
Apple Computer Inc. 1

Performance Evaluation
Integrated Systems

  Advanced Technology Group

IOTracer Analyzer 1.0 User Manual

Justin Bishop

April 7, 1995

IOTracer Analyzer takes the binary output of IOTracer
as input and produces an analysis of the data.  The analysis
is useful in determining the disk I/O behavior of
applications  and their interaction with the operating
system. The data can be used to tune an application's disk
accesses.  It also provides a view of an application's
interaction with the HFS Disk Cache. The analyzer
provides an option for printing a text description of the
trace data. When the "trace resource traps" option is used,
the text description is helpful in determining the effect an
application's resource requests have on disk I/O.

1.  Introduction
IOTracer analysis reads the binary trace output created by IOTracer and can either

present a summary of file system and driver I/O activity seen in the trace or provide a text
representation of the trace.

The summary includes the number of file system and driver read and write calls, the
number of bytes or sectors accessed and the time of the calls. A breakdown of the amount
of driver time within file system calls is shown. A count of other file system and resource
related traps is also included. The text printout shows each IOTracer record traced. The
type of record is printed (read/write) and the calls parameters (file/driver number, number
of bytes, etc.).

This document gives a description of the analysis and trace printing output of the
analyzer. This is followed by a description of how the file system executes read and write
requests.



2 IOTracer Analyzer 1.0 User Manual

Apple Computer Inc.

2.  The IOTracer Analyzer Application
IOTracer Analyzer is a fat Macintosh application, meaning that it can run on both

PowerPC and 68000 Machines. When run on a PowerPC it executes native PowerPC
code giving a significant performance gain. It double buffers disk I/O, overlapping the
computation operations of one buffer with the I/O operations on the other. It is
recommended that the application be run on a PowerPC to take full advantage of both of
these features.

IOTracer Analyzer has three menus labeled "File", "Filters" and "Analysis". The
"File" menu offers only the "Quit" option, which quits the application. The "Filters" menu
contains one menu item, "Timestamps". When this menu item is selected, a dialog box is
presented which allows entry of start and stop timestamps. Only records with timestamps
greater than or equal to the start value and less than or equal to the stop value will be
considered when performing analysis or printing the trace dump.

The "Analysis" menu contains three menu items: "Tab Delimited Analysis", "Text
Analysis" and "Trace To Text". the first menu item, "Tab Delimited Analysis" prompts
for a trace file (using the Standard File Package) and analyzes the trace, writing its output
to file in tab delimited form suitable for spreadsheets. the second menu item, "Text
Analysis" analyzes the file and writes its output in a readable text format. The third
option "Trace To Text" prompts for a trace filed and prints a text description of each trace
record to an output file. The analysis and the text output are shown in the following two
sections.

3.  Analyzer Output
An example of the analyzer output is shown in appendix A. The output of the

analyzer is presented in six sections: information from the trace header, a summary of file
level and driver level operations, a decomposition of the file level requests, the number of
bytes/sectors requested, a listing of other traps recorded in the trace and eight tables
showing the distribution of read and write request sizes.

The trace header information includes the version of IOTracer used to generate the
trace, the timer type, whether the spooling option was used and, if it was the time spent
spooling and the number of times the buffer overflowed. The header also includes a count
of bad records in the trace and timestamps from the time data collection was started and
stopped.

The table in the summary section shows the number of read and write calls and the
time of the calls. The calls are separated into file level and driver level read and write
requests. File level requests are requests issued by applications or system managers such
as the Resource Manager for bytes from an open file. A driver request is a request issued
by the File Manager (and possibly from other sources) to a device (such as a disk drive).

