contain data records, known as attributes. There are two types of
attributes:

1. Fork data attributes are used for attributes whose datais large. The attribute's datais stored
in extents on the volume and the attribute merely contains a reference to those extents.

2. Extension attributes augment fork data attributes, allowing an fork data attribute to have more
than eight extents.

Each record starts with a recordType field, which describes the type of attribute datarecord. The
recordType field contains one of the following values.

enum {
kHFSPlusAttrinlineData = 0x10,
kHFSPlusAttrForkData = 0x20,
kHFSPlusAttrExtents = 0x30
}:

The values have the following meaning:

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 38 Of 42

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM
kHFSPlusAttrinlineData
Reserved for future use.
kHFSPlusAttrForkData

Thisrecord isafork data attribute. Y ou can use theHFSPlusAttrForkData typeto interpret the data.

kHFSPlusAttrExtents

Thisrecord is an extension attribute. Y ou can use theHFSPlusAttrExtents typeto interpret the
data. A record of type kHFSPIusAttrExtents isreally just overflow extents for a corresponding
record of type kHFSPlusAttrForkData. (Think of kHFSPlusAttrForkData asbeing like a catalog
record and kHFSPlusAttrExtents as being like an extents overflow record.)

The next two sections describe the fork data and extension attributesin detail.

Fork Data Attributes
A fork data attribute is defined by the HFSPlusAttrForkData datatype.

struct HFSPlusAttrForkData {

ulnt32 recordType;
Ulnt32 reserved;
HFSPlusForkData theFork;

}:
typedef struct HFSPlusAttrForkData HFSPlusAttrForkData;

The fields have the following meaning:

recordType

The attribute data record type. For fork data attributes, thisis always kHFSPlusAttrForkData.
reserved

An implementation must treat thisas areserved field.
theFork

Information about the location and size of the attribute data. See Fork Data Structure for a description
of theHFSPlusForkData type.

Extension Attributes
A extension attribute is defined by the HFSPlusAttrExtents datatype.

struct HFSPlusAttrExtents {

ulnt32 recordType;
ulnt32 reserved;
HFSPlusExtentRecord extents;

}:
typedef struct HFSPlusAttrExtents HFSPlusAttrExtents;

Thefields have the following meaning:

recordType

The attribute data record type. For extension attributes, thisis always kHFSPlusAttrExtents.
reserved

An implementation must treat thisas areserved field.
extents

Tha ainht avitonte nf tha attrili ta Aata Aocrribhod hwy thic rorard Qoa Cnrlr Nata Strnictiira fAar a
file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 39 Of 42

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM

IIICGUI IL UALUL ILO UI LTIU QAL TJULD vdliL UCout 1iveu IJy UHOITULUIUL, AT 1T VIN LUAMUAJLLULLWULC TUL AU

description of the HFSPIusExtentRecord type.

Attributes and the Allocation File Consistency Check

While the key structure for the attributes file is not fully specified, it is still possible for an implementation
to use attribute file information in its alocation file consistency check. The leaf records of the attribute
fileare fully defined, so the implementation can simply iterate over them to determine which allocation
blocks on the disk are being used by fork data attributes.

See Allocation File Consistency Check for details.

Back to top

Startup File

The startup fileisa specia file intended to hold information needed when booting a system that does not
have built-in (ROM) support for HFS Plus. A boot loader can find the startup file without full
knowledge of the HFS Plus volume format (B-trees, catalog file, and so on). Instead, the volume
header contains the location of the first eight extents of the startup file.

IMPORTANT:
Itislegal for the startup file to contain more than eight extents, and for the remaining extents to be placed
in the extents overflow file. However, doing so defeats the purpose of the startup file.

Note:
Mac OS does not use the startup file to boot from HFS Plus disks. Instead, it uses the HFS wrapper, as
described later in this document.

