
Upgrader 1.1.1 & ModifierTool 1.1.1b3
Technical Guide

®

Document Version 1.2 - January 12, 1998

Contents

Chapter 1 Introduction
About Upgrader... 1

Upgrader Application File.. 3
System Requirements... 3
Partition Size.. 4

Upgrader Plug-in Files...4
Upgrader Data File... 4

Locating the Data File...4
Choosing an Editing Tool..5

About ModifierTool... 5
Using This Document..5

Chapter 2 Editing Upgrader Plug-ins
Using ModifierTool..6

Creating and Opening a Data File.. 6
Using the Main Data File Window...7
Using the Plug-in Info Window...9
Using the File Reference Window...10
Using the Text Editor Window... 11

Editing the Environment Filter Plug-in... 12
Using the Environment Filter Plug-in Editor... 13

Editing the Welcome Plug-in..14
Using the Welcome Plug-in Editor.. 15

Editing the Target Selection Plug-in... 16
Using the Target Selection Plug-in Editor... 17

Editing the Read Me Plug-in.. 19
Using the Read Me Plug-in Editor...19

Editing the Software License Plug-in.. 21
Using the Software License Plug-in Editor.. 21

Multilingual Limitations... 23
Editing the Installation Plug-in... 25

Easy Installation Panel..25
Custom Installation Panel.. 27
Options Dialog.. 27
Using the Installation Plug-in Editor..28
Extending the Installation Plug-in..32

Creating a Preflight Function... 32
Creating a Cleanup Application...33
Launching Other Applications... 34

Editing the Conclusion Plug-in..34
Using the Conclusion Plug-in Editor.. 35

Upgrader Plug-ins Reference.. 37
Global Data.. 37

Target Selection Plug-in Global Data... 37
Installation Plug-in Global Data..37
Conclusion Plug-in Global Data.. 37

Resources... 38
The Sequence Resource ('tsqc')...38
The File Reference Resource ('flrf')...40
The Resource List Resource ('RES#')..41
The Data File Format Resource ('dfmt')..41

The Environmental Filter Plug-in Preference Resource ('efpr')........................... 41
Welcome Plug-in Preference Resource ('wppr').. 42
Target Selection Plug-in Preference Resource ('tspr')..43
Read Me Plug-in Preference Resource ('rmpr')..45
Software License Plug-in Preference Resource ('swpr')....................................... 46
Installation Plug-in Preference Resource ('ippr')... 48
Conclusion Plug-in Preference Resource ('ccpr').. 51

Chapter 3 Writing Upgrader Plug-ins
About the Upgrader Plug-in... 53

Human Interface Guidelines... 53
Data File Resources... 54
The Plug-in File...54
The Plug-in Project... 55

Project Settings.. 55
Project Files... 57

Memory Management... 58
Plug-in Memory Allocation.. 59
Preventing Memory Leaks.. 59

Using the Upgrader API...59
Setting Up Plug-in-Defined Routines.. 59
Managing Panels..60
Managing Panel Contents... 61
Using the Document Viewer... 63
Navigation... 65
Managing the Help Window.. 66
Exchanging Data with other Plug-ins... 68
Referencing Files... 68
Displaying Alerts..69

Displaying Upgrader-Defined Error Alerts.. 69
Displaying Plug-in-Defined Errors... 70

Supporting Multiple Source Disks...71
Upgrader API Reference...71

Plug-in-Defined Routines... 71
InitializePluginModule... 72
HandleEventForPluginModule... 72
TerminatePluginModule...73

Setup Routines... 73
EnterPlugin..73
ExitPlugin... 73
SetupPlugin... 74
PSRegisterHandler..75

Panel Handling Routines..76
PSSetupNewPanel...76
PSNewCustomPanel.. 76
PSUpdatePanel... 77
PSActivatePanel... 78
PSDisposePanel...78
PSShowPanel.. 79
PSHidePanel...79
PSGetPanelItemHit...79
PSSetPRefCon... 80
PSGetPRefCon... 80
PSSetPanelItemAction...80

Panel Content Routines...81
PSSetPanelItem...81
PSGetPanelItem.. 82

PSNewStyledStringItem... 83
PSNewStyledTextItem.. 83
PSNewUserItem.. 84

Document Viewer Routines... 85
PSNewDocViewerItem.. 85
PSHandleDocScroll... 85
PSSaveDoc.. 86
PSPrintDoc.. 87

Navigation Routines..87
PSGotoPreviousPlugin..87
PSGotoNextPlugin... 88
PSQuitShell..89

Help Window Routines.. 89
PSSetupHelpWindow..89
PSDisplayHelpWindow..90
PSCloseHelpWindow.. 91
PSHandleHelpWindowEvent.. 91

Global Data Routines...92
PSSetGlobalData.. 92
PSGetGlobalData..92

Error Alert Routines... 93
PSErrorAlert... 93
PSAlert... 94

Utility Routines.. 94
PSCheckEnvironment...95
PSReadFontInfo...95
PSLaunchFile.. 96
PSPSMakeFSSpecFromFileRefID.. 97
PSCollect.. 97

Resources... 97
The Error Mapping Resource ('ners')..97
The Plug-in Format Resource ('pfmt')..98

Summary of the Upgrader API... 98
Constants...98
Data Types..101
Plug-in-Defined Routines... 101
Upgrader Plug-in Routines... 101
Result Codes.. 104

Chapter 4 Writing ModifierTool Editors
About ModifierTool Editors..107
Writing a ModifierTool Editor... 107

Editor Entry Point.. 107
Updating Plug-in Resources.. 108

Removing Plug-in Resources..109

Appendix A Adding Pictures to SimpleText Documents
Write the Text...110
Draw the Pictures.. 111
Adding the Pictures... 111
Edit the Text to Make It Look Pretty With the Pictures...112
Making the File Read-Only... 112
A Few Hints On Creating Good Documents With Pictures.. 112

Introduction

The Upgrader application provides a programming environment for creating assistant-like programs to
guide users through the on-screen panels necessary to complete an installation or setup task. Each panel
is a window that prompts the user to perform one step of the task. The panels are implemented by plug-
ins, which are individual files containing code written by a developer that can be assembled together
into a single user experience. To control the order of the plug-ins and provide the information required
by each plug-in, the developer creates a data file. The Upgrader application, plug-in files and data
file are collected together by a developer into a group of files referred to as an Upgrader-based
program. One example of a shipping Upgrader-based program is the Install Mac OS 8 program used to
install Apple’s Mac OS 8 system software.

The companion application, ModifierTool, allows modifications by clients of an existing data file or
creation of a new one by a developer. A client might be an IS manager or other developer who leverages
from an existing Upgrader-based program, and possibly other plug-ins, to address a unique scenario,
such as tailoring the Install Mac OS 8 program for a company’s internal needs.

We begin our discussion with a brief overview of the Upgrader and ModifierTool applications, then
present a road map to help readers decide which parts of this documentation are pertinent to their
needs.

About Upgrader
Programs created using the Upgrader application as their foundation will normally be a collection of
many files, all working together to present a single, cohesive user experience. This type of modularity
enables new programs to be created more quickly and existing programs, such as the Install Mac OS 8
program, to more easily be modified for future requirements.

Figure 1-1 shows the files that implement the Install Mac OS 8 program. Not only does the modularity
of an Upgrader-based program make later modifications easier, but it also enables complex disk
layouts, such as those required on floppies or multiple CD-ROMs.

Chapter 1: Introduction 1

Figure 1-1 Files implementing the Install Mac OS 8 program

From this collection of files the users see a simple series of panels, which guides them through a series
of steps. Figure 1-2 shows the panels a user sees when upgrading to Mac OS 8.

Chapter 1: Introduction 2

Figure 1-2 The Install Mac OS 8 program panels

For the most basic Upgrader-based program, you’ll need to understand the purpose of three file types:
the Upgrader application file, plug-in files, and the data file.

Upgrader Application File
The Upgrader application file provides a set of services for implementing panels. Plug-ins use the
Upgrader API to help handle user interaction by using provided routines to receive user events, control
panel navigation, display text and dialogs, and more. The file also contains resources that are needed
by all the plug-ins, such as 'DLOG' resources, help icon 'PICT's and other common resources.

The user will double-click the Upgrader application to start an Upgrader-based program. The
Upgrader application file is often referred to as the “shell” because it manages the relationship
between all plug-in files and the data file.

System Requirements

The Upgrader application is designed to run on 68020-based and newer machines running system

Chapter 1: Introduction 3

software version 7.0 and later. Apple’s primary testing has been performed on 68040 and PowerPC
machines running 7.1 and later, so developers wishing to support earlier versions are encouraged to
perform additional testing on older configurations.

Partition Size

The Upgrader application is shipped with a partition of 750K, but some plug-ins may required a larger
partition to work correctly. Use the following equation to help you determine the appropriate partition
size:

Partition size = plug-in memory requirements + size of preload resources + 300K

Calculate the “plug-in memory requirements” value by choosing the plug-in with the highest memory
requirements. The plug-in documentation should provide the memory requirements of the plug-in. If
none is provided, use 200K.

Calculate the “size of preload resources” by using the Data File Memory Requirements value displayed
in the main data file window of ModifierTool.

Upgrader Plug-in Files
A plug-in implements the actual code to draw the panels and interact with the user. Each plug-in file
usually manages one or more panels, but it may also operate without any user interaction. Since only one
plug-in runs at a time, it controls the Upgrader-based program until it relinquishes control to the next,
or previous, plug-in.

A plug-in file normally contains a code resource and various resources needed by that plug-in. The plug-
in might also depend on information stored outside the plug-in file, such as shared resources stored in
the Upgrader application file, client-controlled resources in the data file, and possibly other helper
applications that are run either in the background or foreground to support the plug-in.

Upgrader Data File
The Upgrader data file contains information read by the shell and plug-ins to present the panels in the
correct order and display the panel contents. The developer of a new Upgrader-based program creates a
data file containing the information needed by the plug-in contained in the program. After the release
of the developer’s Upgrader-based program, clients (such as an IS manager) can augment the
information in the data file to adapt the program to their needs.

Each plug-in usually requires one “preference” resource in the data file, which may reference many
other resources contained in the data file. To help manipulate these many resources, editing tools are
normally provided by the developer.

Locating the Data File

When the user double-clicks the Upgrader application icon, the Upgrader searches for a single data
file in the same folder as the application. An alert allows the user to choose a data file if none or more
than one is found.

The developer should always lay out the CD-ROM or floppy to encourage the user to double-click the
Upgrader application, instead of the data file. This lessens the chance of another — perhaps
incompatible — version of the Upgrader application being launched by the Finder. We suggest hiding
the data file outside of the disk or folder’s window border.

Chapter 1: Introduction 4

Choosing an Editing Tool

To create and/or modify the resources in the data file, developers and their clients have three options:
use a Rez complier in concert with the UpgraderTypes.r file (in addition to a resource definition file
provided by each plug-in developer), use Resorcerer and our template file, or use the ModifierTool
application. All the necessary files are included on the SDK.

Each editing method has its own benefits, but Apple recommends using ModifierTool, since this
application makes it easier to maintain the integrity of complex data files. This document will focus on
the ModifierTool approach to editing data files, but the contents of the UpgraderTypes.r file is
detailed in the “Editing Upgrader Plug-ins” chapter and in the section “Upgrader API Reference” at
the end of the “Writing Upgrader Plug-ins” chapter.

Apple encourages developers who write their own plug-ins to also write a ModifierTool editor so
clients, present and future, can easily modify the plug-in’s functionally.

About ModifierTool
Most developers, and their clients, will use ModifierTool to create and change the information in their
Upgrader data file. The architecture of ModifierTool application and its editor files has been designed
to match the modular design of Upgrader and its plug-in files. ModifierTool contains a built-in editor
for the information the Upgrader application uses to load and run each plug-in in the desired order.

Using This Document
Since not all readers of this document will have the same goals, we present several strategies based on
how you may need to interact with the Upgrader and ModifierTool applications.

If you just need to make changes to the Install Mac OS 8 program or a program created by someone else,
read:

• the “Editing Upgrader Plug-ins” chapter.

If you need to create a new Upgrader-based program using existing plug-ins, read:

• the first section of the Editing Upgrader Plug-ins chapter

• any documentation that came with the plug-ins you wish to use.

If you need to write a new plug-in, read:

• the chapter “Writing Upgrader Plug-ins”

• the chapter “Writing ModifierTool Editors”, if you want to make it easy for clients to modify your
plug-in.

Chapter 1: Introduction 5

Editing Upgrader Plug-ins

This chapter describes how to edit an Upgrader data file using the ModifierTool application and
provides details about each plug-in shipped with the Install Mac OS 8 program. This chapter
describes all the resources that make up an Upgrader data file.

Using ModifierTool
To use ModifierTool, you must have at least the following minimum configuration:

• PowerPC-based computer

• Mac OS 7.1.2 or later

• 2 MB of available memory

Before you begin, make sure all the editors you’ll need are in the same folder as the ModifierTool
application. Figure 2-1 shows the typical layout of the ModifierTool application and its editor files.

Figure 2-1 ModifierTool application and editor files

We’ll use the Install Mac OS 8 program in most of our examples as we take the reader through the
editing tasks necessary to create and modify the Upgrader application-owned resources in the data
file.

Creating and Opening a Data File
To create a new data file, launch the ModifierTool application and choose New from the File menu.
You will be you asked to name the data file and choose a location to save it. Once the ModifierTool

Chapter 2: Editing Upgrader Plug-ins 6

creates the sequence resource and default settings, the main data file window will open (see Figure 2-2),
ready for you to begin defining the plug-ins that will make up your Upgrader-based program.

If you need to edit an existing data file, launch the ModifierTool application and choose Open from the
File menu then select the desired data file. You may also drop the data file icon on the ModifierTool
application icon to open the file.

NOTE

ModifierTool cannot open a data file that is on locked media or is already open for
modification by another application.

Since one only data file can be open at one time, you will need to close the currently open data file by
choosing Close from the File menu before choosing New or Open.

Using the Main Data File Window
The main data file window provides the user with access to the individual plug-in editors, as well as
Upgrader application preferences that control attributes such as the order of the plug-ins, the splash
screen picture, the default help text, and the list of System resources to be preloaded when running on
ejectable media. This window is always present as long as the data file is open. If you close this
window, the data file will be closed. If changes were made in this window (including adding or
removing plug-ins), you will be asked if you wish to save your changes before closing the window or
quitting the ModifierTool application.

Figure 2-2 Main data file window

The items in the main data file window are explained in detail below.

Plug-in Sequence:

Plug-in List Shows the current list of plug-ins in the default order they will
be presented to the user. Click on the name of a plug-in to select
it.

Edit Plug-in… Opens the editing window for the selected plug-in. This
window is implemented by an editor file with the same name
as the plug-in file and in the same folder as the ModifierTool
application. If an editor cannot be found, the plug-in info
window is opened instead.

Double-clicking on a plug-in name is a shortcut for opening a
plug-in’s editor. If no editor exists, the plug-in info window is

Chapter 2: Editing Upgrader Plug-ins 7

opened instead.

Plug-in Info… Shows the plug-in info window for the selected plug-in so
attributes of the plug-in can be changed. See the section “Using
the Plug-in Info Window” for more information about this
window.

New Plug-in… Shows an empty plug-in info window. If the user clicks OK in
the plug-in info window, the new plug-in entry will added to
the plug-in list. If a plug-in is selected in the list when clicking
New Plug-in, the new plug-in will be inserted before the
selected plug-in; otherwise, it will be added to the end of the
list.

Up Moves the selected plug-in one entry closer to the beginning of
the plug-in list.

Down Moves the selected plug-in one entry closer to the end of the
plug-in list.

Default Help Window:

Help Window Title The window title of the help window if the plug-in does not set
the help window’s name upon entry.

First PICT ID The 'PICT' resource ID of the first picture to be displayed in the
help text. See the section “Using the text editor window” in
this chapter for more information about adding pictures to your
text.

Edit Text… Opens the text editor window, so the text can be changed. See
the section “Using the text editor window” for more information
about editing text.

NOTE

Make sure to save the data file if you clicked
Remove in the file reference window.

Splash Screen PICT IDs:

Black & White Resource ID for your black and white splash screen PICT
resource. This is a B&W version of the splash screen for
monitors showing less than 256 colors. Enter 0 if you do not wish
to provide a separate B&W picture.

8-bit Color Resource ID for your 8-bit color splash screen PICT resource.
This is a color version of the splash screen for monitors showing
256 colors or more.

The default splash screen provided with Mac OS 8 data file
can be replaced, if necessary. Two 'PICT' resources should be
created, a color version and a B&W version. The dimension of
your splash screen picture should be no larger than 320 pixels in
height by 500 pixels in width. The Upgrader application will
automatically resize the window based on the size of the
picture.

Once you have created your two new 'PICT' resources follow
these instructions to replace the default splash screen resources.

Use a resource editing program, such as ResEdit or Resorcerer, to

Chapter 2: Editing Upgrader Plug-ins 8

open the data file.

1. Remove the existing splash screen 'PICT' resources of IDs
138 and 147.

2. Paste your new color splash screen 'PICT' resource into the
data file and renumber its ID to 147.

3. Paste your new B&W splash screen 'PICT' resource into the
data file and renumber its ID to 138.

4. Quit the resource editing program and open the Upgrader
application to verify that your splash screen is displayed.

If you choose to use different IDs for your splash screen 'PICT'
resources make sure to change the IDs in this window.

Other items:

Edit System Preload List… Opens the resource preload editor window so the list of System
resources to be preloaded at launch time can be modified. You’ll
only need to worry about this list if you ship a floppy disk set
which allows the user to boot from the first floppy disk. If you
do, then you may need to add System resources to this list that
plug-ins or helper applications require during their operation.
If you fail to add these additional resources to this list, extra
disk swaps back to the System floppy disk will be required,
which can degrade the user experience of your Upgrader-based
program.

Using the Plug-in Info Window
The Upgrader needs to know basic information about each plug-in, such as the plug-in’s name and where
to find the plug-in file. The plug-in info window allows the user to edit this information (see Figure 2-
3).

Figure 2-3 Plug-in info window

The items in the plug-in info window are explained in detail below.

Run Once checkbox Prevents the user from going back to this plug-in. The Go Back
button in the Upgrader-based program will automatically be
dimmed if the preceding plug-ins are set to run once.

The Environmental Filter plug-in included with the Install
Mac OS 8 program uses this feature, since the user’s machine
only needs to be checked once during the launch of the program.

Plug-in Name Any name that describes the plug-in.

Chapter 2: Editing Upgrader Plug-ins 9

Refcon A 4-byte value passed to the plug-in upon initialization. Most
plug-ins will want to use the low-word of this value to store the
resource ID of its preference resource. This allows for a single
plug-in file to be used for multiple plug-ins, each with a
different resource ID.

Cancel Ignores any changes made in the plug-in info window.

OK Keeps any changes made in the plug-in info window.

Plug-in Location:

Edit… Opens the file reference editing window to edit the location of
the plug-in file. ModifierTool uses the name of the selected
plug-in file as it appears on the disk to locate the proper
editor.

NOTE

Make sure to click OK and then save the data
file if you clicked Remove in the file reference
window.

Using the File Reference Window
The modular nature of an Upgrader-based program requires references to numerous files. Windows that
contain fields referencing a file usually have an Edit button which presents the file reference window
(see Figure 2-4). From here the user can fill in the details required to locate the file during the
operation of the Upgrader-based program.

Figure 2-4 File reference window

The items in the file reference window are explained in detail below.

File Name Name of the file. Limited to 31 characters.

Type Four character “type” of the file. Leave this field empty (no
characters, not even spaces) to cause Upgrader to ignore the
file’s type when locating the file.

Creator Four character “creator” of the file. Leave this field empty (no
characters, not even spaces) to cause Upgrader to ignore the
file’s creator when locating the file.

Chapter 2: Editing Upgrader Plug-ins 10

Select… Opens the standard Get File dialog for choosing a file. After
clicking OK in the Get File dialog, ModifierTool enters
information about the chosen file, overwriting the current
contents of the fields.

Make sure to select the desired media from the Media Type
pop-up menu before clicking the Select button to have
ModifierTool generate the appropriate path. To generate a
correct relative path, place the data file you are editing in its
actual location on your source disk before clicking Select.

 File Location:

Media Type The setting of this pop-up menu tells the Upgrader application
how to find the specified file. If media type is set to “Relative
to Document”, then the Upgrader-based program expects a
relative path from the folder that contains the Upgrader
application. If media type is set to “Full Path to Floppy” or
“Full Path to CD-ROM” then the path is assumed to be a full
path beginning with the name of the floppy or CD-ROM disk.

To support creating a net install from a set of CD-ROM or
floppy disks, the Upgrader-based program will first look in
the folder containing the data file to find a folder with the
same name as the CD-ROM of floppy disk before asking the
user to insert the disk.

Changing the Media Type pop-up menu does not automatically
modify the contents of the Path field.

Path This should be a relative path from the folder containing the
data file or a full path beginning with the name of the floppy
or CD-ROM disk. Use of a full or relative path depends on the
media type. See the “Media Type” field description for more
information.

If the path is relative, then it should start with a colon. A full
path should start with the name of the floppy of CD-ROM
disk, instead of a colon.

Using the Text Editor Window
Text stored in the data file is updated using the text editor window.

NOTE

Since the text editor window has no controls for changing the font, font size, font style or
any other text-related attribute, we suggest that you store your text in a separate
document using your favorite word processor. To change the text, copy the text from your
word processor, then paste the text into the text editor window.

The text display engine used by Upgrader supports pictures embedded within the text which is
compatible with SimpleText documents. The text display engine uses a special character (usually
Option-space, but it can be set by the plug-in) to define where the top of the picture should be drawn.
See Appendix A for more information on embedding pictures in text displayed in an Upgrader panel.

Figure 2-5 Text editor window

Chapter 2: Editing Upgrader Plug-ins 11

The items in the text editor window are explained in detail below.

Remove Deletes the text resource (type: 'TEXT' & 'styl') from the data
file and closes the text editor window.

NOTE

Make sure to click Save in the window from
which you opened the text editor window to
correctly update the data file.

Cancel Closes the text editor window without changing the text
resource.

Save Updates the text resource in the data file with the contents of
the window.

Editing the Environment Filter Plug-in
The environment filter plug-in alerts the user if the computer model is not supported or the version of
system software running is too old. For either case, the user is presented with the alert in Figure 2-6.

Plug-in file name: IncompatHW

Figure 2-6 Incompatible environment alert

No alert is presented if the environment is sufficient.

Using the Environment Filter Plug-in Editor
The environment filter editor is shown in Figure 2-7. This editor allows the developer or client to
change which computer models and system software versions the Upgrader-based program will run on.

Chapter 2: Editing Upgrader Plug-ins 12

Figure 2-7 Environmental Filter plug-in editor

The items in the environment filter plug-in editor window are explained in detail below.

Minimum Released System… Enter the minimum Mac OS system version on which your
Upgrader-based program should be run. Since the Upgrader
application requires at least system 7.0, enter a version of 7.0.0
or higher.

Machine ('mach') ID List:

This is a list of the computer models supported/not supported
(see “Machines in List Are:” below) by your Upgrader-based
program. Each computer model is identified by its gestalt
'mach' ID. You can add IDs to or remove IDs from this list. See
the “Gestalt.h” file on the most recent ETO CD for a list of
current gestalt 'mach' IDs.

Machines in List Are: These radio buttons specify whether or not the computer models
in the machine ID list (see above) are supported for
installation.

IMPORTANT

There is only ONE machine ID list — selecting
a different radio button does not give you a
different list. You must decide whether to
specify either supported machines or
unsupported machines.

