INSIDE MACINTOSH

Networking With Open Transport

¢

Revised for version 1.3

November 1997
© Apple Computer, Inc. 1994 - 1997

& Apple Computer, Inc.

© 1994-1997 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of
any documentation provided on
CD-ROM.

The Apple logo is a trademark of
Apple Computer, Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.

Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Macintosh,
AppleTalk, EtherTalk,
ImageWriter,LaserWriter, LocalTalk,
Mac, MPW, and TokenTalk are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.

Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Helvetica and Palatino are
registered trademarks of
Linotype-Hell AG and/or its
subsidiaries.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

NuBus is a trademark of Texas
Instruments.

PowerPC is a trademark of
International Busines Machines
Corporation, used under license
therefrom.

UNIX is a regisered trademark in
the United States and other
countries, licensed exclusively
through X/Open Company, Ltd.
Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential

Contents

Figures, Tables, and Listings xxi

Preface About This Book xxvii

For More Information xxviii
Format of a Typical Chapter ~ xxix
Conventions Used in This Book Xxxi

Special Fonts xxxi
Types of Notes xxxi
The Development Environment Xxxii
Part 1 Open Transport Essentials 1

Chapter 1 Introduction to Open Transport 3

Introduction to Open Transport 5
Basic Networking Concepts 6
Types of Protocols 8
Addressing 10
Protocol Stacks and the OSI Model 11
About Networking With Open Transport 14
Open Transport Architecture 14
Open Transport API 16
Software Modules 17
Drivers and Hardware 17
Open Transport and Interrupt-Time Processing 18
Providers: Endpoints, Mappers, and Services 18
Transport Independence 22
Endpoints and Protocol Layering 22
Deciding Which Protocol to Use 23
General Purpose or Special Purpose 23
Choice of Protocol Family 24

iii

Chapter 2

High-Level or Low-Level Protocol 24
Connection-Oriented or Connectionless 25
Transaction-Based or Transactionless 25
Summary 26

Getting Started With Open Transport 29

iv

Initializing Open Transport 31
Initializing From a Client Application 32
Initializing From a Stand-Alone Code Resource 33
Using ASLM and Open Transport 33

Using the Gestalt Function to Determine Whether Open Transport Is

Available 34
Configuring and Opening a Provider 34
Creating a Configuration Structure 35
Opening a Provider 36
Reusing Provider Configurations 37
Specifying an Address 37
Addressing in Open Transport 37
Using TNetBuf Structures 38
Storing an Address in a TNetBuf Structure 40
Using Helper Routines to Initialize an Address 40
Closing Open Transport 42
Closing From Applications 42
Closing From Stand-Alone Code 43
Open Transport Libraries 44
Downloading a URL With HTTP 45
Using Threads for Easy Synchronous Processing 50
Specifying the Host Names and HTTP Commands 51
Opening an Endpoint and Setting the Mode of Operation
Connecting to the Host and Sending Data 53
Receiving Data From the Remote Endpoint 54
Error Handling 55
Unbinding the Endpoint and Final Clean-Up 56

52

Chapter 3 Providers 59

About Providers 61
Provider Functions 63
Interrupt-Time Processing 64
Modes of Operation 65
Provider Events 67
Function Results 68
Using Providers 69
Controlling a Provider’s Modes of Operation 70
Which Mode To Use 70
Specifying How Provider Functions Execute 71
Setting a Provider’s Blocking Status 72
Setting a Provider’s Send-Acknowledgment Status
Using Notifier Functions to Handle Provider Events
Transferring a Provider’s Ownership 77
Closing a Provider 79

Chapter 4 Endpoints 81

72
73

About Endpoints 83
Endpoint Types and Type of Service 85
Naming Conventions for Endpoint Functions 85
Endpoint Options 87
Modes of Operation 88
Endpoint States 89
Transport Service Data Units 98
Using Endpoints 99
Opening and Binding Endpoints 100
Obtaining Information About E ndpoints 101
Handling Events for Endpoints 102
Clearing Events and Synchronization Problems
Notifier Reentrancy 104
Polling for Events 105
Establishing and Terminating Connections 105
Establishing a Connection 107
Terminating a Connection 112
Sending and Receiving Data 118

104

Sending Data Using Multiple Sends 118
Receiving Data 119
Transferring Data Between Transactionless Endpoints 119

Using Connectionless Transactionless Service 119

Using Connection-Oriented Transactionless Service 120
Transferring Data Between Transaction-Based Endpoints 121

Using Connectionless Transaction-Based Service 123

Using Connection-Oriented Transaction-Based Service 125

Chapter5 Programming With Open Transport 127

Open Transport Programming Models 129
Using Synchronous Processing With Threads 130
Polling for Events 132
Using Asynchronous Processing With a Notifier 134
Interrupt-Safe Functions 136
Memory Management From Notifiers 136
Interrupt Levels and Open Transport Processing 136
Hardware Interrupt Level 136
Deferred Task Level 137
System Task Level 138
Using Timer Tasks 139
Using System and Deferred Tasks 139
Calling Open Transport Functions 140
Scheduling Tasks 140
Deallocating Resources 141
Handling Synchronization Problems 141
Handling Multiple Simultaneous Connections 142
Problems With Accepting Multiple Simultaneous Connections 142
Using "tilisten" to Accept Multiple Simultaneous Connections 143
Improving Performance 144
Streamlining Endpoint Creation 144
Handling Dead Clients 145
Shutting Down Servers 146

vi

Chapter 6 Mappers 147

About Mappers 150
Using Mappers 150
Setting Modes of Operation for Mappers 151
Specifying Name and Address Information 152
Searching for Names 153
Retrieving Entries in Asynchronous Mode 154
Code Sample: Using OTLookupName 155

Chapter 7 Option Management 163

About Options and Option Negotiation 166
Explicit Use of Options and Portability of Code 166
Types of Options 167
The Format of Option Information 167
XTI-Level Options and General Options 169
Using Options 171
Determining Which Function to Use to Negotiate Options
Obtaining the Maximum Size of an Options Buffer 172
Setting Option Values 172
Specifying Option Values 173
Setting Default Values 174
Retrieving Option Values 174
Obtaining Current and Default Values 175
Parsing an Options Buffer 175
Verifying Option Values 176
Sample Code: Getting and Setting Options 177

Chapter 8 Ports 189

171

About Ports 191
Identifying Ports 192
Port Name 192
Port Reference 192
Multiport Identifiers 192
Pseudodevices 193

vii

Port Structures 193
Using Ports 194
Obtaining Port Information 195
Requesting a Port to Yield Ownership 198
Registering as an Open Transport Client 198

Chapter9 Utilities 201

About Utility Functions 203
Using List Management Functions 204

Chapter 10 Advanced Topics 213

Acknowledging Sends 215
Sending Noncontiguous Data 216
No-Copy Receiving 218
Using Raw Mode 225
Using Option Management to Set Raw Mode 225
Testing for Raw Mode Support 227
Sending and Receiving in Raw Mode at the Protocol Level 227

Chapter 11 TCP/IP Services 235

About the TCP/IP Protocol Family 237
About TCP/IP Services 240
About the Open Transport DNR 243
About Single Link Multi-Homing 243
Configuring Your System to Use Multiple IP Addresses 244
Checking for Availability 245
Getting Information About Secondary Addresses 245
Using TCP/IP Services 245
Setting Options When Configuring a TCP/IP Provider 245
Using RawlP 247
Receiving RawlP Datagrams 248
Sending RawIP Datagrams 248
Manually Setting the IP Header =~ 248

viii

Limitations of the Header-Included Mode 249
Using IP Multicasting 250
Querying DNS Servers 251
Avoiding Delay When Rebinding to TCP Connections 251
Using General Open Transport Functions With TCP/IP 253
Obtaining Endpoint Data With TCP/IP 253
Using Endpoint Functions With TCP/IP 254
Using Mapper Functions With TCP/IP 258

Chapter 12 Introduction to AppleTalk 261

About AppleTalk 264
AppleTalk Networks and Addresses 266
Multinodes 268
Handling Miscellaneous Events 268
Configuring AppleTalk Protocol Providers 269
About AppleTalk Protocols Under Open Transport 271
AppleTalk Addressing and the Name Binding Protocol (NBP) 273
The AppleTalk Service Provider 273
Datagram Delivery Protocol (DDP) 274
AppleTalk Data Stream Protocol (ADSP) 275
AppleTalk Transaction Protocol (ATP) 275
Printer Access Protocol (PAP) 276

Chapter 13 AppleTalk Addressing 277

About AppleTalk Addressing 280

Using AppleTalk Addressing 280
Specifying a DDP Address 281
Specifying an NBP Address 282
Specifying a Combined DDP-NBP Address 285
Specifying and Using a Multinode Address 285
Registering Your Endpoint’s Name 286
Looking Up Names and Addresses 287
Manipulating an NBP Name 289

Chapter 14 AppleTalk Service Providers 291

Chapter 15

About AppleTalk Service Providers 294
Using AppleTalk Service Providers 295

Creating AppleTalk Service Providers 296

Working With AppleTalk Zones 296

Getting the Name of an Application’s Zone 297

Getting a List of Zone Names 298

Getting Information About the Current AppleTalk Environment

Datagram Delivery Protocol (DDP) 301

299

About DDP 304
Using DDP 305

Binding a DDP Endpoint 305

Using the DDP Type Field to Filter Packet Delivery 306
Using the Self-Send and Checksum Options 307

Using Echo Packets 308

Working With Multinodes 309

The DDP Source Address Option 310

Using General Open Transport Functions With DDP 310

Chapter 16 AppleTalk Data Stream Protocol (ADSP) 311

About ADSP 313
Using ADSP 315

Binding ADSP Endpoints 316
Sending and Receiving ADSP Data 316
The End-of-Message Option 317
The Checksum Option 318
Sending Expedited Data 318
Disconnecting 318
Using General Open Transport Functions With ADSP 319
OTBind 319
OTConnect 319
OTRcvConnect 319
OTListen 320

OTAccept 320

OTSnd 320

OTRcv 320
OTSndDisconnect 320
OTRcvDisconnect 321

Chapter 17 AppleTalk Transaction Protocol (ATP) 323

About ATP 326
Using ATP 327
At-Least-Once and Exactly-Once Transactions 327
Sending and Receiving ATP Data 328
Specifying ATP Options 329
The Retry Count and Interval Options 329
The Release Timer Option 330
Other ATP-Specific Options 330
Using the ATP Packet Header User Bytes 331
Using General Open Transport Functions With ATP 331
OTSndURequest 331
OTRcvURequest 332
OTSndUReply 332
OTRcvUReply 332

Chapter 18 Printer Access Protocol (PAP) 333

About PAP 335
Using PAP 337
Binding PAP Endpoints 338
Specifying PAP Options 339
The End-of-Message Option 339
The Open Retry Option 340
The Server Status Option 340
The Reply Count Option 341
Disconnecting 343
Using General Open Transport Functions With PAP 343
OTBind 343

OTConnect 344
OTRcvConnect 344
OTListen 344
OTAccept 344

OTSnd 344

OTRcv 345
OTSndDisconnect 345
OTRcvDisconnect 345

Chapter 19 Serial Endpoint Providers 347

About Serial Endpoint Providers 349
About Serial Communication 350
DTR and CTS Signals 352
Asynchronous and Synchronous Communication 352
Handshaking Methods for Flow Control 353
Using Serial Endpoints 354
Opening and Closing Serial Endpoints 354
Sending and Receiving Data 355
Using Serial-Specific Commands 356
Using Options to Change Serial Communications Settings
Controlling Serial Port I/ O Handshaking 358
Obtaining Status Information About the Serial Port 359
Using General Open Transport Functions
With Serial Endpoints 360
Obtaining Endpoint Data With Serial Endpoints 360
Using Endpoint Functions With Serial Endpoints 361

Part 2 Open Transport Reference 365

Chapter 20 Initializing and Closing Open Transport Reference

367

Error Constants 369
The Gestalt Selector and Response Bits 369
The OTConfiguration Structure 370

xii

The OTAddress Structure 371
The TNetBuf Structure 371
Functions 372
Initializing and Closing Open Transport 372
Creating, Cloning, and Disposing of a Configuration Structure

376

Chapter 21 Providers Reference 381
Constants and Data Types 383
Error-Checking Constant 383
Event Codes 383
Functions 389
Opening and Closing Providers 389
Controlling a Provider’s Modes of Operation 393
Using Notifier Functions 405
Sending Module-Specific Commands 411
Application-Defined Notifier Functions 413
Chapter 22 Endpoints Reference 417

Constants and Data Types 421
Error-Checking Constant 421
Endpoint Service Types 422
Open Transport Flags 422
Open Flags 423
Endpoint Flags 424
Endpoint States 424
Structure Types 425
The TEndpointInfo Structure 426
The TBind Structure 429
The TUnitData Structure 430
The TUDErr Structure 430
The TUnitRequest Structure 431
The TUnitReply Structure 432
The TCall Structure 433
The TRequest Structure 434

xiii

The TReply Structure 434
The TDiscon Structure 435
Functions 436
Creating Endpoints 436
Binding and Unbinding Endpoints 441
Obtaining Information About an Endpoint 446
Allocating Structures 456
Determining if Bytes Are Available 461
Functions for Connectionless Transactionless Endpoints 462

Functions for Connectionless Transaction-Based Endpoints 469
Establishing Connection =~ 484

Functions for Connection-Oriented Transactionless Endpoints 494
Functions for Connection-Oriented Transaction-Based Endpoints 499

Tearing Down a Connection 512

Chapter 23 Programming With Open Transport Reference 519

Data Types 521
Callback Function =~ 521
Functions 521
Checking Synchronous Calls 522
Working With System Tasks 524
Working With Timer Tasks 529
Working With Deferred Tasks 533
Entering and Leaving Hardware Interrupt Time 537
Application-Defined Functions 541

Chapter 24 Mappers Reference 543

Constants and Data Types 545
Error-Checking Constant 545
The TRegisterRequest Structure 545
The TRegisterReply Structure 546
The TLookupRequest Structure 547
The TLookupReply Structure 548
The TLookupBuffer Structure 549

Xiv

Functions 550
Creating Mappers 550
Registering and Deleting Names 554
Looking Up Names 558

Chapter 25 Option Management Reference 563

Constants and Data Types 565

XTI-Level Options 565

Generic Options 567

Status Codes 569

Action Flags 570

The Linger Structure 571

The Keepalive Structure 572

The TOption Structure 572

The TOption Header Structure 573

The Option Management Structure 574
Functions 575

Determining and Changing Function Values 575

Finding Options 579

Manipulating the Format of Option Information 582

Chapter 26 Ports Reference 587

Constants and Data Types 589
Error-Checking Constant 589
Port-Related Constants 589
Bus Type Constants 590
Port-Related Events 590
The Port Structure 592
The Port Reference 595
The Client List Structure 597
The Port Close Structure 598

Functions 599
Getting Information About Ports 599
Registering New Ports 607

XV

Requesting a Port to Yield Ownership 611
Registering as a Client 614

Chapter 27 Utilities Reference 617

Chapter 28

Constants and Data Types =~ 621

The Timestamp Data Type 621

The Lock Data Type 621

The Linked List Structure 622

The LIFO List Structure 622

The FIFO List Structure 622

The Get Link Object Macro 623

The Application-Defined List Search Function Prototype

Functions 624

Allocating and Freeing Memory 624
Memory Manipulation Utility Functions 626
Idling and Delaying Processing 630

String Manipulation Utility Functions 632
Timestamp Utility Functions 635

OTLIFO List Utility Functions 641

OTFIFO List Utility Functions 645

Adding and Removing aList Element 655
Atomic Operations 657

Locking Functions 667

Application-Defined Functions 669

Advanced Topics Reference 671

624

xvi

Constants and Data Types 673

OTData Constant 673

OTBuffer Constant 673

Raw Mode Constants 674

The OTData Structure 674

The No-Copy Receive Buffer Structure 675
Buffer Information Structure 676

Functions 677

Chapter 29 TCP/IP Services Reference 681

Constants and Data Types 683
Basic Types and Constants 683
Internet Address Structure 685
DNS Address Structure 686
DNS Query Information Structure 687

Internet Interface Information Structure 688
Internet Host Information Structure 689
Internet System Information Structure 690

IP Multicast Address Structure 690
Internet Mail Exchange Structure 691
Options 691
Protocol Levels 691
TCP Options 692
UDP Options 694
IP Options 694
Functions 699
Resolving Internet Addresses 700
Opening a TCP/IP Service Provider 703
Getting Information About an Internet Host 705
Retrieving DNS Query Information 708
Address Utilities 711
Single Link Multi-Homing 716

Chapter 30 AppleTalk Reference 719

AppleTalk Addressing Reference 721
Constants and Data Types =~ 721
Basic Constants 721
Address Format Constants 722
The DDP Address Structure 722
The NBP Address Structure 723
The Combined DDP-NBP Address Structure 724
The Multinode Address Structure 726
The NBP Entity Structure 727
AppleTalk Utility Functions 728
AppleTalk Service Provider Reference 745

xvii

Chapter 31

Constants and Data Types 745
Completion Event Constants 745
The AppleTalk Information Structure 746
AppleTalk Service Functions 747
Obtaining Information About Zones 750
Obtaining Information About Your AppleTalk Environment
DDP Reference 756
Options 756
ADSP Reference 757
Options 757
ATP Reference 757
Options 757
PAP Reference 758
Options 758

Serial Endpoint Reference 761

754

Appendix A

Constants 763
Options 765

Protocol Level 765

Serial Options 765
Serial-Specific Commands 769

Open Transport and XTI 775

xviii

Open Transport Programming Interfaces 775
Function Names 776

Extensions to XTI 779

Data Structures 780

Result Codes 781

Appendix B

Result Codes 785

Appendix C Special Functions 793
Functions Callable at Hardware Interrupt Time 793
Native Functions Callable at Hardware Interrupt Time 796

Appendix D

Functions Callable From Deferred Tasks 798
Functions That Allocate Memory 805

XTI Option Summary 807

Types of Options 807
Determining Which Function to Use to Negotiate Options 810
Options Negotiation Rules 811

Negotiating Multiple Options 811

Initiating an Option Negotiation 812

Options That Are Absolute Requirements 812

Options That Are Not Absolute Requirements 813

Conlflicting Option Values 813

Privileged or Read-Only Options 813

Error Conditions 814

Allowing the Endpoint Provider to Select an Option Value 816
Retrieving Option Values 816

Retrieving Values for Connection-Oriented Endpoints 816

Retrieving Values for Connectionless Transactionless Endpoints 817

Retrieving Values for Connectionless Transaction-Based Endpoints 818

Glossary 819

Index 833

Xix

XX

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Figures, Tables, and Listings

Introduction to Open Transport 3

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4

Table 1-1

The OSI model and Open Transport protocols 12
The basic architecture of Open Transport 15

An Open Transport Provider 19

Hierarchy of Open Transport providers 21

The Open Transport protocol matrix and some Open Transport
protocols 9

Getting Started With Open Transport 29

Figure 2-1 The TNetbuf structure 39

Table 2-1 Open Transport libraries for PowerPC code 44

Table 2-2 Open Transport libraries for 68000 code 45

Listing 2-1 Using a TNetBuf structure to store an address 40

Listing 2-2 Using Helper Routines to Initialize an Address 41

Listing 2-3 CFM terminate procedure 43

Listing 2-4 Downloading a URL With HTTP 46

Providers 59

Table 3-1 Result codes that all Open Transport functions can return 69
Listing 3-1 A notifier function 74

Listing 3-2 Transferring provider ownsership 78

Endpoints 81

Figure 4-1 Typical endpoint states for a connectionless endpoint 91
Figure 4-2 Possible endpoint states for a connection-oriented endpoint 93
Figure 4-3 Establishing a connection with the active peer in synchronous

mode 108

xx1

Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9

Figure 4-10
Table 4-1
Table 4-2

Table 4-3
Table 4-4
Table 4-5
Table 4-6

Table 4-7

Table 4-8

Establishing a connection in asynchronous mode 110
An abortive disconnect 113

Remote orderly disconnect 115

A local orderly disconnect 117

How a transaction ID is generated 122

Data transfer using connectionless transaction-based endpoints in
asynchronous mode 125

Data transfer using connection-oriented transaction-based endpoints
in asynchronous mode 126

The names of functions used to transfer data 86

Endpoint functions that behave differently in synchronous and
asynchronous modes 88

Endpoint states 90

Functions that can change an endpoint’s state 95

Events that can change an endpoint’s state 97

The Open Transport type-of-service matrix and some Open
Transport protocols 99

Pending asynchronous events and the functions that clear

them 103

Pending asynchronous events and the synchronous functions they
can affect 105

Chapter 5 Programming With Open Transport 127

Figure 5-1
Figure 5-2
Figure 5-3

Chapter 6 Mappers

Synchronous processing with threads 131
Polling for events 133
Asynchronous processing with a notifier 134

Figure 6-1
Table 6-1
Listing 6-1
Listing 6-2

Listing 6-3
Listing 6-4

xxii

Format of entries in 0TLookupName reply buffer 154
Completion events for asynchronous mapper functions 151

The main function to OTLookupNameTest 156
Notifier that yields time to other processes 157
The LookupAndPrint function 158

Printing names and addresses 161

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Option Management 163

Figure 7-1 The format of option information 168

Figure 7-2 An options buffer 169

Table 7-1 XTI-level options 170

Table 7-2 Open Transport generic options 171

Listing 7-1 Constructing an options buffer using the 0TCreateOptions
function 174

Listing 7-2 Using the 0TCreateOptionString function to parse through a
buffer 176

Listing 7-3 Calling functions that get, set, and display options 177

Listing 7-4 Getting an option value 179

Listing 7-5 Setting an option value 181

Listing 7-6 Parsing an options buffer 182

Listing 7-7 Obtaining options for a specific level 183

Listing 7-8 Using the 0TCreateOptionString function 184

Listing 7-9 Building an options buffer from a configuration string 187

Ports 189

Listing 8-1 Finding all serial ports 196

Utilities 201

Listing 9-1 ListMania: global declarations 205

Listing 9-2 The InitWidgetLists function 206

Listing 9-3 The CreateWidget function 206

Listing 9-4 The ProduceWidgets function 207

Listing 9-5 The ConsumeWidgets function 208

Listing 9-6 The PrintWidget function 209

Listing 9-7 The DumpAllWidgetLists 210

Listing 9-8 The DumpWidgetList function 210

Advanced Topics 213

Figure 10-1
Figure 10-2

Describing noncontiguous data 217
OTBulffer structures 220

xxiii

Chapter 11

Chapter 12

Chapter 13

Chapter 14

XX1V

Listing 10-1 Doing a no-copy receive: method 1 221

Listing 10-2 Doing a no-copy receive: method 2 223

Listing 10-3 Negotiating raw mode using options 225

Listing 10-4 Testing for raw data support 227

Listing 10-5 Testing for raw mode support for a DDP endpoint 229

TCP/IP Services 235

Figure 11-1 TCP/IP protocols and functional layers 238

Figure 11-2 Internet subnet address 242

Table 11-1 The Open Transport protocol matrix and TCP/IP protocols 239
Table 11-2 Configuration strings for TCP/IP options 246

Listing 11-1 Sample IP Secondary Addresses file 244

Listing 11-2 Setting an option value 252

Introduction to AppleTalk 261

Figure 12-1 AppleTalk protocol stack and the OSI model 265

Table 12-1 AppleTalk addressing identifiers 267

Table 12-2 Protocol identifiers for use in configuring AppleTalk providers 270
Table 12-3 Indicating AppleTalk options in the configuration string 271

Table 12-4 Open Transport support for AppleTalk endpoint protocols 272

AppleTalk Addressing 277

Listing 13-1 Setting up a DDP Address 282

Listing 13-2 Setting up an NBP address 284

Table 13-1 Open Transport name-registration functions 287
Table 13-2 Open Transport name and address functions 288
Table 13-3 Wildcard operators 289

AppleTalk Service Providers 291

Figure 14-1 AppleTalk service providers and their underlying delivery
mechanism 295

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

Appendix A

Listing 14-1 Using the DoGetMyZone function synchronously 298

Datagram Delivery Protocol (DDP) 301

Figure 15-1 The DDP endpoint provider’s underlying delivery mechanism 304
Table 15-1 Effects of using the DDP type field 307
AppleTalk Data Stream Protocol (ADSP) 311
Figure 16-1 The ADSP endpoint provider’s underlying delivery
mechanism 314
AppleTalk Transaction Protocol (ATP) 323
Figure 17-1 The ATP endpoint provider’'s underlying delivery mechanism 327
Table 17-1 ATP option definitions and default values 329
Printer Access Protocol (PAP) 333
Figure 18-1 The PAP endpoint provider's underlying delivery mechanism 336
Listing 18-1 Using the ATP_OPTREPLYCNT option 341

Serial Endpoint Providers 347

Figure 19-1 The format of serialized bits 351
Figure 19-2 Serial port I1/0 handshaking 358

Open Transport and XTI 775

Table A-1 XTI-to-Open Transport function cross-reference 776
Table A-2 Open Transport-to-XTI function cross-reference 777
Table A-3 Open Transport Functions not found in XTI 779

Table A-4 XTI-to-Open Transport data structure cross-reference 780
Table A-5 Apple extensions to XTI data structures 781

XXV

Appendix B

Appendix C

Appendix D

XXvi

Table A-6 XTI-to-Open Transport result code cross-reference 782

Result Codes 785

Table B-1 Open Transport result codes 785

Special Functions 793

Table C-1 Functions callable at hardware interrupt time, all ISAs 793

Table C-2 Functions callable at hardware interrupt time, native ISA only 796
Table C-3 Functions callable from deferred tasks 798

Table C-4 Functions that allocate memory 805

XTI Option Summary 807

Figure D-1 Negotiating an association-related option 808
Table D-1 Open Transport endpoint functions and the types of options they
accept 808

PRETFATCE

About This Book

This book, Inside Macintosh: Networking With Open Transport, describes the 1.2
release of Open Transport, a communications architecture for implementing
network protocols and other communication systems on Mac OS computers.
Open Transport provides a set of programming interfaces for applications and
other software running on Mac OS computers. This book is about client
programming only; it does not include information on how to implement Open
Transport network protocol modules or device drivers. That information is
covered in the documents provided with the Protocol and Module SDKs.

This book is divided into two parts: the first part provides a conceptual
description of Open Transport and instructional examples of how to use it. The
second part provides reference information. To get the most out of this book,
read the chapters that cover general Open Transport concepts first. If you are
planning to use an AppleTalk or TCP/IP protocol, read the protocol-specific
chapters after you are familiar with Open Transport’s architecture and general
functions.

The first chapter “Introduction to Open Transport,” defines many terms that
are used throughout the rest of this book. This chapter also gives an overview
of the Open Transport architecture and the way it is used to implement
networking protocols.

The chapter “Getting Started With Open Transport” is an introductory
walk-through a very simple Open Transport program that downloads a URL.

The chapter “Providers” describes the generic Open Transport functions that
you can use with any provider. The chapters “Endpoints” and “Mappers”
introduce functions that are particular for endpoint and mapper providers.

The chapter “Programming With Open Transport” talks about the structure of
Open Transport programs and about how Mac OS interrupt levels affect
program execution. The next four chapters, “Option Management,” “Ports,”
“Utilities,” and “Advanced Topics,” focus on more specialized topics in Open
Transport.

The chapter “TCP/IP Services ” and the AppleTalk-specific chapters describe
how to use the Open Transport implementations of AppleTalk and TCP/IP. The
last chapter in the conceptual portion of the book, “Serial Endpoint Providers,”
describes how to use Open Transport with a serial driver.

xxvii

xxviii

PRETFAUCE

“Open Transport Reference,” the second part of this book, contains complete
reference information about the Open Transport API, divided into chapters that
correspond to the preceding conceptual ones.

At the end of this book are four appendixes: “Open Transport and XTI,”
“Result Codes,” “Special Functions,” and “XTI Option Summary.”

= “Open Transport and XTL.” This appendix describes the correspondence
between the XTI and Open Transport client programming interfaces. Open
Transport is a superset of XTI and therefore includes functions that are not
defined in XTI. This appendix focuses on how general provider functions
and endpoint functions correspond to XTI functions.

s “Result Codes.” This appendix lists the result codes returned by the Open
Transport-preferred C functions.

» “Special Functions.” This appendix lists the functions that are callable at
hardware interrupt time, the functions that are callable at deferred task time,
and the functions that allocate memory.

= “XTI Option Summary” describes option types and option negotiation rules.

For More Information

If you are new to programming for the Macintosh, you can read the book Inside
Macintosh:Overview for an introduction to general concepts of Macintosh
programming. Other books in the Inside Macintosh series are helpful for specific
information about other aspects of the Macintosh Toolbox and the Macintosh
operating system. In particular, to benefit most from this book, you should
already be familiar with the runtime environment of Macintosh applications, as
described in Mac OS Runtime Architectures and Inside Macintosh: Processes. These
and other documents published by Apple Computer may be found at

<http:/ / devworld.apple.com>

The information in this book constitutes only a part of the body of literature
documenting the AppleTalk and TCP/IP protocol families and the XTI
standard upon which Open Transport is based.

For more information about the AppleTalk protocol family, see the book Inside
AppleTalk, second edition, which has detailed specifications for each of the
AppleTalk protocols.

For more information about the TCP/IP protocol family, see any good book on
TCP/IP. Two such books for information on TCP/IP protocol internals are TCP/

PRETFATCE

IP Illustrated, Volume 1 by W. Richard Stevens and Internetworking with TCP/IP,
Volume 1 by Douglas E. Comer. For internet standards specifications, see

<ftp:/ /ds.internic.net/dtd />

For more information about the XTI standard, see X/Open CAE Specification
(1992): X/Open Transport Interface (XTI). The Open Transport TCP/IP software
modules are based on the UNIX Streams architecture. For more information
about Streams, see UNIX System V Release 4: Programmer’s Guide: STREAMS.

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For information on registering signatures, file types, and other technical
information, contact

Macintosh Developer Technical Support
Apple Computer, Inc.

3 Infinite Loop, M /S 303-2T

Cupertino, CA 95014-6299

<devsupport@apple.com>

Format of a Typical Chapter

Most of the conceptual chapters in this book (the chapters in the first part)
follow a standard structure. For example, the chapter “Endpoints” contains
these sections:

= “About Endpoints.” This section presents a general introduction to
endpoints and endpoint providers.

» “Using Endpoints.” This section explains how to use endpoint functions to
transfer data.

The reference chapters in this book (the chapters in the second part) provide
complete reference information about the Open Transport API. For example,
the chapter “Endpoints Reference” contains these sections:

= “Constants and Data Types.” This section includes the constants, types,
enumerations, and structures specific to the use of endpoints.

XXIX

PRETFAUCE

» “Functions.” This section presents detailed descriptions of the functions that
are used with endpoints.

The reference chapters for the AppleTalk and TCP/IP protocols describe
functions and option information that are specific to each protocol.

XXX

PRETFATCE

Conventions Used in This Book

Inside Macintosh uses special conventions to present certain types of
information.

Special Fonts

All code listings, reserved words, and names of actual data structures, fields,
constants, parameters, and routines are shown in Letter Gothic (this is
Letter Gothic).

Words that appear in boldface are key terms or concepts and are defined in the
glossary.

Types of Notes

There are several types of notes used in this book.

Note
A note like this contains information that is interesting but
not essential to an understanding of the main text. O

IMPORTANT
A note like this contains information that is essential for an
understanding of the main text. a

A WARNING
Warnings like this indicate potential problems that you
should be aware of as you design your application. Failure
to heed these warnings could result in system crashes or
loss of data. a

XxXXx1

PRETFAUCE

The Development Environment

xxxii

The Open Transport functions described in this book are available using C,
C++, or Pascal language interfaces. How you access these functions depends
on the development environment you are using.

All code listings in this book are shown in ANSI C. They show ways of using
various functions and illustrate techniques for accomplishing particular tasks.
All code listings have been compiled and in many cases tested. However,
Apple Computer, Inc., does not intend for you to use these code samples in
your application.

PART O N E

Open Transport Essentials

PART O N

CHAPTER 1

Introduction to Open Transport

Contents

Introduction to Open Transport 5
Basic Networking Concepts 6
Types of Protocols 8
Addressing 10
Protocol Stacks and the OSI Model 11
About Networking With Open Transport 14
Open Transport Architecture 14
Open Transport API 16
Software Modules 17
Drivers and Hardware 17
Open Transport and Interrupt-Time Processing 18
Providers: Endpoints, Mappers, and Services 18
Transport Independence 22
Endpoints and Protocol Layering 22
Deciding Which Protocol to Use 23
General Purpose or Special Purpose 23
Choice of Protocol Family 24
High-Level or Low-Level Protocol 24
Connection-Oriented or Connectionless 25
Transaction-Based or Transactionless 25
Summary 26

Contents

CHAPTER 1

Introduction to Open Transport

This chapter provides an overview of the 1.2 release of the Open Transport, a
communications architecture for implementing network protocols and other
communications systems. This book discusses only the implementation of
Open Transport on the Mac OS—that is, the set of programming interfaces for
applications and other software running on Mac OS computers.

This chapter introduces some of the terminology that is used throughout the
rest of this book. Read this chapter to gain an overview of the Open Transport
architecture and the way it’s used to implement networking protocols. You
should also read this chapter for suggestions on which networking protocols to
use for various application requirements.

This chapter begins with a brief description of Open Transport and the
advantages it provides over earlier Macintosh networking architectures. Next,
“Basic Networking Concepts” defines a variety of terms used in Open
Transport and in networking in general. The section “About Networking With
Open Transport” describes the Open Transport architecture and some concepts
important to Open Transport: providers, transport independence, and
endpoints. Finally, the section “Deciding Which Protocol to Use” gives you
guidelines to help you decide which protocol or protocol family to use for a
given purpose.

The chapters that make up the rest of this book describe how to use the Open
Transport programming interface and the Open Transport implementations of
AppleTalk and TCP/IP.

Introduction to Open Transport

Open Transport is the networking architecture used by Apple Computer, Inc.
for Mac OS computers. Whereas AppleTalk provided a proprietary networking
system for Macintosh computers, the current Macintosh OS with Open
Transport provides not only AppleTalk but also the industry-standard TCP/IP
protocols and serial connections. In addition, the Open Transport architecture
allows developers to add other networking systems to the Macintosh
Operating System without altering the user experience or the application
programming interface (API).

Introduction to Open Transport

CHAPTER 1

Introduction to Open Transport

The independence of the APIs from the underlying networking or transport
technology is called transport independence and is one of the cardinal features
of Open Transport. This feature is described in more detail in “Transport
Independence” (page 22).

Other important features of Open Transport are its support of multihoming
and multinodes.

s Multihoming allows multiple Ethernet, token ring, FDDI, and other
network interface controller (NIC) cards to be active on a single computer at
the same time. This feature is currently available only for AppleTalk
protocols. Single link multihoming, introduced with Open Transport
version 1.3, supports multiple IP addresses on the same hardware interface.
This feature is available only to TCP/IP protocols.

» Multinode support is an AppleTalk feature that allows an application to
acquire node IDs in addition to the standard node ID that is assigned to the
system when the node joins an AppleTalk network. The prime example of a
multinode application is Apple Remote Access (ARA). The chapters
“AppleTalk Addressing” (page 279) and “Datagram Delivery Protocol
(DDP)” (page 303) in this book describe the use of multinodes.

Basic Networking Concepts

Although this book is intended for readers who already have some knowledge
of networking fundamentals, many people use slightly different definitions for
the same networking terms. Therefore, this section provides definitions of
networking and communications terms as used in this book .

A network is a system of computers and other devices (such as printers and
modems) that are connected in such a way that they can exchange data.

A networking system consists of hardware and software. Hardware on a
network includes physical devices such as Macintosh personal computer
workstations, printers, and Macintosh computers acting as file servers, print
servers, and routers; these devices are all referred to as nodes on the network.

If the nodes are not all connected to a single physical cable, special hardware
and software devices must connect the cables in order to forward messages to
their destination addresses. A bridge is a device that connects networking
cables without examining the addresses of messages or making decisions as to

6 Basic Networking Concepts

CHAPTER 1

Introduction to Open Transport

the best route for a message to take. By contrast, a router contains addressing
and routing information that lets it determine from a message’s address the
most efficient route for the message. A message can be passed from router to
router several times before being delivered to its destination.

In order for nodes to exchange data, they must use a common set of rules
defining the format of the data and the manner in which it is to be transmitted.
A protocol is a formalized set of procedural rules for the exchange of
information and for the interactions among the network’s interconnected
nodes. A network software developer implements these rules in software
modules that carry out the functions specified by the protocol.

Whereas a router can connect networks only if they use the same protocol and
address format, a gateway converts addresses and protocols to connect
dissimilar networks.

A set of networks connected by routers or gateways is called an internet. The
term Internet (note the capitalization) is often used to refer to the largest
worldwide system of networks, also called the Worldwide Internet. The basic
protocol used to implement the WorldWide Internet is called the Internet
Protocol, or IP. Because the word internet is used in several different ways, it is
important to note capitalization and context whenever you see this word.

A networking protocol commonly uses the services of another, more
fundamental protocol to achieve its ends. For example, the AppleTalk Data
Stream Protocol (ADSP) uses the Datagram Delivery Protocol (DDP) to
encapsulate the data and deliver it over an AppleTalk network. The protocol
that uses the services of an underlying protocol is said to be a client of the
lower protocol; for example, ADSP is a client of DDP. A set of protocols related
in this fashion is called a protocol stack. Protocol stacks are described in more
detail in “Protocol Stacks and the OSI Model” (page 11).

Note

Although it is sometimes important to distinguish between
a protocol and the software that implements the protocol,
in most cases you can infer which is meant from the
context. Accordingly, this book usually uses the term
protocol rather than the more precise term protocol
implementation to refer to the Open Transport
implementation of a protocol. O

Basic Networking Concepts

CHAPTER 1

Introduction to Open Transport

Types of Protocols

Networking protocols can be characterized as connectionless or connection-
oriented, and as transactionless or transaction-based.

A connectionless protocol is one in which a node that wants to communicate
with another simply sends a message without first establishing that the
receiving node is prepared to receive it. Each message sent must include
addressing information so that it can be delivered to its destination.

A connection-oriented protocol is one in which two nodes on the network that
want to communicate must go through a connection-establishment process
called a handshake. This involves the exchange of predetermined signals
between the nodes in which each end identifies itself to the other. Once a
connection is established, the communicating applications or processes on the
nodes at either end can send and receive data without having to add addresses
to the messages or repeat the handshake process. Connection-oriented
protocols provide support for sessions. A session is a logical (as opposed to
physical) connection between two entities on a network or internet. A session
must be set up at the beginning, maintained by the periodic exchange of
information, and broken down at the end. All of these services entail overhead
compared to a connectionless protocol, for which no connection setup or
breakdown is required and for which no session must be maintained.

A connection-oriented session is analogous to a telephone call. The party who
initiates the call knows whether the connection is made because someone at the
other end of the line either answers or not. As long as the connection is
maintained, neither party needs to dial the other telephone number again. A
connectionless protocol is analogous to mail. A person sends a letter expecting
it will be delivered to its destination. Although the mail usually arrives safely,
the sender doesn’t know this unless the recipient initiates a response affirming
it. Each letter sent by either party requires a complete address.

A transactionless protocol defines how the data is to be organized and
delivered from one node to another. A connection-oriented transactionless
protocol is used to maintain a symmetrical connection; that is, one in which
both ends have equal control over the communication. Both ends can send and
receive data and initiate or terminate the session. In this case, the connection is
referred to as full duplex. If the two sides have to take turns transmitting and
receiving, the connection is referred to as half duplex.

A connectionless transactionless protocol sends data in discrete datagrams. A
datagram, also referred to as a packet, is a unit of data that includes a header
portion that holds the destination address (and may contain other information,

Basic Networking Concepts

CHAPTER 1

Introduction to Open Transport

such as a checksum value) and a data portion that holds the message text. A
connection-oriented transactionless protocol can send data as a continuous
stream of data or, in some cases, as packets.

Low-level connectionless protocols such as DDP and IP usually provide
best-effort delivery of data. Best-effort delivery means that the protocol
attempts to deliver any packets that meet certain requirements, such as
containing a valid destination address, but the protocol does not inform the
sender when it is unable to deliver the data, nor does it attempt to recover from
error conditions and data loss. Higher-level protocols, on the other hand, can
provide reliable delivery of data. Reliable delivery includes error checking and
recovery from error or loss of data.

A transaction-based protocol specifies the sequence and some of the content of
messages passed between nodes. When using a transaction-based protocol, the
application on one node, known as the requester, sends a request to the other
application, known as the responder, to perform a task. The responder
completes the task and returns a response that reports the outcome of the task.
Once one node has issued a request, the receiving node is constrained to
respond in a predefined way. A transaction-based connection is sometimes
referred to as an asymmetrical connection.

Table 1-1 shows where some Open Transport protocols fit in the protocol-type
matrix. A protocol of one type can be a client of a different type. For example,
the connection-oriented transactionless AppleTalk Printer Access Protocol
(PAP) is a client of the connectionless transaction-based AppleTalk Transaction
Protocol (ATP), which is in turn a client of the connectionless transactionless
Datagram Delivery Protocol (DDP).

Table 1-1 The Open Transport protocol matrix and some Open Transport protocols
Connectionless Connection-oriented
Transactionless PPP Serial connection
DDP ADSP
IP TCP
UDP PAP
Transaction-based ATP ASP”

i Open Transport does not currently provide an implementation of the AppleTalk
Session Protocl (ASP).

Basic Networking Concepts 9

10

CHAPTER 1

Introduction to Open Transport

Addressing

In order to establish a network connection or to send a message using a
connectionless protocol, you must have the address of the destination. Each
protocol uses a specific type of address, which might be the same as that used
by a lower-level protocol in the protocol stack or might be unique to that
protocol. DDP and IP, for example, use addresses sufficient for node-to-node
delivery of datagrams, through routers if necessary. The protocols and
applications that are clients of DDP are assigned socket numbers. A socket is a
piece of software that serves as an addressable entity on a node. DDP is
responsible for delivering a datagram to the correct socket.

Similarly, IP delivers each datagram to a specific client protocol—such as
Transaction Control Protocol (TCP) or User Datagram Protocol (UDP)—
running on a specific node. The processes using the TCP/IP client protocols are
each assigned a port number; the client protocol is responsible for delivering
the datagram to the correct port number. Whereas AppleTalk normally assigns
socket numbers dynamically to a process when it registers itself on the
network, the TCP/IP port numbers are preassigned by convention or by
previous arrangement between users.

For more information about AppleTalk addresses, see the chapter “AppleTalk
Addressing” (page 279) in this book. For more information about TCP/IP
addresses, see the chapter “TCP/IP Services” (page 237) in this book.

Basic Networking Concepts

CHAPTER 1

Introduction to Open Transport

Protocol Stacks and the OSI Model

Most networking systems are designed as layered architectures in which
low-level protocols provide services to higher-level protocols in the same
protocol stack. Network designers relate each protocol to a reference model,
which provides guidelines as to what sort of services should be provided by a
protocol at a certain level in the hierarchy. Because these reference models
provide a framework that makes it easier to compare the services offered by
different protocols, this book shows how each protocol discussed relates to one
or more reference models. In this section, the Open Systems Interconnection
(OSI) model is described. The OSI model is a seven-layered standard that was
published by the International Standards Organization (ISO) in the 1970s. This
is the model with which the AppleTalk networking system architecture is most
closely aligned.

It is important to note that often more than one protocol is defined and
implemented to handle the requirements of a layer in different ways. In
addition, some protocols include functions that span more than one layer
specified by a model. For example, in favor of efficiency, a network protocol
developer may elect to define a single protocol that spans two or more layers of
a reference model.

Figure 1-1 shows the layers of the OSI model and how the AppleTalk and TCP/
IP protocols provided with the Open Transport system software fit into this
model.

Basic Networking Concepts 11

CHAPTER 1

Introduction to Open Transport

12

Figure 1-1 The OSI model and Open Transport protocols
OSl Layers Examples
Application
— AFP
Presentation Telnet, FTP,
SMTP, SNMP
Session ADSP, PAP
Transport ATP, NBP, TCP, UDP
Network IP, DDP
Data-link
Ethernet, token ring, FDDI drivers, and hardware
Physical

I:I Not provided with Open Transport

:l Provided with Open Transport

Each layer of the OSI model has a specific purpose, as follows:

» The data-link layer and the physical layer provide for connectivity. The
communication between networked systems can be via a physical cable
made of wire or optical fiber, or it can be via infrared or microwave
transmission. In addition to these, the hardware can include a network
interface controller (NIC), if one is used. The hardware or transport media

comprise the physical layer.

Basic Networking Concepts

CHAPTER 1

Introduction to Open Transport

The physical hardware provides nodes on a network with a shared data
transmission medium called a data link. The data-link layer includes both a
protocol that specifies the physical aspects of the data link, and the
link-access protocol, which handles the logistics of sending the data packet
over the transport medium.

s The network layer specifies the network routing of data packets between
nodes and the communications between networks, which is referred to as
internetworking.

s The transport layer isolates some of the physical and functional aspects of a
network from the upper three layers. It provides for end-to-end
accountability, ensuring that all packets of data sent across the network are
received and in the correct order. This is the process that is referred to as
reliable delivery of data, and it involves providing a means of identifying
packet loss and supplying a retransmission mechanism. The transport layer
may also provide connection and session management services.

= The session layer serves as an interface into the transport layer, which is
below it. The session layer allows for establishing a session, which is the
process of setting up a connection over which a dialog between two
applications or processes can occur. Some of the functions that the session
layer provides for are flow control, establishment of synchronization points
for checks and recovery during file transfer, full-duplex and half-duplex
dialogs between processes, and aborts and restarts.

s The presentation layer assumes that an end-to-end path or connection
already exists across the network between the two communicating parties,
and it is concerned with the representation of data values for transfer, or the
transfer syntax.

s The highest layer of the OSI model is the application layer. This layer allows
for the development of application software. Software written at this layer
benefits from the services of all the underlying layers.

Basic Networking Concepts 13

CHAPTER 1

Introduction to Open Transport

About Networking With Open Transport

14

Networking on the Mac OS is implemented through the Open Transport
system software. The Open Transport software provides an API that gives you
access to the services of the various protocols. The functions you use depend
not on the specific protocol you want to use, but on whether the protocol is
connection-oriented or connectionless, and whether it is transaction-based or
transactionless.

This section describes the architecture of Open Transport and discusses some
basic Open Transport features and concepts.

Open Transport Architecture

The Open Transport system software consists of a set of application interface
and utility routines (known collectively as the Open Transport API), a set of
software modules that implement networking protocols and other services,
and hardware drivers. Below the hardware drivers are networking and
communications hardware: cards, cables, and built-in ports. These components
are illustrated in Figure 1-2 and discussed further in the following sections.

About Networking With Open Transport

CHAPTER 1

Introduction to Open Transport

Figure 1-2 The basic architecture of Open Transport

Application

8

Open Transport API

{ i
g

DDP P

& &

Ethernet Driver

g

e

=
—

allll

oooao

Communications hardware

g

Data transport media

About Networking With Open Transport

15

16

CHAPTER 1

Introduction to Open Transport

Open Transport API

The Open Transport API consists of two types of functions: utility functions,
which are implemented by Open Transport iself; and interface functions,
which Open Transport passes through to the underlying software modules.
Because the interface functions are implemented by the software modules, the
same function might operate somewhat differently depending on the specific
modules that execute it. Where such dependencies exist, they are described in
the chapter describing a particular protocol.

The Open Transport API is a superset of a standard API defined by the X/Open
Company, Ltd. The X/Open AP is called the X/Open Transport Interface, or
XTI. Both XTI and Open Transport are designed to be independent of the
underlying data transport provider; for example, you use the same functions to
send a packet of data whether the packet is being transferred by DDP over an
AppleTalk network or IP over Ethernet. However, whereas XTI specifies
functions only for connectionless and connection-oriented protocols, Open
Transport also includes functions for transaction-based protocols.

The set of functions you use and the sequence of functions you call depends on
the operation you want to perform and whether the protocol you want to use is
connectionless or connection-oriented, transactionless or transaction-based.

In accordance with XTI, the Open Transport API supports protocol options. An
option is a value of interest to a specific protocol. For example, an option might
enable or disable checksums or specify the priority of a datagram. The
available options and their significance are defined by each implementation of
each protocol. Every option has a default value, and you can almost always use
the default values and not specify any options. It is important to note that,
because each option is protocol dependent, specifying a nondefault value for
an option decreases or eliminates the transport independence of your
application. Protocol options are described throughout this book with the
protocol to which they apply. Option handling is described in “Option
Management” (page 165) in this book.

The XTI specification defines a number of asynchronous events that indicate
occurrences such as the arrival of data. Open Transport includes all the
standard events defined by XTI, additional asynchronous events, plus
completion events that individual functions issue when they complete
asynchronous execution. You can poll for asynchronous events, but you cannot

About Networking With Open Transport

CHAPTER 1

Introduction to Open Transport

poll for completion events. The preferred method for handling all Open
Transport events is to write an event-handling callback function, called a
notifier function. Open Transport event handling and notifier functions are
described in detail in the chapter “Providers” (page 61) in this book.

Software Modules

The software modules shown in Figure 1-2 (page 15) are implemented as
STREAMS modules. The STREAMS architecture is a UNIX® standard in which
protocols (and other service providers) are implemented as software modules
that communicate between each other using messages. Open Transport
conforms to the Transport Provider Interface (TPI) and Data Link Provider
Interface (DLPI) standards, which describe the content and ordering of the
messages between modules. In a STREAMS environment, all modules have the
following attributes:

s They process messages asynchronously. One module can send a message to
another module and then receive the reply as a message, all without
interfering with any other system activity.

= All the Open Transport STREAMS modules share a single address space.

s They may never block; that is, if a module can’t complete an operation, it
must return with an error rather than indefinitely holding up processing.

Figure 1-2 (page 15) shows the AppleTalk implementation of the actual
STREAMS architecture.

You can write your own STREAMS modules to work with Open Transport. The
Open Transport TCP/IP software modules are based on the UNIX STREAMS
standard. This book does not cover STREAMS or writing a STREAMS modules.
For more information about STREAMS, see UNIX System V Release 4:
Programmer’s Guide: STREAMS and the Open Transport Module Devloper’s SDK.

Drivers and Hardware

The Open Transport STREAMS modules communicate with hardware drivers,
which in turn control the flow of data through communications cards or
built-in ports. Normally, the user selects which card or port to use through the
Open Transport control panels. Your application can use the default port for a
particular protocol or, in some cases, you can configure Open Transport to use a
specific port.

About Networking With Open Transport 17

18

CHAPTER 1

Introduction to Open Transport

Open Transport supports multihoming; that is, an individual node can have
more than one hardware device (ports or cards) for a given type of transport. In
the current version, multihoming is supported only with AppleTalk protocols.

Open Transport and Interrupt-Time Processing

Open Transport places severe limitations on functions that can be called at
hardware interrupt time and imposes some restrictions on functions that can be
called at secondary interrupt time. For a discussion of interrupt-time
processing, see “Interrupt-Time Processing” (page 64). For more detailed
information, see “Programming With Open Transport” (page 129).

Providers: Endpoints, Mappers, and Services

The concept of a provider is central to an understanding of Open Transport. A
provider is a set of software modules and drivers that provides a service to
clients of Open Transport. For example, when you open an ADSP connection,
Open Transport logically links a set of AppleTalk software modules, a
communications driver, and a card or port to create what is known as an ADSP
endpoint provider. The Open Transport includes functions for three types of
providers:

= endpoint providers
= mapper providers
= service providers

You use an endpoint provider to send and receive information over a data link.
Figure 1-3 illustrates an ASP endpoint provider.

About Networking With Open Transport

CHAPTER 1

Introduction to Open Transport

Figure 1-3 An Open Transport Provider

Application

Open Transport API

4

PAP

ATP

@ — Provider

IP

g

Ethernet
driver

0000 <=
L

o]
uooo

—
=
D:l

Ethernet card

[— &

o)

Ethernet cable

About Networking With Open Transport

19

20

CHAPTER 1

Introduction to Open Transport

In order to use an endpoint provider, you must first configure and open an
endpoint. An endpoint consists of a set of data structures, maintained by Open
Transport, that specify the components of the endpoint provider and the
manner in which that provider is to operate (blocking or nonblocking,
synchronous or asynchronous, and so forth). An endpoint also maintains state
information and other information that Open Transport needs in order to
operate that provider.

The Open Transport endpoint functions provide an application programming
interface (API) to endpoint providers. When you configure an Open Transport
endpoint, you specify which protocol or set of protocols the provider is to use;
the highest-level protocol you specify for the endpoint provider determines
whether the transport mechanism is connectionless or connection-oriented, and
whether it is transactionless or transaction-based. For example, if you specify
ADSP as the highest-level protocol in the endpoint provider, the transport is
connection-oriented and transactionless.

See “Endpoints and Protocol Layering” (page 22) for more information on the
configuration of endpoint providers.

Mapper providers implement a standard interface for dealing with addresses.
In order to receive data over a network, a process must have a network
address. Whereas an address is typically a number of significance to the
network software, it is much easier for people using the network to refer to
each addressable entity by some name. Consequently, most networks include
some naming scheme and a facility that converts between names and
addresses. For example, a process using an AppleTalk network must register its
name on the network using the Name-Binding Protocol (NBP), which it
accesses through a mapper provider.

You use a mapper provider to relate network addresses to network node names
and to register and remove node names for networks that support this ability.
To use a mapper provider, you must configure and open a mapper, a set of data
structures that store information about the mapper provider for use by Open
Transport.

You use service providers to handle features unique to a specific type of Open
Transport service. For example, because the concept of zones is not common to
all protocol families, the AppleTalk service provider API includes functions
that deal with AppleTalk zones. Similarly, the TCP/IP Domain Service Resolver
(DNR) provides some services specific to the TCP/IP protocol family.
Consequently, the TCP/IP service provider functions provide an interface to
the DNR.

About Networking With Open Transport

CHAPTER 1

Introduction to Open Transport

Each provider supports some subset of the standard Open Transport functions,
depending on the nature of that provider; for example, an endpoint provider
implements different functions than a mapper provider. What’s more, a
connection-oriented transactionless endpoint provider implements different
functions than a connectionless transaction-based endpoint provider.

Some Open Transport functions are common to all providers. These allow you
to open or close a provider, to determine whether a provider executes functions
synchronously or asynchronously, to issue a command directly to a STREAMS
module underlying a provider, and so on.

When you open an endpoint, mapper, or service provider, the open function
returns a provider reference, analogous to the file reference you get from the
File Manager when you open a file. You must specify that provider reference
whenever you want to execute a function related to that endpoint, mapper, or
service. For example, to send data, you specify the provider reference for the
endpoint you want to use.

Figure 1-4 shows the hierarchical relationship among Open Transport
providers. The C++ API provides classes that mirror this object-oriented
hierarchy.

Figure 1-4 Hierarchy of Open Transport providers
— Endpoint
— Mapper
Provider —
— AT Services
— TCP/IP Services

About Networking With Open Transport 21

22

CHAPTER 1

Introduction to Open Transport

Transport Independence

In contrast to earlier Mac OS application programming interfaces (APIs) for
AppleTalk and TCP/IP, in which each protocol had a separate and unique set
of routines, Open Transport provides a single set of functions that you can use
with any protocol or protocol family. The type of endpoint you open
(connectionless or connection-oriented, and transactionless or
transaction-based) determines which functions you call to send and receive
data, independent of the specific protocol or protocol family you use.

For example, if you open a connectionless, transactionless endpoint, you use
the 0TSndUData function to send data. You use this function whether you are
using DDP, IP, or UDP. If you open a connection-oriented, transactionless
endpoint, on the other hand, you first establish a connection using the
0TConnect and 0TRcvConnect functions, and then use the 0TSnd function to send
data. You use these same functions whether you are using TCP, ADSP, or any
other Open Transport connection-oriented, transactionless protocol.

Although transport independence means that you can use the same API
regardless of the protocol or communcations hardware you want to use, it does
not free you from all knowledge of the transport type. When you open an
endpoint, you must specify the highest-level protocol in the endpoint provider,
and you must call the functions appropriate to the type of that protocol. For
example, although your application can use the same set of functions to send
data through either an ADSP or a TCP connection (that is, functions for a
connection-based transactionless protocol), you must specify which of these
protocols you want to use use when you open the endpoint.

You can customize most Open Transport protocols by the specification of
option values. Because options are both protocol dependent and
implementation dependent, the use of any option values other than the
defaults makes your code less transport independent. Unless you have a
compelling reason to change an option value, don’t specify any options. You
can almost always use the default values provided by Open Transport.

Addressing schemes are also protocol-dependent; in order to use specific
protocols, you will need to understand these schemes and to use the
appropriate protocol-dependent data structure and functions.

Endpoints and Protocol Layering

When you configure an Open Transport endpoint, you specify the highest-level
protocol to be used by that endpoint provider. Optionally, you can specify

About Networking With Open Transport

CHAPTER 1

Introduction to Open Transport

other protocols and ports to be included in the endpoint provider. For example,
if you specify only ADSP, Open Transport uses the default underlying protocol
for ADSP, which is DDP, over the default AppleTalk port. However, you can
specify that ADSP is to use a specific Ethernet card as the port.

Because the type of endpoint you open depends only on the highest-level
protocol in the endpoint provider, protocol layering does not affect the
transport independence of Open Transport. That is, you use the same functions
to open and maintain a connection and to send messages whether you are
using ADSP over DDP through Ethernet, or TCP over IP through token ring.

Deciding Which Protocol to Use

Each of the networking protocols available with Open Transport implements a
different set of services. This section provides a brief discussion of the uses of
each of the protocols included with the Open Transport system software on the
Macintosh computer. If you have Open Transport software modules provided
by vendors other than Apple Computer, Inc., you should refer to the
documentation that came with that software to determine its use.

There are instances in which the protocol to be used is dictated by the
application; for example, HTTP requires TCP. In some cases, you might be in a
position to choose the protocol yourself. If so, before you open an endpoint,
you should make your choice based on the following issues:

= general purpose or special purpose

» choice of protocol family, AppleTalk or TCP/IP
= connection-oriented or connectionless

= transaction-based or transactionless

= high- or low-level protocol

This section discusses each of these choices in turn.

General Purpose or Special Purpose

Your choice of protocol is very simple if there is only one protocol that
performs the function you are interested in. For example, if you want to send a
print job directly to an AppleTalk printer, you probably need to use the Printer

Deciding Which Protocol to Use 23

24

CHAPTER 1

Introduction to Open Transport

Access Protocol (PAP). On the other hand, if you want to transfer data of a
general nature, there are many protocols that can do the job. The following
sections describe the factors you can take into consideration in order to choose
among those protocols.

Choice of Protocol Family

There are two sets of protocols, or protocol families, included with the Open
Transport system software: AppleTalk and TCP/IP. In addition, other
developers can provide protocols and protocol families compatible with Open
Transport. You must decide which protocol family to use for a specific purpose.
For information on the use of other protocols, see the documentation that came
with the software.

AppleTalk is a networking technology developed by Apple Computer, Inc.
Every Mac OS computer that has ever been made includes AppleTalk hardware
and system software. If your application needs to communicate with other Mac
OS computers, AppleTalk is a natural choice. Note that the other computers
need not be running Open Transport; the nodes must be running the same
protocol, but need not be using the same implementation of the protocol.

TCP/IP, on the other hand, is the standard protocol family used by the
Worldwide Internet and by many networks owned by businesses and other
organizations. It offers faster performance compared to AppleTalk and makes
cross-platform applications easier to develop. If you wish to communicate with
the Worldwide Internet without going through a gateway, or if you want to
connect to a network that uses TCP/IP protocols, choose one of the Open
Transport TCP/IP protocols.

High-Level or Low-Level Protocol

Figure 1-1 (page 12) shows the protocols provided by Apple Computer, Inc.
with Open Transport and where they fit in the OSI model. All the high-level
protocols (except UDP) shown in Figure 1-1 provide error checking and error
recovery services, including checking for correct packet sequence and
retransmission of lost or damaged packets.

If you use a high-level protocol that provides for reliable delivery of data and
error recovery, you need not implement these services yourself. On the other
hand, these protocols generate somewhat more network traffic than the

Deciding Which Protocol to Use

CHAPTER 1

Introduction to Open Transport

lower-level protocols, including handshake and control signals, signals to
maintain sessions, and retransmitted packets.

The network-layer protocols IP and DDP provide best-effort delivery between
nodes on a network. They are connectionless protocols and do not correct for
corruption of data, packet loss, or incorrect packet sequencing. They generate
the least possible amount of network traffic for the data they transmit. These
protocols are appropriate for applications that do not require highly accurate
data transmission and for applications that provide their own error recovery. If
you want to implement your own protocol stack based on AppleTalk or TCP/
IP protocols, these are the protocols to use.

The high-level protocol UDP is unusual in that it comines attributes of both
high and low level protocols—that is, it does not provide error recovery
services but it checks for data corruption.

Connection-Oriented or Connectionless

Connection-oriented protocols ensure reliable delivery of data and do not
require you to repeat the recipient’s address or repeat the connection process
for the duration of the session. Once you have established a connection, the
protocol maintains the connection, informing you if it has closed for any
reason. Because of the reliability of connection-oriented protocols, they are a
good choice whenever you have a lot of data to exchange over a limited period
of time. However, in order to maintain the connection, these protocols
sometimes send control signals, which result in increased network traffic.

Open Transport AppleTalk offers two connection-oriented protocols: ADSP and
PAP. ADSP is a full-duplex transactionless protocol, well suited to the transfer
of large amounts of data. PAP is a transactionless session-layer protocol and a
client of ATP. It is intended primarily for communication with AppleTalk
printer products.

Open Transport TCP/IP provides one connection-oriented protocol, TCP,
which is a transactionless protocol. TCP, like ADSP, provides highly reliable
data delivery suitable for the transfer of large amounts of data.

Transaction-Based or Transactionless

A transaction-based protocol is suited to many client-server interactions where
the client requests services and there are a limited number of ways in which the
server can respond. File servers and printers are examples of servers that can

Deciding Which Protocol to Use 25

26

CHAPTER 1

Introduction to Open Transport

use these protocols. However, you should keep in mind that transaction-based
protocols limit transport independence: currently, only Apple Talk uses these
protocols. In addition, given that transaction-based protocols incur some
overhead to set up, you might consider choosing one of the
connection-oriented protocols instead; these also involve the overhead of
establishing the connection but offer more possibility for
transport-independence.

Open Transport AppleTalk includes the ATP transaction-based protocols. An
ATP transaction request must fit in a single packet; however, the response can
contain up to eight packets. ATP transactions are an efficient means of
transporting small amounts of data across the network. ATP provides a
semi-reliable loss-free transport service.

You should use ATP

= if you want to send a small amount of data

= if your application requires delivery of all packets

= if your application can tolerate a minor degree of performance degradation
» if you do not want to incur the overhead involved in maintaining a session

A workstation application that requires a state-dependent service should use
ADSP instead of ATP. State dependence means that the response to a request is
dependent on a previous request. For example, before a workstation
application connected to a file server can read a file, it must have first issued a
request to open the file. When a dialog is state dependent, all requests must be
delivered in order and duplicate packets must not be sent; ADSP provides for
this.

