
Macintosh
File Signing
Apple Data Security Services

Application Interfaces (API)

Version 1.0b1
June 7, 1999

Macintosh File Signing overview

A digitally signed file is a file together with additional data that contains a secure hash of the file or portions of
the file, and protected by a user's secret key. This data may be stored inside the file, or in a separate file.

Files signed using the Macintosh File Signing APIs will have additional resources added to the file containing the
signature information. A signed Macintosh file will contain two new kinds of resources:

‘sig#’ - list of resources and data segments to include or exclude
‘sign’ - the signature data in PKCS#7 format

The ‘sig#’ resources specify what portions of the file should be included in the hash computed for the digital
signature. The ‘sign’ resources are the signatures of a given ‘sig#’ resource.

Another type of resource, a signature mapping resource, of type 'sgm#' is used only by signing applications. This
resource contains mappings between file types, creators, and default 'sig#' resources.

Using Macintosh File Signing

The following example demonstrates how a typical application might use the high-level Macintosh file signing
interfaces to verify a digitally signed file.

OSStatus CheckAFile (FSSpec file)
{

OSStatus status;
SecOptions secOptions=kSecOptionProgress;
SecSignerRef signer;
Boolean alwaysShowUI=true;

if (!KeychainManagerAvailable ()) // is it there?
return (OSStatus)errKCNotAvailable;

err=SecMacVerifyFileSimple(&file,secOptions,
kSecTrustPolicyCodeSigning,&signer);

SecMacDisplaySigner(signer,alwaysShowUI,&file);
return (status);

}

Mac File Signing Security API 1.0b1 2

High-level interfaces

Signing a Macintosh File

OSStatus SecMacSignFile (FSSpec *file, KCItemRef signingCertificate,
Handle sigH, SecOptions options,
SecProgressCallbackUPP progressProc,
void *userContext);

file File to add signature resources to
signingCertificate Certificate that has a matching signing key in one

of the keychains specified.
sigH Handle to 'sig#' resource. This should be obtained

from the signing application's resources.
options Show a display of progress
progressProc A callback to a user-supplied progress routine. This

may be set to NULL to use the default progress
dialog.

userContext If progressProc is not NULL, this is a user-supplied
pointer that can retain state for the callback
procedure

DESCRIPTION

Use this routine to add a digital signature to the specified file. The caller is responsible for releasing the
signingCertificate using KCRelease.

RESULT CODE
noErr 0 No error.
paramErr -50 One of the specified arguments is invalid
errKCNoDefaultKeychain -25307 No default keychain could be found.
errKCItemNotFound -25300 No matching certificate object was found.

OSStatus SecMacSignFileSimple (FSSpec *file, KCItemRef signingCertificate,
SecOptions options);

file File to sign
signingCertificate Certificate that has a matching signing key in one

of the user's keychains.
options Show a display of progress

DESCRIPTION

Use this routine to add a digital signature to the specified file. This routine is very similar to
SecMacSignFile, except that default parameters are supplied internally.to add a digital signature to the
specified file. An appropriate 'sig#' resource for the given file is found in the shared library. In addition, if
kSecOptionProgress is set in options, the default progress dialog and callback will be used.

RESULT CODE
noErr 0 No error.
paramErr -50 One of the specified arguments is invalid
errKCNoDefaultKeychain -25307 No default keychain could be found.
errKCItemNotFound -25300 No matching certificate object was found.

Mac File Signing Security API 1.0b1 3

OSStatus SecMacLoadSigPound (FSSpec *file, Handle *resHandle);

file File that is being signed
resHandle The 'sig#' resource appropriate for the file

DESCRIPTION

Use this routine to determine load the proper 'sig#' resource for the specified file. The signature mapping
resource ('sgm#') will be searched to get the correct resource ID. The handle returned in resHandle can
be passed directly to SecMacSignFile. The caller is responsible for disposing of the memory using
DisposeHandle. The calling application's resources will be searched for a valid 'sgm#' resource, which will
be appended to the library's 'sgm#' resource before the search. This allows signing applications to override
the built-in behavior.

RESULT CODE

noErr 0 No error.
paramErr -50 One of the specified arguments is invalid
resNotFound -192 No 'sig#' resource could be found.