Machine ID Enter a new machine ID number you wish to add to the ID list.
If you enter an ID number that is not in the list, the “<< Add”
button will be enabled.

Remove Removes the selected ID from list.

<< Add Adds the ID in the “Machine ID” field to the list if it doesn’t
already exist.

Remove Deletes the environment filter plug-in resources from the data
file and closes the editor window.

Cancel Closes the editor window without updating the environment
filter plug-in resources.

Save Updates the environment filter plug-in resources in the data
file with the contents of the window.

Chapter 2: Editing Upgrader Plug-ins 13

Editing the Welcome Plug-in
The welcome plug-in presents a single panel for displaying a combined graphic and text message that
describes the rest of the user experience. Figure 2-8 shows the Welcome plug-in panel in the Install
Mac OS 8 program.

Plug-in file name: Welcome

Figure 2-8 Welcome plug-in panel

The Install Mac OS 8 welcome plug-in uses text superimposed on top of a graphic (smiling Mac OS dude
with the numbers 1 through 4).

Most plug-ins contain a help window (Figure 2-9), which is accessible via the Help icon button().

Figure 2-9 Help window

The content of the help window is defined by the developer or client. If the user leaves the help
window open while moving to another plug-in, the content will automatically be updated with the
next plug-in’s help text.

Chapter 2: Editing Upgrader Plug-ins 14

Using the Welcome Plug-in Editor
The welcome editor is shown in Figure 2-10. This editor allows the developer or client to change panel
text, graphic, and help text.

Figure 2-10 Welcome editor window

The items in the welcome plug-in editor window are explained in detail below.

Panel Title Enter the name that shows at the top of the panel.

Color Background 'PICT' ID Enter the ID of the 'PICT' resource that you wish displayed in
the background of the window. To support displaying a B&W
picture when the monitor is displaying less than 256
colors/grays, also add a 'PICT' resource with an ID of 1 plus the
ID entered in this field.

The picture must be exactly 205 pixels in height by 506 pixels in
width; otherwise, the picture will be scaled to fit the panel.
ModifierTool does not provide a facility for adding, removing
or changing 'PICT' resources inside the data file. Use your
favorite resource editing program, such as ResEdit or
Resorcerer, to add your pictures to the data file.

Main Text:

Edit Main Text… Opens the text editor window so the main text can be changed.

Help Window Text:

Text Location: Select Embedded Text to store the text inside the data file;
otherwise, select Separate File to store the text in a text
document. If you change the text location after defining the
text or a file reference, this data will be deleted when saving
the window, since only the text or a file reference is saved, not
both.

Edit Help Text/File Ref… Opens the text editor window if the text is stored in the data
file; otherwise, opens the file reference window if stored in a
separate text file.

First Picture ID Enter the ID of the first 'PICT' resource embedded in the text.

Remove Deletes the welcome plug-in resources from the data file and
closes the editor window.

Cancel Closes the editor window without updating the welcome plug-

Chapter 2: Editing Upgrader Plug-ins 15

in resources.

Save Updates the welcome plug-in resources in the data file with
the contents of the window.

Editing the Target Selection Plug-in

The target selection plug-in presents a single panel to allow the user to choose the destination disk.
Figure 2-11 shows the Target Selection plug-in panel in the Install Mac OS 8 program.

Plug-in file name: TgtSelect

Figure 2-11 Target selection plug-in panel

The target selection plug-in recommends the hard drive on which the user is most likely to install. The
search for a valid destination disk starts with the selected device in the Startup Device control panel
(if writable), the internal hard disk, any connected SCSI hard disk, and finally any writable device. If
an acceptable destination disk is not found, the disk information is hidden, the Select button is
disabled, and instructions of how to proceed are displayed in the message area.

Disk information is displayed for the selected destination disk. If the blessed System Folder exists on
the disk, its version number is displayed; otherwise, the text “None Installed” is displayed. In
addition to the disk’s available space, the estimated disk space required for the recommend
installation provided by the developer or client is displayed.

If the installation will install an entire System Folder, then the clean install option is available to the
user so a new System Folder can be created, instead of upgrading the existing System Folder on the
chosen destination disk. If the user chooses to install into an already upgraded System Folder, then an
alert allows the user to skip directly to the custom installation panel (see Figure 2-12), bypassing the
important information and software license panels. The reinstall alert will not be shown if the user has
selected the clean install option.

Chapter 2: Editing Upgrader Plug-ins 16

Figure 2-12 Reinstall alert

Using the Target Selection Plug-in Editor
The target selection editor is shown in Figure 2-13. This editor allows the developer or client to change
the following items in the target selection plug-in panel:

• panel title name

• panel prompt string

• whether a clean install is allowed.

• approximate disk space required by a recommended installation

• reinstall alert version number and text

• help window text

Figure 2-13 Target selection editor window

The items in the target selection plug-in editor window are explained in detail below.

Panel Title Enter the name that shows at the top of the panel.

Panel Prompt Enter the text that prompts the user to perform the action of
selecting an appropriate destination disk.

Clean install allowed Select this option if the recommended installation can create a
valid new System Folder.

Chapter 2: Editing Upgrader Plug-ins 17

Required Disk Space Enter the number of kilobytes (1 kilobyte = 1024 bytes) required
by the recommended installation.

NOTE

Given the differences between the disk space
used on small capacity versus large capacity
HFS-formatted hard drives, the value you
specify must be an averaged estimation. For
most products, the disk space taken by your
recommended installation on a 4 GB hard disk
will cover the majority of installation
scenarios.

Help Window Text:

Text Location: Select Embedded Text to store the text inside the data file;
otherwise, select Separate File to store the text in a text
document. If you change the text location after defining the
text or a file reference, this data will be deleted when saving
the window, since only the text or a file reference is saved, not
both.

Edit Help Text/File Ref… Opens the text editor window if the text is stored in the data
file; otherwise, opens the file reference window if stored in a
separate text file.

First Picture ID Enter the ID of the first 'PICT' resource embedded in the text.

Reinstall or Add/Remove Alert:

Branch based on Mac OS version… Select this option to present the reinstall alert so the user can
jump directly to the custom installation panel when the version
of the system software on the destination disk matches.

Mac OS Version Enter the version of system software on the chosen destination
disk that will trigger the reinstall alert. This should normally
be the same version as the system software being installed.

Message Enter the text to be displayed in the reinstall alert.

Reinstall Plug-in Enter the name of the plug-in to advance to when the Reinstall
button is clicked by the user.

Add/Remove Plug-in Enter the name of the plug-in to advance to when the
Add/Remove button is clicked by the user.

Required Mac OS Version Message:

Required target SSW version… Select this option to prevent the user from continuing if the
version of the system software on the chosen destination disk is
not within the specified range. This option is most often used
for installations that only upgrade specific versions of Mac OS.

Lowest Mac OS Version Enter the minimal required version of system software on the
chosen destination.

Highest Mac OS Version Enter the maximum required version of system software on the
chosen destination disk. This should normally be the same
version as the system software being installed.

Chapter 2: Editing Upgrader Plug-ins 18

Message Enter the text to be displayed in the message area of the target
selection panel.

Remove Deletes the target selection plug-in resources from the data file
and closes the editor window.

Cancel Closes the editor window without updating the target selection
plug-in resources.

Save Updates the target selection plug-in resources in the data file
with the contents of the window.

Editing the Read Me Plug-in
The read me plug-in provides a scrollable text message area for presenting important information for
the user. Figure 2-14 shows the read me plug-in panel in the Install Mac OS 8 program.

Plug-in file name: IInfo

The Save and Print buttons are enabled if the user can save and print the text. When saving, a
SimpleText document is created.

Figure 2-14 Read Me plug-in panel

Using the Read Me Plug-in Editor
The read me editor is shown in Figure 2-15. This editor allows the developer or client to change the
panel title, text, and help text.

Chapter 2: Editing Upgrader Plug-ins 19

Figure 2-15 Read Me editor window

The items in the Read Me plug-in editor window are explained in detail below.

Panel Title Enter the name that shows at the top of the panel.

Main Text:

Text Location: Select Embedded Text to store the text inside the data file;
otherwise, select Separate File to store the text in a text
document. If you change the text location after defining the
text or a file reference, this data will be deleted when saving
the window, since only the text or a file reference is saved, not
both.

Edit Main Text/File Ref… Opens the text editor window if the text is stored in the data
file; otherwise, opens the file reference window if stored in a
separate text file.

First Picture ID Enter the ID of the first 'PICT' resource embedded in the text.

Help Window Text:

Text Location: Select Embedded Text to store the text inside the data file;
otherwise, select Separate File to store the text in a text
document. If you change the text location after defining the
text or a file reference, this data will be deleted when saving
the window, since only the text or a file reference is saved, not
both.

Edit Help Text/File Ref… Opens the text editor window if the text is stored in the data
file; otherwise, opens the file reference window if stored in a
separate text file.

First Picture ID Enter the ID of the first 'PICT' resource embedded in the text.

Remove Deletes the read me plug-in resources from the data file and
closes the editor window.

Cancel Closes the editor window without updating the read me plug-in
resources.

Save Updates the read me plug-in resources in the data file with the
contents of the window.

Chapter 2: Editing Upgrader Plug-ins 20

Editing the Software License Plug-in
The software license plug-in presents a single panel to allow the user to read and agree to the software
license before proceeding. As an option, multiple language versions of the text can be provided to
address certain multi-country legal requirements. Figure 2-16 shows the software license plug-in panel
in the Install Mac OS 8 program.

Plug-in file name: SWLicense

Figure 2-16 Software license plug-in panel

A pop-up menu appears in the top-right corner of the panel when multiple language versions of the
license are available.

When the user clicks Continue, the Agree/Disagree alert is presented (see Figure 2-17) to force the user
to explicitly denote his or her acceptance or non-acceptance to the license.

Figure 2-17 Agree/Disagree alert

If the user clicks Agree in the Agree/Disagree alert, the user advances to the next panel. If the user
clicks Disagree, then the user goes to a panel defined by the developer. In the case of the Install
Mac OS 8 program, then user is taken back to the Welcome panel.

Using the Software License Plug-in Editor
The software license editor is shown in Figure 2-18. This editor allows the developer or client to change
the license text and add/subtract the provided languages of the license text.

Chapter 2: Editing Upgrader Plug-ins 21

Figure 2-18 Software license editor window

The items in the software license plug-in editor window are explained in detail below.

Languages:

Edit Language… Shows the language editor window for the selected language, so
attributes of the language can be changed.

Double-clicking on a language name is a shortcut for clicking
the Edit Language button.

New Language… Shows an empty language editor window. If the user clicks OK
the new language entry will added to the languages list. If a
language is selected in the list when clicking New Language,
the new language will be inserted before the selected language;
otherwise, it will be added to the end of the list.

Up Moves the selected entry one position closer to the beginning of
the languages list.

Down Moves the selected entry one position closer to the end of the
languages list.

Default Language Index The language entry index (starting with 1) which will be used
as the default language if the running system’s primary
language ID does not match a language ID contained in the
language list.

Help Window Text:

Text Location: Select Embedded Text to store the text inside the data file;
otherwise, select Separate File to store the text in a text
document. If you change the text location after defining the
text or a file reference, this data will be deleted when saving
the window, since only the text or a file reference is saved, not
both.

Edit Help Text/File Ref… Opens the text editor window if the text is stored in the data
file; otherwise, opens the file reference window if stored in a
separate text file.

First Picture ID Enter the ID of the first 'PICT' resource embedded in the text.

Remove Deletes the software license plug-in resources from the data
file and closes the editor window.

Chapter 2: Editing Upgrader Plug-ins 22

Cancel Closes the editor window without updating the software
license plug-in resources.

Save Updates the software license plug-in resources in the data file
with the contents of the window.

Multilingual Limitations

Understanding the limitations of presenting multiple languages on a single system will help you make
the appropriate tradeoffs when setting up the software license plug-in. The first question to ask is
what the absolute minimum legal requirements for your software license are. Normally, you’ll choose
one of the following:

• Only one language is required.

• Multiple single-byte character language text is required, but without multilingual controls.

• Multiple single-byte and two-byte character language text is required, but without multilingual
controls.

• Multiple single-byte character language text with multilingual controls is required.

• Multiple single-byte and two-byte character language text with multilingual controls is required.

You will want to select the option with the least amount of multilingual complexity because of two
fundamental limitations of the system software: the fonts installed may not support the language being
displayed, and even if a language kit installed allows for correct display of the text the controls may
not be displayed correctly.

Since you will not be able to depend on having fonts installed that fully support every language, even
presenting multiple single-byte character languages together may be a problem. For example, the U.S.
version of the Geneva font does not contain some of the accented characters that appear in the French
version of that font. This limits the characters that can be used without causing boxes to appear when
the character doesn’t exist.

For systems that have one or more language kits installed, the software license text should be drawn
correctly, but the button text will be drawn as “garbage” characters. A workaround for this problem is to
leave the buttons of such languages in the main language of the Upgrader application.

As you can see, this version of the software license does not solve all the problems inherit in displaying
multiple languages. The implementation of the software license plug-in has been designed to address
minimal legal requirements, instead of providing a full-featured multilingual facility. This is why we
suggest that you consider these limitations carefully when deciding which languages to mix.

Chapter 2: Editing Upgrader Plug-ins 23

Figure 2-19 Language editor window

The items in the language editor window are explained in detail below.

License Text:

Text Location: Select Embedded Text to store the text inside the data file;
otherwise, select Separate File to store the text in a text
document. If you change the text location after defining the
text or a file reference, this data will be deleted when saving
the window, since only the text or a file reference is saved, not
both.

Edit Main Text/File Ref… Opens the text editor window if the text is stored in the data
file; otherwise, opens the file reference window if stored in a
separate text file.

First Picture ID Enter the ID of the first 'PICT' resource embedded in the text.

Language ID Enter the ID (code) of the language. This allows the software
license plug-in to default to the appropriate language version
of the text based on the primary language of the running system.

See the “Script.h” file on the most recent ETO CD for a list of
the current language codes.

Two-Byte Language Select this option if the language defined requires a two-byte
script system, such as Japanese or Chinese. This allows the
software license panel to disable the language name in the pop-
up menu if the system software is incapable of correctly
displaying the text.

Panel Title Enter the name that shows at the top of the panel.

Language Name Enter the name of the language. If possible, we suggest that you
use the name as written in its native language. Exceptions to
this guideline are two-byte languages, which may be
displayed as garbage unless written in the localized language
of the program.

Chapter 2: Editing Upgrader Plug-ins 24

Continue Button Enter the name of the Continue button.

Go Back Button Enter the name of the Go Back button.

Save Button Enter the name of the Save button.

Print Button Enter the name of the Print button.

Agree/Disagree Alert:

Agree Button Enter the name of the Agree button.

Disagree Button Enter the name of the Disagree button.

Message Enter the text to be displayed in the Agree/Disagree alert.

Goto on Disagree Enter the name of the plug-in to go back to when the user clicks
Disagree.

Remove Deletes the language entry.

Cancel Closes the language editor window without updating the
language entry.

OK Updates the language entry with the contents of the window.

Editing the Installation Plug-in
The installation plug-in allows the user to select a set of software products to install and to begin the
actual installation process. This section discusses the three main user-visible windows making up the
installation plug-in: the easy installation panel, the custom installation panel, and the options dialog.

Plug-in file name: InstallMod

IMPORTANT

You must use version 4.0.8 or later of the Apple Installer with version 1.1.1 of the
installation plug-in.

Easy Installation Panel
The easy installation panel allows the developer to provide the user with a choice of optional
software products to be installed in addition to the required base set of software (see Figure 2-20). When
the user clicks Start, the required software installers are run first, then any selected optional software
installers are run. If the installer to be run is the Apple Installer, then an easy installation is
automatically performed without user intervention.

Chapter 2: Editing Upgrader Plug-ins 25

Figure 2-20 Easy Installation panel

The software list allows the user to check the software item to be installed and provides status on the
installer. The exact wording of the status description depends on whether the user is in the easy or
custom installation panel, but the underlying condition is the same. The possible status descriptions are:

Will be installed The user has selected the software item, and it will be
installed when the user clicks Start.

Will not be installed The user has not selected the software item.

Currently being installed The software installer is currently running.

Installed successfully The software item was successfully installed. If the user clicks
Start again, this item will be skipped.

Partially installed This is a software item that has parasites, but one or more of
the parasites did not complete while this item was installing.
A parasite software item is a special item that is always run if
the previous item completes successfully. Parasites are used to
fix or enhance the actions of the previous item, but are hidden
from the user. If the user clicks Start again, the parasites that
did not complete will be run again. (Apple Installer only)

Installation canceled The installation was canceled by the user. If the user clicks
Start again, this installer will be run again. (Apple Installer
only)

Installation error The installation was stopped because of an error the Apple
Installer encountered, such as a locked file or lack of disk space.
If the user clicks Start again, this installer will be run again.
(Apple Installer only)

If the user goes to the previous plug-in, the status of all software items will be reset to their original
default values.

The additional options available to the user depend on the developer. The Customize button takes the
user to the custom installation panel, and the Options button opens the options dialog.

Chapter 2: Editing Upgrader Plug-ins 26

Custom Installation Panel
The custom installation panel shows the required base items so the user can interact directly with each
Apple Installer-based software installer (see Figure 2-21). When the installation starts, the user is
allowed to interact with the Installer as if they launched it from the Finder. When the installation or
removal is complete, the next installer program is launched.

Figure 2-21 Custom Installation panel

Options Dialog
The user can change the default settings of the disk checking and disk driver updating operations from
within the options dialog. The settings accessible to the user within the options dialog are defined by
the developer. Figure 2-22 shows the three possible versions of the options dialog.

Figure 2-22 Three faces of the options dialog

Chapter 2: Editing Upgrader Plug-ins 27

Using the Installation Plug-in Editor
The installation editor is shown in Figure 2-23. This editor allows the developer or client to change the
presentation and functionality of the installation plug-in panels:

Figure 2-23 Installation editor window

The items in the installation plug-in editor window are explained in detail below.

Software Installers:

Edit Item… Shows the software installer item window for the selected
item. Double-clicking on a software item name is a shortcut for
clicking the Edit Item button.

New Item… Shows an empty software installer item window. If the user
clicks OK, the new item entry will added to the software
installers list. If an item is selected in the list when clicking
New Item, the new item will be inserted before the selected
item; otherwise, it will be added to the end of the list.

Up Moves the selected item one entry closer to the beginning of the
software installers list. If the software item has parasites, you
move them up or down separately.

W A R N I N G

Take care when reordering the software items
that are marked as required. All required
software items must precede the non-required
software items. Any required software item
listed after the first non-required software item
will not be recognized by Upgrader as being
required.

Down Moves the selected item one entry closer to the end of the
software items list.

Remapped Machine ID List

Unsupported ID The gestalt ID of a machine that one or more of the specified
Apple Installer-based Installer scripts were not designed to
install on. See the “Gestalt.h” file on the most recent ETO CD

Chapter 2: Editing Upgrader Plug-ins 28

for a list of current gestalt 'mach' IDs. The Add button is
enabled if the value entered is not already in the list.

Supported ID The gestalt ID of a machine that the unsupported machine ID
should be remapped to. If a listed unsupported ID matches the
ID of the machine, then its remapped ID is passed to the Apple
Installer upon launch of each Installer script. The Installer
script will then make decisions as if it is actually running on
the older machine. See the document Installer 4.0.7 Technical
Guide for more information about the remapping functionality.

Remove Removes the selected ID entry from list.

<< Add Adds the unsupported/supported ID pair to the remapped
machine ID list. The list is automatically sorted by the
unsupported ID value.

Easy Prompt Enter the prompt text displayed in the easy installation panel.

Since both easy and customs prompts are limited to two lines,
please verify that your text fits in the actual panel.

Custom Prompt Enter the prompt text displayed in the custom installation
panel.

Target Selection plug-in name The name of the plug-in to go back to if the destination disk
unexpectedly disappears. This will usually be the target
selection (“TgtSelect”) plug-in.

Remove Deletes the installation plug-in resources from the data file
and closes the editor window.

Cancel Closes the editor window without updating the installation
plug-in resources.

Save Updates the installation plug-in resources in the data file with
the contents of the window.

Chapter 2: Editing Upgrader Plug-ins 29

Figure 2-24 More installation plug-in options window

The items in the more installation plug-in options window are explained in detail below.

Interface Options:

Both installation panels Select this option to show both the easy and custom
installation panels.

Easy installation panel only Select this option to show the easy installation panel only. In
this case, the Customize button will be hidden.

Custom installation panel only Select this option to show the custom installation panel only. In
this case, the Don’t Customize button will be hidden.

Cleanup Application:

Run Cleanup Application Select this option to run the clean up application following the
successful completion any installation.

Edit… Click to define the file location of the clean up application.

Disk Checking:

Allow Disk Checking Select this option to run the disk checking application before
starting the actual installation.

Run Cleanup Application Select this option to enable the user to turn off the disk
checking operation from within the options dialog.

Edit… Click to define the file location of Apple’s “DFAServer”
application. Currently, “DFAServer” version 1.0 is the only
supported application for this option.

Driver Updating:

Allow Drive Updating Select this option to run the driver updating application before
starting the actual installation.

Edit… Click to define the file location of Apple’s “Drive Setup”
application. Currently, “Drive Setup” version 1.3 or later is the
only supported application for this option.

Chapter 2: Editing Upgrader Plug-ins 30

Help Window Text:

Text Location: Select Embedded Text to store the text inside the data file;
otherwise, select Separate File to store the text in a text
document. If you change the text location after defining the
text or a file reference, this data will be deleted when saving
the window, since only the text or a file reference is saved, not
both.

Edit Help Text/File Ref… Opens the text editor window if the text is stored in the data
file; otherwise, opens the file reference window if stored in a
separate text file.

First Picture ID Enter the ID of the first 'PICT' resource embedded in the text.

Cancel Closes the more installation plug-in options window,
discarding any changes made in the window.

OK Records the changes made in the window.

Figure 2-25 Software item window

The items in the software item window are explained in detail below.

Name Enter the name of the item as you wish it to appear to the user
in the software list.

Interface Options:

Required Select this option to make this item part of the required base
installation. The software item will be hidden in the easy
installation panel and will appear as initially selected in
custom installation panel.

Initially selected Select this option to have the software item initially selected
in both the easy and custom installation panels. (That is, unless
it is also required — see above.)

Suppress Setup Func. Dialogs Select this option to suppress the Installer Script’s software
license window (if it has one), or any window displayed from
within the setup function code resource. See the document
Installer 4.0.7 Technical Guide for more information about the
setup function.

Parasite to Preceding Select this option to signify that the software installer item is
a parasite of the preceding item. Parasites will be hidden from

Chapter 2: Editing Upgrader Plug-ins 31

the user and run whenever the software installer preceding it
(another parasite or a host) successfully completes. This
feature enables a developer to patch an installer. The first
software item cannot be a parasite.

Preflight Function:

Code Rsrc Type The resource type of the preflight code resource.

Code Rsrc ID The resource ID of the preflight code resource.

Code Rsrc RefCon A 4-byte value passed to the preflight code resource.

Application Click Edit to define the file location of the installer program.
Normally, this is the Apple Installer, but can be any
application.

NOTE

The Apple Installer and its Installer script
must be located on the same source disk.

Document Click Edit to define the file location of the installer document
that support 68K- or PPC-based computers. If not file is defined
for this field, but the PPC Only Document field has been define,
then the installation plug-in automatically hides this
software item when running on a 68K-based computer.

PPC Only Document Click Edit to define the file location of the installer document
to use when running on a PowerPC-based computer. If both
document fields are defined, then the installation plug-in
automatically selects the document based on the processor type.

Remove Deletes the software installer item.

Cancel Closes the software installer item window without updating
the software installer item.