An ATP transaction-based request, such as a workstation application
requesting a server to return the time of day, is independent of other requests
and not state dependent.

The Open Transport system software does not include any transaction-based
protocols for the TCP/IP protocol family.

Summary

The following is a summary of the preceding sections:

Deciding Which Protocol to Use

CHAPTER 1

Introduction to Open Transport

1. If your application requires a specific protocol, use that one.

2. If your intended connectees are local Mac OS computers, use the AppleTalk
protocol family.

3. If your intended connectees are not Mac OS computers, or Mac OS
computers on a remote network, use the TCP/IP protocol family.

4. To take advantage of Open Transport’s transport independence and provide
both AppleTalk and TCP/IP, let the user choose.

5. If you need reliability, use a connection-oriented protocol.

6. If you need low overhead or you are writing a real-time application, use a
connectionless protocol.

7. Avoid transaction-based protocols.

Deciding Which Protocol to Use 27

28

CHAPTER 1

Introduction to Open Transport

Deciding Which Protocol to Use

CHAPTER 2

Getting Started With Open
Transport

Contents

Initializing Open Transport 31
Initializing From a Client Application 32
Initializing From a Stand-Alone Code Resource 33
Using ASLM and Open Transport 33
Using the Gestalt Function to Determine Whether Open Transport Is
Available 34
Configuring and Opening a Provider 34
Creating a Configuration Structure 35
Opening a Provider 36
Reusing Provider Configurations 37
Specifying an Address 37
Addressing in Open Transport 37
Using TNetBuf Structures 38
Storing an Address in a TNetBuf Structure 40
Using Helper Routines to Initialize an Address 40
Closing Open Transport 42
Closing From Applications 42
Closing From Stand-Alone Code 43
Open Transport Libraries 44
Downloading a URL With HTTP 45
Using Threads for Easy Synchronous Processing 50
Specifying the Host Names and HTTP Commands 51
Opening an Endpoint and Setting the Mode of Operation 52
Connecting to the Host and Sending Data 53
Receiving Data From the Remote Endpoint 54
Error Handling 55
Unbinding the Endpoint and Final Clean-Up 56

Contents

30

CHAPTER 2

Contents

CHAPTER 2

Getting Started With Open Transport

This chapter introduces the basic information needed to use Open Transport. If
you are writing an application or stand-alone code resource that calls Open
Transport functions, you must read the appropriate sections in this chapter to
find out how you initialize and close Open Transport, how you configure
providers, and how you specify addresses. The code sample shown in

Listing 2-4 (page 46) includes material that is described in greater detail in the
next two chapters, “Providers” and “Endpoints”; however, it is highly
recommended that you read through the sections in this chapter that describe
this code. Doing so will enable you to assimilate information in the later
chapters more easily and will give you a general sense of what an Open
Transport program is like.

The corresponding reference chapter, “Initializing and Closing Open Transport
Reference” provides more detailed information about the data structures and
functions introduced in this chapter.

Initializing Open Transport

The first step in using Open Transport is to initialize it, and the most practical
and efficient way to do that is to call the InitOpenTransport function just before
you need to call any Open Transport functions. Note that only the client calling
Open Transport functions needs to initialize it or close it.

When you initialize Open Transport, it initializes data structures that it needs
so that you can call Open Transport functions. An error is returned if Open
Transport cannot be used . The following code sample illustrates how you
might initialize Open Transport from an application and how you might close
it down again upon termination.

void main(void)
{
Boolean g0TInited;
g0TInited = (InitOpenTransport() == nokErr);

/* The rest of your application goes here.*/

if (g0TInited) {
CloseOpenTransport();

Initializing Open Transport 31

32

CHAPTER 2

Getting Started With Open Transport

g0TInited = false;

Note

If your application needs to manipulate ports or call
Open Transport utility functions but it does not need
to open or use any providers, you can call the function
InitOpenTransportUtilities instead of the function
InitOpenTransport. O

Open Transport consists of several parts: the Open Transport kernel, Open
Transport utilities, AppleTalk, and TCP/IP. Which of these parts are loaded
into memory depends partly on control panel settings and partly on actions
you take:

» AppleTalk is loaded if the user has activated it in the control panel. If the
user has not activated AppleTalk, it is not possible to load it
programmatically.

» TCP/IP is loaded in one of two ways. If the user activates it in the control
panel and checks “Load Only When Needed” (the default), TCP/IP is
loaded when you open a TCP/IP endpoint or a TCP/IP service provider. If
the user activates TCP/IP and checks “Load Only When Needed,” TCP/IP
is loaded at start-up. If the user does not activate TCP/IP in the control
panel, it is not possible to load it programmatically.

» The Open Transport kernel is loaded when AppleTalk or TCP/IP is loaded
or when you call the InitOpenTransport function.

s The Open Transport utilities are always loaded. You still need to call the
function InitOpenTransportUtilities to register yourself as an Open
Transport client if you want to get or change port information without
loading the Open Transport kernel.

Initializing From a Client Application

If you are writing an application, you must follow these steps before you can
call any Open Transport functions:

1. Include the Open Transport client header file, OpenTransport.h.

2. Call the InitOpenTransport function (or the InitOpenTransportUtilities
function if only accessing port information).

Initializing Open Transport

CHAPTER 2

Getting Started With Open Transport

3. Link with the appropriate libraries as described in “Open Transport
Libraries” (page 44).

Note

68000 applications do not need to explicitly establish an A5
world before calling Open Transport nor do they need to
reset their A5 world before each call to an Open Transport
function. This is all done automatically for them.
(PowerPC applications never need to be concerned about
establishing an A5 world.) O

Initializing From a Stand-Alone Code Resource

If you are writing a stand-alone code resource or a shared library, you must
follow these steps before calling any Open Transport functions:

1. Include the Open Transport client header file, OpenTransport.h.

2. Establish an A5 world if you are writing 68000 code; see the Apple Shared
Library Manager Developer’s Guide for details on how to do this. (Stand-alone
68000 code resources must ensure that their A5 world is correct each time
they call an Open Transport function.)

3. Call the InitOpenTransport function (or the InitOpenTransportUtilities
function).

4. Call the C1oseOpenTransport function when finished.

5. Link with the appropriate libraries as described in “Open Transport
Libraries” (page 44). Remember that a code resource or shared library
should link with the “Extn” variants of the libraries.

Using ASLM and Open Transport

Open Transport is based on ASLM and initializes this manager itself. But if
your 68000 application uses ASLM, you must

» call the InitLibraryManager function before calling the InitOpenTransport
function

s call the CloseLibraryManager function after calling the CloseOpenTransport
function.

Initializing Open Transport 33

CHAPTER 2

Getting Started With Open Transport

This is true for both applications, shared libraries, and stand-alone resources.
For applications the ExitToShel1 trap will be patched so that the close calls are
executed whether you call them explicitly or not. For stand-alone code, you
must call the close calls yourself.

Using the Gestalt Function to Determine Whether Open
Transport Is Available

If you are writing an installer, you might want to know if Open Transport is
available on your computer. To do this, call the Gestalt function with 'otan" as
its selector. If Gestalt returns no error and its response parameter returns with
a value other than 0, Open Transport is available. To find out whether
AppleTalk, TCP, or NetWare are present, you can examine the response
parameter bits. For a list of the possible bit values, see “The Gestalt Selector
and Response Bits” (page 369).

For version 1.1 or later of Open Transport, you can use the Gestalt function
with the "otvr' selector to determine the Open Transport version in NumVersion
format. For more information on Apple’s version numbering scheme and the
NumVersion format, see Technote OV12: Version Territory.

Note

If your application uses Open Transport, it should
determine whether it is present using the
InitOpenTransport function. Do not use Gestalt for this.
The InitOpenTransport functionperforms all the right
checks for you. O

Configuring and Opening a Provider

34

After initializing Open Transport but before you can send or receive data, you
must configure and open a provider. Providers supply data-oriented services,
and are implemented by modules that can be layered to provide the services in
which you are interested. To create a provider configuration, you call the
function 0TCreateConfiguration, passing it a configuration string that describes
this layering. The following two sections explain this process in greater detail.

Configuring and Opening a Provider

CHAPTER 2

Getting Started With Open Transport

Creating a Configuration Structure

The 0TCreateConfiguration function creates a configuration structure and
returns a pointer to it. The configuration string can be the name of a single
protocol, such as “adsp”, “tcp”, or “dnr”, or it can be a comma-separated list of
protocol and port names. For instance, the string

"adsp,ddp,1tT1kB"

describes an AppleTalk Data Stream Protocol (ADSP) endpoint provider using
the Datagram Delivery Protocol (DDP) with LocalTalk link access provided
through the LocalTalk B (Printer) port.

Open Transport has internally defined defaults for how protocols can be
layered upon each other. If you give Open Transport a single protocol name, it
checks its defaults to determine which lower layers are missing. Thus, the
shorter string

"adsp”

also describes an identical ADSP endpoint provider (if you have the Printer
port configured in the AppleTalk control panel). Likewise, if you skip a
protocol layer in the string, Open Transport uses its defaults to try to complete
it. For instance, the specification "tcp,enet" is incomplete because the
Transmission Control Protocol (TCP) does not have direct access to Ethernet, so
Open Transport puts the default Internet Protocol (IP) between TCP and
Ethernet.

You can also specify options as part of the configuration string. To do this, you
need to know which protocols use which options and how to translate the
option’s constant name, given in the header files, into a string that the
configuration functions can parse. See the TCP/IP and AppleTalk chapters for
lists of their protocol-specific options and their equivalent string values. But for
a simple example, the following configuration string

"adsp,ddp(Checksum=1)"

describes an ADSP endpoint provider with the DDP checksum option enabled.

If you want to identify a particular port in the configuration string, you use the
port name to do so. Port names are documented in the chapter “Ports”. More
typically, however, you leave this value blank—for example, using only “adsp”

Configuring and Opening a Provider 35

36

CHAPTER 2

Getting Started With Open Transport

or "adsp, ddp". which configures the provider with whatever port is specified
in the AppleTalk control panel.

Most protocols have a literal string value that you can use to configure
providers. For example, DDP uses "ddp" and ADSP uses "adsp". There are also
constants that identify each protocol, such as kDDPName and kADSPName. For a
complete list of the AppleTalk constant-string equivalents, see the chapter
“Introduction to AppleTalk” in this book. For information on specifying TCP/
IP services, see the chapter “TCP/IP Services.”

You can use either a constant or a literal value to create a provider that does not
use options and that adheres to the default protocol layering. For example, to
configure a DDP endpoint, you could use either of the following lines of code:

ep 0TOpenEndpoint(0TCreateConfiguration("ddp"), 0, NULL, &err);

ep 0TOpenEndpoint(0TCreateConfiguration(kDDPName), 0, NULL, &err);

To configure more complex providers, it is easier to use the literal strings.
Using the constant can be confusing, shown by a comparison of the following
lines of code:

ep = 0TOpenkEndpoint(0TCreateConfiguration
("adsp(EnableEOM=1),ddp,1tT1kB"), 0, NULL, &err)
ep = 0TOpenkEndpoint(0TCreateConfiguration

(kADSPName" (EnableEOM=1),"kDDPName",1t1kB"), 0, NULL, &err);

Some configurations are not valid and the 0TCreateConfiguration function will
return an error if you try to create one. For example, trying to layer ADSP on
top of IP will not work.

Opening a Provider

You can pass the pointer returned by the function 0TCreateConfiguration to the
function that opens the provider, for example, the 0T0OpenEndpoint function.
Typically, you call the 0TCreateConfiguration function inline while calling the
function that creates and opens a provider. Here is an example

ep = 0TOpenEndpoint(0TCreateConfiguration("ddp"), 0, NULL, &err);

Configuring and Opening a Provider

CHAPTER 2

Getting Started With Open Transport

The function you use to open a provider returns a provider reference. You must
specify that provider reference whenever you call a function for that provider.
For example, if you open an endpoint provider, you must specify its provider
reference when you call a function that sends or receives data.

Reusing Provider Configurations

The functions used to open providers take a pointer to the configuration
structure as input, but as part of their processing, they dispose of the original
configuration structure. Since typically you use the 0TCreateConfiguration
function to create a single provider at a time, this does not present a problem.
Occasionally, however, you may want to reuse a configuration structure to
create a second identical provider, or you may want to reuse a configuration for
which you do not have the configuration string.

The only way to reuse a configuration structure is to clone it with the
0TCloneConfiguration function before opening your first provider. Cloning
allows you to make multiple copies of the same configuration. For example,
you might have only a pointer to a configuration structure, but you want to
create ten endpoints, and so you need ten configuration structures. The
moment you use the original pointer to create an endpoint, the configuration
structure is gone. You can’t call the 0TCreateConfiguration function because
you don’t have the original configuration string; you were only passed the
configuration structure. However, you can clone the original configuration
structure before opening each endpoint. For additional information, see
“Streamlining Endpoint Creation” (page 144).

Specitying an Address

This section explains the format of Open Transport addresses and the structure
used to specify an address. This section also introduces helper routines that can
do some of the work in creating these structures for you.

Addressing in Open Transport

Addresses in Open Transport all begin with a common structure that is
followed by protocol-specific fields. The common structure is defined by the
0TAddress type:

Specifying an Address 37

38

CHAPTER 2

Getting Started With Open Transport

struct OTAddress
{
0TAddressType fAddressType;
UInt8 fAddress([1];
by
typedef struct 0TAddress OTaddress;

The 0TAddress type itself is abstract. You would not declare a structure of this
type because it does not contain any address information. However, address
formats defined by Open Transport protocols all use the fAddressType field to
describe the format of the fields to follow, which do contain address
information. For example, the DDPAddress type is an address format used by the
AppleTalk protocol:

struct DDPAddress
{

0TAddressType fAddressType; /* must be AF_ATALK_DDP */
UIntlée fNetwork;

UInt8 fNodelD;

UInt8 fSocket;

UInt8 fDDPType;

UInt8 fpad;

Open Transport recognizes this address as a DDP address because the first field
of the address is AF_ATALK_DDP.

Address formats are protocol-specific. The protocol you choose determines the

address format that the endpoint you connect to or listen from will accept. For

example, if you're using an AppleTalk protocol, you have the choice of using a

DDFP, an NBF, or a DDP/NBP address format. When you use TCP/IP, you have
the choice of the InetAddress format or the DNS address format.

Using TNetBuf Structures

Most provider functions that transfer data pass a parameter of type TNetbuf
that specifies the size and location of the data. Such data is usually an address,
option information, or the actual data that you want to transfer. You can think
of the TNetbuf structure as Open Transport’s universal bucket, used to pass and
receive different kinds of information. Figure 2-1 shows how the TNetbuf
structure refers to data in memory.

Specifying an Address

CHAPTER 2

Getting Started With Open Transport

Figure 2-1 The TNetbuf structure
TNetbuf
maxlen Unused space
len
buf
. Data lTen Ymaxlen

The structure is composed of three fields: the buf field, the 1en field, and the
maxlen field. The buf field contains the beginning address of the data; the Ten
field specifies the size of the data; and the max1en field specifies the maximum
amount of data that can be stored in the buffer. How you use this structure
depends on whether the structure specifies an input or output parameter:

s If you are sending information (the structure is used to specify an input
parameter), you must allocate a buffer and initialize it to contain the data
you want to send. Then you must set the buf field to point to the buffer and
set the Ten field to specify the size of the data.

You may always allocate TNetbuf structures for input parameters on the
stack.

s If you are receiving information (the structure is used to specify an output
parameter), you must allocate a buffer into which the function can place the
information when it returns. Then you must set the buf field to point to the
buffer and set the max1en field to specify the maximum size of the data that
could be placed in the buffer. When the function returns, it sets the 1en field
to the actual size of the data.

If you are making asynchronous calls that use TNetbuf structures as output
parameters, you should allocate the TNetBuf structures (and the buffers they
point to) such that they persist until the operation completes. Typically, this
means that TNetbuf structures for output parameters should only be
allocated on the stack if the call is synchronous.

There are two situations in which you would not use a TNetBuf structure to
store data: when sending noncontiguous data, or when doing a no-copy
receive. For additional information about how you should handle these
situations, see “Advanced Topics(page 215).”

Specifying an Address 39

CHAPTER 2

Getting Started With Open Transport

Storing an Address in a TNetBuf Structure

When you pass an address to Open Transport, you use a ThetBuf structure.
Listing 2-1 shows how you might initialize that structure. The listing initializes
a DDP address, stores the address in a TNetBuf structure, and then passes that
address in the connectCall parameter to the 0TConnect function to connect to a
remote peer. Note that the addr field is also a TNetBuf structure.

Listing 2-1 Using a TNetBuf structure to store an address

40

void 0SStatus MyConnectDDP (EndpointRef ep, UIntl6é connectNetworkNumber,
UInt8 connectNodelID, UInt8 connectSockID)
{

0SStatus err;

TCall connectCall;

DDPAddress connectAddr;

/* initialize the DDP address to connect to */

connectAddr.fAddressType = AF_ATALK_DDP;
connectAddr.fNetwork = connectNetworkNumber;
connectAddr.fNodeID = connectNodelD;
connectAddr.fSocket = connectSockID;
connectAddr.fDDPType = 0;

/* initialize the TNetBuf that contains the address */
O0TMemzero(connectCall, sizeof(TCall));
connectCall.addr.buf (UInt8 *) &connectAddr;
connectCall.addr.len = sizeof(DDPAddress);

/* now pass the address to Open Transport */
err = O0TConnect(ep, &connectCall, nil);
return err;

Using Helper Routines to Initialize an Address

Some Open Transport protocols export routines that make the job of initializing
addresses simpler. For example, Listing 2-2 shows how you can use the
function 0TInitDDPAddress to simplify some the work done in Listing 2-1.

Specifying an Address

CHAPTER 2

Getting Started With Open Transport

Listing 2-2 Using Helper Routines to Initialize an Address

void 0SStatus MyConnectDDP (EndpointRef ep, UIntlé connectNetworkNumber,
UInt8 connectNodelID, UInt8 connectSockID)
{

0SStatus err;

TCall connectCall;

DDPAddress connectAddr;

/* initialize the DDP address to connect to */
OTInitDDPAddress(&connectAddr, connectNetworkNumber, connectNodelD,
connectSockID, 0);

/* initialize the TNetBuf that contains the address */
0TMemzero(connectCall, sizeof(TCall));
1
1

connectCall.addr.buf (UInt8 *) &connectAddr;

connectCall.addr.len = sizeof(DDPAddress);

/* now pass the address to Open Transport */
err = O0TConnect(ep, &connectCall, nil);
return err;

These helper routines are especially important when an address has a variable
length. For example, a DNS address, used by the TCP/IP protocol, is defined as
follows:

struct DNSAddress
{
0TAddressTYpe fAddressType; /* always AF_DNS */
InetDomainName fName;
}s
typedef struct DNSAddress DNSAddress;

The fName field of this structure can vary in length. You must pass a DNS
address in a TNetBuf structure that gives the correct length of the entire address.
The helper routine, 0TInitDNSAddress, not only fills in the fields of the
DNSAddress structure but also returns the correct length for the TNetBuf.len
field. This technique is shown in Listing 2-4 (page 46).

Specifying an Address 41

CHAPTER 2

Getting Started With Open Transport

Closing Open Transport

42

This section describes the steps you should take when you no longer need
Open Transport. Although the Mac OS provides an automatic clean-up
mechanism for applications that call Open Transport functions, it is intended
only as a safety net. It's a good idea to do your own clean up, at least for
normal application termination. In addition non-application programs are
always required to close Open Transport.

System software cannot unload the Open Transport kernel until the last
program on the computer that called the InitOpenTransport or
InitOpenTransportUtilities function has also called the CloseOpenTransport
function. So, if your application only uses the network occasionally, it might be
wise to initialize Open Transport only when you need the network, and to close
Open Transport immediately after you stop using it.

Closing From Applications

When you are no longer using Open Transport, you can unload the Open
Transport software modules by calling the Cl1oseOpenTransport function.

It is best if 68000 applications call the C1oseOpenTransport function, but this will
be done automatically if they don't.

Note

If you are running PowerPC applications under version 1.1
(or earlier) of Open Transport, you must call the
CloseOpenTransport function when terminating. One way
to make sure that you do this is to use a CFM terminate
procedure in your main application fragment, as shown in
Listing 2-3. If you set the appropriate linker option, the
system will call the CFMTerminate procedure regardless of
how your application terminates.

Closing Open Transport

CHAPTER 2

Getting Started With Open Transport

Listing 2-3 CFM terminate procedure

static Boolean g0TInited = false;

void CFMTerminate (void); /* do this if abnormal termination */
{
if (gOTInited)
{
g0TInited = false;
(void) CloseOpenTransport();

}

void main (void)

{
0SStatus err;
err = InitOpenTransport();
g0TInited = (err ==nokrr);

/* the rest of your application goes here */

if (gOTInited) /* do this for normal termination */
{
g0TInited = false;
(void) CloseOpenTransport();
}

Note

Open Transport only provides CFM support for 68000
code beginning with version 1.3 O

Closing From Stand-Alone Code

For stand-alone code segments, you must call the Close0OpenTransport function
before you unload from memory. Note that Open Transport only unloads if all
clients are done using Open Transport and have called the C1oseOpenTransport
function.

Closing Open Transport 43

CHAPTER 2

Getting Started With Open Transport

Open Transport Libraries

The libraries that you need to link with vary depending on whether you are
writing PowerPC code or 68000 code and on a variety of additional factors,
specified in the tables that follow. Table 2-1 lists the libraries you need to link
with if you are writing PowerPC code.

Table 2-1 Open Transport libraries for PowerPC code

If you need... Link with...

to build an application OpenTransportlLib
OpenTransportAppPPC.o0

AppleTalk services OpenTptAppleTalklLib
OpenTptATalkPPC.o

Internet services OpenTptinternetlib
OpenTptInetPPC.o0

to use ports or Open Transport OpenTransportUtilLib

Utility functions only (instead of OpenTransportLib)

OpenTptUtilsAppPPC.o0
(instead of OpenTransportAppPPC.0)

to build a CFM fragment or ASLM OpenTransportExtnPPC.o
shared library (instead of OpenTransportAppPPC.0)

OpenTptUtilsExtnPPC.o
(instead of OpenTptUtilsAppPPC.0)

Note

If your code is meant to run on machines with and without
Open Transport, you should make sure to weak-link with
the libraries ending in Lib. Otherwise, the system cannot
launch your application when Open Transport is not
installed. For more information on weak linking, see Inside
Macintosh: PowerPC System Software. O

44 Open Transport Libraries

CHAPTER 2

Getting Started With Open Transport

Table 2-2 lists the libraries you need to link with if you are writing 68000 code. Link with the
libraries in square brackets if you are building MPW model-near clients.

Table 2-2 Open Transport libraries for 68000 code

If you need... Link with...
to build an application OpenTransport.o [OpenTransport.n.o]

OpenTransportApp.o [OpenTransportApp.n.o]

AppleTalk services OpenTptATalk.o [OpenTptATalk.n.o]
Internet services OpenTptInet.o [OpenTptInet.n.o]
to use ports or Open OpenTptUtils.o

Transport utility (instead of OpenTransport.o)

functions onl
y [OpenTptUtils.n.o]

(instead of OpenTransport.n.o)

to build a stand-alone OpenTransportExtn.o
code resource or ASLM (instead of OpenTransportApp.o)
shared library

[OpenTransportExtn.n.o]
instead of OpenTransportApp.n.o.)

Downloading a URL With HTTP

The sample code shown in Listing 2-4 downloads a URL from a web server. It
includes two functions: a simple notifier, YieldingNotifier, and a function,
MyDownloadHTTPSimple, that downloads the URL. Because the function
MyDownloadHTTPSimple contains synchronous calls to Open Transport, the
notifier is used to call the function YieldToAnyThread, which cedes time to the
processor while a synchronous operation waits to complete. A detailed
discussion is contained in the sections following the listing.

The code shown in Listing 2-4 begins by initializing required debugging flags
and including the appropriate header files. The 0TDebugStr function is not

Downloading a URL With HTTP

CHAPTER 2

Getting Started With Open Transport

defined in any of the Open Transport header files, but it is exported by the
libraries, so its prototype is included.

Listing 2-4 Downloading a URL With HTTP

46

##ifndef qDebug /* The 0T debugging macros in <0TDebug.h> */
ffdefine gDebug 1/* require this variable to be set.*/
ffendif

f#include <OpenTransport.h>

#Finclude <OpenTptInternet.h> /* header for TCP/IP */

#include <0TDebug.h> /* header for 0TDebugBreak, OTAssert macros */
#include <Threads.h> /* declaration for YieldToAnyThread */
#include "OTSimpleDownloadHTTP.h" /* header for our own protype */

extern pascal void 0TDebugStr(const char* str);

enum
{ kTransferBufferSize = 4096 };/* define size of buffer */

/* define notifier */

static pascal void YieldingNotifier(void* contextPtr, OTEventCode code,
OTResult result, void* cookie)

f#fpragma unused(contextPtr)
f#fpragma unused(result)
ffpragma unused(cookie)
0SStatus junk;

switch (code)
{
case kOTSyncIdleEvent:
junk = YieldToAnyThread();
0TAssert("YieldingNotifier: YieldToAnyThread failed",
junk == noErr);
break;
default:
/* do nothing */
break;

Downloading a URL With HTTP

CHAPTER 2

Getting Started With Open Transport

/* Define function that downloads a URL from a web server. */

0SStatus MyDownloadHTTPSimple(const char *hostName,
const char *httpCommand,
const short destFileRefNum)

0SStatus err;
0SStatus junk;

Ptr transferBuffer = nil;
EndpointRef ep = kOTInvalidEndpointRef;
TCall sndCall;

DNSAddress hostDNSAddress;

OTFTags junkFlags;

0TResult bytesSent;

0TResult bytesReceived;
OTResult lookResult;

Boolean bound = false;

/* Allocate a buffer for storing the data as we read it. */
err = nokrr;
transferBuffer = O0TAlTocMem(kTransferBufferSize);
if (transferBuffer == nil)
err = KENOMEMErr;
/* Open a TCP endpoint. */
if (err == noktrr)
{
ep = 0TOpenkEndpoint(0TCreateConfiguration(kTCPName), 0, nil,
&err);

/* 1f the endpoint opens successfully... */

if (err == noktrr)
{

Downloading a URL With HTTP

48

CHAPTER 2

Getting Started With Open Transport

junk = 0TSetSynchronous(ep);
0TAssert("MyDownloadHTTPSimple: 0TSetSynchronous failed",
Jjunk == nokrr);

junk = 0TSetBlocking(ep);

O0TAssert("MyDownloadHTTPSimple: 0TSetBlocking failed",
Jjunk == nokrr);

Jjunk = OTInstallNotifier(ep, YieldingNotifier, nil);
O0TAssert("MyDownloadHTTPSimple: OTInstallINotifier failed",
junk == nokrr);

Jjunk = 0TUseSyncIdleEvents(ep, true);
O0TAssert("MyDownloadHTTPSimple: 0TUseSyncldleEvents failed",
junk == nokrr);

/* Bind the endpoint. */

err = 0TBind(ep, nil, nil);
bound = (err == nokrr);

/* Initialise the sndCall structure and call OTConnect. */
if (err == nokrr)
{
0TMemzero(&sndCall, sizeof(TCall));
sndCall.addr.buf = (UInt8 *) &hostDNSAddress;
sndCall.addr.len = OTInitDNSAddress(&hostDNSAddress, (char *)
hostName) ;

err = O0TConnect(ep, &sndCall, nil);

/* Send the HTTP command to the server. */
if (err == nokrr)
bytesSent = 0TSnd(ep, (void *) httpCommand,

0TStrLength(httpCommand), 0);
if (bytesSent > 0)

Downloading a URL With HTTP

CHAPTER 2

Getting Started With Open Transport

err = nokrr;
else err = bytesSent;
}
/* Now we receive the data coming back from the server. */
if (err == nokrr)
{
do
{
bytesReceived = 0TRcv(ep, (void *) transferBuffer,
kTransferBufferSize, &junkFlags);

if (bytesReceived > 0)
err = FSWrite(destFileRefNum, &bytesReceived,
transferBuffer);
else err = bytesReceived;

} while (err == nokrr); /* Loop until we get an error. */
/* Now handle the various forms of error that can occur. */
if (err == kOTLookErr)
{
lTookResult = OTLook(ep);
switch (lookResult)
{

case T_DISCONNECT:

err = O0TRcvDisconnect(ep, nil);
break;

case T_ORDREL:

err = 0TRcvOrderlyDisconnect(ep);

if (err == noktrr)
{err = 0TSndOrderlyDisconnect(ep);}
break;
default:
break;

Downloading a URL With HTTP

49

CHAPTER 2

Getting Started With Open Transport

if ((err == nokrr) && bound)
{
junk = 0TUnbind(ep);
O0TAssert("MyDownloadHTTPSimple: OTUnbind failed.",
junk == nokrr);

/* Clean up. */

if (ep != kOTInvalidEndpointRef)

{
junk = 0TCloseProvider(ep);
O0TAssert("MyDownloadHTTPSimple: OTCloseProvider failed",

Jjunk == nokrr);

}

if (transferBuffer != nil)

O0TFreeMem(transferBuffer);

return (err);

Using Threads for Easy Synchronous Processing

The notifier shown in Listing 2-4 (page 46) is used to yield time to the processor
whenever the endpoint receives a k0TSyncIdleEvent. Open Transport sends this
event whenever it’s waiting for a synchronous operation to complete. In
response, your notifier should call the function YieldToAnyThread.

static pascal void YieldingNotifier(void* contextPtr, OTEventCode code,
OTResult result, void* cookie)

#fpragma unused(contextPtr)
#fpragma unused(result)
#fpragma unused(cookie)
0SStatus junk;

switch (code)

{
case kOTSynclIdleEvent:

Downloading a URL With HTTP

CHAPTER 2

Getting Started With Open Transport

junk = YieldToAnyThread();
OTAssert("YieldingNotifier: YieldToAnyThread failed",
junk == nokrr);
break;
default:
/* do nothing */
break;

Specifying the Host Names and HTTP Commands

The next section of code in Listing 2-4 (page 46) calls the function
MyDownloadHTTPSimple. This function accepts three parameters: the name of the
host to which you want to connect, the command to send to the host, and a
reference to the file to which you want to download the URL.

0SStatus MyDownloadHTTPSimple(const char *hostName,
const char *httpCommand,
const short destFileRefNum)

/* declarations go here */

The parameter hostName is a pointer to a string that contains the DNS
address of the web server. The DNS address must have the suffix :<port>,
where port is the port number the web server is operating on.

The parameter httpCommand is a pointer to the HTTP command to send.
Typically this command has the following form, where <x> is the URL path.

Get <X> HTTP/1.0\0xI13\0x10\0x13\0x10

For example, if you were to download the URL
http://devworld.apple.com/dev/technotes.shtml

You would set hostName to devworld.apple.com:80. (The default port for HTTP
is 80.) And you would set httpCommand to

“GET /dev/technotes.shtml HTTP/1.0\0x13\0x10\0x13\0x10”

The parameter destFileRefNum is the reference number of the file to which the
results of the HTTP command are written. The function MyDown1oadHTTPSimple

Downloading a URL With HTTP

CHAPTER 2

Getting Started With Open Transport

does not parse the returned HTTP header. The entire incoming stream is
written to the file.

Opening an Endpoint and Setting the Mode of Operation

The first section of the function MyDown1oadHTTPSimple shown in Listing 2-4
(page 46) opens a TCP endpoint, sets the mode of operation, and installs the
notifier YieldingNotifier.

if (err == nokrr)
ep = 0TOpenEndpoint(0TCreateConfiguration(kTCPName), 0, nil,
&err);
/* If the endpoint opens successfully... */
if (err == nokrr)

{
junk = 0TSetSynchronous(ep);
OTAssert("MyDownloadHTTPSimple: 0TSetSynchronous failed",
junk == noktrr);

junk = 0TSetBlocking(ep);

OTAssert("MyDownloadHTTPSimple: 0TSetBlocking failed",
junk == noktrr);

Jjunk = OTInstallNotifier(ep, YieldingNotifier, nil);
OTAssert("MyDownloadHTTPSimple: OTInstallNotifier failed",
junk == noktrr);
junk = 0TUseSyncldleEvents(ep, true);
OTAssert("MyDownloadHTTPSimple: 0TUseSyncldleEvents failed",
junk == noktrr);

/* Bind the endpoint. */

err = 0TBind(ep, nil, nil);
bound = (err == nokrr);

Downloading a URL With HTTP

CHAPTER 2

Getting Started With Open Transport

The 0TOpenEndpoint function opens the endpoint and returns an endpoint
reference (ep). You need to specify this endpoint reference when you set the
mode of execution for the endpoint, when you bind the endpoint to an address,
and, later, when you establish a connection, receive data, and close the
endpoint. The mode of operation for the endpoint is set as synchronous
blocking with the call to the 0TSetSynchronous function and the 0TSetBlocking
function. The call to the function 0TInstallNotifier installs the notifier
YieldingNotifier. The call to the function 0TUseSyncldleEvents tells Open
Transport to send k0TSyncIdleEvents to this endpoint; the notifier responds to
this event by yielding time to other processes, as noted in “Using Threads for
Easy Synchronous Processing” (page 50).

Using a synchronous blocking mode of operation results in a simpler
programming model, and the use of the notifier function to yield time to other
processes prevents the machine from hanging when synchronous operations
are waiting to complete.

Finally, the call to the 0TBind function binds the endpoint to a TCP address. (A
connection-oriented endpoint can initiate a connection only after the endpoint
is bound or queue incoming connection requests.) The second parameter
requests the address to which you want to bind the endpoint. In this case, a
value of ni1 is passed; because this is an outgoing connection, it does not
particularly matter what address the endpoint is bound to. The third parameter
to the 0TBind function returns the address to which Open Transport has
actually bound the endpoint. The code passes ni1 because we don’t need that
information.

Connecting to the Host and Sending Data

The next section of the function MyDownloadHTTPSimple, shown in Listing 2-4
(page 46), connects to the host and sends an HTTP command to the server. The
0TConnect function, which is used to connect the endpoint, passes three
parameters: in this case, ep (the endpoint reference), &sndCall (a pointer to the
address of the remote endpoint), and a pointer to a buffer in which 0TConnect
can return information about the connection. Because no data or options were
specified with the sndCal1 parameter, it is not necessary to examine any
information returned by the function, so the third parameter is set to ni1.

if (err == nokrr)

{
0TMemZero(&sndCall, sizeof(TCall));
sndCall.addr.buf = (UInt8 *) &hostDNSAddress;

Downloading a URL With HTTP 53

54

CHAPTER 2

Getting Started With Open Transport

sndCall.addr.len = OTInitDNSAddress(&hostDNSAddress, (char *)
hostName) ;
err = O0TConnect(ep, &sndCall, nil);

/* Send the HTTP command to the server. */

if (err == noktrr)
{
bytesSent = 0TSnd(ep, (void *) httpCommand,
0TStrLength(httpCommand), 0);
if (bytesSent > 0)
err = nokrr;
else err = bytesSent;

Before calling the 0TConnect function, the sndCa11 structure is initialized. In this
case, only the address fields are specified because we are neither sending data
with the connection request nor asking for specific option values. The
specification of the address is described in detail in “Storing an Address in a
TNetBuf Structure” (page 40).

After connecting to the server, the 0TSnd function is called to send the HTTP
command. The 0TSnd function takes four parameters: in this case, ep (the
endpoint reference), httpCommand (a pointer to the data being sent),
0TStrLength(httpCommand) (the length of the data), and 0 (specifying that no
flags are set). The 0TSnd function returns the number of bytes sent or a negative
number representing an error code if an error occurred. Because the endpoint is
in synchronous mode, the function won'’t return until it has sent all the bytes or
it returns an error. The code following the call to 0TSnd tests to see whether the
return value of the function is greater than zero to determine whether or not an
error occurred.

Receiving Data From the Remote Endpoint

As shown in Listing 2-4 (page 46) after establishing the connection and sending
the data, the function MyDownloadHTTPSimp1e calls the function 0TRcv, which
returns the number of bytes received or a negative (error code) number.

Downloading a URL With HTTP

CHAPTER 2

Getting Started With Open Transport

if (err == noktrr)

do
{
bytesReceived = 0TRcv(ep, (void *) transferBuffer,
kTransferBufferSize, &junkFlags);

if (bytesReceived > 0)
err = FSWrite(destFileRefNum, &bytesReceived,
transferBuffer);

else err = bytesReceived;

} while (err == noErr); /* Loop until we get an error. */

Because the endpoint is in synchronous blocking mode, the function won’t
return until it has received all the data you asked for, or it returns an error. The
0TRcv function is called repeatedly until it gets an error, which indicates that
there is no data left to receive. The function 0TRcv takes four parameters: in this
case ep (the endpoint reference), transferBuffer (a pointer to the buffer in
which data is to be placed), kTransferBufferSize (which specifies the size of the
buffer), and &junkFlags (a pointer to a buffer for flags information), which this
sample ignores.

As it receives data, the function MyDownloadHTTPSimple calls the FSWrite function
to write the data to a file.

Error Handling

The next section of the function MyDownloadHTTPSimple in Listing 2-4 (page 46)
handles errors that might be returned. The most common error is k0TLookErr.
This indicates that some event has happened that you need to look at. To do
this, the function MyDown1oadHTTPSimpTe calls the function 0TLook, which returns
an event code for the pending event.

if (err == kOTLookErr)
{
lTookResult = OTLook(ep);

switch (TookResult)
{

Downloading a URL With HTTP 55

56

CHAPTER 2

Getting Started With Open Transport

case T_DISCONNECT:

err = O0TRcvDisconnect(ep, nil);
break;

case T_ORDREL:

err = 0TRcvOrderlyDisconnect(ep);

if (err == nokrr)
{err = 0TSndOrderlyDisconnect(ep);}
break;
default:
break;

The switch statement includes cases for the most common types of events,
T_DISCONNECT and T_ORDREL, and handles them appropriately. The event
T_DISCONNECT signals that the remote peer has initiated a disorderly disconnect.
HTTP servers will often just disconnect to indicate the end of the data, so all
that is needed in response is to clear the event by calling the function
0TRcvDisconnect. The event T_ORDREL signals that the remote peer has initiated
an orderly disconnect. This means it has no more data to send. In response,
your function clears the T_0RDREL event by calling the 0TRcvOrderlyDisconnect
function and then calls the 0TSnd0Order1yDisconnect to let the remote peer know
that it received and processed the event.

Unbinding the Endpoint and Final Clean-Up

As Listing 2-4 (page 46) shows, having received the data requested, the
function MyDown1oadHTTPSimple unbinds the endpoint. The conditional call to
the 0TCloseProvider function closes the endpoint. The following call to the
0TFreeMem function frees up memory for the buffer that was allocated to receive
data from the 0TRcv function.

if ((err == nokrr) && bound)
{
junk = 0TUnbind(ep);
0TAssert("MyDownloadHTTPSimple: OTUnbind failed.",
junk == noktrr);

Downloading a URL With HTTP

CHAPTER 2

Getting Started With Open Transport

/* Clean up. */
if (ep != kOTInvalidEndpointRef)
{

junk = 0TCloseProvider(ep);
0TAssert("MyDownloadHTTPSimple: O0TCloseProvider failed.",

junk == nokrr);

Downloading a URL With HTTP

57

58

CHAPTER 2

Getting Started With Open Transport

Downloading a URL With HTTP

CHAPTER 3

Providers

Contents

About Providers 61
Provider Functions 63
Interrupt-Time Processing 64
Modes of Operation 65
Provider Events 67
Function Results 68
Using Providers 69
Controlling a Provider’s Modes of Operation 70
Which Mode To Use 70
Specifying How Provider Functions Execute 71
Setting a Provider’s Blocking Status 72
Setting a Provider’s Send-Acknowledgment Status
Using Notifier Functions to Handle Provider Events
Transferring a Provider’s Ownership 77
Closing a Provider 79

Contents

72
73

59

60

CHAPTER 3

Contents

CHAPTER 3

Providers

This chapter describes providers, software entities that offer data-oriented
services, and introduces the main types of providers. It also discusses the use of
general provider functions, which you can use with any provider regardless of
its type. You use these functions to

= open and close providers

= set a provider’s mode of operation

= cancel synchronous processing

= issue a command directly to a STREAMS module underlying a provider

Later chapters in this book describe each type of provider in detail. This
chapter describes the function you use to close a provider because you use the
same function for all types of providers.

Before you read this chapter, you should read the chapter “Introduction to
Open Transport” (page 5). After reading this chapter, you can read the chapter
describing the provider whose services you are interested in. To use the
functions described in this chapter, you must first use the InitOpenTransport
function to initialize Open Transport. This function is described in the chapter
“Getting Started With Open Transport” (page 31).

For reference information about the functions and data structures introduced in
this chapter, see “Providers Reference” (page 383).

About Providers

A provider is a layered set of protocols, implemented by STREAMS modules,
that provides some kind of data-oriented service. That service might be
implementing a networking protocol, encrypting data, filtering data, and so on.
When you configure a provider, you can layer the modules that implement the
provider to create an arbitrarily complex service. For example, you can place an
encryption module above the AppleTalk Data Stream Protocol (ADSP) module.
This combination would provide a stream of network data that was secure
from snooping on the network.

Open Transport defines three main types of providers:
= endpoint providers

= mapper providers

About Providers 61

62

CHAPTER 3

Providers

= service providers

An endpoint provider offers a service that creates connections and moves data
from one logical address to another. A mapper provider offers services that
you use to associate, or “map,” network entity names with network addresses.
A service provider lets you perform tasks that are specific to a particular
protocol, such as AppleTalk or TCP/IP. Each protocol family has the option of
providing a service provider if one is needed.

In the normal course of events you do not communicate directly with the
STREAMS modules that make up a provider. For example, to use an endpoint
provider, you must open an endpoint and use the functions defined in the
Open Transport application programming interface (API) for endpoints. The
Open Transport API shields your application from the details of the provider
implementation, allowing your application to run with little or no change, even
when the implementation of the provider is changed, or updated.

To use a provider, you must initialize Open Transport and then call the
function that opens the provider. When that function returns, it passes back to
you a reference to the provider you have just created. A provider reference is
like a file handle or a driver reference number. It associates a function called
from your application with a specific provider that must implement the
function; you pass the provider reference as a parameter to all provider
functions. The data type of a provider reference depends on the type of the
provider (endpoint reference, mapper reference, AppleTalk service reference,
and so on).

You can open one provider or many. For example, a server application might
open many providers and use them concurrently. The number of providers you
can create is limited mainly by the availability of memory. The memory used to
create a provider comes partly from your application heap but mostly from the
system heap.

About Providers

CHAPTER 3

Providers

C++ note

The C++ API for Open Transport includes a class called
TProvider that is the superclass for all provider-related
member functions. Endpoint functions are in class
TEndpoint, mapper functions are in class TMapper, and
service provider functions are in classes corresponding to
specific protocol stacks. For example, the classes
TAppleTalkServices and TInternetServices contain
AppleTalk-specific and TCP/IP-specific member functions.

In object-oriented programming parlance, endpoints,
mappers, and the data structures maintained by Open
Transport for service providers are all objects. An
endpoint, for example, is an object instantiating the class
TEndpoint. An endpoint contains all the data that Open
Transport needs to link together software modules,
drivers, and hardware for a specific endpoint provider. All
of the Open Transport API functions except the functions
that open providers and some utility functions are
included in the class definitions of the various classes of
providers.

You can call public member functions of the TProvider
class for provider objects of any type: these functions are
the general provider functions. Public member functions
defined in a subclass of the TProvider class (for example,
TEndpoint) can be called only for providers belonging to
that subclass—in this example, only from the TEndpoint
subclass. These functions are the type-specific provider
functions. Note that, as with endpoints and mappers, each
kind of service (for AppleTalk, TCP/IF, and so on) derives
directly from the TProvider class; there is no other class for
services-type providers. O

Provider Functions

Functions that manipulate providers are known as provider functions. Some
provider functions can manipulate providers of any type. These are called
general provider functions and they are documented in detail in “Providers
Reference” (page 383). You use general provider functions to

About Providers

64

CHAPTER 3

Providers

= getor set a provider’s default mode of operation, which determines
whether provider functions execute synchronously or asynchronously,
whether a provider can wait to send or receive data, and whether functions
that send data make a copy of that data

» install and remove a notifier callback function, which the provider uses to
pass information to your application

» send a module-specific command, which allows you to communicate
directly with the STREAMS modules that make up your provider

= close a provider

In addition to the general provider functions, each type of provider has
type-specific provider functions; these functions work with only that particular
type of provider. For example, endpoint functions work only with endpoint
providers, and mapper functions work only with mapper providers. Each type
of service provider (for AppleTalk, TCP/IP, and so on) has its own type-specific
provider functions.

Provider functions that accept a provider reference of type ProviderRef are
general: they accept any other type of provider reference as well. But functions
that require a type of provider reference other than ProviderRef (for example,
EndpointRef) are type-specific: they accept only that type of provider reference.

Interrupt-Time Processing

The Open Transport functions that you can call and the means by which you
call them vary with the level of execution: system task time, deferred task time,
and hardware interrupt time.

In general you can call all Open Transport functions at system task time and
most Open Transport functions, asynchronously, at deferred task time. At
hardware interrupt time, you are much more limited: you cannot call any of the
provider functions and you can call only a small number of Open Transport
functions. Software executed at hardware interrupt level includes installable
interrupt handlers for NuBus and other devices, Time Manager tasks, VBL
tasks, and routines called from within a hardware interrupt handler.

Because it is possible to call many more Open Transport functions from
deferred-task level than from hardware-interrupt level, if you need to call an
Open Transport function from hardware-interrupt level, you can use the Open
Transport function 0TScheduleDeferredTask or the system function DTInstall to
have those functions execute at deferred task time. Deferred tasks are

About Providers

CHAPTER 3

Providers

scheduled to run when all other hardware interrupt processing is done but
before system task processing resumes.

For more information about execution levels and deferred tasks, see Inside
Macintosh: Processes. For a more detailed view of processing and Open
Transport, see Chapter 5, “Programming With Open Transport.” For a list of
those functions you can call at hardware-interrupt level and deferred-task
level, see “Special Functions” (page 793).

Modes of Operation

For each provider, you can use general provider functions to specify how
providers execute, whether the provider can block when sending or receving
data, and whether endpoint providers acknowledge sends.

A provider can execute in synchronous mode or in asynchronous mode. In
synchronous mode, provider functions return only when they complete
execution. In asynchronous mode, they return as soon as they are queued for
execution.

A provider’s blocking status affects how functions that send and receive data
behave when they must wait to complete an operation. If a provider is
blocking, it either waits for as long as it takes to send or receive data (for a
synchronous call) or it returns with a result indicating why the operation could
not be done immediately (asynchronous call). If a provider is nonblocking, the
provider attempts to send or receive data and, if it cannot do so immediately, it
returns with a result indicating why it could not complete the operation.

A provider’s mode of execution and blocking status act together to control the
provider’s behavior. There are four possible combinations; of these, though
only three offer a practical use:

s synchronous blocking

In this mode, if flow control or other conditions prevent data from being sent
or received, the function returns when it is actually able to send or receive
the data. Placing a provider in sychronous blocking mode can halt all
operations on a Mac OS computer until the operation can complete. For
information on how to manage this situation, see “Specifying How Provider
Functions Execute” (page 71).

= synchronous nonblocking

About Providers 65

66

CHAPTER 3

Providers

In this mode, if flow-control conditions prevent data from being sent or
received, the function returns with the result kOTF1owErr or a number
indicating only a partial send. Open Transport calls the provider’s notifier
with a T_GODATA or T_GOEXDATA event when flow control lifts. You must call
the function again to continue to send or receive data.

» asynchronous blocking

In this mode, if flow-control conditions prevent data from being sent or
received, the function returns with the result kOTF1owErr or a number
indicating only a partial send. Open Transport calls the provider’s notifier
with a T_GODATA or T_GOEXDATA event when flow control lifts. You must call
the function again to send or receive data. If the function cannot complete
due to contention for STREAMS resources, it will wait until the required
resources are available.

» asynchronous nonblocking

In this mode, if flow-control conditions prevent data from being sent or
received, the function returns with k0TF1owErr, It can also return kEAgainErr.
if the function cannot execute as a result of contention for STREAMS
resources. Since the point of using asynchronous functions is to be able to
continue processing undisturbed until the function returns, using
asynchronous nonblocking mode is not practical, as the function might
return with the kEAgainErr result a number of times before it actually
completes.

A provider’s blocking status also governs what happens when you close a
provider. In non-blocking mode, closing the provider flushes all outgoing
commands in the stream and immediately closes the provider. In blocking
mode, the stream is given up to 15 seconds per module to allow outgoing
commands to be processed before the stream is closed.

A provider’s send-acknowledgment status determines whether endpoint
functions that send data make an internal copy of the data before sending it.
Open Transport ignores the send-acknowledgment status for mapper and
service providers.

For specific recommendations about which mode to use and how to set that
mode, see “Controlling a Provider’s Modes of Operation” (page 70).

About Providers

CHAPTER 3

Providers

Provider Events

Open Transport defines three kinds of events called provider events. These
events are unique to the Open Transport architecture and are not events in the
usual Macintosh sense: they are not processed by the Event Manager, and they
have no associated Event Record. Rather, Open Transport uses provider events
to inform your application that something has occurred which demands your
immediate attention or to signal the fact that a function executing in
asynchronous mode has completed. The first kind of provider event is called an
asynchronous event, the second kind is called a completion event, and the third
kind is called a miscellaneous event. In this book, the term event refers to a
provider event, except where noted otherwise.

A provider uses asynchronous events to notify your application that data has
arrived or that a request for a connection or disconnection is pending. Most
asynchronous events defined for Open Transport have equivalents in the X/
Open Transport Interface (XTI), from which the Open Transport interface
derives.

XTI does not define completion events. A provider uses completion events to
notify your application that an asynchronous function has finished executing.
Some functions are inherently synchronous and have no corresponding
completion event. For example, if an endpoint provider is in asynchronous
mode and you execute the 0TGetEndpointState function, the function returns
information about the state of the endpoint immediately. The description of a
function indicates whether the function behaves differently in asynchronous
mode.

Miscellaneous events are used to notify you or warn you of a change of state
in the provider: for example, the provider is about to be closed.

A provider event is identified by a provider event code. These are listed and
described in the event codes enumeration (page 383).

= Completion events have a prefix of T_ and the suffix COMPLETE; for example,
T_BINDCOMPLETE.

= Asyncronous events have a prefix of T_ and no uniform suffix; for example,
T_DATA or T_MEMORYRELEASED.

= Miscellaneous events have a prefix of k0T and no uniform suffix; for
example, kOTProviderWillClose.

In general, to receive notice of provider events, you must provide a notifier
function and install it for the provider. A notifier function is a function that

About Providers 67

68

CHAPTER 3

Providers

you write and that the provider will call when an event occurs. When the
provider calls this function, it uses the function’s parameters to pass back
information about the event that occurred, and if this is a completion event, it
also passes back additional information about the result of the function that
completed and a pointer to any other information passed back by the function.
The section “Using Notifier Functions to Handle Provider Events” (page 73)
provides additional information about notifier functions and the issues
involved in asynchronous processing. You can also refer to “Using Notifier
Functions” (page 405) for a description of the notifier functions.

Function Results

Most Open Transport functions return a result of type 0SStatus or 0TResult.
The main difference between these is that a result of type 0SStatus is either 0
(kOTNoError) or a negative number indicating an error code; a result of type
0TResult can be either a positive value whose meaning varies with the function
called or a negative value indicating an error code. Appendix B (page 785) lists
all result codes returned by Open Transport.

» For synchronous function calls, a result of k0TNoError indicates that the
function succeeded. A negative value indicates an error.

» For asynchronous function calls, if the result code is kOTNoError, the
operation was successfully started. When the function completes execution,
the provider will call the notification function you installed with an event
code to indicate which operation completed and a result code indicating
whether it succeeded. If an asynchronous function returns any immediate
result other than k0TNoError, this means that the operation failed before it
was started; your notifier will not be called.

The discussion of functions in the reference section of this book describes the
meaning of the errors that are most likely to occur for each function. In
addition, every Open Transport function might return the result codes listed in
Table 3-1. For additional information, please look up the meaning of these
result codes in Appendix B (page 785).

About Providers

CHAPTER 3

Providers

Table 3-1 Result codes that all Open Transport functions can return

Result code Meaning

KEBADFErr The provider reference you supplied is invalid.

kO0TBadSyncErr You made a synchronous call at an inappropriate
level.

KENOMEMErr There is not enough memory to complete the
request.

KENOSRErr There are not enough system resources to complete
the request.

KEAGAINErr A provider is in non-blocking mode and Open

KEWOULDBLOCKE P Transport would have to block to complete the

kOTProtocolErr
kOTCTientNotInittedErr
kOTOutStateErr

kOTStateChangeErr

Using Providers

request.

An unspecified protocol error occurred. This is
usually fatal. To recover, close the provider.

You have not initialized Open Transport or Open
Transport Utilities.

The endpoint is not in an appropriate state for the
operation you wish to execute.

The endpoint is undergoing a transient state
change. This error is returned when you call a
function while an endpoint is in the process of
changing states. You should wait for an event
indicating the endpoint has finished changing state
and call the function again. The provider also
returns this error if you attempt to call an
“incompatible” function while another operation is
still ongoing; for example if you call the function
0TSndUData while a call to the 0TOptionManagement
function is still outstanding.

This section explains how you obtain and change a provider’s mode of
operation; it provides a more detailed discussion of asynchronous processing
and the use of notifier functions; and it explains how you close a provider.

Using Providers

69

70

CHAPTER 3

Providers

In addition to the functions used to set a provider’s mode of operation and to
close a provider, general provider functions include the 0TIoct1 function,
which you can use to communicate directly with a STREAMS module
implementing a networking protocol. For more information, see the description
of that function in Providers Reference(page 383).

Controlling a Provider's Modes of Operation

A provider’s mode of operation determines how provider functions execute
and determines the behavior of provider functions that send and receive data.
You can control a provider’s mode of operation by calling general provider
functions to specify whether provider functions execute synchronously or
asynchronously, whether provider functions can block, and whether they can
acknowledge sends. The following three sections provide additional
information about how you can obtain a provider’s current mode of operation
and how you can change it.

Which Mode To Use

Use the following guidelines in determining which mode to use:
= For easiest programming,

If you are using threads, use synchronous, blocking mode and call the
function 0TUseSynchIdleEvents.

If you do not use threads, use synchronous, nonblocking and poll for events
using the function GetEndpointState.

Using providers in synchronous mode makes for very easy coding; however,
if they are also blocking, this could severely affect performance. One way to
manage this problem is to call the function 0TUseSyncIdleEvents (page 410)
just after setting the provider’s mode of operation. This function generates
events of the type k0TSyncIdleEvents and sends them to your notifier while
Open Transport is waiting to complete a synchronous call. On receipt of this
event, your notifier should call the system function YieldToAnyThread; this
transfers execution to another thread, thus allowing processing to continue
while your synchronous operation waits to complete. You should avoid
calling functions in synchronous mode at non-System-Task time.

» For best performance, use asynchronous blocking mode.

Asynchronous processing requires some additional work: you must make
sure that memory you have allocated for a function’s output parameters is

Using Providers

CHAPTER 3

Providers

persistent and you must use some sort of mechanism to determine when the
function has actually completed. These issues are taken up in the section
“Using Notifier Functions to Handle Provider Events” (page 73).

= Never use asynchronous nonblocking mode.

Specifying How Provider Functions Execute

For each provider, you can control whether provider functions run
synchronously or asynchronously. When you open a provider, you set its
default mode of execution. For example, when you open an endpoint provider,
you can use either the function 0TOpenEndpoint or 0TAsyncOpenEndpoint. If you
open an endpoint provider using the 0TAsyncOpenEndpoint function, Open
Transport creates the provider and sets the default execution mode for all the
provider’s functions to asynchronous.

A provider’s default mode of execution remains in effect until you change it by
calling either the 0TSetSynchronous function or the 0TSetAsynchronous function.
The new mode remains in effect until you change the mode again. A provider’s
mode of execution affects only that provider. If you use two or more providers,
they need not operate in the same mode.

You should be aware that mixing synchronous and asynchronous calls can
cause critical problems. Take the following sequence as an example:

1. Set asynchronous mode.
2. Call a function.
3. Set synchronous mode; call a function.

4. The function called in step 2 completes, and the notifier installed for that
provider executes at deferred task time.

The problem is that the notifier function, called in step 4, now executes with the
provider in synchronous mode: the mode of execution is determined when a
function is called. Thus any Open Transport function called in the notifier will
execute synchronously. However, functions called from a notifier may not
execute synchronously; therefore your system will return an error. To avoid this
problem, make sure there are no outstanding asynchronous requests when
switching to synchronous mode.

The return behavior of certain provider functions is controlled not only by a
provider’s mode of execution but also by the provider’s blocking status,

Using Providers 71

72

CHAPTER 3

Providers

described in the following section. Changing a provider’s mode of execution
does not change its blocking status.

Setting a Provider’s Blocking Status

A newly created provider does not block, regardless of which Open Transport
function created it. After a provider is created, you can change its blocking
status as often as you like. A provider’s blocking status affects only that
provider.

= You use the 0TSetBlocking function to set a provider’s mode of operation
to blocking.

= You use the 0TSetNonBlocking function to set a provider’s mode of operation
to nonblocking.

= You use the 0TIsNonBlocking function to determine whether a
provider blocks.

If a provider is blocking and you call a function synchronously, all processing
on the Macintosh is halted until the synchronous function completes. For
information on how to handle this situation, see “Specifying How Provider
Functions Execute” (page 71).

If a provider is nonblocking, provider functions that cannot complete send or
receive operations return an error indicating the reason. The result returned
might be

m KEAGAINErr or kEWOULDBLOCKErr, indicating that the function would have to be
queued before it could execute

= kOTNoDataErr, indicating that data has not yet arrived
= kOTFlowErr, indicating that the provider is flow controlled.
» KENOMEMErr, indicating that there is not enough memory

In many of these cases, you should call the function again.

Setting a Provider's Send-Acknowledgment Status

You can control the behavior of provider functions that send data by specifying
that the provider not make an internal copy of the data it is sending, but that it
relies entirely upon the data being in the buffer you provide. Asking the
provider not to make a copy is the same as asking it to acknowledge sends (the
Open Transport phrasing). In the current version, you can only specify that

Using Providers

CHAPTER 3

Providers

endpoint providers acknowledge sends. For more detailed information about
this mode of operation, see “Acknowledging Sends” (page 215).

Using Notifier Functions to Handle Provider Events

When provider functions execute asynchronously, you can continue processing
without having to wait for a function to complete execution. In some cases, you
might need to know when the function has finished executing, either because
further processing depends on the results of that operation or because you
need to use memory you have allocated for that function. In order to meet this
need, the Open Transport architecture defines completion events, which are
generated by a provider when an asynchronous function completes execution.
To pass the event to your application as well as other information about the
function that has completed, the provider calls a notifier function that you have
written and installed for that provider.

The provider uses the notifier’s parameters to pass the following information
back to your application:

= a context pointer for your use

You define this pointer when you install the notifier function. When the
provider calls the notifier, it passes this pointer back to you. It is typically the
ProviderRef or a data structure that contains the ProviderRef.

= an event code identifying the provider event
s the function result if it's a completion event.
= a pointer to additional information that the function is returning

This parameter is called the cookie parameter. For example, when you call a
function that assigns an address to an endpoint, you can request a particular
address. When the function returns, it passes back the address that is
actually assigned to the endpoint. If you call the function asynchronously,
this information is referenced by the cookie parameter.

If you open a provider in asynchronous mode, you install a notifier function by
passing a pointer to it in one of the parameters to the function used to open the
provider. If you open a provider in synchronous mode, you must install the
notifier by calling the 0TInstal1Notifier function (page 405). If you want to
change notifiers, you must first remove the old notifier by calling the
0TRemoveNotifier function (page 407) and then call the 0TInstallNotifier
function to install the new notifier.

Using Providers 73

CHAPTER 3

Providers

You are responsible for the contents of a notifier function. Typically, such a
function tests to see whether the function that just completed has returned an
error. If it has not, it uses a switch statement to transfer control to different
subroutines, depending on the event code passed to the notifier. In the notifier
shown Listing 3-1 fatal errors all break out of the switch to the default case. The
notifier sample is intended to give you a sense of how such code is structured.
In general, the notifier does not need to handle every completion event, just
those that you expect to happen and that have meaning for the provider you
are opening. You should ignore any events you are not expecting.

Listing 3-1 A notifier function

74

static pascal void Notifier(void* context, OTEventCode event, OTResult
result, void* cookie)
{

EPInfo* epi = (EPInfo*) context;

switch (event)
{
case T_LISTEN:
{
DolListenAccept();
return;

case T_ACCEPTCOMPLETE:
{
if (result != kOTNoError)
DBAlertl1("Notifier: T_ACCEPTCOMPLETE - result %d",

result);
return;

case T_PASSCON:
{
if (result != kOTNoError)
{
DBAlertl("Notifier: T_PASSCON result %d", result);
return;

Using Providers

CHAPTER 3

Providers

kPassconBit)

0TAtomicAdd32(1, &gCntrConnections);
OTAtomicAdd32(1, &gCntrTotalConnections);
0TAtomicAdd32(1, &gCntrIntervalConnects);
if (OTAtomicSetBit(&epi->stateFlags,
{
ReadData(epi);
}
return;
}
case T_DATA:

{
if (OTAtomicSetBit(&epi->stateFlags,
{
ReadData(epi);
}
return;

case T_GODATA:

{
SendData(epi);
return;

case T_DISCONNECT:

{
DoRcvDisconnect(epi);
return;

case T_DISCONNECTCOMPLETE:
{
if (result != kOTNoError)

kPassconBit)

=0

=0

)

)

DBATertl("Notifier: T_DISCONNECT_COMPLETE result %d",

result);
return;

case T_MEMORYRELEASED:
{

Using Providers

75

76

CHAPTER 3

Providers

OTAtomicAdd32(-1, &epi->outstandingSends);
return;

default:

{
DBATertl("Notifier: unknown event <%x>", event);
return;

You can use a notifier function to handle asynchronous events as well as
completion events. A provider uses asynchronous events to inform your
application that data has arrived or that a connection or disconnection request
is pending.The method used is the same as for completion events. You must
include case statements in the notifier that are pertinent to the asynchronous
events you expect to receive.

The provider calls your notifier function at deferred task time or at system task
time. This means that the routines called from your notifier

» might need to be reentrant

= cannot move or purge memory

» cannot depend on the validity of handles to unlocked blocks

» should not perform time-consuming tasks

» should not make synchronous calls to Open Transport

» should not make synchronous Device Manager or File Manager calls

The only exception to these rules occurs when you are responding to the event
kOTProviderWillClose. See the event codes enumeration (page 383) for
additional information.

Open Transport might call a notification routine reentrantly. Open Transport
attempts to queue calls to a notification routine to prevent reentrancy and to
keep the processor stack from growing, but this behavior is not guaranteed.

You should be prepared and write your notification routine defensively. For
additional information, see “MyNotifierCallbackFunction” (page 413).