Mac File Signing Security API 1.0b1 4

Removing existing signatures from a Macintosh File

OSStatus SecMacRemoveSignature (FSSpec *file, SecSignatureType
signatureType,SInt16 signatureToRemove);

file File to remove signature resource from
signatureType The type of signature to remove
signatureType The resource ID of the signature to remove

DESCRIPTION

Use this routine to remove a 'sign' resource from the specified file. The signatureType is checked before
removing. In release 1.0 of iSign, only one signature is validated, so this call will let signing applications
remove an existing signature if the user wishes to re-sign the file.

RESULT CODE

noErr 0 No error.
paramErr -50 One of the specified arguments is invalid
resNotFound -192 No such signature resource could be found.

OSStatus SecMacRemoveAllSignatures (FSSpec *file, SecSignatureType
signatureType);

file File to remove signature resource from
signatureType The type of signature to remove
signatureType The resource ID of the signature to remove

DESCRIPTION

Use this routine to remove all 'sign' resource from the specified file. The signatureType is checked before
removing.

RESULT CODE

noErr 0 No error.
paramErr -50 One of the specified arguments is invalid
resNotFound -192 No such signature resource could be found.

Mac File Signing Security API 1.0b1 5

Verifying a Macintosh File

OSStatus SecMacVerifyFile (FSSpec *file, SecOptions options,
SecProgressCallbackUPP progressProc, void
*userContext,SInt16 signatureToVerify, CFArrayRef
policyOIDs,KCVerifyStopOn stopOn, SecSignerRef *

signer);

file File to verify signature of
options Whether to add leaf certs, new anchors, or show a

progress dialog
progressProc A callback to a user-supplied progress routine. This

may be set to NULL to use the default progress dialog.
userContext If progressProc is not NULL, this is a user-supplied

pointer that can retain state for the callback
procedure

signatureToVerify The resource ID of the signature to verify. The first
signature in a file has a resource ID of 1.

policyOIDs An array of policy OIDs that determine the trust
policy. To get a pointer to an array of policy OIDs
for Macintosh file signing, call
SecMacGetDefaultPolicyOIDs.

stopOn Use kPolicyKCStopOn for the default value. This will
leave stop decisions up to the Trust Policy module.

signer An opaque data structure containing information about
the signer of the file, including the signer's
certificate. This can be passed to other calls to
display information about the signer. Pass in NULL if
no information about the signer is needed.

DESCRIPTION

Use this routine to verify the digital signature to the specified file

RESULT CODE

noErr 0 No error.
paramErr -50 One of the specified arguments is invalid
errKCNoDefaultKeychain -25307 No default keychain could be found.

OSStatus SecMacVerifyFileSimple (FSSpec *file, SecOptions options,
SecTrustPolicy trustPolicy,SecSignerRef *signer);

file File to verify signature of
options Whether to bring display progress, add leaf certs and

whether to add new anchors
trustPolicy Specifies the trust level required for verification of

a file. Only "kSecTrustPolicyCodeSigning" is supported
in Release 1.0 of iSign

signer An opaque data structure containing information about
the signer of the file, including the signer's
certificate. This can be passed to other calls to
display information about the signer. Pass in NULL if
no information about the signer is needed.

Mac File Signing Security API 1.0b1 6

DESCRIPTION

Use this routine to verify a digital signature on the specified file. This routine is very similar to
SecMacVerifyFile, except that default parameters are supplied internally.to find the first Apple-signed
digital signature in the specified file. In addition, if kSecOptionProgress is set in options, the default
progress dialog and callback will be used.

RESULT CODE

noErr 0 No error.
paramErr -50 One of the specified arguments is invalid
errKCNoDefaultKeychain -25307 No default keychain could be found.
errSecVerifyFailed -24307 The file could not be validated.

This is implemented as a call to SecMacVerifyFile with:

progressProc NULL (so the default progress dialog is used)
userContext NULL (the default progress dialog is used)
signatureToVerify call SecMacFindSignatureToVerify with

kSecSignatureTypeiSign
policyOIDs SecMacGetDefaultPolicyOIDs(kSecTrustPolicyCodeSigning)
stopOn kSecStopOnPolicy

OSStatus SecMacHasSignature (FSSpec *file, SecSignatureType signatureType);

file File to test for signature
signatureType The type of signature to check for

DESCRIPTION

This routine provides a quick way to determine if a file contains a signature of a certain type. It does not
verify the signature.

