
Code Notes for Writeswell Jr.

October 28, 1995 1

Michael D. Crawford

Crawford@scruznet.com
http://www.scruznet.com/~crawford/WordServices/wdsvindex.html

Contents

Introduction
Running the Example Programs
How it Works
The Services Menu
Initiating a Session
Helpful Hints
Future Directions

Introduction

This is a brief overview of the source code to the Writeswell Jr. program that is used to
demonstrate the word-processor side of the Word ServicesSuite. Writeswell Jr. is a simple
TextEdit based text editor. It is AppleEvent aware, though, and can call a spelling checker,
grammar checker, hyphenator, or other "word service" via the Word Services protocol.

This sample code is believed to match the Word Services Suite specification.Previous versions of
the Word Services SDK had preliminary drafts of the specification and code that are no longer
valid. Be sure that you areworking with up-to-date code before actually putting this in
yourapplication. If you are not sure, contact me to get an update. I do try tokeep the SDK current
as I and other developers find bugs. The current code is quite robust as a result of extensive testing
by many different people.

Running the Example Programs

Writeswell Jr. can be run off of a CD since it creates a preference file on your hard disk. Spellswell
Demo will need to be on your hard disk since it saves its dictionary location in its own resource
file.

If you compile Writeswell Jr. to use debugger error messages, you must install a debugger such as
Macsbug. If there is an error, Writeswell Jr.calls the debugger with a helpful error message. If no
debugger is installed, you will get an "Unimplemented A-Trap" System Error. If an error is
returned from a trap call, the command "D7.W" will usually display the result code in Macsbug,
and the command "g" will continue execution.

Spellswell Demo shows some annoying alerts when you run it. That is because it is a demo. It
works well enough to develop and test Word Services, but if you want to spare yourself the "this
is a demo" messages, obtain the real Spellswell 7 from Working Software.

How it Works

The program starts in main in TestBed.c. Main initialized the managers, calls functions to install
the various handlers, and starts up the event loop.

There are two sets of Apple Event handlers. The first set, in MyHandlers.c, handle the required
Apple Events. These are the OAPP, ODOC, PDOC, and QUIT handlers from the
kCoreEventClass. The one notably useful code is MyOAPPHandler, which can open a file from

Code Notes for Writeswell Jr.

October 28, 1995 2

disk. You can open a file at any time by dragging its icon onto Writeswell Jr.'s icon, as long as
Writeswell Jr. has no windows open (it can only handle a single window). The handler calls
MyOpenFile in MyFiles.c, which calls MakeNewWindow to create a window (with a TextEdit
handle stuffed into the window's refCon), and then reads the text from the file into the TextEdit
field.

The Core suite events are handled by a single "wildcard" handler, GenericHandler in
GenHandlers.c, using an "inverted" method suggested to me by Richard Clark of Developer
University. GenericHandler extracts the direct object from the event and calls AEResolve to
identify the object that is specified by the event, and then calls a dispatcher for the given object
type. This allows me to neatly separate all the code for each object class into different files for easy
maintenance. There aren't many classes here yet, but I think this makes much more sense than
having each event handler handle the events for each class.

(One can be easily confused by the "kCoreEventClass" constant for the required event class, and
the "kAECoreSuite" constant for the Core Suite.)

The classes I support are cApplication, cWindow, cText, and typeObjectSpecifier. You may get
and set a window's title, and you may count the cText and the typeObjectSpecifier elements of the
window. Note that I use a coercion handler to convert typeChar data into "typePString" data in
order to set the window title; this is a type that would be good to have defined in the Core suite.
The coercion handler is TextPtrToPString in ObText.c. Note that the window code does not
"know" about TextPtrToPString; it just asks for the data type, and gets it because the coercion
handler is present.

I use a trick in my token data structures. A typical token body is as follows:

typedef struct {
TEHandle textH;
short startPos; /* Short cuz TE only handles 32k o' text! */
short length;
DescType propertyCode;

} TETextTokenBody;

If my object accessors are given a key form of formPropertyID, the ID is placed in propertyCode;
if they are not, then the desired data is the object itself (the window, the text, etc., rather than the
title of the window or the font of the text), and I used a propertyCode of 'null'. Here I make the
assumption that 'null' will never be a property; this may not be a valid assumption. The trick is
handy in my event handlers; I just switch off the property code to determine what to do:

OSErr TETextSetDataHandler(...)...
switch (propCode){

case typeNull:
...
TEInsert((Ptr)(*textValue.dataHandle), newTextLen, textH);
break;

case propBackgroundHilite:
TESetSelect((*tokHdl)->startPos,

(*tokHdl)->startPos + (*tokHdl)->length,
textH);

TEActivate(textH);
break;

default:
return errAENoSuchObject;
break;

Code Notes for Writeswell Jr.