If you execute provider functions asynchronously, you must also take special
care about the duration of the function’s variables. A function that is executed

Using Providers

CHAPTER 3

Providers

asynchronously returns immediately, and the stack frame of the function that
called it might be torn down before you have had a chance to retrieve the
information returned in the parameters to the asynchronous function (using
the notifier function’s cookie parameter). If these parameters are local variables
in the calling function, the information passed back by the asynchronous
function is lost. To avoid this situation, you need to write the function that calls
the asynchronous function in such a way that the memory pointed to by

its return parameters is not overwritten. For example, you could make these
variables global or use the function 0TA11ocMenm to allocate them.

Transferring a Provider’s Ownership

An Open Transport client is any task that calls the InitOpenTransport function.
Open Transport keeps track of the owner of each provider, and when a client
dies or quits without closing all of its outstanding providers, Open Transport
attempts to close them on behalf of the client. Every shared library, code
resource, or program that creates an endpoint, or uses one of the endpoint
functions that allocate memory on behalf of the client, is a client of Open
Transport. For ASLM shared libraries and applications, Open Transport can
clean up after the library or application easily. For CFM shared libraries and
code resources, however, the client must call CloseOpenTransport before
terminating (this can be done by making Close0OpenTransport the termination
procedure for the CFM library).

Although it’s not a frequent occurrence, there may be times when it is not
convenient for you to lose access to a provider. For example, if you are still
using a provider created by a shared library when that shared library is
unloaded or you are still using a provider reference passed by another
application when that application quits, you will find yourself using invalid
references unexpectedly.

In cases where you do not want Open Transport to close a given provider, you
can define yourself as its new owner with the 0TTransferProviderOunership
function (page 390). You need to obtain the previous owner’s client ID before
the client terminates, and then pass it to Open Transport along with the
provider reference for the provider. Open Transport allocates a new provider
reference and returns the new reference to you. The old provider reference is
then invalid and should not be used. Listing 3-2 furnishes an example of
transferring a provider’s ownership. In this example, an Open Transport client,
the ProviderFactory library, creates an endpoint. It then passes the endpoint
reference back to another Open Transport client, the TransferProvider

Using Providers 77

CHAPTER 3

Providers

application. The application is responsible for transferring the ownership of the
endpoint from the library to itself before shutting down the library; it does so
using the GetProviderFromFactory function.

Listing 3-2 Transferring provider ownsership

78

static 0SStatus GetProviderFromFactory(void)
{
0SStatus err;
EndpointRef originalEndpoint;
0TClient originalOwner;
EndpointRef newEndpoint;
TEndpointInfo newEndpointInfo;
/* Use the factory library to create an endpoint.*/
err = FactoryCreateEndpoint(&originalEndpoint, &originalOwner);
if (err == nokrr) {

/* Transfer the ownership of endpoint, so that OT knows we now own it */

newEndpoint = O0TTransferProviderOwnership(originalEndpoint,
originalOwner, &err);

if (err == nokrr) {
/* We can now use newEndpoint as if we created it. */
/* We call OTGetEndpointInfo as an example of an operation */
/* on the endpoint.*/
err = 0TGetEndpointInfo(newEndpoint, &newEndpointinfo);
if (err == nokrr) {

printf("Maximum size of endpoint address = %1d.\n",
newEndpointInfo.addr);

0TCloseProvider(newEndpoint);

Using Providers

CHAPTER 3

Providers

return err;

void main(void)
{/* initialize connection to Open Transport */
0SStatus err;

err = InitOpenTransport();
if (err == nokrr) ({

/* initialize the provider factory library. */
err = InitProviderFactory();

if (err == nokrr) ({
/* call GetProviderFromFactory to demonstrate */
/* use of OTTransferProviderOwnership */

err = GetProviderFromFactory();

CloseProviderFactory();

CloseOpenTransport();
}

if (err == nokrr) {
printf("Success!\n");
} else {

printf("Failed with error %1d.\n", err);

Closing a Provider

There are two instances in which you need to close a provider:
= when you are through using the services offered by a provider

You do this by calling the 0TCToseProvider function and passing the provider
reference of the provider you wish to close.

= inresponse to a k0TProviderWillClose event or a kOTProviderIsClosed event.

Using Providers 79

80

CHAPTER 3

Providers

If you get a kOTProviderIsClosed event, the service underlying your provider
is already gone; closing the provider only frees up memory resources.

Closing a provider deletes all memory reserved for it in the system heap,
deletes its resources, and cancels any provider functions that are currently
executing.

If you have opened a provider asynchronously (for example, by calling the
AsyncOpenEndpoint function), it is not possible to close it before the call has
completed. This might happen if the user quits the application before the
provider has opened. For this reason, it is safer to open a provider
synchronously and then to use the 0TSetAsynchronous function to set the
execution mode.

The blocking status of a provider governs what happens when the provider is
closed. In non-blocking mode, closing the provider flushes all outgoing
commands in the stream and immediately closes the provider. In blocking
mode, the stream is given up to 15 seconds per module to allow outgoing
commands and data to be processed before the stream is closed.

If you are closing a provider in response to a k0TProviderii11Close event, note
that Open Transport issues this event only at system task time. Thus, you can
set the endpoint to synchronous mode (from within the notifier function) and
call functions synchronously to do whatever clean-up is necessary before you
return from the notifier.

Using Providers

CHAPTER 4

Endpoints

Contents

About Endpoints 83
Endpoint Types and Type of Service 85
Naming Conventions for Endpoint Functions 85
Endpoint Options 87
Modes of Operation 88
Endpoint States 89
Transport Service Data Units 98
Using Endpoints 99
Opening and Binding Endpoints 100
Obtaining Information About E ndpoints 101
Handling Events for Endpoints 102
Clearing Events and Synchronization Problems 104
Notifier Reentrancy 104
Polling for Events 105

Establishing and Terminating Connections 105
Establishing a Connection 107
Terminating a Connection 112

Sending and Receiving Data 118
Sending Data Using Multiple Sends 118
Receiving Data 119
Transferring Data Between Transactionless Endpoints 119
Using Connectionless Transactionless Service 119
Using Connection-Oriented Transactionless Service 120
Transferring Data Between Transaction-Based Endpoints 121
Using Connectionless Transaction-Based Service 123
Using Connection-Oriented Transaction-Based Service 125

Contents

81

82

CHAPTER 4

Contents

CHAPTER 4

Endpoints

This chapter explains how your application can use endpoints to communicate
with endpoint providers, the layered set of protocol modules that provide data
transfer services. The chapter describes

= the services offered by different types of endpoint providers

= how you use endpoint functions to obtain information about endpoints, to
establish connections, and to transfer data

To understand this chapter, you must first read the chapters “Introduction to
Open Transport” (page 5) and “Providers” (page 61), which introduce many of
the concepts discussed and further elaborated in this chapter.

This chapter offers minimal information about options, values you can specify
to control the behavior of providers; these values are set and sometimes
retrieved by clients. For information about options, you must read the chapter
“Option Management” (page 165).

After you are familiar with the concepts described in this chapter, you can get
additional information about transferring data and improving performance in
“Programming With Open Transport” (page 129) and in “Advanced Topics”
(page 215).

About Endpoints

An endpoint is the communications path between your application and an
endpoint provider, which is a layered set of protocols that define how data and
other information are exchanged between you and a remote client. The
endpoint consists of a set of data structures, maintained by Open Transport,
that specify the components of the endpoint provider and the manner in which
the provider is to operate. In the process of opening an endpoint, you configure
the endpoint provider and specify the protocol or set of protocols you want to
use to transfer data and, if required, the hardware link. The section
“Configuring and Opening a Provider” (page 34) explains how you specify the
software and hardware support your application requires. Whether you specify
a single protocol or a layered set of protocols, the type of service provided by
the highest-level protocol defines the type of the endpoint. For example, if you
specify the AppleTalk Transaction Protocol (ATP), which offers connectionless
transaction-based service, the endpoint is a connectionless transaction-based
endpoint.

About Endpoints 83

84

CHAPTER 4

Endpoints

When you open an endpoint, Open Transport creates a data structure that
contains information about the services the endpoint provider offers, the limits
on the size of data it can send and receive, the size of internal buffers used to
hold data, the current state of the endpoint, and so on. Open Transport obtains
this information from the particular protocol implementations that you specify
when you configure the endpoint provider. You can access information in some
fields of this structure by calling functions that return information about the
endpoint provider. Other fields of the structure are private and can be accessed
only by Open Transport.

Opening an endpoint also creates an endpoint reference, a number that
uniquely identifies this endpoint and that you must specify when calling any
function relating to this endpoint.

Before you can use the endpoint to transfer data, you must bind the endpoint—
that is, you must associate the endpoint with a protocol address. Depending on
the protocol you use, you can specify this address as a symbolic name or as a
network address. Specific address binding rules and address formats also vary
with the protocol you use. In general, you cannot bind more than one
connectionless endpoint to an address, but you can bind several
connection-oriented endpoints to a single address.

Open Transport functions that you can use only with endpoints are called
endpoint functions. You use endpoint functions to create and bind an
endpoint, to obtain information about an endpoint, to establish and break
down connections, and to transfer data. What functions you can call for an
endpoint depend on the type of the endpoint and on its state. The behavior of a
function is determined by the endpoint’s mode of operation. In order to write
Open Transport applications that behave in a reliable and predictable manner,
it is important that you understand how these factors affect the behavior of an
endpoint provider. This section describes the different types of endpoints,
describes the effect of an endpoint’s mode of operation on the behavior of
endpoint functions, and explains how Open Transport uses information about
endpoint states to manage endpoints.

About Endpoints

CHAPTER 4

Endpoints

Endpoint Types and Type of Service

There are four types of endpoints, each offering a different type of service:
= connection-oriented transactionless service

This type of service allows for the transfer of very large amounts of data
with guaranteed data delivery and a reliable data stream. ADSP and TCP
provides this type of service.

= connection-oriented transaction-based service

This type of service allows you to conclude an unlimited number of parallel
transactions. It guarantees delivery and can detect duplicate sends. ASP (not
currently implemented) provides this type of service.

= connectionless transactionless service

This type of service provides best-effort delivery and allows the transfer of
relatively small amounts of data at one time.Some protcols can calculate
checksums for incoming packets; IP and DDP provide this type of service.

= connectionless transaction-based service

This type of service allows for the transfer of larger amounts of data than
connectionless transactionless service. It also provides some error checking,
detects duplicate sends, and guarantees that response packets are delivered
in the order sent. ATP provides this type of service.

The chapter “Introduction to Open Transport” (page 5) defines and describes
the different services that each protocol offers and explains some of the criteria
you might use for selecting a specific type. The documentation for the protocol
you are using provides information about how a type of service is
implemented for your endpoint and the options that you can use to fine-tune
its behavior. The section “Using Endpoints” (page 99) describes how you use
endpoint functions to implement these services. However, before you read that
section, you might find it helpful to understand the naming conventions used
for endpoint functions because these are directly related to an endpoint’s type
of service. These conventions are described in the next section.

Naming Conventions for Endpoint Functions

You can use endpoint functions that return information about the endpoint’s
state, address, or modes of execution with all endpoint types. However, the
type of the endpoint determines which endpoint functions you can call to

About Endpoints 85

86

CHAPTER 4

Endpoints

transfer data. There is no single function that you can use to send data or to
receive data. For example, when you send data using a connectionless
transactionless endpoint, you call the 0TSndUData function; when you send data
using a connection-oriented transactionless endpoint, you call the 0TSnd
function. Table 4-1 presents a summary of the function names for functions
used to transfer data. The functions are grouped together based on the
endpoint’s type of service.

Table 4-1 The names of functions used to transfer data
Connectionless Connection-oriented

Transactionless 0TSndUData 0TSnd
O0TRcvUData O0TRcv
O0TRcvUDErr

Transaction-based 0TSndURequest 0TSndRequest
O0TRcvURequest OTRcvRequest
0TSndURepTly 0TSndReply
OTRcvURepTly OTRcvReply
O0TCancelURequest O0TCancelRequest
O0TCancelUReply O0TCancelReply

The following bulleted items explain the5 conventions used to name the
different groups of functions:

» Transaction-based endpoints send and receive requests and replies. If a
function name contains the string “Request” or “Reply,” you use the
function for a transaction-based endpoint; for example, 0TSndURequest or
0TSndRequest.

» Transactionless endpoints send and receive data, not requests or replies. If a
function name contains the string “Snd” or “Rcv” but does not contain
“Request” or “Reply,” you use the function for a transactionless endpoint;
for example, 0TSnd or 0TSndUData.

» Connectionless endpoints must include the destination address as a
parameter to every send operation and the source address as a parameter to

About Endpoints

CHAPTER 4

Endpoints

every receive operation. This is signalled by the letter “U” in the name of a
function. Thus, you call the 0TSndUData function for a connectionless
transactionless endpoint, but you call the 0TSndURequest function for a
connectionless transaction-based endpoint.

= Connection-oriented endpoints do not need to include addresses in send
and receive operations because establishing the connection also determines
the addresses, which do not change during a session. The names of
functions that can be called for connection-oriented endpoints are exactly
the same as for connectionless endpoints except that the “U” is omitted.
Thus, you call the 0TSnd function for a connection-oriented transactionless
endpoint and the 0TSndRequest function for a connection-oriented
transaction-based endpoint.

Of course, you can use the functions that establish and tear down connections
only with connection-oriented endpoints. These functions suggest their use in
their names: for example, 0TConnect or 0TSndDisconnect.

Connection-oriented endpoints support two kinds of disconnects: abortive
disconnects and orderly disconnects. An abortive disconnect breaks a
connection immediately, even if this were to result in loss of data; an orderly
disconnect (or “orderly release”) allows an endpoint to send all data remaining
in its send buffer before it breaks a connection. These two kinds of disconnects
are reflected in the names of the functions used: 0TSndDisconnect for an
abortive disconnect and 0TSndOrderlyDisconnect for an orderly disconnect.

Endpoint Options

The goal of Open Transport is to abstract basic types of service offered by
network protocols. For example, ADSP and TCP both offer connection-oriented
transactionless service. As a result, changing the endpoint to a different
protocol (but one that provides the same type of service) would require
minimal changes to the application and consequently make your application
virtually independent of the underlying transport used to transfer data.
Achieving transport independence, however, also means being willing to
forego any special advantages or features that a protocol has to offer. If it is not
possible for you to do without these features, you can use options to take
advantage of protocol-specific features.

An option is a value you can set for an endpoint, to link the behavior of the
provider more closely to a specific protocol. By using options, you can take
advantage of a feature that is unique to a protocol.

About Endpoints 87

88

CHAPTER 4

Endpoints

In general, the use of options decreases the transport independence of your
application. When you open an endpoint, the endpoint provider creates a
buffer containing default option values that it chooses to ensure maximum
portability across protocol families. It is recommended that you use these
values rather than setting different values. However, if you need to customize
transport services, you might need to specify different option values. Selecting
alternate option values begins a process called option negotiation. Besides
noting those instances in which you can specify option information when
calling endpoint functions, this chapter provides no information about options.
For detailed information about options and for a description of the
0TOptionManagement endpoint function, see “Option Management” (page 165).

Modes of Operation

An endpoint provider, like other Open Transport providers, can also be
characterized by its mode of operation, which determines

» whether the functions used for that endpoint provider execute
synchronously or asynchronously

» whether the provider blocks or waits when sending or receiving data
» whether the provider copies data that you want to send before sending it

The chapter “Providers” (page 61) explains these concepts and describes the
functions you use to get and set a provider’s mode of operation.

One thing to keep in mind is that not all endpoint functions operate differently
in asynchronous mode. Those functions that do behave differently are listed in
Table 4-2. For each function, the table lists the corresponding completion event.

Table 4-2 Endpoint functions that behave differently in synchronous and
asynchronous modes

Function Completion event

0TOptionManageme T_OPTIONMANGEMENTCOMPLETE

nt

0TBind T_BINDCOMPLETE
0TUnbind T_UNBINDCOMPLETE
OTAccept T_ACCEPTCOMPLETE

About Endpoints

CHAPTER 4

Endpoints

Table 4-2 Endpoint functions that behave differently in synchronous and
asynchronous modes (continued)

Function Completion event

0TSndRequest T_REQUESTCOMPLETE

0TSndReply T_REPLYCOMPLETE

0TSndURequest T_REQUESTCOMPLETE

0TSndUReply T_REPLYCOMPLETE

0TSndDisconnect T_DISCONNECTCOMPLETE

0TGetProtAddress T_GETPROTADDRCOMPLETE
OTResolveAddress T_RESOLVEADDRCOMPLETE

Endpoint States

Each endpoint has an attribute known as its endpoint state. An endpoint state
governs which endpoint functions you can call for the endpoint. For example,
if you open an endpoint but do not bind it, it is in the T_UNBND state and the
only two functions you can call for the endpoint are 0TCloseProvider or 0TBind.

The endpoint’s type of service determines the possible states an endpoint can
be in while it is transferring data. For example, a connectionless endpoint can
only transfer data while it is in the T_IDLE state, and a connection-oriented
endpoint can only transfer data while it is in the T_DATAXFER state. Table 4-3
describes possible endpoint states for connectionless and connection-oriented
endpoints and suggests in parentheses an English equivalent for the name of
each constant.

About Endpoints 89

90

CHAPTER 4

Endpoints

Table 4-3 Endpoint states

State Meaning

T_UNINIT Uninitialized. This endpoint has been closed and destroyed or
has not been created.

T_UNBND Unbound. This endpoint is initialized but has not yet been
bound to an address.

T_IDLE Idle. This endpoint has been bound to a local protocol address
and is ready for use. Connectionless endpoints can send or
receive data; connection-oriented endpoints can initiate or
listen for a connection.

T_OUTCON Outgoing connection request. This connection-oriented
endpoint has initiated a connection and is waiting for the
remote peer to accept the connection.

T_INCON Incoming connection request. This connection-oriented
endpoint has received a connection request but has not yet
accepted or rejected the request.

T_DATAXFER Data transfer. This connection-oriented endpoint can now
transfer data because the connection has been established.

T_OUTREL Outgoing release request. This connection-oriented endpoint
has issued an orderly disconnect that the remote peer has not
acknowledged. The endpoint can continue to read data but
must not send any more data.

T_INREL Incoming release request. This connection-oriented endpoint

About Endpoints

has received a request for an orderly disconnect, which it has
not yet acknowledged. The endpoint can continue to send data
until it acknowledges the disconnection request, but it must not
read data.

CHAPTER 4

Endpoints

Figure 4-1 shows a diagram illustrating the possible endpoint states for a
connectionless endpoint.

Figure 4-1 Typical endpoint states for a connectionless endpoint
T_UNINIT
Open endpoint H HCIose endpoint
T_UNBND
OTBindH UOTUnbind
T_IDLE
Send data Receive data

A connectionless endpoint can be in one of three states: T_UNINIT, T_UNBND, or
T_IDLE. Before you open the endpoint, it is in the T_UNINIT state. After you open
the endpoint but before you bind it, it is in the T_UNBND state. After you bind the
endpoint, it is in the T_IDLE state and is ready to transfer data. A connectionless
transactionless endpoint would use the 0TSndUData or 0TRcvUData functions to
transfer data; a connectionless transaction-based endpoint would use the
0TSndURequest, OTRcvURequest, 0TSndUReply, and 0TRcvUReply functions to
transfer data. When the endpoint finishes transferring data, you must first
unbind the endpoint—that is, dissociate the endpoint from its address. At this
stage, the endpoint returns to the T_UNBND state. Then you can close the
endpoint, at which time the endpoint returns to the T_UNINIT state.

About Endpoints 91

92

CHAPTER 4

Endpoints

Figure 4-2 shows a state diagram illustrating the possible endpoint states for a
connection-oriented endpoint.

About Endpoints

CHAPTER 4

Endpoints
Figure 4-2 Possible endpoint states for a connection-oriented endpoint
Key:

T_UNINIT
) Active peer -
[Passive peer

OTOpenEndpointﬂﬂ m 0TCloseProvider
T_UNBND
OTBindﬂﬂ m 0TUnbind
- S| TUIDLE | ¢
~ o~
OTListen 0TConnect
OTRcvDisconnect
o T_INCON 0TSndDisconnect T_OUTCON -
3 8]
w (&)
= o
a <
o o
= (&}
(% v
o o
z OTAccept OTRcvConnect >
(] j .
. (&)
3 - - 2
E e
5 T_DATAXFER S
oD [a
) 4 AN)
O0TRcvOrderlyDisconnect U U 0TSndOrderlyDisconnect
/ 0TRcv 0TSnd \
" T_INREL T_OUTREL | 2/

U 0TSnd 0TRcv U

About Endpoints

93

94

CHAPTER 4

Endpoints

Like a connectionless endpoint, a connection-oriented endpoint is in the
T_UNINIT state until you open it and then in the T_UNBND state until you bind it.
After you bind an endpoint but before you inititate a connection, an endpoint is
in the T_IDLE state.

During the connection process, the endpoint provider initiating the connection,
known as the active peer, calls the 0TConnect function to request a connection.
At this point, the active peer is in the T_0UTCON state. The endpoint provider
listening for a connection request, known as the passive peer, calls the 0TListen
function to read an incoming request. After it has read the request, the passive
peer changes to the T_INCON state. It can now either accept the connection using
the 0TAccept function or reject the connection using the 0TSndDisconnect
function (not shown in Figure 4-2). If the endpoint accepts the connection, it
changes to the T_DATAXFER state; if it rejects the connection it goes back to the
T_IDLE state.

The active peer must acknowledge the response using the 0TRcvConnect
function (for a connection that has been accepted) or the 0TRcvDisconnect
function (for a connection that has been rejected). Calling the 0TRcvConnect
function establishes the connection and places the active peer in the T_DATAXFER
state. Calling the 0TRcvDisconnect function rejects the connection and places the
active peer in the T_IDLE state (not shown in Figure 4-2). After they are
connected, endpoints can transfer data using simple send and receive
operations or using transaction requests and replies, depending on whether the
endpoint is transactionless or transaction-based.

When you have finished transferring data, you should tear down the
connection by using an orderly disconnect process if possible. That is, you
should check to see whether the protocol supports an orderly disconnect. If it
does, you initiate this process by calling the 0TSnd0rder1yDisconnect function.
This places the calling endpoint in the T_OUTREL state. It also creates a pending
T_ORDREL event for the other endpoint. The endpoint to which you have sent the
disconnection request can become aware of the event by means of a notifier
function or by calling the 0TLook function. It must then acknowledge receiving
the disconnection request by calling the 0TRcvOrderlyDisconnect function. Then
it must tear down its side of the connection by also calling the
0TSndOrderlyDisconnect function, which you must also acknowledge.
Disconnecting the endpoints places them in the T_IDLE state again, and you can
reconnect or close them.

About Endpoints

CHAPTER 4

Endpoints

Note

It is not required that the active peer in the disconnect

phase be the same as the active peer in the connect

pahse 0.

Open Transport uses endpoint state information to manage endpoints.
Consequently, it is crucial that you call functions in the right sequence and that
you call functions to acknowledge receipt of data as well as of connection and
disconnection requests. Sending these acknowledgments is necessary to leave
the endpoint in an appropriate state for further processing.

Table 4-4 lists the functions that can change an endpoint’s state and specifies
what the resulting state is depending on whether the function succeeds or fails.

Table 4-4 Functions that can change an endpoint’s state

State after call

if call

Function Valid state before calls succeeds if call fails
0TOpenEndpoint T_UNINIT T_UNBND n/a
OTAsyncOpenEndpoint T_UNINIT T_UNBND n/a
0TBind T_UNBND T_IDLE T_UNBND
0TUnbind T_IDLE T_UNBND
0TGetEndpointInfo any but T_UNINIT
0TGetEndpointState any but T_UNINIT
OTLook any but T_UNINIT
0TGetProtAddress any but T_UNINIT
OTResolveAddress any but T_UNINIT
0TSync any but T_UNINIT
0TATToc any but T_UNINIT
OTFree any but T_UNINIT
OTCountDataBytes T_IDLE
0TSndUData T_IDLE
OTRcvUDErr T_IDLE
About Endpoints 95

CHAPTER 4

Endpoints
Table 4-4 Functions that can change an endpoint’s state (continued)
State after call
if call
Function Valid state before calls succeeds if call fails
O0TRcvUData T_IDLE
0TSndURequest T_IDLE
0TSndURepTly T_IDLE
OTRcvURepTly T_IDLE
OTCancelURequest T_IDLE
0TCancelUReply T_IDLE
O0TConnect T_IDLE T_OUTCON T_IDLE
OTListen T_IDLE, T_INCON
OTAccept
--destination T_IDLE, T_UNBND T_DATAXFER T_IDLE,
T_UNBND
--source T_INCON T_INCON
T_IDLE T_INCON
0TSnd T_DATAXFER, T_INREL
O0TRcv T_DATAXFER, T_OUTREL
0TSndRequest T_DATAXFER, T_INREL
OTRcvRequest T_DATAXFER, T_OUTREL
0TSndReply T_DATAXFER, T_OUTREL
OTRcvREpTy T_DATAXFER, T_INREL
0TCancelRequest T_DATAXFER
O0TCancelReply T_DATAXFER
0TSndDisconnect T_DATAXFER, T_INREL, T_IDLE state
T_OUTCON, T_OUTREL before
T_INCON T_IDLE, call
T_INCON T_INCON

About Endpoints

CHAPTER 4

Endpoints
Table 4-4 Functions that can change an endpoint’s state (continued)
State after call

if call
Function Valid state before calls succeeds if call fails
0TRcvDisconnect T_DATAXFER, T_INREL, T_IDLE state

T_OUTCON, T_OUTREL before
call
T_INCON T_IDLE,

T_INCON T_INCON
0TSndOrderlyDisconn T_DATAXFER T_OUTREL T_DATAXFER
ect T_INREL T_IDLE T_INCON
O0TRcvOrderlyDisconn T_DATAXFER T_INREL T_DATAXFER

t
ec T_OUTREL T_IDLE T_OUTREL

The arrival of an asynchronous event can also change the state of an endpoint.
Table 4-5 shows the state of the endpoint before the event is received and the
state of the endpoint after the event is consumed. An event is consumed or
cleared when your application acknowledges receipt of the event. For example,
if you get a T_LISTEN event, you call the 0TListen function; after you get a
T_DISCONNECT event, you call the 0TRcvDisconnect function.

Table 4-5 Events that can change an endpoint’s state
Old state Event New state Consuming function
T_IDLE T_LISTEN T_INCON OTListen

T_IDLE T_CONNECT T_DATAXFER OTRcvConnect
T_IDLE T_PASSCON T_DATAXFER none

T_UNBND

T_QUTCON T DISCONNECT T IDLE OTRcvDisconnect
T_DATAXFER

T_OUTREL

T_INREL

T_DATAXFER T_ORDREL T_INREL OTRcvOrderlyDisconnect
T_INCON T DISCONNECT T IDLE 0TRcvDisconnect

T_INCON

About Endpoints 97

98

CHAPTER 4

Endpoints

The section “Handling Events for Endpoints” (page 102) lists the asynchronous
events that a provider can issue and the functions you must call to clear these
events.

Transport Service Data Units

The main purpose of endpoints is to transfer data. The terms transport service
data unit and expedited transport service data unit are used to describe the
size and kind of data that a particular endpoint can handle when it is
transferring data in discrete units known as datagrams. Not all protocols use
transport service data units to transfer data.

A transport service data unit (TSDU) refers to the largest piece of data that an
endpoint can transfer with boundaries and content preserved unchanged.
Different types of endpoints and different endpoint implementations support
different size TSDUs.

An expedited transport service data unit (ETSDU), refers to the largest piece
of expedited data than an endpoint can transfer. Expedited data is considered
to be urgent. Not all endpoint providers can transfer expedited data. Usually,
connection-oriented and transaction-based endpoints require the use of
expedited data for control or attention messages, and therefore the
implementation of these types of endpoints often supports the transfer of
expedited data.

Three special constants are used to specify information about TSDUs and
ETSDUs:

» T_INFINITE specifies that there is no limit to the size of a TSDU

» T_INVALID means that the endpoint does not support this type of data
» 0 means that TSDUs are not supported

For additional information, see “The TEndpointInfo Structure” (page 426).

When you open an endpoint, Open Transport creates an endpoint information
structure, a TEndpointInfo structure, that you can examine to find out whether
the endpoint supports normal or expedited data and the maximum size of this
data. The section “Obtaining Information About E ndpoints” (page 101)
explains how you examine this structure to find out this information.

About Endpoints

CHAPTER 4

Endpoints

Using Endpoints

This section begins by explaining how you create an endpoint and associate it
with an address. Next, it introduces the functions you can use to obtain
information about endpoints and discusses some issues relating to
asynchronous processing that specifically affect endpoint providers. Then, it
explains some issues relating to data transfer that apply to all types of endpoint
providers. Finally, it describes how you can implement each type of service.

No matter what type of service you want to implement, you must read the
sections “Opening and Binding Endpoints,” “Obtaining Information About E
ndpoints,” “Handling Events for Endpoints,” and “Sending and Receiving
Data.” After you have read these sections, you can read the section describing
the type of service you are interested in implementing.

Table 4-6 shows how some of the Open Transport protocols fit with an
endpoint’s type of service. For example, if you want to use ATP, you would
need to read the section “Using Connectionless Transaction-Based Service”
(page 123). If you want to use ADSF, you would need to read the section
“Establishing and Terminating Connections” (page 105) and the section “Using
Connection-Oriented Transactionless Service” (page 120).

Table 4-6 The Open Transport type-of-service matrix and some Open Transport
protocols
Connectionless Connection-oriented
Transactionless DDP Serial connection
PPP ADSP
1P PAP
UDP TCP
Transaction-based ATP

Using Endpoints 99

100

CHAPTER 4

Endpoints

Note

The sections that follow present information in such a way
as to suggest that communication is always taking place
between two Open Transport clients. This does not have to
be true. For example, an Open Transport client using a
connectionless transactionless DDP endpoint can
communicate seamlessly with a client using classic
AppleTalk’s DDP protocol and interface. However,
because this book is about Open Transport, we always
show how communication works between two Open
Transport clients. O

Opening and Binding Endpoints

After you have initialized Open Transport and determined what the endpoint
configuration is going to be then, you can open and bind the endpoint. You
open the endpoint with the 0TOpenEndpoint or 0TAsyncOpenEndpoint functions.
Opening an endpoint with the 0TOpenEndpoint function sets the default mode of
execution to be synchronous; opening an endpoint with the
0TAsyncOpenEndpoint function sets the default mode of execution to be
asynchronous. You can change an endpoint’s mode of execution at any time by
calling the 0TSetSynchronous or 0TSetAsynchronous functions, which are
described in “Providers” (page 61).

One of the parameters that you pass to the function used to open the endpoint
is a pointer to a configuration structure that Open Transport needs to define the
protocol stack providing data transport services. The chapter “Getting Started
With Open Transport” (page 31), contains information about creating a
configuration structure for an endpoint provider.

If you use the 0TAsyncOpenEndpoint function to open an endpoint, you also
specify a notifier function that the endpoint provider can

use to call your application when an asynchronous or completion event takes
place. If you use the 0TOpenEndpoint function to open an endpoint, and you
want to handle asynchronous events using a notifier function, you must

use the 0TInstallNotifier function (page 405) to install your notifier function.

When Open Transport creates an endpoint, it establishes important state
information for the endpoint, including information about

» the endpoint’s modes and type of service

Using Endpoints

CHAPTER 4

Endpoints

= the size of normal transport service data units (TSDUs) and expedited
transport service data units (ETSDUs) or, in the case of transactions, the size
of replies and requests

s the maximum size of buffers used to hold address and option information
for the endpoint

= default option values for the endpoint

You can retrieve this information by calling functions that return information
about the endpoint. These functions are described in the next section,
“Obtaining Information About E ndpoints” (page 101).

When the function you use to open the endpoint returns, it passes back to you
an endpoint reference. You can pass this reference as a parameter to any
endpoint provider function or any general provider function. For example, you
pass this reference as a parameter to the 0T81ind function, which you must use
to bind an endpoint after opening it.

Binding an endpoint associates the endpoint with a logical address. Depending
on the protocol you use and on your application’s needs, you can select a
specific address or you can have the protocol choose an address for you. For
information about valid address formats, consult the documentation for your
protocol. The general rule for binding endpoints is simple: you cannot bind
more than one connectionless endpoint to a single address. You can bind more
than one connection-oriented endpoint to the same address; for additional
information about this possibility, see the section “Processing Multiple
Connection Requests” (page 111).

No matter what type of service you need to implement, you must know how to
obtain information about the endpoints you have opened and how to handle
asynchronous and completion events for these endpoints. These issues are
addressed in the next two sections, “Obtaining Information About E ndpoints”
(page 101), and “Handling Events for Endpoints” (page 102) After you read
these sections, you can proceed by reading about the type of service you want
to implement.

Obtaining Information About E ndpoints

While you can use general provider functions to determine an endpoint’s mode
of execution, you must use endpoint-specific functions to obtain the endpoint’s
type of service, state, or address.

Using Endpoints 101

102

CHAPTER 4

Endpoints

The TEndpointInfo structure contains most of the information you need to
determine how you can use an endpoint. You can obtain a copy of this
structure when you open the endpoint, or by calling the 0TGetEndpointInfo
function. This structure specifies the maximum size of the buffers you need to
allocate when calling functions that return address and option information or
data, and it also contains more specific details about the type of service the
endpoint provides. For example, if you have opened a connection-oriented
endpoint, the servtype field of the TEndpointInfo structure specifies whether
the endpoint supports orderly release.

To obtain information about an endpoint’s state, you call the function
0TGetEndpointState. This function returns a positive integer indicating the
endpoint state or a negative integer corresponding to a result code. Table 4-3
(page 90) lists and describes endpoint states. If the endpoint is in asynchronous
mode and you are not using a notifier function, you can use the
0TGetEndpointState function to poll the endpoint and determine whether a
specific function has finished executing. The completion of some functions
result in an endpoint’s changing state. For additional information, see Table 4-4
(page 95).

To obtain address information about an endpoint or its peer, you can use one of
the following two functions:

» 0TGetProtAddress, which returns the address to which the endpoint is
bound. If the endpoint is connection-oriented and currently connected, this
function also returns the address to which the endpoint is connected.

» OTResolveAddress, which returns the lowest-layer protocol address
corresponding to a higher-level address for the endpoint’s protocol. If you
are looking up the address that corresponds to a single name, you can use
this function rather than having to open the mapper provider and use the
mapper function 0TLookUpName.

For information about the address formats for the protocol you are using,
please consult the documentation supplied for the protocol. This manual
explains these formats for the TCP/IP and the AppleTalk protocols. For
information about obtaining the addresses that correspond to a name pattern,
see “Mappers” (page 149).

Handling Events for Endpoints

Like other providers, endpoint providers can operate synchronously or
asynchronously. If you use an asynchronous endpoint, you need to create a

Using Endpoints

CHAPTER 4

Endpoints

notifier function that the provider can call to inform you of provider events.
This section describes how you handle events for endpoint providers.

Event handling for endpoints is basically the same as that described for
providers in “Provider Events” (page 67). One slight difference lies in the way
the endpoint provider generates T_DATA, T_EXDATA, and T_REQUEST asynchronous
events, which signal the arrival of incoming data or of an incoming transaction
request. For the sake of efficiency, the provider notifies you just once that
incoming data has arrived. To read all the data, you must call the function that
clears the event until the function returns with the k0TNoDataErr result.

IMPORTANT

An endpoint does not receive any more T_DATA events until
its current T_DATA event is cleared. a

Table 4-7 lists the functions you use to clear pending asynchronous events.

Table 4-7 Pending asynchronous events and the functions that clear them
Pending Open Transport function

event that clears the event

T_LISTEN OTListen

T_CONNECT O0TRcvConnect

T_DATA O0TRcv, OTRcvUData

T_EXDATA 0TRcv

T_DISCONNECT

0TRcvDisconnect

T_UDERR O0TRcvUDErr

T_ORDREL 0TRcvOrderlyDisconnect
T_GODATA 0TSnd, 0TSndUData, OTLook
T_GOEXDATA 0TSnd, 0TLook

T_PASSCON none

This works as follows. A transport provider has a queue of data or commands
to deliver to the client. If the queue is empty when the data or command
arrives, the provider notifies the the client. If the queue is not empty, then no

Using Endpoints

103

104

CHAPTER 4

Endpoints

notification is delivered at the time the data or command is queued. Instead,
whenever the client reads the data or command at the head of the queue, Open
Transport examines the next element of the queue, if it exists. If this next
element of the queue is of the same type as what was at the head of the queue,
no event is generated. If there is a difference, the provider delivers a new event
to the client. Typically, this new event is delivered to the client just before the
function returns which removed the head element of the queue.

Clearing Events and Synchronization Problems

You do not have to issue calls that clear events in the notification routine itself,
but until you make the consuming calls and receive a kOTNoDataErr error,
another T_DATA, T_EXDATA, or T_REQUEST event is not guaranteed to be issued.

One exception to this rule occurs when dealing with transaction-based
protocols. When the client gets a T_REPLY event, it should call the function
0TRcvUReply until the function returns the result kOTNoDataErr. If the client calls
0TRcvUReply from the foreground (rather than from a notification routine), the
following sequence can occur: While the client is busy reading replies in the
foreground, a request arrives. This will cause a T_REQUEST event to be
generated. If the foreground client was calling 0TRcvUReply at this point in time,
a k0TLookErr will be generated rather than a k0TNoDatatrr. In this case (and the
converse case for T_REQUEST events), another T_REPLY event will be generated
when a new reply arrives.

Notifier Reentrancy

Open Transport endpoints are handled independently. That means that you can
use the same code for the notifiers of two different endpoints. A different
instance of the notfier is invoked for each endpoint using the notifier.

Whatever events are pending on one endpoint have (for the most part) no
effect on any other endpoints. For example, assume that an endpoint is notified
of a T_DATA event. Following this, a separate T_DATA event is sent to a second
endpoint. The notifier for the second endpoint is invoked, interrupting the first
endpoint’s processing of its T_DATA event. For additional information, see
“Using Asynchronous Processing With a Notifier” (page 134).

Using Endpoints

CHAPTER 4

Endpoints

Polling for Events

Open Transport also includes the endpoint provider function 0TLook. You can
use the 0TLook function

= to poll for asynchronous events, like incoming data or connection requests
= to determine the cause of a kOTLookErr result

Asynchronous functions can return this result. In addition, asynchronous
events that require immediate attention can cause some synchronous
functions to fail with the k0TLookErr result. In this case, you can call the
0TLook function to determine the event that caused the function to fail. Table
4-8 lists the functions that can return the result k0TLookErr when the
corresponding event is pending.

Table 4-8 Pending asynchronous events and the synchronous functions they can
affect

Function that fails Pending events

O0TAccept, OTConnect T_DISCONNECT, T_LISTEN

OTListen, OTRcvConnect, T_DISCONNECT

0TRcvOrderlyDisconnect,
0TSndOrderlyDisconnect,0TSndDisconnect

0TRcv, OTRcvRequest, OTRcvReply, T_GODATA, T_DISCONNECT,
0TSnd, 0TSndRequest, 0TSndReply T_ORDREL

OTRcvUData, 0TSndUData T_UDERR

0TUnbind T_LISTEN, T_DATA

Having used the 0TLook function to determine what asynchronous event
caused your function to fail, you must call one of the functions listed in
Table 4-7 (page 103) to clear the event, and then you can retry the function
that failed.

Establishing and Terminating Connections

To implement a connection-oriented service, you must complete the
following steps:

Using Endpoints 105

106

CHAPTER 4

Endpoints

= establish a connection

= process any data associated with establishing the connection if this is
permitted for the endpoint

= transfer data
» terminate the connection when you are finished transferring data

The following sections explain how you establish and terminate a connection.
The functions you use to establish and terminate a connection are the same for
transactionless as for transaction-based service, but the calls you use to transfer
data differ. The section “Using Connection-Oriented Transactionless Service”
(page 120) explains how you transfer data once you have established a
connection.

Before you can use a connection-oriented endpoint to initiate or accept a
connection, you must open and bind the endpoint. For example, if you are
using AppleTalk, you might open an ADSP endpoint, which offers
connection-oriented transactionless service. You don’t have to do anything
special to bind an endpoint that is intended to be the active peer of a
connection. However, when you bind an endpoint intended to be the passive
peer of a connection, you must specify a value for the q1en field of the reqaddr
parameter for the 0TBind function. The glen field indicates the number of
outstanding connection requests that can be queued for that endpoint.

Note

The value you specify for the qlen field indicates your
desired value, but Open Transport may negotiate a lower
value, depending upon the number of internal buffers
available. The negotiated value of outstanding connection
indications is returned to you in the qlen field of the
retAddr parameter for the 0TBind function. After calling the
0TBind function, you might want to take a look at this field
to see whether the protocol has imposed a limit on the q1en
value. O

You are allowed to bind multiple connection-oriented endpoints to a single
address. However, only one of these endpoints can accept incoming connection
requests. That is, only one endpoint can specify a value for glen that is greater
than 0. For more information, see the section “Processing Multiple Connection
Requests” (page 111).

Using Endpoints

CHAPTER 4

Endpoints

Establishing a Connection

You use the following functions to establish a connection:

Active peer calls Passive peer calls Meaning

0TConnect Requests a connection to the
passive peer.

OTListen Gets information about an
incoming connection request.

OTAccept Accepts the connection request
identified by the 0TListen function.
The connection can be accepted by
a different endpoint than the one
listening for incoming connection
requests.

0TRcvConnect Reads the status of a pending or
completed asynchronous call to the
0TConnect function.

0TSndDisconnect Rejects an incoming connection
request.
0TRcvDisconnec Identifies the cause of a rejected
t connection and acknowledges the

corresponding disconnection event.

Figure 4-3 illustrates the process of establishing a connection in
synchronous mode.

Using Endpoints 107

CHAPTER 4

Endpoints

Figure 4-3 Establishing a connection with the active peer in synchronous mode

Active Passive

0TConnect > Notifier
T_LISTEN

!

OTListen

!

0TC t es /\
onnec)
returns with < OTAccept {1 Accepted?
kNoErr
jl [T No
Endpoint is in
T_DATAXFER state
AV
0TConnect
returns with < | 0TSndDisconnect
kOTLookErr

!

0TRcvDisconnect

!

Endpoint is in
T_IDLE state

108 Using Endpoints

CHAPTER 4

Endpoints

As Figure 4-3 shows, if the active peer is in synchronous mode, the 0TConnect
function does not return until the connection has been established or the
connection attempt has been rejected. If the passive peer has a notifier function
installed, the endpoint provider calls it, passing T_LISTEN for the code
parameter. The notifier calls the 0TListen function, which reads the connection
request. The passive peer can now either accept the connection request using
the 0TAccept function or reject the request by calling the 0TSndDisconnect
function. The connection attempt might also fail if the request is never received
and the endpoint provider times out the call to the 0TConnect function.

If the passive peer calls the 0TAccept function to accept the connection, the
0TConnect function returns with kOTNoErr. If the passive peer rejects the
connection or the request times out, the 0TConnect function returns with
k0TLookErr. When the 0TConnect function returns, the active peer must examine
the result. If the call succeeded, it should begin to transfer data. If the call
failed, the active peer should call the 0TRcvDisconnect function to restore the
endpoint to a valid state for subsequent operations.

If the active peer is in asynchronous mode, the 0TConnect function returns right
away with the k0TNoDataErr result, and the active peer must rely on its notifier
function to determine whether the call succeeded. Figure 4-4 illustrates the
process of establishing a connection when the active peer is in asynchronous
mode.

Using Endpoints 109

CHAPTER 4

Endpoints
Figure 4-4 Establishing a connection in asynchronous mode
Active Passive
T_LISTEN
OTConnect \ > Notifier
returns kOTNoDataErr
OTListen

Yes ///EL\\
N

(E;::::jAccepted?
T_CONNECT
OTAccept 0
‘IIIHHIIHIIII} t:::QY

0TSndDisconnect

T_DISCONNECT

OTRcvDisconnect

T_DISCONNECTCOMPLETE

[> Notifier
0TRcvConnect >

T_ACCEPTCOMPLETE

Endpoint is in
T_DATAXFER state

110 Using Endpoints

CHAPTER 4

Endpoints

The active peer calls the 0TConnect function, which returns right away with a
code of k0TNoDataErr. The endpoint provider calls the passive peer’s notifier,
passing T_LISTEN for the code parameter. If the passive peer accepts the
connection, the endpoint provider calls the active peer’s notifier, passing
T_CONNECT for the code parameter.

If the passive peer rejects the connection or if the connection times out, the
endpoint provider calls the active peer’s notifier, passing T_DISCONNECT for the
code parameter. The active peer must then call either the 0TRcvConnect function
in response to a T_CONNECT event or the 0TRcvDisconnect function in response to
a T_DISCONNECT event. The endpoint provider, in turn, passes the
T_ACCEPTCOMPLETE event back to the passive peer (for a successful connection) or
the T_DISCONNECTCOMPLETE event (for a rejected connection). The passive peer
requires the information provided by these two events to determine whether
the connection succeeded.

Sending User Data With Connection or Disconnection Requests

The 0TConnect function and the 0TSndDisconnect function both pass data
structures that include fields for data that you might want to send at the time
that you are setting up or tearing down a connection. However, you can only
send data when calling these two functions if the connect and discon fields of
the TEndpointInfo structure specify that the endpoint can send data with
connection or disconnection requests. The amount of data sent must not exceed
the limits specified by these two fields. To determine whether the endpoint
provider for your endpoint supports data transfer during the establishment of
a connection, you must examine the connect and discon fields of the
TEndpointInfo structure for the endpoint.

Processing Multiple Connection Requests

If you process multiple connection requests for a single endpoint, you must
make sure that the number of outstanding connection requests does not exceed
the limit defined for the listening endpoint when you bound that endpoint. An
outstanding connection request is a request that you have read using the
0TListen function but that you have neither accepted nor rejected. You must
also decide whether to accept connections on the same endpoint that is
listening for the connections or on a different endpoint.

When you bind the passive endpoint, you must specify a value greater than 0
for the glen field of the reqAddr parameter to the 0T81ind function. This value
indicates the number of outstanding connections that the provider can queue

Using Endpoints 111

112

CHAPTER 4

Endpoints

for this endpoint. As you process incoming connection requests, you must
check that the number of connections still waiting to be processed does not
exceed this negotiated value for the listening endpoint. How you do this
depends on the number of outstanding requests and on whether you are
accepting connection requests on the same endpoint as the endpoint listening
for requests or accepting them on a different endpoint. Connection acceptance
is governed by the following rules:

= You can bind more than one connection-oriented endpoint to the same
address, but you can use only one of these endpoints to listen for connection
requests.

» If you accept a connection on the same endpoint that is listening for
connection requests, you must have responded to all previous connection
requests received on the endpoint using 0TAccept or 0TSndDisconnect
functions. Otherwise, the 0TAccept function fails. If you have not responded
to all previous connection requests, you should accept the connection on a
different endpoint.

» If you accept a connection on an endpoint that is different from the endpoint
that received the connection request, you do not have to bind the endpoint
to which you are passing off the connection. If the endpoint is not bound,
the endpoint provider automatically binds it to the address of the endpoint
that listened for the connection request.

If you choose to explicitly bind the endpoint accepting the connection to the
address of the endpoint listening for the connection, you must set the q1en
field of the reqAddr parameter to the 0TBind function to 0.

s The underlying implemention determines whether you must bind the
endpoint accepting a connection to the address of the endpoint listening for
the connection. In general, it is recommend that you do not bind it to the
same address.

What these rules add up to in practical terms is that if you anticipate managing
more than one connection at a time, you should open an endpoint to listen for
connections and then open additional endpoints as needed to accept incoming
connections.

Terminating a Connection

You can terminate a connection using either an abortive or orderly disconnect.
During an abortive disconnect, the connection is torn down without the
underlying protocol taking any steps to make sure that data being transferred

Using Endpoints

CHAPTER 4

Endpoints

has been sent and received. When the client calls the 0TSndDisconnect function,
the connection is immediately torn down, and the client cannot be sure that the
provider actually sent any locally buffered data. During an orderly disconnect,
the underlying protocol ensures at least that all outgoing data is actually sent.
Some protocols go further than this, using an over-the-wire handshake that
allows both peers to finish transferring data and agree to disconnect. The
following sections describe the steps required for abortive and orderly
disconnects. For additional information about handling an unexpected
disconnection from a remote client, see “Handling Dead Clients” (page 145).

Using an Abortive Disconnect

You use the 0TSndDisconnect and 0TRcvDisconnect functions to perform an
abortive disconnect. Figure 4-5 illustrates the process for two asynchronous
endpoints. The figure shows the active peer initiating the disconnection; in fact,
either peer can initiate the disconnection.

Figure 4-5 An abortive disconnect

Active

Passive

0TSndDisconnect

T_DISCONNECT
> Notifier

T_DISCONNECTCOMPLETE
Notifier & 0TRcvDisconnect

!

In asynchronous mode, the endpoint initiating the disconnection calls the
0TSndDisconnect function. Parameters to the function identify the endpoint and
point to a TCa11 structure that is only of interest if the endpoint provider
supports sending data with disconnection requests. To determine whether your
protocol does, you must examine the value of the discon field of the
TEndpointInfo structure for your endpoint. If you do not want to send data or if
you cannot send data to the passive peer, you can set TCal1 to a NULL pointer.

Using Endpoints 113

114

CHAPTER 4

Endpoints

The endpoint provider receiving the disconnect request calls the passive peer’s
notifier function, passing T_DISCONNECT for the code parameter. The client must
acknowledge the disconnection event by calling the function 0TRcvDisconnect.
This function clears the event and retrieves any data sent with the event.
Parameters to the 0TRcvDisconnect function identify the endpoint sending the
disconnection and point to a TDiscon structure that is only of interest if the
endpoint provider supports sending data with disconnection requests or if the
passive peer is managing multiple connections and needs to know which of the
connections has been closed by using the sequence field of the TDiscon
structure. Otherwise, you can set TDiscon to a NULL pointer.

When the connection has been closed, the endpoint provider calls the active
peer’s notifier, passing T_DISCONNECTCOMPLETE for the event parameter. At this
time the endpoint is once more in the T_IDLE state.

Using Orderly Disconnects

There are two kinds of orderly disconnects: remote orderly disconnects and
local orderly disconnects. The first kind, supported by TCP, provides an
over-the-wire (three-way) handshake that guarantees that all data has been
sent and that both peers have agreed to disconnect. The second kind,
supported by ADSP and most other connection-oriented transactionless
protocols, is a locally implemented orderly release mechanism ensuring that
data currently being transferred has been received by both peers before the
connection is torn down. To determine whether your protocol supports orderly
disconnects, you must examine the servtype field of the TEndpointInfo
structure for the endpoint. A value of T_C0TS_ORD or T_TRANS_ORD indicates that
the endpoint supports orderly disconnect. It is safest to assume, unless you
know for certain it to be otherwise, that the endpoint supports only local
orderly disconnects.

Using Endpoints

CHAPTER 4

Endpoints

Figure 4-6 shows the steps required to complete a remote orderly disconnect.
The figure shows the active peer initiating the disconnection; in fact, either peer
can initiate the disconnection.

Figure 4-6 Remote orderly disconnect

Active Passive

T_ORDREL
0TSndOrderlyDisconnect > Notifier

Receive/send
data

!

OTRcvOrderlyDisconnect

!

Send data

!

T_ORDREL
Notifier < 0TSndOrderlyDisconnect

0TRcvOrderlyDisconnect

Receive data

Using Endpoints 115

116

CHAPTER 4

Endpoints

The active peer initiates the disconnection by calling the
0TSndOrderlyDisconnect function to begin the process and to let the remote
endpoint know that the active peer will not send any more data. (Once it calls
this function, the active peer can receive data but it cannot send any more
data.) The provider calls the passive peer’s notifier function, passing T_ORDREL
for the code parameter. In response, the passive peer must read any unread
data and can send additional data. After it has finished reading the data, it
must call the 0TRcvOrderlyDisconnect function to acknowledge receipt of the
orderly release indication. After calling this function, the passive peer cannot
read any more data; however, it can continue to send data. This is a half-closed
connection. When the passive peer is finished sending any additional data, it
calls the 0TSndOrderlyDisconnect function to complete its part of the
disconnection. Following this call, it cannot send any data. The endpoint
provider calls the active peer’s notifier, passing T_ORDREL for the code
parameter, and the active peer calls the 0TRcvOrderlyDisconnect function to
acknowledge receipt of the disconnection event and to place the endpoint in
the T_IDLE state if this was the only outstanding connection.

Figure 4-7 shows the steps required to complete a local orderly disconnect.

Using Endpoints

CHAPTER 4

Endpoints

Figure 4-7 A local orderly disconnect

Active Passive

T_ORDREL
0TSndOrderlyDisconnect >

Recieve data

Receive data

1

OTRcvOrderlyDisconnect

!

T_ORDREL
Notifier & 0TSndOrderlyDisconnect

0TRcvOrderlyDisconnect

As you can see, the sequence of steps is very similar to that shown in

Figure 4-6. The main difference is that the connection is broken as soon as the
active peer calls the 0TSndOrder1yDisconnect function. As a result, either peer

can continue to read any unread data, but neither peer can send data after the
initial call to the 0TSndOrder1yDisconnect function.

Using Endpoints 117

118

CHAPTER 4

Endpoints

Sending and Receiving Data

This section describes some of the issues that affect send and receive operations
for all types of endpoints. After you read this section, you should read
“Transferring Data Between Transactionless Endpoints” (page 119) or
“Transferring Data Between Transaction-Based Endpoints” (page 121) for
additional information about the type of endpoint you are using.

The chapter “Advanced Topics(page 215)” presents additional material that
concerns the transfer of data and improving performance; this material includes

» sending non-contiguous data
= transferring data in raw mode
= doing no-copy receives

Please consult that chapter for more information.

Sending Data Using Multiple Sends

If you are sending a single data unit using multiple sends, you must do the
following:

1. Set the T_MORE bit in the flags field each time you call the send function. This
lets the provider know that it has not yet received the entire data unit.

2. Clear the T_MORE bit the last time you call the send function. This lets the
provider know that the data unit is complete.

Even though you are using multiple sends to send the data, the total size of the
data sent cannot exceed the value specified for the tsdu field (for normal data
or replies) or etsdu field (for expedited data or requests) of the TEndpointInfo
structure for the endpoint.

Sending data using multiple sends does not necessarily affect the way in which
the remote client receives the data. That is, just because you have used several
calls to a send function to send data does not mean that the remote client must
call a receiving function several times to read the data.

IMPORTANT

Connectionless transactionless protocols do not support
the T_MORE flag. a

Using Endpoints

CHAPTER 4

Endpoints

Receiving Data

If you are reading data and if the T_MORE bit in the flags field is set, this means
that the buffer you have allocated to hold the data is not big enough. You need
to call the receive function again and read more data until the T_MORE bit is
cleared, which indicates that you have read the entire data unit.

Transferring Data Between Transactionless Endpoints

Open Transport defines two sets of functions that you can use to send and
receive data between transactionless endpoints. You use one set with
connectionless service and the other with connection-oriented service.

Using Connectionless Transactionless Service

You use connectionless transactionless service, as provided by DDP and UDP,
to send and receive discrete data packets.

After opening and binding a connectionless transactionless endpoint, you can
use three functions to send and receive data:

= the 0TSndUData function to send data
= the 0TRcvUData function to receive data
s the 0TRcvUDErr function to determine why a send operation did not succeed

Either endpoint can send or receive data. However, the endpoint sending data
cannot determine whether the other endpoint has actually received the data.

Endpoints are not able to determine that the specified address or options are
invalid until after the data is sent. In this case, the sender’s endpoint provider
might issue the T_UDERR event. You should include code in your notifier
function that calls the 0TRcvUDErr function in response to this event to
determine what caused the send function to fail and to place the sending
endpoint in the correct state for further processing.

If the endpoint receiving data has allocated a buffer that is too small to hold the
data, the 0TRcvUData function returns with the T_MORE bit set in the f1ags
parameter. In this case, you should call the 0TRcvUData function repeatedly until
the T_MORE bit is cleared.

Using Endpoints 119

120

CHAPTER 4

Endpoints

Using Connection-Oriented Transactionless Service

You use connection-oriented transactionless service, such as provided by ADSP
and TCP, to exchange full-duplex streams of data across a network.
Connection-oriented transactionless endpoints use the 0TSnd function to send
data and the 0TRcv function to receive data. Either endpoint can call either of
these functions. Parameters to the 0TSnd function identify the endpoint sending
the data, the buffer that holds the data, the size of the data, and a f1ags value
that specifies whether the data sent is normal or expedited and whether
multiple sends are being used to send the data. Parameters to the 0TRcv
function identify the receiving endpoint, the buffer where the data should be
copied, the size of the buffer, and a f1ags value that Open Transport sets to tell
the client whether to call 0TRcv more than once to retrieve the data being sent.

Some endpoints support the use of expedited data, and some support the use
of separators to break the data stream into logical units. You need to examine
the endpoint’s TEndpointInfo structure to determine if the endpoint supports
either of these features:

s The etsdu field of the TEndpointInfo structure specifies whether the endpoint
supports the use of expedited data and, if so, specifies its size. For example,
ADSP supports the use of expedited data to send attention messages. In
general, it is recommended that you do not use expedited data because
doing so results in code that is less transport independent.

s The tsdu field of the TEndpointInfo structure specifies the maximum size of
normal data that the endpoint can send or receive. In those cases where the
endpoint supports the breaking up of the data stream into logical units, the
TSDU size specifies what the maximum size of any such unit may be.

IMPORTANT

Values for the tsdu and etsdu fields of the TEndpointInfo
structure that are returned when you open an endpoint
might change after the endpoint is connected, because the
endpoint providers can negotiate different values when
establishing a connection. If the endpoint supports
variable maximum limits for TSDU and ETSDU size, you
should call the 0TGetEndpointInfo function after the
connection has been established to determine what the
current limits are. a

To send expedited data, you must set the T_EXPEDITED bit in the flags
parameter. If the receiving client is in the middle of reading normal data and

Using Endpoints

CHAPTER 4

Endpoints

the 0TRcv function returns expedited data, the next 0TRcv that returns without
T_EXPEDITED set in the flags field resumes the sending of normal data at the
point where it was interrupted. It is the responsibility of the client to remember
where that was.

There are two ways of breaking up a data stream into logical size units.

s If the endpoint supports it, enable the use of the T_MORE flag bit to the 0TSnd
function. Then, when sending the last packet, do not set the T_MORE bit.
Because these packets are guaranteed to be delivered in the order sent, the
receiving endpoint can determine when the last packet has arrived by
examining this flag bit.

= Use the data transferred with your first send to specify the name and size of
the data that you want to send. The receiving endpoint can save the size
value and decrement it as it receives bytes until the number equals 0. This
last method is the only one that is transport-independent.

Transferring Data Between Transaction-Based Endpoints

Open Transport defines two sets of functions that you can use to perform a
transaction. One set is defined for connectionless transactions; the other set is
defined for connection-oriented transactions. A transaction is a process during
which one endpoint, the requester, sends a request for a service. The remote
endpoint, called the responder, reads the request, performs the service, and
sends a reply. When the requester receives the reply, the transaction is complete.

You can implement applications that use transactions in the following
two ways:

= You can write a single application that handles both the requester and
responder actions of a transaction and run that application on two
networked nodes. This method allows each application to act as either the
requester or the responder. Either side can initiate a transaction, but only one
side can control the communication during a single transaction.

= You can write two applications, one implementing the requester part of a
transaction and the other implementing the responder side. This model
lends itself well to a client-server relationship, in which many nodes on a
network run the requester application (client), while one or more nodes run
the responder application (server); one server can respond to transaction
requests from several clients.

Using Endpoints 121

CHAPTER 4

Endpoints

Because one endpoint can conduct multiple transactions at any one time, it is
crucial that requesters and responders be able to distinguish one transaction
from another. This is done by means of a transaction ID, a number that
uniquely identifies a transaction. Because this is not the same number for the
requester as it is for the responder, some explanation is required. Figure 4-8
shows how the transaction ID is generated by the requesting application and
the provider during the course of a transaction.

Figure 4-8 How a transaction ID is generated
Requester Responder
address address
options options
data data
sequence = 1001 sequence = 5123

Send request Read request

1001 : 5123
Y
address address
options options
data data
sequence = 1001 sequence = 5123
Read reply Send reply
1001 5123

Using Endpoints

CHAPTER 4

Endpoints

The requester initiates a transaction by sending a request. The requester passes
information about the request in a data structure that includes a seq field,
which specifies the transaction ID of the request. The requester initializes this
field to some arbitrary, unique number. Before sending the request, the
endpoint provider saves this number in an internal table and assigns another
number to the seq field, which it guarantees to be unique for the requester’s
machine. The endpoint provider also saves the new number along with the
requester-generated sequence number. For example, in Figure 4-8, the requester
assigns the number 1001; the endpoint provider assigns the number 5123.

When the responder receives the request, it reads the request information,
including the provider-generated sequence number, into buffers it has reserved
for the request data. When the responder sends a reply, it specifies the sequence
number it read when it received the request.

Before the requester’s endpoint provider advises the requester that the reply
has arrived, it examines the sequence number of the reply and looks in its
internal table to determine which requester-generated sequence number it
matches. It then substitutes that number for the sequence number it received
from the responder. By using this method Open Transport guarantees that
transactions are uniquely identified, and the requester is able to match
incoming replies with outgoing requests.

Using Connectionless Transaction-Based Service

You use connectionless transaction-based service to enable two connectionless
endpoints to complete a transaction.

The requester initiates the transaction by calling the 0TSndURequest function.
Parameters to the 0TSndURequest function specify the destination address, the
request data, any options, and a sequence number to identify this transaction.
The requester must supply a sequence number if it is sending multiple
requests, so that later on it can match replies to requests. The requester can
cancel an outgoing request by calling the 0TCancelURequest function. A
requester can implement its own timeout mechanism (using the function
0TScheduleTimerTask) and calling the 0TCancelURequest function after a specific
amount of time has elapsed without a response to the request.

If the responder is synchronous and blocking, the 0TRcvURequest function
returns after it has read the request. If the responder is asynchronous or not
blocking and has a notifier installed, the endpoint provider calls the notifier,
passing T_REQUEST for the code parameter. When the responder receives this
event, it must call the 0TRcvURequest function to read the request. On return,

Using Endpoints 123

124

CHAPTER 4

Endpoints

parameters to the 0TRcvURequest function specify the address of the requester,
option values, the request data, flags information, and a sequence number to
identify the transaction. When the responder sends a reply to the request, it
must use the same sequence number for the reply. If the responder’s buffer is
too small to contain the request, the endpoint provider sets the T_MORE bit in the
flags parameter. The responder must call the 0TRcvURequest function until the
T_MORE bit is clear. This indicates that the entire request has been read.

Having read the request, the responder can reply to the request using the
0TSndUReply function or reject the request using the 0TCancelUReply function.
Although the requester is not advised that the responder has rejected a request,
it’s important that the responder explicitly cancel an incoming request in order
to free memory reserved by the 0TRcvURequest function.

If the requester is in synchronous blocking mode, the 0TRcvUReply function
waits until a reply comes in. Otherwise, if a notifier is installed, the endpoint
provider calls the notifier, passing T_REPLY for the code parameter. The notifier
must call the 0TRcvUReply function. On return, parameters to the function
specify the address of the endpoint sending the reply, specify option values,
flag values, reply data, and a sequence number that identifies the request
matching this reply. If the T_MORE bit is set in the f1ags parameter, the requester
has allocated a buffer that is too small to contain the reply data. The requester
must call the 0TRcvURep1y function until the T_MORE bit is clear; this indicates
that the complete reply has been read.