Back to top

Unicode Subtleties

HFS Plus makes heavy use of Unicode strings to store file and folder names. However, Unicode is still
evolving, and its use within afile system presents a number of challenges. This section describes some
of the challenges, along with the solutions used by HFS Plus.

IMPORTANT:
Before reading this section, you should read HFS Plus Names.

IMPORTANT:

An implementation must not use the Unicode utilities implemented by its native platform (for
decomposition and comparison), unless those algorithms are equivalent to the HFS Plus agorithms
defined here, and are guaranteed to be so forever. Thisisrarely the case. Platform algorithms tend to
evolve with the Unicode standard. The HFS Plus algorithms cannot evolve because such evolution
would invalidate existing HFS Plus volumes.

Note:

The Mac OS Text Encoding Converter provides severa constants that let you convert to and from the
canonical, decomposed form stored on HFS Plus volumes. When using CreateTextEncoding to
create a text encoding, you should set the TextEncodingBase t0 kTextEncodingUnicodeV2_0, set the
TextEncodingVariant to kUnicodeCanonicalDecompVariant, and set the TextEncodingFormat to
kUnicodel6BitFormat. Using these values ensures that the Unicode will be in the same form as on an
HFS Plus volume, even as the Unicode standard evolves.

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 40 Of 42

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM
Canonical Decomposition

Unicode allows some sequences of charactersto be represented by multiple, equivalent forms. For
example, the character "& " can be represented as the single Unicode character u+00E9 (latin small letter e
with acute), or as the two Unicode characters u+0065 and u+0301 (the letter "€" plus a combining acute
symbol).

To reduce complexity in the B-tree key comparison routines (which have to compare Unicode strings),
HFS Plus defines that Unicode strings will be stored in fully decomposed form, with composing
characters stored in canonical order. The other equivalent forms areillegal in HFS Plus strings. An
implementation must convert these equivalent forms to the fully decomposed form before storing the
string on disk.

The Unicode Decomposition table contains alist of charactersthat areillegal as part of an HFS Plus
string, and the equivalent character(s) that should be used instead. Any character appearing in a column
titled "lllegal", must be replaced by the character(s) in the column immediately to the right (titled
"Replace With").

In addition, the Korean Hangul characters with codes in the range u+ACO00 through u+D7A3 areillegal
and must be replaced with the equivalent sequence of conjoining jamos, as described in the Unicode 2.0
book, section 3.10.

IMPORTANT:

The characters with codes in the range u+2000 through u+2FFF are punctuation, symbols, dingbats,
arrows, box drawing, etc. The u+24xx block, for example, has single characters for things like "(a)".
The charactersin this range are not fully decomposed; they are left unchanged in HFS Plus strings.
This allows strings in Mac OS encodings to be converted to Unicode and back without |oss of
information. Thisis not unnatural since a user would not necessarily expect adingbat "(a)" to be
equivalent to the three character sequence (", "a", ")" in afile name.

o, for the example given earlier, "& " must be stored as the two Unicode characters u+0065 and
u+0301 (in that order). The Unicode character u+00E9 may not appear in a Unicode string used as part of
an HFS Plus B-tree key.

String Comparison Algorithm

In HFS Plus, strings must be compared in a case- insensitive fashion. The Unicode standard does not
strictly define upper and lower case equivalence, athough it does suggest some equivalences. The HFS
Plus string comparison agorithm (defined below) include a concrete case equivaence definition. An
implementation must use the equivalence expressed by this algorithm.

Furthermore, Unicode requires that certain formatting characters be ignored (skipped over) during string
comparisons. The algorithm and tables used for case equivalence also arrange to ignore these characters.
An implementations must ignore the characters that are ignored by this agorithm.

The HFS Plus string comparison algorithm is defined by the FastunicodeCompare routine, shown
below. Thisroutine returns a value that tells the caller how the strings should be ordered relative to each
other: whether the first string isless than, equal to, or greater than the second string. An HFS Plus
implementation may use this routine directly, or use another routine that produces the same relative
ordering.

