MAC OS RUNTIME
FOR JAVA

Programming With JManager

For MR]J 2.0

[]

12/9/97
Technical Publications
© Apple Computer, Inc. 1997

O Apple Computer, Inc.

© 1996, 1997 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of
any documentation provided on
CD-ROM.

The Apple logo is a trademark of
Apple Computer, Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.

Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac,
MacinTalk, and Macintosh are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.

Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are
registered trademarks of
Linotype-Hell AG and/or its
subsidiaries.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Java and all Java-based trademarks
are trademarks or registered
trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

O Apple Computer, Inc. 12/9/97

Contents

Figures, Tables, and Listings vii

Preface About This Document 9
How to Use This Document 9
Additional Resources 10
Conventions 10
Special Fonts 11
Command Syntax 11
Notes 11
Chapter 1 Using JManager 13

Changes in JManager 2.0 15
JManager and the Java Runtime Environment 16
Java Sessions, AWT Contexts, and Frames 18
Text Objects 20
Creating a Java Runtime Session 21
Beginning a Java Runtime Session 21
Session and Security Options 22
Callbacks 23
Specifying Proxy Servers 24
Checking JManager Versions 25
Properties and Client-Specific Session Data 25
Servicing Other Threads 25
Ending a Java Runtime Session 26
Finding Applets 26
Creating an AWT Context 30
Displaying Frames 33
Getting Information About AWT Contexts and Frames
Removing an AWT Context 36
Instantiating Applets 36
Handling Events 38

O Apple Computer, Inc. 12/9/97

35

Chapter 2

Update, Activate, and Resume Events 40
Mouse Events 42
Keyboard Events 45
Menu Selections 47
Drag-And-Drop Support 49
Executing Java Applications 50
Obtaining Java References 53

JManager Reference 55

JManager Constants and Data Types 61
Security Level Indicators 61
Session Security Indicators 61
Applet Security Indicators 62
Runtime Session Options 63
The Text Object 64
Text Encoding Specifications 64
Frame Types 64
Frame Ordering Indicators 65
Applet Locator Status Values 66
Miscellaneous Constants 66
The Java Runtime Session 67
Session Reference 67
Session Callbacks Structure 67
Proxy Server Options 69
The AWT Context 70
AWT Reference 70
AWT Context Callbacks Structure 70
The Applet Locator 72
Applet Locator Reference 72
The Applet Locator Information Block 72
Applet Locator Optional Parameters 73
Applet Locator Callback Structure 74
The Applet Object 74
Applet Reference 74
Applet Callbacks Structure 75
Applet Security Structure 76

O Apple Computer, Inc. 12/9/97

The Frame Object 77
Frame Reference 77
Frame Callbacks Structure 77
Client-Specific Data 79
JManager Functions 80
Runtime Invocation Functions 80
Text Handling Functions 88
Abstract Window Toolkit Control Functions 92
Applet Control Functions 101
Frame Manipulation Functions 116
Utility Functions 128
Application-Defined Functions 134
JManager Result Codes 148

Chapter 3 JManager Java Class Reference 149

The JManagerException Class 151

The JMConstants Interface 151

The JMProxyInfo Class 153

The JMSession Interface 154

The JMText Interface 155

The J]MFrame Interface 156

The IMAppletViewer Interface 159

The JIMAWTContext Interface 160

The JMAppletSecurity Class 161
Appendix A Changes from JManager 1.0 167
Appendix B Mac OS—Related Issues 173

Glossary 175

O Apple Computer, Inc. 12/9/97

Index 177

O Apple Computer, Inc. 12/9/97

Chapter 1

Chapter 2

Figures, Tables, and Listings

Using JManager 13

Figure 1-1

Figure 1-2
Figure 1-3
Figure 1-4

Table 1-1
Table 1-2

Listing 1-1
Listing 1-2
Listing 1-3
Listing 1-4
Listing 1-5
Listing 1-6
Listing 1-7
Listing 1-8
Listing 1-9
Listing 1-10
Listing 1-11
Listing 1-12
Listing 1-13
Listing 1-14
Listing 1-15
Listing 1-16
Listing 1-17
Listing 1-18
Listing 1-19
Listing 1-20

The Java runtime environment, JManager, and a Mac OS
application 17

An instantiated Java session 18
Frames versus windows 19
Removing an applet window 39

Application-defined frame functions 33
Functions that return pointers to Java objects 54

Creating a session 21

Specifying a firewall proxy server 24

Using the JMId1e function 26

Using the JMNewAppletlocatorFromInfo function 27
Using the JMNewAppletlocator function 28
Retrieving information from an applet's HTML page 29
Creating an AWT context 30

Application-defined new frame function 31
Determining the window associated with a frame 33
A callback function to change the title of a window 34
Instantiating an applet 36

Handling events 39

Handling a frame update event 41

Sending an activate event to a frame 41

Sending a resume event to frames 42

Handling a mouse event 43

Handling a keyboard event 46

Handling a menu item selection 47

Launching a Java application 50

Using an Apple event handler to quit a Java application

JManager Reference 55

53

Table 2-1
Table 2-2

Window strings passed to MyShowDocument 147
JManager result codes 148

O Apple Computer, Inc. 12/9/97

vii

Appendix A Changes from JManager 1.0 167

Table A-1 Changes from JManager 1.0 functions 167

Appendix B Mac OS—Related Issues B173

Table B-1 Mac OS-related issues B173

viii

O Apple Computer, Inc. 12/9/97

PRETFATCE

About This Document

Programming With [Manager describes how to create a Java™ runtime
environment and execute Java applets and applications on the Mac OS
platform. You should read this document if you want to create Mac OS
applications that can support the execution of Java code. For example, if you
are writing a Web browser, you can use JManager to display Java applets
within the browser. You can also use JManager to create Mac OS-compatible
Java applications.

The Java™ Applet/ Application Manager (JManager) is a set of C-based
functions that you use for instantiating an environment to run Java code on the
Mac OS platform and to interact with the code within it. Many JManager
functions are also available as Java methods, so you can access them from Java
code as well; a listing of the corresponding methods is included.

This document does not describe the Java language, low-level details of the
Java virtual machine, or the Java Native Interface (JNI). For that information,
you should consult JavaSoft documentation, which you can access through the
Java home page:

<http:/ /java.sun.com/>

How to Use This Document

To understand how to use JManager functions to prepare and execute Java
applets and applications on the Mac OS platform, you should first read
Chapter 1, “Using JManager,” which gives tutorial information and code
samples. Chapter 2, “JManager Reference,” contains descriptions of all the
JManager functions and the required application-defined callback functions.
You can reference this chapter while reading Chapter 1 or while writing your
code.

If you would like to access JManager functions from Java code, read the first
two chapters and then see Chapter 3, “JManager Java Class Reference,” for a
listing of the Java equivalents to the C functions.

O Apple Computer, Inc. 12/9/97

PRETFAUCE

IMPORTANT

This document does not describe any older J]Manager 1.0
functionality. Although many functions are unchanged
from the older version, you should consult JManager 1.0
documentation if you need the older functions. However,
if you want to update code that uses JManager 1.0 calls,
you can check Appendix A for a listing of changes to
individual functions. a

If you are new to the Mac OS platform, check Appendix B for a brief list of
Mac OS-related issues that might affect your Java code.

Additional Resources

Some JManager functions require that you already know how to manipulate
windows or handle user events on the Mac OS platform. If you are not familiar
with these concepts, please consult Inside Macintosh: Macintosh Toolbox Essentials
and Inside Macintosh: More Macintosh Toolbox before using JManager functions.
You can find more information about drawing inside windows in Inside
Macintosh: Imaging With QuickDraw.

For more information about Apple’s use of Java technology, see the following
Web page:

<http:/ /www.applejava.apple.com/>

If you simply want to package a Java application so that you can launch it like
a Mac OS application, you can use the JBindery tool to do so. JBindery does not

require any Mac OS programming knowledge. For information on JBindery, see
the document Using JBindery.

Conventions

This book uses special conventions to present certain types of information.
Words that indicate special meanings appear in specific fonts or font styles.

10
O Apple Computer, Inc. 12/9/97

PRETFATCE

Special Fonts

All code listings, reserved words, command options, resource types, and the
names of actual libraries are shown in Letter Gothic (this is Letter Gothic).

Words that appear in boldface are key terms or concepts and are defined in the

glossary.

Command Syntax

This book uses the following syntax conventions:

Titeral Letter Gothic text indicates a word that must appear exactly as
shown.
italics Italics indicate a parameter that you must replace with a term that

matches the parameter’s definition.

Notes

Note
A note like this contains information that is useful but that
you do not have to read to understand the main text. O

IMPORTANT
A note like this contains information that is crucial to
understanding the main text. a

O Apple Computer, Inc. 12/9/97

11

12

PRETFAUCE

O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

Contents

Changes in JManager 2.0 15
JManager and the Java Runtime Environment 16
Java Sessions, AWT Contexts, and Frames 18
Text Objects 20
Creating a Java Runtime Session 21
Beginning a Java Runtime Session 21
Session and Security Options 22
Callbacks 23
Specifying Proxy Servers 24
Checking JManager Versions 25
Properties and Client-Specific Session Data 25
Servicing Other Threads 25
Ending a Java Runtime Session 26
Finding Applets 26
Creating an AWT Context 30
Displaying Frames 33
Getting Information About AWT Contexts and Frames
Removing an AWT Context 36
Instantiating Applets 36
Handling Events 38
Update, Activate, and Resume Events 40
Mouse Events 42
Keyboard Events 45
Menu Selections 47
Drag-And-Drop Support 49
Executing Java Applications 50
Obtaining Java References 53

Contents
O Apple Computer, Inc. 12/9/97

35

13

14

CHAPTER 1

Contents
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

This chapter describes how JManager interacts with the Java runtime
environment and how you use J]Manager to prepare and execute Java applets
and applications.

Changes in JManager 2.0

JManager 2.0, as included with Mac OS Runtime for Java 2.0, extends or
improves the functionality of previous versions. The JManager 2.0 library still
supports the older functions; you are not required to update older code for
MR] 2.0 compatibility. However, if you build your application using JManager
2.0 headers, you can no longer use the older 1.0 functions.

The major changes for JManager 2.0 are as follows:

s The new JMTextRef object used to encapsulate strings. This object allows you
to pass Unicode strings as well as Mac OS strings. All strings passed by
JManager functions are now passed as text objects.

s New flags used with the JMOpenSession function, to allow use of the Just In
Time Compiler (JITC), InternetConfig, and the application heap.

= Abstract Window Toolkit (AWT) contexts no longer have a suspended state.
= Security options are now bound to individual applets, not to a session.

s Graphics ports (grafPort) are now bound directly to frames, rather than
accessed through a callback.

s The applet viewer callback MyShowDocument now specifies the name of the
frame in which the document is to be shown.

s New callbacks for handling calls to java.lang.System.exit,URL password
authentication, and low-memory conditions.

» Java bindings for most JManager functions. These allow your Java
application to call JManager methods. See Chapter 3, “JManager Java Class
Reference,” for listings of J]Manager Java classes and interfaces.

» Use of the Java Native Interface (JNI), rather than the Java Runtime Interface
(JRI) to access Java methods. If desired, however, you can still access
methods using the Java Runtime Interface.

Changes in JManager 2.0 15
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

For a listing of changes to individual functions, see Appendix A. You can use
this listing to determine quickly which function calls or callbacks you may
need to update.

JManager and the Java Runtime Environment

16

Java is an object-oriented programming language you can use to construct
programs that will run without modification on multiple platforms. To support
this capability, Java requires that each platform provide a virtual machine (VM)
that can interpret and execute compiled Java code. A virtual machine is
software that simulates an abstract microprocessor, complete with its own
registers and instruction set. This virtual machine executes “system software”
that

= Joads and executes Java programs

» creates windows and graphics to interact with the user

= provides a secure environment for executing untrusted code

= provides networking capabilities and security measures

= enables garbage collection (automatic memory deallocation and cleanup)

Each platform that supports Java must contain software that emulates this
virtual machine. The combination of the virtual machine and its associated
system software is called the Java runtime environment.

You can think of the Java runtime environment as a black box platform running
within the Mac OS. This platform can handle multiple programs, and each
program can contain virtual windows, buttons, and text. In order for the virtual
machine to interact with the outer world, the actions that occur within the Java
VM must be mapped to similar actions on the Mac OS. To do so requires an
embedding application that accesses the Java runtime environment. This
application can be a full-featured program (such as a Web browser) or a simple
“wrapper” whose sole purpose is to run Java programs (such as JBindery).

For example, if a Java applet creates a window, a Mac OS application must map
that window to an actual one that the user can see. Similarly, a mouse click by
the user must be passed by the application to the Java VM so the applet can
take proper action. JManager is the interface that handles these transactions.

JManager and the Java Runtime Environment
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

Figure 1-1 shows the relationship between the Java runtime environment,
JManager, and a Mac OS application.

Figure 1-1 The Java runtime environment, JManager, and a Mac OS application
Mac OS application <
Java
Native JManager
Interface
— (INI)

Java virtual machine (VM)

Java —
runtime
‘ Garbage N) . Abstract |«
etworkin Securit :
environment collection g y s Window
Toolkit
(AWT)

You can use JManager to accomplish the following on the Mac OS platform:

= create an instantiation of the Java runtime environment (the Java virtual
machine and its associated system software).

= create execution environments within the Java runtime environment that can
be mapped to the Mac OS user interface.

= find and instantiate Java applets or applications.

= set security options and specify proxy servers when accessing remote Java
code.

= pass user events and window manipulations between the Mac OS user
interface and the abstract interface provided by the Java runtime
environment.

= call Java methods from Mac OS code.

= gain access to the Java Native Interface and the Java Runtime Interface.

JManager and the Java Runtime Environment 17
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

Java Sessions, AWT Contexts, and Frames

To run Java applets on the Mac OS platform, you must first create a Java
runtime session, which is an instantiation of the Java runtime environment.
This environment can then load and execute Java code. Figure 1-2 shows an
instantiated Java session and elements associated with it.

Figure 1-2 An instantiated Java session

18

Session

AWT context 1 AWT context 2

Applet 1 Applet 2

Frame 1 Frame 1

Frame 2

Within a session, a Java applet must run within an Abstract Window Toolkit
(AWT) context. The AWT context provides an execution environment and a
thread group for the Java program. Each Java applet must have its own AWT
context. However, a given session can contain multiple contexts, each of which
runs independently.

In addition to providing an execution environment, the AWT context allows
access to the Abstract Window Toolkit. Java programs that display any
graphical information (such as a text window, a button, or an image) must do
so by calling the AWT. A call to the AWT manipulates images in a virtual

Java Sessions, AWT Contexts, and Frames
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

window called a frame. This action is analogous to a Mac OS program calling
the Mac OS Toolbox to manipulate images in a user-visible screen window.

To make the contents of a frame visible to the user, [Manager cooperates with
the AWT to pass information between the Java program and the Mac OS. For
example, if the Java program decides to open a window, it tells the AWT, which
can then call the appropriate Mac OS Toolbox functions to display a new
window. Similarly, if the user selects a button, the selection is passed back to
the Java program through the AWT. Figure 1-3 compares the elements needed
by Mac OS code and Java code to display graphical information in a Mac OS
window.

Figure 1-3 Frames versus windows

Mac OS code

Mac OS

I— Toolbox I— '\\I/IV%C d(c?v%

Java code
Abstract | |
E— Window) Frame ;
Toolkit .]
JManager == =
............ > MacOs |mm)> Mac OS
Client Toolbox window
application 5|
Java Sessions, AWT Contexts, and Frames 19

O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

AJava applet can have any number of frames. A frame does not necessarily
have to correspond to a visible Mac OS window. For example, you could assign
a frame to a graphics port that displays data on a pen plotter instead of a
window.

Since the Java runtime environment is object-oriented, each element associated
with it is defined by an object. For example, an AWT context is defined by the
JMAWTContextRef object, and the Java session itself is defined by an object of
type JMSessionRef. Creating any element (for example, a frame) involves
instantiating an instance of that object type.

To run a Java applet on the Mac OS, you must do the following;:
1. Create the Java runtime environment.

2. Find the applet.

3. Create an AWT context.

4. Instantiate the applet.

Text Objects

20

Java programs typically handle text as Unicode strings, while the Mac OS
platform uses special Mac OS—specific encodings (for example, MacRoman). To
ensure compatibility, JManager functions pass all character strings as text
objects. A text object is an object of type JMTextRef, and it encapsulates the
string to pass along with its length and text encoding information. You can use
other JManager functions to retrieve the encapsulated text as either a Unicode
or a Mac OS encoding.

For example, if you wanted to encapsulate the string “Happy days are here
again” in a text object, you would call the JMNewTextRef function (page 88):

0SStatus JMNewTextRef (mydJavaSession, &myHappyRef,
kTextEncodingMacRoman,
"Happy days are here again", 25);

The JMNewTextRef function requires you to specify the Java session that is to
contain the text object (nyJavaSession in this example), the reference to use for
the created object (myHappyRef), the text encoding to use for the object
(kTextEncodingMacRoman), the string, and the length of the string (25 characters).

Text Objects
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

You can specify any text encoding defined by the Text Encoding Converter; see
the document Programming with the Text Encoding Converter Manager for a listing
of possible encodings. After creating the text object, you would pass the
reference myHappyRef anywhere you wanted to pass the string “Happy days are
here again.”

After use, it is your responsibility to remove any text objects you created by
calling the JMDisposeTextRef function (page 89). Any text objects passed by the
session, however (for example, during a callback) are automatically removed
when no longer required. For more information about JMNewTextRef and other
text object handling functions, see “Text Handling Functions” (page 88).

Creating a Java Runtime Session

If you want to run Java applets on the Mac OS platform, your embedding
application must first create a Java runtime session. This session can then load
and execute Java code.

Beginning a Java Runtime Session

On the Mac OS platform, the Java runtime session is defined by the
JIMSessionRef object. To instantiate this object, you must call the function
JMOpenSession (page 80). Listing 1-1 gives an example of creating a session.

Listing 1-1 Creating a session

static JMSessionRef theSession;

static Boolean initializeMRJ()
{

JMSessionCallbacks sessionCallbacks = {

kdMVersion, /* the current version */
MyStandardOutput, /* designated standard output */
MyStandardError, /* designated standard error */
MyStandardIn /* designated standard input */
MyExit /* System.exit handler */
Creating a Java Runtime Session 21

O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager
MyAuthenticate /* URL Authentication handler */
MyLowMem /* Low memory condition handler */

return JMOpenSession(&theSession, edManagerZDefaults,
eCheckRemoteCode, &sessionCallbacks,
kTextEncodingMacRoman, 0) == noErr;

The instantiated JMSessionRef object is referenced by the value of theSession.
Other JManager functions require you to pass this value to identify the session.
(You can create more than one instantiation of the Java runtime environment if
you wish.) Note that the JMSessionCallbacks structure you pass contains a field
indicating the version of JManager you are using in your program. You should
always set this value to kdMVersion. Setting this value prevents your program
from accessing older (possibly incompatible) JManager functions.

The text encoding you specify when calling JMOpenSession
(kTextEncodingMacRoman in this example) indicates the encoding used for any
data sent to the designated standard output or standard error.

Session and Security Options

When calling JMOpenSession, you pass two parameters that indicate the desired
session options, and whether you want to use the code verifier.

s The session options parameter is actually a mask that allows you to select
various options, such as the following:

o Whether the Java session can use temporary memory in addition to
application heap memory. The default uses application heap memory only.

o Whether to use the Just In Time (JIT) compiler. The default enables the
compiler.

o Whether to allow debugging. The default disables the debugger.

o Whether to use preferences determined by InternetConfig. The default
uses InternetConfig settings.

o Whether to inhibit class unloading (that is, to prevent garbage collection
of classes that are not being used). The default allows class unloading.

The example in Listing 1-1 passes eJManager2Defaults, which selects all the
default settings. See “Runtime Session Options” (page 63) for a list of the
available options.

Creating a Java Runtime Session
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

The code verifier parameter (set to eCheckRemoteCode in Listing 1-1) specifies
whether you want the code verifier to check the Java code before attempting
to execute it. The code verifier analyzes the code to make sure that it is valid
Java code and that it does not attempt any illegal or questionable actions
(such as pointer arithmetic) that could give the code access to the Mac OS
runtime environment. Typically you should use the code verifier if you plan
to receive Java code from an untrustworthy source (such as over a network).
See “Security Level Indicators” (page 61) for the available options.

After calling JMOpenSession, you can read or modify the code verifier setting
by calling the functions JMGetVerifyMode (page 84) or JMSetVerifyMode
(page 84) respectively.

Callbacks

The data structure you must pass to the JMOpenSession function is a set of
callback functions to handle console input and output, calls to exit from a Java
application, low memory conditions, and URL authentication.

The standard output, standard error, and standard input callbacks all deal
with communications with the command line console. For example, you
could specify a function that would receive and parse text sent to the
standard output. Since the Mac OS runtime environment does not have a
command line, these callbacks are often unused and set to ni1. (By default,
any text sent to standard output or standard error is redirected to a file.) For
information about the form of these functions, see MyStandardOutput

(page 135), MyStandardError (page 135), and MyStandardIn (page 136).

The exit handler handles the case where the Java application quits (by
calling java.lang.System.exit). Your callback can dispose of the applet or
session as it sees fit, or it can simply allow the System.exit call to execute
normally. For more information about the form of the exit handler, see
MyExit (page 137).

The URL authentication handler is called in cases where the user must enter
aname and password to gain access to a URL. The handler should prompt
the user for the proper information and pass it back to the Java program,
which then decides whether the information is valid. For more information
about the form of the authentication handler, see MyAuthenticate (page 137).

The low memory handler is called when the Java runtime session runs low
on memory. For more information about the form of the low memory
handler, see MyLowMem (page 138).

Creating a Java Runtime Session 23

O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

For more information about the session callback structure, see “Session
Callbacks Structure” (page 67).

Specifying Proxy Servers

If you want to define proxy servers for a session, you can do so using the
JMSetProxyInfo function (page 83). A proxy server essentially acts as a gateway
when you access data over a network. For example, if your company has a
security firewall, all requests for code or data external to the company network
must pass through the firewall before reaching the desired server. You can
designate proxy servers for HTTP access, FTP access, and firewall access.

Note

If you allowed the use of the InternetConfig settings when
creating the session, any proxy information defined there
is used for the default settings. O

You pass a proxy server options structure to the JMSetProxyInfo function for
each type of server. For example, Listing 1-2 sets a firewall proxy server.

Listing 1-2 Specifying a firewall proxy server

24

JMProxyInfo myFirewallProxyInfo {

true, /* allow a proxy for this type of server access */
"TheWall.myCompany.com", /* the name of the server */
80} ; /* the port number of the server */

JMSetProxyInfo(theSession, eFirewallProxy, &myFirewallProxylInfo);

The myFirewallProxyInfo structure specifies the firewall server by name and by
port number. (If you wanted to specify HTTP or FTP proxy servers, you would
create a structure for each of them as well.) You then set these values by calling
the JMSetProxyInfo function and specifying the firewall proxy.

To read proxy information for a given session, you must call the JMGetProxyInfo
function (page 82). See “Proxy Server Options” (page 69) and “Session Security
Indicators” (page 61) for more information about the values you pass to these
functions.

Creating a Java Runtime Session
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

Checking JManager Versions

Many JManager data structures require that you specify the version of
JManager (kJMVersion) you are compiling against. Before beginning a session,
you should compare this value to the version of J]Manager available on the host
computer to make sure that the two are compatible. The function JMGetVersion
(page 128) returns the J]Manager version available on the host computer.

IMPORTANT

If you do not specify JManager as a weak library when
compiling, your application will automatically fail to
launch if the J]Manager library is not present. If you
weak-link to the JManager library, your code should check
that the JMGetVersion symbol is valid (that is, its value is
not ni1) before calling it. a

Properties and Client-Specific Session Data

Since the session is a JMSessionRef object, you can assign or change properties
associated with it. You can do this using the functions JMGetSessionProperty
(page 86) and JMPutSessionProperty (page 87). These functions correspond
respectively to the Java methods java.lang.System.getProperty and
java.lang.System.setProperty. If the property name you specify does not exist,
then JManager creates a new property with that name.