If the request is rejected or fails in some other way, the requester receives the
T_REPLY event. However, the 0TRcvURep1y function returns with the result
KETIMEDOUTErr. Otherwise, the only useful information returned by the function
is the sequence number of the request that has failed.

Figure 4-9 illustrates how connectionless transaction-based endpoints in
asynchronous mode exchange data.

Using Endpoints

CHAPTER 4

Endpoints

Figure 4-9 Data transfer using connectionless transaction-based endpoints in

asynchronous mode

Requester

Responder

T_REQUEST
0TSndURequest > Notifier

T_REPLY
Notifier < 0TSndUReply 0TCancelUReply

J

J

O0TRcvURequest

]
g)

T_REPLYCOMPLETE N
OTRcvUReply > Notifier

Using Connection-Oriented Transaction-Based Service

Connection-oriented transaction-based endpoints allow you to transfer data in
exactly the same way as connectionless transaction-based endpoints except
that, because the endpoints are connected, it is not necessary to specify an
address when using the functions to send and receive requests and replies. The
only other difference is that a connection-oriented transaction may be
interrupted by a connection or disconnection request.

The section “Using Connectionless Transaction-Based Service” (page 123)
describes the sequence of functions used to transfer data using a transaction.
Figure 4-10 shows the sequence of functions called during a
connection-oriented transaction; both requester and responder are in
asynchronous mode. This sequence is the same as for connectionless
transaction-based service, as shown in Figure 4-9 (page 125). Of course, you use

Using Endpoints 125

CHAPTER 4

Endpoints

different functions to complete these two types of transactions: the names of
the functions shown in Figure 4-10 do not include a “U” in the function name.

Figure 4-10 Data transfer using connection-oriented transaction-based endpoints in
asynchronous mode

Requester Responder

T_REQUEST
0TSndRequest > Notifier

OTRcvRequest

1
g U

T_REPLY
Notifier & 0TSndReply O0TCancelReply

T_REPLYCOMPLETE .
OTRcvReply > Notifier

For information about how to handle disconnection requests that might occur
during a transaction, see “Using Orderly Disconnects” (page 114).

126 Using Endpoints

CHAPTER 5

Programming With Open
Transport

Contents

Open Transport Programming Models 129
Using Synchronous Processing With Threads 130
Polling for Events 132
Using Asynchronous Processing With a Notifier =~ 133
Interrupt-Safe Functions 135
Memory Management From Notifiers 135
Interrupt Levels and Open Transport Processing 136
Hardware Interrupt Level 136
Deferred Task Level 137
System Task Level 138
Using Timer Tasks 139
Using System and Deferred Tasks 139
Calling Open Transport Functions 139
Scheduling Tasks 140
Deallocating Resources 140
Handling Synchronization Problems 141
Handling Multiple Simultaneous Connections 142
Problems With Accepting Multiple Simultaneous Connections
Using "tilisten" to Accept Multiple Simultaneous Connections
Improving Performance 144
Streamlining Endpoint Creation 144
Handling Dead Clients 145
Shutting Down Servers 146

Contents

142
143

127

CHAPTER 5

128 Contents

CHAPTER 5

Programming With Open Transport

This chapter examines methods of structuring Open Transport programs and
discusses the relative merits of these methods in the context of the Mac OS
cooperative multitasking environment. The chapter also takes a closer look at
Mac OS interrupt levels and explains how Open Transport processing is
affected by interactions between code executing at these levels. You should
read this chapter if you are writing a server application, encountering
synchronization problems, or want to improve performance. The chapter
“Programming With Open Transport Reference” includes detailed information
about the functions introduced in this chapter.

To use this chapter, you need to be familiar with system tasks, deferred tasks,
and interrupts in general. For additional information about system tasks, read
the information about the SystemTask function in the chapter “Event Manager”
in Inside Macintosh: Macintosh Toolbox Essentials, and for additional information
about interrupts and deferred tasks, read the chapters “Introduction to
Processes and Tasks” and “Deferred Task Manager” in Inside Macintosh:
Processes.

Open Transport Programming Models

Designing a program that uses Open Transport involves finding an execution
path that is simple to code but that does not degrade user experience nor
endanger the robustness of your program. This section describes various
strategies that you can use to structure code that calls Open Transport, focusing
on the relative merits of the Open Transport notification mechanisms.

The Mac OS Open Transport APl is a superset of the industry standard
X/Open Transport Interface (XTI) specification. Because the XTI standard
originated in a preemptive multitasking environment, a task’s blocking I/O
requests did not degrade the system’s overall responsiveness. In such an
environment all calls can be made synchronously, which eases the task of
coding and minimizes synchronization problems. The matter stands differently
in the current Mac OS cooperative multitasking environment, in which it is
each task’s responsibility to provide other, concurrent tasks with access to the
processor. In the Mac OS environment, calling a task synchronously, without
ceding time to other processes, is regarded as very poor programming practice
and can easily hang the machine or seriously degrade user experience. To solve
this problem, Open Transport extends the XTI API to support asynchronous
notification of I/O completion. Open Transport uses several types of events to

Open Transport Programming Models 129

130

CHAPTER 5

Programming With Open Transport

notify your application that something has occurred that requires its immediate
attention. An event might signal the arrival of data, a connection or
disconnection request, or the completion of an asynchronous function. Your
program can either poll for these events or it can install a notifier function that
Open Transport will call when an event occurs.

There are three basic ways to structure Open Transport programs:
» Synchronous processing with threads

Using this method, you can call Open Transport functions synchronously.
Open Transport sends your notifier the event k0TSyncIdleEvent whenever a
synchronous call is waiting to complete. In response, your notifier can call
the function YieldToAnyThread, which allows other concurrent processes to
obtain processing time. This method offers the simplest programming model
inasmuch as it avoids asynchronous processing. For more information, see
“Using Synchronous Processing With Threads” (page 130).

= Polling for events

Using this method, you can call the function 0TLook from your main event
loop to poll for events such as the arrival of data, connection and
disconnection requests, etc. The problem with this method is that the 0TLook
function does not return completion events. Thus, if you are calling a
function asynchronously, you need to find some other way to determine
whether the function has completed. For more information, see “Polling for
Events” (page 132).

» Using a notifier function to handle events

Using this method, you install a notifier function and call Open Transport
functions asynchronously. Open Transport sends you any events that affect
the specified endpoint, and you handle these from your notifier or from
your main event loop. This method offers the best performance, but it
increases program complexity and might give rise to synchronization
problems. For more information, see “Using Asynchronous Processing With
a Notifier” (page 134).

Using Synchronous Processing With Threads

Figure 5-1 shows the key functions that your program must call to implement
synchronous processing with threads. From within your program you must
install a notification routine that handles the event k0TSyncIdleEvent by calling
the function YieldToAnyThread. The program must also call the function

Open Transport Programming Models

CHAPTER 5

Programming With Open Transport

0TUseSynclIdleEvents to let Open Transport know that it wants to receive events
of the type k0TSyncIdleEvent.

Figure 5-1 Synchronous processing with threads

Open Transport Program

Wait for
synchronous function
to return

OTInstalINotifier
< | 0TUseSyncIdleEvents
0TSetSynchronous
/* do synchronous processing here */

Notifier
|Y1‘erToAnyThread IE>

kOTSyncldl eEvent>

Other threads get
processing time

When Open Transport is waiting for a synchronous function to complete, it
sends the event k0TSyncIdleEvent to your notifier when it is safe for the notifier
to call the function YieldToAnyThread. This function eventually causes the
Thread Manager to switch to a thread that calls WaitNextEvent, thus yielding
time to other processes.

Note
You must be familiar with the Thread Manager in order to
use the YieldToAnyThread function. O

The only disadvantage of this method is that once you give time to other
processes, you have no control over how long it takes for these processes to call

Open Transport Programming Models 131

132

CHAPTER 5

Programming With Open Transport

WaitNextEvent. So, while synchronous processing with threads might not be the
method of choice for high performance servers, if your needs are more modest,
you can enjoy the relative programming simplicity of this method. For a
detailed example of a sample program using this model, see Listing 1-4 in
“Getting Started With Open Transport(page 31).”

Note

To get out of a threaded synchronous routine, use the
function 0TCancelSynchronousCall (page 397).

Polling for Events

Figure 5-2 shows the structure of a program that calls Open Transport functions
asynchronously and uses the 0TLook function to poll for incoming events.

Open Transport Programming Models

CHAPTER 5

Programming With Open Transport

Figure 5-2 Polling for events
Network Event Loop Processing
N
Protocol WaitNextEvent
request | >
A4 Other
0TLook event loops
4
VAN
> 0TRcv
Protocol 4
response <] 0TSnd

By using the 0TLook function within its main event loop, an application does
not need to idle while waiting for data to arrive. However, processing Open
Transport events in an application’s event loop can result in unpredictable
packet processing delays. This is because the time between when your
application receives a packet and when it responds depends on factors external
to your application; it depends upon how other concurrent processes are using
(or abusing) their access to the processor. Moreover, the 0TLook function was
written for the original XTI environment in which asynchronous processing
played a very minor part. For this reason, the function does not return
asynchronous completion events; as a result, if you are calling Open Transport
functions asynchronously, you must use some other means to determine
whether these have completed.

Open Transport Programming Models 133

CHAPTER 5

Programming With Open Transport

Using Asynchronous Processing With a Notifier

Figure 5-3 shows the structure of an application that calls Open Transport
functions asynchronously and uses a notification routine to process
asynchronous and completion events. The chapter “Providers(page 61)” gives
detailed information about the use of notifiers.

Figure 5-3 Asynchronous processing with a notifier

Network Notifier Routine

Protocol request
‘ > myNotifier(ContextPtr, T_DATA, 0, nil)

!

0TRcv

Process request

!

0Tsnd

!

Return to
Open Transport

Response

VAN

As shown in the figure, the advantage of using the notifier is that it is called by
Open Transport whenever an event occurs, allowing you to respond
immediately. Because Open Transport often calls your notifier at deferred task
time, you can handle requests without the overhead of event loop processing.

134 Open Transport Programming Models

CHAPTER 5

Programming With Open Transport

To get the best performance and to minimize synchronization problems, you
should attempt to respond to most events directly in the notifier. You should be
able to perform the following tasks from your notifier:

= accept and hand off connections

receive and process all incoming data

start asynchronous I/ O operations; for example, call File Manager functions

» send network data
= tear down network connections

By the same token, because notifiers do often execute at deferred task time,
they are somewhat limited in the functions they can call. For more information,
see “Deferred Task Level” (page 137).

The following guidelines can help you use notifiers safely and effectively:

= Treat the notifier code path as a critical section. Assume you are locking the
operating system from other tasks.

= Never call Open Transport at hardware interrupt time, except to schedule a
deferred task or to call one of the functions (listed in Appendix C) that are
safe to call at hardware interrupt time.

= Never make a synchronous Open Transport call from inside a notifier. Doing
this will cause Open Transport to return the result k0TStateChangeErr in
order to prevent you from deadlocking.

= Never make a synchronous File Manager or Device Manager call from inside
a notifier. It might cause deadlock.

= Use completion events to gate endpoint action. For example, respond to a
T_OPENCOMPLETE event by initiating a bind; or respond to the event
T_DISCONNECTCOMPLETE by calling the 0TUnbind function. Making such use of
completion events will prevent you from receiving the result
koTStateChangeErr when you call a function before the endpoint is in a valid
state.

Note

Note that Open Transport 68000-based applications can
implement handler routines that use global variables
without having to set up an A5 world. O

Open Transport Programming Models 135

CHAPTER 5

Programming With Open Transport

Interrupt-Safe Functions

One reason it’s difficult to process packets in a notifier is that when you do, you
can’t call the Mac OS Toolbox functions that move memory at deferred task
time. To remedy this, Open Transport makes available a number of fast and
interrupt-safe utility functions that you can use instead. These functions are
documented in the chapter “Utilities Reference” (page 621).”

Memory Management From Notifiers

You can safely call the functions 0TA11ocMem and 0TFreeMem from your notifier.
However, keep in mind that the memory allocated by 0TA110cMem comes from
the application’s memory pool, which, due to Memory Manager constraints,
can only be replenished at system task time. Therefore, if you allocate memory
at hardware interrupt level or deferred task level, be prepared to handle a
failure as a result of a temporarily depleted memory pool.

Interrupt Levels and Open Transport Processing

136

The Open Transport API offers a set of functions that you can use to schedule
code to run at system task level, at deferred task level, and, in some cases, at
hardware interrupt level. This section briefly describes the Mac OS interrupt
levels, lists the restrictions on code executing at each level, and explains how
you should use the functions provided by Open Transport to schedule code to
run at these levels. This information is important in understanding the
synchronization problems that might arise during asynchronous processing—
where interaction between code executing at different levels might cause
unexpected behavior.

Hardware Interrupt Level

Hardware interrupt-level execution happens as a result of a hardware interrupt
request. Installable interrupt handlers for PCI bus, NuBus and other devices, as
well as interrupt handlers supplied by Apple all execute at this level.

In general, you should minimize the amount of time that your code spends
executing at hardware interrupt level. If you think you need to do extended
processing at this level, you should consider trying to defer such processing to

Interrupt Levels and Open Transport Processing

CHAPTER 5

Programming With Open Transport

deferred task level. For information about how you do this, see “Deferred Task
Level” (page 137).

If virtual memory is on, paging is not safe at hardware interrupt level unless
the interrupt has been postponed using the Memory Management function
DeferUserfn. Some system interrupt handlers (Device Manager completion
routines, VBLs, slot VBLs, Time Manager tasks) automatically defer their
operation to a safe time, but other hardware interrupt handlers must be sure
not to cause page faults.

Open Transport furnishes a number of utility functions that you are allowed to
call at hardware interrupt time. Appendix C(page 793) lists these functions. In
some cases, you must notify Open Transport that you are about to call an Open
Transport function at hardware interrupt time by first calling the
0TEnterInterrupt function. You can then call one of the permitted functions.
When you are done with calling Open Transport functions at hardware
interrupt time, you must call the 0TLeaveInterrupt function. For example, you
could execute these code statements in this sequence:

OTEnterInterrupt();
0TScheduleDeferredTask(dtCookie);
OTLeavelnterrupt();

WARNING

If you try to call an Open Transport function that is not
permitted at interrupt time or if you do not use the
OTEnterInterrupt and OTLeaveInterrupt functions when
these are required, you will either get the 0TBadSyncErr
result code or crash your system, depending on the
function you call. a

Deferred Task Level

A deferred task is the means whereby you can schedule a routine to be
executed from hardware interrupt level code. Deferred task processing occurs
just before the operating system returns from hardware interrupt level to
system task time. Scheduling code to run at deferred task time minimizes the
time that code executes at hardware interrupt level and therefore minimizes
system interrupt latency. Deferred tasks are executed serially, offering a simple
mutual exclusion mechanism.

Interrupt Levels and Open Transport Processing 137

138

CHAPTER 5

Programming With Open Transport

Programs using Open Transport can cause code to run at deferred task time by
creating a deferred task with the 0TCreateDeferredTask function and by
scheduling it to run using the 0TScheduleDeferredTask function. Using Open
Transport functions to create and schedule deferred tasks is preferable to using
the Deferred Task Manager function DTInstall, because by doing so you allow
Open Transport to adapt to changes in the underlying operating system
without having to change your code.

Code also executes at deferred task time if it is called by something that is
executing at deferred task level. For example, Open Transport often calls
notifier functions at deferred task level. You should assume, in writing your
notifier functions, that they are likely to run at deferred task level and observe
the restrictions on code running at this level.

If you are writing a system extension or a code resource, you probably need to
use Open Transport’s deferred task functions to get processing time to handle
such tasks as allocating memory or accessing disk space. You must schedule a
deferred task if you want to call such code from code that executes at interrupt
time or from within an interrupt function such as a Time Manager function,
Vertical Retrace Manager function, File Manager completion routine, or Device
Manager completion routine.

Virtual Memory paging is safe at deferred task level. You can also call many
Open Transport functions at deferred task time; these functions are described
in Appendix C(page 793).

IMPORTANT

If you are writing a PCI device driver (ndrv), please note
that Open Transport treats secondary interrupt level as
hardware interrupt level. Therefore, your secondary
interrupt handler is subject to the same restrictions as code
running at hardware interrupt time, as described in the
previous section. a

System Task Level

System task level is the level at which most application code executes. An
application’s main entry point is called at system task level. Cooperatively
scheduled Thread Manager threads also run at system task time.

Open Transport furnishes several functions that you can use to schedule code
to execute at system task level. Normally, you don’t need to use these functions

Interrupt Levels and Open Transport Processing

CHAPTER 5

Programming With Open Transport

because your application executes within a normal event loop that runs at
system task level. However, you might want to use Open Transport’s system
task scheduling functions for some of your application’s processing because
these functions provide an efficient way to streamline your main event loop.
For example, you can avoid handling some of your memory allocation during
your main event loop; instead, you can schedule a system task to obtain
memory at certain times or on a periodic basis.

System task level is not considered interrupt level by any part of the system.
Consequently, you can call anything at system task level. Virtual Memory
paging is also safe at this level unless your code accesses some resource that the
system needs to support paging. For example, if you get exclusive access to the
SCSI bus by calling the function SCSIGet, you must not cause a page fault even
at system task level.

Using Timer Tasks

Open Transport provides functions that you can use to create a timer task, to
schedule the task, to cancel it, and to dispose of it. These functions are
described in “Working With Timer Tasks” (page 529). Open Transport executes
timer tasks at deferred task time.

IMPORTANT
You cannot call these functions from 68000 code running
on a Power PC. a

Using System and Deferred Tasks

You can use Open Transport functions to schedule a callback function that will
be called at system task time or deferred task time. To do this, you use the
function 0TCreateSystemTask or the function 0TCreateDeferredTask to create the
task. Then you use the function 0TScheduleSystemTask or the function
0TScheduleDeferredTask to schedule the task.

The 0TCreateSystemTask and 0TCreateDeferredTask functions allocate a
structure that defines the task you want executed. Upon completion, these
functions return a reference by which you subsequently refer to the task when
scheduling, cancelling, or destroying the task. When you create the task, you
can also specify user-defined context information that Open Transport will pass
to your task when it calls it. For 680x0 code, Open Transport also restores the
A5 world to what it was when you created the task.

Interrupt Levels and Open Transport Processing 139

140

CHAPTER 5

Programming With Open Transport

Calling Open Transport Functions

Appendix C(page 793) includes a table that lists all the Open Transport
functions you can call at deferred task time. In general, you can make all
endpoint calls from a deferred task as long as the endpoint is in asynchronous
mode. A select number of Open Transport calls can only be made at system
task time.

IMPORTANT

Because opening the first endpoint for a configuration
requires that Open Transport load libraries, doing this
from a deferred task will only work if the foreground task
is calling the functions WaitNextEvent, GetNextEvent, or
SystemTask. Subsequent asynchronous open calls from a
deferred task will work regardless of what the foreground
task is doing because the libraries will have already been
loaded. a

Scheduling Tasks

Once you have created a task, you need to schedule it for execution. To do this,
you use the functions 0TScheduleSystemTask, 0TScheduleDeferredTask, or
0TScheduleInterruptTask. You pass the task reference (using the stCookie or the
dtCookie parameter) to the function, and Open Transport attempts to schedule
the task. If a system task is scheduled successfully, it executes when the
SystemTask function next executes. If a deferred task is scheduled successfully,
it executes as soon as possible after hardware interrupts have finished
executing.

Because a system task can happen relatively slowly, enough time can elapse
between scheduling and execution to let you cancel the task before it runs. If
you use the 0TCancelSystemTask function, you notify Open Transport not to
execute the system task at the scheduled time. The reference remains valid, and
you can choose to reschedule the task by using the 0TScheduleSystemTask
function again at any time. Deferred tasks, however, typically execute too
quickly to allow time for canceling them.

You can also choose to reschedule a system or deferred task after it has
executed successfully. You do this by using the 0TScheduleSystemTask or the
0TScheduleDeferredTask function again at any time. If you choose to reschedule
a task, you reuse the same reference. This means that exactly the same task
executes, which is useful for repetitive periodic tasks.

Interrupt Levels and Open Transport Processing

CHAPTER 5

Programming With Open Transport

Deallocating Resources

You can destroy a task with the 0TDestroySystemTask or the
0TDestroyDeferredTask functions. These functions make the task reference
invalid and free any resources associated with the task. You can call these
functions whenever it is no longer necessary to schedule a task, such as when it
has been executed at its scheduled time and you have no plans to reschedule it
for later use.

You can call the 0TDestroySystemTask function to destroy a system task that is
currently scheduled for execution. In this case, Open Transport cancels the
system task before proceeding with the task’s destruction.

If you want to use a task after you have destroyed it, you must begin again by
creating a new task with the 0TCreateSystemTask or the 0TCreateDeferredTask
functions.

Handling Synchronization Problems

If you call certain Open Transport functions from different interrupt levels,
synchronization problems can occur. For example,

1. You call the function 0TRcv from your main thread.

2. There is no pending data; just as the function is about to return to the
application with the result k0TNoDataErr, an inbound data packet interrupts
Open Transport, and it steps up to deferred task time to process the data.

3. Open Transport calls your notifier with a T_DATA event, which you ignore
because you are not aware of the possibility that the execution of the 0TRcv
function could be interrupted by the actual arrival of data (processed in a
different interrupt context).

4. The call to 0TRcv in your main thread completes with the result kOTNoDataErr,
you have no way of knowing that you got the T_DATA event, and you won’t
get another one until you call the function again, for another k0TNoDataErr
result. Consequently, your application hangs.

The solution to this problem is to adopt a sensible synchronization model—that
is, do everything in your notifier (using the 0TEnterNotifier function when you
can’t) or do everything at system task time. The key is not to mix and match
execution levels for the same endpoint.

Interrupt Levels and Open Transport Processing 141

CHAPTER 5

Programming With Open Transport

Handling Multiple Simultaneous Connections

142

This section describes the problems of handling multiple simultaneous
connections and explains the use of the ti1isten module as a means of
handling these problems.

Problems With Accepting Multiple Simultaneous Connections

One of the big challenges of programming Open Transport is accepting
multiple simultaneous incoming connections. The problem is that the obvious
code stream can produce unexpected results. Take, for example, the following
sequence:

1. You have a listening endpoint (one bound with a glen greater than 0)in
asynchronous mode. (The problem is independent of the mode of the
listening endpoint but, for the sake of this example, we'll assume the
listening endpoint is in asynchronous mode.)

2. An incoming connection arrives, and the listening endpoint calls your
notifier with a T_LISTEN event.

3. Your notifier reads the details of the incoming connection using the 0TListen
routine.

4. Your notifier decides to accept the incoming connection by calling the
function 0TAccept.

5. However, the OTAccept call fails with a k0TLookErr because there is another
pending T_LISTEN event on the listening endpoint. (This behavior is
explicitly allowed in the XTI specification.)

There are a number of ways to solve this problem. The easiest approach is to
use a qlen of 1 when you bind the endpoint. If you do this, the provider will
reject connection attempts while you are in the process of accepting a
connection attempt. The drawback to this approach is that the remote peer will
receive unnecessary connection rejections.

A second approach is to program around the problem using the existing Open
Transport APIs. When you call 0TAccept and get a look error, you turn around
and call 0TLook. If the pending eventis a T_LISTEN, put the first connection on
hold and deal with this new connection. Of course, the attempt to accept the

Handling Multiple Simultaneous Connections

CHAPTER 5

Programming With Open Transport

new connection can also fail because of a pending T_LISTEN, which means you
have to put this second connection attempt on hold, and so on. This requires
you to have a queue of pending incoming connection attempts. You must also
deal with T_DISCONNECT events on the listening endpoint, and delete the
corresponding connection attempts from the queue.

This second approach requires a lot of code, and is very hard to get right.

The third, and recommended, approach is to use the ti1isten module to
serialize incoming connection requests. This approach is described in the next
section.

Using "tilisten" to Accept Multiple Simultaneous Connections

The ti1isten module is provided to simplify the job of accepting multiple
simultaneous incoming connections. The module sits on top of the provider
associated with the listening endpoint and monitors connection requests being
sent up to the client. When a connection request arrives while the client is still
in the process of dealing with an earlier connection request, the tilisten
module holds on to the second connection request until the client is accepts or
rejects the first one.

Thus, when the ti1isten module is installed in the stream, the OTAccept
function will never fail because of a pending T_LISTEN event, and only fail with
a pending T_DISCONNECT event if that disconnection event is for the current
connection request.

You can use the ti1isten module in your listening endpoint by specifying it in
the configuration you use to build the listening endpoint. For example, if you
want to create an TCP endpoint with the "tilisten" module, you would do so
with the following code:

ep = 0TOpenEndpoint(0TCreateConfiguration("tilisten,tcp”), 0, nil, &err);

You should should only include the ti1isten module in connection-oriented,
listening endpoints. The module is not appropriate for use in hand-off
endpoints, or endpoints used for outgoing connections.

Note

The ti1isten module is not available in versions of Open
Transport prior to version 1.1.1. O

Handling Multiple Simultaneous Connections 143

CHAPTER 5

Programming With Open Transport

Improving Performance

144

The following suggestions for improving performance were drawn up with
servers in mind; however, if your application needs to handle multiple
connection requests, you might find the section “Streamlining Endpoint
Creation” useful. For additional information on handling throughput to
improve performance, see the chapter “Advanced Topics.”

Streamlining Endpoint Creation

The time required to create and open an endpoint can delay connection set-up
time. This can adversely affect servers, especially HTTP servers, since they
must manage high connection turnover rates. To handle this problem, follow
these guidelines:

= Preallocate endpoints

Preallocate a pool of open, unbound endpoints into an endpoint cache.
When a connection is requested (you receive a T_LISTEN event), you can
dequeue an endpoint from this cache and pass it to the function 0TAccept.

Using this method, the only time you have to wait for an endpoint to be
created is if the queue is empty, when you must allocate an additional block
of endpoints.

= Recycle endpoints

You can use an endpoint-cache to recycle endpoints when your connection is
closed. Rather than call the function 0TCloseProvider each time a connection
terminates, cache the unbound endpoint. This keeps it available for a
subsequent open request.

To use this method, unbind the endpoint upon receipt of the T_DISCONNECT
event. Then, when the notifier receives the T_UNBINDCOMPLETE event, queue
that endpoint into your endpoint cache. Optionally, to save memory, you can
deallocate the endpoint when the endpoint cache reaches some
predetermined limit.

= Create clone configurations

Another way to speed up endpoint creation is to create a prototype
configuration structure with the function 0TCreateConfiguration. Then, use

Improving Performance

CHAPTER 5

Programming With Open Transport

the 0TCloneConfiguration function to pass the configuration structure to the
function 0TOpenEndpoint. The call to 0TCloneConfiguration is about five times
faster than that to the 0TCreateConfiguration function.

Handling Dead Clients

A properly designed server should be prepared to handle what happens when
a remote client unexpectedly disappears. This problem is further aggravated
when the link has been flow-controlled. For example:

1. You are transmitting a large amount of data to a client.
2. Your transport provider enters a flow-control state.

3. The client crashes or becomes unreachable.
4

. After a timeout, your server decides to force a disconnect from that client
and issues a disconnect request.

5. However the T_DISCONNECT event is subject to flow control, which causes
your link to hang.

You can solve this problem by flushing the stream before requesting the
disconnection. The best way to do this is to send the I_FLUSH command to the
stream head using the 0TIoct1 function. For example:

f#finclude <stropts.h>
/* check to see if you are already disconnected */

error = 0TIoctl(ep, I_FLUSH, (void*) FLUSHRW);
if error 0TUnbind(ep)

MyNotifyProc (... void* the Param) f{
case kStreamloctlEvent /* flush is complete */
(void) 0TSndDisconnect (ep, NULL); /* safe to disconnect */
break;

This will result in your notifier receiving all T_MEMORYRELEASED events for any
outstanding send calls that acknowledge sends. You should then attempt to
send the disconnection request.

Improving Performance 145

146

CHAPTER 5

Programming With Open Transport

Shutting Down Servers

To shut down an Open Transport network server properly, you need to:

Make sure that all network and I/O operations have either completed or
aborted.

Flush any flow-controlled data streams with the I_FLUSH command. See
“Handling Dead Clients” (page 145) for detailed information.

Unbind and close all endpoints.

Cancel any outstanding deferred tasks with the function
0TDestroyDeferredTask.

Release any 0TBuffer structures with the function 0TReleaseBuffer.

Dispose of any unused configuration structures with the function
0TDestroyConfiguration.

Improving Performance

CHAPTETR 6

Mappers

Contents

About Mappers 150
Using Mappers 150
Setting Modes of Operation for Mappers 151
Specifying Name and Address Information 152
Searching for Names 153
Retrieving Entries in Asynchronous Mode = 154
Code Sample: Using OTLookupName 155

Contents

147

CHAPTER 6

Mappers

This chapter describes mappers, a type of Open Transport provider that lets
your application map entity names to protocol addresses. You can use mapper
functions to register a name, to look up a name or name pattern, or to remove
a registered name. Which functions are supported depends on the name-
registration protocol underlying the mapper provider you create. For more
detailed information about how mapper functions are implemented for

the protocol you are interested in, consult the documentation provided for
that protocol.

You do not have to open a mapper provider if you are interested only in
registering a name or looking up an address corresponding to a name.

= If the protocol you are using allows you to bind an endpoint by name and
you do so, the name is automatically registered on the network. This is a
more efficient way to register a name on the network than to create a
mapper to do it.

= If you want to obtain the address that corresponds to an entity name, you
can use the endpoint function 0TResolveAddress. Using this function also
saves you the trouble of opening a mapper. However, you cannot use this
function to look up a name pattern; that is, the name you look up cannot
include a wildcard character.

= If you want to connect to a remote endpoint simply by specifying its name,
you can simply pass the name to the 0TConnect function.

If you are using an endpoint that cannot be bound by name, if you want to look
up a name pattern, if you want to register a name that is not associated with an
endpoint, or if you want to use other mapper functions, you need to read this
chapter and learn how to create a mapper provider.

This chapter begins with a general description of mapper providers and
continues with a more detailed discussion of how you use mappers
asynchronously and how you use the mapper to look up names. The functions
used to register names and delete names are discussed in “Mappers Reference”
(page 545).

Mapper providers, like all Open Transport providers, can operate
synchronously or asynchronously and can block. For general information about
Open Transport providers, see the chapter “Providers” (page 61).

149

CHAPTER 6

Mappers

About Mappers

A mapper is a communications path between your application and a mapper
provider, which is a protocol that allows you to map a name to a network
address, if the underlying protocol allows it, and to register that name-address
pair so that it becomes visible to all other entities on a network. Which mapper
functions you call depends on the name-registration protocol you select when
you create a mapper. For example, if you select the AppleTalk Name-Binding
Protocol (NBP), which supports dynamic name and address registration, you
can use all the mapper functions described in this chapter: you can register a
name, look up a name, and remove a registered name. If you select the TCP/IP
domain name resolver (DNR), you can only look up a name that has been
registered using other means.

When you create a mapper, you obtain a mapper reference. A mapper
reference, like an endpoint reference, identifies the instance of the provider you
have created. You must pass this reference as a parameter to all other mapper
functions. You can open multiple mappers. For example, if you are writing a
network administration application, you might want to create a mapper for
each protocol used over the network. If you do open multiple mappers, the
mapper reference tells Open Transport which mapper is invoked for any one
function call.

Like endpoint providers, mapper providers also have a state attribute, which
helps Open Transport manage these providers. Unlike endpoints, however,
mappers do not provide functions that allow you to determine their state.

A mapper can be either in an uninitialized (T_UNINIT) state if it was closed by
the system, or in the idle (T_IDLE) state after it has been opened.

Using Mappers

This section begins by describing how the general provider functions that
govern a provider’s mode of operation apply to mapper providers. It goes on
to discuss information you need to know in order to use mapper functions:
how you format names and addresses specified in parameters to mapper
functions and how you handle processing when calling mapper functions

150 About Mappers

CHAPTER 6

Mappers

asynchronously. This section concludes with a discussion of different
techniques you can use when using the mapper to search for a name pattern.

Setting Modes of Operation for Mappers

Like all Open Transport providers, mappers can use different modes of
operation. A mapper can execute synchronously or asynchronously. You set the
mapper’s default mode of execution by using the appropriate function to open
it; for example, you can create a mapper that executes asynchronously by
calling the 0TAsyncOpenMapper function. After opening the mapper, you can
change its mode of execution by calling the 0TSetSynchronous or
0TSetAsynchronous functions. To determine how mapper functions execute, you
call the 0TIsSynchronous function.

Mappers use one asynchronous event and four completion events. Table 6-1
lists the event codes that the mapper provider can pass to your application and
explains the meaning of the cookie parameter to the notifier for each function.
For more detailed information, see the descriptions of the mapper functions in
“Functions” (page 550).

Table 6-1 Completion events for asynchronous mapper functions
Completion code Meaning
T_OPENCOMPLETE The 0TAsyncOpenMapper function has completed. The

cookie parameter contains the mapper reference.

T_REGNAMECOMPLETE The 0TRegisterName function has completed. The
cookie parameter contains the reply parameter, unless
it was NULL, in which case it contains the request
parameter.

Using Mappers 151

CHAPTER 6

Mappers

Table 6-1 Completion events for asynchronous mapper functions (continued)

Completion code Meaning

T_DELNAMECOMPLETE The 0TDeleteName or the 0TDel eteNameByID functions
have completed. For the 0TDeleteName function, the
cookie parameter holds a pointer to the name
parameter. For the 0TDeleteNameByID function, the
cookie parameter contains the id parameter.

T_LKUPNAMERESULT The 0TLookupName function has returned a name, but it

has not yet completed because there might be more
names to retrieve.

T_LKUPNAMECOMPLETE The 0TLookupName function has completed. The cookie
parameter contains the reply parameter.

The only way to cancel an asynchronous mapper function is to call the
0TCloseProvider function, passing the mapper reference for which the function
was executed. The 0TC1oseProvider function is described in the chapter
“Providers”(page 61) in this book.

By default, mappers do not block and do not acknowledge sends. You can
change a mapper’s blocking status by using the 0TSetBlocking function.
Mapper providers are not affected by their send-acknowledgment status.
However, a mapper provider’s blocking status might affect the behavior of
mapper functions. For example, if a mapper is blocking, heavy network traffic
might cause mapper functions to wait before sending or receiving data. If a
mapper is nonblocking and you are doing a lot of name lookups, the
0TLookupName function might return with the k0TF1owErr result. In this case, you
can try executing the function later.

Specifying Name and Address Information

Several mapper functions require that you specify a name or address. This
might be a name to register or to look up. Specifying a name or address means
that you have to create a buffer that contains the information and then create a
TNetbuf structure that specifies the size and location of this buffer. The format
that you use to store a name or an address is specific to the name-registration
protocol that underlies the mapper and is exactly the same as the name and
address formats that you can use to bind an endpoint. For information about

152 Using Mappers

CHAPTER 6

Mappers

name and address formats, please consult the documentation provided for the
protocol you are using.

If the protocol supports it, you can specify a name pattern rather than a name
when calling the 0TLookupName function. Different protocols might use different
wildcard characters to define name patterns. Please consult the documentation
provided for your protocol to determine valid wildcard characters and how
you use these to specify name patterns.

Searching for Names

You use the 0TLookupName function to search for a registered name or for a list of
names if your protocol supports name pattern matching. You use the req
parameter to specify the name or name pattern to search for. When the function
returns, it uses the rep1y parameter to pass back the matching name or names.

The req parameter is a pointer to a TLookupRequest structure containing the
name or name pattern to be found and additional information that the mapper
can use in conducting the search. You use the maxcnt field to specify the
number of names you expect to be returned. If you are looking for a specific
name, set this field to 1. If you are looking for a name pattern, you can use this
field to indicate the number of matches you expect the 0TLookupName function to
return. You use the timeout field to specify the amount of time (in milliseconds)
available for this search. If a match is not found within the specified time, the
function returns with the k0TNoDataErr. If the number you specify for the
maxcnt field is larger than the number of names that match the given pattern,
the mapper provider uses the value given in the timeout field to determine
when to stop the search.

The reply parameter is a pointer to a TLookupReply structure that contains two
fields. The names field describes the size and location of the buffer in which the
replies are placed when the function returns; the rspcount field specifies the
number of matching entries found. Figure 6-1 shows how the contents of a
reply buffer containing two entries are stored. The section “Code Sample:
Using OTLookupName” (page 155) provides and describes a sample program
that uses the 0TLookupName function. See especially, Listing 6-3.

Using Mappers 153

CHAPTER 6

Mappers
Figure 6-1 Format of entries in 0TLookupName reply buffer
Bytes
—
Length of address 2
Length of name 2
) Address 4
First |
entry
Name Variable
length
—
Length of address 2
Length of name 2
Address 4
Second |
entry
Name Variable
length
N

The first two bytes of each entry specify the length of the address; the second
two bytes specify the length of the name. The address is stored next and then
the name, padded to a four byte boundary.

Retrieving Entries in Asynchronous Mode

If you call the 0TLookupName function asynchronously, you can use an alternate
method for retrieving matching entries. In asynchronous mode, this function

sends two event codes: it sends the T_LKUPNAMERESULT code each time it stores a
name in the reply buffer, and it sends the T_LKUPNAMECOMPLETE code when it has

154 Using Mappers

CHAPTER 6

Mappers

stored the last name in the reply buffer—that is, when the function as a whole
completes execution. Each time the T_LKUPNAMERESULT event is passed to your
notification function, you can do the following:

1. Copy the name and address information from the reply buffer to some other
location.

2. From inside the notifier function, set the reply->names. len field or the
reply->rspcount field to 0.

When you set either of these fields to 0, Open Transport automatically sets
the other field to 0. It's important, however, that you reset these values from
within the notifier or the results might be unpredictable. You can also do it
from code bracketed by the 0TEnterNotifier and 0TLeaveNotifier functions.
For more information, see “OTEnterNotifier” (page 408).

3. Repeat the first two steps until the event passed to your notifier function is
T_LKUPNAMECOMPLETE.

This method saves you the trouble of guessing how large a reply buffer to
allocate. It might also save you some memory if you are expecting many
matches to be returned and are interested in only some of them.

Note

The T_LKUPNAMECOMPLETE event might have stored a name in
the buffer. Be sure to check for this possibility. O

Code Sample: Using OTLookupName

This section discusses the program OTLookupNameTest, which demonstrates
how you open an NBP mapper provider, issue an NBP lookup request, and
print out the resulting information. Listing 6-1 shows the preprocessor
directives and the main function of the program.

Using Mappers 155

CHAPTER 6

Mappers

Listing 6-1 The main function to OTLookupNameTest

#Hifndef gDebug /* variable set for OT debugging macros */
jidefine qDebugl

frendif

#include <OpenTransport.h>

#Finclude <OpenTptAppleTalk.h>

f#include <0TDebug.h> /* Need 0TDebugBreak & OTAssert macros */
#include <stdio.h>

/* 0TDebugStr is not defined in OT header files, but it is
exported by the libraries, so we define the prototype here. */
extern pascal void 0TDebugStr(const char* str);

static UInt32 glastPrinted = 0; /* Global var to track printing */

void main(void)
{ 0SStatus err;
char requestAddress[] = "=:AFPServer@*";

printf("Hello World!\n");

err = InitOpenTransport();

if (err == nokrr) ({
err = LookupAndPrint(requestAddress);
CloseOpenTransport();

}

if (err == nokrr) ({
printf("Success.\n");
}oelse {

printf("Failed with error %d.\n", err);
}

printf("Done. Press command-Q to Quit.\n");

The main function initializes Open Transport, calls the user-defined function
LookupAndPrint (passing a value for the requested address), and then closes
Open Transport.

156 Using Mappers

CHAPTER 6

Mappers

The LookupAndPrint function is the key function to the OTLookupNameTest
program. However, because it calls Open Transport functions synchronously, it
also uses a notifier to yield time to other processes. Listing 6-2 shows the
notifier, which calls printf periodically in response to a k0TSyncIdle event. (The
printf function calls WaitNextEvent, thus our synchronous calls to Open
Transport will yield time to other processes. A real world application would
probably use threads to do this.

Listing 6-2 Noatifier that yields time to other processes

static pascal void YieldingNotifier(EndpointRef ep, OTEventCode code,
0TResult result, void* cookie)

ffpragma unused(ep)
ffpragma unused(result)
ffpragma unused(cookie)

switch (code) {
case kOTSyncIdleEvent:
if (TickCount() > glLastPrinted + 10) {
printf(".");
fflush(stdout);
glLastPrinted = TickCount();
}
break;
default:
/* do nothing */
break;

For more information on using threads to yield time, see “Using Synchronous
Processing With Threads” (page 130).

Listing 6-3 shows the LookupAndPrint function. This function takes one
parameter, a pointer to an NBP address. This address must have the form

<name>:<type>@<zone>

The function begins by opening an NBP mapper provider and switching it into
synchronous/blocking mode. It uses k0TSyncIdle events (and the notifier

Using Mappers 157

CHAPTER 6

Mappers

shown in Listing 6-2) to yield time to other processes. Then it issues an NBP
lookup request, using the 0TLookUpName function (page 559). When the request
completes, the function calls the user-defined PrintAddress and PrintName
functions to display the results.

Listing 6-3 The LookupAndPrint function

158

static 0SStatus LookupAndPrint(char *requestAddress)

{

0SStatus err;

0SStatus junk;

MapperRef nbpMapper;

TLookupRequest TookupRequest;
TLookupReply TookupReply;

UInt8 *responseBuffer;
TLookupBuffer *currentLookupReplyBuffer;
UInt32 namelndex;

err = nokrr;
nbpMapper = kOTInvalidMapperRef; /* for error checking */

/* Create the responseBuffer. */
responseBuffer = 0TAllocMem(kResponseBufferSize);
if (responseBuffer == nil)

err = KENOMEMErr;

/* Create an NBP mapper and set it to up for threaded processing. */

if (err == nokrr)
nbpMapper = 0TOpenMapper(0TCreateConfiguration(kNBPName),
0, &err);
if (err == nokrr) {

junk = 0TSetSynchronous(nbpMapper);
O0TAssert("LookupAndPrint: Could not set synchronous mode
on mapper", junk == nokrr);
junk = 0TSetBlocking(nbpMapper);
O0TAssert("LookupAndPrint: Could not set blocking mode
on mapper", junk == nokrr);
junk = 0TUseSyncldleEvents(nbpMapper, true);

Using Mappers

CHAPTER 6

Mappers

0TAssert("LookupAndPrint: Could not enable sync idle events
on mapper", junk == nokrr);
junk = OTInstallNotifier(nbpMapper, YieldingNotifier, nil);
0TAssert("LookupAndPrint: Could not install notifier
for mapper", junk == nokrr);

/* Call OTLookupName synchronously. */

if

/*

if

(err == nokrr) ({
/* Set up the TlLookupRequest structure. */
0TMemzero(&lookupRequest, sizeof(lookupRequest));
lookupRequest.name.buf = (UInt8 *) requestAddress;
lookupRequest.name.len = 0TStrlength(requestAddress);
lookupRequest.timeout = 1000;// 1 second in milliseconds
lookupRequest.maxcnt = kResponseBufferSize /
KNBPEntityBufferSize;
/* Set up the TlLookupReply structure. */
0TMemzero(&lTookupReply, sizeof(TookupReply));
lookupReply.names.buf = responseBuffer;
lookupReply.names.maxlen = kResponseBufferSize;

/* Now do the lookup. */

err = 0TLookupName(nbpMapper, &lookupRequest, &lookupReply);

Print out the contents of the responseBuffer. */

(err == nokrr) f{
printf("\n");

/* Start by pointing to the beginning of the response buffer.

currentLookupReplyBuffer = (TLookupBuffer *) responseBuffer;

/* For each response in the buffer... */

Using Mappers

*/

159

CHAPTER 6

Mappers

for (namelndex = 0; namelndex < TookupReply.rspcount;
nameIndex++) {

/* ... print the name and address and... */

printf("%3d ", namelndex);

PrintAddress((DDPAddress *)
¤tLookupReplyBuffer->fAddressBuffer[0]);

PrintName((char *)¤tlLookupReplyBuffer->
fAddressBuffer[currentlLookupReplyBuffer->

fAddresslLengthl,
currentLookupReplyBuffer->fNamelLength);
printf("\n");

/* ... use OTNextLookupBuffer to get from the current
buffer to the next. */

currentLookupReplyBuffer =
OTNextLookupBuffer(currentLookupReplyBuffer);

/* Clean up. */

if (responseBuffer != nil) {
OTFreeMem(responseBuffer);
}
if (nbpMapper != kOTInvalidMapperRef) {
Jjunk = 0TCloseProvider(nbpMapper);
O0TAssert("LookupAndPrint: Failed closing mapper", junk == nokrr);

return err;

The function LookupAndPrint calls two functions, PrintName and PrintAddress,
to print names and addresses; Listing 6-4 shows the two functions.

160 Using Mappers

CHAPTER 6

Mappers

Listing 6-4 Printing names and addresses

static void PrintName(const char *name, UInt32 length)
{

char nameForPrinting[256];

0TMemzero(nameForPrinting, 256);
0TMemcpy (nameForPrinting, name, length);

printf("“%s”", nameForPrinting);

static void PrintAddress(DDPAddress *addr)
{
O0TAssert("PrintAddress: Expected a DDPNBPADdress",
addr->fAddressType == AF_ATALK_DDP);
printf("Net = $%04x, Node = $%02x, Socket = $%02x ",
addr->fNetwork,
addr->fNodelD,
addr->fSocket);

Using Mappers 161

CHAPTER 6

Mappers

162 Using Mappers

CHAPTER 7

Option Management

Contents

About Options and Option Negotiation 166
Explicit Use of Options and Portability of Code 166
Types of Options 167
The Format of Option Information 167
XTI-Level Options and General Options 169
Using Options 171
Determining Which Function to Use to Negotiate Options 171
Obtaining the Maximum Size of an Options Buffer 172
Setting Option Values 172
Specifying Option Values 173
Setting Default Values 174
Retrieving Option Values 174
Obtaining Current and Default Values 175
Parsing an Options Buffer 175
Verifying Option Values 176
Sample Code: Getting and Setting Options 177

Contents 163

CHAPTER 7

164 Contents

CHAPTER 7

Option Management

This chapter explains the use of options, values associated with an endpoint
provider, which you can change to fine-tune or customize the data-transfer
service offered by the endpoint. In general, the use of options degrades
transport independence. Therefore, it is important to note that default option
values are provided for every type of endpoint and that you can write
applications that never need to specify any options. You need to read this
chapter if

= you need to use services that must be specified using options

For example, you are using a transaction-based endpoint and need to be able
to send expedited data in order to forward an attention message.

= it is critical to your application that you fine-tune the data-transfer services
offered by a protocol and you can only do this by using options

For example, you need to manipulate the size of internal send and receive
buffers to eliminate data backlog or buffer overflow problems.

= you need to create a debugging version of the application through the use of
options

This chapter describes general options that can be specified by any protocol
that supports them, explains how you construct an options buffer, how you get
and set option values, and how you verify values. It also provides code
samples that show how you

= construct option buffers
= parse buffers containing option information
= get, set, and display option values.

To understand this chapter, you should be familiar with endpoint providers
and the endpoint functions used to transfer data. These topics are discussed in
“Endpoints” (page 83). For specific information about the options that are
supported for a protocol implementation, you need to consult the
documentation provided for that protocol.

In general, it is recommended that you set up your options using the
OTOptionManagement function after creating your endpoint and before using
it. The actual semantics of option negotiation are somewhat complicated and
are covered in “XTI Option Summary” (page 807).

165

CHAPTER 7

Option Management

About Options and Option Negotiation

166

For every endpoint, Open Transport maintains an options buffer. When you
create an endpoint provider, Open Transport fills this buffer with a default
value for each option supported for the endpoint. Option values have meaning
for and are defined by the protocol to which they apply. Typically, Open
Transport uses endpoint options to control aspects of the endpoint’s operation.
For example, if a protocol guarantees reliable delivery of data, the protocol
might define an option that specifies the number of times a send operation is
retried before the send fails and an error message is generated. Protocol
implementations provide default values for options to ensure maximum
portability for your application across protocol families.

In writing a networking application, you can use an endpoint provider’s
default option values or you can replace these with other values to control the
behavior of an endpoint. Option negotiation describes the process that results
when you decide to replace default values with option values that you choose.
A successful negotiation results in your obtaining exactly the option values you
requested, a partly successful negotiation results in your getting different
values for the options you requested, and a failed negotiation results in your
not being able to change existing values at all.

Depending on the option you want to modify, a negotiation might involve a
client and its endpoint provider, or it might involve both a local and remote
client and their endpoint providers. In either case, it's important to keep in
mind that the process is a negotiation—that is, before you can change the
characteristics of an endpoint or change the way in which it transfers data or
establishes a connection, an agreement has to be reached. If you cannot reach
this agreement, the operation you are attempting to complete could fail. In this
case, you might have to find a way of implementing the service you need other
than through the use of options.

Explicit Use of Options and Portability of Code

The goal of the Open Transport architecture is to enable networking
applications to migrate across protocol families and system platforms with
little or no change to code. However, the price of transport independence or,
ideally, transport transparency is that an application must be ready to forego

About Options and Option Negotiation

CHAPTER 7

Option Management

features that are unique to a specific protocol in order to work equally well
with protocols offering a similar type of service, such as connection-oriented
transactionless service or connectionless transaction-based service. Because
options are often coupled with a particular protocol or protocol family, making
explicit use of options degrades portability across protocol families. Similarly,
different system platforms might offer different option support for the same
protocols due to different implementations. Thus, making use of options can
also endanger portability across different system platforms.

Note, however, that protocols are not necessarily interchangeable and that you
might very reasonably want to take advantage of a protocol feature that is only
available through the use of options. If this is the case, you need to become
familiar with the material presented in the following sections, which describe
the Open Transport rules for option management and negotiation.

Types of Options

The process of option negotiation is affected by the type of option involved.
Options can be association-related, privileged, read-only, or absolute. For more
information about these distinction and how they affect option negotiation, see
“XTI Option Summary” (page 807).

The Format of Option Information

An option has a name and a value, it is defined for a specific protocol, and it
takes up a certain amount of room in memory. The T0Option structure used to
define an option contains fields for each of these characteristics. As Figure 7-1
shows, an option is described by an option header and a value.

About Options and Option Negotiation 167

CHAPTER 7

Option Management

168

Figure 7-1 The format of option information
TOption structure Bytes
—
Length 4
Level 4
Option |
header
Name 4
Status 4
—
Value Variable
length

The option header is the same for all options. It contains four fields that specify:

The length of the entire structure. The length includes the length of
the option header and the length of the value field; it does not include
added padding.

The protocol (level) for which the option applies. It is possible to set an
option for any protocol that is part of an endpoint provider’s configuration.
For example, if you open an AppleTalk Transaction Protocol (ATP) endpoint,
it is possible to set an option at the Datagram Delivery Protocol (DDP) level
by specifying DDP for the 1evel field.

The name of the option. Each protocol implementation defines the names of
options it supports.

The status of the option. The endpoint provider fills in this field to indicate
the outcome of the option negotiation.

The length and format of data in the value field depend on the option
being defined.

About Options and Option Negotiation

CHAPTER 7

Option Management

You store option information for an endpoint in a buffer containing one or
more TOption structures. A TNetbuf structure describes the buffer. Figure 7-2
shows a TNetbuf structure, MyOptBuf, that describes an options buffer containing
three options. The field MyOptBuf.buf points to the buffer; the field MyOptBuf.len
specifies the actual length of the buffer.

Figure 7-2 An options buffer

First option Second option Third option

Alignment bytes Alignment bytes

MyOptBuf

MyOptBuf.maxlen

MyOptBuf.len

MyOptBuf.buf

You can concatenate several TOption structures in a buffer, as shown in
Figure 7-2, provided you observe the following rules:

= TOption structures must be quad-byte aligned within the buffer.

s If you are using the 0TOptionManagement function to set or verify option
values, all options in the buffer must be for the same protocol. That is, the
value of the Tevel field must be the same. When used with any other
function, the options buffer can contain options set for different protocols.

XTI-Level Options and General Options

In addition to options defined for specific protocols, Open Transport defines
options called XTI-level options that are not specific to a particular endpoint.
Some of these options are absolute requirements, which means that whatever
protocol you are using must support these options. You need to consult the

About Options and Option Negotiation 169

CHAPTER 7

Option Management

documentation for your protocol to determine the meaning of the option for
your endpoint and for additional information about default values and ranges
or valid values supported for the option. Table 7-1 provides a brief summary of
XTI-level options. For more detailed information about these options, see
“XTI-Level Options” (page 565).

Table 7-1 XTl-level options

Option name Description
XTI_DEBUG Enables debugging.
XTI_LINGER Specifies a linger period which delays the execution of the

0TCloseProvider function.
XTI_RCVBUF Specifies the size of your endpoint’s internal receive buffer.

XTI_RCVLOWAT — Specifies the number of bytes that must accumulate in the
endpoint’s internal receive buffer before your application
receives a T_DATA event signalling the arrival

of data.
XTI_SNDBUF Specifies the size of your endpoint’s internal send buffer.
KTI_SNDLOWAT Specifies the minimum number of bytes that can accumulate

in the endpoint’s internal send buffer before the provider
actually sends the data.

In addition to the XTI-level options, Open Transport defines the set of generic
options listed in Table 7-2. None of these options are absolute requirements.
This means that if an Open Transport protocol supports the functionality of one

170 About Options and Option Negotiation

CHAPTER 7

Option Management

of these options, it should use this option to do it. For additional information
about generic options, see “Generic Options”(page 567).

Table 7-2 Open Transport generic options

Option name Description

OPT_CHECKSUM Specifies whether packets have checksums calculated
on receipt.

OPT_RETRYCNT Specifies the number of times a function can attempt
packet delivery.

OPT_INTERVAL Specifies the amount of time to wait between attempts
to deliver a packet or request.

OPT_ENABLEEOM Specifies whether the T_MORE flag for the 0TSnd function
can be used to signal the end of a logical unit.

OPT_SELFSEND Specifies whether self-sending is enabled for broadcast
messages.

OPT_SERVERSTATUS Specifies the status string that is used to answer a
SendStatus request from a client.

OPT_KEEPALIVE Specifies the amount of time a connection should be
maintained in the absence of data transfer.

Using Options

This section explains how you use endpoint functions to set and retrieve option
values and how you use Open Transport utility functions to construct an
options buffer and parse through an options buffer.

Determining Which Function to Use to Negotiate Options

You can negotiate options using the 0T0OptionManagement function or using any
one of the endpoint functions used to transfer data or establish a connection.
The basic distinction between setting option values using the

Using Options 171

172

CHAPTER 7

Option Management

0TOptionManagement function and using any of the other endpoint functions is
that options negotiated with the 0TOptionManagement function affect all
functions called by an endpoint, whereas options negotiated using any other
function affect only the connection, transaction, or datagram for which they are
set. For more detailed information about these differences, see “XTI Option
Summary” (page 807).

Obtaining the Maximum Size of an Options Buffer

Different types of endpoints support different numbers of options. For
example, an ATP endpoint might support more options than a DDP endpoint
and might need a larger buffer to hold the options. When you call the
0TOptionManagement function to change option values, the function returns in
the ret parameter a pointer to the buffer containing the negotiated option
values. You must have allocated the buffer used to store these options before
calling the function. Likewise, when you call the 0TListen, 0TRcvUData,
0TRcvURequest, or 0TRcvConnect functions, you can allocate a buffer in which
current option values are to be placed when these functions return. In either
case, you must specify the size of the buffer, and the buffer must be large
enough to hold all of the endpoint’s options. Otherwise, the function fails with
a kOTBufferOverflow result. You can obtain the maximum size of a buffer used
to store options for your endpoint by examining the options field of the
TEndpointInfo structure for the endpoint. You can get a pointer to this structure
when you open the endpoint, when you bind the endpoint, or when you call
the 0TGetEndpointInfo function.

Setting Option Values

You can use the 0TOptionManagement, 0TAccept, 0TSndUData, 0TSndURequest, and
0TConnect functions to set option values. Setting option values results in a
negotiation process between you (the client application) and the endpoint
provider or, in the case of association-related options, between local and remote
clients and their endpoint providers. Appendix D describes the rules that
govern an option negotiation that you have initiated using the
0TOptionManagement, 0TConnect, 0TSndUData, or 0TSndURequest functions. The
section “Retrieving Values for Connection-Oriented Endpoints” (page 816)
describes the negotiation rules that hold when you use the 0TOptionManagement
or 0TAccept functions to respond to a negotiation. This section describes ways
in which you can build the options buffer used to specify the options you want
to change.

Using Options

CHAPTER 7

Option Management

Specifying Option Values

No matter which function you use to set option values, you must allocate a
buffer that contains the option value or values you want to change. The options
in this buffer are described by Toption structures; the format of this structure is
illustrated in Figure 7-1 (page 168). You can concatenate several structures in
the buffer, as shown by Figure 7-2 (page 169), so long as each structure begins
on a long-word boundary. The buffer itself is described by a TNetbuf structure
that specifies the location of the buffer and its size.

You can create a buffer that contains the option values you want to set in one of
two ways: manually or by using the 0TCreateOptions function. If you construct
the buffer manually, you must do the following;:

1. Allocate the buffer.
2. Create a TOption structure for each option you want to change.
3. Initialize each field of the TOption structure except for the status field.

4. Place the TOption structures in the buffer, making sure that each begins on a
long-word boundary. This enables Open Transport to parse the buffer.

To have Open Transport create a buffer for you, you must call the
0TCreateOptions function and pass it a string containing one or more option
values. This method saves time and trouble, but you can only use it if all the
options in the buffer are for the same level and that level is the same as the
top-level protocol for the endpoint provider. That is to say, you could not use
this method to construct a buffer that contains DDP-level options for an ATP
endpoint. In addition, this method is only guaranteed to work if you are
building an options buffer for the 0TOptionManagement function.

Listing 7-1 shows how you construct an options buffer by using the
0TCreateOptions function. The code initializes a string array, myStr, to hold
option values. It then creates a TOptMgmt structure, which would later be passed
to the 0TOptionManagement function to request the option values specified in the
string. Finally, it calls the 0TCreateOptions function to create the options buffer.
The 0TCreateOptions function creates the TOption structures and places them in
the buffer, making sure that the structures are properly aligned.

Using Options 173

CHAPTER 7

Option Management

Listing 7-1 Constructing an options buffer using the 0TCreateOptions function

char* myStr = "BaudRate = 9650 DataBits = 8 Parity =0
StopBits = 10";

UInt8 buffer[512]7;

TOptMgmt cmd;

cmd.opt.len = 0;

cmd.opt.maxlen = sizeof(buffer);

cmd.opt.buf = buffer;

cmd.flags = T_NEGOTIATE

err = O0TCreateOptions("SerialA", &myStr, &cmd.opt)

In this case, the initial value of cmd.opt.1en, which is 0, tells the
0TCreateOptions function at what offset it should begin to append option
information in the buffer. When the function returns, this field specifies the
actual length of the buffer.

Setting Default Values

To set all of an endpoint’s options to their default values, call the
0TOptionManagement function, specifying T_NEGOTIATE for the f1ags field and
allocating a buffer containing only one option named T_ALLOPT. Doing this
saves you the trouble of constructing a T0ption structure for every option the
endpoint supports. However, there is no guarantee that the provider can honor
your request simply because you request default values. Therefore, you must
allocate a buffer that is large enough to hold the option values returned in the
ret parameter.

Retrieving Option Values

This section describes how you can retrieve information about options,
including obtaining current and default option values for an endpoint and
obtaining current option values related to a connection, transaction, or
datagram.

When retrieving option values, you must allocate a buffer that is large enough
to contain the options when the function returns. The section “Obtaining the
Maximum Size of an Options Buffer” (page 172) explains how you do this.

174 Using Options

CHAPTER 7

Option Management

Obtaining Current and Default Values

To obtain some of an endpoint’s default or current option values, you call the
0TOptionManagement function. You specify T_DEFAULT or T_CURRENT for the flags
field of the req parameter, and you use the option.buf field to specify the
option names in which you are interested. When the function returns, it places
TOption structures, describing the default or current option values, in the buffer
referenced by the opt.buf field of the ret parameter.

If you are interested in obtaining all of an endpoint’s default or current values,
you can use the following methods:

= To obtain an endpoint’s default values, call the 0T0ptionManagement function,
specifying T_DEFAULT for the flags field and T_ALLOPT for the option name.

= To obtain an endpoint’s current option values, call the 0TOptionManagement
function, specifying T_CURRENT for the f1ags field and T_ALLOPT for the option
name.

Using T_ALLOPT for the option name allows you to construct an input buffer that
contains only one option. Remember, however, that you must allocate an
output buffer that is large enough to hold all of an endpoint’s option values
when the function returns.

Parsing an Options Buffer

If you use the 0TOptionManagement function to set, verify, or retrieve values, the
function returns in the ret parameter a pointer to a buffer containing option
information. You can use the 0TCreateOptionString function to parse this buffer
and create a string that lists all options and their current values.

The code fragment shown in Listing 7-2 calls the 0TOptionManagement function
to retrieve the option values currently effective for an endpoint. On return, the
0TOptionManagement function stores these in the cmd structure. Next, the code
calls the 0TCreateOptionString function. The first input parameter, "SerialA",
specifies the name of the protocol. The next input parameter, opts, is a pointer
to the buffer containing the option values returned by the 0T0ptionManagement
function. The expression cmd.opt.buf + cmd.opt.len, which provides the next
input parameter, specifies the length of the buffer. Using this information, the
0TCreateOptionString function returns a string containing each option name
and its respective value. The final parameter to the 0TCreateOptionString
function specifies the length of the string.

Using Options 175

CHAPTER 7

Option Management

176

Listing 7-2 Using the 0TCreateOptionString function to parse through a buffer
TOptMgmt cmd;

UINt8 myBuffer[512];

char myString[256];

cmd.opt.len = sizeof(TOption);
cmd.opt.maxlen = sizeof(myBuffer);
cmd.opt.buf = myBuffer;

((TOption*) buffer)->len = sizeof(TOption);
((TOption*) buffer)->level = COM_SERIAL;
((TOption*) buffer)->name = T_ALLOPT;
((TOption*) buffer)->status = 0;

cmd.flags = T_CURRENT;

0TOptionManagement(theEndpt, &cmd, &cmd);

TOption* opts = (TOption*)cmd.opt.buf;
err = 0TCreateOptionString("SerialA", &opts,

cmd.opt.buf + cmd.opt.len, string, sizeof(string));
printf("Options = \"%s\"", string);

Note

The 0TCreateOptionString function is supplied solely as a
debugging aid. You should not include the function in a
production version of your application because there is no
provision made for localizing string information. O

Verifying Option Values

In addition to obtaining default or current values and negotiating new values,
you can use the 0T0ptionManagement function to verify whether an endpoint
supports one or more options. To do this, you construct a buffer containing
TOption structures describing the options you are interested in and pass this
buffer in the req parameter to the 0TOptionManagement function, specifying
T_CHECK for the action flag. When the function returns, you can examine the
status field of the TOption structures for the options passed back to you in the
ret parameter to determine whether the specified options are supported.