October 28, 1995 3

Though the Core Suite specifies a single cText class, the text in your application may be of
different types - editable text in windows, non-editable text in menu titles or menu items and so on.
You will need a number of different token types for your text to reflect the different kinds of text
that you may have.

The key to supporting the Word Services suite is to support formRange and end-of-container
formAbsolutePosition key forms. Specifying a position relative to the end of the container allows
the text to be changed by several successive Set Data events without having to do extra work to
calculate new offsets. One can tell that a formAbsolutePosition key is relative to the end of the
container because it will be negative; -1 is the last object in the container. See the code in
CharFromTEText in ObText.c.

The Object Support Library documentation is unclear about how to resolve formRange specifiers.
Note that to specify a range of characters, we use a formRange object specifier that consists of two
formAbsolutePosition specifiers, which specify a single character at the beginning and end of the
range.

When an object accessor recieves a formRange key, the selectionData is a descriptor of type 'rang'.
You can coerce this to typeAERecord, and then use AEGetKeyDesc to extract the
keyAERangeStart and keyAERangeStop object specifiers. If you don't coerce to typeAERecord,
the call to AEGetKeyDesc will fail - it does not recognize the the 'rang' data type is really an
AERecord. You must then call AEResolve on each of the two specifiers to get the beginning and
end of the range. Note that this is a recursive call - your object accessor has already been called by
AEResolve; thus object accessors must be reentrant - they must not change global variables.

Following is the formRange code from CharFromTEText:

case formRange:

err = AECoerceDesc(selectionData, typeAERecord, &rangeRecord);
if (err) return err;

err = AEGetKeyDesc(&rangeRecord, keyAERangeStart,
typeObjectSpecifier, &startSpec);

if (err) return err;

err = AEGetKeyDesc(&rangeRecord, keyAERangeStop,
typeObjectSpecifier, &endSpec);

if (err) return err;

err = AEResolve(&startSpec, kAEIDoMinimum, &startToken);
if (err) return err;

err = AEResolve(&endSpec, kAEIDoMinimum, &endToken);
if (err) return err;

(... now make the token from the beginning and end tokens...)

The Services Menu

Word Services provides for a simple way to register new services with applications. Launch the
speller (Spellswell Demo in this case). Launch Writeswell Jr. and select "New Batch Service" from
the Services menu. Select "Spellswell Demo" from the PPCBrowser display.

Code Notes for Writeswell Jr.

October 28, 1995 4

Writeswell Jr. sends a Get Data event to request the "pBatchMenuString" property from Spellswell
Demo, and another Get Data to request the "pLocation" property. The menu string is saved in the
Writeswell Jr. Preferences file, and added to the Services menu. The pLocation is an alias record.
Spellswell Demo places its creator code in the userType field of the alias. This is important - the
alias manager puts 0 in the userType - the value placed there is up to the application; the Word
Services spec requires the actual signature of the speller, so that it is easily accessible to the word
processor.

The preferences file also contains a record that records the type of service for each menu item -
either batch service, interactive service, or no service. (Interactive service is not yet implemented).
When the menu is built, a global array, gServItemID, stores the resource ID for each service menu
item. When the service is selected from the menu, OpenSpeller in DoChecking.c looks up the
resource ID in gServItemID. The alias record is read in. OpenSpeller calls FindAProcess to see if a
process is running with that creator code. If it is not, then OpenSpeller calls LaunchSpeller to
launch the speller application from the alias, and then returns a typeApplSignature descriptor for
use in the AESend call to send the batch event.

You can simulate the presence of multiple Word Service programs on your hard disk. Make several
copies of the "Spellswell Demo". Use ResEdit to give each copy a unique creator code. Change the
'STR#' 1300 resource to give each one a unique menu string. Then launch each one, and install it
in Writeswell Jr.'s menu (or your own application's menu!) Each copy of the speller will need its
own dictionary if they are to run all at the same time.

The code that services the Get Data event for the pLocation property of Spellswell Demo actually
checks to see what its own creator code is. Normally, you just use a constant, but I wanted to
allow for the simulated multiple servers.

Initiating a session

You may start a Word Services session by selecting "Check Spelling" from the services menu,
after installing the menu item as described above.

Selecting a service results in a call to DoSpellCheck in DoChecking.c. DoSpellCheck calls
OpenSpeller to look for the server, launch it if necessary, and obtain its address as a
"typeApplSignature" descriptor. Then DoSpellCheck calls either DoBatchCheck or
DoBatchTableCheck to send a "Batch Process My Text" Apple Event to the server. The batch event
contains a parameter that specifies what text is to be checked. The speller uses this parameter in
subsequent Get Data and Set Data events to read and replace the text, and to set the background
hilighting.