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 41 Of 42

TN 1150: HFS Plus Volume Format 3/724/99 5:45 PM

Note:

TheFastUnicodeCompare routine does not handle composed Unicode characters since they areillega in
HFS Plus strings. As described in Canonical Decomposition, all HFS Plus strings must be fully
decomposed, with composing charactersin canonical order.

//
// FastUnicodeCompare - Compare two Unicode strings; produce a relative ordering
//

// IF RESULT
// -———————— -
// strl < str2 = -1

// strl = str2 => 0

// strl > str2 == +1

//

// The lower case table starts with 256 entries (one for each of the upper bytes
// of the original Unicode char). |If that entry is zero, then all characters with
// that upper byte are already case folded. |If the entry is non-zero, then it is
// the _index_ (not byte offset) of the start of the sub-table for the characters
// with that upper byte. All ignorable characters are folded to the value zero.
//

// In pseudocode:

//

// Let ¢ = source Unicode character
// Let table[] = lower case table
//

// lower = table[highbyte(c)]

// if (lower == 0)

// lower = c

// else

// lower = table[lower+lowbyte(c)]
//

// if (lower == 0)

// ignore this character

//

// To handle ignorable characters, we now need a loop to find the next valid

// character. Also, we can"t pre-compute the number of characters to compare;

// the string length might be larger than the number of non-ignorable characters.
// Further, we must be able to handle ignorable characters at any point In the

// string, including as the first or last characters. We use a zero value as a
// sentinel to detect both end-of-string and ignorable characters. Since the File
// Manager doesn"t prevent the NULL character (value zero) as part of a filename,
// the case mapping table is assumed to map u+0000 to some non-zero value (like
// OxFFFF, which is an invalid Unicode character).

//

// Pseudocode:

//

// while (1) {

// cl = GetNextValidChar(strl) // returns zero if at end of string
// c2 = GetNextValidChar(str2)

//

// if (cl = c2) break // found a difference

//

// if (cl == 0) // reached end of string on both
// // strings at once?

// return O; // yes, so strings are equal

// }

//

/77 /7 Whan wa naot harao ~1 1= 2 Cn wa dnet noad tn Adoatarmina whirh Nnne ic

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 42 Of 42

TN 1150: HFS Plus Volume Format

//
//
//
//
//
//

WL We yYu o o rivr vy, v o=

// less.
if (cl < c2)
return -1;
else
return 1;

e -

3/24/99 5:45 PM

UU 3 WL JUUL 1ILLU LU UL LU eI WHTEUH Ve B O

SInt32 FastUnicodeCompare (register ConstUniCharArrayPtr strl, register ItemCount lengt

{

/*

*/

register ConstUniCharArrayPtr str2,

register UIntl6 cl,c2;
register UIntl6 temp;
register UIntl6* lowerCaseTable;
lowerCaseTable = glLowerCaseTable;
while (1) {
// Set default values for cl, c2 in case there are no
cl = 0;
c2 = 0;
// Find next non-ignorable char from strl, or zero if
while (lengthl && cl1 == 0) {
cl = *(stril++);
--lengthl;
if ((temp = lowerCaseTable[cl1>>8]) != 0) //

//
cl = lowerCaseTable[temp + (cl & OxO0FF)]; //
}
// Find next non-ignorable char from str2, or zero if
while (length2 && c2 == 0) {
c2 = *(str2++);
--length2;
if ((temp = lowerCaseTable[c2>>8]) I= 0) //

register ltemCount lengt

more valid chars

no more

is there a subtable
for this upper byte?
yes, so fold the char

no more

is there a subtable
for this upper byte?
yes, so fold the char

//
c2 = lowerCaseTable[temp + (c2 & OxO0FF)]; //
}
if (cl = c2) // found a difference, so stop looping
break;
if (cl == 0) // did we reach the end of both strings at the same time?
return O; // yes, so strings are equal
}
if (cl < c2)
return -1;
else
return 1;

The lower case table consists of a 256-entry high-byte table followed by
some number of 256-entry subtables. The high-byte table contains either an
offset to the subtable for characters with that high byte or zero, which
means that there are no case mappings or ignored characters in that block.