Using Options

CHAPTER 7

Option Management

Sample Code: Getting and Setting Options

The code listings discussed in this section furnish examples of how you can use
the Open Transport API to get, set, and display the values of options.

Listing 7-3 shows a main function that calls a number of other functions
(defined in subsequent listings) to set, get, and display option values.

Listing 7-3 Calling functions that get, set, and display options
#ifndef gDebug / *0T debugging macros need this var */
jtdefine qDebug 1

frendif

#include <OpenTransport.h>
#include <OpenTptInternet.h> /* for TCP/IP */
##include <OpenTptSerial.h> /* for serial endpoints */

f##include <0TDebug.h> /* Need 0TDebugBreak and OTAssert macros */
#include <stdio.h> /* Standard C prototypes */

/* 0TDebugStr is not defined in any 0T header files, but it is
exported by the Tibraries, so we define the prototype here. */

extern pascal void 0TDebugStr(const char* str);
void main(void) {

0SStatus err;

0SStatus junk;

EndpointRef ep;

UInt32 value;

printf("HelloWorld!\n");

err = InitOpenTransport();

if (err == nokrr) {

ep = 0TOpenEndpoint(0TCreateConfiguration(kTCPName), 0, nil,
derr);

Using Options 177

178

CHAPTER 7

Option Management

if (err == nokrr) f{
printf("\nGetting and Setting IP_REUSEADDR.\n");
err = GetFourByteOption(ep, INET_IP, IP_REUSEADDR, &value);

if (err == nokrr)
printf("Default value = %d\n", value);
if (err == nokrr)
err = SetFourByteOption(ep, INET_IP, IP_REUSEADDR, true);
if (err == nokrr){
err = GetFourByteOption(ep, INET_IP, IP_REUSEADDR,
&value);
if (err == nokrr)
printf("New value = %d\n", value)
}
if (err == nokrr) f{
printf("\nPrinting Options Piecemeal at Level
INET_IP.\n");

err = PrintAl10ptionsAtLevel(ep, INET_IP);
}
if (err == nokrr){
printf("\nPrinting Formatted Options at Level
COM_SERIAL.\n");
err = PrintOptionsForConfiguration(kSerialName,
COM_SERIAL);
}
if (err == nokrr) f{
printf("\nBuilding Options for COM_SERIAL.\n");
err = BuildAndPrintOptions(kSerialName, "BaudRate=9600,
DataBits=7, StopBits=15");
}
junk = 0TCloseProvider(ep);
OTAssert("GetSetOptions: Closing the endpoint failed",
Jjunk == nokrr);
}
CloseOpenTransport();
}

if (err == nokrr)
printf("Success.\n");
else

printf("Failed with error %d.\n", err);
printf("Done. Press command-Q to Quit.\n");

Using Options

CHAPTER 7

Option Management

This main function initializes Open Transport and then creates a TCP endpoint.
Then, it calls the function GetFourByteOption to obtain the value of the
IP_REUSEADDR option, which governs whether you can bind multiple endpoints
to addresses with the same port number. Listing 7-4 contains the definition of
the GetFourByteOption function.

Listing 7-4 Getting an option value

static OTResult GetFourByteOption(EndpointRef ep,
0TXTILevel Tevel,
OTXTIName name,
UInt32 *value)

OTResult err;

TOption option;
TOptMgmt request;
TOptMgmt result;

/* Set up the option buffer */

option.len = kOTFourByteOptionSize;
option.level = level;

option.name = name;

option.status = 0;

option.value[0] 0;// Ignored because we're getting the value.

/* Set up the request parameter for OTOptionManagement to point
to the option buffer we just filled out */

request.opt.buf = (UInt8 *) &option;
request.opt.len = sizeof(option);
request.flags T_CURRENT;

/* Set up the reply parameter for OTOptionManagement. */
result.opt.buf = (UInt8 *) &option;
result.opt.maxlen = sizeof(option);

err = 0TOptionManagement(ep, &request, &result);

if (err == nokrr) {
switch (option.status)

Using Options 179

180

CHAPTER 7

Option Management

case T_SUCCESS:

case T_READONLY:
*value = option.valuel[0];
break;

default:
err = option.status;
break;

return (err);

The function GetFourByteOption gets the current option setting and assigns it to
the location referenced by value. The endpoint is assumed to be in synchronous
mode. If an error occurs, the function returns a negative result. If the option
could not be read, a positive result (either T_FAILURE, T_PARTSUCCESS, or
T_NOTSUPPORT) is returned.

Within the body of the function, the fields of the option buffer are set up to
specify the option and value we want to get. The T0ption structure is used to
represent the option buffer. This structure is defined to allow easy construction
of 4-byte options.

Next, the request parameter for the 0T0ptionManagement function is defined to
reference the option buffer that was just initialized. The request.flags field is
initialized to T_CURRENT, specifying that we want to get the current value of the
option. The reply parameter for the 0TOptionManagement function is then
initialized. This is where the function stores the result of the negotiation.
Finally, the 0TOptionManagement function is called, and its result is checked to
see that the option value was read successfully. Any status other than T_SUCCESS
or T_READONLY is stored in the err variable.

The next function called by main is SetFourByteOption, shown in Listing 7-5.

This routine sets an option and assigns it to the location referenced by value.
The endpoint is assumed to be in synchronous mode. If an error occurs, the

function returns a negative result. If the option could not be read, a positive

result (T_FAILURE, T_PARTSUCCESS, TREADONLY, or T_NOTSUPPORT) is returned.

Using Options

CHAPTER 7

Option Management

Listing 7-5 Setting an option value

static OTResult SetFourByteOption(EndpointRef ep,
0TXTILevel Tevel,
0TXTIName name,
UInt32 value)

O0TResult err;

TOption option;
TOptMgmt request;
TOptMgmt result;

/* Set up the option buffer to specify the option and value to

set. */
option.len = kOTFourByteOptionSize;
option.level = level;
option.name = name;
option.status = 0;

option.value[0] value;

/* Set up request parameter for O0TOptionManagement */
request.opt.buf = (UInt8 *) &option;
request.opt.len = sizeof(option);

request.flags T_NEGOTIATE;

/* Set up reply parameter for O0TOptionManagement. */
result.opt.buf = (UInt8 *) &option;
result.opt.maxlen = sizeof(option);

err = 0TOptionManagement(ep, &request, &result);

if (err == nokrr) {

if (option.status != T_SUCCESS)
err = option.status;

return (err);

Using Options 181

CHAPTER 7

Option Management

The SetFourByteOption function is very similar in structure to the
GetFourByteOption function, shown in the previous listing. Once again, we use
a TOption structure to represent the option buffer and initialize its fields to
specify the option and value we want to set. Next, we initialize the request
parameter of the 0TOptionManagement function to reference the option buffer we
just initialized. The Tength field is set to the size of the option buffer and the
flags field is set to T_NEGOTIATE to specify that we want to set the option value
specified in the option buffer.

The reply parameter for the 0TOptionManagement function is then set up. This is
where the function will store the negotiated value of the option when it
returns. Finally, the 0T0ptionManagement function is invoked and its result is
checked to make sure the option was successfully negotiated.

After calling the SetFourByteOption function, main calls the GetFourByteOption
function again to check the newly set value. The next three functions,
PrintAl10ptionsAtLevel, PrintOptionsForConfig, and BuildAndPrintOptions
demonstrate various ways of displaying option values for an endpoint. Two of
those functions call the function Print0OptionBuffer shown in Listing 7-6. This
function calls the Open Transport function 0TNextOption to parse through an
options buffer and then uses printf statements to display the results.

Listing 7-6 Parsing an options buffer

static 0SStatus PrintOptionBuffer(const TNetbuf *optionBuffer)
{

0SStatus err;

TOption *currentOption;
currentOption =nil;

do

{err = O0TNextOption(optionBuffer->buf, optionBuffer->len,
¤tOption);
if (err == nokrr && currentOption != nil)
printf("Level = $%08x, Name = $%08x, Data Length = %d,

Status = $%08x\n",
currentOption->level,
currentOption->name,
currentOption->len - kOTOptionHeaderSize,
currentOption->status);

182 Using Options

CHAPTER 7

Option Management

} while (err == noErr && currentOption != nil);
return (err);

The PrintOptionBuffer function displays the level, name, size, and status for
each option in the option buffer. The PrintAl110ptionsAtLevel function, which
main calls next, uses this function to display all the options for an endpoint that
are set at a specified level.

Listing 7-7 Obtaining options for a specific level

static 0SStatus PrintAll10ptionsAtLevel (EndpointRef ep, OTXTILevel Tevel)
{

0SStatus err;

TEndpointInfo epInfo;

TOptionHeader requestOption;

void *resultOptionBuffer;
TOptMgmt request;
TOptMgmt result;

resultOptionBuffer = nil;
/* Find max size of options of endpoint and allocate buffer */

err = 0TGetEndpointInfo(ep, &eplnfo);
if (err == nokrr) {
resultOptionBuffer = OTAllocMem(epInfo.options);
if (resultOptionBuffer == nil)
err = KENOMEMErr;

/* Call OTOptionManagement to get current option values */
if (err == nokrr) {
requestOption.len kOTOptionHeaderSize;
requestOption.level = level;
requestOption.name T_ALLOPT;
requestOption.status = 0;

request.opt.buf (UInt8 *) &requestOption;
request.opt.len = sizeof(requestOption);

Using Options 183

CHAPTER 7

Option Management

request.flags = T_CURRENT;
result.opt.buf = resultOptionBuffer;
result.opt.maxlen = epInfo.options;

err = 0TOptionManagement(ep, &request, &result);
}
/* Print options to stdout. */

if (err == nokrr) f{
err = PrintOptionBuffer(&result.opt);
printf("\n");

}

if (resultOptionBuffer != nil)
OTFreeMem(resultOptionBuffer);

return (err);

The function PrintAl10ptionsAtLevel takes two parameters, an endpoint
reference and a level value. The function first calls 0TGetEndpointInfo to
determine the maximum size of options for the endpoint and then allocates a
buffer to hold the options after they are read. Next, the 0TOptionManagement
function is called to get the current value (T_CURRENT) of all the options
(T_ALLOPT) set for the endpoint. The option values that are returned are stored
in the buffer referenced by the result parameter. A pointer to the result
parameter is passed to the function PrintOptionsBuffer (page 182), which
displays option values. After the values are displayed, the memory allocated
for the result options bulffer is freed.

The next function called by main is PrintOptionsForConfiguration, shown in
Listing 7-8. This function gets all the options associated with a level of a
provider, converts those options to a formatted string, and then displays that
string. The function demonstrates one common use of the function
O0TCreateOptionString

Listing 7-8 Using the 0TCreateOptionString function

184

static 0SStatus PrintOptionsForConfiguration(const char *configStr,
OTXTILevel Tlevel)

Using Options

CHAPTER 7

Option Management

0SStatus
0SStatus
EndpointRef
TEndpointInfo
TOptionHeader
void

TOptMgmt
TOptMgmt
TOption

char

resultOptionBuffer =

€p

/*
ep

/*

(err

Create an endpoint

err;

junk;

ep;

epInfo;
requestOption;

*resultOptionBuffer;

request;
result;
*resultOption;

optionsString[10247;

nit;
kOTInval

nokrr) {
resultOptionBuffer =

O0TAT1

idEndpointRef;

using the specified configuration. */
= 0TOpenEndpoint(0TCreateConfiguration(configStr), 0, &eplnfo,

&err);

Allocate a buffer to store option info */

ocMem(epInfo.options);

if (resultOptionBuffer == nil)

err =

/*
if

KENOMEMErr;

Get the current value of all
(err == nokrr) ({
requestOption.len
requestOption.level
requestOption.name

requestOption.status =

request.opt.buf
request.opt.len
request.flags

result.opt.buf =

result.opt.maxlen =

err =

Using Options

epl

options at the specified level. */

kOTOptionHeaderSize;
level;

T_ALLOPT;

0;

(UInt8 *) &requestOption;
sizeof(requestOption);
T_CURRENT;

resultOptionBuffer;
nfo.options;

0TOptionManagement(ep, &request, &result);

185

186

CHAPTER 7

Option Management

/* Convert the options bufferinto a formatted string, and display */
if (err == nokrr)
{

resultOption = (TOption *) result.opt.buf;

err = 0TCreateOptionString(configStr, &resultOption,

result.opt.buf + result.opt.len, optionsString, 1024);
if (err == nokrr)
printf("Formatted Options = “%s”\n\n", optionsString);

/* Clean up. */

if (resultOptionBuffer != nil)
OTFreeMem(resultOptionBuffer);

if (ep != kOTInvalidEndpointRef) {
junk = 0TCloseProvider(ep);
O0TAssert("PrintOptionsForConfiguration: Closing the endpoint

failed", junk == nokrr);
}
return (err);

The PrintOptionsForConfiguration function takes two parameters, a
configuration string that describes a specific endpoint provider and a level for
which we are interested in getting option information. The function first opens
an endpoint using the configuration information passed in. Note that the
address of a buffer to hold endpoint information (&epInfo) is also specified in
the call. We need the endpoint information structure in order to determine the
maximum size of the options buffer for the endpoint.

Next, the function allocates a buffer to hold option values passed back by the
0TOptionManagement function. The value of T_ALLOPT for the name field and
T_CURRENT for the f1ags field specify that we are interested in getting currently
set values for all options set for the endpoint. After the buffer is allocated, the
0TOptionManagement function is invoked. Finally, the 0TCreateOptionString
function is invoked; this function converts the option buffer passed back by the
0TOptionManagement function into a formatted string, which is then displayed
using a printf statement.

The last function called by main, BuildAndPrintOptions, accomplishes the
reverse of the PrintOptionsForConfiguration function: it takes a configuration

Using Options

CHAPTER 7

Option Management

string and a set of formatted options, converts the options to their binary

format (that is, an options buffer), and then displays the contents of that buffer.

The BuildAndPrintOptions function is shown in Listing 7-9.

Listing 7-9 Building an options buffer from a configuration string

static 0SStatus BuildAndPrintOptions(const char *configStr,
const char *optionsString)

{ 0SStatus err;
0SStatus junk;
void *resultOptionBuffer;
EndpointRef ep;
TEndpointInfo epInfo;
TNetbuf optionsNetbuf;

resultOptionBuffer = nil;
ep = kOTInvalidEndpointRef;

/* Create an endpoint using the specified configuration. */

ep = 0TOpenEndpoint(0TCreateConfiguration(configStr), 0,

&epInfo, &err);

/* Allocate a buffer of the maximum option buffer size. */

if (err == nokrr) {
resultOptionBuffer = OTAllocMem(epInfo.options);
if (resultOptionBuffer == nil)
err = KENOMEMErr;

/* Parse formatted optionsString into the binary format */

if (err == nokrr) {
optionsNetbuf.buf = resultOptionBuffer;
optionsNetbuf.len 0;
optionsNetbuf.maxlen = epInfo.options;

err = O0TCreateOptions(configStr, (char **) &optionsString,
&optionsNetbuf);

if (err == nokrr) {
err = PrintOptionBuffer(&optionsNetbuf);
printf("\n");

Using Options

187

188

CHAPTER 7

Option Management

}
/* Clean up. */
if (resultOptionBuffer != nil)
OTFreeMem(resultOptionBuffer);
if (ep != kOTInvalidEndpointRef) {
junk = 0TCloseProvider(ep);
0TAssert("BuildAndPrintOptions: Closing the endpoint failed",
junk == nokrr);
}
return (err);

The function BuildAndPrintOptions creates an endpoint using the specified
configuration. When opening the endpoint, the address of an endpoint
information structure (&epInfo) is passed in; the endpoint provider fills in this
structure with information about the endpoint, including its maximum option
buffer size. The function then allocates a buffer that is large enough to contain
option information for the endpoint.

Next the function BuildAndPrintOptions calls the 0TCreateOptions function to
parse the formatted optionsString into the binary format (optionsNetbuf). Then
the function calls PrintOptionBuffer (page 182) to display the contents of the
options buffer. Finally, the function frees memory allocated for the options
buffer and returns.

Using Options

CHAPTER 8

Ports

Contents

About Ports 191
Identifying Ports 192
Port Name 192
Port Reference 192
Multiport Identifiers 192
Pseudodevices 193
Port Structures 193
Using Ports 194
Obtaining Port Information 195
Requesting a Port to Yield Ownership 198
Registering as an Open Transport Client 198

Contents 189

CHAPTER 8

190 Contents

CHAPTER 8

Ports

This chapter discusses the concept of ports in Open Transport and introduces
the Open Transport functions that provide information about the ports
available on your computer.

You need to read this chapter if your application has the ability to use multiple
ports, and you need to be able to obtain port information.

This chapter discusses how your application can

= browse available ports and get specific port information
= register as an Open Transport client

= handle yield port requests

This chapter begins by introducing basic concepts about ports, then gives the
details of how to find a specific port and extract information about it, and
explains how to register your application as an Open Transport client. For
complete information about the data types and functions used to work with
ports, see “Ports Reference” (page 589).

About Ports

Central to Open Transport’s architecture is the concept of a port. In Open
Transport, a port is a logical entity that combines a hardware device and the
software driver that acts as an interface to it. Ethernet, serial devices, and
LocalTalk ports are examples of ports commonly used in Open Transport.
When you initialize Open Transport, it scans the local machine for all available
ports and creates a data structure called a port registry in which it stores
information about these ports.

Typically, your application uses whichever port is defined in the appropriate
control panel (for example, AppleTalk or TCP/IP). If, however, your
application provides special port manipulation features, you need the
additional port information data structures, constants, and functions that Open
Transport provides for browsing among the ports available to your computer
and for finding specific ports.

About Ports 191

192

CHAPTER 8

Ports

Identifying Ports

Open Transport provides a standard naming scheme for describing the ports
available to a computer. There are two ways to identify each port uniquely: its
port name and its port reference.

Port Name

The port name is a unique name that designates the port. This name identifies
the port without using any location information. For instance, "1t1kA"
identifies LocalTalk on the serial port, and "1t1kB" identifies LocalTalk on the
modem port. This name must always be used in the path string for the
0TCreateConfiguration function to uniquely identify a port.

The port name is typically an abbreviation of the port’s device type plus a
suffix, usually numeric, such as "enet0," "enetl,” and "enet2." For historic
reasons, LocalTalk and serial ports use an alphabetic suffix instead. For
example, "1t1kA" is the modem port and "1t1kB" is the printer port. The port
name is a zero-terminated string that can have a maximum length of 36 bytes:
31 bytes for the name, up to 4 bytes of extra characters (called minor numbers in
XTI specifications) that are currently not used, and a byte for the terminating
Zero.

You can identify a port using only the device name, in which case Open
Transport uses the first device of that type that has been registered and is
available. For most devices this means the built-in device, if one exists.
Otherwise, this refers to the first slotted device that has been registered.

Port Reference

You can also uniquely identify a port with a port reference, which is a 32-bit
value that describes a port’s hardware characteristics: its device and bus type,
its physical slot number, and, where applicable, its multiport identifier. For
details of the possible values you can use in a port reference, see “The Port
Reference” (page 595).

Multiport Identifiers

The multiport identifier is a port function parameter that distinguishes
between multiple ports when a single slot supports more than one port of the
same device type. This parameter, called other, is part of the port reference
structure, which is described in “The Port Reference” (page 595).

About Ports

CHAPTER 8

Ports

Typically, the hardware device in a multiport slot is either a plug-in
multifunction card with multiple ports on it or a device with multiple uses, one
or more of which is a port. An example of a multifunction card is the SerialNB
card with its four ports; an example of a multi-use device on most Macintosh
computers is the SCC chip that can handle both LocalTalk and serial
communications. Typically, a multifunction card has multiple ports that use
different values for the other parameter and possibly different device
attributes. A multi-use device is registered with all attributes identical except
for the device type.

Pseudodevices

There’s a special type of port, called a pseudodevice, that is a driver that
doesn’t interface to a hardware device; instead, it interfaces to other device
drivers. Pseudodevices are provided as a convenience for the Open Transport
architecture. Open Transport defines special device types for certain common
pseudodevices, such as modem, PPP, and SLIP. Because Open Transport can’t
possibly accommodate all possible pseudodevices, there is a generic device
type, designated with the constant k0TPseudoDevice, that identifies unknown or
unusual pseudodevices. Each pseudodevice must have a unique port reference.
Typically, a pseudodevice is private, and a flag indicating that the port is
private notifies applications browsing the port registry that the port is not
normally available for public use.

Port Structures

Every port on the computer is described in Open Transport by a port structure,
which contains its port reference, several sets of information flags, its port
name, its STREAMS module name, and the slot ID (for ports on a PCI bus). For
details of the port structure, see “The Port Structure” (page 592).

The port structure includes fields that allow you to identify a port’s child port,
which allows you to identify which of several available hardware devices the
port uses. A port may have more than one child port, all of which can be active
simultaneously.

For example, in many implementations, a SLIP port is a pseudodevice that uses
a serial port as its hardware device. If more than one serial port is available, the
SLIP pseudodevice could use any of them. A SLIP port therefore always has a
serial port as its child port so that when multiple serial ports are available, you
can use the child port information to find out which serial port the SLIP port is

About Ports 193

CHAPTER 8

Ports

using. Other device types, such as Ethernet devices, do not have child ports
because they have a one-to-one relationship with their hardware device—that
is, they have only one possible choice for the hardware device they can use.

The slot ID is a user-visible identifier used for cards on PCI bus computers. To
derive this value, Open Transport accesses information in the Name Registery,
which is a register of hardware and software configuration information for
Power Macintosh computers that is maintained by Mac OS. For more
information about the Name Registry, see Designing PCI Cards and Drivers for
Power Macintosh Computers.

One set of flags indicate a port’s framing capabilities—that is, the different
packet headers and trailers (data frames) permitted by the protocol on that
port. The framing flags are specific to the device type being registered. See the
appropriate documentation for the device to determine how to interpret these
flags.

For each hardware device type, Open Transport derives a default port name
based on the port name by stripping its numeric (or alphabetic, in the case of
LocalTalk and serial ports) suffix. All ports on a computer that are the same
hardware device type result in the same default port name. Thus, Ethernet
devices default to "enet." For all hardware device types, you can use the
default port name as part of the configuration string. If you use a default name
such as "enet," Open Transport uses whichever port is identified as the default
port. If it can’t find that port, OpenTransport returns an error message.

In the case of LocalTalk, however, Open Transport uses a flag to define a
specific port as a port alias, or a default port, for LocalTalk ports. This port is
called "1t1k" and uses the same Streams module name as the default LocalTalk
port. Normally, the LocalTalk default port is the printer port, "1t1k8," but if a
computer doesn’t have an "1t1k8" port, then the LocalTalk default is the
modem port, "1t1kA". Because both the port alias and the default port have the
same STREAMS module name, when you use the port alias to configure the
port, Open Transport can locate the default port even if a port doesn’t use the
standard “It1kB” default.

Using Ports

194

This section describes how to obtain port information, and how to register
as an Open Transport client.

Using Ports

CHAPTER 8

Ports

Obtaining Port Information

If your application manipulates ports, you may need port information to locate
a specific port or to find out how what ports are registered on your computer.
Open Transport registers all ports on your computer and creates a port
structure for each port. You can then use the various Open Transport port
functions to access these structures and get information from them. The port
structure is described in “The Port Structure” (page 592).

If you want to find out the port associated with a given provider, you can use
the 0TGetProviderPortRef function. If you don’t know which port structure you
want or if you want to provide a list of user-readable port names to your user,
you can use the 0TGetIndexedPort function to iterate through all the ports
available on a computer, obtaining the port structure of each.

There are also two functions you can use to find the port structure for a specific
port: If you know its port name, you can use the 0TFindPort function, or if you
know its port reference, you can use the 0TFindPortByRef function.

If you want to use the 0TFindPortByRef function, you need a port reference.
There are several ways you can get one: Another application might have
passed it to you, another application could have put it into a port structure that
you can access by using the 0TGetIndexedPort function, or you can create one.

To create a port reference, you use the 0TCreatePortRef function. You must
know all the port’s hardware characteristics: its device and bus type, its slot
number, and its multiport identifier (if it has one). You cannot use wildcards to
fill in any element you don’t know. Possible device and bus types are described
in “The Port Reference” (page 595).

For example, if you want to find out the port name of the Ethernet port in
NuBus slot 13, you can use this line of code to create a port reference for this
port:

OTPortRef ref = 0TCreatePortRef(kOTNuBus, kOTEthernetDevice, 13, 0);

If you then pass the result of this call to the 0TFindPortByRef function,
0TFindPortByRef fills a buffer with the port structure that has this port reference
and returns a pointer to the buffer. You can examine the port structure’s fields
for its port name.

Open Transport has predefined variants of the 0TCreatePortRef function for the
most commonly used hardware devices such as the NuBus, PCI, and PCMCIA

Using Ports 195

CHAPTER 8

Ports

devices. These are found in the section describing the function 0TCreatePortRef
(page 608).

If you want to extract information from a port reference, you have to use
specific Open Transport functions: 0TGetDeviceTypeFromPortRef,
0TGetBusTypeFromPortRef, 0TGetPortIConFromPortRef,
0TGetUserPortNameFromPortRef, and 0TGetSlotFromPortRef

Note

Listing 8-1 shows the user-defined function
0TFindSerialPorts. This function uses the

0TGetIndexedPort function to find all valid ports. For each
port, it gets and examines the device type and, if it's a

serial port and not an alias, it calls the user-defined
PrintSerialPort function to output information about the
port(Notehatyoulon'wantdncludeliased¢dheeriaportdrthdist,
otherwisatandardnachinevilhav8eriaportsserial A";serialB"and
"serialllke intSerialPofunctiarsdeGetUserPortNameFromPortRef
function to print the user name for each port.Note that the
slot numbers for NuBus™ cards are physical; that is, they
are the slot numbers returned by the Slot Manager and not
the slots seen in various network configuration

applications. Physical slot numbers depend on the type of
card installed. For example, NuBus cards number their

slots 9 to 13, which appear in the AppleTalk or TCP control
panels as slots 1 to 5. For PCI cards, however, the slot
numbers are their logical slot IDs as defined in the port
structure. For cards in a PCI bus, it is not possible, a priori,
to create a port reference that corresponds to a known

card, so applications must iterate through the port registry
to find appropriate PCI ports. O

Listing 8-1 Finding all serial ports

196

static 0SStatus OTFindSerialPorts(void)
{

0SStatus err;

Boolean portValid;

SInt32 portindex;

OTPortRecord portRecord;

Using Ports

CHAPTER 8

Ports

UIntl6 deviceType;
/* Start portIndex at 0 and call OTGetIndexedPort until */
/* there are no more ports. */
portIndex = 0;
err = kOTNoError;
do {
portValid = 0TGetIndexedPort(&portRecord, portindex);

/* Get the deviceType; and, if it's a serial port */
/* and not an alias, call PrintSerialPort */
if (portValid) {
deviceType = 0TGetDeviceTypeFromPortRef(portRecord.fRef);
if (deviceType == kOTSerialDevice &&
(portRecord.fInfoFlags & kOTPortIsAlias) == 0) f{
err = PrintSerialPortInfo(&portRecord);

}
portIndex += 1;
} while (portValid && err == kOTNoError);
return err;
}
static 0SStatus PrintSerialPortInfo(const OTPortRecord *portRecord)
{
Str255 userVisibleName;

/* You must be running PPC codeto call OTGetUserPortNameFromPortRef */
/* on a PPC machine. */

0TGetUserPortNameFromPortRef(portRecord->fRef, userVisibleName);

printf("Found a serial port with port reference $%081x:\n",
portRecord->fRef);

printf(" User visible name is “%s” . \n",

userVisibleName);

printf(" String to pass to OTCreateConfiguration is “%s”.\n",
portRecord->fPortName);

printf(" Name of provider module is “%s”.\n",
portRecord->fModuleName) ;

printf("\n");

return kOTNoError;

Using Ports 197

198

CHAPTER 8

Ports

Requesting a Port to Yield Ownership

There may be times when you need to use a particular port (normally, a serial
port or modem) that is owned by another application. You can use the
0TYieldPortRequest function to request the owner of a port to yield the use of
the port to you. (Check the k0TPortCanYield bit in the port record’s flags field to
determine whether the port supports yielding.) Open Transport then issues a
kOTYieldPortRequest event to each provider of any registered clients for that
port for acceptance or refusal. If the owner has not registered as a client of
Open Transport, compliance is assured.

If the current owner wants to deny the request, it puts a negative error code
into the fDenyReason field in the port close structure indicating its reason for
refusal. The 0TYieldPortRequest function then returns with this error code as its
result and with a buffer listing all the clients that have refused the request,
(normally only one).

If the 0TYieldPortRequest function returns without an error, the portis
available for your use. You can then bind it with a queue length (q1en) greater
than 0 or establish a connection with it. If you don’t use the port within a short
period of time (typically 10 seconds), the port automatically stops being
available for your use and reverts to its original owner.

You can force a passive client to yield by using a value of NULL in the
0TYieldPortRequest function’s buffer parameter. When the function returns
without an error, the port is available. Note that a port can only be yielded in
this manner if its current client is passively listening; it cannot be yielded if a
connection is in progress.

Providers owned by unregistered clients need to be prepared to receive
kOTProviderIsDisconnected and kOTProviderIsReconnected events when the
connection between the provider and port is unexpectedly disconnected and
reconnected due to a successful yield request.

Registering as an Open Transport Client

You can use the 0TRegisterAsClient function to register your application as an
Open Transport client and provide Open Transport with a notifier function for
sending messages to you. Once you are registered as a client, Open Transport
can notify you of system events, such as the port transition events that occur
when a particular port is disabled or closed and when it is reenabled. By
registering, you also provide Open Transport with a user-readable name to use
when informing the user of port transition events.

Using Ports

CHAPTER 8

Ports

If you use the 0TRegisterAsClient function to register a notifier for client
events, you would receive the events such as k0TPortDisabled, kOTPortEnabled,
kOTPortOffline, kOTPortOnline, kOTClosePortRequest, kOTYieldPortRequest, and
kOTNewPortRegistered to keep you informed. For information about port
events, see “Port-Related Events” (page 590).

The OTRegisterAsClient function is optional. If you do not want to receive
these events, you do not have to call this function.

Calling the CloseOpenTransport function automatically unregisters you as a
client. If you want to unregister prior to calling C1oseOpenTransport, you can
call the 0TUnregisterAsClient function.

Note

Client notifiers are distinct from a provider notifier.
Provider notifiers tell you about events related to that
specific provider. Client notifiers are sent events about the
Open Transport system as a whole. O

Using Ports 199

CHAPTER 8

Ports

200 Using Ports

CHAPTER 9

Utilities

Contents

About Utility Functions 203
Using List Management Functions

Contents

204

201

CHAPTER 9

202 Contents

CHAPTER 9

Utilities

This chapter describes utility functions that you can use to implement time
stamps, manipulate lists and strings, manipulate memory, and perform atomic
operations.

Open Transport utility functions are described in detail in “Utilities Reference”
(page 621).

About Utility Functions

You can use Open Transport utility functions to measure time, manipulate
memory, strings, and lists, and to perform atomic operations. These functions
have proved useful in the implementation of Open Transport and they have
been exported for your use and convenience. In some instances, they can prove
more accurate or faster than equivalent functions provided by the operating
system.

This section summarizes the utility functions that are available to applications
using Open Transport and explains what relative advantages they offer over
their operating system equivalents, if any.

= Timing functions

You can use these functions to obtain the current time, to measure elapsed
time, to find the sum or difference between two timestamp values, and to
convert timestamp values into microseconds or milliseconds.

These functions are faster and more accurate than their Time Manager
equivalents; they are also more consistent with Open Transport internal
timing measurements.

= Memory manipulation functions

You can use these functions to move memory, to compare two regions of
memory, and to initialize memory ranges to set values.

For 68000 code, these functions are dispatched more quickly than their
equivalent Toolbox functions. For PowerPC platforms, performance is
roughly equivalent to Toolbox functions. Note that hese functions should be
used for cached memory only. Using them for uncached memory will not
return an error, but will degrade performance.

About Utility Functions 203

CHAPTER 9

Utilities

= Manipulating lists

You can use these functions to manipulate entries in FIFO (first-in first-out)
and LIFO (last-in first-out) lists.

= Manipulating strings

You can use these functions to obtain the length of a string, to copy a string,
to concatenate strings, and to determine whether two strings are equal.
These functions are provided for those writing Open Transport modules and
drivers (because these cannot be linked with standard C libraries) but you
can also call these functions from application code.

= Using atomic operations

You can use these functions to test and clear bits, to compare and swap
variously-sized values, and to add values. In addition, two atomic
operations are provided that allow you to set and clear locks. These are
described in “Locking Functions” (page 667).

The equivalent of these functions are already available on some machines as
part of the Driver Services Library. The advantage of using Open Transport
atomic operations is that they are available on all platforms and don’t
depend on the avilability of the driver services library. For 68000 code, Open
Transport atomic operations are in-lined and are, therefore, very fast.

Using List Management Functions

204

The use of most of the utility functions introduced in this chapter and
described in “Utilities Reference” (page 621) is fairly straightforward. As
mentioned in the previous section, using these utilities can often result in better
performance. However, the group of functions used to manipulate linked lists
merits additional comment. This section focuses on the use of these functions
by way of a sample program, “ListMania,” which is designed to illustrate the
use of the Open Transport linked-list routines in a simple producer-consumer
environment. The code includes two key routines, Producelidgets and
ConsumeWidgets.

The ListMania program uses Open Transport LIFO list routines throughout.
These routines are atomic with respect to interrupts and threads, and they are
faster than the standard Mac OS equivalent functions (Enqueue and Dequeue).
All code included in this sample program is running at system task time;

Using List Management Functions

CHAPTER 9

Utilities

however, all the list management in the critical portions of the code is perfectly
safe to run at interrupt time. This program also demonstrates another
advantage of using Open Transport list management functions: they make it
easy for you to keep elements on multiple lists simultaneously. For example, in
the ListMania program any given widget is always on the gA11WidgetList
(linked through the fA11Widgets field) and on either the gPendinghidgetList or
the grreelidgetList (linked through the fNext field).

Before looking at the program itself, we’ll briefly discuss the data structures
used by the program. The objects being produced and consumed are widgets,
as defined by the Widget data type:

struct Widget {

0TLink fNext;
0TLink fATTWidgets;
UInt32 fSequenceNumber;

OTTimeStamp fCreationTime;
OTTimeStamp flastProducedTime;

b

typedef struct Widget Widget, *WidgetPtr;

The first two fields are link fields: The fNext field is used to link all the
elements on either the pending or free widget list; the fA11Widgets field is used
to link all the widgets in one long list, regardless of their status. The
fSequenceNumber field is a unique monotonically increasing sequence number
for each widget that is created. The fCreationTime field specifies the time when
a widget is created, and the fLastProducedTime field specifies the time when a
widget was last produced. The program also uses three LIFO lists:
gAl1WidgetList (which contains all widgets), gPendingWidgetList, and
gFreeWidgetlList

Listing 9-1 shows the the global variable declarations for the ListMania
program.

Listing 9-1 ListMania: global declarations

struct Widget {

0TLink fNext;
0TLink fAT1Widgets;
UInt32 fSequenceNumber;

OTTimeStamp fCreationTime;

Using List Management Functions 205

CHAPTER 9
Utilities

OTTimeStamp flLastProducedTime;
by

typedef struct Widget Widget, *WidgetPtr;

static OTLIFO gAllWidgetlList;
static OTLIFO gPendingWidgetlList;
static OTLIFO gFreeWidgetlList;

static UInt32 glastWidgetSequenceNumber;

The function InitWidgetLists, shown in Listing 9-2 initializes all of the widget
lists to empty.

Listing 9-2 The InitWidgetLists function

static void InitWidgetLists(void)
/* Initializes all of the widget lists to empty.*/

gAl1WidgetList.fHead = nil;
gPendingWidgetList.fHead = nil;

gFreeWidgetlList.fHead = nil;
glastWidgetSequenceNumber = 0;

The function shown in Listing 9-3creates a widget.

Listing 9-3 The CreateWidget function

static WidgetPtr CreateWidget(void)
{
WidgetPtr result;
/* Allocate the memory for the widget. */
result = OTAllocMem(sizeof(Widget));
OTAssert("CreateWidget: Could not create widget", result !=nil);

0TMemzero(result, sizeof(Widget));

206 Using List Management Functions

CHAPTER 9

Utilities

/* Add the widget to the 1ist of all
OTLIFOEnqueue(&gATTWidgetList,

result->fSequenceNumber = 0TAtomicAdd32(1, (long *)

&glastWidgetSequenceNumber);

0TGetTimeStamp(&result->fCreationTime);

return (result);

the widgets in the system.*/
(0TLink *) &result->fAl1Widgets);

The CreateWidget function allocates memory for a widget and then fills out the
information fields for the widget structure: fSequenceNumber and fCreationTime.

Note the use of the utility function 0TAtomicAdd32 (page 664) to increment the
variable glastWidgetSequenceNumber atomically. This guarantees that the

sequence number is unique, even it this routine is re-entered. After creating the

widget, the function adds it to the list of all the widgets in the system,

gAl1WidgetList, using the Open Transport list routine 0TLIFOEnqueue (page 641),
and then it returns a pointer to the newly created widget.

The Producelidgets function (shown in Listing 9-4) either calls CreateWidgets if
there are no free widgets or obtains a free widget from the free widget list and
then adds the widget to the pending widget list.

Listing 9-4 The ProduceWidgets function

static void ProduceWidgets(UInt32 howMany)

{

UInt32 i;
0TLink *freelLink;
WidgetPtr thisWidget;

for

(i = 0; i < howMany; i++) {
freeLink = OTLIFODequeue(&gFreeWidgetlList);
if (freelLink !=nil) {

thisWidget = 0TGetLinkObject(freelLink, Widget, fNext);

} else {

thisWidget = CreateWidget();
}
0TGetTimeStamp(&thisWidget->flastProducedTime);

OTLIFOEnqueue(&gPendingWidgetlList, (OTLink *)

Using List Management Functions

207

CHAPTER 9

Utilities

&thisWidget->fNext);

The for loop used in the function Produceliidgets takes a free element from the
front of the free widget list using the 0TLIFODequeue function (page 642). If the
function returns nil, there is no free element and a new widget needs to be
created by calling the Createlidget function (page 206). If the free widget list
does contain a free element, the 0TGetLinkObject macro (page 623) is used to
derive the widget from freelLink. After this, the widget is no longer on the free
widget list and we can now produce the widget by calling the utility function
0TGetTimeStamp (page 635) to set the fLastProducedTime field. Once the widget is
produced, it is added to the list of pending widgets using the 0TLIFOEnqueue
function.

The function Consumelidgets, shown in Listing 9-5 first calls the
0TLIFOSteallist function (page 643) to remove all of the widgets on the
pending list and then calls the 0TReverselList function(page 644) so that the
widgets can be consumed in the same order they were produced. While there
are still widgets left on the pending list, the function then calls the PrintWidget
function, shown in Listing 9-6, and then adds the most recently consumed
widget to the free list by calling the 0TLIFOEnque function.

Listing 9-5 The ConsumeWidgets function

208

static void ConsumeWidgets(void)
{
0TLink *listToConsume;
WidgetPtr thisWidget;

/* Remove widgets from pending 1list; put them in list to consume */
listToConsume = OTLIFOSteallist(&gPendingWidgetlList);
listToConsume = OTReverselist(listToConsume);

while (TistToConsume != nil) {
/* Given the link element, derive the actual widget object.*/

thisWidget = 0TGetLinkObject(1istToConsume, Widget, fNext);

/* Consume the widget by printing to stdout */
PrintWidget(thisWidget);

Using List Management Functions

CHAPTER 9

Utilities

printf("\n");

/* Get next list element... */
listToConsume = TistToConsume->fNext;
/* add the most recently consumed widget to free Tist */
OTLIFOEnqueue(&gFreeWidgetlList, (0TLink *) &thisWidget->fNext);

It's important to note the order of the two operations used to consume (print)
the widget and to add the most recently consumed widget to the free list. This
is because the field thisWidget->fNext occupies the same memory location as
the field 1istToConsume->fNext, so we can’t change thisWidget->fNext by
enqueuing it until we have extracted the linkage information from it.

Listing 9-6 The PrintWidget function

static void PrintWidget(WidgetPtr thisWidget)
{
printf(" %03d, Created @ %08x%08x, Produced @ %08x%08x",

thisWidget->fSequenceNumber,
thisWidget->fCreationTime.hi,
thisWidget->fCreationTime.lo,
thisWidget->flastProducedTime.hi,
thisWidget->flastProducedTime.lo
)

The DumpA11WidgetLists function, shown in Listing 9-7 dumps all of the
widgets on all of the lists. Because the widgets are linked in different ways on
the three lists, the DumpA11WidgetLists function must call an additional
function, DumplidgetList, to dump the widgets that are linked using the fNext
field—that is, the widgets in the pending and free lists.

Using List Management Functions 209

CHAPTER 9

Utilities

Listing 9-7 The DumpAllWidgetLists

static void DumpAllWidgetLists(void)
{

0TLink *1ink;

WidgetPtr thisWidget;

printf("gPendingWidgetList\n");
DumpWidgetlList(&gPendingWidgetlList);

printf("gFreeWidgetList\n");
DumpWidgetlList(&gFreeWidgetlList);

printf("gAl1WidgetList\n");
link = gATI1WidgetList.fHead;
while (Tink !=nil) {
thisWidget = 0TGetLinkObject(link, Widget, fAllWidgets);
PrintWidget(thisWidget);
printf("\n");
Tink = Tink->fNext;

The DumpWidgetlist function is shown in Listing 9-8.

Listing 9-8 The DumpWidgetList function

210

static void DumpWidgetList(OTLIFO *1ist)
/* Dump a widget list that is linked using the fNext field. */

/* This is appropriate for the pending and free lists of widgets.

OTLink *1ink;
WidgetPtr thisWidget;

link = list->fHead;

while (Tink !=nil) {
thisWidget = 0TGetLinkObject(1link, Widget, fNext);
PrintWidget(thisWidget);
printf("\n");

Using List Management Functions

*/

CHAPTER 9

Utilities

link = Tink->fNext;

Using List Management Functions 211

CHAPTER 9

Utilities

212 Using List Management Functions

CHAPTER 10

Advanced Topics

Contents

Acknowledging Sends 215

Sending Noncontiguous Data 216

No-Copy Receiving 218

Using Raw Mode 225
Using Option Management to Set Raw Mode 225
Testing for Raw Mode Support 227
Sending and Receiving in Raw Mode at the Protocol Level

Contents

227

213

CHAPTER 10

214 Contents

CHAPTER 10

Advanced Topics

This chapter examines several topics that might be of interest once you are
comfortable with the basic use of endpoints. These include

acknowledging sends

sending noncontiguous data

ccessing data from Open Transport’s internal receive buffers

ending and receiving data without stripping header information

Before you read this chapter, you should be familiar with the material covered
in the chapters “Providers”(page 61) and “Endpoints”(page 83).

The chapter “Advanced Topics Reference” (page 673) describes the data
structures and functions introduced in this chapter.

Acknowledging Sends

By default, providers do not acknowledge sends. This means that when you
send data, the provider copies the data into an internal buffer and then sends
the data. Once the provider has copied the data into its own buffer, it no longer
uses the buffer you have allocated for the data. As soon as the function
completes, you can change the contents of your buffer—even if the provider
has not yet sent the data it copied.

If you use the 0TAckSends function to specify that you want the endpoint
provider to acknowledge sends and you call a function that sends data, the
endpoint provider does not copy data from your buffer before sending it.
Instead it reads data directly from your buffer while sending. For this reason,
you must not change the contents of your buffer until the endpoint provider is
no longer using it. The advantage of acknowledging sends is that it improves
performance at the cost of some added complexity in your code.

Sometimes, due to flow control, a send operation can be delayed. The provider
lets you know that it has finished using the buffer by calling your notifier
function and passing T_MEMORYRELEASED for the code parameter, a pointer to the
buffer that was sent in the cookie parameter, and the size of the buffer in the
result parameter.

Acknowledging Sends 215

CHAPTER 10

Advanced Topics

WARNING

If you want Open Transport to acknowledge sends, you
must make sure that there are no outstanding sends when
you close Open Transport; otherwise, you crash. a

Because of the complexity of handling flow control, Open Transport
performance suffers when the acknowledge sends option is used with
noncontiguous data, such as when you pass an 0TData structure to the 0TSnd
function. Therefore, it is best to avoid this option with non-contiguous data,
especially if the last element is a large element.

Only endpoint provider functions are affected by your calling the 0TAckSends
and 0TDontAckSends functions.

IMPORTANT

If the endpoint acknowledges sends and there are
outstanding buffers still in use, you must flush the buffers
before closing the endpoint provider. To flush the stream,
call the function 0TI0Ct1 as follows:

0TIOCtT (MyEptref, FLUSHRW, 0);

Then, wait until you receive all of the T_MEMORYRELEASED
events. a

Sending Noncontiguous Data

216

When sending data, you specify the location and size of the buffer containing
the data to be sent (for all send functions except 07Snd) using the 1en and buf
fields of a TNetBuf type structure. Open Transport also allows you to send
noncontiguous data— data stored in several locations, by using the 0TData
structure to describe that data and passing it as the data buffer. You can send
noncontiguous data using the functions 0TSnd, 0TSndUData, 0TSndURequest,
0TSndUReply, 0TSndRequest, and 0TSndReply.

Note
The 0TData structure and its use in describing

noncontiguous data is an Apple extension to the XTI
APL O

Sending Noncontiguous Data

CHAPTER 10

Advanced Topics

Figure 10-1 shows how you use 0TData structures to describe noncontiguous
data.

Figure 10-1 Describing noncontiguous data

OTData structures Noncontiguous data

myQ0TD1
fNext

First fragment flen
fData

flen

my0TD2 Second fragment

Y

Y

fNext

fData

flen

my0TD3 Third fragment

fNext

fData AAAAAAJ

flen

Y

The first structure, my0TD1, contains information about the first data fragment:
the fData field contains the starting address of the fragment, and the fLen field
contains the length of the fragment. The field fNext contains the address of the
0TData structure, my0TD2, which specifies the size and location of the second
fragment. In turn, the structure my07D2 contains the address of the 0TData
structure that specifies the location and size of the third fragment. You must set
the fNext field of the last 0TData structure to NULL.

Sending Noncontiguous Data 217

CHAPTER 10

Advanced Topics

When sending noncontiguous data (using the functions 0TSnd, 0TSndUData,
0TSndURequest, 0TSndUReply, 0TSndRequest, and 0TSndReply), the buf field of the
TNetBuf structure (or the buf parameter to the function) must point to an 0TData
structure that describes the first data fragment. You must also set the 1en field
of the TNetBuf structure (or the nbytes parameter to the function) to
kNetbufDatalsOTData.

No-Copy Receiving

218

Open Transport allows you to receive data without doing the extra copying
that is normally involved in receiving data, which can save time and resources.

Normally, when you call one of the receive functions to get data, you pass the
address of a buffer you have allocated, and Open Transport copies data from its
own internal buffers to the buffer you specify. Doing a no-copy receive means
that Open Transport does not copy data from its buffers into yours, but instead
allows you to access its internal buffers directly. For example, you might have
received some data that needs to be written to disk and you have four files,
each with a different buffer, that are expecting data. Normally what you would
do is store the data in a temporary buffer while you determined which of the
four files was the right destination. When you identified the target, you'd then
copy the data from the temporary buffer into that file’s buffer.

A no-copy receive allows you to peek at the data when you receive it and write
it out immediately. Open Transport does this by giving you access to a special
no-copy receive buffer, 0TBuffer. To use this buffer correctly, you must

» not write to it; if you do, you can crash the system
= release it quickly
= only release it once; don’t release it multiple times

You need to release the no-copy receive buffer (with the 0TReleaseBuffer
function) as soon as you are finished using it so that you are not tying up
system resources required elsewhere. One consequence of holding on to a
buffer too long is that your link layer driver starts allocating more buffers as it
receives more data and, if it isn’t well designed, it may run out of space and
lose packets.

In many cases, for performance reasons, drivers pass their actual DMA buffers
when they return data. If this is the case, when you do a no-copy receive, you

No-Copy Receiving

CHAPTER 10

Advanced Topics

are getting the actual DMA buffers from the driver. If you hold on to the buffer
for too long, you may begin to starve the driver for DMA buffers, which
adversely affects the performance of the system. It is very important that if you
are doing a no-copy receive, you hold onto the buffer for as short a time as
possible. If it seems necessary to hold on to the buffer for any length of time,
overall performance is better if you instead make a copy of the data and return
the buffer to the system.

WARNING

On PPC systems no-copy receives are only supported for
PPC Open Transport clients. Emulated 68000 clients may
not use no-copy receives on PPC systems. a

Figure 10-2 shows the structure of Open Transport’s internal receive buffers.
You will be accessing data referenced in these buffers when you do a no-copy
receive. To do this, you allocate a variable that holds the address of the first
0TBuffer structure and then access additional buffers using the fNext field of
each bulffer.

No-Copy Receiving 219

CHAPTER 10

Advanced Topics

Figure 10-2 OTBuffer structures

220

MyOTB - = Reserved

OTBuffer structures

fType Data

fBand

flen

fData

fNext —_

_

fType

fBand Data

flen

fData

fNext

_

In Figure 10-2 the variable My0T8 holds the address of the first 0TBuffer
structure. The unused fields of the structure are shaded. The fData field of the
structure points to the first data packet; the fLen field specifies the length of the
data packet, and the fNext field holds the address of the second 0TBuffer
structure, which provides the location and size of the second data packet.

The no-copy receive bulffer is actually a linked chain of buffers, with the next
buffer pointed to by the fNext field in each buffer. You can access all of the

No-Copy Receiving

CHAPTER 10

Advanced Topics

received data by tracing the chain of fNext pointers. For your convenience,
Open Transport provides the 0TBufferInfo structure and the utility functions,
0TReadBuffer and 0TBufferDataSize, to read through the 0TBuffer structure.

In order to do a no-copy receive, you must

1. Allocate a local variable into which Open Transport will store the address of
the first 0TBuffer structure. The 0TBufferInfo type is especially useful for
this local variable.

2. Pass the constant k0TNetbufDatals0TBufferStar for the nbytes parameter of
the 0TRcv function or the udata.max1en field used with other receive
functions to indicate that you are doing a no-copy receive.

3. Use the utility function 0TBufferDataSize to determine the size of the
no-copy receive buffer.

4. Use the utility function 0TReadBuffer to read bytes from the data buffers. The
foffset field of the 0TBufferInfo structure specifies how much of the buffer
has been read.

5. Use the 0TReleaseBuffer function to return the no-copy receive buffer to the
system when you are finished copying data from the buffer.

The following two listings show two different methods of doing nocopy
receives. Listing 10-1 shows the NoCopyReceiveUsing0TReadBuffer user-defined
function. This function reads data from the endpoint (ep) using a no-copy
receive. The data is then copied out of the 0TBuffer chain using the
0TReadBuffer utility function. This method is useful if you need to look at a
small chunk of data, which you can copy using 0TReadBUf fer, to decide what to
do with the rest.

Listing 10-1 Doing a no-copy receive: method 1

enum {
kTransferBufferSize = 1024
Vs

static char gTransferBuffer[kTransferBufferSize];
static 0SStatus NoCopyReceiveUsingO0TReadBuffer(EndpointRef ep, SIntlé6

destFileRefNum)
{

No-Copy Receiving 221

CHAPTER 10

Advanced Topics

0SStatus err;

OTResult result;
OTBufferInfo bufferlInfo;
0TFTags junkFTags;
UInt32 bytesRemaining;
UInt32 bytesThisTime;
SInt32 count;

err = nokrr;

/* Initialise the bufferInfo data structure. */

bufferInfo.fOffset
bufferInfo.fBuffer

0;
nil;

/* Read the data. Use the constant kOTNetbufDatalsOTBufferStar */
/* to indicate that you want to do a no-copy receive. */

result = OTRcv(ep, &bufferInfo.fBuffer, kOTNetbufDatalsOTBufferStar,
&junkFlags);
if (result >= 0) {

/* Use OTBufferDataSize to calculate how much data is returned */
bytesRemaining = O0TBufferDataSize(bufferInfo.fBuffer);

/* Write that data to the file. We do this in chunks, */
/* copying each chunk of data out of the OTBuffer chain */
/* and into our transfer buffer using OTReadBuffer, then */
/* writing each chunk of data, until there is no
/* more data left in the buffer chain. */
while (err == noErr && bytesRemaining > 0) {
if (bytesRemaining > kTransferBufferSize) {
bytesThisTime = kTransferBufferSize;
boelse |
bytesThisTime = bytesRemaining;
}
(void) OTReadBuffer(&bufferInfo, gTransferBuffer,
&bytesThisTime);
count = bytesThisTime;
err = FSWrite(destFileRefNum, &count, gTransferBuffer);
bytesRemaining -= bytesThisTime;

222 No-Copy Receiving

CHAPTER 10

Advanced Topics

err = nokrr;
} else {
err = result;

/* Clean up. We MUST release the OTBuffer chain back to 0T */
/* so that it can reuse it. OTReleaseBuffer does not tolerate */
/* the parameter being nil, so we check for that case first. */

if (bufferInfo.fBuffer != nil) {
0TReleaseBuffer(bufferinfo.fBuffer);

return err;

The method shown in the previous listing is not particularly efficient, but it
does demonstrate the use of the 0TReadBuffer function. The second method,
shown in Listing 10-2 , uses the NoCopyReceivelWalkingBufferChain user-defined
function to read data from the endpoint (ep) using a no-copy receive. The code
walks through the resulting buffer chain, writing out chunks of data directly to
the file from the buffers returned to us by Open Transport.

Listing 10-2 Doing a no-copy receive: method 2

static 0SStatus NoCopyReceiveWalkingBufferChain(EndpointRef ep,
SIntl6 destFileRefNum)

0SStatus err;

0TResult result;
0TBufferInfo bufferinfo;
0TBuffer *thisBuffer;
0TFlags junkFlags;
SInt32 count;

err = nokrr;

/* Initialise the bufferInfo data structure. */

No-Copy Receiving 223

CHAPTER 10

Advanced Topics

bufferInfo.fOffset 0;
bufferInfo.fBuffer = nil;

/* Read the data. Use the constant kOTNetbufDatalsOTBufferStar */
/* to indicate that you want to do a no-copy receive. */

result = OTRcv(ep, &bufferInfo.fBuffer, kOTNetbufDatalsOTBufferStar,
&junkFlags);
if (result >= 0) {

/* Walk the returned buffer chain, writing out each chunk to file */

thisBuffer = bufferIinfo.fBuffer;
while (err == nokErr && thisBuffer I=nil) {

count = thisBuffer->flen;
err = FSWrite(destFileRefNum, &count, thisBuffer->fData);

thisBuffer = thisBuffer->fNext;
}
boelse |
err = result;

/* Clean up. We MUST release the OTBuffer chain to Open Transport */
/* so that it can reuse it. , OTReleaseBuffer does not tolerate */
/* the parameter being nil, so we check for that case first. */
if (bufferInfo.fBuffer != nil) {
O0TReleaseBuffer(bufferinfo.fBuffer);

return err;

224 No-Copy Receiving

CHAPTER 10

Advanced Topics

Using Raw Mode

Raw mode refers to the ability of some connectionless providers to pass packet
header information, which would normally be stripped at the appropriate
protocol level, up to a higher level. For example, if you open a DDP endpoint,
you can send and receive data in raw mode in order to determine how many
routers a packet had passed through before you receive it. Normally, hop count
information is stored in the DDP packet header; by using raw mode you can
access this information, which would otherwise be stripped off before you
received the packet.

There are two methods for anabling raw mode packet handling. At the link
layer (Ethernet and TokenRing), use the 0TOptionManagement function to enable
raw mode packet processing. Above the link layer, the AppleTalk DDP protocol
supports raw mode in a different manner. For more information, see the
description of the 0TSndUData function in “Using General Open Transport
Functions With DDP” (page 310). Your protocol might support specific options;
for example RawlIP supports the IP header include option.

Using Option Management to Set Raw Mode

If you want to use raw mode at the link layer level, you should use the option
OPT_SETRAWMODE. Listing 10-3 shows the user function
DoNegotiateRawModeOption as an example of how you negotiate raw mode
using options.

Listing 10-3 Negotiating raw mode using options

f#include <OpenTransport.h>
f#finclude <OpenTptlLinks.h>

0SStatus DoNegotiateRawModeOption(EndpointRef ep, UInt32 rawModeOption);

/* use the options as defined in the OpenTptlLinks.h header
when setting the rawModeOption parameter. */

0SStatus DoNegotiateRawModeOption(EndpointRef ep, UInt32 rawModeOption)

Using Raw Mode 225

CHAPTER 10

Advanced Topics

UInt8 buf[kOTFourByteOptionSizel;
/* buffer for fourByte Option size */
TOption* opt; /* option ptr to make items easier to access */
TOptMgmt req;
TOptMgmt ret;
0SStatus err;

opt = (TOption*)buf; /* set option ptr to buffer */
reqg.opt.buf= buf;

req.opt.len= sizeof(buf);

req.flags= T_NEGOTIATE; /* negotiate for rawmode option */

ret.opt.buf = buf;
ret.opt.maxlen = kOTFourByteOptionSize;

opt->level= LNK_TPI; /* dealing with tpi */
opt->name= OPT_SETRAWMODE; /* specify raw mode */
opt->Ten= kOTFourByteOptionSize;
opt->status = 0;
(UInt32)opt->value = rawModeOption;
/* set the desired option level, true or false */

err = 0TOptionManagement(ep, &req, &ret);

/* if no error then return the option status value */
if (err == kOTNoError)
{
if (opt->status != T_SUCCESS)
err = opt->status;
else
err

kOTNoError;

return err;

226 Using Raw Mode

CHAPTER 10

Advanced Topics

The function assumes the endpoint is in synchronous mode. It defines buffers
that contain option negotiation information and then calls the
0TOptionMangement function.

Testing for Raw Mode Support

To use raw mode you need to determine whether the provider you are using
supports it by examining the T_CAN_SUPPORT_MDATA bit of the endpoint
information structure for your endpoint. Listing 10-4 shows a function
CanDoRawMode that you can call to determine whether your endpoint provider
supports sending or receiving raw data. The function calls the
0TGetEndpointInfo function and examines the info.flags field to see if the
T_CAN_SUPPORT_MDATA bit is set. If it is, the function returns true.

Listing 10-4 Testing for raw data support

Boolean CanDoRawMode(EndpointRef ep)
{

TEndpointInfo info;

0SStatus err;

Boolean result;

err = 0TGetEndpointInfo(ep, &info);
if (err != kOTNoError)
result = false;
else if (info.flags & T_CAN_SUPPORT_MDATA)
result = true;/* this also means that the src addr info is
in the info record */
else
result = false;

return result;

Sending and Receiving in Raw Mode at the Protocol Level

Currently raw mode is supported only for DDP endpoints. To enable or disable
raw mode packet processing of data under DDP, you modify the TNetBuf addr

Using Raw Mode 227

228

CHAPTER 10

Advanced Topics

field that is sent in the OTSendUdata function. Once raw mode processing is
enabled with the OTSndUData call, it stays in effect until you explicitly disable
it.

To enable raw mode, you must

1. Specify 0xffffffffUL for the unitdata.addr.len field of the TNetBuf structure
containing the address information. Set the opt.1en, opt.buf, and addr.buf
fields to 0.

2. Place DDP header information in the buffer referenced by the
udata.udata.buf field of the TNetBuf structure describing data being sent.
The DDP header begins with the hop count byte. With raw mode enabled,
the data in the unitdata.udata.buf field must be the complete DDP packet.

Once you have sent a raw mode pocket, the protocol will deliver incoming
packets in raw mode as well. When using raw mode on receives, you should

1. Set the opt.len field and the udata.addr.max1en field to 0. However it is set,
Open Transport does not fill this field with address information. Instead it
returns the complete DDP packet (including the header) in the data buffer
described in step 2.

2. Allocate a buffer (into which the data is stored when the function returns)
that is large enough to hold header information as well as the data being
received.

Be careful when using raw mode packets because you can no longer tell a full
incoming packet from a partial read without remembering that the T_MORE flag
was set on the previous read.

To disable raw mode packet processing, send a normal DDP packet with the
unitdata.addr.len and the unitdata.addr.buf fields set for an AF_ATALK_DDP or
similar structure.

Listing 10-5 shows how you send an echo packet using a DDP endpoint. The
sample code includes a call to CanDoMDataMode, a function that looks at the flags
associated with creating the endpoint to determine whether the endpoint
supports M_DATA mode. It is assumed that the endpoint is bound and that it is in
synchronous mode.

