find it -
Technote 1104

| nterrupt-Safe Routines

By Brian Bechtel and Quinn " The Eskimo"
Apple Computer, Inc.
devsupport@apple.com

CONTENTS S

Introduction stem 7 has a badly defined set of extremely
heterogeneous programming environments. In some of

Execution Levels these environments, your code can access some system
services but not others. The names given to these

Interrupts: 68K and PowerPC environments are often overloaded and confusing. This

Execution Levels in Other Documentation resultsinalot of programmer confusion.
This technote attempts to clear up this confusion by
assigning each of the execution levels a unique name,
Specific Toolbox Routines describing how and why your code might find itself

running at a particular execution level, and outlining the
Routines Which May Be Called At Interrupt restrictions your code might face when running at that
Time level.

What Interrupt Routines Can Do




| ntroduction

There has been much confusion about which toolbox calls move memory and which do not, and which
calls can be used at interrupt time and which cannot. This Technote describes toolbox calls which may
be used at interrupt time. Thisisalist of guaranteed-safe callsthat can be used any time. Developers
will have some assurance that these calls are safe, since the system itself calls them under the
assumption that they are safe.

This Technote contains calls which are safe at interrupt time, rather than those not safe at interrupt time.
Thisisfor several reasons.

1. Since callstend toward moving memory as the systemx isrevised, lists of calls which move
memory should grow. Since the system sometimes needs revision regardless of what is printed
in Inside Macintosh , the absence of a call from such alist does not guarantee that call does not
move memory.

2. A cal which had been interrupt-safe can become non-interrupt-safe due to revisionsin system
software and patches. Incompetent patching, unfortunately all too common, can lead to calls
which previoudly did not move memory changing behavior.

3. Calsdescribed in Inside Macintosh which could easily be implemented with in line code
(HiWword, BAND, etc.) sometimes appear as glue in a segment other than the calling segment.
These calls are documented in Inside Macintosh , so they might appear to be traps, and their
semantics are so smple that programmers might assume they could not possibly move
memory.

I recommend that programmers assume any call absent from thislist moves memory. Thisisto be
considered aform of defensive programming, not a definitive pronouncement.

The old Inside Macintosh , volume 6, appendix B had alist of routines which may be called at interrupt
time. Thistechnote is an updated list of those routines, along with comments as appropriate. Do not rely
on thelist of interrupt-safe routinesin Inside Macintosh , volume 6, appendix B.

| include comments regarding patching some routines. Patching is as discouraged as it has always been,
but sometimes, patching is the best solution for some problems under System 7.x. When you patch a
routine which isinterrupt-safe, you should assume the same behavior as the interrupt-safe routines. do
not allocate, move, or purge memory (either directly or indirectly) and do not depend on the vaidity of
handles to unlock blocks.

Thistechnote isimportant for anyone programming the Macintosh, and vital for anyone doing system
level programming under System 7.



Execution Levels
Traditional System 7 supports the following execution levels:

e Hardware Interrupt
e Deferred Task
e SystemTask

The native device driver model defines the following levelsin addition to those listed above:

e Native Hardware Interrupt
e Secondary Interrupt
e Task

These execution levels are modeled after the Mac OS 8 execution levels and correspond roughly with
their traditional counterparts. However, the distinction isimportant in certain circumstances.

Note:

Y ou can read more about native device driver execution levelsin
(ftp://ftp.apple.com/devworld/Development_Kits/PCl_Driver_SDK) Designing PCI Cards and Drivers
for Power Macintosh Computers, page 67

Interrupts: 68K and Power PC

Note that this discussion does not discuss the PowerPC native interrupt mechanism. On Power
Macintosh computers running System 7, the PowerPC native interrupts are handled by a nanokernel,
which routes the interrupt through the 68K emulator. Where this note references 68K -specific concepts,
you can safely assume that this behavior is emulated by the low-level PowerPC system software on
machines with PowerPC processors.

Note that the execution level isto some extent independent of the processor interrupt mask, i.e. the
value stored in the 680x0 SR register. In some cases interrupts can be enabled during an interrupt (i.e.
while running a deferred task); in some cases interrupts can be disabled at SystemTask time (i.e.
Enqueue disables interrupts to guarantee mutual exclusion).