You can also read or set optional client data for a given session using the
functions JMGetSessionData (page 85) and JMSetSessionData (page 86). For
example, if you have multiple sessions running at the same time, you might
want to store specific data with each one.

Servicing Other Threads

When you are running a Macintosh embedding application, you must
explicitly tell JManager to give up time to the Java virtual machine. You do so
by using the JMId1e function (page 82) in your main event loop. Listing 1-3
shows an example of using JMId1e.

Creating a Java Runtime Session 25
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

Listing 1-3 Using the JMId1e function

Boolean MainEventlLoopContinues = true;

while (MainEventLoopContinues) {
EventRecord eve;

if (! WaitNextEvent(everyEvent, &eve, 30, nil) ||
eve.what == nullEvent)
JMIdle(theSession, 100);
else
handleEvent(&eve);

The value specified in JMId1e indicates how many milliseconds to allot to other
threads; you can specify a default wait period by using the value
kDefaultJMTime. JMId1e returns immediately if no threads need servicing.
JMIdle also returns if a user event occurs in the current session.

Ending a Java Runtime Session

After you have finished executing your Java programs, you should end the
Java runtime session by calling the function JMCloseSession (page 81). This
function disposes of the JMSessionRef object and removes any resources that
JManager may have allocated for it. However, if you created any resources
(such as AWT contexts and applets) within the session, you should explicitly
remove them before calling JMC1oseSession.

Finding Applets

26

Before you can instantiate and execute your applet, you must find the applet
code by creating a JMAppletLocatorRef object. You can create such an object
either synchronously or asynchronously. A synchronous search assumes that
the applet’s location can be immediately verified (if, for example, it is contained
in a local file). You use the JMNewAppletLocatorFromInfo function (page 102) for
a synchronous search, and you must provide information about the location of
the applet in a JMLocatorInfoBlock data structure. The location information is

Finding Applets
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

the same as you would find in an applet tag in an HTML document. Listing 1-4
shows an example of using JMNewAppletLocatorFromInfo.

Listing 1-4 Using the JMNewAppletLocatorFromInfo function

0SStatus err = noErr;
JMAppletLocatorRef TocatorRef;
JMTextRef URLTextRef, appTextRef;

/* Build the text objects for the strings to pass */

JMNewTextRef (theSession, &URLTextRef, kTextEncodingMacRoman,
"file:///$APPLICATION/applets/DrawTest/examplel.html",
51);

JMNewTextRef (theSession, &appTextRef, /* from the applet tag */
kTextEncodingMacRoman, "DrawTest.class",14);

JMLocatorInfoBlock infoBlock = {

kdMVersion, /* should be kJdMVersion */
URLTextRef,

appTextRef,

400, 400, /* width, height */

0, nil /* no optional parameters in this example */

Vs

/* create the locator */

/* 1If nokErr is returned, the infoBlock was valid */

err = JMNewAppletLocatorFromInfo(&locatorRef,
theSession, &infoBlock, 0);

if (err == nokrr) {
/* instantiate and execute applet */
}

/* Dispose text objects after use */
JMDisposeTextRef (URLTextRef);
JMDisposeTextRef(appTextRef);

Note that the two strings passed in the information block (the URL and the
name of the class containing the applet code) are passed as text objects.

Finding Applets 27
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

The /$APPLICATION/ indicator in the URL is an Apple-specific designation that
indicates the current application directory.

For more information about the JMLocatorInfoBlock structure, see “The Applet
Locator Information Block” (page 72).

If the applet is located on a remote server, you should search for it
asynchronously using the JMNewAppletLocator function (page 102). Listing 1-5
shows an example of using JMNewAppletLocator.

Listing 1-5 Using the JMNewAppletLocator function

28

JMAppletLocatorRef TocatorRef;
JMTextRef sampleURLTextRef;

struct JMAppletlLocatorCallbacks TocatorCallbacks = {
kdMVersion, /* should be kdMVersion */
MyFetchCompleted /* called on completion */
b

JMNewTextRef (theSession, &sampleURLTextRef, kTextEncodingMacRoman,
"http://www.hypno.com/javabeta/bongo/bongo.html", 46);

/* ignore the result--no pointer is passed to the */

/* html text, since it might not exist locally.*/

(void) JMNewAppletlLocator(&locatorRef, theSession,
&locatorCallbacks, sampleURLTextRef, nil, 0);

JMDisposeTextRef(sampleURLTextRef); /* dispose text object after use */
JMIdle(theSession, kDefaultJMTime);

/* this is the callback function specified in locatorCallbacks */
static void MyFetchCompleted(JMAppletlLocatorRef locatorRef,
JMLocatorErrors status){
if (status != elocatorNoErr) {
/* handle the error here--perhaps put up a dialog box */
}
else {
/* instantiate and execute applet */
}

Finding Applets
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

In the asynchronous search, you pass HTML text (as a text object) indicating
the location of the applet and specify a callback function to execute when the
search is completed. The callback function can take various actions, depending
on the status value returned. For more information about the callback function,
see MyFetchCompleted (page 146)

IMPORTANT

It is possible that the MyFetchCompleted function will be
called before JMNewAppletlLocator returns. a

One you have found your applet’s location, you should call the JMCountApplets
function (page 105) to determine the number of applets associated with the
HTML page. JMCountApplets counts the number of applets and assigns an
index value to each. Then you can use the functions JMGetAppletDimensions
(page 106), JMGetAppletTag (page 107), and JMGetAppletName (page 107) to
determine which applet to instantiate or to get more information about a
particular applet. Listing 1-6 shows an example that counts the number of
applets and returns information about each.

Listing 1-6 Retrieving information from an applet's HTML page

UInt32 appletCount;

UInt32 appWidth, appHeight;
UInt32 i;

JMTextRef appNameTextRef;
Handle appName;

/* iterate over the applets */
err = JMCountApplets(locatorRef, &appletCount);
printf(“Number of Applets: “appletCount);

for (i = 0; i < appletCount && err == nokrr; it++) |
err = JMGetAppletName(locatorRef, i, &appNameTextRef);

appName = JMTextToMacOSCStringHandle(appNameTextRef);
Hlock(appName);

if (lerr) {
err = JMGetAppletDimensions(locatorRef, i, &appWidth,
&appHeight);
Finding Applets 29

O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

if (lerr) |
printf("\nApplet #"%d" is "%s,i+1,*appName);
printf("Dimensions:"%d" by "%d" pixels",appWidth,appHeight);
}
}
HUnlock(appName) ;
}
DisposeHandle(appName);

In some cases you might want to associate some client-specific data with an
applet locator. To do so you can use the functions JMGetAppletLocatorData
(page 104) and JMSetAppletlocatorData (page 105).

Both the JMNewAppletLocatorFromInfo and JMNewAppletLocator functions
provide a valid JMLocatorRef object, which you can then use to instantiate and
execute the applet. After instantiating the applet, however, you no longer need
the JMLocatorRef object, so you can remove it by calling the
JMDisposeAppletLlocator function (page 104).

Creating an AWT Context

On the Mac OS, an AWT context is defined by a JMAWTContextRef object. Every
Java program running within a session has its own AWT context. You can

create an AWT context before or after instantiating a locator for the applet you
want to run, but you must instantiate the AWT context before instantiating the

applet.

To instantiate a JMAWTContextRef object, you call the JMNewAWTContext function
(page 93) as shown in Listing 1-7. You must have instantiated a session already
before creating an AWT context.

Listing 1-7 Creating an AWT context

30

/* define callbacks for the AWT context */
JMAWTContextCallbacks sessionCallbacks = {

kdMVersion, /* should be kdMVersion */
MyRequestFrame, /* callback to create a frame */
MyReleaseFrame, /* callback to release a frame */

Creating an AWT Context
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

MyUniqueMenulD, /* callback to give the AWT a valid MenulD */
MyExceptionOccurred,/* notify that an exception occurred */
Vs

/* create an AWT context for this applet */
JMAWTContextRef context;
err = JMNewAWTContext(&context, theSession, &sessionCallbacks, 0);

The value context references the JMAWTContext object, and you should pass this
value in other J]Manager functions to specify this particular context.

You must specify a number of callbacks when calling JMNewAWTContext.
JManager uses these callbacks to handle requests from the Java program for
new frames (that is, windows). The MyRequestFrame callback (page 139) creates
a new window, MyReleaseFrame releases a window (page 140), and
MyUniqueMenuID creates a new menu ID (page 140). For example, if the Java
program requests that a frame be made available, the application-defined
callback function MyRequestFrame should request a new Mac OS window.
Listing 1-8 shows an example of such a function.

Listing 1-8 Application-defined new frame function

0SStatus MyRequestFrame(JMAWTContextRef context, JMFrameRef newFrame,
JMFrameKind kind, Rect bounds, Boolean resizeable,
JMFrameCallbacks* callbacks)

WindowPtr win;
Point zeroPt = { 0, 0 };

/* callbacks with pointers to your implementation-- */
/* note that you also fill in the version number that you */
/* compiled against (based on what you passed to JMOpenSession) */

callbacks->fVersion = kdMVersion;
callbacks->fSetFrameSize = MyResizeRequest;
callbacks->fInvalRect = MylInvalRect;
callbacks->fShowHide = MyShowHide;
callbacks->fSetTitle = MySetTitle;
callbacks->fCheckUpdate = MyCheckUpdate;
callbacks->fReorderFrame = MyFrameReorder

Creating an AWT Context 31
O Apple Computer, Inc. 12/9/97

32

CHAPTER 1

Using JManager

callbacks->fSetResizeable = MySetResizeable

win = NewCWindow(nil, &bounds, "\p", false, documentProc,
(WindowPtr) -1, true, (long) newFrame);

if (win == nil)
return memFullErr;

JMSetFrameVisibility(newFrame, win, zeroPt, nil);

return JMSetFrameData(newFrame, (JMClientData) win);

The MyRequestFrame function in this example calls the Mac OS Toolbox function
NewCWindow to request a new window that corresponds to the frame. If you
prefer, you can use an existing window instead. This example always creates a
window of type documentProc (a simple document window without size or
zoom boxes), but you can select different window types depending on the kind
parameter passed into the callback function. See “Frame Types” (page 64) for a
listing of possible requests.

After creating the window, the JMSetFrameVisibility function (page 117)
registers the window characteristics (the graphics port, its position, and its
clipping region) with the frame. Whenever the visibility of the window
changes (for example, due to scrolling), you must call JMSetFrameVisibility
again to update the visibility information.

The function MyRequestFrame also requires a number of callback functions that
allow the Java program to manipulate the new window (for example, to show,
hide, or update the window). For more information on these functions, see
“Displaying Frames” (page 33) and “Application-Defined Functions”

(page 134).

As part of the NewCWindow call, the reference to the frame (as held in newFrame) is
stored in the refCon field of the window record (a WindowRecord structure).
Doing so allows you to determine the frame associated with a window by
simply calling the Mac OS Toolbox function GetWRefCon.

In a similar fashion, the JMSetFrameData function is used to store a pointer to the
new window record in the frame’s client data. You can then easily determine
the window associated with a given frame by using a function such as that in
Listing 1-9.

Creating an AWT Context
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

Listing 1-9 Determining the window associated with a frame

WindowPtr getFrameWindow(JMFrameRef frame)
{
if (frame) {
WindowPtr win = nil;
if (IMGetFrameData(frame, (JMClientData*) &win) == nokrr)
return win;
}

return nil;

Displaying Frames

As explained earlier, a Java program displays graphical output in virtual
windows called frames. Since frames correspond to Mac OS windows, you can
manipulate them in a similar manner (for example, create or destroy frames,
resize them, and so on).

In order to communicate between the abstract frames and the actual Mac OS
windows, you must designate a number of application-defined callback
functions. Many of these functions correspond to similar Mac OS Toolbox
functions. The application-defined functions and their corresponding Mac OS
Toolbox functions are shown in Table 1-1. For details of the structure of these
functions, see “Application-Defined Functions” (page 134).

Table 1-1 Application-defined frame functions
Corresponding Mac OS
Frame function Description Toolbox function
MyRequestFrame Creates a new window GetNewCWindow, NewCWindow,
GetNewWindow, or NewWindow
MyReleaseFrame Disposes of a window DisposeWindow
MyResizeRequest]Requeststhata, SizeWindow
window be resized
MyInvalRect Invalidates a portion of InvalRect
a window
Creating an AWT Context 33

O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager
Table 1-1 Application-defined frame functions
Corresponding Mac OS
Frame function Description Toolbox function
MyShowHide Shows or hides a ShowHide or ShowWindow and
window HideWindow
MySetTitle Sets the window title SetWTitle
bar
MyCheckUpdate Checks to see if a CheckUpdate or BeginUpdate
window update is and EndUpdate
necessary
MyFrameReorder leangestfmzorderhlg BringToFront or SendBehind
of the frame (bring to
front, send to back, etc)
MySetResizeable Sets whether a frame is No corresponding

resizeable or not function, although the
state set by this function
affects whether your
DoGrowWindow callback calls
the SizeWindow function.

Typically the bulk of an application-defined frame function prepares a call to
the corresponding Mac OS Toolbox function. For example, assuming that the
application uses the functions in Listing 1-8 (page 31) and Listing 1-9 (page 33),
you can use the callback function in Listing 1-10 to set the window title.

Listing 1-10 A callback function to change the title of a window

void MySetTitle(JMFrameRef frame, JMTextRef titleObj)
{

Handle title;

Str255 ptitle;

title = IMTextToMacOSCStringHandle(titleObj);
Hlock(title);

convertToPascalString(*title, &ptitle); /* this is a dummy utility */

Creating an AWT Context
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager
WindowPtr win = getFrameWindow(frame);
if (win)

SetWTitle(win, ptitle);

HUnlock(title);
DisposeHandle(title);

Since the Mac OS Toolbox function SetWTit1e requires a Pascal string, you must
convert the handle tit1e before calling SetWTitle.

Getting Information About AWT Contexts and Frames

JManager provides a number of functions that return information about an
AWT context or a frame. For example, since multiple applets can appear
onscreen, if a user clicks in a window that corresponds to a frame, you may
need to find out what applet or AWT context the frame belongs to.

The JMCountAWTContextFrames function (page 95) counts the number of frames
associated with an AWT context.

The JMGetAWTContextFrame function (page 96) lets you find a particular frame
(as indexed by the JMCountAWTContextFrames function) associated with an AWT
context.

The JMGetFrameContext function (page 127) finds the AWT context associated
with a frame.

The JMGetFrameViewer function (page 114) lets you determine the frame
associated with an applet.

The JMGetViewerFrame function (page 115) finds an applet’s parent frame,
which is the frame created when the applet is created.

If you want to set or read client-specific data associated with an AWT context,
you can do so using the functions JMSetAWTContextData (page 94) and
JMGetAWTContextData (page 94).

If you want to read or set client-specific data associated with a particular frame,
you can do so using the functions JMGetFrameData (page 117) and
JIMSetFrameData (page 118). You can store the window record as client data to
make it easy to find a window corresponding to a frame. See Listing 1-8

(page 31) and Listing 1-9 (page 33) for an example.

Creating an AWT Context 35
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

Removing an AWT Context

When you have finished executing an applet and no longer need the AWT
context, you should dispose of it using the JMDisposeAWTContext function
(page 93). However, you should have already removed any applets from the
context before calling JMDisposeAWTContext. You can reuse an AWT context by
disposing of an instantiated applet and then instantiating a new one in the
same context.

Instantiating Applets

After you have created a session, located the applet, and created an AWT
context for the applet, you can instantiate it. An instantiated applet is defined
by an JMAppletViewerRef object, and you use the JMNewAppletViewer function
(page 108) to create one. Listing 1-11 shows an example of instantiating an
applet.

Listing 1-11 Instantiating an applet

36

JMAppletSecurity securitySettings = {
kdMVersion, /* should be kdMVersion */
eAppletHostAccess, /* applet network access option */
eLocalAppletAccess, /* applet access to Tocal file system */

true, /* restrict system.access packages */
true /* restrict system.define packages */
true, /* restrict application.access packages */
true /* restrict application.define packages */

by

JMAppletViewerCallbacks viewerCallbacks = {

kdMVersion, /* should be kdMVersion */
MyShowDocument, /* showDocument callback */
MySetStatusMsg /* setMessage callback */

by

JMAppletViewerRef viewer;
err = JMNewAppletViewer(&viewer, context, locatorRef,

Instantiating Applets
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

appletindex, &securitySettings, &viewerCallbacks, 0);

/* reload the applet to get it going */
if (err == nokrr) ({

err = JMReloadApplet(viewer);

}

The JMNewAppletViewer function requires you to pass a security options data
structure indicating the following security settings:

= The applet network access field designates the applet’s level of network
access. Typically you should set this to eAppletHostAccess to indicate that an
applet can access only its host server. See “Applet Security Indicators”
(page 62) for a list of available options.

s The applet local file system access field designates whether an applet can
access files stored on the host computer. Typically you should set this to
eLocalAppletAccess to indicate that only an applet stored locally can access
the local file system. See “Applet Security Indicators” (page 62) for a list of
available options.

= The next four fields are flags that let you specify that whether to allow class
access or class definitions outside the java.* classes. A flag that is set to true
restricts access to the packages defined in the corresponding property:

o mrj.security.system.access
o mrj.security.system.define
o mrj.security.application.access
o mrj.security.application.define
See “Applet Security Structure” (page 76) for more information about using
these flags.
If you want to determine the current security levels for a particular applet, you

can use the JMGetAppletViewerSecurity function (page 111). To change existing
security levels, you can use the JMSetAppletViewerSecurity function (page 111).

In addition, you must define two callbacks, MyShowDocument (page 146) and
MySetStatusMsg (page 147), when calling the JMNewAppletViewer function. The
MyShowDocument function displays the contents of a URL passed back from the
applet, and MySetStatusMsg displays any status messages the applet may pass
to the application. You must also specify the index of the applet you want to
instantiate (as returned by the JMCountApplets function (page 105)).

Instantiating Applets 37
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

After you have instantiated the applet viewer object, you must load and
execute the applet code by calling the function JMReloadApplet (page 112).

You can set or retrieve client data associated with the applet by using the
functions JMSetAppletViewerData (page 110) and JMGetAppletViewerData
(page 110).

At any time you can stop execution of the applet by calling the JMSuspendApplet
function (page 113) and resume it by calling the JMResumeApplet function

(page 113). If you want to restart the applet without reloading it from the
server, use the JMRestartApplet function (page 112).

When you are finished with an applet, you can dispose of it by calling the
JIMDisposeAppletViewer function (page 109). This function automatically halts
applet execution and removes any frames associated with the applet.

Handling Events

38

Although the Java applet runs within its own runtime environment, it must
often interact with events that occur in the Mac OS. For example, user events
(such as mouse clicks) or system events may require some response from the
Java program. This section describes JManager functions for handling such
events. For more information about how the Mac OS handles events, see
“Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Actions performed on a frame may need to be reflected on the user-visible
window as well, but in most cases, such actions are handled by JManager
through a callback. For example, if the user clicks on an applet window’s close
box, your application must notify the frame that this has occurred. The Java
program can then take action based upon this event, such as removing the
frame or displaying a message in a dialog box. In either case, the AWT uses the
callback functions you defined in your application to display the results.
Figure 1-4 shows the steps for removing an applet window.

Handling Events
O Apple Computer, Inc. 12/9/97

CHAPTER 1

=

Java code

Event .WINDOW_DESTROY

Using JManager
Figure 1-4 Removing an applet window
Abstract IManager
. <:| _____________ <:| Client Mac OS
V_\I_llndlgw application window
oolkit JMFrameGoAway,
=
JManager
Abstract | | Client Mac OS LR E
Window = application = Toolbox : :
Toolkit MyReleaseFrame DisposeWindow ! :
Lmmmmmeo 22!

See “Displaying Frames” (page 33) for more information about using the

callbacks.

When an event occurs, you typically call an event-handling function from your
main loop. Listing 1-12 shows an example of an event-handling function.

Listing 1-12

Handling events

static void handlekEvent(const EventRecord* eve)

{
switch

(eve->what) {

case updatekvt:
handleUpdate((WindowPtr) eve->message);
break;

case activatekEvt:

handleActivate((eve->modifiers & activeFlag)

Handling Events

(WindowPtr) eve->message);
break;

O Apple Computer, Inc. 12/9/97

=0,

39

40

CHAPTER 1

Using JManager
case oskvt:
/* everyone should care about this */
handleResume((eve->message & resumefFlag) != 0);
break;

case kHighLevelEvent:
AEProcessAppleEvent(eve);
break;

case mouseDown:
handleMouse(eve);
break;

/* assume no one cares about these */
case mouseUp:
break;

case keyDown:

case autoKey:

case keyUp:
handleKey(eve);
break;

High-level events (generally Apple events) are handled by calling the Mac OS
Toolbox function AtProcessAppleEvent. In other cases, the handling functions
should check to see if the event needs to be passed to the embedded Java
program. The sections that follow describe the JManager functions needed to
pass events and give sample implementations of the handleUpdate,
handleActivate, handleResume, handleMouse, and handleKey functions.

Update, Activate, and Resume Events

If the application receives an update event, it must update the currently active
window. If the window corresponds to a frame, you must pass the update
event to the frame using the JMFrameUpdate function (page 122). The AWT
context can then update the actual window using a callback. Listing 1-13 shows
an example of an update function.

Handling Events
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

Listing 1-13 Handling a frame update event

static void handleUpdate(WindowPtr win)
{
JMFrameRef frame;
BeginUpdate(win);
SetPort(win);
frame = (JMFrameRef) GetWRefCon(win);
if (frame)
JMFrameUpdate(frame, win->visRgn);
else
EraseRgn(win->visRgn);
EndUpdate(win);

If an activate event occurs, then a window was made active (that is, brought to
the front), and if that window is associated with a frame, you must activate the
frame using the JMFrameActivate function (page 123). This action gives the
frame the opportunity to highlight title bars, scroll bars, and so on. Activating a
frame also installs the menu bar associated with the frame. Listing 1-14 gives
an example of activating a frame.

Listing 1-14 Sending an activate event to a frame

static void handleActivate(Boolean active, WindowPtr window)
{
JMFrameRef frame = (JMFrameRef) GetWRefCon(window);
if (frame)
JMFrameActivate(frame, active);

Note

The JMFrameActivate function can either activate or
deactivate a frame, depending on the Boolean value
passed to it (the value of active in this example). O

Suspend and resume events can also occur when a window is activated or
deactivated. When the user switches from one application to another, the
newly selected application is sent a resume event, and the previously active
one is sent a suspend event. This event affects all the applets embedded within

Handling Events 41
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

an application, so you must call the JMFrameResume function (page 124) to
suspend or resume all the existing frames.

Listing 1-15 shows how to send a resume event to all the frames associated
with a client application.

Listing 1-15 Sending a resume event to frames

static void handleResume(Boolean resume)
{
WindowPtr win = FrontWindow();
while (win) {
JMFrameRef frame = (JMFrameRef) GetWRefCon(win);
if (frame)
JMFrameResume(frame, resume);
win = (WindowPtr) ((WindowPeek) win)->nextWindow;

Note

The JMFrameResume function can either suspend or resume a
frame, depending on the Boolean value passed to it (the
value of resume in this example). O

This example cycles through all the visible windows used by the application
and sends the event to those associated with frames. However, this example
only works if every frame is associated with a window. If this is not the case,
you must use some other method to send the resume event.

Mouse Events

A mouse event occurs when you click somewhere in the visible screen area. A
function that handles mouse events must check the location of the mouse click
and take action as appropriate. If the mouse event took place in a window that
corresponds to a frame, you must pass the event to the frame so the Java applet
can take proper action.

Listing 1-16 shows a function, hand1eMouse, that handles a mouse event.