OK Updates the software installer item with the contents of the
window.

Extending the Installation Plug-in

Creating a Preflight Function

A preflight function attached to a software item can determine if the item should be hidden or checked
at runtime, overriding the default attributes specified in the data file. This might be necessary if a
specific installer program is designed to work on a subset of the environments the Upgrader-based
program supports.

Developers can perform the following runtime decisions:

• Show or hide the software item in the easy installation panel, custom installation panel, or both
panels. This allows one or more installers to be used to install a single product, each designed for a
particular environment. To handle this case, the developer just needs to write a preflight function
to show the appropriate one. The installation plug-in already uses this strategy for implementing
its built-in support for running the correct Apple Installer script based on the processor type (68K or
PPC) using the two document fields provided for each software item.

Chapter 2: Editing Upgrader Plug-ins 32

• Check or uncheck a software item based on an environmental factor. For example, the Install
Mac OS 8 Upgrader-based program initially selects the Apple Location Manager item when
running on PowerBooks.

Routine Definition:

// Result definition
enum {

kNoError = 0,
kInternalError = -1

};

typedef SInt32 SoftwareInstallerPreflightResult;

// Parameter block definition
struct SoftwareInstallerPreflightPBRec {

// Fields set on entry
SInt16 fDestinationVRefNum;
SInt32 fRefCon;
Boolean fDoingCleanInstall;

// Fields set by you on exit
Boolean fSkipOnEasy;
Boolean fSkipOnCustom;
Boolean fOverrideDefaultSelection;
Boolean fSelectIfOverridden;

};]

typedef struct SoftwareInstallerPreflightPBRec SoftwareInstallerPreflightPBRec,
*SoftwareInstallerPreflightPBPtr;

Field Descriptions:

fDestinationVRefNum Volume RefNum of selected destination disk.

fRefCon 32-bit value passed to the code resource from data file.

fDoingCleanInstall True if user has specified a clean install.

fSkipOnEasy If true, forces the software installer to be hidden and skipped
when running in Easy HI mode.

fSkipOnCustom If true, forces software installer to be hidden and skipped when
running in Custom HI mode.

fOverrideDefaultSelection If true, forces initial selection state of software installer
checkbox to that specified in the fSelectIfOverridden field.

fSelectIfOverridden Selection state of software installer checkbox if
fOverrideDefaultSelection field is true.

Creating a Cleanup Application

The cleanup application is run after any successful installation to perform post-installation disk
modifications. It’s best to perform all cleanup operations within the software installers themselves, but
sometimes you may not have control over the actions of the installers and will need a way to clean up
the disk after the installation. Since the cleanup application is given no indication of which installers
were run, your cleanup tasks must handle all possible installation combinations.

The cleanup application is launched with two additional parameters in the 'oapp' or 'odoc' Apple
event — the selected destination disk and the process serial number of the Upgrader application. After

Chapter 2: Editing Upgrader Plug-ins 33

being launched, the cleanup application should perform its tasks, then send a conclusion Apple event
back to the installation plug-in before quitting.

The following parameters are included by the installation plug-in with the 'oapp' or 'odoc' Apple
event upon launch of the cleanup application:

Target volume The vRefNum of the selected destination disk.
Parameter keyword: ' vtgt'
Data type: typeShortInteger

Upgrader process serial number The process serial number of the Upgrader application, so you
can send the conclusion Apple event back to the Upgrader
application. This parameter is included because the address
you receive in the keyAddressAttr or keyOriginalAddressAttr
parameters will always be the Finder.
Parameter keyword: 'spsn'
Data type: typeProcessSerialNumber

A conclusion Apple event that must be sent to the installation plug-in (using the Upgrader’s address) by
the cleanup application before the cleanup application quits:

Event class: 'pma!'; Event ID: 'revl'. No additional parameters are necessary.

Launching Other Applications

Most any application can be specified to be launched by the installation plug-in to perform the
installation tasks for a software item. The application will be launched by the installation plug-in
with an 'oapp' Apple event if no document is specified, or an 'odoc' Apple event if a document is
specified. When the installation plug-in noticed the application has quit, it sets the status of the item
to “Installed successfully” and launches the next software item, if any.

If the application being launched will force other applications to be quit or will force a restart when it
completes, then it must be the last software item in the list.

Editing the Conclusion Plug-in
The conclusion plug-in displays an alert informing the user that the process is complete, but gives the
user the option to go back and perform steps again, if necessary. Figures 2-26 and 2-27 show the
conclusion plug-in alerts in the Install Mac OS 8 program.

Plug-in file name: Conclusion

Figure 2-26 Conclusion plug-in alert with default quit message

Chapter 2: Editing Upgrader Plug-ins 34

Figure 2-27 Conclusion plug-in alert with default restart message

Using the Conclusion Plug-in Editor
The conclusion editor is shown in Figure 2-28. This editor allows the developer or client to change the
message shown in the conclusion alert and the plug-in to go back to when the user clicks Continue.

Figure 2-28 Conclusion editor window

The items in the conclusion plug-in editor window are explained in detail below.

Use Custom Message Select this option to override the default text and use the text
provided in the Quit Message and Restart Message field in the
alert. You may want to provide you own custom messages if the
default messages not appropriate in the context of your
Upgrader-based program.

Quit Message Enter the custom message that will show in the quit alert.

The default quit message is:

“The installation process has finished.
Click Quit to leave this program.
Click Continue to install other software.”

Restart Message Enter the custom message that will show in the restart alert.

The default restart message is:

“The installation process has finished.
Click Restart to use your new software.
Click Continue to install other software.”

Goto on continue The name of the plug-in to go back to when the user clicks
Continue in the conclusion alert. This will usually be the
preceding plug-in.

Remove Deletes the conclusion plug-in resources from the data file and
closes the editor window.

Chapter 2: Editing Upgrader Plug-ins 35

Cancel Closes the editor window without updating the conclusion plug-
in resources.

Save Updates the conclusion plug-in resources in the data file with
the contents of the window.

Chapter 2: Editing Upgrader Plug-ins 36

Upgrader Plug-ins Reference

Global Data

Target Selection Plug-in Global Data

Data types read and set:

Destination Disk The volume refnum of the currently chosen destination disk.
(Type: 'trgt', Data: 2-byte signed integer)

Clean Install Flag A flag designating whether the clean install option has been
selected by the user.
(Type: 'clin', Data: 1-byte Boolean)

Data types set only:

Goto Custom Installation Flag A flag set to true if the user clicks the Add/Remove button in
the reinstall alert; otherwise, it is set to false.
(Type: 'incu', Data: 1-byte Boolean)

Installation Plug-in Global Data

Data types read:

Destination disk The volume refnum of the currently chosen destination disk.
(Type: 'trgt', Data: 2-byte signed integer)

Clean install flag If true, tells the Apple Installer for the first software item that
a clean install has been requested by the user.
(Type: 'clin', Data: 1-byte Boolean)

Goto custom installation flag If true, the installation plug-in goes straight to the custom
installation panel.
(Type: 'incu', Data: 1-byte Boolean)

Data types set:

Restart required flag A flag designating whether a forced restart is required or not.
(Type: 'rsrq', Data: 1-byte Boolean)

Conclusion Plug-in Global Data

Data types read:

Restart required flag A flag designating whether a forced restart is required or not. If
this type is not defined, the conclusions plug-in uses the quit
alert.

Chapter 2: Editing Upgrader Plug-ins 37

Resources
These resources are contained in the data file.

The Sequence Resource ('tsqc')
The sequence resource is the single most important resource used by the Upgrader. It contains the default
sequence of plug-ins, specific flags for each plug-in, the IDs of the resources used to find plug-ins, the
IDs of resources which are used to preload plug-in resources and other data which isn’t directly used by
the plug-ins, such as the IDs of splash screen 'PICT's, etc.

#define ShellFlags \
fill bit[16] /* Reserved */

type kSequenceResourceType {
switch {

case format2:
key integer = 2; // Format version
ShellFlags; // Flags
integer BWSplashPict; // B&W splash screen picture - 'PICT' Rsrc ID
integer ColorSplashPict; // 8-bit color splash screen picture - 'PICT'ID
integer systemResListID; // System file preload list - 'RES#' ID
integer helpPanelResID; // Dialog ID of help window - 'DITL' Rsrc ID
integer defaultHelpTitleStrResID;// Help window title - 'STR ' Rsrc ID
integer defaultHelpTextResID; // Default help text - 'TEXT' Rsrc ID
integer defaultHelpBasePICTResID;// First picture in help text - 'PICT' Rsrc ID
pstring; // First plug-in name
align word;
unsigned integer = $$CountOf(pluginList);
wide array pluginList {

unsigned longint onlyRunOnce = 1; // Plug-in flags
pstring; // Plug-in name
align word;
pstring; // Default next plug-in name
align word;
unsigned longint; // RefCon value
unsigned integer; // Plug-in file location - 'flrf'Rsrc ID
unsigned integer; // Data file preload list - 'RES#'Rsrc ID

};
};

};

Field descriptions
B&W Splash 'PICT' ID The ID of a 'PICT' resource to be displayed when the main

monitor has a color depth of less than 256 colors. Use 0 if you do
not wish to provide a separate B&W picture.

The dimension of your splash screen picture should be no larger
than 320 pixels in height by 500 pixels in width. The Upgrader
application will automatically resize the window based on the
size of the picture.

Color Splash 'PICT' ID The ID of a 'PICT' resource to be displayed when the main
monitor has a color depth of 256 or more colors.

System Preload List The ID of a 'RES#' resource containing a list of the resources
that must be preloaded and marked as non-purgeable when the
System file is on ejectable media, such as a floppy disk. You’ll
only need to worry about this list if you ship a floppy disk set
which allows the user to boot from the first floppy disk. If you
do, then you may need to add System resources to this list that

Chapter 2: Editing Upgrader Plug-ins 38

plug-ins or helper applications require during their operation.
If you fail to add these additional resources to this list, extra
disk swaps back to the System floppy disk will be required,
which can degrade the user experience of your Upgrader-based
program.

Default Help Panel Dialog ID The ID of the 'DITL' resource of the default help window. This
value should be 1050.

Default Help Window Title Ref. The ID of a 'STR ' resource containing the title of the default
help window.

Default Help Window Text Ref. The ID of 'TEXT' (and optional 'styl') resource containing the
default help text for plug-ins which do not provide their own
text.

Default Help Window First Pict. The ID of a 'PICT' resource of the first resource to be displayed
in the default help text panel.

First Plug-in Name The name of the plug-in that is to be called first. The
Upgrader will use this to begin building the default plug-in
sequence list.

onlyRunOnce Flag Use the onlyRunOnce flag if the user should be prevented from
going back to this plug-in. The Go Back button in the Upgrader-
based program will automatically be dimmed if the preceding
plug-ins are set to run once.

The Environmental Filter plug-in included with the Install
Mac OS 8 program uses this feature, since the user’s machine
only needs to be checked once during the launch of the program.

Plug-in Name The name of the plug-in to be added to the list.

Next Plug-in Name The name of the default next plug-in that the Upgrader is to
look for once this plug-in is finished.

RefCon Value A 4-byte value passed to the plug-in upon initialization. Most
plug-ins will want to use the low-word of this value to store the
resource ID of its preference resource. This allows for a single
plug-in file to be used for multiple plug-ins, each with a
different resource ID.

Plug-in File Ref. The ID of an 'flrf' resource which defines the location of the
plug-in. Integer values 1 and 0 are reserved for use by the
Upgrader.

System Preload List ID The ID of a 'RES#' resource, which contains the types and IDs
of all the specific plug-in resources contained within the data
file which are to be preloaded. You’ll only need to worry about
this list if you ship a floppy disk set which allows the user to
boot from the first floppy disk. If you do, then you may need to
add System resources to this list that plug-ins or helper
applications require during their operation. If you fail to add
these additional resources to this list, extra disk swaps back to
the System floppy disk will be required, which can degrade
the user experience of your Upgrader-based program.

Chapter 2: Editing Upgrader Plug-ins 39

The File Reference Resource ('flrf')
The file reference resource is the standard method of defining the location of a file on your source disks.
Plug-in writers will need to create one of these for their plug-in and add it to the data file. The ID of
the resource will then need to be added to that plug-in’s information in the Sequence resource so that
the Upgrader can find the 'flrf' resource and use it to locate the plug-in.

Plug-ins can also use the file reference resource to specify applications, documents and other files that
the plug-in uses.

#define kUnknownMedia 0 // Net install setup on CD-ROM. Use relative path.
#define kFloppyDiskMedia 1 // Multiple floppy disk set. Use full path.
#define kCDROMDiskMedia 2 // Multiple CD-ROM disk set. Use full path.

#define FileRefFlags \

fill bit[16] /* Reserved */

type 'flrf' {
switch {

case format0:
key integer = 0; // Format version
FileRefFlags; // Flags
literal longint; // File Type
literal longint; // File Creator
longint; // File Creation Date (optional)
pstring; // File Path
align word;
pstring; // File Name
align word;

};
};

 Field descriptions

Media Type This value tells the Upgrader application how to find the
specified file. If media type is kUnknownMedia, then the
Upgrader-based program expects a relative path from the
folder that contains the Upgrader application. If media type is
kFloppyDiskMedia or kCDROMDiskMedia then the path is
assumed to be a full path beginning with the name of the
floppy or CD-ROM disk.

To support creating a net install from a set of CD-ROM or
floppy disks, the Upgrader-based program will first look in
the folder containing the data file to find a folder with the
same name as the CD-ROM or floppy disk before asking the
user to insert the disk.

File Type The four character “type” of the file. Use 0 to cause Upgrader to
ignore the file’s type when locating the file.

File Creator The four character “creator” of the file. Use 0 to cause Upgrader
to ignore the file’s creator when locating the file.

File Creation Date The creation date of the file in seconds. Use 0 to cause Upgrader
to ignore the file’s creation date when locating the file.

File Path This should be a relative path from the folder containing the
data file or a full path beginning with the name of the floppy
or CD-ROM disk. Use of a full or relative path depends on the
media type. See the “Media Type” field description for more
information.

Chapter 2: Editing Upgrader Plug-ins 40

If the path is relative, then it should start with a colon. A full
path should start with the name of the floppy or CD-ROM
disk, instead of a colon.

File Name Name of the file. Limited to 31 characters.

The Resource List Resource ('RES#')

The resource list resource contains a list of resource type and ID pairs for holding the list of resources to
preload. This resource is referenced from the sequence resource to hold the resources to preload from the
System file and data file

Plug-in writers can also use a 'RES#' resource located in the plug-in file to preload resources stored in
the plug-in file by passing the ID to the PSCollect routine.

type 'RES#' {
integer = $$CountOf(ResArray);
array ResArray {

literal longint; // Resource type to preload
integer; // Resource ID to preload
};

};

The Data File Format Resource ('dfmt')

The data file format resource defines the version of the client data file, so Upgrader can determine if it
can read the data file or not. The user will receive a message if Upgrader cannot open data file because
the format resource is incompatible or missing.

type 'cfmt' {
byte DataFileMajorRevisionNumber; // The major version number
byte DataFileMinorRevisionNumber; // The minor version number

};

Upgrader application versions and the data file versions they support:

Upgrader Versions Data File Versions Supported

1.1 0.3

1.1.1 0.4

The Environmental Filter Plug-in Preference Resource ('efpr')
#define EFPPrefFlags \

boolean kMachIDListNotSupported, kMachIDListSupported; \
fill bit[15] /* Reserved */

type 'efpr' {
switch {

case format1:
key integer = 1; /* Format version */
EFPPrefFlags; /* Flags */
integer; /* Minimum released SSW version */
integer = $$CountOf(MachIDArray);
array MachIDArray {

integer; /* Machine Gestalt ID */

Chapter 2: Editing Upgrader Plug-ins 41

};
};

};

kMachIDListNotSupported/kMachIDListSupported flag
Use the kMachIDListNotSupported flag if the machine IDs
listed are not supported by this Upgrader-based program, and
therefore should alert the user. Use the
kMachIDListSupported flag if the machine IDs listed are the
only computer models that are supported by this Upgrader-
based program.

Minimum Released System… The minimum Mac OS system version on which your Upgrader-
based program should run. The value is in BCD format. For
example, version 7.1.2 would be specified in hex as 0x0712.
Since the Upgrader application requires at least system 7.0, the
value must be 0x0700 or higher.

Gestalt Machine ID A Gestalt machine ID. See the “Gestalt.h” file on the most
recent ETO CD for a list of current gestalt 'mach' IDs.

Welcome Plug-in Preference Resource ('wppr')
#define WPPrefFlags \

boolean kReserved1, kReserved2; /* Ignored. */\
boolean kHelpTextInRsrc, kHelpTextInFile; /* Location of help text. */ \
fill bit[14] /* Reserved */

type 'wppr' {
switch {

case format2:
key integer = 2; /* Format version */
WPPrefFlags; /* Flags */
integer; /* Main Text - 'flrf' or 'TEXT' Rsrc ID */
integer; /* Help text - 'flrf' or 'TEXT' Rsrc ID */
integer; /* First help text picture - 'PICT' Rsrc ID */
integer; /* Background color picture (B&W: ID + 1) - 'PICT' Rsrc ID */
integer; /* Plug-in string list Rsrc ID ('STR#') - 'STR#' Rsrc ID */

};
};

kHelpTextInRsrc, kHelpTextInFile flag
Use kHelpTextInRsrc to specify that the Help Text Reference
ID field points to a 'TEXT' resource. Use kHelpTextInFile to
specify that the Help Text Reference ID field points to a 'flrf'
resource.

Main Text Reference ID The ID of a 'TEXT' resource if the text is stored in the data file;
otherwise, the ID of a 'flrf' resource if stored in a separate text
file.

Help Text Reference ID The ID of a 'TEXT' resource if the text is stored in the data file;
otherwise, the ID of a 'flrf' resource if stored in a separate text
file.

Help Text First Picture ID The ID of a 'PICT' resource containing the first picture to be
embedded in the help text.

Color Background 'PICT' ID The ID of a 'PICT' resource that you wish to be displayed in the
background of the window. To support displaying a B&W

Chapter 2: Editing Upgrader Plug-ins 42

picture when the monitor is displaying less than 256
colors/grays, also add a 'PICT' resource with an ID of 1 plus the
ID entered in this field. The picture must be exactly 205 pixels
in height by 506 pixels in width; otherwise, the picture will be
scaled to fit the panel.

Plug-in string list Rsrc ID The ID of a 'STR#' resource containing text strings required by
the plug-in.

'STR#' resource string index definitions:

1. Panel title name

2. Help window title

Target Selection Plug-in Preference Resource ('tspr')
#define TSPPrefFlags \

boolean kHelpTextInRsrc, kHelpTextInFile; /* Location of help text. */ \
boolean kDontCheckSystemVersion, kCheckSystemVersion; \
boolean kDontAllowCleanInstall, kAllowCleanInstall; \
boolean kDontRequireTargetSysVersion, kRequireTargetSysVersion; \

 fill bit[12] /* Reserved */

type 'tspr' {
switch {

case format1:
case format2:

key integer = 2; /* Format version */
longint; /* Required disk space for recommended installation */
integer; /* System software version being installed, if any */
integer; /* Minimum Required System software version */
integer; /* Maximum Required System software version */
integer; /* Plug-in reference ID if reinstall - 'STR ' Rsrc ID */
integer; /* Plug-in reference ID if add/remove - 'STR ' Rsrc ID */
integer; /* Help text - 'flrf' or 'TEXT' Rsrc ID */
integer; /* First help text picture - 'PICT' Rsrc ID */
integer; /* Plug-in string list - 'STR#' Rsrc ID */

};
};

kMainTextInRsrc/kMainTextInFile flag
Use kMainTextInRsrc to specify that the Main Text Reference
ID field points to a 'TEXT' resource. Use kMainTextInFile to
specify that the Main Text Reference ID field points to a 'flrf'
resource.

kDontCheckSystemVersion/kCheckSystemVersion flag
Use kDontCheckSystemVersion to prevent the display of the
reinstall alert. Use kCheckSystemVersion to display the
reinstall alert if the version of the system software on the
chosen destination disk matches the version in the “System
software version installed” field.

kDontAllowCleanInstall/kAllowCleanInstall flag
Use kDontAllowCleanInstall to prevent the user from
performing a clean installation. This would be the case if your
recommended installation does not install an entire System
Folder. Use kAllowCleanInstall to allow the user to perform a
clean installation.

Chapter 2: Editing Upgrader Plug-ins 43

kDontRequireTargetSysVersion/kRequireTargetSysVersion flag
Use kDontRequireTargetSysVersion to ignore the version of the
system software on the chosen destination disk. Use
kRequireTargetSysVersion to prevent the user from continuing
if the version of the system software on the chosen destination
disk is not within the range specified in the “Minimum
Required SSW version” and “Maximum Required SSW version”
fields.

Required disk space The number of kilobytes required by the recommended
installation.

NOTE

Given the differences between the disk space
used on small capacity versus large capacity
HFS-formatted hard drives, the value you
specify must be an averaged estimation. For
most products, the disk space taken by your
recommended installation on a 4 GB hard disk
will cover the majority of installation
scenarios.

System software version installed The version of system software on the chosen destination disk
that will trigger the reinstall alert. This should normally be
the same version as system software being installed. The value
is in BCD format. For example, version 8.0.1 would specified in
hex as 0x0801.

Minimum Required SSW version When using the kRequireTargetSysVersion flag, the minimum
version of system software allowed on the chosen destination
disk. A version lower than this value will prevent the user
from continuting. The value is in BCD format. For example,
version 8.0.1 would specified in hex as 0x0801.

Maximum Required SSW version When using the kRequireTargetSysVersion flag, the maximum
version of system software allowed on the chosen destination
disk. A version higher than this value will prevent the user
from continuting. Most of the time, the value will be the same
version of system software being installed. Enter a value of 0
(zero) to not constrain the maximum version. The value is in
BCD format. For example, version 8.0.1 would specified in hex
as 0x0801.

Plug-in reference ID if reinstall The ID of a 'STR ' resource containing the name of the plug-in to
advance to when the user clicks the Reinstall button in the
reinstall alert.

Plug-in reference ID if add/remove The ID of a 'STR ' resource containing the name of the plug-in to
advance to when the user clicks the Add/Remove button in the
reinstall alert. Certain global data values are set to notify the
plug-in that the user chosen this option.

Help Text Reference ID The ID of a 'TEXT' resource if the text is stored in the data file;
otherwise, the ID of 'flrf' resource if stored in a separate text
file.

Help Text First Picture ID The ID of a 'PICT' resource containing the first picture to be
embedded in the help text.

Chapter 2: Editing Upgrader Plug-ins 44

Plug-in string list Rsrc ID The ID of a 'STR#' resource containing text strings required by
the plug-in.

'STR#' resource string index definitions:

1. Panel title name

2. Panel prompt text

3. Destination disk pop-up menu title

4. Help window title

5. Reinstall alert message text

Read Me Plug-in Preference Resource ('rmpr')
#define RMPPrefFlags \

boolean kMainTextInRsrc, kMainTextInFile; /* Help text location */ \
boolean kHelpTextInRsrc, kHelpTextInFile; /* Main text location */ \
fill bit[14] /* Reserved */

type 'rmpr' {
switch {

case format1:
key integer = 1; /* Format version */
RMPPrefFlags; /* Flags */
integer; /* Main Text - 'flrf' or 'TEXT' Rsrc ID */
integer; /* First main text picture - 'PICT' Rsrc ID */
integer; /* Help text - 'flrf' or 'TEXT' Rsrc ID */
integer; /* First help text picture - 'PICT' Rsrc ID */
integer; /* Plug-in string list - 'STR#' Rsrc ID */

};
};

kMainTextInRsrc/kMainTextInFile flag
Use kMainTextInRsrc to specify that the Main Text Reference
ID field points to a 'TEXT' resource. Use kMainTextInFile to
specify that the Main Text Reference ID field points to a 'flrf'
resource.

kHelpTextInRsrc, kHelpTextInFile flag
Use kHelpTextInRsrc to specify that the Help Text Reference
ID field points to a 'TEXT' resource. Use kHelpTextInFile to
specify that the Help Text Reference ID field points to a 'flrf'
resource.