Using Raw Mode

CHAPTER 10

Advanced Topics

Listing 10-5 Testing for raw mode support for a DDP endpoint

#include <OpenTransport.h>
#include <OpenTptAppleTalk.h>
#include <Types.h>

f#include <Events.h>

#include <stdio.h>

void doOpenTptEcho(EndpointRef ep, UIntl6 destNet, UInt8 destNode);
extern Boolean CanDoMDataMode(EndpointRef ep);

enum {
kddpMaxNormData = 586,
kddpMaxRawData= 599

}s

enum {
kEchoSocketID= 4

}s

enum {
kEchoRequest= 1,
kEchoType= 4

void doOpenTptEcho(EndpointRef ep, UIntl6 destNet, UInt8 destNode)
{

TBind boundAddr;

DDPAddressd dpAddr, destAddr;

TUnitData unitdata;

0SStatus err = kOTNoError;

OTResult result;

0TFlags flags;

UInt8 buf[kddpMaxRawDatal;

UInt8 bufl[64] = "This is a sample string for the first part
of the buffer";

Boolean done = false;

Boolean useMDataMode;

if (10TIsSynchronous(ep))
{

fprintf(stderr, "endpoint must be synchronous for this sample");

Using Raw Mode 229

CHAPTER 10

Advanced Topics

return;

/* verify that the endpoint is bound first. */

result = 0TGetEndpointState(ep);

if (result != T_IDLE)

{
fprintf(stderr, "endpoint must be bound for this sample");
return;

/* check for support of M_DATA mode so that we get the */
/* header info along with the datagram */
useMDataMode = CanDoMDataMode(ep);

if (useMDataMode == true)

{
/* set up data buffer to send Echo Request as a DDP M_DATA packet */
/* get our protocol address to fill into the M_DATA packet */

boundAddr.addr.buf = (UInt8*)&ddpAddr;
boundAddr.addr.maxlen = sizeof(ddpAddr);
err = 0TGetProtAddress(ep, &boundAddr, nil);

if (err != kOTNoError)
{
fprintf(stderr, "error occurred calling 0TGetProtAddress
- %1d\n", err);
return;
}
else
{
/* packet length */

/* clear hopcount, but set the upper 2 bits of the length */
buf[0] = (UInt8)(kddpMaxRawData >> 8) & 0x0003;

/* set the lower byte of the length field */

buf[1] = (UInt8)(kddpMaxRawData & O0x00FF);

/* packet checksum */

230 Using Raw Mode

CHAPTER 10

Advanced Topics

buf[2] = 0;// no checksum
buf[3] = 0;// no checksum

/* dest network */

bufl[4]
bufl[5]

(UInt8) (destNet >> 8);
(UInt8) (destNet & Ox00FF);

/* src network */

buf[6] = (UInt8)(ddpAddr.fNetwork >> 8);

buf[7] = (UInt8)(ddpAddr.fNetwork & Ox00FF);
buf[8] = (UInt8)destNode; /* dest node */
buf[9] = (UInt8)ddpAddr.fNodelD; /* src node */

buf[10] = kEchoSocketID;/* set dest socket to echo socket */
bufl[11] (UInt8)ddpAddr.fSocket;/* src socket */

buf[12] = kEchoType;/* set packet type to echo packet */
bufl[13] kEchoRequest; /* packet is echo request packet */
BlockMove((Ptr)&bufl, (Ptr)&bufl[14], sizeof(bufl));

/* set up the unitdata structure */
unitdata.udata.buf = (UInt8*)buf; /* data area */
unitdata.udata.len = kddpMaxRawData;
unitdata.addr.buf = nil; /* address area*/

/* by sending the packet with the addr.len field set to OxFFFFFFFFUL,*/
/* one enables M_DATA mode with DDP. Once you send a packet in this */
/* manner, all packet deliveries will also be in M_DATA mode. This */
/* continues until a packet is sent with the addr.len field set to a */
/* value other than OxFFFFFFFFUL. */

unitdata.addr.len = (size_t)OxffffffffUL;

unitdata.opt.buf = nil;

unitdata.opt.len = 0; /* no options being sent */

else

Using Raw Mode 231

232

CHAPTER 10

Advanced Topics

/* Set up DDP Address field with the destination address */
/* for the Echo request */

destAddr.fAddressType = AF_ATALK_DDP;
destAddr.fNetwork = destNet;
destAddr.fNodelID = destNode;
destAddr.fSocket = kEchoSocketID;
destAddr.fDDPType = kEchoType;

/* Set up data buffer for the Echo Request */

/* indicate packet is an echo request packet */
buf[0] = kEchoRequest;

/* fi11 in the buffer with the string */
BlockMove((Ptr)&bufl, (Ptr)&buf[1l], sizeof(bufl));

/* set up unitdata fields */

//

unitdata.udata.buf (UInt8*)buf;// data area
unitdata.udata.len = kddpMaxNormData;
unitdata.addr.buf (UInt8*)&destAddr;// address area
unitdata.addr.len kDDPAddresslLength;
unitdata.opt.len = 0; // no options being sent

/* Send the data */
err = 0TSndUData(ep, &unitdata);

/* If no error occured sending the data, then process */
/* expected the Echo Response.*/
if (err == kOTNoError)
{
while (done == false)
{
result = 0TLook(ep);
if (result == T_DATA)
{
while (done == false)
{
/* Set up the UnitData structure to recieve response packet */

Using Raw Mode

CHAPTER 10

Advanced Topics

/* Set up the udata and address area to accomodate either an */
/* M_DATA response or the typical response where the data */
/* and addr fields are filled in. */

unitdata.udata.buf (UInt8*)buf;/* data area */
unitdata.udata.len 0;

unitdata.udata.maxlen = kddpMaxRawData;
unitdata.addr.buf = (UInt8*)&destAddr;/* address area
unitdata.addr.maxlen = kDDPAddresslLength;
unitdata.opt.maxlen = 0; /* no options are expected */

/* note that we reuse the buffer we used to send the echo */
/* request packet with. After the 0TSnd completes in */
/* synchronous mode successfully, the buffer has been released */
/* for use by the program. */
result = OTRcvUData(ep, &unitdata, &flags);

if (result == kOTNoDataErr)
{
done = true;
/* whenever there is a data indication, it's best to read the data */
/* until the kOTNoDataErr since this releases memory that OT has */
/* reserved for the data. In this case, we've consumed all */
/* available data and are ready to exit this function. */
}
else if (result < 0)
{
fprintf(stderr, "unknown error occurred reading
data - %1d\n", result);
done = true;
}
else if (result == kOTNoError)
{
/* read echo reply successfully */
/* continue to read until kOTNoDataErr occurs. */
fprintf(stderr, "%1d bytes read.\n",
unitdata.udata.len);

Using Raw Mode 233

CHAPTER 10

Advanced Topics

else
{
/* an event other than T_DATA occurred */

}
/* another way to escape this routine. */
if (Button())

done = true;

234 Using Raw Mode

CHAPTETR 11

TCP/IP Services

Contents

About the TCP/IP Protocol Family 237
About TCP/IP Services 240
About the Open Transport DNR 243
About Single Link Multi-Homing 243
Configuring Your System to Use Multiple IP Addresses 244
Checking for Availability =~ 245
Getting Information About Secondary Addresses 245
Using TCP/IP Services 245
Setting Options When Configuring a TCP/IP Provider 245
Using RawlIP 247
Receiving RawlIP Datagrams 248
Sending RawIP Datagrams 248
Manually Setting the IP Header 248
Limitations of the Header-Included Mode 249
Using IP Multicasting 250
Querying DNS Servers 251
Avoiding Delay When Rebinding to TCP Connections 251
Using General Open Transport Functions With TCP/IP 253
Obtaining Endpoint Data With TCP/IP 253
Using Endpoint Functions With TCP/IP 254
Using Mapper Functions With TCP/IP 258

Contents

235

CHAPTER 11

236 Contents

CHAPTER 11

TCP/IP Services

This chapter describes TCP /IP-specific information about Open Transport
functions and gives possible values for options that you can use with the TCP/
IP protocols. You need this information only if you have a specific need to use
the TCP/IP protocols or must bind explicitly to an IP address.

This chapter describes the progamming interface to Open Transport’s
implementation of TCP/IP, including the use of Open Transport endpoint and
mapper functions with TCP/IP and the use of single linked multi-homing
(available only for Open Transport version 1.3). This chapter also describes the
TCP/1P service provider, which provides an interface to the TCP/IP Domain
Name Resolver (DNR) for clients of Open Transport. To get the most out of this
chapter, you should already be familiar with the concepts and application
interfaces described in the chapters “Introduction to Open Transport”(page 5),
“Getting Started”, “Providers” (page 61), “Endpoints”(page 83),

“Mappers” (page 149), and “Option Management”(page 165) in this book. For
complete reference information about the structures and functions introduced
in this chapter, see “TCP/IP Services Reference” (page 683).

This chapter gives only a very rudimentary introduction to the TCP/IP
protocol family. You will need to familiarize yourself with the operation and
use of the various TCP/IP protocols before you can make effective use of the
Open Transport implementation of TCP/IP. You should read “About the TCP/
IP Protocol Family” (page 237) for an introduction to the protocol family and
for pointers to more information.

In this chapter the term TCP/IP is used when the information presented applies
equally to all protocols of the TCP/IP family (such as RARP, BOOTP, DHCP, or
UDP, as well as TCP and IP). When the information is specific to one protocol,
the name of that protocol is used.

This chapter starts with a brief introduction to the TCP/IP protocol family,
followed by an introduction to the TCP/IP services provided by Open
Transport. Then “Using General Open Transport Functions With TCP /IP”
(page 253) describes TCP /IP-specific information relating to functions
described in the chapters “Endpoints” and “Mappers” in this book.

About the TCP/IP Protocol Family

The TCP/IP protocol family is a set of networking protocols in wide use
throughout the world for government and business applications. The TCP/IP

About the TCP/IP Protocol Family 237

CHAPTER 11

TCPI/IP Services

protocol family includes a basic datagram-delivery protocol, called Internet
Protocol (IP); a connectionless datagram protocol called User Datagram
Protocol (UDP) that performs checksums; and a connection-oriented data

stream protocol that provides highly reliable data delivery, called Transmission
Control Protocol (TCP). In addition to these three fundamental protocols, TCP /

IP includes a wide variety of protocols for specific uses, mostly at the
application-protocol level.

Figure 11-1 shows the TCP/IP functional layers and examples of TCP/IP
protocols that run in each layer. For purposes of comparison, Figure 11-1 also
shows the OSI model functional layers. Note that reliability of data delivery
can depend on the reliability built into TCPF, or can be added at the application
level by protocols using UDP. Similarly, a protocol based on UDP can
implement connection-oriented services at the application-protocol level.

Figure 11-1

TCP/IP protocols and functional layers

OSl layers TCP/IP layers TCP/IP examples
Application
Presentation Application Telnet| FTP [SMTP| DNS | TFTP |SNMP
Session
Transport Transport TCP UDP
ICMP
Network Internet ARP | RARP P
Data-link Network interface . .
. and hardware Ethernet, token ring, FDDI drivers and hardware
Physical

238

As discussed in the chapter “Endpoints”(page 83) in this book, the way you
use Open Transport functions to send data depends both on whether the

protocol you wish to use is connection-oriented and whether it is
transaction-based. Table 11-1 shows how the TCP/IP protocols provided with

About the TCP/IP Protocol Family

CHAPTER 11

TCP/IP Services

Open Transport fit into this matrix. Notice that Open Transport TCP/IP offers
no transaction-based protocols.

Open Transport provides an application interface to the IP protocol known as
RawlP, as shown in Table 11-1. For more information on this interface to the IP
protocol, see “Using RawIP” (page 247).

Table 11-1 The Open Transport protocol matrix and TCP/IP protocols

Connectionless Connection-oriented
Transactionless RawlP TCP

uDP
Transaction-based none none

Open Transport offers interfaces to the TCP, UDP, and IP protocols, and to the
domain name resolver (DNR). Only those protocols are discussed in the rest of
this chapter. Open Transport also provides implementations of the RARP,
BOOTP, and DHCP protocols, but those protocols are used by Open Transport
for automatic configuration of a host, and they have no application interfaces.

For general information about the other protocols shown in Figure 11-1, see any
good book on TCP/IP. Two such books for information on TCP/IP protocol
internals are TCP/IP Illustrated, Volume 1 by W. Richard Stevens and
Internetworking with TCP/IP, Volume 1 by Douglas E. Comer.

The Open Transport TCP/IP software modules are based on the UNIX
STREAMS architecture. For more information about STREAMS, see UNIX
System V Release 4: Programmer’s Guide: STREAMS.

The Open Transport API is based on the XTI standard as documented in
X/Open CAE Specification (1992): X/Open Transport Interface (XTI). Among other
topics, the XTI specification provides detailed descriptions of the sizes and
valid settings of the TCP, IP, and UDP options available under Open Transport.

The TCP/IP protocols are defined in a series of documents called Requests for
Comments (RFCs). RECs are available over the Internet at <ttp:/ /nic.ddn.mil>,

About the TCP/IP Protocol Family 239

CHAPTER 11

TCPI/IP Services

or from the Defense Data Network (DDN) Network Information Center (NIC)
at

DDN Network Information Center
14200 Park Meadow Drive, Suite 200
Chantilly, VA 22021

Telephone: 800-365-3642

You can get information on how to obtain RFCs via e-mail by sending an e-mail
message to “rfc-info@isi.edu”. The message body must read “help:
ways_to_get_rfcs”.

In addition, you can use a file transfer protocol (FTP) client to download copies
of the RFC list and the RFCs themselves from the Internet address
“nic.ddn.mil.”

About TCP/IP Services

240

The TCP/IP services provided by Open Transport include implementations of
the TCP, UDP, RARP, BOOTP, DHCP, and IP protocols, an application interface
to the domain name resolver (DNR), and utility functions you can use when
creating and resolving Internet addresses. You can open TCP, UDP, and RawIP
endpoints and DNR mappers using the interfaces described in the chapters
“Endpoints” and “Mappers” in this book .

A domain name resolver translates between the character-string names used
by people to identify nodes on the Internet and the 32-bit Internet addresses
used by the network itself. In that sense, its function is similar to AppleTalk’s
Name-Binding Protocol (NBP). Unlike AppleTalk, however, TCP/IP protocols
do not specify a way for clients to register a name on the network. Instead, the
network administrator must maintain a server that stores the character-string
names and Internet addresses of the servers on the Internet, or each individual
host must keep a file of such names and addresses. The Open Transport
implementation of TCP /1P includes a DNS stub name resolver; that is, a
software module that can use the services of the domain name system (DNS) to
resolve a name to an address.

The nodes on a TCP/IP internet are known as hosts. A host that is addressable
by other hosts has a host name and one or more domain names that identify
the hierarchically arranged domains, or collections of hosts, to which it

About TCP/IP Services

CHAPTER 11

TCP/IP Services

belongs. For example, the Open Transport team, part of the system software
group at Apple Computer, might have a server with a fully qualified domain
name of “otteam.ssw.apple.com”. In this case, “otteam” represents the host
belonging to the Open Transport team, “ssw” represents the domain of hosts
belonging to the system software group (which includes the Open Transport
team plus several other teams), and so forth. A fully qualified domain name
corresponds to an Internet address, also known as an IP address, which is a
32-bit number that uniquely identifies a host on a TCP/IP network. An Internet
address is commonly expressed in dotted-decimal notation (for example,
“12.13.14.15”) or hexadecimal notation (for example, “0x0c0d0e0f”).

To use the application interface to Open Transport’s DNR, you must first open
a TCP/IP service provider. Once you have done so, you can

= resolve a domain name to one or more associated Internet addresses
= look up the domain name associated with an Internet address

= retrieve the character strings stored by the domain name server that describe
a host’s processor and operating system

= retrieve DNS information associated with any query class and type

= obtain a list of mail exchanges and mail preference values for a host to which
you wish to deliver mail

A mail exchange is any host that can accept mail for another host or for a
domain. A mail exchange can be a mail server, a router, or just a host
configured to accept and pass on mail. A mail preference value is used by a
mail application to determine to which mail exchange to deliver a message
when there is more than one that can accept mail for a particular domain. The
mailer sends the mail to the mail exchange with the lowest preference value
first and tries the others in turn until the mail is delivered or until the mailer
deems the mail undeliverable.

The subnet mask determines what portion of the IP address is dedicated to the
host identifier and what portion identifies the subnet. A subnet is a portion of a
network, which is in turn a portion of an Internet. Figure 11-2 illustrates the
subnet portion of an address. The top portion of the figure shows an Internet
address that does not include a subnet identifier. The center portion of the
figure shows an Internet address that includes a subnet. Notice that the subnet
identifier is formed by using a portion of the bits reserved for the host
identifier. The bottom portion of the figure shows the subnet mask, which you
can use to determine how many bits are used for the subnet and how many are
used for the host.

About TCP/IP Services 241

CHAPTER 11

TCPI/IP Services

Figure 11-2 Internet subnet address

Internet address

Network identifier Host identifier

Internet address with subnet identifier

Subnet
identifier

Network identifier Host identifier

Subnet mask

1112 1111 1111 1111 1111 1100 0000 O0OOOO

Note

As used in this chapter, a TCP/IP interface is the point of
attachment of a host to a TCP/IP network. In the case of a
multihomed host, the user can configure more than one
TCP/IP interface. At present, the architecture of Open
Transport TCP/IP supports multihoming, but it is not yet
possible to configure a multihomed host. Therefore, all
functions designed to return information about all the
TCP/IP interfaces on a host return information about a
single interface. O

The Open Transport TCP/IP services also include several utility functions. You
can use these functions to

» get Internet addresses and subnet masks for all the TCP/IP interfaces on the
local host

s fill in data structures used for Internet addresses

» convert an IP address string from dotted-decimal notation or hexadecimal
notation to a 32-bit IP address

» convert a 32-bit IP address into a character string in dotted-decimal notation

242 About TCP/IP Services

CHAPTER 11

TCP/IP Services

About the Open Transport DNR

The functions described in “Resolving Internet Addresses” (page 700) and
“Getting Information About an Internet Host” (page 705) are implemented by
the Open Transport domain name resolver (DNR). The DNR also implements
the 0TLookupName function (page 259) when you create a DNR mapper. The
DNR can be invoked by a UDP endpoint’s call to the 0TSndUData function, a
TCP endpoint’s call to the 0TConnect function, or a call to the 0TResolveAddress
function by either type of endpoint. This section describes how the Open

Transport DNR operates.

The Open Transport DNR implements only the following specific DNS query
types.

Type Description

A Resolve name to 32-bit IP host address.

HINFO Return type of processor (CPU) and operating system of host.
MX Return name of mail exchange for the domain.

PTR Resolve address to a fully qualified domain name.

In addition, the Open Transport DNR provides a generic interface, allowing the
user’s application to send queries of any type. However, the application is then
responsible for parsing the response.

The DNR caches name-to-address and canonical name-to-alias mappings, but
not host information (CPU and operating-system types) or the results of mail
exchange (MX) queries.

About Single Link Multi-Homing

Open Transport version 1.3 introduces single link multi-homing, a mechanism
by which Open Transport can support multiple IP addresses on the same
hardware interface. This is useful for users that want to give each of their
clients a distinct IP address without requiring separate computers for each
address.

About the Open Transport DNR 243

CHAPTER 11

TCPI/IP Services

In order to use this feature, you must check to see that you are using version 1.3
or later. See “Checking for Availability” (page 245).

Configuring Your System to Use Multiple IP Addresses

To configure your system, you must do the following:

1. Configure the TCP/IP control panel for manual addressing.
2. Create a text file with the name “IP Secondary Addresses”.
3. Place the file in the Preferences folder.

Each line of the file contains a secondary IP address to be used by the system,
and an optional subnet mask and router address for the secondary IP address.
If there is not subnet mask entry, then Open Transport will use a default subnet
mask for the IP address class. If there is not router entry, the default router
associated with the primary address will be used.

Listing 11-1 shows a sample IP Secondary Addresses file. Each secondary
address listed in the file must be prefixed by ip=. Each subnet mask entry must
be prefixed by sm=. Each router address entry must be prefixed by rt. Note that
the order of the entries is important. The router entry must follow the
secondary name entry.

Listing 11-1 Sample IP Secondary Addresses file

244

ip=17.201.22.200 sm=255.255.255.0 rt=17.201.20.1
ip=17.201.22.201 rt=17.201.20.1
ip=17.201.22.202

When Open Transport activates TCP/IP, it obtains the primary address from
the TCP/IP Control Panel setting. Open Transport then looks for the IP
Secondary Addresses file in the Preferences folder, to determine what other IP
addresses the system must support. If it finds duplicate IP address entries in
the IP Secondary Addresses file, it ignores them. When Open Transport binds a
TCP/IP connection, if there is an address conflict of the primary or any
secondary addresses with another host system, Open Transport will raise an
Alert with an error message to this problem.

About Single Link Multi-Homing

CHAPTER 11

TCP/IP Services

Checking for Availability

To check whether Open Transport version 1.3 is present, use the Gestalt
function with the gestaltOpenTptVersions ‘otvr’ selector. If the result is greater
than or equal to kOTIPSinglelLinkMultihomingVersion, you can use this feature.

Getting Information About Secondary Addresses

You can use the function 0TGetInterfaceInfo to return information about the
number of secondary addresses that are supported. The fIPSecondaryCount
field of the structure returned by this function specifies that number. Then, you
can call the function 0TInetGetSecondaryAddresses, passing this number for the
count parameter, to obtain all the addresses. For more information, see “Single
Link Multi-Homing” (page 716).

Using TCP/1IP Services

This section describes how to use the Open Transport RawIP interface, how to
implement IP multicasting, and how to use a variety of Open Transport
endpoint and mapper functions with the TCP/IP protocols. TCP/IP options
are described in “Options” (page 691).

Setting Options When Configuring a TCP/IP Provider

When you open a TCP/IP provider, you must pass a pointer to a configuration
string. If you want to set an option as part of the configuration string, you
should translate the option’s constant name, given in the header files, into a
string that the configuration functions can parse. For the TCP/IP options, Table

Using TCP/IP Services 245

CHAPTER 11

TCPI/IP Services

11-2 provides the constant name and the value to use in the configuration
string.

Table 11-2 Configuration strings for TCP/IP options

Constant name Configuration string value
IP_OPTIONS “Options”

IP_TOS “TOS”

IP_TTL “TTL”
IP_RCYDSTADDR “RevDestAddr”
IP_RCVIFADDR “RevIFAddr”
IP_RCVOPTS “RevOpts”
IP_REUSEADDR “ReuseAddr”
IP_DONTROUTE “DontRoute”
IP_BROADCAST “Broadcast”
IP_HDRINCL “HdrIncl”
IP_MULTICAST_IP “MulticastIF”
IP_MULTICAST_TTL “MulticastTTL”
IP_MULTICAST_LOOP “MulticastLoop”
[P_ADD_MEMBERSHIP “AddMembership”
IP_DROP_MEMBERSHIP “DropMembership”
IP_BROADCAST_IF “BroadcastIF”
UDP_CHECKSUM “Checksum”
UDP_RX_ICMP “RxICMP”
TCP_NODELAY ”NoDelay"
TCP_OOBINLINE “OO0BInline”
TCB_MAXSEG “MaxSeg”
TCP_NOTIFY_THRESHOLD “Notify Threshold”

246 Using TCP/IP Services

CHAPTER 11

TCP/IP Services

Table 11-2 Configuration strings for TCP/IP options (continued)

Constant name Configuration string value
TCP_ABORT_THRESHOLD “AbortThreshold”
TCP_CONN_NOTIFY_THRESHOLD “ConnNotifyThreshold”
TCP_CONN_ABORT_THRESHOLD “ConnAbortThreshold”

TCP_KEEPALIVE “KeepAlive”

The network configuration structure and 0TCreateConfiguration function are
described in the chapter “Getting Started”(page 31) in this book.

Using RawlP

The Open Transport TCP/IP software modules provide a RawIP interface to
the IP protocol. RawIP behaves for the most part identically to UDP, as a
connectionless transactionless interface, but there are a few unique differences.

You can receive RawIP datagrams using a RawlIP endpoint. You can create a
RawlIP endpoint by passing kRawIPName to 0TCreateConfiguration and passing
that configuration to the 0TOpenEndpoint or 0TOpenEndpointAsync function.

The RawlIP interface facilitates the implementation of new protocols that use IP
for datagram delivery. Therefore, in order to use a RawIP endpoint, you must
specify a value for the protocol field in the IP datagram header. RawIP
endpoints default to receiving ICMP (protocol 1) packets. You can change this
by setting the generic XTI option XTI_PROTOTYPE, described in the chapter
“Option Management”(page 165) in this book. The option is a longword that is
the IP protocol number to be used by the RawIP endpoint.

The data delivered to a RawIP endpoint includes the full IP header, which is
20 bytes long if it includes no IP options.

WARNING

If you open a RawlIP endpoint, you are responsible for
implementing the protocol that is a client of IP running
over that endpoint. Because an improperly implemented
protocol can cause the host to crash or cause the loss of
data on the network, you should exercise caution when
using Raw IP. a

Using TCP/IP Services 247

248

CHAPTER 11

TCPI/IP Services

Receiving RawlP Datagrams

Normally, connectionless transactionless endpoints only support binding one
endpoint to any given protocol address. RawlP is different in that it allows
multiple endpoints to be bound to the same protocol address.

With one important exception, each RawIP endpoint bound to a specific
protocol receives a copy of any inbound packets destined for that protocol. For
example, if several “ping” programs are using ICMP on the same host, each
would receive a copy of all inbound ICMP echo datagrams. The exception is
that RawIP endpoints do not receive copies of packets addressed to IP
protocols TCP (protocol 6) or UDP (protocol 17). This restriction optimizes the
delivery of such packets to their corresponding high-level protocols.

One unusual behavior of RawlIP endpoints is that the delivered packets have
their Total Length field modified. The RawIP module subtracts the length of
the IP header from the Total Length field. This behavior brings Open
Transport’'s STREAMS RawIP more in line with RawIP under BSD UNIX.
Therefore, you should not rely on the value of the Total Length field. If you
need to know the total length of the packet, use the length as returned in the
TNetBuf structure returned by the 0TRcvUData function.

Sending RawlP Datagrams

You can also send RawIP datagrams using a RawIP endpoint. For sending,
RawlIP endpoints have two modes: a mode in which the RawIP interface
generates the header for you and a mode in which you set the header yourself.
The header-generated mode is the default, and it is useful if you are only
interested in the payload of the RawlIP packets you send.

For applications such as ping (ICMP), you can let the RawIP interface generate
the headers using the RawIP endpoint default behavior, such as sending ICMP
packets (protocol 1). In this case, you can change the protocol and IP options
(such as IP_OPTIONS and IP_TTL) using option management functions, as
described in the chapter “Option Management” (page 165) in this book.

Manually Setting the IP Header

At times, however, the level of control provided by the IP level options is not
enough. If you need to set a field in the IP header that is not handled by a
defined option, you can do this by switching the RawIP endpoint to what is
referred to as the header-included mode and setting up the IP header manually.

Using TCP/IP Services

CHAPTER 11

TCP/IP Services

Internally, the RawIP module maintains a state that determines whether it
should add an IP header to any outgoing packets. If the state is false (0),
RawlIP will automatically generate an IP header for any outgoing packets. If the
state is true (1), RawlIP expects the data you provide it to contain the IP header.
(By default the state is false and RawIP generate headers for you automatically.)

You can change this bit explicitly using option management. Simply set the IP
option IP_HDRINCL to a 4-byte integer containing either 0 or 1. The IP options are
listed in “IP Options” (page 694).

You can also change this state by changing the IP protocol (using the generic
XTI option XTI_PROTOTYPE option) for the endpoint. If you set the IP protocol to
IPPROTO_RAW (255) or IPPROTO_IGMP (2), the IP optionIP_HDRINCL state will be set
to true. If you change the IP protocol to any other value, the IP option
IP_HDRINCL state defaults to false.

IP protocol information sources

The IP Protocol option values are defined in Internet
Standard 1 “Assigned Numbers,” which can be found at
<ftp:/ /ds.internic.net/ /std /std1.txt>. The fields in the IP
header are those defined in Internet Standard 5, which can
be found at <ftp:/ / ds.internic.net/std /std5.txt>. O

Limitations of the Header-Included Mode

If you use the header-included mode, you need to be aware of some of its
limitations. A number of the fields in the IP header are automatically modified
by Open Transport, regardless of what values you set them to. These field
names include:

s Version. This field is forced to a value of 4 to reflect the fact that you're using
IP version 4.

s IHL. When OT sends a RawIP packet in “header included” mode, it ignores
the THL field value you specify and instead attaches the IP options that were
last specified using the IP option 1P_0PTIONS. This prevents you from setting
your own IP options by placing them in the IP header and setting THL
appropriately.

» Total Length. This field is not touched by RawIP, but it must be less than the
link MTU for the packet to be sent.

= Identification. This field value is set to the next ID number in the Open
Transport internal sequence.

Using TCP/IP Services 249

250

CHAPTER 11

TCPI/IP Services

Flags. The More Fragments (MF) bit and the reserved bit are cleared. The Do
Not Fragment (DF) bit is set on all outgoing IP packets. OT uses the DF bit to
implement its dynamic path MTU discovery. Because this behavior is
implemented below the IP layer, you cannot change this behavior using the
RawlIP endpoint

» Fragment Offset. This field is completely overwritten by RawIP.
s Header Checksum . The field is set to the correct checksum value.

You need to be careful when setting your own IP header. Even though some
fields are automatically “corrected” by Open Transport, it is still possible to
generate improperly formatted IP packets using a RawIP endpoint, which can
result in loss of network data.

Note
Path MTU is described in RFC1191 (ftp:ds.internic.net/rfcl/rfc1191.txt). O

Using IP Multicasting

Open Transport TCP/IP provides IP multicasting level 2, as described in RFC
1112. This feature is only relevant for RawIP and UDP endpoints.

To join a multicast group, use the 1P_ADD_MEMBERSHIP option (page 694), passing
ina TIPAddMulticast structure to specify the address and network interface of
the group you wish to join. For a multihomed system, you can use the value
kOTAnyInetAddress for the interface address to use the default multicast
interface.

The time-to-live value for outbound multicast data defaults to 1; you can use
the TP_MULTICAST_TTL option to set a different value. The time-to-live value is a
hop count: each router that processes the datagram decrements the time-to-live
and discards the datagram if the value reaches 0. Because every router that
receives a multicast packet forwards it, a high time-to-live value for a multicast
packet can cause the packet to propagate widely throughout the Internet.
Therefore, keep this value as low as possible.

By default, Open Transport IP loops back multicast datagrams to any member
of the group on the sending machine. Pass a value of T_NO to the option
IP_MULTICAST_LOOP to turn off loopbacks.

Using TCP/IP Services

CHAPTER 11

TCP/IP Services

Querying DNS Servers

In addition to the explicit simplified functions that are provided for the most
commonly made queries such as name-to-address, address-to-name, system
CPU and OS, and mail exchange queries, there is a generic query function,
0TInetQuery, that you can use for any DNS query.

The 0TInetQuery function allows you to use the Domain Name Resolver (DNR)
for generic domain name service (DNS) queries. You can ask for any query type
and class, and in response, Open Transport returns as many DNSQueryInfo
structures as it can fit in the buffer you provide.

There are three types of responses: answers, authority responses, and
additional information, and there are typically several of each type. Each
response has its own DNSQueryInfo structure, with all the answers first, then all
the authority records, then all the additional information. Authority responses
refer you to DNS servers and other sources that may have helpful information
for this answer and additional information responses provide address data for
the servers and sources referred to in the authority records.

If, for example, you use the 0TInetQuery function to find out the IP addresses
for a name, you might get back 13 DNSQueryInfo structures in your answer
buffer. Each DNS Query Information structure might then contain 2 IP address
structures, 4 authority responses, and 7 additional information responses.

To help you parse this huge answer buffer, Open Transport provides two
optional parameters for the 0TInetQuery function, argv and argvlen, that create
an array of pointers to the individual responses.

Avoiding Delay When Rebinding to TCP Connections

When a connection closes, TCP imposes a two-minute timeout on binding
before the same port can be bound to again. This prevents stale data from
corrupting a new connection. This is in strict compliance with the TCP
standard.

You can work around this by using the 1P_REUSEADDR option with the
0TOptionManagement function. If you set this option on all of your listening
endpoints before you bind, the limitation should disappear. The IP_REUSEADDR
option allows you to bind multiple connected or closing endpoints to addresses
with the same port number.

Using TCP/IP Services 251

CHAPTER 11

TCPI/IP Services

IMPORTANT

Note that even using the IP_REUSEADDR option, you can
only bind a single endpoint in a state less than connected
(that is, listening or unbound endpoints) to the same port
at a given time. You can, however, bind any number of
connected or closing endpoints. a

The sample code shown in Listing 11-2 sets an option and assigns it to the
location referenced by value. The endpoint is assumed to be in synchronous
mode. If an error occurs, the function returns a negative result. If the option
could not be read, a positive result (either T_FAILURE, T_PARTSUCCESS, or
TREADONLY,orT_NOTSUPPORT)isreturned.

Listing 11-2 Setting an option value

static OTResult SetFourByteOption(EndpointRef ep,
OTXTILevel Tlevel,
OTXTIName name,
UInt32 value)

OTResult err;

TOption option;
TOptMgmt request;
TOptMgmt result;

/* Set up the option buffer to specify the option and value to

set. */
option.len = kOTFourByteOptionSize;
option.Tevel = level;
option.name = name;
option.status =0;

option.value[0] value;

/* Set up request parameter for O0TOptionManagement */
request.opt.buf (UInt8 *) &option;
request.opt.len = sizeof(option);

request.flags T_NEGOTIATE;

/* Set up reply parameter for OTOptionManagement. */
result.opt.buf = (UInt8 *) &option;

252 Using TCP/IP Services

CHAPTER 11

TCP/IP Services

result.opt.maxlen = sizeof(option);

err = 0TOptionManagement(ep, &request, &result);

if (err == nokrr) ({
if (option.status != T_SUCCESS)
err = option.status;

return (err);

In the body of the function, we use a TOption structure to represent the option
buffer and initialize its fields to specify the option and value we want to set.
Next, we initialize the request parameter of the 0TOptionManagement function to
reference the option buffer we just initialized. The 1ength field is set to the size
of the option buffer and the f1ags field is set to T_NEGOTIATE to specify that we
want to set the option value specified in the option buffer.

You could invoke this function and set the IP_REUSEADDR option as follows:

err = SetFourByteOption(ep, INET_IP, IP_REUSEADDR, true);

Using General Open Transport Functions With TCP/IP

This section describes special considerations you must take into account for
Open Transport functions when you use them with the Open Transport TCP/
IP implementation. You should be familiar with the function descriptions in the
chapters “Endpoints Reference” (page 436) and “Mappers Reference”

(page 550)in this book before reading this section.

Obtaining Endpoint Data With TCP/IP

The following values can be returned by the info parameter to the
0TOpenEndpoint, 0TAsyncOpenEndpoint, and 0TGetEndpointInfo functions when
used with TCP/IP protocols.

Using TCP/IP Services 253

254

CHAPTER 11

TCPI/IP Services

IMPORTANT

The preceding table shows only what values are possible
for each protocol. Be sure to to use the 0TOpenEndpoint,
0TAsyncOpenEndpoint, or 0TGetEndpointInfo functions to
obtain the current values for these parameters. a

These fields and the significance of their values are described in more detail in
“Endpoints Reference” (page 436).

Using Endpoint Functions With TCP/IP

This section describes protocol-specific information about functions described
in the chapter “Endpoints Reference” (page 421). The functions are listed in the
same order that they appear in that chapter.

OTBind

The 0TBind function associates a local protocol address with the endpoint you
specify. Use this function with the TCP and UDP protocols.

The addr field of the TBind structure refers to the local endpoint and so must
specifically include a port number. Use an InetAddress structure, described in
“Internet Address Structure” (page 685), to specify this address.

Because the architecture of Open Transport TCP/IP provides for multihoming
(although this feature has not yet been implemented), you can specify an IP
address of kOTAnyInetAddress for the addr field to indicate that your application
or process will accept packets from any TCP/IP interface that the user has
configured in the TCP/IP control panel.

If you bind to an address of kOTAnyInetAddress, then the 0TGetProtAddress
function always returns an IP address of 0. In that case, you must use the
0TInetGetInterfaceInfo function (page 711) to determine the IP address of a
running IP interface. However, if you pass in a valid address with a port
number of k0TAnyInetAddress, the TCP/IP service provider assigns a port for
you and the 0TGetProtAddress function returns the assigned port number and
the IP address.

You can use the 0TInetGetInterfaceInfo function to get the IP addresses of all
currently configured IP interfaces. Then, if you wish to receive packets from
only a single interface, you can bind the endpoint to the address for that
interface.

Using TCP/IP Services

CHAPTER 11

TCP/IP Services

OTLook

The 0TLook function checks for asynchronous events such as incoming data or
connection requests. Use this function with the TCP protocol.

As soon as a segment with the TCP urgent pointer set (that is, expedited data)
enters the TCP receive buffer, TCP posts the T_£XDATA event. The T_EXDATA event
remains posted until you have retrieved all data up to the byte pointed to by
the TCP urgent pointer.

OTGetProtAddress

You use this function with the TCP and UDP protocols.

If you bind an endpoint to an IP address of kOTAnyInetAddress in order to
accept packets from any valid TCP/IP interface, then the 0TGetProtAddress
function always returns an IP address of 0. This is because in a multihomed
machine, there is a separate IP address for each interface, and there’s no way
for Open Transport to know which one you want. In that case, you must use
the 0TInetGetInterfacelInfo function (page 711) to determine the IP address of
a running IP interface. On the other hand, if you bind an endpoint to a specific
interface, the 0TGetProtAddress function returns the address of that interface, as
expected.

OTConnect

The 0TConnect function requests a connection to a specified remote endpoint.
You can use this function with TCP.

The rcveall->addr field returns a copy of the TNetbuf structure you specify in
the sndcall->addr field. The discon->reason field contains a positive error code
that indicates why the connection was rejected.

Because TCP does not allow you to send any application-specific data during
the connection establishment phase, you must set the sndcall->udata.len field
to 0. TCP ignores the value of the sndcall->udata.buf field.

Note that TCP, not the receiving application, confirms the connection.

As mentioned in the X/Open Transport Interface (XTI) specification, because
TCP cannot refuse a connection, t_listen() and t_accept () have a semantic
which is slightly different from that for ISO providers.”

As a result, an Open Transport TCP server will accept a TCP connection
request if the current number of pending connections is less than the queue

Using TCP/IP Services 255

256

CHAPTER 11

TCPI/IP Services

length (q1en) for the passive endpoint. Basically, what happens is that TCP
connects even before you accept a connection.

The client, whether in synchronous or asynchronous mode, will immediately
receive notice that the connection has been established. For synchronous
endpoints, TCP completes the 3-way connection handshake. For asynchronous
endpoints, the 0TRcvConnect function must be called to complete the handshake.

This can result in situations like this: You send an 0TConnect from a TCP client
to a TCP server that passively awaits incoming connections, but even before
the server responds with the 0TListen and 0TAccept calls, the 0TConnect call
completes with no error. At this point, if you examine the client endpoint’s
state, you will find that it is in the T_DATAXFER state, which is correct.

OTRcvConnect

The 0TRcvConnect function reads the status of a previously issued connection
request. You can use this function with TCP.

Because TCP does not allow you to send any application-specific data during
the connection establishment phase, you must set the cal1->udata.max1en field
to 0. TCP ignores the value of the cal1->udata.buf field.

On return, the call->addr field points to the Internet address of the endpoint
that accepted the connection.

OTlListen

The 0TListen function listens for an incoming connection request. You can use
this function with TCP.

When the 0TListen function successfully completes execution (that is, when
you receive the T_LISTEN event), the call parameter describes a connection
that has already been completed at the TCP level. You use the 0TAccept
function to complete a connection at the application level. If you wish to reject
a connection, you must call the 0TSndDisconnect function after the 0TListen
function successfully completes execution.

Because TCP does not allow you to send any application-specific data during
the connection establishment phase, you must set the ca11->udata.max1en field
to 0. TCP ignores the value of the cal1->udata.buf field.

Using TCP/IP Services

CHAPTER 11

TCP/IP Services

OTAccept

The 0TAccept function accepts an incoming connection request. You can use this
function with TCP.

Because TCP does not allow you to send any application-specific data during
the connection establishment phase, you must set the ca11->udata.len field to
0. TCP ignores the value of the cal1->udata.buf field.

If you wish to send either of the association-related options (IP_0PTIONS or
1p_10S) with the connection confirmation, you must use the 0TOptionManagement
function to set the values of these options before you receive the T_LISTEN
event. TCP has already established a connection when you receive the T_LISTEN
event, and it is too late for the 0TAccept function to negotiate these options.

OTSndUData

The 0TSndUData function sends data through a connectionless transactionless
endpoint. You can use this function with UDP.

The current value for the maximum size of a RawIP or UDP datagram is
returned in the info->tsdu parameter of the 0TOpenEndpoint,
0TAsyncOpenEndpoint, and 0TGetEndpointInfo functions.

OTSnd

The 0TSnd function sends data through a connection-oriented transactionless
endpoint. You can use this function with TCP.

Because it does not support TSDU’s, TCP ignores the 0TSnd function’s T_MORE
flag.

If you set the T_EXPEDITED flag, you must send at least 1 byte of data. If you call
the 0TSnd function with more than 1 byte specified and the T_EXPEDITED flag set,
the TCP urgent pointer points to the last byte of the buffer.

OTRcv

The 0TRcv function receives data through a connection-oriented endpoint. You
can use this function with TCP.

Because TCP ignores the T_MORE flag when it is sending data and does not
transmit the flag, you should ignore the T_MORE flag when receiving normal
data. However, if a byte in the data stream is pointed to by the TCP urgent
pointer, TCP receives this byte and as many bytes as possible preceding the

Using TCP/IP Services 257

258

CHAPTER 11

TCPI/IP Services

marked byte with the T_EXPEDITED flag set. If your buffer is too small to receive
all of the expedited data, TCP sets the T_MORE flag as well. Note that this
situation might result in the number of bytes received as expedited data not
being equal to the number of bytes sent by the originator as expedited data.

OTSndDisconnect

The 0TSndDisconnect function initiates an abortive disconnect or rejects a
connection request. You can use this function with TCP.

Because TCP does not allow you to send any application-specific data during a
disconnect, you must set the cal1->udata.len field to 0. TCP ignores any data
in the call->udata.buf field.

OTRcvDisconnect

The 0TRcvDisconnect function returns information about why a connection
attempt failed or an established connection was terminated. You can use this
function with TCP.

Because TCP does not allow you to send any application-specific data during a
disconnection, you must set the discon->udata.len field to 0. TCP ignores the
value of the discon->udata.buf field.

This function returns a positive error code. To obtain the negative error code,
subtract that positive value from -3199.

Using Mapper Functions With TCP/IP

This section describes protocol-specific information about functions described
in the chapter “Mappers Reference” (page 550) in this book. The functions are
listed in the same order that they appear in that chapter.

OTRegisterName

Because the TCP/IP domain name system does not include a method for
clients to register their names on the network, the Open Transport domain
name resolver (DNR) does not support the 0TRegisterName function. If you
call this function for a TCP/IP mapper, it will return the kOTNotSupportedErr
result code.

Using TCP/IP Services

CHAPTER 11

TCP/IP Services

OTDeleteName

This function is not supported by the TCP/IP domain name resolver (DNR).
If you call this function for a TCP/IP mapper, it will return the
kOTNotSupportedErr result code.

OTLookupName

You can use the 0TLookupName function to resolve a domain name to an Internet
address. Specify the name as a character string pointed to by the
request->udata.buf parameter. The name can be just a host name (“otteam”), a
partially qualified domain name (“otteam.ssw”), a fully qualified domain name
(“otteam.ssw.apple.com.”), or an Internet address in dotted-decimal format
(“17.202.99.99”), and can optionally include the port number
(“otteam.ssw.apple.com:25” or “17.202.99.99:25”).

The function returns a pointer to the address in the reply->udata.buf
parameter. The address is in the format of an InetAddress structure (page 685),
which includes the address type, the port number, and the IP address. If you
don’t specify a port number, the returned InetAddress structure contains a port
number of 0. You can use this address directly in all Open Transport functions
that require an Internet address, such as 0TConnect, 0TSndUData, and 0TBind.

The 0TLookupName function returns only a single address, regardless of how
many addresses are known for a single multihomed host. To obtain a list of up
to 10 addresses for a multihomed host, use the 0TInetStringToAddress function
(page 700).

Using TCP/IP Services 259

CHAPTER 11

TCPI/IP Services

260 Using TCP/IP Services

CHAPTETR 12

Introduction to AppleTalk

Contents

About AppleTalk 264
AppleTalk Networks and Addresses 266
Multinodes 268
Handling Miscellaneous Events 269
Configuring AppleTalk Protocol Providers 270
About AppleTalk Protocols Under Open Transport 271
AppleTalk Addressing and the Name Binding Protocol (NBP)
The AppleTalk Service Provider 274
Datagram Delivery Protocol (DDP) 274
AppleTalk Data Stream Protocol (ADSP) 275
AppleTalk Transaction Protocol (ATP) 275
Printer Access Protocol (PAP) 276

Contents

273

261

CHAPTER 12

Introduction to AppleTalk

This chapter provides an overview of the Open Transport implementation of
AppleTalk, a communications network system that interconnects computer
workstations, printers, shared modems, and other computers acting as file
servers and print servers. AppleTalk allows these devices to exchange
information through communications hardware and software. Its chief features
are that

s it is built into all Mac OS computers

= it provides dynamic addressing, which allows for very easy setup and
configuration

= it provides easy resource browsing

If you want to use AppleTalk, the specific set of Open Transport functions you
call depends on the nature of the specific protocol you use—whether it is
connectionless or connection-oriented, and transactionless or transaction-
based. For example, you use different functions to send and receive data with a
connection-oriented protocol such as AppleTalk Data Stream Protocol (ADSP)
or Printer Access Protocol (PAP) than with a connectionless protocol such as
Datagram Delivery Protocol (DDP) or AppleTalk Transaction Protocol (ATP).

Read this chapter if you want an overview of AppleTalk networks and
AppleTalk protocols. You can also read this chapter for help in deciding
which AppleTalk protocols to use for your application’s requirements.

This chapter introduces

= AppleTalk networking concepts

= AppleTalk protocols implemented in Open Transport
= AppleTalk service providers

= AppleTalk mappers

This chapter and the other AppleTalk chapters in this book describe how to use
AppleTalk-specific options with the Open Transport networking functions that
are appropriate for the AppleTalk protocol you wish to use.

Because an AppleTalk network includes both hardware and software, the
information in this book constitutes only a small part of the body of literature
documenting AppleTalk. An important resource for any AppleTalk network
developer is the book Inside AppleTalk, second edition, which has detailed
specifications for each of the AppleTalk protocols.

263

CHAPTER 12

Introduction to AppleTalk

About AppleTalk

264

Every Mac OS computer includes AppleTalk hardware and software, so if your
application needs to communicate with other Mac OS computers, you may
want to use an AppleTalk protocol. AppleTalk includes protocols that handle
file sharing, LaserWriter and ImageWriter printing, data exchange through data
streams or packets, and AppleTalk name lookups across a network.

Although AppleTalk includes protocols that provide connection-oriented
services, it is considered a connectionless network because all AppleTalk data is
ultimately delivered by the Datagram Delivery Protocol (DDP), which
implements connectionless packet delivery. Connection-oriented AppleTalk
protocols that establish sessions and provide reliable delivery of data, such as
the AppleTalk Data Stream Protocol (ADSP), are built on top of the
connectionless packet services that DDP provides. In the AppleTalk protocol
stack, each protocol in a specific layer provides a set of functions and services
to one or more protocols in a higher-level layer.

The AppleTalk architecture is closely aligned with the industry-standard Open
Systems Interconnection (OSI) networking model. Figure 12-1 shows the
AppleTalk protocols supported by Open Transport and shows how they relate
to one another in the layers defined by the OSI model.

About AppleTalk

CHAPTER 12

Introduction to AppleTalk

Figure 12-1 AppleTalk protocol stack and the OSI model

Session ZIP | PAP ADSP

Transport | ATP | NBP |
a J
Network DDP
Data-link | Standard link-access Streams modules |
Physical LocalTalk Ethernet Token ring FDDI

Here are some points worth noting about how AppleTalk under Open
Transport maps to the OSI model:

At the session layer, the AppleTalk Data Stream Protocol (ADSP) provides its
own stream-based transport layer services that allow for full-duplex dialogs,
while the Printer Access Protocol (PAP) uses the transaction-based services
of the AppleTalk Transaction Protocol (ATP) to transport workstation
commands to servers. The Zone Information Protocol (ZIP) is also at the
session layer; a subset of its functions are available through AppleTalk
service providers.

At the transport layer, there are the AppleTalk Transaction Protocol (ATP)
and Name-Binding Protocol (NBP), but NBP is accessible only through
mapper providers. In addition to these two protocols, ADSP includes
functions that span both the session and the transport layers.

At the network layer, the Datagram Delivery Protocol (DDP) is AppleTalk’s
network delivery protocol.

At the data-link layer, various link-access protocols support the underlying
networking hardware. Open Transport provides standard Streams modules
for the LocalTalk, Ethernet, token ring, and FDDI drivers.

About AppleTalk 265

266

CHAPTER 12

Introduction to AppleTalk

AppleTalk Networks and Addresses

Applications can use AppleTalk protocols across a single AppleTalk network or
an AppleTalk internet, which is a number of interconnected AppleTalk
networks. An AppleTalk internet can include a mix of LocalTalk, TokenTalk,
EtherTalk, and FDDITalk networks, or it can consist of multiple networks of a
single type, such as several LocalTalk networks. An AppleTalk internet can
include both nonextended and extended networks.

An AppleTalk nonextended network is one in which

» the network has one network number assigned to it

» the network supports only one zone

» all nodes on the network share the same network number and zone name
» each node on the network has a unique node ID

LocalTalk is an example of a nonextended network. Each node on a
nonextended network, such as LocalTalk, has a unique 8-bit node ID. Since
there are 256 possible combinations of 8 bits, and three IDs are not available (ID
255 is reserved for broadcast messages and ID 0 and 254 are not allowed), a
nonextended network can support up to 253 active nodes at a time.

An AppleTalk extended network is one in which
» the network has a range of network numbers assigned to it
» the network supports multiple zones

» each node on the network has a unique network number node ID
combination to identify it

Table 12-1 summarizes the identifiers that you use for AppleTalk addressing.

Each network is assigned a network number so that an AppleTalk router can
determine the packet’s destination network number and forward the packet
through an internet from one router to another until the packet arrives at its
correct destination network. An extended network uses a range of network
numbers. Nodes on an extended network can have different zone names and
different network numbers within the network number range.

A node is the data-link addressable entity on an AppleTalk network; all
physical devices on an AppleTalk network are nodes. When a node first
connects to an AppleTalk network or is rebooted, AppleTalk dynamically
assigns it a unique 8-bit node ID. For a node on an extended network,
AppleTalk also assigns it a 16-bit network number within the range of numbers

About AppleTalk

CHAPTER 12

Introduction to AppleTalk

Table 12-1 AppleTalk addressing identifiers

Identifier Description

Network number A 16-bit number that identifies the network to which a
node is connected. An extended network is defined by a
range of network numbers.

Node ID An 8-bit number that identifies a node.

Zone name A name assigned to a logical grouping of nodes in an
AppleTalk network or internet.

Socket number An 8-bit number that identifies a socket.

DDP type An 8-bit number that identifies an endpoint’s protocol.

assigned to the extended network that the device is connected to. Once a
packet arrives at its destination network, the packet is delivered to its
destination node within that network, based on the node ID.

Note
Open Transport allows system administrators to assign
static node IDs. O

Because AppleTalk assigns node IDs dynamically whenever a node joins the
network or is rebooted, a node’s address on an AppleTalk network can change
from time to time, although a computer attempts to reuse the node ID it last
used. the NBP provides a mapping of logical names (like those in the Chooser)
to physical addresses in such a way that if the node ID changes, you can still
find the remote service. This mapping is discussed further in “About
AppleTalk Addressing” (page 280) and “About AppleTalk Service Providers”
(page 294) in this book.

A zone is a logical grouping of nodes within an AppleTalk internet. The use of
zones allows a network administrator to set up departmental or other logical
sets of nodes in an internet. A single extended network can contain nodes
belonging to multiple zones; an individual node on an extended network can
belong to only one zone. Each zone is identified by a unique zone name.

A socket is an addressable data-link entity on a network. Endpoints exchange
data with each other across an internet through sockets. Because each endpoint
has its own socket address, a node can have multiple concurrent open
connections, for example, one to a file server and one to a printer. A node can

About AppleTalk 267

268

CHAPTER 12

Introduction to AppleTalk

have several sockets open at the same time, so each endpoint on an AppleTalk
network is associated with a unique 8-bit socket number.

AppleTalk sockets are divided into two groups: statically assigned sockets and
dynamically assigned sockets. Statically assigned sockets are those sockets
that are permanently reserved for a designated protocol or process. For
example, socket 4 is always reserved as the echo socket, used for echoing
packets across a network. Dynamically assigned sockets are those sockets
arbitrarily assigned by DDP if you do not specify a socket number when
binding an endpoint; DDP returns the socket number to you in the endpoint’s
address when the binding has completed. In certain situations, you can bind
multiple endpoints to a single socket.

Multinodes

AppleTalk’s multinode architecture allows an application to acquire virtual
node IDs, called multinode IDs. These multinode IDs allow the computer
running your application to appear as multiple nodes on the network even
though it is only one physical entity. Each acquired multinode is in addition to
the standard node ID already assigned to the computer when it joined the
network as a node. The prime example of a multinode application is Apple
Remote Access Server (ARA), which uses multinodes to make the connected
remote client appear on the local network.

You can use a multinode to receive broadcast packets and any AppleTalk
packets addressed to it through its multinode ID. You must then process the
packets in a custom manner. A multinode ID is not connected to the AppleTalk
protocol stack above the network (DDP) layer, which means that an application
that uses a multinode cannot expect to be supported by the services of
higher-level protocols such as NBP, ATP, and ADSP, but instead must
implement its own higher-level protocols if it expects packets for such
protocols.

Handling Miscellaneous Events

In classic AppleTalk, you could use the AppleTalk Transition Queue (ATQ) to
inform your application of miscellaneous events that occurred unexpectedly
within AppleTalk. In Open Transport AppleTalk, this facility has been modified
to allow your endpoint to receive only a few predefined events. An example of
such an event is an AppleTalk router coming online or a zone name changing.
When one of these events occurs, Open Transport sends a message to the

About AppleTalk

CHAPTER 12

Introduction to AppleTalk

notifier functions of all endpoints that have registered for reception of
miscellaneous events. (Any applications that rely on the AppleTalk Transition
Queue must use AppleTalk backward compatibility to handle them as
described in Inside Macintosh: Networking.)

In Open Transport AppleTalk, there are five miscellaneous events that you
can receive on your AppleTalk endpoint, which does not need to be bound.
They are as follows:

Miscellaneous event Value Explanation

T_ATALKROUTERDOWNEVENT 0x23010051 The router on your application’s
network is no longer available.

T_ATALKROUTERUPEVENT 0x23010052 A router has become available on your
application’s network.

T_ATALKZONENAMECHANGEDEVENT 0x23010053 The router has changed the name for

your computer’s zone.

T_ATALKCONNECTIVITYCHANGEDEVENT 0x23010054 A multinode connection was
established or disconnected on your
network.

T_ATALKCABLERANGECHANGEDEVENT 0x23010055 A router has become available on your
network, and your endpoint’s address
is no longer in the correct
local-network number range.

To receive these events, your application must use the 0TIoct1 function with a
provider reference value, the constant k0TGetMiscellaneousEvents as its
command, and the value of 1 as its data. For more information on the 0TIoct]
function, refer to “OTloct]l” (page 411) in this book.

Configuring AppleTalk Protocol Providers

When you want to use a particular AppleTalk protocol, you open an endpoint
configured for that protocol. To do this, you use specific constants as part of a
configuration string that you pass to the Open Transport function for opening
endpoints. This string specifies to Open Transport how to create the correct
endpoint for you. For more information on the functions that you use to open
endpoints, mappers, and AppleTalk service providers, refer to the chapters in
this book on the specific type of provider; for more information about
configuring providers, see “Configuring and Opening a Provider” (page 34) in
this book.

About AppleTalk 269

CHAPTER 12

Introduction to AppleTalk

Table 12-2 lists the constants you use to configure the AppleTalk providers. You
can use either the constant or the literal string when creating configurations.

Table 12-2 Protocol identifiers for use in configuring AppleTalk providers

Configuration
Constant string value Type of provider configured
kNBPName “nbp” NBP mapper provider
kDDPName “ddp” DDP endpoint provider
kATPName “atp” ATP endpoint provider
kADSPName “adsp” ADSP endpoint provider
kPAPName “pap” PAP endpoint provider

There is one exception to the typical method of configuring providers.
AppleTalk service providers do not have a string equivalent value. You
configure an AppleTalk service provider with the constant
kDefaultAppleTalkServicesPath, which has a value of ((0TConfiguration*)-3)
The code for creating an AppleTalk service provider is as follows:

0TOpenEndpoint(kDefaultAppleTalkServicesPath, 0, &err)

If you want to set an option as part of the configuration string, you need to
know which protocols use which options and how to translate the option’s
constant name, given in the header files, into a string that the configuration
functions can parse. For the AppleTalk options, Table 12-3 provides the
constant name, the value used in the configuration string, and the protocols
that use that option.

To configure a provider with an option string, you put the string and its
assigned value in parentheses after the protocol that uses it, as in the following
lines of code:

0TOpenEndpoint(0TCreateConfiguration
("adsp,ddp(Checksum=1),1t1kB"), 0, NULL, &err)

0TOpenEndpoint(0TCreateConfiguration
(kADSPName" (EnableEOM=1)"), 0, NULL, &err);

270 About AppleTalk

CHAPTER 12

Introduction to AppleTalk

Table 12-3 Indicating AppleTalk options in the configuration string

Configuration
Constant name string value Valid protocols
OPT_CHECKSUM “Checksum” DDP, ATP, ADSP, PAP
OPT_SELFSEND “SelfSend” DDP
OPT_ENABLEEQM “EnableEOM” ADSP, PAP
OPT_INTERVAL “RetryInterval” ATP
OPT_RETRYCNT “RetryCount” ATP
ATP_OPT_RELTIMER “ReleaseTimer” ATP
PAP_OPT_OPENRETRY “OpenRetry” PAP

About AppleTalk Protocols Under Open Transport

Each of the AppleTalk protocols implements a different set of functions and
services, and your choice of which protocol to use depends primarily on your
application’s needs. For example, if you need a connection-oriented
transactionless protocol to exchange data with another endpoint, ADSP is your
most likely choice. Open Transport supports most AppleTalk protocols and
provides protocol-specific options for various Open Transport functions. Which
functions to use with which AppleTalk protocol, and which options are
permitted for each, are discussed in this book in the specific chapter for each
AppleTalk protocol.

You use most AppleTalk protocols by specifying them explicitly when opening
an endpoint. ADSP, ATP, and PAP fall into this category. Because DDP is the
network delivery protocol for AppleTalk, you can specify it explicitly or, more
often, you use it implicitly when you choose other higher-level AppleTalk
protocols.

You don’t use NBP and ZIP explicitly with endpoints: NBP-configured mapper
providers access NBP to register and delete an application’s name as a
network-visible entity and to look up other endpoint names on the network;
AppleTalk service providers use a subset of ZIP functions to provide

About AppleTalk Protocols Under Open Transport 271

272

CHAPTER 12

Introduction to AppleTalk

applications with information about zones and the current AppleTalk
environment.

Note

In order to exchange data and share resources, nodes must
be running the same protocol, but they do not all have to
be running Open Transport. For example, if one endpoint
is using ADSP to send data to an endpoint on another
computer, the other endpoint must also be running ADSP,
although it does not have to be the Open Transport ADSP
implementation. O

Open Transport implements two connection-oriented transactionless
AppleTalk protocols that you can use to send and receive data: ADSP and PAP.
As discussed in “Introduction to Open Transport” (page 5) the decision of
which protocol to use is typically based on whether it maintains a connection
and uses discrete transactions or sends a stream of data.

Open Transport also implements two connectionless AppleTalk protocols that
you can use to send and receive data: ATP and DDP. ATP is a transaction-based
protocol and sends request transactions and receives replies; DDP does not
send transactions, instead it sends individual packets of data, called datagrams,
and expects no reply.

The AppleTalk protocols that Open Transport supports for endpoints are
shown in Table 12-4.

Table 12-4 Open Transport support for AppleTalk endpoint protocols

Connectionless Connection-oriented
Transactionless DDP ADSP
PAP
Transaction-based ATP

In general, applications use ADSP for symmetrical data exchange between two
peer endpoints and PAP for printing data. PAP is a client of ATP, so it takes
advantage of ATP’s reliable data delivery services. Because DDP underlies

all AppleTalk data delivery, all AppleTalk protocols ultimately use DDP for
data transport.

About AppleTalk Protocols Under Open Transport

CHAPTER 12

Introduction to AppleTalk

AppleTalk Addressing and the Name Binding Protocol (NBP)

Because AppleTalk assigns node IDs dynamically whenever a node joins the
network or is rebooted, a node’s address on an AppleTalk network can change
from time to time. Applications cannot assume that the physical address of an
AppleTalk endpoint is stable, and therefore a reliable mapping of user names to
physical addresses is very important for AppleTalk.

The Name-Binding Protocol (NBP) is an AppleTalk protocol that maintains
this mapping, and you can access this information through a mapper provider
configured for NBP. Because AppleTalk supports dynamic name registration,
NBP mapper providers can use the Open Transport name registration and
deletion functions as well as the other mapper functions.

In order for you to make the name of your AppleTalk endpoint visible to other
applications on a network, you must register its name. There are various ways
of doing this: for example, using the 0T81nd function or opening a mapper
provider. In either case, Open Transport uses NBP to associate the endpoint’s
name with its physical address. Once your application is registered, it is a
network-visible entity that other applications can locate.

Through mapper library functions, AppleTalk applications can
= register and delete endpoints as network-visible entities

= look up other endpoint names, using wildcards as needed to match
partial names

» initialize name and address structures
= get and set endpoint name information

See “Mappers” (page 149) for information about how to use Open Transport
mapper providers and “AppleTalk Service Providers” (page 293) for
information about how to use NBP mapper providers to identify and locate
endpoints on a network. The two methods of registering a name are discussed
in greater detail in “Registering Your Endpoint’s Name” (page 286).

The AppleTalk Service Provider

An AppleTalk service provider is an Open Transport provider that gives
applications access to information and services that are specific to the
AppleTalk protocol stack. Applications use an AppleTalk service provider to
obtain zone names and to get information about the current AppleTalk
environment for a given machine.

About AppleTalk Protocols Under Open Transport 273

274

CHAPTER 12

Introduction to AppleTalk

The AppleTalk service provider is able to provide information about zones by
implementing a subset of the Zone Information Protocol (ZIP). AppleTalk
service provider functions allow applications to query routers for information
about

s their own node’s zone name
» the names of all the zones on their local network
» the names of all the zones throughout the AppleTalk internet

ZIP is implemented primarily in AppleTalk internet routers, each of which
maintains a zone information table that maps the relationships between zone
names and network numbers for AppleTalk networks.

See “AppleTalk Service Providers” (page 293) for information about how to use
AppleTalk service providers.

Datagram Delivery Protocol (DDP)

The Datagram Delivery Protocol (DDP) is a connectionless transactionless
protocol that transfers data between sockets as discrete packets, or datagrams,
with each packet carrying its destination socket address. DDP attempts to
deliver any packet with a valid address but does not inform the sender when it
cannot deliver a packet, and it cannot request the sender to retransmit lost or
damaged packets. This level of service is referred to as best-effort delivery.
DDP does not include support to ensure that all sent packets are received at the
destination or that those packets that are received are in the correct order.
Higher-level protocols that use the services of DDP provide for reliable
delivery of data. DDP uses whichever link-access protocol the user selects; that
is, DDP can send its datagrams through any type of data link and transport
media, provided the network hardware is compatible with Open Transport.

For real-time applications, or applications such as games that do not require
reliable delivery of data, or diagnostic tools that retransmit at regular intervals
to estimate averages, DDP suffices. DDP involves less overhead and provides
faster performance than higher-level protocols.

See “Datagram Delivery Protocol (DDP)” (page 303) for information about how
to use DDP under Open Transport.

About AppleTalk Protocols Under Open Transport

CHAPTER 12

Introduction to AppleTalk

AppleTalk Data Stream Protocol (ADSP)

The AppleTalk Data Stream Protocol (ADSP) is a connection-oriented
transactionless protocol that supports sessions over which applications can
exchange full-duplex streams of data. In addition to ensuring reliable delivery
of data, ADSP provides a peer-to-peer connection; that is, both ends of the
connection can exert equal control over the exchange of data. ADSP also
provides an application with a means of sending expedited attention messages
to pass control information between the two communicating applications
without disrupting the main flow of data.

ADSP appears to its clients to maintain an open pipeline between the two
entities at either end. Either entity can write a stream of bytes to the pipeline or
read data bytes from the pipeline. However, because ADSP, like all other
higher-level AppleTalk protocols, is a client of DDP, the data is actually sent as
packets. This allows ADSP to correct transmission errors in a way that would
not be possible for a true data stream connection. Thus, ADSP retains many of
the advantages of a transaction-based protocol while providing to its clients a
connection-oriented full-duplex data stream.

See “AppleTalk Data Stream Protocol (ADSP)” (page 313) for information
about how to use ADSP under Open Transport.