Ignored characters are mapped to zero.

UIntl6 glLowerCaseTable[] = {

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html

// High-byte indices (== 0 if no case mapping and no ignorables)

Page 43 of 42

TN 1150: HFS Plus Volume Format 3/724/99 5:45 PM

// Full data tables omitted for brevity.
// See the Downloadables section for URL to download the code.

Back to top
HFS Wrapper

An HFS Plus volume may be contained within an HFS volume in away that makes the volume ook
like an HFS volume to systems without HFS Plus support. This has atwo important advantages:

1. It allows acomputer with HFS (but no HFS Plus) support in ROM to start up from an HFS
Plus volume. When creating the wrapper, Mac OS includes a System file containing the
minimum code to locate and mount the embedded HFS Plus volume and continue booting from
its System file.

2. It improves the user experience when an HFS Plus volume isinserted in a computer that has
HFS support but no HFS Plus support. On such a computer, the HFS wrapper will be
mounted as a volume, which prevents error dialogs that might confuse the user into thinking the
volumeis empty, damaged, or unreadable. The HFS wrapper may aso contain a Read Me
document to explain the steps the user should take to access their files.

Therest of this section describes how the HFS wrapper islaid out and how the HFS Plus volume is
embedded within the wrapper.

IMPORTANT:

This section does not describe the HFS Plus volume format; instead, it describes additions to the HFS
volume format that allow an HFS Plus volume (or some other volume) to be embedded in an HFS
volume. However, as all Mac OS volumes are formatted with an HFS wrapper, all implementations
should be able to parse the wrapper to find the embedded HFS Plus volume.

Note:

An HFS Plus volume is not required to have an HFS wrapper. In that case, the volume will start at the
first sector of the disk, and the volume header will be at sector 2. However, Apple software currently
initializes all HFS Plus volumes with an HFS wrapper.

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 44 Of 42

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM
HFS Master Directory Block

An HFS volume always contains a Master Directory Block (MDB), in sector 2. The MDB issimilar to an
HFS Plus volume header. In order to support volumes embedded within an HFS volume, several unused
fields of the MDB have been changed, and are now used to indicate the type, location, and size of the
embedded volume.

What was formerly the drvcsSize field (at offset $7C) is now named drEmbedSigWord. This two-byte
field contains a unique value that identifies the type of embedded volume. When an HFS Plusvolumeis
embedded, drEmbedSigWord must be kHFSPIusSigWord (*H+"), the same value stored in the
signature field of an HFS Plus volume header.

What were formerly the drvBmCSize and drCticCSize fields (at offset $7E) have been combined into a
single field occupying four bytes. The new structure is named drEmbedExtent and is of type
HFSExtentDescriptor. It contains the starting allocation block number (startBlock) where the
embedded volume begins and number of allocation blocks (blockCount) the embedded volume

occupies. The embedded volume must be contiguous. Both of these values are in terms of the HFS
wrapper's alocation blocks, not HFS Plus allocation blocks.

Note:
The description of the HFS volume format in Inside Macintosh: Files describes these fields as being used
to store the size of various caches, and |abels each one as "used internally".

To actualy find the embedded volume's sectors on disk, an implementation must use the drAIBIkSiz
and drAlBISt fields of the MDB. The drAlBIkSiz field contains the size (in bytes) of the HFS
allocation blocks. ThedralBISt field contains the offset, in 512-byte sectors, of the wrapper's allocation
block O relative to the start of the volume.

IMPORTANT:

This embedding introduces a transform between HFS Plus sectors and sectors on the disk. The HFS
Plus volume exists on a virtua disk embedded within the real disk. When accessing an HFS Plus sector
on an embedded disk, an implementation must add the offset of the embedded disk to the sector
number. Listing 2 shows how one might do this.