L evel Description

This section describes each of the execution levelsin detail.

Hardware Interrupt
What it is
Hardware interrupt-level execution happens as adirect result of a hardware interrupt
request. The software executed at hardware interrupt level includes installable interrupt
handlers for NuBus and other devices, as well asinterrupt handlers supplied by Apple.
How to get there
Y ou get to hardware interrupt level asthe direct result of ainstalling a hardware
interrupt handler (i.e. aNuBus handler installed with SintInstall or by changing the
interrupt vector tablesin low memory) or by being called by something that is directly

invoked by a hardware interrupt handler (i.e. a SCSI Manager 4.3 completion routine).
Note that Time Manager tasks and VBLSs are also executed at hardware interrupt level.



Environment restrictions

Hardware interrupts are considered "interrupt level” as defined by the toolbox, virtual
memory and Open Transport. See the |ater sections for a discussion of these
restrictions.

In addition, you should make every attempt to minimize the amount of time you spend
at hardware interrupt level. Hardware interrupt level requiresthat al interrupts with
lower interrupt priority be disabled for the duration of the hardware interrupt handler.
The longer you spend in your hardware interrupt handler, the longer the interrupt
latency of the computer. Increased interrupt latency may result in apoor user
experience - such as sound break up or mouse tracking problems - and worse. If you
need to do extended processing at interrupt time, you can call DTI nst al | to schedule a
deferred task.

I's paging safe?

Paging is not safe at hardware interrupt level unlessthe interrupt has been deferred
using Def er User Fn. Some system interrupt handlers (Device Manager completion
routines, VBLS, slot VBLS, Time Manager tasks) automatically defer their operation
until VM safe time, but other hardware interrupt handlers must be sure not to cause
page faults. If you need to access memory that might page fault, you should defer that
operation using Def er User Fn.

Deferred Task
What it is

A Deferred Task is a mechanism whereby hardware interrupt level code can schedule a
routine to be executed when interrupts have been re-enabled but before the return from
the interrupt. Hardware interrupt handlers do thisin order to minimize the amount of
time spent in the hardware interrupt handler, and thereby minimize system interrupt
latency.

How to get there

The most common way to get to deferred task level isto execute DTI nst al | from a
hardware interrupt handler. The interrupt handling system executes deferred tasks just
before returning from interrupts, but after re-enabling interrupts.

Y ou can aso get to Deferred Task level by being called by something that is executing
at Deferred Task level. A good example of this are Open Transport notifier functions,
which are often called at Deferred Task level.

Environment restrictions

Deferred tasks are considered "interrupt level" as defined by the toolbox and virtual
memory. See the later sections for a discussion of these restrictions.

I's paging safe?

By default paging is not safe at deferred task level. If you need to access memory that
might page fault, you should defer that operating using Def er User Fn. Note that many
deferred tasks are scheduled by code that has already done this, so thisis not always
necessary. For example, Open Transport notifier functions are alowed to take page



faults.
Special considerations
Another useful feature of deferred tasksisthat they are serialized. The system will not

interrupt a deferred task in order to run another deferred task. This makes areally neat
mutua exclusion mechanism.

SystemT ask
What it is
SystemTask level isthelevel at which most genera application code runs.
The nameis derived from an obsolete Macintosh system call, SystemTask. Prior to the
introduction of MultiFinder (now known as the Process Manager), applications were
required to call SystemTask at regular intervalsto allow device driverstimeto do
things that could not be done at interrupt time.

Note that SystemTask is now obsolete because WaitNextEvent automatically callsit for
you.

How to get there

An application's main entry point is called at System Task level. Cooperatively
scheduled Thread Manager threads also run at SystemTask time. For other types of
code, technote 1033 "Interruptsin Need of (a Good) Time" describes how to get to
System Task level from interrupt level.

Environment restrictions

Code running at System Task level isnot considered "interrupt level" by anything. Y ou
can do virtually anything at System Task level.

I's paging safe?
By default paging is safe at System Task level. The exceptions are when your code is
accessing some resource that the system needs to support paging. For example, if you
obtain exclusive access to the SCSI bus using SCSI Get , you must not cause a page
fault even at SystemTask level.