RESULT CODE

false 0 No signature of the specified type was found
true 1 A signature of the specified type was found

OSStatus SecMacFindSignatureToVerify (FSSpec *file,
SecSignatureType signatureType, SInt16 *signatureToVerify);

file File to verify signature of
signatureType The type of signature to check for
signatureToVerify The resource ID of the signature is returned here

DESCRIPTION

Use this routine to determine the resource ID for the first digital signature of the given type found in the
specified file. The value returned in signatureToVerify can be passed directly to
SecMacVerifyFile.

RESULT CODE

Mac File Signing Security API 1.0b1 7

noErr 0 No error.
paramErr -50 One of the specified arguments is invalid

CFArrayRef SecMacGetDefaultPolicyOIDs (SecTrustPolicy trustPolicy);

trustPolicy One of kSecTrustPolicyCodeSigning or
kSecTrustPolicyPersonalFileSigning

DESCRIPTION

Use this routine to get a pointer to an array of policy OIDs for Macintosh file signing. The output from this
routine may be passed directly to SecMacVerifyFile as the policyOIDs parameter.

Mac File Signing Security API 1.0b1 8

Constants

Values for the SecOptions flag

kSecOptionProgress Show a progress indicator if an operation will
take more than 2.5 seconds

kSecOptionShowVerifyUI Show a dialog with the outcome of the verify
operation

kSecOptionNeverShowUI If set, don't show dialogs for adding
certificates during a verify operation

Values for the SecSignatureType field

These constants are used internally, and are used in the fifth byte of the signature ('sign') resource to identify the type
of the signature.

kSecSignatureTypeRawPKCS7 The signature data that follows is in raw PKCS7
format

kSecSignatureTypeiSign The signature data that follows is in Macintosh
file signing format

kSecSignatureTypeSMIME The signature data that follows is in S/MIME
format

kSecSignatureTypePGP The signature data that follows is in PGP format
(reserved, but not implemented)

Values for the SecTrustPolicy field

These constants are used internally by the Trust Policy module to define the conditions controlling termination of the
verification process when a set of policies or conditions must be tested.

kSecTrustPolicyCodeSigning Require a level 2 developer certificate
signed by a root in the built-in root
database

kSecTrustPolicyPersonalFileSigning Any certificate signed by a valid root may
be used

Mac File Signing Security API 1.0b1 9

Progress Dialog callback functions

typedef CALLBACK_API(OSStatus,SecProgressCallbackProcPtr)
(SecProgressCallbackInfo* info,void* userContext);

typedef STACK_UPP_TYPE(SecProgressCallbackProcPtr)SecProgressCallbackUPP;

pascal OSStatus DefaultSecProgressCallbackProc(SecProgressCallbackInfo* info, void*
userContext);

struct SecProgressCallbackInfo
{

UInt32 version;
UInt32 bytesProcessed;
UInt32 totalBytes;
UInt32 itemsRemainingToSign;
UInt32 totalItemsToSign;
UInt32 secondsRemaining;
UInt32 secondsElapsed;
UInt32 microSecondsPerByte;
Str255 fileName;

};
typedef struct SecProgressCallbackInfo SecProgressCallbackInfo;

Mac File Signing Security API 1.0b1 10

Format of the ‘sig#’ resource

The 'sig#' resource may be found in any Macintosh file. It represents information regarding
how a particular file is signed. It does not contain information regarding actual signatures. It
has the following format:

Int16 majorVersion
Int16 minorVersion
String componentName // reserved for expansion
OSType fileCreator
OSType fileType
Int16 finderFlagMask
UInt8 cfrgProcessing // reserved for expansion
Bit excludeCreator
Bit excludeType
Bit isResourceExcludeList
Bit fill
Bit fill
bit fill
Bit fill
Bit fill
align long
{

Int32 offset
Int32 length

} List dataForkBlocks
{

OSType resourceType
Int16 baseResourceID
Int16 endResourceID
Int16 ResourceAttrMask;
Int32 offset
Int32 length

