
®

ALOE API
1.0 Draft
February 4, 1997

© 1995-1996 Apple Computer, Inc.
All rights reserved.

ALOE API 1.0 Draft (2/4/97) Page 1 © 1995-1997 Apple Computer, Inc.

 Apple Computer, Inc.

© 1995-1996 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, mechanical, electronic, photocopying, recording, or otherwise, without prior
written permission of Apple Computer, Inc., except to make a backup copy of any documentation
provided on CD-ROM. Printed in the United States of America.

The Apple logo is a trademark of Apple Computer, Inc.

Use of the "keyboard" Apple logo (Option-Shift-K) for commercial purposes without the prior
written consent of Apple may constitute trademark infringement and unfair competition in violation of
federal and state laws.

No licenses, express or implied, are granted with respect to any of the technology described in this
publication. Apple retains all intellectual property rights associated with the technology described in
this book. This publication is intended to assist application developers to develop applications only
for Apple-labeled or Apple-licensed computers.

Every effort has been made to ensure that the information in this manual is accurate. Apple is not
responsible for typographical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleLink, AppleScript, ColorSync, HyperCard, LaserWriter, Macintosh,
OpenDoc and QuickTime are trademarks of Apple Computer, Inc., registered in the United States and
other countries.

Apple Press, the Apple Press signature, Finder, Geneva, Mac, and QuickDraw are trademarks of
Apple Computer, Inc.

Adobe is a trademark of Adobe Systems Incorporated or its subsidiaries and may be registered in
certain jurisdictions.

PowerPC is a trademark of International Business Machines Corporation, used under license
therefrom.

SOM, SOMobjects, and System Object Model are licensed trademarks of IBM Corporation.

UNIX is a registered trademark of Novell, Inc. in the United States and other countries, licensed
exclusively through X/Open Company, Ltd.

Even though Apple has reviewed this manual, APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD AS IS,AND YOU, THE PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

ALOE API 1.0 Draft (2/4/97) Page 2 © 1995-1997 Apple Computer, Inc.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF
ALL OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer, agent, or employee is
authorized to make any modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for
incidental or consequential damages, so the above limitation or exclusion may not apply to you. This
warranty gives you specific legal rights, and you may also have other rights which vary from state to
state.

ALOE API 1.0 Draft (2/4/97) Page 3 © 1995-1997 Apple Computer, Inc.

I. ABOUT THIS DOCUMENT

The purpose of this document is to introduce ALOE, the Apple Library for Object Ebedding.
ALOE is a companion technology to OpenDoc. It enables developers to add OpenDoc container
support to traditional applications, both new and old. This is achieved by encapsulating the
OpenDoc APIs behind a simpler API focused on the issues surrounding container support.

Section I provides an overview of the ALOE product. Section II examines the requirements and
the initial feature set of ALOE. Section III presents the deliverable components of ALOE. Section
IV and V discusses the architecture and API.

Before proceeding, you should know that:

1) This is a working document. Any information contained here may be changed in the
future.

2) This is a draft. It may contain incomplete information and mistakes. However, we
have tried to avoid those as much as we could. Documentation written and edited by
professional writers will come in the near future.

3) Your input is extremely valuable to us. Please let us know if you have any comments
or questions.

ALOE API 1.0 Draft (2/4/97) Page 4 © 1995-1997 Apple Computer, Inc.

II. REQUIREMENTS AND FEATURE SET

Requirements

Functionality

Preserve existing application functionality

An application does not need to compromise its existing functionality because of adoption of
ALOE and OpenDoc.

Provide sufficient OpenDoc functionality

Even though ALOE is not designed to expose all functionality of OpenDoc, it should provide a
sufficient set of features so that it is a viable solution to most applications.

Programmability

Simple To Use

The API of ALOE must be simple to use and integrate into an existing application. The learning
curve for ALOE API should be as flat as possible.

Non-intrusive

In order to support a new technology, an application inevitably has to be changed. ALOE needs to
be as non-intrusive as possible. Application developers need to feel that they are not changing their
application’s architecture to accommodate OpenDoc.

Language Support

The API of ALOE must be accessible in multiple languages. The first language to be supported
will be C (and hence C++). Interfaces can be created for other languages as needed.

Compatibility

Operating System Compatibility

ALOE needs to run on all systems on which OpenDoc runs.

System configuration

Many container applications are going to be running both on systems with OpenDoc and ALOE
and on systems without. An application which has incorporated ALOE should be able to function
on all these systems.

Graphics Systems

ALOE API 1.0 Draft (2/4/97) Page 5 © 1995-1997 Apple Computer, Inc.

ALOE needs to support the main graphics systems on each platform. On the Mac OS, both Classic
QuickDraw and QuickDraw GX are to be supported. Choice of graphics system should not be an
impediment to ALOE adoption.

Compatibility with OpenDoc part editors

No OpenDoc part editors should need to be changed in order to run with ALOE. In other words, a
container application can take advantage of the full spectrum of part editors available.

Performance

Footprint

ALOE and OpenDoc should only be loaded when the functionality is required. Therefore, the
container application should see very little in its footprint if ALOE and OpenDoc functionality is
not triggered.

In addition, the application should have full control when to load and unload ALOE. This enables
applications to optimize performance in a custom way.

Interacting with OpenDoc

ALOE should not impose significant overhead on the normal execution of the application. ALOE
should have well-defined and predictable performance behaviors.

Initial Feature Set

The following is a list of features provide by the first release of ALOE:

• Initialization and shutdown of OpenDoc

• Event handling of OpenDoc-related events

• Management of embedded OpenDoc parts

• Persistent storage management for embedded OpenDoc parts

• Window management of OpenDoc and hybrid windows

• Support for application’s floating window scheme

• Menu handling

• Rendering of embedded OpenDoc content (both on-screen and off-screen)

• Support for asynchronous drawing by the application

• Complete support for Clipboard, Drag-and-Drop and Linking of embedded content to
embedded content.

ALOE API 1.0 Draft (2/4/97) Page 6 © 1995-1997 Apple Computer, Inc.

• Complete support for scripting

• Mouse region calculation / Sleep time calculation / Event mask setup

• Modal state support (both on the application and in OpenDoc)

• Reconcile undo mechanisms between OpenDoc and the application

• Support for various states for embedded part defined by OpenDoc

• Direct activation of embedded OpenDoc part

• Notification of change in content for editions

ALOE API 1.0 Draft (2/4/97) Page 7 © 1995-1997 Apple Computer, Inc.

III. DELIVERABLES

To developers, ALOE is a set of APIs which enables them to add OpenDoc support to their
applications. The development kit includes:

• Header files for ALOE (ALOE.h, ALOE.rsrc).

• Proxy root part editor (debug and non-debug versions) to be installed in the Editors
folder.

• Static library (debug and non-debug versions) to be linked with the container
application.

• Shared library (debug and non-debug versions) of ALOE.

• Sample application and associated sample code.

• Developer documentation.

To end users, ALOE is delivered as a shared library (which is the non-debug version of the Shared
Library mentioned above) and a part editor (which is the proxy root part editor mentioned above).
It will be installed with OpenDoc or the application which uses it.

ALOE API 1.0 Draft (2/4/97) Page 8 © 1995-1997 Apple Computer, Inc.

IV. ARCHITECTURE OVERVIEW

This section describes the overall architecture of ALOE.

ALOE consists of the following pieces:

1) ALOE static library

2) ALOE shared (dynamic) library

3) Proxy root part

OpenDoc

ALOE

MacOS

Container Application

proxy
root
part

ALOE static library

ALOE
dynamic
library

An application links against the ALOE static library, which provides some default behavior when
the shared library or OpenDoc is not installed. The static library is also responsible for dynamically
loading the ALOE shared library when the container application wants to access ALOE/OpenDoc
functionality.

The ALOE shared library provides most of the functionality. It acts as an interface between the
container application and OpenDoc. It mediates access to shared resources (e.g., windows and
menus) between the application and OpenDoc so that they do not interfere with each other.

ALOE shared library uses the proxy root part to represent the application document. The proxy
root part is needed because parts need a place to be embedded in. Also, many of the OpenDoc
recipes require the existence of a root part. This proxy root part is a very simple containing part
which handles basic layout and imaging protocols.

ALOE API 1.0 Draft (2/4/97) Page 9 © 1995-1997 Apple Computer, Inc.

Application window

Adaptors /
Adaptor View

OpenDoc
Frames

Proxy Root Part

In ALOE, there are several objects for embedding:

1) Adaptor

An Adaptor corresponds to an OpenDoc part editor. It represents an opaque embedded
entity.

2) Adaptor View

In OpenDoc terms, an Adaptor View is the embodiment of a frame and a facet.

An Adaptor View handles the layout and rendering of an Adaptor. In general, each
Adaptor has only one Adaptor View. Whenever the application wants to change the
Adaptor’s position or draw the Adaptor, it will call the Adaptor’s View to do it.

Multiple views provide utility and convenience to certain applications. A typical example
is when the application splits its document window. In this case, the application may
create two Views on the same Adaptor, each View in one split pane.

3) Adaptor Manager

An Adaptor Manager is associated with each application document. The Adaptor Manager
is more storage-oriented than display-oriented. Even if a document has multiple
windows, only one Adaptor Manager should be created. However, if there are two
documents in the same process, two Adaptor Managers are needed.

The main purposes of the Adaptor Manager is to deal with storage and manage the
Adaptors.

ALOE API 1.0 Draft (2/4/97) Page 10 © 1995-1997 Apple Computer, Inc.

V. EXTERNAL FUNCTIONAL/INTERFACE SPECIFICATION

This section describes the interface of ALOE. The first subsection lists the API by components.
The second subsection lists the API in terms of application requirements. The third subsection
provides detailed description of each function.

By Components

ALOEAdaptorMgr

Creation and Destruction

OSErr ALOENewAdaptorMgr(ALOEAdaptorMgr* newAdaptorMgr);

OSErr ALOENewAdaptorMgrFromFile(long refNum,
ALOEAdaptorMgr* newAdaptorMgr);

OSErr ALOENewAdaptorMgrFromMemory(Handle source,
ALOEAdaptorMgr* newAdaptorMgr);

OSErr ALOEDisposeAdaptorMgr(ALOEAdaptorMgr adaptorMgr);

Storage

OSErr ALOEIsAdaptorMgrDirty(ALOEAdaptorMgr adaptorMgr,
Boolean* changed,
Boolean* isSameSize);

OSErr ALOEWriteAdaptorMgrToFile(ALOEAdaptorMgr adaptorMgr,
long refNum,
long* bytesWritten);

OSErr ALOENewHandleFromAdaptorMgr(
ALOEAdaptorMgr adaptorMgr,
Handle* destination,
Boolean allocateInTempMem);

ALOEAdaptor

Creation and Destruction

OSErr ALOENewAdaptor(ALOEAdaptorMgr adaptorMgr,
WindowPtr window,
ALOEISOString kind,
Ptr dataPtr,
long dataSize,
RgnHandle shape,
ALOEAdaptor* newAdaptor);

OSErr ALOENewSynchronizedAdaptor(ALOEAdaptor fromAdaptor,
WindowPtr window,
ALOEAdaptor* newAdaptor);

ALOE API 1.0 Draft (2/4/97) Page 11 © 1995-1997 Apple Computer, Inc.

OSErr ALOEBeginDuplicateClone(
ALOEAdaptorMgr fromAdaptorMgr,
ALOEAdaptorMgr toAdaptorMgr,
WindowPtr window);

OSErr ALOEDuplicateAdaptor(
ALOEAdaptor fromAdaptor,
ALOEAdaptor* newAdaptor);

OSErr ALOEDisposeAdaptor(ALOEAdaptor adaptor);

Storage

OSErr ALOEGetPersistentID(ALOEAdaptor adaptor,
ALOEPersistentID id);

OSErr ALOEGetAdaptor(ALOEAdaptorMgr adaptorMgr,
ALOEPersistentID id,
WindowPtr window,
ALOEAdaptor* newAdaptor);

Activation

OSErr ALOESetActivateApplicationCallback(
ALOEActivateApplicationUPP proc,
void *contextPtr);

OSErr ALOEActivateAdaptor(ALOEAdaptor adaptor);

OSErr ALOESetAdjustActiveBorderShapeCallback(
ALOEAdjustActiveBorderShapeUPP proc,
void *contextPtr);

OSErr ALOESetDoesPropagateEvents(ALOEAdaptor adaptor,
Boolean doesPropagate);

Layout

OSErr ALOESetAdaptorShapeRequestCallback(
ALOEAdaptorShapeRequestUPP proc,
void *contextPtr);

OSErr ALOEGetAdaptorShape(ALOEAdaptor adaptor,
RgnHandle adaptorShape);

OSErr ALOESetAdaptorShape(ALOEAdaptor adaptor,
RgnHandle adaptorShape);

OpenDoc States

OSErr ALOESetAdaptorRemovedState(ALOEAdaptor adaptor,
Boolean removed);

Boolean ALOEGetAdaptorBundleState(ALOEAdaptor adaptor);

ALOE API 1.0 Draft (2/4/97) Page 12 © 1995-1997 Apple Computer, Inc.

OSErr ALOESetAdaptorBundleState(ALOEAdaptor adaptor,
Boolean bundled);

Linking Support

OSErr ALOESetRevealAdaptorCallback(
ALOERevealAdaptorUPP proc,
void *contextPtr);

OSErr ALOESetAdaptorChangedCallback(
ALOEAdaptorChangedUPP proc,
void *contextPtr);

Utilities

ALOEAdaptorMgr ALOEGetAdaptorMgrFromAdaptor(
ALOEAdaptor adaptor);

ALOEAdaptorView

Creation and Destruction

OSErr ALOENewAdaptorView(ALOEAdaptor adaptor,
GrafPtr port,
Point offset,
THPrint printJob,
ALOEAdaptorView* newView);

OSErr ALOEDisposeAdaptorView(ALOEAdaptorView view);

Imaging
OSErr ALOEGetAdaptorViewOffset(ALOEAdaptorView view,

Point* offset);

OSErr ALOESetAdaptorViewOffset(ALOEAdaptorView view,
Point offset);

OSErr ALOEDrawAdaptorView(ALOEAdaptorView view,
RgnHandle viewClip);

OSErr ALOESetAdaptorViewScaleFactor(ALOEAdaptorView view,
Fixed horzScaleFactor,
Fixed vertScaleFactor);

OSErr ALOESetAdaptorImageUpdatedCallback(
ALOEAdaptorImageUpdatedUPP proc,
void *contextPtr);

OSErr ALOEGetAdaptorViewPicture(ALOEAdaptorView view,
PicHandle* image);

OpenDoc States
Boolean ALOEGetAdaptorViewSelectState(

ALOEAdaptorView view);

ALOE API 1.0 Draft (2/4/97) Page 13 © 1995-1997 Apple Computer, Inc.

OSErr ALOESetAdaptorViewSelectState(ALOEAdaptorView view,
Boolean selected);

ALOEHighlightState ALOEGetAdaptorViewHighlightState(
ALOEAdaptorView view);

OSErr ALOESetAdaptorViewHighlightState(
ALOEAdaptorView view,
ALOEHighlightState highlighted);

Info Dialog

OSErr ALOEShowAdaptorInfo(ALOEAdaptorView view);

Utilities

ALOEAdaptor ALOEGetAdaptorFromAdaptorView(
ALOEAdaptorView view);

ALOE

Initialization and termination

OSErr StartALOE();

OSErr TerminateALOE();

OSErr ALOESetScratchVRefNum(short volRefNum);

Window Management

Boolean IsALOEWindow(WindowPtr window);

Boolean IsALOEFloatingWindow(WindowPtr window);

OSErr ALOESizeWindow(WindowPtr window,
short w,
short h,
Boolean fUpdate);

OSErr ALOEDragWindow(WindowPtr window,
Point startPt,
const Rect* boundsRect);

OSErr ALOESetWindowCallback(
ALOEWindowCallbackUPP windowCallbackProc,
void * contextPtr);

OSErr ALOEWindowActionDispatch(WindowPtr window,
ALOEWindowAction action,
Boolean param);

ALOE API 1.0 Draft (2/4/97) Page 14 © 1995-1997 Apple Computer, Inc.