Listing 2 Sector transform for embedded volumes

static UInt32 HFSPlusSectorToDiskSector(UInt32 hfsPlusSector)

{
UInt32 embeddedDiskOffset;
embeddedDiskOffset = gMDB.drAIBISt +
gMDB .drEmbedExtent.startBlock * (drAlBIkSiz / 512)
return embeddedDiskOffset + hfsPlusSector;
3

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 45 Of 42

TN 1150: HFS Plus Volume Format 3/724/99 5:45 PM

In order to prevent accidentally changing the files in the HFS wrapper, the wrapper volume must be
marked as software-write-protected by setting kHFSVolumeSoftwareLockBit in thedrAtrb (volume
attributes) field of the MDB. All correct HFS implementations will prevent any changes to the wrapper
volume.

To improve performance of HFS Plus volumes, the size of the wrapper's alocation blocks should be a
multiple of the size of the HFS Plus volume's allocation blocks. In addition, the wrapper's allocation
block start (drAIBISt) should be a multiple of the HFS Plus volume's allocation block size (or perhaps 4
KB, if the HFS Plus allocation blocks are larger). If these recommendations are followed, the HFS Plus
allocation blocks will be properly aligned on the disk. And, if the HFS Plus alocation block sizeisa
multiple of the size of the device's physical blocks, then blocking and deblocking at the device driver
level will be minimized.

Allocating Space for the Embedded Volume

The space occupied by the embedded volume must be marked as allocated in the HFS wrapper's volume
bitmap (similar to the HFS Plus alocation file) and placed in the HFS wrapper's bad block file (smilar to
the HFS Plus bad block file). This doesn't mean the blocks are actually bad; it merely prevents the HFS
Plus volume from being overwritten by newly created files in the HFS wrapper, being deleted
accidentally, or being marked as free, usable space by HFS disk repair utilities.

ThekHFSVolumeSparedBlocksMask bit of the drAtrb (volume attributes) field of the MDB must be set
to indicate that the volume has a bad blocksfile.

Read Me and System Files

IMPORTANT:
This section is not part of the HFS Plus volume format. It describes how the existing Mac OS
implementation of HFS Plus creates HFS wrappers. It is provided for your information only.

Asinitialized by the Mac OS Disk Initialization Package, the HFS wrapper volume containsfivefilesin
the root folder.

e Read Me-- The Read Mefile, whose nameis actually "Where have al_my files gone?’,
contains text explaining that this volume isreally an HFS Plus volume but the contents cannot be
accessed because HFS Plusis not currently installed on the computer. It aso describes the steps
needed to install HFS Plus support. Localized system software will also create alocalized
version of the file with localized filename and text content.

e System and Finder (invisible) -- The System file contains the minimum code to locate and
mount the embedded HFS Plus volume, and to continue booting from the System filein the
embedded volume. The Finder fileis empty; it isthere to prevent older versions of the Finder
from de-blessing the wrapper's root directory, which would prevent booting from the volume.

e Desktop DB and Desktop DF (invisible) -- The Desktop DB and Desktop DF files are an artifact
of the way the files on the wrapper volume are created.

In addition, the root folder is set as the blessed folder by placing itsfolder ID in thefirst Sint32 of the
drFndrinfo (Finder information) field of the MDB.

Back to top

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 46 Of 42

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM
Volume Consistency Checks

An HFS Plus volume is a complex data structure, consisting of many different inter-related data
structures. |nconsi stencies between these data structures could cause serious dataloss. When an HFS
Plus implementation mounts a volume, it must perform basic consistency checks to ensure that the
volume is consistent. In addition, the implementation may choose to implement other, more advanced,
consistency checks.