Handling Events
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

Listing 1-16 Handling a mouse event

void handleMouse(const EventRecord* eve)
{
WindowPtr win;
short part = FindWindow(eve->where, &win);

switch (part) {
case inMenuBar: {
long mResult = MenuSelect(eve->where);
if (mResult != 0)
menuHit(mResult >> 16, mResult & Oxffff);
} break;

case inDesk:
break;

case inSysWindow:
SystemClick(eve, win);
break;

case inContent:
if (win != FrontWindow())
SelectWindow(win);
else {
JMFrameRef frame = (JMFrameRef) GetWRefCon(win);
if (frame) {
/* convert the mouse position to window local */
/* coordinates and pass it into the Java */
/* environment */
Point localPos = eve->where;
SetPort(win);
GlobalTolLocal(&localPos);
JMFrameClick(frame, localPos, eve->modifiers);

}

break;

case inDrag: f{
Rect r = (**GetGrayRgn()).rgnBBox;
DragWindow(win, eve->where, &r);

Handling Events
O Apple Computer, Inc. 12/9/97

43

44

CHAPTER 1

Using JManager

} break;

case inGoAway: {
/* request that the frame go away--it will call to the */
/* frame through a callback if it actually does */
JMFrameRef frame = (JMFrameRef) GetWRefCon(win);
if (frame)
JMFrameGoAway (frame);
} break;

case inGrow: {
union GrowResults {
Point asPt;
lTong aslLong;
} results;

JMFrameRef frame = (JMFrameRef) GetWRefCon(win);

Rect rGrow = { 30, 30, 5000, 5000 };
results.aslong = GrowWindow(win, eve->where, &rGrow);
if (frame != nil && results.aslong != 0) {

/* request that the frame resize itself--it will call */
/* to the frame through a callback if it actually does */

Rect r;

r.left = 0;

r.top = 0;

r.right = results.asPt.h;
r.bottom = results.asPt.v;
r.bottom -= 15;

JMSetFrameSize(frame, &r);
}
} break;

default:
break;

This example uses the Mac OS Toolbox function FindWindow to determine the
location of the mouse click and then takes action depending on the location.

Handling Events
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

The inMenuBar, inDesk, and inSysWindow cases are handled as in any Mac OS
application.

If the mouse click occurs in a window’s content area (inContent), handleMouse
checks to see if the window is active. If not, the window is selected (it receives
an activate event and possibly a resume event). If the window is currently
active, the local position of the mouse within the window is calculated and the
coordinates sent to the corresponding frame using the JMFrameClick function
(page 120). In a similar manner, you can also send a mouse-over event by
calling the JMFrameMouseOver function (page 124) before the JMId1e call in the
main event loop.

If the mouse click is in the drag region (inDrag), the Mac OS Toolbox function
DragWindow is called to move the window. You do not have to pass any
information to the corresponding frame, since the Java runtime environment
does not worry about the relative position of frames.

If the mouse click is on the close box (inGoAway), the code notifies the
corresponding frame using the JMFrameGoAway function (page 125). Any
user-visible response to this action (such as removing the window) is handled
by the AWT using the callbacks you specified when instantiating the AWT
context.

If the mouse click is in a window’s size box (inGrow), the code calls the Mac OS
Toolbox function Growlindow to track the new size of the window. The new
dimensions are passed to the frame using the JMSetFrameSize function

(page 119). The dimensions of the window are updated using an AWT context
callback.

Note

If the new window dimensions are too large or too small
(because of screen constraints or some arbitrary limit), the
window should be adjusted to a preferred size. O

Keyboard Events

Keyboard events occur whenever the user presses a key. These keypresses may
correspond to text entered into a window, a keyboard-equivalent menu
selection, or a similar action (for example, selecting the default button in a
dialog box by pressing the return key). If the keyboard event occurs in a
window that corresponds to a frame, you must pass the event to the frame

Handling Events 45
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

using either the JMFramekey function (page 121) for key-down events or the
JMFrameKeyRelease function (page 122) for key-up events.

Listing 1-17 shows a simple example that handles a keyboard event.

Listing 1-17 Handling a keyboard event

46

static void handleKey(const EventRecord* eve)
{

WindowPtr win;

JMFrameRef frame;

/* see if a menu item was selected */
if (eve->what == keyDown && (eve->modifiers & cmdKey) == cmdKey) {
lTong menuResult = MenuKey(eve->message & charCodeMask);
if (menuResult != 0) {
menuHit(menuResult >> 16, menuResult & Oxffff);
return;

}
/* otherwise, just let JManager deal with it */
win = FrontWindow();

if (win) |
frame = (JMFrameRef) GetWRefCon(win);
if (frame)

JMFrameKey(frame, eve->message & charCodeMask,
(eve->message & keyCodeMask) >> 8, eve->modifiers);

This code first checks to see if the keyboard input was a keyboard equivalent
for a menu item (for example, Command-Q for Quit). If so, control passes to
the menu-event routine (see Listing 1-18 (page 47) for an example of handling a
menu selection). In all other cases, the keyboard input is passed to the frame
corresponding to the window, and the Java program can then determine the
appropriate response. The content of the keyboard input is determined from
the event record (the EventRecord structure) returned by the Event Manager.

Handling Events
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

Menu Selections

Both mouse events and keyboard events can select menu items. In either case,
the event should be handled by a menu selection function. If the selection
corresponds to a Java applet’s menu item, you must pass the selection to the
applet’'s AWT context using the JMMenuSelected function (page 96). Listing 1-18
shows a simple menu selection function.

Listing 1-18 Handling a menu item selection

/* enumerators to define the Mac 0S menus*/
enum Menus {

eAppleMenu = 1000,

eFileMenu,

eEditMenu,

eLastMenu

Vs

/* enumerators to define the menu items */
enum AppleMenultems {

eAboutItem = 1

}s

enum FileMenultems {
eMyActionl =1, /* nonstandard menu item defined by */
/* the application */
eQuitlitem = eMyActionl + 2
Vs

enum EditMenultems {
eUndoltem = 1,
eCutltem = eUndoltem + 2,
eCopyltem,
ePasteltem,
eClearItem,
eSelectAllItem = eClearltem + 2
Vs

static void menuHit(short menulD, short menultem)
{

Handling Events 47
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

switch (menulD) {
case eAppleMenu:
switch (menultem) {

case eAboutItem: /* show About box */
MyAboutBox();
break;

default: { /* open the appropriate desk accessory */
Str2b5 s;

SetPort(LMGetWMgrPort());
GetItem(GetMHandle(eAppleMenu), menultem, s);
if (s[0] > 0)
OpenDeskAcc(s);
} break;
}
break;

case efFileMenu:
switch (menultem) {
case eMyActionl:
DoMyActionl();
break;

case eQuitltem:
MainEventlLoopContinues = false;
break;
}
break;

case ekditMenu:
break;

default: {
/* pass the menu hit to the AWTContext for processing */
WindowPtr win = FrontWindow();

if (win !=nil) {
JMFrameRef frame = (JMFrameRef) GetWRefCon(win);
if (frame != nil) {
JMAWTContextRef context = JMGetFrameContext(frame);
if (context !=nil)

JMMenuSelected(context, GetMHandle(menulD),

48 Handling Events
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

menultem);
} break;
HiliteMenu(0);

If the user did not select a standard menu item, the menutit function passes the
menu selection to the applet’s AWT context. On the Mac OS, the menu bar is
always associated with the active window (and, consequently, with the active
frame). After determining the frame associated with the window (using the
Mac OS Toolbox function GetWRefCon), JMGetFrameContext returns the AWT
context associated with the frame. The menu handle of the selection is then
passed to the AWT context using the JMMenuSelected function (page 96).

Drag-And-Drop Support

If your embedding application supports the Drag Manager, you can pass
drag-and-drop information to a frame using JManager functions. The
JMFrameDragTracking function (page 126) allows your frame to respond to an
item dragged over it (for example, creating a highlight to signal that the drag
item is valid for the frame). If the user drops the item within the frame
boundaries, the JMFrameDragReceive function (page 127) lets you pass
information about the dropped item to the frame.

These functions correspond respectively to the application-defined Drag
Manager functions DragTrackingHandler and DragReceiveHandler, and are called
from within these handlers. For more information about the Drag Manager, see
the Drag Manager Programmer’s Guide.

Note
The Java JDK standards 1.1.x and earlier do not support
drag and drop. O

Handling Events 49
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

Executing Java Applications

Most of the information in the previous sections describes how to load and
execute Java applets, which are designed to be run within an embedding
application. However, you can also execute Java applications, which can be
launched just like any other application. To do so on the Mac OS, you must
create a wrapper program around the Java application.

Note

You can also use the utility application JBindery to create a
wrapper for Java applications. JBindery allows you to
create standalone Java applications that you can launch
just like any Mac OS application. O

To launch a Java application using JManager, you must take the following steps:
1. Instantiate a Java runtime session.

2. Create an AWT context for the application.

3. Find the Java application’s code.

4. Call the application’s main method.

The first two steps are the same steps you used to instantiate and execute a Java
applet. However, finding and executing the Java application requires some
interaction with the Java Native Interface (JNI). Listing 1-19 shows an example
of finding and launching a Java application.

Listing 1-19 Launching a Java application

50

static Boolean initializeSampleApp()
{

JNIEnv* env;

JNIMethodID method;

static const char* kSampleAppZipFile = "file:///$APPLICATION/
AppSample.zip";

JMTextRef theURLRef;

FSSpec appSpec;

Executing Java Applications
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

/* make the file URL into a text object */
JMNewTextRef (theSession, &theURLRef, kTextEncodingMacRoman,
kSampleAppZipFile, len(kSampleAppZipFile);

/* now locate the application's code and add it to the class path */
if (JMURLToFSS(theSession, theURLRef, &appSpec) != noErr)
return false;

if (IJMAddToClassPath(theSession, &appSpec) != noErr)
return false;

/* next, use the JNI to locate the class */
/* begin by getting a JNI_Env object */
env = JMGetCurrentEnv(theSession);
if (env == nil)
return false;

/* find the class--if it’s in a package, separate with */
/* slashes (/), for example, sun/applet/AppletViewer */
theAppClass = env->FindClass(env, "AppSample");
if (theAppClass == nil)

return false;

/* now find the method by name & signature */
method = env->GetStaticMethodID(env, theAppClass, "main",
"([Ljava/lang/String;)V");
if (method == nil)
return false;

/* request that the method be executed within the AWT context */

/* note that there are no arguments to pass to this method */

return nokrr == JMExecdNIStaticMethodInContext(theContext,
theAppClass, method, 0, nil);

/* remove the text object now that it’s no longer needed */

JMDisposeTextRef(theURLRef);

In this example, the application’s code is stored in a zip file. The location of the
file is specified as a URL, and this is then converted to a file specification record

Executing Java Applications 51
O Apple Computer, Inc. 12/9/97

52

CHAPTER 1

Using JManager

using the JMURLToFSS function (page 130). The JMAddToClassPath function
(page 130) adds this record to the class path, so the Java runtime environment
knows where to search for additional Java classes.

To find the class and main method of the Java application, you must use the
Java Native Interface. First call the JManager function JMGetCurrentEny

(page 131) to get information about the JNI environment associated with this
session. You can then call JNI functions to find the class and method. In
Listing 1-19, the call to FindClass returns the class associated with the
application appSample. The call GetStaticMethodID returns the ID of the main
method in appSample (that is, the main routine). The GetStaticMethodID function
requires that you pass the method’s signature, which is a string that describes
the method’s parameters and return values. For a full description of the
signature format, see the Java Native Interface documentation available at the
Java home page:

<http:/ /java.sun.com/>

Once you know the class and method ID, you can then call the J]Manager
function JMExecdNIStaticMethodInContext (page 98) to call the method and
execute the application within the created AWT context. If the method requires
any arguments, you pass them when you call JMExecINIStaticMethodInContext.

Note

Execution of the Java application is asynchronous. That is,
execution of the application begins when the AWT context
can devote time to doing so. O

Although the launch process differs, Java applications rely on JManager to
interact with the Mac OS in the same manner as applets do. Therefore, when
writing your wrapper application, you must include frame callbacks and
user-event handling routines just as you would for applets.

Since the Java program is an application, you cannot call a JManager function
to exit. However, you can trap the call to the Java method
java.lang.System.exit (which quits the Java application) by implementing a
MyExit callback that disposes of the Java runtime and quits the wrapper
application. See MyExit (page 137) for more information about this
application-defined function.

Alternatively, since JManager automatically generates a Quit Application
Apple event when java.lang.System.exit executes, you can install an Apple
event handler to quit the wrapper application. Listing 1-20 gives an example of
using an event handler.

Executing Java Applications
O Apple Computer, Inc. 12/9/97

CHAPTER 1

Using JManager

Listing 1-20 Using an Apple event handler to quit a Java application

static pascal OSErr _hand1eQUIT(AppleEvent* event, AppleEvent* reply,
long refcon)

thelLoopContinues = false;
return nokrr;

void main(void)
{

AEInstallEventHandler(kCoreEventClass, kAEQuitApplication,
NewAEEventHandlerProc(_handleQUIT), 0, false);

/* main event loop */
while (theloopContinues) {

}

JMCToseSession(theSession);

The Apple event handler _hand1eQUIT halts the main event loop; the wrapper
application then ends the Java session and exits.

For more information about how to use Apple events, see Inside Macintosh:
Interapplication Communication.

Obtaining Java References

In some cases, you may need to access the actual Java objects used in a session,
rather than the encapsulated objects passed by the embedding application. For
example, if you wanted to call a method contained in an instantiated frame,

you would need a reference to the actual Java frame, not the JMFrameRef object.

Obtaining Java References 53
O Apple Computer, Inc. 12/9/97

54

CHAPTER 1

Using JManager

Table 1-2 lists the functions you can use to return Java references. These
functions all return a pointer of type jref.

Table 1-2 Functions that return pointers to Java objects

Function Returns pointer to object
IMGetSessionObject (page 87) com.apple.mrj.JManager.JMSession
IMGetAwtContextObject (page 101) com.apple.mrj.JdManager.AWTContext

JMGetAppletViewerObject (page 115) com.apple.mrj.JManager.JMAppletViewer

JMGetJIMFrameObject (page 128) com.apple.mrj.JManager.JMFrame
JIMGetAppletObject (page 116) java.applet.Applet
JIMGetAWTFrameObject (page 128) java.awt.Frame

The first four functions return the jref equivalents of the corresponding
JManager objects. For example, JMGetSession0Object returns the equivalent of
the UMSessionRef reference. JMGetAppletObject and JMGetAWTFrameObject,
however, return references to their actual Java objects.

You can use these references directly if you are accessing the Java Runtime
Interface (JRI), but if you need to access the Java Native Interface (JNI), you
must convert references of type jref to ones of type jobject using the
JMJRIRefTodNIObject function (page 133). To convert references of type jobject
to type jref, use the JMINIObjectToJRIRef function (page 134).

Obtaining Java References
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

Contents

JManager Constants and Data Types 61
Security Level Indicators 61
Session Security Indicators 61
Applet Security Indicators 62
Runtime Session Options 63
The Text Object 64
Text Encoding Specifications 64
Frame Types 64
Frame Ordering Indicators 65
Applet Locator Status Values 66
Miscellaneous Constants 66
The Java Runtime Session 67
Session Reference 67
Session Callbacks Structure 67
Proxy Server Options 69
The AWT Context 70
AWT Reference 70
AWT Context Callbacks Structure 70
The Applet Locator 72
Applet Locator Reference 72
The Applet Locator Information Block 72
Applet Locator Optional Parameters 73
Applet Locator Callback Structure 74
The Applet Object 74
Applet Reference 74
Applet Callbacks Structure 75
Applet Security Structure 76

Contents 55
O Apple Computer, Inc. 12/9/97

CHAPTER 2

The Frame Object 77
Frame Reference 77
Frame Callbacks Structure 77
Client-Specific Data 79
JManager Functions 80
Runtime Invocation Functions 80
JMOpenSession 80
JMCloseSession 81
JMIdle 82
JMGetProxyInfo 82
JIMSetProxyInfo 83
JIMGetVerifyMode 84
JMSetVerifyMode 84
JMGetSessionData 85
JMSetSessionData 86
JMGetSessionProperty 86
JMPutSessionProperty 87
JIMGetSessionObject 87
Text Handling Functions 88
JMNewTextRef 88
JMDisposeTextRef 89
JMCopyTextRef 89
JIMGetTextlLength 90
JIMGetTextBytes 90
JMTextTodavaString 91
JMTextToMac0SCStringHandle 92
Abstract Window Toolkit Control Functions
JMNewAWTContext 93
JMDisposeAWTContext 93
JMGetAWTContextData 94
JMSetAWTContextData 94
JMCountAWTContextFrames 95
JMGetAWTContextFrame 96
JMMenuSelected 96
JMExecJNIMethodInContext 97
JMExecINIStaticMethodInContext — 98
JMExecMethodInContext 99
JMExecStaticMethodInContext 100

Contents
O Apple Computer, Inc. 12/9/97

CHAPTER 2

IJMGetAwtContextObject
Applet Control Functions

JMNewAppletlLocatorFromInfo

JMNewAppletLocator 10
JMDisposeAppletLocator
JMGetAppletLocatorData
JMSetAppletlLocatorData
JMCountApplets 105
JMGetAppletDimensions
JMGetAppletTag 107
JMGetAppletName 107
JMNewAppletViewer — 108
JMDisposeAppletViewer
JMGetAppletViewerData
JMSetAppletViewerData

101
101

2
104
104
105

106

109
110
110

JMGetAppletViewerSecurity 111
JMSetAppletViewerSecurity 111

JMReloadApplet 112
JMRestartApplet 112
JMSuspendApplet 113
JMResumeApplet 113
JMGetFrameViewer 114
JMGetViewerFrame 115
JMGetAppletViewerObject
JMGetAppletObject 116

115

Frame Manipulation Functions 116

JMSetFrameVisibility
JMGetFrameData 117
JMSetFrameData 118
JMGetFrameSize 119
JMSetFrameSize 119
JMFrameClick 120
JMFrameKey 121
JMFrameKeyRelease 122
JMFrameUpdate 122
JMFrameActivate 123
JMFrameResume 124
JMFrameMouseQver 124

Contents
O Apple Computer, Inc. 12/9/97

117

102

57

CHAPTER 2

JMFrameShowHide 125
JMFrameGoAway 125
JMFrameDragTracking 126
JMFrameDragReceive 127
JMGetFrameContext 127
IMGetAWTFrameObject 128
JMGetJMFrameObject 128
Utility Functions 129
JMGetVersion 129
JMFSSToURL 129
JMURLTOFSS 130
JMAddToClassPath 131
JMGetCurrentEnv 131
JMGetJRIRuntimeInstance 132
JMGetCurrentJRIENV 133
JMJIRIRefToJNIObject 133
JMINIObjectToJRIRef 134
Application-Defined Functions 135
MyStandardOutput 135
MyStandardError 136
MyStandardIn 136
MyExit 137
MyAuthenticate 138
My LowMem 138
MyRequestFrame 139
MyReleaseFrame 140
MyUniqueMenuID 140
MyExceptionOccurred 141
MyResizeRequest 142
MyInvalRect 142
MyShowHide 143
MySetTitle 143
MyCheckUpdate 144
MyFrameReorder 144
MySetResizeable 145
MyFetchCompleted 146
MyShowDocument 146
MySetStatusMsg 147

Contents
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Result Codes

Contents
O Apple Computer, Inc. 12/9/97

148

59

60

CHAPTER 2

Contents
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

This chapter describes all the JManager constants, data types, and functions.

JManager Constants and Data Types

Security Level Indicators

In JManager 2.0, some security options are bound to the applet rather than to
the session; that is, the same session can instantiate applets with different
security options.

Session Security Indicators

When calling the JMSetVerifyMode function, you use the CodeVerifierOptions
type to specify which Java code should be run through the verifier before
execution.

enum CodeVerifierOptions ({
eDontCheckCode = 0,
eCheckRemoteCode,
eCheckAl1Code
Vs

Constant descriptions

eDontCheckCode Don't verify any code.

eCheckRemoteCode Verify any code that is read from a network.
eCheckAl1Code Verify all code.

When calling the JMSetProxyInfo function you must use the JMProxyType type to
specify the type of proxy to use.

enum JMProxyType {
eHTTPProxy = 0,
eFirewallProxy,
eFTPProxy

JManager Constants and Data Types 61
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

Constant descriptions

eHTTPProxy An HTTP proxy
eFirewallProxy A firewall proxy
eFTPProxy An FTP proxy

Applet Security Indicators

62

When you set up an applet security data structure, you must use the
JMNetworkSecurityOptions type to specify the security level for the applet when
accessing a network.

enum JMNetworkSecurityOptions {
eNoNetworkAccess = 0,
eAppletHostAccess,
elUnrestrictedAccess
b

Constant descriptions
eNoNetworkAccess The applet cannot access any networks.
eAppletHostAccess The applet may access only its host server.

eUnrestrictedAccess
The applet has unrestricted access to all networks.

In addition, you must use the JMFileSystemOptions type to specify the security
level allowed for applets accessing the local file system.

enum JMFileSystemOptions {
eNoFSAccess = 0,
elLocalAppletAccess,
eAl1FSAccess

Constant descriptions

eNoFSAccess Applets have no access to the local file system.

eLocalAppletAccess Only applets that are stored locally may access the local
file system.

eAl1FSAccess All applets have access to the local file system.

JManager Constants and Data Types
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

See “The AWT Context” (page 70) for more information about using these
security indicator types.

Runtime Session Options

When instantiating a Java runtime session, you can specify certain attributes
using the JMRuntimeOptions mask.

enum JMRuntimeOptions {

eJManagerzDefaults =0,

eUseAppHeapOnly = (1 << 0),
eDisabledITC = (1 << 1)
eEnableDebugger = (1 << 2)
eDisablelnternetConfig = (1 << 3)
elnhibitClassUnloading = (1 << 4),

eJManagerlCompatible = (eDisableJdITC | eDisablelnternetConfig)

Constant descriptions

eJManager2Defaults The default group of settings. No mask attributes are set
(application and temporary memory allowed, JITC
enabled, debugger disabled, and so on).

eUseAppHeapOnly When this bit is set, the Java runtime session only uses
application heap memory (as opposed to temporary

memory).

eDisabledITC When this bit is set, the MR] Just In Time Compiler is
disabled.

eEnableDebugger You should set this bit if you want to use any Java runtime
debuggers.

eDisablelnternetConfig
When this bit is set, InternetConfig is disabled (no default
proxy server information can be obtained).

elnhibitClassloading
When this bit is set, unreferenced classes are kept in
memory (that is, they are not garbage-collected).

JManager Constants and Data Types 63
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

eJManagerlCompatible
This mask disables the JITC and InternetConfig, which
makes the session compatible with JManager 1.0 functions.
You can choose one of the two preset masks or specify your own, depending on
your needs.

The Text Object

Many JManager functions require you to pass strings in their parameter lists.
These strings must be passed as a text object to allow use of different text
encodings. Such a text object has the following type definition:

typedef struct JMText* JMTextRef;

Text Encoding Specifications

Some JManager functions require you to pass a text encoding specification in
their parameter lists. Such text encoding specifications have the following type
definition:

typedef TextEncoding JMTextEncoding;

JManager supports all the text encoding specifications used by the Text
Encoding Converter. See Programming with the Text Encoding Converter Manager
for a list of possible text encoding specifications.

Frame Types

64

When an AWT context requests a new frame through the MyRequestFrame
callback, it specifies the type of frame desired. The type of frame is specified by
the JMFramekind type.

enum JMFrameKind {
eBorderlessModelessWindowFrame = 0,
eModelessWindowFrame,
eModalWindowFrame
by

JManager Constants and Data Types
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

Constant descriptions

eBorderlessModelessWindowFrame
A modeless borderless frame. This frame type is analogous
to a Mac OS borderless window (for example, a window of
type plainDBox). Other frames can appear on top of this
one.

eModelessWindowFrame
A modeless frame. This frame type is analogous to a
standard Mac OS window (with title bar, size box, and so
on) such as those of type zoomDocProc.

eModalWindowFrame A modal frame. This frame type is analogous to a Mac OS
modal dialog window (for example a window of type
dBoxProc). You should not create other frames on top of a
modal frame, but you can create frames underneath it.
Note that your application is responsible for enforcing the
modal behavior of these windows.

See the description of the function MyRequestFrame (page 139) for more
information about using these values.

For more information about Mac OS window types, see “Window Manager” in
Inside Macintosh: Macintosh Toolbox Essentials.