File level time is the time from the issuing of the request to the return of the request to
the caller. Note that for asynchronous requests this may represent the time taken to queue
the request and not the time to search the disk cache or access the disk. Synchronous
requests do not return to the user until the requested operation has been completed. For
synchronous driver calls, driver time is the time from the issuing of the request to the



IOTracer  Analyzer 1.0 User Manual 3

Apple Computer Inc.

request's return (the request will not return until the disk operation is complete). For
Asynchronous driver calls, driver time is the time from the issuing of the request to the
call of the completion routine in the parameter block used in the request. The completion
routine is not be called before the disk operation is complete (and disk driver calls always
have a completion routine).

The section labeled Decomposition is broken up into five categories: Sync File Level
Reads, Async File Level Reads, Sync File Level Writes, Async File Level Writes and
Driver Calls Outside Of File Level. The first four categories show the count and time of
the file level calls recorded in the trace and break the time down into components. Figure
1 shows an example of the Sync File Level Reads category. The trace contained 600
async file level read requests and the time of the requests was 4,788,269 microseconds.
The time is broken up into driver time of 3,216,990 microseconds and non driver time
(time executing file system code, etc.) of 1,571,306 microseconds.

                               Sync File Level Reads

          Count:            600               Driver Time:           3,216,990
          Time:       4,788,296               Non Driver Time:       1,571,306

   ---------------------------------------------------------------------------------
   |  Driver Summary   |  Sync Count  | Async Count  |   Sync Time  |  Async Time  |
   |-------------------|--------------|--------------|--------------|--------------|
   |  Driver Reads     |         158  |           0  |   3,216,990  |           0  |
   |  Driver Writes    |           0  |           0  |           0  |           0  |
   ---------------------------------------------------------------------------------

Figure 1. File Level Request Time Decomposition

The table in figure 1 shows the types of driver calls that occurred inside the file level
call. A driver call is described as being inside a file level call if the driver call is issued
(Tdstart) after the file level request  (Tfstart) and completes (Tdstop) before the file level
call returns (Tfstop). Figure 2 shows an example of a driver call inside a file level call. In
this example, there were 158 synchronous driver read requests inside the 600 file level
read requests.

Time

File System Request

Driver Call

Tfstart

Tdstart Tdstop

Tfstop

Figure 2. Driver Call Inside of a File Level Call



4 IOTracer Analyzer 1.0 User Manual

Apple Computer Inc.

The fifth category consists of a table labeled "Driver Calls Outside Of File Level". A
driver call is considered to be outside of a file level call if there is no interval
[Tfstart,Tfstop]. in which Tdstart lies. Async file level requests may result in driver calls
outside of file level calls (Figure 3 shows an example). Driver calls occurring outside of
file level calls can also consist of catalog, extents and volume bitmap reads and writes as
well as cache moveouts and flushes.

Time

Async File System
       Request

Driver Call

Tfstart

Tdstart Tdstop

Tfstop

Figure 3. Driver Call Outside of a File Level Call

Note that async driver calls may be issued before the async file level request that
generated (i.e. put the request on the file system queue) the call returns and complete after
the file level call has returned. Thus the driver time is partially inside and partially outside
the file level call (See Figure 4). In this case the driver request is counted as a driver call
inside the file level request and (Tdstart  - Tfstart)  is counted as time inside the file level
call and (Tdstop - Tfstop) is counted as time outside of a file level call.

Time

Async File System
       Request

Driver Call

Tfstart

Tdstart Tdstop

Tfstop

Figure 4. Driver Call Inside and Outside a File Level Call



IOTracer  Analyzer 1.0 User Manual 5

Apple Computer Inc.

4.  Text Output
An example of the output produced when the "Trace To Text" menu item in the

"Analysis" menu is selected is shown in figure 5. The example shows an excerpt from a
trace of a launch of the application MacFlow 3.7. Each trace record is printed on its own
line starting with the name of the Atrap that generated the record. The name is followed
by the start timestamp and stop timestamp (if applicable: some types of record contain no
stop time). The information that follows the two timestamps varies by the type of record.