Many of these consistency checks take a significant amount of time to run. While a safe implementation
might run these checks every time avolume is mounted, most implementations will want to rely on the
correctness of the previous implementation that modified the disk. The implementation may avoid
unnecessary checking by determining whether the volume was last unmounted cleanly. If it was, the
implementation may choose to skip a consistency check.

An implementation can determine whether a volume was unmounted cleanly by looking at various flag
bits in the volume header. See Volume Attributes for details.

Next Catalog Node ID Consistency Check

For an HFS Plus volume to work correctly, it's vital that the nextCataloglD field of the volume header
be greater than all CNIDs currently used in the catalog file. The algorithm to ensure thisis as follows.

e Theimplementation must iterate through all the leaf nodes of the catalog file, looking for file and
folder records, determining the maximum CNID of any file or folder in the catal og.

e Once it knows the maximum CNID value, the implementation must set nextCataloglD to a
value greater than it.

WARNING:

To prevent the loss of user data, an implementation must perform this check every time it mounts a
volume that wasn't unmounted cleanly. It is most important that an allocation block that isin use be
marked in the allocation file. It islessimportant that an allocation block that is not in use be cleared in the
alocation file. If an allocation block is marked as in-use by the allocation file, but not actually in use by
any extent, then that allocation block is really just wasting space; it isn't otherwise dangerous.

Allocation File Consistency Check

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 47 Of 42

TN 1150: HFS Plus Volume Format 3/724/99 5:45 PM

For an HFS Plus volume to work correctly, it's vital that any allocation block in use by file system
structures be marked as allocated in the alocation file. The agorithm to ensure thisis asfollows:

e Theimplementation must first walk the allocation file, marking every alocation block as free.
(This step can be skipped to improve the performance of the consistency check. All that will
happen is that some all ocation blocks may have been marked as in-use, though they are not really
in use by any extent.)

e Theimplementation must then mark the alocation blocks containing the first three sectors and the
last two sectors as allocated. These sectors are either reserved or used by the volume header.

e Theimplementation must then mark the allocation blocks used by all extentsin al special files
(the catalog file, the extents overflow file, the alocation file, the attributes file, and the startup
file) as allocated. These extents are all described in the volume header.

e Theimplementation must then walk the leaf nodes of the catalog file, marking all alocation
blocks used by extentsin file records (i.e., in the HFSPlusForkData structures for the data and
resource forks).

e Theimplementation must then walk the leaf nodes of the extents overflow file, marking all
allocation blocks used by all extentsin all extent records as alocated.

e Theimplementation must then walk the leaf nodes of the attributes file, marking all alocation
blocks used by all extents described in fork data attributes and extension attributes as all ocated.

WARNING:
To prevent the loss of user data, an implementation must perform this check every time it mounts a
volume that wasn't unmounted cleanly.

Back to top

Summary

Volume format specifications are fun.

Further References

e Inside Macintosh: Files, especially the Data Organization on V olumes section.
e Algorithmsin C, Robert Sedgewick, Addison-Wesley, 1992, especially the section on B-trees.

Back to top

Downloadables

E Acrobat version of this Note (245K).

W

Back to top

FastUnicodeCompare.c (43 KB)

Change History

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html Page 48 Of 42

TN 1150: HFS Plus Volume Format 3/24/99 5:45 PM
e First published on February 1999.

e Updated by Quinn"The Eskimo!" in March 1999 to include awarning about initializing disks
with asmall allocation block size.

Back to top
Acknowledgments

Thanks to Quinn "The Eskimo!", Mark Day, Pete Gontier, Ingrid Kelly, Otto Schlosser, and all those
brave souls who reviewed this document in its various incarnations.

To contact us, please use the Contact Us page.
Updated: 29-Mar ch-99

Technotes [Contents
Previous Technote | Next Technote

file:///Monster%20Boot/Everything%20else/Apple/Week%200f%203%2F22%2F99/Quinn%20tn1150%20update%203%2F18/tn1150.html

Page 49 of 42