OSErr ALOEDeactivateWindow(WindowPtr window);

Window Utilities

OSErr ALOEAddWindow(WindowPtr window);

OSErr ALOERemoveWindow(WindowPtr window);

OSErr ALOEShowWindow(WindowPtr window);

OSErr ALOEHideWindow(WindowPtr window);

OSErr ALOESelectWindow(WindowPtr window);

Menu bar Management

OSErr ALOESetBaseMenuBar(short mbarResource);

OSErr ALOESetBaseMenuBarHandle(Handle mbarHandle);

OSErr ALOERegisterMenuCommand(short menuID,
short menuItem,
long commandID);

OSErr ALOEGetMenuCommand(short menuID,
short menuItem,
long* commandID);

OSErr ALOEAdjustMenus();

OSErr ALOESetResetMenuBarCallback(
ALOEResetMenuBarUPP resetMenuBarProc,
void * contextPtr);

Event handling

Boolean ALOEHandleEvent(EventRecord* event);

RgnHandle ALOEGetSleepRegion(RgnHandle appSleepRegion);

EventMask ALOEGetEventMask(EventMask appMask);

UInt32 ALOEGetSleepTime(UInt32 appSleepTime);

Boolean ALOEIdle();

Modal state handling

OSErr ALOEApplicationModal(Boolean requestModalFocus);

OSErr ALOEApplicationActive();

Undo Management

ALOE API 1.0 Draft (2/4/97) Page 15 © 1995-1997 Apple Computer, Inc.

Boolean ALOEIsUndoClear();

OSErr ALOEClearUndo();

Clipboard

PScrapStuff ALOEInfoScrap();

short ALOEGetScrapCount();

Boolean ALOEScrapCountStillValid(short scrapCount);

Boolean ALOEIsScrapEmpty();

long ALOEZeroScrap();

long ALOEPutScrap(long length,
ResType theType,
Ptr source);

long ALOEGetScrap(Handle hDest,
ResType theType,
long *offset);

long ALOEUnloadScrap();

long ALOELoadScrap();

OSErr ALOEUpdateScrap();

OSErr ALOESetWriteScrapCallback(ALOEWriteScrapUPP proc,
void *contextPtr);

OSErr ALOEBeginScrapClone(ALOEAdaptorMgr adaptorMgr,
WindowPtr window,
ALOECloneKind kind);

OSErr ALOECloneAdaptorFromContent(ALOEAdaptor adaptor,
Point offset,
ALOEClonedID clonedId);

OSErr ALOECloneAdaptorToContent(ALOEClonedID id,
ALOEAdaptor* newAdaptor);

OSErr ALOEAbortClone();

OSErr ALOEEndClone();

OSErr ALOEEmbedScrap(ALOEAdaptorMgr adaptorMgr,
WindowPtr window,
ALOEAdaptor* newAdaptor);

Drag and Drop

OSErr ALOEBeginDragClone(ALOEAdaptorMgr adaptorMgr,
WindowPtr window,

ALOE API 1.0 Draft (2/4/97) Page 16 © 1995-1997 Apple Computer, Inc.

DragReference theDragRef,
ALOECloneKind kind);

OSErr ALOEAddDragItemFlavor(DragReference theDragRef,
ItemReference theItemRef,
FlavorType theFlavorType,
void* data,
Size dataSize,
FlavorFlags theFlags);

Boolean ALOEAdaptorViewCanAcceptDrop(ALOEAdaptorView view);

OSErr ALOEEmbedDrag(ALOEAdaptorMgr adaptorMgr,
WindowPtr window,
DragReference theDragRef,
long index,
ALOEAdaptor* newAdaptor);

Scripting

OSErr ALOEObjectInit();

OSErr ALOEInstallEventHandler(
AEEventClass theAEEventClass,
AEEventID theAEEventID,
AEEventHandlerUPP handler,
long handlerRefCon,
Boolean isSysHandler);

OSErr ALOEGetEventHandler(
AEEventClass theAEEventClass,
AEEventID theAEEventID,
AEEventHandlerUPP* handler,
long* handlerRefCon,
Boolean isSysHandler);

OSErr ALOERemoveEventHandler(
AEEventClass theAEEventClass,
AEEventID theAEEventID,
AEEventHandlerUPP handler,
Boolean isSysHandler);

OSErr ALOEInstallPreDispatchHandler(
AEEventHandlerUPP handler
Boolean isSysHandler);

OSErr ALOEGetPreDispatchHandler(
AEEventHandlerUPP* handler
Boolean isSysHandler);

OSErr ALOERemovePreDispatchHandler(
AEEventHandlerUPP handler
Boolean isSysHandler);

OSErr ALOEInstallObjectAccessor(
DescType desiredClass,
DescType containerType,

ALOE API 1.0 Draft (2/4/97) Page 17 © 1995-1997 Apple Computer, Inc.

OSLAccessorUPP theAccessor,
long accessorRefCon,
Boolean isSysHandler);

OSErr ALOEGetObjectAccessor(
DescType desiredClass,
DescType containerType,
OSLAccessorUPP* theAccessor,
long* accessorRefCon,
Boolean isSysHandler);

OSErr ALOERemoveObjectAccessor(
DescType desiredClass,
DescType containerType,
OSLAccessorUPP theAccessor,
Boolean isSysHandler);

OSErr ALOESetObjectCallbacks(
OSLCompareUPP compareProc,
OSLCountUPP countProc,
OSLDisposeTokenUPP disposeTokenProc,
OSLGetMarkTokenUPP getMarkTokenProc,
OSLMarkUPP markProc,
OSLAdjustMarksUPP adjustMarksProc,
OSLGetErrDescUPP getErrDescProc);

OSErr ALOEInstallCoercionHandler(
DescType fromType,
DescType toType,
AECoercionHandlerUPP handler,
long handlerRefCon,
Boolean fromTypeIsDesc,
Boolean isSysHandler);

OSErr ALOEGetCoercionHandler(
DescType fromType,
DescType toType,
AECoercionHandlerUPP* handler,
long* handlerRefCon,
Boolean* fromTypeIsDesc,
Boolean isSysHandler);

OSErr ALOERemoveCoercionHandler(
DescType fromType,
DescType toType,
AECoercionHandlerUPP handler,
Boolean isSysHandler);

OSErr ALOEGetCoercionHandler(
DescType fromType,
DescType toType,
AECoercionHandlerUPP* handler,
long* handlerRefCon,
Boolean* fromTypeIsDesc,
Boolean isSysHandler);

OSErr ALOEResolve(AEDesc* objectSpecifier,
short callbackFlags,

ALOE API 1.0 Draft (2/4/97) Page 18 © 1995-1997 Apple Computer, Inc.

AEDesc* theToken,
ALOEAdaptorView* tokenContext);

OSErr ALOEDisposeToken(AEDesc* theToken);

Edition Manager Support

Boolean ALOEReserveSectionID(long sectionID);
Utilities

ALOEISOString ALOEGetKindFromResType(ResType type);

ALOE API 1.0 Draft (2/4/97) Page 19 © 1995-1997 Apple Computer, Inc.

Scalable API

This subsection presents the API in a scalable fashion. It first lists the required API which every
application must support. Then it lists the optional API. Developers may choose to adopt these if
they fit their needs.

The following table shows the API calls which are required for all applications:

Required for all applications StartALOE
TerminateALOE
ALOESetActivateApplicationCallback
ALOESelectWindow
ALOESetBaseMenuBar
ALOEHandleEvent
ALOEGetSleepRegion
ALOEGetEventMask
ALOEGetSleepTime

The following tables shows the supported features and their related APIs.

1) If your application does not support a certain feature, you do not have to use its related
API calls. For an example, if your application supports offscreen drawing, you would
need to use ALOESetAdaptorImageUpdatedCallback. If your application does not
support the Edition Manager, you can ignore ALOESetAdaptorChangedCallback.

2) For certain features, there are both required and optional API calls.

3) The features are not presented in any special ordering.

ALOE API 1.0 Draft (2/4/97) Page 20 © 1995-1997 Apple Computer, Inc.

Embedding ALOENewAdaptorMgr
ALOEDisposeAdaptorMgr
ALOENewAdaptor
ALOENewAdaptorView
ALOESetAdaptorRemoved
ALOEDisposeAdaptorView
ALOEDrawAdaptorView
ALOESetAdaptorViewSelectState
ALOESetAdaptorViewHighlightState
ALOESetAdaptorBundleState
ALOESetRevealAdaptorViewCallback
ALOEAdjustMenus
ALOEShowAdaptorInfo
ALOEApplicationModal
ALOEApplicationActive

Embedding (optional) ALOEBeginDuplicateClone
ALOEDuplicateAdaptor
ALOENewSynchronizedAdaptor
ALOESetAdaptorShapeRequestCallback
ALOEGetAdaptorShape
ALOESetAdaptorShape
ALOESetAdaptorRemovedState
ALOESetAdaptorViewOffset
ALOEGetAdaptorViewOffset
ALOEGetAdaptorViewSelectState
ALOEGetAdaptorViewHighlightState
ALOEGetAdaptorBundleState
ALOEGetAdaptorMgrFromAdaptor
ALOEGetAdaptorFromAdaptorView
ALOEGetKindFromResType

Persistent storage ALOEIsAdaptorMgrDirty
ALOEWriteAdaptorMgrStorageToFile
ALOENewAdaptorMgrFromFile
ALOENewHandleFromAdaptorMgr
ALOENewAdaptorMgrFromMemory
ALOEGetPersistentID
ALOEGetAdaptor

Undo ALOEIsUndoClear
ALOEClearUndo

Clipboard ALOEBeginScrapClone
ALOECloneAdaptorToContent
ALOECloneAdaptorFromContent
ALOEAbortClone
ALOEEndClone
ALOEEmbedScrap
ALOEInfoScrap
ALOEZeroScrap
ALOEPutScrap
ALOEGetScrap
ALOEUnloadScrap
ALOELoadScrap
ALOEIsScrapEmpty

Clipboard (optional) ALOEGetScrapCount
ALOEScrapCountStillValid
ALOEUpdateScrap
ALOESetWriteScrapCallback

ALOE API 1.0 Draft (2/4/97) Page 21 © 1995-1997 Apple Computer, Inc.

ALOE API 1.0 Draft (2/4/97) Page 22 © 1995-1997 Apple Computer, Inc.

Initiating drags ALOEBeginDragClone
ALOEAddDragItemFlavor

Receiving drops ALOEEmbedDrag

Edition Manager support

Enable applications supporting Edition Manager
to continue to work

ALOESetAdaptorChangedCallback
ALOEReserveSectionID

Cached Presentation

Cached presentation refers to a static image of
the part. This static image can be used when
OpenDoc or ALOE is not available. This feature
is not required on every application, but a
developer may choose to support this for better
user experience.

ALOEGetAdaptorViewPicture

Direct activation support

Directly activating an adaptor is not required as
ALOE handles adaptor activation or deactivation
for the application.

ALOEActivateAdaptor

OpenDoc active border support

ALOE provides default implementation for
active border calculation. However, developers
are encouraged to supply their own especially
when their applications support overlapping
shapes.

ALOESetAdjustActiveBorderShapeCallback

Offscreen drawing support

Applications are in control of imaging. ALOE
provides the following function for application
which takes advantage of offscreen drawing.

ALOESetAdaptorImageUpdatedCallback

Floating window support

ALOE handles normal window management.
However, if an application has its own floating
window scheme, ALOE provides functions to
reconcile the two schemes.

IsALOEWindow
IsALOEFloatingWindow
ALOESetWindowCallback
ALOEDeactivateWindow

Menu command support

Both OpenDoc and ALOE have adopted the
menu command schemes. If your application
supports the same scheme, you can use the
ALOE functions for convenience.

ALOESetBaseMenuBarHandle
ALOERegisterMenuCommand
ALOEGetMenuCommand

ALOE API 1.0 Draft (2/4/97) Page 23 © 1995-1997 Apple Computer, Inc.

Scripting support

If an application supports scripting, it should
use the ALOE functions to manage the Apple
Event Manager functions.

ALOEObjectInit
ALOEInstallEventHandler
ALOEGetEventHandler
ALOERemoveEventHandler
ALOEInstallPreDispatchHandler
ALOEGetPreDispatchHandler
ALOERemovePreDispatchHandler
ALOEInstallObjectAccessor
ALOEGetObjectAccessor
ALOERemoveObjectAccessor
ALOESetObjectCallbacks
ALOEInstallCoercionHandler
ALOEGetCoercionHandler
ALOERemoveCoercionHandler
ALOEGetCoercionHandler
ALOEResolve
ALOEDisposeToken

ALOE API 1.0 Draft (2/4/97) Page 24 © 1995-1997 Apple Computer, Inc.

Description of API Routines

ALOE Initialization and Termination

OSErr StartALOE();

Basic operation
This function initializes ALOE for the current process. It should do whatever OpenDoc
initialization is necessary, including creating the session.

Inputs
Outputs

OSErr result code
Errors Returned

noErr Initialization Successful.
kALOEOpenDocNotPresent OpenDoc Not present.

Pre conditions
none

Post conditions
ALOE should be ready to either load or create adaptor managers.

OSErr TerminateALOE();

Basic operation
This function Terminates ALOE. OpenDoc is shutdown, the session deleted. Calls to
ALOE after TerminateALOE is called will result in default behavior or errors,
depending on the call.

Inputs
none

Outputs
none

Errors Returned
noErr Successful termination.
kALOEFailedToTerminate Unable to shut down ALOE

Pre conditions
ALOE has been previously initialized. Any adaptor managers created since ALOE was
started have been disposed.

Post conditions
ALOE is shut down.

Adaptor Managers

OSErr ALOENewAdaptorMgr(ALOEAdaptorMgr* newAdaptorMgr);

Basic operation
This routine creates a new, empty, adaptor manager. An adaptor manager corresponds
to a document. This should be called for each document that can embed OpenDoc parts.

Inputs
none

Outputs
newAdaptorMgr The new adaptor manager.

ALOE API 1.0 Draft (2/4/97) Page 25 © 1995-1997 Apple Computer, Inc.

Errors returned
memFullErr Not enough free memory to create the adaptor manager.

Pre conditions
ALOE has been initialized with StartALOE.

Post conditions
The manager returned is ready to create and manage adaptors.

See also
ALOENewAdaptorMgrFromFile, ALOENewAdaptorMgrFromMemory

OSErr ALOEDisposeAdaptorMgr(ALOEAdaptorMgr adaptorMgr);

Basic operation
This routine shuts down the in memory presence of an adaptor manager.

Inputs
adaptorMgr The manager to dispose

Outputs
none

Errors Returned
noErr Success.

kALOEFailedToCloseManager Failure.
kALOEInvalidMgr Adaptor manager is not valid.

Pre conditions
Any adaptors created by the manager have been disposed.

Post conditions
The manager is no longer a valid argument to ALOE routines.

OSErr ALOEIsAdaptorMgrDirty(ODAdaptorMgr adaptorMgr, Boolean* changed,
Boolean* isSameSize);

Basic operation
This function checks the changed status of the given adaptor manager.

Inputs
adaptorMgr The manager to check

Outputs
changed Returns true if adaptor manager has changed
isSameSize Returns true if the size of storage used by adaptor

manager has not changed since the last save.
Errors Returned

noErr Success.
kALOEInvalidMgr Adaptor manager is not valid.

Pre conditions
none

Post conditions
none

OSErr ALOENewHandleFromAdaptorMgr(ALOEAdaptorMgr adaptorMgr,
Handle* destination, Boolean allocateInTempMem);

Basic operation
This function allocates a handle and copies the manager and all adaptors to the
handle. Only adaptors with corresponding persistent ids are copied; other adaptors

ALOE API 1.0 Draft (2/4/97) Page 26 © 1995-1997 Apple Computer, Inc.

that have been created but not passed to ALOEGetPersistentID are not copied to the
handle. Also, an adaptor is not copied to the handle if it is in the removed state, or was
disposed while in the removed state. The caller is responsible for disposing of the
handle.

Inputs
adaptorMgr The manager to be stored into the handle
allocateInTempMem true if the handle should be allocated in temp mem

Outputs
destination The handle returned by this function

Errors Returned
noErr Success.
memFullErr Unable to allocate handle.
kALOEInvalidMgr Adaptor manager is not valid.

Pre conditions
none

Post conditions
none

See also

ALOEGetPersistentID, ALOESetAdaptorRemovedState

OSErr ALOEWriteAdaptorMgrToFile(ALOEAdaptorMgr adaptorMgr, long refNum,
long* bytesWritten);

Basic operation
This function streams an adaptor manager and its contents to a file. Only adaptors
with corresponding persistent ids are written; other adaptors that have been created
but not passed to ALOEGetPersistentID are not written to the file. Also, an adaptor
is not written to the file if it is in the removed state, or was disposed while in the
removed state.

Inputs
adaptorMgr The adaptor manager to write
refNum The reference number of the file to write to

Outputs
bytesWritten The number of bytes actually written to the file

Errors Returned
kALOEInvalidMgr Adaptor manager is not valid.
wPrErr Volume is write protected.
fLckdErr File is locked.
eofErr End of file.
fnOpnErr File not open.