Main Text Reference ID The ID of a 'TEXT' resource if the text is stored in the data file;
otherwise, ID of 'flrf' resource if stored in a separate text file.

Main Text First Picture ID The ID of a 'PICT' resource containing the first picture to be
embedded in the main text.

Help Text Reference ID The ID of a 'TEXT' resource if the text is stored in the data file;
otherwise, the ID of 'flrf' resource if stored in a separate text
file.

Help Text First Picture ID The ID of a 'PICT' resource containing the first picture to be
embedded in the help text.

Plug-in string list Rsrc ID The ID of a 'STR#' resource containing text strings required by
the plug-in.

Chapter 2: Editing Upgrader Plug-ins 45

'STR#' resource string index definitions:

1. Panel title name

2. Help window title

Software License Plug-in Preference Resource ('swpr')
#define LVPPrefFlags \

boolean kHelpTextInRsrc, kHelpTextInFile; /* Help text location */ \
fill bit[15] /* Reserved */

#define LangEntryFlags \
boolean kOneByte, kTwoByte; /* Language character length */ \
boolean kTextInRsrc, kTextInFile; /* License text location */ \
fill bit[14] /* Reserved */

type 'swpr' {

switch {
case format4:

key integer = 4; /* Format version */
LVPPrefFlags; /* Flags */
integer; /* Help text ref - 'flrf' or 'TEXT' Rsrc ID */
integer; /* First help text picture - 'PICT' Rsrc ID */
integer; /* Plug-in string list ref - 'STR#' Rsrc ID */
integer; /* Disagree plug-in name ref - 'STR ' Rsrc ID */
integer; /* Panel title string list ref - 'STR#' Rsrc ID */
integer; /* Language name string list ref - 'STR#' Rsrc ID */
integer; /* Continue button string list ref - 'STR#' Rsrc ID */
integer; /* Save button string list ref - 'STR#' Rsrc ID */
integer; /* Print button string list ref - 'STR#' Rsrc ID */
integer; /* Go Back button string list ref - 'STR#' Rsrc ID */
integer; /* Agree button string list ref - 'STR#' Rsrc ID */
integer; /* Disagree button string list ref - 'STR#' Rsrc ID */
integer; /* Agree/Disagree dialog text ref - 'STR#' Rsrc ID */
integer; /* Default language index */
integer = $$CountOf (LanguageArray);
array LanguageArray

{
LangEntryFlags; /* Language flags */
integer; /* Language ID (from Script.h) */
integer; /* License text ref - 'flrf' or 'TEXT' Rsrc ID */
integer; /* First license text picture - 'PICT' Rsrc ID */
};

};
};

kHelpTextInRsrc, kHelpTextInFile flag
Use kHelpTextInRsrc to specify that the Help Text Reference
ID field points to a 'TEXT' resource. Use kHelpTextInFile to
specify that the Help Text Reference ID field points to a 'flrf'
resource.

Help Text Reference ID The ID of a 'TEXT' resource if the text is stored in the data file;
otherwise, the ID of 'flrf' resource if stored in a separate text
file.

Help Text First Picture ID The ID of a 'PICT' resource containing the first picture to be
embedded in the help text.

Chapter 2: Editing Upgrader Plug-ins 46

Plug-in string list ref The ID of a 'STR#' resource containing text strings required by
the plug-in.

'STR#' resource string index definitions:

1. Help window title

Disagree plug-in name ref The ID of a 'STR ' resource containing the name of the plug-in to
go back to when the user clicks Disagree in the Agree/Disagree
alert.

Panel title string list ref The ID of a 'STR#' resource containing the panel title for each
language entry in the order listed.

Language name list ref The ID of a 'STR#' resource containing the language names
appearing in the pop-up menu for each language entry in the
order listed.

Continue button name list ref The ID of a 'STR#' resource containing the Continue button
names for each language entry in the order listed.

Save button name list ref The ID of a 'STR#' resource containing the Save button names
for each language entry in the order listed.

Print button name list ref The ID of a 'STR#' resource containing the Print button names
for each language entry in the order listed.

Go Back button name list ref The ID of a 'STR#' resource containing the Go Back button names
for each language entry in the order listed.

Agree button name list ref The ID of a 'STR#' resource containing the Agree button names
for each language entry in the order listed.

Agree/Disagree dialog text list ref The ID of a 'STR#' resource containing the text to be displayed
in the Agree/Disagree alert for each language entry in the
order listed.

Disagree button name string list ref The ID of a 'STR#' resource containing the Disagree button
names for each language entry in the order listed.

Default language index The language entry index (starting with 1) which will be used
as the default language if the running system’s primary
language ID does not match a language ID contained in the
language list.

Language Entry:

kOneByte/kTwoByte flag
Use kOneByte if the language only uses one byte to define its
characters. Use kTwoByte if the language only uses two bytes to
define its characters, such as Japanese or Chinese.

kTextInRsrc, kTextInFile flag
Use kTextInRsrc to specify that the License Text Reference ID
field points to a 'TEXT' resource. Use kTextInFile to specify
that the License Text Reference ID field points to a 'flrf'
resource.

Language ID The ID (code) of the language. This allows the software license
plug-in to default to the appropriate language version of the
text based on the primary language of the system software.

See the “Script.h” file on the most recent ETO CD for a list of
the current language codes.

Chapter 2: Editing Upgrader Plug-ins 47

License Text Reference ID The ID of a 'TEXT' resource if the text is stored in the data file;
otherwise, ID of 'flrf' resource if stored in a separate text file.

License Text First Picture ID The ID of a 'PICT' resource containing the first picture to be
embedded in the main text.

Installation Plug-in Preference Resource ('ippr')
#define IPPrefFlags \

boolean kDontRunCleanupApp, kRunCleanupApp; \
boolean kDontAllowEasyUpgradeMode, kAllowEasyUpgradeMode; \
boolean kDontAllowCustomUpgradeMode, kAllowCustomUpgradeMode; \
boolean kHelpTextInRsrc, kHelpTextInFile; \
boolean kDontUpdateDrivers, kUpdateDrivers; \
boolean kDontCheckDisk, kCheckDisk; \
boolean kDontAllowUserToTurnOffCheckDisk, kAllowUserToTurnOffCheckDisk; \
fill bit[9] /* Reserved */

#define SubTaskFlags \
boolean kOptionalSubTask, kRequiredSubTask; \
boolean kDontSelectInitially, kSelectInitially; \
boolean kReserved1, kReserved2; \
boolean kReserved3, kReserved4; \
boolean kDontSuppressSetupFuncDlgSubTask, kSuppressSetupFuncDlgSubTask; \
boolean kStandAloneInstallerScript, kForceInstallWithPriorInstallerScript; \
boolean kAlertUserSrcDoesNotExist, kSkipIfSrcDoesNotExist; \
fill bit[9] /* Reserved */

type 'ippr' {
switch {

case format1:
key integer = 1; /* Format version */
IPPrefFlags; /* Flags */
integer; /* General Strings STR# Rsrc ID */
integer; /* Target selection plug-in name - 'STR ' Rsrc ID */
integer; /* Software item names list - STR# Rsrc ID */
integer; /* DFAServer application ref - 'flrf' Rsrc ID*/
integer; /* Drive Setup application ref - 'flrf' Rsrc ID */
integer; /* Cleanup application ref - 'flrf' Rsrc ID */
integer; /* Cleanup application document ref - 'flrf' Rsrc ID */
integer; /* Help text - 'flrf' or 'TEXT' Rsrc ID */
integer; /* First help text picture - 'PICT' Rsrc ID */
integer = $$CountOf (RemapIDPairs);
wide array RemapIDPairs{

integer; /* Unsupported machine ID */
integer; /* Supported machine ID */

};
integer = $$CountOf (SubTask);
wide array SubTask{

SubTaskFlags; /* Software Item Flags */
integer; /* Installer application ref - 'flrf' Rsrc ID */
integer; /* Installer document ref - 'flrf' Rsrc ID */
integer; /* Installer document ref (PPC only) - 'flrf' Rsrc ID */
literal longint; /* Preflight code resource type */
integer; /* Preflight code resource ID - 'pffn' Rsrc ID */
longint; /* Preflight code resource refcon */

};
};

};

kDontRunCleanupApp/kRunCleanupApp flag

Chapter 2: Editing Upgrader Plug-ins 48

Use kDontRunCleanupApp to not run the clean up application.
Use kRunCleanupApp to run the application specified in the
Cleanup application ref field after any installations are
complete.

kDontAllowEasyUpgradeMode/kAllowEasyUpgradeMode flag
Use kDontAllowEasyUpgradeMode to hide the easy
installation panel. Use kAllowEasyUpgradeMode to allow the
user to see the easy installation panel.

kDontAllowCustomUpgradeMode/kAllowCustomUpgradeMode flag
Use kDontAllowCustomUpgradeMode to hide the custom
installation panel. Use kAllowCustomUpgradeMode to allow
the user to see the custom installation panel.

kHelpTextInRsrc, kHelpTextInFile flag
Use kHelpTextInRsrc to specify that the Help Text Reference
ID field points to a 'TEXT' resource. Use kHelpTextInFile to
specify that the Help Text Reference ID field points to a 'flrf'
resource.

kDontUpdateDrivers/kUpdateDrivers flag
Use kDontUpdateDrivers to not run the driver updating
program. Use kUpdateDrivers to run the application specified
in the Drive Setup application ref field after the user clicks
Start in the installation panel.

kDontCheckDisk/kCheckDisk flag
Use kDontCheckDisk to not run the disk checking program. Use
kCheckDisk to run the application specified in the DFAServer
application ref field after the user clicks Start in the
installation panel.

kDontAllowUserToTurnOffCheckDisk/kAllowUserToTurnOffCheckDisk flag
Use kDontAllowUserToTurnOffCheckDisk to hide the disk
checking checkbox in the options dialog, thereby forcing the
user to check the disk before each installation. Use
kAllowUserToTurnOffCheckDisk to show the disk checking
checkbox in the options dialog.

Plug-in string list Rsrc ID The ID of a 'STR#' resource containing text strings required by
the plug-in.

'STR#' resource string index definitions:

1. Easy installation panel prompt

2. Custom installation panel prompt

Target selection plug-in ref ID The ID of a 'STR ' resource containing the name of the Target
Selection plug-in to go back to if the destination disk
unexpectedly disappears.

Software item names list ref ID The ID of a 'STR#' resource containing names of the software
items as they are displayed to the user. Each name occupies a
separate index, corresponding to the order in which the
software items are list.

DFAServer application ref The ID of a 'flrf' resource containing the file location of Apple's
“DFAServer” application.

Drive Setup application ref The ID of a 'flrf' resource containing the file location of Apple's
“Drive Setup” application.

Chapter 2: Editing Upgrader Plug-ins 49

Cleanup application ref The ID of a 'flrf' resource containing the file location of an
application to be run after any successful installation to perform
clean up-type operations. It's normally best to perform all clean
up operations within the software installers themselves,
instead of referencing a separate application here.

Cleanup application document ref The ID of a 'flrf' resource containing the file location of a
document to be opened by the cleanup application. Use 0 if no
document is necessary.

Help Text Reference ID The ID of a 'TEXT' resource if the text is stored in the data file;
otherwise, the ID of 'flrf' resource if stored in a separate text
file.

Help Text First Picture ID The ID of a 'PICT' resource containing the first picture to be
embedded in the help text.

Remap Entry:

Unsupported machine ID The gestalt ID of a machine that one or more of the specified
Apple Installer-based Installer scripts were not designed to
install on. (See the “Gestalt.h” file on the most recent ETO CD
for a list of current gestalt 'mach' IDs.)

Supported machine ID The gestalt ID of a machine that the unsupported machine ID
should be remapped to. If a listed unsupported ID matches the
ID of the machine, then its remapped ID is passed to the Apple
Installer upon launch of each Installer script. The Installer
script will then make decisions as if it is actually running on
the older machine. See the document Installer 4.0.7 Technical
Guide for more information about the remapping functionality.

Software Installer Item:

kOptionalSubTask/kRequiredSubTask flag
Use kOptionalSubTask to allow the user to optional selected
this item in the easy installation panel. Use kRequiredSubTask
to make this item part of the required base installation. The
software item will be hidden in the easy installation panel and
will appear as initially selected in custom installation panel.

kDontSelectInitially/kSelectInitially flag
Use kDontSelectInitially to have the software item default to
unchecked. Use kSelectInitially to have the software item
initially selected in both the easy and custom installation
panels. (That is, unless it is also required — see above.)

kDontSuppressSetupFuncDlgSubTask/kSuppressSetupFuncDlgSubTask flag
Use kDontSuppressSetupFuncDlgSubTask to have the Installer
script show its own software license window, if it has one. Use
kDontSuppressSetupFuncDlgSubTask to suppress the Installer
Script's software license window, or any window displayed
from within the setup function code resource. See the document
Installer 4.0.7 Technical Guide for more information about the
setup function.

kStandAloneInstallerScript/kForceInstallWithPriorInstallerScript flag
Use kStandAloneInstallerScript for standard, non parasite
software installers. Use kStandAloneInstallerScript to signify
that the software installer item is a parasite of the preceding
item. Parasites will be hidden from the user and run whenever
the software installer preceding it (another parasite or a host)

Chapter 2: Editing Upgrader Plug-ins 50

successfully completes. This feature enables a developer to
patch an installer. The first software item cannot be a parasite.

kAlertUserSrcDoesNotExist/kSkipIfSrcDoesNotExist flag
Use kAlertUserSrcDoesNotExist to require that the specified
Installer script be present on the source. If it is not found, then
an alert is presented stopping the installation. Use
kSkipIfSrcDoesNotExist to make the Installer script optional.
If the Installer scrip is not found, the software item is
automatically skipped. This might be handy if you want to
create several versions of your source disk, but be able to use the
same data file on each.

Installer application ref The ID of a 'flrf' resource containing the file location of the
installer program. Normally, this is the Apple Installer, but
can be any application.

NOTE

The Apple Installer and its Installer script
must be located on the same source disk.

Installer doc ref (68K or fat) The ID of a 'flrf' resource containing the file location of the
installer document that support 68K- or PPC-based computers.
If this field is set to 0, but the PPC Only Document field is non-
zero, then the installation plug-in automatically hides this
software item when running on a 68K-based computer.

Installer doc ref (PPC only) The ID of a 'flrf' resource containing the file location of the
installer document to use when running on a PowerPC-based
computer. If both document references are non-zero, then the
installation plug-in automatically selects the document based
on the processor type.

Preflight code resource type The resource type of the preflight code resource.

Preflight code resource ID The resource ID of the preflight code resource.

Preflight code resource refcon A 4-byte value passed to the preflight code resource.

Conclusion Plug-in Preference Resource ('ccpr')
#define CCPPrefFlags \

boolean kDefaultMessage, kCustomMessageProvide; \
fill bit[15] /* Reserved */

type 'ccpr' {
switch {

case format1:
key integer = 1; /* Format version */
CCPPrefFlags; /* Flags */
integer; /* Plug-in ref when continuing - 'STR ' Rsrc ID */
integer; /* Plug-in string list - 'STR#' Rsrc ID */

};
};

kDefaultMessage/kCustomMessageProvide flag
Use kDefaultMessage to use the built-in restart and quit alert
text. Use kCustomMessageProvide to override the default text
and use the text provided in the data file.

Chapter 2: Editing Upgrader Plug-ins 51

Plug-in reference when continuing The ID of a 'STR ' resource containing the name of the plug-in to
advance to when the user clicks the Continue button in the
conclusion alert. This will usually be the preceding plug-in.

Plug-in string list Rsrc ID The ID of a 'STR#' resource containing text strings required by
the plug-in.

'STR#' resource string index definitions:

1. Custom restart message text

2. Custom quit message text

Chapter 2: Editing Upgrader Plug-ins 52

Writing Upgrader Plug-ins

About the Upgrader Plug-in
Existing Upgrader-based programs can be extended and new Upgrader-based programs can be created by
writing new plug-in files. Programmers familiar with writing applications using the Macintosh
Toolbox in order to display dialogs and interact with users should feel very comfortable writing new
plug-ins. The Upgrader API extends and simplifies the common panel management tasks that most
plug-in writers will need to perform.

An Upgrader plug-in is a file that the Upgrader application loads and executes in the order specified
by the data file. Most plug-in developers will find that they need to accomplish the following tasks:

1. Design the visual appearance of your plug-in.

2. Define the information to be stored in the data file.

3. Create a new plug-in project or duplicate an existing project.

4. Create the resources specific to your plug-in (making sure to include the plug-in format resource).

5. Write and compile your plug-in code.

6. Write a ModifierTool Editor and resource definition files so others can easily edit your data file
resources.

Human Interface Guidelines
Your plug-in will be more easily integrated into existing Upgrader-based programs or mixed with other
plug-ins if your panels follow some basic design guidelines. The Upgrader panel-based human interface
shares characteristics with other assistant-type programs developed by Apple and others. An
assistant gains its ease of use from proper division of a larger task into steps that are manageable by a
wide range of audiences.

A few fundamental rules govern the Upgrader-based programs developed so far:

• Use of a non-resizable window that fits all monitors shipped by Apple.

• Panels are divided into three areas: top header contains graphic and panel title, bottom footer
contains navigation buttons and content area is specific to the task step.

• Each panel has common navigation buttons, although the Continue button can be renamed to denote
the action to be performed.

Chapter 3: Writing Upgrader Plug-ins 53

• If a panel performs an action, then it automatically continues to the next panel. Otherwise, the user
should be notified the action failed and possibly be given the option to skip this step.

In addition to deciding how many panels a single plug-in should use, you may need to split an overly
complex plug-in into multiple plug-ins. This approach gives the client of an Upgrader-based program
that includes your plug-in an easier way to address a wider range of specialized purposes.

Data File Resources
Clients will be able to reuse your plug-in more easily if you carefully divide your resources between the
data file and the plug-in file. The easiest way to help make this decision is to place yourself in the
client’s position.

Most plug-ins store the following information in the data file:

• All file references

• Any text that might need to be tailored to the context of a different Upgrader-based program or a
specific use of the original program

• Values that are compared to environmental parameters to make decisions (such as a machine ID or
system version)

• Any name of other plug-ins used in branching

Always supply a resource definition file containing definitions of new resources that you store in the
data file. This will be required by clients using the Rez MPW tool. To make the information stored in
the data file modifiable by the widest number of clients, we suggest that you create a ModifierTool
Editor. As an alternate, supply a template file for use with Resorcerer.

The Plug-in File
When the Upgrader application locates the plug-in file, it looks for two resources: the plug-in file
format resource ('pfmt' ID=1) and the 68K code resource to execute ('PLUG' ID=0). The file will contain
other resources required by the plug-in itself.

The Upgrader application uses the plug-in file format resource to ensure the plug-in is compatible with
the version of Upgrader before trying to run it. Figure 3-1 shows the alerts you will receive from the
Upgrader application upon loading a plug-in file with a missing or incorrect format resource.

Figure 3-1 Alert presented when format of plug-in is not found or is incorrect

You can create the format resource using Resorcerer or a resource compiler. Constants in the
UpgraderPluginTypes.r file define the version number compatible with the latest version of the
Upgrader application.

Chapter 3: Writing Upgrader Plug-ins 54

Upgrader application versions and the plug-in versions they support:

Upgrader Versions Plug-in File Versions Supported

1.1 - 1.1.1 0.2

Listing 3-1 shows the plug-in file format resource for use with a resource compiler.

Listing 3-1 Plug-in format resource using resource compiler

#include "UpgraderPluginTypes.r"

resource ('pfmt', 1) {
kLatestPluginFileFormatVersion;

}

After the plug-in file has been verified as compatible, the Upgrader application looks for the code
resource to execute. The current version of the Upgrader application requires that the code resource be
created using a development environment that supports A4-based globals. Since Apple’s MPW
development tools do not, we have adopted the Metrowerks CodeWarrior development environment to
present our examples.

The Plug-in Project
Your plug-in project will usually contain everything necessary to build your plug-in, so once it is set up,
you can concentrate on writing the code that will implement your panels. While it’s easier to start from
the example Metrowerks projects provided in the Upgrader SDK, we describe the creation a of new
project here in case you do not have access to the SDK.

NOTE

The example projects discussed here are based on release 10 of the Metrowerks
CodeWarrior development tools. The latest release will most likely work with minor
modifications to your project, but the screen shots provided may look different than the
version you are using.

Project Settings

After you have created a new project, choose Project Settings from the Edit menu to display the Project
Settings window. Specific settings are required in order to build the plug-in file, so please follow these
instructions:

Click “Target” to show the preference panel in Figure 3-2.

Chapter 3: Writing Upgrader Plug-ins 55

Figure 3-2 Target options in the Project Settings window.

In the Target preference panel, make these changes:

1. Select Macintosh 68K from the Target pop-up menu

Click “68K Project” to show the preference panel in Figure 3-3.

Figure 3-3 68K Projects options in the Project Settings window.

In the 68K Project preference panel, make these changes:

1. Select “Code Resource” from the Project Type pop-up menu .

2. Set Creator to “chsk”.

3. Set Type to “plug”.

4. Set ResType to “PLUG”.

5. Set ResID to “0”.

6. Select Extended Resource option.

Click “68K Processor” to show the preference panel in Figure 3-4.

Chapter 3: Writing Upgrader Plug-ins 56

Figure 3-4 68K Processor options in the Project Settings window

In the 68K Processor preference panel, make these changes:

1. Select Large from the Code Model pop-up menu.

2. Select the 4-Byte Ints option.

Click “68K Linker” to show the preference panel in Figure 3-5.

Figure 3-5 68K Linker options in the Project Settings window

In the 68K Linker preference panel, make these changes:

1. Select the Link Single Segment option.

You may also need to add additional paths in the Access Path preference panel depending on where you
place the interface and library files provided in the SDK.

Project Files

A new project starts empty, so you’ll need to add files to the project. For a small plug-in project, you
might need a single code file, a single resource file, and three or more library files.

Figure 3-6 shows the project window of a small plug-in project

Chapter 3: Writing Upgrader Plug-ins 57

Figure 3-6 Project window

The files have been grouped into three segments to make organization easier: a segment for the source
files, a segment for the resource files, and a segment for libraries.

The source files can be C-based, C++-based or a combination. If you allocate objects in C++ using the new
operator, please read the section “Memory Issues”. You’ll need to include the file “UpgraderPlugin.h”
in order to call Upgrader-provided routines.

The resource files can be either “.r” files that must be compiled when your project is built or precompiled
resource files that will be copied directly into the plug-in file. If you use “.r” files, then you’ll need to
include the file “UpgraderPluginTypes.r” from within your “.r” file to have access to the plug-in
format resource definition. If you use Resorcerer to create your resource file then you’ll want to use the
private template file provided in the SDK.

NOTE

Resources stored in the plug-in file should have IDs between 2,000 and 10,000 to avoid
conflicts with IDs of resources of the same type stored in the data file.

The library files will be a combination of libraries that come with the Metrowerks development kit
and the “PluginStubLib” library file provided in the Upgrader SDK. Make sure to use the libraries
that support A4-based globals when given a choice.