Frame Ordering Indicators

An AWT context may request that a frame be reordered using the
MyFrameReorderRequest callback. The context specifies the new placement of the
frame using the ReorderRequest type.

enum ReorderRequest {
eBringToFront = 0,
eSendToBack,
eSendBehindFront

Constant descriptions

eBringToFront Bring the frame to the front.
eSendToBack Send the frame to the back.
eSendBehindFront Send the frame behind the front frame.

JManager Constants and Data Types 65
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

See the description of the function MyRequestFrame (page 139) for more
information about using these values.

Applet Locator Status Values

When the JMNewAppletlocator function (page 102) has retrieved an HTML
document, it passes a status value to the MyFetchCompleted callback function.
These status values are specified by the JMLocatorErrors type.

enum JMLocatorErrors {
elLocatorNokErr = 0,
eHostNotFound,
eFileNotFound,
elLocatorTimeout,
elocatorKilled
b

Constant descriptions

eLocatorNoErr The HTML text was retrieved successfully.
eHostNotFound The host specified by the URL was not found.
eFileNotFound The HTML file was not found on the host.

elocatorTimeout A timeout occurred while waiting for the HTML text.

elocatorKilled The JMDisposeAppletlocator function was called before the
text could be retrieved.
See the description of the application-defined function MyFetchCompleted

(page 146) for more information about using these values.

Miscellaneous Constants

A Java session may require you to pass one of these two constants when calling
JManager functions.

66 JManager Constants and Data Types
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

enum f{
kdJMVersion 0x11300003,
kDefaultdMTime = 0x00000400,
1

Constant descriptions

kdMVersion The version of J]Manager being used. The value for
JManager 2.0 reflects adherence with Sun’s 1.1.3 Java

specifications.

kDefaultJMTime The default idle time (1024 milliseconds) for JMId1e calls.
For more information, see the JMId1e function (page 82).

The Java Runtime Session

Session Reference

A Java runtime session is defined by the JMSessionRef object, which has the

following type definition:

typedef struct JMSession* JMSessionRef;

Session Callbacks Structure

When you create an instantiation of the Java runtime environment using the
JMOpenSession function, you must pass a data structure that supplies callback
information for that instantiation. The session callbacks data structure is

defined by the JMSessionCallbacks data type.

struct JMSessionCallbacks {

UInt32 fVersion;
JMConsoleProcPtr fStandardOutput;
JMConsoleProcPtr fStandardError;
JMConsoleReadProcPtr fStandardIn;
JMExitProcPtr fExitProc;

JMAuthenticateURLProcPtrfAuthenticateProc;

JMLowMemoryProcPtr fLowMemProc;

JManager Constants and Data Types
O Apple Computer, Inc. 12/9/97

/*
/*
/*
/*
/*
/*
/*

set to kdMVersion */
standard output */
standard error */
standard input */
handle System.exit */
for authentication */
lTow memory warning */

67

68

CHAPTER 2

JManager Reference

Field descriptions
fVersion

fStandardOutput

fStandardError

fStandardIn

The version of JManager. You should set this field to
kdMVersion.

A pointer to a function that handles text sent to the
standard output. JManager sends all console output to this
function. This callback has the following type definition:

typedef void (*JMConsoleProcPtr) (
JMSessionRef session, const char* message,
UInt32 messagelen);

For more information, see the description of the
application-defined function MyStandardOutput (page 135).

Note that all text sent to this function will be encoded
using the text encoding you specified when calling
JMOpenSession.

A pointer to a function that handles standard error output.
JManager sends any error messages to this function. This
callback has the following type definition:

typedef void (*JMConsoleProcPtr) (
JMSessionRef session, const char* message,
UInt32 messagelen);

For more information, see the description of the
application-defined function MyStandardError (page 135).

Note that all text sent to this function will be encoded
using the text encoding you specified when calling
JMOpenSession.

A pointer to a function that handles console input.
JManager accepts input from this routine. This value can
be a null pointer, which indicates default behavior (no
console input). This callback has the following type
definition:

typedef SInt32 (*JMConsoleReadProcPtr) (
JMSessionRef session, char* buffer,
SInt32 maxBufferlLength);

JManager Constants and Data Types

O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

For more information, see the description of the
application-defined function MyStandardIn (page 136).

fExitProc A pointer to a function that handles calls to
java.lang.System.exit (thatis, requests to quit). This
callback has the following type definition:

typedef Boolean (*JMExitProcPtr) (
JMSessionRef session, int value);

For more information, see the description of the

application-defined function MyExit (page 137).
fAuthenticateProc

A pointer to a function that handles user authentication

requests (such as a request for a password) for a URL. This

callback has the following type definition:

typedef Boolean (*JMAuthenticateURLProcPtr) (
JMSessionRef session, const char* url,
const char* realm, char userName[255],
char password[255]);

For more information, see the description of the
application-defined function MyAuthenticate (page 137).

fLowMemProc A pointer to a function that handles low-memory
conditions. This callback has the following type definition:

typedef Boolean (*JMLowMemoryProcPtr) (
JMSessionRef session);

For more information, see the description of the
application-defined function MyLowMem (page 138).

Proxy Server Options

When calling the JMSetProxyInfo function, you must pass a data structure
containing information about the proxy server. The JMGetProxyInfo function
returns information in this structure. The proxy server data structure is defined
by the JMProxyInfo data type.

JManager Constants and Data Types 69
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

struct JMProxyInfo {
Boolean useProxy;
char proxyHost[2557;
UIntlé proxyPort;

Field descriptions

useProxy If set to true, the specified proxy is to be used.
proxyHost The name of the proxy server.
proxyPort The port number of the proxy server.

For more information about using this structure, see the JMGetProxyInfo
function (page 82) and JMSetProxyInfo function (page 83).

The AWT Context

AWT Reference

The Abstract Window Toolkit (AWT) context is defined by the JMAWTContextRef
object, which has the following type definition:

typedef struct IJMAWTContext* JMAWTContextRef;

AWT Context Callbacks Structure

When you create an AWT context associated with a session, you must pass a
data structure that supplies callback information. The AWT context callback
data structure is defined by the JMAWTContextCallbacks data type.

struct JMAWTContextCallbacks {

UInt32 fVersion;

JMRequestFrameProcPtr fRequestFrame;
JMReleaseFrameProcPtr fReleaseFrame;
JMUniqueMenulIDProcPtr fUniqueMenulD;

JMExceptionOccurredProcPtr fExceptionOccurred;

70 JManager Constants and Data Types
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

Field descriptions
fVersion The version of JManager. You should set this field to
kJMVersion.

fRequestFrame A pointer to a function that creates a new frame. The client
application must set up the new frame and supply
callbacks for the new frame. This callback function has the
following type definition:

typedef 0SStatus (*JMRequestFrameProcPtr) (
JMAWTContextRef context, JMFrameRef newFrame,
JMFrameKind kind, const Rect* InitialBounds,
Boolean resizeable, JMFrameCallbacks* callbacks);

For more information, see the description of the
application-defined function MyRequestFrame (page 139).

fReleaseFrame A pointer to a function that removes a frame. This callback
function has the following type definition:

typedef 0SStatus (*JMReleaseFrameProcPtr) (
JMAWTContextRef context, JMFrameRef oldFrame);

For more information, see the application-defined function
MyReleaseFrame (page 140).

fUniqueMenulD A pointer to a function that allocates a unique menu ID for
later use in creating a menu. This callback function has the
following type definition:

typedef SIntl6e (*JMUniqueMenulDProcPtr) (
JMAWTContextRef context, Boolean isSubmenu);

For more information, see the description of the
application-defined function MyUniqueMenuID (page 140).

fExceptionOccurred A pointer to an exception notification function. This
function can indicate only that an error occurred; you
cannot recover from the exception by using this function.
This callback function has the following type definition:

JManager Constants and Data Types 71
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

typedef void (*JMExceptionOccurredProcPtr) (
JMAWTContextRef context,
const JMTextRef exceptionName,
const JMTextRef exceptionMsg,
const JMTextRef stackTrace);

For more information, see the description of the
application-defined function MyExceptionOccurred
(page 141).

The Applet Locator

Applet Locator Reference

An applet locator is defined by the JMAppletLocatorRef object, which has the
following type definition:

typedef struct JMAppletlocator* JMAppletlLocatorRef;

The Applet Locator Information Block

If you are synchronously creating an applet locator using the
JMNewAppletLocatorFromInfo function, you must pass an information block that
describes the location of the applet. This applet locator structure is defined by
the JMLocatorInfoBlock data type.

struct JMLocatorInfoBlock {

UInt32 fVersion;

JMTextRef fBaseURL;

JMTextRef fAppletCode;

short fWidth;

short fHeight;

int fOptionalParameterCount;

JMLIBOptionalParams* fParams;

72 JManager Constants and Data Types
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

Field descriptions

fVersion The version of JManager. You should set this field to
kJMVersion.

fBaseURL A text object containing the URL of this applet’s host page..

fAppletCode A text object containing the location of the applet’s code

(that is, the name of the class file that contains the code).
This information is the same as the code location described

in an applet tag.
fWidth The width of the applet, in pixels.
fHeight The height of the applet, in pixels.

fOptionalParameterCount
The number of optional parameters.

fParams A pointer to the first element in the array of optional
parameters.

The fields fversion, fBaseURL, fAppletCode, fWidth, and fHeight must be present
and cannot be null values. The other fields are optional and can contain any
parameters that need to be passed to the applet for execution. If there are no
optional parameters, fOptionalParameterCount should be 0 and fParams should
be null.

See the description of the JMNewAppletLocatorFromInfo function (page 102) for
information on using this strucure.

For more information about the format of an applet tag, check the JavaSoft
documentation available at the Web site

<http:/ /java.sun.com/>

Applet Locator Optional Parameters

When passing the applet locator data structure to the
JMNewAppletlLocatorFromInfo function, you can provide optional parameters to
be passed to the applet for execution. Such parameters are defined by the
JMLibOptionalParams data type.

struct JMLIBOptionalParams {
char* fParamName;
char* fParamValue;

JManager Constants and Data Types 73
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

Field descriptions

fParamName The name of the optional parameter (as found in the NAME
field of a <PARAM> applet tag).
fParamValue The value of the optional parameter (as found in the VALUE

field of a <PARAM> applet tag).

Applet Locator Callback Structure

If you are asynchronously retrieving HTML information when creating an
applet locator, you must pass a data structure that supplies a callback function.
This data structure is defined by the JMAppletLocatorCallbacks data type.

struct JMAppletlLocatorCallbacks {
UInt32 fVersion; /* set to kdMVersion */
JMFetchCompleted fCompleted; /* text has been retrieved */

Field descriptions

fVersion The version of J]Manager. You should set this field to
kdMVersion.
fCompleted A pointer to a function that should execute after the HTML

data has been successfully retrieved and parsed. The
callback function has the following type definition:

typedef void (*JMFetchCompleted) (
JMAppletLocatorRef ref, JMLocatorErrors status);

For more information, see the description of the
application-defined function MyFetchCompleted (page 146).

The Applet Object

Applet Reference

74

An instantiated applet is defined by the JMAppTetViewerRef object, which has
the following type definition:

JManager Constants and Data Types
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

typedef struct JMAppletViewer* JMAppletViewerRef;

Note that the JMAppletViewer object is not the same as a java.applet.Applet
object. The JMAppletViewer object encapsulates the Java applet object so that it
can be referenced outside the Java environment.

Applet Callbacks Structure

When you instantiate an applet using the JMNewAppletViewer function

(page 108), you must pass a data structure that supplies callback information
for the applet. This data structure is defined by the JMAppletViewerCallbacks
data type.

struct JMAppletViewerCallbacks f
UInt32 fVersion;
JMShowDocumentProcPtr fShowDocument;
JMSetStatusMsgProcPtr fSetStatusMsg;

Field descriptions
fVersion The version of J]Manager. You should set this field to
kdMVersion.

fShowDocument A pointer to a function that displays the contents of a URL
passed to it, possibly in a new window. This callback
function has the following type definition:

typedef void (*JMShowDocumentProcPtr) (
JMAppletViewerRef viewer,
const JMTextRef urlString,
const JMTextRef windowName);

For more information, see the description of the
application-defined function MyShowDocument (page 146).

fSetStatusMsg A pointer to a function that handles messages from the
applet. The client application can display the message (in a
status bar, for example) or ignore it. This callback function
has the following type definition:

JManager Constants and Data Types 75
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

typedef void (*JMSetStatusMsgProcPtr) (
JMAppletViewerRef viewer,
const JMTextRef statusMsg);

For more information, see the description of the
application-defined function MySetStatusMsg (page 147).

Applet Security Structure

When you instantiate an applet using the JMNewAppletViewer function
(page 108), you must pass a data structure that supplies security information
for the applet. This data structure is defined by the JMAppletSecurity data type.

struct JMAppletSecurity {
UInt32 fVersion;
JMNetworkSecurityOptions fNetworkSecurity;
JMFileSystemOptions fFileSystemSecurity;
Boolean fRestrictSystemAccess;
Boolean fRestrictSystemDefine;
Boolean fRestrictApplicationAccess;
Boolean fRestrictApplicationDefine;

Field descriptions
fVersion The version of J]Manager. You should set this field to
kdMVersion.

JMNetworkSecurityOptions
A flag indicating access privileges for applets connecting
to networks. See “Applet Security Indicators” (page 62) for
a list of possible values for this field.

JMFileSystemOptions
A flag indicating applet access privileges to the local file
system. See “Applet Security Indicators” (page 62) for a list
of possible values for this field.

fRestrictSystemAccess
If set to true, the applet cannot access system packages
found in the mrj.security.system.access property. (The
default packages in the property are com.apple.* and
sun.*.)

76 JManager Constants and Data Types
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

fRestrictSystemDefine
If set to true, the applet cannot load system packages
found in the mrj.security.system.define property. (The
default packages in the property are com.apple.* and
sun.*.)
fRestrictApplicationAccess
If set to true, the applet cannot access application packages
found in the mrj.security.application.access property.
fRestrictApplicationDefine
If set to true, the applet cannot load application packages
found in the mrj.security.application.define property.

The Frame Object

Frame Reference

A frame is defined by the JMFrameRef object, which has the following type
definition:

typedef struct JMFrame* JMFrameRef;

Note that the JMFrameRef object is not the same as a java.awt.Frame object. The
JIMFrameRef object encapsulates the Java frame object so that it can be referenced
outside the Java environment.

Frame Callbacks Structure

When you create an AWT context associated with a session, you must pass a
data structure that provides frame callback information. This data structure is
defined by the JMFrameCallbacks data type.

struct JMFrameCallbacks {
UInt32 fVersion;
JMSetFrameSizeProcPtr fSetFrameSize;
JMFrameInvalRectProcPtr flnvalRect;
JMFrameShowHideProcPtr fShowHide;
JMSetTitleProcPtr fSetTitle;

JManager Constants and Data Types 77
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

JMCheckUpdateProcPtr fCheckUpdate;

JMReorderFrame

fReorderFrame;

JMSetResizeable fSetResizeable;

Field descriptions
fVersion

fSetFrameSize

flnvalRect

fShowHide

fSetTitle

The version of JManager. You should set this field to
kdMVersion.

A pointer to a function that handles a frame sizing request.
This callback function has the following type definition:

typedef void (*JMSetFrameSizeProcPtr) (
JMFrameRef frame, const Rect* newBounds);

For more information, see the description of the
application-defined function MyResizeRequest (page 142).

A pointer to a function that handles a frame invalidation
request. This callback function has the following type
definition:

typedef void (*JMFramelnvalRectProcPtr) (
JMFrameRef frame, const Rect* r);

For more information, see the description of the
application-defined function MyInvalRect (page 142)

A pointer to a window show /hide function. This callback
function has the following type definition:

typedef void (*JMFrameShowHideProcPtr) (
JMFrameRef frame, Boolean showFrameRequested);

For more information, see the description of the
application-defined function MyShowHide (page 143).

A pointer to a function that sets the title bar text for a
frame. This callback function has the following type
definition:

typedef void (*JMSetTitleProcPtr) (
JMFrameRef frame, const JMTextRef title);

78 JManager Constants and Data Types

O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

For more information, see the description of the
application-defined function MySetTitle (page 143).

fCheckUpdate A pointer to a function that allows the frame to be updated
during an interaction (such as a mouse drag). This callback
function has the following type definition:

typedef void (*JMCheckUpdateProcPtr) (
JMFrameRef frame);

For more information, see the description of the
application-defined function MyCheckUpdate (page 144).

fReorderFrame A pointer to a function that changes the ordering of the
frame. For example, you can bring a frame to the front or
send it to the back. This callback function has the following
type definition:

typedef void (*JMReorderFrame) (
JMFrameRef frame,
enum ReorderRequest theRequest);

For more information, see the description of the
application-defined function MyFrameReorder (page 144).

fSetResizeable A pointer to a function that sets a frame as resizeable or
not. This callback has the following type definition:

typedef void (*JMSetResizeable) (
JMFrameRef frame, Boolean resizeable);

For more information, see the description of the
application-defined function MySetResizeable (page 145).

Client-Specific Data

When working with a session, AWT context, applet locator, applet, or frame,
you must often set or retrieve arbitrary client-specific data. Such data has the
following type definition:

typedef void* JMClientData;

JManager Constants and Data Types 79
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

JManager Functions

Runtime Invocation Functions

All JManager API calls reference an instantiation of the Java runtime
environment called a session or a JMSessionRef object. This section describes
routines that create and dispose of a Java runtime session.

JMOpenSession

Instantiates a Java runtime session and returns a session pointer.

0SStatus JMOpenSession (
JMSessionRef* session,
JMRuntimeOptions runtimeOptions,
JMVerifierOptions verifyMode,
const JMSessionCallbacks* callbacks,
JMTextEncoding desiredEncoding,
JMClientData data);

session A pointer to a Java runtime session. On return, this parameter is
the allocated session.

runtimeOptions
A pointer to a runtime options structure. See “Runtime Session
Options” (page 63) for more information.

verifyMode A flagindicating whether to use the code verifier. See “Session
Security Indicators” (page 61) for a list of possible values.

callbacks A pointer to a session callbacks structure. See “Session
Callbacks Structure” (page 67) for more information.

desiredEncoding
The text encoding to use for any text sent to the designated
standard output or standard error.

80 JManager Functions
O Apple Computer, Inc. 12/9/97

DISCUSSION

SEE ALSO

CHAPTER 2

JManager Reference

data Any optional client-specific data.

function result A result code; see “JManager Result Codes” (page 148).

A valid session pointer has a value other than nu11. If not enough system
memory exists to instantiate a session, JMOpenSession returns memFullErr.

“Beginning a Java Runtime Session” (page 21).

The JMC1oseSession function (page 81).

JMCloseSession

DISCUSSION

SEE ALSO

Ends a Java runtime session and removes the allocated JMSessionRef object.
0SStatus JMCloseSession (JMSessionRef session);

session The session to be removed.

A successful call to JMCToseSession also frees any resources allocated by
JManager. However, any resources that you explicitly allocated on behalf of
JManager (such as AWT contexts or applets) must be explicitly removed before
calling JMCToseSession.

The JMOpenSession function (page 80).

JManager Functions 81
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

JMlIdle

Allows JManager time to service other threads.

0SStatus JMIdle (IMSessionRef session,
UInt32 JMTimeMillis);

session The current session.

JMTimeMillis The amount of time, in milliseconds, allowed to service other
threads. For the default wait period, you can set this parameter
to kDefaultJMTime

function result A result code; see “JManager Result Codes” (page 148).

DISCUSSION

If no threads need to be serviced, JMId1e returns immediately. JMId1e also

returns, suspending other threads, if a user event occurs in the current session.
You should call the JMId1e function once each time through the event loop.
SEE ALSO

“Servicing Other Threads” (page 25).

The JMFrameMouseOver function (page 124).
JMGetProxyInfo

Gets the proxy information for a given session.

0SStatus JMGetProxylInfo (
JMSessionRef session,
JMProxyType type,
JMProxyInfo* proxyInfo);

session The session whose proxy information you wish to determine.

type The type of proxy you want to query. See “Session Security
Indicators” (page 61) for a list of possible values to pass.

82 JManager Functions

O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

proxyInfo A pointer to a proxy information structure. on return, this
structure contains the proxy information for the specified proxy
type. For more information, see “Proxy Server Options”
(page 69).

function result A result code; see “JManager Result Codes” (page 148).

SEE ALSO
The JMSetProxyInfo function (page 83).
“Specifying Proxy Servers” (page 24).
JMSetProxyInfo
Sets the proxy information for an existing session.
0SStatus JMSetProxyInfo (
JMSessionRef session,
JMProxyType type,
const JMProxyInfo* proxyInfo);
session The session whose proxy information you wish to set.
type The type of proxy you want to query. See “Session Security
Indicators” (page 61) for a list of possible values to pass.
proxyInfo A pointer to a proxy information structure containing the proxy
information to set. For more information, see “Proxy Server
Options” (page 69).
function result A result code; see “JManager Result Codes” (page 148).
DISCUSSION
You may specify different proxy servers for HTTP, firewall, and FTP access.
SEE ALSO

The IMGetProxyInfo function (page 82).

JManager Functions 83
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

“Specifying Proxy Servers” (page 24).

JMGetVerifyMode

DISCUSSION

Gets the state of the code verifier for an existing session.

0SStatus JMGetVerifyMode (
JMSessionRef session,
JMVerifierOptions* verifierOptions);

session The session whose code verifier mode you wish to set.

verifierOptions
A pointer to a code verifier option. on return, this parameter is
the state of the code verifier. See “Session Security Indicators”
(page 61) for a list of possible values.

function result A result code; see “JManager Result Codes” (page 148).

The code verifier checks to see that the Java code is valid and that it does not
attempt any illegal actions that could affect the host platform. You set the code
verifier either when instantiating the session (using the JMOpenSession function
(page 80)) or by calling the JMSetVerifyMode function (page 84).

JMSetVerifyMode

84

Sets the code verifier mode for an existing session.

0SStatus JMSetVerifyMode (JMSessionRef session,
JMVerifierOptions verifierOptions);

session The session whose code verifier mode you wish to set.

verifierOptions
The code verifier option you want to set. See “Session Security
Indicators” (page 61) for a list of possible values.

JManager Functions
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

function result A result code; see “JManager Result Codes” (page 148).

DISCUSSION
The verifier checks to see that the Java code is valid and that it does not attempt
any illegal actions that could affect the host platform. You can also set the
verifier mode when calling the JMOpenSession function (page 80).
SEE ALSO
The JMGetVerifyMode function (page 84).
JMGetSessionData
Obtains client data for an existing session.
0SStatus JMGetSessionData (
JMSessionRef session,
JMClientData* data);
session The session whose client data you wish to obtain.
data A pointer to client data. on return, this parameter contains the
received client data.
function result A result code; see “JManager Result Codes” (page 148).
SEE ALSO

The JMSetSessionData function (page 86).

JManager Functions
O Apple Computer, Inc. 12/9/97

85

CHAPTER 2

JManager Reference

JMSetSessionData

SEE ALSO

Sets client data for an existing session.

0SStatus JMSetSessionData (
JMSessionRef session,
JMClientData data);

session The session whose client data you wish to change.
data A pointer to the new client data.

function result A result code; see “JManager Result Codes” (page 148).

The JMGetSessionData function (page 85).

JMGetSessionProperty

DISCUSSION

86

Obtains a property value for an existing session.

0SStatus JMGetSessionProperty (
JMSessionRef session,
const JMTextRef propertyName,
JMTextRef* propertyValue;
session The session whose property value you wish to obtain.

propertyName A text object holding the name of the property whose value you
want to obtain.

propertyValue A pointer to the text object holding the property value. on
return, this location contains the value of propertyName.

function result A result code; see “JManager Result Codes” (page 148).

This function corresponds to the Java method java.lang.System.getProperty.

JManager Functions
O Apple Computer, Inc. 12/9/97

SEE ALSO

CHAPTER 2

JManager Reference

The JMPutSessionProperty function (page 87).

JMPutSessionProperty

Adds or modifies a session property.

0SStatus JMPutSessionProperty (
JMSessionRef session,
const JMTextRef propertyName,
const JMTextRef propertyValue);

session The session whose property you wish to set.

propertyName A text object holding the name of the property whose value you
want to add or modify.

propertyValue The value to set for propertyName, as a JMTextRef object.

function result A result code; see “JManager Result Codes” (page 148).