Pre conditions
File must be open and the file mark must be set.

Post conditions
none

See also

ALOEGetPersistentID, ALOESetAdaptorRemovedState

OSErr ALOENewAdaptorMgrFromFile(long refNum,
ALOEAdaptorMgr* newAdaptorMgr);

Basic operation

ALOE API 1.0 Draft (2/4/97) Page 27 © 1995-1997 Apple Computer, Inc.

This function creates an adaptor manager, initializes it from disk, and returns it.
Inputs

refNum The working directory number of the file to read the
adaptor manager from

Outputs
newAdaptorMgr The newly created adaptor manager

Errors Returned
eofErr End of file.
fnOpnErr File not open.
memFullErr Unable to allocate memory.

Pre conditions
ALOE has been started, the file is open, and the file mark is set correctly.

Post conditions
The adaptor manager is initialized. Adaptors saved in the file can be retrieved from
the manager by their persistent ids.

See also
ALOEWriteAdaptorMgrToFile, ALOEGetAdaptor

OSErr ALOENewAdaptorMgrFromMemory(Handle source,
ALOEAdaptorMgr* newAdaptorMgr);

Basic operation
This function creates an adaptor manager, initializes it from memory, and returns it.
The contents of the handle are copied to temp storage so that the caller can dispose of
the handle or use it for other purposes after this call returns.

Inputs
source The handle containing the manager data

Outputs
newAdaptorMgr The created manager

Errors Returned
memFullErr Unable to create manager.

Pre conditions
ALOE has been started.

Post conditions
The given handle can be immediately disposed since the call copies the contents to
temp storage.
The adaptor manager is initialized. Adaptors saved in the file can be retrieved from
the manager by their persistent ids.

See also
ALOENewHandleFromAdaptorMgr, ALOEGetAdaptor

OSErr ALOEGetPersistentID(ALOEAdaptor adaptor, ALOEPersistentID id);

Basic operation
Given an adaptor, return its persistent id. The persistent id can be used to retrieve the
adaptor when the adaptor manager is reinstantiated from file or memory.

Inputs
adaptor The adaptor.

Outputs
id The returned persistent identifier

Errors Returned
kALOEInvalidAdaptor This is not a valid adaptor.

ALOE API 1.0 Draft (2/4/97) Page 28 © 1995-1997 Apple Computer, Inc.

Pre conditions
none

Post conditions
none

See also

ALOEGetAdaptor

OSErr ALOEGetAdaptor(ALOEAdaptorMgr adaptorMgr, ALOEPersistentID id,
WindowPtr window, ALOEAdaptor* newAdaptor);

Basic operation
This function takes a persistent id and returns its corresponding runtime adaptor,
loading the adaptor from storage, if necessary. If an adaptor already exists for the
argument persistent id, no new adaptor is created; the existing adaptor is returned. The
application must eventually dispose of each adaptor by calling
ALOEDisposeAdaptor.

Inputs
adaptorMgr The manager in which the adaptor exists.
id The adaptor’s persistent id.
window The window in which the adaptor will be embedded.

Outputs
newAdaptor The returned adaptor.

Errors Returned
memFullErr Unable to bring adaptor into memory.
kALOEInvalidPersistentID The persistent id doesn’t exist in the given adaptor

manager.
kALOEInvalidMgr Adaptor manager is not valid.

Pre conditions
none

Post conditions
The returned adaptor is internalized and is a valid argument to ALOE routines.

See also

ALOEGetPersistentID

ALOEAdaptorMgr ALOEGetAdaptorMgrFromAdaptor(ALOEAdaptor adaptor);

Basic operation
This function returns the manager which created the argument adaptor.

Inputs
adaptor The adaptor.

Outputs
ALOEAdaptorMgr The adaptor manager for the given adaptor.

Errors Returned
kALOEInvalidAdaptor This is not a valid adaptor.

Pre conditions
none

Post conditions
none

Window Management

ALOE API 1.0 Draft (2/4/97) Page 29 © 1995-1997 Apple Computer, Inc.

The functions IsALOEWindow, IsALOEFloatingWindow, and ALOESizeWindow can be called
by any type of application. The functions ALOEDragWindow and
ALOEWindowActionDispatch should be called by applications that don’t support floating
windows. The functions ALOESetWindowCallback and ALOEDeactivateWindow should be
called by applications that have their own floating window support. If an application supports
floating windows, then it must also support ALOE’s floating windows.

Boolean IsALOEWindow(WindowPtr window);

Basic operation
This routine returns true if the given window was created by ALOE. Otherwise, it
returns false.

Inputs
window The WindowPtr of the window in question.

Outputs
Boolean True if the window was created by ALOE (i.e., whether

the window is created by an OpenDoc part editor).
Errors Returned

none
Pre conditions

none
Post conditions

none

Boolean IsALOEFloatingWindow(WindowPtr window);

Basic operation
This function returns true if the given window is a floating window created by ALOE.
Otherwise, it returns false.

Inputs
window The WindowPtr of the window in question.

Outputs
Boolean True if the window is a floating window created by

ALOE (i.e., created by an OpenDoc part editor).
Errors Returned

none
Pre conditions

none
Post conditions

none

OSErr ALOESizeWindow(WindowPtr window, short w, short h, Boolean fUpdate);

Basic operation
This function is used to resize a window that contains an adaptor. It lets ALOE and the
embedded adaptors know about changes to the window size. If ALOE is not loaded the
functionality is the same as SizeWindow.

Inputs
window A pointer to the window record of the window to be

resized.

ALOE API 1.0 Draft (2/4/97) Page 30 © 1995-1997 Apple Computer, Inc.

w The new window width, in pixels.
h The new window height, in pixels.
fUpdate A Boolean value that specifies whether any newly

created area of the content region is to be accumulated
into the update region (TRUE) or not (FALSE). You
ordinarily pass a value of TRUE to ensure that the area
is updated. If you pass FALSE, you’re responsible for
maintaining the update region yourself. For more
information on adding rectangles to and removing
rectangles from the update region, see the description
of InvalRect on page 4-107 of Inside Macintosh:
Macintosh Toolbox Essentials and ValidRect on page 4-
108 of Inside Macintosh: Macintosh Toolbox Essentials.

Outputs
none

Errors Returned
none

Pre conditions
none

Post conditions
The window will be resized.

OSErr ALOEDragWindow(WindowPtr window, Point startPt,
const Rect* boundsRect);

Basic operation
This function is used by container applications that don’t support floating windows to
drag a window. It is used in place of DragWindow. If the window is not a floating
window it will be placed above all document windows but behind the floating
windows.

Inputs
window A pointer to the window record of the window to be

dragged.
startPt The location, in global coordinates, of the cursor at the

time the user pressed the mouse button. Your
application retrieves this point from the where field of
the event record.

boundsRect A rectangle, in global coordinates, that limits the
region to which a window can be dragged. If the mouse
button is released when the cursor is outside the limits
of boundsRect, DragWindow returns without moving the
window (or, if it was inactive, without making it the
active window).

Outputs
none

Errors Returned
none

Pre conditions
none

Post conditions
The window may be moved to a new position and the windows ordering in the window

ALOE API 1.0 Draft (2/4/97) Page 31 © 1995-1997 Apple Computer, Inc.

list may change.

OSErr ALOEWindowActionDispatch(WindowPtr window, ALOEWindowAction action,
Boolean param);

Basic operation
This function is used by container applications that don’t support floating windows to
cause window actions. ALOEWindowActionDispatch should be used instead of
ShowWindow, HideWindow or SelectWindow. There are macros in ALOE.h that
should be used in place of these Macintosh toolbox calls.

Inputs
window A pointer to the window record of the window this

action corresponds to.
action The type of action for this window. The values may be

kALOEAddWindow, kALOERemoveWindow,
kALOEShowWindow, kALOEHideWindow, or
kALOESelectWindow.

param This value is currently unused and should always be set
to false. It may be used in the future.

Outputs
none

Errors Returned
none

Pre conditions
none

Post conditions
ALOE will perform an action corresponding to the action value. If the value is
kALOEShowWindow or kALOEHideWindow the window will be shown or hidden
respectively. If the value is kALOESelectWindow the window will be selected.

OSErr ALOESetWindowCallback(ALOEWindowCallbackUPP windowCallbackProc,
void * contextPtr);

Basic operation
This function is used to set a call back to be called by ALOE every time a window action
occurs. A window action is an event that may cause a change in the window list. The
container application will install this callback if it is handling floating windows.
ALOE will subsequently call this function when it needs a window action performed.

Inputs
windowCallbackProc The pointer to the call back function.
context This is a reference constant that will be passed to the

call back each time.
Outputs

none
Errors Returned

none
Pre conditions

none
Post conditions

none
Callback function

void WindowActionCBProc(WindowPtr window, ALOEWindowAction

ALOE API 1.0 Draft (2/4/97) Page 32 © 1995-1997 Apple Computer, Inc.

action, Boolean param, void* contextPtr);

The action parameter will have one of the following values: kALOEAddWindow,
kALOERemoveWindow, kALOEShowWindow, kALOEHideWindow, or
kALOESelectWindow. kALOEAddWindow tells the container application that ALOE
has created a window. The param value will be set to true if the window is a floating
window. The window will not necessarily be shown. kALOERemoveWindow tells the
container application that ALOE has removed a previously added window.
kALOEShowWindow tells the container application that ALOE wishes to have a
window shown. kALOEHideWindow tells the container that ALOE wishes to hide a
window. kALOESelectWindow tells the container application to select a window.
The container application must subsequently perform the action ALOE requests.

OSErr ALOEDeactivateWindow(WindowPtr window);

Basic operation
This function is used by container applications that support floating windows to notify
ALOE that a window has been deactivated.

Inputs
window A pointer to the window record of the window to be

deactivated.
Outputs

none
Errors Returned

none
Pre conditions

none
Post conditions

The window will be deactivated.

Events / Activation

OSErr ALOESetActivateApplicationCallback(ALOEActivateApplicationUPP proc,
void *contextPtr);

Basic operation
This function is used to set a call back to be called by ALOE when the application needs
to become active or inactive.

Inputs
proc The pointer to the call back function.
context This is a reference constant that will be passed to the

call back each time.
Outputs

none
Errors Returned

none
Pre conditions

none
Post conditions

The call back function will subsequently be called by ALOE when ALOE needs the
window.

Callback

ALOE API 1.0 Draft (2/4/97) Page 33 © 1995-1997 Apple Computer, Inc.

void ActivateAppProc(Boolean activate, void* contextPtr);
See also

ALOEApplicationActive

OSErr ALOEApplicationActive();

Basic operation
This function deactivates any active adaptor or embedded part. The activate
application callback, if installed by the application, is NOT called.

Inputs
none

Outputs
none

Errors Returned
none

Pre conditions
none

Post conditions
none

See also
ALOESetActivateApplicationCallback

OSErr ALOEActivateAdaptor(ALOEAdaptorView adaptor);

Basic operation
This function is used to get ALOE to activate the given adaptor. In general, the active
state of the adaptor is handled by ALOE depending on user action (e.g., mouse click).
When the application wants to directly activate an adaptor, this call should be used.

Inputs
adaptor The adaptor to activate.

Outputs
none

Errors Returned
kALOEInvalidAdaptor This is not a valid adaptor.

Pre conditions
none

Post conditions
none

OSErr ALOESetDoesPropagateEvents(ALOEAdaptor adaptor, Boolean
doesPropagate);

Basic operation
This function is used to get set the DoesPropagate flag of an adaptor. If the adaptor’s
DoesPropagate flag is set to true then the adaptor will propagate events that it does
not handle up the embedded part hierarchy. If the flag is set to true, then the
embedded adaptor will swallow unhandled events.

Inputs
adaptor The adaptor whose DoesPropagate flag will be

changed.
doesPropagate The value to which to change the adaptor’s

ALOE API 1.0 Draft (2/4/97) Page 34 © 1995-1997 Apple Computer, Inc.

DoesPropagate flag.
Outputs

none
Errors Returned

kALOEInvalidAdaptor This is not a valid adaptor.
Pre conditions

none
Post conditions

none

OSErr ALOESetBaseMenuBar(short mbarResource);

Basic operation
Use this function to set ALOE’s base menu bar from a resource id.

Inputs
mbarResource The resource id of the mbar resource to use as the base.

Outputs
none

Errors Returned
memFullErr Not enough memory to load the resource
resNotFound Could not load the resource

Pre conditions
none

Post conditions
All adaptors created after this call is made will copy their menu bar from the new base
menu bar.

See also
ALOESetBaseMenuBar
OpenDoc Programmer’s Guide, Chapter 6, “Setting up Menus”.

OSErr ALOESetBaseMenuBarHandle(Handle mbarHandle);

Basic operation
Use this function to set ALOE’s base menu bar from a handle.

Inputs
mbarHandle The handle to the mbar resource to use as the base.

Outputs
none

Errors Returned
kInvalidMBarHandle The handle is not a valid menu bar.

Pre conditions
none

Post conditions
All adaptors created after this call is made will copy their menu bar from the new base
menu bar.

See also
ALOESetBaseMenuBarWithResource
OpenDoc Programmer’s Guide, Chapter 6, “Setting up Menus”.

ALOE API 1.0 Draft (2/4/97) Page 35 © 1995-1997 Apple Computer, Inc.

OSErr ALOERegisterMenuCommand(short menuID, short menuItem, long
commandID);

Basic operation
This function is used to register menu commands with ALOE. This should be done
minimally for the standard commands: Print, Page Setup, Cut, Copy, Paste, Clear.
ALOE constants should be used for the standard commands. Additionally, if the
application would like to use ALOE's menu handling facilities, any other application
commands can be registered with this call. Applications can use
ALOEGetMenuCommand to get a command for a menu/item pair.

Inputs
menuID The menu for the command be registered.
menuItem The item in the menu for the command being registered.
commandID The command ID to be registered for the given

menu/item pair.
Outputs

none
Errors Returned

kInvalidMenuItemPair The menu and item don’t exist
Pre conditions

none
Post conditions

none
See also

ALOEGetMenuCommand

OSErr ALOEGetMenuCommand(short menuID, short menuItem, long* commandID);

Basic operation
This function returns a menu command given a menu/item pair. The command ID must
have been previously registered by a call to ALOERegisterMenuCommand, or have
been registered by ALOE.

Inputs
menuID The menu containing the desired command.
menuItem The item containing the desired command.
commandID The command ID returned for the given menu/item

pair.
Outputs

none
Errors Returned

kUnregisteredCommand No command has been registered for the given
menu/item pair.

kInvalidMenuItemPair The menu and item don’t exist
Pre conditions

none
Post conditions

none
See also

ALOERegisterMenuCommand

OSErr ALOEAdjustMenus();

ALOE API 1.0 Draft (2/4/97) Page 36 © 1995-1997 Apple Computer, Inc.

Basic operation
This function is called to allow embedded adaptors (mainly the active adaptor) to set
up their menus before the application calls MenuSelect.

Inputs
none

Outputs
none

Errors Returned
none

Pre conditions
This call should be made after an event is received by the application and is
determined to be in the menu bar. The call should be made before MenuSelect is called.

Post conditions
none

Boolean ALOEIsUndoClear();

Basic operation
This function is used by the container application to determine if any ALOE embedded
adaptors have any pending undo/redo actions. This call should be used to determine
whether or not the container application should munge and/or enable the “undo” item
in the edit menu. In the “false” case the edit menu text should be set up by ALOE when
ALOEAdjustMenus is called.

Inputs
none

Outputs
Boolean False if ALOE has pending undo/redo actions.

True if ALOE does not have any pending undo/redo.
Errors Returned

none
Pre conditions

none
Post conditions

none

OSErr ALOEClearUndo();

Basic operation
Forces ALOE to clear its undo stack.
This is usually called when the user does an action which cannot be undone in the
application.

Inputs
none

Outputs
none

Errors Returned
none

Pre conditions
none

Post conditions

The Undo stack maintained by ALOE for the embedded parts is empty.

ALOE API 1.0 Draft (2/4/97) Page 37 © 1995-1997 Apple Computer, Inc.

Boolean ALOEHandleEvent(EventRecord* event);

Basic operation
This function is called to allow ALOE a chance to handle an event. It should be called
before the application processes the event. However, the event will be modified when
ALOEHandleEvent returns. The application should save the event record off and pass
a copy to ALOEHandleEvent, using the original for it’s own event processing.

Inputs
event The pointer to the event record returned from

WaitNextEvent.
Outputs

Boolean true if the event was handled by ALOE.
Errors Returned

none
Pre conditions

none
Post conditions

none

RgnHandle ALOEGetSleepRegion(RgnHandle appSleepRegion);

Basic operation
This function gives ALOE a chance to “fix-up” the application’s sleep region before
passing to WaitNextEvent.