Files provided in the SDK that must be included in your project:

File Name File Description

UpgraderPlugin.h A header file to be included by your “.c” or “.cp” files to have
access to the Upgrader API routines, error definitions and
various enumerations, constants and structures. This file may
also be included by “.r” files to gain access to certain constants.
The information contained in this file is detailed in the section
“Upgrader API Reference”.

UpgraderPluginTypes.r A resource description file to be included by “.r” files which
need the plug-in format resource definition.

PluginStubLib A library file to be added to the project that implements the
Upgrader APIs routines.

Memory Management
When the plug-in code resource is loaded and executed, your code is essentially running as if it’s part of
the Upgrader application. Memory allocations that you make will, by default, be allocated from the
Upgrader’s heap. Special care must be taken to allow the Upgrader’s memory management strategy to
coexist with that of your plug-in.

We explore two important areas of memory management to keep in mind while writing your plug-in:
ensuring enough memory is available and preventing memory leaks.

Chapter 3: Writing Upgrader Plug-ins 58

Plug-in Memory Allocation

The Upgrader application is shipped with a partition of 750K. This should handle most plug-ins, but
you may need to instruct another developer or client using your plug-in to increase the Upgrader
application’s partition size based on two main factors: memory needs of the plug-in requiring the most
heap space, and the size of data file resources preloaded to support ejectable media. The preloaded
resources are the responsibility of the person creating the data file, but the memory required by the
plug-in while it is running is the responsibility of the plug-in developer. See the section “Partition
Size” in chapter 2 for the equation the developer should use to calculate the appropriate partition.

You should calculate the amount of memory your plug-in requires for all modes of operation, then check
that this amount of memory is available within your initialization routine. If you don’t have enough
memory to continue, tell the user to increase the partition size and then call PSQuitShell. As a general
rule, you should leave at least 50K free at all times to enable the Upgrader application to handle your
API calls. Make sure to add this 50K to your free memory check during you initialization routine. If your
plug-in sets more than 1K of global data then add this amount to the other memory requirements of your
plug-in.

You should document the total memory requirements of your plug-in so other developers and clients
using your plug-in can calculate an appropriate partition size.

Preventing Memory Leaks

When the Upgrader calls your termination routine, you must deallocate any memory that was
allocated either directly or indirectly by you during the run of your plug-in. The easiest way to
determine if your plug-in is leaking memory during invocation is to use a heap inspector, such as the
“HT” command in MacsBug or a separate application like Zone Ranger. If the number of handles and
pointers increase after each run of your plug-in, then you know something is not being deallocated and
further investigation is required.

One common, and frustrating, memory leak is the memory pools allocated by the new operator. If you
are allocating objects in C++ using the default new operator, you will need to compile and link with
modified versions of the memory allocation routines and explicitly dispose of this memory from within
your termination routine. You can find additional information on this subject on the CodeWarrior CD.

Using the Upgrader API
As a plug-in developer, you will implement plug-in-defined routines and call Upgrader-provided
routines to present panels and handle interaction with the user.

NOTE

At the present time, the Upgrader API is only callable from 68K code and must be
compiled and linked using a development environment that support A4-based globals.
Unfortunately, this means that the APIs are not compatible with the standard MPW
compiler.

Setting Up Plug-in-Defined Routines
The Upgrader expects three routines to be defined by your plug-in, which the Upgrader application
will call at specific times. An initialization routine, InitializePluginModule, is assumed to be the
entry point into the code resource and should be your main routine. A termination routine,
TerminatePluginModule, is called whenever the plug-in gives up control to another plug-in, or the
Upgrader quits. An event handler, HandleEventForPluginModule, is called for each user event.

Chapter 3: Writing Upgrader Plug-ins 59

You’ll need to register your event handler and termination routines using the PSRegisterHandler
routine from within your initialization routine. Listing 3-2 presents an example of how the
InitializePluginModule routine should begin (the error checking after the call to
PSRegisterHandler is omitted for clarity).

Listing 3-2 Registering plug-in-defined routines

void InitializePluginModule (void *inPSTable,
SInt32 inRefCon,
Boolean inEnterAtBeginning)

{
#pragma unused (inRefCon, inEnterAtBeginning) // these parameters are never used

EnterPlugin();

SetupPlugin(inPSTable);

(void) PSRegisterHandler(kEventHandlerID,
(UniveralProcPtr)HandleEventForPluginModule);

(void) PSRegisterHandler(kTerminationHandlerID,
(UniveralProcPtr) TerminatePluginModule);

// ... etc.

ExitPlugin();
}

In order to allow the plug-in access to its A4-based global variables, two routines are provided:
EnterPlugin and ExitPlugin. These routines must bracket any code inside a routine called from the
Upgrader application or system that accesses a plug-in global variable.

Listing 3-3 shows how to use EnterPlugin and ExitPlugin routines.

Listing 3-3 Ensuring access to global variables using EnterPlugin and ExitPlugin routines

Boolean HandleEventForPluginModule (EventRecord *inEvent)
{

Boolean wasHandled;

EnterPlugin();

// ... etc.

ExitPlugin();

return wasHandled;
}

Managing Panels
The term panels in Upgrader is taken to mean the various windows that plug-ins display. Help
windows are also implemented as panels, but are set up, shown and hidden with a different set of
routines. Panels are described in plug-ins as 'DITL' resources in the plug-in (corresponding 'DLOG'
resources are not required).

Chapter 3: Writing Upgrader Plug-ins 60

There are two types of Upgrader panel, global panels and custom panels. The Global panel is the panel
which is shared among all plug-ins. The motivation for sharing a common panel is that when a new
plug-in is loaded, rather than completely removing the previous panel and drawing a new panel, one
panel can be used and the 'DITL' can simply be swapped, making for a faster and cleaner transition
between plug-ins. Custom panels are specific to one plug-in and are only displayed while that plug-in is
running and then removed when the Upgrader moves on to the next plug-in.

The Global panel is created with a call to PSSetupNewPanel, and the custom panel is created with a
call to PSNewCustomPanel. PSSetupNewPanel will check first to see if the Global panel has already
been created and if so, only changes the panel's contents. If the Global panel is not currently being
displayed, a new Global panel is created. PSNewCustomPanel creates a new panel each time it is
called.

W A R N I N G

Never use Upgrader routines to manage the content of a window that you have created
using GetNewDialog, NewDialog or any other Dialog Manager routine.

Managing Panel Contents
The following routines are available to plug-in writers for creating panel items; PSSetPanelItem,
PSGetPanelItem, PSNewStyledStringItem, PSNewStyledTextItem and PSNewUserItem. See
the section “Using the Document Viewer” for information about the PSNewDocViewerItem routine and
creating a DocViewer item in a panel.

Items which can be placed on the panel include:

• Standard dialog items - All standard dialog items, i.e. anything which can be placed on a 'DITL'
can also be used on an Upgrader panel. The two exceptions to this are static text items and edit text
items.

• Custom panel items - Upgrader predefined “custom” panel items are created using standard user
items and provided routines (see SetPanelItem, etc.). The two custom panel items are DocViewer
items and static text items. The plug-in writer may also create his/her own custom item using a user
item and writing routines to handle it.

Items which are automatically handled by the shell include the default button, the Continue button
and the Go Back button (see the description of PSSetPanelItemAction for information on how the
plug-in writer can instruct the shell to handle these). The Help button is not automatically handled by
the shell, the plug-in writer must handle this.

Figure 3-7 shows an example 'DITL' set up with a collection of items.

Chapter 3: Writing Upgrader Plug-ins 61

Figure 3-7 Example 'DITL' defining a panel’s contents

Item Number Item

1 Control item - Continue button (default button)

2 Control item - Go Back button

3 Control item - Print button

4 Control item - Save button

5 User item (used for a DocViewer item)

6 PICT (used for a Help button)

7 Control item - pop-up menu

8 User item - used for static text

9 User item - used for static text

10 User item - depends on value of pop-up menu

11 User item - used for static text

12 Control item - checkbox

13 PICT (used for the title bar)

14 PICT (used for the button bar)

15 PICT (background PICT)

The global panel provided with the shell may have one or a combination of the following targetable
panel items:

• User items (e.g. item numbers 5, 8, 9, 10, 11)

• PICTs (e.g. item numbers 6, 13, 14, 15)

• Controls (e.g. item numbers 1, 2, 3, 4, 7, 12)

Note that the shell handles setting the window title. PICTs are handled offscreen in Upgrader, so the
plug-in writer has the choice of an item appearing transparently over a picture (e.g. item numbers 6, 8,
9, 10, 11) or opaquely (e.g. item number 5, the DocViewer item). See PSNewUserItem below for further
information on how this can be done.

Figure 3-8 shows the resultant panel.

Chapter 3: Writing Upgrader Plug-ins 62

Figure 3-8 Example panel as displayed to the user

Using the Document Viewer
A DocViewer item is used to view text and/or pictures in an Upgrader panel. The plug-in writer can
create a DocViewer item with a user item, and the DocViewer library routines can then be used to
handle the item. Upgrader takes care of adding a vertical scroll bar for the DocViewer and resizing the
DocViewer item and its contents if the panel is resizable (for example, the help panel supplied with
Upgrader has a size box). The shell also handles activate, deactivate and update events for the
DocViewer. Plug-in writers simply need to place user items on the panels they are creating and specify
the location of any text and/or pictures to be placed in the DocViewer item, via the DocViewer routines
detailed below.

Figure 3-9 shows a panel with a DocViewer item.

Figure 3-9 Panel with DocViewer item

Four Upgrader routines allow the plug-in writer to interact with the DocViewer item:
PSNewDocViewerItem, PSHandleDocScroll, PSSaveDoc and PSPrintDoc. PSNewDocViewerItem
is used to create the a DocViewer item on a panel. PSSaveDoc is used to save the DocViewer’s contents
(if the standard file package is available). PSPrintDoc is used to print the DocViewer’s contents (if a
printer is available). And PSHandleDocScroll is used to handle mouse clicks in the DocViewer item,
including its scroll bar.

A DocViewer item expects to find a 'STR#' resource of ID 1000 in the plug-in file. See Listing 3-4 for an
example of this resource.

Chapter 3: Writing Upgrader Plug-ins 63

Listing 3-4 'STR#' resource required in the plug-in file when using DocViewer items

resource 'STR#' (1000) {
{

$"CA", // non-breaking space, used as the PICT delimiters
"", // (unused but must be present)
"untitled", // default "Save As" field in standard Save dialog

}
};

Listing 3-5 presents the code for setting up a DocViewer item (error-checking is omitted for clarity):

Listing 3-5 Code for setting up a DocViewer item

ShellErr theErr = noErr;
DocInfoHandle docViewerHandle;
DocViewerType docType;
Handle itemHandle;
Rect itemRect;
PanelItemType itemType;
short prefsFlags, prefsTextID, prefsPICTBaseResID;

/*
do first:
read prefsFlags, prefsTextID, prefsBasePICTResID from wherever
they should be read (e.g. plug-in resource fork/data file)

*/

(void) PSGetPanelItem(gMyPluginPanel, kDocViewerItemNumber,
&itemType, &itemHandle, &itemRect);

if ((prefsFlags & kMainTextInFile) == kMainTextInFile)
docType = kDocFileType;

else
docType = kDocResType;

docViewerHandle = PSNewDocViewerItem(gMyPluginPanel, &itemRect,
docType, prefsTextID, prefsPICTBaseResID);

if (docViewerHandle != NULL)
(void) PSSetPanelItem(gMyPluginPanel, kDocViewerItemNumber,

docType, (Handle) docViewerHandle, &itemRect);
else

theErr = kCannotLoadNeededResourceErr;

Listing 3-6 shows code for handling scrolling in a DocViewer item. This is generally called from
HandleEventForPluginModule (error-checking is omitted for clarity):

Chapter 3: Writing Upgrader Plug-ins 64

Listing 3-6 Code for handling DocViewer item events

WindowPtr whichWindow;
short windowPart;
Point localPt = inEvent->where;
PanelItemType itemType;
Handle itemHandle;
Rect itemRect;
Boolean wasHandled = false;

windowPart = FindWindow(localPt, &whichWindow);
if (whichWindow == gMyPluginPanel) {

switch (windowPart) {
case inContent:

PSGetPanelItem(gMyPluginPanel, kDocViewerItem, &itemType, &itemHandle, &itemRect);

GlobalToLocal(&localPt);
if (PtInRect(localPt, &itemRect)) {

(void) PSHandleDocScroll(gMyPluginPanel, localPt, kDocViewerItem);
wasHandled = true;

}
else {

/* do:
deal with mouseclicks elsewhere on the panel
*/

}
break;

// ... etc.
}

}

Navigation
Upgrader will usually have several plug-ins; to navigate between them Upgrader provides routines
that allow the user to proceed to the next or return to the previous plug-in. The default plug-in sequence
is defined in the sequence resource. See the description of the PSGoToNextPlugin routine for
information on how this default sequence may be overridden.

Upgrader uses an internal plug-in history stack to determine the previous plug-in. This stack ensures
the plug-in always returns to the most recently visited plug-in. This stack-based approach to
determining the previous plug-in is used instead of simply examining the sequence resource and finding
the default previous plug-in, since in the case where Upgrader has overridden the default plug-in
sequence, the default previous plug-in will not be the one most recently visited.

NOTE

Normally when the user uses PSGoToNextPlugin to proceed to the next plug-in the
details of the new plug-in are added in to the internal Upgrader plug-in history stack.
But in the case where the plug-in that Upgrader is moving on to is one which has
already been visited (i.e. Upgrader finds an earlier reference to the plug-in in the
history stack), Upgrader will instead use the reference to the plug-in already
contained in the history stack and discard all references to plug-ins after this point in
the history stack.

Using this method is less disorientating to the Upgrader user than the simpler
alternative where the history stack could grow to a large size if the default plug-in
sequence is overridden a number of times.

Chapter 3: Writing Upgrader Plug-ins 65

Here’s an example to help clarify how the history list works. The following is the default plug-in
sequence:

1 -> 2 -> 3 -> 4 -> 5

For this example plug-in 4 will not always be a necessary step, it could be a license agreement that
plug-in 3 could decide doesn’t need to be shown to the user.

If plug-in 4 is in fact skipped and Upgrader moves straight on to plug-in 5, the history stack would look
like the following:

1 -> 2 -> 3 -> 5

So in this example if PSGoToPreviousPlugin is called from plug-in 5, Upgrader will return to plug-in
3.

Following on with the same example, if plug-in 5 has an option where it is necessary to go to another
plug-in, for example if the plug-in wants the user to go back to plug-in 2 to perhaps reset the destination
disk. In this case the stack will not grow as follows:

1 -> 2 -> 3 -> 5 -> 2 (will not happen)

What will occur, is the stack gets unrolled back to the first instance of plug-in 2 and so the stack will
simply look as follows:

1 -> 2

NOTE

There will be cases where the plug-in writer does not want a plug-in added to the plug-
in history list since it may only need to be run once. An example would be a plug-in
which checks that the machine on which Upgrader is running is capable of running the
software that is to be installed. To indicate to Upgrader that a plug-in is of this type,
use the onlyRunOnce plug-in flag when filling-in details of the plug-in to the sequence
resource.

Managing the Help Window
Support for help panels is supplied in Upgrader to allow for the easy inclusion of simple, standard help
windows in a plug-in. The help API calls provided with Upgrader do not have to be used. Similarly,
the default help panel ('DLOG'/'DITL' ID of 1050) provided with the Shell doesn’t have to be used,
however if plug-in writers wish to design their own panels, the following item numbers must be used:

enum {
kHelpPrintButton = 1, // Print Button item number
kHelpSaveButton, // Save Button item number
kHelpDocItem // User item number for DocViewer

};

The help panel provided with the shell has the following targetable panel items:

• User item (for the DocViewer item, i.e. the help panel contents)

• Print button (see PSCheckEnvironment for more details)

• Save button (see PSCheckEnvironment for more details)

Chapter 3: Writing Upgrader Plug-ins 66

Figure 3-10 Help window in Resorcerer and as shown to the user

See the section “Using the Document Viewer” for further information on where DocViewer items are
read from, stored, etc.

Four help routines are available to plug-in writers to setup the help window, display it, close it and
handle events for it: PSSetupHelpWindow, PSDisplayHelpWindow, PSCloseHelpWindow, and
PSHandleHelpWindowEvent.

Listing 3-7 demonstrates calling PSHandleHelpWindowEvent from inside
HandleEventForPluginModule (error-checking is omitted for clarity):

Listing 3-7 Example code for handling help window events

Boolean HandleEventForPluginModule(EventRecord *inEvent)
{

Boolean wasHandled = false;
WindowPtr theWindow;

EnterPlugin();

switch (inEvent->what) {
/* do:
 handle any other plug-in-specific cases in here
*/

case mouseDown:
(void) FindWindow(inEvent->where, &theWindow);
if (theWindow == gMyPluginHelpPanel)

wasHandled = PSHandleHelpWindowEvent(gMyPluginHelpPanel, inEvent);
break;

case osEvt:
// --- this deals with resume events only
if(((unsigned long) inEvent->message >> 24) == suspendResumeMessage){

if ((inEvent->message & resumeFlag) != 0) {
// --- if there is a print button on the current panel, use this code
ControlHandle printButtonControl;
EnvironmentType environmentFlags;
short printButtonHilite = 255;
GrafPtr savedPort;
PanelItemType userItemType;
Rect itemRect;

GetPort(&savedPort);
SetPort(gMyPluginPanel);

Chapter 3: Writing Upgrader Plug-ins 67

(void) PSCheckEnvironment(&environmentFlags);
(void) PSGetPanelItem(gMyPluginPanel,kPrintButtonItem,

&itemType, (Handle *) &printButtonControl, &itemRect);

if ((environmentFlags & kPrinterAvailableMask) == 0)
printButtonHilite = 255;

else
printButtonHilite = 0;

if (FrontWindow() == gMyPluginPanel)
HiliteControl((ControlHandle) printButtonControl, printButtonHilite);

// --- Note: this line should not be removed
SetCRefCon((ControlHandle) printButtonControl, printButtonHilite);

SetPort(savedPort);

// --- let the Shell have a go at the standard help panel resume events
(void) PSHandleHelpWindowEvent(gMyPluginHelpPanel, inEvent);

}
}

break;

default:
break;

}

ExitPlugin();

return wasHandled;
}

Exchanging Data with other Plug-ins
Plug-ins can use the Global Data routines to store (PSSetGlobalData) and retrieve
(PSGetGlobalData) data that persist between invocations of a plug-in. Publicly defined global data
types allow plug-ins to communicate with one another. A plug-in’s documentation should describe
which global data types it reads and which it sets. Privately defined global data types allow a single
plug-in to store information until its next invocation.

NOTE

Don’t confuse global data with global variables. Global variables are identifiers you
define within your code that have global scope but are only valid while the plug-in is
running and disappear when the plug-in terminates.

Referencing Files
If a plug-in needs to access a file other than the data file or plug-in file, it should use a file reference
resource ('flrf') to store the path to this file. Upgrader has support for finding a file based on its file
reference resource ID. Since data should generally be stored in the data file, the most common way for a
plug-in to find a file directly is to launch an application, with or without a document. Upgrader API
provides the PSLaunchFile routine to make it easy for plug-ins to launch an application specified by
a file reference resource ID.

See the section “Upgrader Application Reference” for a detailed description of the file reference
resource.

Chapter 3: Writing Upgrader Plug-ins 68

Displaying Alerts
The Upgrader API provides two routines (PSAlert and PSErrorAlert) for displaying auto-sized
dialogs for the purpose of displaying errors or other simple alerts containing a text message. Common
alert dialogs are provided in the Upgrader, but the plug-in writer can define new dialogs and store
these within the plug-in file.

The PSAlert routine is used to display an alert when you have a text string to display and the ID of a
'DLOG' resource to display the text within. The 'DLOG' resource can be one the predefined dialogs
contained in the Upgrader application, or one that you define in your plug-in file.

The PSErrorAlert routine is used in conjunction with a 'ners' resource to look up the text message and
dialog based on either a Upgrader-defined error number or a error number defined by your plug-in.

Displaying Upgrader-Defined Error Alerts

You can call the Upgrader routine PSErrorAlert to display one of the Upgrader-defined error numbers
that you might have received as the result of calling a Upgrader routine. See the section “Summary of
the Upgrader API” for a listing of the Upgrader-defined error numbers available for use with the
PSErrorAlert routine.

Table 3-1 shows the dialogs supplied with the Upgrader application to be used with the PSAlert
routine and when defining your own error numbers to be used with the PSErrorAlert routine.

Table 3-1 Dialogs supplied in the Upgrader application

Dialog ID Dialog Layout

kStopDLOGID (600)

kStopAndQuitDLOGID (526)

kSkipOrContinueDLOGID (520)

kStopOrContinueDLOGID (506)

kStopOKDLOGID (519)

Chapter 3: Writing Upgrader Plug-ins 69

kNoteOKDLOGID (508)

kRestartOrContinueDLOGID (514)

kQuitOrContinueDLOGID (507)

Displaying Plug-in-Defined Errors

The 'ners' resource connects the message to be displayed with the dialog to be shown by referencing the
'DLOG' resource ID and the index within a 'STR#' resource. When a plug-in writer wants to display
messages that are specific to a plug-in this is done by creating a 'ners' resource ID 500 in the plug-in file,
and also creating a 'STR#', containing the error messages, with ID 520. The individual messages are
then added to the 'STR#' resource, making sure that they correspond to the indices for each error
message number in the 'ners' resource.

NOTE

'ners' resources must always use the resource ID 500 and the 'STR#' reference from a
'ners' resource must always have a resource ID of 520.

If none of the 'DLOG's available in the shell are suitable, a 'DLOG' resource can also be added to the
plug-in file. See PSAlert and PSErrorAlert for more information.

Listing 3-8 shows an example 'ners' resource as it might appear in a “.r” file, which connects the error
number defined by the plug-in with the message and dialog to be displayed.

Listing 3-8 An example 'ners' 500 resource used in conjunction with a 'STR#' 520 resource

resource 'ners' (500, nonpurgeable) {
{

1000, 1, kStopDLOGID,
1001, 2, kStopDLOGID,

}
};

resource 'STR#' (520, nonpurgeable) {
{

"Unable to determine if your computer is compatible with this program.";
"This program cannot run on your computer.";

}
};

Chapter 3: Writing Upgrader Plug-ins 70

Supporting Multiple Source Disks
The main motivation for preloading resources is to eliminate extra disk swaps when the user is
installing from multiple disks. Upgrader overrides the normal method of preloading resources (by
selecting the preload attribute for the necessary resource) to ensure that all the various resources from
all the Upgrader files are preloaded when necessary. There are a number of situations when plug-in
resource preloading should be considered:

• If Upgrader is launched from a server and there is a possibility of the connection to the server being
lost. If this happens, Upgrader will display an alert and then quit, calling the current plug-in’s
termination handler. The resources required to display this error message will already be
preloaded but it is possible that resources will also be required by the plug-in, possibly to update a
panel or for use in the plug-in’s termination routine.

• If Upgrader is running from floppy disks or some other ejectable media and there is a possibility of
the plug-in requiring a file on a different floppy (this is most likely to be the case if the plug-in
uses PSLaunchFile to open another application). There is also the possibility that the data file
and the plug-in are on different floppy disks.

Since plug-ins usually have some of their resources in the data file and some in the plug-in file itself,
plug-in writers must ensure that both sets of resources in both are preloaded when necessary.

• For plug-in resources in the data file, each plug-in should have a 'RES#' resource in the data file
that contains the list of all the resources in the data file relevant to the plug-in. Upgrader will
find this list using the “Data file preload list” element in the plug-in’s section of the 'tsqc' resource.
The Upgrader will only preload these resources if it determines that the plug-in’s volume is
different volume to the data file’s.