AppleTalk Transaction Protocol (ATP)

The AppleTalk Transaction Protocol (ATP) is a connectionless transaction-
based protocol that allows two endpoints to execute request-and-response
transactions. Either ATP endpoint can request another ATP endpoint to
perform an action; the other ATP endpoint then carries out the action and
transmits a response reporting the outcome. ATP provides reliable delivery of
data by ensuring that data packets are delivered in the correct sequence and by
retransmitting any packets that are lost.

ATP is useful if your application sends small amounts of data and can tolerate
a minor degree of performance degradation. Games that are based on
request-and-response dialogs can make efficient use of ATP.

See “AppleTalk Transaction Protocol (ATP)” (page 325) for information about
how to use ATP under Open Transport.

About AppleTalk Protocols Under Open Transport 275

276

CHAPTER 12

Introduction to AppleTalk

Printer Access Protocol (PAP)

The Printer Access Protocol (PAP) is an asymmetrical connection-oriented
transactionless protocol that enables communication between client and server
endpoints, allowing multiple connections at both ends. PAP uses ATP packets
to transport the data once a connection is open to the server.

PAP is the protocol that ImageWriter and LaserWriter printers in the AppleTalk
environment use for direct printing—that is, when a workstation sends a print
job directly to a printer connected to the network instead of using a print
spooler. Open Transport PAP provides a single protocol implementation for all
AppleTalk printers that is integrated into the AppleTalk protocol stack.

See “Printer Access Protocol (PAP)” (page 335) for information about how to
use PAP under Open Transport.

About AppleTalk Protocols Under Open Transport

CHAPTER 13

AppleTalk Addressing

Contents

About AppleTalk Addressing 281

Using AppleTalk Addressing 281
Specifying a DDP Address 282
Specifying an NBP Address 283
Specifying a Combined DDP-NBP Address 286
Specifying and Using a Multinode Address 286
Registering Your Endpoint’s Name 287
Looking Up Names and Addresses 288
Manipulating an NBP Name 290

Contents

277

CHAPTER 13

278 Contents

CHAPTER 13

AppleTalk Addressing

This chapter describes how to specify an AppleTalk address to bind an
endpoint, to connect to an AppleTalk service or to make your endpoint visible
to other endpoints across an Open Transport AppleTalk network. Whenever
you want to communicate across the network, you need to be able to identify
your own local endpoint and the remote endpoint with which you want to
communicate. You can use a name, a network address, or a combination of the
two to identify the endpoints. Open Transport provides a specific address
format for each of these cases and several utility functions to initialize them.

In order for you to make the name of your AppleTalk endpoint visible to other
applications on a network, you must register its name. There are various ways
of doing this, but in either case, Open Transport uses the Name Binding
Protocol (NBP) to associate the endpoint’s name with its network address.
Open Transport provides several utility functions and a specialized data
structure, the NBP entity, for more convenient manipulation of NBP names.

This chapter introduces endpoint and mapper functions that you can use to
register a name, to look up name and address information, and to browse for
all protocol addresses associated with a name or name pattern. For complete
reference information, see “AppleTalk Addressing Reference” (page 721).

You should read this chapter if your application uses an AppleTalk networking
protocol and you need to

specify a local or remote address
= register and delete endpoints as network-visible entities

= look up other endpoint names, using wildcards as needed to match
partial names

= initialize address structures
= get and set other endpoint name information

Some of these tasks are available through endpoint and mapper functions,
which are described in the chapters “Endpoints”(page 99) and

“Mappers” (page 150) in this book. You should be familiar with the material in
those chapters before you read this chapter.

279

CHAPTER 13

AppleTalk Addressing

About AppleTalk Addressing

Because AppleTalk assigns node IDs dynamically, a node’s address on an
AppleTalk network can change from time to time. The Name-Binding Protocol
(NBP) provides a mapping of names (like those in the Chooser) to network
addresses in such a way that if the node ID changes, you can continue to
reliably identify your application. An endpoint’s name is its NBP name, also
sometimes called its entity name. You can access information about an
endpoint’s address through an NBP mapper provider, which you can also use
to locate other endpoints on the network. Because AppleTalk supports dynamic
name registration, NBP mapper providers can use the Open Transport name
registration and deletion functions as well as the other mapper functions.

When you bind an AppleTalk endpoint, Open Transport associates the
endpoint with an address, which can be in one of these formats:

» The DDP address supplies the network address of an endpoint.
» The NBP address supplies the user-friendly NBP name.

s The combined DDP-NBP address combines the endpoint’s network address
and its NBP name.

» The multinode address supplies the physical network address of a
multinode endpoint.

The following several sections discuss each address format in more detail.

Using AppleTalk Addressing

280

This section explains how you use AppleTalk addressing formats to identify an
endpoint and how you use various Open Transport AppleTalk functions to

» initialize an address
= compare two DDP addresses
» register the name of your endpoint

= look up names and addresses to find a specific applicaiton or user name

About AppleTalk Addressing

CHAPTER 13

AppleTalk Addressing

= manipulate NBP names by using NBP entity structures
= initialize NBP entities
= set and extract the name, type, or zone parts of an NBP name

= unregister an NBP name prior to closing an AppleTalk endpoint

Specifying a DDP Address

The primary address format is the DDP address format, which is the most
commonly used. It identifies the network address for your endpoint. Data
transmission is fastest for those functions that use this address format because
no lookup or conversion is necessary for Open Transport to find the specified
location. Functions that use the NBP address format, for example, have to look
up the mapping of the NBP name to its address, and this extra step slows down
communications.

Functions such as 0TBind, 0TGetProtAddress, and 0TResolveAddress return an
address in this format. DDP addresses use the DDP address structure (defined
by the DDPAddress data type), which includes the following fields:

Field Meaning

Address type The type of address format, in this case AF_ATALK_DDP.
Network number The endpoint’s network.

Node ID The endpoint’s node.

Socket number The endpoint’s socket.

DDP type A DDP endpoint’s type of protocol.

Permissible values for these fields are given in the section “The DDP Address
Structure” (page 722). Since the DDP type field is ignored by all protocols other
than DDP, set this field to 0 unless you plan to use the DDP protocol. For more
information on DDP types, see the chapter “Datagram Delivery Protocol
(DDP)” (page 305) in this book.

The combination of the network number, the node ID, and the socket number
creates a unique identifier for any socket in the AppleTalk internet so that
AppleTalk’s delivery protocol, DDP, can deliver packets to the correct
destination. When you bind an AppleTalk endpoint, you typically specify a
network number of 0 and a node ID of 0. This allows the network layer to
choose an appropriate address.

Using AppleTalk Addressing 281

CHAPTER 13

AppleTalk Addressing

In using Open Transport functions to send or receive data, you use a TNetbuf
structure to point to a buffer that holds data for a specific Open Transport
function. Listing 13-1 shows how you set up the fields of a DDP address and
how you set up a TNetbuf structure for it.

Listing 13-1 Setting up a DDP Address

282

void DoCreateDDPAddress(TNetbuf *theNetBuf, long net, short node,
short socket)

DDPAddress *ddpAddress;

/* Allocate memory for the DDPAddress structure. */
ddpAddress = (DDPAddress*) OTAllocMem(sizeof(DDPAddress));

/* Set up a DDPAddress structure. */
ddpAddress->fAddressType

AF_ATALK_DDP;

ddpAddress->fNetwork = net;
ddpAddress->fNode = node;
ddpAddress->fSocket = socket;
ddpAddress->fDDPType =0;
ddpAddress->fPad =0;

/* Set the TNetbuf to point to it. */
theNetbuf->Ten = sizeof(DDPAddress);
theNetbuf->maxlen = sizeof(DDPAddress);
theNetbuf->buf = (void*)ddpAddress;

Specifying an NBP Address

You can use the NBP address format to identify an endpoint when you know
the user-defined name of an endpoint but not its network address. Applications
that run on an Open Transport AppleTalk network can display these user-
friendly NBP names to users while using the DDP addresses internally to
locate and address entities. See the section “Looking Up Names and
Addresses” (page 287) for more information on how Open Transport translates
an NBP name into a network address.

Using AppleTalk Addressing

CHAPTER 13

AppleTalk Addressing

The NBP address format is defined by the NBP address structure, which
includes the following fields:

Field Meaning
Address type The type of address format, in this case AF_ATALK_NBP.
NBP name buffer A text string giving the endpoint’s NBP name.

The values for these fields are discussed more fully in the section “The NBP
Address Structure” (page 723).

An NBP name consists of these three fields: name, type, and zone. The value
for each of these fields is an alphanumeric string of up to 32 characters. The
NBP name is not case sensitive. When you bind an endpoint with an NBP
address, you must specify a value for the name and type fields, but you don’t
have to specify the zone. The NBP name string is neither a C nor a Pascal
string; its length is determined by the TNetBuf structure in which it’s enclosed.
It has the form

name:type@zone

The name field typically identifies the name of the entity on the network; for
example, the name of a file server or printer. Another example might be the use
of the name in personal file sharing, where the name field is used to register the
computer name. Clients can use that name to identify the computer they’re
logging into.

The type field generally identifies the type of service that the entity provides,
for example, “Mailbox” for an electronic mailbox on a server. Applications
offering similar services can find one another and identify potential partners by
looking up only those addresses with a specific type. You could request the
mapper provider to return the names of all of the registered entities of a certain
type, for example, all file servers or laser printers.

The zone field identifies the zone within the network to which the node
belongs. To indicate the current zone (or no zone, as in the case of a simple
network configuration not divided into zones), you can leave this field blank
(the preferred method) or you can specify an asterisk (*). To Open Transport,
these two methods are equivalent; thus, the strings “MyName:MBOX@*” and
“MyName:MBOX” identify the same zone. There are several functions for
getting zone information; these are described in the chapter “AppleTalk Service
Providers” (page 295) in this book.

Using AppleTalk Addressing 283

CHAPTER 13

AppleTalk Addressing

You may not use the AppleTalk NBP wildcard characters as part of the NBP
name, type, or zone. When you use an NBP structure to define an NBP address
format, you copy the string specifying the NBP name into the NBP name buffer.

You can use the backslash (\) character in an NBP name to include the colon (:),
at sign (@), and the backslash (\) characters in the name. For example, if you
wanted to use the name “My \Machine,” the type “My:Server” and the zone
“My@Zone,” you would express it in the following way:

My\\Machine:My\:Server@My\@Zone

The maximum size of the NBP name buffer is currently defined to be 105 bytes.
This permits a string whose name, type, and zone fields each contain the
maximum 32 characters, plus 2 bytes for the separator characters (: and @) and
7 bytes for escape characters—that is, combinations of backslash-colon (\:),
backslash-at sign (\@), or backslash-backslash (\\).

If you specify an NBP address structure when binding an endpoint, Open
Transport assigns a dynamic socket number to the DDP address of the
endpoint (because the NBP address cannot supply any socket number) and
registers the NBP name you specified for your application.

Listing 13-2 shows how you set up the fields of an NBP address. The
statements used to set the size of the 1en field of the TNetbuf structure simply
add the size of the two fields of the NBP address structure: the size of the
constant name plus the length of the string equals the length of data stored in
the buffer.

Listing 13-2 Setting up an NBP address

284

void DoCreateNBPAddress(TNetbuf *theNetBuf, char* nbpName)
{

NBPAddress *nbpAddress;

short nbpSize;

/* Allocate memory for an NBP structure. */
nbpSize = sizeof(0TAddressType) + 0TStrLength(nbpName);
nbpAddress = (NBPAddress*) 0TAllocMem(nbpSize);

/* Set the TNetbuf to point to it. */

Using AppleTalk Addressing

CHAPTER 13

AppleTalk Addressing

theNetbuf->1en
theNetbuf->buf

OTInitNBPAddress(nbpAddress, nbpName);
(void*)nbpAddress;

Specifying a Combined DDP-NBP Address

You use the combined DDP-NBP address format (AF_ATALK_DDPNBP) when you
want to bind an endpoint with a specific NBP name to a specific socket. As the
name suggests, this format combines the DDP address and the NBP address. Its
data structure begins, as do all of the address structures, with a constant
defining which address format to use; then it includes all the standard DDP
address fields and ends with the standard NBP name buffer field. See the
previous two subsections, “Specifying a DDP Address” and “Specifying an
NBP Address,” and the section “The Combined DDP-NBP Address Structure”
(page 724) for discussion of these fields, and also refer to Inside AppleTalk,
second edition.

Specifying and Using a Multinode Address

You use the multinode address format (AF_ATALK_MNODE) for multinode
applications that want to bind several multinode endpoints to the same socket
using different node IDs for each. The multinode address format is identical to
the DDP address format except that you use a different constant to identify it.
See the section “Specifying a DDP Address” (page 281) and the section “The
Multinode Address Structure” (page 726) for discussion of these fields.

The significant fields for the multinode address format are the network number
and node ID. DDP ignores the other fields. You can request specific values for
the network number and node ID when binding an endpoint, although the
address returned by the 0TBind function contains the actual network and node
values that the endpoint has been bound to.

DDP delivers any packet addressed to the bound multinode address whether
or not a specific socket or DDP type is specified for the destination address of
the packet. Applications that have opened multinode endpoints must perform
their own filtering if the socket or DDP type values are important.

Using AppleTalk Addressing 285

286

CHAPTER 13

AppleTalk Addressing

Registering Your Endpoint’s Name

In order for you to make the name of your AppleTalk endpoint visible to other
applications on a network, you have to register its name. There are two ways to
do this. The easiest way is for you to simply use the 0TBind function to bind
your endpoint with the NBP address format or the combined DDP-NBP
address format. If you use the NBP address format, during the binding process
Open Tranport registers your endpoint’s name and dynamically assigns a
physical socket to your endpoint. If you use the combined DDP-NBP address
format, you can specify the socket you want to bind the endpoint to. The
0TBind function is discussed in the chapter “Endpoints” (page 99) in this book.

The other way to register an endpoint’s name involves several additional steps.
You have to first bind your endpoint to a DDP address, open an NBP mapper
provider, use the Open Transport name-registration function, 0TRegisterName,
as a separate step, and then close the NBP mapper provider. You must use this
more complex method if you want to register more than one endpoint on the
same socket.

In either case, Open Transport uses NBP to associate the endpoint’s name with
its physical address. Once your endpoint is registered, it is a network-visible
entity that other applications can locate.

When you register a name with the 0TRegisterName function, the function
returns a unique identifier for the registered name. If you later want to delete
the name, you can use this identifier to delete it with the 0TDeleteNameByID
function. This method is sometimes more convenient than the alternative
0TDeleteName function. The 0TRegisterName, 0TDeleteName, and
0TDeleteNameByID functions are discussed in the chapter “Endpoints” in this
book. Table 13-1 provides a summary of the Open Transport name-registration
functions.

Using AppleTalk Addressing

CHAPTER 13

AppleTalk Addressing

Table 13-1 Open Transport name-registration functions

Function Provider Use

0TBind Endpoint Registers the specified NBP name when
you bind with the NBP address or the
combined DDP-NBP address formats.

0TRegisterName Mapper Registers the specified name.

OTDeleteName Mapper Removes a name that was previously
registered with 0TRegisterName.

0TDeleteNameByID Mapper Given ints identifier , removes a name
that was previously registered with
OTRegisterName.

Looking Up Names and Addresses

To communicate with an endpoint, Open Transport needs its DDP address.
There are endpoint and mapper functions you can use to obtain this address,
two of which allow you to specify the endpoint’s NBP name. In these instances,
Open Transport performs a name lookup that resolves the NBP name into a
DDP address that it can use to locate the endpoint you want. Table 13-2
provides a summary of the Open Transport functions that create or return
endpoint name and address information.

You can improve performance in certain circumstances if you use the endpoint
0TResolveAddress function instead of the mapper 0TLookUpName function.
Calling 0TResolveAddress resolves the name into a DDP address by using
information that is maintained in the current node whereas the 0TLookUpName
function has to go out over the network to look up its information. For
example, if you are going to use an NBP address structure repeatedly to specify
a remote endpoint in a connectionless or transaction-based service, you can
speed up your processing if you first use the 0TResolveAddress function to
resolve the NBP address into a DDP address and then subsequently use only
that DDP address to specify the remote endpoint. Otherwise, an NBP lookup
could occur on the network for every packet and slow down communications.

Using AppleTalk Addressing 287

288

CHAPTER 13

AppleTalk Addressing

Table 13-2 Open Transport name and address functions

Function Provider Use

0TGetProtAddress Endpoint Obtains your endpoint’s DDP address.
For connection-oriented endpoints that
are connected to another endpoint, it
also obtains the remote endpoint’s DDP
address.

0TResolveAddress Endpoint Obtains the DDP address that
corresponds to the specified NBP name.

0TLookUpName Mapper Obtains the DDP address for the
specified name or a list of addresses for
the specified NBP name pattern.

You can also use this function to verify
that a specified name is still available on
the network and that it is associated
with a specified address.

OTATalkGetInfo AppleTal Obtains addressing information
k service about the current environment of
an AppleTalk node.

When you call the 0TLookUpName function to obtain the DDP address associated
with an NBP name, you can specify a name pattern rather than a complete
name, by using wildcard operators for the variable parts of the name. Table
13-3 shows the wildcard operators that you can use to specify a name pattern
for a name specified as a partial name.

Depending on how you structure the name pattern with wildcards, the
0TLookUpName function can return a list of names if more than one name
matches the specified pattern. For example, if you want to retrieve the names
and addresses of all the applications defined with a given type, such as
mailboxes, in the same zone as the one in which your process is running, you
can set the name field to the equal sign (=), set the type field to “Mailbox,” and
leave the zone field blank. The 0TLookUpName function returns the NBP names
and DDP addresses of all mailboxes in that zone.

Using AppleTalk Addressing

CHAPTER 13

AppleTalk Addressing

Table 13-3 Wildcard operators

Character Meaning

= All possible values. You can use the equal sign (=) alone in the
name or type field.

= Any or no characters in this position. You can use the double
tilde (=) to obtain matches for name or type fields. For example,
“pa=l" matches “pal,” “paul,” and “paper ball.” You can use
only one double tilde in any string. If you use the double tilde
alone, it has the same meaning as the equal sign (=). Press
Option-X to type the double tilde character (=) on a Macintosh
keyboard.

Your local zone. You can leave this blank (preferred method)
or use the asterisk (*) to indicate the zone to which this
node belongs.

Manipulating an NBP Name

If you need to store or manipulate the name, type, or zone part of an NBP
name separately, you need to use an NBP entity structure, which is a data
structure that Open Transport provides for this purpose. Open Transport also
provides several utility functions to transfer data between NBP entities and
NBP names.

The NBP entity structure holds an NBP name in the form name:type@zone, with
each part containing the maximum 32 characters plus a length byte, for a total
possible length of 99 bytes. The NBP entity itself does not contain escape
characters, but the NBP entity extraction functions insert a backslash (\) in
front of any backslash, colon (:), or at sign (@) they find in an NBP name so that
mapper functions can use a correctly formatted NBP name.

You can initialize an NBP entity and then load it with the name, type, and zone
of an NBP name individually, by using 0TSetNBPName, 0TSetNBPType, and
0TSetNBPZone functions, or you can load an NBP entity with an entire NBP
address at one time with the 0TSetNBPEntityFromAddress function. Once you
have loaded an NBP entity, you can find out how much buffer space it actually
uses for the NBP name it holds with the 0TGetNBPEntityLengthAsAddress
function. You can then extract each individual NBP name part one at a time by
using the 0TExtractNBPName, 0TExtractNBPType, and 0TExtractNBPZone functions,

Using AppleTalk Addressing 289

CHAPTER 13

AppleTalk Addressing

or you can copy the entire NBP entity into an NBP address structure wirhthe
0TSetAddressFromNBPEntity function.

When you no longer need a specific NBP name to be associated with an
endpoint, you can use the 0TDeleteName function or the 0TDeleteNameByID
function to unregister the name.

290 Using AppleTalk Addressing

CHAPTETR 14

AppleTalk Service Providers

Contents

About AppleTalk Service Providers 295
Using AppleTalk Service Providers 296
Creating AppleTalk Service Providers 297
Working With AppleTalk Zones 297
Getting the Name of an Application’s Zone 298
Getting a List of Zone Names 299
Getting Information About the Current AppleTalk Environment 300

Contents 291

CHAPTER 14

AppleTalk Service Providers

The AppleTalk service provider is an Open Transport provider that gives you
access to zone and node information functions that are specific to the
AppleTalk protocol family. AppleTalk networks use zones to define logical
groups of users, and there are several Open Transport functions you can use to
determine your endpoint’s zone and the zone in your endpoint’s network.
Open Transport also provides a function that can supply information about
your endpoint’s AppleTalk environment. To use these functions, you must
create a specialized Open Transport provider: an AppleTalk service provider.

The AppleTalk service provider is able to provide information about zones by
implementing a subset of the Zone Information Protocol (ZIP), which maps
network numbers to zone names for all networks belonging to an AppleTalk
internet.

This chapter describes the AppleTalk service provider functions. You should
read this chapter if you want to obtain

= the zone name for the node on which your application is running

= the names of the zones for the local network to which your application’s
node is connected

= the names of all the zones that exist throughout the AppleTalk internet to
which your local network belongs

= information about the AppleTalk environment for a given node, including
the address of a local router

For complete information about the functions and data structures introduced in
this chapter, see “AppleTalk Service Provider Reference” (page 745).

For an overview of the AppleTalk service provider and how it fits within the
AppleTalk protocol stack, read the chapter “Introduction to

AppleTalk” (page 264). Zones are part of the NBP name used in the NBP
address format; for more information on this format, read the chapter
“AppleTalk Addressing” (page 280). For a detailed description of the ZIP
specification, see Inside AppleTalk, second edition.

293

CHAPTER 14

AppleTalk Service Providers

About AppleTalk Service Providers

294

The AppleTalk service provider gives applications access to information and
services that are specific to the AppleTalk protocol family. For example, you can
obtain zone names and information about the AppleTalk environment for a
given machine. The portion of ZIP implemented by AppleTalk service provider
functions can query routers for information about a client’s own node, the
names of all the zones on the node’s local network, or the names of all the
zones throughout the AppleTalk internet. An AppleTalk router implements the
full set of ZIP functions, maintaining a complete mapping of network numbers
and zone names in a zone information table that it periodically updates.

The mapping observes the following rules:
= Every node on a network belongs to only one zone.

» A nonextended LocalTalk network contains only one zone; all nodes in that
network belong to that zone.

» Asingle zone can include nodes that belong to different networks.

» Each AppleTalk extended network has associated with it a list of the zones
to which its nodes can belong.

Figure 14-1 shows how, in providing access to the Zone Information Protocol
(ZIP), AppleTalk service providers encompass underlying delivery protocols
and link-access STREAMS modules. Because some AppleTalk service provider
functions use AppleTalk Transaction Protocol (ATP) packets and DDP, an
AppleTalk service provider is considered a client of both ATP and the
Datagram Delivery Protocol (DDP).

About AppleTalk Service Providers

CHAPTER 14

AppleTalk Service Providers

Figure 14-1 AppleTalk service providers and their underlying delivery mechanism

I
3

DDP

g

Standard link-access Streams modules

Using AppleTalk Service Providers

This section explains how you open an AppleTalk service provider and how
you use its functions to obtain

= the name of the zone for your application’s node
= the names of the zones in your local network or AppleTalk internet
= information about your current AppleTalk environment

You can use AppleTalk service provider functions to get the name of your
node’s zone. If you are running on a node that belongs to an extended network,
you can call an AppleTalk service provider function to get a list of all the zone
names associated with that network. For example, the AppleTalk control panel
calls the 0TATalkGetLocalZones function to provide the user with a list of local
zones.

You can also use AppleTalk service provider functions in conjunction with
mapper functions (described in the chapter “Mappers”(page 150). For example,
you can use an AppleTalk service provider to look up all the zones on the

Using AppleTalk Service Providers 295

296

CHAPTER 14

AppleTalk Service Providers

network, then use the mapper function 0TLookUpName to look up the names in
each zone.

Creating AppleTalk Service Providers

In order to use the zone and network information functions, you must open an
AppleTalk service provider. As with other Open Transport providers, you can
open these providers synchronously or asynchronously, and in many ways
they behave similarly to endpoint and mapper providers. For example, you
open an AppleTalk service provider by calling either the
0TOpenAppleTalkServices function or the 0TAsyncOpenAppleTalkServices
function, both of which return an AppleTalk service provider reference to
identify the provider you just opened. You use this reference in AppleTalk
service provider functions just as you use an endpoint reference in most
endpoint provider functions. If you open more than one AppleTalk service
provider, the AppleTalk service provider reference lets you to distinguish one
provider from another.

If you open the AppleTalk service provider asynchronously, you need to
specify a notifier function that the provider can use to send you completion
events and other function-specific information. This notifier API is the same as
the one you need to use for asynchronous endpoints.

When you are done using the functions provided by the AppleTalk service
provider, you must explicitly close the provider with the generic Open
Transport function, 0TCloseProvider, to release the memory it uses. The
0TCloseProvider function is described in the chapter “Providers” (page 61).

Working With AppleTalk Zones

The NBP name used in the NBP address format has three parts, one of which is
the zone name. A zone is a logical grouping of nodes within an AppleTalk
network. You do not specify the zone when you bind an endpoint; you obtain
this value from the system.

Note that the functions, 0TATalkGetMyZone, 0TATalkGetlLocalZones, and
0TATalkGetZonelist, return data to you using the TNetbuf structure. This means
that you have to define your buffer size in the max1en field of the TNetbuf
structure.

An AppleTalk zone name is stored as a Pascal string that contains a maximum
of 32 characters. When you add a length byte, you have a string that can have a

Using AppleTalk Service Providers

CHAPTER 14

AppleTalk Service Providers

maximum of 33 bytes. You need to calculate the amount of buffer space you
need based on this maximum string size.

The 0TATalkGetMyZone function only returns one zone name, so an appropriate
buffer size would be 33 bytes. The 0TATalkGetLocalZones function, however,
returns all the zone names in an extended network, which can hold up to 254
zones, so a maximum buffer size for this function would be 8382 bytes. Because
zone names often use less than 32 characters and AppleTalk service providers
don’t pad short names, 6 KB is likely to be a safe value for this buffer’s size.

A much larger buffer would be needed for the 0TATalkGetZonelList function,
which returns all the zones in all the networks in your AppleTalk internet. You
can end up with up to 64 KB of data. To keep the buffer as small and efficient as
possible, you can set up a large buffer, test for the k0TBuf ferOverflowErr error,
and then increase the size of the buffer and reissue the call if this error is
returned.

For more information about using zones in NBP names and addresses, see
the chapters “Introduction to AppleTalk”(page 263) and “AppleTalk
Addressing” (page 279) .

Getting the Name of an Application’s Zone

You can get the name of your application’s zone by calling the
0TATalkGetMyZone function. If you call this function asynchronously, the event
T_GETMYZONECOMPLETE signals the completion of the function, and your notifier’s
cookie parameter points to the zone name with the zone parameter.

Listing 14-1 shows the synchronous application-defined DoGetMyZone function,
which opens an AppleTalk service provider and calls the 0TATalkGetMyZone
function. Note that the length of the buffer, a TNetbuf structure, is set to 0. Open
Transport adjusts it to the actual length of the zone name when the function
returns. Note also that the function adds a NULL character to the zone name.
This is optional, but adding the NULL character turns the string into a C string
and makes it easier to handle if you have further use for this string.

Another item to note is that the listing uses the recommended configuration
string, the constant kDefaultAppleTalkServicesPath. Open Transport
recommends using this string, not the kZIPName constant.

Using AppleTalk Service Providers 297

CHAPTER 14

AppleTalk Service Providers

Listing 14-1 Using the DoGetMyZone function synchronously

298

0SStatus DoGetMyZone (char* zoneName)
{

0SStatus result;

ATSvcRef svcRef;

TNetbuf zoneNetbuf;

svcRef = 0TOpenAppleTalkServices
(kDefaultAppleTalkServicesPath, 0, &result);
if (result == nokrr)
{
zoneNetbuf.maxlen = 33;
zoneNetbuf.len = 0;
zoneNetbuf.buf = zoneName;
result = 0TATalkGetMyZone(svcRef, &zoneNetbuf);
zoneName[zoneNetBuf.len] = "\0';
0TCloseProvider(svcRef);
}

return result;

Getting a List of Zone Names

If you are on an AppleTalk extended network, you can get a list of the names of
all the zones in your local network by calling the 0TATalkGetlLocalZones
function. If you are on a nonextended network, your network is all on the same
zone, and this function returns the name of the zone, which is the same result
as you would get from using the 0TATalkGetMyZone function.

If you call the 0TATalkGetlLocalZones function asynchronously, the event
T_GETLOCALZONESCOMPLETE signals the completion of the function, and your
notifier’s cookie parameter points to a list of zone names with the zones
parameter.

If you are on a network that is part of an AppleTalk internet, you can also use
the 0TATalkGetZonelList function to obtain a list of all the zones in the
AppleTalk internet to which your node’s network belongs. As with the
0TATalkGetlLocalZones function, if you call the 0TATalkGetZonelist function
asynchronously, Open Transport sends your notifier a completion event, in this
case the T_GETZONELISTCOMPLETE event, to signal the completion of the function,

Using AppleTalk Service Providers

CHAPTER 14

AppleTalk Service Providers

and your notifier’s cookie parameter points to a list of zone names with the
zones parameter.

It is your responsibility to allocate a buffer that is large enough to hold the list
of zone names returned. See the section “Working With AppleTalk Zones”
(page 296) for more information about buffer sizes.

Getting Information About the Current AppleTalk Environment

You can use the function 0TATalkGetInfo to access an AppleTalk information
structure (of type AppleTalkInfo) that contains information about the
AppleTalk environment for the node on which your application is running.
This information can be useful if you are configuring a network or checking
that a network has been configured correctly.

If your application’s network is extended or nonextended, this function
provides your application’s network address and the address of a local router.
If your application’s network is extended, this function also sets a flag
indicating that it's an extended network and provides the current network
range for the extended network to which your node belongs.

In either case, this function can also set two other flags: one that indicates that
there is a router on the same network, and one that indicates that the network
only has one zone.

If you call this function synchronously, the AppleTalk service provider uses the
info parameter to provide information about your current network
environment. If you call this function asynchronously, the event
T_GETATALKINFOCOMPLETE signals the completion of the function, and your
notifier’s cookie parameter points to the AppleTalk environment information
with the info parameter.

If the node is multihoming—that is, if multiple network numbers and node
numbers are associated with the same node—the 0TATalkGetInfo function
returns information about the node whose network number and node ID are
selected in the AppleTalk control panel.

Using AppleTalk Service Providers 299

CHAPTER 14

AppleTalk Service Providers

300 Using AppleTalk Service Providers

CHAPTER 15

Datagram Delivery Protocol

(DDP)

Contents

About DDP 305
Using DDP 306
Binding a DDP Endpoint 306
Using the DDP Type Field to Filter Packet Delivery
Using the Self-Send and Checksum Options 308
Using Echo Packets 309
Working With Multinodes 310
The DDP Source Address Option 311
Using General Open Transport Functions With DDP

Contents

307

311

301

CHAPTER 15

Datagram Delivery Protocol (DDP)

This chapter describes the programming interface to Open Transport’s
implementation of the Datagram Delivery Protocol (DDP). It explains how you
can use DDP to send and receive data across an AppleTalk internet. DDP is a
connectionless transactionless service that you use to transmit data in discrete
packets, each carrying its own addressing information. DDP is well suited to
applications that do not require reliable delivery of data and that do not want
to incur the additional processing associated with setting up and breaking
down a connection. Because DDP is connectionless and does not include
reliability services, it’s faster than the higher-level protocols that add these
services. Applications such as games that can tolerate packet loss are good
candidates for the use of DDP.

A series of DDP packets transmitted over an AppleTalk internet from one node
to another might incur some packet loss, for example, as a result of collisions. If
your application requires a reliable service, and you do not want to implement
it yourself, you should consider using a higher-level protocol such as the
AppleTalk Data Stream Protocol (ADSP) or the AppleTalk Transaction Protocol
(ATP). These protocols protect against packet loss and ensure reliability by
using positive acknowledgment with mechanisms for retransmitting packets.

This chapter explains how you
= open and bind a DDP endpoint
= send and receive data using DDP

= set checksum options to verify that a packet has not been corrupted during
transmission

= use echo packets to measure network performance
= use multinodes

This chapter begins with a description of DDP and the services that it provides
under Open Transport. The section “Using General Open Transport Functions
With DDP”(page 310) then gives detailed information about how DDP client
applications use the endpoint functions that Open Transport provides for
connectionless transactionless protocols. For a more detailed explanation of
endpoints and their functions, read the chapter “Endpoint” (page 83) in this
book.

For complete reference information about DDP options, see “DDP Reference”
(page 756). For an overview of DDP and how it fits within the AppleTalk
protocol stack, read the chapter “Introduction to AppleTalk” (page 263), which
also introduces and defines some of the terminology used in this chapter. For

303

CHAPTER 15

Datagram Delivery Protocol (DDP)

more information about the AppleTalk address formats, see the chapter
“AppleTalk Addressing”(page 279). For a complete explanation of the DDP
specification, see Inside AppleTalk, second edition.

About DDP

The protocol implementations at the physical and data-link layers of the
AppleTalk protocol stack provide node-to-node delivery of data on an
AppleTalk internet. DDP is a client of the link-access STREAMS modules, and
it extends the node-to-node delivery service provided at the data-link layer by
delivering data to a specific socket on a node. A socket number specifies a
logical entity on a node and forms part of an AppleTalk endpoint address.

DDP is central to the process of sending and receiving data from endpoint to
endpoint across an AppleTalk internet. Regardless of which data link is being
used and which (if any) higher-level protocols are providing additional
processing, all AppleTalk data is carried in the form of DDP packets, datagrams.
A packet consists of a header followed by data. DDP delivers data from one
endpoint to another by forming the packet header, which contains the
destination address, and by passing the packet to the appropriate data link.

Figure 15-1 shows how the DDP endpoint provider encompasses its
underlying link-access STREAMS modules and its physical ports. For packets
obtained from the data-link layer, DDP provides a best-effort delivery service.

Figure 15-1 The DDP endpoint provider's underlying delivery mechanism

DDP

g

Standard link-access STREAMS modules

g & § 9

LocalTalk Ethernet Token ring FDDI

304 About DDP

CHAPTER 15

Datagram Delivery Protocol (DDP)

Using DDP

To explicitly use DDP, you open and bind a DDP endpoint. You can then use
that endpoint to send or receive data in discrete packets. For outgoing packets,
DDP forms the packet header and hands the packet to the appropriate data
link. For incoming packets, DDP examines the packet header and attempts to
deliver any packet to the specified endpoint as long as the packet meets the
following criteria:

s The destination address is valid.
s The default type of the packet matches that of the receiving endpoint.

s The length of the packet matches the length specified in the packet header
and does not exceed the maximum for a DDP packet.

s The checksums match (if checksumming is enabled).

If any of these conditions is not satisfied, DDP discards the packet without
notifying either the sender or the receiver of the packet. In addition, DDP has
no provision for requesting the sender to retransmit a lost or damaged packet.

Binding a DDP Endpoint

As with any endpoint, before you can use it to send or receive data, you must
bind it to a physical address. The 0TBind function takes three parameters: one
that specifies the endpoint to be bound, one that requests a specific address,
and one that returns the actual address to which Open Transport bound the
endpoint.

When binding a DDP endpoint, you can request a particular DDP address,
including a static socket address. You can also choose to only specify a DDP
type for the endpoint, in which case you set the other fields of the DDP address
structure to 0 and allow DDP to dynamically assign a socket. The chapter
“AppleTalk Addressing” (page 279) describes the different address formats you
can use to specify an endpoint address.

When you bind a DDP endpoint, there are a few considerations to bear in
mind. For example, you do not have to specify the endpoint’s socket and the
DDP type, but DDP behaves differently depending on whether you specify
them or not. Here are the points to remember:

Using DDP 305

306

CHAPTER 15

Datagram Delivery Protocol (DDP)

» If you bind without specifying a socket, DDP uses a dynamically assigned
one; if you specify a socket, DDP tries to use it (a statically assigned socket).

= If you bind by specifying a DDP type of 0 to a specific socket, Open
Transport sets the endpoint’s DDP type to a value of 11. This gives you
exclusive access to the socket, which means that no other endpoint can bind
to it.

» If you bind using a specific DDP type, Open Transport sets the endpoint’s
DDP type to that value. If you bind another DDP endpoint to that socket,
you must give it a different type.

» If you bind with a combined DDP-NBP address, Open Transport uses the
DDP part of the address as described in the two preceding bullets. If the
bind succeeds, Open Transport registers the NBP name on the endpoint’s
socket.

» If you bind with an NBP address only, there is no socket number in that
form of address, so DDP uses a dynamically assigned socket. If the bind
succeeds, DDP registers the endpoint’s NBP name on that socket. The
endpoint has no default DDP type, so Open Transport sets the DDP type to a
value of 11. This has the same effect as described in the earlier bullets.

Using the DDP Type Field to Filter Packet Delivery

You can choose to filter your packet delivery service by using the DDP type
field in the endpoint’s DDP address structure. The DDP type field is ignored by
all protocols other than DDP, so you do not specify the DDP type when passing
an address to an AppleTalk endpoint for all protocol layers above DDP.

If you specify a valid nonzero DDP type value when you bind an endpoint,
Open Transport uses that value as the default DDP type for that endpoint,
using it on all packets sent from that endpoint. If you do not specify a DDP
type value or use a value of 0, Open Transport uses a DDP type value of 11 as
the default DDP type for that endpoint. If you specify a different DDP type
value for any individual packet that you send, Open Transport overrides the
endpoint’s default DDP type and uses the packet’s DDP type.

When receiving incoming packets, a specified DDP type works as a filter: you
only receive packets of that one type. If, however, you bind an endpoint
without a DDP type or with a DDP type of 0, you receive all incoming packets.

Using DDP

CHAPTER 15

Datagram Delivery Protocol (DDP)

Using the DDP type field when you bind a DDP endpoint has special
significance for both sending and receiving packets, as shown in Table 15-1.

Table 15-1 Effects of using the DDP type field

Task
Send

Receive

A nonzero DDP type No DDP type or a DDP type

specified at bind of 0 specified at bind

Open Transport uses this DDP type Open Transport uses a DDP type of
for outgoing packets unless you 11 for outgoing packets unless you
specify a different DDP type on a per specify a different DDP type on a per
packet basis. packet basis.

You only receive incoming packets You receive all incoming packets.

for this DDP type.

Using the Self-Send and Checksum Options

DDP has two options you can use to control the behavior of DDP endpoints:
the OPT_SELFSEND and the 0PT_CHECKSUM options.

You can use the 0PT_SELFSEND option with DDP to turn self-sending on, which
means that when you send a broadcast packet, the packet will also be passed to
the node itself for processing. To turn this on, you set this option with a value
of 1. By default this option is turned on.

You can use the 0PT_CHECKSUM option when sending packets to enable the
calculation of checksums. A value is calculated when the packet is sent. When
the packet is received, DDP calculates a checksum for the packet. If the
calculated checksum does not match the packet’s checksum, DDP assumes the
packet has been corrupted and discards the packet without notifying its sender
or receiver.

You can specify the 0PT_CHECKSUM option on every call to 0TSndUData and control
the use of checksums on a per packet basis, or you can use the
0TOptionManagement function to enable or disable checksums for all outgoing
packets. The checksum option 0PT_CHECKSUM can have one of two values: T_NO,
which disables checksums, or T_YES, which enables it. By default this option is
turned off.

For more information about using options, refer to the chapter “Option
Management” (page 165).

Using DDP 307

308

CHAPTER 15

Datagram Delivery Protocol (DDP)

Using Echo Packets

You can use the AppleTalk Echo Protocol (AEP), a client of DDP, to measure the
performance of an AppleTalk network or to test for the presence of a given
node. Knowing the approximate speed at which an AppleTalk internet delivers
packets is helpful in tuning the behavior of an application that uses a
higher-level AppleTalk protocol, such as ATP and ADSP.

AEP is implemented in each node as a DDP client process referred to as the
AEP Echoer. To use the AEP Echoer, you use the 0TSndUData function to send a
packet, called the echo request packet, to the target node, and you use the
0TRcvUData function to receive a packet in response, called the echo reply
packet.

AEP uses the statically assigned socket number 4, known as the echoer socket,
to listen for echo packets. Whenever the endpoint associated with this socket
receives a packet, AEP examines the packet’s DDP type. A value of 4 identifies
it as an AEP packet, and AEP then examines the first byte of the packet’s data
portion. A value of 1 identifies the packet as an echo request packet (sent out
from your endpoint), and a value of 2 identifies the packet as an echo reply
packet (returned to your endpoint from the remote node).

If the packet is an echo request packet, AEP changes this first byte to a value of
2 (an echo reply packet) before calling DDP to send the packet back to the
socket from which it originated.

To test for the presence of a given node, you can iterate through a series of
addresses—sending each several packets. If a node exists, AEP sends a packet
back; if the node doesn’t exist, no packet returns. Be sure to send each node
address several packets in case one or more are lost in transmission.

To measure network performance, you need to know the round-trip time of a
packet between two nodes on an AppleTalk internet. This is dependent on such
factors as the network configuration, the number of routers and bridges that a
packet must traverse, and the amount of traffic on the network. As these
change, so does the packet transmission time. ATP protocol options let you
specify retry-count and interval numbers whose optimum values you can
better assess if you know the average round-trip time of a packet on your
application’s network.

Here are some general guidelines for using the AEP Echoer to measure
network performance:

» Use the maximum packet size that you plan on using in your application.

Using DDP

CHAPTER 15

Datagram Delivery Protocol (DDP)

= Accept only echo reply packets from the target node. Set the DDP type field
of your endpoint to 4 to filter out all packets except for AEP packets.

= Send more than one packet and calculate the average round-trip time.

Typically, you should receive an echo reply packet within a few milliseconds
on a LAN and within a few seconds on a WAN. If you do not get a response
after about 10 seconds, you can assume that DDP dropped or lost your echo
request packet, and you can resend the packet.

The echo reply packet contains the same data that you sent in the echo
request packet. If you send multiple packets to determine an average
turnaround time and to compensate for the possibility of lost or dropped
packets, you should include different data in the data portion of each packet.
This allows you to distinguish between replies to different request packets in
the event that either some replies are not delivered in the same order that
you sent them or that some packets are dropped.

= Bracket the code that sends and receives echo packets with a call to the
0TGetTimeStamp function. This function gives much better resolution than
the TickCount function.

Working With Multinodes

If you are using DDP, you can specify a multinode address for an endpoint.
This allows you to bind endpoints to multiple node addresses on the same
physical port, which can be useful for testing. Using only one physical
machine, you can use multinode addressing to simulate multiple machines.

If a multinode client sends a broadcast or self-send packet, Open Transport
makes copies of the packet for the other multinode clients on the same machine
internally, thus reducing traffic on the network.

The significant fields for the multinode address format are the network number
and node ID. You can request specific values for these address elements when
you bind a multinode endpoint and the 0T81ind functionwill return the actual
network and node values for the address to which Open Transport bound the
endpoint. Multinode endpoints must use the DDP_0PT_SRCADDR option to specify
the source DDP address for outgoing packets on a per-packet basis.

Using DDP 309

310

CHAPTER 15

Datagram Delivery Protocol (DDP)

The DDP Source Address Option

DDP defines the option DDP_0PT_SRCADDR, which sets the source address for
outgoing packets. This option is required for multinode endpoints, such as
ARA, but can also be used with other types of endpoints.

The option’s value must be a DDP address structure using the AF_ATALK_DDP
address format. The source network number, node number, and source socket
are taken from the DDP address.

This option allows a multinode endpoint to tell Open Transport which of its
several sockets actually sent the packet.

Using General Open Transport Functions With DDP

This section describes any special considerations you must take into account
for Open Transport functions when you use them with the Open Transport
DDP implementation. DDP uses the following Open Transport functions:

s O0TBind

The 0TBind function associates a local protocol address with the endpoint
you specify with the ref parameter. You can only bind one DDP or
multinode endpoint to a single protocol address.

m (0TSndUData
The 0TSndUData function sends data through connectionless transactionless
protocols.

When you use this function with DDP, you can enable raw mode packet
processing both on send and receive by sending a TNetBuf structure with the
unitdata.addr.len field set to OxffffffffuL. With raw mode enabled the
contents of the unitdata.udata.buf field is the complete DDP packet that
will be sent out by the 0TSndUData function.

To disable raw mode packet processing, send a standard DDP packet with
the unitdata.addr structure fields filled in normally.

m OTRcvUData

The 0TRcvUData function receives data through connectionless transactionless
protocols.

m OTRcvUDErr

Clears an error condition arising in the course of data transmission and
returns the reason for the error.

Using DDP

CHAPTER 16

AppleTalk Data Stream Protocol
(ADSP)

Contents

About ADSP 314
Using ADSP 316
Binding ADSP Endpoints 317
Sending and Receiving ADSP Data 317
The End-of-Message Option 318
The Checksum Option 319
Sending Expedited Data 319
Disconnecting 319
Using General Open Transport Functions With ADSP 320
OTBind 320
OTConnect 320
OTRcvConnect 320
OTListen 321
OTAccept 321
OTSnd 321
OTRcv 321
OTSndDisconnect 321
OTRcvDisconnect 322

Contents

311

CHAPTER 16

AppleTalk Data Stream Protocol (ADSP)

This chapter describes the programming interface to Open Transport’s
implementation of the AppleTalk Data Stream Protocol (ADSP). It explains
how you can use ADSP to establish a session to exchange a stream of data
between two network processes or applications in which both parties have
equal control over the communication. ADSP offers a connection-oriented
transactionless service that is particularly well suited to the transfer of large
amounts of data.

You should read this chapter if you want to write an application that uses
ADSP to exchange a stream of data between two equal parties who can each
send and receive data. This chapter explains how you

= create an endpoint that listens passively for incoming connection requests
= send and receive data via ADSP

s divide an ADSP data stream into discrete logical units

= use expedited attention messages with ADSP

This chapter begins with a description of ADSP and the services that it
provides under Open Transport. The section “Using General Open Transport
Functions With ADSP” (page 319) then gives detailed information about how
ADSP client applications use the endpoint functions that Open Transport
provides for connection-oriented transactionless protocols. For a more detailed
explanation of endpoints and their functions, read the chapter

“Endpoints” (page 83).

For reference information about ADSP options, see “ADSP Reference”

(page 757). For an overview of ADSP and how it fits within the AppleTalk
protocol stack, read the chapter “Introduction to AppleTalk” (page 263), which
also introduces and defines some of the terminology used in this chapter. ADSP
under Open Transport conforms to the detailed specifications in Inside
AppleTalk, second edition. See that book for further information about the
features mentioned here.

About ADSP

The AppleTalk Data Stream Protocol (ADSP) includes both session and
transport services and is the most commonly used of the AppleTalk transport
protocols. ADSP allows you to establish and maintain a connection between

About ADSP 313

CHAPTER 16

AppleTalk Data Stream Protocol (ADSP)

two AppleTalk network entities and transfer data as a continuous stream. The
two clients at either end of an ADSP connection are equal and can perform the
same operations.

ADSP, like all other high-level AppleTalk protocols, is a client of the Datagram
Delivery Protocol (DDP), which transmits data in packets. However, ADSP
builds a session connection on top of DDP’s packet transfer services, so you can
exchange data as a continuous stream. Figure 16-1 shows how the ADSP
endpoint provider encompasses its underlying delivery protocol and
link-access Streams modules.

Figure 16-1 The ADSP endpoint provider’s underlying delivery mechanism

ADSP
DDP

]

Standard link-access STREAMS modules

Communication between two client applications using ADSP occurs over a
connection between two endpoints that provides reliable data delivery. When
you bind an ADSP endpoint, the binding process associates a local protocol
address with your endpoint. An ADSP address is a DDP address (network
number and DDP socket) plus an ADSP session ID. ADSP can use the same
DDP address for multiple ADSP sessions. The session ID is used to direct data
to the proper ADSP session.

ADSP uses several internally maintained variables to track its progress as it
transmits a data stream across a connection. For example, ADSP associates an
internal sequence number with each byte that it sends. This allows ADSP to
determine out-of-sequence or duplicate data. ADSP uses the sequence numbers
to ensure that the other endpoint receives all of its intended data. If any data
does not arrive, ADSP can retransmit it.

314 About ADSP

CHAPTER 16

AppleTalk Data Stream Protocol (ADSP)

The data is available for retransmission because when an endpoint provider
sends data to a remote connection end, ADSP first stores it in a buffer, called
the send queue, and holds the data there until the remote connection end
acknowledges receipt. Likewise, when data arrives from a remote endpoint,
ADSP stores it in a receiving buffer, called the receive queue, until the local
endpoint provider acknowledges reading it.

ADSP does not transmit data from the remote connection end until there is
space available in the local receive queue. This built-in flow control keeps a
connection from being jammed with too much data.

Using ADSP

To use Open Transport ADSP, you first open an endpoint as an ADSP endpoint.
This causes Open Transport to allocate the memory ADSP needs for data
buffers and for storing the variables ADSP uses to maintain the connection
between endpoints. After a connection is established, ADSP manages and
controls the data flow between two endpoints throughout a session to ensure
that data is delivered and received in the order in which it was sent and that
duplicate data is not sent.

As with other connection-oriented protocols, Open Transport ADSP allows you
to create a passive endpoint that listens for incoming connection requests
rather than initiating such requests. In addition, the implementation of ADSP
under Open Transport includes some ADSP-specific features that are specific to
the two AppleTalk connection-oriented protocols:

= an option to enable end-of-message (EOM) indicators that let you break
streams of data into logical units

= locally implemented orderly disconnects rather than over-the-wire remote
disconnects

ADSP also implements a separate data channel for expedited data. This
provides an attention-message facility that lets ADSP endpoints signal each
other outside the normal exchange of data.

Using ADSP 315

316

CHAPTER 16

AppleTalk Data Stream Protocol (ADSP)

Binding ADSP Endpoints

You have two choices when you bind an ADSP endpoint: You can create an
endpoint that can initiate and accept connections, or you can create an
endpoint that can only receive connection requests.

If the endpoint can initiate connections, you can bind it as a normal Open
Transport endpoint and use any of the three AppleTalk address formats for the
socket address: DDP, NBP, or the combined DDP-NBP format. If the bind is
successful, the endpoint is ready for use in establishing and using a connection.

The other choice when binding an ADSP endpoint is to establish it as a passive
peer that listens for incoming connection requests. The passive endpoint can
accept or deny a connection request based on criteria that you define. The use
of a passive peer is typical of a server environment in which a server, such as a
file server, is registered with a single NBP name. Endpoints throughout the
network can contact the server’s passive peer with connection requests. The
server can accept or deny a request. It might deny a request, for example, when
its resources are exhausted.

To create a passive peer that listens, you specify a qlen field value greater than
0 during the binding process. The number you use determines how many
outstanding connection requests the endpoint can support. Once you bind a
passive peer, it starts listening for incoming connection requests. When a
request arrives, the endpoint retrieves certain information about the request
and continues to process it by accepting or rejecting it.

You can bind multiple ADSP endpoints to the same DDP socket, and ADSP can
support as many connections on a socket as you have memory for, but you can
only have one passive peer that listens on a given socket.

Sending and Receiving ADSP Data

ADSP supports two separate data channels: one for normal data and one for
expedited data. You can send a stream of normal data that has no logical
boundaries that need to be preserved across the connection, or you can use
transport service data units (TSDUs) to separate the data stream into discrete
logical units when sending and receiving data across a connection. For
expedited data, you can use expedited transport service data units, or ETSDUs.

By default, ADSP does not support TSDUs. Instead, ADSP sends and receives a
continuous stream of data with no message delimiters. If you do not change
this through the use of options, ADSP endpoints act much like other

Using ADSP

CHAPTER 16

AppleTalk Data Stream Protocol (ADSP)

connection-oriented transactionless endpoints, and the bulk of your code
would be reusable for other types of protocols (such as TCP).

Open Transport uses a flag in the send and receive functions to indicate
multiple sends and receives. The use of this flag, the T_MORE flag, allows you to
break up a large data stream without losing its logical boundaries at the other
end of the connection. The flag, however, indicates nothing about how the data
is packaged for transport on the lower-level protocols below the ADSP
endpoint provider.

The End-of-Message Option

If transport independence is not crucial for your application, you can use the
ADSP enable EOM (0PT_ENABLEEOM) option that allows infinite length TSDUs on
the normal data channel.

If you enable the EOM option, you can send any length TSDU by setting the
T_MORE flag on each send to indicate to the provider that another packet is
coming that is part of this same message. When you send data without the
T_MORE flag set, the provider knows this is the end of the message, and it sends
an EOM packet to the remote peer. It is possible for the EOM packet to contain
no data because ADSP supports the sending of zero-length packets. This is
useful when you send a packet with the T_MORE flag set only to discover that
you have no more data to send. In this case, ADSP still expects another packet,
but you have no data to put into it. You can send a zero-length packet to set the
T_MORE flag correctly.

You can enable the EOM option for an endpoint in several ways. One way

is to define the option as part of the configuration string you use to open

the endpoint. The following line of code enables the EOM option for an

ADSP endpoint:
0TOpenEndpoint(0TCreateConfiguration("adsp(EnableEOM=1)"),0, NULL, &err);
Or you could call a function like that shown in Listing 7-5 (page 181) as follows:

err=SetFourByteOption(ep, ATK_ADSP, OPT_ENABLEEOM, 1);

to enable the EOM option for an ADSP endpoint.

Using ADSP 317

318

CHAPTER 16

AppleTalk Data Stream Protocol (ADSP)

The Checksum Option

You can use the 0PT_CHECKSUM option to force ADSP to send all outgoing packets
with the checksum option enabled. By default, outgoing ADSP packets do not
use this option, which directs DDP to compute a checksum and include it in
each packet that it sends to the remote endpoint provider, since using
checksums slows communications slightly. Normally, ADSP and DDP perform
enough error checking to ensure safe delivery of all data, so set this option only
if the network is highly unreliable.

Sending Expedited Data

In addition to the full-duplex data stream that an ADSP session maintains,
ADSP allows either end of a connection to send an expedited attention message
to the other end without interrupting the primary flow of data. Processing
expedited data takes precedence over handling normal data, so when an
expedited data packet arrives at an endpoint, the endpoint reads this packet
before reading the next normal data packet. Both the send and receive
functions have a flag, T_EXPEDITED, that indicates when a packet has expedited
data.

Expedited transport service data units, ETSDUSs, can be up to 572 bytes long,
including a 2-byte attention code at the beginning of the user data portion. The
minimum ETSDU for ADSP is 2 bytes, so if you send less than that, the data is
padded to 2 bytes before being transmitted. If you use ETSDUs, you are
responsible for ensuring that the code has a value from $0000 to $EFFF and is
not in the reserved range of $F000 to $FFFF.

Note that not every connection-oriented transactionless protocol supports
attention messages or expedited data. Therefore, using this option
compromises the transport independence of your application.

Disconnecting

As with all connection-oriented Open Transport protocols, ADSP supports
abortive disconnects. In addition, ADSP supports orderly disconnects,
although it can only implement them locally.

An abortive disconnect directs the endpoint to abruptly tear down its
connection without making any accomodation for the data that may be in the
transmission pipeline at the time. You can define your own handshake, perhaps

Using ADSP

CHAPTER 16

AppleTalk Data Stream Protocol (ADSP)

using the expedited data channel, to prevent losing data during the
disconnection process.

ADSP implements orderly disconnects locally, not over the wire. This means
that immediately after you request the disconnect, ADSP sends all data
buffered at the local end and then tears down the connection, breaking
communication with the remote end. As a result, no data can be sent from
either the local or remote endpoint. The endpoints can continue to process data
already in their receive queues, but no new data can go out.

Using General Open Transport Functions With ADSP

This section describes any special considerations you must take into account
for Open Transport functions when you use them with the Open Transport
ADSP implementation.

OTBind

The 0TBind function associates a local protocol address with the endpoint
provider specified by the ref parameter.

You can bind multiple ADSP endpoints to a single protocol address, but you
can bind only one passive peer endpoint that listens on that socket.

With ADSP, as with other connection-oriented protocols, the req->qlen
parameter specifies the number of outstanding connection requests that an
endpoint can support. The endpoint can negotiate a lower final value of glen if
it cannot handle the requested number of outstanding connection requests.

OTConnect

The 0TConnect function requests a connection to a specified remote endpoint.

ADSP does not allow application-specific data to be included when you
establish a connection, so you need to set the sndcall->udata.len field to 0.
ADSP ignores the sndcall->udata.buf field.

OTRcvConnect

The 0TRcvConnect function reads the status of a previously issued connection
request.

Using ADSP 319

320

CHAPTER 16

AppleTalk Data Stream Protocol (ADSP)

Because ADSP does not allow application-specific data to be associated with a
connection request, you need to set the cal1->udata.max1en field to 0. ADSP
ignores the call->udata.buf field.

OTListen

The 0TListen function listens for an incoming connection request.

ADSP does not allow application-specific data to be included when you
request a connection, so you need to set the call->udata.maxlen field to 0.
ADSP ignores the call->udata.buf field.

OTAccept

The 0TAccept function accepts a connection request. You can accept a
connection either on the same endpoint that received the connection request or
on a different endpoint.

ADSP does not allow application-specific data to be included when you accept
a connection, so you need to set the call->udata.len field to 0. ADSP ignores
the cal1->udata.buf field.

oTSnd

The 0TSnd function sends normal and expedited data through a connection-
oriented transactionless endpoint.

ADSP supports TSDUs through the 0PT_ENABLEEOM option. In ADSP, TSDUs can
be of infinite length and ETSDUs can be up to 572 bytes long. Zero-length
packets are supported in ADSP.

OTRcv

The 0TRcv function receives normal and expedited data through a connection-
oriented transactionless endpoint.

ADSP supports TSDUs through the 0PT_ENABLEEOM option.

OTSndDisconnect

The 0TSndDisconnect function initiates an abortive disconnect or rejects a
connection request.

Using ADSP

CHAPTER 16

AppleTalk Data Stream Protocol (ADSP)

When you call this function with ADSP, you receive a T_0RDREL asynchronous
event rather than a T_DISCONNECT asynchronous event so that you can continue
to read in the rest of the data in your receive queue. Otherwise, with a
T_DISCONNECT event, any remaining unread data is discarded.

In an abortive disconnect, the cal1 parameter is ignored because ADSP does
not allow application-specific data to be associated with a disconnect. You need
to set the call->udata.len field to 0. ADSP ignores the call->udata.buf field.

OTRcvDisconnect

The 0TRcvDisconnect function returns information about why a connection
attempt failed or an established connection was terminated.

Because ADSP does not allow application-specific data to be associated with a
disconnect, you need to set the discon->udata.len field to 0. ADSP ignores the
discon->udata.buf field. The discon->reason field contains a positive error code
indicating why the connection was rejected.

Using ADSP 321

CHAPTER 16

AppleTalk Data Stream Protocol (ADSP)

322 Using ADSP

CHAPTETR 17

AppleTalk Transaction Protocol
(ATP)

Contents

About ATP 327
Using ATP 328
At-Least-Once and Exactly-Once Transactions 328
Sending and Receiving ATP Data 329
Specifying ATP Options 330
The Retry Count and Interval Options 330
The Release Timer Option 331
Other ATP-Specific Options 331
Using the ATP Packet Header User Bytes 332
Using General Open Transport Functions With ATP 332
OTSndURequest 332
OTRcvURequest 333
OTSndUReply 333
OTRcvUReply 333

Contents

323

CHAPTER 17

AppleTalk Transaction Protocol (ATP)

This chapter describes the programming interface to Open Transport’s
implementation of the AppleTalk Transaction Protocol (ATP). It explains how
you can use ATP to send requests and responses between ATP endpoints, with
one endpoint initiating the request and the other responding to it. You can
create an endpoint that can both initiate and respond, or you can create one
endpoint that only makes requests and another that only makes responses.
Because ATP provides a connectionless transaction-based service, you do not
incur the overhead entailed in establishing, maintaining, and breaking a
connection that is associated with connection-oriented protocols, such as ADSP,
but you can transfer only a limited amount of data using ATP.

You should read this chapter if you want to write an application that requires
reliable delivery of data but does not require the transfer of large amounts of
data. This chapter explains how you

= open and bind an ATP endpoint

= get information about an ATP endpoint

= use Open Transport functions to initiate and respond to a transaction

= specify ATP options to control connectionless transaction-based services

This chapter begins with a description of ATP and the services that it provides
under Open Transport. The section “Using General Open Transport Functions
With ATP” (page 331) then gives detailed information about how ATP client
applications use the endpoint functions that Open Transport provides for
connectionless transaction-based protocols. For a more detailed explanation of
endpoints and their functions, read the chapter “Endpoints” (page 83).

For reference information about ATP options, see “ATP Reference” (page 757).
For an overview of ATP and how it fits within the AppleTalk protocol stack,
read the chapter “Introduction to AppleTalk”(page 263), which also introduces
and defines some of the terminology used in this chapter. For a complete
explanation of the ATP specification, see Inside AppleTalk, second edition.

325

CHAPTER 17

AppleTalk Transaction Protocol (ATP)

About ATP

326

The AppleTalk Transaction Protocol (ATP) offers a simple means of reliably
transferring small amounts of data across a network. Using this protocol, one
endpoint requests information from another endpoint that possesses the ability
to respond to the request. This means that ATP is well-suited to a client-server
relation.

ATP is based on the concept of a transaction. In a transaction, one endpoint,
called the requester, makes a request of another endpoint, called the responder,
to perform a service and return a response.

You can implement ATP client applications in the following two ways:

= You can write a single application that handles both the requester and
responder actions of an ATP transaction and run that application on two
networked nodes. This method allows each application to act as either the
requester or the responder. However, while each side has the capacity to
initiate a transaction, only one side can control the communication during a
single transaction.

» You can write two applications, one application that implements the
requester part of a transaction and another application that implements the
responder side. This model lends itself well to a client-server relation such as
PAP, in which many nodes on a network run the requester application
(client), while one or more nodes run the responder application (server). One
server can respond to transaction requests from various clients.

ATP is a direct client of DDP, and it adds reliable delivery of data to the
transport delivery services that DDP provides. ATP ensures that data is
delivered without error or packet loss. Figure 17-1 shows how the ATP
endpoint provider encompasses its underlying delivery protocol and
link-access Streams modules.

About ATP

CHAPTER 17

AppleTalk Transaction Protocol (ATP)

Figure 17-1 The ATP endpoint provider’s underlying delivery mechanism

ATP

]

DDP

]

Standard link-access Streams modules

Using ATP

In order for two applications to use ATP, each application must have opened
and bound an ATP endpoint. The requester initiates a transaction by making a
request. When the responder receives the request, it accepts the request,
formulates a response that includes any data required by the requester, and
sends that response to the requester. When the requester receives the response,
the transaction is complete. You can define how often ATP is to retry each
request and how long it is to wait between each retry attempt by using the
retry count and interval options, described in “Specifying ATP Options”

(page 329).

At-Least-Once and Exactly-Once Transactions

In the course of a transmission, a request might be lost, a response might be
lost or delayed, or the responder might fail to acknowledge or accept a request.
In any of these situations, the transaction cannot complete. To complete the
transaction and assure reliable delivery of data, ATP is responsible for waiting
a predetermined amount of time and then retrying the request until it is able to
conclude the transaction. If it cannot conclude the transaction, ATP must let the

Using ATP 327

328

CHAPTER 17

AppleTalk Transaction Protocol (ATP)

requester know that the attempt has failed. In order to perform these services,
ATP supports two types of transactions: at-least-once transactions and
exactly-once transactions.