The example in figure 5 starts with an Open Resource Fork request for the file
MacFlow 3.7. The trap was called at timestamp 3,527,462 and returned at timestamp
3,534,061. The next record, a Get File Info call, was called at timestamp 3,532,187.
because the Tstart of the Get File Info is less than the Tstop of the Open Resource Fork
Atrap, the Get File Info was called before the Open Resource Fork call returned. The
name of the Get File Info trap is indented to show that it occurred within another traced
trap.

    Open Res Fork     3,527,462     3,534,061     MacFlow 3.7

        GetFileInfo       3,532,187                          MacFlow 3.7

    Read                     3,534,195     3,552,318     File:  7E9F      Bytes:       24       IOBuf:    220A20      FP:              0

          Read DRVR   3,534,725     3,552,188     Drvr: FFDF     Bytes:     200        LS:           FE1F3

    Read                     3,552,563     3,582,447     File:  7E9F     Bytes:   1F6B        IOBuf:   4CB0EC     FP:    55AA3

          Read DRVR   3,552,945     3,562,846     Drvr: FFDF     Bytes:     200        LS:           FE4A0

          Read DRVR   3,563,131     3,576,449     Drvr: FFDF     Bytes:   1E00       LS:            FE4A1

          Read DRVR   3,579,648     3,582,322     Drvr: FFDF     Bytes:     200        LS:            FE4B0

    Read                     3,583,480     3,598,255     File:  7E9F     Bytes:          4       IOBuf:   1D004BA    FP:    401D8

          Read DRVR   3,583,838     3,598,131     Drvr: FFDF     Bytes:     200       LS:             FE3F3

    Read                     3,598,413     3,598,639     File:  7E9F      Bytes:        A       IOBuf:     220A20      FP:    401DC

    CloseResource     3,598,971                          File:  7E9F

    Close                    3,599,755     3,601,353     File:  7E9F

Figure 5. Text Output Example

The next record in the example is a file level read (a file level read/write request is
printed with the name of the Atrap, a driver level request is printed with the name
followed by 'DRVR'). The read request was for the file with File ID 7E9F in hexadecimal
(See Inside Macintosh: Files page 2-24 for the definition of a File ID).  the request was
for 24 hex bytes. The I/O buffer for the request was 0x22A20. The file position (or file
mark, See Inside Macintosh: Files page 1-9 for the definition of a file mark) was 0.



6 IOTracer Analyzer 1.0 User Manual

Apple Computer Inc.

The file level read request is followed by a driver read request. Examination of the
timestamps shows the driver call to be inside the file level call, as in figure 2 (this can
also be seen by the indentation). The request was issued to the driver with a driver
reference number of FFDF hex. The request was for 200 hex bytes (one 512 byte sector).
The logical sector requested was FE1F3 hex.

5.  How The File System Treats File Level Requests
This section gives a basic view of the logic the Macintosh file system applies to file

system read and write requests. File level read requests are generally issued by
applications using the FSRead or PBRead (and PBReadAsync) routines. File level writes
are generally issued using the FSWrite or PBWrite (and PBWriteAsync) routines. For
each open file, the File Manager maintains a current position marker, called the file mark.
The file mark is the offset in bytes from the beginning of the file at which the next read or
write operation will start.

Sector alignment is an important concept in understanding how the file system
responds to requests. If the file mark is evenly divisible by the disk drive's sector size
(usually 512 bytes), the request is referred to as front sector aligned or front aligned. If
the file mark is not evenly divisible by the sector size, the request is front unaligned. If
the byte after the last byte in an operation (the file mark + the request size) is evenly
divisible by the sector size the request is said to be rear sector aligned or rear aligned
otherwise it is rear unaligned.

It is common to see a file level multi-sector read request split into three driver read
requests, one for the first sector, one for the middle sectors, and one for the last sector.
This occurs when the request is both front and rear unaligned. Since only the requested
bytes can be sent into the application buffer, the first and last sectors must be read from
disk into the disk cache (assuming they aren't already there, in which case you have a
cache hit). Only the requested bytes from the sector are copied into the application I/O
buffer. The middle sectors are read from disk directly into the application I/O buffer (so
they can be read in one contiguous operation). In some cases, these middle blocks are
copied into the disk cache. Figure 6 shows how a seven sector read request that is front
and rear unaligned is treated.