DISCUSSION
If the property does not exist, JManager creates a new one with the name in
propertyName and the value in propertyValue. This function corresponds to the
Java method java.lang.System. setProperty.

SEE ALSO
The JMGetSessionProperty function (page 86).

JMGetSessionObject

Obtains a JRI reference for an existing session.

jref JMGetSessionObject (JMSessionRef session);

JManager Functions 87
O Apple Computer, Inc. 12/9/97

DISCUSSION

CHAPTER 2

JManager Reference

session The session whose object reference you wish to obtain.

function result A pointer to the com.apple.mrj.JManager.JMSession object.

The JMGetSession0Object returns the JRI reference equivalent (of type jref) of
the JMSessionRef reference.

Text Handling Functions

All text handled by JManager functions are stored as JMTextRef objects, which,
in addition to the actual text, also specify the text encoding and the length of
the string. The following functions let you create or manipulate a JMTextRef
object.

JMNewTextRef

88

Creates a new text object.

0SStatus JMNewTextRef (
JMSessionRef session,
JMTextRef* textRef,
JMTextEncoding encoding,
const void* charBuffer,
UInt32 bufferlLengthInBytes
)3

session The session in which you want to create the text object.

textRef A pointer to a text object. on return, this parameter is the new
text object.

encoding The text encoding of the string to encapsulate in the text object.

You can pass any text encoding specification defined by the Text
Encoding Converter. See “Text Encoding Specifications”
(page 64) for more information.

charBuffer The string to encapsulate in the text object.

JManager Functions
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

bufferLengthInBytes
The length of the string.

function result A result code; see “JManager Result Codes” (page 148).

DISCUSSION

If you create a text object, it is your responsibility to dispose of it after use.
SEE ALSO

The JMDisposeTextRef function (page 89).

The JMGetTextBytes function (page 90).
JMDisposeTextRef

Removes a text object.

0SStatus JMDisposeTextRef(IJMTextRef textRef);

textRef The text object you want to remove.

function result A result code; see “JManager Result Codes” (page 148).
DISCUSSION

If you create a text object, it is your responsibility to dispose of it after use.
SEE ALSO

The JMNewTextRef function (page 88).
JMCopyTextRef

Duplicates a text object.

JManager Functions 89
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

0SStatus JMCopyTextRef (
const JMTextRef textRefSrc,
JMTextRef* textRefDst);

textRefSrc The text object you want to duplicate.

textRefDst A pointer to a text object. On return, this parameter contains a
copy of the textRefSrc text object.

function result A result code; see “JManager Result Codes” (page 148).

JMGetTextLength

DISCUSSION

Returns the length of the string in a text object.

0SStatus JMGetTextlength (
const JMTextRef textRef,
UInt32* textlLengthInCharacters);

textRef The text object containing the string.

textLengthInCharacters
A pointer to an integer. On return, this parameter contains the
length of the string, in characters.

function result A result code; see “JManager Result Codes” (page 148).

This function returns the string length in characters rather than bytes, since the
Unicode standard uses 2 bytes per character, while standard Mac OS encodings
and UTF-8 use only 1.

JMGetTextBytes

90

Retrieves characters in a text object in the appropriate text encoding.

0SStatus JMGetTextBytes (
const JMTextRef textRef,
JMTextEncoding dstEncoding,

JManager Functions
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

void* textBuffer,
UInt32 textBufferlLength,
UInt32* numCharsCopied);

textRef The text object containing the string to retrieve.

dstEncoding
The text encoding you want to use for the string.

textBuffer A pointer to a buffer. on return, this parameter is the retrieved
string.

textBufferLength
The length of the buffer, in bytes.

numCharsCopied

A pointer to an integer. On return, this parameter is the actual
length of the string retrieved, in characters.

function result A result code; see “JManager Result Codes” (page 148).

DISCUSSION
The number of characters retrieved is dependent on the size you specify for the
buffer as well as on the text encoding. For example, Unicode characters can
take 2 bytes per character.

SEE ALSO
The JMNewTextRef function (page 88).

JMTextToJavaString

Returns the text object as a Java string.
jref JMTextTodavaString (const JMTextRef textRef);
textRef The text object to convert.

function result A reference to a Java string

JManager Functions
O Apple Computer, Inc. 12/9/97

91

CHAPTER 2

JManager Reference

DISCUSSION

This reference is the only reference to the string; if you do not use it, the session
will garbage-collect it.

SEE ALSO
The JMTextToMac0SCStringHandle function (page 92).

JMTextToMacOSCStringHandle

Returns the text object as a null-terminated Mac OS C string in the current
system text encoding.

Handle JMTextToMacOSCStringHandle(const JMTextRef textRef);
textRef The text object to convert.

function result A handle to a Mac OS C string.

DISCUSSION

You must dispose of the handle (by calling the Mac OS Toolbox function
DisposeHandle) after you are finished using it.

SEE ALSO
The JMTextTodavaString function (page 91).

Abstract Window Toolkit Control Functions

Every Java program that needs access to the Abstract Window Toolkit (AWT)
must have an AWT context associated with it. This AWT context supplies an
execution environment for the Java program and an associated thread group.
The following functions let you create or remove an AWT context or
manipulate elements associated with the context.

92 JManager Functions
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

JMNewAWTContext

Creates an AWT context.

0SStatus JMNewAWTContext (
JMAWTContextRef* context,
JMSessionRef session,
const JMAWTContextCallbacks* callbacks,
JMClientData data);

context A pointer to the AWT context. on return, this parameter is the
new AWT context.

session The session in which you want to create the AWT context.

callbacks A pointer to the context’s callbacks. See “AWT Context

Callbacks Structure” (page 70) for more information.
data Any optional client-specific data.

function result A result code; see “JManager Result Codes” (page 148).

SEE ALSO

“Creating an AWT Context” (page 30).

The JMDisposeAlTContext function (page 93).
JMDisposeAWTContext

Removes an AWT context.
0SStatus JMDisposeAWTContext (JMAWTContextRef context);

context The AWT context you want to remove.

function result A result code; see “JManager Result Codes” (page 148).

JManager Functions 93
O Apple Computer, Inc. 12/9/97

DISCUSSION

SEE ALSO

CHAPTER 2

JManager Reference

A successful call to the JMDisposeAlTContext function also removes any frames
associated with the AWT context.

“Creating an AWT Context” (page 30).

The JMNewAWTContext function (page 93).

JMGetAWT ContextData

SEE ALSO

Receives client-specific data associated with an AWT context.

0SStatus JMGetAWTContextData (
JMAWTContextRef context,
JMClientData* data);

context The AWT context whose data you want to receive.

data A pointer to the client-specific data. On return, this parameter
points to the client-specific data.

function result A result code; see “JManager Result Codes” (page 148).

The JMSetAWTContextData function (page 94).

JMSetAWTContextData

94

Assigns client-specific data to an AWT context.

0SStatus JMSetAWTContextData (
JMAWTContextRef context,
JMClientData data);

JManager Functions
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

context The AWT context whose client-specific data you want to
change.
data The new value of the client-specific data.

function result A result code; see “JManager Result Codes” (page 148).

SEE ALSO

The JMGetAWTContextData function (page 94).

JMCountAWT ContextFrames

Counts the number of frames associated with an AWT context.

0SStatus JMCountAWTContextFrames (
JMAWTContextRef context,
UInt32* frameCount);

context The AWT context whose frames are being counted.

frameCount A pointer to the frame count. On return, this parameter holds
the number of allocated frames associated with the context.
(This value may be 0.)

function result A result code; see “JManager Result Codes” (page 148).

DISCUSSION

After determining the number of frames, you can then access an individual
frame by calling the JMGetAWTContextFrame function (page 96).

JManager Functions

O Apple Computer, Inc. 12/9/97

95

CHAPTER 2

JManager Reference

JMGetAWTContextFrame

DISCUSSION

Gets a particular frame associated with an AWT context.

0SStatus JMGetAWTContextFrame (
JMAWTContextRef context,
UInt32 framelndex,
JMFrameRef* frame);

context The AWT context that contains the frame.

frameIndex The index number of the frame.

frame A pointer to the frame. On return, this parameter holds the
frame with index frameIndex.

function result A result code; see “JManager Result Codes” (page 148).

The index numbers for frames range from 0 to frameCount —1 (as determined by
the JMCountAWTContextFrames function (page 95)), with the most recently added
frame having the highest number. The index number of a particular frame is
not necessarily constant; removing or adding frames can cause the index
number to change.

JMMenuSelected

96

Dispatch a menu event to an AWT context.

0SStatus JMMenuSelected (
JMAWTContextRef context,
MenuHandle hMenu,
short menultem);

context The AWT context that owns the menu.

hMenu The menu handle that was selected.

menultem The item that was selected.

JManager Functions
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

function result A result code; see “JManager Result Codes” (page 148).

DISCUSSION

You can use the Mac OS Toolbox function GetMenuHandle to get the appropriate
value of the hMenu parameter to pass.

JMExec]JNIMethodInContext

Executes a nonstatic Java method in a given AWT context thread using the Java
Native Interface (JNI).

0SStatus JMExecJdNIMethodInContext (
JMAWTContextRef context,
JNIEnv* env,
jobject objref,
jmethodID methodID,
UInt32 argCount,
jvalue args[1);

context The AWT context in whose thread you want the method to
execute.

env A pointer to the current JNIEnv data structure.

objref A pointer to the Java object that contains the method you want
to call.

methodID The ID of the method.

argCount The number of arguments in the method.

args[] The argument list.

function result A result code; see “JManager Result Codes” (page 148).

DISCUSSION

Before calling this function, you must call the JMGetCurrentEnv function
(page 131) to get the JNIEnv pointer.

JManager Functions 97
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

If you want to execute a static Java method (that is, one that is not local to an
object) using the JNI, you must call the JMExecINIStaticMethodInContext
function (page 100) instead.

You can find documentation on the Java Native Interface (JNI) at the Web page

<http:/ /java.sun.com/>

JMExec]NIStaticMethodInContext

Executes a static Java method in a given AWT context thread using the Java
Native Interface (JNI).

0SStatus JMExecJNIStaticMethodInContext (
JMAWTContextRef context,
JNTEnv* env,
jclass classlD,
jmethodID methodID,
UInt32 argCount,
jvalue args[1);

context The AWT context in whose thread you want the method to
execute.

env A pointer to the current JNIEnv data structure.

classID The class ID of the class that contains the method.

methodID The ID of the method.

argCount The number of arguments in the method

argsl] The argument list.

function result A result code; see “JManager Result Codes” (page 148).

DISCUSSION
Before calling this function, you must call the JMGetCurrentEnv function
(page 131) to get the JNIEnv pointer.
For information about using this function to launch a Java application, see
“Executing Java Applications” (page 50).

98 JManager Functions

O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

If you want to execute a nonstatic Java method, you should call the
JIMExecdNIMethodInContext function (page 97) instead.

You can find documentation on the Java Native Interface (JNI) at the Web page

<http:/ /java.sun.com/>

JMExecMethodInContext

DISCUSSION

Executes a nonstatic Java method in a given AWT context thread using the Java
Runtime Interface (JRI).

0SStatus JMExecMethodInContext (
JMAWTContextRef context,
jref objref,
JRIMethodID methodID,
UInt32 argCount,
JRIValue args[]1);

context The AWT context in whose thread you want the method to
execute.

objref A pointer to the Java object that contains the method you want
to call.

methodID The ID of the method.

argCount The number of arguments in the method.

args[] The argument list.

function result A result code; see “JManager Result Codes” (page 148).

Unless you have a particular reason to access the Java Runtime Interface, you
should instead make calls to the Java Native Interface, which provides similar
functionality.

If you want to execute a static Java method (that is, one that is not local to an
object) using the JRI, you must call the JMExecStaticMethodInContext function
(page 100) instead.

JManager Functions 99
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

You can find documentation on the Java Runtime Interface (JRI) at the Web
page
<http:/ / developer.netscape.com />

SEE ALSO
The JMExecINIMethodInContext function (page 97).

The JMExecINIStaticMethodInContext function (page 100).

JMExecStaticMethodInContext

Executes a static Java method in a given AWT context thread using the Java
Runtime Interface (JRI).

0SStatus JMExecStaticMethodInContext (
JMAWTContextRef context,
JRICTassID classlID,
JRIMethodID methodID,
UInt32 argCount,
JRIValue args[1);

context The AWT context in whose thread you want the method to
execute.

classID The class ID of the class that contains the method.

methodID The ID of the method.

argCount The number of arguments in the method

args[] The argument list.

function result A result code; see “JManager Result Codes” (page 148).

DISCUSSION
Unless you have a particular reason to access the Java Runtime Interface, you
should instead make calls to the Java Native Interface, which provides similar
functionality.

100 JManager Functions

O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

If you want to execute a nonstatic Java method using the JRI, you should call
the JMExecMethodInContext function (page 99) instead.

You can find documentation on the Java Runtime Interface (JRI) at the Web
page
<http:/ / developer.netscape.com />

SEE ALSO
The JMExecdNIMethodInContext function (page 97).

The JMExecdNIStaticMethodInContext function (page 100).

JMGetAwtContextObject

Returns a reference to a context’s Java object.
jref JMGetAwtContextObject (JMAWTContextRef context);

context The context whose Java object you want to find.

function result A pointer to the com.apple.mrj.JManager.AWTContext object
associated with the frame.

DISCUSSION

This function returns the Java equivalent of the JMAWTContextRef reference.

Applet Control Functions

With the following functions you can find an applet through an HTML page,
instantiate it within an AWT context, and set or receive information associated
with it.

JManager Functions 101
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

JMNewAppletLocatorFromInfo

SEE ALSO

Locates an applet synchronously using information in the applet locator
information block structure.

0SStatus JMNewAppletLocatorFromInfo (
JMAppletLocatorRef* locatorRef,
JMSessionRef session,
const JMLocatorInfoBlock* info,
JMClientData data);

locatorRef A pointer to the locator. On return, this parameter is the new

applet locator.

session The session in which you want to instantiate the applet.

info A pointer to an applet locator information block structure. For
more information, see “The Applet Locator Information Block”
(page 72).

data Optional client-specific data.

function result A result code; see “JManager Result Codes” (page 148).

“Finding Applets” (page 26).
The JMNewAppletLocator function (page 102).

The JMDisposeAppletlocator function (page 104).

JMNewAppletLocator

102

Locates an applet asynchronously by fetching an HTML document from a
specified URL.

0SStatus JMNewAppletlLocator (
JMAppletLocatorRef* TocatorRef,
JMSessionRef session,
const JMAppletlLocatorCallbacks* callbacks,

JManager Functions
O Apple Computer, Inc. 12/9/97

CHAPTER 2
JManager Reference
const JMTextRef url,

const JMTextRef htmlText,
JMClientData data);

locatorRef A pointer to the locator. On return, this parameter is the new

applet locator.
session The session in which you want to instantiate the applet.
callbacks A pointer to an applet locator callbacks structure. For more
information, see “Applet Locator Callback Structure” (page 74).
ur A text object containing the text of the URL.
htmlText Optional text (stored as a text object) containing one or more
applet tags.
data Optional client-specific data.

function result A result code; see “JManager Result Codes” (page 148).

DISCUSSION

If you have already retrieved the HTML document, you can pass it to
JIMNewAppletLocator in the htmlText argument. Otherwise, JMNewAppletLocator
starts a separate thread to retrieve the document. The client application must
call J1d1e to allow the new thread time to retrieve the document. The callback
that executes upon fetching the HTML document can occur either while this
function is executing or some time after it has returned.

SEE ALSO
“Finding Applets” (page 26).
The JMNewAppletLocatorFromInfo function (page 102).

The JMDisposeAppletlocator function (page 104).

JManager Functions 103
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

JMDisposeAppletLocator

DISCUSSION

SEE ALSO

Removes an applet locator.

0SStatus JMDisposeAppletlLocator (JMAppletlLocatorRef TocatorRef);

locatorRef The applet locator to remove.

function result A result code; see “JManager Result Codes” (page 148).

Since the applet locator merely locates an applet, you can dispose of it after
instantiating the applet. You can call JMDisposeAppletLocator while the thread
created by JMNewAppletLocator function (page 102) is still searching for the
applet.

The JMNewAppletLocatorFromInfo function (page 102).

JMGetAppletLocatorData

SEE ALSO

104

Retrieves client data associated with an applet locator.

0SStatus JMGetAppletlocatorData (
JMAppletlLocatorRef TlocatorRef,
JMClientData* data);
TocatorRef The applet locator whose client data you want to obtain.

data A pointer to the client data. on return, this parameter points to
the client data.

function result A result code; see “JManager Result Codes” (page 148).

The JMSetAppletLocatorData function (page 105).

JManager Functions
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

JMSetAppletLocatorData

Assigns client data to an applet locator.

0SStatus JMSetAppletlocatorData (
JMAppletLocatorRef TocatorRef,
JMClientData data);

TocatorRef The applet locator whose client data you want to set.

data The client data.

function result A result code; see “JManager Result Codes” (page 148).

SEE ALSO
The JMGetAppletlocatorData function (page 104).
JMCountApplets
Counts the number of applets associated with an HTML page.
0SStatus JMCountApplets (
JMAppletlLocatorRef TocatorRef,
UInt32* appletCount);
locatorRef The applet locator that contains the parsed HTML text.
appletCount A pointer to the applet count. On return, this parameter points
to the number of applets.
function result A result code; see “JManager Result Codes” (page 148).
DISCUSSION

If there are no applets associated with the text, JMCountApplets returns 0. You
can call this function only after successfully retrieving HTML text using the
JMNewAppletLocator function (page 102).

JManager Functions 105
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

SEE ALSO
“Finding Applets” (page 26).

JMGetAppletDimensions

Returns the dimensions of an applet.

0SStatus JMGetAppletDimensions (
JMAppletlLocatorRef TocatorRef,
UInt32 appletlndex,
UInt32* width,
UInt32* height);

TocatorRef The applet locator that contains the retrieved HTML text.

appletIndex The index number of the applet you want to query.

width A pointer that, on return, contains the width, in pixels, of the
applet.

height A pointer that, on return, contains the height, in pixels, of the
applet.

function result A result code; see “JManager Result Codes” (page 148).

DISCUSSION
The appletindex value is an index number from 0 to appletCount =1, where
appletCount is determined by the JMCountApplets function (page 105). You can
call this function only after successfully retrieving HTML text using the
JMNewAppletLocator function (page 102).

SEE ALSO
“Finding Applets” (page 26).

106 JManager Functions

O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

JMGetAppletTag

DISCUSSION

SEE ALSO

Returns the tag associated with an applet.

0SStatus JMGetAppletTag (
JMAppletLocatorRef TocatorRef,
UInt32 appletIndex,
JMTextRef* tagRef);

locatorRef The applet locator that contains the retrieved HTML text.

appletindex The index number of the applet you want to query.

tagRef A pointer to a text object. on return, the tagRef object contains
the applet tag.

function result A result code; see “JManager Result Codes” (page 148).

The JMGetAppletTag function returns the text bounded by the <APPLET> and
</APPLET> delimeters in an HTML document. The appletIndex value is an index
number from 0 to appletCount -1, where appletCount is determined by the
JMCountApplets function (page 105). You can call this function only after
successfully retrieving HTML text using the JMNewAppletLocator function

(page 102).

“Finding Applets” (page 26).

JMGetAppletName

Returns the name of an applet.

0SStatus JMGetAppletName (
JMAppletlLocatorRef TocatorRef,
UInt32 appletlndex,
JMTextRef* nameRef);

JManager Functions 107
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

lTocatorRef The applet locator that contains the retrieved HTML text.
appletIndex The index number of the applet you want to query.

nameRef A pointer to a text object. On return, the nameRef object contains
the name of the applet.

function result A result code; see “JManager Result Codes” (page 148).

DISCUSSION

The appletindex value is an index number from 0 to appletCount —1, where
appletCount is determined by the JMCountApplets function (page 105). You must
reserve a buffer for the text object containing the applet name and pass a
pointer to the buffer when you call JMGetAppletName. You can call this function
only after successfully retrieving HTML text using the JMNewAppletLocator
function (page 102).

SEE ALSO
“Finding Applets” (page 26).

JMNewAppletViewer

Instantiates an applet.

0SStatus JMNewAppletViewer (
JMAppletViewerRef* viewer,
JMAWTContextRef context,
JMAppletLocatorRef TocatorRef,
UInt32 appletlndex,
const JMAppletSecurity* security
const JMAppletViewerCallbacks* callbacks,
JMClientData data);

viewer A pointer to an applet. On return, this parameter is the newly
instantiated applet.
context The AWT context associated with the applet.

locatorRef The applet locator containing the applet.

108 JManager Functions
O Apple Computer, Inc. 12/9/97

DISCUSSION

SEE ALSO

CHAPTER 2

JManager Reference

appletindex The index of the applet to instantiate.

security A pointer to the applet security structure. See “Applet Security
Structure” (page 76) for more information.

callbacks A pointer to the applet viewer callbacks structure. See “Applet
Callbacks Structure” (page 75) for more information.

data Optional client-specific data.

function result A result code; see “JManager Result Codes” (page 148).

To instantiate an applet, you must first create an AWT context (and start the
thread associated with it) and create an applet locator. The appletIndex value is
an index number from 0 to appletCount —1, where appletCount is determined by
the JMCountApplets function.

“Instantiating Applets” (page 36).
The JMCountApplets function (page 105).

The JMDisposeAppletViewer function (page 109).

JMDisposeAppletViewer

Removes an applet.
0SStatus JMDisposeAppletViewer (JMAppletViewerRef viewer);

viewer The instantiated applet to remove.

function result A result code; see “JManager Result Codes” (page 148).

JManager Functions 109
O Apple Computer, Inc. 12/9/97

DISCUSSION

SEE ALSO

CHAPTER 2

JManager Reference

Calling the JMDisposeAppletLocator function first halts execution of the applet
if necessary. This function also disposes of the applet’s frame (if visible) and
any other frames created by the applet.

The JMNewAppletViewer function (page 108).

JMGetAppletViewerData

SEE ALSO

Retrieves client data associated with an applet.

0SStatus JMGetAppletViewerData (
JMAppletViewerRef viewer,
JMClientData* data);
viewer The applet to query.

data A pointer to the client data. On return, this parameter holds the
client data.

function result A result code; see “JManager Result Codes” (page 148).

The JMSetAppletViewerData function (page 110).

JMSetAppletViewerData

110

Assigns client data to an applet.

0SStatus JMSetAppletViewerData (
JMAppletViewerRef viewer,
JMClientData data);

viewer The applet whose client data you want to set.

JManager Functions
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

data The client data.

function result A result code; see “JManager Result Codes” (page 148).

SEE ALSO
The JMGetAppletViewerData function (page 110).

JMGetAppletViewerSecurity

Gets the security options for an applet.

extern 0SStatus JMGetAppletViewerSecurity (
JMAppletViewerRef viewer,
JMAppletSecurity* data);

viewer The applet whose security options you wish to determine.

data A pointer to an applet security options structure. on return, this
structure contains the security options for the specified applet.
For more information, see “Applet Security Structure” (page 76).

function result A result code; see “JManager Result Codes” (page 148).
SEE ALSO

The JMSetAppletViewerSecurity function (page 111).

The JMNewAppletViewer function (page 108).

JMSetAppletViewerSecurity

Sets the security options for an applet.

0SStatus JMSetAppletViewerSecurity (
JMAppletViewerRef viewer,
const JMAppletSecurity* data);

JManager Functions 111
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

viewer The applet whose security options you wish to change.

data A pointer to an applet security options structure containing the
new values to set. For more information, see “Applet Security
Structure” (page 76).

function result A result code; see “JManager Result Codes” (page 148).

SEE ALSO
The JMGetAppletViewerSecurity function (page 111).

JMReloadApplet

Loads (or reloads) an applet from its source server and executes it.
0SStatus JMReloadApplet (JMAppletViewerRef viewer);

viewer The applet you want to execute.

function result A result code; see “JManager Result Codes” (page 148).

DISCUSSION

You can also use this function to reload and restart the applet at any time (if the
code has changed, for example). If you want to restart the applet without
reloading the applet code, you should use the JMRestartApplet function

(page 112).