Native Hardwar e Interrupt
What it is

Native Hardware Interrupt level isvirtualy identical to normal hardware interrupt level
except that it only comesinto play on machines the native driver architecture.

Note that native does not imply native interrupt processing. Under System 7, the
nanokernel vectors al interrupts through the 68K emulator in order to ensure 68K
interrupt priorities and instruction atomicity. Therefore, even native hardware interrupts
involve Mixed Mode switches.

How to get there

Y ou get to native hardware interrupt level by installing a hardware interrupt handling



using the native Interrupt Manager, or by being called by something that is directly
invoked by such a handler.

Environment restrictions

Native hardware interrupts are considered "interrupt level” as defined by the toolbox,
virtual memory and Open Transport. See the later sections for a discussion of these
restrictions.

Aswith traditional hardware interrupts, you should make every attempt to minimize the
amount of time you spend at native hardware interrupt level. If you need to do
extended processing in response to a native hardware interrupt, you should schedule a
secondary interrupt using QueueSecondar yl nt er r upt Handl er .

I's paging safe?

Paging is never safe at native hardware interrupt level.

Secondary Interrupt

Task

What it is

The native driver model provides Secondary Interrupts, which are much like the
traditional Deferred Tasks, for native drivers to defer complex processing in order to
minimize interrupt latency.

How to get there

Y ou get to Secondary Interrupts level by scheduling a secondary interrupt handler
using QueueSecondar yl nt er r upt Handl er, or by being called by such ahandler.

Environment restrictions

Secondary interrupts are considered "interrupt level" as defined by the toolbox, virtual
memory and Open Transport. See the later sections for a discussion of these
restrictions.

I's paging safe?

Paging is never safe at secondary interrupt level.

What it is

Under System 7, the native driver model definestask level to be any code that's not at
native hardware interrupt level and not at secondary interrupt level.

How to get there

The most common source of task level execution is standard SystemTask level
execution, i.e. normal application code. However, other execution levelsthat are
traditionally considered to be interrupts levels, such as non-native hardware interrupts
and Deferred Tasks, are also considered to be task level. Remember that under System
7, task level is defined by being not native interrupt level or secondary interrupt level.



Environment restrictions

The environment restrictions of task level are defined by the traditional level that's
really being executed.

I's paging safe?

The native driver model defines that paging is always safe at task level.

Execution Levelsin Other Documentation

Virtual Memory

The virtual memory documentation chapter 3 of Inside Macintosh: Memory and Technote ME 09,
"Coping with VM and Memory Mappings' saysthat page faults are not allowed at "interrupt time". This
has caused alot of confusion amongst programmer's who have heard that, for example, Device
Manager completion routines are "interrupt time", and hence assume that paging is unsafe in MacTCP
completion routines. In the light of the above description, it's easy to clear up that confusion.

Asfar asvirtual memory is concerned, "interrupt time" means any hardware interrupt that hasn't been
deferred by VM itself or using Def er User Fn. S0 it is safe to take page faults from Device Manager
completion routines, even though other documentation might refer to that execution level as"interrupt
time".

It's also important to stress the deferred between Deferred Task Time, and a hardware interrupt that's
been deferred using Def er User Fn. Deferred Task Time is about re-enabling interrupts to minimize
interrupt latency. Def er User Fn is about deferring hardware interrupts until VM is safe. One does not
imply the other.

Open Transport

The Open Transport documentation caused much confusion by saying that Open Transport could not be
caled at "interrupt time". What this means is that you can only call Open Transport from System Task
time, or Deferred Task level. So you can call Open Transport at execution levels that would normally be
considered "interrupt time" (i.e. from a Deferred Task), aslong as you don't call it from hardware
interrupt level. [Or native hardware interrupt level, or secondary interrupt level.]

T oolbox

Most toolbox routines cannot be called at "interrupt time". Unlike the two cases described above, in this
case "interrupt time" refersto any non-SystemTask execution level.