File level requests that span aligned sectors may bypass the cache, in which case the
aligned sectors will not be copied from the application I/O buffer into cache blocks. The
programmer can explicitly request a read or write bypass the cache by setting bit 5 of the
ioPosMode field in the parameter block sent to a PBRead/PBWrite call (See Inside
Macintosh: Files page 2-89). The HFS Disk Cache also has a built in bypass mechanism.
The aligned portion of requests above a threshold size will always bypass the cache. The
cache bypass threshold is a function of the current HFS Cache size (i.e. the larger the
cache, the larger the bypass threshold, meaning that as the cache size is increased fewer
requests will bypass it). Note that bypassing the cache only applies to the aligned portion
of a request; unaligned portions of a request which bypasses the cache will still access the
cache.



IOTracer  Analyzer 1.0 User Manual 7

Apple Computer Inc.

1 2 3 4 5 6 7

  Sector Aligned
Portion of Request

    First Sector of 
Request Not Aligned

Sector

File Level Request

Sector read into disk cache. Requested 
bytes are copied into application buffer.

Sectors read into application buffer in one disk 
access. May be copied into disk cache.

    Last Sector of 
Request Not Aligned

Figure 6. Typical File Read Request

Figure 8 in appendix B shows how the file system treats file level requests. The
flowchart is broken up into three sections. Section 1 shows how the first sector of a read
request is handled if it is not sector aligned (sector 1 in figure 6). Section 2 shows how
the sector aligned portion of the request is handled (sectors 1 to 6 in figure 6). Section 3
shows how the last sector of a request is handled if it is unaligned.

To give an example, because the request in figure 6 is not front aligned, the cache will
be searched for the first sector of the request (section 1 of the flowchart). If the sector is
found in the cache, no disk read is necessary. If the sector is not found in the cache a free
block must be found and the sector read into the cache. If no free blocks are available, the
cache replacement must be run to release cache blocks. If dirty cache blocks (blocks that
contain data from writes that have not yet been written to disk)  are to be released, they
are first written to disk. This can cause driver writes to occur within a file level read
request.

Next, the request will be checked to see if it bypasses the cache (section 2 of the
flowchart). if it does, sectors 2 through 6 will be read from disk into the application buffer
(the cache is checked first to ensure that the data on disk is not stale). Note that bypassing
the cache only refers to aligned portions of a request, the cache still needs to be accessed
for unaligned sectors. If the request does not bypass the cache, the cache will be searched
for the sectors. If all sectors are found in the cache no disk read will occur. If any sectors
are not found in the cache, a driver read is issued.



8 IOTracer Analyzer 1.0 User Manual

Apple Computer Inc.

In section 3 of the flowchart, the cache will be searched for sector 7 because the
request is rear unaligned. If the sector is found in the cache, the request is complete. If not
a free block is obtained as in section 1 and a driver read request is issued for sector 7. If
the cache replacement algorithm is run to create free blocks, disk writes may occur.

Requests that do not span any aligned sectors will skip section two. Requests of less
than one full sector will skip sections two and three.

Figure 9 in appendix A shows the logic for file level write requests. Similar to the file
read flowchart, file level write requests are processed in three sections: section 1 for a
first unaligned sector (if any), section 2 for the aligned portion of a request (if any) and
section 3 for a rear unaligned sector (if any). The logic of file level writes is similar to
that of reads. A major difference is that when a write request includes an unaligned
sector, the sector must first be read into the cache from disk (causing a driver read call
inside a file level write call) and the bytes to be written copied into the cache.

When sectors are copied into cache blocks during writes, the blocks are marked dirty
and written at a later time, either during the running of the cache's replacement algorithm
or during a cache flush. Similar to file level reads, requests that do not span any aligned
sectors skip section two of the flowchart. Requests of less than one full sector will skip
section two and three.