Inputs
appSleepRegion sleep region calculated by the container applications.

Outputs
RgnHandle sleep region adjusted by ALOE

Errors Returned
none

Pre conditions
none

Post conditions
none

See also
ALOEGetEventMask, ALOEGetSleepTime

EventMask ALOEGetEventMask(EventMask appMask);

Basic operation
This function gives ALOE a chance to “fix-up” the application’s event mask before
passing to WaitNextEvent.

Inputs
appMask The container application’s event mask.

Outputs
EventMask event mask adjusted by ALOE.

Errors Returned
none

Pre conditions
none

Post conditions
none

ALOE API 1.0 Draft (2/4/97) Page 38 © 1995-1997 Apple Computer, Inc.

See also

ALOEGetSleepRegion, ALOEGetSleepTime

UInt32 ALOEGetSleepTime(UInt32 appSleepTime);

Basic operation
This function gives ALOE a chance to “fix-up” the application’s sleep time before
passing to WaitNextEvent.
This will allow embedded adaptors to get idle time correctly.

Inputs
appSleepTime The container application’s sleep time.

Outputs
UInt32 sleep time adjusted by ALOE.

Errors Returned
none

Pre conditions
none

Post conditions
none

See also
ALOEGetEventMask, ALOEGetSleepRegion

Boolean ALOEIdle(void);

Basic operation

This function allows embedded adaptors to get idle time with the correct
parameters, without having to create a "dummy" idle event.

Inputs
none

Outputs
Boolean true if the event was handled by ALOE.

Errors Returned
none

Pre conditions
none

Post conditions
none

See also
ALOEHandleEvent

Adaptors

OSErr ALOENewAdaptor(ALOEAdaptorMgr adaptorMgr, WindowPtr window,
ALOEISOString kind, Ptr dataPtr, long dataSize, RgnHandle shape,
ALOEAdaptor* newAdaptor);

Basic operation

ALOE API 1.0 Draft (2/4/97) Page 39 © 1995-1997 Apple Computer, Inc.

This routine creates a new adaptor of a given kind. Optionally, the adaptor can be
created with initial content. The application must eventually dispose of the returned
adaptor by calling ALOEDisposeAdaptor.

Inputs
adaptorMgr The adaptor manager to which the new adaptor will

be added.
window The window to contain the new adaptor.
kind The kind of data the adaptor will edit.
dataPtr (Optional) A pointer to the data to stuff into the new

adaptor.
dataSize The size in bytes of dataPtr.
shape The shape of the new adaptor

Outputs
newAdaptor The newly created adaptor.

Errors Returned
kALOEInvalidAdaptorMgr Adaptor manager is not valid.
memFullErr Not enough memory available to create adaptor view.

Pre conditions
none

Post conditions
The new adaptor is a valid argument to ALOE routines.

See also
ALOEGetAdaptor, ALOENewSynchronizedAdaptor, ALOEDuplicateAdaptor,
ALOEGetKindFromResType

OSErr ALOENewSynchronizedAdaptor(ALOEAdaptor fromAdaptor,
WindowPtr window, ALOEAdaptor* newAdaptor);

Basic operation
This routine is used to create a new adaptor from an existing adaptor. The new adaptor
will display the same underlying content as the original adaptor; that is, changes the
user makes to fromAdaptor will be reflected in views showing the new adaptor, and
vice versa. A persistent id can be created for the new adaptor that is distinct from one
created for the original adaptor. The window argument must be a different than the
original adaptor’swindow. The new adaptor has the same shape as the original
adaptor.

The application must eventually dispose of the returned adaptor by calling
ALOEDisposeAdaptor.

Inputs
fromAdaptor The adaptor from which to generate the new adaptor.
window The window in which the adaptor will be displayed.

Outputs
newAdaptor The adaptor created as a result of the new.

Errors Returned
kALOEInvalidAdaptor This is not a valid adaptor.
memFullErr Not enough memory available to create adaptor.

Pre conditions
none

Post conditions
The new adaptor is a valid argument to ALOE routines.

See also

ALOE API 1.0 Draft (2/4/97) Page 40 © 1995-1997 Apple Computer, Inc.

ALOEGetAdaptor, ALOENewAdaptor, ALOEDuplicateAdaptor

OSErr ALOEBeginDuplicateClone(ALOEAdaptorMgr fromAdaptorMgr,
ALOEAdaptorMgr toAdaptorMgr, WindowPtr window);

Basic operation
This routine begins a transaction for duplicating adaptors. Until this transaction is
completed by calling ALOEEndClone or ALOEAbortClone, the application may make
calls to ALOEDuplicateAdaptor to duplicated adaptors in the same adaptor manager,
or from one adaptor manager to another.

When adaptors are duplicated into a different adaptor manager, the scripting ids of
the new adaptors will be different than their originals.

Inputs
fromAdaptorMgr The adaptor manager containing adaptors to be

duplicated.
toAdaptorMgr The adaptor manager to contain the new adaptors.
window The window in which the new adaptors will be

displayed.
Outputs

none
Errors Returned

noErr No error
kALOEInvalidAdaptor This is not a valid adaptor.
memFullErr Not enough memory available to create adaptor.

Pre conditions
A clone transaction is not in progress.

Post conditions
If the return value is noErr, a duplicate clone transaction has begun.

See also
ALOEDuplicateAdaptor, ALOEEndClone, ALOEAbortClone

OSErr ALOEDuplicateAdaptor(ALOEAdaptor fromAaptor, ALOEAdaptor*
newAdaptor);

Basic operation
This function creates a new adaptor from an existing adaptor. It must be called during a
duplicate transaction begun by calling ALOEBeginDuplicateClone. The new adaptor is
created by the adaptor manager and in the window specified in the preceeding call to
ALOEBeginDuplicateClone. Unlike ALOENewSynchronizedAdaptor, this routine
returns an adaptor which is initialized to a copy of the existing adaptor’s content, but
is completely independent of the original. Changes to the original adaptor do not
affect the new adaptor. The new adaptor has the same shape as the original adaptor.

If this funtion returns noErr, newAdaptor will be set to a valid adaptor. However, this
adaptor should not be passed to other ALOE routines until the duplicate transaction
has been completed by calling ALOEEndClone or ALOEAbortClone. Doing so will
result in the error kALOEErrAdaptorNotInitialized. This includes
ALOENewAdaptorView, ALOEGetPersistentID, and even ALOEDisposeAdaptor, for
example. If the clone transaction is sucessfully completed by calling EndClone, the
adaptor may be used as an argument to any ALOE routine. However, if the clone
transaction is aborted by calling ALOEAbortClone, (or if ALOEEndClone returns an

ALOE API 1.0 Draft (2/4/97) Page 41 © 1995-1997 Apple Computer, Inc.

error), the adaptor can only be passed to ALOEDisposeAdaptor. Other routines will
return the error kALOEInvalidAdaptor.

If the newAdaptor value returned is non-null, the application must eventually dispose
of the returned adaptor (after the duplicate transaction has been completed) by calling
ALOEDisposeAdaptor.

Inputs
fromAdaptor The adaptor from which to generate the new adaptor.

Outputs
newAdaptor The adaptor created as a result of the duplicate.

Errors Returned
noErr No error
kALOEInvalidAdaptor Argument is not a valid adaptor.
memFullErr Not enough memory available to create adaptor.

Pre conditions
A duplicate clone transaction initiated by ALOEBeginDuplicateClone is still in
progress.

Post conditions
If the return value is noErr, a new adaptor is returned.

See also
ALOEBeginDuplicateClone, ALOEEndClone, ALOEAbortClone,
ALOEGetAdaptor, ALOENewAdaptor, ALOENewSynchronizedAdaptor

OSErr ALOEDisposeAdaptor(ALOEAdaptor adaptor);

Basic operation
This routine frees the in-memory structures for the given adaptor. If the adaptor is in
the removed state, any persitent id created for it is no longer valid, and the adaptor
will not be copied in a subsequent call to ALOEWriteAdaptorMgrToFile or
ALOENewHandleFromAdaptorMgr.

Note that multiple calls to ALOEGetAdaptor with the same persistent id will return
the same adaptor. It is invalid to dispose of an adaptor twice.

Inputs
adaptor The adaptor to dispose.

Outputs
none

Errors Returned
kALOEInvalidAdaptor Argument is not a valid adaptor.
kALOEErrAdaptorNotInitialized

Argument adaptor was created by a clone
transaction that is still in progress.

Pre conditions
none

Post conditions
If the return value is noErr, the argument adaptor is no longer valid.

See also
ALOESetAdaptorRemovedState, ALOEWriteAdaptorMgrToFile,

ALOENewHandleFromAdaptorMgr

OSErr ALOESetAdaptorRemovedState(ALOEAdaptor adaptor, Boolean removed);

ALOE API 1.0 Draft (2/4/97) Page 42 © 1995-1997 Apple Computer, Inc.

Basic operation
This routine marks the adaptor as being removed from (or restored to) the content
maintained by its adaptor manager. This routine should be called with the argument
true when the application cuts or deletes the adaptor, after disposing any adaptor
views displaying the adaptor. If the application later undoes the deletion (and has
not disposed of the adaptor), it can call this routine with the argument false to
restore the adaptor, and then recreate adaptor views to redisplay it.

If the adaptor is disposed when in the removed state, any persitent id created for it is
no longer valid and must not be used by the application. In addition, if an adaptor is in
the removed state, or has been disposed while in the removed state, it will NOT be
copied by ALOEWriteAdaptorMgrToFile or ALOENewHandleFromAdaptorMgr.

Inputs
adaptor The adaptor.
removed True, to put the adaptor in the removed state, or False,

to restore the adaptor to its normal state.
Outputs

none
Errors Returned

kALOEInvalidAdaptor This is not a valid adaptor.
Pre conditions

Any adaptor views displaying the adaptor have been disposed.
Post conditions

none
See also

ALOEDisposeAdaptor, ALOEWriteAdaptorMgrToFile,
ALOENewHandleFromAdaptorMgr

OSErr ALOESetAdaptorShapeRequestCallback(
ALOEAdaptorShapeRequestUPP proc,
void *contextPtr);

Basic operation
This function is used to set the AdaptorShapeRequest call back. This call back is
invoked when an adaptor requests frame shape negotiation.

If no callback is installed, requests to change shape are denied.
Inputs

proc The call back function pointer.
contextPtr A reference constant passed back to each invocation of

the call back.
Outputs

none
Errors Returned

none
Pre conditions

none
Post conditions

none
Callback

void AdaptorShapeRequest(ALOEAdaptor adaptor,
RgnHandle theRequestedRgn,
oid* contextPtr);

ALOE API 1.0 Draft (2/4/97) Page 43 © 1995-1997 Apple Computer, Inc.

OSErr ALOEGetAdaptorShape(ALOEAdaptor adaptor, RgnHandle adaptorShape);

Basic operation
This routine returns the adaptor’s shape in the supplied region handle, which the
application should allocate by calling the toolbox routine NewRgn().

Inputs
adaptor The adaptor.

Outputs
adaptorShape The current shape of the adaptor

Errors Returned
kALOEInvalidAdaptor This is not a valid adaptor.

Pre conditions
none

Post conditions
none

See also
ALOESetAdaptorShape

OSErr ALOESetAdaptorShape(ALOEAdaptor adaptor, RgnHandle adaptorShape);

Basic operation
This routine sets the shape of the adaptor to that of the argument region. The origin of
the adaptorShape is irrelevant, however, the shape actually assigned will be
normalized such that the top left of the region’s bounding box is at (0,0). The
application should dispose of the argument region handle.

Inputs
adaptor The adaptor.
adaptorShape The new shape of the adaptor.

Outputs
none

Errors Returned
kALOEInvalidAdaptor This is not a valid adaptor.

Pre conditions
none

Post conditions
The adaptor’s shape has changed.

See also

ALOEGetAdaptorShape

OSErr ALOEShowAdaptorInfo(ALOEAdaptorView view);

Basic operation
This function displays the OpenDoc Part Info dialog. Any changes to dialog settings
made by the user are performed by this routine.

Inputs
view The adaptor view.

Outputs
none

Errors Returned
none

Pre conditions
none

ALOE API 1.0 Draft (2/4/97) Page 44 © 1995-1997 Apple Computer, Inc.

Post conditions
none

ALOEISOString ALOEGetKindFromResType(ResType type);

Basic operation
This function returns the ISO type corresponding to the specified scrap type. This
routine can be used to convert a four-character scrap type to an OpenDoc kind to create a
new embedded adaptor by calling ALOENewAdaptor. The application should dispose
of the return value by calling the toolbox routine DisposePtr.

Inputs
type The scrap type.

Outputs
result The ISO type corresponding to type

Errors Returned
none

Pre conditions
none

Post conditions
none

See also
ALOENewAdaptor

Adaptor Views

OSErr ALOENewAdaptorView(ALOEAdaptor adaptor, GrafPtr port, Point offset,
THPrint printJob, ALOEAdaptorView* newView);

Basic operation
This routine creates a new adaptor view on a given adaptor. Multiple views may be
created on an adaptor to support application features such as split views or spanning an
adaptor across page boundaries.

If the adaptor was created by calling ALOECloneAdaptorToContent, this routine must
not be called until the clone transaction started by ALOEBeginScrapCloneor
ALOEBeginDragCloneis successfully completed by calling ALOEEndClone.

Inputs
adaptor The adaptor to which the new view will be added.
port The port to contain the new view; NULL to use the

adaptor’s window. If the view is a printing view the
value should be a printing port. If this value is not
NULL and printJob is NULL the view is assumed to be
offscreen.

offset The view’s offset from the port’s origin.
printJob The print job (if any) associated with this view.

Outputs
newView The newly created adaptor view.

Errors Returned
kALOEInvalidAdaptor Argument is not a valid adaptor.
kALOEErrAdaptorNotInitialized

Argument adaptor was created by a clone

ALOE API 1.0 Draft (2/4/97) Page 45 © 1995-1997 Apple Computer, Inc.

transaction that is still in progress.
memFullErr Not enough memory available to create adaptor view.

Pre conditions
none

Post conditions
none

See also

ALOECloneAdaptorToContent

OSErr ALOEDisposeAdaptorView(ALOEAdaptorView view);

Basic operation
This routine frees the in-memory structures for the given adaptor.

Inputs
view The adaptor view to dispose.

Outputs
none

Errors Returned
kALOEInvalidAdaptorView This is not a valid adaptor view.

Pre conditions
The view was created by ALOENewAdaptorView.

Post conditions
The view is no longer a valid argument to ALOE routines.

See also

ALOENewAdaptorView

OSErr ALOESetAdaptorViewOffset(ALOEAdaptorView view, Point offset);

Basic operation
This function sets the horizontal and vertical offset of the given view. The offset
should be given in local coordinates of the view’s port.

Inputs
view The view to change the size of.
offset New offset from the port’s origin.

Outputs
none

Errors Returned
kALOEInvalidAdaptorView The given adaptor view is invalid.

Pre conditions
none

Post conditions

none

OSErr ALOEGetAdaptorViewOffset(ALOEAdaptorView view, Point* offset);

Basic operation
This function returns the horizontal and vertical offset of the given view in local
coordinates of the view’s port.

Inputs
view The view.

ALOE API 1.0 Draft (2/4/97) Page 46 © 1995-1997 Apple Computer, Inc.

Outputs
offset The view’s offset.

Errors Returned
kALOEInvalidAdaptorView The given adaptor view is invalid.

Pre conditions
none

Post conditions

none

OSErr ALOESetAdaptorViewScaleFactor(ALOEAdaptorView view,
Fixed horzScaleFactor,
Fixed vertScaleFactor);

Basic operation
This function changes the scaling factor of an adaptor view. The horizontal and
vertical scaling factors are specified separately. The scaling factors are specified as
32-bit fixed-point values; The high 16 bits (including a sign bit) represent the integer
part, and the low 16 bits represent a fractional part. In effect, the “binary point” is in
the middle of the number.

Any scaling information is not persistent and is lost when the view is destroyed. The
view is scaled in place, so the view's offset is not affected by the scaling. Likewise, the
size of the view is not affected by scaling.

Inputs
horzScaleFactor The new horizontal scaling factor.
vertScaleFactor The new vertical scaling factor.

Outputs
none

Errors Returned
kALOEInvalidAdaptorView The given adaptor view is invalid.

Pre conditions
none

Post conditions
none

OSErr ALOEGetAdaptorViewScaleFactor(ALOEAdaptorView view,
Fixed* horzScaleFactor,
Fixed* vertScaleFactor);

Basic operation
This function returns the horizontal and vertical scale factor of the given adaptor
view. If no scaling has been set for this view then zero is be returned.