= An at-least-once transaction ensures that the responder receives every
request directed to it at least once, but this does not prevent the responder
from receiving a request more than once. These are also referred to as ALO
transactions.

= An exactly-once transaction ensures that the responder receives a specific
request only once. These are also referred to as XO transactions. PAP uses this
type of ATP transaction.

Open Transport ATP provides XO transaction support for a request transaction
when you set the T_ACKNOWLEDGED bit in the option flags for the 0TSndURequest
function. This kind of support is appropriate in those cases where harm could
be done if a request is satisfied multiple times; for example, if you are
appending data to the end of a file.

In those cases where no harm is done if a request is satisfied multiple times (for
example, when the requester asks the responding node to identify itself) you
can select ALO transactions by clearing the T_ACKNOWLEDGED bit in the option
flags for the 0TSndURequest function.

Sending and Receiving ATP Data

Typically, a requester sends a small amount of data requesting the remote
endpoint to take some action or to send back data in reply. The amount of data
that the responder can reply with can be quite large. A requester can send only
a single ATP packet of 578 bytes, but a responder can return up to eight packets
of 578 bytes each, totalling a maximum of 4624 bytes. ATP does not support
zero-length packets.

To accomodate the restrictions that a particular network may place on sending
that much data at a time, ATP uses the T_MORE flag to communicate to the
awaiting requester endpoint when all of the reply data has been accumulated.
A single reply may have up to eight packets, and each packet in the reply
except for the very last has the T_MORE flag set. The reply data is held at the
receiving requester endpoint until a packet arrives that does not have the
T_MORE flag set. When this happens, ATP knows that all the reply data has
arrived, and it releases the entire reply to the awaiting requester endpoint.

Using ATP

CHAPTER 17

AppleTalk Transaction Protocol (ATP)

Specifying ATP Options

There are several ATP-specific options and you can use the generic Open
Transport options, 0PT_INTERVAL and OPT_RETRYCNT. Table 17-1 summarizes their
definitions and default values. All of these options, except ATP_OPT_TRANID, can
be set both globally (for the endpoint setting the option) with the
OptionManagement function and locally by setting option flags for an individual
transaction. The ATP_OPT_TRANID option can only be set globally.

Table 17-1 ATP option definitions and default values

Option Default Description

OPT_RETRYCNT 8 retries Sets the number of times ATP retries a
request before returning an error to
the client.

OPT_INTERVAL 2 seconds Sets the interval for ATP to wait

between retries.

ATP_OPT_RELTIMER 30 seconds Sets the amount of time the responder
must wait for a transaction release
packet before it purges a request entry
from its transactions list. Acceptable
values are 0 (30 seconds), 1 (1 minute), 2
(2 minutes), 3 (4 minutes), 4 (8 minutes).

ATP_OPT_REPLYCNT 8 replies Specifies the number of replies (1-8) to
expect in reply to a request.

ATP_OPT_DATALEN 578 bytes Sets maximum individual packet size.

ATP_OPT_TRANID true Requests a transaction ID.

The Retry Count and Interval Options

After transmitting a transaction request, ATP waits for the interval of time
specified by the requester’s defined 0PT_INTERVAL option (default is

2 seconds). If the requester still hasn’t received a response from the responder,
it retransmits the request. It repeats this process for the number of times
defined by the requester’s 0PT_RETRYCNT option (default is 8 retries). Once these
maximums have been reached without any response, ATP informs the
requester that the responder is unavailable.

Using ATP 329

330

CHAPTER 17

AppleTalk Transaction Protocol (ATP)

The Release Timer Option

With ALO transactions, a responder can receive duplicate requests; with XO
transactions, ATP uses additional processing to ensure that a responder
receives a request only once. To handle XO transactions safely, the responder
maintains a transactions list of all recently received requests. When it receives a
request, the responder searches through this list to determine whether it is a
new request or a duplicate request. If the request is new, the responder inserts
it in the transactions list, time stamping the entry with its time of insertion.

If it is a duplicate request and a reply has gone out, ATP automatically
retransmits the reply without the intervention of the responder application. If
it is a duplicate request and a reply has not yet been sent out, ATP discards
the request.

When a requester receives a reply from the responder, it sends a transaction
release packet to the responder to signal that the transaction has successfully
completed, and the responder can now release the transaction from its
transactions list. If this transaction release packet is lost, however, the
responder would never be able to release the transaction from its list. Because
the responder time stamped each new request when it inserted the request into
its transactions list, the responder can check the list periodically and eliminate
all requests that are older than the time defined by the ATP_0PT_RELTIMER option
(default is 30 seconds), assuming that these requests remain in the list because
the transaction release packet has been lost.

Other ATP-Specific Options

When a reply starts to arrive, the requester needs to know how many packets
are in a given reply so that it knows when to stop waiting for more packets.
The ATP_OPT_REPLYCNT option allows you to define a number between 0 and 8
(the default is 8 packets). You can set this globally for the endpoint, with the
OptionManagement function, or locally for an individual request.

The ATP_OPT_DATALEN option allows you to set the maximum length of an
individual packet up to a length of 578 bytes (the default). In most cases, you
can leave this at the default. PAP servers, which use a maximum packet size of
512 bytes, can use this option to restrict the ATP packet size. You can set this
globally for the endpoint, with the OptionManagement function, or locally for an
individual request.

The ATP_OPT_TRANID option is a Boolean value that, when set to true, requests
Open Transport to add an option to every request that contains the ATP

Using ATP

CHAPTER 17

AppleTalk Transaction Protocol (ATP)

transaction ID. You can only set this option globally, with the OptionManagement
function; you cannot set it locally.

Using the ATP Packet Header User Bytes

The first 4 bytes of the ATP packet header contain information that allows
Open Transport to identify whether an ATP packet is a request or a response, to
specify the sequential position of a response packet, and to identify the
transaction. The second 4 bytes of the header are called user bytes, and are
available for your use. Your application could use the user bytes, for example,
to create a simple header for a higher-level protocol.

ATP takes the first 4 bytes of data that the requester specifies and places them
in the user bytes portion of the outgoing request. If you do not specify at least 4
bytes of data in the request, ATP pads the user bytes with zeros.

On the responder side, ATP takes the data in the first reply packet’s user bytes
and puts them into the first 4 bytes of the reply packet’s data. ATP ignores the
user bytes in all reply packets except for the first packet.

For more information on ATP packets and their header field definitions, refer to
Inside AppleTalk, second edition.

Using General Open Transport Functions With ATP

This section describes any special considerations you must take into account
for Open Transport functions when you use them with the Open Transport ATP
implementation. You must be familiar with the descriptions of these functions
in the chapter “Endpoints”(page 83) in this book before reading this section.

OTSndURequest

A client of a connectionless transaction-based protocol such as ATP can use the
0TSndURequest function to send an ATP request packet to an ATP responder
endpoint.

To indicate XO transactions, set the T_ACKNOWLEDGED bit in the 0TSndURequest
function’s reqFlags parameter. To indicate ALO transactions, clear this bit. ATP
request packets can have up to 578 bytes, and zero-length TSDUs are not
supported.

Using ATP 331

332

CHAPTER 17

AppleTalk Transaction Protocol (ATP)

OTRcvURequest

A client of a connectionless transaction-based protocol such as ATP can use the
0TRcvURequest function to receive an incoming ATP request packet from an ATP
requester endpoint.

On XO transaction packets, the T_ACKNOWLEDGED bit in the 0TRcvURequest
function’s reqFlags parameter is set. On ALO transactions, this bit is clear. ATP
request packets can have up to 578 bytes, and zero-length TSDUs are not
supported.

OTSndUReply

A client of a connectionless transaction-based protocol such as ATP can use the
0TSndUReply function to send an ATP reply packet to an ATP requester
endpoint. ATP reply packets can have up to eight packets (4624 bytes), and
zero-length TSDUs are not supported.

OTRcvUReply

A client of a connectionless transaction-based protocol such as ATP can use the
0TRcvUReply function to receive an incoming ATP reply packet from an ATP
requester endpoint. ATP reply packets can have up to eight packets (4624
bytes), and zero-length TSDUs are not supported.

Using ATP

CHAPTER 18

Printer Access Protocol (PAP)

Contents

About PAP 336
Using PAP 338
Binding PAP Endpoints 339
Specifying PAP Options 340
The End-of-Message Option 340
The Open Retry Option 341
The Server Status Option 341
The Reply Count Option 342
Disconnecting 344
Using General Open Transport Functions With PAP
OTBind 344
OTConnect 345
OTRcvConnect 345
OTListen 345
OTAccept 345
OTSnd 345
OTRcv 346
OTSndDisconnect 346
OTRcvDisconnect 346

Contents

344

333

CHAPTER 18

Printer Access Protocol (PAP)

This chapter describes the programming interface to Open Transport’s
implementation of the Printer Access Protocol (PAP) PAP offers a
connection-oriented transactionless service that has been traditionally
restricted to AppleTalk printing. This chapter explains how you can use PAP to
set up a printer server endpoint that awaits connection requests from active
PAP endpoints. It also also explains how to set up an active PAP client
endpoint, how to send data directly from it to the printer server, and how the
client endpoint receives messages back from the server.

You should read this chapter if you want to write an application that uses PAP
to print directly to AppleTalk printers or that implements a PAP server, such as
a print spooler. This chapter explains how you

= create and use an active PAP client endpoint
m create and use a passive PAP server endpoint

» send and receive data with PAP

divide a PAP data stream into discrete logical units
= set a PAP server to respond to a client’s SendStatus call

This chapter begins with a description of PAP and the services that it provides
under Open Transport. The section “Using General Open Transport Functions
With PAP” (page 343) then gives detailed information about how PAP client
applications use the endpoint functions that Open Transport provides for
connection-oriented transactionless protocols. For a more detailed explanation
of endpoints and their functions, read the chapter “Endpoints” (page 83).

For reference information about PAP options, see “PAP Reference” (page 758).
For an overview of PAP and how it fits within the AppleTalk protocol stack,
read the chapter “Introduction to AppleTalk”(page 263), which also introduces
and defines some of the terminology used in this chapter. PAP under Open
Transport conforms to the detailed specifications in Inside AppleTalk, second
edition. See that book for further information about the features mentioned
here.

About PAP

The Printer Access Protocol (PAP) is an asymmetrical connection-oriented
transactionless protocol that enables communication between client and server

About PAP 335

CHAPTER 18

Printer Access Protocol (PAP)

endpoints, allowing multiple connections at both ends. PAP uses ATP packets
to transport the data once a connection is open to the server.

PAP is the protocol that ImageWriter and LaserWriter printers in the AppleTalk
environment use for printing. You use PAP when the workstation sends a print
job directly to a printer connected to the network or when you send it to a print
spooler, which in turn uses PAP to send it to the printer. Open Transport PAP
provides a single protocol implementation that is integrated into the AppleTalk
protocol stack.

Figure 18-1 shows how a PAP endpoint provider encompasses its underlying
delivery protocol and link-access STREAMS modules.

Figure 18-1 The PAP endpoint provider's underlying delivery mechanism

336

@E‘@%@%

Standard link-access Streams modules

One of the unique features of PAP is its ability to determine which connection
request to honor when there are several requests outstanding at the same time.
At any time a PAP server endpoint can receive requests to open a connection
from different client endpoints. For example, a printer server is available on a
network to many workstations, several of which can send data to the printer at

About PAP

CHAPTER 18

Printer Access Protocol (PAP)

any time. PAP uses an arbitration scheme to allow a server to accept a
connection with the workstation that has been waiting the longest for a
connection. The scheme works this way:

1. APAP server receives a connection request but delays granting it for a
predefined length of time (nominally 2 seconds). This default time period is
implementation specific and is defined in Inside Applelalk, second edition.

2. The PAP server accumulates any additional connection requests that come in
from other endpoints during that time period.

3. Atend of the time period, the PAP server obtains the wait time from each
workstation endpoint requesting a connection. The workstations track the
amount of elapsed time spent waiting for access to the server. For example,
if a workstation client has to try several times to connect to a busy
LaserWriter, the workstation continues to track the total time since the first
connection attempt and reports that amount to the LaserWriter on every
subsequent connection attempt.

4. The PAP server then grants the request of the workstation that has waited
the longest.

For additional information, see “Printer Access Protocol” in Inside AppleTalk.

Using PAP

To use Open Transport PAP, you first open an endpoint as a PAP endpoint,
which causes Open Transport to allocate the memory PAP needs for data
buffers and for storing the variables PAP uses to maintain the connection
between endpoints. After a connection is established, PAP manages and
controls the data flow between the two endpoints throughout a session to
ensure that data is delivered and received in the order in which it was sent and
that duplicate data is not sent.

When you bind a PAP endpoint, the binding process associates a local protocol
address with the endpoint. In PAP, this identifies the socket address, and PAP
uses this as part of the address for sending and receiving packets of data. Each
socket can maintain concurrent PAP connections with several other sockets, but
only one PAP endpoint can bind with a q1en greater than 0.

As with other connection-oriented protocols, Open Transport PAP allows you
to create a passive endpoint that listens for incoming connection requests

Using PAP 337

338

CHAPTER 18

Printer Access Protocol (PAP)

rather than initiating such requests. In addition, the implementation of PAP
under Open Transport includes some PAP-specific features:

» an end-of-message option that lets you divide streams of data into
logical units

» locally implemented orderly disconnects rather than over-the-wire remote
disconnects

PAP is also able to arbitrate connections requests and to accept requests from
the workstations that have been waiting the longest to print.

Binding PAP Endpoints

You have two choices when binding a PAP endpoint: You can create an
endpoint that can initiate connections and receive connection requests, or you
can create a passive endpoint that can only receive connection requests.
Typically, a passive PAP endpoint is a printer server.

If your endpoint can initiate connections, you can bind it as a normal Open
Transport endpoint and use any of the three AppleTalk address formats for the
socket address: DDP, NBP, or the combined DDP-NBP format. If the bind is
successful, the endpoint is ready for use in establishing and using a connection.

The other choice when binding a PAP endpoint is to establish it as a passive
peer that listens for incoming connection requests. The passive peer can accept
or deny a connection request. The use of a passive peer is typical of a server
environment in which a server, such as a printer server, is registered with a
single name. Endpoints throughout the network can contact the printer server
with connection requests. The server can accept or deny a request. It might
deny a request, for example, when its resources are exhausted, based on criteria
that you define.

To create a passive peer that listens, you specify a qlen field value greater than
0 during the binding process. The number you use determines how many
connection requests the endpoint can support. Once the endpoint is bound, it
starts listening for incoming connection requests. When a request arrives, the
endpoint retrieves certain information about the request and continues to
process the connection request by accepting or rejecting it.

You can bind multiple PAP endpoints to the same socket, but you can have
only one passive peer that listens for a given socket. When a server accepts a
connection from a client workstation for processing its print request, it cannot
accept another connection request from the same workstation endpoint. As

Using PAP

CHAPTER 18

Printer Access Protocol (PAP)

with other connection-oriented protocols, you can only have one concurrent
connection between the same pair of endpoints.

Specifying PAP Options

You can use one of two options with PAP endpoints:

s The enable end-of-message options allows you to break up a data stream
into discrete logical units.

By default, PAP soes not support TSDUs.
s The open retry option allows you to retry making connection requests.

The following two sections explain the use of these options.

The End-of-Message Option

You can send a PAP data stream that contains no logical boundaries which
need to be preserved across the connection, or you can use transport service
data units (TSDUs) to separate the data stream into discrete logical units when
sending and receiving it across a connection. By default, PAP does not support
TSDUs. Instead, PAP sends and receives a continuous stream of data with no
message delimiters.

If transport independence is not crucial for your application, you can use a
PAP-specific option that allows TSDUs. The 0PT_ENABLEEOM option enables the
PAP end-of-message feature, which permits dividing data streams into smaller
logical units. Open Transport uses a flag in the send and receive functions to
indicate multiple sends and receives. The use of this flag, the T_MORE flag,
allows you to break up a large data stream without losing its logical boundaries
at the other end of the connection. The flag, however, indicates nothing about
how the data is packaged for transport on the lower-level protocols below the
PAP endpoint provider.

To send a data stream that is broken up into TSDUS, set the T_MORE flag on each
send after setting the 0PT_ENABLEEOM option. This indicates to the provider that
there are more packets coming that are part of this same message. When you
send data without the T_MORE flag set, the provider knows this is the last packet
for this message and sends an EOM packet to the remote peer. It is possible for
this last (EOM) packet to contain no data because PAP supports the sending of
zero-length packets. This is useful when you send a packet with the T_MORE flag
set only to discover that you have no more data to send. In this case, PAP still

Using PAP 339

CHAPTER 18

Printer Access Protocol (PAP)

expects another packet, but you have no data to put into it. You can send a
zero-length packet to set the T_MORE flag correctly.

Because printers expect an EOM indicator on the last packet of a connection, if
you do not choose to use the 0PT_ENABLEEOM option, PAP takes care of that for
you, guaranteeing that the EOM indicator is set on the last packet. If, however,
you do choose to use the 0PT_ENABLEEOM option, you are responsible for setting
the EOM indicator, by using the T_MORE flag on every packet but the last.

You can enable the EOM option for an endpoint in several ways. One way is to
define the option as part of the configuration string you use to open the
endpoint. The following line of code enables the EOM option for a PAP
endpoint:

0TOpenEndpoint(0TCreateConfiguration("pap(EnableEOM=1)"),0, NULL, &err);

340

Or you could call a function like that shown in Listing 7-5 (page 181) as follows:

err=SetFourByteOption(ep, ATK_PAP, OPT_ENABLEEOM, 1);

to enable the EOM option for a PAP endpoint.

The Open Retry Option

By default, when a PAP endpoint provider calls the 0TConnect function, which
creates a connection request, it only tries to establish the connection once. This
behavior is controlled by an option, PAP_OPT_OPENRETRY, whose default
value is 1. (The default value of 1 for this option differs from the default retry
count of 5 specified in Inside AppleTalk, second edition. In other aspects of Open
Transport AppleTalk, AppleTalk protocols adhere to the specifications detailed
in that book.)

To force PAP to try again to open the connection, you can set a value greater
than 1 for the PAP_OPT_OPENRETRY option. Workstation client applications that
want to print data, for example, will probably keep trying to get access to a
printer server, retrying printer connections until it succeeds or until the user
presses the cancel button.

The Server Status Option

In a client-server interaction, a client may sometimes need to know the status
of the server. In these cases, the client can request the server’s status. This

Using PAP

CHAPTER 18

Printer Access Protocol (PAP)

request can occur outside a connection. If the 0PT_SERVERSTATUS option has been
set, with a C string up to 255 bytes long, the server can return that string as the
server status.

The Reply Count Option

One-call specific option which you might find useful when trying to connect to
some printers is the ATP_OPTREPLYCNT option.

A PAP-compliant printer will respond to a PAP connection request with a
single connection reply packet in which the EOM flag is set. Some printers do
not set this flag in the response packet, so ATP (upon which PAP is layered)
expects additional packets to be sent. After the timeout, the endpoint resends
the connection request, and again the printer responds without setting the
EOM bit. The ATP_OPTREPLYCNT option tells PAP to expect only one reply packet.

Listing 18-1 demonstrates how to implement the ATP_OPTREPLYCNT option. By
default when you make a connection request, the response bitmap is set to
request 8 packets. By using the ATP_OPTREPLYCNT option set to 1 (with the
0TConnect call), the connection request can be satisfied when the response
packet is received even when the EOM bit is not set. In the sample, the
endpoint is assumed to be in synchronous mode.

Listing 18-1 Using the ATP_OPTREPLYCNT option

0SStatus DoPAPSpecialConnect(TEndpoint* ep, UInt8 *addr, UInt32 addrlLen,
UInt32 openRetryVal,
UInt32 retrylntervalVal,
UInt32 replyCntVal)

TCall theCall;

static unsigned char optbuf[3 * kOTFourByteOptionSizel;
0SStatus err;

short i=0;

if (!10TIsSynchronous(ep))
{
/* this routines assumes that the endpoint is synchronous. */
return (-1);

Using PAP 341

CHAPTER 18

Printer Access Protocol (PAP)

/* set the address field */
theCall.addr.buf = addr;
theCall.addr.len = addrlen;

if (openRetryVal != 0)

{
((TOption*)opthbuf)->Ten= kOTFourByteOptionSize;
((TOption*)optbuf)->Tevel= ATK_PAP;
((TOption*)optbuf)->name= PAP_OPT_OPENRETRY;
((TOption*)optbuf)->value[0]= openRetryVal;
(((TOption*)optbuf) + 1)->Ten= kOTFourByteOptionSize;
(((TOption*)optbuf) + 1)->Tevel= ATK_PAP;
(((TOption*)optbuf) + 1)->name= OPT_INTERVAL;
(((TOption*)optbuf) + 1)->valuel[0]= retrylntervalVal;

i +=2; // increment the options counter index

if (replyCntVal != 0)
{
/* 1f the replyCntVal is non zero then make sure that it */
/* falls between 1 and 8 */
if (replyCntVal < 1)
replyCntval = 1;
if (replyCntVal 8)
replyCntval = 8;

A4

(((TOption*)optbuf) + i)->Ten= kOTFourByteOptionSize;
(((TOption*)optbuf) + i)->Tevel= ATK_ATP;
(((TOption*)optbuf) + i)->name= ATP_OPT_REPLYCNT;
(((TOption*)optbuf) + i)->valuel[0]= replyCntVal;

i++;/* increment the options counter index */
/* go ahead and set the option buffer field */
theCall.opt.buf= (UInt8*)optbuf;
/* set the length field depending on number of options set. */

theCall.opt.len= i * kOTFourByteOptionSize;

theCall.udata.len= 0;

342 Using PAP

CHAPTER 18

Printer Access Protocol (PAP)

err = ep->Connect(&theCall, NULL);

return err;

Disconnecting

As with all connection-oriented Open Transport protocols, PAP supports
abortive disconnects. In addition, PAP supports orderly disconnects, although
it can only implement them locally.

An abortive disconnect directs the remote endpoint to abruptly tear down its
connection without making any accomodation for the data that may be in the
transmission pipeline at the time. You can define your own handshake to
prevent losing data during the disconnect process.

PAP implements orderly disconnects locally, not over the wire. This means that
immediately after you request the disconnect, PAP sends all data buffered at
the local end and then tears down the connection, breaking communication
with the remote end. As a result, no data can be sent from either the local or
remote endpoint. The endpoints can continue to process data already in their
receive queues, but no new data can go out.

Using General Open Transport Functions With PAP

This section describes any special considerations you must take into account
for Open Transport functions when you use them with the Open Transport PAP
implementation. You must be familiar with the function descriptions in the
chapter “Endpoints”(page 83) before reading this section.

OTBind

The 0TB1ind function associates a local protocol address with the endpoint
specified by the ref parameter.

You can bind multiple PAP endpoints to a single protocol address, but you can
bind only one passive endpoint that listens at that address.

With PAP, as with other connection-oriented protocols, the req->qlen
parameter specifies the number of outstanding connection requests that an

Using PAP 343

344

CHAPTER 18

Printer Access Protocol (PAP)

endpoint can support. The endpoint can negotiate a lower final value of qlen if
it cannot handle the requested number of outstanding connection requests.

OTConnect

The 0TConnect function requests a connection to a specified remote endpoint.

PAP does not allow application-specific data to be included when you establish
a connection, so you need to set the sndcall->udata.len field to 0. PAP ignores
the sndcall->udata.buf field.

OTRcvConnect

The 0TRcvConnect function reads the status of a previously issued connection
request.

Because PAP does not allow application-specific data to be associated with a
connection request, you need to set the call->udata.maxlen field to 0. PAP
ignores the call->udata.buf field.

OTListen

The 0TListen function listens for an incoming connection request.

PAP does not allow application-specific data to be included when you request a
connection, so you need to set the cal1->udata.max1en field to 0. PAP ignores
any data in the cal1->udata.buf field.

OTAccept

The 0TAccept function accept a connection request either on the same endpoint
that received the connection request or on a different endpoint.

PAP does not allow application-specific data to be included when you accept a
connection, so you need to set the cal1->udata.len field to 0. PAP ignores the
call->udata.buf field.

oTSnd

The 0TSnd function sends normal and expedited data through a connection-
oriented transactionless endpoint.

Using PAP

CHAPTER 18

Printer Access Protocol (PAP)

PAP supports TSDUs through the 0PT_ENABLEEOM option. In PAP, TSDUs sent
from the client endpoint can be of infinite length, but TSDUs sent from a server
endpoint can only be up to 512 bytes long. Zero-length packets are supported
by PAP.

OTRcv

The 0TRcv function receives normal and expedited data through a
connection-oriented transactionless endpoint.

PAP supports TSDUs through the 0PT_ENABLEEOM option.

OTSndDisconnect

The 0TSndDisconnect function initiates an abortive disconnect or rejects a
connection request.

In an abortive disconnect, the cal1 parameter is ignored because PAP does not
allow application-specific data to be associated with a disconnect. You need to
set the cal1->udata.len field to 0. PAP ignores the cal1->udata.buf field.

OTRcvDisconnect

The 0TRcvDisconnect function returns information about why a connection
attempt failed or an established connection was terminated.

Because PAP does not allow application-specific data to be associated with a
disconnect, you need to set the discon->udata.maxlen field to 0. PAP ignores the
discon->udata.buf field.

Using PAP 345

CHAPTER 18

Printer Access Protocol (PAP)

346 Using PAP

CHAPTER 109

Serial Endpoint Providers

Contents

About Serial Endpoint Providers 350
About Serial Communication 351
DTR and CTS Signals 353
Asynchronous and Synchronous Communication 353
Handshaking Methods for Flow Control 354
Using Serial Endpoints 355
Opening and Closing Serial Endpoints 355
Sending and Receiving Data 356
Using Serial-Specific Commands 357
Using Options to Change Serial Communications Settings 358
Controlling Serial Port I/ O Handshaking 359
Obtaining Status Information About the Serial Port 360
Using General Open Transport Functions
With Serial Endpoints 361
Obtaining Endpoint Data With Serial Endpoints 361
Using Endpoint Functions With Serial Endpoints 362

Contents 347

CHAPTER 19

348 Contents

CHAPTER 19

Serial Endpoint Providers

This chapter describes how you can use serial endpoint providers to transfer
data between devices connected to a serial port. Open Transport supports
asynchronous serial data communication between client applications through
these ports. This chapter provides information about Open Transport functions
and options that are specific to serial endpoint providers. You need this
information only if you have a specific need to use serial communication.

To get the most out of this chapter, you should already be familiar with the
concepts and application interfaces described in the chapters “Introduction to
Open Transport,” “Providers,” “Endpoints,” “Option Management,” and
“Configuration Management” in this book. For information about the
Macintosh serial port hardware, including circuit diagrams and signal
descriptions, see Guide to the Macintosh Family Hardware, second edition. For
information about locating all the serial ports available through Open
Transport, see “Ports” (page 191).

This chapter begins with a brief summary of key concepts in serial data
communication, then describes how you can use serial endpoint providers to

= configure a serial port
= send and receive data through a serial port
= interpret serial communication status information

The section “Using General Open Transport Functions With Serial Endpoints”
(page 360) describes serial-specific information relating to functions described
in the “Endpoints” chapter of this book and the section “Using Options to
Change Serial Communications Settings” (page 357) describes the options you
can specify when you configure a serial endpoint provider. The Serial
Reference Chapter (page 763)describes those constants, options, and 0TIoct]
function commands available to users of Open Transport serial endpoint
providers.

About Serial Endpoint Providers

Open Transport serial endpoint providers provide full-duplex low-level
support for asynchronous serial data transfers through the built-in serial port
and any serial choice registered with the Communications Resource Map.
Serial endpoint providers use connection-oriented data streams. They do not
support the functions that provide connectionless or transaction-based service.

About Serial Endpoint Providers 349

350

CHAPTER 19

Serial Endpoint Providers

Because of the point-to-point nature of serial communications, there are a few
differences between using a serial endpoint and using other
connection-oriented endpoints.

One of the key differences is that there are no addresses for serial endpoints
because serial communications is point-to-point. As such, no addressing
information is possible and all address parameters for serial endpoint functions
need to be set to zero.

The other important difference is that only one serial endpoint can own the
hardware at a given time. That is, only one serial endpoint provider can initiate
and accept a connection on a given port at a time, although there can be several
listening endpoints on a given port simultaneously.

About Serial Communication

Open Transport serial communication, like any data transfer between
endpoints, requires coordination between the sender and receiver; for example,
when to start the transmission and when to end it, when one particular bit or
byte ends and another begins, when the receiver’s capacity has been exceeded,
and so on. The scope of serial data transmission protocols is large and complex,
encompassing everything from electrical connections to data encoding
methods. This section provides a brief overview of the protocol that governs the
lowest level of data transmission—how serialized bits are sent over a

single electrical line.

When a sender is connected to a receiver over an electrical connecting line, the
line is initially in an idle state, called the mark state. Changing the state of the
line by shifting the voltage is called a space. The receiver interprets a space as a
0 bit, and a mark as a 1 bit. These transitions are shown in Figure 19-1.

The change from the mark state to a space is known as the start bit, and this
triggers the synchronization necessary for asynchronous serial transmission.
The start bit delineates the beginning of the transmission unit defined as a
character frame. The receiver then samples the state at periodic intervals,
known as the bit time, to determine whether a 0 bit or a 1 bit is present on the
line.

About Serial Endpoint Providers

CHAPTER 19

Serial Endpoint Providers

Figure 19-1 The format of serialized bits

Mark

Space

Idle —» Start -«———— 5,6, 7, or 8 data bits ———————» | Parity -=— Stop—»Idle

bit bit bits

N

L Bit time ‘ J

Character frame

The bit time is expressed in samples per second, known as the baud rate. The
baud rate must be agreed upon by sender and receiver before transmitting data
in order for a successful transfer to occur. Common values are 1200 baud and
2400 baud. In the case where one sampling interval can signal a single bit, a
baud rate of 1200 results in a transfer rate of 1200 bits per second (bps). Note
that because modern protocols can express more than one bit value within the
sampling interval, the baud rate and the transfer rate may not be identical.

Before transmission, the sender and receiver also agree on a serial data format;
that is, how many bits of data constitute a character frame and what happens
after those bits are sent. Open Transport serial endpoints support frames of 5, 6,
7, or 8 bits in length. Character frames of 7 or 8 data bits are commonly used for
transmitting ASCII characters.

After the data bits in the frame are sent, the sender can optionally transmit a
parity bit for error-checking. There are various parity schemes, which the
sender and receiver must agree upon prior to transmission. In odd parity, a bit
is sent so that the entire frame always contains an odd number of 1 bits.
Conversely, in even parity, the parity bit results in an even number of 1 bits. No
parity means that no additional bit is sent.

To signify the end of the character frame, the sender places the line back to the
mark state for a minimum specified time interval. This interval has one of
several possible values: 1 bit time, 2 bit times, or 1-1/2 bit times. This signal is
known as the stop bit, and returns the transmission line back to the mark state.

About Serial Endpoint Providers 351

352

CHAPTER 19

Serial Endpoint Providers

Electrical lines are always subject to environmental perturbations known as
noise. This noise can cause errors in transmission by altering voltage levels so
that a bit is reversed, shortened, or lengthened. When this occurs, the ability of
the receiver to distinguish a character frame may be affected, resulting in a
framing error.

The break signal is a special signal that falls outside the character frame. The
break signal occurs when the line is switched from the mark state to a space
and held there for longer than a character frame. The break signal resembles an
ASCII NUL character (a string of 0-bits), but exists at a lower level than the
ASCII encoding scheme that commonly governs the encoding of information
within the character frame.

DTR and CTS Signals

The electrical characteristics of a serial communications connection are
specified by various interfacing standards. The specifications of these standards
are contained in documents available from the Electronic Industries
Association (EIA) that cover aspects of the connection, such as its electrical
signal characteristics and its interface circuits.

The principal signals used by Open Transport serial endpoint providers are the
Data Terminal Ready (DTR) and Clear To Send (CTS) signals. These two
signals are connected to each other. Note that in the definitions of these signals
which follow, the term data terminal equipment (DTE) is used to describe the
initiator or controller of the serial connection, typically the computer. The term
data communication equipment (DCE) describes the device that is connected to
the DTE, such as a modem or printer. For specific information about how these
signals are used in Macintosh computers, see Guide to the Macintosh Family
Hardware, second edition.

» The Data Terminal Ready (DTR) signal indicates that the DTE (that is, your
computer) is ready to communicate. Deasserting this signal causes the DCE
(that is, your modem or printer) to suspend transmission.

s The Clear To Send (CTS) signal indicates that the DCE (your modem or
printer) is ready to send data.

Asynchronous and Synchronous Communication

Serial data transfers depend on accurate timing in order to differentiate bits in
the data stream. This timing can be handled in one of two ways:

About Serial Endpoint Providers

CHAPTER 19

Serial Endpoint Providers

asynchronously or synchronously. In asynchronous communication, the peers
agree on a clocking mechanism before data is transferred; in synchronous
communication, the signal carries the clocking information. The terms
asynchronous and synchronous are slightly misleading because both kinds of
communication require synchronization between the sender and receiver.

Asynchronous communication is the prevailing standard in the personal
computer industry.

IMPORTANT

Do not confuse asynchronous communication with
asynchronous execution. Asynchronous communication is a
protocol for coordinating serial data transfers.
Asynchronous execution refers to the capability of a device
driver to carry out background processing. Serial
endpoints support both asynchronous communication and
asynchronous execution. a

Open Transport serial endpoints do not support synchronous communications
protocols. However, they do support synchronous clocking supplied by an
external device.

Handshaking Methods for Flow Control

Because a sender and receiver can’t always process data at the same rate, some
method of negotiating when to start and stop transmission is required. Open
Transport serial endpoint providers support two methods of controlling serial
data flow, known as handshaking. One method relies on the serial port
hardware, the other is implemented in software.

Hardware handshaking uses two of the serial port signal lines to control data
transmission. When the serial endpoint provider is ready to accept data from
an external device, it asserts the Data Terminal Ready (DTR) signal on pin 1 of
the serial port, which the external device receives through its Clear To Send
(CTS) input. Likewise, the Macintosh receives the external device’s DTR signal
through the CTS input on pin 2 of the serial port. When either the Macintosh or
the external device is unable to receive data, it deasserts its DTR signal, and the
sender suspends transmission until the signal is asserted again.

Software handshaking uses an agreed-upon set of characters for the start and
stop signals. Open Transport serial endpoints support XON / XOFF
handshaking, which typically assigns the ASCII DC1 character (Control-Q) as

About Serial Endpoint Providers 353

CHAPTER 19

Serial Endpoint Providers

the start signal and the DC3 character (Control-S) as the stop signal, although
you can choose different characters.

Using Serial Endpoints

354

Serial endpoint providers use standard Open Transport functions for binding,
requesting and accepting connections, sending and receiving data, and
managing options. You can send and receive the desired data using the
standard Open Transport 0TSnd and 0TRcv functions. You can call these
functions either synchronously or asynchronously, as described in the chapter
“Endpoints” (page 83).

In addition, Open Transport provides specialized serial-specific commands and
options that allow you to

= set the flow-control handshaking

» use an external timing signal for synchronous clocking

= set or clear a break signal

= get status information about a port and any associated transmission errors
» define how characters with parity errors are handled

= request burst mode operation

= define receive timeout options

» set the framing type

Opening and Closing Serial Endpoints

To open serial endpoints, you need to supply a configuration string to the
0TOpenEndpoint function. The configuration string you supply depends on
which serial port you want to open. The following constants are defined for the

Using Serial Endpoints

CHAPTER 19

Serial Endpoint Providers

built-in ports; you can find other serial ports using the techniques descripted in
“Ports” (page 191).

String
Constant name value Description
kSerialName "serial" Default serial port
kSerialPortAName "serialA" Serial port A
(printer port)
kSerialPortBName "serialB" Serial port B
(modem port)
kSerialPortABName "serialAB" Serial port AB
(combined
printer/ modem
port)

For example, the following line of code opens a serial endpoint on serial port A:

0TOpenEndpoint(0TCreateConfiguration(kSerialPortAName));

There may be other serial ports available, such as those registered by the
Communications Toolbox.

To close a serial endpoint provider, you use the standard Open Transport
function 0TCloseProvider, described in the chapter “Providers” (page 61).

Sending and Receiving Data

As with all endpoints, you must call the 0TBind function before you can use a
serial endpoint provider to send or receive data. For serial endpoint providers
that initiate outgoing data, you need to bind with a queue length (the g1en
parameter) of 0. When you wish to start transferring data, you must call the
0TConnect function to place the endpoint in the data transfer state and allow the
0TSnd and 0TRcv functions to be called. Calling the 0TSndDisconnect function
releases the connection.

For serial endpoint providers that listen for incoming data, you need to bind
with a queue length of 1. You cannot bind with a queue length greater than 1.
When an incoming character is detected on the serial port, you receive a
connect indication. You can accept the indication on the current endpoint, or

Using Serial Endpoints 355

356

CHAPTER 19

Serial Endpoint Providers

you can accept it on another serial endpoint, that has a queue length of 0 or is
not yet bound. In either case, once the accepting endpoint returns to the T_IDLE
state, the original endpoint once again listens for incoming data and gets a
connect indication if another incoming character is detected. Calling the
0TSndDisconnect function on the accepting endpoint releases the connection
and allows your endpoint to continue listening on the port. Your endpoint can
continue to listen until you call the 0TUnbind function.

You can create a number of serial endpoints on a given serial port, but only one
can have a connection at a time. The first serial endpoint to connect owns the
hardware; other endpoints that subsequently attempt to connect receive a
kOTAddressBusyErr result code.

Using Serial-Specific Commands

You can control several aspects of serial communication by using the Open
Transport function 0TIoct1 with different serial-specific commands. The
0TIoct1 function, described in the chapter “Providers Reference” (page 383),
accesses the low-level serial driver control and status functions.

You can assert the DTR signal for the serial port by using a value of
kOTSerialSetDTROn with the I_SetSerialDTR command and you can negate it
with a value of k0TSerialSetDTROff. Likewise, you can use the
I_SetSerialBreak command to set or negate the break signal with values of
kOTSerialSetBreakOn and kOTSerialSetBreak0ff or you can use a number
greater than 1 to indicate the number in milliseconds to assert a break signal
temporarily.

You can also use the 0TToct1 function commands to set the XOFF state of the
serial port and to indicate whether the port is to send an XOFF or XON
character. Using a value of k0TSerialForceX0ffTrue with the
I_SetSerialX0ffState command sets the XOFF state of the serial port, which is
equivalent to receiving an XOFF character, and using a value of
kOTSerialForceX0ffFalse with this command clears the XOFF state, which is
equivalent to receiving an XON character.

Using a value of 1 with the 1_SetSerialX0on and I_SetSerialX0ff commands
causes the serial port to unconditionally send an XON or XOFF character,
respectively. A value of 0 with these functions causes the character to be sent
only if the last input flow-control character sent was the opposite kind—that is,
the XOFF or XON character, respectively.

Using Serial Endpoints

CHAPTER 19

Serial Endpoint Providers

Using Options to Change Serial Communications Settings

Serial endpoints currently support eight options. These options are defined by
the XTI-level constant COM_SERIAL, which has a value of 'SERL".

When you open a serial endpoint, Open Transport configures the selected port
with the default settings of 19200 baud, 8 data bits per character, no parity bit, 1
stop bit, and no handshaking. You can change these settings using various
options, all of which use 4-byte unsigned integer values. There is also a serial
status option that provides current information about the serial port. Four of
the options are fairly straightforward and are described here; using the other
options is more complicated, and their use is described in the two subsequent
sections.

s The baud rate option sets the serial baud rate.The serial module chooses the
closest baud rate supported that matches the requested rate. Possible values
range from 300 to 230.4K baud transmission rates (depending on the
hardware capability). The default value is 19200 baud.

» The data bits option selects the number of data bits to be used. Legal values
are 5, 6,7, and 8. The default value is 8 data bits.

s The stop bits option selects the number of stop bits to be used. This value
corresponds to ten (10) times the actual number of stop bits. Legal values
are 10, 15, and 20, which correspond to stop bits of 1, 1.5, and 2. The default
value is 10, which is equivalent to 1 stop bit.

s The parity option selects the parity to be used. Legal values are kOTNoParity
0), k0TOddParity(1), and kOTEvenParity(2). The default value is kOTNoParity.

s The receive timeout option sets the number of milliseconds the receiver
should wait to receive more data before timing out and delivering the data is
already has . The default value is 10.

s The error character option defines how characters with parity errors are
handled—that is, if they are replaced and with which character. Open
Transport provides macros (and C++ inline functions),
0TSerialSetErrorCharacter and 0TSerialSetErrorCharacterWithAlternate, to
help place the character bits correctly.

= The external clock option requests an external clock. This option may not be
supported by all serial drivers.

s The burst mode option requests that the serial driver continues looping,
reading incoming characters, rather than waiting for an interrupt for each
character. This option may not be supported by all serial drivers.

Using Serial Endpoints 357

CHAPTER 19

Serial Endpoint Providers

Controlling Serial Port I/O Handshaking

You can use the SRL_OPT_HANDSHAKE option to customize serial port handshaking
in a variety of ways. For instance, you can request that an input handshake be
controlled by the CTS line, or by the XON /XOFF sequence. To control the
handshaking behavior, you pass in a 4-byte usigned integer value with the
SRL_OPT_HANDSHAKE option.

A schematic diagram of this 4-byte option value is shown in Figure 19-2

Figure 19-2 Serial port I/0 handshaking

XON/XOFF

output
| XON/XOFF

input

12 8 8

| DTR output
| CTSinput

bit 31 Reserved XON char XOFF char bit 0

setto @

The high word (16 bits) of the integer is a bitmap with one or more of the
following bits set:

Handshake Value Description
kOTSerialXOnOffInputHandshake 1 XON/XOFF set for input.
kOTSerialXOn0ffOutputHandshake 2 XON/XOFF set for output.
kOTSerialCTSInputHandshake 4 CTS set on input.
kOTSerialDTROutputHandshake 8 DTR set on output.

The third byte is the XON character value; the lowest byte is the XOFF
character. If these values are 0 and XON/OFF handshaking is requested, the
default values of control-S for XOFF and control-Q for XON are used. The
default value of this option is no handshaking.

Open Transport provides a macro and a C++ inline function
(0TSerialHandshakeData) that you can use to create the 4-byte option value.

358 Using Serial Endpoints

CHAPTER 19

Serial Endpoint Providers

For example, to enable XON /XOFF input handshaking, but to specify that the
XON character be control-T rather than control-Q, you can create an option
structure as follows:

opt.value = OTSerialHandshakeData(kOTSerialXOnOffInputHandshake |
kOTSerialXOnOffOutputHandshake,
'T" - 64, 'S" - 64);

Obtaining Status Information About the Serial Port

The serial status option is a read-only option that returns status information on
the serial port. Itis a 4-byte unsigned integer containing a bitmap that can
provide the following information about errors or changes in status that may
have occurred:

» A hardware overrun has occurred due to an overflow of the hardware
input buffer.

= A software overrun has occurred due to an overflow of the software
input buffer.

= A parity error has occurred due to the serial hardware detecting an incorrect
parity bit.

= A framing error has occurred due to the serial hardware detecting a stop
bit error.

= A break has occurred on the line.

s The endpoint provider has sent an XOFF character, which initiates
flow control.

s The endpoint provider has negated the DTR signal, which initiates
flow control.

s The endpoint provider has negated the CTS signal, which initiates
flow control.

s The endpoint provider has received an XOFF character, and so all output is
on hold.

s The endpoint provider has initiated a break that is still in progress.

Data received from the serial port passes through a hardware buffer and then
into a software buffer managed by the input driver for the port. Each input
driver’s buffer can initially hold up to 1024 characters, but you can specify a

Using Serial Endpoints 359

360

CHAPTER 19

Serial Endpoint Providers

larger buffer with standard Open Transport functions. This is normally not
necessary because Open Transport provides additional buffering as part of its
processing.

Open Transport serial services are layered on top of the serial hardware driver.
The capabilities of Open Transport endpoints depend on the driver. Consult the
hardware documentation to determine the limitations of Open Transport for
serial endpoints.

Because the serial hardware in some Macintosh computers relies on processor
interrupts during I/O operations, overrun errors are possible if interrupts are
disabled while data is being received on the serial port. To prevent such errors,
the Disk Driver and other system software components are designed to store
any data received by the modem port while they have interrupts disabled and
then pass this data to the port’s input driver. Because the system software only
monitors the modem port, the printer port is not recommended for two-way
communication at data rates above 300 baud.

Overrun, parity, and framing errors are usually handled by requesting that the
sender retransmit the affected data. Break errors are typically initiated by the
client application, which handles them as appropriate.

Using General Open Transport Functions
With Serial Endpoints

This section describes any special considerations that you must take into
account for Open Transport functions when you use them with serial endpoint
providers. You should be familiar with the function descriptions in the chapter
“Endpoints” (page 83) before reading this section.

Obtaining Endpoint Data With Serial Endpoints

This section describes the possible values you can get for endpoint information
when using a serial endpoint.

Using Serial Endpoints

CHAPTER 19

Serial Endpoint Providers

OTOpenEndpoint, OTAsyncOpenEndpoint, and OTGetEndpointinfo

The following values can be returned by the info parameter to the
0TOpenEndpoint, 0TAsyncOpenEndpoint, and 0TGetEndpointInfo functions when
used with serial endpoint providers:

Parameter Serial Meaning

info->addr 0 Addresses are not used.

info->options Greater than 0 Maximum number of bytes needed to
hold protocol-specific options.

info->tsdu T_INVALID TSDUs are not supported.

info->etsdu T_INVALID Transfer of expedited data is not
supported.

info->connect T_INVALID Data cannot be sent with functions
that establish connections.

info->discon T_INVALID Data cannot be sent with abortive
disconnects.

info->servtype T_COTS Connection oriented transactionless
service. Orderly disconnects are not
supported.

info->flags . No flags are set.

IMPORTANT

The values shown in the preceding table are subject to
change. Be sure to use the 0TOpenEndpoint,
0TAsyncOpenEndpoint, and 0TGetEndpointInfo functions to
obtain the current values for these parameters. a

These fields and the significance of their values are described in more detail in
the chapter “Endpoints Reference” (page 421).

Using Endpoint Functions With Serial Endpoints

This section describes serial-specific information about functions described in
the chapter “Endpoints” (page 83).

OTBind

The 0TBind function associates a serial port with the endpoint you specify.
Because serial communication is point-to-point over a hardware connection,

Using Serial Endpoints 361

362

CHAPTER 19

Serial Endpoint Providers

you cannot specify an address. Therefore, you must specify 0 as the length of
the address in the reqaddr->TBind.addr.1en parameter. You can bind multiple
serial endpoints to listen at a single port.

With serial endpoints, the req->q1en parameter, which specifies the number of
outstanding connection requests that an endpoint can support, can only have a
value of 0 or 1. To listen, a serial endpoint provider must have a queue length
value of 1; to make connections, the endpoint can have a value of 0 or 1. A
value greater than 1 results in an error code.

OTConnect

The 0TConnect function requests a connection to a specified remote endpoint.

Because serial endpoint providers do not allow you to send any application-
specific data during the connection establishment phase, you must set the
sndcall->udata.len field to 0. Serial endpoints ignore the sndcall->udata.buf
field.

OTlListen

The 0TListen function listens for an incoming connection request.

Serial endpoints do not allow application-specific data to be included when
you request a connection, so you need to set the cal1->udata.max1len field to 0.
Serial endpoints ignore the call->udata.buf field.

OTAccept

The 0TAccept function accepts a connection request. You can accept a
connection either on the same endpoint that received the connection request or
on a different endpoint.

Serial endpoints do not allow application-specific data to be included when
you accept a connection, so you need to set the call->udata.len field to 0.
Serial endpoints ignore the call->udata.buf field.

OTSnd

The 07Snd function sends data through a connection-oriented transactionless
endpoint. Serial endpoints do not support TSDUs.

Using Serial Endpoints

CHAPTER 19

Serial Endpoint Providers

OTRcv

The 0TRcv function receives data through a connection-oriented transactionless
endpoint. Serial endpoints do not support TSDUs.

OTSndDisconnect

The 0TSndDisconnect function initiates an abortive disconnect or rejects a
connection request.

In an abortive disconnect, the call parameter is ignored because serial
endpoints do not allow application-specific data to be associated with a
disconnect. You need to set the cal1->udata.len field to 0. Serial endpoints
ignore the call->udata.buf field.

OTRcvDisconnect

The 0TRcvDisconnect function returns information about why a connection
attempt failed or an established connection was terminated.

Because serial endpoints do not allow application-specific data to be associated
with a disconnect, you need to set the discon->udata.maxlen field to 0. Serial
endpoints ignore the discon->udata.buf field.

Using Serial Endpoints 363

CHAPTER 19

Serial Endpoint Providers

364 Using Serial Endpoints

PART T W O

Open Transport Reference

PART O N

CHAPTER 20

Initializing and Closing Open
Transport Reference

Contents

Error Constants 370

The Gestalt Selector and Response Bits 370

The OTConfiguration Structure 371

The OTAddress Structure 372

The TNetBuf Structure 372

Functions 373

Initializing and Closing Open Transport 373
InitOpenTransport 374
InitOpenTransportUtilities 375
CloseOpenTransport 376

Creating, Cloning, and Disposing of a Configuration Structure 377
O0TCreateConfiguration 377
0TCloneConfiguration 379
0TDestroyConfiguration 380

Contents 367

CHAPTER 20

368 Contents

CHAPTER 20

Initializing and Closing Open Transport Reference

This chapter describes the contents, data types, and functions you use to
initialize and close Open Transport, to configure a provider, and to specify an
address. The chapter “Open Transport”(page 5) explains their use.

This section describes the basic configuration management constants, the
Gestalt function selector and response bits, and the configuration structure for
Open Transport.

Error Constants

If Open Transport is unable to create an 0TConfiguration structure (page 398), it
returns one of the following values, depending on whether the specified path
was invalid or whether there was insufficient memory to create the structure:

f#idefine kOTInvalidConfigurationPtr ((0TConfiguration*)-1L)

fidefine kOTNoMemoryConfigurationPtr ((0TConfiguration*)0)

The Gestalt Selector and Response Bits

You can test whether Open Transport and its various parts are available by
using the Gestalt function with the 'ota kn' and 'otvr' selectors.

The 'otvr' selector determines the Open Transport version in NumVersion
format. For more information on Apple’s version numbering scheme and the
NumVersion format, see Technote OV12:Version Territory. The 'otvr' selector was
not implemented until version 1.1 of Open Transport. The absence of this
selector does not mean that Open Transport is not present. You can also check
for the availability of Open Transport by calling the function InitOpenTransport
(page 373).

The 'otan' selector returns information by setting or clearing bits in the
response parameter. The bits currently used are defined by constants, shown
along with the Open Transport selector in the following enumeration:

enum {
gestaltOpenTptVersions = 'otvr',
gestaltOpenTpt = 'otan',
gestaltOpenTptPresentMask = 0x00000001,
gestaltOpenTptlLoadedMask = 0x00000002,

369

CHAPTER 20

Initializing and Closing Open Transport Reference

gestaltOpenTptAppleTalkPresentMask = 0x00000004,

gestaltOpenTptAppleTalklLoadedMask = 0x00000008,
gestaltOpenTptTCPPresentMask = 0x00000010,
gestaltOpenTptTCPLoadedMask = 0x00000020,
gestaltOpenTptIPXSPXPresentMask = 0x00000040,
gestaltOpenTptIPXSPXLoadedMask = 0x00000080,

gestaltOpenTptPresentBit =
gestaltOpenTptlLoadedBit =
gestaltOpenTptAppleTalkPresentBit =
gestaltOpenTptAppleTalklLoadedBit =
gestaltOpenTptTCPPresentBit =
gestaltOpenTptTCPLoadedBit =
gestaltOpenTptIPXSPXPresentBit =
gestaltOpenTptIPXSPXLoadedBit =

~N O OB W NN O

by

For more information about the Gestalt function, see Inside Macintosh:
Operating System Ultilities.

The OTConfiguration Structure

Open Transport functions that open a provider take as a parameter a pointer to
a configuration structure that specifies the configuration of that provider. For
example, the configuration structure of an endpoint specifies which protocol
modules the endpoint uses. To create a configuration structure and obtain a
pointer to it, you call the 0TCreateConfiguration function (page 376). To make a
copy of a configuration structure, you call the 0TCloneConfiguration function
(page 378).

The contents of the 0TConfiguration structure are private and so is the
0TConfiguration data type that defines it.

struct OTConfiguration;
typedef struct O0TConfiguration OTConfiguration;

See “Error Constants” (page 397) for values that can be returned if the
configuration was not successful.

370

CHAPTER 20

Initializing and Closing Open Transport Reference

The OTAddress Structure

Addresses in Open Transport all begin with a common structure, which is
followed by fields that are protocol-specific. The common structure is defined
by the 0TAddress type:

struct OTAddress
{
0TAddressType fAddressType;
UInt8 fAddress[1];
}s
typedef struct 0TAddress 0TAddress;

The 0TAddress type itself is abstract. You would not declare a structure of this
type because it does not contain any address information. However address
formats defined by Open Transport protocols all use the fAddressType field to
describe the format of the fields to follow, which do contain address
information. For an example of how this data type is used in creating an
address, see the section “Addressing in Open Transport” (page 37).

The TNetBuf Structure

You use a TNetbuf structure to specify the location and size of a buffer that
contains an address, option information, or user data. Provider functions use
TNetbuf structures both as input parameters and output parameters. If you use
a TNetbuf structure as an input parameter, you specify the location and size of a
buffer containing information you want to send. If you use a TNetbuf structure
as an output parameter, you specify the location and the maximum size of the
buffer used to hold information when the function returns.

You use a TNetbuf structure to describe the location and size of contiguous data.
Open Transport allows you to describe noncontiguous data with the 0TData
structure. For more information, see “Advanced Topics Reference” (page 673)

The TNetbuf structure is defined by the TNetbuf data type.

struct TNetbuf {
UInt32 maxlen;
UInt32 len;

371

CHAPTER 20

Initializing and Closing Open Transport Reference

UInt8* buf;
b
typedef struct TNetbuf TNetbuf;

Field descriptions

maxTlen The size (in bytes) of the buffer to which the buf field
points. You must set the max1en field before passing a
TNetbuf structure to a provider function as an output
parameter. Open Transport ignores this field if you pass
the TNetbuf structure as an input parameter.

Ten The actual length (in bytes) of the information in the buffer
to which the buf field points. If you are using the TNetbuf
structure as an input parameter, you must set this field.

If you pass the TNetbuf structure as an output parameter,
on return the provider function sets this field to the
number of bytes the function has actually placed in the
buffer referenced by the buf field.

buf A pointer to a buffer. You must make sure that the buf field
points to a valid buffer and that the buffer is large enough
to store the information for which it is intended.

Functions

This section describes the functions you use to initialize and close Open
Transport and to create, clone, and delete a configuration structure.

Initializing and Closing Open Transport

Open Transport provides three functions that you can use to initialize and
close Open Transport.

372 Functions

CHAPTER 20

Initializing and Closing Open Transport Reference

InitOpenTransport

Initializes the parts of Open Transport for use by the application or code
resource.

C INTERFACE

0SStatus InitOpenTransport(void);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

function result An error code. See Appendix B.

DISCUSSION

Call this function before using other Open Transport functions.

If you need to know whether Open Transport is present at start-up time, but
you don’t need to use it (e.g. an installer) ,you can use the Gestalt function and
its Open Transport selectors as described on (page 369). However, for normal
applications, your calling the InitOpenTransport function is sufficient to test for
the presence of Open Transport.

To initialize only the parts of Open Transport that handle ports and implement
the Open Transport utility functions call the InitOpenTransportUtilities
function (page 374).

SPECIAL CONSIDERATIONS

You must make sure that your A5 world is correctly initialized for 68000 code
resources.

If your program uses the Apple Shared Library Manager (ASLM), you must
call the InitLibraryManager function to initialize ASLM before calling the
InitOpenTransport function. To initialize ASLM, use the InitLibraryManager
function, described in the Apple Shared Library Manager Developer’s Guide.

Functions 373

CHAPTER 20

Initializing and Closing Open Transport Reference

For applications, Open Transport patches the ExitToShel1 trap when you call
the function InitOpenTransport. The patch calls the function
CloseOpenTransport if Open Transport is still active when your application
quits.

SEE ALSO
“The Gestalt Selector and Response Bits” (page 369).

“Initializing and Closing Open Transport”(page 31).

The CloseOpenTransport function (page 375).

InitOpenTransportUtilities

Initializes only that part of Open Transport that handles ports and implements
Open Transport utility functions.

C INTERFACE
0SStatus InitOpenTransportUtilities(void);
C++ INTERFACE
None. C++ applications use the C interface to this function.
PARAMETERS
function result A return value other than kOTNoError indicates that the Open
Transport is not installed.
DISCUSSION

If you have called the function InitOpenTransport, you do not need to call the
InitOpenTransportUtilities function.

374 Functions

CHAPTER 20

Initializing and Closing Open Transport Reference

Call the InitOpenTransportUtilities function before calling Open Transport
functions that manipulate ports or before calling Open Transport utility
functions.

SPECIAL CONSIDERATIONS

SEE ALSO

If your program uses the Apple Shared Library Manager (ASLM), you must
call the InitLibraryManager function to initialize ASLM before calling the
InitOpenTransportUtilities function.

The InitOpenTransport function (page 373).

The Gestalt function, described in Inside Macintosh: Operating System Ultilities.

“The Gestalt Selector and Response Bits” (page 369).
“Initializing and Closing Open Transport (page 31).

The CloseOpenTransport function (page 375).

CloseOpenTransport

C INTERFACE

C++ INTERFACE

DISCUSSION

Unregisters your application or code resource connection to Open Transport.

void CloseOpenTransport(void);

None. C++ applications use the C interface to this function.

The CloseOpenTransport function tells Open Transport that your application or

code resource has finished using it. You can call this function only at system

Functions

375

CHAPTER 20

Initializing and Closing Open Transport Reference

task time. You must not call this function if you have any outstanding network
I/O in progress, such as an outstanding asynchronous operation.

When your application finishes using Open Transport, you have the option of
using this function to unload Open Transport without stopping execution if
your application has other tasks to perform that do not require Open Transport.
If you are writing an application, you are not required to use this function, but
it is strongly recommended that you do so.

If you are writing a code resource, a CFM code fragment, or a shared library,
you must call the CloseOpenTransport function before unloading from memory.

System software cannot unload the Open Transport kernel until the last
software module on your computer that called the InitOpenTransport function
has also called the C1oseOpenTransport function.

SPECIAL CONSIDERATIONS

SEE ALSO

If your client uses the Apple Shared Library Manager, be sure you call the
CleanupLibraryManager function after calling the CloseOpenTransport function.

The InitOpenTransport function (page 373).
The InitOpenTransportUtilities function (page 374).
“Getting Started With Open Transport” in Networking With Open Transport.

Creating, Cloning, and Disposing of a Configuration Structure

This section describes the Open Transport functions you can use to create,
clone, and destroy a provider configuration structure.

OTCreateConfiguration

376

Creates a structure defining a provider’s configuration.

Functions

C INTERFACE

CHAPTER 20

Initializing and Closing Open Transport Reference

0TConfiguration* 0TCreateConfiguration(const char* path);

C++ INTERFACES

PARAMETERS

DISCUSSION

None. C++ applications use the C interface to this function.

path A pointer to a character string describing the provider.

function result A pointer to a private 0TConfiguration structure. If the value
specified with the path parameter was invalid, the function
returns the result kOTInvalidConfigurationPtr. If there was not
enough memory to create the structure, the function returns the
result kOTNoMemoryConfigurationPtr.

The 0TCreateConfiguration function creates a configuration structure that
defines the software modules, hardware ports, and options that Open
Transport uses when you open a provider. This is a private structure, defined
by the 0TConfiguration data type (page 370). To create a configuration
structure, use the path parameter to pass a string describing the provider
service desired to the 0TCreateConfiguration function.

The simplest possible value of the path parameter is the name of the
highest-level protocol you want to use; for example, “tcp” . If you do not
specify a complete communications path, Open Transport uses default settings
to construct the rest of the path. For example, if you specify “adsp” for the path
parameter, Open Transport defaults to using the AppleTalk Data Stream
Protocol (ADSP) protocol module layered above the Datagram Delivery
Protocol (DDP) protocol module, which is, in turn, layered on the default port
configured in the AppleTalk control panel.

If you want to identify a particular port in the configuration string, you use the
port name to do so, described in the chapter “Ports”(page 191). More typically,
however, you leave this value blank—for example, using a string with only
“adsp” , which configures the provider with whatever port is specified in the
AppleTalk control panel.

Functions 377

CHAPTER 20

Initializing and Closing Open Transport Reference

To specify more than one protocol module, separate the module names

with commas. You can also specify values for options by putting them in
parentheses after the protocol name; for example, “adsp. ddp(Checksum=1)"
specifies that ADSP is to run on top of DDP and that the DDP checksum option
is enabled. For a list of valid options for each protocol, see the corresponding
protocol reference chapter.

The 0TCreateConfiguration function returns a pointer to the configuration
structure it creates. You pass this pointer as a parameter to the open-provider
functions such as the 0TOpenEndpoint or 0TOpenMapper functions. If the function
returns an error code, it is safe to pass the error code as the 0TOpenEndpoint
0TConfiguration® parameter. 0TOpenEndpoint will return the appropriate error.

SPECIAL CONSIDERATIONS

SEE ALSO

Functions that open providers dispose of the 0TConfiguration structure that
they use, so you need to use the 0TCloneConfiguration function to clone a
configuration structure if you want to open multiple providers with the
same configuration.

“Reusing Provider Configurations” (page 37) .
The 0TCloneConfiguration function(page 378).
The 0TDestroyConfiguration function (page 379).

The 0TOpenEndpoint function (page 437) . The 0TAsyncOpenEndpoint
function(page 438).

OTCloneConfiguration

C INTERFACE

378

Copies an OTConfiguration structure.

0TConfiguration* OTCloneConfiguration(0TConfiguration* cfig);

Functions

CHAPTER 20

Initializing and Closing Open Transport Reference

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

cfig A pointer to the 0TConfiguration structure that you want
to copy.

function result A pointer to a private 0TConfiguration structure.

DISCUSSION

The 0TC1oneConfiguration function copies the 0TConfiguration structure that
you specify in the cfig parameter and returns a pointer to the copy. Because the
format of an 0TConfiguration structure is private, you must use the
0TCloneConfiguration function to obtain two identical structures. Creating
configurations through cloning is much faster than recreating them using the
O0TCreateConfiguration function.

SEE ALSO
“Initiating and Closing Open Transport”(page 31).
The 0TCreateConfiguration function (page 376).

The 0TDestroyConfiguration function (page 379).

OTDestroyConfiguration

Disposes of an 0TConfiguration structure.

C INTERFACE

void O0TDestroyConfiguration(0TConfiguration* cfig);

C++ INTERFACE

None. C++ applications use the C interface to this function.

Functions 379

PARAMETERS

DISCUSSION

SEE ALSO

3