Also note that there are many different reasons why toolbox routines can not be called at interrupt time.
Some routines, like the Memory Manager, rely on global data structures that are not interrupt-safe.
Other routines might move or purge unlocked handles. Still others, like synchronous calls to the Device
Manager, are architecturally inaccessible. Still others, like ReadDateTime, rely on interruptsin order to
complete, and hence cannot be called when interrupts are disabled.



What Interrupt Routines Can Do

e Interrupt routines cannot do everything that ordinary routines can do. The following list
summarizes the operations that interrupt routines should not perform. An interrupt routine
which violates one of these rules may cause a system crash.

e Aninterrupt routine must not allocate, move, or purge memory. An interrupt routine cannot rely
on the state of any unlocked handle. An interrupt routine must not call any toolbox routines that
may do so. Aninterrupt routine must not call any Memory Manager call which clearsthe low
memory global MemErr.

e Aninterrupt routine cannot call aroutine from another code segment unlessit sets up the
application's A5 world properly. In addition, that segment must already be loaded in memory.

e Aninterrupt routine cannot access your application global variables unlessit sets up the
application's A5 world properly. Thistechnique is explained in "Accessing Application Globals
inaVBL Task" beginning on page 4-13 of Inside Macintosh: Memory .

e Aninterrupt routine's code and any data accessed during the execution of the routine must be
locked into physical memory if virtual memory isin operation.

e You should do aslittle as possible inside an interrupt routine. Delay doing any costly
processing until you are no longer within your interrupt routine, but are in normal application
routines instead.

Specific Toolbox Calls

e Interrupt routines cannot do everything that ordinary routines can do. The following list
summarizes the operations that interrupt routines should not perform. An interrupt routine
which violates one of these rules may cause a system crash.

e Aninterrupt routine must not allocate, move, or purge memory. An interrupt routine cannot rely
on the state of any unlocked handle. An interrupt routine must not call any toolbox routines that
may do so. Aninterrupt routine must not call any Memory Manager call which clearsthe low
memory global MemErr.

e Aninterrupt routine cannot call aroutine from another code segment unlessit sets up the
application's A5 world properly. In addition, that segment must already be loaded in memory.

e Aninterrupt routine cannot access your application global variables unlessit sets up the
application's A5 world properly. Thistechnique is explained in "Accessing Application Globals
inaVBL Task" beginning on page 4-13 of Inside Macintosh: Memory .

e Aninterrupt routine's code and any data accessed during the execution of the routine must be
locked into physical memory if virtual memory isin operation.

e You should do aslittle as possible inside an interrupt routine. Delay doing any costly
processing until you are no longer within your interrupt routine, but are in normal application
routines instead.



Memory Manager

In generd, there are very few widely used Memory Manager calls which you can safely call at interrupt
time. The most common exceptions are Bl ockMove and St ri pAddr ess; these two calls may be safely
made at interrupt time. At interrupt time, you cannot allocate, move, or purge memory (either directly or
indirectly). Y ou should never rely on the validity of handlesto unlock blocks.

There are some calls documented in Inside Macintosh: Memory which are safe. The entire suite of
debugger calls are interrupt-safe. Thisincludes Debugger Ent er , Debugger Exi t , Debugger Get Max,
Debugger LockMenor y, Debugger Pol | , PageFaul t Fat al , and Debugger Unl ockMenory. You can call
SwapMVUMode and Trandate24to32 at interrupt time.

LockMenory, Unl ockMenory, LockMenor yCont i guous, and Unhol dMenory may be called at interrupt
time. Get PageSt at e and Get Physi cal areinterrupt-safe. Def er User FNisinterrupt safe.

Hol dMenory may not be called at interrupt time. Hol dMenor y may move memory. You can't cal

Hol dMenory at interrupt timeif you're in the middle of a page fault. That's because Hol dMenor y brings
any "on disk" pagesin the range being held into memory by touching it and causing a page fault. If you
were in the middle of a page fault, called Hol dvenor y, and any of that memory were not already held,
you'd cause afatal double-page fault.

VM disables or defers most "user code” (VBL tasks, Time Manager tasks, 1/0 completion routines, etc.)
that can run at interrupt time during page faults. That protects VM from most code that can cause a
double-page fauilt.