Inputs
horzScaleFactor The new horizontal scaling factor.
vertScaleFactor The new vertical scaling factor.

Outputs
none

Errors Returned
kALOEInvalidAdaptorView The given adaptor view is invalid.

Pre conditions
none

Post conditions

ALOE API 1.0 Draft (2/4/97) Page 47 © 1995-1997 Apple Computer, Inc.

none

OSErr ALOEDrawAdaptorView(ALOEAdaptorView view, RgnHandle viewClip);

Basic operation
Cause the view given to be drawn. If viewClip is a null region handle, the last
clipping region specified is used. If no clipping region has been specified in a previous
call to this routine for the same adaptor view, the clip shape defaults to the adaptor
shape repositioned by the view’s current offset.

Inputs
view The view to draw.
viewClip The region to use to clip out the view in local

coordinates of the view’s port. May be NULL.
Outputs

none
Errors Returned

kALOEInvalidAdaptorView The given adaptor view is invalid.
Pre conditions

none
Post conditions

none

ALOEAdaptor ALOEGetAdaptorFromAdaptorView(ALOEAdaptorView view);

Basic operation
This function returns the adaptor which created the view.

Inputs
view The adaptor view for which we are seeking an

adaptor.
Outputs

ALOEAdaptor The adaptor for the given view.
Errors Returned

kALOEInvalidAdaptorView This is not a valid adaptor view.
Pre conditions

none
Post conditions

none

User Interface

OSErr ALOESetAdjustActiveBorderShapeCallback(
ALOEAdjustActiveBorderShapeUPP proc, void *contextPtr);

Basic operation
This function is used to set the AdjustActiveBorder call back. This call back is invoked
when an adaptor becomes active. When the adaptor becomes active, the Human
Interface guidelines call for an active border being drawn around it. The drawing of this
border is handled by ALOE. This callback gives the container application to adjust the
active border shape so that any obscured area (probably due to application’s content
objects) can be removed.

ALOE API 1.0 Draft (2/4/97) Page 48 © 1995-1997 Apple Computer, Inc.

If no callback is installed, the shape of the adaptor will be used.
Inputs

proc The call back function pointer.
contextPtr A reference constant passed back to each invocation of

the call back.
Outputs

none
Errors Returned

none
Pre conditions

none
Post conditions

none
Callback

void AdjustActiveBorderProc(ALOEAdaptorView view, RgnHandle
shape, void* contextPtr);

See also
OpenDoc Programmer’s Guide, Chapter 4, “Managing the Active Frame Border”.

Boolean ALOEGetAdaptorViewSelectState(ALOEAdaptorView view);

Basic operation
This function returns the selected state of an adaptor view.

Inputs
view The adaptor view.

Outputs
result A value of true indicates the view is selected.

Errors Returned
none

Pre conditions
none

Post conditions
none

See also
ALOESetAdaptorViewSelectState

OSErr ALOESetAdaptorViewSelectState(ALOEAdaptorView view,
Boolean selected);

Basic operation
This function is used to set the selected state of an adaptor view. This is called with
true when the adaptor view falls in the selection of the application. When the
adaptor view is no longer in the selection, the application should call this function
with false. This is necessary because the adaptor view may be drawn differently if it
is in a selection.

Inputs
view The adaptor view to change.
selected A value of true indicates selected.

Outputs
none

Errors Returned

ALOE API 1.0 Draft (2/4/97) Page 49 © 1995-1997 Apple Computer, Inc.

none
Pre conditions

none
Post conditions

none

ALOEHighlightState ALOEGetAdaptorViewHighlightState(ALOEAdaptorView view);

Basic operation
This function returns the highlight state of an adaptor view.

Inputs
view The adaptor view.

Outputs
result The highlight state of the view.

Errors Returned
none

Pre conditions
none

Post conditions
none

See also
ALOESetAdaptorViewHighlightState

OSErr ALOESetAdaptorViewHighlightState(ALOEAdaptorView view,
ALOEHighlightState highlighted);

Basic operation
This function is used to set the highlight state of an adaptor view.
There are three possible highlight states:

kALOENoHighlight
kALOEFullHighlight
kALOEDimHighlight

Inputs
view The adaptor view to change.
state The highlight state of the view.

Outputs
none

Errors Returned
kALOEInvalidAdaptorView This is not a valid view.
kALOEInvalidState This is not a valid highlight state.

Pre conditions
none

Post conditions
none

See also
These highlight states correspond to OpenDoc’s highlight states. For more
information, see OpenDoc Programmer’s Guide Chapter 4, “Basic Drawing”.

OSErr ALOEApplicationModal(Boolean requestModalFocus);

ALOE API 1.0 Draft (2/4/97) Page 50 © 1995-1997 Apple Computer, Inc.

Basic operation
This call notifies ALOE that the application is either entering or leaving a modal
state. For example, when the application is about to put up a modal dialog, it should
call this function with true. Upon exiting the modal dialog, it should call this function
again with false.

Inputs
requestModalFocus True indicates the container is becoming modal.

Outputs
none

Errors Returned
kALOECannotRelinquishModalState ALOE cannot relinquish the modal state.

Pre conditions
none

Post conditions

none

OSErr ALOESetAdaptorBundleState(ALOEAdaptor adaptor,
Boolean bundled);

Basic operation
This function sets the bundle state of the given adaptor.

Inputs
adaptor The adaptor to mark as bundled.
bundled A value of true indicates the adaptor should be

bundled.
Outputs

none
Errors Returned

kALOEInvalidAdaptor The given adaptor is invalid.
Pre conditions

none
Post conditions

none

See also
OpenDoc Programmer’s Guide, Chapter 13, “Bundling Frames”.

Boolean ALOEGetAdaptorBundleState(ALOEAdaptor adaptor);

Basic operation
This function sets the bundle state of the given adaptor.

Inputs
adaptor The adaptor to mark as bundled.

Outputs
Boolean Returns true if the adaptor is bundled, false if not.

Errors Returned
kALOEInvalidAdaptor The given adaptor is invalid.

Pre conditions
none

Post conditions
none

ALOE API 1.0 Draft (2/4/97) Page 51 © 1995-1997 Apple Computer, Inc.

See also

OpenDoc Programmer’s Guide, Chapter 13, “Bundling Frames”.

OSErr ALOEGetAdaptorViewPicture(ALOEAdaptorView view,
PicHandle* image);

Basic operation
This function calls ALOE to get a static image of the given adaptor view, returned in
the form of a picture handle.

Inputs
view The adaptor view for which to get the image.

Outputs
image The handle returned containing the image.

Errors Returned
kALOEInvalidAdaptorView The given adaptor view is invalid.
kALOENoImageAvailable A cached presentation cannot be generated.
memFullErr Not enough memory to create the picture.

Pre conditions
none

Post conditions
none

OSErr ALOESetAdaptorImageUpdatedCallback(AdaptorImageUpdatedUPP proc,
void *contextPtr);

Basic operation
This function allows the container application to set a call back allowing ALOE to
notify the container when the adaptor’s image has been changed.
This call back is only necessary when the container application is forcing the adaptor
to draw off screen.

Inputs
proc The call back function pointer.
contextPtr The reference constant that will be passed back to the

call back routine.
Outputs

none
Errors Returned

none
Pre conditions

none
Post conditions

none
Callback

void AdaptorImageUpProc(ALOEAdaptorView view, void*
contextPtr);

OSErr ALOESetAdaptorChangedCallback(ALOEAdaptorChangedUPP proc, void
*contextPtr);

Basic operation
This function sets up a call back for ALOE to notify the container application when an

ALOE API 1.0 Draft (2/4/97) Page 52 © 1995-1997 Apple Computer, Inc.

embedded adaptor changes. This call back is used for compatibility with the Edition
Manager. With this callback, the application can update the subscriber when an
embedded adaptor changes.

Inputs
proc A pointer to the call back function.
contextPtr This reference constant will be passed each time the

call back is made.
Outputs

none
Errors Returned

none
Pre conditions

none
Post conditions

none
Callback

void AdaptorChangedProc(ALOEAdaptorView view,

void* contextPtr);

OSErr ALOESetRevealAdaptorCallback(ALOERevealAdaptorUPP proc,
void *contextPtr);

Basic operation
This function sets up a call back for ALOE to notify the container application when
ALOE needs an embedded adaptor shown in an adaptor view. This call back is
associated with the OpenDoc linking recipes. When a source link in an embedded
adaptor (or part) needs to be revealed, this callback will be triggered.

Inputs
proc A pointer to the call back function.
contextPtr This reference constant will be passed each time the

call back is made.
Outputs

none
Errors Returned

none
Pre conditions

none
Post conditions

none
Callback

void RevealAdaptorProc(ALOEAdaptor adaptor,
void* contextPtr);

If the application has not created an adaptor view for the argument adaptor, it should
do so and scroll its content, if necessary, to make the view visible.

See also
OpenDoc Programmer’s Guide, Chapter 8, “Revealing the Source of a Link”.

Clipboard - Scrap Manager cover routines

In order to make OpenDoc and the clipboard work more seamlessly together, ALOE provides a set
of cover routines for existing toolbox calls. Clients of ALOE can simply replace their calls to the

ALOE API 1.0 Draft (2/4/97) Page 53 © 1995-1997 Apple Computer, Inc.

toolbox with corresponding ALOE calls. If ALOE or OpenDoc is not present, these ALOE calls
work exactly the same way as their counterpart in the toolbox.

PScrapStuff ALOEInfoScrap();

Basic operation
This call is an ALOE cover to the InfoScrap toolbox call.

Inputs
none

Outputs
none

Errors Returned
none

Pre conditions
none

Post conditions
none

See also
ALOEGetScrapCount, ALOEScrapCountStillValid

long ALOEZeroScrap();

Basic operation
This call is an ALOE cover to the ZeroScrap toolbox call.

Inputs
none

Outputs
none

Errors Returned
none

Pre conditions
none

Post conditions

none

long ALOEPutScrap(long length, ResType theType, Ptr source);

Basic operation
This call is an ALOE cover to the PutScrap toolbox call.

The source parameter may be null to "promise" a scrap type. The length parameter is
ignored in this case. The application must have already called
ALOESetWriteScrapCallback to install a WriteScrap callback. The callback will
only be invoked if the scrap data is needed before the scrap is changed by ALOE, the
process is suspended, or the application calls ALOEUpdateScrap. Once a scrap type
has been promised, the application may call ALOEPutScrap to replace the promise
with actual data, if the scrap count has not changed since the promise was written. It
is invalid to write scrap data twice.

Data may be promised before StartALOE is called.
Inputs

ALOE API 1.0 Draft (2/4/97) Page 54 © 1995-1997 Apple Computer, Inc.

length The length of the source ptr.
theType The scrap format type of the data to be written to the

scrap.
source A pointer to the data to put on the scrap.

Outputs
long The function result.

Errors Returned
kALOEErrNoWriteScrapCallback

The WriteScrap callback has not been installed.
kALOEErrScrapDataPresent

The application attempted to replace existing data on
the scrap

Pre conditions
none

Post conditions

none
See also

ALOESetWriteScrapCallback, ALOEGetScrapCount,
ALOEScrapCountStillValid

long ALOEGetScrap(Handle hDest, ResType theType, long *offset);

Basic operation
This call is an ALOE cover to the GetScrap toolbox call.

Inputs
hDest The destination for the contents of the scrap.
theType The type of data requested.

Outputs
offset Returns the location of the data as offset from

beginning of the desk scrap.
long The function result.

Errors Returned
none

Pre conditions
none

Post conditions

none

long ALOEUnloadScrap();

Basic operation
This call is an ALOE cover to the UnloadScrap toolbox call.

Inputs
none

Outputs
long The function result.

Errors Returned
none

Pre conditions
none

Post conditions

ALOE API 1.0 Draft (2/4/97) Page 55 © 1995-1997 Apple Computer, Inc.

none

long ALOELoadScrap();

Basic operation
This call is an ALOE cover to the LoadScrap toolbox call.

Inputs
none

Outputs
long The function result.

Errors Returned
none

Pre conditions
none

Post conditions

none

Clipboard

These functions handle the copying of the adaptors between the application and the clipboard:
ALOEEmbedScrap, ALOEBeginScrapClone, ALOECloneAdaptorFromContent,
ALOECloneAdaptorToContent, ALOEEndClone, and ALOEAbortClone. The latter four are also
used for Drag and Drop

short ALOEGetScrapCount();

Basic operation
An efficient means to get the current scrap count. This should be used in place of
ALOEInfoScrap when only the scrap count field is desired.

Inputs
none

Outputs
result the current scrap count.

Errors Returned
none

Pre conditions
none

Post conditions
none

See also
ALOEInfoScrap

Boolean ALOEScrapCountStillValid(short scrapCount);

Basic operation
Returns true if the argument scrap count is the current scrap count. Applications can use
this routine to decide if their private scrap is valid or stale, or if they need to
preemptively fulfill a promise for scrap data.

Inputs
none

ALOE API 1.0 Draft (2/4/97) Page 56 © 1995-1997 Apple Computer, Inc.

Outputs
result true if the argument scrap count is still the current

scrap count, and false otherwise.
Errors Returned

none
Pre conditions

none
Post conditions

none
See also

ALOEInfoScrap, ALOEPutScrap

OSErr ALOESetWriteScrapCallback(ALOEWriteScrapUPP writeDataProc, void
*contextPtr);

Basic operation
An application is required to install a WriteScrap callback if it calls ALOEPutScrap
with a null data pointer to promise data. A WriteScrap callback may be installed
before calling StartALOE. Once installed, the WriteScrap callback can be changed by
calling this routine again. When promised data is needed, the most recently installed
WriteScrap callback is invoked.

The WriteScrap callback may be invoked from any ALOE routine. In particular, it may
be invoked from ALOEPutScrap when the data pointer is null but the data is needed
immediately.

Inputs
writeDataProc A pointer to the call back function.
contextPtr This reference constant will be passed each time the

call back is made.
Outputs

none
Errors Returned

none
Pre conditions

none
Post conditions

none
Callback

OSErr WriteScrapProc(ResType theType, void *contextPtr);
Basic operation

This application callback should call ALOEPutScrap with a non-null source pointer to
write the actual data for the scrap type theType. The callback should not call
ALOEZeroScrap. If an error is returned, and ALOEPutScrap has not been called to
replace the data, the data length will be zero.

See also
ALOEPutScrap

OSErr ALOEUpdateScrap();

Basic operation
Forces synchronization of the platform scrap from the ALOE clipboard. Applications
should call ALOEUpdateScrap before calling a routine that accesses the platform

ALOE API 1.0 Draft (2/4/97) Page 57 © 1995-1997 Apple Computer, Inc.

scrap directly, such as TextEdit on the Macintosh. Only content that has a platform
representation is copied to the scrap.

Inputs
none

Outputs
none

Errors Returned
none

Pre conditions
none

Post conditions
none

OSErr ALOEBeginScrapClone(ALOEAdaptorMgr adaptorMgr, WindowPtr window,
ALOECloneKind kind);

Basic operation
Used by the application to exchange data including embedded adaptors. This call is
used to begin a transaction for cloning embedded adaptors to the clipboard.

There must be a matching ALOEEndClone or ALOEAbortClone (in case of error) for
each call to ALOEBeginScrapClone.

Inputs
adaptorMgr The adaptor manager containing adaptors to be copied

to the clipboard, or to receive adaptors copied from the
clipboard.

window When kind is kALOEPaste, the window in which to
embed adaptors; otherwise, this parameter is ignored.

kind The type of clone (kALOECut, kALOECopy, or
kALOEPaste).

Outputs
none

Errors Returned
kALOEErrCloneInProgress A clone transaction is already in progress.
kALOEInvalidCloneKind Invalid clone kind.
kALOEInvalidMgr Adaptor manager is not valid.
kALOEErrInvalidNilWindow The window argument must be non-nil.

Pre conditions
A clone transaction is not in progress.

Post conditions
A scrap clone transaction has begun.

See also
For interacting with Drag Manager, see ALOEBeginDragClone.

OSErr ALOECloneAdaptorFromContent(ALOEAdaptor adaptor, Point offset,
ALOEClonedID clonedId);

Basic operation
This routine is used to clone an adaptor to the ALOE clipboard or to a drag reference. A
clone transaction must be in progress. The offset argument is used by ALOE to create an
additional content kind, a frame list, to facilitate interchange with other ALOE
applications and OpenDoc parts. The offset should specify the position of the cloned

ALOE API 1.0 Draft (2/4/97) Page 58 © 1995-1997 Apple Computer, Inc.

adaptor relative other cloned adaptors, so that geometric relationships between the
adaptors can be preserved by a destination. Typically, the offset is that of an adaptor
view displaying the adaptor.