• For plug-in resources in the plug-in file that the plug-in writer decides are necessary to preload,
another 'RES#' resource must be created (and placed in the plug-in file). The plug-in itself will
have to determine if it is necessary to preload these and if so preload them using Upgrader routine
PSCollect.

Listing 3-9 shows a simple example of one as it would look in a .r file:

Listing 3-9 An example 'RES#' resource

resource 'RES#' (3500, nonpurgeable) {
{

'wppr', 3500,
'STR#', 3500,
'TEXT', 3502,

}
};

See the section “Upgrader Application Reference” for a detailed description of the 'RES#' resource.

Upgrader API Reference

Plug-in-Defined Routines
There is one required entry points to the plug-in code resource, InitializePluginModule and two
other optional entry point routines, HandleEventForPluginModule and TerminatePluginModule.

Chapter 3: Writing Upgrader Plug-ins 71

InitializePluginModule

void InitializePluginModule (void *inPSTable,
SInt32 inRefCon,
Boolean inEnterAtBeginning);

DESCRIPTION

This is the main entry point of the plug-in, initially called by the Shell. This routine must first do some
standard initialization and then may perform any initialization tasks that the plug-in itself needs.

PARAMETERS

inPSTable An internal data structure that will be used by SetupPlugin
to allow the plug-in to access the Upgrader library routines.

inRefCon The RefCon value stored in the sequence resource for this plug-
in. The standard use of this parameter is to pass the ID of the
preference resource to the plug-in in the low-word so multiple
preference resources can be used with a single plug-in file.

inEnterAtBeginning True if the user is entering the plug-in from the previous plug-
in.

HandleEventForPluginModule

Boolean HandleEventForPluginModule (EventRecord *inEvent);

DESCRIPTION

This routine will be called each time through the Upgrader’s event loop. The plug-in will decide
whether or not to handle the event passed in itself and handle the event if it’s a plug-in event. A
boolean is returned by the plug-in to indicate whether or not the event was handled (TRUE if the plug-
in handled the event itself).

PARAMETERS

inEvent A pointer to the event which is due for processing

RETURNS

TRUE if the routine (and/or child routines) handled the event and/or no further processing is required
by the Shell, FALSE if the event wasn’t handled or if the event needs further handling by the Shell.

SPECIAL CONSIDERATIONS

• It is important to set the return value to be TRUE if the event was handled by
HandleEventForPluginModule, since the Shell handling of the event may be unpredictable if it is
being handled a second time.

• For resume events, the plug-in must return FALSE to the Shell to allow the Shell a turn at processing
the event.

TerminatePluginModule

void TerminatePluginModule (void);

Chapter 3: Writing Upgrader Plug-ins 72

DESCRIPTION

The exit point of a plug-in. Performs any tidying-up tasks needed by the plug-in when it quits. This gets
called by the Shell when the application quits, when moving to the next plug-in, or when a serious error
occurs.

Setup Routines

EnterPlugin

EnterPlugin();

DESCRIPTION

This routine must be called on entry to any routine in the plug-in that may be called directly from the
Upgrader, such as initial entry point, termination entry point, event entry point and any callback
routines, including both System callbacks and Upgrader callbacks (e.g. user item draw procedures, etc.).
It allows the plug-in to access its global variables.

SPECIAL CONSIDERATIONS

• This macro saves-off the current A4 world.

SEE ALSO

CodeWarrior documentation for more information on EnterCodeResource.

ExitPlugin

ExitPlugin();

DESCRIPTION

This routine must be called just before exiting any routine that may be called directly from the Shell,
such as initial entry point, termination entry point, event entry point and any callback routines,
including both System callbacks and Upgrader callbacks (e.g. user item draw procedures, etc.). It
removes access to the plug-in’s global variables. A call to ExitPlugin should match a previous call to
EnterPlugin in the same routine.

SPECIAL CONSIDERATIONS

• This macro restores the current A4 world.

SEE ALSO

CodeWarrior documentation for more information on ExitCodeResource.

NOTE

It is important that before EnterPlugin is called and after ExitPlugin is called, the
routine must not try to access global variables. One place where it is easy to use global
variables incorrectly is if a Str255 is declared in the variable declaration section.

Chapter 3: Writing Upgrader Plug-ins 73

CodeWarrior stores strings as globals. Another potential error would be to try returning
the value of a global from a routine after the call to ExitPlugin has been made. See
code listings 3-10 and 3-11 for an illustration of this.

Listing 3-10 shows an example of the incorrect use of EnterPlugin and ExitPlugin:

Listing 3-10 Incorrect use of the EnterPlugin routine

SInt16 gSomeGlobalVariable;

Boolean HandleEventForPluginModule (EventRecord *inEvent)
{

Str255 myString = "\pThis is my string";
Boolean wasHandled = true;

gSomeGlobalVariable = 0;

EnterPlugin();

// ... etc.

ExitPlugin();

return wasHandled;
}

Listing 3-11 shows an example of the correct use of EnterPlugin and ExitPlugin:

Listing 3-11 Correct use of the EnterPlugin routine

SInt16 gSomeGlobalVariable;

Boolean HandleEventForPluginModule (EventRecord *inEvent)
{

Str255 myString;
Boolean wasHandled = true;

EnterPlugin();

MyPStringCopy(myString, "\pThis is my string");
gSomeGlobalVariable = 0;

// ... etc.

ExitPlugin();

return wasHandled;
}

SetupPlugin

The SetupPlugin routine is primary used in plug-ins is to allow access to the Upgrader routines. It also
allows access to the Upgrader’s QuickDraw globals which are needed for any plug-in drawing
procedures. This routine needs only to be called once and this will always be from the
InitializePluginModule routine.

Chapter 3: Writing Upgrader Plug-ins 74

void SetupPlugin (void *shellFunctions);

DESCRIPTION

Performs several internal initialization routines for the plug-ins, one of which sets up an internal table
of all the Upgrader routines available to the Shell. So, this routine must be called by the plug-in in
InitializePluginModule before any other Upgrader routines are called.

PARAMETERS

shellFunctions A table of all the routines available to the plug-in, the
structure of this is not available to the plug-ins.

SPECIAL CONSIDERATIONS

• This must be called before any other Upgrader routines are called.

• This routine must be preceded with a call to EnterPlugin and ultimately succeeded by a call to
ExitPlugin.

PSRegisterHandler

ShellErr PSRegisterHandler (HandlerIDType inHandlerType,
UniversalProcPtr inHandlerProcPtr);

DESCRIPTION

Gives the Upgrader the necessary access to the plug-in’s HandleEventForPluginModule and
TerminatePluginModule plug-in entry point routines.

PARAMETERS

inHandlerType kEventHandlerID if registering the
HandleEventForPluginModule routine, or
kTerminationHandlerID if registering the
TerminatePluginModule routine

inHandlerProcPtr A pointer to the plug-in’s HandleEventForPluginModule or
TerminatePluginModule routine

RETURNS

noErr The routine was successfully registered with the Shell
kUnknownPluginHandlerErr inHandlerType was not recognized or handled by the Shell

SPECIAL CONSIDERATIONS

• Support for UniversalProcPtrs for PPC code is not provided in Upgrader.

NOTE

It is important to call SetupPlugin before PSRegisterHandler is called, as the
plug-in won’t have any access to the Upgrader routines including
PSRegisterHandler, until after the call to SetupPlugin.

Chapter 3: Writing Upgrader Plug-ins 75

Panel Handling Routines
Several routines are available to the plug-in writer to handle Upgrader panels and these are now
detailed.

PSSetupNewPanel

ShellErr PSSetupNewPanel (SInt16 inPanelItemsRsrcID,
PanelPtr *outPanelPtr);

DESCRIPTION

This is used to setup the contents of a global panel based on the contents of the specified 'DITL'. If the
global panel is not already open then it creates the panel, if the panel is already open it changes the
contents of the panel.

PARAMETERS

inPanelItemsRsrcID A 'DITL' resource ID which specifies the contents of the panel
outPanelPtr If successful, returns a PanelPtr to the panel. On failure

(panel couldn’t be opened or changed), returns NULL.

RETURNS

noErr The panel was correctly set up
kInternalErr If the global PanelPtr is NULL and we are attempting to

change its contents
MemError Standard memory error
ResError Standard resource error

SPECIAL CONSIDERATIONS

• This routine does not display the panel or its new contents, call PSShowPanel to do this.

PSNewCustomPanel

ShellErr PSNewCustomPanel (short inPanelItemsRsrcID,
DVFlags inFlags,
PanelPtr *outPanelPtr);

DESCRIPTION

Sets up the contents of a new custom panel based on the 'DITL' specified. This routine will always create
a new window for the panel.

PARAMETERS

inPanelItemsRsrcID A 'DITL' resource ID which specifies the contents of the panel
inFlags Always kGrowWindow , which causes PSNewCustomPanel to

load a resizable window (with a Grow Box)
outPanelPtr On success, returns a PanelPtr to the panel. On failure (panel

couldn’t be opened or changed), returns NULL.

RETURNS

Chapter 3: Writing Upgrader Plug-ins 76

noErr The new custom panel was correctly set up
kInternalErr If the global PanelPtr is NULL and we are attempting to

change its contents
MemError Standard memory error
ResError Standard resource error

SPECIAL CONSIDERATIONS

• This routine does not display the panel or its new contents, call PSShowPanel to do this.

• The Shell automatically handles the growing of panels, i.e., it will move buttons, resize DocViewers,
etc.

PSUpdatePanel

ShellErr PSUpdatePanel (PanelPtr inPanelPtr);

DESCRIPTION

Redraws the specified panel. This is normally called in response to an update event for the current
panel. Most plug-ins will not need to directly call this routine and should return FALSE in
HandleEventForPluginModule, thereby forcing the Shell to handle the update event. In the event
that is is needed to be explicitly called, it should be bracketed with calls to BeginUpdate and
EndUpdate in the calling routine.

PARAMETERS

inPanelPtr A pointer to the panel which is to be drawn

RETURNS

noErr The panel was drawn correctly
paramErr An illegal parameter was passed to NewGWorld
cDepthErr An invalid pixel depth was passed to NewGWorld
QDErr Standard QuickDraw error

SPECIAL CONSIDERATIONS

• This routine assumes that suitable bracketing with BeginUpdate and EndUpdate calls is provided
in the calling routine.

• It is the responsibility of the calling routine to erase the regions of the window that need to be
redrawn.

SEE ALSO

Inside Macintosh: Imaging with QuickDraw 6-16 for more information on NewGWorld.

PSActivatePanel

ShellErr PSActivatePanel (PanelPtr inPanelPtr,
Boolean inShouldActivate);

DESCRIPTION

Chapter 3: Writing Upgrader Plug-ins 77

This routine is used to activate or deactivate panels, depending on the value of inShouldActivate.
Most plug-ins will not need to directly call this routine and should return FALSE in
HandleEventForPluginModule, thereby forcing the Shell to handle the activate/deactivate event.
Typically, a plug-in might call this directly before displaying a dialog box to deactivate the panel and
then to reactivate the panel when the dialog box is closed.

PARAMETERS

inPanelPtr A pointer to the panel to be activated
inShouldActivate If TRUE, activate the panel, if FALSE, deactivate the panel

RETURNS

noErr Always returns noErr

SPECIAL CONSIDERATIONS

• This routine sets the current port to the panel window.

PSDisposePanel

void PSDisposePanel (PanelPtr inPanelPtr);

DESCRIPTION

Removes a panel from the screen, disposes of its window and releases the memory occupied by all
structures associated with the panel.

PARAMETERS

inPanelPtr A pointer to the panel to be disposed of

SPECIAL CONSIDERATIONS

• There is no need to explicitly dispose of/hide the global panel if the next plug-in is going to change its
contents or hide it.

• This should not be called by a plug-in to close the global panel, PSHidePanel should be called
instead.

• This should only be used in conjunction with panels created with PSNewCustomPanel.

Chapter 3: Writing Upgrader Plug-ins 78

PSShowPanel

ShellErr PSShowPanel (PanelPtr inPanelPtr);

DESCRIPTION

Shows the panel if it was hidden, else brings it to the front.

PARAMETERS

inPanelPtr A pointer to the panel to be shown

RETURNS

noErr Always returns noErr

PSHidePanel

void PSHidePanel (PanelPtr inPanelPtr);

DESCRIPTION

Hides the specified panel.

PARAMETERS

inPanelPtr A pointer to the panel to be hidden

PSGetPanelItemHit

Boolean PSGetPanelItemHit (PanelPtr inPanelPtr,
EventRecord *inPanelEvent,
short *outItemHit);

DESCRIPTION

Call this routine in response to a mousedown event in a panel to find which item on the panel was hit by
the user.

PARAMETERS

inPanelPtr A pointer to the panel in which the mousedown occurred
inPanelEvent The event record for the mousedown event
outItemHit On return, the item number of the item that was hit on the

panel (if an item on the current panel was clicked), else
outItemHit is undefined

RETURNS

TRUE if an active control item on this panel was clicked, FALSE otherwise.

Chapter 3: Writing Upgrader Plug-ins 79

PSSetPRefCon

void PSSetPRefCon (PanelPtr inPanelPtr,
long inRefCon);

DESCRIPTION

Sets the panel’s refCon.

PARAMETERS

inPanelPtr A pointer to the panel whose refCon is to be set
inRefCon A long value which can be used by the plug-in for its own use

SPECIAL CONSIDERATIONS

• This is needed since the panel module uses the standard window’s refCon to store information.

PSGetPRefCon

long PSGetPRefCon (PanelPtr inPanelPtr);

DESCRIPTION

Gets the panel’s refCon.

PARAMETERS

inPanelPtr A pointer to the panel whose refCon we wish to retrieve

RETURNS

The value of the refCon stored in the panel record’s refCon field, or 0 (zero) if inPanelPtr is not a
valid panel pointer.

SPECIAL CONSIDERATIONS

• This is needed since the panel module uses the standard window’s refCon to store information.

PSSetPanelItemAction

ShellErr PSSetPanelItemAction (PanelPtr inPanelPtr,
short inItemNumber,
PanelActionType inActionType);

DESCRIPTION

Sets the “action” attributes for a specified panel item. These attributes are drawing the default button
and handling the Continue, Go Back, or Quit buttons. The main motivations for using this routine are
ease of plug-in development and the standardization of plug-in behavior. Constants for specifying
panel item actions are defined in the “UpgraderPlugins.h” file.

Chapter 3: Writing Upgrader Plug-ins 80

The following details the keys mapping:

Key Mapped To

Return Default button

Enter Default button

Escape Go Back button

Clear Go Back button

PARAMETERS

inPanelPtr A pointer to the panel containing the item whose action
attributes are to be set

inItemNumber The panel item number of the item whose action attributes are
to be set

inActionType The action attributes to be set for the specified item

RETURNS

noErr The action attributes were set for the specified item
kItemTypeMismatchErr The specified item was not a control item
kPanelItemNotFoundInListErr The specified item was not found on the panel

Example, setting panel button actions:

// setting the default button:
(void) PSSetPanelItemAction(gMyPluginPanel, kContinueButtonItem, kDefaultButtonMask);

// setting the Continue button:
(void) PSSetPanelItemAction(gMyPluginPanel, kContinueButtonItem, kContinueButtonMask);

// setting the Go Back button:
(void) PSSetPanelItemAction(gMyPluginPanel, kGoBackButtonItem, kGoBackButtonMask);

Panel Content Routines
Following are the routines for handling Upgrader panels.

PSSetPanelItem

ShellErr PSSetPanelItem (PanelPtr inPanelPtr,
short inItemNumber,
PanelItemType inItemType,
Handle inItemHandle,
Rect *inItemRect);

DESCRIPTION

This routine works like SetDialogItem. It can be used to change the type or data of a specified panel
item, or can be used to move the item on the panel (by changing its boundary rectangles).

Chapter 3: Writing Upgrader Plug-ins 81

PARAMETERS

inPanelPtr A pointer to the panel containing the item to change
inItemNumber The panel item number of the item to change
inItemType A value which represents the type of item in the itemNumber

parameter.
inItemHandle A pointer to the draw procedure for a user item, or a handle to

the item to be changed for all other items
inItemRect The display rectangle (in the panel’s local coordinates) of the

item to be changed

RETURNS

noErr The item was changed successfully
kCantChangePanelItemToSpecifiedTypeErr The item couldn’t be changed

SPECIAL CONSIDERATIONS

• This routine disposes of the previous data associated with the panel item.

SEE ALSO

Inside Macintosh: Macintosh Toolbox Essentials 6-121 for more information on inItemType.

PSGetPanelItem

ShellErr PSGetPanelItem (PanelPtr inPanelPtr,
short inItemNumber,
PanelItemType *outItemType,
Handle *outItemHandle,
Rect *outItemRect);

DESCRIPTION

Returns the item specific data associated with a panel item.

PARAMETERS

inPanelPtr A pointer to the panel
inItemNumber The panel item number of the item we want to retrieve

information about
outItemType On return, the type of the requisite item
outItemHandle On return, the handle of the requisite item
outItemRect On return, the encompassing rect of the requisite item

RETURNS

noErr The required information was retrieved
kPanelItemNotFoundInListErr The item was not found on the panel

Chapter 3: Writing Upgrader Plug-ins 82

PSNewStyledStringItem

TEHandle PSNewStyledStringItem (Rect *inItemRect,
short inSTRListRsrcID,
short inStringListItem,
short inFontNum,
short inFontStyle,
short inFontSize);

DESCRIPTION

Creates a new monostyled text item which can then be added to the panel with a call to
PSSetPanelItem. The contents of a monostyled text item are loaded from a 'STR#' resource.

PARAMETERS

inItemRect The encompassing rect of the styled string item on the panel
inSTRListRsrcID The resource ID of the 'STR#' which the string is to be read

from
inStringListItem The index into the 'STR#' of the string required
inFontNum The number of the font to draw the text in
inFontStyle The style of the font to draw the text in
inFontSize The size of the font to draw the text in

RETURNS

On success, returns a handle to the newly created styled string item. On failure, returns NULL.

SPECIAL CONSIDERATIONS

• Assumes that inStringListItem is greater than 0

PSNewStyledTextItem

TEHandle PSNewStyledTextItem (Rect *inItemRect,
short inTEXTRsrcID);

DESCRIPTION

Creates a new multi styled text item which can then be added to the panel with a call to
PSSetPanelItem. The contents of a styled text item are loaded from a 'TEXT' and optional 'styl'
resource.

PARAMETERS

inItemRect The encompassing rect of the styled text item on the panel
inTEXTRsrcID The resource ID of the 'TEXT' and 'styl' resources to use

RETURNS

On success, returns a handle to the newly created styled text item. On failure, returns NULL.

SPECIAL CONSIDERATIONS

• Assumes that the 'TEXT' and 'styl' resources have the same resource ID.

Chapter 3: Writing Upgrader Plug-ins 83

• Assumes that inItemRect is specified in local co-ordinates of the current grafport.

PSNewUserItem

PanelUserItemHandle PSNewUserItem (UserItemProcPtr inUserItem,
Boolean inTransparent);

DESCRIPTION

Creates a new user item which can then be added to the panel with a call to PSSetPanelItem. User
items can be used to create the writer’s own item on a panel, as with normal dialogs. Upgrader also
provides routines for setting user items to DocViewer and static text items.

PARAMETERS

inUserItem A pointer to the user item draw procedure
inTransparent TRUE if the panel background (color, 'PICT's etc.) is to show

through the user item. FALSE if the item’s background is
whatever the user draw procedure sets

RETURNS

On success, returns a handle to the newly created user item on the panel. On failure, returns NULL.

SPECIAL CONSIDERATIONS

• Assumes that inUserItem is a valid user item procedure.

Sample code for creating a custom drawing procedure for a user item (error-checking is omitted for
clarity):

ShellErr theErr = noErr;
Handle userItemHandle;
Rect userItemRect;
PanelItemType userItemType;
UserItemUPP drawUPP = NULL;

// --- use DisposeRoutineDescriptor(drawUPP) later to kill it

drawUPP = NewUserItemProc(DrawingProcedureName);
if (drawUPP != NULL) {

userItemHandle = PSNewUserItem(drawUPP, true);
if (userItemHandle != NULL) {

(void) PSGetPanelItem(gMyPluginPanel, kUserItemNumber,
&userItemType, &userItemHandle, &userItemRect);

(void) PSSetPanelItem(gMyPluginPanel, kUserItemNumber,
userItemType, userItemHandle, &userItemRect);

}

}

Chapter 3: Writing Upgrader Plug-ins 84

Document Viewer Routines

PSNewDocViewerItem

DocInfoHandle PSNewDocViewerItem (PanelPtr inPanelPtr,
Rect *inItemRect,
DocViewerType inDocViewerType,
short inTextRsrcID,
short inBasePICTRsrcID);

DESCRIPTION

Creates a new DocViewer item which can then be added to the panel with a call to PSSetPanelItem.
The contents can be read from 'TEXT'/'styl' resources or from a SimpleText file, based on the value of the
inDocViewerType parameter.

PARAMETERS

inPanelPtr A pointer to the panel which will contain the new DocViewer
item

inItemRect The encompassing rect of the DocViewer item
inDocViewerType kDocResType if the contents of the DocViewer item are to be

loaded from resources, or kDocFileType if they are to be
loaded from a SimpleText formatted file

inTextRsrcID The 'TEXT' resource ID if kDocResType, or the 'flrf' resource
ID for the file containing the text, if kDocFileType

inBasePICTRsrcID For kDocResTypes this is the base resource ID of the first
'PICT' embedded in the text. For kDocFileTypes,
inBasePICTRsrcID is ignored. (It is set to 1000 internally,
which is the SimpleText standard).

RETURNS

On success, returns a handle to the newly created DocViewer item on the panel. On failure, returns
NULL.

SPECIAL CONSIDERATIONS

• See Appendix A information on embedding 'PICT's into a DocViewer item.

PSHandleDocScroll

ShellErr PSHandleDocScroll (PanelPtr inPanelPtr,
Point inLocalPt,
short inDocItem);

DESCRIPTION

Handles scrolling in the DocViewer object.

PARAMETERS

inPanelPtr The panel which contains the DocViewer object
inLocalPt The point, in local coordinates, where the mouse was clicked in

the DocViewer item. (Normally taken from the mousedown

Chapter 3: Writing Upgrader Plug-ins 85

event record)
inDocItem The panel item number of the DocViewer object

RETURNS

 noErr The scrolling was handled correctly
kPanelItemNotFoundInListErr The DocViewer item was not found on the panel

SPECIAL CONSIDERATIONS

• Auto scrolling is not supported.

PSSaveDoc

void PSSaveDoc (PanelPtr inPanelPtr,
short inDocItem);

DESCRIPTION

Saves a DocViewer item to disk as a read only SimpleText format file. The standard Save dialog box is
displayed, in which the user can optionally enter a path and filename for the DocViewer item. Default
filenames for the standard Save dialog box can be provided for by putting a 'STR#' resource in the plug-
in’s resource fork, with an ID of 1000 and the following fields:

resource 'STR#' (1000) {
{

$"CA", // non-breaking space, used as the PICT delimiters
"", // (unused but must be present)
"untitled", // default "Save As" field in standard Save dialog

}
};

PARAMETERS

inPanelPtr Pointer to the panel which contains the DocViewer item to
save

inDocItem Panel item number of the DocViewer item

SPECIAL CONSIDERATIONS

• If the Standard File Package is not available, this routine should not be called, especially when
booting from floppy disks. See the description of PSCheckEnvironment for information on how to
check for the availability of the Standard File Package.

Chapter 3: Writing Upgrader Plug-ins 86

PSPrintDoc

ShellErr PSPrintDoc (PanelPtr inPanelPtr,
short inDocItem);

DESCRIPTION

Prints a DocViewer item. The standard Print Job Dialog box is displayed. If the option key is held down
when this call is made then the page setup dialog will be displayed.