JMRestartApplet

Restarts an applet without reloading it from the source server.
0SStatus JMRestartApplet (JMAppletViewerRef viewer);

viewer The applet you want to execute.

function result A result code; see “JManager Result Codes” (page 148).

112 JManager Functions
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

DISCUSSION
This function corresponds to the Java method java.applet.Applet.start. If you
want to reload the applet code before execution, you should use the
JMReloadApplet function (page 112).
JMSuspendApplet
Suspends execution of an applet and any associated threads.
0SStatus JMSuspendApplet (JMAppletViewerRef viewer);
viewer The applet you want to suspend.
function result A result code; see “JManager Result Codes” (page 148).
DISCUSSION
This function corresponds to the Java method java.applet.Applet.stop.
SEE ALSO
The JMResumeApplet function (page 113).
JMResumeApplet

Resumes execution of a suspended applet.
0SStatus JMResumeApplet (JMAppletViewerRef viewer);

viewer The applet you want to execute.

function result A result code; see “JManager Result Codes” (page 148).

JManager Functions 113
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

DISCUSSION
You can use the JMResumeApplet function to resume execution of an applet
halted by the JMSuspendApplet function (page 113). If you want to restart the
applet from the beginning, you should use the JMRestartApplet function
(page 112) or the JMReloadApplet function (page 112).
JMGetFrameViewer
Finds the applet that owns a particular frame.
0SStatus JMGetFrameViewer (
JMFrameRef frame,
JMAppletViewerRef* viewer,
JMFrameRef* parentFrame);
frame The frame whose applet you want to determine.
viewer A pointer to the applet. On return, this parameter is the applet
associated with the frame parameter.
parentFrame A pointer to the parent frame. On return, this parameter is the
applet’s parent frame (that is, the one created for the applet
when it was instantiated).
function result A result code; see “JManager Result Codes” (page 148).
DISCUSSION
In the AWT context associated with the applet, the frame index of the parent
frame is 0.
SEE ALSO
The JMCountAWTContextFramesfunction (page 95).
114 JManager Functions

O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

JMGetViewerFrame

Finds the parent frame for a given applet.

0SStatus JMGetViewerFrame (
JMAppletViewerRef viewer,
JMFrameRef* frame);

viewer The applet whose parent frame you want to find.

frame A pointer to the parent frame. On return, this parameter is the
parent frame associated with the applet.

function result A result code; see “JManager Result Codes” (page 148).

DISCUSSION
In the AWT context associated with the applet, the frame index of the parent
frame is 0.

SEE ALSO
The JMCountAWTContextFramesfunction (page 95).

JMGetAppletViewerObject

Returns a JRI reference to a JMAppTletViewerRef object.
jref JMGetAppletViewerObject (JMAppletViewerRef viewer);

viewer The applet whose Java object you want to find.

function result A pointer to the com.apple.mrj.JManager.JIMAppletViewer Java
object.

JManager Functions 115
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

DISCUSSION

The JMAppletViewerRef object is not the same as an applet object (that is, a
java. applet.Applet object). A JMAppletViewer object encapsulates the Java
applet object so it may be handled outside the Java environment.

JMGetAppletObject

Returns a reference to the Java applet object.
jref JMGetAppletObject (JMAppletViewerRef viewer);

viewer The applet whose Java object you want to find.

function result A pointer to the java.applet.Applet Java object.

DISCUSSION

This function returns a reference to the actual applet object rather than to the
JMAppletViewerRef object handled by the embedding application.

Frame Manipulation Functions

Each applet has one or more frames associated with it. A frame is analogous to
a Mac OS window record and usually represents a user window. The following
functions let you pass events between a visible user window and the abstract
applet frame.

116 JManager Functions
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

JMSetFrameVisibility

Assigns Mac OS window visibility properties to a frame.

0SStatus JMSetFrameVisibility (
JMFrameRef frame,
GrafPtr framePort,
Point frameOrigin,
const RgnHandle frameClip);
frame The frame whose visibility you want to set.
framePort The graphics port to assign to the frame.
frameOrigin The location of the frame’s origin, in global coordinates.

frameClip The clipping region for the frame.
function result A result code; see “JManager Result Codes” (page 148).

DISCUSSION
You use the JMSetFrameVisibility function to pass Mac OS window visibility
elements to the abstract frame. For example, if the user moves the window
associated with the frame (by dragging or scrolling), you must update the
frame’s visibility by passing the new position of the frame in
JMSetFrameVisibility.

SEE ALSO
“Displaying Frames” (page 33).

JMGetFrameData

Reads client data associated with a frame.

0SStatus JMGetFrameData (
JMFrameRef frame,
JMCTientData* data);

JManager Functions 117
O Apple Computer, Inc. 12/9/97

SEE ALSO

CHAPTER 2

JManager Reference

frame The frame whose client data you want to read.

data A pointer to the client data. Upon return, this parameter holds
the client data for the frame.

function result A result code; see “JManager Result Codes” (page 148).

“Displaying Frames” (page 33).

The JMSetFrameData function (page 118).

JMSetFrameData

SEE ALSO

118

Sets or changes the client data for a frame.

0SStatus JMSetFrameData (
JMFrameRef frame,
JMClientData data);
frame The frame whose client data you want to set or change.

data The new client data.

function result A result code; see “JManager Result Codes” (page 148).

“Displaying Frames” (page 33).

The JMGetFrameData function (page 117).

JManager Functions
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

JMGetFrameSize

Gets the coordinates of the frame.

0SStatus JMGetFrameSize (
JMFrameRef frame,
Rect* result);

frame The frame whose dimensions you want to determine.

result A pointer to the frame coordinates. Upon return, this parameter
holds the coordinates of the frame in pixels.

function result A result code; see “JManager Result Codes” (page 148).

DISCUSSION
Frames are described using a zero-based coordinate system with the top-left
corner of the frame having the coordinates (0,0).

SEE ALSO
The JMSetFrameSize function (page 119).

JMSetFrameSize

Sets the size of a frame.

0SStatus JMSetFrameSize (
JMFrameRef frame,
const Rect* newSize);
frame The frame whose size you want to set.

newSize The coordinates of the new frame size in pixels.

function result A result code; see “JManager Result Codes” (page 148).

JManager Functions 119
O Apple Computer, Inc. 12/9/97

DISCUSSION

SEE ALSO

CHAPTER 2

JManager Reference

The function automatically calculates the width and height of the frame, given
the coordinates you pass in the newSize parameter. The top left corner indicates
the global position of this frame, so you can use this to update the position of
the frame if it gets moved.

IMPORTANT

On the Mac OS platform, the global frame coordinates (0,0)
does not map to the actual top left corner of the screen, but
rather is offset to accomodate the title and side bars of the
corresponding window as well as the menu bar. a

The JMGetFrameSize function (page 119).

JMFrameClick

DISCUSSION

120

Dispatches a mouse event to a frame.

0SStatus JMFrameClick (
JMFrameRef frame,
Point localPos,
short modifiers);
frame The frame where the mouse event occurred.

TocalPos The position of the mouse in frame coordinates.

modifiers Any keyboard modifiers from the EventRecord data structure.
For more information about EventRecord, see Inside Macintosh:
Macintosh Toolbox Essentials.

function result A result code; see “JManager Result Codes” (page 148).

The client application must keep track of the currently active frame.

JManager Functions
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

SEE ALSO
“Mouse Events” (page 42).
JMFrameKey
Dispatches a key-down event to a frame.
0SStatus JMFrameKey (JMFrameRef frame,
char asciiChar,
char keyCode,
short modifiers):
frame The frame in which the key-down event occurred.
asciiChar The ASCII character typed.
keyCode The machine key code typed.
modifiers Any keyboard modifiers from the EventRecord data structure.
You can determine the ASCII character (and corresponding
machine key code) from EventRecord.message. For more
information about EventRecord, see Inside Macintosh: Macintosh
Toolbox Essentials.
function result A result code; see “JManager Result Codes” (page 148).
DISCUSSION
The client application must keep track of the currently active frame.
SEE ALSO

“Keyboard Events” (page 45).

The JMFrameKeyRelease function (page 122).

JManager Functions 121
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

JMFrameKeyRelease

Dispatches a key-up event to a frame.

0SStatus JMFrameKeyRelease (JMFrameRef frame,
char asciiChar,
char keyCode,
short modifiers);

frame The frame in which the key up event occurred.
asciiChar The ASCII character typed.

keyCode The machine key code typed.

modifiers Any keyboard modifiers from the EventRecord data structure.
You can determine the ASCII character (and corresponding
machine key code) from EventRecord.message. For more
information about EventRecord, see Inside Macintosh: Macintosh
Toolbox Essentials.

function result A result code; see “JManager Result Codes” (page 148).

DISCUSSION
The client application must keep track of the currently active frame.
SEE ALSO
“Keyboard Events” (page 45).
The JMFramekey function (page 121).
JMFrameUpdate
Updates a frame.
0SStatus JMFrameUpdate (
JMFrameRef frame,
const RgnHandle updateRgn);
122 JManager Functions

O Apple Computer, Inc. 12/9/97

DISCUSSION

SEE ALSO

CHAPTER 2

JManager Reference
frame The frame to be updated.

updateRgn The region to be updated, in frame coordinates.

function result A result code; see “JManager Result Codes” (page 148).

The region to update must be specified in frame coordinates, where the top-left
corner of the frame has the coordinates (0,0).

“Update, Activate, and Resume Events” (page 40).

JMFrameActivate

DISCUSSION

SEE ALSO

Activates or deactivates a frame.

0SStatus JMFrameActivate (
JMFrameRef frame,
Boolean activate);

frame The frame to be activated or deactivated.

activate A Boolean value. If true, the frame is to be made active; if false,
the frame is to be deactivated.

function result A result code; see “JManager Result Codes” (page 148).

Only one frame should be active at one time, so if you make a frame active,
deactivate the other frames in that AWT context thread. The client application
must keep track of the currently active frame.

“Update, Activate, and Resume Events” (page 40).

JManager Functions 123
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

JMFrameResume

DISCUSSION

SEE ALSO

Passes a resume event to a frame.

0SStatus JMFrameResume (
JMFrameRef frame,
Boolean resume);

frame The frame to receive the resume event.

resume A Boolean value. If true, the process associated with the frame
is brought to the foreground; if false, the process is sent to the
background.

function result A result code; see “JManager Result Codes” (page 148).

The resume event means that the frame becomes part of the running
foreground process. When a client application receives a resume event, it must
notify all its associated frames.

“Update, Activate, and Resume Events” (page 40).

JMFrameMouseQOver

124

Passes a mouse-over event to a frame.

0SStatus JMFrameMouseQOver (
JMFrameRef frame,
Point TocalPos,
short modifiers);

frame The frame containing the mouse. This should be the active
frame.

lTocalPos The position of the mouse in frame coordinates.

JManager Functions
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

modifiers Any keyboard modifiers from the EventRecord structure. See
Inside Macintosh: Macintosh Toolbox Essentials, for more
information about the EventRecord data structure.

function result A result code; see “JManager Result Codes” (page 148).

DISCUSSION
To monitor the position of the mouse, you should call the JMFrameMouseOver
(page 124) and JMIdle (page 82) functions each time through the event loop.
Note that the client application must keep track of the currently active frame.
JMFrameShowHide
Shows or hides a frame.
0SStatus JMFrameShowHide (
JMFrameRef frame,
Boolean showFrame);
frame The frame to show or hide.
showFrame A Boolean value. If true, then the frame should be shown; if
false, the frame should be hidden.
function result A result code; see “JManager Result Codes” (page 148).
JMFrameGoAway

Passes a go-away event to the frame.
0SStatus JMFrameGoAway (JMFrameRef frame);

frame The frame to receive the go-away event.

function result A result code; see “JManager Result Codes” (page 148).

JManager Functions 125
O Apple Computer, Inc. 12/9/97

DISCUSSION

SEE ALSO

CHAPTER 2

JManager Reference

Calling the JMFrameGoAway function disposes of the frame, although in some
instances the Java program may want to display a dialog box message (asking
if the user wants to save the file before closing, for example).

“Mouse Events” (page 42).

JMFrameDragTracking

DISCUSSION

SEE ALSO

126

Passes mouse dragging information to a frame.

0SStatus JMFrameDragTracking (
JMFrameRef frame,
DragTrackingMessage message,
DragReference theDragRef);

frame The frame to receive the mouse dragging information.

message The drag tracking message to pass to the frame. These messages
should correspond to the drag tracking messages passed by the
Drag Manager to a DragTrackingHandler callback.

thebDragRef The drag reference of the drag.
function result A result code; see “JManager Result Codes” (page 148).

The JMFrameDragTracking function passes drag information to the frame when
the user drags an item into the corresponding window. Essentially your
application calls this function as though the Drag Manager were calling a
DragTrackingHandler callback.

Note that JDK versions 1.1.x and earlier do not support drag and drop.

“Drag-And-Drop Support” (page 49).

Drag Manager Programmer’s Guide.

JManager Functions
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

JMFrameDragReceive

Passes a drag-and-drop item to a frame.

0SStatus JMFrameDragReceive (
JMFrameRef frame,
DragReference theDragRef);

frame The frame to receive the drag-and-drop information.
theDragRef The drag reference of the drag.

function result A result code; see “JManager Result Codes” (page 148).

DISCUSSION

If the user releases a drag in a window corresponding to a frame, you should
pass the drag information to the frame using JMFrameDragReceive. The frame
can then take action on the drag, depending on the contents of the drag.
Essentially your application calls this function as though the Drag Manager
were calling a DragReceiveHandler callback.

Note that JDK versions 1.1.x and earlier do not support drag and drop.
SEE ALSO

“Drag-And-Drop Support” (page 49).

Drag Manager Programmer’s Guide.

JMGetFrameContext

Returns the AWT context associated with a frame.
JMAWTContextRef JMGetFrameContext (JMFrameRef frame);

frame The frame whose AWT context you want to determine.

function result A pointer to the AWT context that owns the frame.

JManager Functions 127
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

JMGetAWTFrameObject

Returns a reference to a frame’s Java object.

jref JMGetAWTFrameObject(JMFrameRef frame);

frame The frame whose Java object you want to find.

function result A pointer to the java.awt.Frame object associated with the
frame.

JMGet]MFrameObject

Returns a JRI reference to a frame’s JMFrame object.

jref JMGetJdMFrameObject(JMFrameRef frame);

frame The frame whose Java object you want to find.

function result A pointer to the com.apple.mrj.JManager.JIMFrame object
associated with the frame.

DISCUSSION
The JMGetIMFrameObject function returns the Java equivalent of a JMFrameRef
reference. A JMFrameRef object encapsulates a Java frame object (that is, a
java.awt.Frame object) so it can be handled outside the Java environment.

Utility Functions

JMGetVersion
Returns the version of J]Manager available on the host computer.
UInt32 JMGetVersion (void);

128 JManager Functions

O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

function result A version code. This value is similar to the value of the
kdMVersion constant.

DISCUSSION

A version of JManager older than the one your embedding application
compiled against may not have the same functionality; you can use
JIMGetVersion and compare the result against kdMVersion to avoid calling
nonexisting functions.

JMFSSToURL

Converts a Mac OS file system specification record (FSSpec) into a Uniform
Resource Locator (URL) string.

Handle JMFSSToURL (JMSessionRef session,
const FSSpec* spec);

session The current session.
spec A pointer to a file system specification record.

function result A handle containing a URL string in the form file://xxxx. If
the file cannot be found, the function returns nul1.

DISCUSSION

The JMFSSToURL function resolves the path of the file represented by the file
system specification record and returns this information as a URL string. The
handle returned points to a null-terminated string. Your application is
responsible for calling the Mac OS Toolbox function DisposeHandle to release
the allocated handle.

SEE ALSO
The JMURLToFSS function (page 130).

JManager Functions 129
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

JMURLToOFSS

DISCUSSION

SEE ALSO

Converts a Uniform Resource Locator (URL) into a Mac OS file system
specification record (FSSpec).

0SStatus JMURLToFSS (JMSessionRef session,
const JMTextRef urlString,
FSSpec* spec);

session The current session.
urlString The URL string to be converted, as a text object.
spec A pointer to a file system specification record. Upon return,

spec points to the converted URL.
function result A result code; see “JManager Result Codes” (page 148).

The URL string must follow the format file:///disk/dirl/.../dirN/file.
Other formats cause the function to return the result code paramktrr.

The JMFSSToURL function (page 129).

“Executing Java Applications” (page 50).

JMAddToClassPath

130

Adds a directory, zip file, or Java archive (JAR) file to the class path.

0SStatus JMAddToClassPath (
JMSessionRef session,
const FSSpec* spec);

session The current session.

spec A pointer to a file system specification record.

JManager Functions

O Apple Computer, Inc. 12/9/97

DISCUSSION

SEE ALSO

CHAPTER 2

JManager Reference

function result A result code; see “JManager Result Codes” (page 148).

The JMAddToClassPath function adds an additional file to the Java class
definition search path by prepending a Mac OS file system specification record
(FsSpec) to the class path of the current session. You can add any number of
files to the class path. The FSSpec value can indicate an uncompressed zip file
or a directory. A directory is considered to be the root of a class hierarchy.

“Executing Java Applications” (page 50).

JIMGetCurrentEnv

DISCUSSION

SEE ALSO

Returns the current JNIEnv data structure.
struct JNIEnv* JMGetCurrentEnv (JMSessionRef session);

session The current session.

function result A pointer to the JNIEnv data structure.

The JMGetCurrentEny function allows you to access the current Java Native
Interface (JNI) structure. Once you have the JNIEnv structure, you can call JNI
functions. The data structure JNIEnv is defined in the header file JNT.h.

You can find documentation for the Java Native Interface at the Web site

<http:/ /java.sun.com/>

“Executing Java Applications” (page 50).

JManager Functions 131
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

JMGet]RIRuntimelnstance

Returns the current JRIRuntimeInstance data structure.

struct JRIRuntimelnstance* JMGetJRIRuntimelnstance (
JMSessionRef session);
session The current session.

function result A pointer to the JRIRuntimeInstance data structure.

DISCUSSION

The JMGetJRIRuntimeInstance function allows you to get information about the
current Java Runtime Interface (JRI) structure. The data structure
JRIRuntimeInstance is defined in the header file JRI .h.

Note

Unless you have a particular reason to access the Java
Runtime Interface, you should access the Java Native
Interface, which provides similar functionality, instead. O

You can find documentation for the Java Runtime Interface at the Web site

<http:/ / developer.netscape.com />

JMGetCurrent]RIEnv

Returns the current JRIEnv data structure.
struct JRIEnv* JMGetCurrentJRIEnv (JMSessionRef session);

session The current session.

function result A pointer to the JRIEnv data structure.

132 JManager Functions
O Apple Computer, Inc. 12/9/97

DISCUSSION

CHAPTER 2

JManager Reference

The JMGetCurrentJRIEny function allows you to obtain the current Java Runtime
Interface (JRI) structure. Once you have the JRIEnv structure, you can call JRI
functions. The data structure JRIEnv is defined in the header file JRI.h.

Note

Unless you have a particular reason to access the Java
Runtime Interface, you should access the Java Native
Interface, which provides similar functionality, instead. O

You can find documentation for the Java Runtime Interface at the Web site

<http:/ / developer.netscape.com />

JMJRIRefToJNIObject

DISCUSSION

Converts a JRI-based jref to a JNI-based jobject.

jobject JIMJRIRefToJNIObject (
JMSessionRef session,
JNIEnv* env,
jref jriRef);

session The current session.

env The current JNIEnv data structure.

jriRef The jref to convert.

function result A pointer to the jobject object.

If you want to use jref object references with the Java Native Interface (JNI),
you must convert them to jobject references using JMJIRIRefTodNIObject. Note
that you must have a pointer to the current JNIEnv data structure before calling
this function.

JManager Functions 133
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

SEE ALSO
The JMGetCurrentEnv function (page 131).

JMJNIObjectToJRIRef

Converts a JNI-based jobject to a JRI-based jref.

jref JIMINIObjectToJRIRef (
JMSessionRef session,
JNIEnv* env,
jobject jniObject);

session The current session.
env The current JNIEnv data structure.

jniObject The jobject to convert.

function result A pointer to the jref object.

DISCUSSION

If you want to use jobject object references with the Java Runtime Interface
(JRI), you must convert them to jref references using JMINIObjectToJRIRef.
Note that you must have a pointer to the current JNIEnv data structure before
calling this function.

SEE ALSO
The JMGetCurrentEny function (page 131).

Application-Defined Functions

This section describes the format of JManager callback functions you must
implement in your application.

134 Application-Defined Functions
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

MyStandardOutput

Sends text to output. This is how you would define your output function if you
were to name it MyStandardOutput:

void MyStandardOutput (
JMSessionRef session,
const char* message,
UInt32 messagelen);
session The session sending the text.

message The text to display.
messagelen The length of the text.

DISCUSSION
When invoking the Java runtime environment using JMOpenSession, you must
designate a callback function to display any console output received from the
session.

MyStandardError

Directs error output. This is how you would define your error function if you
were to name it MyStandardError:

void MyStandardError (
JMSessionRef session,
const char* message,
UInt32 messagelen);
session The session sending the error text.

message The error message to display.

messagelen The length of the text.

Application-Defined Functions 135
O Apple Computer, Inc. 12/9/97

DISCUSSION

SEE ALSO

CHAPTER 2

JManager Reference

When invoking the Java runtime environment using JMOpenSession, you must
designate a callback function to direct any error output received from the
session.The MyStandardError function has the same form as the
MyStandardOutput callback function.

The MyStandardOutput function(page 135).

MyStandardIn

DISCUSSION

136

Reads text input. This is how you would define your input function if you were
to name it MyStandardIn:

SInt32 MyStandardIn (JMSessionRef session,
char* buffer,
SInt32 maxBufferlLength);
session The session to receive the text input.

buffer The buffer to hold the input.

maxBufferlLength
The maximum length allowed by the buffer.

function result The number of characters actually read (up to maxBufferLength)
or —1 if an error occurred.

When invoking the Java runtime environment using JMOpenSession, you must
designate a callback function to direct any console input to the session.

Application-Defined Functions
O Apple Computer, Inc. 12/9/97

MyExit

CHAPTER 2

JManager Reference

DISCUSSION

Handles calls to java.lang.System.exit. This is how you would define your
input function if you were to name it MyExit:

Boolean MyExit (JMSessionRef session,
int value);

session The session to receive the text input.
value The buffer to hold the input.

function result A Boolean value. If true, then the current thread is killed. If
false, a QUIT Apple event is sent to the current process.

When invoking the Java runtime environment using JMOpenSession, you must
designate a callback function (called MyExit here) to handle requests to quit.
When a Java applet or application calls java.lang.System.exit, the session calls
MyExit. Note that instead of passing false back to the session, you can simply
dispose of the session and exit from within the MyExit function.

MyAuthenticate

Handles an authentication request for a URL. This is how you would define
your authentication function if you were to name it MyAuthenticate:

Boolean MyAuthenticate (
JMSessionRef session,
const char* url,
const char* realm,
char userName[255],
char password[255]);

session The session to receive the text input.

ur The URL making the authentication request.

realm The realm associated with the URL.

Application-Defined Functions 137

O Apple Computer, Inc. 12/9/97

DISCUSSION

MyLowMem

CHAPTER 2

JManager Reference

userName The name entered by the user.
password The password entered by the user.

function result A Boolean value. You should return false if the user selects to
cancel the authentication, true otherwise.

When invoking the Java runtime environment using JMOpenSession, you can
designate a callback function to handle any authentication requests from a
URL. This callback should prompt the user for a name and password, and pass
them back to the session. If you do not indicate an authentication callback, the
Java session will prompt the user with its own authentication dialog box.

DISCUSSION

138

Handles a low-memory condition. This is how you would define your
low-memory function if you were to name it My LowMem:

void MyLowMem (JMSessionRef session);

session The session indicating the low-memory condition.

When invoking the Java runtime environment using JMOpenSession, you can
designate a callback function to be called if the Java session runs low on
memory. This callback typically notifies the user of the low-memory condition
and suggests possible actions to take.