The returned id can be stored in data written by the application using ALOEPutScrap
(for a scrap clone transaction) or ALOEAddDragItemFlavor (for a drag and drop clone
transaction) and later used to recover the adaptor using
ALOECloneAdaptorToContent. The application data must be written during the
clone transaction.

Inputs
adaptor The adaptor to be cloned.
offset The location of the adaptor in the application's

content.
Outputs

clonedId The id representing the cloned adaptor.
Errors Returned

kALOEErrCloneNotBegun A clone transaction has not been started.
kALOEErrInvalidCloneKind The clone kind specified when the clone was begun is

incompatible with this routine.
kALOEInvalidAdaptor This is not a valid adaptor.

Pre conditions
A clone transaction has been started by calling ALOEBeginScrapClone or
ALOEBeginDragClone.

Post conditions
The returned id represents the cloned adaptor.

See also
ALOEBeginScrapClone, ALOEBeginDragClone, ALOEPutScrap,
ALOEAddDragItemFlavor, ALOECloneAdaptorToContent.

OSErr ALOECloneAdaptorToContent(ALOEClonedID id, ALOEAdaptor* newAdaptor);

Basic operation
This routine is used to add a previously cloned adaptor to the application’s content. A
clone transaction must be in progress. The id should come from application data read
via ALOEGetScrap (for a scrap clone transaction) or the toolbox routine
GetFlavorData (for a drag and drop clone transaction). The application data can be
read before starting the clone transaction.

If this funtion returns noErr, newAdaptor will be set to a valid adaptor. However, this
adaptor should not be passed to other ALOE routines until the clone transaction has
been completed by calling ALOEEndClone or ALOEAbortClone. Doing so will result in
the error kALOEErrAdaptorNotInitialized. This includes ALOENewAdaptorView,
ALOEGetPersistentID, and even ALOEDisposeAdaptor, for example. If the clone
transaction is sucessfully completed by calling EndClone, the adaptor may be used as an
argument to any ALOE routine. However, if the clone transaction is aborted by calling
ALOEAbortClone, (or if ALOEEndClone returns an error), the adaptor can only be
passed to ALOEDisposeAdaptor. Other routines will return the error
kALOEInvalidAdaptor.

If the newAdaptor value returned is non-null, the application must eventually dispose
of the returned adaptor (after the duplicate transaction has been completed) by calling
ALOEDisposeAdaptor.

ALOE API 1.0 Draft (2/4/97) Page 59 © 1995-1997 Apple Computer, Inc.

Inputs
id The id of the adaptor previously cloned via

ALOECloneAdaptorFromContent.
Outputs

newAdaptor The newly added adaptor.
Errors Returned

kALOEErrCloneNotBegun A clone transaction has not been started.
kALOEErrInvalidCloneKind The clone kind specified when the clone was begun is

incompatible with this routine.
kALOEErrInvalidClonedID The id does not represent a cloned adaptor.
memFullErr Not enough memory available to create adaptor.

Pre conditions
A clone transaction is in progress, and the id represents an adaptor on the ALOE scrap or
drag reference.

Post conditions
The returned adaptor is internalized and is a valid argument to ALOE routines.

See also
ALOEBeginScrapClone, ALOEBeginDragClone, ALOEGetScrap,
ALOECloneAdaptorFromContent.

OSErr ALOEAbortClone();

Basic operation
Used when the application exchanges data including embedded adaptors. This call is
made when the application must abort a clone or drag operation in the middle of a
transaction initiated by ALOEBeginScrapClone, ALOEBeginDragClone, or
ALOEBeginDuplicateClone. The application may need to abort due to an error from
ALOE, or an error generated in the application’s code. Any new adaptors returned by
ALOECloneAdaptorToContent or ALOEDuplicateAdaptor during this clone
transaction must be immediately disposed by the application. This function completes
the cloning transaction; ALOEEndClone should not be called.

Inputs
none

Outputs
none

Errors Returned
none

Pre conditions
A clone transaction is in progress.

Post conditions
The clone transaction is terminated. Any adaptors created during the transaction by
ALOECloneAdaptorToContent or ALOEDuplicateAdaptor must be disposed.

See also
ALOEBeginScrapClone, ALOEBeginDragClone, ALOEBeginDuplicateClone,
ALOEEndClone

OSErr ALOEEndClone();

Basic operation
Completes the clone transaction in progress. There must be a matching ALOEEndClone
or ALOEAbortClone (in case of error) for each call to ALOEBeginScrapClone,
ALOEBeginDragClone or ALOEBeginDuplicateClone.

ALOE API 1.0 Draft (2/4/97) Page 60 © 1995-1997 Apple Computer, Inc.

If a scrap or drag clone was begun, an OpenDoc container is placed on the scrap or drag
reference, depending on how the transaction was begun. If no adaptors were cloned, this
routine completes the transaction but does not create an OpenDoc container.

If new adaptors were created by ALOECloneAdaptorToContent or
ALOEDuplicateAdaptor during this clone transaction, views on the adaptor may now
be created.

Inputs
none

Outputs
none

Errors Returned
none

Pre conditions
ALOEBeginScrapClone, ALOEBeginDragClone or ALOEBeginDuplicateClone
has been called to begin a clone transaction

Post conditions
The clone transaction has been completed.

See also
ALOEBeginScrapClone, ALOEBeginDragClone, ALOEBeginDuplicateClone,

ALOEAbortClone

OSErr ALOEEmbedScrap(ALOEAdaptorMgr adaptorMgr, WindowPtr window,
ALOEAdaptor* newAdaptor);

Basic operation
This routineembeds data from the clipboard and returns a new adaptor. The clipboard
may contain platform data or an OpenDoc container. This is an atomic routine; an error
is returned if this routine is called within a clone transaction begun by
ALOEBeginScrapClone. The application must eventually dispose of the returned
adaptor by calling ALOEDisposeAdaptor.

Inputs
adaptorMgr The manager responsible for the adaptor created by

this routine.
window The window in which to embed.

Outputs
newAdaptor The newly created adaptor.

Errors Returned
kALOEErrCloneInProgress A clone transaction is already in progress.
memFullErr Not enough memory available to create adaptor.

Pre conditions
A clone transaction is not in progress.

Post conditions

The returned adaptor is internalized and is a valid argument to ALOE routines.

Drag and Drop

Drag and Drop uses the same cloning mechanism as the clipboard. Therefore,
ALOECloneAdaptorFromContent, ALOECloneAdaptorToContent, ALOEEndClone and
ALOEAbortClone are used with the Drag and Drop function ALOEBeginDragClone.

ALOE API 1.0 Draft (2/4/97) Page 61 © 1995-1997 Apple Computer, Inc.

OSErr ALOEBeginDragClone(ALOEAdaptorMgr adaptorMgr, WindowPtr window,
DragReference theDragRef, ALOECloneKind kind);

Basic operation
Used when the application exchanges data including embedded adaptors. This call is
used during a drag to begin a transaction involving copying embedded adaptors to a
drag reference, and used during a drop to copy adaptors from a drag reference.

When initiating a drag, the application should specify the clone kind kALOEDrag.
When receiving a drop, the application should specify kALOEDrop. ALOE will
examine the drag modifiers and treat the drop as a copy or a move as appropriate.

There must be a matching ALOEEndClone or ALOEAbortClone (in case of error) for
each call to ALOEBeginDragClone.

Inputs
adaptorMgr The adaptor manager containing adaptors to be cloned

during a drag or to created adaptors during a drop.
window The origin of a drag or destination of a drop.
theDragRef The drag reference created by the application for the

drag or recieved by the application for the drop.
kind The type of clone (kALOEDrag or kALOEDrop).

Outputs
long The function result.

Errors Returned
kALOEErrCloneInProgress A clone transaction is already in progress.
kALOEInvalidCloneKind Invalid clone kind.
kALOEInvalidMgr Adaptor manager is not valid.
Drag Manager Errors

Pre conditions
A clone transaction is not in progress.

Post conditions
A drag and drop clone transaction has begun.

See also

For interacting with Scrap Manager or clipboard, see ALOEBeginScrapClone.

OSErr ALOEAddDragItemFlavor(DragReference theDragRef, ItemReference
theItemRef, FlavorType theType, void* dataPtr, Size dataSize,
FlavorFlags theFlags);

Basic operation
This is a cover routine for the drag manager call AddDragItemFlavor and must be
used to write application data to a drag reference during a clone transaction started by
calling ALOEBeginDragClone if embedded adaptors are being cloned. At least one
flavor written by the application will usually contain cloned ids returned by
ALOECloneAdaptorFromContent.

Inputs
theDragRef The drag reference for the new flavor.
theItemRef The item for the new flavor data.
theType The type of the flavor.
dataPtr The pointer to the data.
dataSize The size of the data.
theFlags The flavor flags passed to AddDragItemFlavor.

ALOE API 1.0 Draft (2/4/97) Page 62 © 1995-1997 Apple Computer, Inc.

Outputs
none

Errors Returned
Drag Manager Errors

Pre conditions
A clone transaction begun by ALOEBeginDragClone is in progress.

Post conditions
The flavor is added to the drag item.

OSErr ALOEEmbedDrag(ALOEAdaptorMgr adaptorMgr, WindowPtr
window, DragReference theDragRef, long index,
ALOEAdaptor* newAdaptor);

Basic operation
ALOEEmbedDrag embeds data from the indexed drag item of the drag reference as an
adaptor view. The drag reference may contain platform data or an OpenDoc container.
ALOEEmbedDrag is an atomic routine; an error is returned if this routine is called
within an ALOEBeginDragClone transaction. The application must eventually dispose
of the returned adaptor by calling ALOEDisposeAdaptor.

Inputs
adaptorMgr The manager responsible for the adaptor created by

this routine.
theDragRef The drag reference from which to clone the adaptor.
index The index of the drag item to embed.

Outputs
newAdaptor The new embedded adaptor.

Errors Returned
kALOECannotEmbed Embedding is not allowed during a drag (i.e., when

ALOEBeginDragClone is called.)
Drag Manager Errors

Pre conditions
A clone transaction is not in progress.

Post conditions

The returned adaptor is internalized and is a valid argument to ALOE routines.

Scripting

Initialization

OSErr ALOEObjectInit();

Basic operation
Container applications must call this routine before calling any of the ALOE routines
that describe or manipulate Apple event objects. Container applications should call
ALOEObjectInit instead of the toolbox defined AEObjectInit.

Inputs
none

Outputs
none

Errors Returned

ALOE API 1.0 Draft (2/4/97) Page 63 © 1995-1997 Apple Computer, Inc.

noErr 0 No error
memFullErr -108 Not enough room in heap zone
errAENewerVersion -1706 Need a newer version of the Apple Event

Manager
Pre conditions

none
Post conditions

Container application can safely call ALOE scripting routines.

Event Handlers

OSErr ALOEInstallEventHandler(
AEEventClass theAEEventClass,
AEEventID theAEEventID,
AEEventHandlerUPP handler,
long handlerRefCon,
Boolean isSysHandler);

Basic operation
ALOEInstallEventHandler adds an entry to either your application’s Apple event
dispatch table or the system Apple event dispatch table. Container applications
should call this routine instead of the toolbox-defined AEInstallEventHandler.

Inputs
theAEEventClass The event class to be dispatched for this entry.
theAEEventID The event ID to be dispatched for this entry.
handler A pointer to an Apple event handler for this dispatch

table entry.
handlerRefCon A reference constant passed by ALOE to the handler

each time the handler is called.
isSysHandler If TRUE, the handler is added to the system dispatch

table. If FALSE, the handler is added to the
application’s Apple event manager dispatch table.

Outputs
none

Errors Returned
noErr 0 No error
paramErr -50 Parameter error (handler pointer is NIL or

odd)
memFullErr -108 Not enough room in heap zone

Pre conditions
none

Post conditions
If the handler was installed in the system’s dispatch table (the value of isSysHandler
was TRUE) and the address of the handler is in the application’s heap, the handler
must be removed by calling ALOERemoveEventHandler before the application
terminates.

OSErr ALOEGetEventHandler(
AEEventClass theAEEventClass,
AEEventID theAEEventID,
AEEventHandlerUPP* handler,

ALOE API 1.0 Draft (2/4/97) Page 64 © 1995-1997 Apple Computer, Inc.

long* handlerRefCon,
Boolean isSysHandler);

Basic operation
ALOEGetEventHandler gets an entry from an Apple event dispatch table. Container
applications should call this routine instead of the toolbox-defined
AEGetEventHandler.

Inputs
theAEEventClass The value of the event class field of the dispatch table

entry for the desired handler.
theAEEventID The value of the event ID field of the dispatch table

entry for the desired handler.
isSysHandler Specifies the Apple event dispatch table from which

to get the handler. If the value of isSysHandler is
TRUE, ALOEGetEventHandler returns the handler
from the system dispatch table. If isSysHandler is
FALSE, ALOEGetEventHandler returns the handler
from your application’s dispatch table.

Outputs
handler A pointer to the handler specified by the input

parameters.
handlerRefCon The reference constant associated with the handler

specified by the input parameters.
Errors Returned

noErr 0 No error.
errAEHandlerNotFound -1717 No handler found for the specified event.

Pre conditions
Event handler must be installed.

Post conditions
none

OSErr ALOERemoveEventHandler(
AEEventClass theAEEventClass,
AEEventID theAEEventID,
AEEventHandlerUPP handler,
Boolean isSysHandler);

Basic operation
ALOERemoveEventHandler removes an entry from an Apple event dispatch table.
Container applications should call this routine instead of the toolbox-defined
AERemoveEventHandler.

Inputs
theAEEventClass The event class field of the handler whose entry

should be removed from the dispatch table.
theAEEventID The event ID of the handler whose entry should be

removed from the dispatch table.
handler A pointer to the handler to be removed. If the value of

the parameter is NIL, the handler to be removed is
determined solely by the event class and event ID
parameters.

isSysHandler Specifies the dispatch table from which to remove the
handler. If the value of isSysHandler is TRUE,
ALOERemoveEventHandler removes the specified

ALOE API 1.0 Draft (2/4/97) Page 65 © 1995-1997 Apple Computer, Inc.

handler from the system dispatch table. If the value of
isSysHandler is FALSE, ALOE removes the handler
from your application’s dispatch table.

Outputs
none

Errors Returned
noErr 0 No error
errAEHandlerNotFound -1717 No handler found for the specified event

Pre conditions
The event handler must be installed.

Post conditions
none

PreDispatch Handler

OSErr ALOEInstallPreDispatchHandler(
AEEventHandlerUPP handler
Boolean isSysHandler);

Basic Operation
ALOEInstallPreDispatchHandler installs a special dispatch handler that is called
immediately before the Apple Event Manager dispatches an Apple event. Container
applications should call this function instead of the toolbox AEInstallSpecialHandler
function. Object method callbacks, which applications have historically been able to
install by calling AEInstallSpecialHandler, should be installed by calling
ALOESetObjectCallbacks.

Inputs
handler A pointer to the handler to be called for predispatched

Apple events.
isSysHandler The dispatch table to which to add the handler. If

true, the handler is installed in the system’s dispatch
table. If FALSE, and OpenDoc is installed, the handler
is added to ALOE’s internal dispatch table. If FALSE,
and OpenDoc is not installed, ALOE calls the toolbox
AEInstallSpecialHandler with a keyword of
keyPreDispatch to install the handler.

Outputs
none

Errors Returned
noErr 0 No error
paramErr -50 Parameter error (handler pointer is nil or odd)
memFullErr -108 Not enough room in heap zone

Pre conditions
none

Post conditions
If the handler was installed in the system’s dispatch table (the value of isSysHandler
was TRUE) and the address of the handler is in the application’s heap, the handler
must be removed by calling ALOERemoveEventHandler before the application
terminates.

Function Prototype
OSErr ALOEGetPreDispatchHandler(

AEEventHandlerUPP* handler
Boolean isSysHandler);

ALOE API 1.0 Draft (2/4/97) Page 66 © 1995-1997 Apple Computer, Inc.

Basic Operation
ALOEGetPreDispatchHandler gets the predispatch handler installed in the specified
dispatch table. Container applications should call this routine instead of the toolbox-
defined AEGetSpecialHandler.

Inputs
isSysHandler Specifies the dispatch table from which to get the

handler. If the value of isSysHandler is TRUE, the
handler is taken from the system’s dispatch table. If
the value of isSysHandler is FALSE, the handler is
taken from the application’s dispatch table.

Outputs
handler A pointer to the specified predispatch handler.