PARAMETERS

inPanelPtr Pointer to the panel which contains the DocViewer item to
print

inDocItem Panel item number of the DocViewer item

RETURNS

noErr Printing completed successfully
kPanelItemNotFoundInListErr The DocViewer item was not found on the panel
PrError Standard printing error
MemError Standard memory error

Navigation Routines
Three “navigation” routines are available to plug-in writers: PSGoToPreviousPlugin,
PSGoToNextPlugin and PSQuitShell. In the normal course of events (i.e. if the plug-in has setup the
Go Back/Continue buttons actions the Shell will take care of going to the next or previous plug-in, as
defined in the sequence list or history list, when the user clicks on either the Go Back or Continue
buttons (or their equivalents) on a panel. However, if the plug-in writer wishes to override the normal
plug-in sequence for any reason, these routines can be used.

PSGotoPreviousPlugin

ShellErr PSGoToPreviousPlugin(void);

DESCRIPTION

Go to the current plug-in’s previous plug-in as defined by the plug-in history list. This routine calls the
plug-in termination routine, TerminatePluginModule. PSGotoPreviousPlugin is called by the
Shell when the user clicks on the Go Back button, or its equivalent, if there is a permitted previous
plug-in to go to.

RETURNS

noErr Always returns noErr

The following is a rough guide to the flow of control when the user clicks Go Back (or some equivalent):

Plug-in: Go Back
-> causes ->

Shell: PSGotoPreviousPlugin()
-> causes ->

Plug-in: TerminatePluginModule()

Chapter 3: Writing Upgrader Plug-ins 87

-> causes ->
Shell: checks the history list and loads the previous plug-in (if permitted)

PSGotoNextPlugin

ShellErr PSGoToNextPlugin(ResourceID inStrRsrcID);

DESCRIPTION

Go to the current plug-in’s next plug-in as defined by the plug-in sequence list, or go to the plug-in
specified by name. This routine can either be called explicitly by a plug-in, in which case the 'STR '
containing the plug-in name to branch to is passed, or by the Shell (when the user clicks on the Continue
button, or its equivalent), in which the name of the plug-in is taken from the plug-in sequence list
maintained by the Shell. PSGoToNextPlugin calls the plug-in termination routine,
TerminatePluginModule.

PARAMETERS

inStrRsrcID kUseDefaultNextModuleName if using the default next plug-
in as defined by the sequence list, else the resource ID of the
'STR ' containing the name of the plug-in to branch to

RETURNS

noErr Went to the next plug-in successfully
kUnknownPluginNameErr Trying to go forward from the last plug-in (no more plug-ins in

the sequence list)
kNextPluginSameAsCurrentErr Trying to call the same plug-in as we’re currently in
MemError Standard memory error

The following is a rough guide to the flow of control when the user clicks Continue (or some equivalent):

Plug-in: Go Forward
-> causes ->

Shell: PSGotoNextPlugin(kUseDefaultNextModuleName)
-> causes ->

Plug-in: TerminatePluginModule()
-> causes ->

Shell: checks the sequence list and loads the next plug-in (if permitted)

The following is a rough guide to the flow of control when the plug-in explicitly calls
PSGotoNextPlugin:

Plug-in: PSGotoNextPlugin(resIDofPluginNameStr)
-> causes ->

Plug-in: TerminatePluginModule()
-> causes ->

Shell: loads the plug-in specified in the 'STR ' referenced in PSGotoNextPlugin

Chapter 3: Writing Upgrader Plug-ins 88

PSQuitShell

ShellErr PSQuitShell(Boolean inCanAllowUserToContinue);

DESCRIPTION

Instructs the Upgrader Shell to quit after returning from the current handler.

PARAMETERS

inCanAllowUserToContinue If inCanAllowUserToContinue is TRUE, the Shell will
check whether or not a restart is necessary as soon as the
Upgrader quits (most likely because system software has been
installed). The global data type 'rsrq' (boolean) can be set to
flag whether a restart or a quit is needed. If a restart is
necessary a two button dialog will be displayed, one button to
allow the user to cancel the quit instruction and continue with
the Upgrader and the other button to allow the user to restart.

If inCanAllowUserToContinue is FALSE, the Shell will
check whether a restart is necessary as soon as the Upgrader
quits but in this case will not display a dialog. If a restart is
necessary it will simply restart. Under most situations
inCanAllowUserToContinue will be set to TRUE by the
plug-ins. It should only be set to FALSE in cases where a serious
error has occurred and it would be unsafe to allow the Upgrader
to continue.

RETURNS

noErr There were no problems and the user did not select Continue if
PSQuitShell displayed the Continue/Restart alert

kUserContinuingAfterRestartMsgNum
PSQuitShell displayed the Continue/Restart alert and the
user selected Continue.

SPECIAL CONSIDERATIONS

• Upgrader does not quit immediately when this instruction is called, instead it sets a global to indicate
that Upgrader is to quit as soon as possible. When control is returned to the Upgrader’s event loop, the
global will be checked and the current plug-in’s termination routine is called. Other internal clean-up
routines are then called before Upgrader finally quits. It is safe to call this routine from anywhere in
the plug-in including the termination routine. (If it is called from within a plug-in termination routine
Upgrader will not call the termination routine again).

Help Window Routines

PSSetupHelpWindow

OSErr PSSetupHelpWindow (DocLocationType inLocation,
short inRsrcID,
short inBasePICTRsrcID,
Str255 inHelpPanelTitleStr,
PanelPtr *outHelpPanelPtr);

Chapter 3: Writing Upgrader Plug-ins 89

DESCRIPTION

Called by a plug-in to setup the help window associated with that plug-in. If this is the first time that
the routine has been called, it will create the PanelPtr and return it in outHelpPanelPtr.

PARAMETERS

inLocation Location of Help panel contents. This will be either
kReadFromResourceFile, if the help panel DocViewer
items contents are being read from a resource, or
kReadFromSimpleTextFile, if the contents are being read
from a SimpleText format file.

inRsrcID 'TEXT'/'styl' resource ID if inLocation is
kReadFromResourceFile or the 'flrf' resource ID if
inLocation is kReadFromSimpleTextFile

inBasePICTRsrcID The resource ID of the first 'PICT' (if any) referenced in the
text, if inLocation is kReadFromResourceFile. If
inLocation is kReadFromSimpleTextFile, this parameter
is ignored (as it’s always set to 1000 internally).

inHelpPanelTitleStr A pascal string containing the help panel title. There is no
default title supplied, so if this parameter is not explicitly
setup before being passed, the panel title will be some junk

outHelpPanelPtr On return, a pointer to the help panel, or NULL if it couldn’t be
created

RETURNS

noErr The help panel was successfully setup
kInternalErr If the global help PanelPtr is NULL and we are attempting to

change its contents
kPanelItemNotFoundInListErr Invalid item number
kCantChangePanelItemToSpecifiedTypeErr The item couldn’t be changed
MemError Standard memory error
ResError Standard resource error

SPECIAL CONSIDERATIONS

• The 'TEXT' and 'styl' resources used to specify the text contents of the help panel (in the event of
inLocation is kReadFromResourceFile) must have the same resource ID.

PSDisplayHelpWindow

void PSDisplayHelpWindow (PanelPtr inHelpPanelPtr);

DESCRIPTION

Called by a plug-in to display the help window, or if it is already there, to bring it to the foreground.
Also checks to see if (a) a printer is available, (b) the standard file package and list package are
available and enables or disables the print and/or save buttons appropriately. See the description of
PSCheckEnvironment for more information about checking for print/save capabilities.

PARAMETERS

inHelpPanelPtr A pointer to the help panel

SPECIAL CONSIDERATIONS

Chapter 3: Writing Upgrader Plug-ins 90

• Assumes that inHelpPanelPtr is an initialized, valid pointer to the current help panel.

PSCloseHelpWindow

void PSCloseHelpWindow (PanelPtr inHelpPanelPtr);

DESCRIPTION

Closes the help window, if inHelpPanelPtr is not NULL. This only hides the window, as it might be
needed by another plug-in. As it’s only hidden, its location and size are retained and don’t need to be
saved-off for use by another plug-in (the help panel is redisplayed by a future plug-in in the same state
and position it was in before it was hidden).

PARAMETERS

inHelpPanelPtr A pointer to the help panel

SPECIAL CONSIDERATIONS

• This is called by PSHandleHelpWindowEvent in response to the user clicking the Close button (or
some equivalent action) on the help panel, therefore it does not need to be called by a plug-in in the
normal course of events.

• The plug-in does not need to dispose of the help panel, as the shell takes care of it.

PSHandleHelpWindowEvent

Boolean PSHandleHelpWindowEvent (PanelPtr inHelpPanelPtr,
EventRecord *inEvent);

DESCRIPTION

Called by a plug-in in its event handler after determining that the event occurred in the help window
to handle help window events. This is also called in the plug-in’s resume event to give the shell a turn
at handling the resume event for the help panel.

PARAMETERS

inHelpPanelPtr A pointer to the Help panel
inEvent A pointer to the latest event’s record

RETURNS

TRUE if the event was handled by this routine, FALSE otherwise.

SPECIAL CONSIDERATIONS

• Assumes that inHelpPanelPtr is an initialized, valid pointer to the current help panel.

• Deals with mousedown events and resume events for the help panel.

Global Data Routines

Chapter 3: Writing Upgrader Plug-ins 91

PSSetGlobalData

ShellErr PSSetGlobalData (GlobalDataType inGlobalDataType,
GlobalDataPtr inGlobalDataPtr,
Size inDataSize);

DESCRIPTION

Writes the value of the specified Global Data to the global list. If this Global Data doesn’t exist, then
it first creates it before updating the Global Data.

PARAMETERS

inGlobalDataType A four character constant identifying the Global Data
inGlobalDataPtr A pointer to the data to set
inDataSize The number of bytes of data to write for this global

RETURNS

noErr The global was successfully stored
kGlobalDataOutOfMemErr There wasn’t enough memory to add a new global

SPECIAL CONSIDERATIONS

• If the Global Data item already exists, then the data is overwritten, so it is the responsibility of the
plug-in to ensure that the new data is the same type and length as the original, or else there might be a
crash.

PSGetGlobalData

ShellErr PSGetGlobalData (GlobalDataType inGlobalDataType,
GlobalDataPtr inGlobalDataPtr,
Size inMaxDataSize,
Size *outActualDataSize);

DESCRIPTION

Reads the value of the specified global from the global list.

PARAMETERS

inGlobalDataType A four character constant identifying the global
inGlobalDataPtr A pointer to a buffer to copy the data into
inMaxDataSize The number of bytes of data to read for this global
outActualDataSize On return, the actual size of the stored global

RETURNS

noErr The global was retrieved successfully
kUnknownGlobalDataErr The global was not found or doesn’t exist

SPECIAL CONSIDERATIONS

• It is the responsibility of the plug-in to allocate sufficient memory for the buffer before data is copied
into it.

Chapter 3: Writing Upgrader Plug-ins 92

Error Alert Routines

PSErrorAlert

SInt16 PSErrorAlert (SInt16 inErrNum,
 Boolean inIsStandardShellErr,
 ConstStr255Param inParam0,
 ConstStr255Param inParam1,
 ConstStr255Param inParam2,
 ConstStr255Param inParam3,
 SInt16 inDefaultButton,
 SInt16 inCancelButton);

DESCRIPTION

Displays the text associated with the inErrNum in the related dialog, which is resized if necessary.

PARAMETERS

inErrNum The error number of the error which occurred
inIsStandardShellErr If TRUE, the error text, dialogs etc., are contained in the Shell.

If FALSE, they are contained in the plug-in’s resource fork
inParam0 Pascal string to replace ^0 in the dialog (or an empty pascal

string if none)
inParam1 Pascal string to replace ^1 in the dialog
inParam2 Pascal string to replace ^2 in the dialog
inParam3 Pascal string to replace ^3 in the dialog
inDefaultButton The item number of the default button on the dialog
inCancelButton The item number of the cancel button on the dialog

RETURNS

The item number of the item the user selected on the dialog. Constants are defined for these return
values in the “UpgraderPlugins.h” file.

SPECIAL CONSIDERATIONS

• Depending on the 'DLOG', there may or may not be, some or any ^0, ^1, ^2, ^3 strings to fill, so
inParam0, inParam1, inParam2 and inParam3 therefore may or may not be required, depending on
the 'DLOG' used. These parameters should be set to an empty string if not needed.

• If inDefaultButton is 0 (zero) then there is no default button set on the dialog. Similarly, if or
inCancelButton is 0, there is no cancel button set on the dialog.

Chapter 3: Writing Upgrader Plug-ins 93

PSAlert

SInt16 PSAlert (short inDLOGID,
DocumentType inWhichFileContainsDLOG,
ConstStr255Param inAlertText,
ConstStr255Param inParam0,
ConstStr255Param inParam1,
ConstStr255Param inParam2,
ConstStr255Param inParam3,
SInt16 inDefaultButton,
SInt16 inCancelButton);

DESCRIPTION

General purpose alert display routine which displays inAlertText in the dialog inDLOGID, which is
resized if necessary to fit the text. The plug-in developer may also create his/her own alert dialogs.

PARAMETERS

inDLOGID Resource ID of the 'DLOG' resource
inWhichFileContainsDLOG kUpgraderFile if the 'DLOG' resource is in the Shell,

kClientDataFile if the 'DLOG' is in the data file, or
kCurrentPluginResFile if the 'DLOG' is in the plug-in’s
resource fork

inAlertText Pascal string containing the text to be displayed on the dialog
inParam0 Pascal string to replace ^0 in the dialog (or an empty pascal

string if none)
inParam1 Pascal string to replace ^1 in the dialog
inParam2 Pascal string to replace ^2 in the dialog
inParam3 Pascal string to replace ^3 in the dialog
inDefaultButton Item number of the default button on the dialog
inCancelButton Item number of the cancel button on the dialog

RETURNS

The item number of the item the user selected on the dialog. Constants are defined for these return
values in the “UpgraderPlugins.h” file.

SPECIAL CONSIDERATIONS

• Depending on the 'DLOG', there may or may not be, some or any ^0, ^1, ^2, ^3 strings to fill, so
inParam0, inParam1, inParam2 and inParam3 therefore may or may not be required, depending on
the 'DLOG' used. These parameters should be set to an empty string if not needed.

• If inDefaultButton is 0 (zero) then there is no default button set on the dialog. Similarly, if or
inCancelButton is 0, there is no cancel button set on the dialog.

• If the plug-in writer designs his/her own alert box, there must be five buttons on the panel,
irrespective of the number of buttons (the maximum number of supported buttons is five) the writer
wishes to use. Any buttons not used should be hidden.

Utility Routines

This section details helpful utility routines available to plug-in writers. The various utility routines
for the Upgrader includes PSCheckEnvironment, to check for Print/Save options, PSReadFontInfo,

Chapter 3: Writing Upgrader Plug-ins 94

to read font information from an 'finf' resource, two more, PSAlert and PSErrorAlert to put up and
handle an alert box/error alert box and also PSCollect , to preload any resources listed in a 'RES#'
resource.

PSCheckEnvironment

OSErr PSCheckEnvironment (EnvironmentType *outEnvironment);

DESCRIPTION

Perform a check on the machine’s runtime environment to verify the availability of certain facilities.
Those supported at the moment are checks for

• Printing - checks to see if an active printer is selected or available

• Saving - checks to see if the List Manager Package and Standard File Manager
Package are available

These checks are handy later on if the plug-in writer needs to enable/disable a Print/Save button on a
panel, for example the help panel has both a Print and a Save button. This routine should be called on a
resume event to check for a printer becoming available. In the event of booting from a floppy disk, the
standard file and list package may not be available, so it might not be possible to save items.

PARAMETERS

outEnvironment On return, a pointer to an EnvironmentType indicating
whether or not printing and/or saving is available

RETURNS

noErr Always returns noErr

SPECIAL CONSIDERATIONS

• The masks for checking availability of printing and saving are as follows:

Printing Available : kPrinterAvailableMask
Saving Available : kStandardFilePackageAvailableMask

PSReadFontInfo

Boolean PSReadFontInfo (short inLocation,
short inRsrcID,
short inFontItem,
short *outFontFace,
short *outFontStyle,
short *outFontSize);

DESCRIPTION

Read-in font information from a font information ('finf') resource and return it in outFontFace,
outFontStyle and outFontSize.

PARAMETERS

Chapter 3: Writing Upgrader Plug-ins 95

inLocation One of: kFontInfoInClientDataFile, if the resource is in
the data file, kFontInfoInPluginFile, if the resource is in
the plug-in, or kFontInfoInShell, if the resource is in the
Upgrader application

inRsrcID The resource ID of the 'finf' resource
inFontItem The index into the 'finf' resource for the required font
outFontFace On return, the loaded font number
outFontStyle On return, the loaded font style (face)
outFontSize On return, the loaded font size

RETURNS

TRUE if the font was read successfully, FALSE if there was a problem

SPECIAL CONSIDERATIONS

• outFontFace, outFontStyle and outFontSize are undefined if either the 'finf' resource or the
index into the resource weren’t found.

NOTE

A 'finf' resource has the following definition (taken from Fonts.r)

type 'finf' {
integer = $$CountOf(Fonts); // Number of fonts
array Fonts {

integer; // Font Number
unsigned hex integer plain; // Font Style
integer; // Font Size

};

};

PSLaunchFile

Boolean PSLaunchFile (SInt16 inAppFileRefRsrcID,
SInt16 inDocFileRefRsrcID,
AEDescList *inOptionalOpenParams,
Boolean inLaunchAppInFront,
ProcessSerialNumber *outApplicationPSN);

DESCRIPTION

Launches the specified file or application. If launching a file, the application the file is to be launched
with must also be specified.

PARAMETERS

inAppFileRefRsrcID The 'flrf' resource (see section 3.3 for more details), containing
the application to be launched

inDocFileRefRsrcID The 'flrf' resource of the document to be launched, or 0 (zero) if
only an application launch

inOptionalOpenParams A list of optional parameters sent in the 'odoc' AppleEvent
inLaunchAppInFront If kLaunchAppInFront, launch the application in front of all

other applications, if kLaunchAppInBack, launch the
application in the background

Chapter 3: Writing Upgrader Plug-ins 96

outApplicationPSN On success, the process serial number of the launched
application is returned. This can be used to communicate with
the launched application, or terminate the launched
application. On failure, this parameter is undefined.

RETURNS

TRUE if no errors occurred, else FALSE.

PSMakeFSSpecFromFileRefID

Boolean PSMakeFSSpecFromFileRefID (SInt16 inFileRefID,
Boolean inShowErrorAlert,
FSSpec *outFoundFile);

DESCRIPTION

Returns an FSSpec to a file defined by a 'flrf' resource. This allows plug-in writeres to store references to
files using the standard 'flrf' resource, and find them during runtime.

PARAMETERS

inFileRefID The ID of a 'flrf' resource (see section 3.3 for more details)
containing the file to be found

inShowErrorAlert If true, displays an alert if the file cannot be found.
outFoundFile On success, a FSSpec describing the location of the found file.

RETURNS

TRUE if no errors occurred, else FALSE.

PSCollect

void PSCollect (SInt16 inResListRsrcID);

DESCRIPTION

Given a resource list resource, or 'RES#', this routine goes through the list of resources and loads any of
the resources in the list which aren’t already in memory. It also makes them non-purgeable.

PARAMETERS

inResListRsrcID The resource ID of the 'RES#' resource

Resources
These resources are contained in the plug-in file.

The Error Mapping Resource ('ners')

One of the services the Upgrader provides to plug-ins is the ability to display error messages in
automatically resizeable dialog boxes. The routines which provide this functionality are
PSErrorAlert and PSAlert. PSErrorAlert makes use of 'ners' resources, which are used to identify

Chapter 3: Writing Upgrader Plug-ins 97

individual error numbers with the error string to be displayed and the error dialog to display it in.

type 'ners' {
wide array {
integer; // Internal error number
integer; // Index in 'STR#' ID = 500 resource
integer; // Dialog to display; 'DLOG' Rsrc ID

};
};

The first integer will be the error number for which you want to display a message. The second integer is
the index of a 'STR#' resource ID that the string is stored. The third integer contains the 'DLOG' ID of
the error dialog in which the error message is to be displayed.