Application-Defined Functions
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

MyRequestFrame

DISCUSSION

Creates a new frame. This is how you would define your frame request
function if you were to name it MyRequestFrame:

0SStatus MyRequestFrame (

context

newFrame
kind

initialBounds

resizeable

callbacks

function result

JMAWTContextRef context,
JMFrameRef newFrame,
JMFrameKind kind,

const Rect* initialBounds,
Boolean resizeable,
JMFrameCallbacks* callbacks);

The AWT context making the frame request.

A pointer to the new frame. on return, this parameter is the new
frame.

The type of frame desired. See “Frame Types” (page 64) for a
list of possible values for this field.

The initial dimensions of the frame.

A Boolean value. If false, this frame is not resizeable; if true,
you can resize the frame.

A pointer to the frame callbacks data structure. on return, this
parameter should specify the frame’s callback functions. The
AWT can then use these callbacks when it needs to modify a
frame. See “Frame Callbacks Structure” (page 77) for more
information about this data structure.

A result code. The function should return a standard result code.

When instantiating an AWT context, you must designate a callback function to
handle requests for new frames.

Application-Defined Functions 139

O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

MyReleaseFrame

Releases the frame. This is how you would define your frame release function
if you were to name it MyReleaseFrame:

0SStatus MyReleaseFrame (
JMAWTContextRef context,
JMFrameRef oldFrame);

context The AWT context containing the frame.

oldFrame The frame to be released.

function result A result code. The function should return a standard result code.

DISCUSSION

When instantiating an AWT context, you must designate a callback function to
release existing frames.

MyUniqueMenulD

Allocates a new menu ID. This is how you would define your menu ID
allocation function if you were to name it MyUniqueMenulD:

typedef SIntl6 MyUniqueMenulID (
JMAWTContextRef context,
Boolean isSubmenu);

context The AWT context containing the frame.

isSubMenu A Boolean value. If false, the menu to add is a standard menu.
If true, the menu is a submenu. The menu ID value of a
submenu must be in the range 1 to 255.

function result If successful, the function should return the ID of the new
menu. Otherwise the function returns 0.

140 Application-Defined Functions
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

DISCUSSION
When instantiating an AWT context, you must designate a callback function to
create new menu IDs if necessary.
MyExceptionOccurred
Indicates that an exception occurred. This is how you would define your
exception notification function if you were to name it MyExceptionOccurred:
void MyExceptionOccurred (
JMAWTContextRef context,
const JMTextRef exceptionName,
const JMTextRef exceptionMsg,
const JMTextRef stackTrace);
context The AWT context in which the exception occurred.
exceptionName A text object containing the name of the exception.
exceptionMsg A text object containing the exception message to display. This
value is not guaranteed to be present and may be null.
stackTrace A text object containing information about the call chain where
the exception occurred. This value is not guaranteed to be
present and may be null.
DISCUSSION

When instantiating an AWT context, you must designate a callback function to
notify that an exception has occurred. You cannot use this function to recover
from the exception; this function indicates only that an exception has occurred.

Application-Defined Functions 141
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

MyResizeRequest

DISCUSSION

MylnvalRect

Handles a request to change the size of a frame. This is how you would define
your frame resize function if you were to name it MyResizeRequest:

Boolean MyResizeRequest (
JMFrameRef frame,
Rect* newBounds);

frame The frame to be resized.

newBounds A pointer to the new desired dimensions of the frame.

function result True if the frame can be resized to the requested dimensions.

When creating a frame, you must designate a callback function to resize the
frame if necessary. The function can refuse the resize request or adjust the
frame size to something other than the requested dimensions. If your function
sets a new frame size, you can modify the value of the newBounds parameter to
reflect the new dimensions.

DISCUSSION

142

Handles a frame invalidation request. This is how you would define your
invalidation request function if you were to name it MyInvalRect:

void MyInvalRect (JMFrameRef frame,
const Rect* dimens);

frame The frame that contains the area to be invalidated.

dimens A pointer to the dimensions of the frame.

When creating a frame you must designate a callback function to invalidate a
portion of the frame if necessary (in a manner similar to the MacOS Toolbox

Application-Defined Functions
O Apple Computer, Inc. 12/9/97

SEE ALSO

CHAPTER 2

JManager Reference

function call InvalRect). The invalid portion can be updated later using the
JMFrameUpdate function.

The JMFrameUpdate function (page 122).

MyShowHide

DISCUSSION

MySetTitle

Shows or hides a window associated with a frame. This is how you would
define your show /hide function if you were to name it MyShowHide:

void MyShowHide (JMFrameRef frame,
Boolean showFrameRequested);

frame The frame to be shown or hidden.

showFrameRequested

A Boolean value. If true, the window should be displayed. If
false, the window should be hidden.

When creating a frame, you must designate a callback function to show or hide
the window associated with it.

Sets the title bar text for the frame. This is how you would define your title bar
function if you were to name it MySetTitle:

void MySetTitle (JMFrameRef frame,
const JMTextRef title);

frame The frame that contains the title bar to be set or changed.
title The title to display, as a text object.
Application-Defined Functions 143

O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

DISCUSSION
When creating a frame you must designate a callback function to set or modify
the title bar associated with it.

MyCheckUpdate
Checks to see if a frame update is necessary. This is how you would define
your update check function if you were to name it MyCheckUpdate:
void MyCheckUpdate (JMFrameRef frame);
frame The frame to be checked.

DISCUSSION
When creating a frame you must designate a callback function to check if a
frame update is needed. This function may be called to enable updates for
interactions such as live scrolling or other mouse-tracking maneuvers. If the
function determines that an update is necessary, it should call the
JMFrameUpdate function to perform the update.

SEE ALSO
The JMFrameUpdate function (page 122).

MyFrameReorder
Reorders the frame. This is how you would define your frame reorder function
if you were to name it MyFrameReorder:
void MyFrameReorder (

JMFrameRef frame,
enum ReorderRequest theRequest);

frame The frame to be reordered.

144 Application-Defined Functions

O Apple Computer, Inc. 12/9/97

DISCUSSION

CHAPTER 2

JManager Reference

theRequest The desired reordering. See “Frame Ordering Indicators”
(page 65) for a list of possible values.

When creating a frame you must designate a callback function to reorder the
frame if necessary (for example, to bring it to the front or send it to the back).
Note that you should not reorder frames such that a modal frame appears on
top of a nonmodal one.

MySetResizeable

DISCUSSION

Designates whether a frame is resizeable. This is how you would define your
set resizeable function if you were to name it MySetResizeable:

void MySetResizeable (
JMFrameRef frame,
Boolean resizeable);

frame The frame to designate as resizeable or not.

resizeable If true, the frame should be designated as resizeable.

When creating a frame you must designate a callback function to set the frame
as resizeable or not. The callback can allow or disallow the use of the grow
control depending on the value of resizeable.

Application-Defined Functions 145
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

MyFetchCompleted

DISCUSSION

SEE ALSO

Executes after an attempt to retrieve HTML data using the JMNewAppletLocator

function. This is how you would define your output function if you were to
name it MyFetchCompleted:

void MyFetchCompleted (
JMAppletLocatorRef ref,
JMLocatorErrors status);

ref The newly created applet locator.

status The status of the HTML data retrieval. See “Applet Locator
Status Values” (page 66) for a listing of values that
JMNewAppletLocator may pass in this parameter.

When calling JMNewAppletLocator, you must designate this function in the
applet locator callbacks structure. The actions taken by the completion function
depend on the status value it receives from JMNewAppletLocator. For example, if
the HTML text is retrieved successfully, the function can then proceed to
instantiate an applet associated with the HTML page.

The JMNewAppletLocator function (page 102).

MyShowDocument

146

Displays the contents of a URL passed back by an instantiated applet. This is
how you would define your output function if you were to name it
MyShowDocument:

void MyShowDocument (JMAppletViewerRef viewer,
const JMTextRef urlString,
const JMTextRef windowName);

Application-Defined Functions
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

viewer The current applet.
urlString A text object containing the URL passed by the applet.

windowName A text object describing the type of window to display the URL
contents.

DISCUSSION
When calling JMNewAppletViewer, you must designate this function in the applet
callbacks structure.
The session passes one of the strings in Table 2-1 in the WindowName parameter,
and your application should display the URL contents accordingly.
Table 2-1 Window strings passed to MyShowDocument
String Action
_self Show contents in the current frame
_parent Show contents in the parent frame
_top Show contents in the top-most (that is, front-most) frame
_bTank Show contents in a new unnamed window
frameName Show contents in a new window named frameName
SEE ALSO
The JMNewAppletViewer function (page 108).
MySetStatusMsg

Handles any status messages passed back by an instantiated applet. This is
how you would define your output function if you were to name it
MySetStatusMsg

void MySetStatusMsg (JMAppletViewerRef viewer,
const char* statusMsg);

Application-Defined Functions 147
O Apple Computer, Inc. 12/9/97

CHAPTER 2

JManager Reference

viewer The current applet.

statusMsg The status text passed by the applet.

DISCUSSION
When calling JMNewAppletViewer, you must designate this function in the applet
callbacks data structure. The function can display the status message or ignore
it, whichever is appropriate.

SEE ALSO

The JMNewAppletViewer function (page 108).

JManager Result Codes

Many JManager functions return result codes. The various result codes specific
to JManager are shown in Table 2-2. In addition, J]Manager functions may also
return File Manager, Code Fragment Manager, and Process Manager result
codes, which are described in Inside Macintosh.

Table 2-2 JManager result codes

nokrr No error

paramerr Invalid parameter in function call

memFullErr Out of memory

kaMBadClassPathError An invalid path was found in the

ClassPath list.

kJMExceptionOccurred An exception occurred

kdMVersionError Incompatible JManager version
148 JManager Result Codes

O Apple Computer, Inc. 12/9/97

CHAPTER 3

JManager Java Class Reference

Contents

The JManagerException Class 151
The JMConstants Interface 151
The JMProxyInfo Class 153

The JMSession Interface 154

The JMText Interface 155

The JMFrame Interface 156

The JMAppletViewer Interface 159
The JIMAWTContext Interface 160
The JMAppletSecurity Class 161

Contents
O Apple Computer, Inc. 12/9/97

149

CHAPTER 3

150 Contents
O Apple Computer, Inc. 12/9/97

CHAPTER 3

JManager Java Class Reference

This chapter presents Java versions of many of the JManager C constants,
structures, and functions, grouped by class or interface. For detailed
information about using these items, however, you should refer to the
corresponding C version in Chapter 2, “JManager Reference.”

The JManagerException Class

The JManagerException class implements J]Manager errors as J]Manager
exceptions.

package com.apple.mrj.JManager;

public class JManagerException extends Exception {
JManagerException(int i) f{
super("JManagerError(" + i + ")");
}

static void checkError(int i) throws JManagerException {

if (i !1=0)
throw new JManagerException(i);

The JMConstants Interface

The JMConstants interface contains all the JManager numerical constants
accessible from Java code.

package com.apple.mrj.JManager;

/* JMConstants provides access to numerical constants from JManager. */

public interface JMConstants ({
/* using Sun's 1.0.2 APIs, our current APIs. */
public static final int kdMVersion = 0x11300003,

The JManagerException Class 151
O Apple Computer, Inc. 12/9/97

CHAPTER 3

JManager Java Class Reference

/* how much time to give the JM library on "empty" events */
kDefaultJMTime= 0x00000400;

public static final int /* JIMVerifierOptions */
eDontCheckCode = 0,
eCheckRemoteCode = 1,
eCheckAl1Code = 2;

public static final int /* JMProxyType */
eHTTPProxy = 0,
eFirewallProxy =1,
eFTPProxy = 2;

public static final int /* ReorderRequest */
eBringToFront = 0, // bring the window to front
eSendToBack = 1, // send the window to back
eSendBehindFront = 2; // send the window behind the front window

public static final int /* JMFrameKind */
eBorderlessModelessWindowFrame = 0,
eModelessWindowFrame = 1,
eModalWindowFrame = 2;

public static final int /* JMLocatorErrors */

elLocatorNoErr = 0, // the html was retrieved successfully
eHostNotFound = 1, // the host could not be found
eFileNotFound = 2, // the file could not be found on the host

elLocatorTimeout = 3, // timeout while retrieving the html text
elLocatorKilled = 4; // in response to a JMDisposeAppletlLocator
// before it has completed

public static final int /* JMNetworkSecurityOptions */
eNoNetworkAccess = 0,
eAppletHostAccess = 1,
eUnrestrictedAccess = 2;

public static final int /* JMFileSystemOptions */
eNoFSAccess = 0,

152 The JMConstants Interface
O Apple Computer, Inc. 12/9/97

CHAPTER 3

JManager Java Class Reference

elLocalAppletAccess = 1,
eAT1FSAccess = 2;

The JMProxyInfo Class

The JMProxyInfo class contains constants and methods related to setting or
reading proxy server information.

package com.apple.mrj.JManager;
public class JMProxyInfo {

boolean itsSet;
String itsName;
int itsPort;

public JMProxyInfo() f{
itsSet = false;
itsName = "";
itsPort = 0;

public JMProxyInfo(boolean set, String name, int port) {
itsSet = set;
itsName = name;
itsPort = port;

public boolean getSet() ({
return itsSet;

public String getName() ({
return itsName;

public int getPort() f{

The JMProxylnfo Class 153
O Apple Computer, Inc. 12/9/97

CHAPTER 3

JManager Java Class Reference

return itsPort;

The JMSession Interface

The JMSession interface contains structures and methods related to
instantiating a Java session. It is analogous to the java.lang.Systemor
java.lang.Runtime classes

package com.apple.mrj.JManager;

import java.io.*;

/* JMSession represents the encapsulation of the MRJ runtime. */
public interface JMSession {

/* @return the "C" version of the JMSessionRef pointer */
public int getSessionRef();

/* @return the client specific data associated with this session */
public int getClientData() throws JManagerException;

/* Sets the client specific data */
/* @param data the new data to be set */
public void setClientData(int data) throws JManagerException;

/* Adds the specified .zip file or .class folder to */
/* the class path. */
/* @param path the path to the entity to add */
/* @exception throws FileNotFoundException if the entity */
/* isn't found */
public void addToClassPath(File path)
throws FileNotFoundException, JManagerException;

/* Turn a Java File object into a URL string */
/* @param filePath the path to the file - it may not exist */

154 The JMSession Interface
O Apple Computer, Inc. 12/9/97

CHAPTER 3

JManager Java Class Reference

/* @return a URL representing a local file */
public String fileToURL(File filePath) throws JManagerException;

/* Turn a URL string to a File object. (The object may not exist) */
/* @param urlString the name of the url */

/* @return a File object */

public File urlToFile(String urlString) throws JManagerException;

/* @return the current proxy information for the given proxy. */
public JMProxyInfo getProxyProps(int proxyKind)
throws JManagerkException;

/* Set the specified proxy configuration */

public void setProxyProps(int proxyKind, JMProxyInfo info)
throws JManagerkException;

The JMText Interface

The JMText interface contains constants and methods used to manipulate
JMText objects.

package com.apple.mrj.JManager;
public interface JMText {

public static final int
eMacEncoding = 0,
eUTF8Encoding = 1,
eUnicodeEncoding = 2;

/* @Return the "C" version of the JMTextRef pointer */
public int getTextRef();

/* @Return the number of characters (not bytes) in */
/* the text segment */
public int getTextlLength() throws JManagerException

The JMText Interface 155
O Apple Computer, Inc. 12/9/97

CHAPTER 3

JManager Java Class Reference

/* Copies the characters to a destination byte array, using */
/* the specified destination encoding. */
/* @param encoding the destination encoding */
/* @buffer the destination buffer */
/* @bufferOffset the offset in the buffer where data is written */
/* @bufferlLength the number of characters to write into the buffer*/
/* @return the number of characters actually written to the buffer */
public int getTextBytes(int encoding, byte buffer[],

int bufferOffset, int bufferlLength) throws JManagerException;

/* Return a proper java string for this object */
public String toString();

The JMFrame Interface

The JMFrame interface contains structures and methods related to manipulating
frames.

package com.apple.mrj.JManager;

/* A JMFrame is part of the peer implementation of a native window. */
/* It is created through a JMAWTContext callback. */

public interface JMFrame ({

/* @Return the "C" version of the JMFrameRef object */
public int getFrameRef();/* returns the JMFrameRef value */

/* @Return the client specified data associated with this frame */
public int getClientData() throws JManagerException;

/* Set the client specified data associated with this frame */
/* @param data the new data to set. */
public void setClientData(int data) throws JManagerException;

/* Update the Frame’s visibility characteristics. This is */
/* usually only called from C code. */

156 The JMFrame Interface
O Apple Computer, Inc. 12/9/97

CHAPTER 3

JManager Java Class Reference

/* @param framePort the port to bind this frame to */
/* @frameOrigin offset in the port for 0,0 top left of the frame */
/* @frameClip clipping region overlayed accross the framePort */
public void setFrameVisibility(com.apple.MacOS.GrafPtr framePort,
com.apple.Mac0S.Point frameOrigin,
int /*com.apple.MacOS.RgnHandle*/ frameClip)
throws JManagerkException;

/* @returns the size and position of the frame */
public com.apple.Mac0S.Rect getFrameSize() throws JManagerException;

/* Requests that the frame be resized to this size and location */
/* @param newSize the new window size, including position */
public void setFrameSize(com.apple.MacOS.Rect newSize)

throws JManagerkException;

/* Dispatch a mouse click to the frame. */

/* @param localPos the mouse click in local coordinates */

/* @param modifiers the modifiers from the event record */

public void frameClick(com.apple.MacOS.Point localPos,
short modifiers) throws JManagerException;

/* Dispatch a key press to the frame. */
/* @param asciiChar the ascii value from the event record */
/* @param keyCode the machine keycode value from the event record */
/* @param modifiers the modifiers from the event record */
public void frameKey(byte asciiChar, byte keyCode,
short modifiers) throws JManagerException;

/* Dispatch a key release to the frame. */
/* @param asciiChar the ascii value from the event record */
/* @param keyCode the machine keycode value from the event record */
/* @param modifiers the modifiers from the event record */
public void frameKeyRelease(byte asciiChar, byte keyCode,
short modifiers) throws JManagerException;

/* Dispatch an update event to the frame. */

/* @param updateRgn the region to be updated in local coordinates */

public void frameUpdate(int/*com.apple.Mac0S.RgnHandle*/ updateRgn)
throws JManagerkException;

The JMFrame Interface 157
O Apple Computer, Inc. 12/9/97

CHAPTER 3

JManager Java Class Reference

/* Dispatch an activate event to the frame */
/* @param activate set activate (true) or deactivate (false) event */
public void frameActivate(boolean activate) throws JManagerException;

/* Dispatch an application resume event to the frame */
/* @param resume set a resume (true) or suspend (false) event */
public void frameResume(boolean resume) throws JManagerException;

/* Dispatch a mouse over event to the frame. */

/* Used for cursor shaping */

/* @param localPos the mouse location in local coordinates */

/* @param modifiers the modifiers from the event record */

public void frameMouseOver(com.apple.Mac0S.Point localPos,
short modifiers) throws JManagerException;

/* Show or hide the frame. */
/* @param showFrame true to make the frame visible */
public void frameShowHide(boolean showFrame)

throws JManagerException;

/* Request that a frame be disposed. */
public void frameGoAway() throws JManagerException;

/* Return the AWTContext for this frame. */

/* @see JMAWTContext */

/* @return a JMAWTContext */

public JMAWTContext getFrameContext() throws JManagerException;

/* Post drag & drop events to the frame */

/* @param message the message from the drag handler */

/* @param theDragRef the drag reference from the drag handler */

public void frameDragTracking(
com.apple.Mac0S.DragTrackingMessage message,
com.apple.Mac0S.DragReference theDragRef)
throws JManagerException;

/* A drag was received for the frame. */
/* @param theDragRef the drag reference from the drag handler */
public void frameDragRecieve(

com.apple.Mac0S.DragReference theDragRef)

throws JManagerException;

158 The JMFrame Interface
O Apple Computer, Inc. 12/9/97

CHAPTER 3

JManager Java Class Reference

/* Return the java.awt.Frame for this frame */
public java.awt.Frame getAwtFrame() throws JManagerkException;

/* 1f we're representing an applet viewer, which one? */

/* @returns a JMAppletViewer representing the viewer */
public JMAppletViewer getFrameViewer() throws JManagerException;

The]MAppletViewer Interface

The JMAppletViewer interface contains methods related to manipulating applets.

package com.apple.mrj.JManager;

/* A IMAppletViewerObject represents an object that displays applets. */
/* It has an independent securty object, per applet */

/* @see JMAWTContext */

/* @see JMAppletViewerSecurity */

public interface JMAppletViewer ({

/* @Return the "C" version of the JMAppletViewerRef */
public int getViewerRef();

/* @Return the client specified data associated with this applet */
public int getClientData() throws JManagerException;

/* Set the client-specific data associated with this applet */
/* @param data the new data to set. */
public void setClientData(int data) throws JManagerException;

/* Return the context associated with this applet */
public JMAWTContext getContext() throws JManagerException;

/* Return the java.applet.Applet object instantiated for this applet
*/
/* @see java.applet.Applet */

The JMAppletViewer Interface 159
O Apple Computer, Inc. 12/9/97

CHAPTER 3

JManager Java Class Reference

public java.applet.Applet getApplet() throws JManagerException;

/* Reload the applet’s bytecodes and reinitialize it. */
public void reloadApplet() throws JManagerException;

/* Restart the applet without reloading its byte codes */
public void restartApplet() throws JManagerException;

/* Call the applets stop() method. */
public void suspendApplet() throws JManagerException;

/* Call the applets start() method. */
public void resumeApplet() throws JManagerException;

/* Return the frame that this viewer is visible in (if any) */
public JMFrame getViewerFrame() throws JManagerException;

The IMAWTContext Interface

The JMAWTContext interface contains methods related to AWT contexts,
including those to create frames and dispatch menu events to frames.

package com.apple.mrj.JManager;
public interface JMAWTContext {

/* @Return the "C" version of the JMAWTContextRef */
public int getContextRef();

/* @Return the client specified data associated with this context */
public int getClientData() throws JManagerException;

/* Set the client specified data associated with this context */
/* @param data the new data to set. */

public void setClientData(int data) throws JManagerException;

/* Return the number of frames created for this context */

160 The JIMAWTContext Interface
O Apple Computer, Inc. 12/9/97

CHAPTER 3

JManager Java Class Reference

public int countAWTContextFrames() throws JManagerkException;

/* Return a JMFrame for the specified frame */
/* @param framelndex the 0 based index of the requested frame */
public JMFrame getContextFrame(int framelndex)

throws JManagerkException;

/* Dispatch a menu selected event to the owning Frame */

/* @param hMenu a MacOS MenuHandle */

/* @param menultem the one based menu item index */

public void menuSelected(com.apple.Mac0S.MenuHandle hMenu,
short menultem) throws JManagerkException;

The JMAppletSecurity Class

The IMAppletSecurity class contains constants methods related to setting or
reading security levels for applets.

package com.apple.mrj.JManager;

/* JIMAppletSecurity is the java representation of a JMAppletSecurity */

/* structure.*/

/* The corresponding C structure is similar,

/* @see JMAppletViewer */
public class JMAppletSecurity f{
public static final int

eNoNetworkAccess = 0,
eAppletHostAccess =1,

eUnrestrictedAccess = 2;

public static final int
eNoFSAccess = 0,
eLocalAppletAccess =1,
eAT1FSAccess = 2;

The JIMAppletSecurity Class
O Apple Computer, Inc. 12/9/97

but NOT compatible. */

/* NetworkSecurityOptions */

/* FileSystemOptions */

161

CHAPTER 3

JManager Java Class Reference

int itsNetworkAccess;
int itsFileSystemAccess;

boolean itsRestrictSystemAccess;
boolean itsRestrictSystemDefine;

boolean itsRestrictApplAccess;
boolean itsRestrictApplDefine;

/* Create an applet security structure with "good" defaults. */
public JMAppletSecurity() {

itsNetworkAccess = eAppletHostAccess;
itsFileSystemAccess = elocalAppletAccess;

itsRestrictSystemAccess = true;
itsRestrictSystemDefine = true;

itsRestrictApplAccess = false;
itsRestrictApplDefine = false;

/* Create an applet security with specified defaults */

public JMAppletSecurity(int networkAccess, int fileSystemAccess,
boolean systemAccess, boolean systemDefine, boolean applAccess,
boolean applDefine) {

itsNetworkAccess = networkAccess;
itsFileSystemAccess = fileSystemAccess;

itsRestrictSystemAccess = systemAccess;
itsRestrictSystemDefine = systemDefine;

itsRestrictApplAccess = applAccess;

itsRestrictApplDefine = applDefine;

public final int getNetworkAccess() {
return itsNetworkAccess;

162 The JMAppletSecurity Class
O Apple Computer, Inc. 12/9/97

CHAPTER 3

JManager Java Class Reference

public final int getFilesystemAccess() {
return itsFileSystemAccess;

public final boolean getRestrictSystemAccess() {
return itsRestrictSystemAccess;

public final boolean getRestrictSystemDefine() ({
return itsRestrictSystemDefine;

public final boolean getRestrictApplAccess() {
return itsRestrictApplAccess;

public final boolean getRestrictApplDefine() {
return itsRestrictApplDefine;

The JMAppletSecurity Class 163
O Apple Computer, Inc. 12/9/97

CHAPTER 3

JManager Java Class Reference

164 The JMAppletSecurity Class
O Apple Computer, Inc. 12/9/97

Appendixes

O Apple Computer, Inc. 12/8/97

Draft. Preliminary, Confidential. © Apple Computer, Inc. 12/8/97

A PPENDTIX A

Changes from JManager 1.0

Table A-1 alphabetically lists all the JManager 2.0 functions and how they differ
(if at all) from the older 1.0 functions. Changes to data structures and constants
are indicated under the appropriate function.