File fragmentation can force a multi-sector request to be broken into more than one
driver read. Fragmentation can also cause single sector reads of the Catalog and Extents
file inside of a file level request.



IOTracer  Analyzer 1.0 User Manual 9

Apple Computer Inc.

Appendix A.  Analyzer Output Example

=======================================================================================
|                                                                                     |
|      IOTracer Analysis of Input File:  IOTracer.out                                 |
|                                                                                     |
=======================================================================================

                    ----------------------------------------------
                    |   Header Info            |                 |
                    |--------------------------|-----------------|
                    |   IOTracer Version       |            6.0  |
                    |   Timer Type             |    Atrap Timer  |
                    |   Spooling               |            Off  |
                    |   Spool Time             |              0  |
                    |   Bad Records            |              0  |
                    |   Overflow Count         |              0  |
                    |   Start Time             |    388,033,060  |
                    |   Stop Time              |    406,961,956  |
                    |   Trace Time             |     18,928,896  |
                    ----------------------------------------------

=============================           Summary            =============================

----------------------------------------------------------------------------------------
|  Read/Write Totals   |   Sync Count  |  Async Count  |    Sync Time  |   Async Time  |
|----------------------|---------------|---------------|---------------|---------------|
|  File Level Reads    |          600  |           12  |    4,788,296  |        3,515  |
|  Driver Reads        |          238  |           10  |    4,134,144  |      123,127  |
|  File Level Writes   |           10  |            0  |       42,015  |            0  |
|  Driver Writes       |           11  |            0  |       85,014  |            0  |
----------------------------------------------------------------------------------------

=============================        Decomposition         =============================

                              Sync File Level Reads

           Count:            600               Driver Time:           3,216,990
           Time:       4,788,296               Non Driver Time:       1,571,306

----------------------------------------------------------------------------------------
|  Driver Summary      |   Sync Count  |  Async Count  |    Sync Time  |   Async Time  |
|----------------------|---------------|---------------|---------------|---------------|
|  Driver Reads        |          158  |            0  |    3,216,990  |            0  |
|  Driver Writes       |            0  |            0  |            0  |            0  |
----------------------------------------------------------------------------------------

                             Async File Level Reads

           Count:             12               Driver Time:               1,256
           Time:           3,515               Non Driver Time:           2,259

----------------------------------------------------------------------------------------
|  Driver Summary      |   Sync Count  |  Async Count  |    Sync Time  |   Async Time  |
|----------------------|---------------|---------------|---------------|---------------|
|  Driver Reads        |            0  |            2  |            0  |        1,256  |
|  Driver Writes       |            0  |            0  |            0  |            0  |
----------------------------------------------------------------------------------------

                             Sync File Level Writes

           Count:             10               Driver Time:              34,023
           Time:          42,015               Non Driver Time:           7,992

----------------------------------------------------------------------------------------
|  Driver Summary      |   Sync Count  |  Async Count  |    Sync Time  |   Async Time  |
|----------------------|---------------|---------------|---------------|---------------|
|  Driver Reads        |            3  |            0  |       34,023  |            0  |
|  Driver Writes       |            0  |            0  |            0  |            0  |
----------------------------------------------------------------------------------------



10 IOTracer Analyzer 1.0 User Manual

Apple Computer Inc.