The Plug-in Format Resource ('pfmt')

The plug-in file format resource defines the version of the plug-in file, so the Upgrader can determine if
it can execute the plug-in file or not.

type 'pfmt' {
byte PluginMajorRevisionNumber; // The major version number
byte PluginMinorRevisionNumber; // The minor version number

}

Summary of the Upgrader API

Constants

Constant Value Comment

PSErrorAlert / PSAlert constants:

Dialog IDs , needed by plug-ins to define their own private 'ners' resources:
kStopOrContinueDLOGID 506 note, center main
kQuitOrContinueDLOGID 507 note, center main
kNoteOKDLOGID 508 note, center main
kRestartOrContinueDLOGID 514 note, center main
kStopOKDLOGID 519 stop, center main
kSkipOrContinueDLOGID 520 caution, alert parent
kStopAndQuitDLOGID 526 OK, center main
kStopDLOGID 600 OK, center main

kEmptyString (ConstStr255Param) "\p"

kOKButtonIndex 1 Default/selected button

kContinueNotSkipBtnIndex 1 Skip or continue
kSkipNotContinueBtnIndex 2

kQuitButtonIndex 1 Continue or Quit
kContinueNotQuitBtnIndex 2

kRestartButtonIndex 1 Continue or Restart
kContinueNotRestartBtnIndex 2

Chapter 3: Writing Upgrader Plug-ins 98

kYesButtonIndex 1 Yes or no
kNoButtonIndex 2

kStandardShellError TRUE Look in the Shell for the error
kPluginError FALSE Look in the plug-in for the error

kUpgraderFile 0
kClientDataFile 1
kCurrentPluginResFile 2

PSQuitShell constants:

kDontAllowUserToContinue FALSE
kAllowUserToContinue TRUE

PSGotoNextPlugin constant:

kUseDefaultNextModuleName 0

PSNewCustomPanel constant:

kGrowWindow 0x02 inFlags parameter

PSReadFontInfo constants:

Built-in 'finf' resource IDs for the fontInfo field of StyledStringDesc:
kUpgraderFonts 128
kLargeTextStyle 0
kMediumTextStyle 1
kSmallTextStyle 2
kAlertTextStyle 3

The file from which the 'finf' resource is to be read:
kFontInfoInClientDataFile 0
kFontInfoInPluginFile 1
kFontInfoInShell 2
kFontInfoInAnyFile 3

PSLaunchFile constants:

kLaunchAppInFront TRUE Launch the file or app frontmost
kLaunchAppInBack FALSE Launch the file or app in the background

PSRegisterPluginHandler constants:

kEventHandlerID 'ehID'
kTerminationHandlerID 'thID'

Format Resource constants:

kSequenceResourceType 'tsqc'

Chapter 3: Writing Upgrader Plug-ins 99

kClientDataFormatRsrcType 'cfmt'
kPluginFormatRsrcType 'pfmt'

Error List Resource constant:

kErrorListRsrcType 'ners'

PSNewDocViewerItem / PSSetPanelItem constants:

kDocResType 'DOCV' 'TEXT'/'styl'/'PICT's stored in resources
kDocFileType 'DOCF' SimpleText file (optional 'styl'/ 'PICT' in

resource fork)

PSSetPanelItem constants:

kControlType 'CNTL'
kIconType 'ICON'
kUserItemType 'USER' User panel item for drawing custom items
kStyledTextType 'STXT' 'TEXT' and 'styl' resource pairs
kStyledStringType 'SSTR' 'STR#', index and 'finf'
kPICTType 'PICT'

Global Data Identifiers:

Selected volume's vRefNum set by Target Selection plug-in (SInt16):
kTargetDiskVolRefNumDataType 'trgt'

Flag to signal to Shell and plug-ins that a restart is required (Boolean):
kForceRestartOnQuitDataType 'rsrq'

PSCheckEnvironment constants:

kPrinterAvailableMask 0x00000001
kStandardFilePackageAvailableMask 0x00000002

PSSetupHelpPanel constants:

kReadFromResourceFile TRUE
kReadFromSimpleTextFile FALSE

PSSetPanelItemAction constants:

kContinueButtonMask 0x0001
kGoBackButtonMask 0x0002
kQuitButtonMask 0x0004
kDefaultButtonMask 0x0010

PSShowPanel / PSHidePanel constants:

Pass one of these if the current global panel is unknown (e.g. if the plug-in doesn't display a panel):
kGlobalPanel (void *) 0xFFFFFFFF

Chapter 3: Writing Upgrader Plug-ins 100

kHelpPanel (void *) 0xFFFFFFFE

Data Types

Typedefs:

typedef OSType GlobalDataType;
typedef Ptr GlobalDataPtr;
typedef OSErr ShellErr;
typedef OSType HandlerIDType;
typedef SInt16 ResourceID;
typedef WindowPtr PanelPtr;
typedef UInt8 DVFlags;
typedef unsigned long PanelItemType;
typedef PanelItemType DocViewerType;
typedef short DocumentType;
typedef Byte DocLocationType;
typedef unsigned long EnvironmentType;
typedef UInt16 PanelActionType;
typedef Handle PanelUserItemHandle;

Plug-in-Defined Routines

void InitializePluginModule(void *inPSTable,
SInt32 inRefCon,

 Boolean inEnterAtBeginning);

Boolean HandleEventForPluginModule(EventRecord *inEvent);

void TerminatePluginModule(void);

Upgrader Plug-in Routines

void SetupPlugin(void *shellFunctions);

ShellErr PSRegisterHandler(HandlerIDType inHandlerType,
 UniversalProcPtr inHandlerProcPtr);

ShellErr PSHandleDocScroll(PanelPtr inPanelPtr,
 Point inLocalPt,
 short inDocItem);

void PSSaveDoc(PanelPtr inPanelPtr,
 short inDocItem);

ShellErr PSPrintDoc(PanelPtr inPanelPtr,
 short inDocItem);

ShellErr PSSetGlobalData(GlobalDataType inGlobalDataType,
 GlobalDataPtr inGlobalDataPtr,
 Size inDataSize);

Chapter 3: Writing Upgrader Plug-ins 101

ShellErr PSGetGlobalData(GlobalDataType inGlobalDataType,
 GlobalDataPtr inGlobalDataPtr,
 Size inMaxDataSize,
 Size *outActualDataSize);

ShellErr PSSetupNewPanel(SInt16 inPanelItemsRsrcID,
 PanelPtr *outPanelPtr);

ShellErr PSNewCustomPanel(short inPanelItemsRsrcID,
 DVFlags inFlags,
 PanelPtr *outPanelPtr);

ShellErr PSUpdatePanel(PanelPtr inPanelPtr);

void PSDisposePanel(PanelPtr inPanelPtr);

ShellErr PSShowPanel(PanelPtr inPanelPtr);

void PSHidePanel(PanelPtr inPanelPtr);

Boolean PSGetPanelItemHit(PanelPtr inPanelPtr,
 EventRecord *inPanelEvent,
 short *outItemHit);

ShellErr PSSetPanelItem(PanelPtr inPanelPtr,
 short inItemNumber,
 PanelItemType inItemType,
 Handle inItemHandle,
 Rect *inItemRect);

ShellErr PSGetPanelItem(PanelPtr inPanelPtr,
 short inItemNumber,
 PanelItemType *outItemType,
 Handle *outItemHandle,
 Rect *outItemRect);

void PSSetPRefCon(PanelPtr inPanelPtr,
 long inRefCon);

long PSGetPRefCon(PanelPtr inPanelPtr);

ShellErr PSSetPanelItemAction(PanelPtr inPanelPtr,
 short inItemNumber,
 PanelActionType inActionType);

TEHandle PSNewStyledStringItem(Rect *inItemRect,
 short inSTRListRsrcID,
 short inStringListItem,
 short inFontNum,
 short inFontStyle,
 short inFontSize);

TEHandle PSNewStyledTextItem(Rect *inItemRect,
short inTEXTRsrcID);

PanelUserItemHandle PSNewUserItem(UserItemProcPtr inUserItem,
 Boolean inTransparent);

Chapter 3: Writing Upgrader Plug-ins 102

DocInfoHandle PSNewDocViewerItem(PanelPtr inPanelPtr,
 Rect *inItemRect,
 DocViewerType inDocViewerType,
 short inTextRsrcID,
 short inBasePICTRsrcID);

ShellErr PSActivatePanel(PanelPtr inPanelPtr,
 Boolean inShouldActivate);

ShellErr PSGoToPreviousPlugin(void);

ShellErr PSGoToNextPlugin(ResourceID inStrRsrcID);

ShellErr PSQuitShell(Boolean inCanAllowUserToContinue);

OSErr PSSetupHelpWindow(DocLocationType inLocation,
 short inRsrcID,
 short inBasePICTRsrcID,
 Str255 inHelpPanelTitleStr,
 PanelPtr *outHelpPanelPtr);

void PSDisplayHelpWindow(PanelPtr inHelpPanelPtr);

void PSCloseHelpWindow(PanelPtr inHelpPanelPtr);

Boolean PSHandleHelpWindowEvent(PanelPtr inHelpPanelPtr,
 EventRecord *inEvent);

OSErr PSCheckEnvironment(EnvironmentType *outEnvironment);

Boolean PSReadFontInfo(short inLocation,
short inRsrcID,
short inFontItem,
short *outFontFace,
short *outFontStyle,
short *outFontSize);

Boolean PSLaunchFile(SInt16 inAppFileRefRsrcID,
 SInt16 inDocFileRefRsrcID,
 AEDescList *inOptionalOpenParams,
 Boolean inLaunchAppInFront,
 ProcessSerialNumber *outApplicationPSN);

Boolean PSMakeFSSpecFromFileRefID (SInt16 inFileRefID,
Boolean inShowErrorAlert,
FSSpec *outFoundFile);

SInt16 PSErrorAlert(SInt16 inErrNum,
 Boolean inIsStandardShellErr,
 ConstStr255Param inParam0,
 ConstStr255Param inParam1,
 ConstStr255Param inParam2,
 ConstStr255Param inParam3,
 SInt16 inDefaultButton,
 SInt16 inCancelButton);

SInt16 PSAlert(short inDLOGID,

Chapter 3: Writing Upgrader Plug-ins 103

 DocumentType inWhichFileContainsDLOG,
 ConstStr255Param inAlertText,
 ConstStr255Param inParam0,
 ConstStr255Param inParam1,
 ConstStr255Param inParam2,
 ConstStr255Param inParam3,
 SInt16 inDefaultButton,
 SInt16 inCancelButton);

void PSCollect(SInt16 inResListRsrcID);

Result Codes

The following are the errors numbers and constants defined in the Shell:

Error Name Number Description

DocViewer Errors:

kCantCreateDocumentErr 7000 Unable to create the DocViewer object.

kInvalidDocRecordErr 7001 Returned if the inDocData parameter to
any of theDocViewer routines is NULL.

kInvalidFileSpecErr 7002 Returned from PSNewDocViewerItem if
the Upgrader couldn't resolve the file path
while attempting to read from a SimpleText
file.

General Shell error numbers that may be returned to plug-ins:

kUnknownPlugInHandlerErr 1001 Returned from PSRegisterHandler if
an invalid HandlerIDType parameter was
passed.

kCouldNotFindResourceMsgNum 1003 General resource warning for plug-in use, not
returned by any Upgrader routine to
plug-ins.

kMemoryErrorMsgNum 1004 General memory warning for plug-in use, not
returned by any Upgrader routine to
plug-ins.

Errors Returned by PSQuitShell:

kUserContinuingAfterRestartAlertMsgNum 1030 User selected Continue from
Continue/Restart displayed during a call to
PSQuitShell.

Plug-in sequence errors:

kUnknownPluginNameErr 1040 Returned from PSGoToNextPlugin if
the plug-in specified by inStrResID was

Chapter 3: Writing Upgrader Plug-ins 104

invalid.

kNextPluginSameAsCurrentErr 1041 Returned from PSGoToNextPlugin if
the plug-in specified by inStrResID is the
same as the plug-in that the call was made
from.

Global data manager errors:

kUnknownGlobalDataErr 2000 Returned from PSGetGlobalData if the
type specified by parameter
inGlobalDataType could not be found.

kGlobalDataOutOfMemErr 2001 Returned from PSSetGlobalData if
memory could not be allocated for the
inGlobalDataPtr parameter.

kUnsupportedPrefsFormatErr 2010 Message used by plug-ins when they find the
preference resource for the plug-in is of a
unsupported format , not returned by any
Upgrader routine to plug-ins.

kNoPrefsErr 2011 Message used by plug-ins when they can't
find the preference resource for the plug-in ,
not returned by any Upgrader routine to
plug-ins.

Panel manager errors:

kPanelItemNotFoundInListErr 2050 Message indicating that an item could not be
located in the panels item list, returned
from PSHandleDocScroll,
PSPrintDoc, PSUpdatePanel,
PSGetPanelItem and
PSSetPanelItemAction.

kCannotLoadNeededResourceErr 2051 General purpose resource message that
plug-ins may use, is returned from
PSSetupNewPanel and
PSNewCustomPanel if problems occur
loading resource referenced from the panel's
'DITL ' list.

kNoDataAvailableForItemErr 2052 Error number indicating that
PSGetPanelItem failed to find
information for the inItemNumber
parameter, no message is defined for this in
the Upgrader.

kInternalErr 2053 General purpose error message that may be
used by plug-ins, returned by
PSSetupNewPanel and
PSNewCustomPanel if problems occurred
while changing the panel list.

kItemTypeMismatchErr 2055 Error number returned by

Chapter 3: Writing Upgrader Plug-ins 105

PSNewDocViewerItem if the
inDocViewerType parameter is not of type
kDocResType or kDocFileType.

kCantChangePanelItemToSpecifiedTypeErr 2058 Error number returned by
PSSetPanelItem if the inItemType
parameter is one that the Upgrader doesn't
support, no message is defined for this in the
Upgrader.

Chapter 3: Writing Upgrader Plug-ins 106

Writing ModifierTool
Editors

About ModifierTool Editors
ModifierTool provides the ability to modify Upgrader-based programs, such as the Install Mac OS 8
program used to install Mac OS 8. ModifierTool is designed to edit an existing Upgrader data file or
create a new data file from scratch.

An editor is simply a PPC code fragment that is executed to present windows to edit the resources
contained in the data file that are owned by the plug-in. The editor can be written using MPW,
Metrowerks or other development environment, but the examples and utility files provided on the SDK
use Metrowerks PowerPlant framework to make editor creation fast and easy. We encourage developers
to use the file reference and text editors provided on the SDK so users can edit these common data types
in a consistent way.

Writing a ModifierTool Editor
The best way to start an editor for a new plug-in is to duplicate an editor project for a similar plug-in.
You’ll find that most editors have the same basic resource reading/writing and display item setting
and getting routines.

Editor Entry Point
When the editor is loaded and executed, the ModifierTool application turns over complete control to
the editor until it it is finished. The editor should show modal or movable modal windows only,
because if the user is allowed to switch back to the ModifierTool window, the main window will not
handle the user interaction.

Listing 3-12 shows the entry point of the editor. You’ll find this definition and other helpful routines in
the “EditorUtilities.h” and “EditorUtilities.cp” files.

Chapter 4: Writing ModifierTool Editors 107

Listing 3-12 Editor parameter block definition

struct EditorLibProcParamBlock
{

SInt16 fFormatNum;
QDGlobals* fQDGlobals;
SInt16 fFileRefNum;
SInt16 fPreferenceRsrcID;
SInt16 fResListRsrcID;

};
typedef struct EditorLibProcParamBlock *EditorLibProcParamBlockPtr;

extern "C"{ typedef SInt32 (*EditorLibProcPtr)(EditorLibProcParamBlockPtr
inEditorLibProcParamBlockPtr); }

Field descriptions

fFormatNum The format of the EditorLibProcParamBlock structure. The only
format currently defined is format 1.

fQDGlobals A pointer to the ModifierTool application’s QuickDraw
globals.

fFileRefNum The file refnum of the data file resource fork. Upon launch of
the editor the current resource file is set to the editor’s resource
fork.

fPreferenceRsrcID The lo-word of the RefCon value stored in the plug-in entry in
the sequence resource. If this value is 0, then use the hard coded
preference resource ID used by the plug-in.

fResListRsrcID The ID of the 'RES#' resource that will contain the list of
resources stored in the data file owned by the plug-in. The
editor should update this resource whenever the user saves
changes.

Upon entry, the editor should locate and read its preference resource then display a movable modal
editing window. When the editing is finished, the editor should return one of four possible results:

0 The changes were saved and everything is great.

1 The user canceled the editing session, and any changes were
discarded.

2 The user wishes to remove this plug-in. On return to the
ModifierTool, the plug-in entry will be deleted.

-1 through -32768 An internal error occurred. Your editor should display an alert
telling the user what the problem was before returning this
result.

Updating Plug-in Resources
When the user wishes to save the changes he or she has made to the plug-in, the user should click Save
in your editor window, which will cause your preference resource and the appropriate referenced
resources to be saved. If the plug-in entry was just created by the user, and you need to create new
referenced resources, then make sure to create this resources with IDs between 10,000 and 20,000. The
routine GetUniqueIDForResType supplied in “EditorUtilities.cp” can help you generate these new
IDs.

Chapter 4: Writing ModifierTool Editors 108

W A R N I N G

Resources stored in the data file should never be shared between plug-ins. All
referenced resources should have IDs between 10,000 and 20,000.

Two additional routines supplied in “EditorUtilities.cp” can help you update 'STR ' and 'STR#'
resources. Use WriteStringResource to update a 'STR ' resource and
WriteStringListResourceIndex to update an individual string index within a 'STR#' resource.
The WriteStringListResourceIndex is not designed for speed, so if you need to update large 'STR#'
resources, you may want to consider rewriting this routine.

When called, your editor is passed the ID of the preload list resource which you should update when
saving changes. This resource is used to support running from a multiple disk set, such as floppies. The
routines ResetResListResource and AppendToResListResource are provided in
“EditorUtilities.cp” to help with this updating task. To use these routines, call
ResetResListResource once to reset the list to zero entries, then call AppendToResListResource
for each resource the your plug-in owns in the data file.

Removing Plug-in Resources
Because of the modular nature of ModifierTool and its editors, removing a plug-in entry is a joint effort
between the editor and the ModifierTool application. When the user clicks Remove in your editor
window, you should delete the preference resource and all referenced resources. The ModifierTool will
remove the preload resource for you when it deletes the plug-in entry from the Upgrader-owned
sequence resource.

The routine DeleteResource is provided in “EditorUtilities.cp” to help with deleting your resources.

Chapter 4: Writing ModifierTool Editors 109

Appendix A: Adding
Pictures to SimpleText
Documents

The following is an excerpt from Technical Note: 1005: The Compleat Guide to SimpleText.

So how do you use SimpleText to create Release notes? It’s easy. Get those creative juices flowing, grab a
cup of strong coffee (or your favorite highly-caffeinated beverage), and read on.

Write the Text
You can handle this part yourself. Use any word processor or text editor that supports saving to text-
only files (i.e., those files of type 'TEXT'). You can even use SimpleText if you so desire. Don’t put
carriage returns after each line either, since SimpleText automatically wraps lines, just like a real
word processor (the SimpleText window conforms to the size of the current screen, so don’t depend on the
breaks you see either). Don’t worry about non-breaking space characters at this point either; you’ll get
a chance to add them later. Just think about what pictures you want (if you want them at all) and in
what order you want them. When you are finished with the text, save it as a text-only file. If your
word processor gives you the option of putting carriage returns after lines or after paragraphs, choose
the after paragraphs option.

SimpleText now lets you use different fonts, sizes and styles in your documents. No longer are you held
captive to only one font. Be brave, spice up your document, this is a Mac, not a VT100. Just remember that
people actually have to read this document, so don’t make it so cluttered with fonts and sizes that it’s
illegible. Also stick to the standard fonts like Times, Helvetica, and Geneva, since if the font is not
installed on the reader’s system, the text will end up in Geneva.

Appendix A: Adding Pictures to SimpleText Documents 110

Draw the Pictures
First make a backup of your Scrapbook file (you should find it in your System Folder) if it contains
anything you consider important. After backing it up, throw away the original copy (this makes things
much easier later on in the process), but don’t worry, if you made a backup you can use it to restore the
original when finished. If you prefer, you can just rename the Scrapbook file, which effectively makes
a backup copy.

Unfortunately, the ideal method for creating a picture involves both a paint program and a draw
program. Once you are finished with your pictures, save them to a document, then do one of the
following:

If you used a painting program to draw your pictures

1. Select your picture with a Lasso tool to ensure that only the minimum size of the image is copied.
This takes up less space on disk and centers the picture in the document.

2. Copy the picture then paste it into the Scrapbook.

3. Repeat these steps for each individual picture you wish to include in the document.

If you used a draw program to draw your pictures

1. Copy each of your pictures into the Scrapbook.

2. Launch a paint program, then copy each picture from the Scrapbook into the paint program.

3. Once every picture is in a paint document, open the Scrapbook and clear each of your pictures from
the Scrapbook. The Scrapbook should say “Empty Scrapbook” when you are finished (unless you
did not start with a fresh Scrapbook).

4. Follow the procedure in the steps for a painting program to copy and paste each of your pictures
back into the Scrapbook. At this point, regardless of which program you originally used to create
your pictures, they should all be in the Scrapbook and in bitmap form (after being copied with a
Lasso tool from a paint program). Because of a quirk in the Printing Manager and PostScript(R), you
have to perform a few more steps.

5. Launch a draw program, then copy each picture from the Scrapbook into the draw program.

6. Once every picture is in a draw document, open the Scrapbook and clear each of your pictures from
the Scrapbook. The Scrapbook should say “Empty Scrapbook” when you are finished (unless you
did not start with a fresh Scrapbook).

7. Copy each picture back to the Scrapbook. This process makes the pictures “transparent” when
printed, and this is important to avoid a problem with white, horizontal stripes running through
your pictures.

Adding the Pictures
Launch ResEdit and open the text-only SimpleText document (you may want to work on a backup copy).
SimpleText saves every document with a resource fork that holds the font information, so ResEdit
should not warn you about the file not having a resource fork unless you created the document with a
program other than SimpleText.

Open your Scrapbook file (the one with all the pictures in it). Its ResEdit window should contain a
'PICT' resource along with some others. Select 'PICT' (don’t double-click), and copy this resource to the
SimpleText document by bringing its window to the front and selecting Paste from the Edit menu. If you

Appendix A: Adding Pictures to SimpleText Documents 111

do this step correctly, your pictures and text should all be in the same document. Save the SimpleText
document so you don’t have to do this step again and close the Scrapbook.

Now you need to put the pictures into the proper numerical order so they show up in the correct order in
the SimpleText document. Numbering starts at 1000 (i.e., first picture should be 1000, second picture
1001, etc.). To order these pictures, double-click on the 'PICT' in the SimpleText document’s window.
You should get another window which contains each of the pictures you copied into this document. Use
the scroll bar until you find the first picture you want to appear in the document. Select it (by clicking
on it once), and choose the Get Info or Get Resource Info option to get information on the resource. ResEdit
displays an information window about the selected resource with space to enter a name and an ID (there
is already a random ID number assigned). Change the ID to 1000 and give the picture a name too (i.e.,
“Figure 1”, etc.). Near the bottom of this window you can see the resource attributes. Be sure that the
“Purgeable” attribute is checked, then close the window. Repeat this process for each succeeding
picture, giving each a successive number (i.e., 1001, 1002, 1003, etc.). When you are finished with all of
the pictures, save the file and quit ResEdit.

That’s the difficult part; the rest is icing. Go get some more coffee or whatever it is you are drinking.

Edit the Text to Make It Look Pretty With the Pictures
Launch SimpleText and open your document. Find the location where you want to place the first picture
and position the text cursor there. Enter a carriage return or two (more if you want more space before the
picture) then a non-breaking space character (Option-Space Bar, remember), which will be invisible.

Now resize the window, and voilà, when the window redraws, your picture will be just below the non-
breaking space character. Now enter as many carriage returns as necessary to provide space for the
picture. When you enter the first carriage return, SimpleText will erase the picture, so you will need to
resize the window again to verify your spacing, clicking the zoom box works well.

Once you have enough room for the first picture (you probably want to leave an extra blank line or two
after it too), move on to the next desired picture location and repeat the process. Continue this process
(and don’t forget to save the document along the way) until you have placed all of the pictures. When
you finish placing the pictures, you should save the document again and try printing it on both an
ImageWriter and LaserWriter if possible. You may wish to tweak the picture spacing or location to
keep them from crossing printed-page boundaries.

When you are satisfied with the results, Quit SimpleText.

Making the File Read-Only
Make a copy of the file (to save a step if you decide to edit it again) then launch ResEdit. Now choose
Get Info from the File menu and change the file type from 'TEXT' to 'ttro' (the lowercase is significant)
and check to make sure the creator type is 'ttxt'. Now quit ResEdit and save the changes to the
document when prompted.

That’s all there is to it.

A Few Hints On Creating Good Documents With Pictures
The following hints should help to make your SimpleText document creation faster and more efficient
as well as make the final document as nice as possible for the user.

• Always use the Lasso tool in paint programs to select pictures to appear in SimpleText documents; it
makes them smaller.

• Keep pictures as small and simple as possible; the document takes up less room on disk and scrolling
is faster.

Appendix A: Adding Pictures to SimpleText Documents 112

• If two pictures appear on top of each other, you probably have two non-breaking space characters
on the same line. Simply delete one to fix it. It is generally a good idea to put non-breaking space
characters on a line by themselves with a blank line before it. In addition, always leave room for
an extra line after the picture so you do not have the picture running into the text which follows it.

• If you need to use the non-breaking space character as a non-breaking space, you can.

• Since SimpleText assigns the numbered 'PICT' resources to the non-breaking space characters in the
document, you can simply skip a resource number to use a non-breaking space character as a non-
breaking space in the text. For example, if you had four non-breaking spaces in the document and
you wanted pictures at the first, second, and fourth, you would number your 'PICT' resources 1000,
1001, and 1003. The third non-breaking space character would normally have 'PICT' resource 1002
assigned to it, but since there is not a resource with this ID, it simply acts as a non-breaking space in
the document.

• Don’t worry about how horrible everything looks when you are editing; users will not be able to
edit your document (unless they have read this Note), so they will not see the awful flashing,
disappearing pictures, etc.

• Make the document read-only even if you do not use pictures. Distributing read-only documents to
users gives the consistent impression that Release Notes are not to be modified.

• If your pictures are not appearing as you think they should, and if you cannot figure out what might
be wrong by following the sequence in this Note, then try the following: Open the document with
ResEdit. Click once on the 'PICT' list and choose Open Picker by ID from the Resource menu of
ResEdit 2.x. You should get a window with a list of all of your pictures, in order, and numbered
sequentially from 1000. If this is not what you get, then you have missed a step along the way and
need to make sure all your pictures are in the resource and numbered sequentially.

Appendix A: Adding Pictures to SimpleText Documents 113