However, device drivers (and socket listeners, etc.) that handle hardware interrupts directly, and thus can
execute their code during a page fault, cannot call Hol dvenor y on memory that might be paged out
during the handling of those interrupts.

So, if your device driver, socket listener, etc. holdsits code, parameter blocks, buffers, etc. at
non-interrupt time, it can safely use that memory (the code, parameter blocks, buffers, etc.) to make calls
that VM patches (like Read/Write/Control/Status) without VM patch's calls to Hol dMvenor y causing a
double-page fauilt.

LockMenory issafeto call at interrupt time only if the memory is aready held. For Reads and Writes
through a device driver, the VM patches have aready held the memory, so it issafeto call LockMenory
on those buffers at interrupt time.

Do not call st ackSpace at interrupt time. St ack Space operates by comparing two low memory globals
in the current process low memory globals. At interrupt time you are not guaranteed that you areevenin a
valid process. St ackSpace aso has the unfortunate property of clearing the low memory globa Memétrr,
which isreturned by the memory manager call Mentr r or () . There are other Memory Manager calls
which clear MemErr and should never be called at interrupt time, such as Set Handl eSi ze.

Note:

Unfortunately, there is aready alot of software out there that calls St ack Space at interrupt time. Asan
example, some versions of the .Enet ethernet driver from Apple call St ackSpace at interrupt time. This
means that your application cannot rely on the values returned by Men€r ror () , Since it can be cleared at
arbitrary times behind your back.



Operating System Utilities

Enqueue and Dequeue areinterrupt-safe, and may be used at any time. For mat RecToSt ri ng (formerly
Format 2St r ), Stri ngToExt ended (formerly For mat X2St r ), and Ext endedToSt ri ng (formerly
For mat St r 2X) are interrupt-safe as well.

Note:

Do not call ReadLocat i on at interrupt time. ReadLocat i on heedsto get information from the parameter
RAM, using the poorly documented call ReadXPRAM Some models of Macintosh computers
communication with parameter RAM viainterrupts. If you call ReadXPRAM or any routine which calls
ReadXPRAM at interrupt time, the call will hang your system.

Device M anager

AsynchronousPri me, Control oOr Stat us driver cals are interrupt-safe and must remain so. It should
always be possibleto call adriver withaPrime, Control or Status cal asynchronoudy at interrupt
time. It should never be possible to call adriver synchronoudly at interrupt time.

One confusing point is the use of the pen and d ose calls. These calls are shared with the file system.
Any pen call to the device manager (even asynchronous calls) can move or allocate memory, and
therefore cannot be made at interrupt time. Similarly acl ose cal to the device manager may dedllocate
memory, and cannot be made at interrupt time. Open and d ose can be called asynchronoudly if the
calls are made to the file manager. The current Open/Close code decidesthat acall isfor the device
manager if

1. thefile name starts with a period (e.g. '.Sony")
2. thetrapword bit isset indicating it is adesk accessory (e.g. OpenDeskA ccessory)

From the viewpoint of writing adriver, this means that you cannot move or alocate memory in your
driver if your driver is called asynchronoudly. If your driver is called synchronously, you may move or
allocate memory.

From the viewpoint of using a driver, you should always assume that any synchronous call to adriver
may move or allocate memory.

Networking

Classic AppleTak isimplemented as a set of device drivers, and hence may be called at interrupt time as
long as the calls are made asynchronously. MacTCP is split into two parts. The core TCP, UDP, and
ICMP support isimplemented as a device driver, and hence may be called at interrupt time as long as the
calls are made asynchronously. The Domain Name Resolver (DNR) isimplemented as glue that you
should avoid calling at interrupt time. The St r ToAddr , Addr ToName, HI nf o and MXI nf o calls are safe at
interrupt time under MacTCP. However, these callswill fail under Open Transport TCP/IP, if the first
time they are called is at interrupt time.



Open Transport and Interrupt Routines

Open Transport also defines many support routines that clients can use to deal with the communications
environments. These are described in the Utility routine section toward the end of this document.