                            Async File Level Writes

           Count:              0               Driver Time:                   0
           Time:               0               Non Driver Time:               0

----------------------------------------------------------------------------------------
|  Driver Summary      |   Sync Count  |  Async Count  |    Sync Time  |   Async Time  |
|----------------------|---------------|---------------|---------------|---------------|
|  Driver Reads        |            0  |            0  |            0  |            0  |
|  Driver Writes       |            0  |            0  |            0  |            0  |
----------------------------------------------------------------------------------------

                          Driver Calls Outside Of File Level

               --------------------------------------------------------
               |             Totals   |     Count     |      Time     |
               |----------------------|---------------|---------------|
               |  Sync Driver Reads   |           77  |      883,131  |
               |  Async Driver Reads  |            8  |       78,995  |
               |  Sync Driver Writes  |           11  |       85,014  |
               |  Async Driver Writes |            0  |            0  |
               --------------------------------------------------------

=============================     Byte/Sector Counts       =============================

                                   File Level Requests

                    ----------------------------------------------
                    |                          |     Bytes       |
                    |--------------------------|-----------------|
                    | Sync File Level Reads    |        408,261  |
                    | Async File Level Reads   |          5,888  |
                    | Sync File Level Writes   |            758  |
                    | Async File Level Writes  |              0  |
                    ----------------------------------------------

                                     Driver Requests

                    ----------------------------------------------
                    |                          |     Sectors     |
                    |--------------------------|-----------------|
                    | Sync File Level Reads    |            868  |
                    | Async File Level Reads   |             10  |
                    | Sync File Level Writes   |             13  |
                    | Async File Level Writes  |              0  |
                    ----------------------------------------------

=============================         Other Data           =============================

               --------------------------------------------------------
               |               Trap   |     Count     |      Time     |
               |----------------------|---------------|---------------|
               |  Open                |            4  |      221,300  |
               |  Async Open          |            0  |            0  |
               |  Close               |           10  |       40,126  |
               |  Async Close         |            0  |            0  |
               |  Get File Info       |           34  |       96,362  |
               |  Delete              |            3  |          n/a  |
               |  Create              |            2  |          n/a  |
               |  Create Res File     |            0  |          n/a  |
               |  Open Res File       |            1  |          n/a  |
               |  Get Named Resource  |            0  |          n/a  |
               |  Get Resource        |            0  |          n/a  |
               |  Get Ind Resource    |            0  |          n/a  |
               |  Load Resource       |            0  |          n/a  |
               --------------------------------------------------------



IOTracer  Analyzer 1.0 User Manual 11

Apple Computer Inc.

Appendix B. File Level Request Flowcharts

①

➁

➂

Yes No

YesYesYes

Yes

Yes

Yes
Yes

Yes

NoNo

No

No

NoNo

No

No

File Level Read Request

  Is Request
Front Aligned?

Does Request
Bypass Cache?

Is Request
Rear Aligned?

Is First
Sector in

Cache?

All Sectors In
Cache?

Free Cache
Blocks

Available?

Is a Free
Cache Block
Available?

Issue 1 Sector
Driver Read Call

Run Cache
Replacement

Algorithm

Is Last
Sector in

Cache?

Is a Free
Cache Block
Available?

Issue 1 Sector
Driver Read Call

Run Cache
Replacement

Algorithm

Run Cache
Replacement

Algorithm

Issue Driver Read
Call(s)

Done

Figure 8. File Level Read Logic



12 IOTracer Analyzer 1.0 User Manual

Apple Computer Inc.

➂

➁

File Level Write Request

   Is Request
Front Aligned?

Does Request
Bypass Cache?

Is Request
Rear Aligned?

Is First
Sector in

Cache?

All Sectors In
Cache?

Free Cache
Blocks

Available?

Is a Free
Cache Block
Available?

Issue 1 Sector
Driver Read Call

Run Cache
Replacement

Algorithm

Run Cache
Replacement

Algorithm

Issue Driver Write
Call(s)

Yes

No

YesYes

Yes
YesYes

Yes

NoNoNo

No No

Done

Copy Bytes To Be
Written Into Cache

Copy Blocks To Be
Written Into Cache

Is Last
Sector in

Cache?

Is a Free
Cache Block
Available?

Issue 1 Sector
Driver Read Call

Run Cache
Replacement

Algorithm

Yes
Yes

NoNo

Copy Bytes To Be
Written Into Cache

No

①

Figure 9. File Level Write Logic