There are two ways that the text may be specified in the batch event. You can choose which is used
by selection "Options..." from the Writeswell Jr. Edit menu.

The "Send text specifiers" option makes Writeswell Jr. send the object specifiers for the text
explicitly. The direct object to the batch event is a list (a descriptor of typeAEList) which contains a
single element, which is an object specifier for the first (and only) text field in the frontmost
window.

Client programs that allow more than one text block, such as drawing programs, spreadsheets, and
databases, may have several blocks checked at once by sending an object specifier to each block in
the list.

This is easy to do and works well if there are not too many text blocks to be checked. It will not
work if there are many text blocks, since an Apple Event may not contain more than 64K of data.

Code Notes for Writeswell Jr.

October 28, 1995 5

The "Send table specifier" option sends an object specifier for a table instead. The direct object is a
descriptor of typeObjectSpecifier. The server will use the table specifier as a container to ask for
elements of typeObjectSpecifier. That is, the server will ask for "object specifier number 27, which
is contained within the first window of the application." The object specifier that is gotten from the
table is used in just the same manner as the object specifiers that are contained in the list from the
"Send text specifiers" method.

A client application may choose to user either method. The method used will be invisible to the
user - I allow the option here for so programmers may test either way. A server application must
support both methods.

The server uses the descriptor type of the batch event's direct object to determine which method to
use. If the direct object is typeAEList, then the server expects the direct object to contain a list of
object specifiers. If the direct object is typeObjectSpecifier, then the server expects that the direct
object may be used access the elements of a table that is kept within the client.

In the Writeswell Jr. code, the table is just the document window. The elements of the window that
are of typeObjectSpecifier are object specifiers to the text fields in the window that are to be
spellchecked. (There's only one text field, but there could be more in general). If one uses Get
Data to get the first text element in the window, the text will be returned. If one uses Get Data to
get the first object specifier element in the window, then an object specifier will be returned. This
object specifier refers to the text element.

If you get this far, your head must be swimming. Go have a cup of tea and relax for a while. You
have read the words "object specifier" entirely too many times.

It is up to you what you want to use for a container. I chose to use a window, but you could use
the application (or null) container, or you could use some other object. The server does not
examine the table specifier itself; it just uses it as container to get an element from.

Helpful Hints

Here are hints based on the experience of the other developers that have implemented the protocol
in their own applications.

Be sure you have the SIZE resource correct. You will need the High Level Event Aware and the
Can Background bits set. There is some possibility that you may need to change the logic of your
program slightly if you have never used background processing before.

The AECreateAppleEvent function calls Random if you pass the kAutoGenerateReturnID constant
for the return ID parameter. Random uses the random seed that is stored in the QuickDraw globals.
This means that register A5 must be valid, or a crash might happen. The call to Random will be
unlikely to crash immediately; instead, a crash will happen later because Random will place a new
value into what it thinks is randSeed, overwriting some part of memory.

It is easy to neglect to dispose of all of your descriptors. This will cause a memory leak which may
be serious if the leak occurs in code that is called frequently. The Leaks dcmd, available on the
Apple Developer CD, is very useful for finding these.

Particularly watch out for functions that create a descriptor and return it to other functions that keep
it around for a while. The token returned by AEResolve must be disposed of when you are done
servicing the Apple Event.

Code Notes for Writeswell Jr.

October 28, 1995 6

The reply event passed to AESend must be disposed of whether you actually use it or not. Dispose
of after the AESend if you are not using queued replies. If you are queing replies, dispose of it
after the reply is actually recived.

Word Services is a stateless protocol. Once a client application sends the Batch Process My Text
event to the speller, it continues its event loop as if nothing special was happening. There is no
event to announce the termination of a Word Services session. If the client application really needs
to know that the session has terminated, it can watch for suspend/resume events. The session is
over when the client application returns to the front.

Future Directions

The demo code now substantially matches the current protocol specification. There are some
extensions to the protocol that may be made in the future if there is sufficient interest from
developers. Any such extensions will be upward compatible - old servers will work with new
clients, and new servers will work with old clients.

The menu strings will be elements of the application rather than properties. There will be an
optional parameter added to the batch event to specify which service is desired. This will allow a
single server application to provide multiple services, each with their own menu string.

There are discussions under way on how to allow Word Services to support servers that use
modeless dialogs. This will mainly be of use to grammar checkers, which will be able to tell the
user to rephrase some text back in the original document, and then continue where they left off
when the user selects the grammar checker's window. This will be an optional capability, and will
require the client to maintain some state information during a Word Services session.