The Open Transport APl isintended to provide high-performance communications services to client
applications. In keeping with this goal, most Open Transport functions may not be called at interrupt
time. Thisincludes any interrupt routine from an external device, VBL tasks, or Time Manager. Open
Transport functions may only be called at primary task time (also called System Task time, or at
Deferred Task time (also called Secondary Interrupt level) scheduled by using either the Open Transport
functionsOTSchedul eDef er r edTask Or OTSchedul el nt er r upt Task or by using the system
_DTIngtal trap.

In order to support calling at primary interrupt time, Open Transport would have to be able to turn
interrupts on and off to protect critical resources. On PowerPC machines, this requires a costly
mixed-mode switch. Open Transport provides the functions OTCr eat eDef er r edTask,

OrSchedul eDef err edTask, OTSchedul el nt er r upt Task and OTDest r oyDef er r edTask to make it
very easy for clients to defer their operations to deferred task time without using confusing parameter
blocks. Please use them.

After having said this, many of the Open Transport utilities routines are usable at primary interrupt time.
Refer to Appendix F of "Open Transport Client Note" for alist of those functions.

Power M anager

Installing and removing a deep queue entry (using Sl eepQ nst al | and SI eepQrenove) is safe.
Batt er ySt at us and Set WUTi ne are interrupt safe.

Note:

On some computers, your sleep queue entry may be called at atime when you are not in a current
process. Thismeansthat it is unsafe to try and implement any user interaction from a sleep queue entry.
For example, the sleep switch on the lid of some Duos and some PowerBooks gets noticed by a patch to
the Process Manager when it isin the middle of switching processes. If you call aroutine such as

Modal Di al og at thistime, the Process Manager thinks that thereis no current front process, so it failsto
post any events for the dialog. Y ou will hang because your modal dialog filter will never receive any
events.

Notification Manager

Y ou may call NMInstall and NMRemove at interrupt time.

Note:

A notification response procedure is called at SystemTask time and hence most stuff is safe, although
putting up user interface istricky, because you are running in the context of the front most process.
Desktop Manager

All the asynchronous calls are safe. PBDTAddAPPLAsync, etc. call be called at interrupt time.



File System
Any asynchronous file system call isinterrupt-safe. Thisincludes:

PBCatSearchAsync
PBCreateFilel DRefAsync
PBDéeleteFilel DRefAsync
PBExchangeFilesAsync
PBGetForeignPrivs
PBGetVolMountinfo
PBGetVolMountlnfoSize
PBHGetV olParmsAsync
PBMakeFSSpecAsync
PBReadAsync
PBResolveFilel DRefAsync
PBSetForeignPrivAsync
PBWriteAsync

Note:

All File System Manager (FSM) calls are interrupt safe. A FSM agent should assume that it is running at
interrupt time, and not violate the provisions of this Technote except where noted in the FSM
documentation.

Gestalt

Y ou should not call Gestalt at interrupt time unless you know that the Gestalt selector isinterrupt-safe.
This generally applies only for those Gestalt selectors which you yourself haveinstalled. In Inside
Macintosh: Operating System Utilities on page 1-31 thereis along description of when it might or might
not be safe to call Gestalt. This description may be summarized as follows:

When passed one of the Apple-defined selector codes, the Gestalt function does not move or purge
memory and therefore may be called at any time, even at interrupt time. However, selector functions
associated with non-Apple selector codes might move or purge memory, and third-party software can
alter the Apple-defined selector functions.

In practice, Apple has not consistently conformed to this restriction when creating new Gestalt selectors.
Apple-supplied Gestalt selectors may move or purge memory. Therefore, it is safest always to assume
that Gestalt could move or purge memory. To repeat: you should not call Gestalt at interrupt time unless
you know that the Gestalt selector isinterrupt-safe. This generally applies only for those Gestalt
selectors which you yourself have installed

Sound M anager

MACEVer si on, SndCet SysBeepState, SndManager St atus, SndPauseFi | ePl ay, _
SndSet SysBeepSt at e, and SndSoundManager Ver si on are al interrupt-safe. SndDoConmmand is usable
during sound channel callbacks to queue new sound buffers.

Note:
SysBeep isnot on thelist. SysBeep can move or allocate memory. Do not call SysBeep at interrupt
time.



Process M anager

Get Front Process, GetCurrentProcess, CetNextProcess, SaneProcess, and WakeUpPr ocess
areinterrupt safe.