Errors Returned
noErr 0 No error
memFullErr -108 Not enough room in heap zone

Pre conditions
The predispatch handler must be installed.

Post conditions
none

OSErr ALOERemovePreDispatchHandler(
AEEventHandlerUPP handler
Boolean isSysHandler);

Basic Operation
ALOERemovePreDispatchHandler removes a previously installed
PreDispatchHandler. Container applications should call this function instead of the
toolbox AERemoveSpecialHandler function.

Inputs
handler A pointer to the predispatch handler to be removed. If

this parameter is NIL, the existing predispatch
handler will be removed. If this value is not NIL, the
predispatch handler will only be removed if it
matches this value.

isSysHandler Specifies the dispatch table from which to remove the
handler. If the value of isSysHandler is TRUE, the
handler is removed from the system’s dispatch table. If
the value of isSysHandler is FALSE, the handler is
removed from the application’s dispatch table.

Outputs
none

Errors Returned
noErr 0 No error
paramErr -50 Parameter error (handler pointer is nil or odd)
memFullErr -108 Not enough room in heap zone

Pre conditions
The predispatch handler must be installed.

Post conditions
none

Object Accessors

ALOE API 1.0 Draft (2/4/97) Page 67 © 1995-1997 Apple Computer, Inc.

OSErr ALOEInstallObjectAccessor(
DescType desiredClass,
DescType containerType,
OSLAccessorUPP theAccessor,
long accessorRefCon,
Boolean isSysHandler);

Basic Operation
ALOEInstallObjectAccessor adds an entry for an object accessor function to either the
application’s object accessor dispatch table or the system object accessor dispatch table.
Container applications should call ALOEInstallObjectAccessor instead of the toolbox-
defined AEInstallObjectAccessor.

Inputs
desiredClass The object class of the Apple event objects to be located

by the object accessor function for this table entry.
containerType The descriptor type of the token used to specify the

container for the desired objects. The object accessor
function finds objects in containers specified by tokens of
this type.

theAccessor A pointer to the object accessor function for this table
entry.

isSysHandler A value that specifies the object accessor dispatch
table to which the entry is added. If the value of
isSysHandler is TRUE, ALOE adds the entry to the
system object accessor dispatch table. If the value is
FALSE, ALOE adds the entry to your application’s
object accessor dispatch table.

Outputs
none

Errors Returned
noErr 0 No error
paramErr -50 The accessor pointer is NIL or odd

Pre conditions
ALOEObjectInit must be called prior too calling ALOEInstallObjectAccessor.

Post conditions
If the accessor was installed in the system accessor dispatch table (isSysHandler is
TRUE), and the address of the accessor is in the application’s heap, the accessor must
be removed by calling ALOERemoveObjectAccessor before the application terminates.

OSErr ALOEGetObjectAccessor(
DescType desiredClass,
DescType containerType,
OSLAccessorUPP* theAccessor,
long* accessorRefCon,
Boolean isSysHandler);

Basic Operation
ALOEInstallObjectAccessor gets a pointer to an object accessor function and the value of
its reference constant. Container applications should call ALOEGetObjectAccessor
instead of the toolbox-defined AEGetObjectAccessor.

Inputs
desiredClass The object class of the Apple event objects located by

ALOE API 1.0 Draft (2/4/97) Page 68 © 1995-1997 Apple Computer, Inc.

the requested object accessor function. This parameter
can also contain the constant typeWildCard.

containerType The descriptor type of the token that identifies the
container for the objects located by the requested object
accessor function. This parameter can also contain the
constant typeWildCard.

isSysHandler A value that specifies the object accessor table from
which to get the object accessor function and its
reference constant. If the value of isSysHandler is
TRUE, ALOEGetObjectAccessor gets the function from
the system object accessor dispatch table. If the value
of isSysHandler is FALSE, ALOEGetObjectAccessor
gets the function from the application’s object accessor
dispatch table.

Outputs
theAccessor A pointer to the requested object accessor function.
accessorRefCon The reference constant from the object accessor dispatch

table entry for the specified object accessor function.
Errors Returned

noErr 0 No error
errAEAccessorNotFound -1723 There is no object accessor function for the

specified object class and container type.
Pre conditions

ALOEObjectInit must have been called.
The object accessor must be installed.

Post conditions
none

OSErr ALOERemoveObjectAccessor(
DescType desiredClass,
DescType containerType,
OSLAccessorUPP theAccessor,
Boolean isSysHandler);

Basic Operation
ALOERemoveObjectAccessor removes an object accessor function from an object accessor
dispatch table. Container applications should call ALOERemoveObjectAccessor
instead of the toolbox-defined AERemoveObjectAccessor.

Inputs
desiredClass The object class of the Apple event objects located by

the object accessor function. The desiredClass
parameter can also contain the constant
typeWildCard.

containerType The descriptor type of the token that identifies the
container for the objects located by the object accessor
function. This parameter can also contain the constant
typeWildCard.

theAccessor A pointer to the object accessor function you want to
remove. If the value is NIL, the function to remove is
determined solely by the values of the desiredClass
and containerType parameters.

ALOE API 1.0 Draft (2/4/97) Page 69 © 1995-1997 Apple Computer, Inc.

isSysHandler A value that specifies the object accessor table from
which to remove the object accessor function. If the
value of isSysHandler is TRUE,
ALOERemoveObjectAccessor removes the function from
the system object accessor dispatch table. If the value
of isSysHandler is FALSE,
ALOERemoveObjectAccessor removes the function from
the application’s object accessor dispatch table.

Outputs
none

Errors Returned
noErr 0 No error
errAEAccessorNotFound -1723 There is no object accessor function for the

specified object class and container type or the
value of theAccessor does not match the value
of the installed accessor.

Pre conditions
ALOEObjectInit must have been called.
The object accessor must be installed.

Post conditions
none

Object Callbacks

OSErr ALOESetObjectCallbacks(
OSLCompareUPP compareProc,
OSLCountUPP countProc,
OSLDisposeTokenUPP disposeTokenProc,
OSLGetMarkTokenUPP getMarkTokenProc,
OSLMarkUPP markProc,
OSLAdjustMarksUPP adjustMarksProc,
OSLGetErrDescUPP getErrDescProc);

Basic Operation
ALOESetObjectCallbacks sets the object callbacks to be called for your application.
Container applications should call ALOESetObjectCallbacks instead of the toolbox-
defined AESetObjectCallbacks.

Inputs
compareProc Either a pointer to the object-comparison function

provided by your application or NIL if no function is
provided.

countProc Either a pointer to the object-counting function
provided by your application or NIL if no function is
provided.

disposeTokenProc Either a pointer to the token disposal function
provided by your application or NIL if no function is
provided.

getMarkTokenProc Either a pointer to the function for returning a mark
token provided by your application or NIL if no
function is provided.

markProc Either a pointer to the object-marking function
provided by your application or NIL if no function is
provided.

ALOE API 1.0 Draft (2/4/97) Page 70 © 1995-1997 Apple Computer, Inc.

adjustMarksProc Either a pointer to the mark-adjusting function
provided by your application or NIL if no function is
provided.

getErrDescProc Either a pointer to the error callback function provided
by your application or NIL if no function is provided.

Outputs
none

Errors Returned
noErr 0 No error
paramErr -50 An invalid handler was provided or

ALOEObjectInit was not called
memFullErr -108 There is not enough room in heap zone

Pre conditions
ALOEObjectInit must have been called.

Post conditions
none

Coercion Handlers

OSErr ALOEInstallCoercionHandler(
DescType fromType,
DescType toType,
AECoercionHandlerUPP handler,
long handlerRefCon,
Boolean fromTypeIsDesc,
Boolean isSysHandler);

Basic Operation
ALOEInstallCoercionHandler installs a coercion handler routine in either the
application or system coercion handler dispatch table.

Inputs
fromType The descriptor type of the data coerced by the handler.
toType The descriptor type of the resulting data. If there was

already an entry in the specified coercion handler
table for the same source descriptor type and result
descriptor type, the existing entry is replaced.

handler A pointer to the coercion handler.
handlerRefCon A reference constant passed by ALOE to the handler

each time the handler is called. If your handler doesn’t
expect a reference constant, use 0 as the value of this
parameter.

fromTypeIsDesc Specifies the form of the data to be coerced. If the
value of this parameter is TRUE, the coercion handler
expects the data to be passed as a descriptor record. If
the value is FALSE, the coercion handler expects a
pointer to the data.

isSysHandler Specifies the coercion table to which the handler is
added. If the value of isSysHandler is TRUE, the
handler is added to the system coercion table and made
available to all applications. If the value is FALSE,
the handler is added to the application coercion table.

ALOE API 1.0 Draft (2/4/97) Page 71 © 1995-1997 Apple Computer, Inc.

Outputs
none

Errors Returned
noErr 0 No error
memFullErr -108 Not enough room in heap zone

Pre conditions
none

Post conditions
If the handler is installed in the system’s coercion table (isSysHandler is TRUE), the
application must remove the coercion handler before terminating.

OSErr ALOEGetCoercionHandler(
DescType fromType,
DescType toType,
AECoercionHandlerUPP* handler,
long* handlerRefCon,
Boolean* fromTypeIsDesc,
Boolean isSysHandler);

Basic Operation
ALOEGetCoercionHandler gets the handler for a specified descriptor type coercion.

Inputs
fromType The descriptor type of the data coerced by the handler.
toType The descriptor type of the resulting data.
isSysHandler Specifies the coercion table from which to get the

handler. If the value of isSysHandler is TRUE, the
handler is taken from the system coercion table. If the
value is FALSE, the handler is taken from the
application coercion table.

Outputs
handler A pointer to the desired coercion handler.
handlerRefCon The reference constant for the desired handler. ALOE

passes this reference constant to the handler each time
the handler is called.

fromTypeIsDesc If ALOEGetCoercionHandler returns a value of TRUE
for this parameter, the coercion handler expects the
data to be passed as a descriptor record. If the function
returns FALSE, the coercion handler expects a pointer
to the data.

Errors Returned
noErr 0 No error
memFullErr -108 Not enough room in heap zone

Pre conditions
The coercion handler must be installed.

Post conditions
none

OSErr ALOERemoveCoercionHandler(
DescType fromType,
DescType toType,
AECoercionHandlerUPP handler,
Boolean isSysHandler);

ALOE API 1.0 Draft (2/4/97) Page 72 © 1995-1997 Apple Computer, Inc.

Basic Operation
ALOEGetCoercionHandler gets the handler for a specified descriptor type coercion.

Inputs
fromType The descriptor type of the data coerced by the handler.
toType The descriptor type of the resulting data.
handler A pointer to the coercion handler. If the value of

handler is NIL, the handler to be removed is
determined solely on the values of fromType and
toType.

isSysHandler Specifies the coercion table from which to get the
handler. If the value of isSysHandler is TRUE, the
handler is removed from the system coercion table. If
the value is FALSE, the handler is removed from the
application coercion table.

Outputs
none

Errors Returned
noErr 0 No error
memFullErr -108 Not enough room in heap zone
errAEHandlerNotFound -1717 No coercion handler found

Pre conditions
The coercion handler must be installed.

Post conditions
none

OSErr ALOEGetCoercionHandler(
DescType fromType,
DescType toType,
AECoercionHandlerUPP* handler,
long* handlerRefCon,
Boolean* fromTypeIsDesc,
Boolean isSysHandler);

Basic Operation
ALOEGetCoercionHandler gets the handler for a specified descriptor type coercion.

Inputs
fromType The descriptor type of the data coerced by the handler.
toType The descriptor type of the resulting data.
isSysHandler Specifies the coercion table from which to get the

handler. If the value of isSysHandler is TRUE, the
handler is taken from the system coercion table. If the
value is FALSE, the handler is taken from the
application coercion table.

Outputs
handler A pointer to the desired coercion handler.
handlerRefCon The reference constant for the desired handler. ALOE

passes this reference constant to the handler each time
the handler is called.

fromTypeIsDesc If ALOEGetCoercionHandler returns a value of TRUE
for this parameter, the coercion handler expects the
data to be passed as a descriptor record. If the function
returns FALSE, the coercion handler expects a pointer
to the data.

ALOE API 1.0 Draft (2/4/97) Page 73 © 1995-1997 Apple Computer, Inc.

Errors Returned
noErr 0 No error
memFullErr -108 Not enough room in heap zone

Pre conditions
The coercion handler must be installed.

Post conditions
none

Object Specifier Resolution

OSErr ALOEResolve(
AEDesc* objectSpecifier,
short callbackFlags,
AEDesc* theToken,
ALOEAdaptorView* tokenContext);

Basic Operation
ALOEResolve resolves an object specifier record in an Apple event parameter.

Inputs
objectSpecifier The object specifier record to be resolved
callbackFlags A value that determines what additional assistance,

if any, the application can give the Apple Event
Manager when it parses the object specifier record (see
Inside Macintosh definition of AEResolve)

theToken ALOEResolve returns, in this parameter, a token that
identifies the Apple Event objects specified by the
objectSpecifier parameter

tokenContext If the token returned by ALOEResolve was created by
an ALOE adaptor, ALOEResolve returns the adaptor in
the tokenContext parameter. If the token was not
created by an adaptor, the value of tokenContext will
be NIL

Outputs
none

Errors Returned
noErr 0 No error
paramErr -50 ALOEObjectInit was not called before this

function was called
errAEHandlerNotFound -1717 The necessary object callback function was not

found
errAEImpossibleRange -1720 The range is not valid because it is impossible

for a range to include the first and last objects
that were specified

errAEWrongNumberArgs -1721 The number of operands provided for the
kAENot logical operator is not 1

errAEAccessorNotFound -1723 There is no object accessor function for the
specified object class and token descriptor
type

errAENoSuchLogical -1725 The logical operator in a logical descriptor
record is not kAEAnd, kAEOr or kAENot

errAEBadTestKey -1726 The descriptor record in a test key is neither
a comparison descriptor nor a logical descriptor

ALOE API 1.0 Draft (2/4/97) Page 74 © 1995-1997 Apple Computer, Inc.

record
errAENotAnObjectSpec -1727 The objSpecifier parameter is not an object

specifier record
errAENegativeCount -1729 An object-counting function returned a negative

result
errAEEmptyListContainer -1730 The container for an Apple event object is

specified by an empty list

Pre conditions
ALOEObjectInit must have been called.

Post conditions
The container application should attempt to use the theToken parameter only if the
value of tokenContext is NIL. A tokenContext value other than NIL indicates that the
token was created by a container part and cannot be interpreted by the container
application.

Token Disposal

OSErr ALOEDisposeToken(
AEDesc* theToken);

Basic Operation
ALOEDisposeToken disposes tokens created during object resolution. Applications must
call ALOEDisposeToken instead of the toolbox-defined AEDisposeToken. When a
container application calls ALOEDisposeToken, ALOE first determines whether the
token being disposed was created by the application or by a contained part. If the token
was created by the application, ALOE calls the applications token disposal function if
one was provided. If a token disposal function was not provide by the application or if
the application’s token disposal function returns errAEEventNotHandled, ALOE calls
the Apple Event Manager’s token disposal function. If the token was created by an
embedded part, ALOE calls the part’s token disposal function to allow the part to
dispose of the token appropriately.

Inputs
theToken The token to be disposed of.

Outputs
none

Errors Returned
noErr 0 No error

Pre conditions
none

Post conditions
none

Edition Manager Support

Boolean ALOEReserveSectionID(long sectionID);

Basic operation
This function must be used by applications that support the Edition manager. It allows
the application to coordinate the use of Edition manager section ids with ALOE. If the
section ID argument is not currently in use by ALOE, it will be reserved for the
application’s use, and true will be returned. Otherwise, false is returned.

ALOE API 1.0 Draft (2/4/97) Page 75 © 1995-1997 Apple Computer, Inc.

Inputs
sectionID On input, the section ID the application wishes to use.

Outputs
result True if the requested section ID was reserved for the

application’s use
Errors Returned

none
Pre conditions

none
Post conditions

none

ALOE API 1.0 Draft (2/4/97) Page 76 © 1995-1997 Apple Computer, Inc.

Usage Examples

The following examples show what a simple application needs to do to support ALOE. The
recipes in this section are not complete.

Starting ALOE

An application can control when ALOE should be loaded. This is done by calling StartALOE. In
addition, it should install any relevant callback procs for ALOE. A very simple application may
only need to install one or two callback procs. A full-featured application may need to install all of
them.

OSErr tResult = StartALOE()
ALOESetActivateApplicationCallback (&MyActivateApplication, NULL);

Creating an Adaptor Manager

When an application creates a new document, it needs to create an Adaptor Manager for it. This
Adaptor Manager works on all the windows associated with the document. Therefore, there is no
need to create a new manager for each window opened.