} List resourceBlocks

Descriptions

fileCreator The creator of the file
fileType The type of the file
finderFlagMask This is ANDed with the file's Finder flags before adding to

the digest
cfrgProcessing This field is reserved for expansion
excludeCreator Do not include the file's creator in the digest
excludeType Do not include the file's type in the digest
isResourceExcludeListThe list of resource blocks is an exclusion list, i.e.

these resources will be excluded from the digest

baseResourceID The lower bound for a range of resource IDs
endResourceID The upper bound for a range of resource IDs
ResourceAttrMask This is ANDed with each resource's attributes before adding

to the digest

Mac File Signing Security API 1.0b1 11

Format of the ‘sign’ resource

The ‘sign’ resource contains the data repesenting the signer of the file. The signatureType
field of the resource identifies the type of the remainder of the resource. The signatureType used
by Macintosh file signing is kSecMsgDomainiSign.

Int16 majorVersion
Int16 minorVersion
UInt8 signatureType
UInt8 fill
Int16 sigListID // res ID of corresponding ‘sig#’
void * remainderOfData

Format of the ‘sgm#’ resource

The 'sgm#' resource is used only by signing applications to map file type and creator pairs to a default
‘sig#’ resource. It has the following format:

Int16 majorVersion
Int16 minorVersion
{

OSType fileType
OSType fileCreator
Int16 sigPoundID

} list

When a file is presented for signing, the signing application should look for the file’s type and creator in
the list. If a match is found, the corresponding sigPoundID is used to find a ‘sig#’ resource in the signing
application that will be used to sign the given file. The code ‘****” may be used as a wild card to match
any type or creator.

These resources are used by the SecMacSignFileSimple call to find the appropriate 'sig#' resource.

Mac File Signing Security API 1.0b1 12

Summary of Macintosh File Signing routines

Signing a Macintosh File

OSStatus SecMacSignFile (FSSpec *file, KCItemRef signingCertificate,
Handle sigH, SecOptions options,
SecProgressCallbackUPP progressProc,
void *userContext);

OSStatus SecMacSignFileSimple (FSSpec *file, KCItemRef signingCertificate,
SecOptions options);

Signing support routines

OSStatus SecMacLoadSigPound (FSSpec *file, Handle *resHandle);

OSStatus SecMacRemoveSignature (FSSpec *file, SecSignatureType
signatureType,SInt16 signatureToRemove);

OSStatus SecMacRemoveAllSignatures (FSSpec *file, SecSignatureType
signatureType);

Verifying the signature on a Macintosh File

OSStatus SecMacVerifyFile (FSSpec *file, SecOptions options,
SecProgressCallbackUPP progressProc, void
*userContext,UInt16 signatureToVerify, CFArrayRef
policyOIDs,KCVerifyStopOn stopOn,SecSignerRef
*signer);

OSStatus SecMacVerifyFileSimple (FSSpec *file, SecOptions
options,SecTrustPolicy,SecSignerRef *signer);

Verification support routines

OSStatus SecMacHasSignature (FSSpec *file, SecSignatureType signatureType);

OSStatus SecMacFindSignatureToVerify (FSSpec *file, SecSignatureType
signatureType, SInt16 *signatureToVerify);

CFArrayRef SecMacGetDefaultPolicyOIDs (SecTrustPolicy trustPolicy);

OSStatus SecMacDisplaySigner (SecSignerRef *signer, Boolean
alwaysShowUI, FSSpec *file);

Mac File Signing Security API 1.0b1 13

Data Types and constants

enum
{

kSecOptionProgress = 1 << 0,
kSecOptionShowVerifyUI = 1 << 1

} ;
typedef UInt32 SecOptions;

enum
{

kSecSignatureTypeRawPKCS7 = 0,
kSecSignatureTypeiSign = 1,
kSecSignatureTypeSMIME = 2,
kSecSignatureTypePGP = 3 /* reserved but not implemented */

};
typedef UInt32 SecSignatureType;

enum
{

kSecTrustPolicyCodeSigning = 0,
kSecTrustPolicyPersonalFileSigning = 1

};
typedef UInt32 SecTrustPolicy;

Mac File Signing Security API 1.0b1 14