Time M anager

InsTime, InsXTime, PrineTime and RwTi me areinterrupt-safe.
Process to Process Communications T oolbox

All asynchronous PPCToolbox calls are interrupt-safe.
Deferred Task Manager

Deferred task initidization viaDTIngtall isinterrupt safe. Because the deferred task is executed during a
hardware interrupt cycle, it should not allocate, move, or purge memory (either directly or indirectly)
and should not depend on the validity of handlesto unlock blocks.

Vertical Retrace M anager

SlotVinstall, VRenove, SlotVRenove, AttachVBL, DoVBLTask, and GetVBLQHdr aredll
interrupt safe.

Libraries

Set upA5, Set upAd4, Set Current A5, Set Current A4, etc. are interrupt-safe aslong as the
implementations do not reside in an unloaded segment. Y ou should check the code generated by your
development environment before using such calls at interrupt time.

Anything in <PLSt ri ngFuncs. h> is safe, aslong as the implementations do not reside in an unloaded
segment.

Packages

Do not call any routine in a Package at interrupt time. Any routine found in a Package (e.g.
StandardFile, International Utilities) is not interrupt-safe, since the package may not be in memory at that
time.

Routines Which May Be Called At Interrupt Time

Thisisasummary list of routines which may be called at interrupt time. Those routines with an asterisk
(*) have restrictions on their use; see the main body of this Technote for details.

Addr ToNane*

At t achVBL

Bat t er ySt at us

Bl ockMove

C ose*

PBCont r ol Async
Debugger Ent er
Debugger Exi t
Debugger Get Max
Debugger LockMenory
Debugger Pol |
Debugger Unl ockMenory
Def er User FN
Dequeue



DoVBLTask

Enqueue

Ext endedToStri ng

For mat 2St r

For mat RecToStri ng

For mat St r 2X

For mat X2St r

Cet Current Process

Cet Front Process

Cet Next Process

Cet PageSt at e

Get Physi cal

Get VBLQHdr

HI nf o*

I nsTi me

I NnsXTi e

LockMenor y*

LockMenor yCont i guous
MACEVer si on

MXI nf o*

NM nst al |

NVRenove

OTCr eat eDef er r edTask
OrDest r oyDef erredTask
OrSchedul eDef erredTask
OrSchedul el nt errupt Task
Qoen*

PBCat Sear chAsync

PBC oseAsync*

PBCr eat eFi | el DRef Async
PBDTAddAPPLAsSync

PBDel et eFi | el DRef Async
PBExchangeFi | esAsync
PBGet For ei gnPrivs
PBGet Vol Mount | nf o
PBGet Vol Mount | nf 0Si ze
PBHGet Vol Par ne Async
PBHOpenAsync*
PBHOpenDFAsync*
PBHOpenDenyAsync*
PBHOpenRFAsync*
PBVBkeFSSpecAsync
PBOpenAsync*
PBOpenDFAsync*
PBOpenRFAsync*
PBReadAsync

PBResol veFi | el DRef Async
PBSet For ei gnPri vAsync
PBW it eAsync

PageFaul t Fat al

Prime

Pri meTi me

RmvTi me

SamePr ocess

Set WJTi ne

Sl eepQ nst al |

Sl eepQRenove

Sl ot VI nst al |

Sl ot VRenove
SndDoConmand*

SndCet SysBeepSt at e



SndManager St at us
SndPauseFi | ePl ay
SndSet SysBeepSt at e
SndSoundManager Ver si on
PBSt at usAsync

St r ToAddr *
StringToExt ended
Stri pAddress
SwapMMUMbde

Tr ansl at e24t 032
Unhol dMenory

Unl ockMenory
VRenove

WakeUpPr ocess

Further References

e Inside Macintosh: Memory
e File System Manager SDK
(ftp://ftp.apple.com/devworld/Development_Kitg/File System Manager.sit.hgx)

Acknowledgments

Thanksto Jim Luther, Cameron Esfahani, Matt Mora, Pete Gontier, im Murphy, Dave Lyons, and Peter N.
Lewis.

Send feedback to devsupport@apple.com
Updated: 21-August-1997