ALOEAdaptorMgr newManager = NULL;
OSErr tResult = ALOENewAdaptorMgr(&newManager);

Creating an Adaptor

Once the Adaptor Manager is created, ALOE is ready to handle embedding of parts. The following
example shows how an application creates a text part within itself. The text part is going to be
created with text supplied by the application in the textPtr field. Adaptors can be created many
different ways, including: by scrap type, by ISOString, or bound to content (via the clipboard or
drag and drop operations)

// Create a new text adaptor
ALOEAdaptor newAdaptor;
RgnHandle adaptorShape = ::NewRgn();
::RectRgn(adaptorShape, &myDefaultRect);
ALOEISOString tALOEAdaptorKind = ::ALOEGetKindFromResType('TEXT');
OSErr tResult = ::ALOENewAdaptor(manager,

window,
tALOEAdaptorKind,
textPtr,
textSize,
adaptorShape,
&newAdaptor);

Creating an Adaptor View

The Adaptor is mainly used for storage purposes. In order for the Adaptor to render itself, the
application must create a View for the Adaptor.

ALOEAdaptorView newView;
OSErr tResult = ALOENewAdaptorView(adaptor,

ALOE API 1.0 Draft (2/4/97) Page 77 © 1995-1997 Apple Computer, Inc.

NULL, // use window port
offset, // offset from window origin
NULL, // not printing view
&newView);

tResult = ALOEDrawAdaptorView(newView, NULL); // default clipping

Deactivating and activating the application

When the application is first launched, it is active. However, when an embedded part is activated
by the user, the application becomes inactive. ALOE uses the installed callback to notify the
application that it is becoming inactive. The application should remember its active state because it
needs this information to determine how it should handle different situations.

When the user clicks on the content area of the document which does not have any part, the
application is again activated. ALOE uses the installed callback to notify the application that it is
being activated. The application can then change its global flag to reflect the correct state.

// MyActivateApplication which has been installed using
// ALOESetActivateApplicationCallback (see above).

void MyActivateApplication (Boolean activate,
EventRecord event,
void *contextPtr)

{
gApplicationIsActive = activate;

}

Handling Events

The application needs to work with ALOE to determine the parameters to WaitNextEvent. The
reason is that the application no longer possesses all the knowledge of the running process because
there are embedded parts in it.

MainEventLoop();
{

.

.
gotEvent = WaitNextEvent(ALOEGetEventMask(everyEvent),

&event,
ALOEGetSleepTime(GetSleep()),
ALOEGetSleepRegion(myRegion));

if (gotEvent)
{

// If the event is in the menu bar then we have
// To call menu select before we give ALOE a chance
// to handle the event
short part = FindWindow(event->where, &window);

// Save off a copy of the event, since OpenDoc will
// modify it in ALOEHandleEvent.
EventRecord savedEvent = event;

ALOE API 1.0 Draft (2/4/97) Page 78 © 1995-1997 Apple Computer, Inc.

if (part == inMenuBar)
MyHandleMenuEvent(event);

else
{

// Give ALOE first crack at the event
Boolean handled = ALOEHandleEvent(event);

if (!handled)
MyHandleEvent(savedEvent);

.

.
}

}

Handling Update Events

The application should handle the update events. The following code sample shows what the
application should do:

case updateEvt:
BeginUpdate(windowPtr);
MyDrawContent();

while ((myAdaptorView = myAdaptorViewList->Next()) != nil)
{

OSErr tResult;
tResult = ALOEDrawAdaptorView(myAdaptorView, clipRgn);

}

EndUpdate(windowPtr);
break;

Adjusting menus

The application needs to handle the mouse down event in the menu. The following code sample
shows what an application might do in response to a mouse down in the menu bar.

//If this is an event in the MenuBar, adjustMenus BEFORE OpenDoc.

if(EventUpdatesMenus(&event))
MyAdjustMenus();

The following is the EventUpdatesMenu function:

Boolean EventUpdatesMenus(EventRecord* theEvent)
{

Boolean updateMenus = false;
WindowPtr theWindow = NULL;
short partCode = ::FindWindow(theEvent->where, &theWindow);

if (partCode == inMenuBar)
updateMenus = true;

ALOE API 1.0 Draft (2/4/97) Page 79 © 1995-1997 Apple Computer, Inc.

return updateMenus;
}

The following shows the menu handling of the application’s adjust menu procedure. The cases
shown are ALOE-related. The rest of the procedure is application-specific and does not need to be
modified for ALOE.

void MyAdjustMenus()
{

.

.
// Handle undo menu item
Boolean ALOEHasUndo = ALOEHasPendingUndo();
if (!ALOEHasUndo && gApplicationHasUndoAction)

MyEnableCommand(cUndo, true);

// Handle Save item
Boolean changed;
Boolean sameSize;
OSErr tResult = ALOEIsAdaptorMgrDirty(manager,

&changed,
&sameSize);

if (changed && gIHaveChanged)
MyEnableCommand(cSave, true);

.

.
}

Saving the document

When an application needs to save a document, it needs to iterate through all the Adaptors and
acquire persistent references to them. Then it can store these references in its data fork together
with its content. Finally, it needs to write out the storage for the Adaptor Manager. The storage of
the Adaptor Manager contains all the embedded parts and the mapping of persistent references to
the embedded parts.

// Opening the file and get the refNum
refNum = ...

// Iterate through my adaptors in this document
while ((myAdaptor = myAdaptorList->Next()) != NULL)
{

// get the persistent reference
ALOEPersistentID id;
OSErr err = ALOEGetPersistentID(myAdaptor, &id);

// Write out the id in my content with related information,
// i.e. geometry.
......

}

// Write out the storage for Adaptor Manager.
long bytesWritten;

ALOE API 1.0 Draft (2/4/97) Page 80 © 1995-1997 Apple Computer, Inc.

OSErr tResult = ALOEWriteAdaptorMgrToFile(manager,
refNum,
&bytesWritten);

Opening a document

Opening a document is the reverse process of saving a document. The application needs to create
the Adaptor Manager which has all the information of the embedded parts.

// Opening the file and get the refNum
refNum = ...

// Create the Adaptor Manager from a file.

long bytesWritten;
ALOEAdaptorMgr manager = NULL;
OSErr err = ALOENewAdaptorMgrFromFile (refNum, &manager);
...

// Going through the data fork. When the application sees
// a persistent id, it can get the adaptor back using the id.

ALOEAdaptor newAdaptor;
err = ALOEGetAdaptor(manager, id, window, &newAdaptor);
...

Terminating ALOE

The application should dispose of all the Views, Adaptors and the Adaptor Managers it has created
when it is shutting itself down.

OSErr err;
err = ALOEDisposeAdaptorView(view);
err = ALOEDisposeAdaptor(adaptor);
err = ALOEDisposeAdaptorMgr(manager);
err = TerminateALOE();

ALOE Clipboard

Copy - Application content only.

When writing application content only, the ALOE scrap manager cover routines are used.

err = ALOEZeroScrap();
err = ALOEPutScrap(length, 'TYPE', dataPtr);

Copy - One embedded adaptor.

Embedded adaptors are copied in a transaction begun with ALOEBeginScrapClone and ended
by ALOEEndClone. When exactly one embedded adaptor is copied, the application does not
call ALOEPutScrap to put an application kind on the scrap.

ALOE API 1.0 Draft (2/4/97) Page 81 © 1995-1997 Apple Computer, Inc.

Typically, the offset argument to ALOECloneAdaptorFromContent is the offset of the adaptor
view being copied.

ALOEClonedID theClonedID;

err = ALOEZeroScrap();
err = ALOEBeginScrapClone(theAdaptorMgr, theWindow, kALOECopy);
err = ALOECloneAdaptorFromContent(theAdaptor, theOffset, theClonedID);
err = ALOEEndClone();

Copy - Hybrid content.

When more than one embedded adaptor is copied, or when application content and adaptors are
copied, the application clones the adaptors and writes one or more scrap types within a clone
transaction. When no application content is copied, the scrap data written by the application is
just a "wrapper" containing the cloned ids returned by ALOECloneAdaptorFromContent.
Besides the cloned ids, this wrapper typically contains whatever positional information the
application associates with the cloned adaptors.

ALOEClonedID oneClonedID, twoClonedID;

err = ALOEZeroScrap();
err = ALOEBeginScrapClone(theAdaptorMgr, theWindow, kALOECopy);

err = ALOECloneAdaptorFromContent(oneAdaptor, oneOffset, oneClonedID);
err = ALOECloneAdaptorFromContent(twoAdaptor, twoOffset, twoClonedID);

// The data of this type includes oneClonedID & twoClonedID
err = ALOEPutScrap(length, theHybridType, dataPtr);

err = ALOEEndClone();

Copy - Promising data.

If your application maintains its own private scrap, your part can postpone, and perhaps avoid,
the expense of converting your private scrap to scrap data by writing a "promise' instead of
actual data. Your application writes a promise by passing null as the source pointer argument
to ALOEPutScrap. If ALOE needs the actual data, because the user performed a paste in an
embedded adaptor, or because the process was suspended, ALOE will request that data by
calling your application's WriteScrap callback. You must have previously installed a
WriteScrap callback before calling ALOEPutScrap to promise data.

Your WriteScrap callback routine must have the following signature:

OSErr WriteScrapProc(ResType theType, void *contextPtr);

Your WriteScrap callback will be called to fulfill a promise for the argument scrap type. Your
callback does not need to fulfill promises for other scrap types, although it may.

When the copied content includes one or more embedded adaptors, your application should
clone the adaptors immediately, but may promise the (hybrid) scrap type in your call to

ALOE API 1.0 Draft (2/4/97) Page 82 © 1995-1997 Apple Computer, Inc.

ALOEPutScrap. See the example for copying hybrid content.

Enabling the Paste menu item.

Since any content can be embedded, this menu should be enabled unless the scrap is empty.

if (ALOEIsScrapEmpty())
DisableItem(editMenu, thePasteItem);

else
EnableItem(editMenu, thePasteItem);

Paste - Deciding which scrap data to accept.

How your application pasts data from the scrap depends on which scrap type it chooses to
paste. Generally, your application should look for a scrap type it can read. If no such type is
found, just embed the scrap.

// Check for hybrid content first
if (ALOEGetScrap(NULL, theHybridType, &offset) > 0)

Paste hybrid content
else if (ALOEGetScrap(NULL, thePlainType, &offset) > 0)

Incorporate application data
else

Embed the scrap

Paste - Incorporating application data.

Application data is incorporated using ALOE's GetScrap cover routine.

err = ALOEGetScrap(dataHandle, thePlainType, &offset);

Paste - Embedding the scrap.

The contents of the scrap can be embedded as an adaptor using an atomic routine.

ALOEAdaptor newAdaptor;
err = ALOEEmbedScrap(theAdaptorMgr, theWindow, &newAdaptor);

ALOEAdaptorView newView;
err = ALOENewAdaptorView(newAdaptor, nullGrafPtr, theOffset,

nullTHPrint, &newView);

Paste - Hybrid content.

To paste hybrid content, the application reads its scrap type and clones each adaptor into its
content.

To make pasted adaptors are visible, views are created AFTER ALOEEndClone has been
cloned.

ALOE API 1.0 Draft (2/4/97) Page 83 © 1995-1997 Apple Computer, Inc.

Note that the adaptor offset argument supplied to ALOECloneAdaptorFromContent is not
returned by ALOECloneAdaptorToContent. Your application should keep whatever positional
information it needs for a cloned adaptor in the scrap data it writes.

err = ALOEBeginScrapClone(theAdaptorMgr, theWindow, kALOEPaste);

// Read the application's content, including the cloned ids of adaptors
err = ALOEGetScrap(dataHandle, theHybridType, &offset);

// Clone each embedded adaptor
ALOEAdaptor oneAdaptor, twoAdaptor;
err = ALOECloneAdaptorToContent(oneID, &oneAdaptor);
err = ALOECloneAdaptorToContent (twoID, &twoAdaptor);

err = ALOEEndClone();

// If the adaptors are visible, show them by creating views
ALOEAdaptorView oneView, twoView;
err = ALOENewAdaptorView(oneAdaptor, nullGrafPtr, theOffset,

nullTHPrint, &oneView);

err = ALOENewAdaptorView(twoAdaptor, nullGrafPtr, theOffset,
nullTHPrint, &twoView);

Scrap coordination.

If your application maintains a private scrap, you need to coordinate your private scrap with
ALOE's scrap and with the desktop scrap.

When your private scrap changes, notify ALOE by calling ALOEZeroScrap, and by calling
ALOEPutScrap for each scrap type available. To avoid the expense of converting your private
scrap to scrap data, you can pass null as the source pointer argument to ALOEPutScrap. This
represents a "promise" for the data, which ALOE can latter request via your application's
WriteScrap callback. You must have previously installed a WriteScrap callback to promise
data.

After you applications calls ALOEZeroScrap, call ALOEGetScrapCount to keep track of the
scrap generation associated with your change. Your private scrap is valid as long as the
scrap's generation doesn't change.

err = ALOEZeroScrap();
err = ALOEPutScrap(0, theScrapType, NULL); // Repeat for each type
scrapCount = ALOEGetScrapCount();

Before using data from your private scrap, make sure the scrap generation hasn't changed by
calling ALOEScrapCountStillValid. If this routine returns false, read data from the ALOE
scrap instead.

if (ALOEScrapCountStillValid(scrapCount))
{

// use your application's private scrap
}

ALOE API 1.0 Draft (2/4/97) Page 84 © 1995-1997 Apple Computer, Inc.

else
{

// use ALOE's scrap routines
err = ALOEGetScrap(dataHandle, theHType, &offset);

}

Your application can also use ALOEScrapCountStillValid to decide when its safe to discard
your private scrap.

If your application uses a toolbox routine that writes directly to the desk scrap, such as
TextEdit, you must NOT use ALOE's scrap cover routines. Instead, use the scrap manager
routines directly. The next time data is requested, ALOE will notice that the desk scrap
contains the most recent data. For example, to transfer data from a TextEdit record to the
scrap, use the following sequence of calls:

err = ZeroScrap(); // Calling ALOEZeroScrap would confuse ALOE!
err = TEToScrap();

Before your application calls a routine that reads the desktop scrap directly, such as TextEdit,
call ALOEUpdateScrap to ensure the latest data is on the desktop scrap. ALOEUpdateScrap
will transfer all scrap types to the desktop scrap. (OpenDoc content is NOT placed on the
scrap by this call to avoid the unnecessary expense of externalizing the OpenDoc clipboard.
However, if text was copied in an OpenDoc part, for example, the text representation will be
transferred to the desktop scrap.)

err = ALOEUpdateScrap();

ALOE Drag and Drop

Dragging Hybrid Content.

This example demonstrates how to initiate a drag of application data and embedded adaptors.
Note the similarity of this example to that of copying hybrid content to the clipboard.

DragReference theDragRef;

err = NewDrag(&theDragRef);

ALOEClonedID oneClonedID, twoClonedID;

err = ALOEBeginDragClone(theAdaptorMgr, theWindow, kALOEDrag);

err = ALOECloneAdaptorFromContent(oneAdaptor, oneOffset, oneClonedID);
err = ALOECloneAdaptorFromContent(twoAdaptor, twoOffset, twoClonedID);

// The data of this type includes oneClonedID & twoClonedID
err = ALOEAddDragItemFlavor(theDragRef, 1, theHybridType, dataPtr,

length, theFlags);
err = ALOEEndClone();

// Optional but recommended - set the bounding rectangle for the
// dragged content.

ALOE API 1.0 Draft (2/4/97) Page 85 © 1995-1997 Apple Computer, Inc.

err = SetDragItemBounds(theDragRef, 1, &itemBoundsRect);

// Start the drag
err = TrackDrag(theDragRef, event, dragRgn);

// If the content was moved, delete it from the application.
// Your application should also delete the content if it was
// dropped to the trash.

Determining if a drop was a move or a copy.

After StartDrag returns noErr, your application can use code similar to the following to
determine if the drop was a copy or a move .

ODSShort mseDownMods;
ODSShort mseUpMods;
Boolean isMove = false;

GetDragModifiers(theDragRef, 0L, &mseDownMods, &mseUpMods);

// Check the mandatory modifier keys first
if (!(mseUpMods & optionKey) && (mseUpMods & controlKey))
{

isMove = true;
}

// Then check the optional modifier keys

else if (!(mseDownMods & optionKey) && (mseDownMods & controlKey))
{

isMove = true;
}

ALOE API 1.0 Draft (2/4/97) Page 86 © 1995-1997 Apple Computer, Inc.