Table A-1 Changes from JManager 1.0 functions

Function Name
JMAddToClassPath
JMCToseSession
JMCopyTextRef
JMCountApplets
JMCountAWTContextFrames
JMDisposeAppletlLocator
JMDisposeAppletViewer
JMDisposeAWTContext
JMDisposeTextRef
JMExecdNIMethodInContext
JMExecdNIStaticMethodInContext
JMExecMethodInContext
JMExecStaticMethodInContext
JMFrameActivate
JMFrameClick
JMFrameDragReceive
JMFrameDragTracking

JMFrameGoAway

O Apple Computer, Inc. 12/9/97

Changes from 1.0
None.
None.
New with 2.0.
None.
None.
None.
None.
None.
New with 2.0.
New with 2.0.
New with 2.0.
None.
None.
None.
None.
New with 2.0.
New with 2.0.

None.

167

168

APPENDIX A

Changes from JManager 1.0

Table A-1 Changes from JManager 1.0 functions

Function Name
JMFrameKey
JMFrameKeyRelease
JMFrameMouseOver
JMFrameResume
JMFrameShowHide
JMFrameUpdate
JMFSSToURL
JMGetAppletDimensions
JMGetAppletlocatorData
JMGetAppletName
JMGetAppletObject
JMGetAppletViewerData
JMGetAppletViewerObject
JMGetAppletViewerSecurity
JMGetAppletTag
JMGetAWTContextData
JMGetAWTContextFrame
JMGetAwtContextObject
JMGetAWTFrameObject

JMGetCurrentEny

JMGetCurrentJRIENnv

JMGetFrameContext

JMGetFrameData

O Apple Computer, Inc. 12/9/97

Changes from 1.0

None.

None.

None.

None.

None.

None.

None.

None.

None.

Strings now passed as text objects.
New with 2.0.

None.

New with 2.0.

New with 2.0.

Strings now passed as text objects.
None.

None.

New with 2.0.

New with 2.0.

Now returns a pointer to the Java Native
Interface (JNI) structure rather than the
Java Runtime Interface (JRI) structure.

New with 2.0. Has the same functionality
as the JManager 1.0 JMGetCurrentEnv
function.

None.

None.

APPENDIX A

Changes from JManager 1.0

Table A-1 Changes from JManager 1.0 functions

Function Name
JMGetFrameSize
JMGetFrameViewer
JMGetJdMFrameObject
JMGetJRIRuntimelnstance
JMGetProxyInfo
JMGetSessionData
JMGetSessionObject
JMGetSessionProperty
JMGetTextBytes
JMGetTextlLength
JMGetVersion
JMGetViewerFrame
JMGetVerifyMode
JMIdTe
JMINIObjectTodRIRef
JMJRIRefToJdNIObject
JMMenuSelected

JMNewAppletlLocator

Changes from 1.0
None.
None.
New with 2.0.
New with 2.0.
New with 2.0.
None.

New with 2.0.

Strings now passed as text objects.

New with 2.0.
New with 2.0.
None.
None.
New with 2.0.
None.
New with 2.0.
New with 2.0.

None.

JMNewAppletLocatorFromInfo

JMNewAppletViewer

JMNewAWTContext

JMNewTextRef

O Apple Computer, Inc. 12/9/97

Strings now passed as text objects.

Strings passed in the JMLocatorInfoBlock
data structure are now text objects.

New applet security data structure
required (JMAppletSecurity).

None.

New with 2.0.

169

170

APPENDIX A

Changes from JManager 1.0

Table A-1 Changes from JManager 1.0 functions

Function Name

JMOpenSession

JMPutSessionProperty
JMReloadApplet
JMRestartApplet
JMResumeApplet

JMResumeAWTContext

JMSetAppletlLocatorData
JMSetAppletViewerData
JMSetAppletViewerSecurity
JMSetAWTContextData
JMSetFrameData
JMSetFrameSize
JMSetFrameVisibility
JMSetProxylInfo
JMSetSessionData
JMSetVerifyMode

JMShowPropsDialog

JMSuspendApplet

JMSuspendAWTContext

O Apple Computer, Inc. 12/9/97

Changes from 1.0
New code verifier options.
New JMRuntimeOptions mask.

New callbacks in JMSessionCallbacks
data structure.

Many security options now bound to
individual applets.

Strings now passed as text objects.
None.
None.
None.

No longer required. AWT contexts no
longer have a suspended state.

None.
None.
New with 2.0.
None.
None.
None.
New with 2.0.
New with 2.0.
None.

New with 2.0.

No longer used. Calls from JManager 1.0

still supported.
None.

No longer required. AWT contexts no
longer have a suspended state.

APPENDIX A

Changes from JManager 1.0

Table A-1 Changes from JManager 1.0 functions

Function Name

JMTextTodavaString

JMTextToMacOSCStringHandle

JMURLTOFSS
MyAuthenticate
MyCheckUpdate
MyExceptionOccurred
MyExit
MyFetchCompleted
MyFrameReorder
MyInvalRect

My LowMem
MyReleaseFrame

MyRequestFrame

MySetResizeable
MySetStatusMsg
MySetTitle
MyResizeRequest
MyShowDocument
MyShowHide
MyStandardError
MyStandardIn
MyStandardOutput

MyUniqueMenulD

O Apple Computer, Inc. 12/9/97

Changes from 1.0

New with 2.0.

New with 2.0.

Strings now passed as text objects.
New with 2.0.

None.

Strings now passed as text objects.
New with 2.0.

None.

New with 2.0.

None.

New with 2.0.

None.

New callbacks in the JMFrameCallbacks
data structure.

Dimensions of the frame now passed as a
Rect structure.

New with 2.0.

Strings now passed as text objects.
Strings now passed as text objects.
None.

Strings now passed as text objects.
None.

None.

None.

None.

None.

171

APPENDIX A

Changes from JManager 1.0

172

O Apple Computer, Inc. 12/9/97

A PPENDTIX

B

Mac OS—Related Issues

The Mac OS runtime environment has some restrictions and peculiarities that
you should keep in mind when writing either Java code or Mac OS-based code
that interacts with Java code. Table B-1 describes these issues and possible

solutions.
Table B-1 Mac OS-related issues
Description Possible limitations Solutions

31-character limit on
filenames.

Only the active
frame’s menu bar is
visible.

Cooperative rather
than preemptive
multitasking.

File and directory
delimiter character is a
colon (:), not a slash (/
). (The slash is a valid
character in a
filename.)

A space is a valid
character in a Mac OS
filename.

O Apple Computer, Inc. 12/9/97

Java class filenames
can easily exceed 31
characters.

Some Java programs
may specify more than
one menu bar.

Some odd timing
effects may occur.

May cause confusion
or odd behavior when
working with file
systems that return a
URL or similar path
(such as not finding a
file located in a folder
named Reports May/
June).

May cause unexpected
interpretations of
strings obtained from
other platforms.

Class files stored in
zip files can have
names longer than 31
characters.

N/A

N/A

Embedded slash
characters should be
encoded as a percent
sign (%) plus the hex
ASCII value (that is,
%2F).

Embedded space
characters should be
encoded as a percent
sign (%) plus the hex
ASCII value (that is
%20).

173

174

APPENDIX

Mac OS—Related Issues

The mechanism for handling dynamically linked libraries (DLLs) on the

Mac OS platform is the Code Fragment Manager (CFM). For information about
the Code Fragment Manager, see Mac OS Runtime Architectures and Inside
Macintosh: PowerPC System Software.

In addition, the standards for the Mac OS user interface are often different from
those on other platforms. Here are a few things to keep in mind:

s The Preferences menu item is typically stored under the Edit menu (not the
File menu).

= Dialog boxes typically have the OK button located near the lower right
corner, with the Cancel button to its immediate left.

s The default grayscale appearance of windows and menus in System 7.6 and
later is lighter than the corresponding Windows 95 appearance.

O Apple Computer, Inc. 12/9/97

Glossary

Abstract Window Toolkit (AWT) In the
Java runtime environment, a collection of
functions that allows Java programs to
manipulate virtual graphics (windows,
images, buttons, and so on). These abstract
graphics can be translated into user-visible
windows and controls on the client
platform. See also AWT Context.

applet In the Java runtime environment,
an executable program that must run
within a larger host application. In
JManager, an instantiated applet is called a
JMAppletViewerRef object.

applet tag Text in an HTML document
that describes an embedded applet. This
text is bounded by the <APPLET> and
</APPLET> delimiters. See also Hypertext
Markup Language (HTML).

AWT context An instantiation of an
execution environment in the Java runtime
environment. An AWT context is a separate
thread and may represent a thread group.
An AWT context typically contains an
applet and one or more frames. In
JManager, an AWT context is called a
JMAWTContextRef object. See also Abstract
Window Toolkit (AWT).

code verifier A bytecode verifier that is
part of the Java runtime environment. The
code verifier acts as a security measure to
make sure the Java code to be executed

O Apple Computer, Inc. 12/8/97

cannot crash the Java virtual machine or
otherwise attempt illegal actions that might
allow the code access to the host platform.

embedding application The application
on a host platform (for example, a Web
browser) that instantiates a Java session and
executes Java applets or applications.

file system specification record On

Mac OS-based platforms, a method of
describing the name and location of a file or
directory. File system specification records
are defined by the FSSpec data type.

frame A user interface window in the Java
virtual machine. Frames usually contain a
title bar and often correspond to a
user-visible window. Frames are analogous
to a window record on the Mac OS. See also
parent frame.

HTML See Hypertext Markup Language.

Hypertext Markup Language (HTML) A
standard for describing the layout and
contents of a hypertext document. An
HTML document can contain an applet tag
that specifies the name and location of an
applet. See also applet tag.

Java runtime environment The Java
virtual machine and the associated software
required to load and execute Java code. See
also virtual machine.

Java runtime session An instantiation of
the Java runtime environment (that is, an
instantiation of the Java virtual machine

175

GLOSSARY

and associated software). In JManager a
Java runtime session is called a
JMSessionRef object. See also virtual
machine.

parent frame The main user interface
window associated with an applet. The
parent frame is created when the applet is
instantiated. In an AWT context, the parent
frame has the index value 0. See also frame.

property A data item associated with an
object.

session See Java runtime session.

text object An object of type JMTextRef
used to encapsulate strings passed by
JManager functions. In addition to the
actual text, a text object also contains text
encoding information and the length of the
string.

thread An independent event loop in the
Java virtual machine. Multiple threads can
run concurrently in a Java virtual machine.
A thread is also called a lightweight process.

Uniform Resource Locator (URL) A text
string that describes the location of an
HTML document. A URL may point to a
file or to a server that contains the file.

URL See Uniform Resource Locator.

virtual machine (VM) A software
package that simulates the actions of a
microprocessor. A virtual machine can
mimic an existing processor (such as the
68K emulator on PowerPC-based,

Mac OS-compatible computers) or parse
special VM-specific code. Java code requires
a virtual machine environment to execute.
See also Java runtime environment, Java
runtime session.

176
O Apple Computer, Inc. 12/8/97

Index

A D

Abstract Window Toolkit. See AWT Contexts
activate events 41
Apple events, using to quit a Java application 52

drag-and-drop support 49

applet locators
callback structure 74
creating 26-29
getting information from 29-30
information structure 72-73
object definition 72
optional parameters 73
removing 30
status values 66
applets
callback structure 75-76
event handling in. See events
instantiating 36-38
object definition 74
removing 38
security indicators 62
steps to execute on Mac OS 20
AWT contexts
callback structure 70-72
creating 30-35
getting information about 35
introduced 18
object definition 70
removing 36

C

Changes for JManager 2.0 15
client-specific data 79

code verifier options 61-63
CodeVerifierOptions type 61

O Apple Computer, Inc. 12/8/97

E

eAlT1FSAccess constant 62
eAppletHostAccess constant 62

eBorderlessModelessWindowFrame constant 65

eBringToFront constant 65
eCheckAl1Code constant 61
eCheckRemoteCode constant 61
eDisablelnternetConfig constant 63
eDisab1eJITC constant 63
eDontCheckCode constant 61
eEnableDebugger constant 63
eFileNotFound constant 66
eFirewallProxy constant 62
eFTPProxy constant 62
eHostNotFound constant 66
eHTTPProxy constant 62
eInhibitClasslLoading constant 63
eJManagerlCompatible constant 64
eJManager2Defaults constant 63
elLocalAppletAccess constant 62
eLocatorKilled constant 66
eLocatorNoErr constant 66
eLocatorTimeout constant 66
eModalWindowFrame constant 65
eModelessWindowFrame constant 65
eNoFSAccess constant 62
eNoNetworkAccess constant 62
error codes, JManager 148
eSendBehindFront constant 65
eSendToBack constant 65
eUnrestrictedAccess constant 62
eUseAppHeapOnly constant 63

177

INDEX

events 38-49
activate 41
drag-and-drop support 49
keyboard 45-46
mouse 42-45
suspend /resume 41
update 40
using to select a menu item 47-49

F

frames
callback structure 77-79
defined 19-20
displaying using callbacks 33-35
getting information about 35
object definition 77
types of 64

H

handling events. See events

J

Java applets. See applets
Java applications 50-53
event handling in 52
finding using the JNI 52
steps to execute on Mac OS 50-52
using Apple events to quit 52

Java Native Interface, using to find Java

methods 52

Java object references 53
Java runtime environment, defined 16
Java runtime session

callback structure 67-69

creating 21-24

ending 26

introduced 18

178

O Apple Computer, Inc. 12/8/97

object definition 67
Java versions of J]Manager functions 151-163
JMAddToClassPath function 130
JManagerException class 151
JMAppletlLocatorCallbacks type 74
JMAppletlLocatorRef type 72
JMAppletSecurity class 161
JMAppletSecurity type 76
JMAppletViewerCallbacks type 75
JMAppletViewer interface 159
JMAppletViewerRef type 75
JMAuthenticateURLProcPtr type 69
JMAWTContextCallbacks type 70
JMAWTContext interface 160
JMAWTContextRef type 70
JMCheckUpdateProcPtr type 79
JMClientData type 79
JMCloseSession function 81
JMConsoleProcPtr type 68
JMConsoleReadProcPtr type 68
JMConstants interface 151
JMCopyTextRef function 90
JMCountApplets function 105
JMCountAWTContextFrames function 95
JMDisposeAppletlocator function 104
JMDisposeAppletViewer function 109
JMDisposeAWTContext function 93
JMDisposeTextRef function 89
JMExceptionOccurredProcPtr type 72
JMExecINIMethodInContext function 97
JMExecJINIStaticMethodInContext function 98
JMExecMethodInContext function 99
JMExecStaticMethodInContext function 100
JMExitProcPtr type 69
JMFetchCompleted type 74
JMFileSystemOptions type 62
JMFrameActivate function 123
JMFrameCallbacks type 77
JMFrameC1ick function 120
JMFrameDragRecieve function 127
JMFrameDragTracking function 126
JMFrameGoAway function 125
JMFrame interface 156
JMFrameInvalRectProcPtr type 78
JMFrameKey function 121

INDEX

JMFrameKeyUp function 122
JMFrameKind type 64
JMFrameMouseOver function 124
JMFrameRef type 77

JMFrameResume function 124
JMFrameShowHide function 125
JMFrameShowHideProcPtr type 78
JMFrameUpdate function 122
JMFSSToURL function 129
JMGetAppletDimensions function 106
JMGetAppletlocatorData function 104
JIMGetAppletName function 107
JIMGetAppletObject function 116
JMGetAppletTag function 107
JMGetAppletViewerData function 110
JMGetAppletViewerObject function 115
JIMGetAppletViewerSecurity function 111
JIMGetAWTContextData function 94
JIMGetAWTContextFrame function 96
JIMGetAwtContextObject function 101
JMGetAWTFrameObject function 128
JMGetCurrentJRIEnv function 131, 132
JIMGetFrameContext function 127
JIMGetFrameData function 117
JIMGetFrameSize function 119
JMGetFrameViewer function 114
JMGetJIMFrameObject function 128
JMGetJRIRuntimeInstance function 132
JMGetProxyInfo function 82
JMGetSessionData function 85
JIMGetSessionObject function 87
JMGetSessionProperty function 86
JMGetTextBytes function 90
JMGetTextLength function 90
JMGetVerifyMode function 84
JIMGetVersion function 128
JMGetViewerFrame function 115
JMId1e function 25-26, 82
JMJINIObjectToJRIRef function 134
JMJRIRefTodNIObject function 133
JMLIBOptionalParams type 73
JMLocatorErrors type 66
JMLocatorInfoBlock type 72
JMLowMemoryProcPtr type 69
JMMenuSelected function 96

O Apple Computer, Inc. 12/8/97

JMNetworkSecurityOptions type 62
JMNewAppletlocator function 28-29, 102
JMNewAppletlLocatorFromInfo function 26-28,
102
JMNewAppletViewer function 108
JMNewAWTContext function 30-35, 93
JMNewTextRef function 88
JMOpenSession function 21-24, 80
JMProxyInfo class 153
JMProxyInfo type 70
JMProxyType type 61
JMPutSessionProperty function 87
JMReleaseFrameProcPtr type 71
JMReloadApplet function 112
JMReorderFrame type 79
JMRequestFrameProcPtr type 71
JMRestartApplet function 112
JMResumeApplet function 113
JMRuntimeOptions type 63
JMSessionCallbacks type 67
JMSession class 154
JMSessionRef type 67
JMSetAppletlocatorData function 105
JIMSetAppletViewerData function 110
JMSetAppletViewerSecurity function 111
JMSetAWTContextData function 94
JMSetFrameData function 118
JMSetFrameSize function 119
JMSetFrameSizeProcPtr type 78
JIMSetFrameVisibility function 117
JIMSetProxyInfo function 83
JMSetResizeable type 79
JMSetSessionData function 86
JMSetStatusMsgProcPtr type 76
JMSetTitleProcPtr type 78
JMSetVerifyMode function 84
JMShowDocumentProcPtr type 75
JMSuspendApplet function 113
JMTextEncoding type 64
JMText interface 155
JMTextRef type 64
JMTextTodavaString function 91
JIMTextToMac0SCStringHandle function 92
JMUniqueMenuIDProcPtr type 71
JMURLTOFSS function 130

179

INDEX

jref references 53

K

O

kDefaultJMTime constant 67
keyboard events 4546
kdMVersion constant 67

M

objects, in the Java runtime environment 20

P

Mac OS-specific issues when working with Java
code B173
menu selection 47-49
mouse events 42-45
MyAuthenticate function 137
MyCheckUpdate function 144
MyExceptionOccurred function 141
MyExit function 137
MyFetchCompleted function 146
MyFrameReorder function 144
MyInvalRect function 142
MyLowMemProc function 138
MyReleaseFrame function 140
MyRequestFrame function 139
MyResizeRequest function 142
MySetResizeable function 145
MySetStatusMsg function 147
MySetTitle function 34, 143
MyShowDocument function 146
MyShowH1ide function 143
MyStandardError function 135
MyStandardIn function 136
MyStandardOutput function 135
MyUniqueMenulD function 140

N

properties, modifying 25
proxy server options 69-70

R

ReorderRequest type 65
result codes, JManager 148
resume events 41

S

network security options 61-63

180
O Apple Computer, Inc. 12/8/97

security level indicators 61-63
session. See Java runtime session
suspend events 41

syntax conventions 11

T

text objects 20
threads, giving time to 25-26

U

update events 40

\%

virtual machine, defined 16

INDEX

181
O Apple Computer, Inc. 12/8/97

T H E A PPLE PUBLISHTING

SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Line art was created using

Adobe™ Tllustrator and Adobe Photoshop.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITER
Jun Suzuki

ILLUSTRATORS
Deborah Dennis and Ruth Anderson

DEVELOPMENTAL EDITORS
Wendy Krafft, Laurel Rezeau,
Donna S. Lee, and Robin Joly

PRODUCTION EDITOR
Glen Frank

Special thanks to Patrick Beard and
Steve Zellers.

Acknowledgments to Peri Frantz,

Gary Little, Barry Langdon-Lassagne,
Tom O’Brien, Pete Steinauer, and the rest
of the MR] reviewers.

O Apple Computer, Inc. 12/9/97

	Programming With JManager
	Contents
	Figures, Tables, and Listings
	About This Document
	How to Use This Document
	Additional Resources
	Conventions
	Special Fonts
	Command Syntax
	Notes

	Chapter 1: Using JManager
	Changes in JManager 2.0
	JManager and the Java Runtime Environment
	Java Sessions, AWT Contexts, and Frames
	Text Objects
	Creating a Java Runtime Session
	Beginning a Java Runtime Session
	Session and Security Options
	Callbacks

	Specifying Proxy Servers
	Checking JManager Versions
	Properties and Client-Specific Session Data
	Servicing Other Threads
	Ending a Java Runtime Session

	Finding Applets
	Creating an AWT Context
	Displaying Frames
	Getting Information About AWT Contexts and Frames
	Removing an AWT Context

	Instantiating Applets
	Handling Events
	Update, Activate, and Resume Events
	Mouse Events
	Keyboard Events
	Menu Selections
	Drag-And-Drop Support

	Executing Java Applications
	Obtaining Java References

	Chapter 2: JManager Reference
	JManager Constants and Data Types
	Security Level Indicators
	Session Security Indicators
	Applet Security Indicators

	Runtime Session Options
	The Text Object
	Text Encoding Speciﬁcations
	Frame Types
	Frame Ordering Indicators
	Applet Locator Status Values
	Miscellaneous Constants
	The Java Runtime Session
	Session Reference
	Session Callbacks Structure
	Proxy Server Options

	The AWT Context
	AWT Reference
	AWT Context Callbacks Structure

	The Applet Locator
	Applet Locator Reference
	The Applet Locator Information Block
	Applet Locator Optional Parameters
	Applet Locator Callback Structure

	The Applet Object
	Applet Reference
	Applet Callbacks Structure
	Applet Security Structure

	The Frame Object
	Frame Reference
	Frame Callbacks Structure

	Client-Speciﬁc Data

	JManager Functions
	Runtime Invocation Functions
	Text Handling Functions
	Abstract Window Toolkit Control Functions
	Utility Functions

	Application-Deﬁned Functions
	JManager Result Codes

	Chapter 3: JManager Java Class Reference
	The JManagerException Class
	The JMConstants Interface
	The JMProxyInfo Class
	The JMSession Interface
	The JMText Interface
	The JMFrame Interface
	The JMAppletViewer Interface
	The JMAWTContext Interface
	The JMAppletSecurity Class

	Appendix A: Changes from JManager 1.0
	Appendix B: Mac OS-Related Issues
	Glossary
	Index

